WorldWideScience

Sample records for resistance gene transfer

  1. Interspecies gene transfer provides soybean resistance to a fungal pathogen.

    Science.gov (United States)

    Langenbach, Caspar; Schultheiss, Holger; Rosendahl, Martin; Tresch, Nadine; Conrath, Uwe; Goellner, Katharina

    2016-02-01

    Fungal pathogens pose a major challenge to global crop production. Crop varieties that resist disease present the best defence and offer an alternative to chemical fungicides. Exploiting durable nonhost resistance (NHR) for crop protection often requires identification and transfer of NHR-linked genes to the target crop. Here, we identify genes associated with NHR of Arabidopsis thaliana to Phakopsora pachyrhizi, the causative agent of the devastating fungal disease called Asian soybean rust. We transfer selected Arabidopsis NHR-linked genes to the soybean host and discover enhanced resistance to rust disease in some transgenic soybean lines in the greenhouse. Interspecies NHR gene transfer thus presents a promising strategy for genetically engineered control of crop diseases. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Resistance gene transfer during treatments for experimental avian colibacillosis.

    Science.gov (United States)

    Dheilly, Alexandra; Le Devendec, Laëtitia; Mourand, Gwenaëlle; Bouder, Axelle; Jouy, Eric; Kempf, Isabelle

    2012-01-01

    An experiment was conducted in animal facilities to compare the impacts of four avian colibacillosis treatments-oxytetracycline (OTC), trimethoprim-sulfadimethoxine (SXT), amoxicillin (AMX), or enrofloxacin (ENR)-on the susceptibility of Escherichia coli in broiler intestinal tracts. Birds were first orally inoculated with rifampin-resistant E. coli strains bearing plasmid genes conferring resistance to fluoroquinolones (qnr), cephalosporins (bla(CTX-M) or bla(FOX)), trimethoprim-sulfonamides, aminoglycosides, or tetracyclines. Feces samples were collected before, during, and after antimicrobial treatments. The susceptibilities of E. coli strains were studied, and resistance gene transfer was analyzed. An increase in the tetracycline-resistant E. coli population was observed only in OTC-treated birds, whereas multiresistant E. coli was detected in the dominant E. coli populations of SXT-, AMX-, or ENR-treated birds. Most multiresistant E. coli strains were susceptible to rifampin and exhibited various pulsed-field gel electrophoresis profiles, suggesting the transfer of one of the multiresistance plasmids from the inoculated strains to other E. coli strains in the intestinal tract. In conclusion, this study clearly illustrates how, in E. coli, "old" antimicrobials may coselect antimicrobial resistance to recent and critical molecules.

  3. Transfer of tetracycline resistance gene (tetr) between replicons in ...

    African Journals Online (AJOL)

    Antimicrobial susceptibility testing among the isolates showed resistance to amoxicillin (92%), amoxicillin-clavulanic acid (84.4%), tetracycline (71.4%), gentamycin (43.5%), nalidixic acid (38.3%) and nitrofurantoin (7.9%). E. coli showed the highest resistance to most of the antibiotics. Tetracycline resistance gene was ...

  4. [Advances in molecular mechanisms of bacterial resistance caused by stress-induced transfer of resistance genes--a review].

    Science.gov (United States)

    Sun, Dongchang; Wang, Bing; Zhu, Lihong

    2013-07-04

    The transfer of resistance gene is one of the most important causes of bacterial resistance. Recent studies reveal that stresses induce the transfer of antibiotic resistance gene through multiple mechanisms. DNA damage stresses trigger bacterial SOS response and induce the transfer of resistance gene mediated by conjugative DNA. Antibiotic stresses induce natural bacterial competence for transformation in some bacteria which lack the SOS system. In addition, our latest studies show that the general stress response regulator RpoS regulates a novel type of resistance gene transfer which is mediated by double-stranded plasmid DNA and occurs exclusively on the solid surface. In this review, we summarized recent advances in SOS dependent and independent stress-induced DNA transfer which is mediated by conjugation and transformation respectively, and the transfer of double-stranded plasmid DNA on the solid surface which is regulated by RpoS. We propose that future work should address how stresses activate the key regulators and how these regulators control the expression of gene transfer related genes. Answers to the above questions would pave the way for searching for candidate targets for controlling bacterial resistance resulted from the transfer of antibiotic genes.

  5. Evaluation of resistance gene transfer from heat-treated Escherichia coli.

    Science.gov (United States)

    Le Devendec, Laëtitia; Jouy, Eric; Kempf, Isabelle

    2018-04-02

    Antimicrobial-resistant Escherichia coli may be present in various foods. The aim of this study was to evaluate the impact of heat treatment, simulating food preparation, on the possibility of antimicrobial resistance genes being transferred from E. coli cells. The study was performed on antimicrobial-resistant E. coli cells in suspension in a sterile saline solution. The stability of resistance genes and the possibility of their transfer by transformation or conjugation were analyzed. Results showed that antimicrobial-resistant E. coli cells managing to survive after a few minutes at 60 °C retained their antimicrobial resistance. No plasmid could be transferred by conjugation from antimicrobial-resistant E. coli cells heated to 60 °C for ten or more minutes. Twelve electroporation experiments were performed using a bacterial suspension heated to 70 °C for 30 min. Genes coding for resistance to extended-spectrum cephalosporins, tetracycline or sulfonamides were transferred to an E. coli DH5α recipient on two occasions. In conclusion we showed that heat-treated E. coli may occasionally transfer resistance genes. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Could bacteriophages transfer antibiotic resistance genes from environmental bacteria to human-body associated bacterial populations?

    Science.gov (United States)

    Muniesa, Maite; Colomer-Lluch, Marta; Jofre, Juan

    2013-07-01

    Environments without any contact with anthropogenic antibiotics show a great abundance of antibiotic resistance genes that use to be chromosomal and are part of the core genes of the species that harbor them. Some of these genes are shared with human pathogens where they appear in mobile genetic elements. Diversity of antibiotic resistance genes in non-contaminated environments is much greater than in human and animal pathogens, and in environments contaminated with antibiotic from anthropogenic activities. This suggests the existence of some bottleneck effect for the mobilization of antibiotic resistance genes among different biomes. Bacteriophages have characteristics that make them suitable vectors between different biomes, and as well for transferring genes from biome to biome. Recent metagenomic studies and detection of bacterial genes by genomic techniques in the bacteriophage fraction of different microbiota provide indirect evidences that the mobilization of genes mediated by phages, including antibiotic resistance genes, is far more relevant than previously thought. Our hypothesis is that bacteriophages might be of critical importance for evading one of the bottlenecks, the lack of ecological connectivity that modulates the pass of antibiotic resistance genes from natural environments such as waters and soils, to animal and human microbiomes. This commentary concentrates on the potential importance of bacteriophages in transferring resistance genes from the environment to human and animal body microbiomes, but there is no doubt that transduction occurs also in body microbiomes.

  7. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters

    Science.gov (United States)

    Miller, Jennifer H.; Novak, John T.; Knocke, William R.; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1—a Pseudomonas sp.) and thermophilic (Iso T10—a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457–0.829, P digested sludge or thermophilic digested sludge (Spearman rho = 0.130–0.486, P = 0.075–0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene transfer between raw sludge bacteria and the digester microbial community. PMID:27014196

  8. Characterization and transfer studies of macrolide resistance genes in Streptococcus pneumoniae from Denmark

    DEFF Research Database (Denmark)

    Nielsen, Karen L; Hammerum, Anette M; Lambertsen, Lotte M

    2010-01-01

    Over the last decade, erythromycin resistance has been increasing in frequency in Streptococcus pneumoniae in Denmark. In the present study, 49 non-related erythromycin-resistant S. pneumoniae isolates from invasive sites and 20 isolates from non-invasive sites were collected; antimicrobial...... influence on the protein. Transformation was detectable in 5 out of 13 isolates and transfer of erm(B), mef(I) and mef(E) was detected. To our knowledge, this is the first time mef(I) has been proved transformable. Gene transfer by conjugation was not detectable. Erythromycin resistance in pneumococcal...

  9. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters.

    Science.gov (United States)

    Miller, Jennifer H; Novak, John T; Knocke, William R; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1-a Pseudomonas sp.) and thermophilic (Iso T10-a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457-0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130-0.486, P = 0.075-0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene

  10. Survival of antibiotic resistant bacteria and horizontal gene transfer control antibiotic resistance gene content in anaerobic digesters

    Directory of Open Access Journals (Sweden)

    Jennifer Hafer Miller

    2016-03-01

    Full Text Available Understanding fate of antibiotic resistant bacteria (ARB versus their antibiotic resistance genes (ARGs during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1- a Pseudomonas sp. and thermophilic (Iso T10- a Bacillus sp. anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic or 1-log above baseline (mesophilic while levels of the ARG present in the spiked isolate (tet(G remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O, tet(W, and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457 to 0.829, P<0.05 with the raw feed sludge. There was no correlation in tet(O or tet(W ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130 to 0.486, P = 0.075 to 0.612. However, in the thermophilic digester, the tet(O and tet(W ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and

  11. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters

    OpenAIRE

    Miller, Jennifer H.; Novak, John T.; Knocke, William R.; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) versus their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1- a Pseudomonas sp.) and thermophilic (Iso T10- a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts ...

  12. Transfer of genes for stem rust resistance from Agropyron elongatum and imperial rye to durum wheat

    International Nuclear Information System (INIS)

    Prabhakara Rao, M.V.

    1977-01-01

    The Agropyron elongatum gene for stem rust resistance on chromosome 6A of Knott's Thatcher translocation line was transferred to a susceptible local durum wheat variety, Jaya, through a series of back-crosses. Plants heterozygous for the Agropyron translocation always show at least one open bivalent. Homozygotes have not been obtained, probably because of the absence of male transmission in durum background. Monotelosomic addition of the short arm of Imperial rye chromosome 3R (formerly ''G'' of Sears), which carries a gene(s) for resistance to wheat stem rust, was obtained in the local durum variety. Rust-resistant plants from parents having the added rye telocentric were irradiated with gamma rays just before meiosis, and the pollen obtained from the irradiated spikes was used to pollinate euploid plants. In addition, seeds harvested from 2n+1 resistant plants were irradiated with thermal neutrons and the resistant M 1 plants were selfed to raise M 2 families. Two durum-rye translocation lines were obtained following irradiation. DRT-1 was transmitted normally through the female gametes but showed no male transmission. As a result of this, homozygotes have not been obtained. Gametic transmission rates of DRT-2 are being tested. Alien translocations, which show normal gametic and zygotic transmissions in the hexaploid wheat, may behave differently in a tetraploid background. The results indicate that alien genetic transfers may be more difficult to obtain in durum wheat, probably owing to the reduced buffering effect of the tetraploid genome. (author)

  13. Fluoroquinolone induction of phage-mediated gene transfer in multidrug-resistant Salmonella.

    Science.gov (United States)

    Bearson, Bradley L; Brunelle, Brian W

    2015-08-01

    Fluoroquinolones are broad-spectrum antibiotics that inhibit bacterial DNA gyrase and topoisomerase activity, which can cause DNA damage and result in bacterial cell death. In response to DNA damage, bacteria induce an SOS response to stimulate DNA repair. However, the SOS response may also induce prophage with production of infectious virions. Salmonella strains typically contain multiple prophages, and certain strains including phage types DT120 and DT104 contain prophage that upon induction are capable of generalised transduction. In this study, strains of multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium DT120 and DT104 were exposed to fluoroquinolones important for use in human and veterinary disease therapy to determine whether prophage(s) are induced that could facilitate phage-mediated gene transfer. Cultures of MDR S. Typhimurium DT120 and DT104 containing a kanamycin resistance plasmid were lysed after exposure to fluoroquinolones (ciprofloxacin, enrofloxacin and danofloxacin). Bacterial cell lysates were able to transfer the plasmid to a recipient kanamycin-susceptible Salmonella strain by generalised transduction. In addition, exposure of DT120 to ciprofloxacin induced the recA gene of the bacterial SOS response and genes encoded in a P22-like generalised transducing prophage. This research indicates that fluoroquinolone exposure of MDR Salmonella can facilitate horizontal gene transfer, suggesting that fluoroquinolone usage in human and veterinary medicine may have unintended consequences, including the induction of phage-mediated gene transfer from MDR Salmonella. Stimulation of gene transfer following bacterial exposure to fluoroquinolones should be considered an adverse effect, and clinical decisions regarding antibiotic selection for infectious disease therapy should include this potential risk. Published by Elsevier B.V.

  14. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer

    Directory of Open Access Journals (Sweden)

    Christian Johannes Hendrik Von Wintersdorff

    2016-02-01

    Full Text Available The emergence and spread of antibiotic resistance among pathogenic bacteria has been a rising problem for public health in recent decades. It is becoming increasingly recognized that not only antibiotic resistance genes (ARGs encountered in clinical pathogens are of relevance, but rather, all pathogenic, commensal as well as environmental bacteria – and also mobile genetic elements and bacteriophages – form a reservoir of ARGs (the resistome from which pathogenic bacteria can acquire resistance via horizontal gene transfer (HGT. HGT has caused antibiotic resistance to spread from commensal and environmental species to pathogenic ones, as has been shown for some clinically important ARGs. Of the three canonical mechanisms of HGT, conjugation is thought to have the greatest influence on the dissemination of ARGs. While transformation and transduction are deemed less important, recent discoveries suggest their role may be larger than previously thought. Understanding the extent of the resistome and how its mobilization to pathogenic bacteria takes place is essential for efforts to control the dissemination of these genes. Here, we will discuss the concept of the resistome, provide examples of HGT of clinically relevant ARGs and present an overview of the current knowledge of the contributions the various HGT mechanisms make to the spread of antibiotic resistance.

  15. Petrol and diesel exhaust particles accelerate the horizontal transfer of plasmid-mediated antimicrobial resistance genes.

    Science.gov (United States)

    Zhang, Ye; Gu, April Z; Cen, Tianyu; Li, Xiangyang; Li, Dan; Chen, Jianmin

    2018-03-07

    Particles exhausted from petrol and diesel consumptions are major components of urban air pollution that can be exposed to human via direct inhalation or other routes due to atmospheric deposition into water and soil. Antimicrobial resistance is one of the most serious threats to modern health care. However, how the petrol and diesel exhaust particles affect the development and spread of antimicrobial resistance genes (ARGs) in various environments remain largely unknown. This study investigated the effects and potential mechanisms of four representative petrol and diesel exhaust particles, namely 97 octane petrol, 93 octane petrol, light diesel oil, and marine heavy diesel oil, on the horizontal transfer of ARGs between two opportunistic Escherichia coli (E. coli) strains, E. coli S17-1 (donor) and E. coli K12 (recipient). The results demonstrated that these four representative types of nano-scale particles induced concentration-dependent increases in conjugative transfer rates compared with the controls. The underlying mechanisms involved in the accelerated transfer of ARGs were also identified, including the generation of intracellular reactive oxygen species (ROS) and the consequent induction of oxidative stress, SOS response, changes in cell morphology, and the altered mRNA expression of membrane protein genes and those involved in the promotion of conjugative transfer. The findings provide new evidences and mechanistic insights into the antimicrobial resistance risks posed by petrol and diesel exhaust particles, and highlight the implications and need for stringent strategies on alternative fuels to mitigate air pollution and health risks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Characterization of transferable tetracycline resistance genes in Enterococcus faecalis isolated from raw food

    DEFF Research Database (Denmark)

    Wilcks, Andrea; Andersen, Sigrid Rita; Licht, Tine Rask

    2005-01-01

    The prevalence of tetracycline resistance, and of specific genetic determinants for this resistance was investigated in 1003 strains of Enterococcus faecalis isolated from various raw food products originating from five categories including chicken meat, other poultry meat, beef, pork, and 'other......'. For the 238 resistant isolates identified, the ability to transfer the resistant phenotype to a given recipient in vitro was investigated. New and interesting observations were that the tet(L) resistance determinant was more readily transferred than tet(M), and that the presence of Tn916-like elements known...

  17. Antimicrobial susceptibility and antibiotic resistance gene transfer analysis of foodborne, clinical, and environmental Listeria spp. isolates including Listeria monocytogenes.

    Science.gov (United States)

    Bertsch, David; Muelli, Mirjam; Weller, Monika; Uruty, Anaïs; Lacroix, Christophe; Meile, Leo

    2014-02-01

    The aims of this study were to assess antibiotic resistance pheno- and genotypes in foodborne, clinical, and environmental Listeria isolates, as well as to elucidate the horizontal gene transfer potential of detected resistance genes. A small fraction of in total 524 Listeria spp. isolates (3.1%) displayed acquired antibiotic resistance mainly to tetracycline (n = 11), but also to clindamycin (n = 4) and trimethoprim (n = 3), which was genotypically confirmed. In two cases, a tetracycline resistance phenotype was observed together with a trimethoprim resistance phenotype, namely in a clinical L. monocytogenes strain and in a foodborne L. innocua isolate. Depending on the applied guidelines, a differing number of isolates (n = 2 or n = 20) showed values for ampicillin that are on the edge between intermediate susceptibility and resistance. Transferability of the antibiotic resistance genes from the Listeria donors, elucidated in vitro by filter matings, was demonstrated for genes located on transposons of the Tn916 family and for an unknown clindamycin resistance determinant. Transfer rates of up to 10(-5) transconjugants per donor were obtained with a L. monocytogenes recipient and up to 10(-7) with an Enterococcus faecalis recipient, respectively. Although the prevalence of acquired antibiotic resistance in Listeria isolates from this study was rather low, the transferability of these resistances enables further spread in the future. This endorses the importance of surveillance of L. monocytogenes and other Listeria spp. in terms of antibiotic susceptibility. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  18. Antibiotic Resistance Genetic Markers and Integrons in White Soft Cheese: Aspects of Clinical Resistome and Potentiality of Horizontal Gene Transfer

    Directory of Open Access Journals (Sweden)

    Ana Caroline L. de Paula

    2018-02-01

    Full Text Available Antibiotic resistance poses an important threat to global public health and has become a challenge to modern medicine. The occurrence of antibiotic-resistant bacteria in a broad range of foods has led to a growing concern about the impact that food may have as a reservoir of antibiotic resistance genes. Considering Minas Frescal Cheese (MFC—a typical Brazilian white soft cheese—and its economic and cultural values, in this study, medically relevant antimicrobial-resistance genetic markers (AR genes were screened, and the occurrence of integrons were evaluated in manufactured MFC using culture-independent approaches. Through a fingerprinting analysis, the tested MFCs were brand-clustered, indicating reproducibility along the production chain. A common core of resistance markers in all brands evaluated and related antimicrobials such as β-lactams, tetracyclines, quinolones, and sulfonamide was detected. Several other markers, including efflux pumps and aminoglycosides-resistance were distributed among brands. Class 1 and 2 integrons were observed, respectively, in 77% and 97% of the samples. The presence of AR genes is of special interest due to their clinical relevance. Taken together, the data may suggest that the production chain of MFC might contribute to the spread of putative drug-resistant bacteria, which could greatly impact human health. Furthermore, detection of class 1 and class 2 integrons in MFC has led to discussions about resistance gene spread in this traditional cheese, providing evidence of potential horizontal transfer of AR genes to human gut microbiota.

  19. Molecular basis of resistance to macrolides and other antibiotics in commensal viridans group streptococci and Gemella spp. and transfer of resistance genes to Streptococcus pneumoniae.

    Science.gov (United States)

    Cerdá Zolezzi, Paula; Laplana, Leticia Millán; Calvo, Carmen Rubio; Cepero, Pilar Goñi; Erazo, Melisa Canales; Gómez-Lus, Rafael

    2004-09-01

    We assessed the mechanisms of resistance to macrolide-lincosamide-streptogramin B (MLS(B)) antibiotics and related antibiotics in erythromycin-resistant viridans group streptococci (n = 164) and Gemella spp. (n = 28). The macrolide resistance phenotype was predominant (59.38%); all isolates with this phenotype carried the mef(A) or mef(E) gene, with mef(E) being predominant (95.36%). The erm(B) gene was always detected in strains with constitutive and inducible MLS(B) resistance and was combined with the mef(A/E) gene in 47.44% of isolates. None of the isolates carried the erm(A) subclass erm(TR), erm(A), or erm(C) genes. The mel gene was detected in all but four strains carrying the mef(A/E) gene. The tet(M) gene was found in 86.90% of tetracycline-resistant isolates and was strongly associated with the presence of the erm(B) gene. The cat(pC194) gene was detected in seven chloramphenicol-resistant Streptococcus mitis isolates, and the aph(3')-III gene was detected in four viridans group streptococcal isolates with high-level kanamycin resistance. The intTn gene was found in all isolates with the erm(B), tet(M), aph(3')-III, and cat(pC194) gene. The mef(E) and mel genes were successfully transferred from both groups of bacteria to Streptococcus pneumoniae R6 by transformation. Viridans group streptococci and Gemella spp. seem to be important reservoirs of resistance genes.

  20. Transferability of a tetracycline resistance gene from probiotic Lactobacillus reuteri to bacteria in the gastrointestinal tract of humans.

    Science.gov (United States)

    Egervärn, Maria; Lindmark, Hans; Olsson, Johan; Roos, Stefan

    2010-02-01

    The potential of Lactobacillus reuteri as a donor of antibiotic resistance genes in the human gut was investigated by studying the transferability of the tetracycline resistance gene tet(W) to faecal enterococci, bifidobacteria and lactobacilli. In a double-blind clinical study, seven subjects consumed L. reuteri ATCC 55730 harbouring a plasmid-encoded tet(W) gene (tet(W)-reuteri) and an equal number of subjects consumed L. reuteri DSM 17938 derived from the ATCC 55730 strain by the removal of two plasmids, one of which contained the tet(W) gene. Faecal samples were collected before, during and after ingestion of 5 x 10(8) CFU of L. reuteri per day for 14 days. Both L. reuteri strains were detectable at similar levels in faeces after 14 days of intake but neither was detected after a two-week wash-out period. After enrichment and isolation of tetracycline resistant enterococci, bifidobacteria and lactobacilli from each faecal sample, DNA was extracted and analysed for presence of tet(W)-reuteri using a real-time PCR allelic discrimination method developed in this study. No tet(W)-reuteri signal was produced from any of the DNA samples and thus gene transfer to enterococci, bifidobacteria and lactobacilli during intestinal passage of the probiotic strain was non-detectable under the conditions tested, although transfer at low frequencies or to the remaining faecal bacterial population cannot be excluded.

  1. Gene Resistance to Transcriptional Reprogramming following Nuclear Transfer Is Directly Mediated by Multiple Chromatin-Repressive Pathways.

    Science.gov (United States)

    Jullien, Jerome; Vodnala, Munender; Pasque, Vincent; Oikawa, Mami; Miyamoto, Kei; Allen, George; David, Sarah Anne; Brochard, Vincent; Wang, Stan; Bradshaw, Charles; Koseki, Haruhiko; Sartorelli, Vittorio; Beaujean, Nathalie; Gurdon, John

    2017-03-02

    Understanding the mechanism of resistance of genes to reactivation will help improve the success of nuclear reprogramming. Using mouse embryonic fibroblast nuclei with normal or reduced DNA methylation in combination with chromatin modifiers able to erase H3K9me3, H3K27me3, and H2AK119ub1 from transplanted nuclei, we reveal the basis for resistance of genes to transcriptional reprogramming by oocyte factors. A majority of genes is affected by more than one type of treatment, suggesting that resistance can require repression through multiple epigenetic mechanisms. We classify resistant genes according to their sensitivity to 11 chromatin modifier combinations, revealing the existence of synergistic as well as adverse effects of chromatin modifiers on removal of resistance. We further demonstrate that the chromatin modifier USP21 reduces resistance through its H2AK119 deubiquitylation activity. Finally, we provide evidence that H2A ubiquitylation also contributes to resistance to transcriptional reprogramming in mouse nuclear transfer embryos. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. tcrB, a gene conferring transferable copper resistance in Enterococcus faecium: occurrence, transferability, and linkage to macrolide and glycopeptide resistance

    DEFF Research Database (Denmark)

    Hasman, Henrik; Aarestrup, Frank Møller

    2002-01-01

    B protein from Enterococcus hirae. The tcrB gene was found in E. faecium isolated from pigs (75%), broilers (34%), calves (16%), and humans (10%) but not in isolates from sheep. Resistant isolates, containing the tcrB gene, grew on brain heart infusion agar plates containing up to 28 mM CuSO4 compared......A newly discovered gene, designated tcrB, which is located on a conjugative plasmid conferring acquired copper resistance in Enterococcus faecium, was identified in an isolate from a pig. The tcrB gene encodes a putative protein belonging to the CPx-type ATPase family with homology (46%) to the Cop...... for resistance to these two antimicrobial agents. The frequent occurrence of this new copper resistance gene in isolates from pigs, where copper sulfate is being used in large amounts as feed additive, suggests that the use of copper has selected for resistance....

  3. CRISPR-cas-mediated phage resistance enhances horizontal gene transfer by transduction

    NARCIS (Netherlands)

    Watson, Bridget N.J.; Staals, Raymond H.J.; Fineran, Peter C.

    2018-01-01

    A powerful contributor to prokaryotic evolution is horizontal gene transfer (HGT) through transformation, conjugation, and transduction, which can be advantageous, neutral, or detrimental to fitness. Bacteria and archaea control HGT and phage infection through CRISPR-Cas (clustered regularly

  4. Increased Abundance and Transferability of Resistance Genes after Field Application of Manure from Sulfadiazine-Treated Pigs

    Science.gov (United States)

    Jechalke, Sven; Kopmann, Christoph; Rosendahl, Ingrid; Groeneweg, Joost; Weichelt, Viola; Krögerrecklenfort, Ellen; Brandes, Nikola; Nordwig, Mathias; Ding, Guo-Chun; Siemens, Jan; Heuer, Holger

    2013-01-01

    Spreading manure containing antibiotics in agriculture is assumed to stimulate the dissemination of antibiotic resistance in soil bacterial populations. Plant roots influencing the soil environment and its microflora by exudation of growth substrates might considerably increase this effect. In this study, the effects of manure from pigs treated with sulfadiazine (SDZ), here called SDZ manure, on the abundance and transferability of sulfonamide resistance genes sul1 and sul2 in the rhizosphere of maize and grass were compared to the effects in bulk soil in a field experiment. In plots that repeatedly received SDZ manure, a significantly higher abundance of both sul genes was detected compared to that in plots where manure from untreated pigs was applied. Significantly lower abundances of sul genes relative to bacterial ribosomal genes were encountered in the rhizosphere than in bulk soil. However, in contrast to results for bulk soil, the sul gene abundance in the SDZ manure-treated rhizosphere constantly deviated from control treatments over a period of 6 weeks after manuring, suggesting ongoing antibiotic selection over this period. Transferability of sulfonamide resistance was analyzed by capturing resistance plasmids from soil communities into Escherichia coli. Increased rates of plasmid capture were observed in samples from SDZ manure-treated bulk soil and the rhizosphere of maize and grass. More than 97% of the captured plasmids belonged to the LowGC type (having low G+C content), giving further evidence for their important contribution to the environmental spread of antibiotic resistance. In conclusion, differences between bulk soil and rhizosphere need to be considered when assessing the risks associated with the spreading of antibiotic resistance. PMID:23315733

  5. Antibiotic resistance gene transfer between Streptococcus gordonii and Enterococcus faecalis in root canals of teeth ex vivo.

    Science.gov (United States)

    Sedgley, Christine M; Lee, Esther H; Martin, Matthew J; Flannagan, Susan E

    2008-05-01

    Multiple bacterial species coexisting in infected root canals might interact, but evidence for interspecies gene transfer is lacking. This study tested the hypothesis that horizontal exchange of antibiotic resistance can occur between different bacterial species in root canals. Transfer of the conjugative plasmid pAM81 carrying erythromycin resistance between 2 endodontic infection-associated species, Streptococcus gordonii and Enterococcus faecalis, was investigated in an ex vivo tooth model. Equal numbers of each species (one with pAM81 and the other plasmid-free) were combined in prepared root canals of sterilized teeth and incubated at 37 degrees C. At 24 and 72 hours, bidirectional interspecies antibiotic resistance gene transfer was evident in microorganisms recovered from teeth; average transfer frequencies from S. gordonii to E. faecalis were 10(-3) transconjugants per donor and from E. faecalis to S. gordonii were 10(-6) and 10(-7) transconjugants per donor at 24 and 72 hours, respectively. Microbial accumulations were observed on root canal walls with scanning electron microscopy. Horizontal genetic exchange in endodontic infections might facilitate adoption of an optimal genetic profile for survival.

