WorldWideScience

Sample records for resistance genes teta

  1. The involvement of tetA and tetE tetracycline resistance genes in plasmid and chromosomal resistance of Aeromonas in Brazilian strains

    Directory of Open Access Journals (Sweden)

    Ilana Teruszkin Balassiano

    2007-11-01

    Full Text Available This study analyzed the involvement of tetA and tetE genes in the tetracycline resistance of 16 strains of genus Aeromonas, isolated from clinical and food sources. Polymerase chain reactions revealed that 37.5% of the samples were positive for tetA, and also 37.5% were tetE positive. One isolate was positive for both genes. Only the isolate A. caviae 5.2 had its resistance associated to the presence of a plasmid, pSS2. The molecular characterization of pSS2 involved the construction of its restriction map and the determination of its size. The digestion of pSS2 with HindIII originated two fragments (A and B that were cloned separately into the pUC18 vector. The tetA gene was shown to be located on the HindIII-A fragment by PCR. After transforming a tetracycline-sensitive strain with pSS2, the transformants expressed the resistance phenotype and harbored a plasmid whose size was identical to that of pSS2. The results confirmed the association between pSS2 and the tetracycline resistance phenotype, and suggest a feasible dissemination of tetA and tetE among strains of Aeromonas. This study suggests the spreading tetA and tetE genes in Aeromonas in Brazil and describes a resistance plasmid that probably contributes to the dissemination of the resistance.

  2. Effects of ceftiofur and chlortetracycline treatment strategies on antimicrobial susceptibility and on tet(A, tet(B, and bla CMY-2 resistance genes among E. coli isolated from the feces of feedlot cattle.

    Directory of Open Access Journals (Sweden)

    Neena Kanwar

    Full Text Available A randomized controlled field trial was conducted to evaluate the effects of two sets of treatment strategies on ceftiofur and tetracycline resistance in feedlot cattle. The strategies consisted of ceftiofur crystalline-free acid (CCFA administered to either one or all of the steers within a pen, followed by feeding or not feeding a therapeutic dose of chlortetracycline (CTC. Eighty-eight steers were randomly allocated to eight pens of 11 steers each. Both treatment regimens were randomly assigned to the pens in a two-way full factorial design. Non-type-specific (NTS E. coli (n = 1,050 were isolated from fecal samples gathered on Days 0, 4, 12, and 26. Antimicrobial susceptibility profiles were determined using a microbroth dilution technique. PCR was used to detect tet(A, tet(B, and bla CMY-2 genes within each isolate. Chlortetracycline administration greatly exacerbated the already increased levels of both phenotypic and genotypic ceftiofur resistance conferred by prior CCFA treatment (P<0.05. The four treatment regimens also influenced the phenotypic multidrug resistance count of NTS E. coli populations. Chlortetracycline treatment alone was associated with an increased probability of selecting isolates that harbored tet(B versus tet(A (P<0.05; meanwhile, there was an inverse association between finding tet(A versus tet(B genes for any given regimen (P<0.05. The presence of a tet(A gene was associated with an isolate exhibiting reduced phenotypic susceptibility to a higher median number of antimicrobials (n = 289, median = 6; 95% CI = 4-8 compared with the tet(B gene (n = 208, median = 3; 95% CI = 3-4. Results indicate that CTC can exacerbate ceftiofur resistance following CCFA therapy and therefore should be avoided, especially when considering their use in sequence. Further studies are required to establish the animal-level effects of co-housing antimicrobial-treated and non-treated animals together.

  3. Relation between tetR and tetA expression in tetracycline resistant Escherichia coli

    DEFF Research Database (Denmark)

    Møller, Thea S. B.; Overgaard, Martin; Nielsen, Søren S.

    2016-01-01

    Background: Tetracyclines are among the most used antibiotics in livestock worldwide. Resistance is widely disseminated in Escherichia coli, where it is generally mediated by tetracycline efflux pumps, such as TetA. Expression of tetracycline efflux pumps is tightly controlled by the repressor Tet......R, which has been shown to be tetracycline-responsive at sub-MIC tetracycline concentrations. The objective of this study was to investigate the effects of increasing tetracycline concentrations on the growth of TetA-producing E. coli, and to determine how expression of tetA and tetR related to each other...... in different growth phases in the presence of tetracycline. Results: A tetracycline resistant E. coli strain containing tetA and tetR on the chromosome was constructed and cultured in the presence of increasing concentrations of tetracycline. Expression of tetR and tetA was measured at four time points...

  4. The Rapid Emergence of Tigecycline Resistance in blaKPC–2 Harboring Klebsiella pneumoniae, as Mediated in Vivo by Mutation in tetA During Tigecycline Treatment

    Directory of Open Access Journals (Sweden)

    Xiaoxing Du

    2018-04-01

    Full Text Available Tigecycline is one of the last resort treatments for carbapenem-resistant Klebsiella pneumoniae (CRKP infections. Tigecycline resistance often occurs during the clinical treatment of CRKP, yet its mechanism has still not been clearly elucidated. This study presents an analysis of a tigecycline resistance mechanism that developed in clinical isolates from a 56-year-old female patient infected with CRKP during tigecycline treatment. Consecutive clonal consistent K. pneumoniae isolates were obtained during tigecycline treatment. Whole genome sequencing of the isolates was performed, and putative single nucleotide polymorphisms and insertion and deletion mutations were analyzed in susceptible and resistant isolates. The identified gene of interest was examined through experiments involving transformations and conjugations. Four isolates, two of which were susceptible and two resistant, were collected from the patient. All of the isolates belonged to Sequence Type 11 (ST11 and were classified as extensively drug resistant (XDR. One amino acid substitution S251A in TetA was identified in the tigecycline-resistant isolates. Subsequent transformation experiments confirmed the contribution of the TetA variant (S251A to tigecycline resistance. The transfer capacity of tigecycline resistance via this mutation was confirmed by conjugation experiments. Using southern blot hybridization and PCR assays, we further proved that the tetA gene was located on a transferable plasmid of ca. 65 kb in an Escherichia coli EC600 transconjugant. Our results provide direct in vivo evidence that evolution in the tetA gene can lead to tigecycline treatment failure in CRKP clinical strains that carry tetA. Moreover, the transfer capacity of tigecycline resistance mediated by mutated tetA is a threat.

  5. Conjugative IncF and IncI1 plasmids with tet(A) and class 1 integron conferring multidrug resistance in F18(+) porcine enterotoxigenic E. coli.

    Science.gov (United States)

    Szmolka, Ama; Lestár, Barbara; Pászti, Judit; Fekete, Péter; Nagy, Béla

    2015-12-01

    Enterotoxigenic E. coli (ETEC) bacteria frequently cause watery diarrhoea in newborn and weaned pigs. Plasmids carrying genes of different enterotoxins and fimbrial adhesins, as well as plasmids conferring antimicrobial resistance are of prime importance in the epidemiology and pathogenesis of ETEC. Recent studies have revealed the significance of the porcine ETEC plasmid pTC, carrying tetracycline resistance gene tet(B) with enterotoxin genes. In contrast, the role of tet(A) plasmids in transferring resistance of porcine ETEC is less understood. The objective of the present study was to provide a comparative analysis of antimicrobial resistance and virulence gene profiles of porcine post-weaning ETEC strains representing pork-producing areas in Central Europe and in the USA, with special attention to plasmids carrying the tet(A) gene. Antimicrobial resistance phenotypes and genotypes of 87 porcine ETEC strains isolated from cases of post-weaning diarrhoea in Austria, the Czech Republic, Hungary and the Midwest USA was determined by disk diffusion and by PCR. Central European strains carrying tet(A) or tet(B) were further subjected to molecular characterisation of their tet plasmids. Results indicated that > 90% of the ETEC strains shared a common multidrug resistant (MDR) pattern of sulphamethoxazole (91%), tetracycline (84%) and streptomycin (80%) resistance. Tetracycline resistance was most frequently determined by the tet(B) gene (38%), while tet(A) was identified in 26% of all isolates with wide ranges for both tet gene types between some countries and with class 1 integrons and resistance genes co-transferred by conjugation. The virulence gene profiles included enterotoxin genes (lt, sta and/or stb), as well as adhesin genes (k88/f4, f18). Characterisation of two representative tet(A) plasmids of porcine F18(+) ETEC from Central Europe revealed that the IncF plasmid (pES11732) of the Czech strain (~120 kb) carried tet(A) in association with catA1 for

  6. TetaSARTS

    DEFF Research Database (Denmark)

    Luckow, Kasper Søe; Bøgholm, Thomas; Thomsen, Bent

    2013-01-01

    We describe the design and the capabilities of the static timing analysis tool TetaSARTS that assists in temporal verification of Safety Critical Java (SCJ) systems. The primary functionality of TetaSARTS is schedulability analysis, which takes into account the scheduling policy and task interact......We describe the design and the capabilities of the static timing analysis tool TetaSARTS that assists in temporal verification of Safety Critical Java (SCJ) systems. The primary functionality of TetaSARTS is schedulability analysis, which takes into account the scheduling policy and task...... interactions. TetaSARTS also facilitates analysing processor utilisation and idle time, Worst Case Execution Time, Worst Case Response Time, and Worst Case Blocking Time. In the analyses, TetaSARTS accounts for the execution environment hosting the analysed system; both hardware implementations of the Java...... Virtual Machine as well as software implementations hosted on common embedded hardware are supported. Several parameters of the execution environment can be adjusted prior to performing the analyses e.g. the clock frequency of the hardware. The enabling technology for supporting the analyses...

  7. Detection and Characterizations of Genes Resistant to Tetracycline and Sulfa among the Bacteria in Mariculture Water

    Science.gov (United States)

    Qu, L.; Li, Y.; Zhu, P.

    2013-12-01

    One hundred and thirty-five bacteria from maricultural environments were tested for sensitivity to tetracycline and sulfa. Result show that 72% of the bacteria were sulfa-resistant, 36% of the bacteria were tetracycline-resistant, and 16.5% of bacteria showed resistance to both tetracyclines and sulfa ,indicating that the proportion of sulfa and tetracycline resistance bacteria isvery large in the maricultural environments. PCR methods were used to detect if these resistant bacteria carry tetracycline and sulfa resistance genes. Out of the 33 tetracycline-resistant bacteria screened, 3 were positive for tetA, 6 were positive for tetB and no isolate wasboth positive for tetA and tetB. Of the 97 sulfa-resistant bacteria screened, 9 were positive for sul2, 6 were positive for sul1, 1 isolate was positive for bothsul1 and sul2. The minimum inhibitory concentration (MIC) of tetracycline for tetA-carrying isolates were higher than those tetB-carrying isolates.while The MIC of sulfa for sul2-carrying isolates were higher than those sul1-carrying isolates. Indicating that tetA and sul2 gene may play ubknown roles in resisting tetracycline and sulfa than tetB and sul1 genes. The results showed the 4 kinds of genes (tetA,tetB,sul1,sul2) has no host specificity. All these 16S sequence are from the isolates which are positive for the above genes, it indicated the above antibiotic resistance genes are widespread in the environment regardless of the host. While the DNA sequence of these four genes showed tetA, sul1, sul2 genes are conservative in different bacteria , etB gene conserved poorly. The research aim is to get a preliminary understanding of resistance mechanism related to the resistant bacteria and the resistance genes in marine aquaculture environment through the analysis of resistant genes, providing research base for the prevention and treatment of drug-resistant bacteria so as to reduce the threat to the ecological environment, aquaculture and human health.

  8. Susceptibility of Escherichia coli and Enterococcus faecium isolated from pigs and broiler chickens to tetracycline degradation products and distribution of tetracycline resistance determinants in E-coli from food animals

    DEFF Research Database (Denmark)

    Sengeløv, G.; Halling-Sørensen, B.; Aarestrup, Frank Møller

    2003-01-01

    One hundred Escherichia coli isolates from diseased and healthy pigs, cattle and broiler chickens were screened for the presence of tetracycline resistance genes tet(A), (13), (C), (D) or (E). The tet(A) gene was the most abundant (71% of the 100 isolates) followed by tet(B) (25%). The predominan...

  9. Antimicrobial Resistance Genes in Pigeons from Public Parks in Costa Rica.

    Science.gov (United States)

    Blanco-Peña, K; Esperón, F; Torres-Mejía, A M; de la Torre, A; de la Cruz, E; Jiménez-Soto, M

    2017-11-01

    Antimicrobial resistance is known to be an emerging problem, but the extent of the issue remains incomplete. The aim of this study was to determine the presence or absence of nine resistance genes (bla TEM , catI, mecA, qnrS, sulI, sulII, tet(A), tet(Q), vanA) in the faeces of 141 pigeons from four urban parks in Alajuela, Guadalupe, Tres Ríos and San José in Costa Rica. The genes were identified by real-time PCR directly from enema samples. About 30% of the samples were positive for genes catI and sulI; between 13% and 17% were positive for qnrS, sulII, tet(A) and tet(Q); and 4% were positive for bla TEM . The mecA and vanA genes were not detected. The average of antimicrobial resistance genes detected per pigeon was 2. Eight different patterns of resistance were identified, without differences in the sampling areas, being the most common pattern 2 (sulII positive samples). During rainy season, the genes more frequently found were sulI and tet(A). In conclusion, the urban inhabiting pigeons tested are currently carrying antimicrobial resistance genes, potentially acting as reservoirs of resistant bacteria and vectors to humans. To the authors' knowledge, this is the first study carried out on direct detection of resistance genes in the digestive metagenomes of pigeons. © 2017 The Authors. Zoonoses and Public Health Published by Blackwell Verlag GmbH.

  10. Prevalence of tetracycline resistance genes among multi-drug resistant bacteria from selected water distribution systems in southwestern Nigeria.

    Science.gov (United States)

    Adesoji, Ayodele T; Ogunjobi, Adeniyi A; Olatoye, Isaac O; Call, Douglas R; Douglas, Douglas R

    2015-06-25

    Antibiotic resistance genes [ARGs] in aquatic systems have drawn increasing attention they could be transferred horizontally to pathogenic bacteria. Water treatment plants (WTPs) are intended to provide quality and widely available water to the local populace they serve. However, WTPs in developing countries may not be dependable for clean water and they could serve as points of dissemination for antibiotic resistant bacteria. Only a few studies have investigated the occurrence of ARGs among these bacteria including tetracycline resistance genes in water distribution systems in Nigeria. Multi-drug resistant (MDR) bacteria, including resistance to tetracycline, were isolated from treated and untreated water distribution systems in southwest Nigeria. MDR bacteria were resistant to >3 classes of antibiotics based on break-point assays. Isolates were characterized using partial 16S rDNA sequencing and PCR assays for six tetracycline-resistance genes. Plasmid conjugation was evaluated using E. coli strain DH5α as the recipient strain. Out of the 105 bacteria, 85 (81 %) and 20 (19 %) were Gram- negative or Gram- positive, respectively. Twenty-nine isolates carried at least one of the targeted tetracycline resistance genes including strains of Aeromonas, Alcaligenes, Bacillus, Klebsiella, Leucobacter, Morganella, Proteus and a sequence matching a previously uncultured bacteria. Tet(A) was the most prevalent (16/29) followed by tet(E) (4/29) and tet30 (2/29). Tet(O) was not detected in any of the isolates. Tet(A) was mostly found with Alcaligenes strains (9/10) and a combination of more than one resistance gene was observed only amongst Alcaligenes strains [tet(A) + tet30 (2/10), tet(A) + tet(E) (3/10), tet(E) + tet(M) (1/10), tet(E) + tet30 (1/10)]. Tet(A) was transferred by conjugation for five Alcaligenes and two E. coli isolates. This study found a high prevalence of plasmid-encoded tet(A) among Alcaligenes isolates, raising the possibility that this

  11. Detection and linkage to mobile genetic elements of tetracycline resistance gene tet(M) in Escherichia coli isolates from pigs

    DEFF Research Database (Denmark)

    Jurado-Rabadan, Sonia; de la Fuente, Ricardo; Ruiz-Santa-Quiteria, Jose A.

    2014-01-01

    from pigs, as well as the detection of mobile genetic elements linked to tet(M) in E. coli and its possible transfer from enterococci. Results: tet(A) was the most frequently detected gene (87.9%) in doxycycline-resistant isolates. tet(M) was found in 13.1% E. coli isolates. The tet(M) gene......Background: In Escherichia coli the genes involved in the acquisition of tetracycline resistance are mainly tet(A) and tet(B). In addition, tet(M) is the most common tetracycline resistance determinant in enterococci and it is associated with conjugative transposons and plasmids. Although tet......(M) has been identified in E. coli, to our knowledge, there are no previous reports studying the linkage of the tet(M) gene in E. coli to different mobile genetic elements. The aim of this study was to determine the occurrence of tet(A), tet(B), and tet(M) genes in doxycycline-resistant E. coli isolates...

  12. Occurrence of tetracycline-resistant fecal coliforms and their resistance genes in an urban river impacted by municipal wastewater treatment plant discharges.

    Science.gov (United States)

    Zhang, Chong-Miao; Du, Cong; Xu, Huan; Miao, Yan-Hui; Cheng, Yan-Yan; Tang, Hao; Zhou, Jin-Hong; Wang, Xiao-Chang

    2015-01-01

    Antibiotic resistance of fecal coliforms in an urban river poses great threats to both human health and the environment. To investigate the occurrence and distribution of antibiotic resistant bacteria in an urban river, water samples were collected from the Chanhe River in Xi'an, China. After membrane filtration of water samples, the tetracycline resistance rate of fecal coliforms and their resistance genes were detected by plating and polymerase chain reaction (PCR), respectively. We found that fecal coliforms were generally resistant to tetracycline and saw average resistance rates of 44.7%. The genes tetA and tetB were widely detected, and their positive rate was 60%-100% and 40%-90%, respectively. We found few strains containing tetC, tetK, tetQ and tetX, and we did not identify any strains containing tetG, tetM or tetO. The prevalence of tetA and tetB over other genes indicated that the main mechanism for resistance to tetracycline is by changes to the efflux pump. Our analysis of the types and proportion of tetracycline resistance genes in the Chanhe River at locations upstream and downstream of the urban center suggests that the increased number of tetracycline-resistant fecal coliforms and spatial variation of tetracycline resistance genes diversity were related to municipal wastewater treatment plant discharge.

  13. Occurrence of antibiotic resistance genes in culturable bacteria isolated from Turkish trout farms and their local aquatic environment.

    Science.gov (United States)

    Capkin, Erol; Terzi, Ertugrul; Altinok, Ilhan

    2015-05-21

    Antibiotic resistance and presence of the resistance genes were investigated in the bacteria isolated from water, sediment, and fish in trout farms. A total of 9 bacterial species, particularly Escherichia coli, were isolated from the water and sediment samples, and 12 species were isolated from fish. The antimicrobial test indicated the highest resistance against sulfamethoxazole and ampicillin in coliform bacteria, and against sulfamethoxazole, imipenem, and aztreonam in known pathogenic bacteria isolated from fish. The most effective antibiotics were rifampicin, chloramphenicol, and tetracycline. The multiple antibiotic resistance index was above the critical limit for almost all of the bacteria isolated. The most common antibiotic resistance gene was ampC, followed by tetA, sul2, blaCTX-M1, and blaTEM in the coliform bacteria. At least one resistance gene was found in 70.8% of the bacteria, and 66.6% of the bacteria had 2 or more resistance genes. Approximately 36.54% of the bacteria that contain plasmids were able to transfer them to other bacteria. The plasmid-mediated transferable resistance genes were ampC, blaCTX-M1, tetA, sul2, and blaTEM. These results indicate that the aquatic environment could play an important role in the development of antibiotic resistance and the dissemination of resistance genes among bacteria.

  14. Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland.

    Science.gov (United States)

    Lanz, Roland; Kuhnert, Peter; Boerlin, Patrick

    2003-01-02

    Antimicrobial susceptibility testing was performed on a total of 581 clinical Escherichia coli isolates from diarrhea and edema disease in pigs, from acute mastitis in dairy cattle, from urinary tract infections in dogs and cats, and from septicemia in laying hens collected in Switzerland between 1999 and 2001. Among the 16 antimicrobial agents tested, resistance was most frequent for sulfonamides, tetracycline, and streptomycin. Isolates from swine presented significantly more resistance than those from the other animal species. The distribution of the resistance determinants for sulfonamides, tetracycline, and streptomycin was assessed by hybridization and PCR in resistant isolates. Significant differences in the distribution of resistance determinants for tetracycline (tetA, tetB) and sulfonamides (sulII) were observed between the isolates from swine and those from the other species. Resistance to sulfonamides could not be explained by known resistance mechanisms in more than a quarter of the sulfonamide-resistant and sulfonamide-intermediate isolates from swine, dogs and cats. This finding suggests that one or several new resistance mechanisms for sulfonamides may be widespread among E. coli isolates from these animal species. The integrase gene (intI) from class I integrons was detected in a large proportion of resistant isolates in association with the sulI and aadA genes, thus demonstrating the importance of integrons in the epidemiology of resistance in clinical E. coli isolates from animals.

  15. Spread of tetracycline resistance genes at a conventional dairy farm

    Directory of Open Access Journals (Sweden)

    Martina eKyselkova

    2015-05-01

    Full Text Available The use of antibiotics in animal husbandry contributes to the worldwide problem of increasing antibiotic resistance in animal and human pathogens. Intensive animal production is considered an important source of antibiotic resistance genes released to the environment, while the contribution of smaller farms remains to be evaluated. Here we monitor the spread of tetracycline resistance (TC-r genes at a middle-size conventional dairy farm, where chlortetracycline (CTC, as intrauterine suppository is prophylactically used after each calving. Our study has shown that animals at the farm acquired the TC-r genes in their early age (1-2 weeks, likely due to colonization with TC-resistant bacteria from their mothers and/or the farm environment. The relative abundance of the TC-r genes tet(W, tet(Q and tet(M in fresh excrements of calves was about 1-2 orders of magnitude higher compared to heifers and dairy cows, possibly due to the presence of antibiotic residues in milk fed to calves. The occurrence and abundance of TC-r genes in fresh excrements of heifers and adult cows remained unaffected by intrauterine CTC applications, with tet(O, tet(Q and tet(W representing a ‘core TC-resistome’ of the farm, and tet(A, tet(M, tet(Y and tet(X occurring occasionally. The genes tet(A, tet(M, tet(Y and tet(X were shown to be respectively harbored by Shigella, Lactobacillus and Clostridium, Acinetobacter, and Wautersiella. Soil in the farm proximity, as well as field soil to which manure from the farm was applied, was contaminated with TC-r genes occurring in the farm, and some of the TC-r genes persisted in the field over 3 months following the manure application. Concluding, our study shows that antibiotic resistance genes may be a stable part of the intestinal metagenome of cattle even if antibiotics are not used for growth stimulation, and that smaller dairy farms may also contribute to environmental pollution with antibiotic resistance genes.

  16. Characterization of the bacterioplankton community and its antibiotic resistance genes in the Baltic Sea.

    Science.gov (United States)

    Tiirik, Kertu; Nõlvak, Hiie; Oopkaup, Kristjan; Truu, Marika; Preem, Jens-Konrad; Heinaru, Ain; Truu, Jaak

    2014-01-01

    The residues from human environments often contain antibiotics and antibiotic resistance genes (ARGs) that can contaminate natural environments; the clearest consequence of that is the selection of antibiotic-resistant bacteria. The Baltic Sea is the second largest isolated brackish water reservoir on Earth, serving as a drainage area for people in 14 countries, which differ from one another in antibiotic use and sewage treatment policies. The aim of this study was to characterize the bacterioplankton structure and quantify ARGs (tetA, tetB, tetM, ermB, sul1, blaSHV, and ampC) within the bacterioplankton community of the Baltic Sea. Quantitative polymerase chain reaction was applied to quantify ARGs from four different sampling sites of the Baltic Sea over 2 years, and the bacterial communities were profiled sequencing the V6 region of the 16S rRNA gene on Illumina HiSeq2000. The results revealed that all the resistance genes targeted in the study were detectable from the Baltic Sea bacterioplankton. The percentage of tetA, tetB, tetM, ermB, and sul1 genes in the sea bacterial community varied between 0.0077% and 0.1089%, 0.0003% and 0.0019%, 0.0001% and 0.0105%, 0% and 0.0136%, and 0.0001% and 0.0438%, respectively. The most numerous ARG detected was the tetA gene and this gene also had the highest proportion in the whole microbial community. A strong association between bacterioplankton ARGs' abundance data and community phylogenetic composition was found, implying that the abundance of most of the studied ARGs in the Baltic Sea is determined by fluctuations in its bacterial community structure. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  17. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria.

    Science.gov (United States)

    Adelowo, Olawale O; Fagade, Obasola E; Agersø, Yvonne

    2014-09-12

    This study investigated the mechanisms of resistance in 36 E. coli isolated from waste, litter, soil and water samples collected from poultry farms in Southwestern Nigeria. Minimum inhibitory concentration (MIC) distributions of the isolates were determined using the methods of the Clinical and Laboratory Standard Institute and resistance genes detected by PCR. A total of 30 isolates (94%) showed resistance to more than one antimicrobial. Percentage resistance was: tetracycline 81%, sulphamethoxazole 67%, streptomycin 56%, trimethoprim 47 %, ciprofloxacin 42%, ampicillin 36%, spectinomycin 28%, nalidixic acid 25%, chloramphenicol 22%, neomycin 14%, gentamicin 8%, amoxicillin-clavulanate, ceftiofur, cefotaxime, colistin, florfenicol and apramycin 0%. Resistance genes found among the isolates include bla-TEM (85%), sul2 (67%), sul3 (17%), aadA (65%), strA (70%), strB (61%), catA1 (25%), cmlA1 (13%), tetA (21%) and tetB (17%). Class 1 and 2 integrons were found in five (14%) and six (17%) isolates, respectively, while one isolate was positive for both classes of integrons. Seven out of eight isolates with resistance to ciprofloxacin and MIC ≤ 32 mg/L to nalidixic acid contained qnrS genes. Our findings provided additional evidence that the poultry production environment in Nigeria represents an important reservoir of antibiotic resistance genes such as qnrS that may spread from livestock production farms to human populations via manure and water.

  18. Abundance of antibiotic resistance genes in environmental bacteriophages.

    Science.gov (United States)

    Anand, Taruna; Bera, Bidhan Ch; Vaid, Rajesh K; Barua, Sanjay; Riyesh, Thachamvally; Virmani, Nitin; Hussain, Mubarik; Singh, Raj K; Tripathi, Bhupendra N

    2016-12-01

    The ecosystem is continuously exposed to a wide variety of antimicrobials through waste effluents, agricultural run-offs and animal-related and anthropogenic activities, which contribute to the spread of antibiotic resistance genes (ARGs). The contamination of ecosystems with ARGs may create increased opportunities for their transfer to naive microbes and eventually lead to entry into the human food chain. Transduction is a significant mechanism of horizontal gene transfer in natural environments, which has traditionally been underestimated as compared to transformation. We explored the presence of ARGs in environmental bacteriophages in order to recognize their contribution in the spread of ARGs in environmental settings. Bacteriophages were isolated against environmental bacterial isolates, purified and bulk cultured. They were characterized, and detection of ARG and intI genes including blaTEM, blaOXA-2, intI1, intI2, intI3, tetA and tetW was carried out by PCR. This study revealed the presence of various genes [tetA (12.7 %), intI1 (10.9 %), intI2 (10.9 %), intI3 (9.1 %), tetW (9.1 %) and blaOXA-2 (3.6 %)] and blaTEM in a significantly higher proportion (30.9 %). blaSHV, blaOXA-1, tetO, tetB, tetG, tetM and tetS were not detected in any of the phages. Soil phages were the most versatile in terms of ARG carriage. Also, the relative abundance of tetA differed significantly vis-à-vis source. The phages from organized farms showed varied ARGs as compared to the unorganized sector, although blaTEM ARG incidences did not differ significantly. The study reflects on the role of phages in dissemination of ARGs in environmental reservoirs, which may provide an early warning system for future clinically relevant resistance mechanisms.

  19. Determination of tetracycline resistance genes in Vibrio cholerae O1 biotype El Tor serotype Inaba strains isolated from outbreaks occurred in Iran in 2013

    Directory of Open Access Journals (Sweden)

    Azin Khany

    2016-05-01

    Full Text Available V. cholerae is the causative agent of potentially life threatening diarrheal disease named as cholera. Cholera is an endemic disease in Iran. Encountered increasing resistance of V. cholerae to commonly used antibiotics such as tetracycline has led to major challenges in the treatment of this disease .The present study was carried out to determine the prevalence of drug resistance as well as molecular bases of resistant V.cholerae strains which were isolated from patients in cholera outbreaks during summer of 2013 in Iran. Susceptibly testing was performed on V.cholerae strains isolated from stool of patients suffering from cholera in Iranian reference health laboratory by E -test MIC method as recommended by CLSI guideline. Antibiotic strips used included Ampicillin, Ciprofloxacin, Nalidixic acid, Cefixime , Tetracycline, Erythromycin and Trimethoprim-sulfamethoxazole .Regarding observed dominant pattern of tetracycline resistance comparing to results of previous years ,we decided to confirm the resistance by detecting the tetA , tetB and tetC by Polymerase chain reaction method. The results of antibiotic susceptibility testing revealed 100% resistance of isolated strains to tetracycline. Data obtained from PCR reaction on resistant strains for tetA, tetB and tetC showed that 45(44.1%, 37(36.2% and 70(68.6% were containing tetA, tetB and tetC gene respectively. Moreover, the frequency of tetA+tetB, tetA+C, tetB+tetC , tetA+tetB+tetC also were determined as 9(8.8%, 32(31.3%, 19(18.6% and 8(7.8% respectively. This study revealed the pattern of drug resistance distribution of isolates harboring tetA, tetB, tetC genes in relation to sex, age and nationality of patients and the cities where the cases were reported. A significant correlation was obtained between reported geographical incidence and drug resistant strains.

  20. Antibiotic resistance and virulence genes in coliform water isolates.

    Science.gov (United States)

    Stange, C; Sidhu, J P S; Tiehm, A; Toze, S

    2016-11-01

    Widespread fecal pollution of surface water may present a major health risk and a significant pathway for dissemination of antibiotic resistance bacteria. The River Rhine is one of the longest and most important rivers in Europe and an important raw water source for drinking water production. A total of 100 coliform isolates obtained from River Rhine (Germany) were examined for their susceptibility to seven antimicrobial agents. Resistances against amoxicillin, trimethoprim/sulfamethoxazole and tetracycline were detected in 48%, 11% and 9% of isolates respectively. The antibiotic resistance could be traced back to the resistance genes bla TEM , bla SHV , ampC, sul1, sul2, dfrA1, tet(A) and tet(B). Whereby, the ampC gene represents a special case, because its presence is not inevitably linked to a phenotypic antibiotic resistance. Multiple antibiotics resistance was often accompanied by the occurrence of class 1 or 2 integrons. E. coli isolates belonging to phylogenetic groups A and B1 (commensal) were more predominant (57%) compared to B2 and D groups (43%) which are known to carry virulent genes. Additionally, six E. coli virulence genes were also detected. However, the prevalence of virulence genes in the E. coli isolates was low (not exceeding 4.3% per gene) and no diarrheagenic E. coli pathotypes were detected. This study demonstrates that surface water is an important reservoir of ARGs for a number of antibiotic classes such as sulfonamide, trimethoprim, beta-lactam-antibiotics and tetracycline. The occurrence of antibiotic resistance in coliform bacteria isolated from River Rhine provides evidence for the need to develop management strategies to limit the spread of antibiotic resistant bacteria in aquatic environment. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Occurrence of antibiotic resistance and characterization of resistant genes and integrons in Enterobacteriaceae isolated from integrated fish farms south China

    Science.gov (United States)

    Su, Hao-Chang; Ying, Guang-Guo; Tao, Ran; Zhang, Rui-Quan; Fogarty, Lisa R.; Kolpin, Dana W.

    2011-01-01

    Antibiotics are still widely applied in animal husbandry to prevent diseases and used as feed additives to promote animal growth. This could result in antibiotic resistance to bacteria and antibiotic residues in animals. In this paper, Enterobacteriaceae isolated from four integrated fish farms in Zhongshan, South China were tested for antibiotic resistance, tetracycline resistance genes, sulfonamide resistance genes, and class 1 integrons. The Kirby-Bauer disk diffusion method and polymerase chain reaction (PCR) assays were carried out to test antibiotic susceptibility and resistance genes, respectively. Relatively high antibiotic resistance frequencies were found, especially for ampicillin (80%), tetracycline (52%), and trimethoprim (50%). Out of 203 Enterobacteriaceae isolates, 98.5% were resistant to one or more antibiotics tested. Multiple antibiotic resistance (MAR) was found highest in animal manures with a MAR index of 0.56. Tetracycline resistance genes (tet(A), tet(C)) and sulfonamide resistance genes (sul2) were detected in more than 50% of the isolates. The intI1 gene was found in 170 isolates (83.7%). Both classic and non-classic class 1 integrons were found. Four genes, aadA5, aadA22, dfr2, and dfrA17, were detected. To our knowledge, this is the first report for molecular characterization of antibiotic resistance genes in Enterobacteriaceae isolated from integrated fish farms in China and the first time that gene cassette array dfrA17-aadA5 has been detected in such fish farms. Results of this study indicated that fish farms may be a reservoir of highly diverse and abundant antibiotic resistant genes and gene cassettes. Integrons may play a key role in multiple antibiotic resistances posing potential health risks to the general public and aquaculture.

  2. Incidence, distribution, and spread of tetracycline resistance determinants and integron-associated antibiotic resistance genes among motile aeromonads from a fish farming environment

    DEFF Research Database (Denmark)

    Schmidt, Anja S.; Bruun, Morten Sichlau; Dalsgaard, Inger

    2001-01-01

    isolates). In addition, 23 isolates had "empty" integrons without inserted gene cassettes. As far as OTC resistance was concerned, only 66 (30%) out of 216 resistant aeromonads could be assigned to resistance determinant class A (19 isolates), D (n = 6), or E (n = 39); three isolates contained two...... tetracycline resistance determinants (AD, AE, and DE). Forty OTC-resistant isolates containing large plasmids were selected as donors in a conjugation assay, 27 of which also contained a class I integron. Out of 17 successful R- plasmid transfers to Escherichia coli recipients, the respective integrons were...... cotransferred along with the tetracycline resistance determinants in 15 matings. Transconjugants were predominantly tetA positive (10 of 17) and contained class I integrons with two or more inserted antibiotic resistance genes. While there appeared to be a positive correlation between conjugative R...

  3. Characterization of microbiota composition and presence of selected antibiotic resistance genes in carriage water of ornamental fish.

    Science.gov (United States)

    Gerzova, Lenka; Videnska, Petra; Faldynova, Marcela; Sedlar, Karel; Provaznik, Ivo; Cizek, Alois; Rychlik, Ivan

    2014-01-01

    International trade with ornamental fish is gradually recognized as an important source of a wide range of different antibiotic resistant bacteria. In this study we therefore characterized the prevalence of selected antibiotic resistance genes in the microbiota found in the carriage water of ornamental fish originating from 3 different continents. Real-time PCR quantification showed that the sul1 gene was present in 11 out of 100 bacteria. tet(A) was present in 6 out of 100 bacteria and strA, tet(G), sul2 and aadA were present in 1-2 copies per 100 bacteria. Class I integrons were quite common in carriage water microbiota, however, pyrosequencing showed that only 12 different antibiotic gene cassettes were present in class I integrons. The microbiota characterized by pyrosequencing of the V3/V4 variable region of 16S rRNA genes consisted of Proteobacteria (48%), Bacteroidetes (29.5%), Firmicutes (17.8%), Actinobacteria (2.1%) and Fusobacteria (1.6%). Correlation analysis between antibiotic resistance gene prevalence and microbiota composition verified by bacterial culture showed that major reservoirs of sul1 sul2, tet(A), tet(B) tet(G), cat, cml, bla, strA, aacA, aph and aadA could be found among Alpha-, Beta- and Gammaproteobacteria with representatives of Enterobacteriaceae, Pseudomonadaceae, Rhizobiaceae and Comamonadaceae being those most positively associated with the tested antibiotic resistance genes.

  4. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes.

    Science.gov (United States)

    Sharma, Virender K; Johnson, Natalie; Cizmas, Leslie; McDonald, Thomas J; Kim, Hyunook

    2016-05-01

    Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in the aquatic environment have become an emerging contaminant issue, which has implications for human and ecological health. This review begins with an introduction to the occurrence of ARB and ARG in different environmental systems such as natural environments and drinking water resources. For example, ARG or ARB with resistance to ciprofloxacin, sulfamethoxazole, trimethoprim, quinolone, vancomycin, or tetracycline (e.g., tet(A), tet(B), tet(C), tet(G), tet(O), tet(M), tet(W), sul I, and sul II) have been detected in the environment. The development of resistance may be intrinsic, may be acquired through spontaneous mutations (de novo), or may occur due to horizontal gene transfer from donor bacteria, phages, or free DNA to recipient bacteria. An overview is also provided of the current knowledge regarding inactivation of ARB and ARG, and the mechanism of the effects of different disinfection processes in water and wastewater (chlorination, UV irradiation, Fenton reaction, ozonation, and photocatalytic oxidation). The effects of constructed wetlands and nanotechnology on ARB and ARG are also summarized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Distribution of tetracycline resistance genes and AmpC β-lactamase genes in representative non-urban sewage plants and correlations with treatment processes and heavy metals.

    Science.gov (United States)

    Xu, Yan-Bin; Hou, Mao-Yu; Li, Ya-Fei; Huang, Lu; Ruan, Jing-Jing; Zheng, Li; Qiao, Qing-Xia; Du, Qing-Ping

    2017-03-01

    The mixed development of livestock breeding and industry in non-urban zones is a very general phenomenon in China. Distribution of antibiotic resistance genes (ARGs) in non-urban sewage treatment systems has not been paid enough attentions. In this study, eleven tetracycline resistance genes (tetA, tetB, tetC, tetE, tetG, tetL, tetM, tetO, tetQ, tetS and tetX), four AmpC β-lactamase genes (EBC, MOX, FOX and CIT) and four heavy metals (Cu, Zn, Cd and Pb) were detected and analyzed in four non-urban sewage plants with different sewage sources and different treatment processes in Guangzhou. The results showed that tetA and tetC were the most prevalent tetracycline resistance genes with the same detection frequency of 85% and EBC was the most prevalent AmpC β-lactamase gene with a detection frequency of 75%. The relative abundance of tetracycline resistance genes was approximately 1.6 orders of magnitudes higher than that of AmpC β-lactamase genes in all samples. A/O was the most effective process for the non-urban sewage plant receiving industrial or agricultural wastewater. Sedimentation was the most key process to eliminate ARGs from liquid phase. Most ARGs were carried in excess sludge rather than effluent. Significant correlation was found between the tet gene and Zn (r = 0.881, p gene and Cu (r = 0.847, p gene and Cu (r = 0.714, p < 0.05). Therefore, the pollution of ARGs in the sewage treatment systems of non-urban zones co-polluted by heavy metals should be paid more attentions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The tetracycline resistance determinant Tet 39 and the sulphonamide resistance gene sulII are common among resistant Acinetobacter spp. isolated from integrated fish farms in Thailand

    DEFF Research Database (Denmark)

    Agersø, Yvonne; Petersen, Andreas

    2007-01-01

    genes [tet(A), tet(B), tet(H), tet(M) and tet(39)] and class II integrons by PCR. One hundred and thirty-four of these isolates were also sulphonamide resistant and these isolates were screened for sulphonamide resistance genes (sulII and sulIII) as well as class I integrons. Plasmid extraction...... and Southern blots with sulII and tet(39) probes were performed on selected isolates. Results: The recently identified tetracycline resistance gene tet(39) was demonstrated in 75% (166/222) of oxytetracycline-resistant Acinetobacter spp. from integrated fish farms in Thailand. Isolates that were also...... sulfamethoxazole-resistant contained sulII (96%; 129/134) and/or sulI (14%; 19/134) (as part of class I integrons). sulII and tet(39) were located on plasmids differing in size in the isolates tested. Conclusions: The study shows tet(39) and sulII to be common resistance genes among clonally distinct Acinetobacter...

  7. Antibiotics and Antibiotic Resistance Genes in Sediment of Honghu Lake and East Dongting Lake, China.

    Science.gov (United States)

    Yang, Yuyi; Cao, Xinhua; Lin, Hui; Wang, Jun

    2016-11-01

    Sediment is an ideal medium for the aggregation and dissemination of antibiotics and antibiotic resistance genes (ARGs). The levels of antibiotics and ARGs in Honghu Lake and East Dongting Lake of central China were investigated in this study. The concentrations of eight antibiotics (four sulfonamides and four tetracyclines) in Honghu Lake were in the range 90.00-437.43 μg kg -1 (dry weight (dw)) with mean value of 278.21 μg kg -1 dw, which was significantly higher than those in East Dongting Lake (60.02-321.04 μg kg -1 dw, mean value of 195.70 μg kg -1 dw). Among the tested three sulfonamide resistance genes (sul) and eight tetracycline resistance genes (tet), sul1, sul2, tetA, tetC, and tetM had 100 % detection frequency in sediment samples of East Dongting Lake, while only sul1, sul2, and tetC were observed in all samples of Honghu Lake. The relative abundance of sul2 was higher than that of sul1 at p  tetB > tetC > tetA. The relative abundance of sul1, sul2, and tetC in East Dongting Lake was significantly higher than those in Honghu Lake. The abundance of background bacteria may play an important role in the horizontal spread of sul2 and tetC genes in Honghu Lake and sul1 in East Dongting Lake, respectively. Redundancy analysis indicated that tetracyclines may play a more important role than sulfonamides in the abundance of sul1, sul2, and tetC gens in Honghu Lake and East Dongting Lake.

  8. Electrocatalytic oxidation of hydrogen peroxide by poly(Ni -teta ...

    Indian Academy of Sciences (India)

    Administrator

    Electrocatalytic oxidation of hydrogen peroxide by poly(Ni. II. -teta) complex modified electrodes. V GANESAN and R RAMARAJ. School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India. Electrochemical methods based on the direct reduction or oxidation of substrate molecules at bare electrodes are often ...

  9. Distribution of tetracycline and streptomycin resistance genes and class 1 integrons in Enterobacteriaceae isolated from dairy and nondairy farm soils.

    Science.gov (United States)

    Srinivasan, Velusamy; Nam, Hyang-Mi; Sawant, Ashish A; Headrick, Susan I; Nguyen, Lien T; Oliver, Stephen P

    2008-02-01

    The prevalence of selected tetracycline and streptomycin resistance genes and class 1 integrons in Enterobacteriaceae (n = 80) isolated from dairy farm soil and nondairy soils was evaluated. Among 56 bacteria isolated from dairy farm soils, 36 (64.3%) were resistant to tetracycline, and 17 (30.4%) were resistant to streptomycin. Lower frequencies of tetracycline (9 of 24 or 37.5%) and streptomycin (1 of 24 or 4.2%) resistance were observed in bacteria isolated from nondairy soils. Bacteria (n = 56) isolated from dairy farm soil had a higher frequency of tetracycline resistance genes including tetM (28.6%), tetA (21.4%), tetW (8.9%), tetB (5.4%), tetS (5.4%), tetG (3.6%), and tetO (1.8%). Among 24 bacteria isolated from nondairy soils, four isolates carried tetM, tetO, tetS, and tetW in different combinations; whereas tetA, tetB, and tetG were not detected. Similarly, a higher prevalence of streptomycin resistance genes including strA (12.5%), strB (12.5%), ant(3'') (12.5), aph(6)-1c (12.5%), aph(3'') (10.8%), and addA (5.4%) was detected in bacteria isolated from dairy farm soils than in nondairy soils. None of the nondairy soil isolates carried aadA gene. Other tetracycline (tetC, tetD, tetE, tetK, tetL, tetQ, and tetT) and streptomycin (aph(6)-1c and ant(6)) resistance genes were not detected in both dairy and nondairy soil isolates. A higher distribution of multiple resistance genes was observed in bacteria isolated from dairy farm soil than in nondairy soil. Among 36 tetracycline- and 17 streptomycin-resistant isolates from dairy farm soils, 11 (30.6%) and 9 (52.9%) isolates carried multiple resistance genes encoding resistance to tetracycline and streptomycin, respectively, which was higher than in bacteria isolated from nondairy soils. One strain each of Citrobacter freundii and C. youngae isolated from dairy farm soils carried class 1 integrons with different inserted gene cassettes. Results of this small study suggest that the presence of multiple

  10. Antimicrobial resistance genes in Actinobacillus pleuropneumoniae, Haemophilus parasuis and Pasteurella multocida isolated from Australian pigs.

    Science.gov (United States)

    Dayao, Dae; Gibson, J S; Blackall, P J; Turni, C

    2016-07-01

    To identify genes associated with the observed antimicrobial resistance in Actinobacillus pleuropneumoniae, Haemophilus parasuis and Pasteurella multocida isolated from Australian pigs. Isolates with known phenotypic resistance to β-lactams, macrolides and tetracycline were screened for the presence of antimicrobial resistance genes. A total of 68 A. pleuropneumoniae, 62 H. parasuis and 20 P. multocida isolates exhibiting phenotypic antimicrobial resistance (A. pleuropneumoniae and P. multocida) or elevated minimal inhibitory concentrations (MICs) (H. parasuis) to any of the following antimicrobial agents - ampicillin, erythromycin, penicillin, tetracycline, tilmicosin and tulathromycin - were screened for a total of 19 associated antimicrobial resistance genes (ARGs) by PCR. The gene bla ROB-1 was found in all ampicillin- and penicillin-resistant isolates, but none harboured the bla TEM-1 gene. The tetB gene was found in 76% (74/97) of tetracycline-resistant isolates, 49/53 A. pleuropneumoniae, 17/30 H. parasuis and 8/14 P. multocida. One A. pleuropneumoniae isolate harboured the tetH gene, but none of the 97 isolates had tetA, tetC, tetD, tetE, tetL, tetM or tetO. A total of 92 isolates were screened for the presence of macrolide resistance genes. None was found to have ermA, ermB, ermC, erm42, mphE, mefA, msrA or msrE. The current study has provided a genetic explanation for the resistance or elevated MIC of the majority of isolates of Australian porcine respiratory pathogens to ampicillin, penicillin and tetracycline. However, the macrolide resistance observed by phenotypic testing remains genetically unexplained and further studies are required. © 2016 Australian Veterinary Association.

  11. Prevalence of antibiotic resistance genes from effluent of coastal aquaculture, South Korea.

    Science.gov (United States)

    Jang, Hyun Min; Kim, Young Beom; Choi, Sangki; Lee, Yunho; Shin, Seung Gu; Unno, Tatsuya; Kim, Young Mo

    2018-02-01

    The wide use of antibiotics in aquaculture for prophylactic and therapeutic purposes can potentially lead to the prevalence of antibiotic resistance genes (ARGs). This study reports for the first time the profile of ARGs from effluents of coastal aquaculture located in South Jeolla province and Jeju Island, South Korea. Using quantitative PCR (qPCR), twenty-two ARGs encoding tetracycline resistance (tetA, tetB, tetD, tetE, tetG, tetH, tetM, tetQ, tetX, tetZ, tetBP), sulfonamide resistance (sul1, sul2), quinolone resistance (qnrD, qnrS, aac(6')-Ib-cr), β-lactams resistance (bla TEM , bla CTX , bla SHV ), macrolide resistance (ermC), florfenicol resistance (floR) and multidrug resistance (oqxA) and a class 1 integrons-integrase gene (intI1) were quantified. In addition, Illumina Miseq sequencing was applied to investigate microbial community differences across fish farm effluents. Results from qPCR showed that the total number of detected ARGs ranged from 4.24 × 10 -3 to 1.46 × 10 -2 copies/16S rRNA gene. Among them, tetB and tetD were predominant, accounting for 74.8%-98.0% of the total ARGs. Furthermore, intI1 gene showed positive correlation with tetB, tetD, tetE, tetH, tetX, tetZ tetQ and sul1. Microbial community analysis revealed potential host bacteria for ARGs and intI1. Two genera, Vibrio and Marinomonas belonging to Gammaproteobacteria, showed significant correlation with tetB and tetD, the most dominant ARGs in all samples. Also, operational taxonomic units (OTUs)-based network analysis revealed that ten OTUs, classified into the phyla Proteobacteria, Cyanobacteria/Chloroplast, Bacteroidetes, Verrucomicrobia and an unclassified phylum, were potential hosts of tetracycline resistance genes (i.e., tetA, tetG, tetH, tetM, tetQ and tetZ). Further systematic monitoring of ARGs is warranted for risk assessment and management of antibacterial resistance from fish farm effluents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Antimicrobial resistance and antimicrobial resistance genes in marine bacteria from salmon aquaculture and non-aquaculture sites.

    Science.gov (United States)

    Shah, Syed Q A; Cabello, Felipe C; L'abée-Lund, Trine M; Tomova, Alexandra; Godfrey, Henry P; Buschmann, Alejandro H; Sørum, Henning

    2014-05-01

    Antimicrobial resistance (AR) detected by disc diffusion and antimicrobial resistance genes detected by DNA hybridization and polymerase chain reaction with amplicon sequencing were studied in 124 marine bacterial isolates from a Chilean salmon aquaculture site and 76 from a site without aquaculture 8 km distant. Resistance to one or more antimicrobials was present in 81% of the isolates regardless of site. Resistance to tetracycline was most commonly encoded by tetA and tetG; to trimethoprim, by dfrA1, dfrA5 and dfrA12; to sulfamethizole, by sul1 and sul2; to amoxicillin, by blaTEM ; and to streptomycin, by strA-strB. Integron integrase intl1 was detected in 14 sul1-positive isolates, associated with aad9 gene cassettes in two from the aquaculture site. intl2 Integrase was only detected in three dfrA1-positive isolates from the aquaculture site and was not associated with gene cassettes in any. Of nine isolates tested for conjugation, two from the aquaculture site transferred AR determinants to Escherichia coli. High levels of AR in marine sediments from aquaculture and non-aquaculture sites suggest that dispersion of the large amounts of antimicrobials used in Chilean salmon aquaculture has created selective pressure in areas of the marine environment far removed from the initial site of use of these agents. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Determination of antibiotic resistance genes in relation to phylogenetic background in Escherichia coli isolates from fecal samples of healthy pet cats in Kerman city.

    Science.gov (United States)

    Akhtardanesh, Baharak; Ghanbarpour, Reza; Ganjalikhani, Sadaf; Gazanfari, Parisa

    2016-01-01

    The aim of this study was to determine antibiotic resistance genes, phylogenetic groups and anti-microbial resistance patterns of Escherichia coli isolates from fecal samples of healthy pet cats in Kerman city. Ninety E. coli isolates were recovered from obtained rectal swabs. Antibiotic resistance pattern of the isolates against seven selected antibiotic was determined using disc diffusion method. Phylogenetic background of the isolates was determined according to the presence of the chuA , yjaA and TspE4C2 markers. Theisolates were examined to determine a selection of antibiotic resistance genes including tetA, tetB, aadA, sulI and dhfrV by polymerase chain reaction. Forty two isolates (46.6%) were positive at least for one of the examined genes. Phylotyping revealed that the isolates are segregated in phylogenetic groups A (66.7%), B1 (1.2%), B2 (13.4%) and D (18.9%). Among 90 isolates, 26.6% were positive for tetB gene, 10.0% for c qnrS gene, 12.3% for sulI and aadA genes, 8.9% for tetA and 2.2% for dhfrV gene. None of the E. coli isolates were positive for qnrA and qnrB genes. Sixteen combination patterns of antibiotic resistance genes were identified which belonged to four phylogroups. Maximum and minimum resistant isolates were recorded against to tetracycline (82.3%) and gentamycin (1.2%), respectively. Fifteen antibiotic resistance patterns were determined in different phylo-genetic groups. In conclusion, feces of healthy pet cat in Kerman could be a source of antibiotic resistant E. coli isolates, whereas these isolates were distributed all over the main phylogroups.

  14. Antibiotic Resistance Genes in Freshwater Biofilms May Reflect Influences from High-Intensity Agriculture.

    Science.gov (United States)

    Winkworth-Lawrence, Cynthia; Lange, Katharina

    2016-11-01

    Antibiotic resistance is a major public health concern with growing evidence of environmental gene reservoirs, especially in freshwater. However, the presence of antibiotic resistance genes in freshwater, in addition to the wide spectrum of land use contaminants like nitrogen and phosphate, that waterways are subjected to is inconclusive. Using molecular analyses, freshwater benthic rock biofilms were screened for genes conferring resistance to antibiotics used in both humans and farmed animals (aacA-aphD to aminoglycosides; mecA to ß-lactams; ermA and ermB to macrolides; tetA, tetB, tetK, and tetM to tetracyclines; vanA and vanB to glycopeptides). We detected widespread low levels of antibiotic resistance genes from 20 waterways across southern New Zealand throughout the year (1.3 % overall detection rate; 480 samples from three rocks per site, 20 sites, eight occasions; July 2010-May 2011). Three of the ten genes, ermB, tetK, and tetM, were detected in 62 of the 4800 individual screens; representatives confirmed using Sanger sequencing. No distinction could be made between human and agricultural land use contamination sources based on gene presence distribution alone. However, land use pressures are suggested by moderate correlations between antibiotic resistance genes and high-intensity farming in winter. The detection of antibiotic resistance genes at several sites not subject to known agricultural pressures suggests human sources of resistance, like waterway contamination resulting from unsatisfactory toilet facilities at recreational sites.

  15. Antimicrobial Resistance and Resistance Genes in Aerobic Bacteria Isolated from Pork at Slaughter.

    Science.gov (United States)

    Li, Lili; Heidemann Olsen, Rikke; Ye, Lei; Yan, He; Nie, Qing; Meng, Hecheng; Shi, Lei

    2016-04-01

    The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram-negative bacteria (92.2%) and gram-positive bacteria (7.8%). High levels of resistance were detected to tetracycline, trimethoprim-sulfamethoxazole, and ampicillin (36.2 to 54.3%), and lower levels were detected to nitrofurantoin, cefotaxime, gentamicin, ciprofloxacin, and chloramphenicol (7.8 to 29.2%). Across species, genes conferring antimicrobial resistance were observed with the following frequencies: blaTEM, 40.7%; blaCMY-2, 15.2%; blaCTX-M, 11.5%; sul2, 27.2%; sul1, 14.4%; tet(A), 5.4%; tet(L), 5.4%; tet(M), 5.0%; tet(E), 3.7%; tet(C), 3.3%; tet(S), 2.5%; and tet(K), 0.8%. Various antimicrobial resistance genes were found in new carriers: blaTEM in Lactococcus garvieae, Myroides odoratimimus, Aeromonas hydrophila, Staphylococcus sciuri, Raoultella terrigena, Macrococcus caseolyticus, Acinetobacter ursingii, Sphingobacterium sp., and Oceanobacillus sp.; blaCMY-2 in Lactococcus lactis, Klebsiella oxytoca, Serratia marcescens, Acinetobacter baumannii, and Myroides phaeus; tet(L) in M. caseolyticus; sul1 in Vibrio cincinnatiensis; sul2 in Acinetobacter bereziniae, Acinetobacter johnsonii, and V. cincinnatiensis; and the class 1 integron and gene cassette aadA2 in V. cincinnatiensis. Approximately 6.6% of isolates contained class 1 integrons, and one isolate harbored class 2 integrons. Plasmid associated intI1 and androgen receptor- encoding genes were transferred into Escherichia coli J53 and E. coli DH5α by conjugation and transformation experiments, respectively. Our study highlights the importance of aerobic bacteria from pork as reservoirs for antimicrobial resistance genes and mobile genetic elements that can readily be transferred intra- and interspecies.

  16. First study on characterization of virulence and antibiotic resistance genes in verotoxigenic and enterotoxigenic E. coli isolated from raw milk and unpasteurized traditional cheeses in Romania.

    Science.gov (United States)

    Tabaran, Alexandra; Mihaiu, Marian; Tăbăran, Flaviu; Colobatiu, Liora; Reget, Oana; Borzan, Mihai Marian; Dan, Sorin Daniel

    2017-03-01

    The study focused on the incidence of enterotoxigenic Escherichia coli (ETEC) and verotoxigenic E. coli (VTEC) in raw milk and traditional dairy cheeses marketed in Romania, characterizing the virulence and antibiotic resistance genes of these isolates. One hundred and twenty samples of raw milk and 80 samples of unpasteurized telemy cheese were collected and cultured according to the international standard protocol. All the characteristic E. coli cultures were analyzed for the presence of STa, STb, LT, stx1, and stx2 toxicity genes. The ETEC/VTEC strains were tested for the presence of antibiotic resistance genes, such as aadA1, tetA, tetB, tetC, tetG, dfrA1, qnrA, aaC, sul1, bla SHV , bla CMY , bla TEM , and ere(A), using PCR. The results showed that 27 samples (18.62%) were positive for one of the virulence genes investigated. 48.1% (n = 13) tested positive at the genes encoding for tetracycline resistance, tetA being the most prevalent one (61.5%; n = 8). A high percent (33.3%; n = 9) revealed the beta-lactamase (bla TEM ) resistance gene, and none of the samples tested positive for bla CMY and bla SHV genes. The genes responsible for resistance to sulfonamides (sul1) and trimethoprim (dfrA1) were detected in rates of 14.8% (n = 4) and 7.4% (n = 2), respectively. E. coli is highly prevalent in raw milk and unpasteurized cheeses marketed in Romania. These strains might represent an important reservoir of resistance genes which can easily spread into other European countries, given the unique market.

  17. Rapid startup of thermophilic anaerobic digester to remove tetracycline and sulfonamides resistance genes from sewage sludge.

    Science.gov (United States)

    Xu, Rui; Yang, Zhao-Hui; Wang, Qing-Peng; Bai, Yang; Liu, Jian-Bo; Zheng, Yue; Zhang, Yan-Ru; Xiong, Wei-Ping; Ahmad, Kito; Fan, Chang-Zheng

    2018-01-15

    Spread of antibiotic resistance genes (ARGs) originating from sewage sludge is highlighted as an eminent health threat. This study established a thermophilic anaerobic digester using one-step startup strategy to quickly remove tetracycline and sulfonamides resistance genes from sewage sludge. At least 20days were saved in the startup period from mesophilic to thermophilic condition. Based on the results of 16S rDNA amplicons sequencing and predicted metagenomic method, the successful startup largely relied on the fast colonization of core thermophilic microbial population (e.g. Firmicutes, Proteobacteria, Actinobacteria). Microbial metabolic gene pathways for substrate degradation and methane production was also increased by one-step mode. In addition, real-time quantitative PCR approach revealed that most targeted tetracycline and sulfonamides resistance genes ARGs (sulI, tetA, tetO, tetX) were substantially removed during thermophilic digestion (removal efficiency>80%). Network analysis showed that the elimination of ARGs was attributed to the decline of their horizontal (intI1 item) and vertical (potential hosts) transfer-related elements under high-temperature. This research demonstrated that rapid startup thermophilic anaerobic digestion of wastewater solids would be a suitable technology for reducing quantities of various ARGs. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Occurrence and distribution of antibiotics, antibiotic resistance genes in the urban rivers in Beijing, China.

    Science.gov (United States)

    Xu, Yan; Guo, Changsheng; Luo, Yi; Lv, Jiapei; Zhang, Yuan; Lin, Haixia; Wang, Li; Xu, Jian

    2016-06-01

    The occurrence and distribution of sulfonamide and tetracycline, corresponding bacterial resistant rate and resistance genes (ARGs) and two integrase genes were investigated in seven urban rivers in Beijing, China. The total concentration of sulfonamide and tetracycline ranged from 1.3 × 10(1)-1.5 × 10(3) ng/L and 3.9 × 10(1)-5.4 × 10(4) ng/L for water, and 1.0 × 10(0)-2.7 × 10(2) and 3.1 × 10(1)-1.6 × 10(2) ng/g for sediment, respectively. The sul resistant rate was 2-3 times higher than tet resistant rate in both surface water and sediment. The average rate of sul resistance and tet resistance were up to 81.3% and 38.6% in surface water, 89.1% and 69.4% in the sediment, respectively. The sul1, tetA and tetE genes were predominant in term of the absolute abundance. The absolute abundance of ARGs in Wenyu River and Qinghe River, which were close to the direct discharging sites, were 5-50 times higher than those in the other investigated urban rivers, suggesting that the source release played an important role in the distribution of ARGs. The sul1 and sul2 genes had positive correlation (p resistance genes was significantly correlated with tetracyclines (p bacterial resistance in sewage drainage system. Such investigation highlights the management on controlling the pollutant release which was seemed as a major driving force for the maintenance and propagation of many ARGs during the development of urbanization in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Modelling of tetracycline resistance gene transfer by commensal Escherichia coli food isolates that survived in gastric fluid conditions.

    Science.gov (United States)

    Hwang, Daekeun; Kim, Seung Min; Kim, Hyun Jung

    2017-01-01

    Antimicrobial resistance (AR) is a major public health concern and a food safety issue worldwide. Escherichia coli strains, indicators of antibiotic resistance, are a source of horizontal gene transfer to other bacteria in the human intestinal system. A probabilistic exposure model was used to estimate the transfer of the AR gene tet(A). The acid resistance and kinetic behaviour of E. coli was analysed as a function of pH to describe the inactivation of E. coli in simulated gastric fluid (SGF), the major host barrier against exogenous micro-organisms. The kinetic parameters of microbial inactivation in SGF were estimated using GInaFiT, and log-linear + tail and Weibull models were found to be suitable for commensal and enterohaemorrhagic E. coli (EHEC), respectively. A probabilistic exposure model was developed to estimate E. coli survival in gastric pH conditions as well as gene transfer from resistant to susceptible cells in humans. E. coli-contaminated retail foods for consumption without further cooking and gastric pH data in South Korea were considered as an example. The model predicts that 22-33% of commensal E. coli can survive under gastric pH conditions of Koreans. The estimated total mean tet(A) transfer level by commensal E. coli was 1.68 × 10 -4 -8.15 × 10 -4 log CFU/mL/h. The inactivation kinetic parameters of E. coli in SGF and the quantitative exposure model can provide useful information regarding risk management options to control the spread of AR. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  20. Detection of selected antibiotic resistance genes using multiplex PCR assay in mastitis pathogens in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Vladimir Pyatov

    2017-01-01

    Full Text Available The aim of this research was to develop multiplex polymerase chain reaction assays for the detection of aminoglycoside (strA, strB, sulphonamide (sulI, sulII, tetracycline (tetA, tetB, tetK, tetM, tetO, macrolide and lincosamide (msrA, ermA, ermB, ermC, mefA/E genes of resistance in mastitis pathogens (Escherichia coli, Staphylococcus aureus, Streptococcus uberis, Streptococcus agalactiae and Streptococcus dysgalactiae. Applying the established assays, we investigated the distribution of antibiotic resistance genes in the above mentioned species isolated from milk samples in the Czech Republic. Each assay consisted of seven pairs of primers. Six of them amplified fragments of antibiotic resistance genes and one pair a fragment of a species specific gene. Polymerase chain reaction conditions were optimized to amplify seven gene fragments simultaneously in one reaction. In total, 249 isolates were used, among which 111 were positive for E. coli, 52 for S. aureus and 86 for Streptococcus spp. The majority (60.2% of bacteria carried at least one antibiotic resistance gene and 44.6% were multidrug-resistant. The designed multiplex polymerase chain reaction assays may be applied as diagnostic method to replace or complement standard techniques of antibiotic susceptibility testing in the mentioned pathogens.

  1. Constitutive presence of antibiotic resistance genes within the bacterial community of a large subalpine lake.

    Science.gov (United States)

    Di Cesare, Andrea; Eckert, Ester M; Teruggi, Alessia; Fontaneto, Diego; Bertoni, Roberto; Callieri, Cristiana; Corno, Gianluca

    2015-08-01

    The fate of antibiotic resistance genes (ARGs) in environmental microbial communities is of primary concern as prodromal of a potential transfer to pathogenic bacteria. Although of diverse origin, the persistence of ARGs in aquatic environments is highly influenced by anthropic activities, allowing potential control actions in well-studied environments. However, knowledge of abundance and space-time distribution of ARGs in ecosystems is still scarce. Using quantitative real-time PCR, we investigated the presence and the abundance of twelve ARGs (against tetracyclines, β-lactams, aminoglycosides, quinolones and sulphonamides) at different sampling sites, depths and seasons, in Lake Maggiore, a large subalpine lake, and in the area of its watershed. We then evaluated the correlation between each ARG and a number of ecological parameters in the water column in the deepest part of the lake. Our results suggest the constitutive presence of at least four ARGs within the bacterial community with a high proportion of bacteria potentially resistant to tetracyclines and sulphonamides. The presence of these ARGs was independent of the total bacterial density and temperature. The dynamics of tet(A) and sulII genes were, however, positively correlated with dissolved oxygen and negatively to chlorophyll a, suggesting that the resistant microbes inhabit specific niches. These observations indicate that the lake is a reservoir of antibiotic resistances, highlighting the need of a deeper understanding of the sources of ARGs and the factors allowing their persistence in waters. © 2015 John Wiley & Sons Ltd.

  2. Related antimicrobial resistance genes detected in different bacterial species co-isolated from swine fecal samples.

    Science.gov (United States)

    Frye, Jonathan G; Lindsey, Rebecca L; Meinersmann, Richard J; Berrang, Mark E; Jackson, Charlene R; Englen, Mark D; Turpin, Jennifer B; Fedorka-Cray, Paula J

    2011-06-01

    A potential factor leading to the spread of antimicrobial resistance (AR) in bacteria is the horizontal transfer of resistance genes between bacteria in animals or their environment. To investigate this, swine fecal samples were collected on-farm and cultured for Escherichia coli, Salmonella enterica, Campylobacter spp., and Enterococcus spp. which are all commonly found in swine. Forty-nine of the samples from which all four bacteria were recovered were selected yielding a total of 196 isolates for analysis. Isolates were tested for antimicrobial susceptibility followed by hybridization to a DNA microarray designed to detect 775 AR-related genes. E. coli and Salmonella isolated from the same fecal sample had the most AR genes in common among the four bacteria. Genes detected encoded resistance to aminoglycosides (aac(3), aadA1, aadB, and strAB), β-lactams (ampC, ampR, and bla(TEM)), chloramphenicols (cat and floR), sulfanillic acid (sul1/sulI), tetracyclines (tet(A), tet(D), tet(C), tet(G), and tet(R)), and trimethoprim (dfrA1 and dfh). Campylobacter coli and Enterococcus isolated from the same sample frequently had tet(O) and aphA-3 genes detected in common. Almost half (47%) of E. coli and Salmonella isolated from the same fecal sample shared resistance genes at a significant level (χ², p genes between these bacteria or there may be a common source of AR genes in the swine environment for E. coli and Salmonella.

  3. Antimicrobial resistance and virulence genes in Escherichia coli and enterococci from red foxes (Vulpes vulpes).

    Science.gov (United States)

    Radhouani, Hajer; Igrejas, Gilberto; Gonçalves, Alexandre; Pacheco, Rui; Monteiro, Ricardo; Sargo, Roberto; Brito, Francisco; Torres, Carmen; Poeta, Patrícia

    2013-10-01

    The aims of the study were to analyse the prevalence of antimicrobial resistance and the mechanisms implicated, as well as the virulence factors, in faecal Escherichia coli and Enterococcus spp. from red foxes. From 52 faecal samples, 22 E. coli (42.3%) and 50 enterococci (96.2%) isolates were recovered (one/sample). A high percentage of E. coli isolates exhibited resistance to streptomycin, tetracycline, trimethoprim-sulfamethoxazole or ampicillin (54-27%), and they harboured the aadA, tet(A) and/or tet(B), sul1 and blaTEM resistance genes, respectively. The E. coli isolates were ascribed to the 4 major phylogroups, D (41% of isolates), A (31.8%), B1 (18.2%) and B2 (9.1%), and carried the fimA (63.3%) or aer (13.6%) virulence genes. Among enterococcal isolates, Enterococcus faecium was the most prevalent species (50%). A high percentage of enterococcal isolates showed tetracycline resistance (88%) harbouring different combinations of tet(M) and tet(L) genes. The erm(B) or the aph(3')-IIIa gene were identified in most of our erythromycin- or kanamycin-resistant enterococci, respectively. This report suggests the role of red foxes from rural areas in the cycle of transmission and spread of antimicrobial-resistant E. coli and enterococci into the environment, representing a reservoir of these antimicrobial-resistant microorganisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Diversity of Plasmids and Antimicrobial Resistance Genes in Multidrug-Resistant Escherichia coli Isolated from Healthy Companion Animals.

    Science.gov (United States)

    Jackson, C R; Davis, J A; Frye, J G; Barrett, J B; Hiott, L M

    2015-09-01

    The presence and transfer of antimicrobial resistance genes from commensal bacteria in companion animals to more pathogenic bacteria may contribute to dissemination of antimicrobial resistance. The purpose of this study was to determine antimicrobial resistance gene content and the presence of genetic elements in antimicrobial resistant Escherichia coli from healthy companion animals. In our previous study, from May to August, 2007, healthy companion animals (155 dogs and 121 cats) from three veterinary clinics in the Athens, GA, USA area were sampled and multidrug-resistant E. coli (n = 36; MDR, resistance to ≥ 2 antimicrobial classes) were obtained. Of the 25 different plasmid replicon types tested by PCR, at least one plasmid replicon type was detected in 94% (34/36) of the MDR E. coli; four isolates contained as many as five different plasmid replicons. Nine replicon types (FIA, FIB, FII, I2, A/C, U, P, I1 and HI2) were identified with FIB, FII, I2 as the most common pattern. The presence of class I integrons (intI) was detected in 61% (22/36) of the isolates with eight isolates containing aminoglycoside- and/or trimethoprim-resistance genes in the variable cassette region of intI. Microarray analysis of a subset of the MDR E. coli (n = 9) identified the presence of genes conferring resistance to aminoglycosides (aac, aad, aph and strA/B), β-lactams (ampC, cmy, tem and vim), chloramphenicol (cat), sulfonamides (sulI and sulII), tetracycline [tet(A), tet(B), tet(C), tet(D) and regulator, tetR] and trimethoprim (dfrA). Antimicrobial resistance to eight antimicrobials (ampicillin, cefoxitin, ceftiofur, amoxicillin/clavulanic acid, streptomycin, gentamicin, sulfisoxazole and trimethoprim-sulfamethoxazole) and five plasmid replicons (FIA, FIB, FII, I1 and I2) were transferred via conjugation. The presence of antimicrobial resistance genes, intI and transferable plasmid replicons indicate that E. coli from companion animals may play an important role in the

  5. Diversity, distribution and quantification of antibiotic resistance genes in goat and lamb slaughterhouse surfaces and meat products.

    Directory of Open Access Journals (Sweden)

    Leyre Lavilla Lerma

    Full Text Available The distribution and quantification of tetracycline, sulfonamide and beta-lactam resistance genes were assessed in slaughterhouse zones throughout meat chain production and the meat products; this study represents the first to report quantitatively monitor antibiotic resistance genes (ARG in goat and lamb slaughterhouse using a culture independent approach, since most studies focused on individual bacterial species and their specific resistance types. Quantitative PCR (qPCR revealed a high prevalence of tetracycline resistance genes tetA and tetB in almost all slaughterhouse zones. Sulfonamide resistance genes were largely distributed, while beta-lactam resistance genes were less predominant. Statistical analysis revealed that resistant bacteria, in most cases, were spread by the same route in almost all slaughterhouse zones, except for tetB, blaCTX and blaTEM genes, which occurred in few zones as isolated 'hot spots.' The sum of all analyzed ARG indicated that slaughterhouse surfaces and end products act as reservoirs of ARG, mainly tet genes, which were more prevalent in slaughtering room (SR, cutting room (CR and commercial meat products (MP. Resistance gene patterns suggest they were disseminated throughout slaughterhouse zones being also detected in commercial meat products, with significant correlations between different sampling zones/end products and total resistance in SR, CR and white room (WR zones, and also refrigerator 4 (F4 and MP were observed. Strategically controlling key zones in slaughterhouse (SR, CR and WR by adequate disinfection methods could strategically reduce the risks of ARG transmission and minimize the issues of food safety and environment contamination.

  6. Diversity, Distribution and Quantification of Antibiotic Resistance Genes in Goat and Lamb Slaughterhouse Surfaces and Meat Products

    Science.gov (United States)

    Lavilla Lerma, Leyre; Benomar, Nabil; Knapp, Charles W.; Correa Galeote, David; Gálvez, Antonio; Abriouel, Hikmate

    2014-01-01

    The distribution and quantification of tetracycline, sulfonamide and beta-lactam resistance genes were assessed in slaughterhouse zones throughout meat chain production and the meat products; this study represents the first to report quantitatively monitor antibiotic resistance genes (ARG) in goat and lamb slaughterhouse using a culture independent approach, since most studies focused on individual bacterial species and their specific resistance types. Quantitative PCR (qPCR) revealed a high prevalence of tetracycline resistance genes tetA and tetB in almost all slaughterhouse zones. Sulfonamide resistance genes were largely distributed, while beta-lactam resistance genes were less predominant. Statistical analysis revealed that resistant bacteria, in most cases, were spread by the same route in almost all slaughterhouse zones, except for tetB, blaCTX and blaTEM genes, which occurred in few zones as isolated ‘hot spots.’ The sum of all analyzed ARG indicated that slaughterhouse surfaces and end products act as reservoirs of ARG, mainly tet genes, which were more prevalent in slaughtering room (SR), cutting room (CR) and commercial meat products (MP). Resistance gene patterns suggest they were disseminated throughout slaughterhouse zones being also detected in commercial meat products, with significant correlations between different sampling zones/end products and total resistance in SR, CR and white room (WR) zones, and also refrigerator 4 (F4) and MP were observed. Strategically controlling key zones in slaughterhouse (SR, CR and WR) by adequate disinfection methods could strategically reduce the risks of ARG transmission and minimize the issues of food safety and environment contamination. PMID:25479100

  7. Supporting Development of Energy-Optimised Java Real-Time Systems using TetaSARTS

    DEFF Research Database (Denmark)

    Luckow, Kasper Søe; Bøgholm, Thomas; Thomsen, Bent

    2013-01-01

    This paper presents how the tool TetaSARTS can be used to support the development of embedded hard real-time systems written in Java using the emerging Safety Critical Java (SCJ) profile. TetaSARTS facilitates control-flow sensitive schedulability analysis of a set of real-time tasks, and features...

  8. Obesity genes and insulin resistance.

    Science.gov (United States)

    Belkina, Anna C; Denis, Gerald V

    2010-10-01

    The exploding prevalence of insulin resistance and Type 2 diabetes (T2D) linked to obesity has become an alarming public health concern. Worldwide, approximately 171 million people suffer from obesity-induced diabetes and public health authorities expect this situation to deteriorate rapidly. An interesting clinical population of 'metabolically healthy but obese' (MHO) cases is relatively protected from T2D and its associated cardiovascular risk. The molecular basis for this protection is not well understood but is likely to involve reduced inflammatory responses. The inflammatory cells and pathways that respond to overnutrition are the primary subject matter for this review. The chance discovery of a genetic mutation in the Brd2 gene, which is located in the class II major histocompatibility complex and makes mice enormously fat but protects them from diabetes, offers revolutionary new insights into the cellular mechanisms that link obesity to insulin resistance and T2D. These Brd2-hypomorphic mice have reduced inflammation in fat that is normally associated with insulin resistance, and resemble MHO patients, suggesting novel therapeutic pathways for obese patients at risk for T2D. Deeper understanding of the functional links between genes that control inflammatory responses to diet-induced obesity is crucial to the development of therapies for obese, insulin-resistant patients.

  9. Antibiotic resistance genes in surface water of eutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact.

    Science.gov (United States)

    Yang, Yuyi; Xu, Chen; Cao, Xinhua; Lin, Hui; Wang, Jun

    2017-08-01

    Urban lakes are impacted by heavy human activities and represent potential reservoirs for antibiotic resistance genes. In this study, six urban lakes in Wuhan, central China were selected to analyze the distribution of sulfonamide resistance (sul) genes, tetracycline resistance (tet) genes and quinolone resistance (qnr) genes and their relationship with heavy metals, antibiotics, lake morphology and anthropic impact. sul1 and sul2 were detected in all six lakes and dominated the types of antibiotic resistance genes, which accounted for 86.28-97.79% of the total antibiotic resistance gene abundance. For eight tested tet genes, antibiotic efflux pumps (tetA, tetB, tetC, and tetG) genes were all observed in six lakes and had higher relative abundance than ribosomal protection protein genes (tetM and tetQ). For 4 plasmid mediated quinolone resistance genes, only qnrD is found in all six lakes. The class I integron (intI1) is also found to be a very important media for antibiotic resistance gene propagation in urban lakes. The results of redundancy analysis and variation partitioning analysis showed that antibiotic and co-selection with heavy metals were the major factors driving the propagation of antibiotic resistance genes in six urban lakes. The heavily eutrophic Nanhu Lake and Shahu Lake which located in a high density building area with heavy human activities had the higher relative abundance of total antibiotic resistance genes. Our study could provide a useful reference for antibiotic resistance gene abundance in urban lakes with high anthropic impact.

  10. Comparison of ozone and thermal hydrolysis combined with anaerobic digestion for municipal and pharmaceutical waste sludge with tetracycline resistance genes.

    Science.gov (United States)

    Pei, Jin; Yao, Hong; Wang, Hui; Ren, Jia; Yu, Xiaohua

    2016-08-01

    Biosolids from wastewater treatment plant (WWTP) are environmental reservoirs of antibiotic resistance genes, which attract great concerns on their efficient treatments. Anaerobic digestion (AD) is widely used for sewage sludge treatment but its effectiveness is limited due to the slow hydrolysis. Ozone and thermal hydrolysis pre-treatment were employed to improve AD efficiency and reduce antibiotic-resistant genes in municipal and pharmaceutical waste sludge (MWS and PWS, respectively) in this study. Sludge solubilization achieved 15.75-25.09% and 14.85-33.92% after ozone and thermal hydrolysis, respectively. Both pre-treatments improved cumulative methane production and the enhancements were greater on PWS than MWS. Five tetracycline-resistant genes (tet(A), tet(G), tet(Q), tet(W), tet(X)) and one mobile element (intI1) were qPCR to assess pre-treatments. AD of pre-treated sludge reduced more tet genes than raw sludge for both ozonation and thermal hydrolysis in PWS and MWS. Thermal hydrolysis pre-treatment was more efficient than ozone for reduction after AD. Results of this study help support management options for reducing the spread of antibiotic resistance from biosolids. Copyright © 2016. Published by Elsevier Ltd.

  11. Antimicrobial Susceptibility of Bordetella bronchiseptica Isolates from Swine and Companion Animals and Detection of Resistance Genes.

    Directory of Open Access Journals (Sweden)

    Sandra Prüller

    Full Text Available Bordetella bronchiseptica causes infections of the respiratory tract in swine and other mammals and is a precursor for secondary infections with Pasteurella multocida. Treatment of B. bronchiseptica infections is conducted primarily with antimicrobial agents. Therefore it is essential to get an overview of the susceptibility status of these bacteria. The aim of this study was to comparatively analyse broth microdilution susceptibility testing according to CLSI recommendations with an incubation time of 16 to 20 hours and a longer incubation time of 24 hours, as recently proposed to obtain more homogenous MICs. Susceptibility testing against a panel of 22 antimicrobial agents and two fixed combinations was performed with 107 porcine isolates from different farms and regions in Germany and 43 isolates obtained from companion animals in Germany and other European countries. Isolates with increased MICs were investigated by PCR assays for the presence of resistance genes. For ampicillin, all 107 porcine isolates were classified as resistant, whereas only a single isolate was resistant to florfenicol. All isolates obtained from companion animals showed elevated MICs for β-lactam antibiotics and demonstrated an overall low susceptibility to cephalosporines. Extension of the incubation time resulted in 1-2 dilution steps higher MIC50 values of porcine isolates for seven antimicrobial agents tested, while isolates from companion animals exhibited twofold higher MIC50/90 values only for tetracycline and cefotaxime. For three antimicrobial agents, lower MIC50 and MIC90 values were detected for both, porcine and companion animal isolates. Among the 150 isolates tested, the resistance genes blaBOR-1 (n = 147, blaOXA-2, (n = 4, strA and strB (n = 17, sul1 (n = 10, sul2 (n = 73, dfrA7 (n = 3 and tet(A (n = 8 were detected and a plasmid localisation was identified for several of the resistance genes.

  12. Antimicrobial Susceptibility of Bordetella bronchiseptica Isolates from Swine and Companion Animals and Detection of Resistance Genes

    Science.gov (United States)

    Prüller, Sandra; Rensch, Ulrike; Meemken, Diana; Kaspar, Heike; Kopp, Peter A.; Klein, Günter; Kehrenberg, Corinna

    2015-01-01

    Bordetella bronchiseptica causes infections of the respiratory tract in swine and other mammals and is a precursor for secondary infections with Pasteurella multocida. Treatment of B. bronchiseptica infections is conducted primarily with antimicrobial agents. Therefore it is essential to get an overview of the susceptibility status of these bacteria. The aim of this study was to comparatively analyse broth microdilution susceptibility testing according to CLSI recommendations with an incubation time of 16 to 20 hours and a longer incubation time of 24 hours, as recently proposed to obtain more homogenous MICs. Susceptibility testing against a panel of 22 antimicrobial agents and two fixed combinations was performed with 107 porcine isolates from different farms and regions in Germany and 43 isolates obtained from companion animals in Germany and other European countries. Isolates with increased MICs were investigated by PCR assays for the presence of resistance genes. For ampicillin, all 107 porcine isolates were classified as resistant, whereas only a single isolate was resistant to florfenicol. All isolates obtained from companion animals showed elevated MICs for β-lactam antibiotics and demonstrated an overall low susceptibility to cephalosporines. Extension of the incubation time resulted in 1–2 dilution steps higher MIC50 values of porcine isolates for seven antimicrobial agents tested, while isolates from companion animals exhibited twofold higher MIC50/90 values only for tetracycline and cefotaxime. For three antimicrobial agents, lower MIC50 and MIC90 values were detected for both, porcine and companion animal isolates. Among the 150 isolates tested, the resistance genes blaBOR-1 (n = 147), blaOXA-2, (n = 4), strA and strB (n = 17), sul1 (n = 10), sul2 (n = 73), dfrA7 (n = 3) and tet(A) (n = 8) were detected and a plasmid localisation was identified for several of the resistance genes. PMID:26275219

  13. Antimicrobial resistance and resistance genes in Salmonella strains isolated from broiler chickens along the slaughtering process in China.

    Science.gov (United States)

    Zhu, Yuanting; Lai, Haimei; Zou, Likou; Yin, Sheng; Wang, Chengtao; Han, Xinfeng; Xia, Xiaolong; Hu, Kaidi; He, Li; Zhou, Kang; Chen, Shujuan; Ao, Xiaolin; Liu, Shuliang

    2017-10-16

    A total of 189 Salmonella isolates were recovered from 627 samples which were collected from cecal contents of broilers, chicken carcasses, chicken meat after cutting step and frozen broiler chicken products along the slaughtering process at a slaughterhouse in Sichuan province of China. The Salmonella isolates were subjected to antimicrobial susceptibility testing to 10 categories of antimicrobial agents using the Kirby-Bauer disk diffusion method. Those antibiotics-resistant isolates were further investigated for the occurrence of resistance genes, the presence of class 1 integron as well as the associated gene cassettes, and the mutations within the gyrA and parC genes. Consequently, the prevalence of Salmonella was 30.14% (47.96% for cecal content, 18.78% for chicken carcasses, 31.33% for cutting meat and 14.00% for frozen meat, respectively). The predominant serotypes were S. Typhimurium (15.34%) and S. Enteritidis (69.84%). High resistance rates to the following drugs were observed: nalidixic acid (99.5%), ampicillin (87.8%), tetracycline (51.9%), ciprofloxacin (48.7%), trimethoprim/sulfamethoxazole (48.1%), and spectinomycin (34.4%). Antimicrobial resistance profiling showed that 60.8% of isolates were multidrug resistant (MDR), and MDR strains increased from 44.7% to 78.6% along the slaughtering line. 94.6% (n=157) of beta-lactam-resistant isolates harbored at least one resistance gene of bla TEM or bla CTX-M . The relatively low prevalence of aminoglycoside resistance genes (aac(3)-II, aac(3)-IV, and ant(2″)-I) was found in 49 (66.2%) of antibiotic-resistant isolates. The tetracycline resistance genes (tet(A), tet(B), tet(C), and tet(G) and sulfonamide resistance genes (sul1, sul2, and sul3) were identified in 84 (85.7%) and 89 (97.8%) antibiotic-resistant isolates respectively. floR was identified in 44 (97.8%) florfenicol-resistant isolates. Class 1 integron was detected in 37.4% (n=43) of the MDR isolates. Two different gene cassettes, bla OXA-30 -aad

  14. Seawater is a reservoir of multi-resistant Escherichia coli, including strains hosting plasmid-mediated quinolones resistance and extended-spectrum beta-lactamases genes

    Directory of Open Access Journals (Sweden)

    Marta S. Alves

    2014-08-01

    Full Text Available The aim of this study was to examine antibiotic resistance (AR dissemination in coastal water, considering the contribution of different sources of faecal contamination. Samples were collected in Berlenga, an uninhabited island classified as Natural Reserve and visited by tourists for aquatic recreational activities. To achieve our aim, AR in Escherichia coli isolates from coastal water was compared to AR in isolates from two sources of faecal contamination: human-derived sewage and seagull faeces. Isolation of E. coli was done on Chromocult agar. Based on genetic typing 414 strains were established. Distribution of E. coli phylogenetic groups was similar among isolates of all sources. Resistances to streptomycin, tetracycline, cephalothin and amoxicillin were the most frequent. Higher rates of AR were found among seawater and faeces isolates, except for last-line antibiotics used in human medicine. Multi-resistance rates in isolates from sewage and seagull faeces (29% and 32% were lower than in isolates from seawater (39%. Seawater AR profiles were similar to those from seagull faeces and differed significantly from sewage AR profiles. Nucleotide sequences matching resistance genes blaTEM, sul1, sul2, tet(A and tet(B, were present in isolates of all sources. Genes conferring resistance to 3rd generation cephalosporins were detected in seawater (blaCTX-M-1 and blaSHV-12 and seagull faeces (blaCMY-2. Plasmid-mediated determinants of resistance to quinolones were found: qnrS1 in all sources and qnrB19 in seawater and seagull faeces. Our results show that seawater is a relevant reservoir of AR and that seagulls are an efficient vehicle to spread human-associated bacteria and resistance genes. The E. coli resistome recaptured from Berlenga coastal water was mainly modulated by seagulls-derived faecal pollution. The repertoire of resistance genes covers antibiotics critically important for humans, a potential risk for human health.

  15. Bacterial community structure and abundances of antibiotic resistance genes in heavy metals contaminated agricultural soil.

    Science.gov (United States)

    Zhang, Fengli; Zhao, Xiaoxue; Li, Qingbo; Liu, Jia; Ding, Jizhe; Wu, Huiying; Zhao, Zongsheng; Ba, Yue; Cheng, Xuemin; Cui, Liuxin; Li, Hongping; Zhu, Jingyuan

    2018-01-22

    Soil contamination with heavy metals is a worldwide problem especially in China. The interrelation of soil bacterial community structure, antibiotic resistance genes, and heavy metal contamination in soil is still unclear. Here, seven agricultural areas (G1-G7) with heavy metal contamination were sampled with different distances (741 to 2556 m) to the factory. Denaturing gradient gel electrophoresis (DGGE) and Shannon index were used to analyze bacterial community diversity. Real-time fluorescence quantitative PCR was used to detect the relative abundance of ARGs sul1, sul2, tetA, tetM, tetW, one mobile genetic elements (MGE) inti1. Results showed that all samples were polluted by Cadmium (Cd), and some of them were polluted by lead (Pb), mercury (Hg), arsenic (As), copper (Cu), and zinc (Zn). DGGE showed that the most abundant bacterial species were found in G7 with the lightest heavy metal contamination. The results of the principal component analysis and clustering analysis both showed that G7 could not be classified with other samples. The relative abundance of sul1 was correlated with Cu, Zn concentration. Gene sul2 are positively related with total phosphorus, and tetM was associated with organic matter. Total gene abundances and relative abundance of inti1 both correlated with organic matter. Redundancy analysis showed that Zn and sul2 were significantly related with bacterial community structure. Together, our results indicate a complex linkage between soil heavy metal concentration, bacterial community composition, and some global disseminated ARG abundance.

  16. Antibiotic resistance genes in manure-amended soil and vegetables at harvest.

    Science.gov (United States)

    Wang, Feng-Hua; Qiao, Min; Chen, Zheng; Su, Jian-Qiang; Zhu, Yong-Guan

    2015-12-15

    Lettuce and endive, which can be eaten raw, were planted on the manure-amended soil in order to explore the influence of plants on the abundance of antibiotic resistance genes (ARGs) in bulk soil and rhizosphere soil, and the occurrence of ARGs on harvested vegetables. Twelve ARGs and one integrase gene (intI1) were detected in all soil samples. Five ARGs (sulI, tetG, tetC, tetA, and tetM) showed lower abundance in the soil with plants than those without. ARGs and intI1 gene were also detected on harvested vegetables grown in manure-amended soil, including endophytes and phyllosphere microorganisms. The results demonstrated that planting had an effect on the distribution of ARGs in manure-amended soil, and ARGs were detected on harvested vegetables after growing in manure-amended soil, which had potential threat to human health. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Detection of Antibiotic Resistance Genes in Source and Drinking Water Samples from a First Nations Community in Canada

    Science.gov (United States)

    Fernando, Dinesh M.; Tun, Hein Min; Poole, Jenna; Patidar, Rakesh; Li, Ru; Mi, Ruidong; Amarawansha, Geethani E. A.; Fernando, W. G. Dilantha; Khafipour, Ehsan; Farenhorst, Annemieke

    2016-01-01

    ABSTRACT Access to safe drinking water is now recognized as a human right by the United Nations. In developed countries like Canada, access to clean water is generally not a matter of concern. However, one in every five First Nations reserves is under a drinking water advisory, often due to unacceptable microbiological quality. In this study, we analyzed source and potable water from a First Nations community for the presence of coliform bacteria as well as various antibiotic resistance genes. Samples, including those from drinking water sources, were found to be positive for various antibiotic resistance genes, namely, ampC, tet(A), mecA, β-lactamase genes (SHV-type, TEM-type, CTX-M-type, OXA-1, and CMY-2-type), and carbapenemase genes (KPC, IMP, VIM, NDM, GES, and OXA-48 genes). Not surprisingly, substantial numbers of total coliforms, including Escherichia coli, were recovered from these samples, and this result was also confirmed using Illumina sequencing of the 16S rRNA gene. These findings deserve further attention, as the presence of coliforms and antibiotic resistance genes potentially puts the health of the community members at risk. IMPORTANCE In this study, we highlight the poor microbiological quality of drinking water in a First Nations community in Canada. We examined the coliform load as well as the presence of antibiotic resistance genes in these samples. This study examined the presence of antibiotic-resistant genes in drinking water samples from a First Nations Community in Canada. We believe that our findings are of considerable significance, since the issue of poor water quality in First Nations communities in Canada is often ignored, and our findings will help shed some light on this important issue. PMID:27235436

  18. Antibiotic-mediated changes in the fecal microbiome of broiler chickens define the incidence of antibiotic resistance genes.

    Science.gov (United States)

    Xiong, Wenguang; Wang, Yulin; Sun, Yongxue; Ma, Liping; Zeng, Qinglin; Jiang, Xiaotao; Li, Andong; Zeng, Zhenling; Zhang, Tong

    2018-02-13

    Antimicrobial agents have been widely used in animal farms to prevent and treat animal diseases and to promote growth. Antimicrobial agents may change the bacterial community and enhance the resistome in animal feces. We used metagenome-wide analysis to investigate the changes in bacterial community, variations in antibiotic resistance genes (ARGs), and their bacterial hosts in the feces of broiler chickens over a full-treatment course of chlortetracycline at low and therapeutic dose levels. The effects of chlortetracycline on resistome were dependent on the specific ARG subtypes and not simply the overall community-level ARGs. Therapeutic dose of chlortetracycline promoted the abundance of tetracycline resistance genes (tetA and tetW) and inhibited multidrug resistance genes (mdtA, mdtC, mdtK, ompR, and TolC). The therapeutic dose of chlortetracycline led to loss of Proteobacteria mainly due to the decrease of Escherichia/Shigella (from 72 to 58%). Inhibition of Escherichia by chlortetracycline was the primary reason for the decrease of genes resistant to multiple drugs in the therapeutic dose group. The ARG host Bifidobacterium were enriched due to tetW harbored by Bifidobacterium under chlortetracycline treatment. Escherichia was always the major host for multidrug resistance genes, whereas the primary host was changed from Escherichia to Klebsiella for aminoglycoside resistance genes with the treatment of therapeutic dose of chlortetracycline. We provided the first metagenomic insights into antibiotic-mediated alteration of ARG-harboring bacterial hosts at community-wide level in chicken feces. These results indicated that the changes in the structure of antibiotic-induced feces microbial communities accompany changes in the abundance of bacterial hosts carrying specific ARGs in the feces microbiota. These findings will help to optimize therapeutic schemes for the effective treatment of antibiotic resistant pathogens in poultry farms. Resistome variations in

  19. Analysis of antibiotic multi-resistant bacteria and resistance genes in the effluent of an intensive shrimp farm (Long An, Vietnam).

    Science.gov (United States)

    Pham, Thi Thu Hang; Rossi, Pierre; Dinh, Hoang Dang Khoa; Pham, Ngoc Tu Anh; Tran, Phuong Anh; Ho, To Thi Khai Mui; Dinh, Quoc Tuc; De Alencastro, Luiz Felippe

    2018-05-15

    In Vietnam, intensive shrimp farms heavily rely on a wide variety of antibiotics (ABs) to treat animals or prevent disease outbreak. Potential for the emergence of multi-resistant bacteria is high, with the concomitant contamination of adjacent natural aquatic habitats used for irrigation and drinking water, impairing in turn human health system. In the present study, quantification of AB multi-resistant bacteria was carried out in water and sediment samples from effluent channels connecting a shrimp farming area to the Vam Co River (Long An Province, Vietnam). Bacterial strains, e.g. Klebsiella pneumoniae and Aeromonas hydrophila, showing multi-resistance traits were isolated. Molecular biology analysis showed that these strains possessed from four to seven different AB resistance genes (ARGs) (e.g. sul1, sul2, qnrA, ermB, tetA, aac(6)lb, dfrA1, dfr12, dfrA5), conferring multidrug resistance capacity. Sequencing of plasmids present within these multi-resistant strains led to the identification of a total of forty-one resistance genes, targeting nine AB groups. qPCR analysis on the sul2 gene revealed the presence of high copy numbers in the effluent channel connecting to the Vam Co River. The results of the present study clearly indicated that multi-resistant bacteria present in intensive shrimp cultures may disseminate in the natural environment. This study offered a first insight in the impact of plasmid-born ARGs and the related pathogenic bacteria that could emerged due to inappropriate antibiotic utilization in South Vietnam. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river.

    Science.gov (United States)

    Xu, Jian; Xu, Yan; Wang, Hongmei; Guo, Changsheng; Qiu, Huiyun; He, Yan; Zhang, Yuan; Li, Xiaochen; Meng, Wei

    2015-01-01

    The extensive use of antibiotics has caused the contamination of both antibiotics and antibiotic resistance genes (ARGs) in the environment. In this study, the abundance and distribution of antibiotics and ARGs from a sewage treatment plant (STP) and its effluent-receiving river in Beijing China were characterized. Three classes of antibiotics including tetracycline, sulfonamide and quinolone were quantified by LC-MS/MS. In the secondary effluent they were detected at 195, 2001 and 3866 ng L(-1), respectively, which were higher than in the receiving river water. A total of 13 ARGs (6 tet genes: tetA, tetB, tetE, tetW, tetM and tetZ, 3 sulfonamide genes: sul1, sul2 and sul3, and 4 quinolone genes: gryA, parC, qnrC and qnrD) were determined by quantitative PCR. For all ARGs, sulfonamide resistance genes were present at relatively high concentrations in all samples, with the highest ARG concentration above 10(-1). ARGs remained relatively stable along each sewage treatment process. The abundances of detected ARGs from the STP were also higher than its receiving river. Bivariate correlation analysis showed that relative tet gene copies (tetB/16S-rRNA and tetW/16S-rRNA) were strongly correlated with the concentrations of tetracycline residues (r(2)>0.8, presistance gene (qnrC/16S-rRNA) and the concentrations of enrofloxacin (ENR) was also determined. The difference of ARGs levels in the raw influent and secondary effluent suggested that the STP treatment process may induce to increase the abundance of resistance genes. The results showed that the sewage was an important repository of the resistance genes, which need to be effectively treated before discharge into the natural water body. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Characterization of microbial community and antibiotic resistance genes in activated sludge under tetracycline and sulfamethoxazole selection pressure

    International Nuclear Information System (INIS)

    Zhang, Yingying; Geng, Jinju; Ma, Haijun; Ren, Hongqiang; Xu, Ke; Ding, Lili

    2016-01-01

    To investigate the microbial community characteristics, antibiotic resistance genes (ARGs), and bioreactor effluent quality change under tetracycline (TC) and sulfamethoxazole (SMX) selection pressure, sequencing batch reactors (SBRs) were used with environmentally relevant concentration and high-level of TC and SMX concentrations (0, 5 ppb, 50 ppb and 10 ppm). Chemical oxygen demand (COD) and ammonia nitrogen (NH 4 + −N) removals appeared unchanged (p > 0.05) with 5 and 50 ppb, but decreased significantly with 10 ppm (p < 0.05). Extracellular polymeric substances (EPS) concentrations increased significantly with increasing TC or SMX concentrations (p < 0.05). High-throughput 16S rRNA gene sequencing results suggested that Proteobacteria, Actinobacteria and Bacteroidetes were the three most abundant phyla in sludge samples. The Actinobacteria percentages increased with increasing TC or SMX concentration, while Proteobacteria and Bacteroidetes decreased. The microbial diversity achieved its maximum at 5 ppb and decreased with higher concentrations. The total ARGs abundances in sludge increased with addition of TC or SMX, and the higher relative abundances were in the order of sul1 > tetG > sul2 > tetA > intI1 > tetS > tetC. Pearson correlation analysis showed most ARGs (tetA, tetC, tetG, tetK, tetM, sul1) were significantly correlated with intI1 (p < 0.01). - Highlights: • COD and NH 4 + −N removals significantly decrease under 10 ppm TC or SMX. • Activated sludge EPS concentrations increase with increasing TC or SMX concentrations. • TC and SMX affect the microbial community diversity of activated sludge. • Actinobacteria abundances increase with increase of TC or SMX concentration. • ARGs abundance increases with addition of TC or SMX.

  2. Characterization of microbial community and antibiotic resistance genes in activated sludge under tetracycline and sulfamethoxazole selection pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingying; Geng, Jinju, E-mail: jjgeng@nju.edu.cn; Ma, Haijun; Ren, Hongqiang; Xu, Ke; Ding, Lili

    2016-11-15

    To investigate the microbial community characteristics, antibiotic resistance genes (ARGs), and bioreactor effluent quality change under tetracycline (TC) and sulfamethoxazole (SMX) selection pressure, sequencing batch reactors (SBRs) were used with environmentally relevant concentration and high-level of TC and SMX concentrations (0, 5 ppb, 50 ppb and 10 ppm). Chemical oxygen demand (COD) and ammonia nitrogen (NH{sub 4}{sup +}−N) removals appeared unchanged (p > 0.05) with 5 and 50 ppb, but decreased significantly with 10 ppm (p < 0.05). Extracellular polymeric substances (EPS) concentrations increased significantly with increasing TC or SMX concentrations (p < 0.05). High-throughput 16S rRNA gene sequencing results suggested that Proteobacteria, Actinobacteria and Bacteroidetes were the three most abundant phyla in sludge samples. The Actinobacteria percentages increased with increasing TC or SMX concentration, while Proteobacteria and Bacteroidetes decreased. The microbial diversity achieved its maximum at 5 ppb and decreased with higher concentrations. The total ARGs abundances in sludge increased with addition of TC or SMX, and the higher relative abundances were in the order of sul1 > tetG > sul2 > tetA > intI1 > tetS > tetC. Pearson correlation analysis showed most ARGs (tetA, tetC, tetG, tetK, tetM, sul1) were significantly correlated with intI1 (p < 0.01). - Highlights: • COD and NH{sub 4}{sup +}−N removals significantly decrease under 10 ppm TC or SMX. • Activated sludge EPS concentrations increase with increasing TC or SMX concentrations. • TC and SMX affect the microbial community diversity of activated sludge. • Actinobacteria abundances increase with increase of TC or SMX concentration. • ARGs abundance increases with addition of TC or SMX.

  3. Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants.

    Science.gov (United States)

    Di Cesare, Andrea; Eckert, Ester M; D'Urso, Silvia; Bertoni, Roberto; Gillan, David C; Wattiez, Ruddy; Corno, Gianluca

    2016-05-01

    The impact of human activities on the spread and on the persistence of antibiotic resistances in the environment is still far from being understood. The natural background of resistances is influenced by human activities, and the wastewater treatment plants (WWTPs) are among the main sources of the release of antibiotic resistance into the environment. The various treatments of WWTPs provide a number of different environmental conditions potentially favoring the selection of antibiotic resistance genes (ARGs) and thereby their well-documented spread in the environment. Although the distribution of different ARGs in WWTPs has been deeply investigated, very little is known on the ecology and on the molecular mechanisms underlying the selection of specific ARGs. This study investigates the fate of diverse ARGs, heavy metal resistance genes (HMRGs) and of a mobile element (the class I integron) in three WWTPs. Abundances of the different genetic markers were correlated to each other and their relation to biotic and abiotic factors (total organic carbon, total nitrogen, prokaryotic cell abundance and its relative distribution in single cells and aggregates) influencing the microbial communities in the different treatment phases in three WWTPs, were investigated. Water samples were analyzed for the abundance of six ARGs (tetA, sulII, blaTEM, blaCTXM,ermB, and qnrS), two HMRGs (czcA and arsB), and of the class I integron (int1). The measured variables clustered in two well-defined groups, the first including tetA, ermB, qnrS and the different biotic and abiotic factors, and a second group around the genes sulII, czcA, arsB and int1. Moreover, the dynamics of sulII, HMRGs, and int1 correlated strongly. Our results suggest a potentially crucial role of HMRGs in the spread, mediated by mobile elements, of some ARGs, i.e. sulII. The possibility of a relation between heavy metal contamination and the spread of ARGs in WWTPs calls for further research to clarify the mechanisms

  4. Reclaimed water as a reservoir of antibiotic resistance genes: distribution system and irrigation implications

    Directory of Open Access Journals (Sweden)

    Nicole L Fahrenfeld

    2013-05-01

    Full Text Available Treated wastewater is increasingly being reused to achieve sustainable water management in arid regions. The objective of this study was to quantify the distribution of antibiotic resistance genes (ARGs in recycled water, particularly after it has passed through the distribution system, and to consider point-of-use implications for soil irrigation. Three separate reclaimed wastewater distribution systems in the western U.S. were examined. Quantitative polymerase chain reaction (qPCR was used to quantify ARGs corresponding to resistance to sulfonamides (sul1, sul2, macrolides (ermF, tetracycline (tet(A, tet(O, glycopeptides (vanA, and methicillin (mecA, in addition to genes present in waterborne pathogens Legionella pneumophila (Lmip, Escherichia coli (gadAB, and Pseudomonas aeruginosa (ecfx, gyrB. In a parallel lab study, the effect of irrigating an agricultural soil with secondary, chlorinated, or dechlorinated wastewater effluent was examined in batch microcosms. A broader range of ARGs were detected after the reclaimed water passed through the distribution systems, highlighting the importance of considering bacterial re-growth and the overall water quality at the point of use. Screening for pathogens with qPCR indicated presence of Lmip and gadAB genes, but not ecfx or gyrB. In the lab study, chlorination was observed to reduce 16S rRNA and sul2 gene copies in the wastewater effluent, while dechlorination had no apparent effect. ARGs levels did not change with time in soil slurries incubated after a single irrigation event with any of the effluents. However, when irrigated repeatedly with secondary wastewater effluent (not chlorinated or dechlorinated, elevated levels of sul1 and sul2 were observed. This study suggests that reclaimed water may be an important reservoir of ARGs, especially at the point of use, and that attention should be directed towards the fate of ARGs in irrigation water and the implications for human health.

  5. Prevalence of sulfonamide and tetracycline resistance genes in drinking water treatment plants in the Yangtze River Delta, China.

    Science.gov (United States)

    Guo, Xueping; Li, Jing; Yang, Fan; Yang, Jie; Yin, Daqiang

    2014-09-15

    The occurrence and distribution of antibiotic resistance genes (ARGs) in drinking water treatment plants (DWTPs) and finished water are not well understood, and even less is known about the contribution of each treatment process to resistance gene reduction. The prevalence of ten commonly detected sulfonamide and tetracycline resistance genes, namely, sul I, sul II, tet(C), tet(G), tet(X), tet(A), tet(B), tet(O), tet(M) and tet(W) as well as 16S-rRNA genes, were surveyed in seven DWTPs in the Yangtze River Delta, China, with SYBR Green I-based real-time quantitative polymerase chain reaction. All of the investigated ARGs were detected in the source waters of the seven DWTPs, and sul I, sul II, tet(C) and tet(G) were the four most abundant ARGs. Total concentrations of ARGs belonging to either the sulfonamide or tetracycline resistance gene class were above 10(5) copies/mL. The effects of a treatment process on ARG removal varied depending on the overall treatment scheme of the DWTP. With combinations of the treatment procedures, however, the copy numbers of resistance genes were reduced effectively, but the proportions of ARGs to bacteria numbers increased in several cases. Among the treatment processes, the biological treatment tanks might serve as reservoirs of ARGs. ARGs were found in finished water of two plants, imposing a potential risk to human health. The results presented in this study not only provide information for the management of antibiotics and ARGs but also facilitate improvement of drinking water quality. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Detection and Diversity evaluation of tetracycline resistance genes in grassland-based production systems in Colombia, South America

    Directory of Open Access Journals (Sweden)

    Johanna eSantamaría

    2011-12-01

    Full Text Available Grassland-based production systems use approximately 26 percent of land surface on earth. However, there are no evaluations of these systems as a source of antibiotic pollution. This study was conducted to evaluate the presence, diversity, and distribution of tetracycline resistance genes in the grasslands of the Colombian Andes, where administration of antibiotics to animals is limited to treat disease and growth promoters are not included in animals’ diet. Animal (ruminal fluid and feces and environmental (soil and water samples were collected from six different dairy cattle farms and evaluated by PCR for the genes encoding ribosomal protection proteins (RPPs tet(M, tet(O, tetB(P, tet(Q tet(W, tet(S, tet(T, tet(A, and tetracycline efflux pumps tet(A, tet(B, tet(D, tet(H, tet(J, tet(Z, and tet(D. A wide distribution and high frequency for genes tet(W and tet(Q were found in both sample types. Other genes encoding RPPs ( tetB(P, tet(O, tet(M, tet(S and tet(T were detected at lower frequencies and more restricted distributions. Genes encoding efflux pumps were not common in this region, and only two of them, tet(B and tet(Z, were detected. DGGE-PCR followed by comparative sequence analysis of tet(W and tet(Q showed that the sequences detected in animals did not differ from those coming from soil and water, suggesting the transmission of tet genes from animal reservoirs to the environment. Additionally, there seems to be a differential flow of tet genes from one reservoir to the other because gene tet(O and tetB(P, detected in high frequencies in feces, were detected in low frequencies or not detected at all in the environment. Finally, the farms sampled in this study showed more than 50% similarity in relation to the tet genes detected and their frequencies. However, farms closer in space and under the influence of the same hydrographic network were significantly more similar to each other.

  7. Characterization of Antibiotic Resistance Gene Abundance and Microbiota Composition in Feces of Organic and Conventional Pigs from Four EU Countries.

    Science.gov (United States)

    Gerzova, Lenka; Babak, Vladimir; Sedlar, Karel; Faldynova, Marcela; Videnska, Petra; Cejkova, Darina; Jensen, Annette Nygaard; Denis, Martine; Kerouanton, Annaelle; Ricci, Antonia; Cibin, Veronica; Österberg, Julia; Rychlik, Ivan

    2015-01-01

    One of the recent trends in animal production is the revival of interest in organic farming. The increased consumer interest in organic animal farming is mainly due to concerns about animal welfare and the use of antibiotics in conventional farming. On the other hand, providing animals with a more natural lifestyle implies their increased exposure to environmental sources of different microorganisms including pathogens. To address these concerns, we determined the abundance of antibiotic resistance and diversity within fecal microbiota in pigs kept under conventional and organic farming systems in Sweden, Denmark, France and Italy. The abundance of sul1, sul2, strA, tet(A), tet(B) and cat antibiotic resistance genes was determined in 468 samples by real-time PCR and the fecal microbiota diversity was characterized in 48 selected samples by pyrosequencing of V3/V4 regions of 16S rRNA. Contrary to our expectations, there were no extensive differences between the abundance of tested antibiotic resistance genes in microbiota originating from organic or conventionally housed pigs within individual countries. There were also no differences in the microbiota composition of organic and conventional pigs. The only significant difference was the difference in the abundance of antibiotic resistance genes in the samples from different countries. Fecal microbiota in the samples originating from southern European countries (Italy, France) exhibited significantly higher antibiotic resistance gene abundance than those from northern parts of Europe (Denmark, Sweden). Therefore, the geographical location of the herd influenced the antibiotic resistance in the fecal microbiota more than farm's status as organic or conventional.

  8. Antimicrobial resistance and class 1 integron-associated gene cassettes in Salmonella enterica serovar Typhimurium isolated from pigs at slaughter and abattoir environment.

    Science.gov (United States)

    Lopes, Graciela Volz; Michael, Geovana Brenner; Cardoso, Marisa; Schwarz, Stefan

    2016-10-15

    Forty-five multi-resistant Salmonella enterica subsp. enterica serovar (S.) Typhimurium isolates obtained at five pig abattoirs in Southern Brazil were characterized. Their relatedness was determined by XbaI-macrorestriction analysis. Resistance genes, integrons and plasmid-mediated quinolone resistance genes (PMQR) were investigated by PCR. Amplicons for the variable part of class 1 integrons and the quinolone resistance-determining regions (QRDR) were sequenced. Plasmids were characterized by conjugation assays and replicon typing. Eighteen XbaI-macrorestriction patterns and 19 plasmid profiles were seen. Resistance to ampicillin (bla TEM ), chloramphenicol (catA1 and floR), streptomycin (strA-strB), streptomycin/spectinomycin (aadA variants), sulphonamides (sul1, sul2, sul3) and tetracyclines [tet(A) and tet(B)] were commonly found. A trimethoprim resistance gene, dfrA8, was identified on a 100-kb plasmid. Single substitutions in the QRDR of GyrA but no PMQR genes were found. Twenty-five isolates carried class 1 integrons with an aadA23 gene cassette or unusual class 1 integrons with a dfrA12-orfF-aadA27 gene cassette array. Both integrons were found on large conjugative plasmids. Salmonella plasmid-located virulence genes spvR, spvA, spvB, rck and pefA were found on an IncFIB resistance plasmid. Hybrid virulence-resistance plasmids or plasmids harbouring class 1 integrons may play a role in the maintenance and dissemination of antimicrobial resistance among S. Typhimurium in this pig production system. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae

    NARCIS (Netherlands)

    Rozwandowicz, M.; Brouwer, M.S.M.; Fischer, J.; Wagenaar, J.A.; Gonzalez-Zorn, B.; Guerra, B.; Mevius, D.J.; Hordijk, J.

    2018-01-01

    Bacterial antimicrobial resistance (AMR) is constantly evolving and horizontal gene transfer through plasmids plays a major role. The identification of plasmid characteristics and their association with different bacterial hosts provides crucial knowledge that is essential to understand the

  10. Cultivation-dependent and high-throughput sequencing approaches studying the co-occurrence of antibiotic resistance genes in municipal sewage system.

    Science.gov (United States)

    Li, An-Dong; Ma, Liping; Jiang, Xiao-Tao; Zhang, Tong

    2017-11-01

    During the past years, antibiotic-resistant bacteria (ARB) leading for the spreading of antibiotic resistance genes (ARGs) became a global problem, especially multidrug-resistant (MDR) bacteria are considered the prime culprit of antibiotic resistance. However, the correlation between the antibiotic-resistant phenotype and the ARG profiles remains poorly understood. In the present study, metagenomic functional screening and metagenomic analysis of coliforms were combined to explore the phenotype and genotype of the ARBs from municipal sewage. Our results showed that the ARG co-occurrence was widespread in the municipal sewage. The present study also highlighted the high abundance of ARGs from antibiotic resistance coliforms especially the MDR coliforms with ARG level of 33.8 ± 4.2 copies per cell. The ARG profiles and the antibiotic resistance phenotypes of the isolated antibiotic resistant coliforms were also correlated and indicated that the resistance to the related antibiotic (ampicillin, kanamycin, erythromycin, chloramphenicol, and tetracycline) was mostly contributed by the ARGs belonging to the subtypes of β-lactamase, aminoglycoside 3-phosphotransferase, phosphotransferase type 2, chloramphenicol acetyltransferase, tetA, etc.

  11. Mussel inspired polymerized P(TA-TETA) for facile functionalization of carbon nanotube

    Science.gov (United States)

    Si, Shuxian; Gao, Tingting; Wang, Junhao; Liu, Qinze; Zhou, Guowei

    2018-03-01

    This article describes a novel and effective approach for non-covalent modification of carbon nanotube (CNT) via the mussel inspired polymerization of tannic acid (TA) and triethylenetetramine (TETA) and subsequent surface initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and photograph were used to study the successful preparation of polymer brush grafted CNT (CNT-P(TA-TETA)-PDMAEMA) composite as well as the pH-responsive behavior of the composite. Furthermore, by amine protonation and in situ reduction, gold nanoparticles were successfully uploaded and the catalytic property of CNT-P(TA-TETA)-PDMAEMA/Au was investigated. We believe that the surface functionalization strategy can be extended to graphene and other substrates, and the surface properties can be regulated by grafting polymer brushes with different functionalities.

  12. Identification of acquired antimicrobial resistance genes

    DEFF Research Database (Denmark)

    Zankari, Ea; Hasman, Henrik; Cosentino, Salvatore

    2012-01-01

    ObjectivesIdentification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic laborato......ObjectivesIdentification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic...... laboratories and is anticipated to substitute traditional methods for resistance gene identification. Thus, the current challenge is to extract the relevant information from the large amount of generated data.MethodsWe developed a web-based method, ResFinder that uses BLAST for identification of acquired...... antimicrobial resistance genes in whole-genome data. As input, the method can use both pre-assembled, complete or partial genomes, and short sequence reads from four different sequencing platforms. The method was evaluated on 1862 GenBank files containing 1411 different resistance genes, as well as on 23 de...

  13. Antimicrobial resistance, virulence genes and PFGE-profiling of Escherichia coli isolates from South Korean cattle farms.

    Science.gov (United States)

    Shin, Seung Won; Byun, Jae-Won; Jung, Myounghwan; Shin, Min-Kyoung; Yoo, Han Sang

    2014-09-01

    To estimate the prevalence of Escherichia coli with potential pathogenicity in cattle farm in South Korea, a total of 290 E. coli isolates were isolated from cattle farms over a period of 2 years in South Korea. These were examined for phenotypic and genotypic characteristics including antimicrobial susceptibility, serotype, and gene profiles of virulence and antimicrobial resistance. The most dominant virulence gene was f17 (26.2%), followed by stx2 (15.9%), ehxA (11.0%), stx1 (8.3%), eae (5.2%), and sta (4.1%). Some shiga-toxin producing E. coli isolates possessed eae (15.9%). All isolates except for one showed resistance to one or more antimicrobials, with 152 isolates exhibiting multidrug-resistance. The most prevalent resistance phenotype detected was streptomycin (63.1%), followed by tetracycline (54.5%), neomycin (40.3%), cephalothin (32.8%), amoxicillin (30.0%), ampicillin (29.7%), and sulphamethoxazole/trimethoprim (16.6%). The associated resistance determinants detected were strA-strB (39.0%), tet(E) (80.0%), tet(A) (27.6%), aac(3)-IV (33.1%), aphA1 (21.4%), bla TEM (23.8%), and sul2 (22.1%). When investigated by O serotyping and PFGE molecular subtyping, the high degree of diversity was exhibited in E. coli isolates. These results suggest that E. coli isolates from South Korean cattle farms are significantly diverse in terms of virulence and antimicrobial resistance. In conclusion, the gastroinstestinal flora of cattle could be a significant reservoir of diverse virulence and antimicrobial resistance determinants, which is potentially hazardous to public health.

  14. A Comprehensive Analysis on Spread and Distribution Characteristic of Antibiotic Resistance Genes in Livestock Farms of Southeastern China

    Science.gov (United States)

    Wang, Na; Guo, Xinyan; Yan, Zheng; Wang, Wei; Chen, Biao; Ge, Feng; Ye, Boping

    2016-01-01

    The pollution of antibiotic resistance genes (ARGs) in livestock farms is a problem which need to be paid more attention to, due to the severe resistance dissemination and the further human health risk. In this study, all the relevant exposure matrices (manure, soil and water) of sixteen animal farms in Southeastern China were sampled to determine twenty-two ARGs conferring resistance to five major classes of antibiotics including tetracyclines, sulfonamides, quinolones, aminoglycosides, and macrolides. The results showed that the spread property of sul genes was most extensive and strong, followed by tet and erm genes. The abundance of tet genes expressing ribosomal protection proteins (tetM, tetO, tetQ, tetT and tetW) was higher than that expressing efflux pump proteins (tetA, tetC, tetE and tetG) in each type of samples. The high abundance and frequency of ermB gene in the matrices should be paid more attention, because macrolides is a major medicine for human use. For manures, it was found that the similar ARGs distribution rules were existing in poultry manure or porcine manure samples, despite of the different origins of these two types of livestock farms. Meanwhile, it was interesting that the distribution rule of tet genes in animal manure was nearly the same as all the ARGs. For soils, the result of nonmetric multi-dimensional scaling (NMDS) analysis showed that the pollution of ARGs in the soils fertilized by poultry and cattle manures were more substantial in northern Jiangsu, but no significant ARGs diversity was observed among porcine manured soils of five different regions. Furthermore, most ARGs showed significant positive relationships with environmental variables such as concentration of sulfonamides, tetracyclines, Cu, Zn and total organic carbon (TOC). The pollution profile and characteristics of so many ARGs in livestock farms can provide significative foundation for the regulation and legislation of antibiotics in China. PMID:27388166

  15. A Comprehensive Analysis on Spread and Distribution Characteristic of Antibiotic Resistance Genes in Livestock Farms of Southeastern China.

    Directory of Open Access Journals (Sweden)

    Na Wang

    Full Text Available The pollution of antibiotic resistance genes (ARGs in livestock farms is a problem which need to be paid more attention to, due to the severe resistance dissemination and the further human health risk. In this study, all the relevant exposure matrices (manure, soil and water of sixteen animal farms in Southeastern China were sampled to determine twenty-two ARGs conferring resistance to five major classes of antibiotics including tetracyclines, sulfonamides, quinolones, aminoglycosides, and macrolides. The results showed that the spread property of sul genes was most extensive and strong, followed by tet and erm genes. The abundance of tet genes expressing ribosomal protection proteins (tetM, tetO, tetQ, tetT and tetW was higher than that expressing efflux pump proteins (tetA, tetC, tetE and tetG in each type of samples. The high abundance and frequency of ermB gene in the matrices should be paid more attention, because macrolides is a major medicine for human use. For manures, it was found that the similar ARGs distribution rules were existing in poultry manure or porcine manure samples, despite of the different origins of these two types of livestock farms. Meanwhile, it was interesting that the distribution rule of tet genes in animal manure was nearly the same as all the ARGs. For soils, the result of nonmetric multi-dimensional scaling (NMDS analysis showed that the pollution of ARGs in the soils fertilized by poultry and cattle manures were more substantial in northern Jiangsu, but no significant ARGs diversity was observed among porcine manured soils of five different regions. Furthermore, most ARGs showed significant positive relationships with environmental variables such as concentration of sulfonamides, tetracyclines, Cu, Zn and total organic carbon (TOC. The pollution profile and characteristics of so many ARGs in livestock farms can provide significative foundation for the regulation and legislation of antibiotics in China.

  16. A Comprehensive Analysis on Spread and Distribution Characteristic of Antibiotic Resistance Genes in Livestock Farms of Southeastern China.

    Science.gov (United States)

    Wang, Na; Guo, Xinyan; Yan, Zheng; Wang, Wei; Chen, Biao; Ge, Feng; Ye, Boping

    2016-01-01

    The pollution of antibiotic resistance genes (ARGs) in livestock farms is a problem which need to be paid more attention to, due to the severe resistance dissemination and the further human health risk. In this study, all the relevant exposure matrices (manure, soil and water) of sixteen animal farms in Southeastern China were sampled to determine twenty-two ARGs conferring resistance to five major classes of antibiotics including tetracyclines, sulfonamides, quinolones, aminoglycosides, and macrolides. The results showed that the spread property of sul genes was most extensive and strong, followed by tet and erm genes. The abundance of tet genes expressing ribosomal protection proteins (tetM, tetO, tetQ, tetT and tetW) was higher than that expressing efflux pump proteins (tetA, tetC, tetE and tetG) in each type of samples. The high abundance and frequency of ermB gene in the matrices should be paid more attention, because macrolides is a major medicine for human use. For manures, it was found that the similar ARGs distribution rules were existing in poultry manure or porcine manure samples, despite of the different origins of these two types of livestock farms. Meanwhile, it was interesting that the distribution rule of tet genes in animal manure was nearly the same as all the ARGs. For soils, the result of nonmetric multi-dimensional scaling (NMDS) analysis showed that the pollution of ARGs in the soils fertilized by poultry and cattle manures were more substantial in northern Jiangsu, but no significant ARGs diversity was observed among porcine manured soils of five different regions. Furthermore, most ARGs showed significant positive relationships with environmental variables such as concentration of sulfonamides, tetracyclines, Cu, Zn and total organic carbon (TOC). The pollution profile and characteristics of so many ARGs in livestock farms can provide significative foundation for the regulation and legislation of antibiotics in China.

  17. Exploring Antibiotic Resistance Genes and Metal Resistance Genes in Plasmid Metagenomes from Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    An-Dong eLi

    2015-09-01

    Full Text Available Plasmids operate as independent genetic elements in microorganism communities. Through horizontal gene transfer, they can provide their host microorganisms with important functions such as antibiotic resistance and heavy metal resistance. In this study, six metagenomic libraries were constructed with plasmid DNA extracted from influent, activated sludge and digested sludge of two wastewater treatment plants. Compared with the metagenomes of the total DNA extracted from the same sectors of the wastewater treatment plant, the plasmid metagenomes had significantly higher annotation rates, indicating that the functional genes on plasmids are commonly shared by those studied microorganisms. Meanwhile, the plasmid metagenomes also encoded many more genes related to defense mechanisms, including ARGs. Searching against an antibiotic resistance genes (ARGs database and a metal resistance genes (MRGs database revealed a broad-spectrum of antibiotic (323 out of a total 618 subtypes and metal resistance genes (23 out of a total 23 types on these plasmid metagenomes. The influent plasmid metagenomes contained many more resistance genes (both ARGs and MRGs than the activated sludge and the digested sludge metagenomes. Sixteen novel plasmids with a complete circular structure that carried these resistance genes were assembled from the plasmid metagenomes. The results of this study demonstrated that the plasmids in wastewater treatment plants could be important reservoirs for resistance genes, and may play a significant role in the horizontal transfer of these genes.

  18. Aerobic digestion reduces the quantity of antibiotic resistance genes in residual municipal wastewater solids.

    Science.gov (United States)

    Burch, Tucker R; Sadowsky, Michael J; Lapara, Timothy M

    2013-01-01

    Numerous initiatives have been undertaken to circumvent the problem of antibiotic resistance, including the development of new antibiotics, the use of narrow spectrum antibiotics, and the reduction of inappropriate antibiotic use. We propose an alternative but complimentary approach to reduce antibiotic resistant bacteria (ARB) by implementing more stringent technologies for treating municipal wastewater, which is known to contain large quantities of ARB and antibiotic resistance genes (ARGs). In this study, we investigated the ability of conventional aerobic digestion to reduce the quantity of ARGs in untreated wastewater solids. A bench-scale aerobic digester was fed untreated wastewater solids collected from a full-scale municipal wastewater treatment facility. The reactor was operated under semi-continuous flow conditions for more than 200 days at a residence time of approximately 40 days. During this time, the quantities of tet(A), tet(W), and erm(B) decreased by more than 90%. In contrast, intI1 did not decrease, and tet(X) increased in quantity by 5-fold. Following operation in semi-continuous flow mode, the aerobic digester was converted to batch mode to determine the first-order decay coefficients, with half-lives ranging from as short as 2.8 days for tet(W) to as long as 6.3 days for intI1. These results demonstrated that aerobic digestion can be used to reduce the quantity of ARGs in untreated wastewater solids, but that rates can vary substantially depending on the reactor design (i.e., batch vs. continuous-flow) and the specific ARG.

  19. Resistance Genes in Global Crop Breeding Networks.

    Science.gov (United States)

    Garrett, K A; Andersen, K F; Asche, F; Bowden, R L; Forbes, G A; Kulakow, P A; Zhou, B

    2017-10-01

    Resistance genes are a major tool for managing crop diseases. The networks of crop breeders who exchange resistance genes and deploy them in varieties help to determine the global landscape of resistance and epidemics, an important system for maintaining food security. These networks function as a complex adaptive system, with associated strengths and vulnerabilities, and implications for policies to support resistance gene deployment strategies. Extensions of epidemic network analysis can be used to evaluate the multilayer agricultural networks that support and influence crop breeding networks. Here, we evaluate the general structure of crop breeding networks for cassava, potato, rice, and wheat. All four are clustered due to phytosanitary and intellectual property regulations, and linked through CGIAR hubs. Cassava networks primarily include public breeding groups, whereas others are more mixed. These systems must adapt to global change in climate and land use, the emergence of new diseases, and disruptive breeding technologies. Research priorities to support policy include how best to maintain both diversity and redundancy in the roles played by individual crop breeding groups (public versus private and global versus local), and how best to manage connectivity to optimize resistance gene deployment while avoiding risks to the useful life of resistance genes. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

  20. Effect of temperature on the fate of genes encoding tetracycline resistance and the integrase of class 1 integrons within anaerobic and aerobic digesters treating municipal wastewater solids.

    Science.gov (United States)

    Diehl, David L; LaPara, Timothy M

    2010-12-01

    The objective of this research was to investigate the ability of anaerobic and aerobic digesters to reduce the quantity of antibiotic resistant bacteria in wastewater solids. Lab-scale digesters were operated at different temperatures (22 °C, 37 °C, 46 °C, and 55 °C) under both anaerobic and aerobic conditions and fed wastewater solids collected from a full-scale treatment facility. Quantitative PCR was used to track five genes encoding tetracycline resistance (tet(A), tet(L), tet(O), tet(W), and tet(X)) and the gene encoding the integrase (intI1) of class 1 integrons. Statistically significant reductions in the quantities of these genes occurred in the anaerobic reactors at 37 °C, 46 °C, and 55 °C, with the removal rates and removal efficiencies increasing as a function of temperature. The aerobic digesters, in contrast, were generally incapable of significantly decreasing gene quantities, although these digesters were operated at much shorter mean hydraulic residence times. This research suggests that high temperature anaerobic digestion of wastewater solids would be a suitable technology for eliminating various antibiotic resistance genes, an emerging pollutant of concern.

  1. Evolution of corresponding resistance genes in the water of fish tanks with multiple stresses of antibiotics and heavy metals.

    Science.gov (United States)

    He, Xiaolin; Xu, Yanbin; Chen, Jinliang; Ling, Jiayin; Li, Yafei; Huang, Lu; Zhou, Xiao; Zheng, Li; Xie, Guangyan

    2017-11-01

    Abuse of antibiotics and heavy metals in aquaculture has been widely concerned and might aggravate the spread of resistance genes in environment. To investigate the occurrence and proliferation of antibiotic resistance genes (ARGs) and heavy metal resistance genes (HMRGs), three commonly used antibiotics (tetracycline, sulfanilamide, cefotaxime) and two heavy metals (Zn and Cu) were designed to add individually or jointly in nine fish tanks including five individual exposure tanks of tetracycline (tet), sulfanilamide (sul), cefotaxime (cef), Cu, Zn and four combination exposure tanks of tetracycline + sulfanilamide (tet + sul), tetracycline + sulfanilamide + cefotaxime (tet + sul + cef), tetracycline + sulfanilamide + Cu (tet + sul + Cu), tetracycline + sulfanilamide + Zn (tet + sul + Zn) as well as the control during the experiment period of 180 days. Nineteen ARGs (tetA, tetB, tetC, tetD, tetE, tetG, tetM, tetO, tetQ, tetS, tetW, tetX, tetY, sul1, sul2, sul3, bla DHA , bla MOX , bla FOX ), two HMRGs (copA, czcA) and the class 1 integron gene (intI 1) in fish tanks water were investigated. The results showed that the residual rate of antibiotics and heavy metals ranged from 0.03% to 2.46% and 9.25%-52.97%, respectively, positively related to their original concentration and types. Tetracycline resistance genes were more sensitive to antibiotics and easier to be induced and developed than sulfanilamide resistance genes and AmpC β-lactamase resistance genes. The total relative abundances of ARGs in combined stresses exposure tanks (tet + sul, tet + sul + cef, tet + sul + Cu, tet + sul + Zn) were about 1.01-1.55 times more than the sum of their individual ones. The co-selective effects of cefotaxime on the abundance and diversity of tetracycline resistance genes were stronger than Zn and Cu. Besides, multivariate correlation analysis revealed that tetO, tetQ, tetW and sul3 were in significant correlation with the

  2. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants.

    Science.gov (United States)

    Mao, Daqing; Yu, Shuai; Rysz, Michal; Luo, Yi; Yang, Fengxia; Li, Fengxiang; Hou, Jie; Mu, Quanhua; Alvarez, P J J

    2015-11-15

    The propagation of antibiotic resistance genes (ARGs) is an emerging health concern worldwide. Thus, it is important to understand and mitigate their occurrence in different systems. In this study, 30 ARGs that confer resistance to tetracyclines, sulfonamides, quinolones or macrolides were detected in two activated sludge wastewater treatment plants (WWTPs) in northern China. Bacteria harboring ARGs persisted through all treatment units, and survived disinfection by chlorination in greater percentages than total Bacteria (assessed by 16S rRNA genes). Although the absolute abundances of ARGs were reduced from the raw influent to the effluent by 89.0%-99.8%, considerable ARG levels [(1.0 ± 0.2) × 10(3) to (9.5 ± 1.8) × 10(5) copies/mL)] were found in WWTP effluent samples. ARGs were concentrated in the waste sludge (through settling of bacteria and sludge dewatering) at (1.5 ± 2.3) × 10(9) to (2.2 ± 2.8) × 10(11) copies/g dry weight. Twelve ARGs (tetA, tetB, tetE, tetG, tetH, tetS, tetT, tetX, sul1, sul2, qnrB, ermC) were discharged through the dewatered sludge and plant effluent at higher rates than influent values, indicating overall proliferation of resistant bacteria. Significant antibiotic concentrations (2%-50% of raw influent concentrations) remained throughout all treatment units. This apparently contributed selective pressure for ARG replication since the relative abundance of resistant bacteria (assessed by ARG/16S rRNA gene ratios) was significantly correlated to the corresponding effluent antibiotic concentrations. Similarly, the concentrations of various heavy metals (which induce a similar bacterial resistance mechanism as antibiotics - efflux pumps) were also correlated to the enrichment of some ARGs. Thus, curtailing the release of antibiotics and heavy metals to sewage systems (or enhancing their removal in pre-treatment units) may alleviate their selective pressure and mitigate ARG proliferation in WWTPs. Copyright © 2015 Elsevier Ltd. All

  3. Frequency of antimicrobial resistance and integron gene cassettes in Escherichia coli isolated from giant pandas (Ailuropoda melanoleuca) in China.

    Science.gov (United States)

    Zou, Wencheng; Li, Caiwu; Yang, Xin; Wang, Yongxiang; Cheng, Guangyang; Zeng, Jinxin; Zhang, Xiuzhong; Chen, Yanpeng; Cai, Run; Huang, Qianru; Feng, Lan; Wang, Hongning; Li, Desheng; Zhang, Guiquan; Chen, Yanxi; Zhang, Zhizhong; Zhang, Heming

    2018-03-01

    Escherichia coli (E. coli) is considered as a common opportunistic pathogen, which causes seriously intestinal infections to giant pandas (Ailuropoda melanoleuca) and other animals. The aim of this investigation was to characterize the antimicrobial resistance and integron gene cassettes in E. coli isolated from the faeces of giant pandas in China. A total of 89 E. coli were isolated, after diagnosis of isolates and genomes were extracted. All the isolates were screened for the presence of related drug-resistance genes and integron gene cassettes through the Polymerase Chain Reaction (PCR) and sequencing. In addition, antimicrobial resistance testing was performed according to the standard disk diffusion method (CLSI 2013). The results demonstrated that all the isolates were multi-drug resistance (MDR). High resistance proportions of the E. coli isolates were to streptomycin (93%), cefazolin (90%), amikacin (75%), tetracycline (65%), ampicillin (62%), cefotaxime and trimethoprim-sulfamethoxazole (54%, each). With respect to the various resistance genes; bla CTX-M , sul1, ant (3')-Ia, tetA, qnrB, tetE, floR, aac (6')-Ib, sul2, rmtA, cmlA, rmtB and tetC were identified with the respective frequencies of 44%, 45%, 38%, 37%, 35%, 27%, 26%, 20%, 18%, 15%, 10%, 7% and 4%. None of the isolates was positive for qnrA and cfr genes. Moreover, a further investigation of integron revealed that the emergence of class 1 and 2 integrons were in 47% and 8% isolates, respectively. While class 3 integron was not screened. Six types of containing in class 1 integron specific gene cassettes (dfrA12-orfF-aadA2, dfrA17-aadA5, aadA1, aadA5, dfrA1 and dfrA7) were identified. However, only one gene cassette (dfrA1-sat2-aadA1) was detected in class 2 integron. These finding emphasize that a high level of E. coli isolates harbored antibiotics resistance and integron gene cassettes, which may bring so many potential threats to the health of giant pandas. Copyright © 2018 Elsevier Ltd. All

  4. Expression Study of Banana Pathogenic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Fenny M. Dwivany

    2016-10-01

    Full Text Available Banana is one of the world's most important trade commodities. However, infection of banana pathogenic fungi (Fusarium oxysporum race 4 is one of the major causes of decreasing production in Indonesia. Genetic engineering has become an alternative way to control this problem by isolating genes that involved in plant defense mechanism against pathogens. Two of the important genes are API5 and ChiI1, each gene encodes apoptosis inhibitory protein and chitinase enzymes. The purpose of this study was to study the expression of API5 and ChiI1 genes as candidate pathogenic resistance genes. The amplified fragments were then cloned, sequenced, and confirmed with in silico studies. Based on sequence analysis, it is showed that partial API5 gene has putative transactivation domain and ChiI1 has 9 chitinase family GH19 protein motifs. Data obtained from this study will contribute in banana genetic improvement.

  5. Occurrence and removal of antibiotics and the corresponding resistance genes in wastewater treatment plants: effluents' influence to downstream water environment.

    Science.gov (United States)

    Li, Jianan; Cheng, Weixiao; Xu, Like; Jiao, Yanan; Baig, Shams Ali; Chen, Hong

    2016-04-01

    In this study, the occurrence of 8 antibiotics [3 tetracyclines (TCs), 4 sulfonamides, and 1 trimethoprim (TMP)], 12 antibiotic resistance genes (ARGs) (10 tet, 2 sul), 4 types of bacteria [no antibiotics, anti-TC, anti-sulfamethoxazole (SMX), and anti-double], and intI1 in two wastewater treatment plants (WWTPs) were assessed and their influences in downstream lake were investigated. Both WWTPs' effluent demonstrated some similarities, but the abundance and removal rate varied significantly. Results revealed that biological treatment mainly removed antibiotics and ARGs, whereas physical techniques were found to eliminate antibiotic resistance bacteria (ARBs) abundance (about 1 log for each one). UV disinfection did not significantly enhance the removal efficiency, and the release of the abundantly available target contaminants from the excess sludge may pose threats to human and the environment. Different antibiotics showed diverse influences on the downstream lake, and the concentrations of sulfamethazine (SM2) and SMX were observed to increase enormously. The total ARG abundance ascended about 0.1 log and some ARGs (e.g., tetC, intI1, tetA) increased due to the high input of the effluent. In addition, the abundance of ARB variation in the lake also changed, but the abundance of four types of bacteria remained stable in the downstream sampling sites.

  6. Prevalence of antibiotic resistance genes in bacterial communities associated with Cladophora glomerata mats along the nearshore of Lake Ontario.