  6. Distribution of tetracycline resistance genes in anaerobic treatment of waste sludge: The role of pH in regulating tetracycline resistant bacteria and horizontal gene transfer.

    Science.gov (United States)

    Huang, Haining; Chen, Yinguang; Zheng, Xiong; Su, Yinglong; Wan, Rui; Yang, Shouye

    2016-10-01

    Although pH value has been widely regarded as an important factor that affects resource recovery of waste sludge, the potential influence of diverse pHs on the distribution of tetracycline resistance genes (TRGs) during sludge anaerobic treatment is largely unknown. Here we reported that in the range of pH 4-10, 0.58-1.18 log unit increase of target TRGs was observed at pH 4, compared with that at pH 7, while 0.70-1.31 log unit further removal were obtained at pH 10. Mechanism study revealed that varied pHs not only altered the community structures of tetracycline resistant bacteria (TRB), but also changed their relative abundances, benefitting the propagation (acidic pHs) or attenuation (alkaline pHs) of TRB. Further investigation indicated that the amount and gene-possessing abilities of key genetic vectors for horizontal TRGs transfer were greatly promoted at acidic pHs but restricted under alkaline conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Modelling of tetracycline resistance gene transfer by commensal Escherichia coli food isolates that survived in gastric fluid conditions.

    Science.gov (United States)

    Hwang, Daekeun; Kim, Seung Min; Kim, Hyun Jung

    2017-01-01

    Antimicrobial resistance (AR) is a major public health concern and a food safety issue worldwide. Escherichia coli strains, indicators of antibiotic resistance, are a source of horizontal gene transfer to other bacteria in the human intestinal system. A probabilistic exposure model was used to estimate the transfer of the AR gene tet(A). The acid resistance and kinetic behaviour of E. coli was analysed as a function of pH to describe the inactivation of E. coli in simulated gastric fluid (SGF), the major host barrier against exogenous micro-organisms. The kinetic parameters of microbial inactivation in SGF were estimated using GInaFiT, and log-linear + tail and Weibull models were found to be suitable for commensal and enterohaemorrhagic E. coli (EHEC), respectively. A probabilistic exposure model was developed to estimate E. coli survival in gastric pH conditions as well as gene transfer from resistant to susceptible cells in humans. E. coli-contaminated retail foods for consumption without further cooking and gastric pH data in South Korea were considered as an example. The model predicts that 22-33% of commensal E. coli can survive under gastric pH conditions of Koreans. The estimated total mean tet(A) transfer level by commensal E. coli was 1.68 × 10 -4 -8.15 × 10 -4 log CFU/mL/h. The inactivation kinetic parameters of E. coli in SGF and the quantitative exposure model can provide useful information regarding risk management options to control the spread of AR. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  8. Inferring horizontal gene transfer.

    Directory of Open Access Journals (Sweden)

    Matt Ravenhall

    2015-05-01

    Full Text Available Horizontal or Lateral Gene Transfer (HGT or LGT is the transmission of portions of genomic DNA between organisms through a process decoupled from vertical inheritance. In the presence of HGT events, different fragments of the genome are the result of different evolutionary histories. This can therefore complicate the investigations of evolutionary relatedness of lineages and species. Also, as HGT can bring into genomes radically different genotypes from distant lineages, or even new genes bearing new functions, it is a major source of phenotypic innovation and a mechanism of niche adaptation. For example, of particular relevance to human health is the lateral transfer of antibiotic resistance and pathogenicity determinants, leading to the emergence of pathogenic lineages. Computational identification of HGT events relies upon the investigation of sequence composition or evolutionary history of genes. Sequence composition-based ("parametric" methods search for deviations from the genomic average, whereas evolutionary history-based ("phylogenetic" approaches identify genes whose evolutionary history significantly differs from that of the host species. The evaluation and benchmarking of HGT inference methods typically rely upon simulated genomes, for which the true history is known. On real data, different methods tend to infer different HGT events, and as a result it can be difficult to ascertain all but simple and clear-cut HGT events.

  9. Simultaneous transfer, introgression, and genomic localization of genes for resistance to stem rust race TTKSK (Ug99) from Aegilops tauschii to wheat.

    Science.gov (United States)

    Olson, Eric L; Rouse, Matthew N; Pumphrey, Michael O; Bowden, Robert L; Gill, Bikram S; Poland, Jesse A

    2013-05-01

    Wheat production is currently threatened by widely virulent races of the wheat stem rust fungus, Puccinia graminis f. sp. tritici, that are part of the TTKSK (also known as 'Ug99') race group. The diploid D genome donor species Aegilops tauschii (2n = 2x = 14, DD) is a readily accessible source of resistance to TTKSK and its derivatives that can be transferred to hexaploid wheat, Triticum aestivum (2n = 6x = 42, AABBDD). To expedite transfer of TTKSK resistance from Ae. tauschii, a direct hybridization approach was undertaken that integrates gene transfer, mapping, and introgression into one process. Direct crossing of Ae. tauschii accessions with an elite wheat breeding line combines the steps of gene transfer and introgression while development of mapping populations during gene transfer enables the identification of closely linked markers. Direct crosses were made using TTKSK-resistant Ae. tauschii accessions TA1662 and PI 603225 as males and a stem rust-susceptible T. aestivum breeding line, KS05HW14, as a female. Embryo rescue enabled recovery of F1 (ABDD) plants that were backcrossed as females to the hexaploid recurrent parent. Stem rust-resistant BC1F1 plants from each Ae. tauschii donor source were used as males to generate BC2F1 mapping populations. Bulked segregant analysis of BC2F1 genotypes was performed using 70 SSR loci distributed across the D genome. Using this approach, stem rust resistance genes from both accessions were located on chromosome arm 1DS and mapped using SSR and EST-STS markers. An allelism test indicated the stem rust resistance gene transferred from PI 603225 is Sr33. Race specificity suggests the stem rust resistance gene transferred from TA1662 is unique and this gene has been temporarily designated SrTA1662. Stem rust resistance genes derived from TA1662 and PI 603225 have been made available with selectable molecular markers in genetic backgrounds suitable for stem rust resistance breeding.

  10. The fosfomycin resistance gene fosB3 is located on a transferable, extrachromosomal circular intermediate in clinical Enterococcus faecium isolates.

    Directory of Open Access Journals (Sweden)

    Xiaogang Xu

    Full Text Available Some VanM-type vancomycin-resistant Enterococcus faecium isolates from China are also resistant to fosfomycin. To investigate the mechanism of fosfomycin resistance in these clinical isolates, antimicrobial susceptibility testing, filter-mating, Illumina/Solexa sequencing, inverse PCR and fosfomycin resistance gene cloning were performed. Three E. faecium clinical isolates were highly resistant to fosfomycin and vancomycin with minimal inhibitory concentrations (MICs >1024 µg/ml and >256 µg/ml, respectively. The fosfomycin and vancomycin resistance of these strains could be co-transferred by conjugation. They carried a fosfomycin resistance gene fosB encoding a protein differing by one or two amino acids from FosB, which is encoded on staphylococcal plasmids. Accordingly, the gene was designated fosB3. The fosB3 gene was cloned into pMD19-T, and transformed into E. coli DH5α. The fosfomycin MIC for transformants with fosB3 was 750-fold higher than transformants without fosB3. The fosB3 gene could be transferred by an extrachromosomal circular intermediate. The results indicate that the fosB3 gene is transferable, can mediate high level fosfomycin resistance in both Gram-positive and Gram-negative bacteria, and can be located on a circular intermediate.

  11. Two Novel Antibiotic Resistance Genes, tet(44) and ant(6)-Ib, Are Located within a Transferable Pathogenicity Island in Campylobacter fetus subsp. fetus▿

    Science.gov (United States)

    Abril, Carlos; Brodard, Isabelle; Perreten, Vincent

    2010-01-01

    New tetracycline and streptomycin resistance genes, tet(44) and ant(6)-Ib, were identified in Campylobacter fetus subsp. fetus within a transferable pathogenicity island that is typically unique to Campylobacter fetus subsp. venerealis. The 640-amino-acid tetracycline resistance determinant, Tet 44, belongs to a class of proteins that confers resistance to tetracycline and minocycline by ribosomal protection. The 286-amino-acid streptomycin resistance determinant, ANT(6)-Ib, belongs to a family of aminoglycoside nucleotidyltransferases. The resistance phenotypes were demonstrated by gene inactivation and expression. PMID:20479200

  12. Resistance gene transfer: induction of transducing phage by sub-inhibitory concentrations of antimicrobials is not correlated to induction of lytic phage.

    Science.gov (United States)

    Stanczak-Mrozek, Kinga I; Laing, Ken G; Lindsay, Jodi A

    2017-06-01

    Horizontal gene transfer of antimicrobial resistance (AMR) genes between clinical isolates via transduction is poorly understood. MRSA are opportunistic pathogens resistant to all classes of antimicrobial agents but currently no strains are fully drug resistant. AMR gene transfer between Staphylococcus aureus isolates is predominantly due to generalized transduction via endogenous bacteriophage, and recent studies have suggested transfer is elevated during host colonization. The aim was to investigate whether exposure to sub-MIC concentrations of antimicrobials triggers bacteriophage induction and/or increased efficiency of AMR gene transfer. Isolates from MRSA carriers were exposed to nine antimicrobials and supernatants were compared for lytic phage particles and ability to transfer an AMR gene. A new technology, droplet digital PCR, was used to measure the concentration of genes in phage particles. All antibiotics tested induced lytic phage and AMR gene transduction, although the ratio of transducing particles to lytic particles differed substantially for each antibiotic. Mupirocin induced the highest ratio of transducing versus lytic particles. Gentamicin and novobiocin reduced UV-induced AMR transduction. The genes carried in phage particles correlated with AMR transfer or lytic particle activity, suggesting antimicrobials influence which DNA sequences are packaged into phage particles. Sub-inhibitory antibiotics induce AMR gene transfer between clinical MRSA, while combination therapy with an inhibiting antibiotic could potentially alter AMR gene packaging into phage particles, reducing AMR transfer. In a continually evolving environment, pathogens have an advantage if they can transfer DNA while lowering the risk of lytic death. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  13. Fluoroquinolone Resistance in Atypical Pneumococci and Oral Streptococci: Evidence of Horizontal Gene Transfer of Fluoroquinolone Resistance Determinants from Streptococcus pneumoniae▿ †

    Science.gov (United States)

    Ip, Margaret; Chau, Shirley S. L.; Chi, Fang; Tang, Julian; Chan, Paul K.

    2007-01-01

    Atypical strains, presumed to be pneumococcus, with ciprofloxacin MICs of ≥4.0 μg/ml and unique sequence variations within the quinolone resistance-determining regions (QRDRs) of the gyrase and topoisomerase genes in comparison with the Streptococcus pneumoniae R6 strain, were examined. These strains were reidentified using phenotypic methods, including detection of optochin susceptibility, bile solubility, and agglutination by serotype-specific antisera, and genotypic methods, including detection of pneumolysin and autolysin genes by PCR, 16S rRNA sequencing, and multilocus sequence typing (MLST). The analysis based on concatenated sequences of the six MLST loci distinguished the “atypical” strains from pneumococci, and these strains clustered closely with S. mitis. However, all these strains and five of nine strains from the viridans streptococcal group possessed one to three gyrA, gyrB, parC, and parE genes whose QRDR sequences clustered with those of S. pneumoniae, providing evidence of horizontal transfer of the QRDRs of the gyrase and topoisomerase genes from pneumococci into viridans streptococci. These genes also conferred fluoroquinolone resistance to viridans streptococci. In addition, the fluoroquinolone resistance determinants of 32 well-characterized Streptococcus mitis and Streptococcus oralis strains from bacteremic patients were also compared. These strains have unique amino acid substitutions in GyrA and ParC that were distinguishable from those in fluoroquinolone-resistant pneumococci and the “atypical” isolates. Both recombinational events and de novo mutations play an important role in the development of fluoroquinolone resistance. PMID:17548487

  14. Transfer patterns of integron-associated and antibiotic resistance genes in S. flexneri during different time intervals in Tianjin, China

    Directory of Open Access Journals (Sweden)

    J Wang

    2014-01-01

    Full Text Available Background: Shigella is one of the common genera of pathogens responsible for bacterial diarrhoea in humans. According to World Health Organisation (WHO, 800,000-1,700,000 patients in China were infected with Shigella spp. in 2000, and Shigella flexneri is the most common serotype (86%. Objectives: We investigated the transfer patterns of integron-associated and antibiotic resistance genes in S. flexneri during different time intervals in the city of Tianjin in the People′s Republic of China. Materials and Methods: The integrase-encoding and variable regions of the integrons of the bacterial strains were amplified by polymerase chain reaction (PCR, followed by gene sequencing. Fifty-six S. flexneri strains, 32 of which were stored in our laboratory and the other 24 were isolated from tertiary hospitals in Tianjin during different time intervals, were tested for their sensitivity to 12 antibiotics by using the Kirby-Bauer antibiotic testing method (K-B method. Results and Conclusion: Of the 32 strains of S. flexneri isolated from 1981 to 1983 and stored in our laboratory, class 1 integron was detected in 28 strains (87.50%, while 27 strains (84.37% harboured an aminoglycoside resistance gene, aadA, in the variable region of their integrons. Class 1 integron was identified in 22 (91.67% of the 24 S. flexneri strains isolated from 2009 to 2010, whereas the variable region and 3′-end amplification were not present in any of the strains. Class 2 integron was not found in the 1981-1983 group (group A of strains; although 19 (79.17% of the 24 strains in the 2009-2010 group (group B possessed class 2 integron, and the variable region of the integron harboured dfrA1 + sat1 + aadA1 genes, which, respectively, mediate antibiotic resistance to trimethoprim, streptothricin and streptomycin. Seventeen strains of the total 56 possessed both class 1 and 2 integrons. Strains belonging to group A were highly resistant to tetracycline, chloramphenicol and a

  15. Horizontal transfer of antibiotic resistance genes among gram negative bacteria in sewage and lake water and influence of some physico-chemical parameters of water on conjugation process.

    Science.gov (United States)

    Shakibaie, M R; Jalilzadeh, K A; Yamakanamardi, S M

    2009-01-01

    Transfer of antibiotic resistance genes among gram negative bacteria in sewage and lake water and easy access of these bacteria to the community are major environmental and public health concern. The aim of this study was to determine transfer of the antimicrobial resistance genes from resistant to susceptible gram negative bacteria in the sewage and lake water by conjugation process and to determine the influence of some physico-chemical parameters of sewage and lake water on the transfer of these resistance genes. For this reason, we isolated 20 liter of each sewage and lake water from coconut area within university campus and Lingambudi lake respectively in Mysore city, India, during monsoon season and studied different physical parameters of the water samples like pH, temperature, conductivity turbidity and color as well as chemical parameters like BOD, COD, field DO and total chloride ion. The gram negative bacteria were isolated and identified from the above water samples using microbiological and biochemical methods and their sensitivity to different antibiotics was determined by disc diffusion break point assay. Conjugation between two multiple antibiotic resistant isolates Pseudomonas aeuginosa and E. coli as donor and E. coli Rif(r) (sensitive to antibiotics) as recipient were carried out in 5ml sterile sewage and lake water. All isolates were resistant to Am, moderately resistant to Te and E, while majority were sensitive to Cip, Gm and CAZ antibiotics. Horizontal transfer of antibiotic resistance genes by conjugation process revealed transfer of Gm, Te and E resistant genes from Ps. aeruginosa to E. coli Rif(r) recipient with mean frequency of +/- 2.3 x 10(-4) in sewage and +/- 2.6 x 10(-6) in lake water respectively Frequency of conjugation in sewage was two fold more as compared to lake water (pbacteria by conjugation. Physico-chemical parameters of water may play role in this process.

  16. Conjugative transfer of the erm(A) gene from erythromycin-resistant Streptococcus pyogenes to macrolide-susceptible S. pyogenes, Enterococcus faecalis and Listeria innocua.

    Science.gov (United States)

    Giovanetti, E; Magi, G; Brenciani, A; Spinaci, C; Lupidi, R; Facinelli, B; Varaldo, P E

    2002-08-01

    In mating experiments, the erythromycin resistance methylase gene erm(A) was successfully transferred from erm(A)-positive clinical isolates of Streptococcus pyogenes to macrolide-susceptible recipients of S. pyogenes, Enterococcus faecalis and Listeria innocua. Compared with the SmaI macrorestriction pattern of the S. pyogenes recipient, the patterns of S. pyogenes transconjugants shared the lack of a fragment and the appearance of a new, larger fragment. This is the first experimental evidence that the erm(A) gene can be transferred from erythromycin-resistant S. pyogenes to macrolide-susceptible S. pyogenes as well as to other Gram-positive recipients.

  17. Transfer of Antibiotic Resistance in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Haaber, Jakob; Penadés, José R; Ingmer, Hanne

    2017-01-01

    Staphylococcus aureus is a serious human pathogen with remarkable adaptive powers. Antibiotic-resistant clones rapidly emerge mainly by acquisition of antibiotic-resistance genes from other S. aureus strains or even from other genera. Transfer is mediated by a diverse complement of mobile genetic...... of plasmids that can be transferred by conjugation and the efficiency with which transduction occurs. Here, we review the main routes of antibiotic resistance gene transfer in S. aureus in the context of its biology as a human commensal and a life-threatening pathogen. Staphylococcus aureus cells...... are effective in exchanging mobile genetic elements, including antibiotic-resistance genes.During colonization or infection of host organisms, the exchange appears to be particularly effective.Bacteriophage-mediated transfer involves both transduction and autotransduction, which may enable lysogenic S. aureus...

  18. Stable gene transfer of CCR5 and CXCR4 siRNAs by sleeping beauty transposon system to confer HIV-1 resistance

    Directory of Open Access Journals (Sweden)

    Akkina Ramesh

    2008-07-01

    Full Text Available Abstract Background Thus far gene therapy strategies for HIV/AIDS have used either conventional retroviral vectors or lentiviral vectors for gene transfer. Although highly efficient, their use poses a certain degree of risk in terms of viral mediated oncogenesis. Sleeping Beauty (SB transposon system offers a non-viral method of gene transfer to avoid this possible risk. With respect to conferring HIV resistance, stable knock down of HIV-1 coreceptors CCR5 and CXCR4 by the use of lentiviral vector delivered siRNAs has proved to be a promising strategy to protect cells from HIV-1 infection. In the current studies our aim is to evaluate the utility of SB system for stable gene transfer of CCR5 and CXCR4 siRNA genes to derive HIV resistant cells as a first step towards using this system for gene therapy. Results Two well characterized siRNAs against the HIV-1 coreceptors CCR5 and CXCR4 were chosen based on their previous efficacy for the SB transposon gene delivery. The siRNA transgenes were incorporated individually into a modified SB transfer plasmid containing a FACS sortable red fluorescence protein (RFP reporter and a drug selectable neomycin resistance gene. Gene transfer was achieved by co-delivery with a construct expressing a hyperactive transposase (HSB5 into the GHOST-R3/X4/R5 cell line, which expresses the major HIV receptor CD4 and and the co-receptors CCR5 and CXCR4. SB constructs expressing CCR5 or CXCR4 siRNAs were also transfected into MAGI-CCR5 or MAGI-CXCR4 cell lines, respectively. Near complete downregulation of CCR5 and CXCR4 surface expression was observed in transfected cells. During viral challenge with X4-tropic (NL4.3 or R5-tropic (BaL HIV-1 strains, the respective transposed cells showed marked viral resistance. Conclusion SB transposon system can be used to deliver siRNA genes for stable gene transfer. The siRNA genes against HIV-1 coreceptors CCR5 and CXCR4 are able to downregulate the respective cell surface proteins

  19. Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment.

    Science.gov (United States)

    Zhang, Ye; Gu, April Z; Cen, Tianyu; Li, Xiangyang; He, Miao; Li, Dan; Chen, Jianmin

    2018-06-01

    Although widespread antibiotic resistance has been mostly attributed to the selective pressure generated by overuse and misuse of antibiotics, recent growing evidence suggests that chemicals other than antibiotics, such as certain metals, can also select and stimulate antibiotic resistance via both co-resistance and cross-resistance mechanisms. For instance, tetL, merE, and oprD genes are resistant to both antibiotics and metals. However, the potential de novo resistance induced by heavy metals at environmentally-relevant low concentrations (much below theminimum inhibitory concentrations [MICs], also referred as sub-inhibitory) has hardly been explored. This study investigated and revealed that heavy metals, namely Cu(II), Ag(I), Cr(VI), and Zn(II), at environmentally-relevant and sub-inhibitory concentrations, promoted conjugative transfer of antibiotic resistance genes (ARGs) between E. coli strains. The mechanisms of this phenomenon were further explored, which involved intracellular reactive oxygen species (ROS) formation, SOS response, increased cell membrane permeability, and altered expression of conjugation-relevant genes. These findings suggest that sub-inhibitory levels of heavy metals that widely present in various environments contribute to the resistance phenomena via facilitating horizontal transfer of ARGs. This study provides evidence from multiple aspects implicating the ecological effect of low levels of heavy metals on antibiotic resistance dissemination and highlights the urgency of strengthening efficacious policy and technology to control metal pollutants in the environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. A horizontally gene transferred copper resistance locus confers hyper-resistance to antibacterial copper toxicity and enables survival of community acquired methicillin resistant Staphylococcus aureus USA300 in macrophages.

    Science.gov (United States)

    Purves, Joanne; Thomas, Jamie; Riboldi, Gustavo P; Zapotoczna, Marta; Tarrant, Emma; Andrew, Peter W; Londoño, Alejandra; Planet, Paul J; Geoghegan, Joan A; Waldron, Kevin J; Morrissey, Julie A

    2018-03-09

    Excess copper is highly toxic and forms part of the host innate immune system's antibacterial arsenal, accumulating at sites of infection and acting within macrophages to kill engulfed pathogens. We show for the first time that a novel, horizontally gene transferred copper resistance locus (copXL), uniquely associated with the SCCmec elements of the highly virulent, epidemic, community acquired methicillin resistant Staphylococcus aureus (CA-MRSA) USA300, confers copper hyper-resistance. These genes are additional to existing core genome copper resistance mechanisms, and are not found in typical S. aureus lineages, but are increasingly identified in emerging pathogenic isolates. Our data show that CopX, a putative P 1B-3 -ATPase efflux transporter, and CopL, a novel lipoprotein, confer copper hyper-resistance compared to typical S. aureus strains. The copXL genes form an operon that is tightly repressed in low copper environments by the copper regulator CsoR. Significantly, CopX and CopL are important for S. aureus USA300 intracellular survival within macrophages. Therefore, the emergence of new S. aureus clones with the copXL locus has significant implications for public health because these genes confer increased resistance to antibacterial copper toxicity, enhancing bacterial fitness by altering S. aureus interaction with innate immunity. © 2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Widespread transfer of resistance genes between bacterial species in an intensive care unit: Implications for hospital epidemiology

    NARCIS (Netherlands)

    Al Naiemi, Nashwan; Duim, Birgitta; Savelkoul, Paul H. M.; Spanjaard, Lodewijk; de Jonge, Evert; Bart, Aldert; Vandenbroucke-Grauls, Christina M.; de Jong, Menno D.

    2005-01-01

    A transferable plasmid encoding SHV-12 extended-spectrum beta-lactamase, TEM-116, and aminoglycoside resistance was responsible for two sequential clonal outbreaks of Enterobacter cloacae and Acinetobacter baumannii bacteria. A similar plasmid was present among isolates of four different bacterial

  2. Effects of In-Feed Copper, Chlortetracycline, and Tylosin on the Prevalence of Transferable Copper Resistance Gene, tcrB, Among Fecal Enterococci of Weaned Piglets.

    Science.gov (United States)

    Amachawadi, Raghavendra G; Scott, H Morgan; Vinasco, Javier; Tokach, Mike D; Dritz, Steve S; Nelssen, Jim L; Nagaraja, Tiruvoor G

    2015-08-01

    Heavy metals, such as copper, are increasingly supplemented in swine diets as an alternative to antibiotics to promote growth. Enterococci, a common gut commensal, acquire plasmid-borne, transferable copper resistance (tcrB) gene-mediated resistance to copper. The plasmid also carried resistance genes to tetracyclines and macrolides. The potential genetic link between copper and antibiotic resistance suggests that copper supplementation may exert a selection pressure for antimicrobial resistance. Therefore, a longitudinal study was conducted to investigate the effects of in-feed copper, chlortetracycline, and tylosin alone or in combination on the selection and co-selection of antimicrobial-resistant enterococci. The study included 240 weaned piglets assigned randomly to 6 dietary treatment groups: control, copper, chlortetracycline, tylosin, copper and chlortetracycline, and copper and tylosin. Feces were collected before (day 0), during (days 7, 14, 21), and after (days 28 and 35) initiating treatment, and enterococcal isolates were obtained from each fecal sample and tested for genotypic and phenotypic resistance to copper and antibiotics. A total of 2592 enterococcal isolates were tested for tcrB by polymerase chain reaction. The overall prevalence of tcrB-positive enterococci was 14.3% (372/2592). Among the tcrB-positive isolates, 331 were Enterococcus faecium and 41 were E. faecalis. All tcrB-positive isolates contained both erm(B) and tet(M) genes. The median minimum inhibitory concentration of copper for tcrB-negative and tcrB-positive enterococci was 6 and 18 mM, respectively. The majority of isolates (95/100) were resistant to multiple antibiotics. In conclusion, supplementing copper or antibiotics alone did not increase copper-resistant enterococci; however, supplementing antibiotics with copper increased the prevalence of the tcrB gene among fecal enterococci of piglets.

  3. A new 2DS·2RL Robertsonian translocation transfers stem rust resistance gene Sr59 into wheat.

    Science.gov (United States)

    Rahmatov, Mahbubjon; Rouse, Matthew N; Nirmala, Jayaveeramuthu; Danilova, Tatiana; Friebe, Bernd; Steffenson, Brian J; Johansson, Eva

    2016-07-01

    A new stem rust resistance gene Sr59 from Secale cereale was introgressed into wheat as a 2DS·2RL Robertsonian translocation. Emerging new races of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici), from Africa threaten global wheat (Triticum aestivum L.) production. To broaden the resistance spectrum of wheat to these widely virulent African races, additional resistance genes must be identified from all possible gene pools. From the screening of a collection of wheat-rye (Secale cereale L.) chromosome substitution lines developed at the Swedish University of Agricultural Sciences, we described the line 'SLU238' 2R (2D) as possessing resistance to many races of P. graminis f. sp. tritici, including the widely virulent race TTKSK (isolate synonym Ug99) from Africa. The breakage-fusion mechanism of univalent chromosomes was used to produce a new Robertsonian translocation: T2DS·2RL. Molecular marker analysis and stem rust seedling assays at multiple generations confirmed that the stem rust resistance from 'SLU238' is present on the rye chromosome arm 2RL. Line TA5094 (#101) was derived from 'SLU238' and was found to be homozygous for the T2DS·2RL translocation. The stem rust resistance gene on chromosome 2RL arm was designated as Sr59. Although introgressions of rye chromosome arms into wheat have most often been facilitated by irradiation, this study highlights the utility of the breakage-fusion mechanism for rye chromatin introgression. Sr59 provides an additional asset for wheat improvement to mitigate yield losses caused by stem rust.

  4. Transferring alien genes to wheat

    International Nuclear Information System (INIS)

    Knott, D.R.