    Science.gov (United States)

    Ibsen, Michael; Fernando, Dinesh M; Kumar, Ayush; Kirkwood, Andrea E

    2017-05-01

    The alga Cladophora glomerata can erupt in nuisance blooms throughout the lower Great Lakes. Since bacterial abundance increases with the emergence and decay of Cladophora, we investigated the prevalence of antibiotic resistance (ABR) in Cladophora-associated bacterial communities up-gradient and down-gradient from a large sewage treatment plant (STP) on Lake Ontario. Although STPs are well-known sources of ABR, we also expected detectable ABR from up-gradient wetland communities, since they receive surface run-off from urban and agricultural sources. Statistically significant differences in aquatic bacterial abundance and ABR were found between down-gradient beach samples and up-gradient coastal wetland samples (ANOVA, Holm-Sidak test, p bacterial densities overall, including on ampicillin- and vancomycin-treated plates. However, quantitative polymerase chain reaction analysis of the ABR genes ampC, tetA, tetB, and vanA from environmental communities showed a different pattern. Some of the highest ABR gene levels occurred at the 2 coastal wetland sites (vanA). Overall, bacterial ABR profiles from environmental samples were distinguishable between living and decaying Cladophora, inferring that Cladophora may control bacterial ABR depending on its life-cycle stage. Our results also show how spatially and temporally dynamic ABR is in nearshore aquatic bacteria, which warrants further research.

  7. The fate of antibiotic resistance genes and class 1 integrons following the application of swine and dairy manure to soils.

    Science.gov (United States)

    Sandberg, Kyle D; LaPara, Timothy M

    2016-02-01

    The goal of this study was to determine the fate of antibiotic resistance genes (ARGs) and class 1 integrons following the application of swine and dairy manure to soil. Soil microcosms were amended with either manure from swine fed subtherapeutic levels of antibiotics or manure from dairy cows that were given antibiotics only rarely and strictly for veterinary purposes. Microcosms were monitored for 6 months using quantitative PCR targeting 16S rRNA genes (a measure of bacterial biomass), intI1, erm(B), tet(A), tet(W) and tet(X). Swine manure had 10- to 100-fold higher levels of ARGs than the dairy manure, all of which decayed over time after being applied to soil. A modified Collins-Selleck model described the decay of ARGs in the soil microcosms well, particularly the characteristic in which the decay rate declined over time. By the completion of the soil microcosm experiments, ARGs in the dairy manure-amended soils returned to background levels, whereas the ARGs in swine manure remained elevated compared to control microcosms. Our research suggests that the use of subtherapeutic use of antibiotics in animal feed could lead to the accumulation of ARGs in soils to which manure is applied. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Development of antibiotic resistance genes in microbial communities during long-term operation of anaerobic reactors in the treatment of pharmaceutical wastewater.

    Science.gov (United States)

    Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2015-10-15

    Biological treatment processes offer the ideal conditions in which a high diversity of microorganisms can grow and develop. The wastewater produced during these processes is contaminated with antibiotics and, as such, they provide the ideal setting for the acquisition and proliferation of antibiotic resistance genes (ARGs). This research investigated the occurrence and variation in the ARGs found during the one-year operation of the anaerobic sequencing batch reactors (SBRs) used to treat pharmaceutical wastewater that contained combinations of sulfamethoxazole-tetracycline-erythromycin (STE) and sulfamethoxazole-tetracycline (ST). The existence of eighteen ARGs encoding resistance to sulfamethoxazole (sul1, sul2, sul3), erythromycin (ermA, ermF, ermB, msrA, ereA), tetracycline (tetA, tetB, tetC, tetD, tetE, tetM, tetS, tetQ, tetW, tetX) and class Ι integron gene (intΙ 1) in the STE and ST reactors was investigated by quantitative real-time PCR. Due to the limited availability of primers to detect ARGs, Illumina sequencing was also performed on the sludge and effluent of the STE and ST reactors. Although there was good reactor performance in the SBRs, which corresponds to min 80% COD removal efficiency, tetA, tetB, sul1, sul2 and ermB genes were among those ARGs detected in the effluent from STE and ST reactors. A comparison of the ARGs acquired from the STE and ST reactors revealed that the effluent from the STE reactor had a higher number of ARGs than that from the ST reactor; this could be due to the synergistic effects of erythromycin. According to the expression of genes results, microorganisms achieve tetracycline and erythromycin resistance through a combination of three mechanisms: efflux pumping protein, modification of the antibiotic target and modifying enzymes. There was also a significant association between the presence of the class 1 integron and sulfamethoxazole resistance genes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Mapping of stripe rust resistance gene in an Aegilops caudata ...

    Indian Academy of Sciences (India)

    ... rust resistance depicted a single major gene conditioning adult plant resistance (APR) with stripe rust reaction varying from TR-20MS in resistant RILs signifying the presence of some minor genes as well. Genetic association with leaf rust resistance revealed that two genes are located at a recombination distance of 13%.

  10. Antibiotic-Resistance Genes in Waste Water.

    Science.gov (United States)

    Karkman, Antti; Do, Thi Thuy; Walsh, Fiona; Virta, Marko P J

    2018-03-01

    Waste water and waste water treatment plants can act as reservoirs and environmental suppliers of antibiotic resistance. They have also been proposed to be hotspots for horizontal gene transfer, enabling the spread of antibiotic resistance genes between different bacterial species. Waste water contains antibiotics, disinfectants, and metals which can form a selection pressure for antibiotic resistance, even in low concentrations. Our knowledge of antibiotic resistance in waste water has increased tremendously in the past few years with advances in the molecular methods available. However, there are still some gaps in our knowledge on the subject, such as how active is horizontal gene transfer in waste water and what is the role of the waste water treatment plant in the environmental resistome? The purpose of this review is to briefly describe some of the main methods for studying antibiotic resistance in waste waters and the latest research and main knowledge gaps on the issue. In addition, some future research directions are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effects of manure and mineral fertilization strategies on soil antibiotic resistance gene levels and microbial community in a paddy-upland rotation system.

    Science.gov (United States)

    Lin, Hui; Sun, Wanchun; Zhang, Zulin; Chapman, Stephen J; Freitag, Thomas E; Fu, Jianrong; Zhang, Xin; Ma, Junwei

    2016-04-01

    This work investigated the responses of antibiotic resistance genes (ARGs) and the soil microbial community in a paddy-upland rotation system to mineral fertilizer (NPK) and different application dosages of manure combined with NPK. The occurrence of five tetracycline ARGs (tetA, tetB, tetC, tetG and tetW), two sulfonamide ARGs (sul1 and sul2) and one genetic element (IntI1) was quantified. NPK application showed only slight or no impact on soil ARGs abundances compared with the control without fertilizer. Soil ARGs abundances could be increased by manure-NPK application but was related to manure dosage (2250-9000 kg ha(-1)). Principal component analysis (PCA) showed that the soil ARG profile of the treatment with 9000 kg ha(-1) manure separated clearly from the other treatments; the ARGs that contributed most to the discrimination of this treatment were tetA, tetG, tetW, sul1, sul2 and IntI1. Community level physiological profile (CLPP) analysis showed that increasing manure dosage from 4500 kg ha(-1) to 9000 kg ha(-1) induced a sharp increase in almost all of the detected ARGs but would not change the microbial community at large. However, 9000 kg ha(-1) manure application produced a decline in soil microbial activity. Determination of antibiotics and heavy metals in soils suggested that the observed bloom of soil ARGs might associate closely with the accumulation of copper and zinc in soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The role of zero valent iron on the fate of tetracycline resistance genes and class 1 integrons during thermophilic anaerobic co-digestion of waste sludge and kitchen waste.

    Science.gov (United States)

    Gao, Pin; Gu, Chaochao; Wei, Xin; Li, Xiang; Chen, Hong; Jia, Hanzhong; Liu, Zhenhong; Xue, Gang; Ma, Chunyan

    2017-03-15

    Activated sludge has been identified as a potential significant source of antibiotic resistance genes (ARGs) to the environment. Anaerobic digestion is extensively used for sludge stabilization and resource recovery, and represents a crucial process for controlling the dissemination of ARGs prior to land application of digested sludge. The objective of this study is to investigate the effect of zero valent iron (Fe 0 ) on the attenuation of seven representative tetracycline resistance genes (tet, tet(A), tet(C), tet(G), tet(M), tet(O), tet(W), and tet(X)), and the integrase gene intI1 during thermophilic anaerobic co-digestion of waste sludge and kitchen waste. Significant decrease (P  0.05) were found for all gene targets between digesters with Fe 0 dosages of 5 and 60 g/L. A first-order kinetic model favorably described the trends in concentrations of tet and intI1 gene targets during thermophilic anaerobic digestion with or without Fe 0 . Notably, tet genes encoding different resistance mechanisms behaved distinctly in anaerobic digesters, although addition of Fe 0 could enhance their reduction. The overall results of this research suggest that thermophilic anaerobic digestion with Fe 0 can be a potential alternative technology for the attenuation of tet and intI1 genes in waste sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Emergence of a Clonal Lineage of Multidrug-Resistant ESBL-Producing Salmonella Infantis Transmitted from Broilers and Broiler Meat to Humans in Italy between 2011 and 2014

    DEFF Research Database (Denmark)

    Franco, Alessia; Leekitcharoenphon, Pimlapas; Feltrin, Fabiola

    2015-01-01

    We report the spread of a clone of multidrug-resistant (MDR), ESBL-producing (blaCTX-M-1) Salmonella enterica subsp. enterica serovar Infantis, in the Italian broiler chicken industry and along the food-chain. This was first detected in Italy in 2011 and led to human infection in Italy in 2013....... This megaplasmid carried the ESBL gene blaCTX-M-1, and additional genes [tet(A), sul1, dfrA1 and dfrA14] mediating cefotaxime, tetracycline, sulfonamide, and trimethoprim resistance. It also contained genes conferring enhanced colonization capability, virulence (fimbriae, yersiniabactin), resistance and fitness...

  14. Fate of antibiotic resistance genes and metal resistance genes during thermophilic aerobic digestion of sewage sludge.

    Science.gov (United States)

    Jang, Hyun Min; Lee, Jangwoo; Kim, Young Beom; Jeon, Jong Hun; Shin, Jingyeong; Park, Mee-Rye; Kim, Young Mo

    2018-02-01

    This study examines the fate of twenty-three representative antibiotic resistance genes (ARGs) encoding tetracyclines, sulfonamides, quinolones, β-lactam antibiotics, macrolides, florfenicol and multidrug resistance during thermophilic aerobic digestion (TAD) of sewage sludge. The bacterial community, class 1 integrons (intI1) and four metal resistance genes (MRGs) were also quantified to determine the key drivers of changes in ARGs during TAD. At the end of digestion, significant decreases in the quantities of ARGs, MRGs and intI1 as well as 16S rRNA genes were observed. Partial redundancy analysis (RDA) showed that shifts in temperature were the key factors affecting a decrease in ARGs. Shifts in temperature led to decreased amounts of ARGs by reducing resistome and bacterial diversity, rather than by lowering horizontal transfer potential via intI1 or co-resistance via MRGs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Plant resistance genes : their structure, function and evolution

    NARCIS (Netherlands)

    Takken, F.L.W.; Joosten, M.H.A.J.

    2000-01-01

    Plants have developed efficient mechanisms to avoid infection or to mount responses that render them resistant upon attack by a pathogen. One of the best-studied defence mechanisms is based on gene-for-gene resistance through which plants, harbouring specific resistance (R) genes, specifically

  16. Characterization of tetracycline resistance in Salmonella enterica strains recovered from irrigation water in the Culiacan Valley, Mexico.

    Science.gov (United States)

    Lugo-Melchor, Yadira; Quiñones, Beatriz; Amézquita-López, Bianca A; León-Félix, Josefina; García-Estrada, Raymundo; Chaidez, Cristóbal

    2010-09-01

    The increase of Salmonella enterica strains showing resistance against antibiotics has resulted in limiting the effective treatment of human infections. The present study characterized the resistance to tetracycline in S. enterica serovar Typhimurium strains, recovered from irrigation water in distinct regions in the Culiacan Valley, an important agricultural region in Mexico for horticultural crops that are exported to the United States. Analysis of the genomic diversity by pulse-field gel electrophoresis (PFGE) typing showed that the Salmonella Typhimurium strains were grouped into four distinct genotypic clusters, indicating genomic diversity among 12 strains examined. The polymerase chain reaction and DNA sequencing analysis demonstrated that the tet(A) gene was found on the genomic DNA and was located within a truncated version of transposon Tn1721. The comparative analysis of the tet(A) gene sequence in Salmonella Typhimurium strains identified high sequence similarity to the tet determinant of plasmid RP1, which is homologous to the tet gene in Tn1721. The findings show the presence of tet(A) among the tetracycline-resistant Salmonella Typhimurium strains isolated from irrigation water used for growing fresh fruits and vegetables.

  17. Fate of antibiotic resistance genes and class 1 integrons in soil microcosms following the application of treated residual municipal wastewater solids.

    Science.gov (United States)

    Burch, Tucker R; Sadowsky, Michael J; LaPara, Timothy M

    2014-05-20

    Substantial quantities of antibiotic resistance genes (ARGs) are discharged with treated residual municipal wastewater solids and subsequently applied to soil. The objective of this work was to determine the decay rates for ARGs and class 1 integrons following simulated land application of treated wastewater solids. Treated residual solids from two full-scale treatment plants were applied to sets of triplicate soil microcosms in two independent experiments. Experiment 1 investigated loading rates of 20, 40, and 100 g kg(-1) of residual solids to a sandy soil, while experiment 2 investigated a loading rate of 40 g kg(-1) to a silty-loamy soil. Five ARGs (erm(B), sul1, tet(A), tet(W), and tet(X)), the integrase of class 1 integrons (intI1), 16S rRNA genes, 16S rRNA genes of all Bacteroides spp., and 16S rRNA genes of human-specific Bacteroides spp. were quantified using real-time polymerase chain reaction. ARGs and intI1 quantities declined in most microcosms, with statistically significant (P rates were much slower than have been previously reported for unit operations used to treat wastewater solids (e.g., anaerobic digestion). This research suggests that the design and operation of municipal wastewater treatment facilities with the explicit goal of mitigating the release of ARGs should focus on using technologies within the treatment facility, rather than depending on attenuation subsequent to land application.

  18. Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants

    OpenAIRE

    Li, An-Dong; Li, Li-Guan; Zhang, Tong

    2015-01-01

    Plasmids operate as independent genetic elements in microorganism communities. Through horizontal gene transfer, they can provide their host microorganisms with important functions such as antibiotic resistance and heavy metal resistance. In this study, six metagenomic libraries were constructed with plasmid DNA extracted from influent, activated sludge and digested sludge of two wastewater treatment plants. Compared with the metagenomes of the total DNA extracted from the same sectors of the...

  19. Plant agricultural streptomycin formulations do not carry antibiotic resistance genes.

    Science.gov (United States)

    Rezzonico, Fabio; Stockwell, Virginia O; Duffy, Brion

    2009-07-01

    Streptomycin is used in plant agriculture for bacterial disease control, particularly against fire blight in pome fruit orchards. Concerns that this may increase environmental antibiotic resistance have led to bans or restrictions on use. Experience with antibiotic use in animal feeds raises the possible influence of formulation-delivered resistance genes. We demonstrate that agricultural streptomycin formulations do not carry producer organism resistance genes. By using an optimized extraction procedure, Streptomyces 16S rRNA genes and the streptomycin resistance gene strA were not detected in agricultural streptomycin formulations. This diminishes the likelihood for one potential factor in resistance development due to streptomycin use.

  20. Marker mapping and resistance gene associations in soybean

    OpenAIRE

    2011-01-01

    The invention provides novel molecular genetic markers in soybean, where the markers are useful, for example, in the marker-assisted selection of gene alleles that impart disease-resistance, thereby allowing the identification and selection of a disease-resistant plant. The markers also find use in positional cloning of disease-resistance genes.

  1. Determination of antibiotic resistance profile in Klebsiella pneumonia strains isolated from urinary tract infections of patients hospitalized in Peyambaran hospital (Tehran-Iran

    Directory of Open Access Journals (Sweden)

    Marzieh Tavakol

    2017-04-01

    Full Text Available Background: Urinary tract infection (UTI is the second prevalent infection in human mostly caused by Escherichia coli and Klebsiella pneumonia. The aim of this study was to determine the antibiotic resistance profile and detect the prevalence of antibiotic resistance encoding genes in K .pneumoniae isolated from UTI. Materials and Methods: Fifty K. pneumonia strains isolated from 122 UTI samples of hospitalized patients in Payambaran Hospital (Tehran, Iran which were subjected to this study (2014 were confirmed by standard biochemical tests. Isolates were tested for susceptibility to 10 antimicrobial drugs by using disk diffusion method. Antibiotic resistance encoding genes frequently include the aadA1, aac(3-IV, sul1, blaSHV, Cat1, cmlA, tetA, tetB, dfrA1, CITM, qnr in isolates were determined by PCR. Results: The highest antibiotic resistance in K. pneumoniae isolates were for Tetracycline and the lowest resistance (2% for Gentamicin and Imipenem. To determine the frequency of antibiotic resistant genes, 64% and 4% of isolates had tetA and Gentamicin-(aac(3-IV resistant genes, respectively. Conclusion: Frequency of antibiotic resistance encoding genes may have important and basic role in the occurrence and transfer of antibiotic resistance which can be due to the indiscriminate use of antibiotics.

  2. qnrD, a Novel Gene Conferring Transferable Quinolone Resistance in Salmonella enterica Serovar Kentucky and Bovismorbificans Strains of Human Origin

    DEFF Research Database (Denmark)

    Cavaco, Lina; Hasman, Henrik; Xia, S.

    2009-01-01

    In a previous study, four Salmonella isolates from humans in the Henan province of China showed reduced susceptibility to ciprofloxacin (MIC, 0.125 to 0.25 mu g/ml) but were susceptible to nalidixic acid ( MIC, 4 to 8 mu g/ml). All isolates were negative for known qnr genes ( A, B, and S), aac(6......')Ib-cr, and mutations in gyrA and parC. Plasmid DNA was extracted from all four isolates and transformed into Escherichia coli TG1 and DH10B cells by electroporation, and transformants were selected on 0.06 mu g/ml ciprofloxacin containing brain heart infusion agar plates. Resistance to ciprofloxacin...... qnrD, showed 48% similarity to qnrA1, 61% similarity to qnrB1, and 41% similarity to qnrS1. Further subcloning of the qnrD coding region into the constitutively expressed tetA gene of vector pBR322 showed that the gene conferred an increase in the MIC of ciprofloxacin by a factor of 32 ( from an MIC...

  3. Influence of two-phase anaerobic digestion on fate of selected antibiotic resistance genes and class I integrons in municipal wastewater sludge.

    Science.gov (United States)

    Wu, Ying; Cui, Erping; Zuo, Yiru; Cheng, Weixiao; Rensing, Christopher; Chen, Hong

    2016-07-01

    The response of representative antibiotic resistance genes (ARGs) to lab-scale two-phase (acidogenic/methanogenic phase) anaerobic digestion processes under thermophilic and mesophilic conditions was explored. The associated microbial communities and bacterial pathogens were characterized by 16S rRNA gene sequencing. A two-phase thermophilic digestion reduced the presence of tetA, tetG, tetX, sul1, ermB, dfrA1, dfrA12 and intI1 exhibiting 0.1-0.72 log unit removal; in contrast, tetO, tetW, sul3, ermF and blaTEM even increased relative to the feed, and sul2 showed no significant decrease. The acidogenic phase of thermophilic digestion was primarily responsible for reducing the quantity of these genes, while the subsequent methanogenic phase caused a rebound in their quantity. In contrast, a two-phase mesophilic digestion process did not result in reducing the quantity of all ARGs and intI1 except for ermB and blaTEM. ARGs patterns were correlated with Proteobacteria and Actinobacteria during the two-phase anaerobic digestion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Occurrence of antibiotic resistance genes in landfill leachate treatment plant and its effluent-receiving soil and surface water.

    Science.gov (United States)

    Zhang, Xiao-Hua; Xu, Yan-Bin; He, Xiao-Lin; Huang, Lu; Ling, Jia-Yin; Zheng, Li; Du, Qing-Ping

    2016-11-01

    The antibiotic resistance genes (ARGs) from urban waste may spread to the environment with the discharge of leachate. Fifteen types of ARGs, including tetracycline, sulfonamides, AmpC β-lactamase and the class 1 integron gene were detected in the samples from the largest leachate treatment plant (LTP) in Guangzhou and its effluent receiving bodies (soil and surface water). The results showed that ARGs in leachates were in high levels and varied with seasons. The abundance of ARGs in the influent from high to low was in the turn of summer, winter, spring. About 2 to 4 orders of magnitude of ARGs were eliminated by the whole leachate treatment process. The predominant ARGs in the receiving soil were intI1, tetB, sul2, tetA and tetX, while those in the receiving surface water were sul2, intI1 and sul1, and the concentrations of ARGs in the receiving bodies were higher than those in the other natural bodies by 1 to 2 orders of magnitude. In addition, the results of bivariate correlation analysis showed that the abundances of ARGs (tetC, tetW, sul1, sul2, intI1 and FOX) were in significant correlation with the concentrations of heavy metals (Cu, Zn, Ni and Cr) (p < 0.05). LTPs are more likely to be sources of ARGs than wastewater treatment plant (WWTP) and need to be focused on. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Antimicrobial resistance patterns of Shiga toxin-producing Escherichia coli O157:H7 and O157:H7- from different origins.

    Science.gov (United States)

    Srinivasan, Velusamy; Nguyen, Lien T; Headrick, Susan I; Murinda, Shelton E; Oliver, Stephen P

    2007-01-01

    Shiga toxin-producing Escherichia coli (STEC) serotypes including O157:H7 (n = 129) from dairy cows, cull dairy cow feces, cider, salami, human feces, ground beef, bulk tank milk, bovine feces, and lettuce; and O157:H7- (n = 24) isolated from bovine dairy and bovine feedlot cows were evaluated for antimicrobial resistance against 26 antimicrobials and the presence of antimicrobial resistance genes (tetA, tetB, tetC, tetD, tetE, tetG, floR, cmlA, strA, strB, sulI, sulII, and ampC). All E. coli exhibited resistance to five or more antimicrobial agents, and the majority of isolates carried one or more target antimicrobial resistance gene(s) in different combinations. The majority of E. coli showed resistance to ampicillin, aztreonam, cefaclor, cephalothin, cinoxacin, and nalidixic acid, and all isolates were susceptible to chloramphenicol and florfenicol. Many STEC O157:H7 and O157:H7-isolates were susceptible to amikacin, carbenicillin, ceftriaxone, cefuroxime, ciprofloxacin, fosfomycin, moxalactam, norfloxacin, streptomycin, tobramycin, trimethoprim, and tetracycline. The majority of STEC O157:H7 (79.8%) and O157:H7- (91.7%) carried one or more antimicrobial resistance gene(s) regardless of whether phenotypically resistant or susceptible. Four tetracycline resistant STEC O157:H7 isolates carried both tetA and tetC. Other tetracycline resistance genes (tetB, tetD, tetE, and tetG) were not detected in any of the isolates. Among nine streptomycin resistant STEC O157:H7 isolates, eight carried strA-strB along with aadA, whereas the other isolate carried aadA alone. However, the majority of tetracycline and streptomycin susceptible STEC isolates also carried tetA and aadA genes, respectively. Most ampicillin resistant E. coli of both serotypes carried ampC genes. Among sulfonamide resistance genes, sulII was detected only in STEC O157:H7 (4 of 80 sulfonamide-resistant isolates) and sulI was detected in O157:H7- (1 of 16 sulfonamide resistant isolates). The emergence and

  6. [Establishment of 5 resistant ovarian cancer cell strains and expression of resistance-related genes].

    Science.gov (United States)

    Luan, Ying-zi; Li, Li; Li, Dang-rong; Zhang, Wei; Tang, Bu-jian

    2004-06-01

    To investigate expression difference of several drug resistance related genes between sensitive and resistant ovarian carcinoma cells. Cell lines resistant to cisplatin, carboplatin and taxol were established from ovarian carcinoma cell lines of SKOV3 and A2780, and their biological features were detected. The expressions of several genes related to drug resistance were measured by RT-PCR method. (1) The values of resistance index (RI) of resistant cells to relevant drugs were elevated 3 times or more, with different degrees of cross-resistance to several other drugs (RI 2 approximately 20). They grew more slowly than primary cells (Td elongated 1.4 approximately 2.4 times, P 0.05). Intracellular concentrations of relevant drugs were reduced 2.0 approximately 8.5 times in resistant cells (P p53, lung resistance protein-1 (LRP-1), multiple drug resistance related protein-1 (MRP-1) genes were expressed at lower levels in resistant cells than in sensitive cells; while protein kinase C (PKC), topoisomerase (topo) I, and topo II beta were expressed higher, no obvious alterations were found concerning glutathione S transferase-pi (GST-pi), and topo II alpha. Expression of multiple drug resistance-1 (MDR-1) gene was either elevated or reduced in different cells. The expressions of resistance related genes were widely different in different kinds of resistant cells, suggesting more than one pathway leading to resistance transformation. This adds more difficulties for clinical management.

  7. Microarray-based Detection of Antibiotic Resisteance Genes in Salmonella

    NARCIS (Netherlands)

    Hoek, van A.H.A.M.; Aarts, H.J.M.

    2008-01-01

    In the presented study, 143 Salmonella isolates belonging to 26 different serovars were screened for the presence of antibiotic resistance genes by microarray analysis. The microarray contained a total of 223 oligonucleotides representing genes encoding for resistance to the following antibiotic

  8. Gene interactions and genetics of blast resistance and yield ...

    Indian Academy of Sciences (India)

    2016-08-26

    Oryza sativa L.) ... four blast resistance genes Pi1, Pi2, Pi33 and Pi54 in combination were used to study the nature and magnitude of gene action for disease resistance and yield attributes. ... Please take note of this change.

  9. Molecular detection of disease resistance genes to powdery mildew ...

    African Journals Online (AJOL)

    A study was conducted to detect the presence of disease resistance genes to infection of wheat powdery mildew (Blumeria graminis f. sp. tritici) in selected wheat cultivars from China using molecular markers. Genomic DNA of sixty cultivars was extracted and tested for the presence of selected prominent resistance genes to ...

  10. Codon-optimized antibiotic resistance gene improves efficiency of ...

    Indian Academy of Sciences (India)

    Success rate of transient transformation and cell growth in selective culture were significantly increased by use of fgmR instead of a native gentamicin resistance gene, suggesting that codon optimization improved translation efficiency of the marker gene and increased antibiotic resistance. Our result shows that similarity in ...

  11. Mapping of stripe rust resistance gene in an Aegilops caudata ...

    Indian Academy of Sciences (India)

    Genetic mapping indicated the introgression of stripe rust resistance gene on wheat chromosome. 5DS in the region carrying leaf rust resistance gene LrAc, but as an independent introgression. Simple sequence repeat (SSR) and sequence-tagged site (STS) markers designed from the survey sequence data of 5DS ...

  12. Genome scanning for identification of resistance gene analogs (RGAs)

    African Journals Online (AJOL)

    Disease resistance in plants is a desirable economic trait. Many disease resistance genes from various plants have been cloned so far. The gene products of some of these can be distinguished by the presence of an N terminal nucleotide binding site and a C-terminal stretch of leucine-rich repeats. Oligonucleotides already ...

  13. Ageing of the DGEBA/TETA epoxy system with off-stoichiometric compositions

    Directory of Open Access Journals (Sweden)

    José Roberto Moraes d'Almeida

    2003-06-01

    Full Text Available An investigation was carried out on the room temperature ageing of off-stoichiometric DGEBA/TETA epoxy formulations. The results obtained show that the epoxy rich mixtures have their inherent brittleness increased by the ageing treatment due to recrystalization of the unreacted epoxy monomers, although homopolymerization could also play a minor role. The initial reaction steps dominated by the amine addition reactions control the macromolecular structure and the mechanical performance of the stoichiometric and near stoichiometric formulation with excess of epoxy monomer. Plasticization due to absorbed -OH results on a significant increase of the deformability of these formulations. The amine rich mixtures have the more stable structures, although plasticization due to moisture absorption from the surrounding environment also produces an increase on the deformability of all, but one, of the formulations investigated.

  14. New resistance genes in the Zea mays: exserohilum turcicum pathosystem

    Directory of Open Access Journals (Sweden)

    Juliana Bernardi Ogliari

    2005-09-01

    Full Text Available The use of monogenic race-specific resistance is widespread for the control of maize (Zea mays L. helminthosporiosis caused by Exserohilum turcicum. Inoculation of 18 Brazilian isolates of E. turcicum onto elite maize lines containing previously identified resistance genes and onto differential near-isogenic lines allowed the identification of new qualitative resistance genes. The inoculation of one selected isolate on differential near-isogenic lines, F1 generations and a BC1F1 population from the referred elite lines enabled the characterization of the resistance spectrum of three new genes, one dominant (HtP, one recessive (rt and a third with non-identified genetic action. Three physiological races of the pathogen were also identified including two with new virulence factors capable of overcoming the resistance of one of the resistance genes identified here (rt.

  15. Occurrence of integrons and resistance genes among sulphonamide-resistant Shigella spp. from Brazil

    DEFF Research Database (Denmark)

    Peirano, G.; Agersø, Yvonne; Aarestrup, Frank Møller

    2005-01-01

    Objectives: To determine the occurrence of class 1 and 2 integrons and antimicrobial resistance genes among sulphonamide-resistant Shigella strains isolated in Brazil during 1999-2003. Methods: Sixty-two Shigella (Shigella flexneri, n = 47 and Shigella sonnei, n = 15) were tested against 21....... Conclusions: The detection of class 1 and 2 integrons and additional antimicrobial resistance genes allowed us to identify the most frequent antimicrobial resistance patterns of Shigella spp. isolated in Brazil....

  16. Barley Stem Rust Resistance Genes: Structure and Function

    Directory of Open Access Journals (Sweden)

    Andris Kleinhofs

    2009-07-01

    Full Text Available Rusts are biotrophic pathogens that attack many plant species but are particularly destructive on cereal crops. The stem rusts (caused by have historically caused severe crop losses and continue to threaten production today. Barley ( L. breeders have controlled major stem rust epidemics since the 1940s with a single durable resistance gene . As new epidemics have threatened, additional resistance genes were identified to counter new rust races, such as the complex locus against races QCCJ and TTKSK. To understand how these genes work, we initiated research to clone and characterize them. The gene encodes a unique protein kinase with dual kinase domains, an active kinase, and a pseudokinase. Function of both domains is essential to confer resistance. The and genes are closely linked and function coordinately to confer resistance to several wheat ( L. stem rust races, including the race TTKSK (also called Ug99 that threatens the world's barley and wheat crops. The gene encodes typical resistance gene domains NBS, LRR, and protein kinase but is unique in that all three domains reside in a single gene, a previously unknown structure among plant disease resistance genes. The gene encodes an actin depolymerizing factor that functions in cytoskeleton rearrangement.

  17. Transfer of tetracycline resistance gene (tetr) between replicons in ...

    African Journals Online (AJOL)

    Antimicrobial susceptibility testing among the isolates showed resistance to amoxicillin (92%), amoxicillin-clavulanic acid (84.4%), tetracycline (71.4%), gentamycin (43.5%), nalidixic acid (38.3%) and nitrofurantoin (7.9%). E. coli showed the highest resistance to most of the antibiotics. Tetracycline resistance gene was ...

  18. Complex Interactions between Fungal Avirulence Genes and Their Corresponding Plant Resistance Genes and Consequences for Disease Resistance Management

    Directory of Open Access Journals (Sweden)

    Yohann Petit-Houdenot

    2017-06-01

    Full Text Available During infection, pathogens secrete an arsenal of molecules, collectively called effectors, key elements of pathogenesis which modulate innate immunity of the plant and facilitate infection. Some of these effectors can be recognized directly or indirectly by resistance (R proteins from the plant and are then called avirulence (AVR proteins. This recognition usually triggers defense responses including the hypersensitive response and results in resistance of the plant. R—AVR gene interactions are frequently exploited in the field to control diseases. Recently, the availability of fungal genomes has accelerated the identification of AVR genes in plant pathogenic fungi, including in fungi infecting agronomically important crops. While single AVR genes recognized by their corresponding R gene were identified, more and more complex interactions between AVR and R genes are reported (e.g., AVR genes recognized by several R genes, R genes recognizing several AVR genes in distinct organisms, one AVR gene suppressing recognition of another AVR gene by its corresponding R gene, two cooperating R genes both necessary to recognize an AVR gene. These complex interactions were particularly reported in pathosystems showing a long co-evolution with their host plant but could also result from the way agronomic crops were obtained and improved (e.g., through interspecific hybridization or introgression of resistance genes from wild related species into cultivated crops. In this review, we describe some complex R—AVR interactions between plants and fungi that were recently reported and discuss their implications for AVR gene evolution and R gene management.

  19. Mapping of stripe rust resistance gene in an Aegilops caudata ...

    Indian Academy of Sciences (India)

    PUNEET INDER TOOR

    end of 5DS linked with a group of four colocated SSRs and two resistance gene analogue (RGA)-STS markers at a distance of 5.3 cM. ... and LrAc appear to be the candidate genes for marker-assisted enrichment of the wheat gene pool for rust resistance. [Toor P. I., Kaur S., Bansal ..... stocks with reduced alien chromatin.

  20. Overexpression of antibiotic resistance genes in hospital effluents over time.

    Science.gov (United States)

    Rowe, Will P M; Baker-Austin, Craig; Verner-Jeffreys, David W; Ryan, Jim J; Micallef, Christianne; Maskell, Duncan J; Pearce, Gareth P

    2017-06-01

    Effluents contain a diverse abundance of antibiotic resistance genes that augment the resistome of receiving aquatic environments. However, uncertainty remains regarding their temporal persistence, transcription and response to anthropogenic factors, such as antibiotic usage. We present a spatiotemporal study within a river catchment (River Cam, UK) that aims to determine the contribution of antibiotic resistance gene-containing effluents originating from sites of varying antibiotic usage to the receiving environment. Gene abundance in effluents (municipal hospital and dairy farm) was compared against background samples of the receiving aquatic environment (i.e. the catchment source) to determine the resistome contribution of effluents. We used metagenomics and metatranscriptomics to correlate DNA and RNA abundance and identified differentially regulated gene transcripts. We found that mean antibiotic resistance gene and transcript abundances were correlated for both hospital ( ρ  = 0.9, two-tailed P  resistance genes ( bla GES and bla OXA ) were overexpressed in all hospital effluent samples. High β-lactam resistance gene transcript abundance was related to hospital antibiotic usage over time and hospital effluents contained antibiotic residues. We conclude that effluents contribute high levels of antibiotic resistance genes to the aquatic environment; these genes are expressed at significant levels and are possibly related to the level of antibiotic usage at the effluent source. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  1. Generation of novel resistance genes using mutation and targeted gene editing

    Science.gov (United States)

    Classical breeding for virus resistance is a lengthy process and is restricted by the availability of resistance genes. Precise genome editing is a "dream technology" to improve plants for virus resistance and these tools have opened new and very promising ways to generate virus resistant plants by ...

  2. Associations between Antimicrobial Resistance Phenotypes, Antimicrobial Resistance Genes, and Virulence Genes of Fecal Escherichia coli Isolates from Healthy Grow-Finish Pigs ▿

    OpenAIRE

    Rosengren, Leigh B.; Waldner, Cheryl L.; Reid-Smith, Richard J.

    2009-01-01

    Escherichia coli often carries linked antimicrobial resistance genes on transmissible genetic elements. Through coselection, antimicrobial use may select for unrelated but linked resistance or virulence genes. This study used unconditional statistical associations to investigate the relationships between antimicrobial resistance phenotypes and antimicrobial resistance genes in 151 E. coli isolates from healthy pigs. Phenotypic resistance to each drug was significantly associated with phenotyp...

  3. Codon-optimized antibiotic resistance gene improves efficiency of ...

    Indian Academy of Sciences (India)

    2013-10-01

    Oct 1, 2013 ... native gentamicin resistance gene, suggesting that codon optimization improved translation efficiency of the marker gene and ... to be taken into account when exogenous transgenes are expressed in Frankia cells. [Kucho K, Kakoi K, ..... gene coding for the green fluorescent protein (GFP) is a versatile ...

  4. The cfr and cfr-like multiple resistance genes

    DEFF Research Database (Denmark)

    Vester, Birte

    2018-01-01

    . The cfr gene is found in various bacteria in many geographical locations and placed on plasmids or associated with transposons. Cfr-related genes providing similar resistance have been identified in Bacillales, and now also in the pathogens Clostridium difficile and Enterococcus faecium. In addition......, the presence of the cfr gene has been detected in harbours and food markets....

  5. Linking microbial community structure and function to characterize antibiotic resistant bacteria and antibiotic resistant genes from cattle feces

    Science.gov (United States)

    There is widespread interest in monitoring the development of antibiotic resistant bacteria and antibiotic resistance genes in agriculturally impacted environments, however little is known about the relationships between bacterial community structure, and antibiotic resistance gene profiles. Cattl...

  6. Mobile antibiotic resistance – the spread of genes determining the resistance of bacteria through food products

    Directory of Open Access Journals (Sweden)

    Jolanta Godziszewska

    2016-07-01

    Full Text Available In recent years, more and more antibiotics have become ineffective in the treatment of bacterial nfections. The acquisition of antibiotic resistance by bacteria is associated with circulation of genes in the environment. Determinants of antibiotic resistance may be transferred to pathogenic bacteria. It has been shown that conjugation is one of the key mechanisms responsible for spread of antibiotic resistance genes, which is highly efficient and allows the barrier to restrictions and modifications to be avoided. Some conjugative modules enable the transfer of plasmids even between phylogenetically distant bacterial species. Many scientific reports indicate that food is one of the main reservoirs of these genes. Antibiotic resistance genes have been identified in meat products, milk, fruits and vegetables. The reason for such a wide spread of antibiotic resistance genes is the overuse of antibiotics by breeders of plants and animals, as well as by horizontal gene transfer. It was shown, that resistance determinants located on mobile genetic elements, which are isolated from food products, can easily be transferred to another niche. The antibiotic resistance genes have been in the environment for 30 000 years. Their removal from food products is not possible, but the risks associated with the emergence of multiresistant pathogenic strains are very large. The only option is to control the emergence, selection and spread of these genes. Therefore measures are sought to prevent horizontal transfer of genes. Promising concepts involve the combination of developmental biology, evolution and ecology in the fight against the spread of antibiotic resistance.

  7. Mobile antibiotic resistance - the spread of genes determining the resistance of bacteria through food products.

    Science.gov (United States)

    Godziszewska, Jolanta; Guzek, Dominika; Głąbski, Krzysztof; Wierzbicka, Agnieszka

    2016-07-07

    In recent years, more and more antibiotics have become ineffective in the treatment of bacterial nfections. The acquisition of antibiotic resistance by bacteria is associated with circulation of genes in the environment. Determinants of antibiotic resistance may be transferred to pathogenic bacteria. It has been shown that conjugation is one of the key mechanisms responsible for spread of antibiotic resistance genes, which is highly efficient and allows the barrier to restrictions and modifications to be avoided. Some conjugative modules enable the transfer of plasmids even between phylogenetically distant bacterial species. Many scientific reports indicate that food is one of the main reservoirs of these genes. Antibiotic resistance genes have been identified in meat products, milk, fruits and vegetables. The reason for such a wide spread of antibiotic resistance genes is the overuse of antibiotics by breeders of plants and animals, as well as by horizontal gene transfer. It was shown, that resistance determinants located on mobile genetic elements, which are isolated from food products, can easily be transferred to another niche. The antibiotic resistance genes have been in the environment for 30 000 years. Their removal from food products is not possible, but the risks associated with the emergence of multiresistant pathogenic strains are very large. The only option is to control the emergence, selection and spread of these genes. Therefore measures are sought to prevent horizontal transfer of genes. Promising concepts involve the combination of developmental biology, evolution and ecology in the fight against the spread of antibiotic resistance.

  8. Determination of rust resistance genes in pakistani bread wheats

    International Nuclear Information System (INIS)

    Qamar, M.; Ahmad, S.D.; Rabbani, M.A.; Shinwari, Z.K.

    2014-01-01

    Stripe and leaf rusts are the major constraints to bread wheat production in Pakistan. Molecular markers were used to investigate the presence of leaf rust and stripe rust resistance gene cluster Lr34/Yr18 and stem rust resistance gene Sr2 in 52 Pakistani bread wheat cultivars/lines. PCR amplification of DNA fragments using DNA marker csLV-34 showed that 13 of the studied cultivars/lines, namely 03FJ26, NR 337, NR 339, NR 347, NR 350, Manthar, Margalla 99, Iqbal 2000, Saleem 2000, Wafaq 2001, Marwat 2001, Pirsabak 2004 and Fareed 2006 carry leaf rust and stripe rust resistance genes Lr34/Yr18. Stem rust resistance gene Sr2 was observed in 36 Pakistani spring wheat cultivars/lines using stm560.3tgag marker. The slow rusting gene Sr2 needs to be combined with additional stem rust resistance genes to establish durable resistance against Ug99 in modern wheat cultivars. Low frequency of Lr34/Yr18 was found in Pakistani wheats. This gene cluster needs to be incorporated into Pakistani wheats for durable rust resistance. (author)

  9. Phenotypic and genotypic characterisation of antimicrobial resistance in faecal bacteria from 30 Giant pandas.

    Science.gov (United States)

    Zhang, An-Yun; Wang, Hong-Ning; Tian, Guo-Bao; Zhang, Yi; Yang, Xin; Xia, Qing-Qing; Tang, Jun-Ni; Zou, Li-Kou

    2009-05-01

    To study the prevalence of antimicrobial resistance in faecal bacteria from Giant pandas in China, 59 isolates were recovered from faecal pats of 30 Giant pandas. Antimicrobial susceptibility testing of the isolates was performed by the standardised disk diffusion method (Kirby-Bauer). Of the 59 study isolates, 32.20% were resistant to at least one antimicrobial and 16.95% showed multidrug-resistant phenotypes. Thirteen drug resistance genes [aph(3')-IIa, aac(6')-Ib, ant(3'')-Ia, aac(3)-IIa, sul1, sul2, sul3, tetA, tetC, tetM, cat1, floR and cmlA] were analysed using four primer sets by multiplex polymerase chain reaction (PCR). The detection frequency of the aph(3')-IIa gene was the highest (10.17%), followed by cmlA (8.47%). The genes aac(6')-Ib, sul2 and tetA were not detected. PCR products were confirmed by DNA sequence analysis. The results revealed that multidrug resistance was widely present in bacteria isolated from Giant pandas.

  10. Molecular clonality and antimicrobial resistance in Salmonella enterica serovars Enteritidis and Infantis from broilers in three Northern regions of Iran

    DEFF Research Database (Denmark)

    Rahmani, Maral; Peighambari, Seyed Mostafa; Svendsen, Christina Aaby

    2013-01-01

    ) were resistant to tetracycline, spectinomycin, streptomycin, and sulfamethoxazole and harbored the associated resistance genes; tetA, dfrA14, aadA1, and sulI together with class 1 integrons. The isolates revealed highly similar PFGE patterns indicating clonal relatedness across different geographical......ABSTRACT: BACKGROUND: Multidrug-resistant Salmonella strains are frequently encountered problems worldwide with considerable increased occurrences in recent years. The aim of this study was to investigate the occurrence and frequency of antimicrobial resistance and associated resistance genes......, and characterized for antimicrobial resistance genes associated to the phenotype. Pulsed-field gel electrophoresis (PFGE) was applied for comparison of genetic relatedness.Two serovars were detected among the isolates; Salmonella enterica serovar Infantis (75%) and S. Enteritidis (25%). Thirty-four (94...

  11. Evaluating the effects of activated carbon on methane generation and the fate of antibiotic resistant genes and class I integrons during anaerobic digestion of solid organic wastes.

    Science.gov (United States)

    Zhang, Jingxin; Mao, Feijian; Loh, Kai-Chee; Gin, Karina Yew-Hoong; Dai, Yanjun; Tong, Yen Wah

    2018-02-01

    The effects of activated carbon (AC) on methane production and the fate of antibiotic resistance genes (ARGs) were evaluated through comparing the anaerobic digestion performance and transformation of ARGs among anaerobic mono-digestion of food waste, co-digestion of food waste and chicken manure, and co-digestion of food waste and waste activated sludge. Results showed that adding AC in anaerobic digesters improved methane yield by at least double through the enrichment of bacteria and archaea. Conventional digestion process showed ability in removing certain types of ARGs, such as tetA, tetX, sul1, sul2, cmlA, floR, and intl1. Supplementing AC in anaerobic digester enhanced the removal of most of the ARGs in mono-digestion of food waste. The effects tended to be minimal in co-digestion of co-substrates such as chicken manure and waste activated sludge, both of which contain a certain amount of antibiotics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Fate of antibiotic resistant bacteria and genes during wastewater chlorination: implication for antibiotic resistance control.

    Directory of Open Access Journals (Sweden)

    Qing-Bin Yuan

    Full Text Available This study investigated fates of nine antibiotic-resistant bacteria as well as two series of antibiotic resistance genes in wastewater treated by various doses of chlorine (0, 15, 30, 60, 150 and 300 mg Cl2 min/L. The results indicated that chlorination was effective in inactivating antibiotic-resistant bacteria. Most bacteria were inactivated completely at the lowest dose (15 mg Cl2 min/L. By comparison, sulfadiazine- and erythromycin-resistant bacteria exhibited tolerance to low chlorine dose (up to 60 mg Cl2 min/L. However, quantitative real-time PCRs revealed that chlorination decreased limited erythromycin or tetracycline resistance genes, with the removal levels of overall erythromycin and tetracycline resistance genes at 0.42 ± 0.12 log and 0.10 ± 0.02 log, respectively. About 40% of erythromycin-resistance genes and 80% of tetracycline resistance genes could not be removed by chlorination. Chlorination was considered not effective in controlling antimicrobial resistance. More concern needs to be paid to the potential risk of antibiotic resistance genes in the wastewater after chlorination.

  13. Fate of antibiotic resistant bacteria and genes during wastewater chlorination: implication for antibiotic resistance control.

    Science.gov (United States)

    Yuan, Qing-Bin; Guo, Mei-Ting; Yang, Jian

    2015-01-01

    This study investigated fates of nine antibiotic-resistant bacteria as well as two series of antibiotic resistance genes in wastewater treated by various doses of chlorine (0, 15, 30, 60, 150 and 300 mg Cl2 min/L). The results indicated that chlorination was effective in inactivating antibiotic-resistant bacteria. Most bacteria were inactivated completely at the lowest dose (15 mg Cl2 min/L). By comparison, sulfadiazine- and erythromycin-resistant bacteria exhibited tolerance to low chlorine dose (up to 60 mg Cl2 min/L). However, quantitative real-time PCRs revealed that chlorination decreased limited erythromycin or tetracycline resistance genes, with the removal levels of overall erythromycin and tetracycline resistance genes at 0.42 ± 0.12 log and 0.10 ± 0.02 log, respectively. About 40% of erythromycin-resistance genes and 80% of tetracycline resistance genes could not be removed by chlorination. Chlorination was considered not effective in controlling antimicrobial resistance. More concern needs to be paid to the potential risk of antibiotic resistance genes in the wastewater after chlorination.

  14. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters

    OpenAIRE

    Miller, Jennifer H.; Novak, John T.; Knocke, William R.; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) versus their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1- a Pseudomonas sp.) and thermophilic (Iso T10- a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts ...

  15. Sponge Microbiota are a Reservoir of Functional Antibiotic Resistance Genes

    DEFF Research Database (Denmark)

    Versluis, Dennis; de Evgrafov, Mari Cristina Rodriguez; Sommer, Morten Otto Alexander

    2016-01-01

    Wide application of antibiotics has contributed to the evolution of multi-drug resistant human pathogens, resulting in poorer treatment outcomes for infections. In the marine environment, seawater samples have been investigated as a resistance reservoir; however, no studies have methodically...... examined sponges as a reservoir of antibiotic resistance. Sponges could be important in this respect because they often contain diverse microbial communities that have the capacity to produce bioactive metabolites. Here, we applied functional metagenomics to study the presence and diversity of functional......). Fifteen of 37 inserts harbored resistance genes that shared resistance gene could be identified with high confidence, in which case we predicted resistance to be mainly mediated by antibiotic efflux. One marine-specific ampicillin-resistance...

  16. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA.

    Science.gov (United States)

    Teixeira, Bertinellys; Rodulfo, Hectorina; Carreño, Numirin; Guzmán, Militza; Salazar, Elsa; De Donato, Marcos

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America.

  17. Detection of bacterial blight resistance genes in basmati rice landraces.

    Science.gov (United States)

    Ullah, I; Jamil, S; Iqbal, M Z; Shaheen, H L; Hasni, S M; Jabeen, S; Mehmood, A; Akhter, M

    2012-07-20

    Aromatic basmati rice is vulnerable to bacterial blight disease. Genes conferring resistance to bacterial blight have been identified in coarse rice; however, their incorporation into basmati varieties compromises the prized basmati aroma. We identified bacterial blight resistance genes Xa4, xa5, Xa7, and xa13 in 52 basmati landraces and five basmati cultivars using PCR markers. The Xa7 gene was found to be the most prevalent among the cultivars and landraces. The cultivars Basmati-385 and Basmati-2000 also contained the Xa4 gene; however, xa5 and xa13 were confined to landraces only. Ten landraces were found to have multiple resistance genes. Landraces Basmati-106, Basmati-189 and Basmati-208 contained Xa4 and Xa7 genes. Whereas, landraces Basmati-122, Basmati-427, Basmati-433 were observed to have xa5 and Xa7 genes. Landraces Basmati-48, Basmati-51A, Basmati-334, and Basmati-370A possessed Xa7 and xa13 genes. The use of landraces containing recessive genes xa5 and xa13 as donor parents in hybridization with cultivars Basmati-385 and Basmati-2000, which contain the genes Xa4 and Xa7, will expedite efforts to develop bacterial blight-resistant basmati rice cultivars through marker assisted selection, based on a pyramiding approach, without compromising aroma and grain quality.

  18. Effects of manure and mineral fertilization strategies on soil antibiotic resistance gene levels and microbial community in a paddy–upland rotation system

    International Nuclear Information System (INIS)

    Lin, Hui; Sun, Wanchun; Zhang, Zulin; Chapman, Stephen J.; Freitag, Thomas E.; Fu, Jianrong; Zhang, Xin; Ma, Junwei

    2016-01-01

    This work investigated the responses of antibiotic resistance genes (ARGs) and the soil microbial community in a paddy–upland rotation system to mineral fertilizer (NPK) and different application dosages of manure combined with NPK. The occurrence of five tetracycline ARGs (tetA, tetB, tetC, tetG and tetW), two sulfonamide ARGs (sul1 and sul2) and one genetic element (IntI1) was quantified. NPK application showed only slight or no impact on soil ARGs abundances compared with the control without fertilizer. Soil ARGs abundances could be increased by manure-NPK application but was related to manure dosage (2250–9000 kg ha −1 ). Principal component analysis (PCA) showed that the soil ARG profile of the treatment with 9000 kg ha −1 manure separated clearly from the other treatments; the ARGs that contributed most to the discrimination of this treatment were tetA, tetG, tetW, sul1, sul2 and IntI1. Community level physiological profile (CLPP) analysis showed that increasing manure dosage from 4500 kg ha −1 to 9000 kg ha −1 induced a sharp increase in almost all of the detected ARGs but would not change the microbial community at large. However, 9000 kg ha −1 manure application produced a decline in soil microbial activity. Determination of antibiotics and heavy metals in soils suggested that the observed bloom of soil ARGs might associate closely with the accumulation of copper and zinc in soil. - Highlights: • The occurrence of ten ARGs in a manure and a paddy soil from China was tested. • The fate of ARGs in soil varied between ARG types and fertilization strategies. • The increase in soil ARG caused by manure-NPK fertilization was manure dosage-related. • Excessive manure greatly increased soil ARGs and inhibited soil microbial activity. • Cu and Zn levels in soils associated closely with the observed soil ARGs bloom. - The elevation of soil ARGs abundances in soil caused by manure application combined with NPK in a paddy

  19. High prevalence of multidrug-resistance in Acinetobacter baumannii and dissemination of carbapenemase-encoding genes blaOXA-23-like, blaOXA-24-like and blaNDM-1 in Algiers hospitals.

    Science.gov (United States)

    Khorsi, Khadidja; Messai, Yamina; Hamidi, Moufida; Ammari, Houria; Bakour, Rabah

    2015-06-01

    To assess and characterize antibiotic resistance in Acinetobacter baumannii strains recovered from 5 health-care facilities in Algiers. Antibiotic susceptibility testing was performed by agar diffusion and agar dilution methods, resistance genes were identified by PCR and sequencing, and molecular typing of isolates was carried out by enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR). Among 125 tested isolates, 117 (93.6%) were multidrug-resistant, of which 94 (75.2%) were imipenem resistant. The blaADC and blaOXA-51-like genes were detected in all isolates, in association with ISAba1 sequence in 84% and 8% (imipenem resistant) of isolates, respectively. The blaOXA-23-like and blaOXA-24-like carbapenemase genes were detected in 67.02% and 20.21% of imipenem-resistant isolates, respectively. The blaOXA-23-like gene is linked to ISAba1 or ISAba4 elements. The metallo-β-lactamase NDM-1 gene was found in 10 (10.6%) imipenem-resistant strains from three hospitals, it is linked to ISAba125 element in nine strains. Extended spectrum β-lactamases production was not detected. Imipenem and cefotaxime resistance phenotypes could not be transferred to Escherichia coli by conjugation. Outer membrane protein CarO gene was not detected in four imipenem-resistant isolates. The aac(6')-Ib, sul1, sul2, tetA and tetB genes were present in 5.31%, 36.17%, 77.65%, 1.06% and 65.92% of strains, respectively. Class 1 integrons were detected in 23.4% strains. ERIC-PCR typing showed a genetic diversity among blaOXA-23-like and blaOXA-24-like positive strains, while clonality was observed among blaNDM-1 positives. This study highlighted the high prevalence of imipenem resistance in Acinetobacter baumannii in Algiers hospitals mediated mainly by blaOXA-23-like, blaOXA-24-like, and blaNDM-1 genes. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  20. Antimicrobial Peptide Resistance Genes in the Plant Pathogen Dickeya dadantii.

    Science.gov (United States)

    Pandin, Caroline; Caroff, Martine; Condemine, Guy

    2016-11-01

    Modification of teichoic acid through the incorporation of d-alanine confers resistance in Gram-positive bacteria to antimicrobial peptides (AMPs). This process involves the products of the dltXABCD genes. These genes are widespread in Gram-positive bacteria, and they are also found in a few Gram-negative bacteria. Notably, these genes are present in all soft-rot enterobacteria (Pectobacterium and Dickeya) whose dltDXBAC operons have been sequenced. We studied the function and regulation of these genes in Dickeya dadantii dltB expression was induced in the presence of the AMP polymyxin. It was not regulated by PhoP, which controls the expression of some genes involved in AMP resistance, but was regulated by ArcA, which has been identified as an activator of genes involved in AMP resistance. However, arcA was not the regulator responsible for polymyxin induction of these genes in this bacterium, which underlines the complexity of the mechanisms controlling AMP resistance in D. dadantii Two other genes involved in resistance to AMPs have also been characterized, phoS and phoH dltB, phoS, phoH, and arcA but not dltD mutants were more sensitive to polymyxin than the wild-type strain. Decreased fitness of the dltB, phoS, and phoH mutants in chicory leaves indicates that their products are important for resistance to plant AMPs. Gram-negative bacteria can modify their lipopolysaccharides (LPSs) to resist antimicrobial peptides (AMPs). Soft-rot enterobacteria (Dickeya and Pectobacterium spp.) possess homologues of the dlt genes in their genomes which, in Gram-positive bacteria, are involved in resistance to AMPs. In this study, we show that these genes confer resistance to AMPs, probably by modifying LPSs, and that they are required for the fitness of the bacteria during plant infection. Two other new genes involved in resistance were also analyzed. These results show that bacterial resistance to AMPs can occur in bacteria through many different mechanisms that need to be

  1. Resistance gene management: concepts and practice

    Science.gov (United States)

    Christopher C. Mundt

    2012-01-01

    There is now a very long history of genetics/breeding for disease resistance in annual crops. These efforts have resulted in conceptual advances and frustrations, as well as practical successes and failures. This talk will review this history and its relevance to the genetics of resistance in forest species. All plant breeders and pathologists are familiar with boom-...

  2. Analysis of metal and biocides resistance genes in drug resistance and susceptible Salmonella enterica from food animals

    Science.gov (United States)

    Background Generally drug resistant bacteria carry antibiotic resistance genes and heavy metal and biocide resistance genes on large conjugative plasmids. The presence of these metal and biocide resistance genes in susceptible bacteria are not assessed comprehensively. Hence, WGS data of susceptib...

  3. Microbiological quality of ready-to-eat salads: an underestimated vehicle of bacteria and clinically relevant antibiotic resistance genes.

    Science.gov (United States)

    Campos, Joana; Mourão, Joana; Pestana, Nazaré; Peixe, Luísa; Novais, Carla; Antunes, Patrícia

    2013-09-16

    The increase demand for fresh vegetables is causing an expansion of the market for minimally processed vegetables along with new recognized food safety problems. To gain further insight on this topic we analyzed the microbiological quality of Portuguese ready-to-eat salads (RTS) and their role in the spread of bacteria carrying acquired antibiotic resistance genes, food products scarcely considered in surveillance studies. A total of 50 RTS (7 brands; split or mixed leaves, carrot, corn) were collected in 5 national supermarket chains in Porto region (2010). They were tested for aerobic mesophilic counts, coliforms and Escherichia coli counts as well as for the presence of Salmonella and Listeria monocytogenes. Samples were also plated in different selective media with/without antibiotics before and after enrichment. The E. coli, other coliforms and Enterococcus recovered were characterized for antibiotic resistance profiles and clonality with phenotypic and genetic approaches. A high number of RTS presented poor microbiological quality (86%--aerobic mesophilic counts, 74%--coliforms, 4%--E. coli), despite the absence of screened pathogens. In addition, a high diversity of bacteria (species and clones) and antibiotic resistance backgrounds (phenotypes and genotypes) were observed, mostly with enrichment and antibiotic selective media. E. coli was detected in 13 samples (n=78; all types and 4 brands; phylogenetic groups A, B1 and D; none STEC) with resistance to tetracycline [72%; tet(A) and/or tet(B)], streptomycin (58%; aadA and/or strA-strB), sulfamethoxazole (50%; sul1 and/or sul2), trimethoprim (50%; dfrA1 or dfrA12), ampicillin (49%; blaTEM), nalidixic acid (36%), ciprofloxacin (5%) or chloramphenicol (3%; catA). E. coli clones, including the widespread group D/ST69, were detected in different samples from the same brand or different brands pointing out to a potential cross-contamination. Other clinically relevant resistance genes were detected in 2 Raoultella

  4. The antimicrobial resistance crisis: management through gene monitoring

    Science.gov (United States)

    2016-01-01

    Antimicrobial resistance (AMR) is an acknowledged crisis for humanity. Its genetic origins and dire potential outcomes are increasingly well understood. However, diagnostic techniques for monitoring the crisis are currently largely limited to enumerating the increasing incidence of resistant pathogens. Being the end-stage of the evolutionary process that produces antimicrobial resistant pathogens, these measurements, while diagnostic, are not prognostic, and so are not optimal in managing this crisis. A better test is required. Here, using insights from an understanding of evolutionary processes ruling the changing abundance of genes under selective pressure, we suggest a predictive framework for the AMR crisis. We then discuss the likely progression of resistance for both existing and prospective antimicrobial therapies. Finally, we suggest that by the environmental monitoring of resistance gene frequency, resistance may be detected and tracked presumptively, and how this tool may be used to guide decision-making in the local and global use of antimicrobials. PMID:27831476

  5. The Number of Genes Controlling Resistance in Beans to Common ...

    African Journals Online (AJOL)

    Ten crosses were made between resistant (R), susceptible (S), RxS susceptible and Intermediate (I), SxI and RxR bean lines to common bacterial blight. The F1 were advanced to F2 and in each cross over 250 F2 plants were used to evaluate for the number of genes controlling resistance using Mendelian genetics and ...

  6. Prevalence, antibiotic-resistance properties and enterotoxin gene ...

    African Journals Online (AJOL)

    Prevalence, antibiotic-resistance properties and enterotoxin gene profile of Bacillus cereus strains isolated from milk-based baby foods. ... Conclusion: Considerable prevalence of resistant and toxigenic B. cereus and high consumption of milk-based infant foods in Iran, represent an important public health issue which ...

  7. Occurrence and reservoirs of antibiotic resistance genes in the environment

    NARCIS (Netherlands)

    Seveno, N.; Kallifidas, D.; Smalla, K.; Elsas, van J.D.; Collard, J.M.; Karagouni, A.; Wellington, E.M.H.

    2002-01-01

    Antibiotic resistance genes have become highly mobile since the development of antibiotic chemotherapy. A considerable body of evidence exists proving the link between antibiotic use and the significant increase in drug-resistant human bacterial pathogens. The application of molecular detection and

  8. Identification of bacterial blight resistance genes Xa4 in Pakistani ...

    African Journals Online (AJOL)

    Identification of bacterial blight resistance genes Xa4 in Pakistani rice germplasm using PCR. M Arif, M Jaffar, M Babar, MA Sheikh, S Kousar, A Arif, Y Zafar. Abstract. Bacterial blight (BB) caused by Xanthomonas oryzae pv oryzae (Xoo) is a major biotic constraint in the irrigated rice belts. Genetic resistance is the most ...

  9. Spread of tetracycline resistance genes at a conventional dairy farm

    NARCIS (Netherlands)

    Kyselková, Martina; Jirout, Jiří; Vrchotová, Naděžda; Schmitt, Heike; Elhottová, Dana

    2015-01-01

    The use of antibiotics in animal husbandry contributes to the worldwide problem of increasing antibiotic resistance in animal and human pathogens. Intensive animal production is considered an important source of antibiotic resistance genes released to the environment, while the contribution of

  10. gene effects for resistance to groundnut rossette disease in exotic ...

    African Journals Online (AJOL)

    ACSS

    2016-02-25

    Feb 25, 2016 ... Opposite and significant signs of dominance [d] and dominance × dominance [l] components indicated the importance of duplicate epitasis in the latter crosses in the control of GRD resistance, which revealed a complex nature of inheritance of GRD resistance. Key Words: Arachis hypogaea, gene effects, ...

  11. Progress on introduction of rust resistance genes into confection sunflower

    Science.gov (United States)

    Sunflower rust (Puccinia helianthi) emerged as a serious disease in the last few years. Confection sunflower is particularly vulnerable to the disease due to the lack of resistance sources. The objectives of this project are to transfer rust resistance genes from oil sunflower to confectionery sunfl...

  12. Isolation and characterization of a candidate gene for resistance to ...

    African Journals Online (AJOL)

    ARC) domain, and a leucine-rich repeat (LRR) domain, all of which are typical characteristics of resistance genes. We proposed the resistance mechanism of CreV8 based on functional analysis and predictions from its conserved domains and ...

  13. Gene pyramiding enhances durable blast disease resistance in rice

    OpenAIRE

    Fukuoka, Shuichi; Saka, Norikuni; Mizukami, Yuko; Koga, Hironori; Yamanouchi, Utako; Yoshioka, Yosuke; Hayashi, Nagao; Ebana, Kaworu; Mizobuchi, Ritsuko; Yano, Masahiro

    2015-01-01

    Effective control of blast, a devastating fungal disease of rice, would increase and stabilize worldwide food production. Resistance mediated by quantitative trait loci (QTLs), which usually have smaller individual effects than R-genes but confer broad-spectrum or non-race-specific resistance, is a promising alternative to less durable race-specific resistance for crop improvement, yet evidence that validates the impact of QTL combinations (pyramids) on the durability of plant disease resista...

  14. Distribution of Florfenicol Resistance Genes fexA and cfr among Chloramphenicol-Resistant Staphylococcus Isolates

    Science.gov (United States)

    Kehrenberg, Corinna; Schwarz, Stefan

    2006-01-01

    A total of 302 chloramphenicol-resistant Staphylococcus isolates were screened for the presence of the florfenicol/chloramphenicol resistance genes fexA and cfr and their localization on mobile genetic elements. Of the 114 isolates from humans, only a single Staphylococcus aureus isolate showed an elevated MIC to florfenicol, but did not carry either of the known resistance genes, cfr or fexA. In contrast, 11 of the 188 staphylococci from animal sources were considered florfenicol resistant and carried either cfr (one isolate), fexA (five isolates), or both resistance genes (five isolates). In nine cases we confirmed that these genes were carried on a plasmid. Five different types of plasmids could be differentiated on the basis of their sizes, restriction patterns, and resistance genes. The gene fexA, which has previously been shown to be part of the nonconjugative transposon Tn558, was identified in 10 of the 11 resistant isolates from animals. PCR assays were developed to detect different parts of this transposon as well as their physical linkage. Complete copies of Tn558 were found in five different isolates and shown by inverse PCR to be functionally active. Truncated copies of Tn558, in which the tnpA-tnpB area was in part deleted by the integration of a 4,674-bp segment including the gene cfr and a novel 2,446-bp IS21-like insertion sequence, were seen in a plasmid present in three staphylococcal isolates. PMID:16569824

  15. Induced mutations of rust resistance genes in wheat

    International Nuclear Information System (INIS)

    McIntosh, R.A.

    1983-01-01

    Induced mutations are being used as a tool to study genes for resistance in wheat. It was found that Pm1 can be separated from Lr20 and Sr15, but these two react like a single pleiotropic gene. Mutants were further examined in crosses and backmutations have been attempted. (author)

  16. Characterization of genomic sequence of a drought-resistant gene ...

    Indian Academy of Sciences (India)

    Characterization of genomic sequence of a drought-resistant gene. TaSnRK2.7 in wheat species. HONG YING ZHANG1,2, WEI LI3, XIN GUO MAO1 and RUI LIAN JING1∗. 1The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science,. Chinese Academy of Agricultural Sciences, ...

  17. Testing of disease-resistance of pokeweed antiviral protein gene ...

    African Journals Online (AJOL)

    Transformation of pokeweed antiviral protein gene (PAP) into plants was shown to improve plant resistance to several viruses or fungi pathogens with no much negative effect on plant growth. The non-virulent defective PAP inhibits only the virus but does not interfere with the host. A non-virulent defective PAP gene ...

  18. Isolation and characterization of a candidate gene for resistance to ...

    African Journals Online (AJOL)

    xudelin

    2012-05-17

    May 17, 2012 ... Cereal cyst nematode (CCN) (Heterodera avenae Woll.) is one of the most economically damaging endoparasite pests of wheat worldwide. We isolated and characterized a novel cereal CCN resistance candidate gene, CreV8, from Aegilops variabilis (2n = 28, UUSvSv). The gene was 3,568 bp long and.

  19. Environmental cycle of antibiotic resistance encoded genes: A systematic review

    Directory of Open Access Journals (Sweden)

    R. ghanbari

    2017-12-01

    Full Text Available Antibiotic-resistant bacteria and genes enter the environment in different ways. The release of these factors into the environment has increased concerns related to public health. The aim of the study was to evaluate the antibiotic resistance genes (ARGs in the environmental resources. In this systematic review, the data were extracted from valid sources of information including ScienceDirect, PubMed, Google Scholar and SID. Evaluation and selection of articles were conducted on the basis of the PRISMA checklist. A total of 39 articles were included in the study, which were chosen from a total of 1249 papers. The inclusion criterion was the identification of genes encoding antibiotic resistance against the eight important groups of antibiotics determined by using the PCR technique in the environmental sources including municipal and hospital wastewater treatment plants, animal and agricultural wastes, effluents from treatment plants, natural waters, sediments, and drinking waters. In this study, 113 genes encoding antibiotic resistance to eight groups of antibiotics (beta-lactams, aminoglycosides, tetracyclines, macrolides, sulfonamides, chloramphenicol, glycopeptides and quinolones were identified in various environments. Antibiotic resistance genes were found in all the investigated environments. The investigation of microorganisms carrying these genes shows that most of the bacteria especially gram-negative bacteria are effective in the acquisition and the dissemination of these pollutants in the environment. Discharging the raw wastewaters and effluents from wastewater treatments acts as major routes in the dissemination of ARGs into environment sources and can pose hazards to public health.

  20. The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence.

    Science.gov (United States)

    Rinaldo, Amy; Gilbert, Brian; Boni, Rainer; Krattinger, Simon G; Singh, Davinder; Park, Robert F; Lagudah, Evans; Ayliffe, Michael

    2017-07-01

    The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad-spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field-grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome-encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up-regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress-response genes were up-regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad-spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Interspecies gene transfer provides soybean resistance to a fungal pathogen.

    Science.gov (United States)

    Langenbach, Caspar; Schultheiss, Holger; Rosendahl, Martin; Tresch, Nadine; Conrath, Uwe; Goellner, Katharina

    2016-02-01

    Fungal pathogens pose a major challenge to global crop production. Crop varieties that resist disease present the best defence and offer an alternative to chemical fungicides. Exploiting durable nonhost resistance (NHR) for crop protection often requires identification and transfer of NHR-linked genes to the target crop. Here, we identify genes associated with NHR of Arabidopsis thaliana to Phakopsora pachyrhizi, the causative agent of the devastating fungal disease called Asian soybean rust. We transfer selected Arabidopsis NHR-linked genes to the soybean host and discover enhanced resistance to rust disease in some transgenic soybean lines in the greenhouse. Interspecies NHR gene transfer thus presents a promising strategy for genetically engineered control of crop diseases. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, Kira S. [National Center for Biotechnology Information; Omelchenko, Marina [National Center for Biotechnology Information; Gaidamakova, Elena [Uniformed Services University of the Health Sciences (USUHS); Matrosova, Vera [Uniformed Services University of the Health Sciences (USUHS); Vasilenko, Alexander [Uniformed Services University of the Health Sciences (USUHS); Zhai, Min [Uniformed Services University of the Health Sciences (USUHS); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Kim, Edwin [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Pitluck, Samual [U.S. Department of Energy, Joint Genome Institute; Richardson, P M [U.S. Department of Energy, Joint Genome Institute; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Brettin, Tom [Los Alamos National Laboratory (LANL); Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Lai, Barry [Argonne National Laboratory (ANL); Ravel, Bruce [Argonne National Laboratory (ANL); Kemner, Kenneth M [Argonne National Laboratory (ANL); Wolf, Yuri [National Center for Biotechnology Information; Sorokin, Alexei [Genetique Microbienne; Gerasimova, Anna [Research Institute of Genetics and Selection of Industrial Microorganisms, Mosco; Gelfand, Mikhail [Moscow State University; Fredrickson, James K [Pacific Northwest National Laboratory (PNNL); Koonin, Eugene [National Center for Biotechnology Information; Daly, Michael [Uniformed Services University of the Health Sciences (USUHS)

    2007-01-01

    Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to

  3. Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, Kira S.; Omelchenko, Marina V.; Gaidamakova, Elena K.; Matrosova, Vera Y.; Vasilenko, Alexander; Zhai, Min; Lapidus, Alla; Copeland, Alex; Kim, Edwin; Land, Miriam; Mavrommatis, Konstantinos; Pitluck, Samuel; Richardson, Paul M.; Detter, Chris; Brettin, Thomas; Saunders, Elizabeth; Lai, Barry; Ravel, Bruce; Kemner, Kenneth M.; Wolf, Yuri I.; Sorokin, Alexander; Gerasimova, Anna V.; Gelfand, Mikhail S.; Fredrickson, James K.; Koonin, Eugene V.; Daly, Michael J.

    2007-07-24

    Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at itsoptimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to

  4. Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks.

    Directory of Open Access Journals (Sweden)

    Kira S Makarova

    2007-09-01

    Full Text Available Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR, ultraviolet light (UV and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and

  5. Genes involved in barley yellow dwarf virus resistance of maize.

    Science.gov (United States)

    Horn, Frederike; Habekuß, Antje; Stich, Benjamin

    2014-12-01

    The results of our study suggest that genes involved in general resistance mechanisms of plants contribute to variation of BYDV resistance in maize. With increasing winter temperatures in Europe, Barley yellow dwarf virus (BYDV) is expected to become a prominent problem in maize cultivation. Breeding for resistance is the best strategy to control the disease and break the transmission cycle of the virus. The objectives of our study were (1) to determine genetic variation with respect to BYDV resistance in a broad germplasm set and (2) to identify single nucleotide polymorphism (SNP) markers linked to genes that are involved in BYDV resistance. An association mapping population with 267 genotypes representing the world's maize gene pool was grown in the greenhouse. Plants were inoculated with BYDV-PAV using viruliferous Rhopalosiphum padi. In the association mapping population, we observed considerable genotypic variance for the trait virus extinction as measured by double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) and the infection rate. In a genome-wide association study, we observed three SNPs significantly [false discovery rate (FDR) = 0.05] associated with the virus extinction on chromosome 10 explaining together 25 % of the phenotypic variance and five SNPs for the infection rate on chromosomes 4 and 10 explaining together 33 % of the phenotypic variance. The SNPs significantly associated with BYDV resistance can be used in marker assisted selection and will accelerate the breeding process for the development of BYDV resistant maize genotypes. Furthermore, these SNPs were located within genes which were in other organisms described to play a role in general resistance mechanisms. This suggests that these genes contribute to variation of BYDV resistance in maize.

  6. Identifying resistance gene analogs associated with resistances to different pathogens in common bean.

    Science.gov (United States)

    López, Camilo E; Acosta, Iván F; Jara, Carlos; Pedraza, Fabio; Gaitán-Solís, Eliana; Gallego, Gerardo; Beebe, Steve; Tohme, Joe

    2003-01-01

    ABSTRACT A polymerase chain reaction approach using degenerate primers that targeted the conserved domains of cloned plant disease resistance genes (R genes) was used to isolate a set of 15 resistance gene analogs (RGAs) from common bean (Phaseolus vulgaris). Eight different classes of RGAs were obtained from nucleotide binding site (NBS)-based primers and seven from not previously described Toll/Interleukin-1 receptor-like (TIR)-based primers. Putative amino acid sequences of RGAs were significantly similar to R genes and contained additional conserved motifs. The NBS-type RGAs were classified in two subgroups according to the expected final residue in the kinase-2 motif. Eleven RGAs were mapped at 19 loci on eight linkage groups of the common bean genetic map constructed at Centro Internacional de Agricultura Tropical. Genetic linkage was shown for eight RGAs with partial resistance to anthracnose, angular leaf spot (ALS) and Bean golden yellow mosaic virus (BGYMV). RGA1 and RGA2 were associated with resistance loci to anthracnose and BGYMV and were part of two clusters of R genes previously described. A new major cluster was detected by RGA7 and explained up to 63.9% of resistance to ALS and has a putative contribution to anthracnose resistance. These results show the usefulness of RGAs as candidate genes to detect and eventually isolate numerous R genes in common bean.

  7. The relationship between codon usage bias and cold resistant genes

    International Nuclear Information System (INIS)

    Barozai, M.Y.; Din, M.

    2014-01-01

    This research is based on synonymous codon usage which has been well-known as a feature that affects typical expression level of protein in an organism. Different organisms prefer different codons for same amino acid and this is called Codon Usage Bias (CUB). The codon usage directly affects the level or even direction of changes in protein expression in responses to environmental stimuli. Cold stress is a major abiotic factor that limits the agricultural productivity of plants. In the recent study CUB has been studied in Arabidopsis thaliana cold resistant and housekeeping genes and their homologs in rice (Oryza sativa) to understand the cold stress and housekeeping genes relation with CUB. Six cold resistant and three housekeeping genes in Arabidopsis thaliana and their homologs in rice, were subjected to CUB analysis. The three cold resistant genes (DREB1B, RCI and MYB15) showed more than 50% (52%, 61% and 66% respectively) similar codon usage bias for Arabidopsis thaliana and rice. On the other hand three cold resistant genes (MPK3, ICE1 and ZAT12) showed less than 50% (38%, 38% and 47% respectively) similar codon usage bias for Arabidopsis thaliana and rice. The three housekeeping genes (Actin, Tubulin and Ubiquitin) showed 76% similar codon usage bias for Arabidopsis thaliana and rice. This study will help to manage the plant gene expression through codon optimization under the cold stress. (author)

  8. Influence of Soil Use on Prevalence of Tetracycline, Streptomycin, and Erythromycin Resistance and Associated Resistance Genes

    Science.gov (United States)

    Rzeczycka, Marzenna; Miernik, Antoni; Krawczyk-Balska, Agata; Walsh, Fiona; Duffy, Brion

    2012-01-01

    This study examined differences in antibiotic-resistant soil bacteria and the presence and quantity of resistance genes in soils with a range of management histories. We analyzed four soils from agricultural systems that were amended with manure from animals treated with erythromycin and exposed to streptomycin and/or oxytetracycline, as well as non-manure-amended compost and forest soil. Low concentrations of certain antibiotic resistance genes were detected using multiplex quantitative real-time PCR (qPCR), with tet(B), aad(A), and str(A) each present in only one soil and tet(M) and tet(W) detected in all soils. The most frequently detected resistance genes were tet(B), tet(D), tet(O), tet(T), and tet(W) for tetracycline resistance, str(A), str(B), and aac for streptomycin resistance, and erm(C), erm(V), erm(X), msr(A), ole(B), and vga for erythromycin resistance. Transposon genes specific for Tn916, Tn1549, TnB1230, Tn4451, and Tn5397 were detected in soil bacterial isolates. The MIC ranges of isolated bacteria for tetracycline, streptomycin, and erythromycin were 8 to >256 μg/ml, 6 to >1,024 μg/ml, and 0.094 to >256 μg/ml, respectively. Based on 16S rRNA gene similarity, isolated bacteria showed high sequence identity to genera typical of soil communities. Bacteria with the highest MICs were detected in manure-amended soils or soils from agricultural systems with a history of antibiotic use. Non-manure-amended soils yielded larger proportions of antibiotic-resistant bacteria, but these had lower MICs, carried fewer antibiotic resistance genes, and did not display multidrug resistance (MDR). PMID:22203596

  9. Influence of soil use on prevalence of tetracycline, streptomycin, and erythromycin resistance and associated resistance genes.

    Science.gov (United States)

    Popowska, Magdalena; Rzeczycka, Marzenna; Miernik, Antoni; Krawczyk-Balska, Agata; Walsh, Fiona; Duffy, Brion

    2012-03-01

    This study examined differences in antibiotic-resistant soil bacteria and the presence and quantity of resistance genes in soils with a range of management histories. We analyzed four soils from agricultural systems that were amended with manure from animals treated with erythromycin and exposed to streptomycin and/or oxytetracycline, as well as non-manure-amended compost and forest soil. Low concentrations of certain antibiotic resistance genes were detected using multiplex quantitative real-time PCR (qPCR), with tet(B), aad(A), and str(A) each present in only one soil and tet(M) and tet(W) detected in all soils. The most frequently detected resistance genes were tet(B), tet(D), tet(O), tet(T), and tet(W) for tetracycline resistance, str(A), str(B), and aac for streptomycin resistance, and erm(C), erm(V), erm(X), msr(A), ole(B), and vga for erythromycin resistance. Transposon genes specific for Tn916, Tn1549, TnB1230, Tn4451, and Tn5397 were detected in soil bacterial isolates. The MIC ranges of isolated bacteria for tetracycline, streptomycin, and erythromycin were 8 to >256 μg/ml, 6 to >1,024 μg/ml, and 0.094 to >256 μg/ml, respectively. Based on 16S rRNA gene similarity, isolated bacteria showed high sequence identity to genera typical of soil communities. Bacteria with the highest MICs were detected in manure-amended soils or soils from agricultural systems with a history of antibiotic use. Non-manure-amended soils yielded larger proportions of antibiotic-resistant bacteria, but these had lower MICs, carried fewer antibiotic resistance genes, and did not display multidrug resistance (MDR).

  10. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA

    Directory of Open Access Journals (Sweden)

    Bertinellys TEIXEIRA

    2016-01-01

    Full Text Available The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC, aminoglycoside-adenyltransferases (AAD, and aminoglycoside-phosphotransferases (APH, is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137 were identified from the Intensive Care Unit (ICU, mainly from discharges (96/137. The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively. Phenotype VI, resistant to these antibiotics, was the most frequent (14/49, followed by phenotype I, resistant to all the aminoglycosides tested (12/49. The aac(6´-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America.

  11. Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water.

    Science.gov (United States)

    Shi, Peng; Jia, Shuyu; Zhang, Xu-Xiang; Zhang, Tong; Cheng, Shupei; Li, Aimin

    2013-01-01

    This study aimed to investigate the chlorination effects on microbial antibiotic resistance in a drinking water treatment plant. Biochemical identification, 16S rRNA gene cloning and metagenomic analysis consistently indicated that Proteobacteria were the main antibiotic resistant bacteria (ARB) dominating in the drinking water and chlorine disinfection greatly affected microbial community structure. After chlorination, higher proportion of the surviving bacteria was resistant to chloramphenicol, trimethoprim and cephalothin. Quantitative real-time PCRs revealed that sulI had the highest abundance among the antibiotic resistance genes (ARGs) detected in the drinking water, followed by tetA and tetG. Chlorination caused enrichment of ampC, aphA2, bla(TEM-1), tetA, tetG, ermA and ermB, but sulI was considerably removed (p water chlorination could concentrate various ARGs, as well as of plasmids, insertion sequences and integrons involved in horizontal transfer of the ARGs. Water pipeline transportation tended to reduce the abundance of most ARGs, but various ARB and ARGs were still present in the tap water, which deserves more public health concerns. The results highlighted prevalence of ARB and ARGs in chlorinated drinking water and this study might be technologically useful for detecting the ARGs in water environments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Molecular Scree ning of Blast Resistance Genes in Rice Germplasms Resistant to Magnaporthe oryzae

    Directory of Open Access Journals (Sweden)

    Liang Yan

    2017-01-01

    Full Text Available Molecular screening of major rice blast resistance genes was determined with molecular markers, which showed close-set linkage to 11 major rice blast resistance genes (Pi-d2, Pi-z, Piz-t, Pi-9, Pi-36, Pi-37, Pi5, Pi-b, Pik-p, Pik-h and Pi-ta2, in a collection of 32 accessions resistant to Magnaporthe oryzae. Out of the 32 accessions, the Pi-d2 and Pi-z appeared to be omnipresent and gave positive express. As the second dominant, Pi-b and Piz-t gene frequencies were 96.9% and 87.5%. And Pik-h and Pik-p gene frequencies were 43.8% and 28.1%, respectively. The molecular marker linkage to Pi-ta2 produced positive bands in eleven accessions, while the molecular marker linkage to Pi-36 and Pi-37 in only three and four accessions, respectively. The natural field evaluation analysis showed that 30 of the 32 accessions were resistant, one was moderately resistant and one was susceptible. Infection types were negatively correlated with the genotype scores of Pi-9, Pi5, Pi-b, Pi-ta2 and Pik-p, although the correlation coefficients were very little. These results are useful in identification and incorporation of functional resistance genes from these germplasms into elite cultivars through marker-assisted selection for improved blast resistance in China and worldwide.

  13. The rpg4/Rpg5 stem rust resistance locus in barley: resistance genes and cytoskeleton dynamics.

    Science.gov (United States)

    Brueggeman, Robert; Steffenson, Brian J; Kleinhofs, Andris

    2009-04-01

    Two closely linked resistance genes, rpg4 and Rpg5, conferring resistance to several races of Puccinia graminis, were cloned and characterized. The Rpg5 gene confers resistance to an isolate of Puccinia graminis f. sp. secalis (Pgs), while rpg4 confers resistance to Puccinia graminis f. sp. tritici (Pgt). Rpg5 is a novel gene containing nucleotide binding site-leucine rich repeat domains in combination with a serine threonine protein kinase domain. High-resolution mapping plus allele and recombinant sequencing identified the rpg4 gene, which encodes an actin depolymerizing factor-like protein (ADF2). Resistance against the Pgt races QCCJ, MCCF, TTKSK (aka Ug99) and RCRS requires both Rpg5 and rpg4, while Rpg5 alone confers resistance to Pgs isolate 92-MN-90. The dependency on the actin modifying protein ADF2 indicates cytoskeleton reorganization or redirection plays a role in pathogen-host interactions. Rpg5 may interact with ADF2 to activate or deactivate its function in the resistance response. Alternatively, Rpg5 could initiate signal transduction leading to resistance in response to detecting ADF2 protein modification. Pgt may redirect the actin cytoskeleton by inducing modifications of ADF2. The redirection of actin could possibly enable the pathogen to develop a haustoria-plant cell cytoskeleton interface for acquisition of nutrients.

  14. A novel gene of Kalanchoe daigremontiana confers plant drought resistance.

    Science.gov (United States)

    Wang, Li; Zhu, Chen; Jin, Lin; Xiao, Aihua; Duan, Jie; Ma, Luyi

    2018-02-07

    Kalanchoe (K.) daigremontiana is important for studying asexual reproduction under different environmental conditions. Here, we describe a novel KdNOVEL41 (KdN41) gene that may confer drought resistance and could thereby affect K. daigremontiana development. The detected subcellular localization of a KdN41/Yellow Fluorescent Protein (YFP) fusion protein was in the nucleus and cell membrane. Drought, salt, and heat stress treatment in tobacco plants containing the KdN41 gene promoter driving β-glucuronidase (GUS) gene transcription revealed that only drought stress triggered strong GUS staining in the vascular tissues. Overexpression (OE) of the KdN41 gene conferred improved drought resistance in tobacco plants compared to wild-type and transformed with empty vector plants by inducing higher antioxidant enzyme activities, decreasing cell membrane damage, increasing abscisic acid (ABA) content, causing reinforced drought resistance related gene expression profiles. The 3,3'-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining results also showed less relative oxygen species (ROS) content in KdN41-overexpressing tobacco leaf during drought stress. Surprisingly, by re-watering after drought stress, KdN41-overexpressing tobacco showed earlier flowering. Overall, the KdN41 gene plays roles in ROS scavenging and osmotic damage reduction to improve tobacco drought resistance, which may increase our understanding of the molecular network involved in developmental manipulation under drought stress in K. daigremontiana.

  15. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria

    OpenAIRE

    Adelowo, Olawale O.; Fagade, Obasola E.; Agersø, Yvonne

    2014-01-01

    Introduction: This study investigated the mechanisms of resistance in 36 E. coli isolated from waste, litter, soil and water samples collected from poultry farms in Southwestern Nigeria. Methodology: Minimum inhibitory concentration (MIC) distributions of the isolates were determined using the methods of the Clinical and Laboratory Standard Institute and resistance genes detected by PCR. Results: A total of 30 isolates (94%) showed resistance to more than one antimicrobial. Percentage resista...

  16. Effect of swine manure application timing on the persistence and transport of antibiotic-resistant Enterococcus and resistance genes

    Science.gov (United States)

    Swine manure applied to agricultural fields may lead to the transport of antibiotic resistant bacteria and antibiotic resistance genes to freshwater systems. Enterococci were studied because they are fecal indicator bacteria associated with manure. Resistance genes include genes from live cells, dea...

  17. Vancomycin-resistance phenotypes, vancomycin-resistance genes, and resistance to antibiotics of enterococci isolated from food of animal origin.

    Science.gov (United States)

    Gousia, Panagiota; Economou, Vangelis; Bozidis, Petros; Papadopoulou, Chrissanthy

    2015-03-01

    In the present study, 500 raw beef, pork, and chicken meat samples and 100 pooled egg samples were analyzed for the presence of vancomycin-resistant enterococci, vancomycin-resistance phenotypes, and resistance genes. Of 141 isolates of enterococci, 88 strains of Enterococcus faecium and 53 strains of E. faecalis were identified. The most prevalent species was E. faecium. Resistance to ampicillin (n = 93, 66%), ciprofloxacin (n = 74, 52.5%), erythromycin (n = 73, 51.8%), penicillin (n = 59, 41.8%) and tetracycline (n = 52, 36.9%) was observed, while 53.2% (n = 75) of the isolates were multiresistant and 15.6% (n = 22) were susceptible to all antibiotics. Resistance to vancomycin was exhibited in 34.1% (n = 30) of the E. faecium isolates (n = 88) and 1.9% (n = 1) of the E. faecalis isolates (n = 53) using the disc-diffusion test and the E-test. All isolates were tested for vanA and vanB using real-time polymerase chain reaction (PCR) and multiplex PCR, and for vanC, vanD, vanE, vanG genes using multiplex PCR only. Among E. faecalis isolates, no resistance genes were identified. Among the E. faecium isolates, 28 carried the vanA gene when tested by multiplex PCR and 29 when tested with real-time PCR. No isolate carrying the vanC, vanD, vanE, or vanG genes was identified. Melting-curve analysis of the positive real-time PCR E. faecium isolates showed that 22 isolates carried the vanA gene only, 2 isolates the vanB2,3 genes only, and seven isolates carried both the vanA and vanB2,3 genes. Enterococci should be considered a significant zoonotic pathogen and a possible reservoir of genes encoding resistance potentially transferred to other bacterial species.

  18. Antibiotic Resistance and Antibiotic Resistance Genes in Escherichia coli Isolates from Hospital Wastewater in Vietnam

    Science.gov (United States)

    Lan, Pham Thi; Chuc, Nguyen Thi Kim; Hoa, Nguyen Quynh; Nhung, Pham Hong; Thoa, Nguyen Thi Minh; Diwan, Vishal; Tamhankar, Ashok J.; Stålsby Lundborg, Cecilia

    2017-01-01

    The environmental spread of antibiotic-resistant bacteria has been recognised as a growing public health threat for which hospitals play a significant role. The aims of this study were to investigate the prevalence of antibiotic resistance and antibiotic resistance genes (ARGs) in Escherichia coli isolates from hospital wastewater in Vietnam. Wastewater samples before and after treatment were collected using continuous sampling every month over a year. Standard disk diffusion and E-test were used for antibiotic susceptibility testing. Extended-spectrum beta-lactamase (ESBL) production was tested using combined disk diffusion. ARGs were detected by polymerase chain reactions. Resistance to at least one antibiotic was detected in 83% of isolates; multidrug resistance was found in 32%. The highest resistance prevalence was found for co-trimoxazole (70%) and the lowest for imipenem (1%). Forty-three percent of isolates were ESBL-producing, with the blaTEM gene being more common than blaCTX-M. Co-harbouring of the blaCTX-M, blaTEM and qepA genes was found in 46% of isolates resistant to ciprofloxacin. The large presence of antibiotic-resistant E. coli isolates combined with ARGs in hospital wastewater, even post-treatment, poses a threat to public health. It highlights the need to develop effective processes for hospital wastewater treatment plants to eliminate antibiotic resistant bacteria and ARGs. PMID:28661465

  19. Antibiotic Resistance and Antibiotic Resistance Genes in Escherichia coli Isolates from Hospital Wastewater in Vietnam.

    Science.gov (United States)

    Lien, La Thi Quynh; Lan, Pham Thi; Chuc, Nguyen Thi Kim; Hoa, Nguyen Quynh; Nhung, Pham Hong; Thoa, Nguyen Thi Minh; Diwan, Vishal; Tamhankar, Ashok J; Stålsby Lundborg, Cecilia

    2017-06-29

    The environmental spread of antibiotic-resistant bacteria has been recognised as a growing public health threat for which hospitals play a significant role. The aims of this study were to investigate the prevalence of antibiotic resistance and antibiotic resistance genes (ARGs) in Escherichia coli isolates from hospital wastewater in Vietnam. Wastewater samples before and after treatment were collected using continuous sampling every month over a year. Standard disk diffusion and E-test were used for antibiotic susceptibility testing. Extended-spectrum beta-lactamase (ESBL) production was tested using combined disk diffusion. ARGs were detected by polymerase chain reactions. Resistance to at least one antibiotic was detected in 83% of isolates; multidrug resistance was found in 32%. The highest resistance prevalence was found for co-trimoxazole (70%) and the lowest for imipenem (1%). Forty-three percent of isolates were ESBL-producing, with the bla TEM gene being more common than bla CTX-M . Co-harbouring of the bla CTX-M , bla TEM and qepA genes was found in 46% of isolates resistant to ciprofloxacin. The large presence of antibiotic-resistant E. coli isolates combined with ARGs in hospital wastewater, even post-treatment, poses a threat to public health. It highlights the need to develop effective processes for hospital wastewater treatment plants to eliminate antibiotic resistant bacteria and ARGs.

  20. The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence

    OpenAIRE

    Rinaldo, Amy; Gilbert, Brian; Boni, Rainer; Krattinger, Simon G.; Singh, Davinder; Park, Robert F.; Lagudah, Evans; Ayliffe, Michael

    2017-01-01

    Summary The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad?spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field?grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when ...

  1. Gene interactions and genetics of blast resistance and yield

    Indian Academy of Sciences (India)

    Blast disease caused by the pathogen Pyricularia oryzae is a serious threat to rice production. Six generations viz., P1, P2, F1, F2, B1 and B2 of a cross between blast susceptible high-yielding rice cultivar ADT 43 and resistant near isogenic line (NIL) CT13432-3R, carrying four blast resistance genes Pi1, Pi2, Pi33 and Pi54 ...

  2. Comparative genome analysis and resistance gene mapping in grain legumes

    International Nuclear Information System (INIS)

    Young, N.D.

    1998-01-01

    Using, DNA markers and genome organization, several important disease resistance genes have been analyzed in mungbean (Vigna radiata), cowpea (Vigna unguiculata), common bean (Phaseolus vulgaris), and soybean (Glycine max). In the process, medium-density linkage maps consisting of restriction fragment length polymorphism (RFLP) markers were constructed for both mungbean and cowpea. Comparisons between these maps, as well as the maps of soybean and common bean, indicate that there is significant conservation of DNA marker order, though the conserved blocks in soybean are much shorter than in the others. DNA mapping results also indicate that a gene for seed weight may be conserved between mungbean and cowpea. Using the linkage maps, genes that control bruchid (genus Callosobruchus) and powdery mildew (Erysiphe polygoni) resistance in mungbean, aphid resistance in cowpea (Aphis craccivora), and cyst nematode (Heterodera glycines) resistance in soybean have all been mapped and characterized. For some of these traits resistance was found to be oligogenic and DNA mapping uncovered multiple genes involved in the phenotype. (author)

  3. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens

    DEFF Research Database (Denmark)

    Jiang, Xinglin; Ellabaan, Mostafa M Hashim; Charusanti, Pep

    2017-01-01

    It has been hypothesized that some antibiotic resistance genes (ARGs) found in pathogenic bacteria derive from antibiotic-producing actinobacteria. Here we provide bioinformatic and experimental evidence supporting this hypothesis. We identify genes in proteobacteria, including some pathogens......, that appear to be closely related to actinobacterial ARGs known to confer resistance against clinically important antibiotics. Furthermore, we identify two potential examples of recent horizontal transfer of actinobacterial ARGs to proteobacterial pathogens. Based on this bioinformatic evidence, we propose...... results support the existence of ancient and, possibly, recent transfers of ARGs from antibiotic-producing actinobacteria to proteobacteria, and provide evidence for a defined mechanism....

  4. High chlorpyrifos resistance in Culex pipiens mosquitoes: strong synergy between resistance genes.

    Science.gov (United States)

    Alout, H; Labbé, P; Berthomieu, A; Makoundou, P; Fort, P; Pasteur, N; Weill, M

    2016-02-01

    We investigated the genetic determinism of high chlorpyrifos resistance (HCR), a phenotype first described in 1999 in Culex pipiens mosquitoes surviving chlorpyrifos doses ⩾1 mg l(-1) and more recently found in field samples from Tunisia, Israel or Indian Ocean islands. Through chlorpyrifos selection, we selected several HCR strains that displayed over 10 000-fold resistance. All strains were homozygous for resistant alleles at two main loci: the ace-1 gene, with the resistant ace-1(R) allele expressing the insensitive G119S acetylcholinesterase, and a resistant allele of an unknown gene (named T) linked to the sex and ace-2 genes. We constructed a strain carrying only the T-resistant allele and studied its resistance characteristics. By crossing this strain with strains harboring different alleles at the ace-1 locus, we showed that the resistant ace-1(R) and the T alleles act in strong synergy, as they elicited a resistance 100 times higher than expected from a simple multiplicative effect. This effect was specific to chlorpyrifos and parathion and was not affected by synergists. We also examined how HCR was expressed in strains carrying other ace-1-resistant alleles, such as ace-1(V) or the duplicated ace-1(D) allele, currently spreading worldwide. We identified two major parameters that influenced the level of resistance: the number and the nature of the ace-1-resistant alleles and the number of T alleles. Our data fit a model that predicts that the T allele acts by decreasing chlorpyrifos concentration in the compartment targeted in insects.

  5. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors

    Directory of Open Access Journals (Sweden)

    Masayoshi Hashimoto

    2016-10-01

    Full Text Available The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species.

  6. Prevalence and diversity of IncX plasmids carrying fluoroquinolone and β-lactam resistance genes in Escherichia coli originating from diverse sources and geographical areas.

    Science.gov (United States)

    Dobiasova, Hana; Dolejska, Monika

    2016-08-01

    To describe the prevalence and diversity of IncX plasmids with antibiotic resistance genes in Enterobacteriaceae and to identify the most disseminated lineages of the plasmid family. IncX plasmids were screened in 1894 Enterobacteriaceae isolates resistant to cefotaxime (2 mg/L) or with reduced susceptibility to ciprofloxacin (0.05 mg/L) obtained from various sources in five continents using PCR. IncX plasmid-harbouring isolates were identified using MALDI-TOF or biochemical tests, and screened for antibiotic resistance genes using PCR and sequencing; their clonality was determined by PFGE. Horizontal transfer of plasmids was tested using transformation and conjugation. IncX plasmids were characterized by S1-nuclease and PFGE, RFLP and hybridization. A total of 164 Escherichia coli isolates (8.7%, n = 1894) carried at least one IncX subgroup. Seven isolates harboured two distinct subgroups. IncX1 subgroup was found in 93 isolates, followed by IncX2 (35 isolates), IncX4 (28) and IncX3 (15). IncX4 plasmids were not transferred horizontally as single plasmids and therefore excluded from further analysis. The most disseminated lineages of IncX plasmids included IncX1 harbouring qnrS1 and blaTEM-1,-135 found in 36 E. coli from different sources in Europe and Australia and IncX2 carrying qnrS1 and tet(A) detected in nine E. coli from wildlife in Europe. IncX3 plasmids harboured predominantly blaSHV-12 and qnrS1 or qnrB7. IncX plasmids were widely distributed in E. coli from wildlife in Europe and were predominantly associated with fluoroquinolone resistance genes. Plasmids showing indistinguishable restriction profiles were identified in E. coli from different sources and countries suggesting wide dissemination of certain plasmid lineages. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria

    DEFF Research Database (Denmark)

    Adelowo, Olawale O.; Fagade, Obasola E.; Agersø, Yvonne

    2014-01-01

    Introduction: This study investigated the mechanisms of resistance in 36 E. coli isolated from waste, litter, soil and water samples collected from poultry farms in Southwestern Nigeria. Methodology: Minimum inhibitory concentration (MIC) distributions of the isolates were determined using...... the methods of the Clinical and Laboratory Standard Institute and resistance genes detected by PCR. Results: A total of 30 isolates (94%) showed resistance to more than one antimicrobial. Percentage resistance was: tetracycline 81%, sulphamethoxazole 67%, streptomycin 56%, trimethoprim 47 %, ciprofloxacin 42......%, ampicillin 36%, spectinomycin 28%, nalidixic acid 25%, chloramphenicol 22%, neomycin 14%, gentamicin 8%, amoxicillin-clavulanate, ceftiofur, cefotaxime, colistin, florfenicol and apramycin 0%. Resistance genes found among the isolates include bla-TEM (85%), sul2 (67%), sul3 (17%), aadA (65%), strA (70%), str...

  8. Dissemination of metal resistance genes among animal methicillin-resistant coagulase-negative Staphylococci.

    Science.gov (United States)

    Argudín, M Angeles; Butaye, Patrick

    2016-04-01

    The use of metals as feed supplement has been recognized as a potential driver for co-selection of methicillin-resistant Staphylococcus aureus in pigs. However, the prevalence of these determinants in methicillin-resistant coagulase-negative staphylococci (MRCoNS) is largely unknown. In this study, a collection of 130 MRCoNS from pigs and veal calves were investigated for the presence of metal-resistance genes (czrC, copB, cadD, arsA) associated to SCCmec. Near half of the isolates carried metal resistance genes (czrC 5.4%, copB 38.5%, cadD 7.7%, arsA 26.2%) regardless of their SCCmec type. The increased use of metals in livestock animals, especially zinc in pigs in several European countries may co-select for methicillin-resistance in several staphylococcal species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Tagging of resistance gene(s) to rhizomania disease in sugar beet ...

    African Journals Online (AJOL)

    SERVER

    2008-02-19

    Feb 19, 2008 ... plasmodiophoride-like fungus, Polymyxa betae Keskin. (1964) (Tamada and Richard, 1992). Source of resistance to rhizomania were found in Holly sugar beet company source (Lewellen, 1987). Resistance in Holly is simply inherited by a single dominant gene(Rz1). (Lewellen et al., 1987; Scholten et al., ...

  10. Tagging of resistance gene(s) to rhizomania disease in sugar beet ...

    African Journals Online (AJOL)

    The rhizomania disease is one of the most important diseases in Iran and some other parts of the world which potentially could play a role in decreasing sugar yield in fields. One approach to combat with this disease is the use of resistance varieties. This varieties have been identified which are having resistance genes to ...

  11. Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in 'Thatcher' Wheat.

    Directory of Open Access Journals (Sweden)

    Colin W Hiebert

    Full Text Available Stem rust, caused by Puccinia graminis (Pgt, is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. 'Thatcher' wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in 'Thatcher' and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for 'Thatcher'-derived APR in several environments and this resistance was enhanced in the presence of Lr34.

  12. Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in 'Thatcher' Wheat.

    Science.gov (United States)

    Hiebert, Colin W; Kolmer, James A; McCartney, Curt A; Briggs, Jordan; Fetch, Tom; Bariana, Harbans; Choulet, Frederic; Rouse, Matthew N; Spielmeyer, Wolfgang

    2016-01-01

    Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. 'Thatcher' wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in 'Thatcher' and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for 'Thatcher'-derived APR in several environments and this resistance was enhanced in the presence of Lr34.

  13. Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in ‘Thatcher’ Wheat

    Science.gov (United States)

    Hiebert, Colin W.; Kolmer, James A.; McCartney, Curt A.; Briggs, Jordan; Fetch, Tom; Bariana, Harbans; Choulet, Frederic; Rouse, Matthew N.; Spielmeyer, Wolfgang

    2016-01-01

    Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. ‘Thatcher’ wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in ‘Thatcher’ and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for ‘Thatcher’-derived APR in several environments and this resistance was enhanced in the presence of Lr34. PMID:27309724

  14. Association mapping and gene-gene interaction for stem rust resistance in CIMMYT spring wheat germplasm.

    Science.gov (United States)

    Yu, Long-Xi; Lorenz, Aaron; Rutkoski, Jessica; Singh, Ravi P; Bhavani, Sridhar; Huerta-Espino, Julio; Sorrells, Mark E

    2011-12-01

    The recent emergence of wheat stem rust Ug99 and evolution of new races within the lineage threatens global wheat production because they overcome widely deployed stem rust resistance (Sr) genes that had been effective for many years. To identify loci conferring adult plant resistance to races of Ug99 in wheat, we employed an association mapping approach for 276 current spring wheat breeding lines from the International Maize and Wheat Improvement Center (CIMMYT). Breeding lines were genotyped with Diversity Array Technology (DArT) and microsatellite markers. Phenotypic data was collected on these lines for stem rust race Ug99 resistance at the adult plant stage in the stem rust resistance screening nursery in Njoro, Kenya in seasons 2008, 2009 and 2010. Fifteen marker loci were found to be significantly associated with stem rust resistance. Several markers appeared to be linked to known Sr genes, while other significant markers were located in chromosome regions where no Sr genes have been previously reported. Most of these new loci colocalized with QTLs identified recently in different biparental populations. Using the same data and Q + K covariate matrices, we investigated the interactions among marker loci using linear regression models to calculate P values for pairwise marker interactions. Resistance marker loci including the Sr2 locus on 3BS and the wPt1859 locus on 7DL had significant interaction effects with other loci in the same chromosome arm and with markers on chromosome 6B. Other resistance marker loci had significant pairwise interactions with markers on different chromosomes. Based on these results, we propose that a complex network of gene-gene interactions is, in part, responsible for resistance to Ug99. Further investigation may provide insight for understanding mechanisms that contribute to this resistance gene network.

  15. Thioridazine affects transcription of genes involved in cell wall biosynthesis in methicillin-resistant Staphylococcus aureus

    DEFF Research Database (Denmark)

    Bonde, Mette; Højland, Dorte Heidi; Kolmos, Hans Jørn

    2011-01-01

    have previously shown that the expression of some resistance genes is abolished after treatment with thioridazine and oxacillin. To further understand the mechanism underlying the reversal of resistance, we tested the expression of genes involved in antibiotic resistance and cell wall biosynthesis...... reversal of resistance by thioridazine relies on decreased expression of specific genes involved in cell wall biosynthesis....

  16. Isolation of NBS-LRR class resistant gene (I2 gene) from tomato ...

    African Journals Online (AJOL)

    aghomotsegin

    2013-10-16

    Oct 16, 2013 ... Isolation of NBS-LRR class resistant gene (I2 gene) from tomato cultivar Heamsona ... avirulence protein or effector protein secreted by fungal pathogen during the host colonization in tomato. These effector proteins .... and efficient method for isolation of genomic DNA from plant tissue. J. Cell Tissue Res.

  17. Multiple herbicide resistance in Lolium multiflorum and identification of conserved regulatory elements of herbicide resistance genes

    Directory of Open Access Journals (Sweden)

    Khalid Mahmood

    2016-08-01

    Full Text Available Herbicide resistance is a ubiquitous challenge to herbicide sustainability and a looming threat to control weeds in crops. Recently four genes were found constituently over-expressed in herbicide resistant individuals of Lolium rigidum, a close relative of L. multiflorum. These include two cytochrome P450s, one nitronate monooxygenase and one glycosyl-transferase. Higher expressions of these four herbicide metabolism related (HMR genes were also observed after herbicides exposure in the gene expression databases, indicating them a reliable marker. In order to get an overview of herbicidal resistance status of Lolium multiflorum L, 19 field populations were collected. Among these populations, four populations were found to be resistant to acetolactate synthase (ALS inhibitors while three exhibited resistance to acetyl-CoA carboxylase (ACCase inhibitors in our initial screening and dose response study. The genotyping showed the presence of mutations Trp-574-Leu and Ile-2041-Asn in ALS and ACCase, respectively and qPCR experiments revealed the enhanced expression of HMR genes in individuals of certain resistant populations. Moreover, co-expression networks and promoter analyses of HMR genes in O.sativa and A.thaliana resulted in the identification of a cis-regulatory motif and zinc finger transcription factors. The identified transcription factors were highly expressed similar to HMR genes in response to xenobiotics whereas the identified motif known to play a vital role in coping with environmental stresses and maintaining genome stability. Overall, our findings provide an important step forward towards a better understanding of metabolism-based herbicide resistance that can be utilized to devise novel strategies of weed management.

  18. Antibiotic resistance and ndvB gene expression among biofilm ...

    African Journals Online (AJOL)

    A novel antibiotic resistant mechanism among biofilms is glucan-mediated sequestration in which ndvB gene encodes a glucosyltransferase involved in the formation of this glucans. We studied the biofilm formation and antibiotic susceptibility pattern of P. aeruginosa isolated from clinical samples, and measured the ...

  19. Gene pyramiding as a Bt resistance management strategy: How ...

    African Journals Online (AJOL)

    Reports on the emergence of insect resistance to Bacillus thuringiensis delta endotoxins have raised doubts on the sustainability of Bt-toxin based pest management technologies. Corporate industry has responded to this challenge with innovations that include gene pyramiding among others. Pyramiding entails stacking ...

  20. Determination and expression of genes for resistance to blast ...

    African Journals Online (AJOL)

    Determination and expression of genes for resistance to blast (Magnaporthe oryza) in Basmati and non-Basmati indica rices (Oryza sativa L.) Naveen Kumar, D Singh, S Gupta, A Sirohi, B Ramesh, Preeti Sirohi, Parul Sirohi, Atar Singh, N Kumar, A Kumar, Rajendra Kumar, R Kumar, J Singh, P. Kumar, P. Chauhan, ...

  1. Gene interactions and genetics of blast resistance and yield ...

    Indian Academy of Sciences (India)

    2014-08-11

    Aug 11, 2014 ... Keywords. blast; gene action; generation mean analysis; resistance; yield. Journal of Genetics, Vol. 93, No. .... Utilizing the variance of different generations, the variances of A, B, C and D scales were ...... Jia Y. 2003 Marker assisted selection for the control of rice blast disease. Pesticide Outlook 14 ...

  2. Evaluating antibiotic resistance genes in soils with applied manures

    Science.gov (United States)

    Antibiotics are commonly used in livestock production to promote growth and combat disease. Recent studies have shown the potential for spread of antibiotic resistance genes (ARG) to the environment following application of livestock manures. In this study, concentrations of bacteria with ARG in soi...

  3. Absence of meca gene in methicillin-resistant staphylococcus ...

    African Journals Online (AJOL)

    Methicillin-resistant Staphylococcus aureus has emerged as a serious threat to public health, causing both hospital and community-associated infections. The gold standard for MRSA detection is the amplification of the mecA gene that codes for the production of the altered penicillin-binding protein (PBP2a) responsible for ...

  4. Molecular Detection of Virulence Genes and Antibiotic Resistance ...

    African Journals Online (AJOL)

    Escherichia coli O157:H7 is an important food-borne pathogen that can cause diarrhea, haemorrhagic colitis and haemolytic uremic syndrome. This study was conducted to investigate the prevalence, virulence genes and antibiotic resistance patterns of E. coli O157:H7 in raw beef meat sold in Abeokuta, South west Nigeria ...

  5. Molecular detection of disease resistance genes to powdery mildew ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2017-01-04

    Jan 4, 2017 ... 2. State Key Laboratory of Biology for Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of. Agricultural Sciences, Beijing 100193, China. Received 10 October, 2016; Accepted 14 December, 2016. A study was conducted to detect the presence of disease resistance genes to ...

  6. Cloning of a carbendazim-resistant gene from Colletotrichum ...

    African Journals Online (AJOL)

    Cloning of a carbendazim-resistant gene from Colletotrichum gloeosporioides of mango in South China. ... Abstract. Mango anthracnose caused by Colletotrichum gloeosporioides is an important disease and prevalent in tropical regions of China. High carbendazim ... employed to further test the above results. It involved an ...

  7. Cloning and characterization of NBS-LRR resistance gene ...

    African Journals Online (AJOL)

    biotech

    2013-07-03

    Jul 3, 2013 ... Resistance genes honologues I theobroma cacao as useful genetic markers. Theor. Appl. Gent. 107:191-202. Kumar S, Tamura K, Nei M (2004). MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5:150-163. Lacock L, Niekerk CV, Loots S, ...

  8. Cloning and characterization of NBS-LRR resistance gene ...

    African Journals Online (AJOL)

    biotech

    2013-07-03

    Jul 3, 2013 ... Full Length Research Paper. Cloning and characterization of NBS-LRR resistance gene analogues of Musa spp. and their expression profiling studies against Pratylenchus coffeae. S. Backiyarani*, S. Uma, G. Arunkumar, M. S. Saraswathi and P. Sundararaju. National Research Centre for Banana (ICAR), ...

  9. Prevalence, antibiotic-resistance properties and enterotoxin gene ...

    African Journals Online (AJOL)

    milk-based infant foods in Iran, represent an important public health issue which should be considered ... Keywords: Prevalence, Bacillus cereus, Antibiotic resistance, Enterotoxigenic genes, Milk-based infant food. Tropical Journal of Pharmaceutical Research is indexed by Science ..... and cereals collected in Korea.

  10. Codon-optimized antibiotic resistance gene improves efficiency of ...

    Indian Academy of Sciences (India)

    We generated a synthetic gentamicin resistance gene whose codon usage is optimized to Frankia (fgmR) and evaluated its usefulness as a selection marker using a transient transformation system. Success rate of transient transformation and cell growth in selective culture were significantly increased by use of fgmR ...

  11. Resistance-related gene transcription and antioxidant enzyme ...

    African Journals Online (AJOL)

    The two tobacco relatives of Nicotiana alata and Nicotiana longiflora display a high level of resistance against Colletotrichum nicotianae and the two genes NTF6 and NtPAL related to pathogen defense transcription were higher in N. alata and N. longiflora than the commercial cv. K326. Inoculation with C. nicotianae ...

  12. Genetic analysis and location of a resistance gene to Puccinia ...

    Indian Academy of Sciences (India)

    Administrator

    Electrophoresis was carried out at 1400. V for 1.0 - 1.5 h. Gel staining and visualization was done as previously described (Chen et al. 1998). Polymorphic markers were used to genotype the F2 population. Genotype data were used to construct a genetic map and locate the resistance gene. Mapping and Data analysis.

  13. Functional screening of antibiotic resistance genes from human gut microbiota reveals a novel gene fusion.

    Science.gov (United States)

    Cheng, Gong; Hu, Yongfei; Yin, Yeshi; Yang, Xi; Xiang, Chunsheng; Wang, Baohong; Chen, Yanfei; Yang, Fengling; Lei, Fang; Wu, Na; Lu, Na; Li, Jing; Chen, Quanze; Li, Lanjuan; Zhu, Baoli

    2012-11-01

    The human gut microbiota has a high density of bacteria that are considered a reservoir for antibiotic resistance genes (ARGs). In this study, one fosmid metagenomic library generated from the gut microbiota of four healthy humans was used to screen for ARGs against seven antibiotics. Eight new ARGs were obtained: one against amoxicillin, six against d-cycloserine, and one against kanamycin. The new amoxicillin resistance gene encodes a protein with 53% identity to a class D β-lactamase from Riemerella anatipestifer RA-GD. The six new d-cycloserine resistance genes encode proteins with 73-81% identity to known d-alanine-d-alanine ligases. The new kanamycin resistance gene encodes a protein of 274 amino acids with an N-terminus (amino acids 1-189) that has 42% identity to the 6'-aminoglycoside acetyltransferase [AAC(6')] from Enterococcus hirae and a C-terminus (amino acids 190-274) with 35% identity to a hypothetical protein from Clostridiales sp. SSC/2. A functional study on the novel kanamycin resistance gene showed that only the N-terminus conferred kanamycin resistance. Our results showed that functional metagenomics is a useful tool for the identification of new ARGs. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Putative resistance genes in the CitEST database

    Directory of Open Access Journals (Sweden)

    Simone Guidetti-Gonzalez

    2007-01-01

    Full Text Available Disease resistance in plants is usually associated with the activation of a wide variety of defense responses to prevent pathogen replication and/or movement. The ability of the host plant to recognize the pathogen and to activate defense responses is regulated by direct or indirect interaction between the products of plant resistance (R and pathogen avirulence (Avr genes. Attempted infection of plants by avirulent pathogens elicits a battery of defenses often followed by the collapse of the challenged host cells. Localized host cell death may help to prevent the pathogen from spreading to uninfected tissues, known as hypersensitive response (HR. When either the plant or the pathogen lacks its cognate gene, activation of the plant’s defense responses fails to occur or is delayed and does not prevent pathogen colonization. In the CitEST database, we identified 1,300 reads related to R genes in Citrus which have been reported in other plant species. These reads were translated in silico, and alignments of their amino acid sequences revealed the presence of characteristic domains and motifs that are specific to R gene classes. The description of the reads identified suggests that they function as resistance genes in citrus.

  15. Identification of antimicrobial resistance genes in multidrug-resistant clinical Bacteroides fragilis isolates by whole genome shotgun sequencing

    DEFF Research Database (Denmark)

    Sydenham, Thomas Vognbjerg; Sóki, József; Hasman, Henrik

    2015-01-01

    Bacteroides fragilis constitutes the most frequent anaerobic bacterium causing bacteremia in humans. The genetic background for antimicrobial resistance in B. fragilis is diverse with some genes requiring insertion sequence (IS) elements inserted upstream for increased expression. To evaluate whole...... genome shotgun sequencing as a method for predicting antimicrobial resistance properties, one meropenem resistant and five multidrug-resistant blood culture isolates were sequenced and antimicrobial resistance genes and IS elements identified using ResFinder 2.1 (http...

  16. Effects of ultraviolet disinfection on antibiotic-resistant Escherichia coli from wastewater: inactivation, antibiotic resistance profiles and antibiotic resistance genes.

    Science.gov (United States)

    Zhang, Chong-Miao; Xu, Li-Mei; Wang, Xiaochang C; Zhuang, Kai; Liu, Qiang-Qiang

    2017-04-29

    To evaluate the effect of ultraviolet (UV) disinfection on antibiotic-resistant Escherichia coli (E. coli). Antibiotic-resistant E. coli strains were isolated from a wastewater treatment plant and subjected to UV disinfection. The effect of UV disinfection on the antibiotic resistance profiles and the antibiotic resistance genes (ARGs) of antibiotic-resistant E. coli was evaluated by a combination of antibiotic susceptibility analysis and molecular methods. Results indicated that multiple-antibiotic-resistant (MAR) E. coli were more resistant at low UV doses and required a higher UV dose (20 mJ cm -2 ) to enter the tailing phase compared with those of antibiotic-sensitive E. coli (8 mJ cm -2 ). UV disinfection caused a selective change in the inhibition zone diameters of surviving antibiotic-resistant E. coli and a slight damage to ARGs. The inhibition zone diameters of the strains resistant to antibiotics were more difficult to alter than those susceptible to antibiotics because of the existence and persistence of corresponding ARGs. The resistance of MAR bacteria to UV disinfection at low UV doses and the changes in inhibition zone diameters could potentially contribute to the selection of ARB in wastewater treatment after UV disinfection. The risk of spread of antibiotic resistance still exists owing to the persistence of ARGs. Our study highlights the acquisition of other methods to control the spread of ARGs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Bacteria from Animals as a Pool of Antimicrobial Resistance Genes

    Science.gov (United States)

    Argudín, Maria Angeles; Deplano, Ariane; Meghraoui, Alaeddine; Dodémont, Magali; Heinrichs, Amelie; Denis, Olivier; Nonhoff, Claire; Roisin, Sandrine

    2017-01-01

    Antimicrobial agents are used in both veterinary and human medicine. The intensive use of antimicrobials in animals may promote the fixation of antimicrobial resistance genes in bacteria, which may be zoonotic or capable to transfer these genes to human-adapted pathogens or to human gut microbiota via direct contact, food or the environment. This review summarizes the current knowledge of the use of antimicrobial agents in animal health and explores the role of bacteria from animals as a pool of antimicrobial resistance genes for human bacteria. This review focused in relevant examples within the ESC(K)APE (Enterococcus faecium, Staphylococcus aureus, Clostridium difficile (Klebsiella pneumoniae), Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae) group of bacterial pathogens that are the leading cause of nosocomial infections throughout the world. PMID:28587316

  18. Anthropogenic antibiotic resistance genes mobilization to the polar regions.

    Science.gov (United States)

    Hernández, Jorge; González-Acuña, Daniel

    2016-01-01

    Anthropogenic influences in the southern polar region have been rare, but lately microorganisms associated with humans have reached Antarctica, possibly from military bases, fishing boats, scientific expeditions, and/or ship-borne tourism. Studies of seawater in areas of human intervention and proximal to fresh penguin feces revealed the presence of Escherichia coli strains least resistant to antibiotics in penguins, whereas E. coli from seawater elsewhere showed resistance to one or more of the following antibiotics: ampicillin, tetracycline, streptomycin, and trim-sulfa. In seawater samples, bacteria were found carrying extended-spectrum β-lactamase (ESBL)-type CTX-M genes in which multilocus sequencing typing (MLST) showed different sequence types (STs), previously reported in humans. In the Arctic, on the contrary, people have been present for a long time, and the presence of antibiotic resistance genes (ARGs) appears to be much more wide-spread than was previously reported. Studies of E coli from Arctic birds (Bering Strait) revealed reduced susceptibility to antibiotics, but one globally spreading clone of E. coli genotype O25b-ST131, carrying genes of ESBL-type CTX-M, was identified. In the few years between sample collections in the same area, differences in resistance pattern were observed, with E. coli from birds showing resistance to a maximum of five different antibiotics. Presence of resistance-type ESBLs (TEM, SHV, and CTX-M) in E. coli and Klebsiella pneumoniae was also confirmed by specified PCR methods. MLST revealed that those bacteria carried STs that connect them to previously described strains in humans. In conclusion, bacteria previously related to humans could be found in relatively pristine environments, and presently human-associated, antibiotic-resistant bacteria have reached a high global level of distribution that they are now found even in the polar regions.

  19. Anthropogenic antibiotic resistance genes mobilization to the polar regions

    Directory of Open Access Journals (Sweden)

    Jorge Hernández

    2016-12-01

    Full Text Available Anthropogenic influences in the southern polar region have been rare, but lately microorganisms associated with humans have reached Antarctica, possibly from military bases, fishing boats, scientific expeditions, and/or ship-borne tourism. Studies of seawater in areas of human intervention and proximal to fresh penguin feces revealed the presence of Escherichia coli strains least resistant to antibiotics in penguins, whereas E. coli from seawater elsewhere showed resistance to one or more of the following antibiotics: ampicillin, tetracycline, streptomycin, and trim-sulfa. In seawater samples, bacteria were found carrying extended-spectrum β-lactamase (ESBL-type CTX-M genes in which multilocus sequencing typing (MLST showed different sequence types (STs, previously reported in humans. In the Arctic, on the contrary, people have been present for a long time, and the presence of antibiotic resistance genes (ARGs appears to be much more wide-spread than was previously reported. Studies of E coli from Arctic birds (Bering Strait revealed reduced susceptibility to antibiotics, but one globally spreading clone of E. coli genotype O25b-ST131, carrying genes of ESBL-type CTX-M, was identified. In the few years between sample collections in the same area, differences in resistance pattern were observed, with E. coli from birds showing resistance to a maximum of five different antibiotics. Presence of resistance-type ESBLs (TEM, SHV, and CTX-M in E. coli and Klebsiella pneumoniae was also confirmed by specified PCR methods. MLST revealed that those bacteria carried STs that connect them to previously described strains in humans. In conclusion, bacteria previously related to humans could be found in relatively pristine environments, and presently human-associated, antibiotic-resistant bacteria have reached a high global level of distribution that they are now found even in the polar regions.

  20. Relationship between Psidium species (Myrtaceae) by resistance gene analog markers: focus on nematode resistance.

    Science.gov (United States)

    Noia, L R; Tuler, A C; Ferreira, A; Ferreira, M F S

    2017-03-16

    Guava (Psidium guajava L.) crop is severely affected by the nematode Meloidogyne enterolobii. Native Psidium species have been reported as sources of resistance against this nematode. Knowledge on the molecular relationship between Psidium species based on plant resistance gene analogs (RGA) can be useful in the genetic breeding of guava for resistance to M. enterolobii. In this study, RGA markers from conserved domains, and structural features of plant R genes, were employed to characterize Psidium species and establish genetic proximity, with a focus on nematode resistance. SSR markers were also applied owing to their neutral nature, thus differing from RGA markers. For this, species reported as sources of resistance to M. enterolobii, such as P. cattleianum and P. friedrichsthalianum, as well as species occurring in the Atlantic Rainforest and susceptible genotypes, were investigated. In 10 evaluated Psidium species, high interspecific genetic variability was verified through RGA and SSR markers, with intraspecific variation in P. guajava higher with SSR, as was expected. Resistant species were clustered by RGA markers, and differential amplicons among genotypes resistant and susceptible to M. enterolobii were identified. Knowledge on the molecular relationships between Psidium species constitutes useful information for breeding of the guava tree, providing direction for hybridization and material for rootstocks. Additionally, the genetic relationship between native species, which have been little studied, and P. guajava were estimated by RGAs, which were confirmed as important markers for genetic diversity related to pathogen resistance.

  1. The phenotypic and genotypic characteristics of antibiotic resistance in Escherichia coli populations isolated from farm animals with different exposure to antimicrobial agents.

    Science.gov (United States)

    Mazurek, Justyna; Pusz, Paweł; Bok, Ewa; Stosik, Michał; Baldy-Chudzik, Katarzyna

    2013-01-01

    The aim of the study was to determine the influence of the presence or the absence of antibiotic input on the emergence and maintenance of resistance in commensal bacteria from food producing animals. The research material constituted E. coli isolates from two animal species: swine at different age from one conventional pig farm with antibiotic input in young pigs and from beef and dairy cattle originated from organic breeding farm. The sensitivity to 16 antimicrobial agents was tested, and the presence of 15 resistance genes was examined. In E. coli from swine, the most prevalent resistance was resistance to streptomycin (88.3%), co-trimoxazole (78.8%), tetracycline (57.3%) ampicillin (49.3%) and doxycycline (44.9%) with multiple resistance in the majority. The most commonly observed resistance genes were: bla(TEM) (45.2%), tetA (35.8%), aadA1 (35.0%), sul3 (29.5%), dfrA1 (20.4%). Differences in phenotypes and genotypes of E. coli between young swine undergoing prevention program and the older ones without the antibiotic pressure occurred. A disparate resistance was found in E. coli from cattle: cephalothin (36.9%), cefuroxime (18.9%), doxycycline (8.2%), nitrofurantoin (7.7%), and concerned mainly dairy cows. Among isolates from cattle, multidrug resistance was outnumbered by resistance to one or two antibiotics and the only found gene markers were: bla(SHV), (3.4%), tetA (1.29%), bla(TEM) (0.43%) and tetC (0.43%). The presented outcomes provide evidence that antimicrobial pressure contributes to resistance development, and enteric microflora constitutes an essential reservoir of resistance genes.

  2. Functional study of the novel multidrug resistance gene HA117 and its comparison to multidrug resistance gene 1

    Directory of Open Access Journals (Sweden)

    Chen Tingfu

    2010-07-01

    Full Text Available Abstract Background The novel gene HA117 is a multidrug resistance (MDR gene expressed by all-trans retinoic acid-resistant HL-60 cells. In the present study, we compared the multidrug resistance of the HA117 with that of the classical multidrug resistance gene 1 (MDR1 in breast cancer cell line 4T1. Methods Transduction of the breast cancer cell line 4T1 with adenoviral vectors encoding the HA117 gene and the green fluorescence protein gene (GFP (Ad-GFP-HA117, the MDR1 and GFP (Ad-GFP-MDR1 or GFP (Ad-GFP was respectively carried out. The transduction efficiency and the multiplicity of infection (MOI were detected by fluorescence microscope and flow cytometry. The transcription of HA117 gene and MDR1 gene were detected by reverse transcription polymerase chain reaction (RT-PCR. Western blotting analysis was used to detect the expression of P-glycoprotein (P-gp but the expression of HA117 could not be analyzed as it is a novel gene and its antibody has not yet been synthesized. The drug-excretion activity of HA117 and MDR1 were determined by daunorubicin (DNR efflux assay. The drug sensitivities of 4T1/HA117 and 4T1/MDR1 to chemotherapeutic agents were detected by Methyl-Thiazolyl-Tetrazolium (MTT assay. Results The transducted efficiency of Ad-GFP-HA117 and Ad-GFP-MDR1 were 75%-80% when MOI was equal to 50. The transduction of Ad-GFP-HA117 and Ad-GFP-MDR1 could increase the expression of HA117 and MDR1. The drug resistance index to Adriamycin (ADM, vincristine (VCR, paclitaxel (Taxol and bleomycin (BLM increased to19.8050, 9.0663, 9.7245, 3.5650 respectively for 4T1/HA117 and 24.2236, 11.0480, 11.3741, 0.9630 respectively for 4T1/MDR1 as compared to the control cells. There were no significant differences in drug sensitivity between 4T1/HA117 and 4T1/MDR1 for the P-gp substrates (ADM, VCR and Taxol (P Conclusions These results confirm that HA117 is a strong MDR gene in both HL-60 and 4T1 cells. Furthermore, our results indicate that the MDR

  3. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes

    DEFF Research Database (Denmark)

    Venkatesan, Meera; Gadalla, Nahla B; Stepniewska, Kasia

    2014-01-01

    Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated...... with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized...

  4. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes.

    Science.gov (United States)

    Choi, Kyuha; Reinhard, Carsten; Serra, Heïdi; Ziolkowski, Piotr A; Underwood, Charles J; Zhao, Xiaohui; Hardcastle, Thomas J; Yelina, Nataliya E; Griffin, Catherine; Jackson, Matthew; Mézard, Christine; McVean, Gil; Copenhaver, Gregory P; Henderson, Ian R

    2016-07-01

    Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.

  5. Phenotypic and genotypic characterization of antimicrobial resistance in enterohemorrhagic Escherichia coli and atypical enteropathogenic E. coli strains from ruminants.

    Science.gov (United States)

    Medina, Alberto; Horcajo, Pilar; Jurado, Sonia; De la Fuente, Ricardo; Ruiz-Santa-Quiteria, José A; Domínguez-Bernal, Gustavo; Orden, José A

    2011-01-01

    Two hundred and twenty-six attaching and effacing Escherichia coli (AEEC) strains (20 enterohemorrhagic E. coli and 206 atypical enteropathogenic E. coli) isolated from calves, lambs, and goat kids with diarrhea and from healthy cattle, sheep, and goats were tested for their resistance to 10 antimicrobial agents by the disc diffusion method. Resistant and intermediate strains were analyzed by polymerase chain reaction for the presence of the major resistance genes. The overall percentage of resistant strains to tetracycline, streptomycin, erythromycin, and sulfamethoxazole was very high (>65%). Moreover, a high level of resistance (approximately 30%) to ampicillin, chloramphenicol, trimethoprim, and trimethoprim-sulfamethoxazole was also detected. The AEEC strains were very susceptible (>90%) to gentamicin and colistin. Because AEEC from ruminants can cause diseases in human beings, the high frequency of antimicrobial resistance detected in the current study is a source of concern. For each antimicrobial agent, the predominant resistance genes in the resistant strains were ampicillin, bla(TEM) (97.1%); tetracycline, tetA (76.7%); gentamicin, aac(3)II (80%); streptomycin, strA/strB (76.7%) and aadA (71.7%); chloramphenicol, catI (85.1%); trimethoprim, dhfrI (76.3%); and sulfamethoxazole, sul1 (60%) and sul2 (63.3%). In the majority of cases, resistance to a given antimicrobial, except for streptomycin, was caused by a single gene. A negative association between tetA and tetB, between aac(3)II and aac(3)IV, and between dhfrI and dhfrV was observed. The present study gives baseline data on frequency and molecular basis of antimicrobial resistance in AEEC strains from ruminants.

  6. Gene pyramiding enhances durable blast disease resistance in rice.

    Science.gov (United States)

    Fukuoka, Shuichi; Saka, Norikuni; Mizukami, Yuko; Koga, Hironori; Yamanouchi, Utako; Yoshioka, Yosuke; Hayashi, Nagao; Ebana, Kaworu; Mizobuchi, Ritsuko; Yano, Masahiro

    2015-01-14

    Effective control of blast, a devastating fungal disease of rice, would increase and stabilize worldwide food production. Resistance mediated by quantitative trait loci (QTLs), which usually have smaller individual effects than R-genes but confer broad-spectrum or non-race-specific resistance, is a promising alternative to less durable race-specific resistance for crop improvement, yet evidence that validates the impact of QTL combinations (pyramids) on the durability of plant disease resistance has been lacking. Here, we developed near-isogenic experimental lines representing all possible combinations of four QTL alleles from a durably resistant cultivar. These lines enabled us to evaluate the QTLs singly and in combination in a homogeneous genetic background. We present evidence that pyramiding QTL alleles, each controlling a different response to M. oryzae, confers strong, non-race-specific, environmentally stable resistance to blast disease. Our results suggest that this robust defence system provides durable resistance, thus avoiding an evolutionary "arms race" between a crop and its pathogen.

  7. Persistence of antimicrobial resistance genes from sows to finisher pigs

    DEFF Research Database (Denmark)

    Birkegård, Anna Camilla; Halasa, Tariq; Folkesson, Anders

    2018-01-01

    Antimicrobial resistance in pigs has been under scrutiny for many years. However, many questions remain unanswered, including whether the initial antimicrobial resistance level of a pig will influence the antimicrobial resistance found at slaughter. Faecal samples from finishers pigs from 681 farms...... and from sows from 82 farms were collected, and levels of seven antimicrobial resistance genes, ermB, ermF, sulI, sulII, tet(M), tet(O), and tet(W), were quantified by high-capacity qPCR. There were 40 pairs of observations where the finishers were born in the farms of the sows. The objective of this study...... was to evaluate whether the levels of AMR genes found in finisher pigs at slaughter were associated with the levels in the farm where the finishers were born, and whether the levels of the AMR genes were equal in the sow and finisher pig populations. We found a significant positive correlation between the levels...

  8. Mapping fusiform rust resistance genes within a complex mating design of loblolly pine

    Science.gov (United States)

    Tania Quesada; Marcio F.R. Resende Jr.; Patricio Munoz; Jill L. Wegrzyn; David B. Neale; Matias Kirst; Gary F. Peter; Salvador A. Gezan; C.Dana Nelson; John M. Davis

    2014-01-01

    Fusiform rust resistance can involve gene-for-gene interactions where resistance (Fr) genes in the host interact with corresponding avirulence genes in the pathogen, Cronartium quercuum f.sp. fusiforme (Cqf). Here, we identify trees with Fr genes in a loblolly pine population derived from a complex mating design challenged with two Cqf inocula (one gall and 10 gall...

  9. Resistance-Gene Cassettes Associated With Salmonella enterica Genotypes.

    Science.gov (United States)

    Bakhshi, Bita; Ghafari, Mohsen; Pourshafie, Mohammad R; Zarbakhsh, Behnaz; Katouli, Mohammad; Rahbar, Mohammad; Hajia, Masoud; Hosseini-Aliabad, Neda; Boustanshenas, Mina

    2015-01-01

    The epidemiology of salmonellosis is complex because of the diversity and different serotypes of Salmonella enterica (S. enterica) that occur in different reservoirs and geographic incidences. To determine the genotype distribution and resistance-gene content of 2 classes of integron among S. enterica isolates. Thirty-six S. enterica species were isolated and tested for their serological distribution and the resistance-gene contents of 2 classes of integron, as well as for their genetic diversity, using the pulsed-field gel electrophoresis (PFGE) genotyping method. Serogroups E (36.1%) and D (30.5%) were dominant among the isolates. All of the isolates in serogroup D belonged to the serovar enteritidis. The aadA1 gene was found within all resistance-gene cassettes. We observed 4 common and 26 single pulsotypes among the isolates, which indicated a high degree of genetic diversity among the isolates. Using the PulseNet International standard protocol, it was found that these isolates were different from those reported previously in Iran. The presence of a few common and new pulsotypes among the isolates suggests the emergence and spread of new clones of S. enterica in Iran. Copyright© by the American Society for Clinical Pathology (ASCP).

  10. Continental-scale pollution of estuaries with antibiotic resistance genes.

    Science.gov (United States)

    Zhu, Yong-Guan; Zhao, Yi; Li, Bing; Huang, Chu-Long; Zhang, Si-Yu; Yu, Shen; Chen, Yong-Shan; Zhang, Tong; Gillings, Michael R; Su, Jian-Qiang

    2017-01-30

    Antibiotic resistance genes (ARGs) have moved from the environmental resistome into human commensals and pathogens, driven by human selection with antimicrobial agents. These genes have increased in abundance in humans and domestic animals, to become common components of waste streams. Estuarine habitats lie between terrestrial/freshwater and marine ecosystems, acting as natural filtering points for pollutants. Here, we have profiled ARGs in sediments from 18 estuaries over 4,000 km of coastal China using high-throughput quantitative polymerase chain reaction, and investigated their relationship with bacterial communities, antibiotic residues and socio-economic factors. ARGs in estuarine sediments were diverse and abundant, with over 200 different resistance genes being detected, 18 of which were found in all 90 sediment samples. The strong correlations of identified resistance genes with known mobile elements, network analyses and partial redundancy analysis all led to the conclusion that human activity is responsible for the abundance and dissemination of these ARGs. Such widespread pollution with xenogenetic elements has environmental, agricultural and medical consequences.

  11. Resistance gene transfer during treatments for experimental avian colibacillosis.

    Science.gov (United States)

    Dheilly, Alexandra; Le Devendec, Laëtitia; Mourand, Gwenaëlle; Bouder, Axelle; Jouy, Eric; Kempf, Isabelle

    2012-01-01

    An experiment was conducted in animal facilities to compare the impacts of four avian colibacillosis treatments-oxytetracycline (OTC), trimethoprim-sulfadimethoxine (SXT), amoxicillin (AMX), or enrofloxacin (ENR)-on the susceptibility of Escherichia coli in broiler intestinal tracts. Birds were first orally inoculated with rifampin-resistant E. coli strains bearing plasmid genes conferring resistance to fluoroquinolones (qnr), cephalosporins (bla(CTX-M) or bla(FOX)), trimethoprim-sulfonamides, aminoglycosides, or tetracyclines. Feces samples were collected before, during, and after antimicrobial treatments. The susceptibilities of E. coli strains were studied, and resistance gene transfer was analyzed. An increase in the tetracycline-resistant E. coli population was observed only in OTC-treated birds, whereas multiresistant E. coli was detected in the dominant E. coli populations of SXT-, AMX-, or ENR-treated birds. Most multiresistant E. coli strains were susceptible to rifampin and exhibited various pulsed-field gel electrophoresis profiles, suggesting the transfer of one of the multiresistance plasmids from the inoculated strains to other E. coli strains in the intestinal tract. In conclusion, this study clearly illustrates how, in E. coli, "old" antimicrobials may coselect antimicrobial resistance to recent and critical molecules.