    1987-01-01

    In broad terms an alien gene can be considered to be any gene transferred to wheat from a related species. As described above by Maan (section 7D) the genus Triticum contains a broad range of species, some of which cross readily with the cultivated tetraploid (T. Turgidum L.) or hexaploid (T. aestivum L.) wheats, and others only with great difficulty. In addition, wheat will also cross with species in a number of other genera including Agropyron, Elymus, Elytrigia (=Agropyron), Haynaldia, Hordeum, and Secale (Riley and Kimber, 1966; Knobloch, 1968; Feldman and Sears, 1981). In discussing the Triticum and Aegilops spp., the classification by Kimber and Sears, section SA-I, above, will be followed. For the Agropyron and related species the classification described by Dewey (1983) will be used. To avoid confusion, in referring to the literature the designations used by the authors will be given, followed by the new designation. The wild relatives of wheat are adapted to a broad range of environments and carry a large reservoir of useful genes (Zohary et al., 1969; Kerber and Dyck, 1973; Brezhnev, 1977; Feldman and Sears, 1981; Limin and Fowler, 1981; Sharma et aI., 1981; McGuire and Dvorak, 1981). Initially they were considered to be primarily sources of disease resistance, but more recently they have been recognized as potential sources of genes for high protein, cold tolerance, salt tolerance, drought tolerance, lodging resistance, early maturity, and even yield. Extensive screening of the wild relatives of wheat needs to be done before their useful genes can be fully utilized

  5. Resistance of potential probiotic lactic acid bacteria and bifidobacteria of African and European origin to antimicrobials: Determination and transferability of the resistance genes to other bacteria

    DEFF Research Database (Denmark)

    Ouoba, Labia Irene Ivette; Lei, Vicki; Jensen, Lars Bogø

    2008-01-01

    Probiotic bacteria and starter cultures of Lactobacillus, Weissella and Bifidobacterium of African and European origins were studied and compared for their susceptibility to antimicrobials. The study included, for all isolates, determination of MICs (Minimal Inhibitory Concentration) for 24...... levels of intrinsic resistance were found among the tested species. Positive amplicons were obtained for resistance genes encoding aminoglycoside (aph(3')-III, aadA, aadE) and tetracycline (tet(S)) from isolates from Europe and macrolide (erm(B)) from an isolate from Africa. However, only the erm(B) gene...

  6. Mechanism for transfer of transposon Tn2010 carrying macrolide resistance genes in Streptococcus pneumoniae and its effects on genome evolution.

    Science.gov (United States)

    Zhou, Wenqing; Yao, Kaihu; Zhang, Gang; Yang, Yonghong; Li, Yun; Lv, Yuan; Feng, Jie

    2014-06-01

    The objective of this study was to identify the mechanism responsible for the horizontal transfer of transposon Tn2010 in Streptococcus pneumoniae, and the genomic alterations introduced by the transfer process. Tn2010 was identified using PCR in 15 clinical isolates of S. pneumoniae with erythromycin resistance. S. pneumoniae and Enterococcus faecalis isolates were used as recipient cells in mating and transformation experiments to test the conjugative transferability and transformability of Tn2010. Whole-genome sequencing was used to assess the effects of the Tn2010 transfer on recipient genomes. The biological cost of the horizontal acquisition of Tn2010 and additional genomic changes was investigated by growth competition experiments. Tn2010 was transformed at a frequency of 3 × 10(-7) transformants per cfu, whereas no transconjugants were detected using S. pneumoniae or E. faecalis as recipient cells. Genome analysis showed that many other recombinations were scattered throughout the genome of the transformants in addition to transposon Tn2010. The transformants demonstrated a negligible fitness cost compared with the wild-type strain. Tn2010 tended to be transferred by transformation rather than conjugation in S. pneumoniae, and the spread of Tn2010 could have a profound effect on the evolution of the genome. The acquisition of Tn2010 with negligible fitness cost may facilitate spread of the transposon. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Simultaneous Transfer of Leaf Rust and Powdery Mildew Resistance Genes from Hexaploid Triticale Cultivar Sorento into Bread Wheat

    Directory of Open Access Journals (Sweden)

    Feng Li

    2018-02-01

    Full Text Available Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici, and wheat leaf rust, caused by Puccinia triticina Eriks, are two important diseases that severely threaten wheat production. Sorento, a hexaploid triticale cultivar from Poland, shows high resistance to the wheat powdery mildew isolate E09 and the leaf rust isolate PHT in Beijing, China. To introduce resistance genes into common wheat, Sorento was crossed with wheat line Xuezao, which is susceptible to both diseases, and the F1 hybrids were then backcrossed with Xuezao as the recurrent male parent. By marker analysis, we demonstrate that the long arm of the 2R (2RL chromosome confers resistance to both the leaf rust and powdery mildew isolates at adult-plant and seedling stages, while the long arm of 4R (4RL confers resistance only to powdery mildew at both stages. The chromosomal composition of BC2F3 plants containing 2R or 2RL and 4R or 4RL in the form of substitution and translocation were confirmed by GISH (genomic in situ hybridization and FISH (fluorescence in situ hybridization. Monosomic and disomic substitutions of a wheat chromosome with chromosome 2R or 4R, as well as one 4RS-4DL/4DS-4RL reciprocal translocation homozigote and one 2RL-1DL translocation hemizigote, were recovered. Such germplasms are of great value in wheat improvement.

  8. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae

    NARCIS (Netherlands)

    Rozwandowicz, M.; Brouwer, M.S.M.; Fischer, J.; Wagenaar, J.A.; Gonzalez-Zorn, B.; Guerra, B.; Mevius, D.J.; Hordijk, J.

    2018-01-01

    Bacterial antimicrobial resistance (AMR) is constantly evolving and horizontal gene transfer through plasmids plays a major role. The identification of plasmid characteristics and their association with different bacterial hosts provides crucial knowledge that is essential to understand the

  9. Plant gene transfer and expression protocols

    National Research Council Canada - National Science Library

    Jones, Heddwyn

    1995-01-01

    ... proteins in plants can often lead to a better understanding of biochemical and physiological processes. Fourth, gene transfer technology has allowed the improvement of plant agricultural productivity. For example, plants have been engineered with improved viral resistance or the ability to withstand herbicide attack, therefore allowing a more eff...

  10. Molecular mapping of stripe rust resistance gene YrSE5756 in synthetic hexaploid wheat and its transfer to common wheat

    International Nuclear Information System (INIS)

    Wang, Y.J.; Wang, C.Y.; Zhang, H.

    2015-01-01

    Synthetic hexaploid wheat is an important germplasm resource for transfer of beneficial genes from alien species to common wheat (Triticum aestivum L.). Synthetic hexaploid wheat SE5756 confers a high level of resistance against a wide range of races of Puccinia striiformis West. f. sp. tritici Eriks. et Henn.(Pst). The objectives of this study were to determine the inheritance pattern, adjacent molecular markers, and chromosomal location of the stripe rust resistance gene in SE5756 and to develop new germplasm. We constructed a segregating population of 116 F2 plants and corresponding F2:3 families from a cross between SE5756 and Xinong979 with Pst races CYR32. Genetic analysis revealed that a single dominant gene, tentatively designated as YrSE5756, was responsible for seedling stage stripe rust resistance in SE5756. A genetic map, encompassing Xwmc626, Xwmc269, Xgwm11, Xbarx137, Xwmc419, Xwmc85, Xgpw5237, Xwmc134, WE173, Xwmc631, and YrSE5756, spanned 70.1 cM on chromosome 1BS. Xwmc419 and Xwmc85 were flanking markers tightly linked to YrSE5756 at genetic distances of 2.3 and 1.8 cM. Typical adult plant responses of the SE5756, varieties of the carrier Yr10 and Yr15, Chuanmai 42 (Yr24/Yr26), Yuanfeng 175 (Yr24/Yr26) and Huixianhong resistant to mixture Pst races (CYR32, CYR33 and V26) were experimented. The results showed that YrSE5756 was likely a new resistance stripe rust gene different from Yr24/Yr26, Yr10 and Yr15. From cross and backcross populations of SE5756/Xinong 979, we developed four new wheat lines with large seeds, stripe rust resistance, and improved agronomic traits: N07178-1, N07178-2, N08256-1, and N08256-2. These new germplasm lines could serve as sources of resistance to stripe rust in wheat breeding. SE5756 has the very vital significance in the development of breeding and expand our resistance germplasm resource gene pool. (author)

  11. Transferring Translucent Endosperm Mutant Gene Wx-mq and Rice Stripe Disease Resistance Gene Stv-bi by Marker-Assisted Selection in Rice (Oryza sativa

    Directory of Open Access Journals (Sweden)

    Shu YAO

    2011-06-01

    Full Text Available A high-yielding japonica rice variety, Wuyunjing 7, bred in Jiangsu Province, China as a female parent was crossed with a Japanese rice variety Kantou 194, which carries a rice stripe disease resistance gene Stv-bi and a translucent endosperm mutant gene Wx-mq. From F2 generations, a sequence characterized amplified region (SCAR marker tightly linked with Stv-bi and a cleaved amplified polymorphic sequence (CAPS marker for Wx-mq were used for marker-assisted selection. Finally, a new japonica rice line, Ning 9108, with excellent agronomic traits was obtained by multi-generational selection on stripe disease resistance and endosperm appearance. The utilization of the markers from genes related to rice quality and disease resistance was helpful not only for establishing a marker-assisted selection system of high-quality and disease resistance for rice but also for providing important intermediate materials and rapid selection method for good quality, disease resistance and high yield in rice breeding.

  12. Radiopharmaceuticals to monitor gene transfer

    International Nuclear Information System (INIS)

    Wiebe, L. I.; Morin, K. W.; Knaus, E. E.

    1997-01-01

    Advances in genetic engineering and molecular biology have opened the door to disease treatment by transferring genes to cells that are responsible for the pathological condition being addressed. These genes can serve to supplement or introduce the function of indigenous genes that are either inadequately expressed or that are congenitally absent in the patient. They can introduce new functions such as drug sensitization to provide a unique therapeutic target. Gene transfer is readily monitored in vitro using a range of histochemical and biochemical tests that are ''built in'' to the therapeutic gene cassette. In vivo, in situ monitoring of the gene transfer and gene expression processes can be achieved with these tests only if biopsy is possible. Scintigraphic imaging can offer unique information on both the extent and location of gene expression, provided that an appropriate reporter gene is included in the therapeutic cassette. This overview includes a brief orientation to gene transfer therapy and is followed by a review of current approaches to gene therapy imaging. The concluding section deals with imaging based on radiolabelled nucleoside substrates for herpes simplex type-1 thymidine kinase, with emphasis on IVFRU, a stable potent and selective HSV-1 TK substrate developed in their laboratories

  13. The use of alien gene transfers

    International Nuclear Information System (INIS)

    Bhatia, C.R.

    1976-01-01

    The present status of the gene transfers from alien species belonging to the sub-tribe Triticanae into wheat is reviewed, and the advantages and disadvantages of the different methods available for such transfers are examined. In general, the alien genes provide a high degree of resistance against a notably wide range of physiological races of wheat rusts, powdery mildew and other diseases. The alien resistance, like other sources of resistance, is known to break down for certain new races. This may happen more often when alien genes of resistance are widely incorporated in commercial cultivars and grown over large areas. So far, few of the available induced translocation stocks have contributed to the development of agronomically superior commercial cultivars, mainly due to the associated undesirable effects of the translocations on agronomic characters of the recipient variety. The deleterious effects appear in some genetic backgrounds and not in others. Extensive hybridization of translocation stocks with different genotypes has been emphasized by most investigators. Such programmes have led to the release of three commercial cultivars - 2 in Australia and 1 in the USA. On the other hand, spontaneous wheat-rye translocations carrying gene(s) for disease resistance have been unconsciously incorporated into several wheat cultivars, some of them are widely cultivated and were top in ranking based on grain yield. (author)

  14. Prevalence of sulfonamide-resistant bacteria, resistance genes and integron-associated horizontal gene transfer in natural water bodies and soils adjacent to a swine feedlot in northern Taiwan.

    Science.gov (United States)

    Hsu, Jih-Tay; Chen, Chia-Yang; Young, Chu-Wen; Chao, Wei-Liang; Li, Mao-Hao; Liu, Yung-Hsin; Lin, Chu-Ming; Ying, Chingwen

    2014-07-30

    Antibiotics are commonly used in swine feed to treat and prevent disease, as well as to promote growth. Antibiotics released into the environment via wastewater could accelerate the emergence of antibiotic-resistant bacteria and resistance genes in the surrounding environment. In this study, we quantified the occurrence of sulfonamides, sulfonamide-resistant microorganisms and resistance genes in the wastewater from a swine farm in northern Taiwan and its surrounding natural water bodies and soils. Sulfonamide levels were similar in the receiving downstream and upstream river water. However, the prevalence of sulfonamide-resistant bacteria and resistance genes, as analyzed by cultivation-dependent and -independent molecular approaches, was significantly greater in the downstream compared to the upstream river water samples. Barcoded-pyrosequencing revealed a highly diverse bacterial community structure in each sample. However, the sequence identity of the sulfonamide resistance gene sul1 in the wastewater and downstream environment samples was nearly identical (99-100%). The sul1 gene, which is genetically linked to class 1 integrons, was dominant in the downstream water bodies and soils. In conclusion, the increased prevalence of sulfonamide resistance genes in the wastewater from a swine farm, independent of the persistent presence of sulfonamides, could be a potential source of resistant gene pools in the surrounding environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Autoclave treatment of pig manure does not reduce the risk of transmission and transfer of tetracycline resistance genes in soil: successive determinations with soil column experiments.

    Science.gov (United States)

    Kang, Yijun; Gu, Xian; Hao, Yangyang; Hu, Jian

    2016-03-01

    The increasing use of antibiotics, especially tetracycline, in livestock feed adversely affects animal health and ecological integrity. Therefore, approaches to decrease this risk are urgently needed. High temperatures facilitate antibiotic degradation; whether this reduces transmission risk and transfer of tetracycline-resistant bacteria (TRBs) and tetracycline resistance genes (TRGs) in soil remains unknown. Successive experiments with soil columns evaluated the effects of autoclaving pig manure (APM) on soil TRB populations and TRGs over time at different soil depths. The data showed sharp increases in TRB populations and TRGs in each subsoil layer of PM (non-APM) and APM treatments within 30 days, indicating that TRBs and TRGs transferred rapidly. The level of TRBs in the upper soil layers was approximately 15-fold higher than in subsoils. TRBs were not dependent on PM and APM levels, especially in the late phase. Nevertheless, higher levels of APM led to rapid expansion of TRBs as compared to PM. Moreover, temporal changes in TRB frequencies in total culturable bacteria (TCBs) were similar to TRBs, indicating that the impact of PM or APM on TRBs was more obvious than for TCBs. TRBs were hypothesized to depend on the numbers of TRGs and indigenous recipient bacteria. In the plough layer, five TRGs (tetB, tetG, tetM, tetW, and tetB/P) existed in each treatment within 150 days. Selective pressure of TC may not be a necessary condition for the transfer and persistence of TRGs in soil. High temperatures might reduce TRBs in PM, which had minimal impact on the transmission and transfer of TRGs in soil. Identifying alternatives to decrease TRG transmission remains a major challenge.

  16. Exploring Antibiotic Resistance Genes and Metal Resistance Genes in Plasmid Metagenomes from Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    An-Dong eLi

    2015-09-01

    Full Text Available Plasmids operate as independent genetic elements in microorganism communities. Through horizontal gene transfer, they can provide their host microorganisms with important functions such as antibiotic resistance and heavy metal resistance. In this study, six metagenomic libraries were constructed with plasmid DNA extracted from influent, activated sludge and digested sludge of two wastewater treatment plants. Compared with the metagenomes of the total DNA extracted from the same sectors of the wastewater treatment plant, the plasmid metagenomes had significantly higher annotation rates, indicating that the functional genes on plasmids are commonly shared by those studied microorganisms. Meanwhile, the plasmid metagenomes also encoded many more genes related to defense mechanisms, including ARGs. Searching against an antibiotic resistance genes (ARGs database and a metal resistance genes (MRGs database revealed a broad-spectrum of antibiotic (323 out of a total 618 subtypes and metal resistance genes (23 out of a total 23 types on these plasmid metagenomes. The influent plasmid metagenomes contained many more resistance genes (both ARGs and MRGs than the activated sludge and the digested sludge metagenomes. Sixteen novel plasmids with a complete circular structure that carried these resistance genes were assembled from the plasmid metagenomes. The results of this study demonstrated that the plasmids in wastewater treatment plants could be important reservoirs for resistance genes, and may play a significant role in the horizontal transfer of these genes.

  17. Transfer of stripe rust resistance from Aegilops variabilis to bread ...

    African Journals Online (AJOL)

    In terms of area, the bread wheat producing regions of China comprise the largest area in the world that is constantly threatened by stripe rust epidemics. Consequently, it is important to exploit new adultplant resistance genes in breeding. This study reports the transfer of stripe rust resistance from Aegilops variabilis to ...

  18. Horizontal gene transfer in silkworm, Bombyx mori

    Directory of Open Access Journals (Sweden)

    Li Bin

    2011-05-01

    Full Text Available Abstract Background The domesticated silkworm, Bombyx mori, is the model insect for the order Lepidoptera, has economically important values, and has gained some representative behavioral characteristics compared to its wild ancestor. The genome of B. mori has been fully sequenced while function analysis of BmChi-h and BmSuc1 genes revealed that horizontal gene transfer (HGT maybe bestow a clear selective advantage to B. mori. However, the role of HGT in the evolutionary history of B. mori is largely unexplored. In this study, we compare the whole genome of B. mori with those of 382 prokaryotic and eukaryotic species to investigate the potential HGTs. Results Ten candidate HGT events were defined in B. mori by comprehensive sequence analysis using Maximum Likelihood and Bayesian method combining with EST checking. Phylogenetic analysis of the candidate HGT genes suggested that one HGT was plant-to- B. mori transfer while nine were bacteria-to- B. mori transfer. Furthermore, functional analysis based on expression, coexpression and related literature searching revealed that several HGT candidate genes have added important characters, such as resistance to pathogen, to B. mori. Conclusions Results from this study clearly demonstrated that HGTs play an important role in the evolution of B. mori although the number of HGT events in B. mori is in general smaller than those of microbes and other insects. In particular, interdomain HGTs in B. mori may give rise to functional, persistent, and possibly evolutionarily significant new genes.

  19. Conjugal transfer of aac(6')Ie-aph(2″)Ia gene from native species and mechanism of regulation and cross resistance in Enterococcus faecalis MCC3063 by real time-PCR.

    Science.gov (United States)

    Jaimee, G; Halami, P M

    2017-09-01

    High level aminoglycoside resistance (HLAR) in the lactic acid bacteria (LAB) derived from food animals is detrimental. The aim of this study was to investigate the localization and conjugal transfer of aminoglycoside resistance genes, aac(6')Ie-aph(2″)Ia and aph(3')IIIa in different Enterococcus species. The cross resistance patterns in Enterococcus faecalis MCC3063 to clinically important aminoglycosides by real time PCR were also studied. Southern hybridization experiments revealed the presence of aac(6')Ie-aph(2 ″ )Ia and aph(3')IIIa genes conferring HLAR in high molecular weight plasmids except in Lactobacillus plantarum. The plasmid encoded bifunctional aac(6')Ie-aph(2″)Ia gene was transferable from Enterococcus avium (n = 2), E. cecorum (n = 1), E. faecalis (n = 1) and Pediococcus lolii (n = 1) species into the recipient strain; E. faecalis JH2-2 by filter mating experiments thus indicating the possible risks of gene transfer into pathogenic strains. Molecular analysis of cross resistance patterns in native isolate of E. faecalis MCC3063 carrying aac(6')Ie-aph(2″)Ia and aph(3')IIIa gene was displayed by quantification of the mRNA levels in this study. For this, the culture was induced with increasing concentrations of gentamicin, kanamycin and streptomycin (2048, 4096, 8192, 16384 μg/mL) individually. The increasing concentrations of gentamicin and kanamycin induced the expression of the aac(6')Ie-aph(2″)Ia and aph(3')IIIa resistance genes, respectively. Interestingly, it was observed that induction with streptomycin triggered a significant fold increase in the expression of the aph(3')IIIa gene which otherwise was not known to modify the aminoglycoside. This is noteworthy as streptomycin was found to confer cross resistance to structurally unrelated kanamycin. Also, expression of the aph(3')IIIa gene when induced with streptomycin, revealed that bacteria harbouring this gene will be able to overcome streptomycin bactericidal action at

  20. Gene transfer: anything goes in plant mitochondria

    Directory of Open Access Journals (Sweden)

    Richards Thomas A

    2010-12-01

    Full Text Available Abstract Parasitic plants and their hosts have proven remarkably adept at exchanging fragments of mitochondrial DNA. Two recent studies provide important mechanistic insights into the pattern, process and consequences of horizontal gene transfer, demonstrating that genes can be transferred in large chunks and that gene conversion between foreign and native genes leads to intragenic mosaicism. A model involving duplicative horizontal gene transfer and differential gene conversion is proposed as a hitherto unrecognized source of genetic diversity. See research article: http://www.biomedcentral.com/1741-7007/8/150

  1. Gene transfer: anything goes in plant mitochondria

    Science.gov (United States)

    2010-01-01

    Parasitic plants and their hosts have proven remarkably adept at exchanging fragments of mitochondrial DNA. Two recent studies provide important mechanistic insights into the pattern, process and consequences of horizontal gene transfer, demonstrating that genes can be transferred in large chunks and that gene conversion between foreign and native genes leads to intragenic mosaicism. A model involving duplicative horizontal gene transfer and differential gene conversion is proposed as a hitherto unrecognized source of genetic diversity. See research article: http://www.biomedcentral.com/1741-7007/8/150 PMID:21176244

  2. Mobile antibiotic resistance – the spread of genes determining the resistance of bacteria through food products

    Directory of Open Access Journals (Sweden)

    Jolanta Godziszewska

    2016-07-01

    Full Text Available In recent years, more and more antibiotics have become ineffective in the treatment of bacterial nfections. The acquisition of antibiotic resistance by bacteria is associated with circulation of genes in the environment. Determinants of antibiotic resistance may be transferred to pathogenic bacteria. It has been shown that conjugation is one of the key mechanisms responsible for spread of antibiotic resistance genes, which is highly efficient and allows the barrier to restrictions and modifications to be avoided. Some conjugative modules enable the transfer of plasmids even between phylogenetically distant bacterial species. Many scientific reports indicate that food is one of the main reservoirs of these genes. Antibiotic resistance genes have been identified in meat products, milk, fruits and vegetables. The reason for such a wide spread of antibiotic resistance genes is the overuse of antibiotics by breeders of plants and animals, as well as by horizontal gene transfer. It was shown, that resistance determinants located on mobile genetic elements, which are isolated from food products, can easily be transferred to another niche. The antibiotic resistance genes have been in the environment for 30 000 years. Their removal from food products is not possible, but the risks associated with the emergence of multiresistant pathogenic strains are very large. The only option is to control the emergence, selection and spread of these genes. Therefore measures are sought to prevent horizontal transfer of genes. Promising concepts involve the combination of developmental biology, evolution and ecology in the fight against the spread of antibiotic resistance.

  3. Mobile antibiotic resistance - the spread of genes determining the resistance of bacteria through food products.

    Science.gov (United States)

    Godziszewska, Jolanta; Guzek, Dominika; Głąbski, Krzysztof; Wierzbicka, Agnieszka

    2016-07-07

    In recent years, more and more antibiotics have become ineffective in the treatment of bacterial nfections. The acquisition of antibiotic resistance by bacteria is associated with circulation of genes in the environment. Determinants of antibiotic resistance may be transferred to pathogenic bacteria. It has been shown that conjugation is one of the key mechanisms responsible for spread of antibiotic resistance genes, which is highly efficient and allows the barrier to restrictions and modifications to be avoided. Some conjugative modules enable the transfer of plasmids even between phylogenetically distant bacterial species. Many scientific reports indicate that food is one of the main reservoirs of these genes. Antibiotic resistance genes have been identified in meat products, milk, fruits and vegetables. The reason for such a wide spread of antibiotic resistance genes is the overuse of antibiotics by breeders of plants and animals, as well as by horizontal gene transfer. It was shown, that resistance determinants located on mobile genetic elements, which are isolated from food products, can easily be transferred to another niche. The antibiotic resistance genes have been in the environment for 30 000 years. Their removal from food products is not possible, but the risks associated with the emergence of multiresistant pathogenic strains are very large. The only option is to control the emergence, selection and spread of these genes. Therefore measures are sought to prevent horizontal transfer of genes. Promising concepts involve the combination of developmental biology, evolution and ecology in the fight against the spread of antibiotic resistance.

  4. Adaptation of genetically monomorphic bacteria: evolution of copper resistance through multiple horizontal gene transfers of complex and versatile mobile genetic elements.

    Science.gov (United States)

    Richard, D; Ravigné, V; Rieux, A; Facon, B; Boyer, C; Boyer, K; Grygiel, P; Javegny, S; Terville, M; Canteros, B I; Robène, I; Vernière, C; Chabirand, A; Pruvost, O; Lefeuvre, P

    2017-04-01

    Copper-based antimicrobial compounds are widely used to control plant bacterial pathogens. Pathogens have adapted in response to this selective pressure. Xanthomonas citri pv. citri, a major citrus pathogen causing Asiatic citrus canker, was first reported to carry plasmid-encoded copper resistance in Argentina. This phenotype was conferred by the copLAB gene system. The emergence of resistant strains has since been reported in Réunion and Martinique. Using microsatellite-based genotyping and copLAB PCR, we demonstrated that the genetic structure of the copper-resistant strains from these three regions was made up of two distant clusters and varied for the detection of copLAB amplicons. In order to investigate this pattern more closely, we sequenced six copper-resistant X. citri pv. citri strains from Argentina, Martinique and Réunion, together with reference copper-resistant Xanthomonas and Stenotrophomonas strains using long-read sequencing technology. Genes involved in copper resistance were found to be strain dependent with the novel identification in X. citri pv. citri of copABCD and a cus heavy metal efflux resistance-nodulation-division system. The genes providing the adaptive trait were part of a mobile genetic element similar to Tn3-like transposons and included in a conjugative plasmid. This indicates the system's great versatility. The mining of all available bacterial genomes suggested that, within the bacterial community, the spread of copper resistance associated with mobile elements and their plasmid environments was primarily restricted to the Xanthomonadaceae family. © 2017 John Wiley & Sons Ltd.

  5. Effects of an inducible anti-sense c-myc gene transfer in a drug-resistant human small-cell-lung-carcinoma cell line

    NARCIS (Netherlands)

    Van Waardenburg, R C; Meijer, C; Burger, H; Nooter, K; De Vries, E G; Mulder, N H; de Jong, Steven

    1997-01-01

    Small-cell-lung-cancer (SCLC) is characterized by rapid development of resistance to cytotoxic agents, such as cisplatin (cDDP) and anthracyclines. c-myc over-expression is one of the reported genetic alterations in this tumor. Amplification of the c-myc gene in this and other cancers is often

  6. Emerging quinolones resistant transfer genes among gram-negative bacteria, isolated from faeces of HIV/AIDS patients attending some Clinics and Hospitals in the City of Benin, Edo State, Nigeria

    Directory of Open Access Journals (Sweden)

    Enabulele IO

    2006-12-01

    Full Text Available A survey of 1431 gram-negative bacilli from June 2001 to September 2005 were obtained from the faeces of 920 HIV/AIDS patients attending some Clinics and Hospitals in Benin City, Nigeria, were screened for quinolones resistance gene. The HIV/AIDS patients CD4 cells range was ≤14/mm3 ≥800/mm3 of blood. Out of the 1431 isolates, 343 (23.9% were resistance to quinolones with a MIC ≥4μg/ml for norfloxacin, ciprofloxacin and pefloxacin while a MIC of ≥32 µg/ml for nalidixic acid. The screened isolates include Pseudomonas aeruginosa 64(18.7%, E coli 92(26.8%, Klebsiella pneumoniae 53(15.4%, Salmonella typhi 39(11.4%, Shigella dysenteriae 36(10.5%, Proteus mirabilis 34(9.9% and Serratia marcescens 25(7.3%. The average resistance of the isolates to the various quinolones ranged from 42.7% to 66.7%. Klebsiella were the most resistant isolates with a mean resistance of 66.7% while Proteus were the less resistant isolates with a mean resistance of 42.7%. Most isolates were resistant to Nalidixic acid followed by norfloxacin while the less resistant were to the pefloxacin. The frequency of qnr genes transfer to EJRifr as recipient ranged from 2 x 10-2 to 6 x 10-6 with an average of 2 plasmids per cell. The molecular weight of the plasmids ranged from <2.9kbp to <5.5 kbp. This indicated that plasmids allowed the movement of genetic materials including qnr resistant genes between bacteria species and genera in Benin City, Nigeria.