  12. Microarray Evaluation of Antimicrobial Resistance and Virulence of Escherichia coli Isolates from Portuguese Poultry

    Directory of Open Access Journals (Sweden)

    Nuno Mendonça

    2016-01-01

    Full Text Available The presence of antimicrobial resistance and virulence factors of 174 Escherichia coli strains isolated from healthy Portuguese Gallus gallus was evaluated. Resistance profiles were determined against 33 antimicrobials by microbroth dilution. Resistance was prevalent for tetracycline (70% and ampicillin (63%. Extended-spectrum beta-lactamase (ESBL phenotype was observed in 18% of the isolates. Multidrug resistance was found in 56% of isolates. A subset of 74 isolates were screened by DNA microarrays for the carriage of 88 antibiotic resistance genes and 62 virulence genes. Overall, 37 different resistance genes were detected. The most common were tet(A (72%, blaTEM (68%, and sul1 (47%, while 21% isolates harbored an ESBL gene (blaCTX-M group 1, group 2, or group 9. Of these, 96% carried the increased serum survival (iss virulence gene, while 89% presented the enterobactin siderophore receptor protein (iroN, 70% the temperature-sensitive hemagglutinin (tsh, and 68% the long polar fimbriae (lpfA virulence genes associated with extraintestinal pathogenic E. coli. In conclusion, prevalence of antibiotic resistant E. coli from the microbiota of Portuguese chickens was high, including to extended spectrum cephalosporins. The majority of isolates seems to have the potential to trigger extraintestinal human infection due to the presence of some virulence genes. However, the absence of genes specific for enteropathogenic E. coli reduces the risk for human intestinal infection.

  13. Phenotypic and genotypic characteristics of antibiotic resistance of commensal Escherichia coli isolates from healthy pigs

    Directory of Open Access Journals (Sweden)

    Mazurek Justyna

    2014-06-01

    Full Text Available The objective of the study was to examine the characteristics of the resistance profiles of Escherichia coli isolated from healthy pigs from three farms in Western Poland. The sensitivity to 13 antimicrobial agents was tested by a disk diffusion method, and the presence of 13 resistance genes was determined by PCR. The majority of the isolates were multi-resistant. The most common multi-resistance patterns were streptomycin, trimethoprim, sulfisoxazole, ampicillin, tetracycline. Although some resistance genes, such as strA/strB, blaTEM, sul1, sul2, and tetA, were equally represented in isolates from each farm, differences in the distribution of tetB and tetC, hfrV, dhfrXII, and sul1 resistance genes were observed among the isolates from different farms. Approximately one-third (35.9% of the isolates possessed a class 1 integron. The four major different variable regions of the class 1 integron contained streptomycin (aadA1, aadA2, and aadA5 and/or trimethoprim (dhfrI, dhfrV and dhfrXVII, and/or sulphonamides (sul1 resistance genes. The results of this study emphasise that uncontrolled use of antibiotics causes the development of resistance and provides the evidence of frequent occurrence of more than one gene encoding the resistance to the same antimicrobial agent in the multi-resistant strains.

  14. Gene Prioritization of Resistant Rice Gene against Xanthomas oryzae pv. oryzae by Using Text Mining Technologies

    Directory of Open Access Journals (Sweden)

    Jingbo Xia

    2013-01-01

    Full Text Available To effectively assess the possibility of the unknown rice protein resistant to Xanthomonas oryzae pv. oryzae, a hybrid strategy is proposed to enhance gene prioritization by combining text mining technologies with a sequence-based approach. The text mining technique of term frequency inverse document frequency is used to measure the importance of distinguished terms which reflect biomedical activity in rice before candidate genes are screened and vital terms are produced. Afterwards, a built-in classifier under the chaos games representation algorithm is used to sieve the best possible candidate gene. Our experiment results show that the combination of these two methods achieves enhanced gene prioritization.

  15. Spread of tetracycline resistance genes at a conventional dairy farm

    Czech Academy of Sciences Publication Activity Database

    Kyselková, Martina; Jirout, Jiří; Vrchotová, Naděžda; Schmitt, H.; Elhottová, Dana

    2015-01-01

    Roč. 6, may (2015), s. 536 ISSN 1664-302X R&D Projects: GA ČR GAP504/10/2077; GA MŠk(CZ) EE2.3.30.0032; GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 ; RVO:60077344 Keywords : antibiotic resistance spread * animal manure * cattle intestinal microflora * chlortetracycline * dairy cattle * dairy farm * heavy metals * tetracycline resistance genes Subject RIV: EI - Biotechnology ; Bionics; EE - Microbiology, Virology (BC-A) Impact factor: 4.165, year: 2015

  16. Using SNP genetic markers to elucidate the linkage of the Co-34/Phg-3 anthracnose and angular leaf spot resistance gene cluster with the Ur-14 resistance gene

    Science.gov (United States)

    The Ouro Negro common bean cultivar contains the Co-34/Phg-3 gene cluster that confers resistance to the anthracnose (ANT) and angular leaf spot (ALS) pathogens. These genes are tightly linked on chromosome 4. Ouro Negro also has the Ur-14 rust resistance gene, reportedly in the vicinity of Co- 34; ...

  17. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying

    2013-07-31

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  18. Multiple antibiotic resistance genes distribution in ten large-scale membrane bioreactors for municipal wastewater treatment.

    Science.gov (United States)

    Sun, Yanmei; Shen, Yue-Xiao; Liang, Peng; Zhou, Jizhong; Yang, Yunfeng; Huang, Xia

    2016-12-01

    Wastewater treatment plants are thought to be potential reservoirs of antibiotic resistance genes. In this study, GeoChip was used for analyzing multiple antibiotic resistance genes, including four multidrug efflux system gene groups and three β-lactamase genes in ten large-scale membrane bioreactors (MBRs) for municipal wastewater treatment. Results revealed that the diversity of antibiotic genes varied a lot among MBRs, but about 40% common antibiotic resistance genes were existent. The average signal intensity of each antibiotic resistance group was similar among MBRs, nevertheless the total abundance of each group varied remarkably and the dominant resistance gene groups were different in individual MBR. The antibiotic resistance genes majorly derived from Proteobacteria and Actinobacteria. Further study indicated that TN, TP and COD of influent, temperature and conductivity of mixed liquor were significant (Pantibiotic resistance genes distribution in MBRs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Abundant rifampin resistance genes and significant correlations of antibiotic resistance genes and plasmids in various environments revealed by metagenomic analysis.

    Science.gov (United States)

    Ma, Liping; Li, Bing; Zhang, Tong

    2014-06-01

    In the present study, a newly developed metagenomic analysis approach was applied to investigate the abundance and diversity of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in aquaculture farm sediments, activated sludge, biofilm, anaerobic digestion sludge, and river water. BLASTX analysis against the Comprehensive Antibiotic Resistance Database was conducted for the metagenomic sequence data of each sample and then the ARG-like sequences were sorted based on structured sub-database using customized scripts. The results showed that freshwater fishpond sediment had the highest abundance (196 ppm), and anaerobic digestion sludge possessed the highest diversity (133 subtypes) of ARGs among the samples in this study. Significantly, rifampin resistance genes were universal in all the diverse samples and consistently accounted for 26.9~38.6 % of the total annotated ARG sequences. Furthermore, a significant linear correlation (R (2) = 0.924) was found between diversities (number of subtypes) of ARGs and diversities of plasmids in diverse samples. This work provided a wide spectrum scan of ARGs and MGEs in different environments and revealed the prevalence of rifampin resistance genes and the strong correlation between ARG diversity and plasmid diversity for the first time.

  20. Antimicrobial resistance and molecular epidemiology of Salmonella Rissen from animals, food products, and patients in Thailand and Denmark

    DEFF Research Database (Denmark)

    Hendriksen, Rene S.; Bangtrakulnonth, Aroon; Pulsrikarn, Chaiwat

    2008-01-01

    Recently we reported increases in both the number of Salmonella infections due to Salmonella Rissen in Thailand and the isolation of this serovar from pork products in Thailand. The objectives of the present study were to determine the genetic diversity and antimicrobial resistance of Salmonella......IPFGE patterns were observed. The predominant pattern was shared by 22 strains. Limited antimicrobial resistance was observed in the Danish strains, and a higher degree of resistance was observed in strains originating from Thailand. Virtually all isolates were resistant to tetracycline. The tetA gene...... was detected in tetracycline-resistant isolates. Statistical analysis and molecular subtyping identified the combination of travel to Thailand and consumption of imported pig or pork products as well consumption of as pig or pork products produced in Denmark as risk factors for Salmonella Rissen infection...

  1. Transcriptome analyses and virus induced gene silencing identify genes in the Rpp4-mediated Asian soybean rust resistance pathway

    Science.gov (United States)

    Rpp4 (Resistance to Phakopsora pachyrhizi 4) confers resistance to P. pachyrhizi, the causal agent of Asian soybean rust (ASR). By combining expression profiling and virus induced gene silencing (VIGS), we are developing a genetic framework for Rpp4-mediated resistance. We measured gene expression i...

  2. Fate and transport of antibiotic resistant bacteria and resistance genes in artificially drained agricultural fields receiving swine manure application

    Science.gov (United States)

    While previous studies have examined the occurrence of antibiotic resistant bacteria and antibiotic resistant genes around confined swine feeding operations, little information is known about their release and transport from artificially drained fields receiving swine manure application. Much of the...

  3. A novel resistance gene, lnu(H), conferring resistance to lincosamides in Riemerella anatipestifer CH-2.

    Science.gov (United States)

    Luo, Hong-Yan; Liu, Ma-Feng; Wang, Ming-Shu; Zhao, Xin-Xin; Jia, Ren-Yong; Chen, Shun; Sun, Kun-Feng; Yang, Qiao; Wu, Ying; Chen, Xiao-Yue; Biville, Francis; Zou, Yuan-Feng; Jing, Bo; Cheng, An-Chun; Zhu, De-Kang

    2018-01-01

    The Gram-negative bacterium Riemerella anatipestifer CH-2 is resistant to lincosamides, having a lincomycin (LCM) minimum inhibitory concentration (MIC) of 128 µg/mL. The G148_1775 gene of R. anatipestifer CH-2, designated lnu(H), encodes a 260-amino acid protein with ≤41% identity to other reported lincosamide nucleotidylyltransferases. Escherichia coli Rosetta TM (DE3) containing the pBAD24-lnu(H) plasmid showed four- and two-fold increases in the MICs of LCM and clindamycin (CLI), respectively. A kinetic assay of the purified Lnu(H) enzyme for LCM and CLI showed that the protein could inactive lincosamides. Mass spectrometry analysis demonstrated that the Lnu(H) enzyme catalysed adenylylation of lincosamides. In addition, an lnu(H) gene deletion strain exhibited 512- and 32-fold decreases in LCM and CLI MICs, respectively. The wild-type level of lincosamide resistance could be restored by complementation with a shuttle plasmid carrying the lnu(H) gene. The transformant R. anatipestifer ATCC 11845 [lnu(H)] acquired by natural transformation also exhibited high-level lincosamide resistance. Moreover, among 175 R. anatipestifer field isolates, 56 (32.0%) were positive for the lnu(H) gene by PCR. In conclusion, Lnu(H) is a novel lincosamide nucleotidylyltransferase that inactivates LCM and CLI by nucleotidylylation, thus conferring high-level lincosamide resistance to R. anatipestifer CH-2. Copyright © 2017. Published by Elsevier B.V.

  4. Spectrum of Resistance Conferred by ml-o Powdery Mildew Resistance Genes in Barley

    DEFF Research Database (Denmark)

    Jørgensen, Jørgen Helms

    1977-01-01

    /(4) in all tests. They were also resistant to field populations of the pathogen when scored in disease nurseries at more than 78 locations in 29 countries in Europe, the Near East, North and South America. New Zealand, and Japan. This indicates that the 11 genes confer the same, world-wide spectrum...

  5. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters

    Science.gov (United States)

    Miller, Jennifer H.; Novak, John T.; Knocke, William R.; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1—a Pseudomonas sp.) and thermophilic (Iso T10—a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457–0.829, P digested sludge or thermophilic digested sludge (Spearman rho = 0.130–0.486, P = 0.075–0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene transfer between raw sludge bacteria and the digester microbial community. PMID:27014196

  6. Antibiotic resistance genes and residual antimicrobials in cattle feedlot surface soil

    Science.gov (United States)

    Antibiotic residues and resistant bacteria in cattle feedlot manure may impact antibiotic resistance in the environment. This study investigated common antimicrobials (tetracyclines and monensin) and associated resistance genes in cattle feedlot soils over time. Animal diets and other feedlot soil...

  7. Novel streptomycin and spectinomycin resistance gene as a gene cassette within a class 1 integron isolated from Escherichia coli

    DEFF Research Database (Denmark)

    Sandvang, D.

    1999-01-01

    The aadA genes, encoding resistance to streptomycin and spectinomycin, have been found as gene cassettes in different gram-negative and gram-positive bacterial species. The present study has revealed the sequence of a new gene, aadA5, integrated as a gene cassette together with the trimethoprim...... resistance gene dfr7 in a class 1 integron. The integron was located on a plasmid and was identified in a pathogenic porcine Escherichia coli isolate....

  8. Novel Streptomycin and Spectinomycin Resistance Gene as a Gene Cassette within a Class 1 Integron Isolated from Escherichia coli

    Science.gov (United States)

    Sandvang, Dorthe

    1999-01-01

    The aadA genes, encoding resistance to streptomycin and spectinomycin, have been found as gene cassettes in different gram-negative and gram-positive bacterial species. The present study has revealed the sequence of a new gene, aadA5, integrated as a gene cassette together with the trimethoprim resistance gene dfr7 in a class 1 integron. The integron was located on a plasmid and was identified in a pathogenic porcine Escherichia coli isolate. PMID:10582907

  9. Inactivation Effect of Antibiotic-Resistant Gene Using Chlorine Disinfection

    Directory of Open Access Journals (Sweden)

    Takashi Furukawa

    2017-07-01

    Full Text Available The aim of this study was to elucidate the inactivation effects on the antibiotic-resistance gene (vanA of vancomycin-resistant enterococci (VRE using chlorination, a disinfection method widely used in various water treatment facilities. Suspensions of VRE were prepared by adding VRE to phosphate-buffered saline, or the sterilized secondary effluent of a wastewater treatment plant. The inactivation experiments were carried out at several chlorine concentrations and stirring time. Enterococci concentration and presence of vanA were determined. The enterococci concentration decreased as chlorine concentrations and stirring times increased, with more than 7.0 log reduction occurring under the following conditions: 40 min stirring at 0.5 mg Cl2/L, 20 min stirring at 1.0 mg Cl2/L, and 3 min stirring at 3.0 mg Cl2/L. In the inactivation experiment using VRE suspended in secondary effluent, the culturable enterococci required much higher chlorine concentration and longer treatment time for complete disinfection than the cases of suspension of VRE. However, vanA was detected in all chlorinated suspensions of VRE, even in samples where no enterococcal colonies were present on the medium agar plate. The chlorine disinfection was not able to destroy antibiotic-resistance genes, though it can inactivate and decrease bacterial counts of antibiotic-resistant bacteria (ARB. Therefore, it was suggested that remaining ARB and/or antibiotic-resistance gene in inactivated bacterial cells after chlorine disinfection tank could be discharged into water environments.

  10. Transport of tylosin and tylosin-resistance genes in subsurface drainage water from manured fields

    Science.gov (United States)

    Animal agriculture appears to contribute to the spread of antibiotic resistance genes, but few studies have quantified gene transport in agricultural fields. The transport of tylosin, tylosin-resistance genes (erm B, F, A) and tylosin-resistant Enterococcus were measured in tile drainage water from ...

  11. Antimicrobial susceptibility and occurrence of resistance genes among Salmonella enterica serovar Weltevreden from different countries

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Lertworapreecha, M.; Evans, M.C.

    2003-01-01

    and gentamicin. All nine ampicillin-resistant isolates contained a sequence similar to the bla(TEM-1b) gene, one of the eight chloramphenicol-resistant isolates a sequence similar to the catA1 gene, all three neomycin-resistant isolates a sequence similar to the aphA-2 gene, 16 (73%) of the 22 streptomycin...

  12. Heavy metal and disinfectant resistance genes among livestock-associated methicillin-resistant Staphylococcus aureus isolates

    DEFF Research Database (Denmark)

    Argudin, Maria Angeles; Lauzat, Birgit; Kraushaar, Britta

    2016-01-01

    substances with antimicrobial activity applied in animal feed, including metal-containing compounds might contribute to their selection. Some of these genes have been found in various novel SCCmec cassettes. The aim of this study was to assess the occurrence of metal-resistance genes among a LA-S. aureus...... collection [n = 554, including 542 MRSA and 12 methicillin-susceptible S. aureus (MSSA)] isolated from livestock and food thereof. Most LA-MRSA isolates (76%) carried at least one metal-resistance gene. Among the LA-MRSA CC398 isolates (n = 456), 4.8%, 0.2%, 24.3% and 71.5% were positive for arsA (arsenic......, 72% carried one metal-resistance gene, and the remaining harboured two or more in different combinations. Differences between LA-MRSA CC398 and non-CC398 were statistically significant for arsA and czrC. The czrC gene was almost exclusively found (98%) in the presence of SCCmec V in both CC398...

  13. Detection of emerging antibiotic resistance in bacteria isolated from subclinical mastitis in cattle in West Bengal

    Directory of Open Access Journals (Sweden)

    Arnab Das

    2017-05-01

    Full Text Available Aim: The aim of this work was to detect antibiotic resistance in Gram-negative bacteria isolated from subclinical mastitis in cattle in West Bengal. Materials and Methods: The milk samples were collected from the cattle suffering with subclinical mastitis in West Bengal. The milk samples were inoculated into the nutrient broth and incubated at 37°C. On the next day, the growth was transferred into nutrient agar and MacConkey agar. All the pure cultures obtained from nutrient agar slant were subjected to Gram-staining and standard biochemical tests. All the bacterial isolates were tested in vitro for their sensitivity to different antibiotics commonly used in veterinary practices. All Gram-negative isolates including positive control were subjected to polymerase chain reaction (PCR for detection of blaCTX-M, blaTEM, blaSHV, blaVIM, tetA, tetB, tetC, and tetM genes considered for extended-spectrum β-lactamase (ESBL, metallo-β-lactamase, and tetracycline resistance. Results: In total, 50 Gram-negative organisms (Escherichia coli, Proteus, Pseudomonas, Klebsiella, and Enterobacter were isolated from milk samples of subclinical mastitis infected cattle. Among these Gram-negative isolates, 48% (24/50 were found either ESBL producing or tetracycline resistant. Out of total 50 Gram-negative isolates, blaCTX-M was detected in 18 (36% isolates, and 6 (12% harbored blaTEM genes in PCR. None of the isolates carried blaSHV genes. Further, in this study, 5 (10% isolates harbored tet(A gene, and 8 (16% isolates carried tet(B gene. No tet(C gene was detected from the isolates. Conclusion: This study showed emerging trend of antibiotic-resistant Gram-negative bacteria associated with subclinical mastitis in cattle in West Bengal, India.

  14. Resistance of Antimicrobial Peptide Gene Transgenic Rice to Bacterial Blight

    Directory of Open Access Journals (Sweden)

    Wei WANG

    2011-03-01

    Full Text Available Antimicrobial peptide is a polypeptide with antimicrobial activity. Antimicrobial peptide genes Np3 and Np5 from Chinese shrimp (Fenneropenaeus Chinensis were integrated into Oryza sativa L. subsp. japonica cv. Aichi ashahi by Agrobacterium mediated transformation system. PCR analysis showed that the positive ratios of Np3 and Np5 were 36% and 45% in T0 generation, respectively. RT-PCR analysis showed that the antimicrobial peptide genes were expressed in T1 generation, and there was no obvious difference in agronomic traits between transgenic plants and non-transgenic plants. Four Np3 and Np5 transgenic lines in T1 generation were inoculated with Xanthomonas oryzae pv. oryzae strain CR4, and all the four transgenic lines had significantly enhanced resistance to bacterial blight caused by the strain CR4. The Np5 transgenic lines also showed higher resistance to bacterial blight caused by strains JS97-2, Zhe 173 and OS-225. It is suggested that transgenic lines with Np5 gene might possess broad spectrum resistance to rice bacterial blight.

  15. Diversity and Antimicrobial Resistance Genotypes in Non-Typhoidal Salmonella Isolates from Poultry Farms in Uganda

    Directory of Open Access Journals (Sweden)

    Terence Odoch

    2018-02-01

    Full Text Available Non-typhoidal Salmonella (NTS are foodborne pathogens of global public health significance. The aim of this study was to subtype a collection of 85 NTS originating from poultry farms in Uganda, and to evaluate a subgroup of phenotypically resistant isolates for common antimicrobial resistance genes and associated integrons. All isolates were subtyped by pulsed-field gel electrophoresis (PFGE. Phenotypically resistant isolates (n = 54 were screened by PCR for the most relevant AMR genes corresponding to their phenotypic resistance pattern, and all 54 isolates were screened by PCR for the presence of integron class 1 and 2 encoding genes. These genes are known to commonly encode resistance to ampicillin, tetracycline, ciprofloxacin, trimethoprim, sulfonamide and chloramphenicol. PFGE revealed 15 pulsotypes representing 11 serotypes from 75 isolates, as 10 were non-typable. Thirty one (57.4% of the 54 resistant isolates carried at least one of the seven genes (blaTEM-1, cmlA, tetA, qnrS, sul1, dhfrI, dhfrVII identified by PCR and six (11% carried class 1 integrons. This study has shown that a diversity of NTS-clones are present in Ugandan poultry farm settings, while at the same time similar NTS-clones occur in different farms and areas. The presence of resistance genes to important antimicrobials used in human and veterinary medicine has been demonstrated, hence the need to strengthen strategies to combat antimicrobial resistance at all levels.

  16. Expression levels of resistant genes affect cervical cancer prognosis.

    Science.gov (United States)

    Yang, Fengmei; Gao, Bo; Li, Rui; Li, Wencui; Chen, Wei; Yu, Zongtao; Zhang, Jicai

    2017-05-01

    Tumor cells may develop multidrug resistance (MDR) to various chemotherapy regimens. Such resistance reduces the sensitivity of cells to chemotherapy drugs, leading to the failure of cervical cancer (CC) treatment and disease progression. The present study aimed to investigate the role of MDR1, lung resistance protein (LRP) and placental glutathione S‑transferase π 1 (GSTP1) in CC and MDR, and the prognostic value of these genes. The mRNA expression levels of these resistance‑associated genes were determined in 47 CC and 20 healthy cervical tissue samples. Subsequently, the data was analyzed alongside clinicopathological parameters. The mRNA expression levels of MDR1, LRP and GSTP1 in CC were 0.57±0.32, 0.58±0.29 and 0.44±0.24, respectively, whereas those in healthy cervical tissues were 0.19±0.10, 0.17±0.14 and 0.18±0.10, respectively. Therefore, the expression levels of these genes were significantly greater in CC compared with healthy cervical tissue (PMRD1 were increased in the well differentiated group (0.68±0.27) compared with the poorly differentiated group (0.38±0.33; P0.05). Multivariate logistic regression indicated that the degree of differentiation and the MDR1 gene expression levels were predictors of CC prognosis (P<0.05). The survival rate of patients in the MDR1‑negative group was significantly greater compared with the MDR1‑positive group (P<0.05). The results of the present study therefore suggested that MDR1 gene expression is a predictor of poor survival in CC.

  17. Identification of Gene Resistance to Avian InfluenzaVirus (Mx Gene among Wild Waterbirds

    Directory of Open Access Journals (Sweden)

    Dewi Elfidasari

    2013-04-01

    Full Text Available The Mx gene is an antiviral gene used to determine the resistance or the susceptibility to different types of viruses, including the Avian Influenza (AI virus subtype H5N1. The AI virus subtype H5N1 infection in chickens causes Mx gene polymorphism. The Mx+ gene shows resistant to the AIvirus subtype H5N1, whereas the Mx-gene shows signs of susceptible. The objective of thisresearch was to detect the Mxgene in wild aquatic birds using the Polymerase Chain Reaction Restriction Fragment Length Polymorphism (PCR-RFLP method with the primer pairs F2 and NE-R2/R and the RsaI restriction enzyme. DNA samples were obtained from eight species of wild waterbirds with positive and negative exposure to the AI virus subtype H5N1. DNA amplification results showed that the Mxgene in wild aquatic birds is found in a 100 bp fragment, which is the same as the Mx gene found in chickens. However, unlike chickens, the Mxgene in wild aquatic birds did not show any polymorphism. This study proves that Mx- based resistance to AI virus subtype H5N1 in different in wild birds than in chickens.

  18. Effects of chlortetracycline and copper supplementation on antimicrobial resistance of fecal Escherichia coli from weaned pigs.

    Science.gov (United States)

    Agga, G E; Scott, H M; Amachawadi, R G; Nagaraja, T G; Vinasco, J; Bai, J; Norby, B; Renter, D G; Dritz, S S; Nelssen, J L; Tokach, M D

    2014-06-01

    Feed-grade chlortetracycline (CTC) and copper are both widely utilized in U.S. pig production. Cluster randomized experiment was conducted to evaluate the effects of CTC and copper supplementation in weaned pigs on antimicrobial resistance (AMR) among fecal Escherichia coli. Four treatment groups: control, copper, CTC, or copper plus CTC were randomly allocated to 32 pens with five pigs per pen. Fecal samples were collected weekly from three pigs per pen for six weeks. Two E. coli isolates per fecal sample were tested for phenotypic and genotypic resistance against antibiotics and copper. Data were analyzed with multilevel mixed effects logistic regression, multivariate probit analysis and discrete time survival analysis. CTC-supplementation was significantly (99% [95% CI=98-100%]) associated with increased tetracycline resistance compared to the control group (95% [95% CI=94-97%]). Copper supplementation was associated with decreased resistance to most of the antibiotics tested, including cephalosporins, over the treatment period. Overall, 91% of the E. coli isolates were multidrug resistant (MDR) (resistant to ≥3 antimicrobial classes). tetA and blaCMY-2 genes were positively associated (Ppigs exhibited high levels of antibiotic resistance, with diverse multi-resistant phenotypic profiles. The roles of copper supplementation in pig production, and pco-mediated copper resistance among E. coli in particular, need to be further explored since a strong negative association of pco with both tetA and blaCMY-2 points to opportunities for selecting a more innocuous resistance profile. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A double EPSPS gene mutation endowing glyphosate resistance shows a remarkably high resistance cost.

    Science.gov (United States)

    Han, Heping; Vila-Aiub, Martin M; Jalaludin, Adam; Yu, Qin; Powles, Stephen B

    2017-12-01

    A novel glyphosate resistance double point mutation (T102I/P106S, TIPS) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene has been recently identified for the first time only in the weed species Eleusine indica. Quantification of plant resistance cost associated with the TIPS and the often reported glyphosate resistance single P106S mutation was performed. A significant resistance cost (50% in seed number currency) associated with the homozygous TIPS but not the homozygous P106S EPSPS variant was identified in E. indica plants. The resistance cost associated with the TIPS mutation escalated to 85% in plants under resource competition with rice crops. The resistance cost was not detected in nonhomozygous TIPS plants denoting the recessive nature of the cost associated with the TIPS allele. An excess of 11-fold more shikimate and sixfold more quinate in the shikimate pathway was detected in TIPS plants in the absence of glyphosate treatment compared to wild type, whereas no changes in these compounds were observed in P106S plants when compared to wild type. TIPS plants show altered metabolite levels in several other metabolic pathways that may account for the expression of the observed resistance cost. © 2017 John Wiley & Sons Ltd.

  20. Resistance gene homologues in melon are linked to genetic loci conferring disease and pest resistance.

    Science.gov (United States)

    Brotman, Y.; Silberstein, L.; Kovalski, I.; Perin, C.; Dogimont, C.; Pitrat, M.; Klingler, J.; Thompson, A.; Perl-Treves, R.

    2002-05-01

    Genomic and cDNA fragments with homology to known disease resistance genes (RGH fragments) were cloned from Cucumis melo using degenerate-primer PCR. Fifteen homologues of the NBS-LRR gene family have been isolated. The NBS-LRR homologues show high divergence and, based on the partial NBS-fragment sequences, appear to include members of the two major subfamilies that have been described in dicot plants, one that possesses a TIR-protein element and one that lacks such a domain. Genomic organization of these sequences was explored by DNA gel-blot analysis, and conservation among other Cucurbitaceae was assessed. Two mapping populations that segregate for several disease and pest resistance loci were used to map the RGH probes onto the melon genetic map. Several NBS-LRR related sequences mapped to the vicinity of genetic loci that control resistance to papaya ringspot virus, Fusarium oxysporum race 1, F. oxysporum race 2 and to the insect pest Aphis gossypii. The utility of such markers for breeding resistant melon cultivars and for cloning the respective R-genes is discussed.

  1. A Novel Phytophthora sojae Resistance Rps12 Gene Mapped to a Genomic Region That Contains Several Rps Genes.

    Science.gov (United States)

    Sahoo, Dipak K; Abeysekara, Nilwala S; Cianzio, Silvia R; Robertson, Alison E; Bhattacharyya, Madan K

    2017-01-01

    Phytophthora sojae Kaufmann and Gerdemann, which causes Phytophthora root rot, is a widespread pathogen that limits soybean production worldwide. Development of Phytophthora resistant cultivars carrying Phytophthora resistance Rps genes is a cost-effective approach in controlling this disease. For this mapping study of a novel Rps gene, 290 recombinant inbred lines (RILs) (F7 families) were developed by crossing the P. sojae resistant cultivar PI399036 with the P. sojae susceptible AR2 line, and were phenotyped for responses to a mixture of three P. sojae isolates that overcome most of the known Rps genes. Of these 290 RILs, 130 were homozygous resistant, 12 heterzygous and segregating for Phytophthora resistance, and 148 were recessive homozygous and susceptible. From this population, 59 RILs homozygous for Phytophthora sojae resistance and 61 susceptible to a mixture of P. sojae isolates R17 and Val12-11 or P7074 that overcome resistance encoded by known Rps genes mapped to Chromosome 18 were selected for mapping novel Rps gene. A single gene accounted for the 1:1 segregation of resistance and susceptibility among the RILs. The gene encoding the Phytophthora resistance mapped to a 5.8 cM interval between the SSR markers BARCSOYSSR_18_1840 and Sat_064 located in the lower arm of Chromosome 18. The gene is mapped 2.2 cM proximal to the NBSRps4/6-like sequence that was reported to co-segregate with the Phytophthora resistance genes Rps4 and Rps6. The gene is mapped to a highly recombinogenic, gene-rich genomic region carrying several nucleotide binding site-leucine rich repeat (NBS-LRR)-like genes. We named this novel gene as Rps12, which is expected to be an invaluable resource in breeding soybeans for Phytophthora resistance.

  2. A Novel Phytophthora sojae Resistance Rps12 Gene Mapped to a Genomic Region That Contains Several Rps Genes.

    Directory of Open Access Journals (Sweden)

    Dipak K Sahoo

    Full Text Available Phytophthora sojae Kaufmann and Gerdemann, which causes Phytophthora root rot, is a widespread pathogen that limits soybean production worldwide. Development of Phytophthora resistant cultivars carrying Phytophthora resistance Rps genes is a cost-effective approach in controlling this disease. For this mapping study of a novel Rps gene, 290 recombinant inbred lines (RILs (F7 families were developed by crossing the P. sojae resistant cultivar PI399036 with the P. sojae susceptible AR2 line, and were phenotyped for responses to a mixture of three P. sojae isolates that overcome most of the known Rps genes. Of these 290 RILs, 130 were homozygous resistant, 12 heterzygous and segregating for Phytophthora resistance, and 148 were recessive homozygous and susceptible. From this population, 59 RILs homozygous for Phytophthora sojae resistance and 61 susceptible to a mixture of P. sojae isolates R17 and Val12-11 or P7074 that overcome resistance encoded by known Rps genes mapped to Chromosome 18 were selected for mapping novel Rps gene. A single gene accounted for the 1:1 segregation of resistance and susceptibility among the RILs. The gene encoding the Phytophthora resistance mapped to a 5.8 cM interval between the SSR markers BARCSOYSSR_18_1840 and Sat_064 located in the lower arm of Chromosome 18. The gene is mapped 2.2 cM proximal to the NBSRps4/6-like sequence that was reported to co-segregate with the Phytophthora resistance genes Rps4 and Rps6. The gene is mapped to a highly recombinogenic, gene-rich genomic region carrying several nucleotide binding site-leucine rich repeat (NBS-LRR-like genes. We named this novel gene as Rps12, which is expected to be an invaluable resource in breeding soybeans for Phytophthora resistance.

  3. Effect of the hardener to epoxy monomer ratio on the water absorption behavior of the DGEBA/TETA epoxy system

    Directory of Open Access Journals (Sweden)

    Ayrton Alef Castanheira Pereira

    2016-02-01

    Full Text Available Abstract The water absorption behavior of the DGEBA/TETA epoxy system was evaluated as a function of the epoxy monomer to amine hardener ratio. Weight gain versus immersion time curves were obtained and the experimental points were fitted using Fickian and Non-Fickian diffusion models. The results obtained showed that for all epoxy monomer to hardener ratios analyzed water diffusion followed non-Fickian behavior. It was possible to correlate the water absorption behavior to the macromolecular structure developed when the epoxy/ hardener ratio was varied. All epoxy/hardener ratios present a two-phase macromolecular structure, composed of regions with high crosslink density and regions with lower crosslinking. Epoxy rich systems have a more open macromolecular structure with a lower fraction of the dense phase than the amine rich systems, which present a more compact two-phase structure.

  4. [State-of-the-art status on airborne antibiotic resistant bacteria and antibiotic resistance genes].

    Science.gov (United States)

    Li, J; Yao, M S

    2018-04-06

    The world is facing more deaths due to increasing antibiotic-resistant bacterial infections and the shortage of new highly effective antibiotics, however the air media as its important transmission route has not been adequately studied. Based on the latest literature acquired in this work, we have discussed the state-of-the-art research progress of the concentration, distribution and spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in different environmental air media, and also analyzed some future prevention and control measures. The large use of antibiotics in the medical settings and animal husbandry places has resulted in higher abundances of ARB and ARGs in the relevant and surrounding atmosphere than in urban and general indoor air environments. ARGs can be spread by adhering to airborne particles, and researchers have also found that air media contain more abundant ARGs than other environmental media such as soil, water and sediment. It was suggested in this review that strengthening the monitoring, study on spreading factors and biological toxicity, and also research and development on pathogen accurate diagnosis and new green antibiotic are expected to help effectively monitor, prevent and control of the impacts of airborne resistant bacteria and resistance genes on both human and ecologies.

  5. Study on drug resistance of mycobacterium tuberculosis in patients with pulmonary tuberculosis by drug resistance gene detecting

    International Nuclear Information System (INIS)

    Wang Wei; Li Hongmin; Wu Xueqiong; Wang Ansheng; Ye Yixiu; Wang Zhongyuan; Liu Jinwei; Chen Hongbing; Lin Minggui; Wang Jinhe; Li Sumei; Jiang Ping; Feng Bai; Chen Dongjing

    2004-01-01

    To investigate drug resistance of mycobacterium tuberculosis in different age group, compare detecting effect of two methods and evaluate their the clinical application value, all of the strains of mycobacterium tuberculosis were tested for resistance to RFP, INH SM PZA and EMB by the absolute concentration method on Lowenstein-Jensen medium and the mutation of the rpoB, katG, rpsL, pncA and embB resistance genes in M. tuberculosis was tested by PCR-SSCP. In youth, middle and old age group, the rate of acquired drug resistance was 89.2%, 85.3% and 67.6% respectively, the gene mutation rate was 76.2%, 81.3% and 63.2% respectively. The rate of acquired drug resistance and multiple drug resistance in youth group was much higher than those in other groups. The gene mutation was correlated with drug resistance level of mycobacterium tuberculosis. The gene mutation rate was higher in strains isolated from high concentration resistance than those in strains isolated from low concentration resistance. The more irregular treatment was longer, the rate of drug resistance was higher. Acquired drug resistance varies in different age group. It suggested that surveillance of drug resistence in different age group should be taken seriously, especially in youth group. PCR - SSCP is a sensitive and specific method for rapid detecting rpoB, katG, rpsL, pncA and embB genes mutations of MTB. (authors)

  6. Incidence of antimicrobial-resistance genes and integrons in antibiotic-resistant bacteria isolated from eels and aquaculture ponds.

    Science.gov (United States)

    Lin, Mao; Wu, Xiaomei; Yan, Qingpi; Ma, Ying; Huang, Lixing; Qin, Yingxue; Xu, Xiaojin

    2016-07-07

    The overuse of antimicrobials in aquaculture has promoted the selection of antimicrobial-resistant bacteria. Here we investigated the abundance of antimicrobial-resistance genes and integrons in 108 strains of antibiotic-resistant bacteria isolated from eels and aquaculture ponds in China. Conventional PCR was implemented to examine common antibiotic-resistance genes, integrons, and their gene cassette arrays. The results showed that the antibiotic-resistance genes blaTEM, tetC, sulI, aadA, floR, and qnrB were detected at high percentages, as were a number of other resistance genes. Class I integrons were present in 79.63% of the strains, and 10 out of 108 isolates carried class II integrons. Class III integrons were not detected. Three strains carried both class I and class II integrons, and 73.26% of the class I integron-positive isolates contained the qacEΔ1/sul1 gene. Fourteen types of integron cassette arrays were found among class I integron-positive isolates. A new array, dfrB4-catB3-blaOXA-10-aadA1, was discovered in this study. The gene cassette array dfrA12-orfF-aadA2 was the most widely distributed. In summary, 23 different gene cassettes encoding resistance to 8 classes of antibiotics were identified in the class I integrons, and the main cassettes contained genes encoding resistance to aminoglycosides (aad) and trimethoprim (dfr). All class II integron-positive strains had only a single gene cassette array, viz. dfrA1-catB2-sat2-aadA1. High levels of antimicrobial-resistance genes and integrons in eels and auqauculture ponds suggest that the overuse of antimicrobials should be strictly controlled and that the levels of bacterial antimicrobial-resistance genes in aquaculture should be monitored.

  7. Evolution by Pervasive Gene Fusion in Antibiotic Resistance and Antibiotic Synthesizing Genes

    Directory of Open Access Journals (Sweden)

    Orla Coleman

    2015-03-01

    Full Text Available Phylogenetic (tree-based approaches to understanding evolutionary history are unable to incorporate convergent evolutionary events where two genes merge into one. In this study, as exemplars of what can be achieved when a tree is not assumed a priori, we have analysed the evolutionary histories of polyketide synthase genes and antibiotic resistance genes and have shown that their history is replete with convergent events as well as divergent events. We demonstrate that the overall histories of these genes more closely resembles the remodelling that might be seen with the children’s toy Lego, than the standard model of the phylogenetic tree. This work demonstrates further that genes can act as public goods, available for re-use and incorporation into other genetic goods.

  8. DNA tagging of blast resistant gene(s in three Brazilian rice cultivars

    Directory of Open Access Journals (Sweden)

    S.S. Sandhu

    2003-12-01

    Full Text Available Rice blast is the most important fungal disease of rice and is caused by Pyricularia oryzae Sacc. (Telomorph Magnoporthe grisea Barr.. Seven randomly amplified polymorphic DNA (RAPD markers OPA5, OPG17, OPG18, OPG19, OPF9, OPF17 and OPF19 showed very clear polymorphism in resistant cultivar lines which differed from susceptible lines. By comparing different susceptible lines, nine DNA amplifications of seven primers (OPA5(1000, OPA5(1200, OPG17(700, OPG18(850, OPG19(500, OPG19(600, OPF9(600, OPF17(1200 and OPF19(600 were identified as dominant markers for the blast resistant gene in resistant cultivar lines. These loci facilitate the indirect scoring of blast resistant and blast susceptible genotypes. The codomine RAPDs markers will facilitate marker-assisted selection of the blast resistant gene in two blast resistant genotypes of rice (Labelle and Line 11 and will be useful in rice breeding programs.

  9. Occurrence of the mcr-1 Colistin Resistance Gene and other Clinically Relevant Antibiotic Resistance Genes in Microbial Populations at Different Municipal Wastewater Treatment Plants in Germany

    Directory of Open Access Journals (Sweden)

    Norman Hembach

    2017-07-01

    Full Text Available Seven wastewater treatment plants (WWTPs with different population equivalents and catchment areas were screened for the prevalence of the colistin resistance gene mcr-1 mediating resistance against last resort antibiotic polymyxin E. The abundance of the plasmid-associated mcr-1 gene in total microbial populations during water treatment processes was quantitatively analyzed by qPCR analyses. The presence of the colistin resistance gene was documented for all of the influent wastewater samples of the seven WWTPs. In some cases the mcr-1 resistance gene was also detected in effluent samples of the WWTPs after conventional treatment reaching the aquatic environment. In addition to the occurrence of mcr-1 gene, CTX-M-32, blaTEM, CTX-M, tetM, CMY-2, and ermB genes coding for clinically relevant antibiotic resistances were quantified in higher abundances in all WWTPs effluents. In parallel, the abundances of Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli were quantified via qPCR using specific taxonomic gene markers which were detected in all influent and effluent wastewaters in significant densities. Hence, opportunistic pathogens and clinically relevant antibiotic resistance genes in wastewaters of the analyzed WWTPs bear a risk of dissemination to the aquatic environment. Since many of the antibiotic resistance gene are associated with mobile genetic elements horizontal gene transfer during wastewater treatment can't be excluded.

  10. Fe3O4@SiO2@CS-TETA functionalized graphene oxide for the adsorption of methylene blue (MB) and Cu(II)

    Science.gov (United States)

    Wang, Fan; Zhang, Lijuan; Wang, Yeying; Liu, Xijian; Rohani, Sohrab; Lu, Jie

    2017-10-01

    The graphene oxide (GO) functionalized by Fe3O4@SiO2@CS-TETA nanoparticles, Fe3O4@SiO2@CS-TETA-GO, was firstly fabricated in a mild way as a novel adsorbent for the removal of Cu(II) ions and methylene blue (MB) from aqueous solutions. The magnetic composites showed a good dispersity in water and can be conveniently collected for reuse through magnetic separation due to its excellent magnetism. When the Fe3O4@SiO2@CS- TETA-GO was used as an absorbent for the absorption of MB and Cu(II), the adsorption kinetics and isotherms data well fitted the pseudo-second-order model and the Langmuir model, respectively. Under the optimized pH and initial concentration, the maximum adsorption capacity was about 529.1 mg g-1 for MB in 20 min and 324.7 mg g-1 for Cu(II) in 16 min, respectively, exhibiting a better adsorption performance than other GO-based adsorbents reported recently. More importantly, the synthesized adsorbent could be effectively regenerated and repeatedly utilized without significant capacity loss after six times cycles. All the results demonstrated that Fe3O4@SiO2@CS-TETA-GO could be used as an excellent adsorbent for the adsorption of Cu(II) and MB in many fields.

  11. Bacterial plasmid-mediated quinolone resistance genes in aquatic environments in China

    OpenAIRE

    Yan, Lei; Liu, Dan; Wang, Xin-Hua; Wang, Yunkun; Zhang, Bo; Wang, Mingyu; Xu, Hai

    2017-01-01

    Emerging antimicrobial resistance is a major threat to human?s health in the 21st century. Understanding and combating this issue requires a full and unbiased assessment of the current status on the prevalence of antimicrobial resistance genes and their correlation with each other and bacterial groups. In aquatic environments that are known reservoirs for antimicrobial resistance genes, we were able to reach this goal on plasmid-mediated quinolone resistance (PMQR) genes that lead to resistan...

  12. Diversity of Integron- and Culture-Associated Antibiotic Resistance Genes in Freshwater Floc

    OpenAIRE

    Drudge, Christopher N.; Elliott, Amy V. C.; Plach, Janina M.; Ejim, Linda J.; Wright, Gerard D.; Droppo, Ian G.; Warren, Lesley A.

    2012-01-01

    Clinically important antibiotic resistance genes were detected in culturable bacteria and class 1 integron gene cassettes recovered from suspended floc, a significant aquatic repository for microorganisms and trace elements, across freshwater systems variably impacted by anthropogenic activities. Antibiotic resistance gene cassettes in floc total community DNA differed appreciably in number and type from genes detected in bacteria cultured from floc. The number of floc antibiotic resistance g...

  13. Molecular study on some antibiotic resistant genes in Salmonella spp. isolates

    Science.gov (United States)

    Nabi, Ari Q.

    2017-09-01

    Studying the genes related with antimicrobial resistance in Salmonella spp. is a crucial step toward a correct and faster treatment of infections caused by the pathogen. In this work Integron mediated antibiotic resistant gene IntI1 (Class I Integrase IntI1) and some plasmid mediated antibiotic resistance genes (Qnr) were scanned among the isolated non-Typhoid Salmonellae strains with known resistance to some important antimicrobial drugs using Sybr Green real time PCR. The aim of the study was to correlate the multiple antibiotics and antimicrobial resistance of Salmonella spp. with the presence of integrase (IntI1) gene and plasmid mediated quinolone resistant genes. Results revealed the presence of Class I Integrase gene in 76% of the isolates with confirmed multiple antibiotic resistances. Moreover, about 32% of the multiple antibiotic resistant serotypes showed a positive R-PCR for plasmid mediated qnrA gene encoding for nalidixic acid and ciprofloxacin resistance. No positive results could be revealed form R-PCRs targeting qnrB or qnrS. In light of these results we can conclude that the presence of at least one of the qnr genes and/or the presence of Integrase Class I gene were responsible for the multiple antibiotic resistance to for nalidixic acid and ciprofloxacin from the studied Salmonella spp. and further studies required to identify the genes related with multiple antibiotic resistance of the pathogen.

  14. Stormwater loadings of antibiotic resistance genes in an urban stream.

    Science.gov (United States)

    Garner, Emily; Benitez, Romina; von Wagoner, Emily; Sawyer, Richard; Schaberg, Erin; Hession, W Cully; Krometis, Leigh-Anne H; Badgley, Brian D; Pruden, Amy

    2017-10-15

    Antibiotic resistance presents a critical public health challenge and the transmission of antibiotic resistance via environmental pathways continues to gain attention. Factors driving the spread of antibiotic resistance genes (ARGs) in surface water and sources of ARGs in urban stormwater have not been well-characterized. In this study, five ARGs (sul1, sul2, tet(O), tet(W), and erm(F)) were quantified throughout the duration of three storm runoff events in an urban inland stream. Storm loads of all five ARGs were significantly greater than during equivalent background periods. Neither fecal indicator bacteria measured (E. coli or enterococci) was significantly correlated with sul1, sul2, or erm(F), regardless of whether ARG concentration was absolute or normalized to 16S rRNA levels. Both E. coli and enterococci were correlated with the tetracycline resistance genes, tet(O) and tet(W). Next-generation shotgun metagenomic sequencing was conducted to more thoroughly characterize the resistome (i.e., full complement of ARGs) and profile the occurrence of all ARGs described in current databases in storm runoff in order to inform future watershed monitoring and management. Between 37 and 121 different ARGs were detected in each stream sample, though the ARG profiles differed among storms. This study establishes that storm-driven transport of ARGs comprises a considerable fraction of overall downstream loadings and broadly characterizes the urban stormwater resistome to identify potential marker ARGs indicative of impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Analysis of differentially expressed genes related to resistance in spinosad- and neonicotinoid-resistant Musca domestica L. (Diptera: Muscidae) strains

    DEFF Research Database (Denmark)

    Castberg, Dorte Heidi Højland; Kristensen, Michael

    2017-01-01

    interesting in terms of neonicotinoid resistance, while cyp4d9 was overexpressed in 791spin compared to spinosad-susceptible strains. GSTs, ESTs and UGTs were mostly overexpressed, but not to the same degree as P450s. We present a comprehensive and comparative picture of gene expression in three housefly......Background The housefly is a global pest that has developed resistance to most insecticides applied against it. Resistance of the spinosad-resistant strain 791spin and the neonicotinoid-resistant 766b strain is believed to be due to metabolism. We investigate differentially expressed genes...... strains differing significantly in their response to insecticides. High differential expression of P450s and genes coding for cuticle protein indicates a combination of factors involved in metabolic neonicotinoid and spinosad resistance. Conclusion Resistance in these strains is apparently not linked...

  16. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters.

    Science.gov (United States)

    Miller, Jennifer H; Novak, John T; Knocke, William R; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1-a Pseudomonas sp.) and thermophilic (Iso T10-a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457-0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130-0.486, P = 0.075-0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene

  17. Survival of antibiotic resistant bacteria and horizontal gene transfer control antibiotic resistance gene content in anaerobic digesters

    Directory of Open Access Journals (Sweden)

    Jennifer Hafer Miller

    2016-03-01

    Full Text Available Understanding fate of antibiotic resistant bacteria (ARB versus their antibiotic resistance genes (ARGs during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1- a Pseudomonas sp. and thermophilic (Iso T10- a Bacillus sp. anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic or 1-log above baseline (mesophilic while levels of the ARG present in the spiked isolate (tet(G remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O, tet(W, and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457 to 0.829, P<0.05 with the raw feed sludge. There was no correlation in tet(O or tet(W ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130 to 0.486, P = 0.075 to 0.612. However, in the thermophilic digester, the tet(O and tet(W ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and

  18. A Comprehensive Insight into Tetracycline Resistant Bacteria and Antibiotic Resistance Genes in Activated Sludge Using Next-Generation Sequencing

    OpenAIRE

    Huang, Kailong; Tang, Junying; Zhang, Xu-Xiang; Xu, Ke; Ren, Hongqiang

    2014-01-01

    In order to comprehensively investigate tetracycline resistance in activated sludge of sewage treatment plants, 454 pyrosequencing and Illumina high-throughput sequencing were used to detect potential tetracycline resistant bacteria (TRB) and antibiotic resistance genes (ARGs) in sludge cultured with different concentrations of tetracycline. Pyrosequencing of 16S rRNA gene revealed that tetracycline treatment greatly affected the bacterial community structure of the sludge. Nine genera cons...

  19. Fate of antibiotic resistant cultivable heterotrophic bacteria and antibiotic resistance genes in wastewater treatment processes.

    Science.gov (United States)

    Zhang, Songhe; Han, Bing; Gu, Ju; Wang, Chao; Wang, Peifang; Ma, Yanyan; Cao, Jiashun; He, Zhenli

    2015-09-01

    Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are emerging contaminants of environmental concern. Heterotrophic bacteria in activated sludge have an important role in wastewater treatment plants (WWTPs). However, the fate of cultivable heterotrophic ARB and ARGs in WWPTs process remains unclear. In the present study, we investigated the antibiotic-resistant phenotypes of cultivable heterotrophic bacteria from influent and effluent water of three WWTPs and analysed thirteen ARGs in ARB and in activated sludge from anoxic, anaerobic and aerobic compartments. From each influent or effluent sample of the three plants, 200 isolates were randomly tested for susceptibility to 12 antibiotics. In these samples, between 5% and 64% isolates showed resistance to >9 antibiotics and the proportion of >9-drug-resistant bacteria was lower in isolates from effluent than from influent. Eighteen genera were identified in 188 isolates from influent (n=94) and effluent (n=94) of one WWTP. Six genera (Aeromonas, Bacillus, Lysinibacillus, Microbacterium, Providencia, and Staphylococcus) were detected in both influent and effluent samples. Gram-negative and -positive isolates dominated in influent and effluent, respectively. The 13 tetracycline-, sulphonamide-, streptomycin- and β-lactam-resistance genes were detected at a higher frequency in ARB from influent than from effluent, except for sulA and CTX-M, while in general, the abundances of ARGs in activated sludge from two of the three plants were higher in aerobic compartments than in anoxic ones, indicating abundant ARGs exit in the excess sledges and/or in uncultivable bacteria. These findings may be useful for elucidating the effect of WWTP on ARB and ARGs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Antimicrobial Resistance of Enteric Salmonella in Bangui, Central African Republic

    Directory of Open Access Journals (Sweden)

    Christian Diamant Mossoro-Kpinde

    2015-01-01

    Full Text Available Introduction. The number of Salmonella isolated from clinical samples that are resistant to multiple antibiotics has increased worldwide. The aim of this study was to determine the prevalence of resistant Salmonella enterica isolated in Bangui. Methods. All enteric Salmonella strains isolated from patients in 2008 were identified and serotyped, and the phenotypes of resistance were determined by using the disk diffusion method. Nine resistance-associated genes, blaTEM, blaOXA, blaSHV, tetA, aadA1, catA1, dhfrA1, sul I, and sul II, were sought by genic amplification in seven S.e. Typhimurium strains. Results. The 94 strains isolated consisted of 47 S.e. Typhimurium (50%, 21 S.e. Stanleyville (22%, 18 S.e. Enteritidis (19%, 4 S.e. Dublin (4%, 4 S.e. Hadar (4%, and 1 S.e. Papuana (1%. Twenty-five (28% were multiresistant, including 20 of the Typhimurium serovar (80%. Two main phenotypes of resistance were found: four antibiotics (56% and to five antibiotics (40%. One S.e. Typhimurium isolate produced an extended-spectrum β-lactamase (ESBL. Only seven strains of S.e. Typhimurium could be amplified genically. Only phenotypic resistance to tetracycline and aminosides was found. Conclusion. S. Typhimurium is the predominant serovar of enteric S. enterica and is the most widely resistant. The search for resistance genes showed heterogeneity of the circulating strains.

  1. Sulfonamide-Resistant Bacteria and Their Resistance Genes in Soils Fertilized with Manures from Jiangsu Province, Southeastern China

    Science.gov (United States)

    Jiao, Shaojun; Zhang, Jun; Ye, Boping; Gao, Shixiang

    2014-01-01

    Antibiotic-resistant bacteria and genes are recognized as new environmental pollutants that warrant special concern. There were few reports on veterinary antibiotic-resistant bacteria and genes in China. This work systematically analyzed the prevalence and distribution of sulfonamide resistance genes in soils from the environments around poultry and livestock farms in Jiangsu Province, Southeastern China. The results showed that the animal manure application made the spread and abundance of antibiotic resistance genes (ARGs) increasingly in the soil. The frequency of sulfonamide resistance genes was sul1 > sul2 > sul3 in pig-manured soil DNA and sul2 > sul1 > sul3 in chicken-manured soil DNA. Further analysis suggested that the frequency distribution of the sul genes in the genomic DNA and plasmids of the SR isolates from manured soil was sul2 > sul1 > sul3 overall (panimal type and sampling time can influence the prevalence and distribution pattern of sulfonamide resistance genes. The present study also indicated that Bacillus, Pseudomonas and Shigella were the most prevalent sul-positive genera in the soil, suggesting a potential human health risk. The above results could be important in the evaluation of antibiotic-resistant bacteria and genes from manure as sources of agricultural soil pollution; the results also demonstrate the necessity and urgency of the regulation and supervision of veterinary antibiotics in China. PMID:25405870

  2. Novel Genes Related to Ceftriaxone Resistance Found among Ceftriaxone-Resistant Neisseria gonorrhoeae Strains Selected In Vitro.

    Science.gov (United States)

    Gong, Zijian; Lai, Wei; Liu, Min; Hua, Zhengshuang; Sun, Yayin; Xu, Qingfang; Xia, Yue; Zhao, Yue; Xie, Xiaoyuan

    2016-04-01

    The emergence of ceftriaxone-resistantNeisseria gonorrhoeaeis currently a global public health concern. However, the mechanism of ceftriaxone resistance is not yet fully understood. To investigate the potential genes related to ceftriaxone resistance inNeisseria gonorrhoeae, we subcultured six gonococcal strains with increasing concentrations of ceftriaxone and isolated the strains that became resistant. After analyzing several frequently reported genes involved in ceftriaxone resistance, we found only a single mutation inpenA(A501V). However, differential analysis of the genomes and transcriptomes between pre- and postselection strains revealed many other mutated genes as well as up- and downregulated genes. Transformation of the mutatedpenAgene into nonresistant strains increased the MIC between 2.0- and 5.3-fold, and transformation of mutatedftsXincreased the MIC between 3.3- and 13.3-fold. Genes encoding the ABC transporters FarB, Tfq, Hfq, and ExbB were overexpressed, whilepilM,pilN, andpilQwere downregulated. Furthermore, the resistant strain developed cross-resistance to penicillin and cefuroxime, had an increased biochemical metabolic rate, and presented fitness defects such as prolonged growth time and downregulated PilMNQ. In conclusion, antimicrobial pressure could result in the emergence of ceftriaxone resistance, and the evolution of resistance ofNeisseria gonorrhoeaeto ceftriaxone is a complicated process at both the pretranscriptional and posttranscriptional levels, involving several resistance mechanisms of increased efflux and decreased entry. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Genetics and mapping of a new leaf rust resistance gene in Triticum ...

    Indian Academy of Sciences (India)

    AMIT KUMAR SINGH

    Selection G12 showed resistance at both seedling and adult plant stages. Genetic analysis in F1, F2 and F2:3 families at the seedling stage revealed that leaf rust resistance in Selection G12 is conditioned by a single incompletely dominant gene. The leaf rust resistance gene was mapped to chromosome 3BL with SSR ...

  4. Characterization of resistance genes to Cladosporium fulvum on the short arm of chromosome 1 of tomato

    NARCIS (Netherlands)

    Haanstra, J.

    2000-01-01

    Plant breeders generally use qualitative resistance that is associated with a hypersensitive reaction (HR) to obtain cultivars that are resistant to pathogens and pests. The genetics of this resistance is based on the gene-for-gene relationship, which involves the product of a plant

  5. Distribution and quantification of antibiotic resistance genes and bacteria across agricultural and non-agricultural metagenomes

    Science.gov (United States)

    There is concern that antibiotic resistance can potentially be transferred from animals to humans through the food chain. The relationship between specific antibiotic resistant bacteria and the genes they carry remains to be described and few details are known about how antibiotic resistance genes i...

  6. Rapid identification of rice blast resistance gene by specific length amplified fragment sequencing

    Directory of Open Access Journals (Sweden)

    Shen Chen

    2016-05-01

    Full Text Available Excavation of resistance genes is one of the most effective and environment-friendly measures to control the devastating rice disease caused by Magnaporthe oryzae. Many resistance genes have been mapped and characterized in the last century. Nevertheless, only a few of the total resistance genes could be really applied in the rice breeding program. Huazhan (HZ is a new native rice restorer line developed in China and widely used in hybrid rice in recent years. HZ and its crossed combinations usually show a broad spectrum of resistance against rice blast in different rice ecosystems in China. Dissection of the genetic background of HZ is very useful for its further application. In this study, a combined method based on bulked segregation analysis (BSA and specific length amplified fragment sequencing (SLAF-seq was used to identify blast resistance gene(s in HZ. A total of 56,187 SLAFs labels were captured and 9051 polymorphic SLAFs markers were analysed and procured in this study. One trait associated with candidate resistance genes region on chromosome 12 overlapping 10.2–17.6 Mb has been identified, in which 10 NBS-LRR (nucleotide-binding site-leucine-rich repeat coding genes were used as resistance gene candidates. Our result indicated that SLAF-seq with BSA is a rapid and effective method for initial identification of blast resistance genes. The identification of resistance gene in HZ will improve its molecular breeding and resistance variety application.

  7. Monitoring of drug resistance amplification and attenuation with the use of tetracycline-resistant bacteria during wastewater treatment

    Science.gov (United States)

    Harnisz, Monika; Korzeniewska, Ewa; Niestępski, Sebastian; Osińska, Adriana; Nalepa, Beata

    2017-11-01

    The objective of this study was to monitor changes (amplification or attenuation) in antibiotic resistance during wastewater treatment based on the ecology of tetracycline-resistant bacteria. The untreated and treated wastewater were collected in four seasons. Number of tetracycline-(TETR) and oxytetracycline-resistant (OTCR) bacteria, their qualitative composition, minimum inhibitory concentrations (MICs), sensitivity to other antibiotics, and the presence of tet (A, B, C, D, E) resistance genes were determined. TETR and OTCR counts in untreated wastewater were 100 to 1000 higher than in treated effluent. OTCR bacterial counts were higher than TETR populations in both untreated and treated wastewater. TETR isolates were not dominated by a single bacterial genus or species, whereas Aeromonas hydrophila and Aeromonas sobria were the most common in OTCR isolates. The treatment process attenuated the drug resistance of TETR bacteria and amplified the resistance of OTCR bacteria. In both microbial groups, the frequency of tet(A) gene increased in effluent in comparison with untreated wastewater. Our results also indicate that treated wastewater is a reservoir of multiple drug-resistant bacteria as well as resistance determinants which may pose a health hazard for humans and animals when released to the natural environment.

  8. Genes for resistance to wheat powdery mildew in derivatives of Triticum Timopheevi and T. Carthlicum

    DEFF Research Database (Denmark)

    Jørgensen, Jørgen Helms; Jensen, C. J.

    1972-01-01

    and/or Ml designated genes; a temporary designation, Ml f ,is proposed for this gene. Gene Ml f is closely associated with a gene conditioning resistance to the stem rust fungus (Puccinia graminis f. sp. tritici), probably gene Sr9c. The winter wheat line TP 229 derived from Triticum carthlicum has...

  9. Mapping and Cloning of Late Blight Resistance Genes from Solanum venturii Using an Interspecific Candidate Gene Approach

    NARCIS (Netherlands)

    Pel, M.; Foster, S.J.; Park, T.H.; Rietman, H.; Arkel, van G.; Jones, J.D.G.; Eck, van H.J.; Jacobsen, E.; Visser, R.G.F.; Vossen, van der E.A.G.

    2009-01-01

    Late blight, caused by the oomycete Phytophthora infestans, is one of the most devastating diseases of potato. Resistance (R) genes from the wild species Solanum demissum have been used by breeders to generate late-blight-resistant cultivars but resistance was soon overcome by the pathogen. A more

  10. Antimicrobial susceptibility and presence of resistance genes in staphylococci from poultry

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Agersø, Yvonne; Ahrens, Peter

    2000-01-01

    to ciprofloxacin. Only six (7%) S. aureus isolates and one Staphylococcus saprophyticus were penicillin resistant. Resistance to sulphamethoxazole was observed among 16 (19%) of S. aureus isolates and two coagulase negative staphylococci (CNS). Twenty (24%) of the S. aureus isolates were resistant to erythromycin...... study showed a frequent occurrence of resistance to fluoroquinolones, tetracycline and macrolides among staphylococci isolated from broilers in Denmark, whereas the occurrence of resistance to other antimicrobial agents remains low. Similar genes, encoding resistance to erythromycin, tetracycline...

  11. Molecular characterization of antimicrobial resistance in enterococci and Escherichia coli isolates from European wild rabbit (Oryctolagus cuniculus).

    Science.gov (United States)

    Silva, Nuno; Igrejas, Gilberto; Figueiredo, Nicholas; Gonçalves, Alexandre; Radhouani, Hajer; Rodrigues, Jorge; Poeta, Patrícia

    2010-09-15

    A total of 44 Escherichia coli and 64 enterococci recovered from 77 intestinal samples of wild European rabbits in Portugal were analyzed for resistance to antimicrobial agents. Resistance in E. coli isolates was observed for ampicillin, tetracycline, sulfamethoxazole/trimethoprim, streptomycin, gentamicin, tobramycin, nalidixic acid, ciprofloxacin and chloramphenicol. None of the E. coli isolates produced extended-spectrum beta-lactamases (ESBLs). The bla(TEM), aadA, aac(3)-II, tet(A) and/or tet(B), and the catA genes were demonstrated in all ampicillin, streptomycin, gentamicin, tetracycline, and chloramphenicol-resistant isolates respectively, and the sul1 and/or sul2 and/or sul3 genes in 4 of 5 sulfamethoxazole/trimethoprim resistant isolates. Of the enterococcal isolates, Enterococcus faecalis was the most prevalent detected species (39 isolates), followed by E. faecium (21 isolates) and E. hirae (4 isolates). More than one-fourth (29.7%) of the isolates were resistant to tetracycline; 20.3% were resistant to erythromycin, 14.1% were resistant to ciprofloxacin and 10.9% were resistant to high-level-kanamycin. Lower level of resistance (streptomycin. No vancomycin-resistance was detected in the enterococci isolates. Resistance genes detected included aac(6')-aph(2''), ant(6)-Ia, tet(M) and/or tet(L) in all gentamicin, streptomycin and tetracycline-resistant isolates respectively. The aph(3')-IIIa gene was detected in 6 of 7 kanamycin-resistant isolates, the erm(B) gene in 11 of 13 erythromycin-resistant isolates and the vat(D) gene in the quinupristin/dalfopristin-resistant E. faecium isolate. This survey showed that faecal bacteria such as E. coli and enterococci of wild rabbits could be a reservoir of antimicrobial resistance genes. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture.

    Science.gov (United States)

    Johnson, Timothy A; Stedtfeld, Robert D; Wang, Qiong; Cole, James R; Hashsham, Syed A; Looft, Torey; Zhu, Yong-Guan; Tiedje, James M

    2016-04-12

    Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundance of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk. Agricultural antibiotic use results in clusters of cooccurring resistance genes that together confer resistance to multiple antibiotics. The use of a single antibiotic could select for an entire suite of resistance genes if

  13. Host range of antibiotic resistance genes in wastewater treatment plant influent and effluent.

    Science.gov (United States)

    Hultman, Jenni; Tamminen, Manu; Pärnänen, Katariina; Cairns, Johannes; Karkman, Antti; Virta, Marko

    2018-04-01

    Wastewater treatment plants (WWTPs) collect wastewater from various sources for a multi-step treatment process. By mixing a large variety of bacteria and promoting their proximity, WWTPs constitute potential hotspots for the emergence of antibiotic resistant bacteria. Concerns have been expressed regarding the potential of WWTPs to spread antibiotic resistance genes (ARGs) from environmental reservoirs to human pathogens. We utilized epicPCR (Emulsion, Paired Isolation and Concatenation PCR) to detect the bacterial hosts of ARGs in two WWTPs. We identified the host distribution of four resistance-associated genes (tetM, int1, qacEΔ1and blaOXA-58) in influent and effluent. The bacterial hosts of these resistance genes varied between the WWTP influent and effluent, with a generally decreasing host range in the effluent. Through 16S rRNA gene sequencing, it was determined that the resistance gene carrying bacteria include both abundant and rare taxa. Our results suggest that the studied WWTPs mostly succeed in decreasing the host range of the resistance genes during the treatment process. Still, there were instances where effluent contained resistance genes in bacterial groups not carrying these genes in the influent. By permitting exhaustive profiling of resistance-associated gene hosts in WWTP bacterial communities, the application of epicPCR provides a new level of precision to our resistance gene risk estimates.

  14. Analytical Performance of Multiplexed Screening Test for 10 Antibiotic Resistance Genes from Perianal Swab Samples.

    Science.gov (United States)

    Walker, G Terrance; Rockweiler, Tony J; Kersey, Rossio K; Frye, Kelly L; Mitchner, Susan R; Toal, Douglas R; Quan, Julia

    2016-02-01

    Multiantibiotic-resistant bacteria pose a threat to patients and place an economic burden on health care systems. Carbapenem-resistant bacilli and extended-spectrum β-lactamase (ESBL) producers drive the need to screen infected and colonized patients for patient management and infection control. We describe a multiplex microfluidic PCR test for perianal swab samples (Acuitas(®) MDRO Gene Test, OpGen) that detects the vancomycin-resistance gene vanA plus hundreds of gene subtypes from the carbapenemase and ESBL families Klebsiella pneumoniae carbapenemase (KPC), New Delhi metallo-β-lactamase (NDM), Verona integron-mediated metallo-β-lactamase (VIM), imipenemase metallo-β-lactamase (IMP), OXA-23, OXA-48, OXA-51, CTX-M-1, and CTX-M-2, regardless of the bacterial species harboring the antibiotic resistance. Analytical test sensitivity per perianal swab is 11-250 CFU of bacteria harboring the antibiotic resistance genes. Test throughput is 182 samples per test run (1820 antibiotic resistance gene family results). We demonstrate reproducible test performance and 100% gene specificity for 265 clinical bacterial organisms harboring a variety of antibiotic resistance genes. The Acuitas MDRO Gene Test is a sensitive, specific, and high-throughput test to screen colonized patients and diagnose infections for several antibiotic resistance genes directly from perianal swab samples, regardless of the bacterial species harboring the resistance genes. © 2015 American Association for Clinical Chemistry.

  15. Pyramiding of three bacterial blight resistance genes for broad-spectrum resistance in deepwater rice variety, Jalmagna.

    Science.gov (United States)

    Pradhan, Sharat Kumar; Nayak, Deepak Kumar; Mohanty, Soumya; Behera, Lambodar; Barik, Saumya Ranjan; Pandit, Elssa; Lenka, Srikanta; Anandan, Annamalai

    2015-12-01

    Jalmagna is a popular deepwater rice variety with farmers of India because of its good yield under waterlogged condition. However, the variety is highly susceptible to bacterial blight (BB) disease. The development of resistant cultivars has been the most effective and economical strategy to control the disease under deepwater situation. Three resistance genes (xa5 + xa13 + Xa21) were transferred from Swarna BB pyramid line, using a marker-assisted backcrossing (MAB) breeding strategy, into the BB-susceptible elite deepwater cultivar, Jalmagna. Molecular marker integrated backcross breeding program has been employed to transfer three major BB resistance genes (Xa21, xa13 and xa5) into Jalmagna variety. During backcross generations, markers closely linked to the three genes were used to select plants possessing these resistance genes and markers polymorphic between donor and recurrent parent were used to select plants that have maximum contribution from the recurrent parent genome. A selected BC3F1 plant was selfed to generate homozygous BC3F2 plants with different combinations of BB resistance genes. The three-gene pyramid and two gene pyramid lines exhibited high levels of resistance against the BB pathogen. Under conditions of BB infection, the three-gene pyramided lines exhibited a significant yield advantage over Jalmagna. The selected pyramided lines showed all agro-morphologic traits of Jalmagna without compromising the yield. The three major BB resistance genes pyramided lines exhibited high level of resistance and are expected to provide durable resistance under deep water situation where control through chemicals is less effective. High similarity in agro-morphologic traits and absence of antagonistic effects for yield and other characters were observed in the best pyramided lines.

  16. Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China

    Energy Technology Data Exchange (ETDEWEB)

    Tao Ran [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Ying Guangguo, E-mail: guangguo.ying@gmail.co [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Su Haochang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Zhou Hongwei [Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, 1838 North Guangzhou Street, Baiyun District, Guangzhou 510515 (China); Sidhu, Jatinder P.S. [CSIRO Land and Water, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia QLD 4067 (Australia)

    2010-06-15

    This study investigated antibiotic resistance profiles and tetracycline resistance genes in Enterobacteriaceae family isolates from the Pearl rivers. The Enterobacteriaceae isolates were tested for susceptibility to seven antibiotics ampicillin, chloramphenicol, ciprofloxacin, levofloxacin, sulphamethoxazole/trimethoprim, tetracycline and trimethoprim. In Liuxi reservoir, with an exception to ampicillin resistant strains (11%) no other antibiotic resistance bacterial strains were detected. However, multiple drug resistance in bacterial isolates from the other sites of Pearl rivers was observed which is possibly due to sewage discharge and input from other anthropogenic sources along the rivers. Four tetracycline resistance genes tet A, tet B, tet C and tet D were detected in the isolates from the rivers. The genes tet A and tet B were widely detected with the detection frequencies of 43% and 40% respectively. Ciprofloxacin and levofloxacin resistant enteric bacteria were also isolated from the pig and duck manures which suggest a wider distribution of human specific drugs in the environment. This investigation provided a baseline data on antibiotic resistance profiles and tetracycline resistance genes in the Pearl rivers delta. - High rates of antibiotic resistance in Enterobacteriaceae from river water are attributed to wastewater contamination.

  17. Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China

    International Nuclear Information System (INIS)

    Tao Ran; Ying Guangguo; Su Haochang; Zhou Hongwei; Sidhu, Jatinder P.S.

    2010-01-01

    This study investigated antibiotic resistance profiles and tetracycline resistance genes in Enterobacteriaceae family isolates from the Pearl rivers. The Enterobacteriaceae isolates were tested for susceptibility to seven antibiotics ampicillin, chloramphenicol, ciprofloxacin, levofloxacin, sulphamethoxazole/trimethoprim, tetracycline and trimethoprim. In Liuxi reservoir, with an exception to ampicillin resistant strains (11%) no other antibiotic resistance bacterial strains were detected. However, multiple drug resistance in bacterial isolates from the other sites of Pearl rivers was observed which is possibly due to sewage discharge and input from other anthropogenic sources along the rivers. Four tetracycline resistance genes tet A, tet B, tet C and tet D were detected in the isolates from the rivers. The genes tet A and tet B were widely detected with the detection frequencies of 43% and 40% respectively. Ciprofloxacin and levofloxacin resistant enteric bacteria were also isolated from the pig and duck manures which suggest a wider distribution of human specific drugs in the environment. This investigation provided a baseline data on antibiotic resistance profiles and tetracycline resistance genes in the Pearl rivers delta. - High rates of antibiotic resistance in Enterobacteriaceae from river water are attributed to wastewater contamination.

  18. Plasmid metagenomics reveals multiple antibiotic resistance gene classes among the gut microbiomes of hospitalised patients

    DEFF Research Database (Denmark)

    Jitwasinkul, Tossawan; Suriyaphol, Prapat; Tangphatsornruang, Sithichoke

    2016-01-01

    Antibiotic resistance genes are rapidly spread between pathogens and the normal flora, with plasmids playing an important role in their circulation. This study aimed to investigate antibiotic resistance plasmids in the gut microbiome of hospitalised patients. Stool samples were collected from seven...... sequences (using >80% alignment length as the cut-off), and ResFinder was used to classify the antibiotic resistance gene pools. Plasmid replicon modules were used for plasmid typing. Forty-six genes conferring resistance to several classes of antibiotics were identified in the stool samples. Several...... antibiotic resistance genes were shared by the patients; interestingly, most were reported previously in food animals and healthy humans. Four antibiotic resistance genes were found in the healthy subject. One gene (aph3-III) was identified in the patients and the healthy subject and was related...

  19. The Co-Selection of Fluoroquinolone Resistance Genes in the Gut Flora of Vietnamese Children

    NARCIS (Netherlands)

    Vien, Le Thi Minh; Minh, Ngo Ngoc Quang; Thuong, Tang Chi; Khuong, Huynh Duy; Nga, Tran Vu Thieu; Thompson, Corinne; Campbell, James I.; de Jong, Menno; Farrar, Jeremy J.; Schultsz, Constance; van Doorn, H. Rogier; Baker, Stephen

    2012-01-01

    Antimicrobial consumption is one of the major contributing factors facilitating the development and maintenance of bacteria exhibiting antimicrobial resistance. Plasmid-mediated quinolone resistance (PMQR) genes, such as the qnr family, can be horizontally transferred and contribute to reduced

  20. Strategy of gene silencing in cassava for validation of resistance genes

    International Nuclear Information System (INIS)

    Cortes, Simon; Lopez, Camilo

    2010-01-01

    Cassava (Manihot esculenta) is a major source of food for more than 1000 million people in the world and constitutes an important staple crop. Cassava bacterial blight, caused by the gram negative bacterium Xanthomonas axonopodis pv. manihotis, is one of the most important constraints for this crop. A candidate resistance gene against cassava bacterial blight, named RXam1, has been identified previously. In this work, we employed the gene silencing approach using the African cassava mosaic virus (ACMV) to validate the function of the RXam1 gene. We used as positive control the su gen, which produce photo blanching in leaves when is silenced. Plants from the SG10735 variety were bombardment with the ACMV-A-SU+ACMV-B y ACMV-A-RXam1+ACMV-B constructions. The silencing efficiency employing the su gene was low, only one of seven plants showed photo blanching. In the putative silenced plants for the RXam1 gene, no presence of siRNAs corresponding to RXam1 was observed; although a low diminution of the RXam1 gene expression was obtained. The growth curves for the Xam strain CIO136 in cassava plants inoculated showing a little but no significance difference in the susceptibility in the silenced plants compared to not silenced

  1. Antimicrobial Resistance and Resistance Genes in Aerobic Bacteria Isolated from Pork at Slaughter

    DEFF Research Database (Denmark)

    Li, Lili; Olsen, Rikke Heidemann; Ye, Lei

    2016-01-01

    The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram......-negative bacteria (92.2%) and gram-positive bacteria (7.8%). High levels of resistance were detected to tetracycline, trimethoprim-sulfamethoxazole, and ampicillin (36.2 to 54.3%), and lower levels were detected to nitrofurantoin, cefotaxime, gentamicin, ciprofloxacin, and chloramphenicol (7.8 to 29.2%). Across...... species, genes conferring antimicrobial resistance were observed with the following frequencies: bla TEM, 40.7%; bla CMY-2, 15.2%; bla CTX-M, 11.5%; sul2, 27.2%; sul1, 14.4%; tet(A), 5.4%;tet(L), 5.4%; tet(M), 5.0%; tet(E), 3.7%; tet(C), 3.3%; tet(S), 2.5%; and tet(K), 0.8%. Various antimicrobial...

  2. Candidate genes for cross-resistance against DNA-damaging drugs

    DEFF Research Database (Denmark)

    Wittig, Rainer; Nessling, Michelle; Will, Rainer D

    2002-01-01

    Drug resistance of tumor cells leads to major drawbacks in the treatment of cancer. To identify candidate genes for drug resistance, we compared the expression patterns of the drug-sensitive human malignant melanoma cell line MeWo and three derived sublines with acquired resistance to the DNA...... as several apoptosis-related genes, in particular STK17A and CRYAB. As MPP1 and CRYAB are also among the 14 genes differentially expressed in all three of the drug-resistant sublines, they represent the strongest candidates for resistance against DNA-damaging drugs....

  3. Bacterial plasmid-mediated quinolone resistance genes in aquatic environments in China.

    Science.gov (United States)

    Yan, Lei; Liu, Dan; Wang, Xin-Hua; Wang, Yunkun; Zhang, Bo; Wang, Mingyu; Xu, Hai

    2017-01-17

    Emerging antimicrobial resistance is a major threat to human's health in the 21 st century. Understanding and combating this issue requires a full and unbiased assessment of the current status on the prevalence of antimicrobial resistance genes and their correlation with each other and bacterial groups. In aquatic environments that are known reservoirs for antimicrobial resistance genes, we were able to reach this goal on plasmid-mediated quinolone resistance (PMQR) genes that lead to resistance to quinolones and possibly also to the co-emergence of resistance to β-lactams. Novel findings were made that qepA and aac-(6')-Ib genes that were previously regarded as similarly abundant with qnr genes are now dominant among PMQR genes in aquatic environments. Further statistical analysis suggested that the correlation between PMQR and β-lactam resistance genes in the environment is still weak, that the correlations between antimicrobial resistance genes could be weakened by sufficient wastewater treatment, and that the prevalence of PMQR has been implicated in environmental, pathogenic, predatory, anaerobic, and more importantly, human symbiotic bacteria. This work provides a comprehensive analysis of PMQR genes in aquatic environments in Jinan, China, and provides information with which combat with the antimicrobial resistance problem may be fought.

  4. Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste.

    Science.gov (United States)

    Agga, Getahun E; Arthur, Terrance M; Durso, Lisa M; Harhay, Dayna M; Schmidt, John W

    2015-01-01

    This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact" environments (an urban lake and a relict prairie). Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR) Gram-negative (Escherichia coli and Salmonella enterica) and Gram-positive (enterococci) bacteria were determined from individual samples (n = 174). The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44) by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine), low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P resistant bacteria and antimicrobial resistance genes exist in cattle, human, and swine waste streams, but a higher diversity of antimicrobial resistance genes are present

  5. Mutations in the rpsL gene are involved in streptomycin resistance in Campylobacter coli.

    Science.gov (United States)

    Olkkola, Satu; Juntunen, Pekka; Heiska, Helmi; Hyytiäinen, Heidi; Hänninen, Marja-Liisa

    2010-06-01

    To characterize the mechanisms of streptomycin (STR) resistance in Campylobacter coli, we chose 17 isolates that were resistant to STR, erythromycin (ERY), or both, and the putative STR resistance target genes rpsL, rrs, and gidB were analyzed for mutations. The presence of the aadE gene encoding aminoglycoside 6-adenylyltransferase was also evaluated. To reveal putative connection between ERY and STR resistance mechanisms, 13 C. coli isolates initially susceptible to STR and ERY were exposed to STR, and resistant variants were characterized. We also assessed the development of ERY resistance with a similar method. Finally, the effect of the putative CmeABC efflux pump inhibitor phenyl-arginine-beta-naphthylamine on STR resistance was tested. Our studies showed an association between mutations in the rpsL gene and STR resistance in C. coli. Further, mutations obtained in vitro were more diverse than those occurring in vivo. However, we observed no resistance associated mutations in the other genes studied, and selection with STR did not result in variants resistant to ERY and vice versa. None of the isolates harbored the aadE gene, and no differences in STR minimum inhibitory concentration levels were detected in the presence or absence of phenyl-arginine-beta-naphthylamine. In conclusion, we found that STR resistance was associated with mutations in the rpsL gene, but no obvious association between STR and ERY resistance mechanisms was found in C. coli.

  6. Antimicrobial resistance in faecal enterococci and Escherichia coli isolates recovered from Iberian wolf.

    Science.gov (United States)

    Gonçalves, A; Igrejas, G; Radhouani, H; Correia, S; Pacheco, R; Santos, T; Monteiro, R; Guerra, A; Petrucci-Fonseca, F; Brito, F; Torres, C; Poeta, P

    2013-04-01

    The aim of this study was to report the antimicrobial resistance, the molecular mechanisms associated and the detection of virulence determinants within faecal Enterococcus spp. and Escherichia coli isolates of Iberian wolf. Enterococci (n = 227) and E. coli (n = 195) isolates were obtained from faecal samples of Iberian wolf (Canis lupus signatus). High rates of resistance were detected for tetracycline and erythromycin among the enterococci isolates, and most of resistant isolates harboured the tet(M) and/or tet(L) and erm(B) genes, respectively. The blaTEM, tet(A) and/or tet(B), and aadA or strA-strB genes were detected among most ampicillin-, tetracycline- or streptomycin-resistant E. coli isolates, respectively. E. coli isolates were ascribed to phylogroups A (n = 56), B1 (91), B2 (13) and D (35). The occurrence of resistant enterococci and E. coli isolates in the faecal flora of Iberian wolf, including the presence of resistant genes in integrons, and virulence determinants was showed in this study. Iberian wolf might act as reservoir of certain resistance genes that could be spread throughout the environment. © 2013 The Society for Applied Microbiology.

  7. Resistance Genes and Genetic Elements Associated with Antibiotic Resistance in Clinical and Commensal Isolates of Streptococcus salivarius.

    Science.gov (United States)

    Chaffanel, Fanny; Charron-Bourgoin, Florence; Libante, Virginie; Leblond-Bourget, Nathalie; Payot, Sophie

    2015-06-15

    The diversity of clinical (n = 92) and oral and digestive commensal (n = 120) isolates of Streptococcus salivarius was analyzed by multilocus sequence typing (MLST). No clustering of clinical or commensal strains can be observed in the phylogenetic tree. Selected strains (92 clinical and 46 commensal strains) were then examined for their susceptibilities to tetracyclines, macrolides, lincosamides, aminoglycosides, and phenicol antibiotics. The presence of resistance genes tet(M), tet(O), erm(A), erm(B), mef(A/E), and catQ and associated genetic elements was investigated by PCR, as was the genetic linkage of resistance genes. High rates of erythromycin and tetracycline resistance were observed among the strains. Clinical strains displayed either the erm(B) (macrolide-lincosamide-streptogramin B [MLSB] phenotype) or mef(A/E) (M phenotype) resistance determinant, whereas almost all the commensal strains harbored the mef(A/E) resistance gene, carried by a macrolide efflux genetic assembly (MEGA) element. A genetic linkage between a macrolide resistance gene and genes of Tn916 was detected in 23 clinical strains and 5 commensal strains, with a predominance of Tn3872 elements (n = 13), followed by Tn6002 (n = 11) and Tn2009 (n = 4) elements. Four strains harboring a mef(A/E) gene were also resistant to chloramphenicol and carried a catQ gene. Sequencing of the genome of one of these strains revealed that these genes colocalized on an IQ-like element, as already described for other viridans group streptococci. ICESt3-related elements were also detected in half of the isolates. This work highlights the potential role of S. salivarius in the spread of antibiotic resistance genes both in the oral sphere and in the gut. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. [Advances in molecular mechanisms of bacterial resistance caused by stress-induced transfer of resistance genes--a review].

    Science.gov (United States)

    Sun, Dongchang; Wang, Bing; Zhu, Lihong

    2013-07-04

    The transfer of resistance gene is one of the most important causes of bacterial resistance. Recent studies reveal that stresses induce the transfer of antibiotic resistance gene through multiple mechanisms. DNA damage stresses trigger bacterial SOS response and induce the transfer of resistance gene mediated by conjugative DNA. Antibiotic stresses induce natural bacterial competence for transformation in some bacteria which lack the SOS system. In addition, our latest studies show that the general stress response regulator RpoS regulates a novel type of resistance gene transfer which is mediated by double-stranded plasmid DNA and occurs exclusively on the solid surface. In this review, we summarized recent advances in SOS dependent and independent stress-induced DNA transfer which is mediated by conjugation and transformation respectively, and the transfer of double-stranded plasmid DNA on the solid surface which is regulated by RpoS. We propose that future work should address how stresses activate the key regulators and how these regulators control the expression of gene transfer related genes. Answers to the above questions would pave the way for searching for candidate targets for controlling bacterial resistance resulted from the transfer of antibiotic genes.

  9. Antibiotic resistance genes in anaerobic bacteria isolated from primary dental root canal infections.

    Science.gov (United States)

    Rôças, Isabela N; Siqueira, José F

    2012-12-01

    Fourty-one bacterial strains isolated from infected dental root canals and identified by 16S rRNA gene sequence were screened for the presence of 14 genes encoding resistance to beta-lactams, tetracycline and macrolides. Thirteen isolates (32%) were positive for at least one of the target antibiotic resistance genes. These strains carrying at least one antibiotic resistance gene belonged to 11 of the 26 (42%) infected root canals sampled. Two of these positive cases had two strains carrying resistance genes. Six out of 7 Fusobacterium strains harbored at least one of the target resistance genes. One Dialister invisus strain was positive for 3 resistance genes, and 4 other strains carried two of the target genes. Of the 6 antibiotic resistance genes detected in root canal strains, the most prevalent were blaTEM (17% of the strains), tetW (10%), and ermC (10%). Some as-yet-uncharacterized Fusobacterium and Prevotella isolates were positive for blaTEM, cfxA and tetM. Findings demonstrated that an unexpectedly large proportion of dental root canal isolates, including as-yet-uncharacterized strains previously regarded as uncultivated phylotypes, can carry antibiotic resistance genes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Mining microbial metatranscriptomes for expression of antibiotic resistance genes under natural conditions

    Science.gov (United States)

    Versluis, Dennis; D'Andrea, Marco Maria; Ramiro Garcia, Javier; Leimena, Milkha M.; Hugenholtz, Floor; Zhang, Jing; Öztürk, Başak; Nylund, Lotta; Sipkema, Detmer; Schaik, Willem Van; de Vos, Willem M.; Kleerebezem, Michiel; Smidt, Hauke; Passel, Mark W. J. Van

    2015-07-01

    Antibiotic resistance genes are found in a broad range of ecological niches associated with complex microbiota. Here we investigated if resistance genes are not only present, but also transcribed under natural conditions. Furthermore, we examined the potential for antibiotic production by assessing the expression of associated secondary metabolite biosynthesis gene clusters. Metatranscriptome datasets from intestinal microbiota of four human adults, one human infant, 15 mice and six pigs, of which only the latter have received antibiotics prior to the study, as well as from sea bacterioplankton, a marine sponge, forest soil and sub-seafloor sediment, were investigated. We found that resistance genes are expressed in all studied ecological niches, albeit with niche-specific differences in relative expression levels and diversity of transcripts. For example, in mice and human infant microbiota predominantly tetracycline resistance genes were expressed while in human adult microbiota the spectrum of expressed genes was more diverse, and also included β-lactam, aminoglycoside and macrolide resistance genes. Resistance gene expression could result from the presence of natural antibiotics in the environment, although we could not link it to expression of corresponding secondary metabolites biosynthesis clusters. Alternatively, resistance gene expression could be constitutive, or these genes serve alternative roles besides antibiotic resistance.

  11. Spatial patterns of Antimicrobial Resistance Genes in Danish Pig Farms

    DEFF Research Database (Denmark)

    Birkegård, Anna Camilla; Ersbøll, A. K.; Hisham Beshara Halasa, Tariq

    2016-01-01

    antimicrobial resistance genes, ermB, ermF, sulI, sulII, tet(M), tet(O) and tet(W), was quantified by a high-throughput qPCR. It was evaluated whether the sample method resulted in a study population representative of Danish pig farms with finishers where it was found that the study population was biased......Samples from 687 Danish pig farms were collected at five finisher slaughterhouses in February and March 2015. Faecal samples from five pigs per farm were collected randomly at the slaughter line and pooled into one sample per farm. DNA was extracted from the pooled samples and the level of seven...

  12. Distribution of genes encoding resistance to streptogramin A and related compounds among staphylococci resistant to these antibiotics.

    Science.gov (United States)

    Allignet, J; Aubert, S; Morvan, A; el Solh, N

    1996-01-01

    The levels of resistance to pristinamycin (Pt) and to its major constituents, pristinamycin IIA and IB (PIIA and PIB, respectively; classified as streptogramins A and B, respectively) were determined for 126 staphylococcal isolates. The results suggest tentative susceptibility breakpoints of or = 4 micrograms of PIIA per ml were investigated for the presence of staphylococcal genes encoding resistance to PIIA (vga, vat, and vatB) and PIB (vgb). None of these genes was found in the 4 isolates inhibited by 4 micrograms of PIIA per ml or in 4 of the other 52 isolates tested. The remaining 48 isolates harbored plasmids carrying vatB and vga or combinations of genes (vga-vat-vgb or vga-vat). The absence of any known PIIA resistance gene from the four Staphylococcus aureus isolates inhibited by > or = 8 micrograms of PIIA per ml suggests that there is at least one PIIA resistance mechanism in staphylococci that has not yet been characterized. PMID:8913457

  13. Genetic elements associated with antimicrobial resistance among avian pathogenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Amal Awad

    2016-11-01

    Full Text Available Abstract Background Avian-pathogenic Escherichia coli (APEC are pathogenic strains of E. coli that are responsible for one of the most predominant bacterial disease affecting poultry worldwide called avian colibacillosis. This study describes the genetic determinants implicated in antimicrobial resistance among APEC isolated from different broiler farms in Egypt. Methods A total of 116 APEC were investigated by serotyping, antimicrobial resistance patterns to 10 antimicrobials, and the genetic mechanisms underlying the antimicrobial-resistant phenotypes. Results Antibiogram results showed that the highest resistance was observed for ampicillin, tetracycline, nalidixic acid, and chloramphenicol. The detected carriage rate of integron was 29.3% (34/116. Further characterization of gene cassettes revealed the presence gene cassettes encoding resistance to trimethoprim (dfrA1, dfrA5, dfrA7, dfrA12, streptomycin/spectinomycin (aadA1, aadA2, aadA5, aadA23, and streptothricin (sat2. To our knowledge, this the first description of the presence of aadA23 in APEC isolates. Analysis of other antimicrobial resistance types not associated with integrons revealed the predominance of resistance genes encoding resistance to tetracycline (tetA and tetB, ampicillin (bla TEM, chloramphenicol (cat1, kanamycin (aphA1, and sulphonamide (sul1 and sul2. Among ciprofloxacin-resistant isolates, the S83L mutation was the most frequently substitution observed in the quinolone resistance-determining region of gyrA (56.3%. The bla TEM and bla CTX−M−1 genes were the most prevalent among APEC isolates producing extended-spectrum beta-lactamase (ESβL. Conclusions These findings provided important clues about the role of integron-mediated resistance genes together with other independent resistance genes and chromosomal mutations in shaping the epidemiology of antimicrobial resistance in E. coli isolates from poultry farms in Egypt.

  14. Genetic elements associated with antimicrobial resistance among avian pathogenic Escherichia coli.

    Science.gov (United States)

    Awad, Amal; Arafat, Nagah; Elhadidy, Mohamed

    2016-11-25

    Avian-pathogenic Escherichia coli (APEC) are pathogenic strains of E. coli that are responsible for one of the most predominant bacterial disease affecting poultry worldwide called avian colibacillosis. This study describes the genetic determinants implicated in antimicrobial resistance among APEC isolated from different broiler farms in Egypt. A total of 116 APEC were investigated by serotyping, antimicrobial resistance patterns to 10 antimicrobials, and the genetic mechanisms underlying the antimicrobial-resistant phenotypes. Antibiogram results showed that the highest resistance was observed for ampicillin, tetracycline, nalidixic acid, and chloramphenicol. The detected carriage rate of integron was 29.3% (34/116). Further characterization of gene cassettes revealed the presence gene cassettes encoding resistance to trimethoprim (dfrA1, dfrA5, dfrA7, dfrA12), streptomycin/spectinomycin (aadA1, aadA2, aadA5, aadA23), and streptothricin (sat2). To our knowledge, this the first description of the presence of aadA23 in APEC isolates. Analysis of other antimicrobial resistance types not associated with integrons revealed the predominance of resistance genes encoding resistance to tetracycline (tetA and tetB), ampicillin (bla TEM ), chloramphenicol (cat1), kanamycin (aphA1), and sulphonamide (sul1 and sul2). Among ciprofloxacin-resistant isolates, the S83L mutation was the most frequently substitution observed in the quinolone resistance-determining region of gyrA (56.3%). The bla TEM and bla CTX-M-1 genes were the most prevalent among APEC isolates producing extended-spectrum beta-lactamase (ESβL). These findings provided important clues about the role of integron-mediated resistance genes together with other independent resistance genes and chromosomal mutations in shaping the epidemiology of antimicrobial resistance in E. coli isolates from poultry farms in Egypt.

  15. Class 1 and 2 integrons, sul resistance genes and antibiotic resistance in Escherichia coli isolated from Dongjiang River, South China

    International Nuclear Information System (INIS)

    Su Haochang; Ying Guangguo; Tao Ran; Zhang Ruiquan; Zhao Jianliang; Liu Yousheng

    2012-01-01

    Antibiotic susceptibility, detection of sul gene types and presence of class 1, 2 and 3 integrons and gene cassettes using PCR assays were investigated in 3456 Escherichia coli isolates obtained from 38 sampling sites of the Dongjiang River catchment in the dry and wet seasons. 89.1% of the isolates were resistant and 87.5% showed resistance to at least three antibiotics. sul2 was detected most frequently in 89.2% of 1403 SXT-resistant isolates. The presence of integrons (class 1 and 2) was frequently observed (82.3%) while no class 3 integron was found. In these integrons, 21 resistance genes of 14 gene cassette arrays and 10 different families of resistance genes were identified. Three gene cassette arrays, aac(6')-Ib-cr-aar-3-dfrA27-aadA16, aacA4-catB3-dfrA1 and aadA2-lnuF, were detected for the first time in surface water. The results showed that bacterial resistance in the catchment was seriously influenced by human activities, especially discharge of wastewater. Highlights: ► Antibiotic resistance was investigated for a river catchment of southern China. ► 87.5% of E coli isolates showed resistance to at least three antibiotics. ► The presence of integrons (class 1 and 2) was frequently observed (82.3%). ► Bacterial resistance in the catchment was seriously influenced by human activities. - Bacterial resistance to antibiotics in a catchment is related to the discharge of wastewater into the aquatic environment.

  16. The exploitation of obsidian in the Central Plateau of Santa Cruz, Argentina: Results from La María and Cerro Tres Tetas and a regional perspective

    OpenAIRE

    Manuel Enrique Cueto; Ariel David Frank; Fabiana Skarbun

    2016-01-01

    La María and Cerro Tres Tetas archaeological localities are located in the Central Plateau, in the province of Santa Cruz, Argentine Patagonia. This area presents abundant lithic raw materials of very good quality for knapping including flint, chalcedony and silicified wood. These raw materials were used by the inhabitants of the region since the end of the Pleistocene until recent historical times. Besides, we have recorded the exploitation of exotic stones in low proportions at the archaeol...

  17. Streptomycin and chloramphenicol resistance genes in Escherichia coli isolates from cattle, pigs, and chicken in Kenya.

    Science.gov (United States)

    Kikuvi, G M; Schwarz, S; Ombui, J N; Mitema, E S; Kehrenberg, C

    2007-01-01

    The aims of this study were to determine the genetic basis of streptomycin and chloramphenicol resistance in 30 Escherichia coli isolates from food animals in Kenya and the role of plasmids in the spread of the resistance. Seven of the 29 streptomycin-resistant isolates harbored both the strA and strB genes. Twenty-one of isolates had the strA, strB, and aadA1 genes. The strA gene was disrupted by a functional trimethoprim gene, dfrA14 in 10 of the 21 isolates harboring the three streptomycin resistance genes. Physical linkage of intact strA and sul2 genes was found in two different plasmids from four isolates. Linkage of cassette-borne aadA1 and dfrA1 genes in class 1 integrons was found in two of the isolates. Chloramphenicol resistance was due to the gene catA1 in all the chloramphenicol resistant isolates. The strB, strA, and catA1 genes were transferable by conjugation and this points to the significance of conjugative resistance plasmids in the spread and persistence of streptomycin and chloramphenicol resistance in food animals in Kenya.

  18. Stacking of blast resistance orthologue genes in susceptible indica rice line improves resistance againstMagnaporthe oryzae.

    Science.gov (United States)

    Kumari, Mandeep; Devanna, B N; Singh, Pankaj Kumar; Rajashekara, H; Sharma, Vinay; Sharma, Tilak Raj

    2018-01-01

    The emergence of new strains of Magnaporthe oryzae ( M. oryzae ) is associated with recurrent failure of resistance response mediated by single resistance ( R ) gene in rice. Therefore, stacking or combining of multiple R genes could improve the durability of resistance against multiple strains of M. oryzae . To achieve this, in the present study, intragenic stacking of rice blast resistance orthologue genes Pi54 and Pi54rh was performed through co-transformation approach. Both these genes were expressed under the control of independent promoters and blast susceptible indica rice line IET17021 was used for transformation. The highly virulent M. oryzae strain Mo-ei-ger1 that could knock down most of the major single blast R genes including Pi54 and exhibiting 89% virulence spectrum was used for phenotypic analysis. The stacked transgenic IET17021 lines ( Pi54  +  Pi54rh ) have shown complete resistance to Mo-ei-ger1 strain in comparison to non-transgenic lines. These two R gene stacked indica transgenic lines could serves as a novel germplasm for rice blast resistance breeding programmes.

  19. Who possesses drug resistance genes in the aquatic environment?: sulfamethoxazole (SMX) resistance genes among the bacterial community in water environment of Metro-Manila, Philippines

    OpenAIRE

    Suzuki, Satoru; Ogo, Mitsuko; Miller, Todd W.; Shimizu, Akiko; Takada, Hideshige; Siringan, Maria Auxilia T.

    2013-01-01

    Recent evidence has shown that antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are ubiquitous in natural environments, including sites considered pristine. To understand the origin of ARGs and their dynamics, we must first define their actual presence in the natural bacterial assemblage. Here we found varying distribution profiles of sul genes in “colony forming bacterial assemblages” and “natural bacterial assemblages.” Our monitoring for antibiotic contamination r...

  20. Antibiotic Resistant Bacteria And Their Associated Resistance Genes in a Conventional Municipal Wastewater Treatment Plant

    KAUST Repository

    Aljassim, Nada I.

    2013-12-01

    With water scarcity as a pressing issue in Saudi Arabia and other Middle Eastern countries, the treatment and reuse of municipal wastewater is increasingly being used as an alternative water source to supplement country water needs. Standards are in place to ensure a safe treated wastewater quality, however they do not regulate pathogenic bacteria and emerging contaminants. Information is lacking on the levels of risk to public health associated with these factors, the efficiency of conventional treatment strategies in removing them, and on wastewater treatment in Saudi Arabia in general. In this study, a municipal wastewater treatment plant in Saudi Arabia is investigated to assess the efficiency of conventional treatment in meeting regulations and removing pathogens and emerging contaminants. The study found pathogenic bacterial genera, antibiotic resistance genes and antibiotic resistant bacteria, many of which were multi-resistant in plant discharges. It was found that although the treatments are able to meet traditional quality guidelines, there remains a risk from the discussed contaminants with wastewater reuse. A deeper understanding of this risk, and suggestions for more thorough guidelines and monitoring are needed.

  1. Risk assessment for Helicoverpa zea (Lepidoptera: Noctuidae) resistance on dual-gene versus single-gene corn.

    Science.gov (United States)

    Edwards, Kristine T; Caprio, Michael A; Allen, K Clint; Musser, Fred R

    2013-02-01

    Recent Environmental Protection Agency (EPA) decisions regarding resistance management in Bt-cropping systems have prompted concern in some experts that dual-gene Bt-corn (CrylA.105 and Cry2Ab2 toxins) may result in more rapid selection for resistance in Helicoverpa zea (Boddie) than single-gene Bacillus thuringiensis (Bt)-corn (CrylAb toxin). The concern is that Bt-toxin longevity could be significantly reduced with recent adoption of a natural refuge for dual-gene Bt-cotton (CrylAc and Cry2Ab2 toxins) and concurrent reduction in dual-gene corn refuge from 50 to 20%. A population genetics framework that simulates complex landscapes was applied to risk assessment. Expert opinions on effectiveness of several transgenic corn and cotton varieties were captured and used to assign probabilities to different scenarios in the assessment. At least 350 replicate simulations with randomly drawn parameters were completed for each of four risk assessments. Resistance evolved within 30 yr in 22.5% of simulations with single-gene corn and cotton with no volunteer corn. When volunteer corn was added to this assessment, risk of resistance evolving within 30 yr declined to 13.8%. When dual-gene Bt-cotton planted with a natural refuge and single-gene corn planted with a 50% structured refuge was simulated, simultaneous resistance to both toxins never occurred within 30 yr, but in 38.5% of simulations, resistance evolved to toxin present in single-gene Bt-corn (CrylAb). When both corn and cotton were simulated as dual-gene products, cotton with a natural refuge and corn with a 20% refuge, 3% of simulations evolved resistance to both toxins simultaneously within 30 yr, while 10.4% of simulations evolved resistance to CrylAb/c toxin.

  2. Could bacteriophages transfer antibiotic resistance genes from environmental bacteria to human-body associated bacterial populations?

    Science.gov (United States)

    Muniesa, Maite; Colomer-Lluch, Marta; Jofre, Juan

    2013-07-01

    Environments without any contact with anthropogenic antibiotics show a great abundance of antibiotic resistance genes that use to be chromosomal and are part of the core genes of the species that harbor them. Some of these genes are shared with human pathogens where they appear in mobile genetic elements. Diversity of antibiotic resistance genes in non-contaminated environments is much greater than in human and animal pathogens, and in environments contaminated with antibiotic from anthropogenic activities. This suggests the existence of some bottleneck effect for the mobilization of antibiotic resistance genes among different biomes. Bacteriophages have characteristics that make them suitable vectors between different biomes, and as well for transferring genes from biome to biome. Recent metagenomic studies and detection of bacterial genes by genomic techniques in the bacteriophage fraction of different microbiota provide indirect evidences that the mobilization of genes mediated by phages, including antibiotic resistance genes, is far more relevant than previously thought. Our hypothesis is that bacteriophages might be of critical importance for evading one of the bottlenecks, the lack of ecological connectivity that modulates the pass of antibiotic resistance genes from natural environments such as waters and soils, to animal and human microbiomes. This commentary concentrates on the potential importance of bacteriophages in transferring resistance genes from the environment to human and animal body microbiomes, but there is no doubt that transduction occurs also in body microbiomes.

  3. Tetracycline-resistant coliforms in the effluent of the main sewage treatment plant in Hamilton, Ontario - do they have a common ancestral strain?

    Science.gov (United States)

    Sorger, George J; Quinn, James S

    2010-07-01

    Sewage, a major source of bacterial contamination of the environment, can be an important health hazard. The presence of antibiotic-resistant bacteria in sewage can exacerbate this problem. The sources of antibiotic-resistant bacteria in sewage are, for this reason, worth identifying and addressing. The bacterial flora in the effluent of the Woodward Avenue Wastewater Treatment Plant (WAWTP) in Hamilton, Ontario, Canada, contains many antibiotic-resistant coliforms. Here we ask, are the antibiotic resistance genes in the coliforms in the effluent of WAWTP descended from a recent common ancestor strain? If so, the source could be identified and eliminated. If, on the other hand, the antibiotic resistance genes in the bacterial flora of the WAWTP have more than one origin, identification and elimination of the source(s) could be difficult. There was considerable diversity of antibiotic resistance patterns and antibiotic resistance genes among the effluent and influent coliform isolates of the WAWTP, suggesting multiple genetic ancestry. The patterns of horizontal transmissibility and sequence differences in the genes tetA and tetE among these coliform isolates also suggest that they have no one predominant ancestral strain. Using the same logic, the evidence presented here is not compatible with a single ancestral origin of the antibiotic resistance genes in the isolates described herein.

  4. Dissection of Resistance Genes to Pseudomonas syringae pv. phaseolicola in UI3 Common Bean Cultivar.

    Science.gov (United States)

    González, Ana M; Godoy, Luís; Santalla, Marta

    2017-11-23

    Few quantitative trait loci have been mapped for resistance to Pseudomonas syringae pv. phaseolicola in common bean. Two F₂ populations were developed from the host differential UI3 cultivar. The objective of this study was to further characterize the resistance to races 1, 5, 7 and 9 of Psp included in UI3. Using a QTL mapping approach, 16 and 11 main-effect QTLs for pod and primary leaf resistance were located on LG10, explaining up to 90% and 26% of the phenotypic variation, respectively. The homologous genomic region corresponding to primary leaf resistance QTLs detected tested positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL), Natural Resistance Associated Macrophage (NRAMP) and Pentatricopeptide Repeat family (PPR) proteins. It is worth noting that the main effect QTLs for resistance in pod were located inside a 3.5 Mb genomic region that included the Phvul.010G021200 gene, which encodes a protein that has the highest sequence similarity to the RIN4 gene of Arabidopsis, and can be considered an important candidate gene for the organ-specific QTLs identified here. These results support that resistance to Psp from UI3 might result from the immune response activated by combinations of R proteins, and suggest the guard model as an important mechanism in pod resistance to halo blight. The candidate genes identified here warrant functional studies that will help in characterizing the actual defense gene(s) in UI3 genotype.

  5. Sulfonamide-resistant bacteria and their resistance genes in soils fertilized with manures from Jiangsu Province, Southeastern China.

    Directory of Open Access Journals (Sweden)

    Na Wang

    Full Text Available Antibiotic-resistant bacteria and genes are recognized as new environmental pollutants that warrant special concern. There were few reports on veterinary antibiotic-resistant bacteria and genes in China. This work systematically analyzed the prevalence and distribution of sulfonamide resistance genes in soils from the environments around poultry and livestock farms in Jiangsu Province, Southeastern China. The results showed that the animal manure application made the spread and abundance of antibiotic resistance genes (ARGs increasingly in the soil. The frequency of sulfonamide resistance genes was sul1 > sul2 > sul3 in pig-manured soil DNA and sul2 > sul1 > sul3 in chicken-manured soil DNA. Further analysis suggested that the frequency distribution of the sul genes in the genomic DNA and plasmids of the SR isolates from manured soil was sul2 > sul1 > sul3 overall (p<0.05. The combination of sul1 and sul2 was the most frequent, and the co-existence of sul1 and sul3 was not found either in the genomic DNA or plasmids. The sample type, animal type and sampling time can influence the prevalence and distribution pattern of sulfonamide resistance genes. The present study also indicated that Bacillus, Pseudomonas and Shigella were the most prevalent sul-positive genera in the soil, suggesting a potential human health risk. The above results could be important in the evaluation of antibiotic-resistant bacteria and genes from manure as sources of agricultural soil pollution; the results also demonstrate the necessity and urgency of the regulation and supervision of veterinary antibiotics in China.

  6. Transport and transformation of genetic information in the critical zone: The case of antibiotic resistance genes

    Science.gov (United States)

    Zhu, Y. G.

    2015-12-01

    In addition to material and energy flows, the dynamics and functions of the Earth's critical zone are intensively mediated by biological actions performed by diverse organisms. These biological actions are modulated by the expression of functional genes and their translation into enzymes that catalyze geochemical reactions, such as nutrient turnover and pollutant biodegradation. Although geobiology, as an interdisciplinary research area, is playing and vital role in linking biological and geochemical processes at different temporal and spatial scales, the distribution and transport of functional genes have rarely been investigated from the Earth's critical zone perspectives. To illustrate the framework of studies on the transport and transformation of genetic information in the critical zone, antibiotic resistance is taken as an example. Antibiotic resistance genes are considered as a group of emerging contaminants, and their emergence and spread within the critical zone on one hand are induced by anthropogenic activities, and on other hand are threatening human health worldwide. The transport and transformation of antibiotic resistance genes are controlled by both horizontal gene transfer between bacterial cells and the movement of bacteria harboring antibiotic resistance genes. In this paper, the fate and behavior of antibiotic resistance genes will be discussed in the following aspects: 1) general overview of environmental antibiotic resistance; 2) high through quantification of the resistome in various environmental media; 3) pathways of resistance gene flow within the critical zone; and 4) potential strategies in mitigating antibiotic resistance, particularly from the critical zone perspectives.

  7. Identification of leaf rust resistant gene Lr10 in Pakistani wheat ...

    African Journals Online (AJOL)

    Jane

    2011-08-10

    Aug 10, 2011 ... survey was conducted to screen 25 Pakistan wheat germplasm for the presence of leaf rust resistance gene Lr10 using specific STS primer. ... conducted on the life cycles of rust pathogens and their management. Due to airborne nature .... To date, more than 45 stem rust resistance Sr (genes) (McIntosh et ...

  8. Presence of tetracycline resistance genes in ecosystems with distinct levels of human impact

    OpenAIRE

    STEHLÍKOVÁ, Zuzana

    2011-01-01

    The incidence of tetracycline resistance genes in the environments with different levels of human impact were compared in this work. The experimental part included detection of eight tetracycline resistance genes in soils from manured and non-manured farms (representing man-affected environment) and soils from national parks (representing non-affected environment).

  9. Mining microbial metatranscriptomes for expression of antibiotic resistance genes under natural conditions

    NARCIS (Netherlands)

    Versluis, D.; Andrea, D' M.M.; Ramiro Garcia, J.; Leimena, M.M.; Hugenholtz, F.; Zhang, J.; Öztürk, B.; Nylund, L.; Sipkema, D.; Schaik, van W.; Vos, de W.M.; Kleerebezem, M.; Smidt, H.; Passel, van M.W.J.

    2015-01-01

    Antibiotic resistance genes are found in a broad range of ecological niches associated with complex microbiota. Here we investigated if resistance genes are not only present, but also transcribed under natural conditions. Furthermore, we examined the potential for antibiotic production by assessing

  10. Identification of leaf rust resistant gene Lr10 in Pakistani wheat ...

    African Journals Online (AJOL)

    Leaf (brown) rust is the major disease of wheat in Pakistan and other countries. The disease is more effectively controlled when several rust resistance genes are pyramided into a single line. Molecular survey was conducted to screen 25 Pakistan wheat germplasm for the presence of leaf rust resistance gene Lr10 using ...

  11. Characterization of the psoRPM1 gene for resistance to root-knot ...

    African Journals Online (AJOL)

    Several root-knot nematode (Meloidogyne spp.) resistance genes have been discovered in different stone fruit crops. However, none of them has yet been cloned and they were only located on the chromosomes. In this study, a candidate root-knot nematode resistance gene (designated as psoRPM1) was isolated from the ...

  12. An AFLP marker linked to turnip mosaic virus resistance gene in pak ...

    African Journals Online (AJOL)

    An AFLP marker linked to turnip mosaic virus resistance gene in pak-choi. W Xinhua, C Huoying, Z Yuying, H Ruixian. Abstract. Pak-choi is one of the most important vegetable crops in China. Turnip mosaic virus (TuMV) is one of its main pathogen. Screening the molecular marker linked to the TuMV resistance gene is an ...

  13. Role and prevalence of antibiosis and the related resistance genes in the environment

    DEFF Research Database (Denmark)

    Nazaret, Sylvie; Aminov, Rustam

    2014-01-01

    It becomes increasingly clear that the basis of antibiotic resistance problem among bacterial pathogens is not confined to the borders of clinical microbiology but has broader ecological and evolutionary associations. This Research Topic “Role and prevalence of antibiosis and the related resistance...... genes in the environment” in Frontiers in Microbiology: Antimicrobials, Resistance, and Chemotherapy presents the examples of occurrence and diversity of antibiotic resistance genes (ARGs) in the wide range of environments, from the grasslands of the Colombian Andes, to the dairy farms and small animal...... approach to access the probability of rare horizontal gene transfer (HGT) events in bacterial populations....

  14. Contribution of efflux pumps, porins, and β-lactamases to multidrug resistance in clinical isolates of Acinetobacter baumannii.

    Science.gov (United States)

    Rumbo, C; Gato, E; López, M; Ruiz de Alegría, C; Fernández-Cuenca, F; Martínez-Martínez, L; Vila, J; Pachón, J; Cisneros, J M; Rodríguez-Baño, J; Pascual, A; Bou, G; Tomás, M

    2013-11-01

    We investigated the mechanisms of resistance to carbapenems, aminoglycosides, glycylcyclines, tetracyclines, and quinolones in 90 multiresistant clinical strains of Acinetobacter baumannii isolated from two genetically unrelated A. baumannii clones: clone PFGE-ROC-1 (53 strains producing the OXA-58 β-lactamase enzyme and 18 strains with the OXA-24 β-lactamase) and clone PFGE-HUI-1 (19 strains susceptible to carbapenems). We used real-time reverse transcriptase PCR to correlate antimicrobial resistance (MICs) with expression of genes encoding chromosomal β-lactamases (AmpC and OXA-51), porins (OmpA, CarO, Omp33, Dcap-like, OprB, Omp25, OprC, OprD, and OmpW), and proteins integral to six efflux systems (AdeABC, AdeIJK, AdeFGH, CraA, AbeM, and AmvA). Overexpression of the AdeABC system (level of expression relative to that by A. baumannii ATCC 17978, 30- to 45-fold) was significantly associated with resistance to tigecycline, minocycline, and gentamicin and other biological functions. However, hyperexpression of the AdeIJK efflux pump (level of expression relative to that by A. baumannii ATCC 17978, 8- to 10-fold) was significantly associated only with resistance to tigecycline and minocycline (to which the TetB efflux system also contributed). TetB and TetA(39) efflux pumps were detected in clinical strains and were associated with resistance to tetracyclines and doxycycline. The absence of the AdeABC system and the lack of expression of other mechanisms suggest that tigecycline-resistant strains of the PFGE-HUI-1 clone may be associated with a novel resistance-nodulation-cell efflux pump (decreased MICs in the presence of the inhibitor Phe-Arg β-naphthylamide dihydrochloride) and the TetA(39) system.

  15. Isolation and characterization of NBS-LRR- resistance gene candidates in turmeric (Curcuma longa cv. surama).

    Science.gov (United States)

    Joshi, R K; Mohanty, S; Subudhi, E; Nayak, S

    2010-09-08

    Turmeric (Curcuma longa), an important asexually reproducing spice crop of the family Zingiberaceae is highly susceptible to bacterial and fungal pathogens. The identification of resistance gene analogs holds great promise for development of resistant turmeric cultivars. Degenerate primers designed based on known resistance genes (R-genes) were used in combinations to elucidate resistance gene analogs from Curcuma longa cultivar surama. The three primers resulted in amplicons with expected sizes of 450-600 bp. The nucleotide sequence of these amplicons was obtained through sequencing; their predicted amino acid sequences compared to each other and to the amino acid sequences of known R-genes revealed significant sequence similarity. The finding of conserved domains, viz., kinase-1a, kinase-2 and hydrophobic motif, provided evidence that the sequences belong to the NBS-LRR class gene family. The presence of tryptophan as the last residue of kinase-2 motif further qualified them to be in the non-TIR-NBS-LRR subfamily of resistance genes. A cluster analysis based on the neighbor-joining method was carried out using Curcuma NBS analogs together with several resistance gene analogs and known R-genes, which classified them into two distinct subclasses, corresponding to clades N3 and N4 of non-TIR-NBS sequences described in plants. The NBS analogs that we isolated can be used as guidelines to eventually isolate numerous R-genes in turmeric.

  16. Characterisation of penA and tetM resistance genes of Neisseria ...

    African Journals Online (AJOL)

    This gene block, which was found in all the southern African areas studied, appears to predispose isolates to increased penicillin resistance. The 25,2 MDa conjugative plasmid carrying the tetM resistance determinant was readily demonstrated in 11 Botswana Namibia isolates exhibiting high-level resistance to tetracycline ...

  17. Characterisation of penA and tetM resistance genes of Neisseria ...

    African Journals Online (AJOL)

    appears to predispose isolates to increased penicillin resistance. The 25,2 MDa conjugative plasmid carrying the. tetM resistance determinant was readily demonstrated in. 11 Botswana! Namibia isolates exhibiting high-level resistance to tetracycline (MICs ? 16 IJg/ml). The tetM gene was shown to be of the American type.

  18. Chromosomal location and molecular mapping of tan spot resistance genes in common wheat (T. aestivum L.)

    OpenAIRE

    Tadesse, Wuletaw

    2008-01-01

    In this study, 75 cultivars highly resistant to tan spot were identified. A positive correlation (r = 0.864; P = 0.001) was found between seedling resistance and adult plant resistance. Inheritance of tan spot resistance was found to be qualitative goverened by single major genes. Three novel resistance genes: tsn3, tsn4 and tsn5 were identified and located on chromosomes 3D, 3A and 3B, respectively. Linkage analysis using SSR markers showed that both the tsn3 (tsn3a, Tsn3b and tsn3c) and ts...

  19. Genetic engineering of crop plants for fungal resistance: role of antifungal genes.

    Science.gov (United States)

    Ceasar, S Antony; Ignacimuthu, S

    2012-06-01

    Fungal diseases damage crop plants and affect agricultural production. Transgenic plants have been produced by inserting antifungal genes to confer resistance against fungal pathogens. Genes of fungal cell wall-degrading enzymes, such as chitinase and glucanase, are frequently used to produce fungal-resistant transgenic crop plants. In this review, we summarize the details of various transformation studies to develop fungal resistance in crop plants.

  20. Antibiotic Resistance Genes and Correlations with Microbial Community and Metal Resistance Genes in Full-Scale Biogas Reactors As Revealed by Metagenomic Analysis

    DEFF Research Database (Denmark)

    Luo, Gang; Li, Bing; Li, Li-Guan

    2017-01-01

    resistance genes (MRGs). The total abundance of ARGs in all the samples varied from 7 × 10-3 to 1.08 × 10-1 copy of ARG/copy of 16S-rRNA gene, and the samples obtained from thermophilic biogas reactors had a lower total abundance of ARGs, indicating the superiority of thermophilic anaerobic digestion......Digested residues from biogas plants are often used as biofertilizers for agricultural crops cultivation. The antibiotic resistance genes (ARGs) in digested residues pose a high risk to public health due to their potential spread to the disease-causing microorganisms and thus reduce...

  1. Mechanisms of Streptomycin Resistance: Selection of Mutations in the 16S rRNA Gene Conferring Resistance

    Science.gov (United States)

    Springer, Burkhard; Kidan, Yishak G.; Prammananan, Therdsak; Ellrott, Kerstin; Böttger, Erik C.; Sander, Peter

    2001-01-01

    Chromosomally acquired streptomycin resistance is frequently due to mutations in the gene encoding the ribosomal protein S12, rpsL. The presence of several rRNA operons (rrn) and a single rpsL gene in most bacterial genomes prohibits the isolation of streptomycin-resistant mutants in which resistance is mediated by mutations in the 16S rRNA gene (rrs). Three strains were constructed in this investigation: Mycobacterium smegmatis rrnB, M. smegmatis rpsL3+, and M. smegmatis rrnB rpsL3+. M. smegmatis rrnB carries a single functional rrn operon, i.e., rrnA (comprised of 16S, 23S, and 5S rRNA genes) and a single rpsL+ gene; M. smegmatis rpsL3+ is characterized by the presence of two rrn operons (rrnA and rrnB) and three rpsL+ genes; and M. smegmatis rrnB rpsL3+ carries a single functional rrn operon (rrnA) and three rpsL+ genes. By genetically altering the number of rpsL and rrs alleles in the bacterial genome, mutations in rrs conferring streptomycin resistance could be selected, as revealed by analysis of streptomycin-resistant derivatives of M. smegmatis rrnB rpsL3+. Besides mutations well known to confer streptomycin resistance, novel streptomycin resistance conferring mutations were isolated. Most of the mutations were found to map to a functional pseudoknot structure within the 530 loop region of the 16S rRNA. One of the mutations observed, i.e., 524G→C, severely distorts the interaction between nucleotides 524G and 507C, a Watson-Crick interaction which has been thought to be essential for ribosome function. The use of the single rRNA allelic M. smegmatis strain should help to elucidate the principles of ribosome-drug interactions. PMID:11557484

  2. Genetic analysis and molecular mapping of resistance gene to Phakopsora pachyrhizi in soybean germplasm SX6907.

    Science.gov (United States)

    Chen, Haifeng; Zhao, Sheng; Yang, Zhonglu; Sha, Aihua; Wan, Qiao; Zhang, Chanjuan; Chen, Limiao; Yuan, Songli; Qiu, Dezhen; Chen, Shuilian; Shan, Zhihui; Zhou, Xin-an

    2015-04-01

    In this study, Rpp6907, a novel resistance gene/allele to Phakopsora pachyrhizi in soybean, was mapped in a 111.9-kb region, including three NBS-LRR type predicted genes, on chromosome 18. Soybean rust caused by Phakopsora pachyrhizi Sydow has been reported in numerous soybean-growing regions worldwide. The development of rust-resistant varieties is the most economical and environmentally safe method to control the disease. The Chinese soybean germplasm SX6907 is resistant to P. pachyrhizi and exhibits immune reaction compared with the known Rpp genes. These characteristics suggest that SX6907 may carry at least one novel Rpp gene/allele. Three F2 populations from the crosses of SX6907 (resistant) and Tianlong 1, Zhongdou40, and Pudou11 (susceptible) were used to map the Rpp gene. Three resistance responses (immune, red-brown, and tan-colored lesion) were observed from the F2 individuals. The segregation follows a ratio of 1(resistance):2(heterozygous):1(susceptible), indicating that the resistance in SX6907 is controlled by a single incomplete dominant gene (designated as Rpp6907). Results showed that Rpp6907 was mapped on soybean chromosome 18 (molecular linkage group G, MLG G) flanked by simple sequence repeat (SSR) markers SSR24 and SSR40 at a distance of 111.9 kb. Among the ten genes marked within this 111.9-kb region between the two markers, three genes (Glyma18g51930, Glyma18g51950, and Glyma18g51960) are nucleotide-binding site and leucine-rich repeat-type genes. These genes may be involved in recognizing the presence of pathogens and ultimately conferring resistance. Based on resistance spectrum analysis and mapping results, we inferred that Rpp6907 is a novel gene different from Rpp1 in PI 200492, PI 561356, PI 587880A, PI 587886, and PI 594538A, or a new Rpp1-b allele.

  3. Pollen-mediated gene flow from glyphosate-resistant common waterhemp (Amaranthus rudis Sauer): consequences for the dispersal of resistance genes.

    Science.gov (United States)

    Sarangi, Debalin; Tyre, Andrew J; Patterson, Eric L; Gaines, Todd A; Irmak, Suat; Knezevic, Stevan Z; Lindquist, John L; Jhala, Amit J

    2017-03-22

    Gene flow is an important component in evolutionary biology; however, the role of gene flow in dispersal of herbicide-resistant alleles among weed populations is poorly understood. Field experiments were conducted at the University of Nebraska-Lincoln to quantify pollen-mediated gene flow (PMGF) from glyphosate-resistant (GR) to -susceptible (GS) common waterhemp using a concentric donor-receptor design. More than 130,000 common waterhemp plants were screened and 26,199 plants were confirmed resistant to glyphosate. Frequency of gene flow from all distances, directions, and years was estimated with a double exponential decay model using Generalized Nonlinear Model (package gnm) in R. PMGF declined by 50% at <3 m distance from the pollen source, whereas 90% reduction was found at 88 m (maximum) depending on the direction of the pollen-receptor blocks. Amplification of the target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), was identified as the mechanism of glyphosate resistance in parent biotype. The EPSPS gene amplification was heritable in common waterhemp and can be transferred via PMGF, and also correlated with glyphosate resistance in pseudo-F 2 progeny. This is the first report of PMGF in GR common waterhemp and the results are critical in explaining the rapid dispersal of GR common waterhemp in Midwestern United States.

  4. Incorporation of Bacterial Blight Resistance Genes Into Lowland Rice Cultivar Through Marker-Assisted Backcross Breeding.

    Science.gov (United States)

    Pradhan, Sharat Kumar; Nayak, Deepak Kumar; Pandit, Elssa; Behera, Lambodar; Anandan, Annamalai; Mukherjee, Arup Kumar; Lenka, Srikanta; Barik, Durga Prasad

    2016-07-01

    Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae is a major disease of rice in many rice growing countries. Pyramided lines carrying two BB resistance gene combinations (Xa21+xa13 and Xa21+xa5) were developed in a lowland cultivar Jalmagna background through backcross breeding by integrating molecular markers. In each backcross generation, markers closely linked to the disease resistance genes were used to select plants possessing the target genes. Background selection was continued in those plants carrying resistant genes until BC(3) generation. Plants having the maximum contribution from the recurrent parent genome were selected in each generation and hybridized with the recipient parent. The BB-pyramided line having the maximum recipient parent genome recovery of 95% was selected among BC3F1 plants and selfed to isolate homozygous BC(3)F(2) plants with different combinations of BB resistance genes. Twenty pyramided lines with two resistance gene combinations exhibited high levels of tolerance against the BB pathogen. In order to confirm the resistance, the pyramided lines were inoculated with different X. oryzae pv. oryzae strains of Odisha for bioassay. The genotypes with combination of two BB resistance genes conferred high levels of resistance to the predominant X. oryzae pv. oryzae isolates prevalent in the region. The pyramided lines showed similarity with the recipient parent with respect to major agro-morphologic traits.

  5. Genes Expressed Differentially in Hessian Fly Larvae Feeding in Resistant and Susceptible Plants

    Directory of Open Access Journals (Sweden)

    Ming-Shun Chen

    2016-08-01

    Full Text Available The Hessian fly, Mayetiola destructor, is a destructive pest of wheat worldwide and mainly controlled by deploying resistant cultivars. In this study, we investigated the genes that were expressed differentially between larvae in resistant plants and those in susceptible plants through RNA sequencing on the Illumina platform. Informative genes were 11,832, 14,861, 15,708, and 15,071 for the comparisons between larvae in resistant versus susceptible plants for 0.5, 1, 3, and 5 days, respectively, after larvae had reached the feeding site. The transcript abundance corresponding to 5401, 6902, 8457, and 5202 of the informative genes exhibited significant differences (p ≤ 0.05 in the respective paired comparisons. Overall, genes involved in nutrient metabolism, RNA and protein synthesis exhibited lower transcript abundance in larvae from resistant plants, indicating that resistant plants inhibited nutrient metabolism and protein production in larvae. Interestingly, the numbers of cytochrome P450 genes with higher transcript abundance in larvae from resistant plants were comparable to, or higher than those with lower transcript abundance, indicating that toxic chemicals from resistant plants may have played important roles in Hessian fly larval death. Our study also identified several families of genes encoding secreted salivary gland proteins (SSGPs that were expressed at early stage of 1st instar larvae and with more genes with higher transcript abundance in larvae from resistant plants. Those SSGPs are candidate effectors with important roles in plant manipulation.

  6. Evolutionary meta-analysis of solanaceous resistance gene and solanum resistance gene analog sequences and a practical framework for cross-species comparisons.

    Science.gov (United States)

    Quirin, Edmund A; Mann, Harpartap; Meyer, Rachel S; Traini, Alessandra; Chiusano, Maria Luisa; Litt, Amy; Bradeen, James M

    2012-05-01

    Cross-species comparative genomics approaches have been employed to map and clone many important disease resistance (R) genes from Solanum species-especially wild relatives of potato and tomato. These efforts will increase with the recent release of potato genome sequence and the impending release of tomato genome sequence. Most R genes belong to the prominent nucleotide binding site-leucine rich repeat (NBS-LRR) class and conserved NBS-LRR protein motifs enable survey of the R gene space of a plant genome by generation of resistance gene analogs (RGA), polymerase chain reaction fragments derived from R genes. We generated a collection of 97 RGA from the disease-resistant wild potato S. bulbocastanum, complementing smaller collections from other Solanum species. To further comparative genomics approaches, we combined all known Solanum RGA and cloned solanaceous NBS-LRR gene sequences, nearly 800 sequences in total, into a single meta-analysis. We defined R gene diversity bins that reflect both evolutionary relationships and DNA cross-hybridization results. The resulting framework is amendable and expandable, providing the research community with a common vocabulary for present and future study of R gene lineages. Through a series of sequence and hybridization experiments, we demonstrate that all tested R gene lineages are of ancient origin, are shared between Solanum species, and can be successfully accessed via comparative genomics approaches.

  7. Effective genes for resistance to stripe rust and virulence of Puccinia ...

    African Journals Online (AJOL)

    The results revealed that stripe rust resistance genes Yr3, Yr5, Yr10, Yr15, Yr26, YrSP and YrCV were resistant, while Yr18 showed moderate susceptibility at all locations. Genes YrA-, Yr2, Yr6, Yr7, Yr8, Yr9, Yr17, Yr27 and gene combinations Opata (Yr27+Yr18) and Super Kauz (Yr9, Yr27, Yr18) were found susceptible.

  8. Genetics and mapping of a new leaf rust resistance gene in Triticum ...

    Indian Academy of Sciences (India)

    Genetic analysis in F1, F2 and F2.3 families at the seedling stage revealed that leaf rust resistance in Selection G12 is conditioned by a single incompletely dominant gene. The leaf rust resistance gene was mapped to chromosome 3BL with SSR markers Xgwm114 and Xgwm547 flanking the gene at a distance of 28.3 cM ...

  9. Pyramiding B genes in cotton achieves broader but not always higher resistance to bacterial blight.

    Science.gov (United States)

    Essenberg, Margaret; Bayles, Melanie B; Pierce, Margaret L; Verhalen, Laval M

    2014-10-01

    Near-isogenic lines of upland cotton (Gossypium hirsutum) carrying single, race-specific genes B4, BIn, and b7 for resistance to bacterial blight were used to develop a pyramid of lines with all possible combinations of two and three genes to learn whether the pyramid could achieve broad and high resistance approaching that of L. A. Brinkerhoff's exceptional line Im216. Isogenic strains of Xanthomonas axonopodis pv. malvacearum carrying single avirulence (avr) genes were used to identify plants carrying specific resistance (B) genes. Under field conditions in north-central Oklahoma, pyramid lines exhibited broader resistance to individual races and, consequently, higher resistance to a race mixture. It was predicted that lines carrying two or three B genes would also exhibit higher resistance to race 1, which possesses many avr genes. Although some enhancements were observed, they did not approach the level of resistance of Im216. In a growth chamber, bacterial populations attained by race 1 in and on leaves of the pyramid lines decreased significantly with increasing number of B genes in only one of four experiments. The older lines, Im216 and AcHR, exhibited considerably lower bacterial populations than any of the one-, two-, or three-B-gene lines. A spreading collapse of spray-inoculated AcBIn and AcBInb7 leaves appears to be a defense response (conditioned by BIn) that is out of control.

  10. Molecular serotyping and antimicrobial resistance profiles of Actinobacillus pleuropneumoniae isolated from pigs in South Korea.

    Science.gov (United States)

    Kim, Boram; Hur, Jin; Lee, Ji Yeong; Choi, Yoonyoung; Lee, John Hwa

    2016-09-01

    Actinobacillus pleuropneumoniae (APP) causes porcine pleuropneumonia (PP). Serotypes and antimicrobial resistance patterns in APP isolates from pigs in Korea were examined. Sixty-five APP isolates were genetically serotyped using standard and multiplex PCR (polymerase chain reaction). Antimicrobial susceptibilities were tested using the standardized disk-agar method. PCR was used to detect β-lactam, gentamicin and tetracycline-resistance genes. The random amplified polymorphic DNA (RAPD) patterns were determined by PCR. Korean pigs predominantly carried APP serotypes 1 and 5. Among 65 isolates, one isolate was sensitive to all 12 antimicrobials tested in this study. Sixty-two isolates was resistant to tetracycline and 53 isolates carried one or five genes including tet(B), tet(A), tet(H), tet(M)/tet(O), tet(C), tet(G) and/or tet(L)-1 markers. Among 64 strains, 9% and 26.6% were resistance to 10 and three or more antimicrobials, respectively. Thirteen different antimicrobial resistance patterns were observed and RAPD analysis revealed a separation of the isolates into two clusters: cluster II (6 strains resistant to 10 antimicrobials) and cluster I (the other 59 strains). Results show that APP serotypes 1 and 5 are the most common in Korea, and multi-drug resistant strains are prevalent. RAPD analysis demonstrated that six isolates resistant to 10 antimicrobials belonged to the same cluster.

  11. Impact of pre-application treatment on municipal sludge composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest.

    Science.gov (United States)

    Lau, Calvin Ho-Fung; Li, Bing; Zhang, Tong; Tien, Yuan-Ching; Scott, Andrew; Murray, Roger; Sabourin, Lyne; Lapen, David R; Duenk, Peter; Topp, Edward

    2017-06-01

    In many jurisdictions sludge recovered from the sewage treatment process is a valued fertilizer for crop production. Pre-treatment of sewage sludge prior to land application offers the potential to abate enteric microorganisms that carry genes conferring resistance to antibiotics. Pre-treatment practices that accomplish this should have the desirable effect of reducing the risk of contamination of crops or adjacent water with antibiotic resistance genes carried in these materials. In the present study, we obtained municipal sludge that had been subjected to one of five treatments. There were, anaerobic-digestion or aerobic-digestion, in both instances with and without dewatering; and heat-treatment and pelletization. Each of the five types of biosolids was applied to an agricultural field at commercial rates, following which lettuce, carrots and radishes were planted. Based on qPCR, the estimated antibiotic gene loading rates were comparable with each of the five biosolids. However, the gene abundance in soil following application of the pelletized biosolids was anomalously lower than expected. Following application, the abundance of antibiotic resistance genes decreased in a generally coherent fashion, except sul1 which increased in abundance during the growing season in the soil fertilized with pelletized biosolids. Based on qPCR and high throughput sequencing evidence for transfer of antibiotic resistance genes from the biosolids to the vegetables at harvest was weak. Clostridia were more abundant in soils receiving any of the biosolids except the pelletized. Overall, the behavior of antibiotic resistance genes in soils receiving aerobically or anaerobically-digested biosolids was consistent and coherent with previous studies. However, dynamics of antibiotic resistance genes in soils receiving the heat treated pelletized biosolids were very different, and the underlying mechanisms merit investigation. Crown Copyright © 2017. Published by Elsevier B.V. All

  12. Transcriptome analysis of resistant and susceptible genotypes of Glycine tomentella during Phakopsora pachyrhizi infection reveals novel rust resistance genes.

    Science.gov (United States)

    Soria-Guerra, Ruth Elena; Rosales-Mendoza, Sergio; Chang, Sungyul; Haudenshield, James S; Padmanaban, Annamalai; Rodriguez-Zas, Sandra; Hartman, Glen L; Ghabrial, Said A; Korban, Schuyler S

    2010-05-01

    Soybean rust, caused by Phakopsora pachyrhizi, is a destructive foliar disease in nearly all soybean-producing countries. To identify genes controlling resistance to soybean rust, transcriptome profiling was conducted in resistant and susceptible Glycine tomentella genotypes triggered by P. pachyrhizi infection. Among 38,400 genes monitored using a soybean microarray, at 5% false discovery rate, 1,342 genes were identified exhibiting significant differential expression between uninfected and P. pachyrhizi-infected leaves at 12, 24, 48, and 72 h post-inoculation (hpi) in both rust-susceptible and rust-resistant genotypes. Differentially expressed genes were grouped into 12 functional categories, and among those, large numbers relate to basic plant metabolism. Transcripts for genes involved in the phenylpropanoid pathway were up-regulated early during rust infection. Similarly, genes coding for proteins related to stress and defense responses such as glutathione-S-transferases, peroxidases, heat shock proteins, and lipoxygenases were consistently up-regulated following infection at all four time points. Whereas, subsets of genes involved in cellular transport, cellular communication, cell cycle, and DNA processing were down-regulated. Quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) on randomly selected genes from the different categories confirmed these findings. Of differentially expressed genes, those associated with the flavonoid biosynthesis pathway as well as those coding for peroxidases and lipoxygenases were likely to be involved in rust resistance in soybean, and would serve as good candidates for functional studies. These findings provided insights into mechanisms underlying resistance and general activation of plant defense pathways in response to rust infection.