  7. Marker Assisted Transfer of Two Powdery Mildew Resistance Genes PmTb7A.1 and PmTb7A.2 from Triticum boeoticum (Boiss. to Triticum aestivum (L..

    Directory of Open Access Journals (Sweden)

    Ahmed Fawzy Abdelnaby Elkot

    Full Text Available Powdery mildew (PM, caused by Blumeria graminis f. sp. tritici, is one of the important wheat diseases, worldwide. Two PM resistance genes, designated as PmTb7A.1 and PmTb7A.2, were identified in T. boeoticum acc. pau5088 and mapped on chromosome 7AL approximately 48cM apart. Two resistance gene analogue (RGA-STS markers Ta7AL-4556232 and 7AL-4426363 were identified to be linked to the PmTb7A.1 and PmTb7A.2, at a distance of 0.6cM and 6.0cM, respectively. In the present study, following marker assisted selection (MAS, the two genes were transferred to T. aestivum using T. durum as bridging species. As many as 12,317 florets of F1 of the cross T. durum /T. boeoticum were pollinated with T. aestivum lines PBW343-IL and PBW621 to produce 61 and 65 seeds, respectively, of three-way F1. The resulting F1s of the cross T. durum/T. boeoticum//T. aestivum were screened with marker flanking both the PM resistance genes PmTb7A.1 and PmTb7A.2 (foreground selection and the selected plants were backcrossed to generate BC1F1. Marker assisted selection was carried both in BC1F1 and the BC2F1 generations. Introgression of alien chromatin in BC2F1 plants varied from 15.4-62.9 percent. Out of more than 110 BC2F1 plants showing introgression for markers linked to the two PM resistance genes, 40 agronomically desirable plants were selected for background selection for the carrier chromosome to identify the plants with minimum of the alien introgression. Cytological analysis showed that most plants have chromosome number ranging from 40-42. The BC2F2 plants homozygous for the two genes have been identified. These will be crossed to generate lines combining both the PM resistance genes but with minimal of the alien introgression. The PM resistance gene PmTb7A.1 maps in a region very close to Sr22, a stem rust resistance gene effective against the race Ug99. Analysis of selected plants with markers linked to Sr22 showed introgression of Sr22 from T. boeoticum in

  8. Antibiotic-Resistance Genes in Waste Water.

    Science.gov (United States)

    Karkman, Antti; Do, Thi Thuy; Walsh, Fiona; Virta, Marko P J

    2018-03-01

    Waste water and waste water treatment plants can act as reservoirs and environmental suppliers of antibiotic resistance. They have also been proposed to be hotspots for horizontal gene transfer, enabling the spread of antibiotic resistance genes between different bacterial species. Waste water contains antibiotics, disinfectants, and metals which can form a selection pressure for antibiotic resistance, even in low concentrations. Our knowledge of antibiotic resistance in waste water has increased tremendously in the past few years with advances in the molecular methods available. However, there are still some gaps in our knowledge on the subject, such as how active is horizontal gene transfer in waste water and what is the role of the waste water treatment plant in the environmental resistome? The purpose of this review is to briefly describe some of the main methods for studying antibiotic resistance in waste waters and the latest research and main knowledge gaps on the issue. In addition, some future research directions are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants

    OpenAIRE

    Li, An-Dong; Li, Li-Guan; Zhang, Tong

    2015-01-01

    Plasmids operate as independent genetic elements in microorganism communities. Through horizontal gene transfer, they can provide their host microorganisms with important functions such as antibiotic resistance and heavy metal resistance. In this study, six metagenomic libraries were constructed with plasmid DNA extracted from influent, activated sludge and digested sludge of two wastewater treatment plants. Compared with the metagenomes of the total DNA extracted from the same sectors of the...

  10. Horizontal gene transfer in the phytosphere

    NARCIS (Netherlands)

    Elsas, van J.D.; Turner, S.; Bailey, M.J.

    2003-01-01

    Here, the ecological aspects of gene transfer processes between bacteria in the phytosphere are examined in the context of emerging evidence for the dominant role that horizontal gene transfer (HGT) has played in the evolutionary shaping of bacterial communities. Moreover, the impact of the putative

  11. The Type I Restriction Enzymes as Barriers to Horizontal Gene Transfer: Determination of the DNA Target Sequences Recognised by Livestock-Associated Methicillin-Resistant Staphylococcus aureus Clonal Complexes 133/ST771 and 398.

    Science.gov (United States)

    Chen, Kai; Stephanou, Augoustinos S; Roberts, Gareth A; White, John H; Cooper, Laurie P; Houston, Patrick J; Lindsay, Jodi A; Dryden, David T F

    2016-01-01

    The Type I DNA restriction-modification (RM) systems of Staphylococcus aureus are known to act as a significant barrier to horizontal gene transfer between S. aureus strains belonging to different clonal complexes. The livestock-associated clonal complexes CC133/771 and CC398 contain Type I RM systems not found in human MRSA strains as yet but at some point transfer will occur. When this does take place, horizontal gene transfer of resistance will happen more easily between these strains. The reservoir of antibiotic resistance, virulence and host-adaptation genes present in livestock-associated MRSA will then potentially contribute to the development of newly evolving MRSA clones. The target sites recognised by the Type I RM systems of CC133/771 and CC398 were identified as CAG(N)5RTGA and ACC(N)5RTGA, respectively. Assuming that these enzymes recognise the methylation state of adenine, the underlined A and T bases indicate the unique positions of methylation. Target methylation points for enzymes from CC1 were also identified. The methylation points for CC1-1 are CCAY(N)5TTAA and those for CC1-2 are CCAY(N)6 TGT with the underline indicating the adenine methylation site thus clearing up the ambiguity noted previously (Roberts et al. 2013, Nucleic Acids Res 41:7472-7484) for the half sites containing two adenine bases.

  12. Translating Gene Transfer: A Stalled Effort

    OpenAIRE

    Greenberg, Alexandra J.; McCormick, Jennifer; Tapia, Carmen J.; Windebank, Anthony J.

    2011-01-01

    The journey of gene transfer from laboratory to clinic has been slow and fraught with many challenges and barriers. Despite the development of the initial technology in the early 1970s, a standard clinical treatment involving “gene therapy” remains to be seen. Furthermore, much was written about the technology in the early 1990s, but since then, not much has been written about the journey of gene transfer. The translational path of gene transfer thus far, both pitfalls and successes, can serv...

  13. Fate of antibiotic resistance genes and metal resistance genes during thermophilic aerobic digestion of sewage sludge.

    Science.gov (United States)

    Jang, Hyun Min; Lee, Jangwoo; Kim, Young Beom; Jeon, Jong Hun; Shin, Jingyeong; Park, Mee-Rye; Kim, Young Mo

    2018-02-01

    This study examines the fate of twenty-three representative antibiotic resistance genes (ARGs) encoding tetracyclines, sulfonamides, quinolones, β-lactam antibiotics, macrolides, florfenicol and multidrug resistance during thermophilic aerobic digestion (TAD) of sewage sludge. The bacterial community, class 1 integrons (intI1) and four metal resistance genes (MRGs) were also quantified to determine the key drivers of changes in ARGs during TAD. At the end of digestion, significant decreases in the quantities of ARGs, MRGs and intI1 as well as 16S rRNA genes were observed. Partial redundancy analysis (RDA) showed that shifts in temperature were the key factors affecting a decrease in ARGs. Shifts in temperature led to decreased amounts of ARGs by reducing resistome and bacterial diversity, rather than by lowering horizontal transfer potential via intI1 or co-resistance via MRGs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Translating gene transfer: a stalled effort.

    Science.gov (United States)

    Greenberg, Alexandra J; McCormick, Jennifer; Tapia, Carmen J; Windebank, Anthony J

    2011-08-01

    The journey of gene transfer from laboratory to clinic has been slow and fraught with many challenges and barriers. Despite the development of the initial technology in the early 1970s, a standard clinical treatment involving "gene therapy" remains to be seen. Furthermore, much was written about the technology in the early 1990s, but since then, not much has been written about the journey of gene transfer. The translational path of gene transfer thus far, both pitfalls and successes, can serve as a study not only in navigating ethical and safety concerns, but also in the importance of scientist-public interactions. Here, we examine the translational progress of gene transfer and what can be gleaned from its history. © 2011 Wiley Periodicals, Inc.

  15. Gene transfer therapy in vascular diseases.

    Science.gov (United States)

    McKay, M J; Gaballa, M A

    2001-01-01

    Somatic gene therapy of vascular diseases is a promising new field in modern medicine. Recent advancements in gene transfer technology have greatly evolved our understanding of the pathophysiologic role of candidate disease genes. With this knowledge, the expression of selective gene products provides the means to test the therapeutic use of gene therapy in a multitude of medical conditions. In addition, with the completion of genome sequencing programs, gene transfer can be used also to study the biologic function of novel genes in vivo. Novel genes are delivered to targeted tissue via several different vehicles. These vectors include adenoviruses, retroviruses, plasmids, plasmid/liposomes, and oligonucleotides. However, each one of these vectors has inherent limitations. Further investigations into developing delivery systems that not only allow for efficient, targeted gene transfer, but also are stable and nonimmunogenic, will optimize the clinical application of gene therapy in vascular diseases. This review further discusses the available mode of gene delivery and examines six major areas in vascular gene therapy, namely prevention of restenosis, thrombosis, hypertension, atherosclerosis, peripheral vascular disease in congestive heart failure, and ischemia. Although we highlight some of the recent advances in the use of gene therapy in treating vascular disease discovered primarily during the past two years, many excellent studies published during that period are not included in this review due to space limitations. The following is a selective review of practical uses of gene transfer therapy in vascular diseases. This review primarily covers work performed in the last 2 years. For earlier work, the reader may refer to several excellent review articles. For instance, Belalcazer et al. (6) reviewed general aspects of somatic gene therapy and the different vehicles used for the delivery of therapeutic genes. Gene therapy in restenosis and stimulation of

  16. Primary resistance to integrase strand-transfer inhibitors in Europe

    DEFF Research Database (Denmark)

    Casadellà, M; van Ham, P M; Noguera-Julian, M

    2015-01-01

    OBJECTIVES: The objective of this study was to define the natural genotypic variation of the HIV-1 integrase gene across Europe for epidemiological surveillance of integrase strand-transfer inhibitor (InSTI) resistance. METHODS: This was a multicentre, cross-sectional study within the European...... SPREAD HIV resistance surveillance programme. A representative set of 300 samples was selected from 1950 naive HIV-positive subjects newly diagnosed in 2006-07. The prevalence of InSTI resistance was evaluated using quality-controlled baseline population sequencing of integrase. Signature raltegravir......, elvitegravir and dolutegravir resistance mutations were defined according to the IAS-USA 2014 list. In addition, all integrase substitutions relative to HXB2 were identified, including those with a Stanford HIVdb score ≥10 to at least one InSTI. To rule out circulation of minority InSTI-resistant HIV, 65...

  17. A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat.

    Science.gov (United States)

    Qi, L L; Pumphrey, M O; Friebe, Bernd; Zhang, P; Qian, C; Bowden, R L; Rouse, M N; Jin, Y; Gill, B S

    2011-06-01

    Stem rust (Puccinia graminis f. sp. tritici Eriks. & E. Henn.) (the causal agent of wheat stem rust) race Ug99 (also designated TTKSK) and its derivatives have defeated several important stem rust resistance genes widely used in wheat (Triticum aestivum L.) production, rendering much of the worldwide wheat acreage susceptible. In order to identify new resistance sources, a large collection of wheat relatives and genetic stocks maintained at the Wheat Genetic and Genomic Resources Center was screened. The results revealed that most accessions of the diploid relative Dasypyrum villosum (L.) Candargy were highly resistant. The screening of a set of wheat-D. villosum chromosome addition lines revealed that the wheat-D. villosum disomic addition line DA6V#3 was moderately resistant to race Ug99. The objective of the present study was to produce and characterize compensating wheat-D. villosum whole arm Robertsonian translocations (RobTs) involving chromosomes 6D of wheat and 6V#3 of D. villosum through the mechanism of centric breakage-fusion. Seven 6V#3-specific EST-STS markers were developed for screening F(2) progeny derived from plants double-monosomic for chromosomes 6D and 6V#3. Surprisingly, although 6D was the target chromosome, all recovered RobTs involved chromosome 6A implying a novel mechanism for the origin of RobTs. Homozygous translocations (T6AS·6V#3L and T6AL·6V#3S) with good plant vigor and full fertility were selected from F(3) families. A stem rust resistance gene was mapped to the long arm 6V#3L in T6AS·6V#3L and was designated as Sr52. Sr52 is temperature-sensitive and is most effective at 16°C, partially effective at 24°C, and ineffective at 28°C. The T6AS·6V#3L stock is a new source of resistance to Ug99, is cytogenetically stable, and may be useful in wheat improvement.

  18. Assessment of Bacterial Antibiotic Resistance Transfer in the Gut

    OpenAIRE

    Susanne Schjørring; Karen A. Krogfelt

    2011-01-01

    We assessed horizontal gene transfer between bacteria in the gastrointestinal (GI) tract. During the last decades, the emergence of antibiotic resistant strains and treatment failures of bacterial infections have increased the public awareness of antibiotic usage. The use of broad spectrum antibiotics creates a selective pressure on the bacterial flora, thus increasing the emergence of multiresistant bacteria, which results in a vicious circle of treatments and emergence of new antibiotic res...

  19. Staphylococci on ICE: Overlooked agents of horizontal gene transfer.

    Science.gov (United States)

    Sansevere, Emily A; Robinson, D Ashley

    2017-01-01

    Horizontal gene transfer plays a significant role in spreading antimicrobial resistance and virulence genes throughout the genus Staphylococcus , which includes species of clinical relevance to humans and animals. While phages and plasmids are the most well-studied agents of horizontal gene transfer in staphylococci, the contribution of integrative conjugative elements (ICEs) has been mostly overlooked. Experimental work demonstrating the activity of ICEs in staphylococci remained frozen for years after initial work in the 1980s that showed Tn 916 was capable of transfer from Enterococcus to Staphylococcus . However, recent work has begun to thaw this field. To date, 2 families of ICEs have been identified among staphylococci - Tn 916 that includes the Tn 5801 subfamily, and ICE 6013 that includes at least 7 subfamilies. Both Tn 5801 and ICE 6013 commonly occur in clinical strains of S. aureus . Tn 5801 is the most studied of the Tn 916 family elements in staphylococci and encodes tetracycline resistance and a protein that, when expressed in Escherichia coli , inhibits restriction barriers to incoming DNA. ICE 6013 is among the shortest known ICEs, but it still includes many uncharacterized open reading frames. This element uses an IS 30 -like transposase as its recombinase, providing some versatility in integration sites. ICE 6013 also conjugatively transfers among receptive S. aureus strains at relatively higher frequency than Tn 5801 . Continued study of these mobile genetic elements may reveal the full extent to which ICEs impact horizontal gene transfer and the evolution of staphylococci.

  20. Identification of pathogen-responsive regions in the promoter of a pepper lipid transfer protein gene (CALTPI) and the enhanced resistance of the CALTPI transgenic Arabidopsis against pathogen and environmental stresses.

    Science.gov (United States)

    Jung, Ho Won; Kim, Ki Deok; Hwang, Byung Kook

    2005-06-01

    The 5' flanking region of the CALTPI gene, which encodes a basic lipid transfer protein, was isolated and characterized from the genomic DNA of Capsicum annuum. Four different regions of the promoter sequence of the CALTPI gene were fused to the beta-glucuronidase (GUS) coding region. In an Agrobacterium-mediated transient expression assay, the transcriptional activations of the promoter deletions were examined in tobacco leaves after infection with Pseudomonas syringae pv. tabaci, and treatment with ethylene and salicylic acid. The -808 bp region of the CALTPI gene promoter sequence exhibited full promoter activity. The W-box and ERE-box elements, which are essential for induction by all signals, were localized in the region between -555 bp and -391 bp upstream of the translation initiation site. A CALTPI transgene was then introduced under the control of the 35S promoter into the Arabidopsis ecotype Col-0. Transgenic Arabidopsis lines expressing the CALTPI gene developed rapidly compared to the wild-type plants, indicating that CALTPI may be involved in plant development. Overexpression of the CALTPI gene enhanced the resistance against infection by P. syringae pv. tomato and Botrytis cinerea. The transgenic plants expressing the CALTPI gene also showed high levels of tolerance to NaCl and drought stresses at various vegetative growth stages. No transcription of the PR-1, PR-2, PR-5, thionin, and RD29A genes was observed in untreated leaf tissues of the transgenic plants. The enhanced resistance to pathogen and environmental stresses in transgenic Arabidopsis correlated with the enhanced expression of the CALTPI gene.

  1. An Evolutionarily Conserved Mechanism for Intrinsic and Transferable Polymyxin Resistance.

    Science.gov (United States)

    Xu, Yongchang; Wei, Wenhui; Lei, Sheng; Lin, Jingxia; Srinivas, Swaminath; Feng, Youjun

    2018-04-10

    Polymyxins, a family of cationic antimicrobial cyclic peptides, act as a last line of defense against severe infections by Gram-negative pathogens with carbapenem resistance. In addition to the intrinsic resistance to polymyxin E (colistin) conferred by Neisseria eptA , the plasmid-borne mobilized colistin resistance gene mcr-1 has been disseminated globally since the first discovery in Southern China, in late 2015. However, the molecular mechanisms for both intrinsic and transferable resistance to colistin remain largely unknown. Here, we aim to address this gap in the knowledge of these proteins. Structural and functional analyses of EptA and MCR-1 and -2 have defined a conserved 12-residue cavity that is required for the entry of the lipid substrate, phosphatidylethanolamine (PE). The in vitro and in vivo data together have allowed us to visualize the similarities in catalytic activity shared by EptA and MCR-1 and -2. The expression of either EptA or MCR-1 or -2 is shown to remodel the surface of enteric bacteria (e.g., Escherichia coli , Salmonella enterica , Klebsiella pneumoniae , etc.), rendering them resistant to colistin. The parallels in the PE substrate-binding cavities among EptA, MCR-1, and MCR-2 provide a comprehensive understanding of both intrinsic and transferable colistin resistance. Domain swapping between EptA and MCR-1 and -2 reveals that the two domains (transmembrane [TM] region and p hospho e thanol a mine [PEA] transferase) are not functionally exchangeable. Taken together, the results represent a common mechanism for intrinsic and transferable PEA resistance to polymyxin, a last-resort antibiotic against multidrug-resistant pathogens. IMPORTANCE EptA and MCR-1 and -2 remodel the outer membrane, rendering bacteria resistant to colistin, a final resort against carbapenem-resistant pathogens. Structural and functional analyses of EptA and MCR-1 and -2 reveal parallel PE lipid substrate-recognizing cavities, which explains intrinsic and

  2. Progress on introduction of rust resistance genes into confection sunflower

    Science.gov (United States)

    Sunflower rust (Puccinia helianthi) emerged as a serious disease in the last few years. Confection sunflower is particularly vulnerable to the disease due to the lack of resistance sources. The objectives of this project are to transfer rust resistance genes from oil sunflower to confectionery sunfl...

  3. Genomic characterisation of clinical and environmental Pseudomonas putida group strains and determination of their role in the transfer of antimicrobial resistance genes to Pseudomonas aeruginosa.

    Science.gov (United States)

    Peter, Silke; Oberhettinger, Philipp; Schuele, Leonard; Dinkelacker, Ariane; Vogel, Wichard; Dörfel, Daniela; Bezdan, Daniela; Ossowski, Stephan; Marschal, Matthias; Liese, Jan; Willmann, Matthias

    2017-11-10

    Pseudomonas putida is a Gram-negative, non-fermenting bacterium frequently encountered in various environmental niches. P. putida rarely causes disease in humans, though serious infections and outbreaks have been reported from time to time. Some have suggested that P. putida functions as an exchange platform for antibiotic resistance genes (ARG), and thus represents a serious concern in the spread of ARGs to more pathogenic organisms within a hospital. Though poorly understood, the frequency of ARG exchange between P. putida and the more virulent Pseudomonas aeruginosa and its clinical relevance are particularly important for designing efficient infection control strategies, such as deciding whether high-risk patients colonized with a multidrug resistant but typically low pathogenic P. putida strain should be contact isolated or not. In this study, 21,373 screening samples (stool, rectal and throat swab) were examined to determine the presence of P. putida in a high-risk group of haemato-oncology patients during a 28-month period. A total of 89 P. putida group strains were isolated from 85 patients, with 41 of 89 (46.1%) strains harbouring the metallo-beta-lactamase gene bla VIM . These 41 clinical isolates, plus 18 bla VIM positive environmental P. putida isolates, and 17 bla VIM positive P. aeruginosa isolates, were characterized by whole genome sequencing (WGS). We constructed a maximum-likelihood tree to separate the 59 bla VIM positive P. putida group strains into eight distinct phylogenetic clusters. Bla VIM-1 was present in 6 clusters while bla VIM-2 was detected in 4 clusters. Five P. putida group strains contained both, bla VIM-1 and bla VIM-2 genes. In contrast, all P. aeruginosa strains belonged to a single genetic cluster and contained the same ARGs. Apart from bla VIM-2 and sul genes, no other ARGs were shared between P. aeruginosa and P. putida. Furthermore, the bla VIM-2 gene in P. aeruginosa was predicted to be only chromosomally located. These data

  4. qnrD, a Novel Gene Conferring Transferable Quinolone Resistance in Salmonella enterica Serovar Kentucky and Bovismorbificans Strains of Human Origin

    DEFF Research Database (Denmark)

    Cavaco, Lina; Hasman, Henrik; Xia, S.

    2009-01-01

    In a previous study, four Salmonella isolates from humans in the Henan province of China showed reduced susceptibility to ciprofloxacin (MIC, 0.125 to 0.25 mu g/ml) but were susceptible to nalidixic acid ( MIC, 4 to 8 mu g/ml). All isolates were negative for known qnr genes ( A, B, and S), aac(6......')Ib-cr, and mutations in gyrA and parC. Plasmid DNA was extracted from all four isolates and transformed into Escherichia coli TG1 and DH10B cells by electroporation, and transformants were selected on 0.06 mu g/ml ciprofloxacin containing brain heart infusion agar plates. Resistance to ciprofloxacin...... qnrD, showed 48% similarity to qnrA1, 61% similarity to qnrB1, and 41% similarity to qnrS1. Further subcloning of the qnrD coding region into the constitutively expressed tetA gene of vector pBR322 showed that the gene conferred an increase in the MIC of ciprofloxacin by a factor of 32 ( from an MIC...

  5. Detecting Horizontal Gene Transfer between Closely Related Taxa.

    Science.gov (United States)

    Adato, Orit; Ninyo, Noga; Gophna, Uri; Snir, Sagi

    2015-10-01

    Horizontal gene transfer (HGT), the transfer of genetic material between organisms, is crucial for genetic innovation and the evolution of genome architecture. Existing HGT detection algorithms rely on a strong phylogenetic signal distinguishing the transferred sequence from ancestral (vertically derived) genes in its recipient genome. Detecting HGT between closely related species or strains is challenging, as the phylogenetic signal is usually weak and the nucleotide composition is normally nearly identical. Nevertheless, there is a great importance in detecting HGT between congeneric species or strains, especially in clinical microbiology, where understanding the emergence of new virulent and drug-resistant strains is crucial, and often time-sensitive. We developed a novel, self-contained technique named Near HGT, based on the synteny index, to measure the divergence of a gene from its native genomic environment and used it to identify candidate HGT events between closely related strains. The method confirms candidate transferred genes based on the constant relative mutability (CRM). Using CRM, the algorithm assigns a confidence score based on "unusual" sequence divergence. A gene exhibiting exceptional deviations according to both synteny and mutability criteria, is considered a validated HGT product. We first employed the technique to a set of three E. coli strains and detected several highly probable horizontally acquired genes. We then compared the method to existing HGT detection tools using a larger strain data set. When combined with additional approaches our new algorithm provides richer picture and brings us closer to the goal of detecting all newly acquired genes in a particular strain.

  6. Low Temperature and Modified Atmosphere: Hurdles for Antibiotic Resistance Transfer?

    Science.gov (United States)

    Van Meervenne, Eva; Van Coillie, Els; Van Weyenberg, Stephanie; Boon, Nico; Herman, Lieve; Devlieghere, Frank

    2015-12-01

    Food is an important dissemination route for antibiotic-resistant bacteria. Factors used during food production and preservation may contribute to the transfer of antibiotic resistance genes, but research on this subject is scarce. In this study, the effect of temperature (7 to 37°C) and modified atmosphere packaging (air, 50% CO2-50% N2, and 100% N2) on antibiotic resistance transfer from Lactobacillus sakei subsp. sakei to Listeria monocytogenes was evaluated. Filter mating was performed on nonselective agar plates with high-density inocula. A more realistic setup was created by performing modified atmosphere experiments on cooked ham using high-density and low-density inocula. Plasmid transfer was observed between 10 and 37°C, with plasmid transfer also observed at 7°C during a prolonged incubation period. When high-density inocula were used, transconjugants were detected, both on agar plates and cooked ham, under the three atmospheres (air, 50% CO2-50% N2, and 100% N2) at 7°C. This yielded a median transfer ratio (number of transconjugants/number of recipients) with an order of magnitude of 10(-4) to 10(-6). With low-density inocula, transfer was only detected under the 100% N2 atmosphere after 10-day incubation at 7°C, yielding a transfer ratio of 10(-5). Under this condition, the highest bacterial density was obtained. The results indicate that low temperature and modified atmosphere packaging, two important hurdles in the food industry, do not necessarily prevent plasmid transfer from Lactobacillus sakei subsp. sakei to Listeria monocytogenes.

  7. Strain-Specific Transfer of Antibiotic Resistance from an Environmental Plasmid to Foodborne Pathogens

    Directory of Open Access Journals (Sweden)

    Eva Van Meervenne

    2012-01-01

    Full Text Available Pathogens resistant to multiple antibiotics are rapidly emerging, entailing important consequences for human health. This study investigated if the broad-host-range multiresistance plasmid pB10, isolated from a wastewater treatment plant, harbouring amoxicillin, streptomycin, sulfonamide, and tetracycline resistance genes, was transferable to the foodborne pathogens Salmonella spp. or E. coli O157:H7 and how this transfer alters the phenotype of the recipients. The transfer ratio was determined by both plating and flow cytometry. Antibiotic resistance profiles were determined for both recipients and transconjugants using the disk diffusion method. For 14 of the 15 recipient strains, transconjugants were detected. Based on plating, transfer ratios were between 6.8×10−9 and 3.0×10−2 while using flow cytometry, transfer ratios were between <1.0×10−5 and 1.9×10−2. With a few exceptions, the transconjugants showed phenotypically increased resistance, indicating that most of the transferred resistance genes were expressed. In summary, we showed that an environmental plasmid can be transferred into foodborne pathogenic bacteria at high transfer ratios. However, the transfer ratio seemed to be recipient strain dependent. Moreover, the newly acquired resistance genes could turn antibiotic susceptible strains into resistant ones, paving the way to compromise human health.

  8. Obesity genes and insulin resistance.

    Science.gov (United States)

    Belkina, Anna C; Denis, Gerald V

    2010-10-01

    The exploding prevalence of insulin resistance and Type 2 diabetes (T2D) linked to obesity has become an alarming public health concern. Worldwide, approximately 171 million people suffer from obesity-induced diabetes and public health authorities expect this situation to deteriorate rapidly. An interesting clinical population of 'metabolically healthy but obese' (MHO) cases is relatively protected from T2D and its associated cardiovascular risk. The molecular basis for this protection is not well understood but is likely to involve reduced inflammatory responses. The inflammatory cells and pathways that respond to overnutrition are the primary subject matter for this review. The chance discovery of a genetic mutation in the Brd2 gene, which is located in the class II major histocompatibility complex and makes mice enormously fat but protects them from diabetes, offers revolutionary new insights into the cellular mechanisms that link obesity to insulin resistance and T2D. These Brd2-hypomorphic mice have reduced inflammation in fat that is normally associated with insulin resistance, and resemble MHO patients, suggesting novel therapeutic pathways for obese patients at risk for T2D. Deeper understanding of the functional links between genes that control inflammatory responses to diet-induced obesity is crucial to the development of therapies for obese, insulin-resistant patients.