  13. A pigeonpea gene confers resistance to Asian soybean rust in soybean.

    Science.gov (United States)

    Kawashima, Cintia G; Guimarães, Gustavo Augusto; Nogueira, Sônia Regina; MacLean, Dan; Cook, Doug R; Steuernagel, Burkhard; Baek, Jongmin; Bouyioukos, Costas; Melo, Bernardo do V A; Tristão, Gustavo; de Oliveira, Jamile Camargos; Rauscher, Gilda; Mittal, Shipra; Panichelli, Lisa; Bacot, Karen; Johnson, Ebony; Iyer, Geeta; Tabor, Girma; Wulff, Brande B H; Ward, Eric; Rairdan, Gregory J; Broglie, Karen E; Wu, Gusui; van Esse, H Peter; Jones, Jonathan D G; Brommonschenkel, Sérgio H

    2016-06-01

    Asian soybean rust (ASR), caused by the fungus Phakopsora pachyrhizi, is one of the most economically important crop diseases, but is only treatable with fungicides, which are becoming less effective owing to the emergence of fungicide resistance. There are no commercial soybean cultivars with durable resistance to P. pachyrhizi, and although soybean resistance loci have been mapped, no resistance genes have been cloned. We report the cloning of a P. pachyrhizi resistance gene CcRpp1 (Cajanus cajan Resistance against Phakopsora pachyrhizi 1) from pigeonpea (Cajanus cajan) and show that CcRpp1 confers full resistance to P. pachyrhizi in soybean. Our findings show that legume species related to soybean such as pigeonpea, cowpea, common bean and others could provide a valuable and diverse pool of resistance traits for crop improvement.

  14. Characterization of the Maize Chitinase Genes and Their Effect on Aspergillus flavus and Aflatoxin Accumulation Resistance

    Science.gov (United States)

    Hawkins, Leigh K.; Mylroie, J. Erik; Oliveira, Dafne A.; Smith, J. Spencer; Ozkan, Seval; Windham, Gary L.; Williams, W. Paul; Warburton, Marilyn L.

    2015-01-01

    Maize (Zea mays L.) is a crop of global importance, but prone to contamination by aflatoxins produced by fungi in the genus Aspergillus. The development of resistant germplasm and the identification of genes contributing to resistance would aid in the reduction of the problem with a minimal need for intervention by farmers. Chitinolytic enzymes respond to attack by potential pathogens and have been demonstrated to increase insect and fungal resistance in plants. Here, all chitinase genes in the maize genome were characterized via sequence diversity and expression patterns. Recent evolution within this gene family was noted. Markers from within each gene were developed and used to map the phenotypic effect on resistance of each gene in up to four QTL mapping populations and one association panel. Seven chitinase genes were identified that had alleles associated with increased resistance to aflatoxin accumulation and A. flavus infection in field grown maize. The chitinase in bin 1.05 identified a new and highly significant QTL, while chitinase genes in bins 2.04 and 5.03 fell directly beneath the peaks of previously published QTL. The expression patterns of these genes corroborate possible grain resistance mechanisms. Markers from within the gene sequences or very closely linked to them are presented to aid in the use of marker assisted selection to improve this trait. PMID:26090679

  15. RNAi validation of resistance genes and their interactions in the highly DDT-resistant 91-R strain of Drosophila melanogaster.

    Science.gov (United States)

    Gellatly, Kyle J; Yoon, Kyong Sup; Doherty, Jeffery J; Sun, Weilin; Pittendrigh, Barry R; Clark, J Marshall

    2015-06-01

    4,4'-dichlorodiphenyltrichloroethane (DDT) has been re-recommended by the World Health Organization for malaria mosquito control. Previous DDT use has resulted in resistance, and with continued use resistance will increase in terms of level and extent. Drosophila melanogaster is a model dipteran that has many available genetic tools, numerous studies done on insecticide resistance mechanisms, and is related to malaria mosquitoes allowing for extrapolation. The 91-R strain of D. melanogaster is highly resistant to DDT (>1500-fold), however, there is no mechanistic scheme that accounts for this level of resistance. Recently, reduced penetration, increased detoxification, and direct excretion have been identified as resistance mechanisms in the 91-R strain. Their interactions, however, remain unclear. Use of UAS-RNAi transgenic lines of D. melanogaster allowed for the targeted knockdown of genes putatively involved in DDT resistance and has validated the role of several cuticular proteins (Cyp4g1 and Lcp1), cytochrome P450 monooxygenases (Cyp6g1 and Cyp12d1), and ATP binding cassette transporters (Mdr50, Mdr65, and Mrp1) involved in DDT resistance. Further, increased sensitivity to DDT in the 91-R strain after intra-abdominal dsRNA injection for Mdr50, Mdr65, and Mrp1 was determined by a DDT contact bioassay, directly implicating these genes in DDT efflux and resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Genetics and mapping of a new leaf rust resistance gene in Triticum ...

    Indian Academy of Sciences (India)

    AMIT KUMAR SINGH

    friendly method. Wild relatives of wheat are reservoir of useful genes, including genes for rust resis- tance. To date, 74 leaf rust resistance genes have been des- ignated and about half of them have originated from various closely or distantly related ...

  17. Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampicin-resistance in Mycobacterium tuberculosis.

    Science.gov (United States)

    Zaw, Myo T; Emran, Nor A; Lin, Zaw

    2018-04-26

    Rifampicin (RIF) plays a pivotal role in the treatment of tuberculosis due to its bactericidal effects. Because the action of RIF is on rpoB gene encoding RNA polymerase β subunit, 95% of RIF resistant mutations are present in rpoB gene. The majority of the mutations in rpoB gene are found within an 81bp RIF-resistance determining region (RRDR). Literatures on RIF resistant mutations published between 2010 and 2016 were thoroughly reviewed. The most commonly mutated codons in RRDR of rpoB gene are 531, 526 and 516. The possibilities of absence of mutation in RRDR of rpoB gene in MDR-TB isolates in few studies was due to existence of other rare rpoB mutations outside RRDR or different mechanism of rifampicin resistance. Molecular methods which can identify extensive mutations associated with multiple anti-tuberculous drugs are in urgent need so that the research on drug resistant mutations should be extended. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Molecular detection of methicillin resistant Staphylococcus aureus harbouring β- lactamase resistance genes isolated from different sources of infections

    Directory of Open Access Journals (Sweden)

    Amir Hani Raziq

    2017-12-01

    Full Text Available Background and objective: The detection and investigation of methicillin resistance staphylococci specifically S. aureus in clinical microbiology setting is very helpful both for informing the appropriate treatment of individual patients and also for the surveillance of these organisms. This study aimed at the rapid molecular detection of methicillin resistant staphylococci harbouring β-lactamase gene and determination of the efficiency of m-PCR through comparison with uniplex PCR. Methods: Standard microbiological techniques were applied for the determination of the presence of methicillin resistant S. aureus in samples recovered from different body sites of patients who attended Al-Kadhumyhia Teaching and Baghdad Teaching Hospitals. The resulting methicillin resistant S. aureus (MRSA isolates were subjected to uni and multiplex PCR amplifications for detecting the existence of mec A gene and β-lactamase (TEM resistance gene. Results: Half of the cases involved were found to be caused by MRSA. All the tested isolates showed positive amplification bands for the presence of mec A gene and only 48.8% of these harbored TEM gene. The obtained results revealed high sensitivity of universal bacterial and TEM primers expressed as 97.6% and 100% respectively, while the sensitivity of mec A primer was limited to 60%. Conclusion: The phenotypic identification of MRSA revealed a higher incidence rate and that different molecular techniques can yield conflicting results and it can also be concluded that resistant due to beta- lactamase production can be a crucial factor added to the previously settled methicillin resistant due to mec A gene.

  19. Detection and coexistence of six categories of resistance genes in Escherichia coli strains from chickens in Anhui Province, China

    Directory of Open Access Journals (Sweden)

    Lin Li

    2015-12-01

    Full Text Available The aim of this study was to characterise the prevalence of class 1 integrons and gene cassettes, tetracycline-resistance genes, phenicol-resistance genes, 16S rRNA methylase genes, extended-spectrum β-lactamase genes and plasmid-mediated fluoroquinolone resistance determinants in 184 Escherichia coli isolates from chickens in Anhui Province, China. Susceptibility to 15 antimicrobials was determined using broth micro-dilution. Polymerase chain reaction and DNA sequencing were used to characterise the molecular basis of the antibiotic resistance. High rates of antimicrobial resistance were observed; 131 out of the 184 (72.3% isolates were resistant to at least six antimicrobial agents. The prevalences of class 1 integrons, tetracycline-resistance genes, phenicol-resistance genes, 16S rRNA methylase genes, extended-spectrum β-lactamase genes and plasmid-mediated fluoroquinolone resistance determinants were 49.5, 17.4, 15.8, 0.5, 57.6 and 46.2%, respectively. In 82 isolates, 48 different kinds of coexistence of the different genes were identified. Statistical (χ2 analysis showed that the resistance to amoxicillin, doxycycline, florfenicol, ofloxacin and gentamicin had significant differences (P<0.01 or 0.01resistance genes, which showed a certain correlation between antimicrobial resistance and the presence of resistance genes.

  20. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99.

    Science.gov (United States)

    Periyannan, Sambasivam; Moore, John; Ayliffe, Michael; Bansal, Urmil; Wang, Xiaojing; Huang, Li; Deal, Karin; Luo, Mingcheng; Kong, Xiuying; Bariana, Harbans; Mago, Rohit; McIntosh, Robert; Dodds, Peter; Dvorak, Jan; Lagudah, Evans

    2013-08-16

    Wheat stem rust, caused by the fungus Puccinia graminis f. sp. tritici, afflicts bread wheat (Triticum aestivum). New virulent races collectively referred to as "Ug99" have emerged, which threaten global wheat production. The wheat gene Sr33, introgressed from the wild relative Aegilops tauschii into bread wheat, confers resistance to diverse stem rust races, including the Ug99 race group. We cloned Sr33, which encodes a coiled-coil, nucleotide-binding, leucine-rich repeat protein. Sr33 is orthologous to the barley (Hordeum vulgare) Mla mildew resistance genes that confer resistance to Blumeria graminis f. sp. hordei. The wheat Sr33 gene functions independently of RAR1, SGT1, and HSP90 chaperones. Haplotype analysis from diverse collections of Ae. tauschii placed the origin of Sr33 resistance near the southern coast of the Caspian Sea.

  1. Fine mapping of the Asian soybean rust resistance gene Rpp2 from soybean PI 230970.

    Science.gov (United States)

    Yu, Neil; Kim, Myungsik; King, Zachary R; Harris, Donna K; Buck, James W; Li, Zenglu; Diers, Brian W

    2015-03-01

    Asian soybean rust (ASR) resistance gene Rpp2 has been fine mapped into a 188.1 kb interval on Glyma.Wm82.a2, which contains a series of plant resistance ( R ) genes. Asian soybean rust (ASR), caused by the fungus Phakopsora pachyrihizi Syd. & P. Syd., is a serious disease in major soybean [Glycine max (L.) Merr.] production countries worldwide and causes yield losses up to 75 %. Defining the exact chromosomal position of ASR resistance genes is critical for improving the effectiveness of marker-assisted selection (MAS) for resistance and for cloning these genes. The objective of this study was to fine map the ASR resistance gene Rpp2 from the plant introduction (PI) 230970. Rpp2 was previously mapped within a 12.9-cM interval on soybean chromosome 16. The fine mapping was initiated by identifying recombination events in F2 and F3 plants using simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers that flank the gene. Seventeen recombinant plants were identified and then tested with additional genetic markers saturating the gene region to localize the positions of each recombination. The progeny of these selected plants were tested for resistance to ASR and with SSR markers resulting in the mapping of Rpp2 to a 188.1 kb interval on the Williams 82 reference genome (Glyma.Wm82.a2). Twelve genes including ten toll/interleukin-1 receptor (TIR)-nucleotide-binding site (NBS)-leucine-rich repeat (LRR) genes were predicted to exist in this interval on the Glyma.Wm82.a2.v1 gene model map. Eight of these ten genes were homologous to the Arabidopsis TIR-NBS-LRR gene AT5G17680.1. The identified SSR and SNP markers close to Rpp2 and the candidate gene information presented in this study will be significant resources for MAS and gene cloning research.

  2. The LBP Gene and Its Association with Resistance to Aeromonas hydrophila in Tilapia

    Directory of Open Access Journals (Sweden)

    Gui Hong Fu

    2014-12-01

    Full Text Available Resistance to pathogens is important for the sustainability and profitability of food fish production. In immune-related genes, the lipopolysaccharide-binding protein (LBP gene is an important mediator of the inflammatory reaction. We analyzed the cDNA and genomic structure of the LBP gene in tilapia. The full-length cDNA (1901 bp of the gene contained a 1416 bp open reading frame, encoding 471 amino acid residues. Its genomic sequence was 5577 bp, comprising 15 exons and 14 introns. Under normal conditions, the gene was constitutively expressed in all examined tissues. The highest expression was detected in intestine and kidney. We examined the responses of the gene to challenges with two bacterial pathogens Streptcoccus agalactiae and Aeromonas hydrophila. The gene was significantly upregulated in kidney and spleen post-infection with S. agalactiae and A. hydrophila, respectively. However, the expression profiles of the gene after the challenge with the two pathogens were different. Furthermore, we identified three SNPs in the gene. There were significant associations (p < 0.05 of two of the three SNPs with the resistance to A. hydrophila, but not with the resistance to S. agalactiae or growth performance. These results suggest that the LBP gene is involved in the acute-phase immunologic response to the bacterial infections, and the responses to the two bacterial pathogens are different. The two SNPs associated with the resistance to A. hydrophila may be useful in the selection of tilapia resistant to A. hydrophila.

  3. Gene Expression Profiling of Cecropin B-Resistant Haemophilus parasuis

    NARCIS (Netherlands)

    Wang, Chunmei; Chen, Fangzhou; Hu, Han; Li, Wentao; Wang, Yang; Chen, Pin; Liu, Yingyu; Ku, Xugang; He, Qigai; Chen, Huanchun; Xue, Feiqun

    2014-01-01

    Synthetically designed antimicrobial peptides (AMPs) present the potential of replacing antibiotics in the treatment of bacterial infections. However, microbial resistance to AMPs has been reported and little is known regarding the underlying mechanism of such resistance. The naturally occurring AMP

  4. PCR detection of indicator genes in methicillin-resistant ...

    African Journals Online (AJOL)

    MRSA) isolated from three Saudi hospitals. ... Resistance towards eight antimicrobial agents revealed that most of the tested strains of Staphylococcus aureus showed resistance to the tested antimicrobials in the following order; Oxacillin 100% ...

  5. Transcriptomic analysis of colistin-susceptible and colistin-resistant isolates identifies genes associated with colistin resistance in Acinetobacter baumannii.

    Science.gov (United States)

    Park, Y K; Lee, J-Y; Ko, K S

    2015-08-01

    The emergence of colistin-resistant Acinetobacter baumannii is concerning, as colistin is often regarded as the last option for treating multidrug-resistant (MDR) A. baumannii infections. Using mRNA sequencing, we compared whole transcriptomes of colistin-susceptible and colistin-resistant A. baumannii strains, with the aim of identifying genes involved in colistin resistance. A clinical colistin-susceptible strain (06AC-179) and a colistin-resistant strain (07AC-052) were analysed in this study. In addition, a colistin-resistant mutant (06AC-179-R1) derived from 06AC-179 was also included in this study. High throughput mRNA sequencing was performed with an Illumina HiSeq TM 2000. In total, six genes were identified as associated with colistin resistance in A. baumannii. These six genes encode PmrAB two-component regulatory enzymes, PmrC (a lipid A phosphoethanolamine transferase), a glycosyltransferase, a poly-β-1,6-N-acetylglucosamine deacetylase, and a putative membrane protein. Matrix-assisted laser desorption/ionization time of flight mass spectrometry revealed that all three colistin-resistant strains used in this study had modified lipid A structure by addition of phosphoethanolamine. As genes found in our results are all associated with either lipopolysaccharide biosynthesis or electrostatic changes in the bacterial cell membrane, lipopolysaccharide modification might be one of the principal modes of acquisition of colistin resistance in some A. baumannii strains. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  6. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    Science.gov (United States)

    Somerville, Chris R [Portola Valley, CA; Scheible, Wolf [Golm, DE

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  7. sugE: A gene involved in tributyltin (TBT) resistance of Aeromonas molluscorum Av27.

    Science.gov (United States)

    Cruz, Andreia; Micaelo, Nuno; Félix, Vitor; Song, Jun-Young; Kitamura, Shin-Ichi; Suzuki, Satoru; Mendo, Sónia

    2013-01-01

    The mechanism of bacterial resistance to tributyltin (TBT) is still unclear. The results herein presented contribute to clarify that mechanism in the TBT-resistant bacterium Aeromonas molluscorum Av27. We have identified and cloned a new gene that is involved in TBT resistance in this strain. The gene is highly homologous (84%) to the Aeromonas hydrophila-sugE gene belonging to the small multidrug resistance gene family (SMR), which includes genes involved in the transport of lipophilic drugs. In Av27, expression of the Av27-sugE was observed at the early logarithmic growth phase in the presence of a high TBT concentration (500 μM), thus suggesting the contribution of this gene for TBT resistance. E. coli cells transformed with Av27-sugE become resistant to ethidium bromide (EtBr), chloramphenicol (CP) and tetracycline (TE), besides TBT. According to the Moriguchi logP (miLogP) values, EtBr, CP and TE have similar properties and are substrates for the sugE-efflux system. Despite the different miLogP of TBT, E. coli cells transformed with Av27-sugE become resistant to this compound. So it seems that TBT is also a substrate for the SugE protein. The modelling studies performed also support this hypothesis. The data herein presented clearly indicate that sugE is involved in TBT resistance of this bacterium.

  8. Epidemiologic evaluation of Vancomycin Resistant genes in Enterococcus spp. isolated from clinical samples

    Directory of Open Access Journals (Sweden)

    Omid Teymournejad

    2011-09-01

    Full Text Available Background & Objectives: Isolation of vancomycin resistant Enterococcus from clinical samples is very important. The aim of this study was evaluation of phenotype and genotype of van genes in vancomycine resistant Enterococcus. Materials and Methods: 411 Enterococcus isolates were collected from selected Tehran’s hospitals between March 2004 and December 2007. The enterococcal isolates were identified by biochemical confirmation tests. Resistance of each isolate to vancomycin determined by disk diffusion and agar dilution test. The presence of the vanA, B, C, D, E resistance gene was assessed by PCR. Results: 185(45% and 23(5.6% with disc-diffusion method and agar-dilution method were resistant to vancomucin (VRE and all of VREs were Enterococcus faecium. 12 (52.2%, 7(30.4% of the VRE isolates had vanA, vanB and 3(13% had both of vanA and vanB gene. Conclusion: Most important mechanism for high level resistance to vancomycin is presence of van genes and these genes can transfer between Enterococci. Significance of investigation in molecular level of resistance to vancomycin was due to relation between phenotypic resistant and presence of van genes.

  9. Cloning and characterization of NBS-LRR resistance gene ...

    African Journals Online (AJOL)

    Nendran) cultivar. C6 was expressed only in resistant cultivar not in susceptible one. But there was no change in the expression of C2 and C3 in both resistant and susceptible cultivars. These results indicate that in depth study on C1, and C5 RGAs will be helpful for further improvement of P. coffeae resistance in banana.

  10. The transport of antibiotic resistance genes and residues in groundwater near swine production facilities

    Science.gov (United States)

    Lin, Y. F.; Yannarell, A. C.; Mackie, R. I.; Krapac, I. G.; Chee-Sanford, J. S.; Koike, S.

    2008-12-01

    The use of antibiotics at concentrated animal feeding operations (CAFOs) for disease prevention, disease treatment, and growth promotion can contribute to the spread of antibiotic compounds, their breakdown products, and antibiotic resistant bacteria and/or the genes that confer resistance. In addition, constitutive use of antibiotics at sub-therapeutic levels can select for antibiotic resistance among the bacteria that inhabit animal intestinal tracts, onsite manure treatment facilities, and any environments receiving significant inputs of manure (e.g. through waste lagoon leakage or fertilizer amendments to farm soils). If the antibiotic resistant organisms persist in these new environments, or if they participate in genetic exchanges with the native microflora, then CAFOs may constitute a significant reservoir for the spread of antibiotic resistance to the environment at large. Our results have demonstrated that leakage from waste treatment lagoons can influence the presence and persistence of tetracycline resistance genes in the shallow aquifer adjacent to swine CAFOs, and molecular phylogeny allowed us to distinguish "native" tetracycline resistance genes in control groundwater wells from manure-associated genes introduced from the lagoon. We have also been able to detect the presence of erythromycin resistance genes in CAFO surface and groundwater even though erythromycin is strictly reserved for use in humans and thus is not utilized at any of these sites. Ongoing research, including modeling of particle transport in groundwater, will help to determine the potential spatial and temporal extent of CAFO-derived antibiotic resistance.

  11. Emergence of macrolide resistance gene mph(B) in Streptococcus uberis and cooperative effects with rdmC-like gene.

    Science.gov (United States)

    Achard, Adeline; Guérin-Faublée, Véronique; Pichereau, Vianney; Villers, Corinne; Leclercq, Roland

    2008-08-01

    Streptococcus uberis UCN60 was resistant to spiramycin (MIC = 8 microg/ml) but susceptible to erythromycin (MIC = 0.06 microg/ml), azithromycin (MIC = 0.12 microg/ml), josamycin (MIC = 0.25 microg/ml), and tylosin (MIC = 0.5 microg/ml). A 2.5-kb HindIII fragment was cloned from S. uberis UCN60 DNA on plasmid pUC18 and introduced into Escherichia coli AG100A, where it conferred resistance to spiramycin by inactivation. The sequence analysis of the fragment showed the presence of an rdmC-like gene that putatively encoded a protein belonging to the alpha/beta hydrolase family and of the first 196 nucleotides of the mph(B) gene putatively encoding a phosphotransferase known to inactivate 14-, 15-, and 16-membered macrolides in E. coli. The entire mph(B) gene was then identified in S. uberis UCN60. The two genes were expressed alone or in combination in E. coli, Staphylococcus aureus, and Enterococcus faecalis. Analysis of MICs revealed that rdmC-like alone did not confer resistance to erythromycin, tylosin, and josamycin in those three hosts. It conferred resistance to spiramycin in E. coli and E. faecalis but not in S. aureus. mph(B) conferred resistance in E. coli to erythromycin, tylosin, josamycin, and spiramycin but only low levels of resistance in E. faecalis and S. aureus to spiramycin (MIC = 8 microg/ml). The combination of mph(B) and rdmC-like genes resulted in a resistance to spiramycin and tylosin in the three hosts that significantly exceeded the mere addition of the resistance levels conferred by each resistance mechanism alone.

  12. Prevalence, serotyping and antimicrobials resistance mechanism of Salmonella enterica isolated from clinical and environmental samples in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Mohamed A. El-Tayeb

    Full Text Available Abstract Salmonella is recognized as a common foodborne pathogen, causing major health problems in Saudi Arabia. Herein, we report epidemiology, antimicrobial susceptibility and the genetic basis of resistance among S. enterica strains isolated in Saudi Arabia. Isolation of Salmonella spp. from clinical and environmental samples resulted in isolation of 33 strains identified as S. enterica based on their biochemical characteristics and 16S-rDNA sequences. S. enterica serovar Enteritidis showed highest prevalence (39.4%, followed by S. Paratyphi (21.2%, S. Typhimurium (15.2%, S. Typhi and S. Arizona (12.1%, respectively. Most isolates were resistant to 1st and 2nd generation cephalosporin; and aminoglycosides. Moreover, several S. enterica isolates exhibited resistance to the first-line antibiotics used for Salmonellosis treatment including ampicillin, trimethoprim-sulfamethoxazole and chloramphenicol. In addition, the results revealed the emergence of two S. enterica isolates showing resistance to third-generation cephalosporin. Analysis of resistance determinants in S. enterica strains (n = 33 revealed that the resistance to β-lactam antibiotics, trimethoprim-sulfamethoxazole, chloramphenicol, and tetracycline, was attributed to the presence of carb-like, dfrA1, floR, tetA gene, respectively. On the other hand, fluoroquinolone resistance was related to the presence of mutations in gyrA and parC genes. These findings improve the information about foodborne Salmonella in Saudi Arabia, alarming the emergence of multi-drug resistant S. enterica strains, and provide useful data about the resistance mechanisms.

  13. Characterization of Antibiotic Resistance Genes from Lactobacillus Isolated from Traditional Dairy Products.

    Science.gov (United States)

    Guo, Huiling; Pan, Lin; Li, Lina; Lu, Jie; Kwok, Laiyu; Menghe, Bilige; Zhang, Heping; Zhang, Wenyi

    2017-03-01

    Lactobacilli are widely used as starter cultures or probiotics in yoghurt, cheese, beer, wine, pickles, preserved food, and silage. They are generally recognized as safe (GRAS). However, recent studies have shown that some lactic acid bacteria (LAB) strains carry antibiotic resistance genes and are resistant to antibiotics. Some of them may even transfer their intrinsic antibiotic resistance genes to other LAB or pathogens via horizontal gene transfer, thus threatening human health. A total of 33 Lactobacillus strains was isolated from fermented milk collected from different areas of China. We analyzed (1) their levels of antibiotic resistance using a standardized dilution method, (2) their antibiotic resistance gene profiles by polymerase chain reaction (PCR) using gene-specific primers, and (3) the transferability of some of the detected resistance markers by a filter mating assay. All Lactobacillus strains were found to be resistant to vancomycin, but susceptible to gentamicin, linezolid, neomycin, erythromycin, and clindamycin. Their susceptibilities to tetracycline, kanamycin, ciprofloxacin, streptomycin, quinupristin/dalfopristin, trimethoprim, ampicillin, rifampicin, and chloramphenicol was different. Results from our PCR analysis revealed 19 vancomycin, 10 ciprofloxacin, and 1 tetracycline-resistant bacteria that carried the van(X), van(E), gyr(A), and tet(M) genes, respectively. Finally, no transferal of the monitored antibiotic resistance genes was observed in the filter mating assay. Taken together, our study generated the antibiotic resistance profiles of some milk-originated lactobacilli isolates and preliminarily assessed their risk of transferring antibiotic gene to other bacteria. The study may provide important data concerning the safe use of LAB. © 2017 Institute of Food Technologists®.

  14. Inducible clindamycin resistance in clinical isolates of Staphylococcus aureus due to erm genes, Iran.

    Science.gov (United States)

    Moosavian, Mojtaba; Shoja, Saeed; Rostami, Soodabeh; Torabipour, Maryam; Farshadzadeh, Zahra

    2014-12-01

    Resistance to macrolide can be mediated by erm and msrA genes in Staphylococcus aureus. There are the evidences that show erm genes may be causative agent of inducible or constitutive resistance. The aim of this study was to investigate the incidence of inducible clindamycin resistance and determine the most frequency of erm and msrA genes among S. aureus isolates. In this study a total of 124 non duplicated clinical isolates of S. aureus were tested with disk diffusion method. All isolates were tested by PCR for mecA, ermA, ermB, ermC and msrA genes. According to PCR results, 48.4% had mecA gene and 51.6% were mecA negative. By phenotypic D-test method, 32.3% revealed inducible resistance and recorded as D and D(+). Sensitive and constitutive phenotypes were found in 54.8% and 12.9% of isolates respectively. Inducible clindamycin resistance was more prevalent in MRSA (29%) than MSSA isolates (2.4%). Among studied erm genes, the most frequency genes were ermA and ermC with 41.1% and 17.7% respectively. Three isolates of them had D phenotype, while the PCR results of erm genes were negative. All isolates were negative for ermB or msrA genes. Since S. aureus isolates with inducible resistance may mutate and change to constitutive resistance, to prevent treatment failure, we suggest that inducible resistance test be performed on erythromycin resistant/clindamycin sensitive isolates.

  15. RNA-Seq analysis reveals candidate genes for ontogenic resistance in Malus-Venturia pathosystem.

    Directory of Open Access Journals (Sweden)

    Michele Gusberti

    Full Text Available Ontogenic scab resistance in apple leaves and fruits is a horizontal resistance against the plant pathogen Venturia inaequalis and is expressed as a decrease in disease symptoms and incidence with the ageing of the leaves. Several studies at the biochemical level tried to unveil the nature of this resistance; however, no conclusive results were reported. We decided therefore to investigate the genetic origin of this phenomenon by performing a full quantitative transcriptome sequencing and comparison of young (susceptible and old (ontogenic resistant leaves, infected or not with the pathogen. Two time points at 72 and 96 hours post-inoculation were chosen for RNA sampling and sequencing. Comparison between the different conditions (young and old leaves, inoculated or not should allow the identification of differentially expressed genes which may represent different induced plant defence reactions leading to ontogenic resistance or may be the cause of a constitutive (uninoculated with the pathogen shift toward resistance in old leaves. Differentially expressed genes were then characterised for their function by homology to A. thaliana and other plant genes, particularly looking for genes involved in pathways already suspected of appertaining to ontogenic resistance in apple or other hosts, or to plant defence mechanisms in general. IN THIS WORK, FIVE CANDIDATE GENES PUTATIVELY INVOLVED IN THE ONTOGENIC RESISTANCE OF APPLE WERE IDENTIFIED: a gene encoding an "enhanced disease susceptibility 1 protein" was found to be down-regulated in both uninoculated and inoculated old leaves at 96 hpi, while the other four genes encoding proteins (metallothionein3-like protein, lipoxygenase, lipid transfer protein, and a peroxidase 3 were found to be constitutively up-regulated in inoculated and uninoculated old leaves. The modulation of the five candidate genes has been validated using the real-time quantitative PCR. Thus, ontogenic resistance may be the result

  16. Gene Expression Analysis of Plum pox virus (Sharka Susceptibility/Resistance in Apricot (Prunus armeniaca L..

    Directory of Open Access Journals (Sweden)

    Manuel Rubio

    Full Text Available RNA-Seq has proven to be a very powerful tool in the analysis of the Plum pox virus (PPV, sharka disease/Prunus interaction. This technique is an important complementary tool to other means of studying genomics. In this work an analysis of gene expression of resistance/susceptibility to PPV in apricot is performed. RNA-Seq has been applied to analyse the gene expression changes induced by PPV infection in leaves from two full-sib apricot genotypes, "Rojo Pasión" and "Z506-7", resistant and susceptible to PPV, respectively. Transcriptomic analyses revealed the existence of more than 2,000 genes related to the pathogen response and resistance to PPV in apricot. These results showed that the response to infection by the virus in the susceptible genotype is associated with an induction of genes involved in pathogen resistance such as the allene oxide synthase, S-adenosylmethionine synthetase 2 and the major MLP-like protein 423. Over-expression of the Dicer protein 2a may indicate the suppression of a gene silencing mechanism of the plant by PPV HCPro and P1 PPV proteins. On the other hand, there were 164 genes involved in resistance mechanisms that have been identified in apricot, 49 of which are located in the PPVres region (scaffold 1 positions from 8,050,804 to 8,244,925, which is responsible for PPV resistance in apricot. Among these genes in apricot there are several MATH domain-containing genes, although other genes inside (Pleiotropic drug resistance 9 gene or outside (CAP, Cysteine-rich secretory proteins, Antigen 5 and Pathogenesis-related 1 protein; and LEA, Late embryogenesis abundant protein PPVres region could also be involved in the resistance.

  17. Concerning Increase in Antimicrobial Resistance in Shiga Toxin-Producing Escherichia coli Isolated from Young Animals during 1980-2016.

    Science.gov (United States)

    Chirila, Flore; Tabaran, Alexandra; Fit, Nicodim; Nadas, George; Mihaiu, Marian; Tabaran, Flaviu; Cătoi, Cornel; Reget, Oana Lucia; Dan, Sorin Daniel

    2017-09-27

    This study was conducted in order to assess the antimicrobial resistance patterns of E. coli isolated from young animals affected between 1980 and 2016. The selected isolates for this study (n=175) carried stx 1 /stx 2 genes and the most prevalent type of pathogenic E. coli found belonged to serogroup O101, antigen (K99)-F41 positive. All STEC-positive isolates were tested for susceptibility to 11 antimicrobials. Multidrug resistance (MDR) increased from 11% during the 1980s to 40% between 2000 and 2016. Resistance to tetracycline and streptomycin was the most frequent co-resistance phenotype (37%). Co-resistance to tetracycline and sulfonamide was found in 21% of E. coli isolates, while the MDR pattern to tetracycline, sulfonamide, and streptomycin was observed in 12% of the strains tested. Only 8% of isolates were co-resistant to tetracycline, ampicillin, streptomycin, and sulfonamide. The most common resistance genes found were those encoding for tetracycline, sulphonamides, and streptomycin, with 54% (n=95) of the tested isolates containing at least one of the genes encoding tetracycline resistance. A total of 87% of E. coli that tested positive for tetracycline (tetA, tetB, and tetC) and sulphonamide (sul1) resistance genes were isolated between 2000 and 2016. A large number of isolates (n=21) carried int1 and a nucleotide sequence analysis revealed that all class 1 integron gene cassettes carried sul1, tet, and dfrA1 resistance genes. An increase was observed in the level of resistance to antimicrobials in Romania, highlighting the urgent need for a surveillance and prevention system for antimicrobial resistance in livestock in Eastern Europe.

  18. Differentiating anthropogenic impacts on ARGs in the Pearl River Estuary by using suitable gene indicators.

    Science.gov (United States)

    Chen, Baowei; Liang, Ximei; Huang, Xiaoping; Zhang, Tong; Li, Xiangdong

    2013-05-15

    Antibiotic resistance genes (ARGs) are increasingly a focus of concern because they pose a potential health risk. The Pearl River (PR) and Pearl River Estuary (PRE) show a distinct gradient in anthropogenic impacts, in particular associated with the use of antibiotics, from the river, to the estuary, and on to the coast. In this study, two surveys were conducted in the PR and PRE areas during the winter and summer of 2011, respectively. Seven tet genes consisting of efflux pump (tetA, tetC, and tetH) and ribosomal protection proteins (tetB, tetM, tetO, and tetW) were analyzed using the polymerase chain reaction (PCR) technique. The tet genes, with the exception of tetA and tetH, were widely detected in the PR and PRE environments. The tet genes exhibited a trend of an increase in total concentration and diversity with the degree of anthropogenic impacts from the river to the coast, indicating that riverine input was the main source of ARGs in the region. Significant correlations were observed between tet genes and antibiotic concentrations, as well as among different environmental compartments (water and sediments). The distribution patterns of tet genes were similar between the potential sources of pollution and the highly-impacted sites, but were significantly different between less-impacted sites and highly-impacted ones or pollution sources. The results suggest that ARGs and antibiotics may be released from identical sources, and transported in a similar manner in estuary/coastal environments close to sources of pollution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Characterization of antimicrobial resistance genes in Haemophilus parasuis isolated from pigs in China.

    Science.gov (United States)

    Zhao, Yongda; Guo, Lili; Li, Jie; Huang, Xianhui; Fang, Binghu

    2018-01-01

    Haemophilus parasuis is a common porcine respiratory pathogen that causes high rates of morbidity and mortality in farmed swine. We performed a molecular characterization of antimicrobial resistance genes harbored by H. parasuis from pig farms in China. We screened 143 H. parasuis isolates for antimicrobial susceptibility against six fluoroquinolone antibiotics testing by the broth microdilution method, and the presence of 64 antimicrobial resistance genes by PCR amplification and DNA sequence analysis. We determined quinolone resistance determining region mutations of DNA gyrase ( gyrA and gyrB ) and topoisomerase IV ( parC and parE ). The genetic relatedness among the strains was analyzed by pulsed-field gel electrophoresis. Susceptibility test showed that all isolates were low resistance to lomefloxacin (28.67%), levofloxacin (20.28%), norfloxacin (22.38%), ciprofloxacin (23.78%), however, high resistance levels were found to nalidixic acid (82.52%) and enrofloxacin (55.94%). In addition, we found 14 antimicrobial resistance genes were present in these isolates, including bla TEM-1 , bla ROB-1 , ermB, ermA, flor, catl, tetB, tetC, rmtB, rmtD, aadA1, aac(3')-llc, sul1, and sul2 genes. Interestingly, one isolate carried five antibiotic resistance genes ( tetB, tetC, flor, rmtB, sul1 ). The genes tetB , rmtB, and flor were the most prevalent resistance genes in H. parasuis in China. Alterations in the gyrA gene (S83F/Y, D87Y/N/H/G) were detected in 81% of the strains and parC mutations were often accompanied by a gyrA mutation. Pulsed-field gel electrophoresis typing revealed 51 unique patterns in the isolates carrying high-level antibiotic resistance genes, indicating considerable genetic diversity and suggesting that the genes were spread horizontally. The current study demonstrated that the high antibiotic resistance of H. parasuis in piglets is a combination of transferable antibiotic resistance genes and multiple target gene mutations. These data provide novel

  20. A Genome-Wide Knockout Screen to Identify Genes Involved in Acquired Carboplatin Resistance

    Science.gov (United States)

    2016-07-01

    result in resistance is demonstrated by the fact that mutations in the DNA mismatch repair genes MLH1 or MSH2 produce resistance due to failure of the...cancer. Genes Dev 2010;24(8):837-52. 18. Fink D, Nebel S, Aebi S, Zheng H, Cenni B, Nehme A, et al. The role of DNA mismatch repair in platinum drug...CBDCA and cDDP, but it remains uncertain whether increased DNA repair capacity is the basis for resistance (17). That the loss of a single gene can

  1. Identification and characterization of antibiotic resistance genes in Lactobacillus reuteri and Lactobacillus plantarum.

    Science.gov (United States)

    Egervärn, M; Roos, S; Lindmark, H

    2009-11-01

    The study aimed to identify the resistance genes mediating atypical minimum inhibitory concentrations (MICs) for tetracycline, erythromycin, clindamycin and chloramphenicol within two sets of representative strains of the species Lactobacillus reuteri and Lactobacillus plantarum and to characterize identified genes by means of gene location and sequencing of flanking regions. A tet(W) gene was found in 24 of the 28 Lact. reuteri strains with atypical MIC for tetracycline, whereas four of the six strains with atypical MIC for erythromycin were positive for erm(B) and one strain each was positive for erm(C) and erm(T). The two Lact. plantarum strains with atypical MIC for tetracycline harboured a plasmid-encoded tet(M) gene. The majority of the tet(W)-positive Lact. reuteri strains and all erm-positive Lact. reuteri strains carried the genes on plasmids, as determined by Southern blot and a real-time PCR method developed in this study. Most of the antibiotic-resistant strains of Lact. reuteri and Lact. plantarum harboured known plasmid-encoded resistance genes. Examples of putative transfer machineries adjacent to both plasmid- and chromosome-located resistance genes were also demonstrated. These data provide some of the knowledge required for assessing the possible risk of using Lact. reuteri and Lact. plantarum strains carrying antibiotic resistance genes as starter cultures and probiotics.

  2. PCR-based detection of resistance genes in anaerobic bacteria isolated from intra-abdominal infections.

    Science.gov (United States)

    Tran, Chau Minh; Tanaka, Kaori; Watanabe, Kunitomo

    2013-04-01

    Little information is available on the distribution of antimicrobial resistance genes in anaerobes in Japan. To understand the background of antimicrobial resistance in anaerobes involved in intra-abdominal infections, we investigated the distribution of eight antimicrobial resistance genes (cepA, cfiA, cfxA, ermF, ermB, mefA, tetQ, and nim) and a mutation in the gyrA gene in a total of 152 organisms (Bacteroides spp., Prevotella spp., Fusobacterium spp., Porphyromonas spp., Bilophila wadsworthia, Desulfovibrio desulfuricans, Veillonella spp., gram-positive cocci, and non-spore-forming gram-positive bacilli) isolated between 2003 and 2004 in Japan. The cepA gene was distributed primarily in Bacteroides fragilis. Gene cfxA was detected in about 9 % of the Bacteroides isolates and 75 % of the Prevotella spp. isolates and did not appear to contribute to cephamycin resistance. Two strains of B. fragilis contained the metallo-β-lactamase gene cfiA, but they did not produce the protein product. Gene tetQ was detected in about 81, 44, and 63 % of B. fragilis isolates, other Bacteroides spp., and Prevotella spp. isolates, respectively. The ermF gene was detected in 25, 13, 56, 64, and 16 % of Bacteroides spp., Prevotella spp., Fusobacterium spp., B. wadsworthia, and anaerobic cocci, respectively. Gene mefA was found in only 10 % of the B. fragilis strains and 3 % of the non-B. fragilis strains. Genes nim and ermB were not detected in any isolate. Substitution at position 82 (Ser to Phe) in gyrA was detected in B. fragilis isolates that were less susceptible or resistant to moxifloxacin. This study is the first report on the distribution of resistance genes in anaerobes isolated from intra-abdominal infections in Japan. We expect that the results might help in understanding the resistance mechanisms of specific anaerobes.

  3. Mutations of the Helicobacter pylori Genes rdxA and pbp1 Cause Resistance against Metronidazole and Amoxicillin

    OpenAIRE

    Paul, Ralf; Postius, Stefan; Melchers, Klaus; Schäfer, Klaus P.

    2001-01-01

    To investigate amoxicillin and metronidazole resistance of Helicobacter pylori, we compared putative resistance genes between resistant strains obtained in vitro and their sensitive parent strain. All metronidazole-resistant strains had rdxA mutations, and an amoxicillin-resistant strain had pbp1 and pbp2 mutations. By transforming PCR products of these mutated genes into antibiotic-sensitive strains, we showed that rdxA null mutations were sufficient for metronidazole resistance, while pbp1 ...

  4. Distribution of Putative Virulence Genes and Antimicrobial Drug Resistance in Vibrio harveyi

    OpenAIRE

    Parvathi, Ammini; Mendez, Dafini; Anto, Ciana

    2011-01-01

    The marine-estuarine bacterium Vibrio harveyi is an important pathogen of invertebrates, most significantly, the larvae of commercially important shrimp Penaeus monodon. In this study, we analyzed V. harveyi isolated from shrimp hatchery environments for understanding the distribution of putative virulence genes and antimicrobial drug resistance. The putative genes targeted for PCR detection included four reversible toxin (Rtx)/hemolysin genes, a gene encoding homologue of Vibriocholerae zonu...

  5. Associations between anti-microbial resistance phenotypes, anti-microbial resistance genotypes and virulence genes of Escherichia coli isolates from Pakistan and China.

    Science.gov (United States)

    Yaqoob, M; Wang, L P; Wang, S; Hussain, S; Memon, J; Kashif, J; Lu, C-P

    2013-10-01

    The objective of this study was to determine the association between phenotypic resistance, genotypic resistance and virulence genes of Escherichia coli isolates in Jiangsu province, China and Punjab province Pakistan. A total of 62 E. coli isolates were characterized for phenotypic resistance, genotypic resistance and virulence factor genes. The anti-microbial resistance phenotype and genotypes in relation to virulence factor genes were assessed by statistical analysis. Of 20 tested virulence genes, twelve were found and eight were not found in any isolates. sitA and TspE4C2 were the most prevalent virulence genes. Of the 13 anti-microbial agents tested, resistance to ampicillin, sulphonamide and tetracycline was the most frequent. All isolates were multiresistant, and 74% were resistant to trimethoprim and sulphamethaxazole. Phenotypically, tetracycline-, cefotaxime- and trimethoprim-resistant isolates had increased virulence factors as compared with susceptible isolates. Genotypically, resistant genes Tem, ctx-M, Tet, Sul 1, dhfr1, Cat2 and flo-R showed the association with the virulence genes. Almost all classes of anti-microbial-resistant genes have a high association with virulence. Resistant isolates have more virulent genes than the susceptible isolates. © 2012 Blackwell Verlag GmbH.

  6. A bacterial antibiotic-resistance gene that complements the human multidrug-resistance P-glycoprotein gene

    NARCIS (Netherlands)

    van Veen, HW; Callaghan, R; Soceneantu, L; Sardini, A; Konings, WN; Higgins, CF

    1998-01-01

    Bacteria have developed many fascinating antibiotic-resistance mechanisms(1,2). A protein in Lactococcus lactis, LmrA, mediates antibiotic resistance by extruding amphiphilic compounds from the inner leaflet of the cytoplasmic membrane(3,4). Unlike other known bacterial multidrug-resistance

  7. Identification of a soybean rust resistance gene in PI 567104B.

    Science.gov (United States)

    Liu, Min; Li, Shuxian; Swaminathan, Sivakumar; Sahu, Binod B; Leandro, Leonor F; Cardinal, Andrea J; Bhattacharyya, Madan K; Song, Qijian; Walker, David R; Cianzio, Silvia R

    2016-05-01

    Using a combination of phenotypic screening and molecular, statistical, and linkage analyses, we have mapped a dominant soybean rust resistance gene in soybean PI 567104B. Asian soybean rust (SBR), caused by the fungus Phakopsora pachyrhizi Syd. and P. Syd., is one of the most economically important diseases that affect soybean production worldwide. A long-term strategy for minimizing the effects of SBR is the development of genetically resistant cultivars. The objectives of the study were to identify the location of a rust-resistance (Rpp) gene(s) in plant introduction (PI) 567104B, and to determine if the gene(s) in PI 567104B was different from previously mapped Rpp loci. The progeny of the cross of 'IAR 2001 BSR' × PI 567104B was phenotyped from field assays of the F 2:3 and F 4:5 generations and from a growth chamber assay of 253 F 5:6 recombinant inbred lines (RILs). For the growth chamber, the phenotyping was conducted by inoculation with a purified 2006 fungal isolate from Mississippi. A resistance gene locus on PI 567104B was mapped to a region containing the Rpp6 locus on chromosome 18. The high level of resistance of F 1 plants from two other crosses with PI 567104B as one of the parents indicated that the gene from PI 567104B was dominant. The interval containing the gene is flanked by the simple sequence repeat (SSR) markers Satt131 and Satt394, and includes the SSR markers BARCSOYSSR_18_0331 and BARCSOYSSR_18_0380. The results also indicated that the resistance gene from PI 567104B is different from the Rpp1 to the Rpp4 genes previously identified. To determine if the gene from PI 567104B is different from the Rpp6 gene from PI 567102B, additional research will be required.

  8. Diversity of Integron- and Culture-Associated Antibiotic Resistance Genes in Freshwater Floc

    Science.gov (United States)

    Drudge, Christopher N.; Elliott, Amy V. C.; Plach, Janina M.; Ejim, Linda J.; Wright, Gerard D.; Droppo, Ian G.

    2012-01-01

    Clinically important antibiotic resistance genes were detected in culturable bacteria and class 1 integron gene cassettes recovered from suspended floc, a significant aquatic repository for microorganisms and trace elements, across freshwater systems variably impacted by anthropogenic activities. Antibiotic resistance gene cassettes in floc total community DNA differed appreciably in number and type from genes detected in bacteria cultured from floc. The number of floc antibiotic resistance gene cassette types detected across sites was positively correlated with total (the sum of Ag, As, Cu, and Pb) trace element concentrations in aqueous solution and in a component of floc readily accessible to bacteria. In particular, concentrations of Cu and Pb in the floc component were positively correlated with floc resistance gene cassette diversity. Collectively, these results identify suspended floc as an important reservoir, distinct from bulk water and bed sediment, for antibiotic resistance in aquatic environments ranging from heavily impacted urban sites to remote areas of nature reserves and indicate that trace elements, particularly Cu and Pb, are geochemical markers of resistance diversity in this environmental reservoir. The increase in contamination of global water supplies suggests that aquatic environments will become an even more important reservoir of clinically important antibiotic resistance in the future. PMID:22467502

  9. Antimicrobial resistance in equine faecal Escherichia coli isolates from North West England

    Directory of Open Access Journals (Sweden)

    Williams Nicola J

    2010-04-01

    Full Text Available Abstract Background Escherichia coli isolates of equine faecal origin were investigated for antibiotic resistance, resistance genes and their ability to perform horizontal transfer. Methods In total, 264 faecal samples were collected from 138 horses in hospital and community livery premises in northwest England, yielding 296 resistant E. coli isolates. Isolates were tested for susceptibility to antimicrobial drugs by disc diffusion and agar dilution methods in order to determine minimum inhibitory concentrations (MIC. PCR amplification was used to detect genes conferring resistance to: ampicillin (TEM and SHV beta-lactamase, chloramphenicol (catI, catII, catIII and cml, tetracycline (tetA, tetB, tetC, tetD, tet E and tetG, and trimethoprim (dfrA1, dfrA9, dfrA12, dfrA13, dfr7, and dfr17. Results The proportion of antibiotic resistant isolates, and multidrug resistant isolates (MDR was significantly higher in hospital samples compared to livery samples (MDR: 48% of hospital isolates; 12% of livery isolates, p dfr, TEM beta-lactamase, tet and cat, conferring resistance to trimethoprim, ampicillin, tetracycline and chloramphenicol, respectively. Within each antimicrobial resistance group, these genes occurred at frequencies of 93% (260/279, 91%, 86.8% and 73.5%, respectively; with 115/296 (38.8% found to be MDR isolates. Conjugation experiments were performed on selected isolates and MDR phenotypes were readily transferred. Conclusions Our findings demonstrate that E. coli of equine faecal origin are commonly resistant to antibiotics used in human and veterinary medicine. Furthermore, our results suggest that most antibiotic resistance observed in equine E. coli is encoded by well-known and well-characterized resistant genes common to E. coli from man and domestic animals. These data support the ongoing concern about antimicrobial resistance, MDR, antimicrobial use in veterinary medicine and the zoonotic risk that horses could potentially pose to

  10. Characterization of novel antibiotic resistance genes identified by functional metagenomics on soil samples.

    Science.gov (United States)

    Torres-Cortés, Gloria; Millán, Vicenta; Ramírez-Saad, Hugo C; Nisa-Martínez, Rafael; Toro, Nicolás; Martínez-Abarca, Francisco

    2011-04-01

    The soil microbial community is highly complex and contains a high density of antibiotic-producing bacteria, making it a likely source of diverse antibiotic resistance determinants. We used functional metagenomics to search for antibiotic resistance genes in libraries generated from three different soil samples, containing 3.6 Gb of DNA in total. We identified 11 new antibiotic resistance genes: 3 conferring resistance to ampicillin, 2 to gentamicin, 2 to chloramphenicol and 4 to trimethoprim. One of the clones identified was a new trimethoprim resistance gene encoding a 26.8 kDa protein closely resembling unassigned reductases of the dihydrofolate reductase group. This protein, Tm8-3, conferred trimethoprim resistance in Escherichia coli and Sinorhizobium meliloti (γ- and α-proteobacteria respectively). We demonstrated that this gene encoded an enzyme with dihydrofolate reductase activity, with kinetic constants similar to other type I and II dihydrofolate reductases (K(m) of 8.9 µM for NADPH and 3.7 µM for dihydrofolate and IC(50) of 20 µM for trimethoprim). This is the first description of a new type of reductase conferring resistance to trimethoprim. Our results indicate that soil bacteria display a high level of genetic diversity and are a reservoir of antibiotic resistance genes, supporting the use of this approach for the discovery of novel enzymes with unexpected activities unpredictable from their amino acid sequences. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  11. Genetic mapping of a major dominant gene for resistance to Ralstonia solanacearum in eggplant.

    Science.gov (United States)

    Lebeau, A; Gouy, M; Daunay, M C; Wicker, E; Chiroleu, F; Prior, P; Frary, A; Dintinger, J

    2013-01-01

    Resistance of eggplant against Ralstonia solanacearum phylotype I strains was assessed in a F(6) population of recombinant inbred lines (RILs) derived from a intra-specific cross between S. melongena MM738 (susceptible) and AG91-25 (resistant). Resistance traits were determined as disease score, percentage of wilted plants, and stem-based bacterial colonization index, as assessed in greenhouse experiments conducted in Réunion Island, France. The AG91-25 resistance was highly efficient toward strains CMR134, PSS366 and GMI1000, but only partial toward the highly virulent strain PSS4. The partial resistance found against PSS4 was overcome under high inoculation pressure, with heritability estimates from 0.28 to 0.53, depending on the traits and season. A genetic map was built with 119 AFLP, SSR and SRAP markers positioned on 18 linkage groups (LG), for a total length of 884 cM, and used for quantitative trait loci (QTL) analysis. A major dominant gene, named ERs1, controlled the resistance to strains CMR134, PSS366, and GMI1000. Against strain PSS4, this gene was not detected, but a significant QTL involved in delay of disease progress was detected on another LG. The possible use of the major resistance gene ERs1 in marker-assisted selection and the prospects offered for academic studies of a possible gene for gene system controlling resistance to bacterial wilt in solanaceous plants are discussed.

  12. Comparison of antimicrobial resistant genes in chicken gut microbiome grown on organic and conventional diet

    Directory of Open Access Journals (Sweden)

    Narasimha V. Hegde

    2016-12-01

    Full Text Available Antibiotics are widely used in chicken production for therapeutic purposes, disease prevention and growth promotion, and this may select for drug resistant microorganisms known to spread to humans through consumption of contaminated food. Raising chickens on an organic feed regimen, without the use of antibiotics, is increasingly popular with the consumers. In order to determine the effects of diet regimen on antibiotic resistant genes in the gut microbiome, we analyzed the phylotypes and identified the antimicrobial resistant genes in chicken, grown under conventional and organic dietary regimens. Phylotypes were analyzed from DNA extracted from fecal samples from chickens grown under these dietary conditions. While gut microbiota of chicken raised in both conventional and organic diet exhibited the presence of DNA from members of Proteobacteria and Bacteroidetes, organic diet favored the growth of members of Fusobacteria. Antimicrobial resistance genes were identified from metagenomic libraries following cloning and sequencing of DNA fragments from fecal samples and selecting for the resistant clones (n=340 on media containing different concentrations of eight antibiotics. The antimicrobial resistant genes exhibited diversity in their host distribution among the microbial population and expressed more in samples from chicken grown on a conventional diet at higher concentrations of certain antimicrobials than samples from chicken grown on organic diet. Further studies will elucidate if this phenomena is widespread and whether the antimicrobial resistance is indeed modulated by diet. This may potentially assist in defining strategies for intervention to reduce the prevalence and dissemination of antibiotic resistance genes in the production environment.

  13. Candidate genes revealed by a genome scan for mosquito resistance to a bacterial insecticide: sequence and gene expression variations

    Directory of Open Access Journals (Sweden)

    David Jean-Philippe

    2009-11-01

    Full Text Available Abstract Background Genome scans are becoming an increasingly popular approach to study the genetic basis of adaptation and speciation, but on their own, they are often helpless at identifying the specific gene(s or mutation(s targeted by selection. This shortcoming is hopefully bound to disappear in the near future, thanks to the wealth of new genomic resources that are currently being developed for many species. In this article, we provide a foretaste of this exciting new era by conducting a genome scan in the mosquito Aedes aegypti with the aim to look for candidate genes involved in resistance to Bacillus thuringiensis subsp. israelensis (Bti insecticidal toxins. Results The genome of a Bti-resistant and a Bti-susceptible strains was surveyed using about 500 MITE-based molecular markers, and the loci showing the highest inter-strain genetic differentiation were sequenced and mapped on the Aedes aegypti genome sequence. Several good candidate genes for Bti-resistance were identified in the vicinity of these highly differentiated markers. Two of them, coding for a cadherin and a leucine aminopeptidase, were further examined at the sequence and gene expression levels. In the resistant strain, the cadherin gene displayed patterns of nucleotide polymorphisms consistent with the action of positive selection (e.g. an excess of high compared to intermediate frequency mutations, as well as a significant under-expression compared to the susceptible strain. Conclusion Both sequence and gene expression analyses agree to suggest a role for positive selection in the evolution of this cadherin gene in the resistant strain. However, it is unlikely that resistance to Bti is conferred by this gene alone, and further investigation will be needed to characterize other genes significantly associated with Bti resistance in Ae. aegypti. Beyond these results, this article illustrates how genome scans can build on the body of new genomic information (here, full

  14. Nucleotide diversity and linkage disequilibrium in 11 expressed resistance candidate genes in Lolium perenne

    Directory of Open Access Journals (Sweden)

    Asp Torben

    2007-08-01

    Full Text Available Abstract Background Association analysis is an alternative way for QTL mapping in ryegrass. So far, knowledge on nucleotide diversity and linkage disequilibrium in ryegrass is lacking, which is essential for the efficiency of association analyses. Results 11 expressed disease resistance candidate (R genes including 6 nucleotide binding site and leucine rich repeat (NBS-LRR like genes and 5 non-NBS-LRR genes were analyzed for nucleotide diversity. For each of the genes about 1 kb genomic fragments were isolated from 20 heterozygous genotypes in ryegrass. The number of haplotypes per gene ranged from 9 to 27. On average, one single nucleotide polymorphism (SNP was present per 33 bp between two randomly sampled sequences for the 11 genes. NBS-LRR like gene fragments showed a high degree of nucleotide diversity, with one SNP every 22 bp between two randomly sampled sequences. NBS-LRR like gene fragments showed very high non-synonymous mutation rates, leading to altered amino acid sequences. Particularly LRR regions showed very high diversity with on average one SNP every 10 bp between two sequences. In contrast, non-NBS LRR resistance candidate genes showed a lower degree of nucleotide diversity, with one SNP every 112 bp. 78% of haplotypes occurred at low frequency ( Conclusion Substantial LD decay was found within a distance of 500 bp for most resistance candidate genes in this study. Hence, LD based association analysis is feasible and promising for QTL fine mapping of resistance traits in ryegrass.

  15. Paradoxical DNA repair and peroxide resistance gene conservation in Bacillus pumilus SAFR-032.

    Directory of Open Access Journals (Sweden)

    Jason Gioia

    Full Text Available BACKGROUND: Bacillus spores are notoriously resistant to unfavorable conditions such as UV radiation, gamma-radiation, H2O2, desiccation, chemical disinfection, or starvation. Bacillus pumilus SAFR-032 survives standard decontamination procedures of the Jet Propulsion Lab spacecraft assembly facility, and both spores and vegetative cells of this strain exhibit elevated resistance to UV radiation and H2O2 compared to other Bacillus species. PRINCIPAL FINDINGS: The genome of B. pumilus SAFR-032 was sequenced and annotated. Lists of genes relevant to DNA repair and the oxidative stress response were generated and compared to B. subtilis and B. licheniformis. Differences in conservation of genes, gene order, and protein sequences are highlighted because they potentially explain the extreme resistance phenotype of B. pumilus. The B. pumilus genome includes genes not found in B. subtilis or B. licheniformis and conserved genes with sequence divergence, but paradoxically lacks several genes that function in UV or H2O2 resistance in other Bacillus species. SIGNIFICANCE: This study identifies several candidate genes for further research into UV and H2O2 resistance. These findings will help explain the resistance of B. pumilus and are applicable to understanding sterilization survival strategies of microbes.

  16. PCR Screening of Antibiotic Resistance Genes in Faecal Samples from Australian and Chinese Children.

    Science.gov (United States)

    Ravensdale, Joshua T; Xian, Darren Ten Wei; Wei, Chooi Ming; Lv, Quanjun; Wen, Xiajian; Guo, Jing; Coorey, Ranil; LeSouëf, Peter; Lu, Fengmin; Zhang, Brad; Dykes, Gary A

    2018-03-31

    Recent public awareness campaigns on the risk of antibiotic resistance in pathogenic microbes has placed pressure on governments to enforce stricter antimicrobial stewardship policies on the hospital and agricultural industry. This study aimed to screen faecal samples from Australian and Chinese children for the presence of antibiotic resistance genes to identify demographics at risk of carriage of these genes and examine antimicrobial stewardship policies from the two countries which may influence carriage. Faecal samples from 46 Australian and 53 Chinese children were screened for the presence of six clinically relevant antibiotic resistance genes using PCR. Clinical and demographic data was also collected from each patient. Over 90% of faecal samples from Chinese children tested positive for β-lactam, macrolide, tetracycline, and aminoglycoside resistance genes, which was substantially higher than Australian samples. Besides country of origin, no clear trend could be seen to predict carriage of resistance genes. The exception to this was Chinese born children who immigrated to Australia having higher rates of carriage for bla TEM and tetM genes than children born and still living in Australia. These data indicated that Chinese children were more likely to carry certain antibiotic resistance genes than Australian children. The Chinese government has recently implemented strict policies to control the overuse of antibiotics in hospitals. However, many of these policies do not extend to the agricultural industry which could explain the differences seen in this study. Copyright © 2018. Published by Elsevier Ltd.

  17. Diversity of arsenate reductase genes (arsC Genes) from arsenic-resistant environmental isolates of E. coli.

    Science.gov (United States)

    Kaur, Sukhvinder; Kamli, Majid Rasool; Ali, Arif

    2009-09-01

    A polymerase chain reaction (PCR) approach was used to assess the occurrence and diversity of arsenate reductase gene (arsC gene) in arsenic-resistant environmental E. coli strains. For this purpose, two different sets of primers were designed for the specific amplification of approximately 370-bp fragments from the arsC gene. These primers were used to screen a collection of 25 environmental arsenic-resistant strains isolated from different geographical regions of India, as well as Bangladesh. The PCR results showed that 17 out of the 25 environmental isolates (68%) contained a gene related to the arsC family. Phylogenetic analysis of the protein sequences deduced from the amplicons indicated a prevalence of arsC genes in the isolated strains. A significant divergence in the DNA sequence was found in the arsC genes among As-resistant environmental E. coli strains from this study, and arsenic resistance, a genetic character, arose from a common ancestral background.

  18. Evaluation of resistance gene transfer from heat-treated Escherichia coli.

    Science.gov (United States)

    Le Devendec, Laëtitia; Jouy, Eric; Kempf, Isabelle

    2018-04-02

    Antimicrobial-resistant Escherichia coli may be present in various foods. The aim of this study was to evaluate the impact of heat treatment, simulating food preparation, on the possibility of antimicrobial resistance genes being transferred from E. coli cells. The study was performed on antimicrobial-resistant E. coli cells in suspension in a sterile saline solution. The stability of resistance genes and the possibility of their transfer by transformation or conjugation were analyzed. Results showed that antimicrobial-resistant E. coli cells managing to survive after a few minutes at 60 °C retained their antimicrobial resistance. No plasmid could be transferred by conjugation from antimicrobial-resistant E. coli cells heated to 60 °C for ten or more minutes. Twelve electroporation experiments were performed using a bacterial suspension heated to 70 °C for 30 min. Genes coding for resistance to extended-spectrum cephalosporins, tetracycline or sulfonamides were transferred to an E. coli DH5α recipient on two occasions. In conclusion we showed that heat-treated E. coli may occasionally transfer resistance genes. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. A novel Capsicum gene inhibits host-specific disease resistance to Phytophthora capsici.

    Science.gov (United States)

    Reeves, Gregory; Monroy-Barbosa, Ariadna; Bosland, Paul W

    2013-05-01

    A novel disease resistance inhibitor gene (inhibitor of P. capsici resistance [Ipcr]), found in the chile pepper (Capsicum annuum) variety 'New Mexico Capsicum Accession 10399' (NMCA10399), inhibits resistance to Phytophthora capsici but not to other species of Phytophthora. When a highly P. capsici-resistant variety was hybridized with NMCA10399, the resultant F1 populations, when screened, were completely susceptible to P. capsici for root rot and foliar blight disease syndromes, despite the dominance inheritance of P. capsici resistance in chile pepper. The F2 population displayed a 3:13 resistant-to-susceptible (R:S) ratio. The testcross population displayed a 1:1 R:S ratio, and a backcross population to NMCA10399 displayed complete susceptibility. These results demonstrate the presence of a single dominant inhibitor gene affecting P. capsici resistance in chile pepper. Moreover, when lines carrying the Ipcr gene were challenged against six Phytophthora spp., the nonhost resistance was not overcome. Therefore, the Ipcr gene is interfering with host-specific resistance but not the pathogen- or microbe-associated molecular pattern nonhost responses.

  20. Characterization and cloning of TMV resistance gene N homologues ...

    African Journals Online (AJOL)

    Tobacco cultivars Nicotiana tabacum cv. Samsun NN plants carrying the N gene contain a multitude of N-related genes. We cloned a few N homologues and isolated two full-length cDNAs of NL-C26 and NL-B69 genes from N. tabacum cv. Samsun NN. Nucleotide sequence analysis showed that the coding regions of ...

  1. Identification of Differentially Expressed Genes In Deltamethrin-Resistant Culex pipiens quinquefasciatus.

    Science.gov (United States)

    Liu, Qin-Mei; Li, Chun-Xiao; Wu, Qun; Shi, Qing-Ming; Sun, Ai-Juan; Zhang, Heng-Duan; Guo, Xiao-Xia; Dong, Yan-De; Xing, Dan; Zhang, Ying-Mei; Han, Qian; Diao, Xiao-Ping; Zhao, Tong-Yan

    2017-12-01

    Culex quinquefasciatus is one of China's major house-dwelling mosquito species and an important vector of filariasis and encephalitis. Chemical treatments represent one of the most successful approaches for comprehensive mosquito prevention and control. However, the widespread use of chemical pesticides has led to the occurrence and development of insecticide resistance. Therefore, in-depth studies of resistance to insecticides are of vital importance. In this study, we performed a gene expression analysis to investigate genes from Cx. quinquefasciatus that may confer pyrethroid resistance. We aimed to understand the mechanisms of Cx. quinquefasciatus resistance to pyrethroid insecticides and provide insights into insect resistance management. Using a resistance bioassay, we determined the deltamethrin LC 50 values (lethal concentration required to kill 50% of the population) for Cx. quinquefasciatus larvae in the F 21 , F 23 , F 24 , F 26 , F 27 , and F 30 generations. The 7 tested strains exhibited pesticide resistance that was 25.25 to 87.83 times higher than that of the SanYa strain. Moreover, the expression of the OBPjj7a (odorant-binding protein OBPjj7a), OBP28 (odorant-binding protein OBP28), and E2 (ubiquitin-conjugating enzyme) genes was positively correlated with deltamethrin resistance ( R 2 = 0.836, P = 0.011; R 2 = 0.788, P = 0.018; and R 2 = 0.850, P = 0.009, respectively) in Cx. quinquefasciatus. The expression of 4 additional genes, H/ACA, S19, SAR2, and PGRP, was not correlated with deltamethrin resistance. In summary, this study identified 3 Cx. quinquefasciatus genes with potential involvement in deltamethrin resistance, and these results may provide a theoretical basis for the control of mosquito resistance and insights into resistance detection.

  2. Overexpression of multiple detoxification genes in deltamethrin resistant Laodelphax striatellus (Hemiptera: Delphacidae in China.

    Directory of Open Access Journals (Sweden)

    Lu Xu

    Full Text Available BACKGROUND: The small brown planthopper (SBPH, Laodelphax striatellus (Fallén, is one of the major rice pests in Asia and has developed resistance to multiple classes of insecticides. Understanding resistance mechanisms is essential to the management of this pest. Biochemical and molecular assays were performed in this study to systematically characterize deltamethrin resistance mechanisms with laboratory-selected resistant and susceptible strains of SBPH. METHODOLOGY/PRINCIPAL FINDINGS: Deltamethrin resistant strains of SBPH (JH-del were derived from a field population by continuously selections (up to 30 generations in the laboratory, while a susceptible strain (JHS was obtained from the same population by removing insecticide pressure for 30 generations. The role of detoxification enzymes in the resistance was investigated using synergism and enzyme activity assays with strains of different resistant levels. Furthermore, 71 cytochrome P450, 93 esterases and 12 glutathione-S-transferases cDNAs were cloned based on transcriptome data of a field collected population. Semi-quantitative RT-PCR screening analysis of 176 identified detoxification genes demonstrated that multiple P450 and esterase genes were overexpressed (>2-fold in JH-del strains (G4 and G30 when compared to that in JHS, and the results of quantitative PCR coincided with the semi-quantitative RT-PCR results. Target mutation at IIS3-IIS6 regions encoded by the voltage-gated sodium channel gene was ruled out for conferring the observed resistance. CONCLUSION/SIGNIFICANCE: As the first attempt to discover genes potentially involved in SBPH pyrethroid resistance, this study putatively identified several candidate genes of detoxification enzymes that were significantly overexpressed in the resistant strain, which matched the synergism and enzyme activity testing. The biochemical and molecular evidences suggest that the high level pyrethroid resistance in L. striatellus could be due to

  3. Tagging of blast resistance gene(s) to DNA markers and marker-assisted selection (MAS) in rice improvement

    International Nuclear Information System (INIS)

    Zhuang, J.Y.; Lu, J.; Qian, H.R.; Lin, H.X.; Zheng, K.L.