  9. Macrolide resistance can be transferred by conjugation from viridans streptococci to Streptococcus pyogenes.

    Science.gov (United States)

    Jönsson, Maria; Swedberg, Göte

    2006-08-01

    Efflux pumps encoded by mef genes are among the most common mechanisms of resistance to macrolides. These genes are often located on horizontally transferable elements such as transposons. We present data indicating conjugative transfer of the mef(E) gene from viridans streptococci to the pathogen Streptococcus pyogenes. The mef(E) gene is located on the previously described MEGA (macrolide efflux genetic assembly) element. Of 110 isolates tested, 85% of those that carried the mef(A/E) gene carried it on MEGA, and in all cases of conjugal transfer of the mef(E) gene it was carried on MEGA. It therefore appears reasonable to draw the conclusion that this element is important in the lateral transfer of macrolide resistance between streptococci.

  10. The Co-Selection of Fluoroquinolone Resistance Genes in the Gut Flora of Vietnamese Children

    NARCIS (Netherlands)

    Vien, Le Thi Minh; Minh, Ngo Ngoc Quang; Thuong, Tang Chi; Khuong, Huynh Duy; Nga, Tran Vu Thieu; Thompson, Corinne; Campbell, James I.; de Jong, Menno; Farrar, Jeremy J.; Schultsz, Constance; van Doorn, H. Rogier; Baker, Stephen

    2012-01-01

    Antimicrobial consumption is one of the major contributing factors facilitating the development and maintenance of bacteria exhibiting antimicrobial resistance. Plasmid-mediated quinolone resistance (PMQR) genes, such as the qnr family, can be horizontally transferred and contribute to reduced

  11. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens

    DEFF Research Database (Denmark)

    Jiang, Xinglin; Ellabaan, Mostafa M Hashim; Charusanti, Pep

    2017-01-01

    It has been hypothesized that some antibiotic resistance genes (ARGs) found in pathogenic bacteria derive from antibiotic-producing actinobacteria. Here we provide bioinformatic and experimental evidence supporting this hypothesis. We identify genes in proteobacteria, including some pathogens......, that appear to be closely related to actinobacterial ARGs known to confer resistance against clinically important antibiotics. Furthermore, we identify two potential examples of recent horizontal transfer of actinobacterial ARGs to proteobacterial pathogens. Based on this bioinformatic evidence, we propose...... results support the existence of ancient and, possibly, recent transfers of ARGs from antibiotic-producing actinobacteria to proteobacteria, and provide evidence for a defined mechanism....

  12. Effect of growth rate and selection pressure on rates of transfer of an antibiotic resistance plasmid between E. coli strains

    NARCIS (Netherlands)

    Schuurmans, Jasper M.; van Hijum, Sacha A. F. T.; Piet, Jurgen R.; Händel, Nadine; Smelt, Jan; Brul, Stanley; ter Kuile, Benno H.

    2014-01-01

    Antibiotic resistance increases costs for health care and causes therapy failure. An important mechanism for spreading resistance is transfer of plasmids containing resistance genes and subsequent selection. Yet the factors that influence the rate of transfer are poorly known. Rates of plasmid

  13. Myeloprotection by Cytidine Deaminase Gene Transfer in Antileukemic Therapy

    Directory of Open Access Journals (Sweden)

    Nico Lachmann

    2013-03-01

    Full Text Available Gene transfer of drug resistance (CTX-R genes can be used to protect the hematopoietic system from the toxicity of anticancer chemotherapy and this concept recently has been proven by overexpression of a mutant O6-methylguaninemethyltransferase in the hematopoietic system of glioblastoma patients treated with temozolomide. Given its protection capacity against such relevant drugs as cytosine arabinoside (ara-C, gemcitabine, decitabine, or azacytidine and the highly hematopoiesis-specific toxicity profile of several of these agents, cytidine deaminase (CDD represents another interesting candidate CTX-R gene and our group recently has established the myeloprotective capacity of CDD gene transfer in a number of murine transplant studies. Clinically, CDD overexpression appears particularly suited to optimize treatment strategies for acute leukemias and myelodysplasias given the efficacy of ara-C (and to a lesser degree decitabine and azacytidine in these disease entities. This article will review the current state of the art with regard to CDD gene transfer and point out potential scenarios for a clinical application of this strategy. In addition, risks and potential side effects associated with this approach as well as strategies to overcome these problems will be highlighted.

  14. Widespread of horizontal gene transfer in the human genome

    OpenAIRE

    Huang, Wenze; Tsai, Lillian; Li, Yulong; Hua, Nan; Sun, Chen; Wei, Chaochun

    2017-01-01

    Background A fundamental concept in biology is that heritable material is passed from parents to offspring, a process called vertical gene transfer. An alternative mechanism of gene acquisition is through horizontal gene transfer (HGT), which involves movement of genetic materials between different species. Horizontal gene transfer has been found prevalent in prokaryotes but very rare in eukaryote. In this paper, we investigate horizontal gene transfer in the human genome. Results From the pa...

  15. Horizontal gene and chromosome transfer in plantpathogenic fungi affecting host range

    NARCIS (Netherlands)

    Mehrabi, R.; Bahkali, A.H.; Abd-Elsalam, K.A.; M'Barek, Ben S.; Mirzadi Gohari, A.; Karimi Jashini, M.; Stergiopoulos, I.; Kema, G.H.J.; Wit, de P.J.G.M.

    2011-01-01

    Plant pathogenic fungi adapt quickly to changing environments including overcoming plant disease resistance genes. This is usually achieved by mutations in single effector genes of the pathogens, enabling them to avoid recognition by the host plant. In addition, horizontal gene transfer (HGT) and

  16. Detecting Horizontal Gene Transfer between Closely Related Taxa.

    Directory of Open Access Journals (Sweden)

    Orit Adato

    2015-10-01

    Full Text Available Horizontal gene transfer (HGT, the transfer of genetic material between organisms, is crucial for genetic innovation and the evolution of genome architecture. Existing HGT detection algorithms rely on a strong phylogenetic signal distinguishing the transferred sequence from ancestral (vertically derived genes in its recipient genome. Detecting HGT between closely related species or strains is challenging, as the phylogenetic signal is usually weak and the nucleotide composition is normally nearly identical. Nevertheless, there is a great importance in detecting HGT between congeneric species or strains, especially in clinical microbiology, where understanding the emergence of new virulent and drug-resistant strains is crucial, and often time-sensitive. We developed a novel, self-contained technique named Near HGT, based on the synteny index, to measure the divergence of a gene from its native genomic environment and used it to identify candidate HGT events between closely related strains. The method confirms candidate transferred genes based on the constant relative mutability (CRM. Using CRM, the algorithm assigns a confidence score based on "unusual" sequence divergence. A gene exhibiting exceptional deviations according to both synteny and mutability criteria, is considered a validated HGT product. We first employed the technique to a set of three E. coli strains and detected several highly probable horizontally acquired genes. We then compared the method to existing HGT detection tools using a larger strain data set. When combined with additional approaches our new algorithm provides richer picture and brings us closer to the goal of detecting all newly acquired genes in a particular strain.

  17. Novel "Superspreader" Bacteriophages Promote Horizontal Gene Transfer by Transformation.

    Science.gov (United States)

    Keen, Eric C; Bliskovsky, Valery V; Malagon, Francisco; Baker, James D; Prince, Jeffrey S; Klaus, James S; Adhya, Sankar L

    2017-01-17

    Bacteriophages infect an estimated 10 23 to 10 25 bacterial cells each second, many of which carry physiologically relevant plasmids (e.g., those encoding antibiotic resistance). However, even though phage-plasmid interactions occur on a massive scale and have potentially significant evolutionary, ecological, and biomedical implications, plasmid fate upon phage infection and lysis has not been investigated to date. Here we show that a subset of the natural lytic phage population, which we dub "superspreaders," releases substantial amounts of intact, transformable plasmid DNA upon lysis, thereby promoting horizontal gene transfer by transformation. Two novel Escherichia coli phage superspreaders, SUSP1 and SUSP2, liberated four evolutionarily distinct plasmids with equal efficiency, including two close relatives of prominent antibiotic resistance vectors in natural environments. SUSP2 also mediated the extensive lateral transfer of antibiotic resistance in unbiased communities of soil bacteria from Maryland and Wyoming. Furthermore, the addition of SUSP2 to cocultures of kanamycin-resistant E. coli and kanamycin-sensitive Bacillus sp. bacteria resulted in roughly 1,000-fold more kanamycin-resistant Bacillus sp. bacteria than arose in phage-free controls. Unlike many other lytic phages, neither SUSP1 nor SUSP2 encodes homologs to known hydrolytic endonucleases, suggesting a simple potential mechanism underlying the superspreading phenotype. Consistent with this model, the deletion of endonuclease IV and the nucleoid-disrupting protein ndd from coliphage T4, a phage known to extensively degrade chromosomal DNA, significantly increased its ability to promote plasmid transformation. Taken together, our results suggest that phage superspreaders may play key roles in microbial evolution and ecology but should be avoided in phage therapy and other medical applications. Bacteriophages (phages), viruses that infect bacteria, are the planet's most numerous biological

  18. Distribution and quantification of antibiotic resistance genes and bacteria across agricultural and non-agricultural metagenomes

    Science.gov (United States)

    There is concern that antibiotic resistance can potentially be transferred from animals to humans through the food chain. The relationship between specific antibiotic resistant bacteria and the genes they carry remains to be described and few details are known about how antibiotic resistance genes i...

  19. Rifkin strikes against gene transfer experiments.

    Science.gov (United States)

    Beardsley, T

    Jeremy Rifkin's lobbying organization, the Foundation on Economic Trends, has brought suit in U.S. District Court, together with the Humane Society of the U.S., to halt gene transfer experiments being carried out in livestock by the Department of Agriculture. The plaintiffs allege that the experiments--which entail injecting fusion genes that include the DNA structural sequence of the human growth hormone into the fertilized eggs of sheep and pigs--are morally objectionable, a potential threat to the biological stability of animal species, and likely to have undesirable economic and environmental consequences.

  20. Horizontal Gene Transfer, Dispersal and Haloarchaeal Speciation

    Science.gov (United States)

    Papke, R. Thane; Corral, Paulina; Ram-Mohan, Nikhil; de la Haba, Rafael R.; Sánchez-Porro, Cristina; Makkay, Andrea; Ventosa, Antonio

    2015-01-01

    The Halobacteria are a well-studied archaeal class and numerous investigations are showing how their diversity is distributed amongst genomes and geographic locations. Evidence indicates that recombination between species continuously facilitates the arrival of new genes, and within species, it is frequent enough to spread acquired genes amongst all individuals in the population. To create permanent independent diversity and generate new species, barriers to recombination are probably required. The data support an interpretation that rates of evolution (e.g., horizontal gene transfer and mutation) are faster at creating geographically localized variation than dispersal and invasion are at homogenizing genetic differences between locations. Therefore, we suggest that recurrent episodes of dispersal followed by variable periods of endemism break the homogenizing forces of intrapopulation recombination and that this process might be the principal stimulus leading to divergence and speciation in Halobacteria. PMID:25997110

  1. Effects of Metals on Antibiotic Resistance and Conjugal Plasmid Transfer in Soil Bacterial Communities

    DEFF Research Database (Denmark)

    Song, Jianxiao

    Antibiotic resistance currently represents one of the biggest challenges for human health and in recent years the environmental dimension of antibiotic resistance has been increasingly recognized. The soil environment serves as an important reservoir of antibiotic resistance determinants....... In addition to direct selection of antibiotic resistance by antibiotics, metals may co-select for antibiotic resistance via different mechanisms causing environmental selection of antibiotic resistance in metal contaminated soils. Horizontal gene transfer of mobile genetic elements (MGEs) like plasmids...... is generally considered one of the most important co-selection mechanisms as multiple resistance genes can be located on the same MGE. This PhD thesis focused on the impact of metals (Cu and Zn) on the development of antibiotic resistance in bacterial communities in soils exposed to different degrees...

  2. Methods for gene transfer to synovium.

    Science.gov (United States)

    Kang, R; Robbins, P D; Evans, C H

    1997-01-01

    Development of methods for gene transfer to synoviocytes was borne from the idea that gene therapy could be used to more effectively treat rheumatoid arthritis (EU) and other joint disorders (1). Current pharmaceutical modalities in use against RA have limited effectiveness because of problems related to inefficient targeting of drugs to the joint, as well as inefficacies of the drugs themselves. Drug delivery to the joint by traditional oral, iv, and intramuscular routes, depends on passive diffusion of the drug from the synovial vasculature into the joint space (2). Thus, high systemic concentrations of the drug are necessary to achieve therapeutic intra-articular drug levels; in chronic RA, perfusion of the synovium may be compromised (3), driving required systemic drug levels even higher. This is of major concern, as the pharmaceuticals used to treat this disease are associated with serious side effects. Further compounding these problems is the chronic nature of RA, which requires lifelong treatment with high dosages of these drugs.

  3. Reducible cationic lipids for gene transfer.

    Science.gov (United States)

    Wetzer, B; Byk, G; Frederic, M; Airiau, M; Blanche, F; Pitard, B; Scherman, D

    2001-01-01

    One of the main challenges of gene therapy remains the increase of gene delivery into eukaryotic cells. We tested whether intracellular DNA release, an essential step for gene transfer, could be facilitated by using reducible cationic DNA-delivery vectors. For this purpose, plasmid DNA was complexed with cationic lipids bearing a disulphide bond. This reduction-sensitive linker is expected to be reduced and cleaved in the reducing milieu of the cytoplasm, thus potentially improving DNA release and consequently transfection. The DNA--disulphide-lipid complexation was monitored by ethidium bromide exclusion, and the size of complexes was determined by dynamic light scattering. It was found that the reduction kinetics of disulphide groups in DNA--lipid complexes depended on the position of the disulphide linker within the lipid molecule. Furthermore, the internal structure of DNA--lipid particles was examined by small-angle X-ray scattering before and after lipid reduction. DNA release from lipid complexes was observed after the reduction of disulphide bonds of several lipids. Cell-transfection experiments suggested that complexes formed with selected reducible lipids resulted in up to 1000-fold higher reporter-gene activity, when compared with their analogues without disulphide bonds. In conclusion, reduction-sensitive groups introduced into cationic lipid backbones potentially allow enhanced DNA release from DNA--lipid complexes after intracellular reduction and represent a tool for improved vectorization. PMID:11389682

  4. The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence.

    Science.gov (United States)

    Rinaldo, Amy; Gilbert, Brian; Boni, Rainer; Krattinger, Simon G; Singh, Davinder; Park, Robert F; Lagudah, Evans; Ayliffe, Michael

    2017-07-01

    The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad-spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field-grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome-encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up-regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress-response genes were up-regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad-spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Dynamic monitoring of horizontal gene transfer in soil

    Science.gov (United States)

    Cheng, H. Y.; Masiello, C. A.; Silberg, J. J.; Bennett, G. N.

    2015-12-01

    Soil microbial gene expression underlies microbial behaviors (phenotypes) central to many aspects of C, N, and H2O cycling. However, continuous monitoring of microbial gene expression in soils is challenging because genetically-encoded reporter proteins widely used in the lab are difficult to deploy in soil matrices: for example, green fluorescent protein cannot be easily visualized in soils, even in the lab. To address this problem we have developed a reporter protein that releases small volatile gases. Here, we applied this gas reporter in a proof-of-concept soil experiment, monitoring horizontal gene transfer, a microbial activity that alters microbial genotypes and phenotypes. Horizontal gene transfer is central to bacterial evolution and adaptation and is relevant to problems such as the spread of antibiotic resistance, increasing metal tolerance in superfund sites, and bioremediation capability of bacterial consortia. This process is likely to be impacted by a number of matrix properties not well-represented in the petri dish, such as microscale variations in water, nutrients, and O2, making petri-dish experiments a poor proxy for environmental processes. We built a conjugation system using synthetic biology to demonstrate the use of gas-reporting biosensors in safe, lab-based biogeochemistry experiments, and here we report the use of these sensors to monitor horizontal gene transfer in soils. Our system is based on the F-plasmid conjugation in Escherichia coli. We have found that the gas signal reports on the number of cells that acquire F-plasmids (transconjugants) in a loamy Alfisol collected from Kellogg Biological Station. We will report how a gas signal generated by transconjugants varies with the number of F-plasmid donor and acceptor cells seeded in a soil, soil moisture, and soil O2 levels.

  6. Selective pressure affects transfer and establishment of a Lactobacillus plantarum resistance plasmid in the gastrointestinal environment

    DEFF Research Database (Denmark)

    Feld, Louise; Schjorring, S.; Hammer, Karin

    2008-01-01

    Objectives and methods: A Lactobacillus plantarum strain recently isolated from French raw-milk cheese was tested for its ability to transfer a small plasmid pLFE1 harbouring the erythromycin resistance gene erm(B) to Enterococcus faecalis. Mating was studied in vitro and in different...... favourable environment for antibiotic resistance transfer than conditions provided in vitro. However, the indigenous gut microbiota severely restricts transfer, thus minimizing the number of detectable transfer events. Treatment with erythromycin strongly favoured transfer and establishment of pLFE1....... of similar to 5.7 x 10(-8) transconjugants/recipient obtained in vitro by filter mating, a surprisingly high number of transconjugants (10(-4) transconjugants/recipient) was observed in gnotobiotic rats even without antibiotic treatment. When erythromycin was administered, a transfer rate of similar to 100...

  7. The Agricultural Antibiotic Carbadox Induces Phage-mediated Gene Transfer in Salmonella

    Directory of Open Access Journals (Sweden)

    Bradley L. Bearson

    2014-02-01

    Full Text Available Antibiotics are used for disease therapeutic or preventative effects in humans and animals, as well as for enhanced feed conversion efficiency in livestock. Antibiotics can also cause undesirable effects in microbial populations, including selection for antibiotic resistance, enhanced pathogen invasion, and stimulation of horizontal gene transfer. Carbadox is a veterinary antibiotic used in the U.S. during the starter phase of swine production for improved feed efficiency and control of swine dysentery and bacterial swine enteritis. Carbadox has been shown in vitro to induce phage-encoded Shiga toxin in Shiga toxin-producing Escherichia coli and a phage-like element transferring antibiotic resistance genes in Brachyspira hyodysenteriae, but the effect of carbadox on prophages in other bacteria is unknown. This study examined carbadox exposure on prophage induction and genetic transfer in Salmonella enterica serovar Typhimurium, a human foodborne pathogen that frequently colonizes swine without causing disease. S. Typhimurium LT2 exposed to carbadox induced prophage production, resulting in bacterial cell lysis and release of virions that were visible by electron microscopy. Carbadox induction of phage-mediated gene transfer was confirmed by monitoring the transduction of a sodCIII::neo cassette in the Fels-1 prophage from LT2 to a recipient Salmonella strain. Furthermore, carbadox frequently induced generalized transducing phages in multidrug-resistant phage type DT104 and DT120 isolates, resulting in the transfer of chromosomal and plasmid DNA that included antibiotic resistance genes. Our research indicates that exposure of Salmonella to carbadox induces prophages that can transfer virulence and antibiotic resistance genes to susceptible bacterial hosts. Carbadox-induced, phage-mediated gene transfer could serve as a contributing factor in bacterial evolution during animal production, with prophages being a reservoir for bacterial fitness

  8. Progress in gene transfer by germ cells in mammals.

    Science.gov (United States)

    Niu, Yidong; Liang, Shulong

    2008-12-01

    Use of germ cells as vectors for transgenesis in mammals has been well developed and offers exciting prospects for experimental and applied biology, agricultural and medical sciences. Such approach is referred to as either male germ cell mediated gene transfer (MGCMGT) or female germ cell mediated gene transfer (FGCMGT) technique. Sperm-mediated gene transfer (SMGT), including its alternative method, testis-mediated gene transfer (TMGT), becomes an established and reliable method for transgenesis. They have been extensively used for producing transgenic animals. The newly developed approach of FGCMGT, ovary-mediated gene transfer (OMGT) is also a novel and useful tool for efficient transgenesis. This review highlights an overview of the recent progress in germ cell mediated gene transfer techniques, methods developed and mechanisms of nucleic acid uptake by germ cells.

  9. Vancomycin-resistance phenotypes, vancomycin-resistance genes, and resistance to antibiotics of enterococci isolated from food of animal origin.

    Science.gov (United States)

    Gousia, Panagiota; Economou, Vangelis; Bozidis, Petros; Papadopoulou, Chrissanthy

    2015-03-01

    In the present study, 500 raw beef, pork, and chicken meat samples and 100 pooled egg samples were analyzed for the presence of vancomycin-resistant enterococci, vancomycin-resistance phenotypes, and resistance genes. Of 141 isolates of enterococci, 88 strains of Enterococcus faecium and 53 strains of E. faecalis were identified. The most prevalent species was E. faecium. Resistance to ampicillin (n = 93, 66%), ciprofloxacin (n = 74, 52.5%), erythromycin (n = 73, 51.8%), penicillin (n = 59, 41.8%) and tetracycline (n = 52, 36.9%) was observed, while 53.2% (n = 75) of the isolates were multiresistant and 15.6% (n = 22) were susceptible to all antibiotics. Resistance to vancomycin was exhibited in 34.1% (n = 30) of the E. faecium isolates (n = 88) and 1.9% (n = 1) of the E. faecalis isolates (n = 53) using the disc-diffusion test and the E-test. All isolates were tested for vanA and vanB using real-time polymerase chain reaction (PCR) and multiplex PCR, and for vanC, vanD, vanE, vanG genes using multiplex PCR only. Among E. faecalis isolates, no resistance genes were identified. Among the E. faecium isolates, 28 carried the vanA gene when tested by multiplex PCR and 29 when tested with real-time PCR. No isolate carrying the vanC, vanD, vanE, or vanG genes was identified. Melting-curve analysis of the positive real-time PCR E. faecium isolates showed that 22 isolates carried the vanA gene only, 2 isolates the vanB2,3 genes only, and seven isolates carried both the vanA and vanB2,3 genes. Enterococci should be considered a significant zoonotic pathogen and a possible reservoir of genes encoding resistance potentially transferred to other bacterial species.

  10. Vancomycin-resistance transferability from VanA enterococci to Staphylococcus aureus.

    Science.gov (United States)

    de Niederhäusern, Simona; Bondi, Moreno; Messi, Patrizia; Iseppi, Ramona; Sabia, Carla; Manicardi, Giuliano; Anacarso, Immacolata

    2011-05-01

    In last decade methicillin-resistant Staphylococcus aureus with high level of vancomycin-resistance (VRSA) have been reported and generally the patients with VRSA infection were also infected with a vancomycin-resistant Enterococcus (VRE). Considering that the high level of vancomycin-resistance in VRSA isolates seems to involve the horizontal transfer of Tn1546 transposon containing vanA gene from coinfecting VRE strains, the authors have studied the "in vitro" conjugative transfer of this resistance from VanA enterococci to S. aureus. Out of 25 matings performed combining five vancomycin-resistant enterococci as donors (three Enterococcus faecalis and two Enterococcus faecium), and five S. aureus as recipients, all clinical isolates, two have been successful using E. faecalis as donor. The transfer of vancomycin-resistance was confirmed by vanA gene amplification in both transconjugants and the resistance was expressed at lower levels (MIC 32 μg/ml) in comparison with the respective VRE donors (MIC > 128 μg/ml). The vancomycin-resistance of trasconjugants was maintained even after subsequent overnight passages on MSA plates containing subinhibitory levels of vancomycin. This study shows that the vanA gene transfer can be achieved through techniques "in vitro" without the use of laboratory animals employed, in the only similar experiment previously carried out by other authors, as substrate for the trasconjugant growth. Moreover, in that previous experiment, contrary to this study, the vancomycin resistant S. aureus trasconjugants were selected on erythromycin agar and not by direct vancomycin agar selection.

  11. Identification of acquired antimicrobial resistance genes

    DEFF Research Database (Denmark)

    Zankari, Ea; Hasman, Henrik; Cosentino, Salvatore

    2012-01-01

    ObjectivesIdentification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic laborato......ObjectivesIdentification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic...... laboratories and is anticipated to substitute traditional methods for resistance gene identification. Thus, the current challenge is to extract the relevant information from the large amount of generated data.MethodsWe developed a web-based method, ResFinder that uses BLAST for identification of acquired...... antimicrobial resistance genes in whole-genome data. As input, the method can use both pre-assembled, complete or partial genomes, and short sequence reads from four different sequencing platforms. The method was evaluated on 1862 GenBank files containing 1411 different resistance genes, as well as on 23 de...

  12. Lentiviral Vector Gene Transfer to Porcine Airways

    Directory of Open Access Journals (Sweden)

    Patrick L Sinn

    2012-01-01

    Full Text Available In this study, we investigated lentiviral vector development and transduction efficiencies in well-differentiated primary cultures of pig airway epithelia (PAE and wild-type pigs in vivo. We noted gene transfer efficiencies similar to that observed for human airway epithelia (HAE. Interestingly, feline immunodeficiency virus (FIV-based vectors transduced immortalized pig cells as well as pig primary cells more efficiently than HIV-1–based vectors. PAE express TRIM5α, a well-characterized species-specific lentiviral restriction factor. We contrasted the restrictive properties of porcine TRIM5α against FIV- and HIV-based vectors using gain and loss of function approaches. We observed no effect on HIV-1 or FIV conferred transgene expression in response to porcine TRIM5α overexpression or knockdown. To evaluate the ability of GP64-FIV to transduce porcine airways in vivo, we delivered vector expressing mCherry to the tracheal lobe of the lung and the ethmoid sinus of 4-week-old pigs. One week later, epithelial cells expressing mCherry were readily detected. Our findings indicate that pseudotyped FIV vectors confer similar tropisms in porcine epithelia as observed in human HAE and provide further support for the selection of GP64 as an appropriate envelope pseudotype for future preclinical gene therapy studies in the porcine model of cystic fibrosis (CF.

  13. Radiopharmaceuticals to monitor the expression of transferred genes in gene transfer therapy

    International Nuclear Information System (INIS)

    Wiebe, L. I.

    1997-01-01

    The development and application of radiopharmaceuticals has, in many instances, been based on the pharmacological properties of therapeutic agents. The molecular biology-biotechnology revolution has had an important impact on treatment of diseases, in part through the reduced toxicity of 'biologicals', in part because of their specificity for interaction at unique molecular sites and in part because of their selective delivery to the target site. Immunotherapeutic approaches include the use of monoclonal antibodies (MABs), MAB-fragments and chemotactic peptides. Such agents currently form the basis of both diagnostic and immunotherapeutic radiopharmaceuticals. More recently, gene transfer techniques have been advanced to the point that a new molecular approach, gene therapy, has become a reality. Gene therapy offers an opportunity to attack disease at its most fundamental level. The therapeutic mechanism is based on the expression of a specific gene or genes, the product of which will invoke immunological, receptor-based or enzyme-based therapeutic modalities. Several approaches to gene therapy of cancer have been envisioned, the most clinically-advanced concepts involving the introduction of genes that will encode for molecular targets nor normally found in healthy mammalian cells. A number of gene therapy clinical trials are based on the introduction of the Herpes simplex virus type-1 (HSV-1) gene that encodes for viral thymidine kinase (tk+). Once HSV-1 tk+ is expressed in the target (cancer) cell, therapy can be effected by the administration of a highly molecularly-targeted and systemically non-toxic antiviral drug such as ganciclovir. The development of radiodiagnostic imaging in gene therapy will be reviewed, using HSV-1 tk+ and radioiodinated IVFRU as a basis for development of the theme. Molecular targets that could be exploited in gene therapy, other than tk+, will be identified

  14. Radiopharmaceuticals to monitor the expression of transferred genes in gene transfer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, L. I. [University of Alberta, Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-10-01

    The development and application of radiopharmaceuticals has, in many instances, been based on the pharmacological properties of therapeutic agents. The molecular biology-biotechnology revolution has had an important impact on treatment of diseases, in part through the reduced toxicity of `biologicals`, in part because of their specificity for interaction at unique molecular sites and in part because of their selective delivery to the target site. Immunotherapeutic approaches include the use of monoclonal antibodies (MABs), MAB-fragments and chemotactic peptides. Such agents currently form the basis of both diagnostic and immunotherapeutic radiopharmaceuticals. More recently, gene transfer techniques have been advanced to the point that a new molecular approach, gene therapy, has become a reality. Gene therapy offers an opportunity to attack disease at its most fundamental level. The therapeutic mechanism is based on the expression of a specific gene or genes, the product of which will invoke immunological, receptor-based or enzyme-based therapeutic modalities. Several approaches to gene therapy of cancer have been envisioned, the most clinically-advanced concepts involving the introduction of genes that will encode for molecular targets nor normally found in healthy mammalian cells. A number of gene therapy clinical trials are based on the introduction of the Herpes simplex virus type-1 (HSV-1) gene that encodes for viral thymidine kinase (tk+). Once HSV-1 tk+ is expressed in the target (cancer) cell, therapy can be effected by the administration of a highly molecularly-targeted and systemically non-toxic antiviral drug such as ganciclovir. The development of radiodiagnostic imaging in gene therapy will be reviewed, using HSV-1 tk+ and radioiodinated IVFRU as a basis for development of the theme. Molecular targets that could be exploited in gene therapy, other than tk+, will be identified

  15. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes

    DEFF Research Database (Denmark)

    Alsmark, Cecilia; Foster, Peter G; Sicheritz-Pontén, Thomas

    2013-01-01

    BACKGROUND: The influence of lateral gene transfer on gene origins and biology in eukaryotes is poorly understood compared with those of prokaryotes. A number of independent investigations focusing on specific genes, individual genomes, or specific functional categories from various eukaryotes have...... indicated that lateral gene transfer does indeed affect eukaryotic genomes. However, the lack of common methodology and criteria in these studies makes it difficult to assess the general importance and influence of lateral gene transfer on eukaryotic genome evolution. RESULTS: We used a phylogenomic...... are conserved among lineages, the genes making up those pathways can have very different origins in different eukaryotes. Thus, from the perspective of the effects of lateral gene transfer on individual gene ancestries in different lineages, eukaryotic metabolism appears to be chimeric....

  16. Resistance Genes in Global Crop Breeding Networks.

    Science.gov (United States)

    Garrett, K A; Andersen, K F; Asche, F; Bowden, R L; Forbes, G A; Kulakow, P A; Zhou, B

    2017-10-01

    Resistance genes are a major tool for managing crop diseases. The networks of crop breeders who exchange resistance genes and deploy them in varieties help to determine the global landscape of resistance and epidemics, an important system for maintaining food security. These networks function as a complex adaptive system, with associated strengths and vulnerabilities, and implications for policies to support resistance gene deployment strategies. Extensions of epidemic network analysis can be used to evaluate the multilayer agricultural networks that support and influence crop breeding networks. Here, we evaluate the general structure of crop breeding networks for cassava, potato, rice, and wheat. All four are clustered due to phytosanitary and intellectual property regulations, and linked through CGIAR hubs. Cassava networks primarily include public breeding groups, whereas others are more mixed. These systems must adapt to global change in climate and land use, the emergence of new diseases, and disruptive breeding technologies. Research priorities to support policy include how best to maintain both diversity and redundancy in the roles played by individual crop breeding groups (public versus private and global versus local), and how best to manage connectivity to optimize resistance gene deployment while avoiding risks to the useful life of resistance genes. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

  17. Gene transfer from wild Helianthus to sunflower: topicalities and limits

    Directory of Open Access Journals (Sweden)

    Breton Catherine

    2010-03-01

    Full Text Available Sunflower (2n=17 belongs to the Helianthus genus (Asteraceae. Wild Helianthus species display morphological variation for branching and stem number, for architecture and seed size, and for resistance to abiotic and biotic stresses due to which they thrive in different environments in North America. The genus is divided into botanical sections, two for annual as sunflower, and two for perennial species as Jerusalem artichoke that produces rhizomes (tubers. We explain the difficulties and successes obtained by crossing sunflower with these species to improve the agronomic traits of the sunflower crop. It is easier to cross the annual species than the perennials’ with sunflower. Several traits such as Cytoplasmic male sterility and restorer Rf-PET1 genes, Downy mildew resistance, Phomopsis resistance, Sclerotinia resistance, Rust resistance, and Orobanche resistance have already been introduced from annual species into sunflower crop, but the complex genomic organization of these species compared to sunflower limits their important potential. Perennial species are much more diverse, and their genomes display 2n, 4n, or 6n chromosomes for n 17. The realities of inter-specific hybridization are relatively disappointing due to the introgression lines that have low oil and low seed yield. We report here several attempts to introgress agronomic traits from these species to sunflower, and we present as a case study, an introgressed progenies from H. mollis, a diploid species with sessile small leaves. We constructed a preliminary genetic map with AFLP markers in 21 BC1 plants, and we then showed that some progenies display 6 to 44% of introgression from H. mollis. Although this study is promising due to the novel compact architecture of the progenies, we cannot estimate the transferability from H. mollis to other perennial Helianthus to improve sunflower.

  18. Bacteria from Animals as a Pool of Antimicrobial Resistance Genes

    Science.gov (United States)

    Argudín, Maria Angeles; Deplano, Ariane; Meghraoui, Alaeddine; Dodémont, Magali; Heinrichs, Amelie; Denis, Olivier; Nonhoff, Claire; Roisin, Sandrine

    2017-01-01

    Antimicrobial agents are used in both veterinary and human medicine. The intensive use of antimicrobials in animals may promote the fixation of antimicrobial resistance genes in bacteria, which may be zoonotic or capable to transfer these genes to human-adapted pathogens or to human gut microbiota via direct contact, food or the environment. This review summarizes the current knowledge of the use of antimicrobial agents in animal health and explores the role of bacteria from animals as a pool of antimicrobial resistance genes for human bacteria. This review focused in relevant examples within the ESC(K)APE (Enterococcus faecium, Staphylococcus aureus, Clostridium difficile (Klebsiella pneumoniae), Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae) group of bacterial pathogens that are the leading cause of nosocomial infections throughout the world. PMID:28587316

  19. Widespread of horizontal gene transfer in the human genome.

    Science.gov (United States)

    Huang, Wenze; Tsai, Lillian; Li, Yulong; Hua, Nan; Sun, Chen; Wei, Chaochun

    2017-04-04

    A fundamental concept in biology is that heritable material is passed from parents to offspring, a process called vertical gene transfer. An alternative mechanism of gene acquisition is through horizontal gene transfer (HGT), which involves movement of genetic materials between different species. Horizontal gene transfer has been found prevalent in prokaryotes but very rare in eukaryote. In this paper, we investigate horizontal gene transfer in the human genome. From the pair-wise alignments between human genome and 53 vertebrate genomes, 1,467 human genome regions (2.6 M bases) from all chromosomes were found to be more conserved with non-mammals than with most mammals. These human genome regions involve 642 known genes, which are enriched with ion binding. Compared to known horizontal gene transfer regions in the human genome, there were few overlapping regions, which indicated horizontal gene transfer is more common than we expected in the human genome. Horizontal gene transfer impacts hundreds of human genes and this study provided insight into potential mechanisms of HGT in the human genome.

  20. Characterization of Antibiotic Resistance Genes from Lactobacillus Isolated from Traditional Dairy Products.

    Science.gov (United States)

    Guo, Huiling; Pan, Lin; Li, Lina; Lu, Jie; Kwok, Laiyu; Menghe, Bilige; Zhang, Heping; Zhang, Wenyi

    2017-03-01

    Lactobacilli are widely used as starter cultures or probiotics in yoghurt, cheese, beer, wine, pickles, preserved food, and silage. They are generally recognized as safe (GRAS). However, recent studies have shown that some lactic acid bacteria (LAB) strains carry antibiotic resistance genes and are resistant to antibiotics. Some of them may even transfer their intrinsic antibiotic resistance genes to other LAB or pathogens via horizontal gene transfer, thus threatening human health. A total of 33 Lactobacillus strains was isolated from fermented milk collected from different areas of China. We analyzed (1) their levels of antibiotic resistance using a standardized dilution method, (2) their antibiotic resistance gene profiles by polymerase chain reaction (PCR) using gene-specific primers, and (3) the transferability of some of the detected resistance markers by a filter mating assay. All Lactobacillus strains were found to be resistant to vancomycin, but susceptible to gentamicin, linezolid, neomycin, erythromycin, and clindamycin. Their susceptibilities to tetracycline, kanamycin, ciprofloxacin, streptomycin, quinupristin/dalfopristin, trimethoprim, ampicillin, rifampicin, and chloramphenicol was different. Results from our PCR analysis revealed 19 vancomycin, 10 ciprofloxacin, and 1 tetracycline-resistant bacteria that carried the van(X), van(E), gyr(A), and tet(M) genes, respectively. Finally, no transferal of the monitored antibiotic resistance genes was observed in the filter mating assay. Taken together, our study generated the antibiotic resistance profiles of some milk-originated lactobacilli isolates and preliminarily assessed their risk of transferring antibiotic gene to other bacteria. The study may provide important data concerning the safe use of LAB. © 2017 Institute of Food Technologists®.

  1. Ethical perception of cross-species gene transfer in plant

    African Journals Online (AJOL)

    Jane

    2011-09-30

    Sep 30, 2011 ... the ethical acceptance of cross-species gene transfers in developing country. Key words: Ethical perception, genetically modified (GM) rice, cross-species gene transfer, Malaysia. INTRODUCTION. Rice is a staple food in much of Asia countries including. Malaysia, and by 2025 about 60% more rice must ...

  2. Gene transfer technology and genetic radioisotope targeting therapy

    International Nuclear Information System (INIS)

    Wang Jiaqiong; Wang Zizheng

    2004-01-01

    With deeper cognition about mechanisms of disease at the cellular and molecular level, gene therapy has become one of the most important research fields in medical molecular biology at present. Gene transfer technology plays an important role during the course of gene therapy, and further improvement should be made about vectors carrying target gene sequences. Also, gene survey is needed during gene therapy, and gene imaging is the most effective method. The combination of gene therapy and targeted radiotherapy, that is, 'Genetic Radioisotope Targeting Therapy', will be a novel approach to tumor gene therapy

  3. Horizontal gene transfer: building the web of life.

    Science.gov (United States)

    Soucy, Shannon M; Huang, Jinling; Gogarten, Johann Peter

    2015-08-01

    Horizontal gene transfer (HGT) is the sharing of genetic material between organisms that are not in a parent-offspring relationship. HGT is a widely recognized mechanism for adaptation in bacteria and archaea. Microbial antibiotic resistance and pathogenicity are often associated with HGT, but the scope of HGT extends far beyond disease-causing organisms. In this Review, we describe how HGT has shaped the web of life using examples of HGT among prokaryotes, between prokaryotes and eukaryotes, and even between multicellular eukaryotes. We discuss replacement and additive HGT, the proposed mechanisms of HGT, selective forces that influence HGT, and the evolutionary impact of HGT on ancestral populations and existing populations such as the human microbiome.

  4. The Impact of Gene Silencing on Horizontal Gene Transfer and Bacterial Evolution.

    Science.gov (United States)

    Navarre, W W

    2016-01-01

    The H-NS family of DNA-binding proteins is the subject of intense study due to its important roles in the regulation of horizontally acquired genes critical for virulence, antibiotic resistance, and metabolism. Xenogeneic silencing proteins, typified by the H-NS protein of Escherichia coli, specifically target and downregulate expression from AT-rich genes by selectively recognizing specific structural features unique to the AT-rich minor groove. In doing so, these proteins facilitate bacterial evolution; enabling these cells to engage in horizontal gene transfer while buffering potential any detrimental fitness consequences that may result from it. Xenogeneic silencing and counter-silencing explain how bacterial cells can evolve effective gene regulatory strategies in the face of rampant gene gain and loss and it has extended our understanding of bacterial gene regulation beyond the classic operon model. Here we review the structures and mechanisms of xenogeneic silencers as well as their impact on bacterial evolution. Several H-NS-like proteins appear to play a role in facilitating gene transfer by other mechanisms including by regulating transposition, conjugation, and participating in the activation of virulence loci like the locus of enterocyte effacement pathogenicity island of pathogenic strains of E. coli. Evidence suggests that the critical determinants that dictate whether an H-NS-like protein will be a silencer or will perform a different function do not lie in the DNA-binding domain but, rather, in the domains that control oligomerization. This suggests that H-NS-like proteins are transcription factors that both recognize and alter the shape of DNA to exert specific effects that include but are not limited to gene silencing. © 2016 Elsevier Ltd All rights reserved.

  5. Occurrence of the mcr-1 Colistin Resistance Gene and other Clinically Relevant Antibiotic Resistance Genes in Microbial Populations at Different Municipal Wastewater Treatment Plants in Germany

    Directory of Open Access Journals (Sweden)

    Norman Hembach

    2017-07-01

    Full Text Available Seven wastewater treatment plants (WWTPs with different population equivalents and catchment areas were screened for the prevalence of the colistin resistance gene mcr-1 mediating resistance against last resort antibiotic polymyxin E. The abundance of the plasmid-associated mcr-1 gene in total microbial populations during water treatment processes was quantitatively analyzed by qPCR analyses. The presence of the colistin resistance gene was documented for all of the influent wastewater samples of the seven WWTPs. In some cases the mcr-1 resistance gene was also detected in effluent samples of the WWTPs after conventional treatment reaching the aquatic environment. In addition to the occurrence of mcr-1 gene, CTX-M-32, blaTEM, CTX-M, tetM, CMY-2, and ermB genes coding for clinically relevant antibiotic resistances were quantified in higher abundances in all WWTPs effluents. In parallel, the abundances of Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli were quantified via qPCR using specific taxonomic gene markers which were detected in all influent and effluent wastewaters in significant densities. Hence, opportunistic pathogens and clinically relevant antibiotic resistance genes in wastewaters of the analyzed WWTPs bear a risk of dissemination to the aquatic environment. Since many of the antibiotic resistance gene are associated with mobile genetic elements horizontal gene transfer during wastewater treatment can't be excluded.

  6. Detecting Horizontal Gene Transfer between Closely Related Taxa.

    OpenAIRE

    Orit Adato; Noga Ninyo; Uri Gophna; Sagi Snir

    2015-01-01

    Horizontal gene transfer (HGT), the transfer of genetic material between organisms, is crucial for genetic innovation and the evolution of genome architecture. Existing HGT detection algorithms rely on a strong phylogenetic signal distinguishing the transferred sequence from ancestral (vertically derived) genes in its recipient genome. Detecting HGT between closely related species or strains is challenging, as the phylogenetic signal is usually weak and the nucleotide composition is normally ...

  7. Problems associated with gene transfer and opportunities for microgravity environments

    Science.gov (United States)

    Tennessen, Daniel J.

    1997-01-01

    The method of crop improvement by gene transfer is becoming increasingly routine with transgenic foods and ornamental crops now being marketed to consumers. However, biological processes of plants, and the physical barriers of current protocols continue to limit the application of gene transfer in many commercial crops. The goal of this paper is to outline the current limitations of gene transfer and to hypothesize possible opportunities for use of microgravity to overcome such limitations. The limitations detailed in this paper include host-range specificity of Agrobacterium mediated transformation, probability of gene insertion, position effects of the inserted genes, gene copy number, stability of foreign gene expression in host plants, and regeneration of recalcitrant plant species. Microgravity offers an opportunity for gene transfer where cell growth kinetics, DNA synthesis, and genetic recombination rates can be altered. Such biological conditions may enhance the ability for recombination of reporter genes and other genes of interest to agriculture. Proposed studies would be useful for understanding instability of foreign gene expression and may lead to stable transformed plants. Other aspects of gene transfer in microgravity are discussed.

  8. Evaluation of antibiotic resistant bacteria in underground drinking water and transfer of their resistant character to normal flora of the body.

    Science.gov (United States)

    Alam, Mehboob; Khan, Naqab; Rehman, Khurram; Khan, Samiullah; Niazi, Zahid Rasul; Shah, Kifayatullah; Baloch, Natasha; Khan, Barkat Ali

    2018-03-01

    The untreated surface water for drinking and domestic use is an alarming situation to public health especially in prevalence of antibiotics resistant bacteria. This investigation aimed to isolate and identify the antibiotic resistance bacteria in underground water samples in district Dera Ismail Khan, Pakistan. The underground water samples were collected from four different places using hand pumps (Khyber town, riverside, Gomal University and united town). Cultured on nutrient agar media, identified by Gam staining and biochemical tests. There after antibiotic resistance assay were performed by measuring zone of inhibition of different antibiotics by disc diffusion method. Six different bacterial colonies were isolated and identified as Enterobacteriaceae, Serriata specie, Proteues, Pseudomonas, all these bacterial colonies were 33% resistant to chloramphenicol with and 100% resistant to amoxicillin. Some colonies were also considered as resistant, according to the criteria of National Committee for Clinical Records (NCCL) that less than 10mm zone of inhibition are considered as resistant. Subsequently, the chloramphenicol resistance bacteria were analyzed for their ability to transfer resistant gene to sensitive bacteria. In in-vitro method, an isolate M1b (resistant) was found capable to transfer resistance gene to M1a isolate (sensitive) in nutrient rich environment. It was concluded that antibiotics resistance bacteria found in underground water, moreover capable of transferring the antibiotic resistant character to suitable recipient i.e. normal flora of the body or to other pathogens by conjugation.

  9. Transferência de fatores genéticos de resistência a Hemileia vastatrix para o cultivar mundo novo Transference of the genes SH2 and SH3 for resistance to Hemileia vastatrix to the mundo novo cultivar of C. arabica

    Directory of Open Access Journals (Sweden)

    A. Carvalho

    1977-01-01

    Full Text Available Cafeeiros portadores dos fatores genéticos SH2 ou SH2 e SH3, simultaneamente, que conferem resistência a várias raças de Hemileia vastatrix, foram cruzados com plantas selecionadas do cultivar mundo novo de Coffea arabica a fim de se obter, em F2, recombinações com resistência a esse patógeno e elevada produtividade. Analisaram-se 14 populações F2 segregando apenas para o fator SH2, oito para os fatores SH2 e HS3, e três populações que dão, em sua descendência, plantas do grupo A, resistentes a todas as raças do patógeno até agora conhecidas. De 22.356 cafeeiros originalmente plantados em ensaio, a duas mudas por cova, em parcelas casualizadas, fez-se uma primeira seleção deixando apenas um cafeeiro por cova, reduzindo-se para 11.178 as plantas em estudo. Com base no aspecto vegetativo, na produtividade, na ausência de defeitos nos frutos e na reação de resistência ao agente causal da ferrugem, realizaram-se sucessivas seleções escolhendo-se finalmente, apenas 100 cafeeiros do tipo mundo novo e resistentes a H. vastatrix para derivação das populações F2 e prosseguimento da seleção.Coffee trees homozygous for the alleles SH2 or SH2 and SH3 which confer resistance to several physiological races of Hemileia vastatrix, were crossed to selected plants of Mundo Novo cultivar of Coffea arabica and the F2 generations were studied aiming to develop new high yielding and resistant coffee recombinations. A complete randomized field trial was stablished including 14 F2 populations segregating for SH2, eight populations segregating for SH2 and SH3 genes, and three populations segregating for plants of the A group of reaction to the H. vastatrix attack. A total of 22,356 F2 plants were analysed. Based on the plant vigor, yield capacity, percentage of normal developed seeds and resistance reaction to H. vastatrix, three successive series of selection were undertaken leaving only 100 coffee trees for development of F3 populations

  10. Pollen irradiation and possible gene transfer in Nicotiana species

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1985-01-01

    Progeny from crosses of Nicotiana langsdorffii with gamma irradiated pollen of Nicotiana alata ‘Crimson Bedder’ showed skewed segregation in the F2 favoring the maternal parent. This is probably not gene transfer in a strict sense, rather just an extreme case of reduced transmission of irradiated...... chromosomes, leading to massive overrepresentation of maternal genes. Gene transfer or mutational loss may explain some anomalous F1 plants. Segregation in the F2 progeny showed the presence of several genes from the irradiated pollen. Crosses of Nicotiana sylvestris, N. plumbaginifolia N. paniculata......, and Petunia parodii with irradiated pollen from N. alata and Petunia hybrida showed no evidence of gene transfer, nor did experiments with irradiated mentor pollen. This indicates that gene transfer with irradiated pollen between non-crossing species or between species giving sterile hybrids is probably...

  11. Role and prevalence of antibiosis and the related resistance genes in the environment

    DEFF Research Database (Denmark)

    Nazaret, Sylvie; Aminov, Rustam

    2014-01-01

    It becomes increasingly clear that the basis of antibiotic resistance problem among bacterial pathogens is not confined to the borders of clinical microbiology but has broader ecological and evolutionary associations. This Research Topic “Role and prevalence of antibiosis and the related resistance...... genes in the environment” in Frontiers in Microbiology: Antimicrobials, Resistance, and Chemotherapy presents the examples of occurrence and diversity of antibiotic resistance genes (ARGs) in the wide range of environments, from the grasslands of the Colombian Andes, to the dairy farms and small animal...... approach to access the probability of rare horizontal gene transfer (HGT) events in bacterial populations....

  12. Expression Study of Banana Pathogenic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Fenny M. Dwivany

    2016-10-01

    Full Text Available Banana is one of the world's most important trade commodities. However, infection of banana pathogenic fungi (Fusarium oxysporum race 4 is one of the major causes of decreasing production in Indonesia. Genetic engineering has become an alternative way to control this problem by isolating genes that involved in plant defense mechanism against pathogens. Two of the important genes are API5 and ChiI1, each gene encodes apoptosis inhibitory protein and chitinase enzymes. The purpose of this study was to study the expression of API5 and ChiI1 genes as candidate pathogenic resistance genes. The amplified fragments were then cloned, sequenced, and confirmed with in silico studies. Based on sequence analysis, it is showed that partial API5 gene has putative transactivation domain and ChiI1 has 9 chitinase family GH19 protein motifs. Data obtained from this study will contribute in banana genetic improvement.

  13. Bacteriophage-like Particles Associated with the Gene Transfer Agent of Methanococcus Voltale PS

    Science.gov (United States)

    Bertani, G.; Eiserling, F.; Pushkin, A.; Gingery, M.

    1999-01-01

    The methanogenic archaebacterium Methanococus voltae (strain PS) is known to produce a filterable, DNase resistant agent (called VTA, for voltae transfer agent), which carries very small fragments (4,400 base pairs) of bacterial DNA and is able to transduce bacterial genes between derivatives of the strain.

  14. High frequencies of antibiotic resistance genes in infants’ meconium and early fecal samples

    DEFF Research Database (Denmark)

    Gosalbes, M. J.; Vallès, Y.; Jiménez-Hernández, N.

    2016-01-01

    The gastrointestinal tract (GIT) microbiota has been identified as an important reservoir of antibiotic resistance genes (ARGs) that can be horizontally transferred to pathogenic species. Maternal GIT microbes can be transmitted to the offspring, and recent work indicates that such transfer start...

  15. Resistance to wheat leaf rust and stem rust in Triticum tauschii and inheritance in hexaploid wheat of resistance transferred from T. tauschii.

    Science.gov (United States)

    Innes, R L; Kerber, E R

    1994-10-01

    Twelve accessions of Triticum tauschii (Coss.) Schmal. were genetically analyzed for resistance to leaf rust (Puccinia recondita Rob. ex Desm.) and stem rust (Puccinia graminis Pers. f.sp. tritici Eriks. and E. Henn.) of common wheat (Triticum aestivum L.). Four genes conferring seedling resistance to leaf rust, one gene conferring seedling resistance to stem rust, and one gene conferring adult-plant resistance to stem rust were identified. These genes were genetically distinct from genes previously transferred to common wheat from T. tauschii and conferred resistance to a broad spectrum of pathogen races. Two of the four seedling leaf rust resistance genes were not expressed in synthetic hexaploids, produced by combining tetraploid wheat with the resistant T. tauschii accessions, probably owing to the action of one or more intergenomic suppressor loci on the A or B genome. The other two seedling leaf rust resistance genes were expressed at the hexaploid level as effectively as in the source diploids. One gene was mapped to the short arm of chromosome 2D more than 50 cM from the centromere and the other was mapped to chromosome 5D. Suppression of seedling resistance to leaf rust in synthetic hexaploids derived from three accessions of T. tauschii allowed the detection of three different genes conferring adult-plant resistance to a broad spectrum of leaf rust races. The gene for seedling resistance to stem rust was mapped to chromosome ID. The degree of expression of this gene at the hexaploid level was dependent on the genetic background in which it occurred and on environmental conditions. The expression of the adult-plant gene for resistance to stem rust was slightly diminished in hexaploids. The production of synthetic hexaploids was determined to be the most efficient and flexible method for transferring genes from T. tauschii to T. aestivum, but crossing success was determined by the genotypes of both parents. Although more laborious, the direct introgression

  16. Pyramiding of three bacterial blight resistance genes for broad-spectrum resistance in deepwater rice variety, Jalmagna.

    Science.gov (United States)

    Pradhan, Sharat Kumar; Nayak, Deepak Kumar; Mohanty, Soumya; Behera, Lambodar; Barik, Saumya Ranjan; Pandit, Elssa; Lenka, Srikanta; Anandan, Annamalai

    2015-12-01

    Jalmagna is a popular deepwater rice variety with farmers of India because of its good yield under waterlogged condition. However, the variety is highly susceptible to bacterial blight (BB) disease. The development of resistant cultivars has been the most effective and economical strategy to control the disease under deepwater situation. Three resistance genes (xa5 + xa13 + Xa21) were transferred from Swarna BB pyramid line, using a marker-assisted backcrossing (MAB) breeding strategy, into the BB-susceptible elite deepwater cultivar, Jalmagna. Molecular marker integrated backcross breeding program has been employed to transfer three major BB resistance genes (Xa21, xa13 and xa5) into Jalmagna variety. During backcross generations, markers closely linked to the three genes were used to select plants possessing these resistance genes and markers polymorphic between donor and recurrent parent were used to select plants that have maximum contribution from the recurrent parent genome. A selected BC3F1 plant was selfed to generate homozygous BC3F2 plants with different combinations of BB resistance genes. The three-gene pyramid and two gene pyramid lines exhibited high levels of resistance against the BB pathogen. Under conditions of BB infection, the three-gene pyramided lines exhibited a significant yield advantage over Jalmagna. The selected pyramided lines showed all agro-morphologic traits of Jalmagna without compromising the yield. The three major BB resistance genes pyramided lines exhibited high level of resistance and are expected to provide durable resistance under deep water situation where control through chemicals is less effective. High similarity in agro-morphologic traits and absence of antagonistic effects for yield and other characters were observed in the best pyramided lines.

  17. Mapping of stripe rust resistance gene in an Aegilops caudata ...

    Indian Academy of Sciences (India)

    ... rust resistance depicted a single major gene conditioning adult plant resistance (APR) with stripe rust reaction varying from TR-20MS in resistant RILs signifying the presence of some minor genes as well. Genetic association with leaf rust resistance revealed that two genes are located at a recombination distance of 13%.

  18. LATERAL GENE TRANSFER AND THE HISTORY OF BACTERIAL GENOMES

    Energy Technology Data Exchange (ETDEWEB)

    Howard Ochman

    2006-02-22

    The aims of this research were to elucidate the role and extent of lateral transfer in the differentiation of bacterial strains and species, and to assess the impact of gene transfer on the evolution of bacterial genomes. The ultimate goal of the project is to examine the dynamics of a core set of protein-coding genes (i.e., those that are distributed universally among Bacteria) by developing conserved primers that would allow their amplification and sequencing in any bacterial taxa. In addition, we adopted a bioinformatic approach to elucidate the extent of lateral gene transfer in sequenced genome.

  19. Coselection of Cadmium and Benzalkonium Chloride Resistance in Conjugative Transfers from Nonpathogenic Listeria spp. to Other Listeriae

    Science.gov (United States)

    Katharios-Lanwermeyer, S.; Rakic-Martinez, M.; Elhanafi, D.; Ratani, S.; Tiedje, J. M.