    1998-01-01

    This paper reports progress made on the tagging of blast resistance gene(s) to DNA markers and on the initiation of marker-assisted selection (MAS) for blast resistance in rice improvement. A pair of near isogenic lines, K8OR and K79S, were developed using a Chinese landrace Hong-jiao-zhan as the resistance donor. Ten putatively positive markers were identified by screening 177 mapped DNA markers. Using the F 2 population of 143 plants and the derived F 3 lines, three Restriction Fragment Length Polymorphism (RFLP) markers (RG81, RG869 and RZ397) on chromosome 12 of rice were identified to be closely linked to the blast resistance gene Pi-12(t). The genetic distance between Pi-12(t) and the closest marker RG869 was 5.1 cM. By employing the bulk segregant analysis (BSA) procedure, six of 199 arbitrary primers were found to produce positive Randomly Amplified Polymorphic DNA (RAPD) bands. Tight linkage between Pi-12(t) and three RAPD bands, each from a different primer, was confirmed after amplification of DNA of all F 2 individuals. Two fragments were cloned and sequenced, and two sequence characterised amplified re-ion (SCAR) markers were established. In two other F 3 populations, Xian-feng I/Tetep and Xian-feng, 1/Hong-jiao-zhan, the blast resistance was found to be controlled by interactions of two or more genes. One resistance gene was located in the vicinity of RG81 in both populations. Work to identify other gene(s) is currently under way. Marker assisted selection for blast resistance was initiated. Crosses were made between elite varieties and blast resistance donors to develop populations for DNA marker-assisted selection of blast resistance. In addition, 48 varieties widely used in current rice breeding programs were provided by rice breeders. DNA marker-based polymorphism among, these varieties and resistance donors were analysed to produce a database for future MAS program. (author)

  4. Prevalence of antimicrobial resistance and the cfiA resistance gene in Danish Bacteroides fragilis group isolates since 1973

    DEFF Research Database (Denmark)

    Ferløv-Schwensen, Simon Andreas; Sydenham, Thomas Vognbjerg; Hansen, Kia Cirkeline Møller

    2017-01-01

    .0%) B. fragilis strains as division II, of which 4 strains, isolated between 2010 and 2015, were resistant to meropenem. CONCLUSIONS: Substantial increases in resistance were found throughout this study. This supports the general perception that antimicrobial resistance in the B. fragilis group has been......OBJECTIVES: The purpose of this study was to determine the prevalence of resistance and the cfiA carbapenemase-producing gene in historical Bacteroides fragilis group isolates. METHODS: Danish clinical B. fragilis group isolates (n = 444) from 1973 to 2015 were identified with Matrix-Assisted Laser...... Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) on the Biotyper platform. Antimicrobial resistance was determined using a disk diffusion screening method and commercial antibiotic gradient strips. Division I (cfiA-negative) and division II (cfiA-positive) B. fragilis strains were...

  5. High Level Aminoglycoside Resistance and Distribution of Aminoglycoside Resistant Genes among Clinical Isolates of Enterococcus Species in Chennai, India

    Directory of Open Access Journals (Sweden)

    Elango Padmasini

    2014-01-01

    Full Text Available Enterococci are nosocomial pathogen with multiple-drug resistance by intrinsic and extrinsic mechanisms. Aminoglycosides along with cell wall inhibitors are given clinically for treating enterococcal infections. 178 enterococcal isolates were analyzed in this study. E. faecalis is identified to be the predominant Enterococcus species, along with E. faecium, E. avium, E. hirae, E. durans, E. dispar and E. gallinarum. High level aminoglycoside resistance (HLAR by MIC for gentamicin (GM, streptomycin (SM and both (GM + SM antibiotics was found to be 42.7%, 29.8%, and 21.9%, respectively. Detection of aminoglycoside modifying enzyme encoding genes (AME in enterococci was identified by multiplex PCR for aac(6′-Ie-aph(2′′-Ia; aph(2′′-Ib; aph(2′′-Ic; aph(2′′-Id and aph(3′-IIIa genes. 38.2% isolates carried aac(6′-Ie-aph(2′′-Ia gene and 40.4% isolates carried aph(3′-IIIa gene. aph(2′′-Ib; aph(2′′-Ic; aph(2′′-Id were not detected among our study isolates. aac(6′-Ie-aph(2′′-Ia and aph(3′-IIIa genes were also observed in HLAR E. durans, E. avium, E. hirae, and E. gallinarum isolates. This indicates that high level aminoglycoside resistance genes are widely disseminated among isolates of enterococci from Chennai.

  6. Role and prevalence of antibiosis and the related resistance genes in the environment

    DEFF Research Database (Denmark)

    It becomes increasingly clear that the basis of antibiotic resistance problem among bacterial pathogens is not confined to the borders of clinical microbiology but has broader ecological and evolutionary associations. This Research Topic “Role and prevalence of antibiosis and the related resistance...... genes in the environment” in Frontiers in Microbiology, section Antimicrobials, Resistance and Chemotherapy, presents the examples of occurrence and diversity of antibiotic resistance genes in the wide range of environments, from the grasslands of the Colombian Andes, to the dairy farms and small animal...... veterinary hospitals in the United Stated, and to the various environments of Continental Europe and Indochina. Besides, various genetic mechanisms and selection/co-selection factors contributing to the dissemination and maintenance of antibiotic resistance genes are presented. The topic is finalized...

  7. Insights into novel antimicrobial compounds and antibiotic resistance genes from soil metagenomes

    Directory of Open Access Journals (Sweden)

    Alinne P Castro

    2014-09-01

    Full Text Available In recent years a major worldwide problem has arisen with regard to infectious diseases caused by resistant bacteria. Resistant pathogens are related to high mortality and also to enormous healthcare costs. In this field, cultured microorganisms have been commonly focused in attempts to isolate antibiotic resistance genes or to identify antimicrobial compounds. Although this strategy has been successful in many cases, most of the microbial diversity and related antimicrobial molecules have been completely lost. As an alternative, metagenomics has been used as a reliable approach to reveal the prospective reservoir of antimicrobial compounds and antibiotic resistance genes in the uncultured microbial community that inhabits a number of environments. In this context, this review will focus on resistance genes as well as on novel antibiotics revealed by a metagenomics approach from the soil environment. Biotechnology prospects are also discussed, opening new frontiers for antibiotic development.

  8. Benchmarking of methods for identification of antimicrobial resistance genes in bacterial whole genome data

    DEFF Research Database (Denmark)

    Clausen, Philip T. L. C.; Zankari, Ea; Aarestrup, Frank Møller

    2016-01-01

    with two previously described methods; ResFinder and SRST2, which use an assembly/BLAST method and BWA, respectively, using two datasets with a total of 339 isolates, covering five species, originating from the Oxford University Hospitals NHS Trust and Danish pig farms. The predicted resistance...... to two different methods in current use for identification of antibiotic resistance genes in bacterial WGS data. A novel method, KmerResistance, which examines the co-occurrence of k-mers between the WGS data and a database of resistance genes, was developed. The performance of this method was compared...... was compared with the observed phenotypes for all isolates. To challenge further the sensitivity of the in silico methods, the datasets were also down-sampled to 1% of the reads and reanalysed. The best results were obtained by identification of resistance genes by mapping directly against the raw reads...

  9. Narrow grass hedges reduce tylosin and associated antimicrobial resistance genes in agricultural runoff

    Science.gov (United States)

    Agricultural runoff from areas receiving livestock manure can potentially contaminate surface water with antimicrobials and antimicrobial resistance genes (ARGs). The objective of this study was to investigate the effectiveness of narrow grass hedges (NGHs) on reducing the transport of antimicrobial...

  10. Phylogenetic relatedness determined between antibiotic resistance and 16S rRNA genes in actinobacteria

    Czech Academy of Sciences Publication Activity Database

    Ságová-Marečková, M.; Ulanová, Dana; Šanderová, P.; Omelka, M.; Kameník, Zdeněk; Olšovská, J.; Kopecký, J.

    2015-01-01

    Roč. 15, APR 2015 (2015) ISSN 1471-2180 Institutional support: RVO:61388971 Keywords : Actinobacteria * 16S rRNA diversity * Resistance genes Subject RIV: EH - Ecology, Behaviour Impact factor: 2.581, year: 2015

  11. Tetracycline resistance genes persist in soil amended with cattle feces independently from chlortetracycline selection pressure

    NARCIS (Netherlands)

    Kyselkova, Martina; Kotrbova, Lucie; Bhumibhamon, Gamonsiri; Chronakova, Alica; Jirout, Jiri; Vrchotova, Nadezda; Schmitt, Heike; Elhottova, Dana

    Antibiotic residues and antibiotic resistance genes originating from animal waste represent environmental pollutants with possible human health consequences. In this study, we addressed the question whether chlortetracycline (CTC) residues in soils can act as selective pressure enhancing the

  12. Comparative Genome Analysis of Ciprofloxacin-Resistant Pseudomonas aeruginosa Reveals Genes Within Newly Identified High Variability Regions Associated With Drug Resistance Development

    OpenAIRE

    Su, Hsun-Cheng; Khatun, Jainab; Kanavy, Dona M.; Giddings, Morgan C.

    2013-01-01

    The alarming rise of ciprofloxacin-resistant Pseudomonas aeruginosa has been reported in several clinical studies. Though the mutation of resistance genes and their role in drug resistance has been researched, the process by which the bacterium acquires high-level resistance is still not well understood. How does the genomic evolution of P. aeruginosa affect resistance development? Could the exposure of antibiotics to the bacteria enrich genomic variants that lead to the development of resist...

  13. Multidrug resistance in fungi: regulation of transporter-encoding gene expression.

    Science.gov (United States)

    Paul, Sanjoy; Moye-Rowley, W Scott

    2014-01-01

    A critical risk to the continued success of antifungal chemotherapy is the acquisition of resistance; a risk exacerbated by the few classes of effective antifungal drugs. Predictably, as the use of these drugs increases in the clinic, more resistant organisms can be isolated from patients. A particularly problematic form of drug resistance that routinely emerges in the major fungal pathogens is known as multidrug resistance. Multidrug resistance refers to the simultaneous acquisition of tolerance to a range of drugs via a limited or even single genetic change. This review will focus on recent progress in understanding pathways of multidrug resistance in fungi including those of most medical relevance. Analyses of multidrug resistance in Saccharomyces cerevisiae have provided the most detailed outline of multidrug resistance in a eukaryotic microorganism. Multidrug resistant isolates of S. cerevisiae typically result from changes in the activity of a pair of related transcription factors that in turn elicit overproduction of several target genes. Chief among these is the ATP-binding cassette (ABC)-encoding gene PDR5. Interestingly, in the medically important Candida species, very similar pathways are involved in acquisition of multidrug resistance. In both C. albicans and C. glabrata, changes in the activity of transcriptional activator proteins elicits overproduction of a protein closely related to S. cerevisiae Pdr5 called Cdr1. The major filamentous fungal pathogen, Aspergillus fumigatus, was previously thought to acquire resistance to azole compounds (the principal antifungal drug class) via alterations in the azole drug target-encoding gene cyp51A. More recent data indicate that pathways in addition to changes in the cyp51A gene are important determinants in A. fumigatus azole resistance. We will discuss findings that suggest azole resistance in A. fumigatus and Candida species may share more mechanistic similarities than previously thought.

  14. Gene expression analysis of two extensively drug-resistant tuberculosis isolates show that two-component response systems enhance drug resistance.

    Science.gov (United States)

    Yu, Guohua; Cui, Zhenling; Sun, Xian; Peng, Jinfu; Jiang, Jun; Wu, Wei; Huang, Wenhua; Chu, Kaili; Zhang, Lu; Ge, Baoxue; Li, Yao

    2015-05-01

    Global analysis of expression profiles using DNA microarrays was performed between a reference strain H37Rv and two clinical extensively drug-resistant isolates in response to three anti-tuberculosis drug exposures (isoniazid, capreomycin, and rifampicin). A deep analysis was then conducted using a combination of genome sequences of the resistant isolates, resistance information, and related public microarray data. Certain known resistance-associated gene sets were significantly overrepresented in upregulated genes in the resistant isolates relative to that observed in H37Rv, which suggested a link between resistance and expression levels of particular genes. In addition, isoniazid and capreomycin response genes, but not rifampicin, either obtained from published works or our data, were highly consistent with the differentially expressed genes of resistant isolates compared to those of H37Rv, indicating a strong association between drug resistance of the isolates and genes differentially regulated by isoniazid and capreomycin exposures. Based on these results, 92 genes of the studied isolates were identified as candidate resistance genes, 10 of which are known resistance-related genes. Regulatory network analysis of candidate resistance genes using published networks and literature mining showed that three two-component regulatory systems and regulator CRP play significant roles in the resistance of the isolates by mediating the production of essential envelope components. Finally, drug sensitivity testing indicated strong correlations between expression levels of these regulatory genes and sensitivity to multiple anti-tuberculosis drugs in Mycobacterium tuberculosis. These findings may provide novel insights into the mechanism underlying the emergence and development of drug resistance in resistant tuberculosis isolates and useful clues for further studies on this issue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar

    Science.gov (United States)

    Das, Gitishree; Rao, G. J. N.

    2015-01-01

    Severe yield loss due to various biotic stresses like bacterial blight (BB), gall midge (insect) and Blast (disease) and abiotic stresses like submergence and salinity are a serious constraint to the rice productivity throughout the world. The most effective and reliable method of management of the stresses is the enhancement of host resistance, through an economical and environmentally friendly approach. Through the application of marker assisted selection (MAS) technique, the present study reports a successful pyramidization of genes/QTLs to confer resistance/tolerance to blast (Pi2, Pi9), gall Midge (Gm1, Gm4), submergence (Sub1), and salinity (Saltol) in a released rice variety CRMAS2621-7-1 as Improved Lalat which had already incorporated with three BB resistance genes xa5, xa13, and Xa21 to supplement the Xa4 gene present in Improved Lalat. The molecular analysis revealed clear polymorphism between the donor and recipient parents for all the markers that are tagged to the target traits. The conventional backcross breeding approach was followed till BC3F1 generation and starting from BC1F1 onwards, marker assisted selection was employed at each step to monitor the transfer of the target alleles with molecular markers. The different BC3F1s having the target genes/QTLs were inter crossed to generate hybrids with all 10 stress resistance/tolerance genes/QTLs into a single plant/line. Homozygous plants for resistance/tolerance genes in different combinations were recovered. The BC3F3 lines were characterized for their agronomic and quality traits and promising progeny lines were selected. The SSR based background selection was done. Most of the gene pyramid lines showed a high degree of similarity to the recurrent parent for both morphological, grain quality traits and in SSR based background selection. Out of all the gene pyramids tested, two lines had all the 10 resistance/tolerance genes and showed adequate levels of resistance/tolerance against the five target

  16. Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics

    Science.gov (United States)

    Berglund, Björn

    2015-01-01

    Antibiotic resistance is a growing problem which threatens modern healthcare globally. Resistance has traditionally been viewed as a clinical problem, but recently non-clinical environments have been highlighted as an important factor in the dissemination of antibiotic resistance genes (ARGs). Horizontal gene transfer (HGT) events are likely to be common in aquatic environments; integrons in particular are well suited for mediating environmental dissemination of ARGs. A growing body of evidence suggests that ARGs are ubiquitous in natural environments. Particularly, elevated levels of ARGs and integrons in aquatic environments are correlated to proximity to anthropogenic activities. The source of this increase is likely to be routine discharge of antibiotics and resistance genes, for example, via wastewater or run-off from livestock facilities and agriculture. While very high levels of antibiotic contamination are likely to select for resistant bacteria directly, the role of sub-inhibitory concentrations of antibiotics in environmental antibiotic resistance dissemination remains unclear. In vitro studies have shown that low levels of antibiotics can select for resistant mutants and also facilitate HGT, indicating the need for caution. Overall, it is becoming increasingly clear that the environment plays an important role in dissemination of antibiotic resistance; further studies are needed to elucidate key aspects of this process. Importantly, the levels of environmental antibiotic contamination at which resistant bacteria are selected for and HGT is facilitated at should be determined. This would enable better risk analyses and facilitate measures for preventing dissemination and development of antibiotic resistance in the environment. PMID:26356096

  17. Completion of the nucleotide sequence of the central region of Tn5 confirms the presence of three resistance genes.

    OpenAIRE

    Mazodier, P; Cossart, P; Giraud, E; Gasser, F

    1985-01-01

    The DNA sequence of the region located downstream from the kanamycin resistance gene of Tn5 up to the right inverted repeat IS50R has been determined. This completes the determination of the sequence of Tn5 which is 5818 bp long. The 2.7 Kb central region contains three resistance genes: the kanamycin-neomycin resistance gene, a gene coding for resistance to CL990 an antimitotic-antibiotic compound of the bleomycin family and a third gene that confers streptomycin resistance in some bacterial...

  18. Dissection of Resistance Genes to Pseudomonas syringae pv. phaseolicola in UI3 Common Bean Cultivar

    Directory of Open Access Journals (Sweden)

    Ana M. González

    2017-11-01

    Full Text Available Few quantitative trait loci have been mapped for resistance to Pseudomonas syringae pv. phaseolicola in common bean. Two F2 populations were developed from the host differential UI3 cultivar. The objective of this study was to further characterize the resistance to races 1, 5, 7 and 9 of Psp included in UI3. Using a QTL mapping approach, 16 and 11 main-effect QTLs for pod and primary leaf resistance were located on LG10, explaining up to 90% and 26% of the phenotypic variation, respectively. The homologous genomic region corresponding to primary leaf resistance QTLs detected tested positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL, Natural Resistance Associated Macrophage (NRAMP and Pentatricopeptide Repeat family (PPR proteins. It is worth noting that the main effect QTLs for resistance in pod were located inside a 3.5 Mb genomic region that included the Phvul.010G021200 gene, which encodes a protein that has the highest sequence similarity to the RIN4 gene of Arabidopsis, and can be considered an important candidate gene for the organ-specific QTLs identified here. These results support that resistance to Psp from UI3 might result from the immune response activated by combinations of R proteins, and suggest the guard model as an important mechanism in pod resistance to halo blight. The candidate genes identified here warrant functional studies that will help in characterizing the actual defense gene(s in UI3 genotype.

  19. Widespread plasmid resistance genes among Proteus species in ...

    African Journals Online (AJOL)

    34% of the strains lost the antibiotic resistance plasmids marker after sodium dodecyl sulfate (SDS) mediated curing. The rest of the plasmid markers were non transferable. The results indicated that plasmids carry varied dissemination of antibiotics resistance markers to distant recipient cells, indicating clonal transfer ...

  20. Consolidating and Exploring Antibiotic Resistance Gene Data Resources

    DEFF Research Database (Denmark)

    Xavier, Basil Britto; Das, Anupam J.; Cochrane, Guy

    2016-01-01

    The unrestricted use of antibiotics has resulted in rapid acquisition of antibiotic resistance (AR) and spread of multidrug-resistant (MDR) bacterial pathogens. With the advent of next-generation sequencing technologies and their application in understanding MDR pathogen dynamics, it has become...

  1. ABCB1 gene polymorphisms is not associated with drug-resistant epilepsy in Romanian children

    Directory of Open Access Journals (Sweden)

    Butila Anamaria Todoran

    2015-12-01

    Full Text Available Background: P-glycoprotein (P-gp, a drug efflux transporter, encoded by the gene MDR1 ABCB1 multidrug resistant, reduces the penetration through the brain by the AEDs. Overexpression of Pgp in blood-brain barrier in epileptic patients play an important rol in pharmacoresistance. The aim of this study was to evaluate a possible association between C1236T and G2677T ABCB1 gene polymorphisms and drug-resistant epilepsy in Romanian children.

  2. Discovery and characterization of two new stem rust resistance genes in Aegilops sharonensis.

    Science.gov (United States)

    Yu, Guotai; Champouret, Nicolas; Steuernagel, Burkhard; Olivera, Pablo D; Simmons, Jamie; Williams, Cole; Johnson, Ryan; Moscou, Matthew J; Hernández-Pinzón, Inmaculada; Green, Phon; Sela, Hanan; Millet, Eitan; Jones, Jonathan D G; Ward, Eric R; Steffenson, Brian J; Wulff, Brande B H

    2017-06-01

    We identified two novel wheat stem rust resistance genes, Sr-1644-1Sh and Sr-1644-5Sh in Aegilops sharonensis that are effective against widely virulent African races of the wheat stem rust pathogen. Stem rust is one of the most important diseases of wheat in the world. When single stem rust resistance (Sr) genes are deployed in wheat, they are often rapidly overcome by the pathogen. To this end, we initiated a search for novel sources of resistance in diverse wheat relatives and identified the wild goatgrass species Aegilops sharonesis (Sharon goatgrass) as a rich reservoir of resistance to wheat stem rust. The objectives of this study were to discover and map novel Sr genes in Ae. sharonensis and to explore the possibility of identifying new Sr genes by genome-wide association study (GWAS). We developed two biparental populations between resistant and susceptible accessions of Ae. sharonensis and performed QTL and linkage analysis. In an F 6 recombinant inbred line and an F 2 population, two genes were identified that mapped to the short arm of chromosome 1S sh , designated as Sr-1644-1Sh, and the long arm of chromosome 5S sh , designated as Sr-1644-5Sh. The gene Sr-1644-1Sh confers a high level of resistance to race TTKSK (a member of the Ug99 race group), while the gene Sr-1644-5Sh conditions strong resistance to TRTTF, another widely virulent race found in Yemen. Additionally, GWAS was conducted on 125 diverse Ae. sharonensis accessions for stem rust resistance. The gene Sr-1644-1Sh was detected by GWAS, while Sr-1644-5Sh was not detected, indicating that the effectiveness of GWAS might be affected by marker density, population structure, low allele frequency and other factors.

  3. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge

    OpenAIRE

    Zhang, T; Zhang, XX; Ye, L

    2011-01-01

    The overuse or misuse of antibiotics has accelerated antibiotic resistance, creating a major challenge for the public health in the world. Sewage treatment plants (STPs) are considered as important reservoirs for antibiotic resistance genes (ARGs) and activated sludge characterized with high microbial density and diversity facilitates ARG horizontal gene transfer (HGT) via mobile genetic elements (MGEs). However, little is known regarding the pool of ARGs and MGEs in sludge microbiome. In thi...

  4. Genetic characterization and fine mapping of the novel Phytophthora resistance gene in a Chinese soybean cultivar.

    Science.gov (United States)

    Zhang, Jiqing; Xia, Changjian; Wang, Xiaoming; Duan, Canxing; Sun, Suli; Wu, Xiaofei; Zhu, Zhendong

    2013-06-01

    Phytophthora root rot (PRR), caused by Phytophthora sojae Kaufmann & Gerdemann, is one of the most destructive diseases of soybean [Glycine max (L.) Merr.]. Deployment of resistance genes is the most economical and effective way of controlling the disease. The soybean cultivar 'Yudou 29' is resistant to many P. sojae isolates in China. The genetic basis of the resistance in 'Yudou 29' was elucidated through an inheritance study and molecular mapping. In response to 25 P. sojae isolates, 'Yudou 29' displayed a new resistance reaction pattern distinct from those of differentials carrying known Rps genes. A population of 214 F2:3 families from a cross between 'Jikedou 2' (PRR susceptible) and 'Yudou 29' was used for Rps gene mapping. The segregation fit a ratio of 1:2:1 for resistance:segregation:susceptibility within this population, indicating that resistance in 'Yudou 29' is controlled by a single dominant gene. This gene was temporarily named RpsYD29 and mapped on soybean chromosome 03 (molecular linkage group N; MLG N) flanked by SSR markers SattWM82-50 and Satt1k4b at a genetic distance of 0.5 and 0.2 cM, respectively. Two nucleotide binding site-leucine rich repeat (NBS-LRR) type genes were detected in the 204.8 kb region between SattWM82-50 and Satt1k4b. These two genes showed high similarity to Rps1k in amino acid sequence and could be candidate genes for PRR resistance. Based on the phenotype reactions and the physical position on soybean chromosome 03, RpsYD29 might be a novel allele at, or a novel gene tightly linked to, the Rps1 locus.

  5. [cDNA libraries construction and screening in gene expression profiling of disease resistance in wheat].

    Science.gov (United States)

    Luo, Meng; Kong, Xiu-Ying; Liu, Yue; Zhou, Rong-Hua; Jia, Ji-Zeng

    2002-09-01

    A wheat line, Bai Nong 3217/Mardler BC5F4 with resistance to powdery mildew, was used to construct a conventional cDNA library and a suppression subtractive hybridization (SSH) cDNA library from wheat leaves inoculated by Erysiphe graminis DC. Three hundred and eighty-seven non-redundant ESTs from the conventional cDNA library and 760 ESTs from the SSH cDNA library were obtained, and the ESTs similarity analysis using BLASTn and BLASTx were conducted by comparing these ESTs with sequences in GenBank. The results showed that the redundancy of some kinds of genes such as photosynthesis related genes and ribosome related genes was higher in the conventional cDNA library but the varieties and quantities of disease resistance genes were less than those in the SSH cDNA library. The SSH cDNA library was found to have obvious advantages in gene expression profiling of disease resistance such as simple library construction procedure, rich specific DRR (disease-resistance-related) genes and decreased sequencing amount. To acquire genes that were involved in the powdery mildew resistance of wheat, hybridization with high-density dots membranes was used to screen the two libraries. The result showed that the method was relatively simple in operation, and the membranes could be used for many times. But some problems also existed with this screening method. For instance, a large amount of mRNA and radioactive isotope were needed and the hybridization procedure must be repeated several times to obtain stable hybridization results. About 54.1% function-known ESTs in the SSH cDNA library were identified to be DRR genes by screening. There were 247 clones of the SSH cDNA library that had positive signal in the repeated hybridizations with the pathogen uninfected probe. The identified DRR genes distributed in the whole procedure of powdery mildew resistance, but mainly focused on the SAR (systemic of acquired resistance).

  6. Method of Selection of Bacteria Antibiotic Resistance Genes Based on Clustering of Similar Nucleotide Sequences.

    Science.gov (United States)

    Balashov, I S; Naumov, V A; Borovikov, P I; Gordeev, A B; Dubodelov, D V; Lyubasovskaya, L A; Rodchenko, Yu V; Bystritskii, A A; Aleksandrova, N V; Trofimov, D Yu; Priputnevich, T V

    2017-10-01

    A new method for selection of bacterium antibiotic resistance genes is proposed and tested for solving the problems related to selection of primers for PCR assay. The method implies clustering of similar nucleotide sequences and selection of group primers for all genes of each cluster. Clustering of resistance genes for six groups of antibiotics (aminoglycosides, β-lactams, fluoroquinolones, glycopeptides, macrolides and lincosamides, and fusidic acid) was performed. The method was tested for 81 strains of bacteria of different genera isolated from patients (K. pneumoniae, Staphylococcus spp., S. agalactiae, E. faecalis, E. coli, and G. vaginalis). The results obtained by us are comparable to those in the selection of individual genes; this allows reducing the number of primers necessary for maximum coverage of the known antibiotic resistance genes during PCR analysis.

  7. The MCP-8 gene and its possible association with resistance to Streptococcus agalactiae in tilapia.

    Science.gov (United States)

    Fu, Gui Hong; Wan, Zi Yi; Xia, Jun Hong; Liu, Feng; Liu, Xiao Jun; Yue, Gen Hua

    2014-09-01

    Mast cell proteases play an important role in the regulation of the immune response. We identified the cDNA of the mast cell protease 8 (MCP-8) gene and analyzed its genomic structure in tilapia. The ORF of the MCP-8 was 768 bp, encoding 255 amino acids. Quantitative real-time PCR revealed that the MCP-8 gene was expressed predominantly in spleen, moderately in liver, blood, brain, gill, intestine, skin, and weakly expressed in kidney, muscle and eye. After a challenge with Streptococcus agalactiae, the gene was induced significantly (p 0.05). These results suggest that the MCP-8 gene play an important role in the resistance to S. agalactiae in tilapia. The SNP markers in the MCP-8 gene associated with the resistance to the bacterial pathogen may facilitate selection of tilapia resistant to the bacterial disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes.

    Science.gov (United States)

    Czekalski, Nadine; Sigdel, Radhika; Birtel, Julia; Matthews, Blake; Bürgmann, Helmut

    2015-08-01

    Antibiotic resistance genes (ARGs) are emerging environmental contaminants, known to be continuously discharged into the aquatic environment via human and animal waste. Freshwater aquatic environments represent potential reservoirs for ARG and potentially allow sewage-derived ARG to persist and spread in the environment. This may create increased opportunities for an eventual contact with, and gene transfer to, human and animal pathogens via the food chain or drinking water. However, assessment of this risk requires a better understanding of the level and variability of the natural resistance background and the extent of the human impact. We have analyzed water samples from 21 Swiss lakes, taken at sampling points that were not under the direct influence of local contamination sources and analyzed the relative abundance of ARG using quantitative real-time PCR. Copy numbers of genes mediating resistance to three different broad-spectrum antibiotic classes (sulfonamides: sul1, sul2, tetracyclines: tet(B), tet(M), tet(W) and fluoroquinolones: qnrA) were normalized to copy numbers of bacterial 16S rRNA genes. We used multiple linear regression to assess if ARG abundance is related to human activities in the catchment, microbial community composition and the eutrophication status of the lakes. Sul genes were detected in all sampled lakes, whereas only four lakes contained quantifiable numbers of tet genes, and qnrA remained below detection in all lakes. Our data indicate higher abundance of sul1 in lakes with increasing number and capacity of wastewater treatment plants (WWTPs) in the catchment. sul2 abundance was rather related to long water residence times and eutrophication status. Our study demonstrates the potential of freshwater lakes to preserve antibiotic resistance genes, and provides a reference for ARG abundance from lake systems with low human impact as a baseline for assessing ARG contamination in lake water. Copyright © 2015 Elsevier Ltd. All rights

  9. Deep sequence analysis reveals the ovine rumen as a reservoir of antibiotic resistance genes.

    Science.gov (United States)

    Hitch, Thomas C A; Thomas, Ben J; Friedersdorff, Jessica C A; Ougham, Helen; Creevey, Christopher J

    2018-04-01

    Antibiotic resistance is an increasingly important environmental pollutant with direct consequences for human health. Identification of environmental sources of antibiotic resistance genes (ARGs) makes it possible to follow their evolution and prevent their entry into the clinical setting. ARGs have been found in environmental sources exogenous to the original source and previous studies have shown that these genes are capable of being transferred from livestock to humans. Due to the nature of farming and the slaughter of ruminants for food, humans interact with these animals in close proximity, and for this reason it is important to consider the risks to human health. In this study, we characterised the ARG populations in the ovine rumen, termed the resistome. This was done using the Comprehensive Antibiotic Resistance Database (CARD) to identify the presence of genes conferring resistance to antibiotics within the rumen. Genes were successfully mapped to those that confer resistance to a total of 30 different antibiotics. Daptomycin was identified as the most common antibiotic for which resistance is present, suggesting that ruminants may be a source of daptomycin ARGs. Colistin resistance, conferred by the gene pmrE, was also found to be present within all samples, with an average abundance of 800 counts. Due to the high abundance of some ARGs (against daptomycin) and the presence of rare ARGs (against colistin), we suggest further study and monitoring of the rumen resistome as a possible source of clinically relevant ARGs. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Identification of a second Asian soybean rust resistance gene in Hyuuga soybean.

    Science.gov (United States)

    Kendrick, Mandy D; Harris, Donna K; Ha, Bo-Keun; Hyten, David L; Cregan, Perry B; Frederick, Reid D; Boerma, H Roger; Pedley, Kerry F

    2011-05-01

    ABSTRACT Asian soybean rust (ASR) is an economically significant disease caused by the fungus Phakopsora pachyrhizi. The soybean genes Rpp3 and Rpp?(Hyuuga) confer resistance to specific isolates of the pathogen. Both genes map to chromosome 6 (Gm06) (linkage group [LG] C2). We recently identified 12 additional soybean accessions that harbor ASR resistance mapping to Gm06, within 5 centimorgans of Rpp3 and Rpp?(Hyuuga). To further characterize genotypes with resistance on Gm06, we used a set of eight P. pachyrhizi isolates collected from geographically diverse areas to inoculate plants and evaluate them for differential phenotypic responses. Three isolates elicited different responses from soybean accessions PI 462312 (Ankur) (Rpp3) and PI 506764 (Hyuuga) (Rpp?[Hyuuga]). In all, 11 of the new accessions yielded responses identical to either PI 462312 or Hyuuga and 1 of the new accessions, PI 417089B (Kuro daizu), differed from all others. Additional screening of Hyuuga-derived recombinant inbred lines indicated that Hyuuga carries two resistance genes, one at the Rpp3 locus on Gm06 and a second, unlinked ASR resistance gene mapping to Gm03 (LG-N) near Rpp5. These findings reveal a natural case of gene pyramiding for ASR resistance in Hyuuga and underscore the importance of utilizing multiple isolates of P. pachyrhizi when screening for ASR resistance.

  11. Tetracycline Resistance Genes Identified from Distinct Soil Environments in China by Functional Metagenomics.

    Science.gov (United States)

    Wang, Shaochen; Gao, Xia; Gao, Yuejiao; Li, Yanqing; Cao, Mingming; Xi, Zhenhua; Zhao, Lixing; Feng, Zhiyang

    2017-01-01

    Soil microbiota represents one of the ancient evolutionary origins of antibiotic resistance and has been increasingly recognized as a potentially vast unstudied reservoir of resistance genes with possibilities to exchange with pathogens. Tetracycline resistance is one of the most abundant antibiotic resistances that may transfer among clinical and commensal microorganisms. To investigate tetracycline resistance genes from soil bacteria in different habitats, we performed functional analysis of three metagenomic libraries derived from soil samples collected from Yunnan, Sichuan, and Tibet, respectively, in China. We found efflux transporter genes form all the libraries, including 21 major facilitator superfamily efflux pump genes and one multidrug and toxic compound extrusion (MATE) transporter gene. Interestingly, we also identified two tetracycline destructase genes, belonging to a newly described family of tetracycline-inactivating enzymes that scarcely observed in clinical pathogens, from the Tibet library. The inactivation activity of the putative enzyme was confirmed in vitro by biochemical analysis. Our results indicated that efflux pumps distributed predominantly across habitats. Meanwhile, the mechanism of enzymatic inactivation for tetracycline resistance should not be neglected and merits further investigation.

  12. Tetracycline Resistance Genes Identified from Distinct Soil Environments in China by Functional Metagenomics

    Directory of Open Access Journals (Sweden)

    Shaochen Wang

    2017-07-01

    Full Text Available Soil microbiota represents one of the ancient evolutionary origins of antibiotic resistance and has been increasingly recognized as a potentially vast unstudied reservoir of resistance genes with possibilities to exchange with pathogens. Tetracycline resistance is one of the most abundant antibiotic resistances that may transfer among clinical and commensal microorganisms. To investigate tetracycline resistance genes from soil bacteria in different habitats, we performed functional analysis of three metagenomic libraries derived from soil samples collected from Yunnan, Sichuan, and Tibet, respectively, in China. We found efflux transporter genes form all the libraries, including 21 major facilitator superfamily efflux pump genes and one multidrug and toxic compound extrusion (MATE transporter gene. Interestingly, we also identified two tetracycline destructase genes, belonging to a newly described family of tetracycline-inactivating enzymes that scarcely observed in clinical pathogens, from the Tibet library. The inactivation activity of the putative enzyme was confirmed in vitro by biochemical analysis. Our results indicated that efflux pumps distributed predominantly across habitats. Meanwhile, the mechanism of enzymatic inactivation for tetracycline resistance should not be neglected and merits further investigation.

  13. Candidate Gene Sequence Analyses toward Identifying Rsv3-Type Resistance to Soybean Mosaic Virus

    Directory of Open Access Journals (Sweden)

    N. R. Redekar

    2016-07-01

    Full Text Available is one of three genetic loci conferring strain-specific resistance to (SMV. The locus has been mapped to a 154-kb region on chromosome 14, containing a cluster of five nucleotide-binding leucine-rich repeat (NB-LRR resistance genes. High sequence similarity between the candidate genes challenges fine mapping of the locus. Among the five, Glyma14g38533 showed the highest transcript abundance in 1 to 3 h of SMV-G7 inoculation. Comparative sequence analyses were conducted with the five candidate NB-LRR genes from susceptible (-type soybean [ (L. Merr.] cultivar Williams 82, resistant (-type cultivar Hwangkeum, and resistant lines L29 and RRR. Sequence comparisons revealed that Glyma14g38533 had far more polymorphisms than the other candidate genes. Interestingly, Glyma14g38533 gene from -type lines exhibited 150 single-nucleotide polymorphism (SNP and six insertion–deletion (InDel markers relative to -type line, Furthermore, the polymorphisms identified in three -type lines were highly conserved. Several polymorphisms were validated in 18 -type resistant and six -type susceptible lines and were found associated with their disease response. The majority of the polymorphisms were located in LRR domain encoding region, which is involved in pathogen recognition via protein–protein interactions. These findings associating Glyma14g38533 with -type resistance to SMV suggest it is the most likely candidate gene for .

  14. A Comprehensive Insight into Tetracycline Resistant Bacteria and Antibiotic Resistance Genes in Activated Sludge Using Next-Generation Sequencing

    Science.gov (United States)

    Huang, Kailong; Tang, Junying; Zhang, Xu-Xiang; Xu, Ke; Ren, Hongqiang

    2014-01-01

    In order to comprehensively investigate tetracycline resistance in activated sludge of sewage treatment plants, 454 pyrosequencing and Illumina high-throughput sequencing were used to detect potential tetracycline resistant bacteria (TRB) and antibiotic resistance genes (ARGs) in sludge cultured with different concentrations of tetracycline. Pyrosequencing of 16S rRNA gene revealed that tetracycline treatment greatly affected the bacterial community structure of the sludge. Nine genera consisting of Sulfuritalea, Armatimonas, Prosthecobacter, Hyphomicrobium, Azonexus, Longilinea, Paracoccus, Novosphingobium and Rhodobacter were identified as potential TRB in the sludge. Results of qPCR, molecular cloning and metagenomic analysis consistently indicated that tetracycline treatment could increase both the abundance and diversity of the tet genes, but decreased the occurrence and diversity of non-tetracycline ARG, especially sulfonamide resistance gene sul2. Cluster analysis showed that tetracycline treatment at subinhibitory concentrations (5 mg/L) was found to pose greater effects on the bacterial community composition, which may be responsible for the variations of the ARGs abundance. This study indicated that joint use of 454 pyrosequencing and Illumina high-throughput sequencing can be effectively used to explore ARB and ARGs in the environment, and future studies should include an in-depth investigation of the relationship between microbial community, ARGs and antibiotics in sewage treatment plant (STP) sludge. PMID:24905407

  15. A Comprehensive Insight into Tetracycline Resistant Bacteria and Antibiotic Resistance Genes in Activated Sludge Using Next-Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Kailong Huang

    2014-06-01

    Full Text Available In order to comprehensively investigate tetracycline resistance in activated sludge of sewage treatment plants, 454 pyrosequencing and Illumina high-throughput sequencing were used to detect potential tetracycline resistant bacteria (TRB and antibiotic resistance genes (ARGs in sludge cultured with different concentrations of tetracycline. Pyrosequencing of 16S rRNA gene revealed that tetracycline treatment greatly affected the bacterial community structure of the sludge. Nine genera consisting of Sulfuritalea, Armatimonas, Prosthecobacter, Hyphomicrobium, Azonexus, Longilinea, Paracoccus, Novosphingobium and Rhodobacter were identified as potential TRB in the sludge. Results of qPCR, molecular cloning and metagenomic analysis consistently indicated that tetracycline treatment could increase both the abundance and diversity of the tet genes, but decreased the occurrence and diversity of non-tetracycline ARG, especially sulfonamide resistance gene sul2. Cluster analysis showed that tetracycline treatment at subinhibitory concentrations (5 mg/L was found to pose greater effects on the bacterial community composition, which may be responsible for the variations of the ARGs abundance. This study indicated that joint use of 454 pyrosequencing and Illumina high-throughput sequencing can be effectively used to explore ARB and ARGs in the environment, and future studies should include an in-depth investigation of the relationship between microbial community, ARGs and antibiotics in sewage treatment plant (STP sludge.

  16. A comprehensive insight into tetracycline resistant bacteria and antibiotic resistance genes in activated sludge using next-generation sequencing.

    Science.gov (United States)

    Huang, Kailong; Tang, Junying; Zhang, Xu-Xiang; Xu, Ke; Ren, Hongqiang

    2014-06-05

    In order to comprehensively investigate tetracycline resistance in activated sludge of sewage treatment plants, 454 pyrosequencing and Illumina high-throughput sequencing were used to detect potential tetracycline resistant bacteria (TRB) and antibiotic resistance genes (ARGs) in sludge cultured with different concentrations of tetracycline. Pyrosequencing of 16S rRNA gene revealed that tetracycline treatment greatly affected the bacterial community structure of the sludge. Nine genera consisting of Sulfuritalea, Armatimonas, Prosthecobacter, Hyphomicrobium, Azonexus, Longilinea, Paracoccus, Novosphingobium and Rhodobacter were identified as potential TRB in the sludge. Results of qPCR, molecular cloning and metagenomic analysis consistently indicated that tetracycline treatment could increase both the abundance and diversity of the tet genes, but decreased the occurrence and diversity of non-tetracycline ARG, especially sulfonamide resistance gene sul2. Cluster analysis showed that tetracycline treatment at subinhibitory concentrations (5 mg/L) was found to pose greater effects on the bacterial community composition, which may be responsible for the variations of the ARGs abundance. This study indicated that joint use of 454 pyrosequencing and Illumina high-throughput sequencing can be effectively used to explore ARB and ARGs in the environment, and future studies should include an in-depth investigation of the relationship between microbial community, ARGs and antibiotics in sewage treatment plant (STP) sludge.

  17. Detection of Florfenicol Resistance Genes in Escherichia coli Isolated from Sick Chickens

    OpenAIRE

    Keyes, Kathleen; Hudson, Charlene; Maurer, John J.; Thayer, Stephan; White, David G.; Lee, Margie D.

    2000-01-01

    Florfenicol is an antibiotic approved for veterinary use in cattle in the United States in 1996. Although this drug is not used in poultry, we have detected resistance to florfenicol in clinical isolates of avian Escherichia coli. Molecular typing demonstrated that the florfenicol resistance gene, flo, was independently acquired and is plasmid encoded.

  18. Detection of Florfenicol Resistance Genes in Escherichia coli Isolated from Sick Chickens

    Science.gov (United States)

    Keyes, Kathleen; Hudson, Charlene; Maurer, John J.; Thayer, Stephan; White, David G.; Lee, Margie D.

    2000-01-01

    Florfenicol is an antibiotic approved for veterinary use in cattle in the United States in 1996. Although this drug is not used in poultry, we have detected resistance to florfenicol in clinical isolates of avian Escherichia coli. Molecular typing demonstrated that the florfenicol resistance gene, flo, was independently acquired and is plasmid encoded. PMID:10639375

  19. Mutations in rpoB and katG genes of multidrug resistant ...

    African Journals Online (AJOL)

    Introduction: Tuberculosis remains the leading causes of death worldwide with frequencies of mutations in rifampicin and isoniazid resistant Mycobacterium tuberculosis isolates varying according to geographical location. There is limited information in Zimbabwe on specific antibiotic resistance gene mutation patterns in ...

  20. Analysis of rice PDR-like ABC transporter genes in sheath blight resistance

    Science.gov (United States)

    Sheath blight caused by Rhizoctonia solani is one of the most damaging diseases of rice worldwide. To understand the molecular mechanism of resistance, we identified 450 differentially expressed genes in a resistant rice cultivar Jasmine 85 after R. solani infection with a combination of DNA microar...

  1. An AFLP marker linked to turnip mosaic virus resistance gene in pak ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... difficult to control by chemicals, and the natural plant resistance is the ... controlling TuMV-C4 resistance in Chinese cabbage. Zhang et al. ..... Plant Dis. 69: 28-31. Han HP, Sun RF, Zhang SJ, Li F, Zhang SF, Niu XK (2004). AFLP marker linked to turnip mosaic virus susceptible gene in Chinese cabbage ...

  2. Detection of bacterial blight resistant gene xa5 using linked marker ...

    African Journals Online (AJOL)

    Detection of bacterial blight resistant gene xa5 using linked marker approaches. SA Naveed, M Babar, A Arif, Y Zafar, M Sabar, I Ali, M Chragh, M Arif. Abstract. Rice is the primary source of food for 57% of the world's population. Genetic resistance is important to control many kinds of pathogenic diseases. Bacterial blight ...

  3. Interrogating the plasmidome to determine antibiotic resistance gene mobility within the swine fecal microbiota

    Science.gov (United States)

    The use of antibiotics in animal production has been highlighted as a key contributor to the increasing prevalence of antibiotic resistance in agroecosystems. Gram negative bacteria, such as the Enterobacteriaceae, are important facilitators for resistance gene dissemination in the environment and i...

  4. Suppression of plant resistance gene-based immunity by a fungal effector

    NARCIS (Netherlands)

    Houterman, P.M.; Cornelissen, B.J.C.; Rep, M.

    2008-01-01

    The innate immune system of plants consists of two layers. The first layer, called basal resistance, governs recognition of conserved microbial molecules and fends off most attempted invasions. The second layer is based on Resistance (R) genes that mediate recognition of effectors, proteins secreted

  5. Metagenomic Analysis of Apple Orchard Soil Reveals Antibiotic Resistance Genes Encoding Predicted Bifunctional Proteins▿

    Science.gov (United States)

    Donato, Justin J.; Moe, Luke A.; Converse, Brandon J.; Smart, Keith D.; Berklein, Flora C.; McManus, Patricia S.; Handelsman, Jo

    2010-01-01

    To gain insight into the diversity and origins of antibiotic resistance genes, we identified resistance genes in the soil in an apple orchard using functional metagenomics, which involves inserting large fragments of foreign DNA into Escherichia coli and assaying the resulting clones for expressed functions. Among 13 antibiotic-resistant clones, we found two genes that encode bifunctional proteins. One predicted bifunctional protein confers resistance to ceftazidime and contains a natural fusion between a predicted transcriptional regulator and a β-lactamase. Sequence analysis of the entire metagenomic clone encoding the predicted bifunctional β-lactamase revealed a gene potentially involved in chloramphenicol resistance as well as a predicted transposase. A second clone that encodes a predicted bifunctional protein confers resistance to kanamycin and contains an aminoglycoside acetyltransferase domain fused to a second acetyltransferase domain that, based on nucleotide sequence, was predicted not to be involved in antibiotic resistance. This is the first report of a transcriptional regulator fused to a β-lactamase and of an aminoglycoside acetyltransferase fused to an acetyltransferase not involved in antibiotic resistance. PMID:20453147

  6. Rpr1, a gene required for Rpg1-dependent resistance to stem rust in barley.

    Science.gov (United States)

    Zhang, L; Fetch, T; Nirmala, J; Schmierer, D; Brueggeman, R; Steffenson, B; Kleinhofs, A

    2006-09-01

    Rpg1 is a stem rust resistance gene that has protected barley from severe losses for over 60 years in the US and Canada. It confers resistance to many, but not all, pathotypes of the stem rust fungus Puccinia graminis f. sp. tritici. A fast neutron induced deletion mutant, showing susceptibility to stem rust pathotype Pgt-MCC, was identified in barley cv. Morex, which carries Rpg1. Genetic and Rpg1 mRNA and protein expression level analyses showed that the mutation was a suppressor of Rpg1 and was designated Rpr1 (Required for P. graminis resistance). Genome-wide expression profiling, using the Affymetrix Barley1 GeneChip containing approximately 22,840 probe sets, was conducted with Morex and the rpr1 mutant. Of the genes represented on the Barley1 microarray, 20 were up-regulated and 33 were down-regulated by greater than twofold in the mutant, while the Rpg1 mRNA level remained constant. Among the highly down-regulated genes (greater than fourfold), genomic PCR, RT-PCR and Southern analyses identified that three genes (Contig4901_s_at, HU03D17U_s_at, and Contig7061_s_at), were deleted in the rpr1 mutant. These three genes mapped to chromosome 4(4H) bin 5 and co-segregated with the rpr1-mediated susceptible phenotype. The loss of resistance was presumed to be due to a mutation in one or more of these genes. However, the possibility exists that there are other genes within the deletions, which are not represented on the Barley1 GeneChip. The Rpr1 gene was not required for Rpg5- and rpg4-mediated stem rust resistance, indicating that it shows specificity to the Rpg1-mediated resistance pathway.

  7. Genetic analysis and mapping of genes for resistance to multiple strains of Soybean mosaic virus in a single resistant soybean accession PI 96983.

    Science.gov (United States)

    Yang, Yongqing; Zheng, Guijie; Han, Lu; Dagang, Wang; Yang, Xiaofeng; Yuan, Yuan; Huang, Saihua; Zhi, Haijian

    2013-07-01

    Soybean mosaic virus (SMV) is one of the most broadly distributed soybean (Glycine max (L.) Merr.) diseases and causes severe yield loss and seed quality deficiency. Multiple studies have proved that a single dominant gene can confer resistance to several SMV strains. Plant introduction (PI) 96983 has been reported to contain SMV resistance genes (e.g., Rsv1 and Rsc14) on chromosome 13. The objective of this study was to delineate the genetics of resistance to SMV in PI 96983 and determine whether one gene can control resistance to more than one Chinese SMV strain. In this study, PI 96983 was identified as resistant and Nannong 1138-2 was identified as susceptible to four SMV strains SC3, SC6, SC7, and SC17. Genetic maps based on 783 F2 individuals from the cross of PI 96983 × Nannong 1138-2 showed that the gene(s) conferring resistance to SC3, SC6, and SC17 were between SSR markers BARCSOYSSR_13_1114 and BARCSOYSSR_13_1136, whereas SC7 was between markers BARCSOYSSR_13_1140 and BARCSOYSSR_13_1185. The physical map based on 58 recombinant lines confirmed these results. The resistance gene for SC7 was positioned between BARCSOYSSR_13_1140 and BARCSOYSSR_13_1155, while the resistance gene(s) for SC3, SC6, and SC17 were between BARCSOYSSR_13_1128 and BARCSOYSSR_13_1136. We concluded that, there were two dominant resistance genes flanking Rsv1 or one of them at the reported genomic location of Rsv1. One of them (designated as "Rsc-pm") conditions resistance for SC3, SC6, and SC17 and another (designated as "Rsc-ps") confers resistance for SC7. The two tightly linked genes identified in this study would be helpful to cloning of resistance genes and breeding of multiple resistances soybean cultivars to SMV through marker-assisted selection (MAS).

  8. Identification of a Plasmid-Borne Chloramphenicol-Florfenicol Resistance Gene in Staphylococcus sciuri

    Science.gov (United States)

    Schwarz, Stefan; Werckenthin, Christiane; Kehrenberg, Corinna

    2000-01-01

    The 16.5-kbp plasmid pSCFS1 from Staphylococcus sciuri mediated combined resistance to chloramphenicol and florfenicol. The gene responsible for this resistance property, cfr, was cloned and sequenced. The amino acid sequence of the Cfr protein revealed no homology to known acetyltransferases or efflux proteins involved in chloramphenicol and/or florfenicol resistance or to other proteins whose functions are known. PMID:10952608

  9. Cry1F Resistance in Fall Armyworm Spodoptera frugiperda: Single Gene versus Pyramided Bt Maize

    OpenAIRE

    Huang, Fangneng; Qureshi, Jawwad A.; Meagher, Robert L.; Reisig, Dominic D.; Head, Graham P.; Andow, David A.; Ni, Xinzi; Kerns, David; Buntin, G. David; Niu, Ying; Yang, Fei; Dangal, Vikash

    2014-01-01

    Evolution of insect resistance to transgenic crops containing Bacillus thuringiensis (Bt) genes is a serious threat to the sustainability of this technology. However, field resistance related to the reduced efficacy of Bt maize has not been documented in any lepidopteran pest in the mainland U.S. after 18 years of intensive Bt maize planting. Here we report compelling evidence of field resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith), to Cry1F maize (TC 3507) in the southea...

  10. Insights into novel antimicrobial compounds and antibiotic resistance genes from soil metagenomes

    OpenAIRE

    de Castro, Alinne P.; Fernandes, Gabriel da R.; Franco, Octávio L.

    2014-01-01

    In recent years a major worldwide problem has arisen with regard to infectious diseases caused by resistant bacteria. Resistant pathogens are related to high mortality and also to enormous healthcare costs. In this field, cultured microorganisms have been commonly focused in attempts to isolate antibiotic resistance genes or to identify antimicrobial compounds. Although this strategy has been successful in many cases, most of the microbial diversity and related antimicrobial molecules have be...

  11. FLOW RESTRICTED RESISTANCE TRAINING ATTENUATES MYOSTATIN GENE EXPRESSION IN A PATIENT WITH INCLUSION BODY MYOSITIS

    Directory of Open Access Journals (Sweden)

    A.R. Santos

    2014-07-01

    Full Text Available Inclusion body myositis is a rare idiopathic inflammatory myopathy that produces extreme muscle weakness. Blood flow restricted resistance training has been shown to improve muscle strength and muscle hypertrophy in inclusion body myositis. Objective: The aim of this study was to evaluate the effects of a resistance training programme on the expression of genes related to myostatin (MSTN signalling in one inclusion body myositis patient. Methods: A 65-year-old man with inclusion body myositis underwent blood flow restricted resistance training for 12 weeks. The gene expression of MSTN, follistatin, follistatin-like 3, activin II B receptor, SMAD-7, MyoD, FOXO-3, and MURF-2 was quantified. Results: After 12 weeks of training, a decrease (25% in MSTN mRNA level was observed, whereas follistatin and follistatin-like 3 gene expression increased by 40% and 70%, respectively. SMAD-7 mRNA level was augmented (20%. FOXO-3 and MURF-2 gene expression increased by 40% and 20%, respectively. No change was observed in activin II B receptor or MyoD gene expression. Conclusions: Blood flow restricted resistance training attenuated MSTN gene expression and also increased expression of myostatin endogenous inhibitors. Blood flow restricted resistance training evoked changes in the expression of genes related to MSTN signalling pathway that could in part explain the muscle hypertrophy previously observed in a patient with inclusion body myositis.

  12. Metagenomic profiling of antibiotic resistance genes and mobile genetic elements in a tannery wastewater treatment plant.

    Directory of Open Access Journals (Sweden)

    Zhu Wang

    Full Text Available Antibiotics are often used to prevent sickness and improve production in animal agriculture, and the residues in animal bodies may enter tannery wastewater during leather production. This study aimed to use Illumina high-throughput sequencing to investigate the occurrence, diversity and abundance of antibiotic resistance genes (ARGs and mobile genetic elements (MGEs in aerobic and anaerobic sludge of a full-scale tannery wastewater treatment plant (WWTP. Metagenomic analysis showed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria dominated in the WWTP, but the relative abundance of archaea in anaerobic sludge was higher than in aerobic sludge. Sequencing reads from aerobic and anaerobic sludge revealed differences in the abundance of functional genes between both microbial communities. Genes coding for antibiotic resistance were identified in both communities. BLAST analysis against Antibiotic Resistance Genes Database (ARDB further revealed that aerobic and anaerobic sludge contained various ARGs with high abundance, among which sulfonamide resistance gene sul1 had the highest abundance, occupying over 20% of the total ARGs reads. Tetracycline resistance genes (tet were highly rich in the anaerobic sludge, among which tet33 had the highest abundance, but was absent in aerobic sludge. Over 70 types of insertion sequences were detected in each sludge sample, and class 1 integrase genes were prevalent in the WWTP. The results highlighted prevalence of ARGs and MGEs in tannery WWTPs, which may deserve more public health concerns.

  13. Metagenomic profiling of antibiotic resistance genes and mobile genetic elements in a tannery wastewater treatment plant.

    Science.gov (United States)

    Wang, Zhu; Zhang, Xu-Xiang; Huang, Kailong; Miao, Yu; Shi, Peng; Liu, Bo; Long, Chao; Li, Aimin

    2013-01-01

    Antibiotics are often used to prevent sickness and improve production in animal agriculture, and the residues in animal bodies may enter tannery wastewater during leather production. This study aimed to use Illumina high-throughput sequencing to investigate the occurrence, diversity and abundance of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in aerobic and anaerobic sludge of a full-scale tannery wastewater treatment plant (WWTP). Metagenomic analysis showed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria dominated in the WWTP, but the relative abundance of archaea in anaerobic sludge was higher than in aerobic sludge. Sequencing reads from aerobic and anaerobic sludge revealed differences in the abundance of functional genes between both microbial communities. Genes coding for antibiotic resistance were identified in both communities. BLAST analysis against Antibiotic Resistance Genes Database (ARDB) further revealed that aerobic and anaerobic sludge contained various ARGs with high abundance, among which sulfonamide resistance gene sul1 had the highest abundance, occupying over 20% of the total ARGs reads. Tetracycline resistance genes (tet) were highly rich in the anaerobic sludge, among which tet33 had the highest abundance, but was absent in aerobic sludge. Over 70 types of insertion sequences were detected in each sludge sample, and class 1 integrase genes were prevalent in the WWTP. The results highlighted prevalence of ARGs and MGEs in tannery WWTPs, which may deserve more public health concerns.

  14. Occurrence and Diversity of Tetracycline Resistance Genes in Lagoons and Groundwater Underlying Two Swine Production Facilities

    Science.gov (United States)

    Chee-Sanford, J. C.; Aminov, R.I.; Krapac, I.J.; Garrigues-Jeanjean, N.; Mackie, R.I.

    2001-01-01

    In this study, we used PCR typing methods to assess the presence of tetracycline resistance determinants conferring ribosomal protection in waste lagoons and in groundwater underlying two swine farms. All eight classes of genes encoding this mechanism of resistance [tet(O), tet(Q), tet(W), tet(M), tetB(P), tet(S), tet(T), and otrA] were found in total DNA extracted from water of two lagoons. These determinants were found to be seeping into the underlying groundwater and could be detected as far as 250 m downstream from the lagoons. The identities and origin of these genes in groundwater were confirmed by PCR-denaturing gradient gel electrophoresis and sequence analyses. Tetracycline-resistant bacterial isolates from groundwater harbored the tet(M) gene, which was not predominant in the environmental samples and was identical to tet(M) from the lagoons. The presence of this gene in some typical soil inhabitants suggests that the vector of antibiotic resistance gene dissemination is not limited to strains of gastrointestinal origin carrying the gene but can be mobilized into the indigenous soil microbiota. This study demonstrated that tet genes occur in the environment as a direct result of agriculture and suggested that groundwater may be a potential source of antibiotic resistance in the food chain.

  15. Streptomycin use in apple orchards did not increase abundance of mobile resistance genes.

    Science.gov (United States)

    Duffy, Brion; Holliger, Eduard; Walsh, Fiona

    2014-01-01

    Streptomycin is used as a first-line defense and tetracycline as a second-line defense, in the fight against fire blight disease in apple and pear orchards. We have performed the first study to quantitatively analyze the influence of streptomycin use in agriculture on the abundance of streptomycin and tetracycline resistance genes in apple orchards. Flowers, leaves, and soil were collected from three orchard sites in 2010, 2011, and 2012. Gene abundance distribution was analyzed using two-way anova and principal component analysis to investigate relationships between gene abundance data over time and treatment. The mobile antibiotic resistance genes, strA, strB, tetB, tetM, tetW, and the insertion sequence IS1133, were detected prior to streptomycin treatment in almost all samples, indicating the natural presence of these resistance genes in nature. Statistically significant increases in the resistance gene abundances were occasional, inconsistent, and not reproducible from one year to the next. We conclude that the application of streptomycin in these orchards was not associated with sustained increases in streptomycin or tetracycline resistance gene abundances. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. Members of the genera Paenibacillus and Rhodococcus harbor genes homologous to enterococcal glycopeptide resistance genes vanA and vanB

    DEFF Research Database (Denmark)

    Guardabassi, L.; Christensen, H.; Hasman, Henrik

    2004-01-01

    Genes homologous to enterococcal glycopeptide resistance genes vanA and vanB were found in glycopeptide-resistant Paenibacillus and Rhodococcus strains from soil. The putative D-Ala:D-Lac ligase genes in Paenibacillus thiaminolyticus PT-2B1 and Paenibacillus apiarius PA-B2B were closely related...

  17. Prevalence of antibiotic resistance genes in antibiotic-resistant Escherichia coli isolates in surface water of Taihu Lake Basin, China.

    Science.gov (United States)

    Zhang, Song He; Lv, Xiaoyang; Han, Bing; Gu, Xiucong; Wang, Pei Fang; Wang, Chao; He, Zhenli

    2015-08-01

    The rapid development of antibiotic-resistant bacteria (ARB) has been of concern worldwide. In this study, antibiotic resistance genes (ARGs) were investigated in antibiotic-resistant Escherichia coli isolated from surface water samples (rivers, n = 17; Taihu Lake, n = 16) and from human, chicken, swine, and Egretta garzetta sources in the Taihu Basin. E. coli showing resistance to at least five drugs occurred in 31, 67, 58, 27, and 18% of the isolates from surface water (n = 665), chicken (n = 27), swine (n = 29), human (n = 45), and E. garzetta (n = 15) sources, respectively. The mean multi-antibiotic resistance (MAR) index of surface water samples (0.44) was lower than that of chicken (0.64) and swine (0.57) sources but higher than that of human (0.30) and E. garzetta sources (0.15). Ten tetracycline, four sulfonamide, four quinolone, five β-lactamase, and two streptomycin resistance genes were detected in the corresponding antibiotic-resistant isolates. Most antibiotic-resistant E. coli harbored at least two similar functional ARGs. Int-I was detected in at least 57% of MAR E. coli isolates. The results of multiple correspondence analysis and Spearman correlation analysis suggest that antibiotic-resistant E. coli in water samples were mainly originated from swine, chicken, and/or human sources. Most of the ARGs detected in E. garzetta sources were prevalent in other sources. These data indicated that human activities may have contributed to the spread of ARB in the aquatic environment.

  18. Dynamic evolution of resistance gene analogs in the orthologous genomic regions of powdery mildew resistance gene MlIW170 in Triticum dicoccoides and Aegilops tauschii

    Science.gov (United States)

    Wheat is one of the most important staple grain crops in the world. Powdery mildew disease caused by Blumeria graminis f.sp. tritici can result in significant losses in both grain yield and quality in wheat. In this study, the wheat powdery mildew resistance gene MlIW170 locus located on the short ...

  19. Virulence and antibiotic resistance genes in Campylobacter spp. in the Czech Republic.

    Science.gov (United States)

    Bardoň, J; Pudová, V; Koláčková, I; Karpíšková, R; Röderová, M; Kolář, M

    2017-01-01

    Thermotolerant species of the genus Campy-lobacter are the important agents causing human foodborne infections throughout the world. The aims of this study were to evaluate the presence of nine putative virulence genes in Campylobacter spp. isolated from patients and from foods (poultry meat, pork liver), to determine the resistance of Campylobacter isolates to eight antibiotic agents and to detect four resistance genes.Matherial and methods: The presence of the virulence genes cdtA, cdtB, cdtC, virB11, ciaB, wlaN, iam, dnaJ and racR was detected by polymerase chain reaction (PCR) in 94 Campylobacter spp. isolates from humans and 123 campylobacters from foods. The phenotypic resistance to selected antimicrobial agents was tested with microdilution method in 82 human isolates and 91 food isolates. The isolates with antibiograms were tested for the presence of blaOXA-61, tet(O), aph-3-1 and cmeB genes by PCR with specific primers. In both human and food C. jejuni isolates the preva-lence of the studied virulence genes, especially dnaJ, racR, ciaB genes and the toxigenic genes cdtA, cdtB, cdtC, was considerably higher than in C. coli isolates. The only exception was the iam gene identified in only C. coli. The tested isolates of both C. jejuni and C. coli were highly resistant to quinolone antibiotics. Additionally, C. coli was also more resistant to erythromycin, streptomycin and, in case of isolates from pork liver, to tetracycline. High prevalence rates of genes encoding antibiotic resistance was noted for the blaOXA-61 and tet(O) genes in both Campylobacter species. The presented study is the first to assess the presence of genes for virulence and resistance to antibiotics in thermotolerant Campylobacter spp. isolated from humans and foods in the Czech Republic. The resistance of Campylobacter isolates to eight antibiotic agents was also assessed. The prevalence of genes responsible for virulence and resistance is rather varied in thermotolerant Campylobacter spp.

  20. Methicillin-resistant Staphylococcus aureus in minas frescal cheese: evaluation of classic enterotoxin genes, antimicrobial resistance and clonal diversity.

    Science.gov (United States)

    Gonzalez, Alice Gonçalves Martins; Marques, Leila Márcia Peres; Gomes, Marcel da Silva Amorim; Beltrão, Jhonathan Campos do Couto; Pinheiro, Marcos Gabriel; Esper, Luciana Maria Ramires; Paula, Geraldo Renato de; Teixeira, Lenise Arneiro; Aguiar-Alves, Fábio

    2017-12-15

    This study aimed to investigate classical enterotoxin (sea to see) and mecA genes, by polymerase chain reaction and anitimicrobial susceptibility, by disk diffusion test of Staphylococcus aureus isolated from minas frescal cheese (MFC). All methicillin-resistant S. aureus (MRSA) isolates were investigated for the presence of Panton-Valentine leukocidin (PVL) genes and clonal diversity. Thirty-one S. aureus were isolated from four MFC samples. Seven (22.6%) S. aureus carried mecA gene and two of them carried enterotoxin genes seb/sec and sea/seb. Five (16.1%) S. aureus isolates showed induced resistance to clindamycin and nine (29%) were resistant to multiple -antibiotics (MDR), among these, six were MRSA. No MRSA isolates presented the PVL genes. Four MRSA were grouped into three clones and three isolates were not typable by pulsed field gel electrophoresis. MRSA isolates showed, by multilocus sequence typing, sequence types ST1, ST5, ST72 and ST4304 (new ST) and S. aureus protein A (spa type) t127, t568 and t2703. These data suggest that MFC may constitute a risk to the consumer because of its potential for staphylococcal food poisoning; however it might, also, become one of MRSA and MDR strains disseminator, including clones usually found in the hospital environment. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Confirmation of root-knot nematode resistant gene Rmi1 using SSR markers

    Directory of Open Access Journals (Sweden)

    Musarrat Ramzan

    2017-02-01

    Full Text Available Background: The Root Knot Nematode (RKN is a serious economic threat to various cultivated crops worldwide. It is a devastating pest of soybean and responsible to cause severe yield loss in Pakistan. The cultivation of resistant soybean varieties against this pest is the sustainable strategy to manage the heavy loss and increase yield. There is an utmost need to identify RKN resistant varieties of soybean against cultivated in Pakistan. The presented study is an attempt to identify and confirm the presence of resistant gene Rmi1 in soybean. Method: Molecular studies have been done using Simple Sequence Repeat (SSR marker system to identify resistant soybean varieties against Root Knot Nematode (RKN using fifteen (15 indigenous cultivars and four (4 US cultivars. DNA was isolated, purified, quantified and then used to employ various SSR markers. The amplified product is observed using gel documentation system after electrophoresis. Results: Diagnostic SSR markers Satt-358 and Satt-492 have shown the presence of Rmi1 gene in all resistance carrying genotypes. Satt-358 amplified the fragment of 200 bp and Satt-492 generated 232 bp bands in all resistant genotypes. This study confirmed the Rmi gene locus (G248A-1 in all internationally confirmed resistant including six (6 native varieties. Conclusion: These investigations have identified six (6 resistant cultivars revealing the effective and informative sources that can be utilized in breeding programs for the selection of RKN resistance soybean genotypes in Pakistan.

  2. EPSPS gene amplification conferring resistance to glyphosate in windmill grass (Chloris truncata) in Australia.

    Science.gov (United States)

    Ngo, The D; Malone, Jenna M; Boutsalis, Peter; Gill, Gurjeet; Preston, Christopher

    2018-05-01

    Five glyphosate-resistant populations of Chloris truncata originally collected from New South Wales were compared with one susceptible (S) population from South Australia to confirm glyphosate resistance and elucidate possible mechanisms of resistance. Based on the amounts of glyphosate required to kill 50% of treated plants (LD 50 ), glyphosate resistance (GR) was confirmed in five populations of C. truncata (A536, A528, T27, A534 and A535.1). GR plants were 2.4-8.7-fold more resistant and accumulated less shikimate after glyphosate treatment than S plants. There was no difference in glyphosate absorption and translocation between GR and S plants. The EPSPS gene did not contain any point mutation that had previously been associated with resistance to glyphosate. The resistant plants (A528 and A536) contained up to 32-48 more copies of the EPSPS gene than the susceptible plants. This study has identified EPSPS gene amplification contributing to glyphosate resistance in C. truncata. In addition, a Glu-91-Ala mutation within EPSPS was identified that may contribute to glyphosate resistance in this species. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Fecal Microbial Transplants Reduce Antibiotic-resistant Genes in Patients With Recurrent Clostridium difficile Infection.

    Science.gov (United States)

    Millan, Braden; Park, Heekuk; Hotte, Naomi; Mathieu, Olivier; Burguiere, Pierre; Tompkins, Thomas A; Kao, Dina; Madsen, Karen L

    2016-06-15

    Recurrent Clostridium difficile infection (RCDI) is associated with repeated antibiotic treatment and the enhanced growth of antibiotic-resistant microbes. This study tested the hypothesis that patients with RCDI would harbor large numbers of antibiotic-resistant microbes and that fecal microbiota transplantation (FMT) would reduce the number of antibiotic-resistant genes. In a single center study, patients with RCDI (n = 20) received FMT from universal donors via colonoscopy. Stool samples were collected from donors (n = 3) and patients prior to and following FMT. DNA was extracted and shotgun metagenomics performed. Results as well as assembled libraries from a healthy cohort (n = 87) obtained from the Human Microbiome Project were aligned against the NCBI bacterial taxonomy database and the Comprehensive Antibiotic Resistance Database. Results were corroborated through a DNA microarray containing 354 antibiotic resistance (ABR) genes. RCDI patients had a greater number and diversity of ABR genes compared with donors and healthy controls. Beta-lactam, multidrug efflux pumps, fluoroquinolone, and