    2012-01-01

    Resistance to the quaternary ammonium disinfectant benzalkonium chloride (BC) may be an important contributor to the ability of Listeria spp. to persist in the processing plant environment. Although a plasmid-borne disinfectant resistance cassette (bcrABC) has been identified in Listeria monocytogenes, horizontal transfer of these genes has not been characterized. Nonpathogenic Listeria spp. such as L. innocua and L. welshimeri are more common than L. monocytogenes in food processing environments and may contribute to the dissemination of disinfectant resistance genes in listeriae, including L. monocytogenes. In this study, we investigated conjugative transfer of resistance to BC and to cadmium from nonpathogenic Listeria spp. to other nonpathogenic listeriae, as well as to L. monocytogenes. BC-resistant L. welshimeri and L. innocua harboring bcrABC, along with the cadmium resistance determinant cadA2, were able to transfer resistance to other nonpathogenic listeriae as well as to L. monocytogenes of diverse serotypes, including strains from the 2011 cantaloupe outbreak. Transfer among nonpathogenic Listeria spp. was noticeably higher at 25°C than at 37°C, whereas acquisition of resistance by L. monocytogenes was equally efficient at 25 and 37°C. When the nonpathogenic donors were resistant to both BC and cadmium, acquisition of cadmium resistance was an effective surrogate for transfer of resistance to BC, suggesting coselection between these resistance attributes. The results suggest that nonpathogenic Listeria spp. may behave as reservoirs for disinfectant and heavy metal resistance genes for other listeriae, including the pathogenic species L. monocytogenes. PMID:22904051

  20. Coselection of cadmium and benzalkonium chloride resistance in conjugative transfers from nonpathogenic Listeria spp. to other Listeriae.

    Science.gov (United States)

    Katharios-Lanwermeyer, S; Rakic-Martinez, M; Elhanafi, D; Ratani, S; Tiedje, J M; Kathariou, S

    2012-11-01

    Resistance to the quaternary ammonium disinfectant benzalkonium chloride (BC) may be an important contributor to the ability of Listeria spp. to persist in the processing plant environment. Although a plasmid-borne disinfectant resistance cassette (bcrABC) has been identified in Listeria monocytogenes, horizontal transfer of these genes has not been characterized. Nonpathogenic Listeria spp. such as L. innocua and L. welshimeri are more common than L. monocytogenes in food processing environments and may contribute to the dissemination of disinfectant resistance genes in listeriae, including L. monocytogenes. In this study, we investigated conjugative transfer of resistance to BC and to cadmium from nonpathogenic Listeria spp. to other nonpathogenic listeriae, as well as to L. monocytogenes. BC-resistant L. welshimeri and L. innocua harboring bcrABC, along with the cadmium resistance determinant cadA2, were able to transfer resistance to other nonpathogenic listeriae as well as to L. monocytogenes of diverse serotypes, including strains from the 2011 cantaloupe outbreak. Transfer among nonpathogenic Listeria spp. was noticeably higher at 25°C than at 37°C, whereas acquisition of resistance by L. monocytogenes was equally efficient at 25 and 37°C. When the nonpathogenic donors were resistant to both BC and cadmium, acquisition of cadmium resistance was an effective surrogate for transfer of resistance to BC, suggesting coselection between these resistance attributes. The results suggest that nonpathogenic Listeria spp. may behave as reservoirs for disinfectant and heavy metal resistance genes for other listeriae, including the pathogenic species L. monocytogenes.

  1. Transfer of innate resistance and susceptibility to Leishmania donovani infection in mouse radiation bone marrow chimaeras

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, P.R.; Blackwell, J.M.; Bradley, D.J. (London School of Hygiene and Tropical Medicine (UK))

    1984-07-01

    Reciprocal radiation bone marrow chimaeras were made between H-2-compatible strains of mice innately resistant or susceptible to visceral leishmaniasis. In initial experiments, susceptibility but not resistance to Leishmania donovani could be transferred with donor bone marrow into irradiated recipients. In subsequent experiments it was possible to transfer both resistance and susceptibility. This was achieved either by selecting more radiosensitive mouse strains as susceptible recipients, or alternatively by increasing the irradiation dose for the susceptible recipients used in the initial experiments. Using the higher irradiation dose, successful transfer of resistance and susceptibility between congenic mice carrying the Lshsup(r) and Lshsup(s) alleles on the more radioresistant B10 genetic background provided firm evidence that the results obtained in this study were specifically related to expression of the Lsh gene. It is concluded that Lsh gene-controlled resistance and susceptibility to L. donovani is determined by bone marrow-derived cells. The cell type(s) involved is likely to be of the macrophage lineage.

  2. Trends and barriers to lateral gene transfer in prokaryotes.

    Science.gov (United States)

    Popa, Ovidiu; Dagan, Tal

    2011-10-01

    Gene acquisition by lateral gene transfer (LGT) is an important mechanism for natural variation among prokaryotes. Laboratory experiments show that protein-coding genes can be laterally transferred extremely fast among microbial cells, inherited to most of their descendants, and adapt to a new regulatory regime within a short time. Recent advance in the phylogenetic analysis of microbial genomes using networks approach reveals a substantial impact of LGT during microbial genome evolution. Phylogenomic networks of LGT among prokaryotes reconstructed from completely sequenced genomes uncover barriers to LGT in multiple levels. Here we discuss the kinds of barriers to gene acquisition in nature including physical barriers for gene transfer between cells, genomic barriers for the integration of acquired DNA, and functional barriers for the acquisition of new genes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Transduction-like gene transfer in the methanogen Methanococcus voltae

    Science.gov (United States)

    Bertani, G.

    1999-01-01

    Strain PS of Methanococcus voltae (a methanogenic, anaerobic archaebacterium) was shown to generate spontaneously 4.4-kbp chromosomal DNA fragments that are fully protected from DNase and that, upon contact with a cell, transform it genetically. This activity, here called VTA (voltae transfer agent), affects all markers tested: three different auxotrophies (histidine, purine, and cobalamin) and resistance to BES (2-bromoethanesulfonate, an inhibitor of methanogenesis). VTA was most effectively prepared by culture filtration. This process disrupted a fraction of the M. voltae cells (which have only an S-layer covering their cytoplasmic membrane). VTA was rapidly inactivated upon storage. VTA particles were present in cultures at concentrations of approximately two per cell. Gene transfer activity varied from a minimum of 2 x 10(-5) (BES resistance) to a maximum of 10(-3) (histidine independence) per donor cell. Very little VTA was found free in culture supernatants. The phenomenon is functionally similar to generalized transduction, but there is no evidence, for the time being, of intrinsically viral (i.e., containing a complete viral genome) particles. Consideration of VTA DNA size makes the existence of such viral particles unlikely. If they exist, they must be relatively few in number;perhaps they differ from VTA particles in size and other properties and thus escaped detection. Digestion of VTA DNA with the AluI restriction enzyme suggests that it is a random sample of the bacterial DNA, except for a 0.9-kbp sequence which is amplified relative to the rest of the bacterial chromosome. A VTA-sized DNA fraction was demonstrated in a few other isolates of M. voltae.

  4. Insights on the Horizontal Gene Transfer of Carbapenemase Determinants in the Opportunistic Pathogen Acinetobacter baumannii

    Science.gov (United States)

    Da Silva, Gabriela Jorge; Domingues, Sara

    2016-01-01

    Horizontal gene transfer (HGT) is a driving force to the evolution of bacteria. The fast emergence of antimicrobial resistance reflects the ability of genetic adaptation of pathogens. Acinetobacter baumannii has emerged in the last few decades as an important opportunistic nosocomial pathogen, in part due to its high capacity of acquiring resistance to diverse antibiotic families, including to the so-called last line drugs such as carbapenems. The rampant selective pressure and genetic exchange of resistance genes hinder the effective treatment of resistant infections. A. baumannii uses all the resistance mechanisms to survive against carbapenems but production of carbapenemases are the major mechanism, which may act in synergy with others. A. baumannii appears to use all the mechanisms of gene dissemination. Beyond conjugation, the mostly reported recent studies point to natural transformation, transduction and outer membrane vesicles-mediated transfer as mechanisms that may play a role in carbapenemase determinants spread. Understanding the genetic mobilization of carbapenemase genes is paramount in preventing their dissemination. Here we review the carbapenemases found in A. baumannii and present an overview of the current knowledge of contributions of the various HGT mechanisms to the molecular epidemiology of carbapenem resistance in this relevant opportunistic pathogen. PMID:27681923

  5. GENE TRANSFER IN TOBACCO MITOCHONDRIA IN VITRO AND IN VIVO

    Directory of Open Access Journals (Sweden)

    Katyshev A.I.

    2012-08-01

    Full Text Available Earlier, we had showed that isolated mitochondria from different organisms can import DNA. Exploiting this mechanism, we assessed the possibility of genes transfer in tobacco mitochondria in vitro and in vivo. Whereas homologous recombination is a rare occasion in higher plant nuclei, recombination between the large direct repeats in plant mitochondrial genome generates its multipartite structure. Following transfection of isolated organelles with constructs composed of a partial gfp gene flanked by mitochondrial DNA fragments, we showed the homologous recombination of imported DNA with the resident DNA and the integration of the reporter gene. The recombination yielded an insertion of a continuous exogenous DNA fragment including the gfp sequence and at least the 0.5 kb of the flanking sequence on each side. Using of transfection constructs carrying multiple sequences homologous to mitochondrial DNA could be suitable for insertion of a target gene into any region of the mitochondrial genome, which turns this approach to be of a general and methodical importance. Usually mitochondrial reactive oxygen species (ROS level is under strict control of the antioxidant system including the Mn-containing superoxide dismutase (MnSOD. MnSOD is presented in multiple forms encoded by several genes in plants. Possibly, this enzyme, beside its catalytic function, fulfills as well some unknown biochemical functions. Thus, one of maize SOD enzymes (SOD3.4 could bind with mitochondrial DNA. Another SOD form (SOD3.1 is located in close proximity to mitochondrial respiratory complexes, where ROS are generated. To study possible physiological functions of this enzyme, we cloned the maize SOD3.1 gene. Compared to the SOD3.4, this enzyme didn't demonstrate DNA-binding activity. At the same time, SOD3.1 didn't show non-specific DNA-hydrolyzing activity as Cu/ZnSOD does. It means that this enzyme might have some DNA protective function. We made NtPcob-sod3.1-IGR

  6. Transfer of resistance plasmids from Staphylococcus epidermidis to Staphylococcus aureus: evidence for conjugative exchange of resistance.

    OpenAIRE

    Forbes, B A; Schaberg, D R

    1983-01-01

    The ability of Staphylococcus epidermidis to transfer antimicrobial resistance to Staphylococcus aureus was tested by mixed culture on filter membranes. Two of six clinical isolates examined were able to transfer resistance to S. aureus strains 879R4RF, RN450RF, and UM1385RF. Subsequent S.aureus transconjugants resulting from matings with S. epidermidis donors were able to serve as donors to other S. aureus strains at similar frequencies. Cell-free and mitomycin C-induced filtrates of donors ...

  7. Horizontal gene transfer and bacterial diversity

    Indian Academy of Sciences (India)

    Unknown

    that drug-resistant strains of Mycobacterium tuberculosis, and Streptococcus ... the Mycobacterium tuberculosis genome (Sassanfar et al. 1996). .... (de la Cruz 2000). Microbial genome analyses have shown that the resistance determinants in such organisms are often associated with mobile genetic elements like plas-.

  8. Mammary-Specific Gene Transfer for Modeling Breast Cancer

    National Research Council Canada - National Science Library

    Li, Yi

    2001-01-01

    In order to develop a mouse model system that allows for rapid assessment of genetic lesions involved in breast tumor development, we are adapting a somatic gene transfer system based on avian leukosis virus A (ALV...

  9. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying

    2013-07-31

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  10. Simulation Study for Transfer of Antibiotic Resistance via Mutator Subpopulation

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Aarestrup, Frank Møller

    Evolution of antibiotic resistance in bacterial populations is an increasing problem having fatal consequences for treatment of diseases. Therefore it is very important to understand this evolution. Traditionally evolution is considered to happen by single point mutations, where each mutant must...... have a growth advantage over the parent strain and grow to a sufficient number before a second mutation can occur. However, when multiple mutations are necessary for development of resistance, single mutations occurring with a normal mutation rate can not always explain the observed resistance. We...... introduce an alternative hypothesis by which a subpopulation of mutators drives the evolution process. Resistance is acquired by a subpoplution of mutators, for which the mutation rate is much higher than the wild-type. If the resistance is located on a transferable plasmid it can subsequently...

  11. Evolution of glutamate dehydrogenase genes: evidence for lateral gene transfer within and between prokaryotes and eukaryotes

    Directory of Open Access Journals (Sweden)

    Roger Andrew J

    2003-06-01

    Full Text Available Abstract Background Lateral gene transfer can introduce genes with novel functions into genomes or replace genes with functionally similar orthologs or paralogs. Here we present a study of the occurrence of the latter gene replacement phenomenon in the four gene families encoding different classes of glutamate dehydrogenase (GDH, to evaluate and compare the patterns and rates of lateral gene transfer (LGT in prokaryotes and eukaryotes. Results We extend the taxon sampling of gdh genes with nine new eukaryotic sequences and examine the phylogenetic distribution pattern of the various GDH classes in combination with maximum likelihood phylogenetic analyses. The distribution pattern analyses indicate that LGT has played a significant role in the evolution of the four gdh gene families. Indeed, a number of gene transfer events are identified by phylogenetic analyses, including numerous prokaryotic intra-domain transfers, some prokaryotic inter-domain transfers and several inter-domain transfers between prokaryotes and microbial eukaryotes (protists. Conclusion LGT has apparently affected eukaryotes and prokaryotes to a similar extent within the gdh gene families. In the absence of indications that the evolution of the gdh gene families is radically different from other families, these results suggest that gene transfer might be an important evolutionary mechanism in microbial eukaryote genome evolution.

  12. Antimicrobial Resistance and Resistance Genes in Aerobic Bacteria Isolated from Pork at Slaughter.

    Science.gov (United States)

    Li, Lili; Heidemann Olsen, Rikke; Ye, Lei; Yan, He; Nie, Qing; Meng, Hecheng; Shi, Lei

    2016-04-01

    The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram-negative bacteria (92.2%) and gram-positive bacteria (7.8%). High levels of resistance were detected to tetracycline, trimethoprim-sulfamethoxazole, and ampicillin (36.2 to 54.3%), and lower levels were detected to nitrofurantoin, cefotaxime, gentamicin, ciprofloxacin, and chloramphenicol (7.8 to 29.2%). Across species, genes conferring antimicrobial resistance were observed with the following frequencies: blaTEM, 40.7%; blaCMY-2, 15.2%; blaCTX-M, 11.5%; sul2, 27.2%; sul1, 14.4%; tet(A), 5.4%; tet(L), 5.4%; tet(M), 5.0%; tet(E), 3.7%; tet(C), 3.3%; tet(S), 2.5%; and tet(K), 0.8%. Various antimicrobial resistance genes were found in new carriers: blaTEM in Lactococcus garvieae, Myroides odoratimimus, Aeromonas hydrophila, Staphylococcus sciuri, Raoultella terrigena, Macrococcus caseolyticus, Acinetobacter ursingii, Sphingobacterium sp., and Oceanobacillus sp.; blaCMY-2 in Lactococcus lactis, Klebsiella oxytoca, Serratia marcescens, Acinetobacter baumannii, and Myroides phaeus; tet(L) in M. caseolyticus; sul1 in Vibrio cincinnatiensis; sul2 in Acinetobacter bereziniae, Acinetobacter johnsonii, and V. cincinnatiensis; and the class 1 integron and gene cassette aadA2 in V. cincinnatiensis. Approximately 6.6% of isolates contained class 1 integrons, and one isolate harbored class 2 integrons. Plasmid associated intI1 and androgen receptor- encoding genes were transferred into Escherichia coli J53 and E. coli DH5α by conjugation and transformation experiments, respectively. Our study highlights the importance of aerobic bacteria from pork as reservoirs for antimicrobial resistance genes and mobile genetic elements that can readily be transferred intra- and interspecies.

  13. Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture.

    Science.gov (United States)

    Johnson, Timothy A; Stedtfeld, Robert D; Wang, Qiong; Cole, James R; Hashsham, Syed A; Looft, Torey; Zhu, Yong-Guan; Tiedje, James M

    2016-04-12

    Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundance of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk. Agricultural antibiotic use results in clusters of cooccurring resistance genes that together confer resistance to multiple antibiotics. The use of a single antibiotic could select for an entire suite of resistance genes if

  14. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge

    OpenAIRE

    Zhang, T; Zhang, XX; Ye, L

    2011-01-01

    The overuse or misuse of antibiotics has accelerated antibiotic resistance, creating a major challenge for the public health in the world. Sewage treatment plants (STPs) are considered as important reservoirs for antibiotic resistance genes (ARGs) and activated sludge characterized with high microbial density and diversity facilitates ARG horizontal gene transfer (HGT) via mobile genetic elements (MGEs). However, little is known regarding the pool of ARGs and MGEs in sludge microbiome. In thi...

  15. Streptomycin and chloramphenicol resistance genes in Escherichia coli isolates from cattle, pigs, and chicken in Kenya.

    Science.gov (United States)

    Kikuvi, G M; Schwarz, S; Ombui, J N; Mitema, E S; Kehrenberg, C

    2007-01-01

    The aims of this study were to determine the genetic basis of streptomycin and chloramphenicol resistance in 30 Escherichia coli isolates from food animals in Kenya and the role of plasmids in the spread of the resistance. Seven of the 29 streptomycin-resistant isolates harbored both the strA and strB genes. Twenty-one of isolates had the strA, strB, and aadA1 genes. The strA gene was disrupted by a functional trimethoprim gene, dfrA14 in 10 of the 21 isolates harboring the three streptomycin resistance genes. Physical linkage of intact strA and sul2 genes was found in two different plasmids from four isolates. Linkage of cassette-borne aadA1 and dfrA1 genes in class 1 integrons was found in two of the isolates. Chloramphenicol resistance was due to the gene catA1 in all the chloramphenicol resistant isolates. The strB, strA, and catA1 genes were transferable by conjugation and this points to the significance of conjugative resistance plasmids in the spread and persistence of streptomycin and chloramphenicol resistance in food animals in Kenya.

  16. Plant resistance genes : their structure, function and evolution

    NARCIS (Netherlands)

    Takken, F.L.W.; Joosten, M.H.A.J.

    2000-01-01

    Plants have developed efficient mechanisms to avoid infection or to mount responses that render them resistant upon attack by a pathogen. One of the best-studied defence mechanisms is based on gene-for-gene resistance through which plants, harbouring specific resistance (R) genes, specifically

  17. Horizontal gene transfer and bacterial diversity

    Indian Academy of Sciences (India)

    Unknown

    reservoir; under Antarctic ice or in near-boiling water; in acid springs or in alkaline pools – microbial life exists .... The close similarity of the rrnE region of Salmo- nella subspecies I to that of E. coli suggests lateral ..... transfer and the nature of bacterial innovation; Nature (Lon- don) 405 299–304. Pan A, Dutta C and Das J ...

  18. Addressing the issue of horizontal gene transfer from a diet ...

    African Journals Online (AJOL)

    One of these hazards, which have great controversy reports, is the possible horizontal gene transfer from GM-food or feed to human or animal tissues. Many researches were conducted to investigate the presence of some transgenic sequences in animal tissues fed on GM- crops. Many of the inserted genes in the GM-crops ...

  19. Horizontal Gene Transfer and Population of Phyllosphere Bacteria on Transgenic and Nontransgenic Cotton

    Directory of Open Access Journals (Sweden)

    ROHANI CINTA BADIA GINTING

    2005-09-01

    Full Text Available The possibility of horizontal gene transfer of plant genomic DNA and bacteria in the soil, particularly as this relates to the possible transfer of genes encoding antibiotic resistance, has been seen as hazard associated with genetically engineered plants. It is hypothesized that introduction of bacterial genes into the plant genome leads to a higher probability of gene transfer from plants to bacteria due to the presence of homologous sequences. Bollgard (BG cotton was constructed through the introduction of cry1A(c gene, encodes for insecticidal activity againts Lepidopteran pests, together with genes for spectinomycin/streptomycin resistant (aad and kanamycin resistant (nptII, into the genome of a conventional cotton variety, Delta Pine (DP. The aim of this study were to evaluate the ability of naturally competent Acinetobacter calcoaceticus strain ADP1 to take up and integrate transgenic plant DNA based on homologous recombination under optimized laboratory condition, and to compare phyllosphere microbial population resistant to antibiotic on leaves of transgenic and nontransgenic plant. The results showed that transformation of ADP1 cells with Bollgard DNA was not detected on nitrocellulose membrane nor in sterile soil. Total phyllosphere bacterial population on leaves collected from one month after planting were 1.3 x 108 and 1.6 x 108 cfu/g leave fresh weight for BG and DP, respectively. Samples collected after three month contained 5.9 x 107 and 7.1 x 107 cfu/g leave fresh weight for BG and DP, respectively. This study also showed that there was no significant difference of phyllosphere bacterial population resistant to streptomycin and kanamycin on leaves of BG or DP samples collected from one or three month after planting.

  20. Estimating the Transfer Range of Plasmids Encoding Antimicrobial Resistance in a Wastewater Treatment Plant Microbial Community

    DEFF Research Database (Denmark)

    Li, Liguan; Dechesne, Arnaud; He, Zhiming

    2018-01-01

    Wastewater treatment plants (WWTPs) have been suggested as reservoirs and sources of antibiotic resistance genes (ARGs) in the environment. In a WWTP ecosystem, human enteric and environmental bacteria are mixed and exposed to pharmaceutical residues, potentially favoring genetic exchange and thus...... sludge microbial community was challenged in standardized filter matings with one of three multidrug resistance plasmids (pKJK5, pB10, and RP4) harbored by Escherichia coli or Pseudomonas putida. Different donor–plasmid combinations had distinct transfer frequencies, ranging from 3 to 50 conjugation...

  1. Design of radiopharmaceuticals for monitoring gene transfer therapy

    International Nuclear Information System (INIS)

    Lambrecht, R.M.; Staehler, P.; Kley, J.; Spiegel, M.; Gross, C.; Graepler, F.T.C.; Gregor, M.; Lauer, U.; Oberdorfer, F.

    1998-01-01

    The development of radiopharmaceuticals for monitoring gene transfer therapy with emission tomography is expected to lead to improved management of cancer by the year 2010. There are now only a few examples and approaches to the design of radiopharmaceuticals for gene transfer therapy. This paper introduces a novel concept for the monitoring of gene therapy. We present the optimisation of the labelling of recombinant human β-NGF ligands for in vitro studies prior to using 123 I for SPET and 124 I for PET studies. (author)

  2. Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Walker Thomas

    2009-01-01

    Full Text Available Abstract Background The evolutionary importance of horizontal gene transfer (HGT from Wolbachia endosymbiotic bacteria to their eukaryotic hosts is a topic of considerable interest and debate. Recent transfers of genome fragments from Wolbachia into insect chromosomes have been reported, but it has been argued that these fragments may be on an evolutionary trajectory to degradation and loss. Results We have discovered a case of HGT, involving two adjacent genes, between the genomes of Wolbachia and the currently Wolbachia-uninfected mosquito Aedes aegypti, an important human disease vector. The lower level of sequence identity between Wolbachia and insect, the transcription of all the genes involved, and the fact that we have identified homologs of the two genes in another Aedes species (Ae. mascarensis, suggest that these genes are being expressed after an extended evolutionary period since horizontal transfer, and therefore that the transfer has functional significance. The association of these genes with Wolbachia prophage regions also provides a mechanism for the transfer. Conclusion The data support the argument that HGT between Wolbachia endosymbiotic bacteria and their hosts has produced evolutionary innovation.

  3. Transport and transformation of genetic information in the critical zone: The case of antibiotic resistance genes

    Science.gov (United States)

    Zhu, Y. G.

    2015-12-01

    In addition to material and energy flows, the dynamics and functions of the Earth's critical zone are intensively mediated by biological actions performed by diverse organisms. These biological actions are modulated by the expression of functional genes and their translation into enzymes that catalyze geochemical reactions, such as nutrient turnover and pollutant biodegradation. Although geobiology, as an interdisciplinary research area, is playing and vital role in linking biological and geochemical processes at different temporal and spatial scales, the distribution and transport of functional genes have rarely been investigated from the Earth's critical zone perspectives. To illustrate the framework of studies on the transport and transformation of genetic information in the critical zone, antibiotic resistance is taken as an example. Antibiotic resistance genes are considered as a group of emerging contaminants, and their emergence and spread within the critical zone on one hand are induced by anthropogenic activities, and on other hand are threatening human health worldwide. The transport and transformation of antibiotic resistance genes are controlled by both horizontal gene transfer between bacterial cells and the movement of bacteria harboring antibiotic resistance genes. In this paper, the fate and behavior of antibiotic resistance genes will be discussed in the following aspects: 1) general overview of environmental antibiotic resistance; 2) high through quantification of the resistome in various environmental media; 3) pathways of resistance gene flow within the critical zone; and 4) potential strategies in mitigating antibiotic resistance, particularly from the critical zone perspectives.

  4. Molecular basis and transferability of tetracycline resistance in Enterococcus italicus LMG 22195 from fermented milk.

    Science.gov (United States)

    Zago, Miriam; Huys, Geert; Giraffa, Giorgio

    2010-08-15

    A tetracycline-resistant Enterococcus italicus strain from fermented milk, LMG 22195, was found to contain a tet(S) gene located on a plasmid of approximately 20kb. Filter mating demonstrated that the tet(S) gene was transferable from LMG 22195 to the recipient Enterococcus faecalis JH2-2. PCR-based detection and Southern blot experiments revealed that the confirmed transconjugants acquired the tet(S)-carrying plasmid. Similar to the donor strain, transconjugants displayed a tetracycline MIC of 64 microg/ml. Results of this study suggest that E. italicus, like other enterococcal species, is able to disseminate antibiotic-resistance genes, although a more definitive proof on this statement will be provided when a higher number of strains will be tested. Because of the recent isolation of E. italicus from human clinical specimens and its concomitant presence in various dairy products, the ability of this organism to horizontally transfer tet(S) or other resistance genes may potentially pose safety concerns, especially for its possible use in food fermentations. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Transfer and expression of the rabbit defensin NP-1 gene in lettuce (Lactuca sativa).

    Science.gov (United States)

    Song, D; Xiong, X; Tu, W F; Yao, W; Liang, H W; Chen, F J; He, Z Q

    2017-01-23

    Lettuce (Lactuca sativa L.) is an annual plant of the daisy family, Asteraceae, with high food and medicinal value. However, the crop is susceptible to several viruses that are transmitted by aphids and is highly vulnerable to post-harvest diseases, as well as insect and mammal pests and fungal and bacterial diseases. Here, the rabbit defensin gene NP-1 was transferred into lettuce by Agrobacterium-mediated transformation to obtain a broad-spectrum disease-resistant lettuce. Transgenic lettuce plants were selected and regenerated on selective media. The presence of the NP-1 gene in these plants was confirmed by western blot analyses. Resistance tests revealed native defensin NP-1 expression conferred partial resistance to Bacillus subtilis and Pseudomonas aeruginosa, which suggests new possibilities for lettuce disease resistance.

  6. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations.

    Science.gov (United States)

    Jutkina, J; Marathe, N P; Flach, C-F; Larsson, D G J

    2018-03-01

    There is a rising concern that antibiotics, and possibly other antimicrobial agents, can promote horizontal transfer of antibiotic resistance genes. For most types of antimicrobials their ability to induce conjugation below minimal inhibitory concentrations (MICs) is still unknown. Our aim was therefore to explore the potential of commonly used antibiotics and antibacterial biocides to induce horizontal transfer of antibiotic resistance. Effects of a wide range of sub-MIC concentrations of the antibiotics cefotaxime, ciprofloxacin, gentamicin, erythromycin, sulfamethoxazole, trimethoprim and the antibacterial biocides chlorhexidine digluconate, hexadecyltrimethylammoniumchloride and triclosan were investigated using a previously optimized culture-based assay with a complex bacterial community as a donor of mobile resistance elements and a traceable Escherichia coli strain as a recipient. Chlorhexidine (24.4μg/L), triclosan (0.1mg/L), gentamicin (0.1mg/L) and sulfamethoxazole (1mg/L) significantly increased the frequencies of transfer of antibiotic resistance whereas similar effects were not observed for any other tested antimicrobial compounds. This corresponds to 200 times below the MIC of the recipient for chlorhexidine, 1/20 of the MIC for triclosan, 1/16 of the MIC for sulfamethoxazole and right below the MIC for gentamicin. To our best knowledge, this is the first study showing that triclosan and chlorhexidine could stimulate the horizontal transfer of antibiotic resistance. Together with recent research showing that tetracycline is a potent inducer of conjugation, our results indicate that several antimicrobials including both common antibiotics and antibacterial biocides at low concentrations could contribute to antibiotic resistance development by facilitating the spread of antibiotic resistance between bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effect of Caenorhabditis elegans age and genotype on horizontal gene transfer in intestinal bacteria

    Science.gov (United States)

    Portal-Celhay, Cynthia; Nehrke, Keith; Blaser, Martin J.

    2013-01-01

    Horizontal gene transfer (HGT) between bacteria occurs in the intestinal tract of their animal hosts and facilitates both virulence and antibiotic resistance. A model in which both the pathogen and the host are genetically tractable facilitates developing insight into mechanistic processes enabling or restricting the transfer of antibiotic resistance genes. Here we develop an in vivo experimental system to study HGT in bacteria using Caenorhabditis elegans as a model host. Using a thermosensitive conjugative system, we provide evidence that conjugation between two Escherichia coli strains can take place in the intestinal lumen of N2 wild-type worms at a rate of 10−3 and 10−2 per donor. We also show that C. elegans age and genotype are important determinants of the frequency of conjugation. Whereas ∼1 transconjugant for every 100 donor cells could be recovered from the intestine of N2 C. elegans, for the age-1 and tol-1 mutants, the detected rate of transconjugation (10−3 and 10−4 per donor cell, respectively) was significantly lower. This work demonstrates that increased recombination among lumenal microbial populations is a phenotype associated with host aging, and the model provides a framework to study the dynamics of bacterial horizontal gene transfer within the intestinal environment.—Portal-Celhay, C., Nehrke, K., Blaser, M. J. Effect of Caenorhabditis elegans age and genotype on horizontal gene transfer in intestinal bacteria. PMID:23085995

  8. Detection and Characterization of Streptomycin Resistance (strA-strB) in a Honeybee Gut Symbiont (Snodgrassella alvi) and the Associated Risk of Antibiotic Resistance Transfer.

    Science.gov (United States)

    Ludvigsen, Jane; Amdam, Gro V; Rudi, Knut; L'Abée-Lund, Trine M

    2018-03-08

    Use of antibiotics in medicine and farming contributes to increasing numbers of antibiotic-resistant bacteria in diverse environments. The ability of antibiotic resistance genes (ARG) to transfer between bacteria genera contributes to this spread. It is difficult to directly link antibiotic exposure to the spread of ARG in a natural environment where environmental settings and study populations cannot be fully controlled. We used managed honeybees in environments with contrasting streptomycin exposure (USA: high exposure, Norway: low exposure) and mapped the prevalence and spread of transferrable streptomycin resistance genes. We found a high prevalence of strA-strB genes in the USA compared to Norway with 17/90 and 1/90 positive samples, respectively (p resistance genes increases the risk of the spread to new environments as honeybees are moved to new pollination sites.

  9. Simplistic graphene transfer process and its impact on contact resistance

    KAUST Repository

    Ghoneim, Mohamed T.

    2013-05-09

    Chemical vapor deposition based graphene grown on copper foil is attractive for electronic applications owing to its reliable growth process, large area coverage, and relatively defect free nature. However, transfer of the synthesized graphene to host substrate for subsequent device fabrication is extremely sensitive and can impact ultimate performance. Although ultra-high mobility is graphene\\'s most prominent feature, problems with high contact resistance have severely limited its true potential. Therefore, we report a simple poly-(methyl methacrylate) based transfer process without post-annealing to achieve specific contact resistivity of 3.8 × 10−5 Ω cm2 which shows 80% reduction compared to previously reported values.

  10. Characterization of Cefotaxime- and Ciprofloxacin-Resistant Commensal Escherichia coli Originating from Belgian Farm Animals Indicates High Antibiotic Resistance Transfer Rates.

    Science.gov (United States)

    Lambrecht, Ellen; Van Meervenne, Eva; Boon, Nico; Van de Wiele, Tom; Wattiau, Pierre; Herman, Lieve; Heyndrickx, Marc; Van Coillie, Els

    2017-11-17

    Food-producing animals represent one of the sources of antibiotic resistant commensal bacteria. There is an increasing awareness that these bacteria might have the potential to transfer their resistance genes to other (pathogenic) bacteria. In this study, 50 commensal Escherichia coli strains originating from food-producing animals and resistant to the "highest priority, critically important antibiotics" cefotaxime and/or ciprofloxacin, were selected for further characterization. For each strain (i) an antibiogram, (ii) the phylogenetic group, (iii) plasmid replicon type, (iv) presence and identification of integrons, and (v) antibiotic resistance transfer ratios were determined. Forty-five of these strains were resistant to 5 or more antibiotics, and 6 strains were resistant to 10 or more antibiotics. Resistance was most common to ampicillin (100%), sulfamethoxazole, ciprofloxacin (82%), trimethoprim, tetracycline (74%), cefotaxime, (70%) and ceftazidime (62%). Phylogenetic groups A (62%) and B1 (26%) were most common, followed by C (8%) and E (4%). In 43 strains, more than 1 replicon type was detected, with FII (88%), FIB (70%), and I1 (48%) being the most encountered types. Forty strains, positive for integrons, all harbored a class I integron and seven of them contained an additional class II integron. No class III integrons were detected. The antibiotic resistance transfer was assessed by liquid mating experiments. The transfer ratio, expressed as the number of transconjugants per recipient, was between 10 -5 and 10 0 for cefotaxime resistance and between 10 -7 and 10 -1 for ciprofloxacin resistance. The results of the current study prove that commensal E. coli in food-production animals can be a source of multiple resistance genes and that these bacteria can easily spread their ciprofloxacin and cefotaxime resistance.

  11. Potential transfer of extended spectrum β-lactamase encoding gene, blashv18 gene, between Klebsiella pneumoniae in raw foods.

    Science.gov (United States)

    Jung, Yangjin; Matthews, Karl R

    2016-12-01

    This study investigated the transfer frequency of the extended-spectrum β-lactamase-encoding gene (blaSHV18) among Klebsiella pneumoniae in tryptic soy broth (TSB), pasteurized milk, unpasteurized milk, alfalfa sprouts and chopped lettuce at defined temperatures. All transconjugants were characterized phenotypically and genotypically. KP04(ΔKM) and KP08(ΔKM) isolated from seed sprouts and KP342 were used as recipients in mating experiments with K. pneumoniae ATCC 700603 serving as the donor. In mating experiments, no transconjugants were detected at 4 °C in liquid media or chopped lettuce, but detected in all media tested at 15 °C, 24 °C, and 37 °C. At 24 °C, the transfer of blaSHV18 gene occurred more frequently in alfalfa sprouts (5.15E-04 transconjugants per recipient) and chopped lettuce (3.85E-05) than liquid media (1.08E-05). On chopped lettuce, transconjugants were not detected at day 1 post-mating at 15 °C, but observed on day 2 (1.43E-05). Transconjugants carried the blaSHV18 gene transferred from the donor and the virulence gene harbored by recipient. More importantly, a class 1 integrase gene and resistance to tetracycline, trimethoprim/sulfamethoxazole were co-transferred during mating. These quantitative results suggest that fresh produce exposed to temperature abuse may serve as a competent vehicle for the spread of gene encoding for antibiotic resistance, having a potential negative impact on human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Multidrug-resistant enterococci in animal meat and faeces and co-transfer of resistance from an Enterococcus durans to a human Enterococcus faecium.

    Science.gov (United States)

    Vignaroli, Carla; Zandri, Giada; Aquilanti, Lucia; Pasquaroli, Sonia; Biavasco, Francesca

    2011-05-01

    Forty-eight isolates resistant to at least two antibiotics were selected from 53 antibiotic-resistant enterococci from chicken and pig meat and faeces and analysed for specific resistance determinants. Of the 48 multidrug-resistant (MDR) strains, 31 were resistant to two antibiotics (29 to erythromycin and tetracycline, 1 to erythromycin and vancomycin, 1 to vancomycin and tetracycline), 14 to three (erythromycin, tetracycline and vancomycin or ampicillin) and 3 to four (erythromycin, vancomycin, ampicillin and gentamicin). erm(B), tet(M), vanA and aac (6')-Ie aph (2'')-Ia were the antibiotic resistance genes most frequently detected. All 48 MDR enterococci were susceptible to linezolid and daptomycin. Enterococcus faecalis (16), Enterococcus faecium (8), Enterococcus mundtii (2) and Enterococcus gallinarum (1) were identified in meat, and E. faecium (13) and Enterococcus durans (13) in faeces. Clonal spread was not detected, suggesting a large role of gene transfer in the dissemination of antibiotic resistance. Conjugative transfer of resistance genes was more successful when donors were enterococcal strains isolated from faeces; co-transfer of vanA and erm(B) to a human E. faecium occurred from both E. faecium and E. durans pig faecal strains. These data show that multidrug resistance can be found in food and animal species other than E. faecium and E. faecalis, and that these species can efficiently transfer antibiotic resistance to human strains in inter-specific matings. In particular, the occurrence of MDR E. durans in the animal reservoir could have a role in the emergence of human enterococcal infections difficult to eradicate with antibiotics.

  13. Factors that affect transfer of the IncI1 β-lactam resistance plasmid pESBL-283 between E. coli strains

    NARCIS (Netherlands)

    Händel, N.; Otte, S.; Jonker, M.J.; Brul, S.; ter Kuile, B.H.

    2015-01-01

    The spread of antibiotic resistant bacteria worldwide presents a major health threat to human health care that results in therapy failure and increasing costs. The transfer of resistance conferring plasmids by conjugation is a major route by which resistance genes disseminate at the intra- and

  14. Public health risk of antimicrobial resistance transfer from companion animals.

    Science.gov (United States)

    Pomba, Constança; Rantala, Merja; Greko, Christina; Baptiste, Keith Edward; Catry, Boudewijn; van Duijkeren, Engeline; Mateus, Ana; Moreno, Miguel A; Pyörälä, Satu; Ružauskas, Modestas; Sanders, Pascal; Teale, Christopher; Threlfall, E John; Kunsagi, Zoltan; Torren-Edo, Jordi; Jukes, Helen; Törneke, Karolina

    2017-04-01

    Antimicrobials are important tools for the therapy of infectious bacterial diseases in companion animals. Loss of efficacy of antimicrobial substances can seriously compromise animal health and welfare. A need for the development of new antimicrobials for the therapy of multiresistant infections, particularly those caused by Gram-negative bacteria, has been acknowledged in human medicine and a future corresponding need in veterinary medicine is expected. A unique aspect related to antimicrobial resistance and risk of resistance transfer in companion animals is their close contact with humans. This creates opportunities for interspecies transmission of resistant bacteria. Yet, the current knowledge of this field is limited and no risk assessment is performed when approving new veterinary antimicrobials. The objective of this review is to summarize the current knowledge on the use and indications for antimicrobials in companion animals, drug-resistant bacteria of concern among companion animals, risk factors for colonization of companion animals with resistant bacteria and transmission of antimicrobial resistance (bacteria and/or resistance determinants) between animals and humans. The major antimicrobial resistance microbiological hazards originating from companion animals that directly or indirectly may cause adverse health effects in humans are MRSA, methicillin-resistant Staphylococcus pseudintermedius, VRE, ESBL- or carbapenemase-producing Enterobacteriaceae and Gram-negative bacteria. In the face of the previously recognized microbiological hazards, a risk assessment tool could be applied in applications for marketing authorization for medicinal products for companion animals. This would allow the approval of new veterinary medicinal antimicrobials for which risk levels are estimated as acceptable for public health. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For

  15. Gene transfer strategies for improving radiolabeled peptide imaging and therapy

    International Nuclear Information System (INIS)

    Rogers, B.E.; Buchsbaum, D.J.; Zinn, K.R.

    2000-01-01

    Utilization of molecular biology techniques offers attractive options in nuclear medicine for improving cancer imaging and therapy with radiolabeled peptides. Two of these options include utilization of phage-panning to identify novel tumor specific peptides or single chain antibodies and gene transfer techniques to increase the antibodies and gene transfer techniques to increase the number of antigen/receptor sites expressed on malignant cells. The group has focused on the latter approach for improving radiolabeled peptide imaging and therapy. The most widely used gene transfer vectors in clinical gene therapy trials include retrovirus, cationic lipids and adenovirus. It has been utilized adenovirus vectors for gene transfer because of their ability to accomplish efficient in vivo gene transfer. Adenovirus vectors encoding the genes for a variety of antigens/receptors (carcinoembryonic antigen, gastrin-releasing peptide receptor, somatostatin receptor subtype 2 (SSTr2) have all shown that their expression is increased on cancer cells both in vitro and in vivo following adenovirus infection. Of particular interest has been the adenovirus encoding for SSTr2 (AdCMVSSTr2). Various radioisotopes have been attached to somatostatin analogues for imaging and therapy of SSTr2-positive tumors both clinically and in animal models. The use of these analogues in combination with AdCMVSSTr2 is a promising approach for improving the detection sensitivity and therapeutic efficacy of these radiolabeled peptides against solid tumors. In addition, it has been proposed the use of SSTr2 as a marker for imaging the expression of another cancer therapeutic transgene (e.g. cytosine deaminase, thymidine kinase) encoded within the same vector. This would allow for non-invasive monitoring of gene delivery to tumor sites

  16. The interconnection between biofilm formation and horizontal gene transfer

    DEFF Research Database (Denmark)

    Madsen, Jonas Stenløkke; Burmølle, Mette; Hansen, Lars H.

    2012-01-01

    of their believed importance in the understanding of the adaptation and subsequent evolution of social traits in bacteria. Here, we discuss current evidence for such interconnectedness centred on plasmids. Horizontal transfer rates are typically higher in biofilm communities compared with those in planktonic states....... Biofilms, furthermore, promote plasmid stability and may enhance the host range of mobile genetic elements that are transferred horizontally. Plasmids, on the other hand, are very well suited to promote the evolution of social traits such as biofilm formation. This, essentially, transpires because plasmids...... stable social interactions. It also indicates that horizontal gene transfer ultimately enhances the relatedness of bacteria carrying the mobile genetic elements of the same origin. The perspective of this review extends to an overall interconnectedness between horizontal gene transfer, mobile genetic...

  17. Transfer of alien genes by means of induced translocation in oats and other crop species

    International Nuclear Information System (INIS)

    Thomas, H.; Taing Aung

    1977-01-01

    Some of the best sources of resistance to mildew, which is the most important disease of the oat crop in the United Kingdom, occur in related weed species. The mildew resistance found in a genotype of the tetraploid species Avena barbata has been transferred into the germ plasm of the cultivated hexaploid species A. sativa by means of an induced translocation. The procedures adopted to isolate the desirable translocation and to determine its breeding behaviour are described. A number of alien genes have been transferred into wheat by means of induced translocations and genetic induction, but their successful introduction into commercial varieties has been limited. In this paper, the use and limitations of alien transfers as breeding material are discussed. (author)

  18. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes.

    Science.gov (United States)

    Sharma, Virender K; Johnson, Natalie; Cizmas, Leslie; McDonald, Thomas J; Kim, Hyunook

    2016-05-01

    Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in the aquatic environment have become an emerging contaminant issue, which has implications for human and ecological health. This review begins with an introduction to the occurrence of ARB and ARG in different environmental systems such as natural environments and drinking water resources. For example, ARG or ARB with resistance to ciprofloxacin, sulfamethoxazole, trimethoprim, quinolone, vancomycin, or tetracycline (e.g., tet(A), tet(B), tet(C), tet(G), tet(O), tet(M), tet(W), sul I, and sul II) have been detected in the environment. The development of resistance may be intrinsic, may be acquired through spontaneous mutations (de novo), or may occur due to horizontal gene transfer from donor bacteria, phages, or free DNA to recipient bacteria. An overview is also provided of the current knowledge regarding inactivation of ARB and ARG, and the mechanism of the effects of different disinfection processes in water and wastewater (chlorination, UV irradiation, Fenton reaction, ozonation, and photocatalytic oxidation). The effects of constructed wetlands and nanotechnology on ARB and ARG are also summarized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Hypothalamic Gene Transfer of BDNF Inhibits Breast Cancer Progression and Metastasis in Middle Age Obese Mice

    OpenAIRE

    Liu, Xianglan; McMurphy, Travis; Xiao, Run; Slater, Andrew; Huang, Wei; Cao, Lei

    2014-01-01

    Activation of the hypothalamus-adipocyte axis is associated with an antiobesity and anticancer phenotype in animal models of melanoma and colon cancer. Brain-derived neurotrophic factor (BDNF) is a key mediator in the hypothalamus leading to preferential sympathoneural activation of adipose tissue and the ensuing resistance to obesity and cancer. Here, we generated middle age obese mice by high fat diet feeding for a year and investigated the effects of hypothalamic gene transfer of BDNF on a...

  20. A gene in the process of endosymbiotic transfer.

    Directory of Open Access Journals (Sweden)

    Kateřina Jiroutová

    Full Text Available BACKGROUND: The endosymbiotic birth of organelles is accompanied by massive transfer of endosymbiont genes to the eukaryotic host nucleus. In the centric diatom Thalassiosira pseudonana the Psb28 protein is encoded in the plastid genome while a second version is nuclear-encoded and possesses a bipartite N-terminal presequence necessary to target the protein into the diatom complex plastid. Thus it can represent a gene captured during endosymbiotic gene transfer. METHODOLOGY/PRINCIPAL FINDINGS: To specify the origin of nuclear- and plastid-encoded Psb28 in T. pseudonana we have performed extensive phylogenetic analyses of both mentioned genes. We have also experimentally tested the intracellular location of the nuclear-encoded Psb28 protein (nuPsb28 through transformation of the diatom Phaeodactylum tricornutum with the gene in question fused to EYFP. CONCLUSIONS/SIGNIFICANCE: We show here that both versions of the psb28 gene in T. pseudonana are transcribed. We also provide experimental evidence for successful targeting of the nuPsb28 fused with EYFP to the diatom complex plastid. Extensive phylogenetic analyses demonstrate that nucleotide composition of the analyzed genes deeply influences the tree topology and that appropriate methods designed to deal with a compositional bias of the sequences and the long branch attraction artefact (LBA need to be used to overcome this obstacle. We propose that nuclear psb28 in T. pseudonana is a duplicate of a plastid localized version, and that it has been transferred from its endosymbiont.

  1. Expression of a transferred nuclear gene in a mitochondrial genome

    Directory of Open Access Journals (Sweden)

    Yichun Qiu

    2014-08-01

    Full Text Available Transfer of mitochondrial genes to the nucleus, and subsequent gain of regulatory elements for expression, is an ongoing evolutionary process in plants. Many examples have been characterized, which in some cases have revealed sources of mitochondrial targeting sequences and cis-regulatory elements. In contrast, there have been no reports of a nuclear gene that has undergone intracellular transfer to the mitochondrial genome and become expressed. Here we show that the orf164 gene in the mitochondrial genome of several Brassicaceae species, including Arabidopsis, is derived from the nuclear ARF17 gene that codes for an auxin responsive protein and is present across flowering plants. Orf164 corresponds to a portion of ARF17, and the nucleotide and amino acid sequences are 79% and 81% identical, respectively. Orf164 is transcribed in several organ types of Arabidopsis thaliana, as detected by RT-PCR. In addition, orf164 is transcribed in five other Brassicaceae within the tribes Camelineae, Erysimeae and Cardamineae, but the gene is not present in Brassica or Raphanus. This study shows that nuclear genes can be transferred to the mitochondrial genome and become expressed, providing a new perspective on the movement of genes between the genomes of subcellular compartments.

  2. Genetic engineering in insects: Cloning and transformation of genes conferring resistance to insecticides

    International Nuclear Information System (INIS)

    Mouches, C.

    1988-01-01

    Genetic engineering and transformation offer the possibility of modifying the genetic material of insects. These techniques will make it possible, for example, to transfer genes conferring resistance to insecticides into the genome of beneficial species, or to develop new methods of combating insect pests and disease carrying insects. We cloned two genes which contain the code for proteins that detoxify insecticides. The first, esterase B1 from Culex quinquefasciatus, is amplified approximately 250 times in Californian mosquitoes resistant to organic phosphate insecticides. A second esterase gene was cloned from bacteria which break down various organic phosphates. Experiments are in progress to transfer these genes to Drosophila and beneficial insects. These same genes could also serve as selection markers for the purpose of developing transformation techniques for different insects whose genome one wishes to modify using genetic engineering techniques. (author). 5 refs

  3. Cassette structures associated with antibiotic resistance genes in Salmonella enterica isolated from processing plants, food animals, and retail meats

    Science.gov (United States)

    Slowing the spread of antibiotic resistance (AR) is one of the most urgent tasks currently facing the field of microbiology. Mobile genetic elements, like plasmids and integrons, allow AR genes to transfer horizontally, thus increasing the spread of AR genes. Determining which AR genes are found on ...

  4. Plant agricultural streptomycin formulations do not carry antibiotic resistance genes.

    Science.gov (United States)

    Rezzonico, Fabio; Stockwell, Virginia O; Duffy, Brion

    2009-07-01

    Streptomycin is used in plant agriculture for bacterial disease control, particularly against fire blight in pome fruit orchards. Concerns that this may increase environmental antibiotic resistance have led to bans or restrictions on use. Experience with antibiotic use in animal feeds raises the possible influence of formulation-delivered resistance genes. We demonstrate that agricultural streptomycin formulations do not carry producer organism resistance genes. By using an optimized extraction procedure, Streptomyces 16S rRNA genes and the streptomycin resistance gene strA were not detected in agricultural streptomycin formulations. This diminishes the likelihood for one potential factor in resistance development due to streptomycin use.

  5. Widespread plasmid resistance genes among Proteus species in ...

    African Journals Online (AJOL)

    34% of the strains lost the antibiotic resistance plasmids marker after sodium dodecyl sulfate (SDS) mediated curing. The rest of the plasmid markers were non transferable. The results indicated that plasmids carry varied dissemination of antibiotics resistance markers to distant recipient cells, indicating clonal transfer ...

  6. Marker mapping and resistance gene associations in soybean

    OpenAIRE

    2011-01-01

    The invention provides novel molecular genetic markers in soybean, where the markers are useful, for example, in the marker-assisted selection of gene alleles that impart disease-resistance, thereby allowing the identification and selection of a disease-resistant plant. The markers also find use in positional cloning of disease-resistance genes.

  7. Transfer of Chinese hamster DNA repair gene(s) into repair-deficient human cells (Xeroderma pigmentosum)

    International Nuclear Information System (INIS)

    Karentz, D.; Cleaver, J.E.

    1985-01-01

    Transfer of repair genes by DNA transfection into repair-deficient Xeroderma pigmentosum (XP) cells has thus far been unsuccessful, presenting an obstacle to cloning XP genes. The authors chose an indirect route to transfer repair genes in chromosome fragments. DNA repair-competent (UV resistant) hybrid cell lines were established by PEG-mediated fusions of DNA repair-deficient (UV sensitive) human fibroblasts (XP12RO) with wild type Chinese hamster (CHO) cells (AA8). CHO cells were exposed to 5 Krad X-rays prior to fusions, predisposing hybrid cells to lose CHO chromosome fragments preferentially. Repair-competent hybrids were selected by periodic exposures to UV light. Secondary and tertiary hybrid cell lines were developed by fusion of X-irradiated hybrids to XP12RO. The hybrid cell lines exhibit resistance to UV that is comparable to that of CHO cells and they are proficient at repair replication after UV exposure. Whole cell DNA-DNA hybridizations indicate that the hybrids have greater homology to CHO DNA than is evident between XP12RO and CHO. These observations indicate that CHO DNA sequences which can function in repair of UV-damaged DNA in human cells have been transferred into the genome of the repair-deficient XP12RO cells

  8. Epidemiologic evaluation of Vancomycin Resistant genes in Enterococcus spp. isolated from clinical samples

    Directory of Open Access Journals (Sweden)

    Omid Teymournejad

    2011-09-01

    Full Text Available Background & Objectives: Isolation of vancomycin resistant Enterococcus from clinical samples is very important. The aim of this study was evaluation of phenotype and genotype of van genes in vancomycine resistant Enterococcus. Materials and Methods: 411 Enterococcus isolates were collected from selected Tehran’s hospitals between March 2004 and December 2007. The enterococcal isolates were identified by biochemical confirmation tests. Resistance of each isolate to vancomycin determined by disk diffusion and agar dilution test. The presence of the vanA, B, C, D, E resistance gene was assessed by PCR. Results: 185(45% and 23(5.6% with disc-diffusion method and agar-dilution method were resistant to vancomucin (VRE and all of VREs were Enterococcus faecium. 12 (52.2%, 7(30.4% of the VRE isolates had vanA, vanB and 3(13% had both of vanA and vanB gene. Conclusion: Most important mechanism for high level resistance to vancomycin is presence of van genes and these genes can transfer between Enterococci. Significance of investigation in molecular level of resistance to vancomycin was due to relation between phenotypic resistant and presence of van genes.

  9. Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India

    Directory of Open Access Journals (Sweden)

    Johan eBengtsson-Palme

    2014-12-01

    Full Text Available There is increasing evidence for an environmental origin of many antibiotic resistance genes. Consequently, it is important to identify environments of particular risk for selecting and maintaining such resistance factors. In this study, we described the diversity of antibiotic resistance genes in an Indian lake subjected to industrial pollution with fluoroquinolone antibiotics. We also assessed the genetic context of the identified resistance genes, to try to predict their genetic transferability. The lake harbored a wide range of resistance genes (81 identified gene types against essentially every major class of antibiotics, as well as genes responsible for mobilization of genetic material. Resistance genes were estimated to be 7000 times more abundant than in a Swedish lake included for comparison, where only eight resistance genes were found. The sul2 and qnrD genes were the most common resistance genes in the Indian lake. Twenty-six known and twenty-one putative novel plasmids were recovered in the Indian lake metagenome, which, together with the genes found, indicate a large potential for horizontal gene transfer through conjugation. Interestingly, the microbial community of the lake still included a wide range of taxa, suggesting that, across most phyla, bacteria has adapted relatively well to this highly polluted environment. Based on the wide range and high abundance of known resistance factors we have detected, it is plausible that yet unrecognized resistance genes are also present in the lake. Thus, we conclude that environments polluted with waste from antibiotic manufacturing could be important reservoirs for mobile antibiotic resistance genes.

  10. Systematic inference of highways of horizontal gene transfer in prokaryotes.

    Science.gov (United States)

    Bansal, Mukul S; Banay, Guy; Harlow, Timothy J; Gogarten, J Peter; Shamir, Ron

    2013-03-01

    Horizontal gene transfer (HGT) plays a crucial role in the evolution of prokaryotic species. Typically, no more than a few genes are horizontally transferred between any two species. However, several studies identified pairs of species (or linages) between which many different genes were horizontally transferred. Such a pair is said to be linked by a highway of gene sharing. Inferring such highways is crucial to understanding the evolution of prokaryotes and for inferring past symbiotic and ecological associations among different species. We present a new improved method for systematically detecting highways of gene sharing. As we demonstrate using a variety of simulated datasets, our method is highly accurate and efficient, and robust to noise and high rates of HGT. We further validate our method by applying it to a published dataset of >22 000 gene trees from 144 prokaryotic species. Our method makes it practical, for the first time, to perform accurate highway analysis quickly and easily even on large datasets with high rates of HGT. An implementation of the method can be freely downloaded from: http://acgt.cs.tau.ac.il/hide.

  11. Pollen-mediated gene flow from glyphosate-resistant common waterhemp (Amaranthus rudis Sauer): consequences for the dispersal of resistance genes.

    Science.gov (United States)

    Sarangi, Debalin; Tyre, Andrew J; Patterson, Eric L; Gaines, Todd A; Irmak, Suat; Knezevic, Stevan Z; Lindquist, John L; Jhala, Amit J

    2017-03-22

    Gene flow is an important component in evolutionary biology; however, the role of gene flow in dispersal of herbicide-resistant alleles among weed populations is poorly understood. Field experiments were conducted at the University of Nebraska-Lincoln to quantify pollen-mediated gene flow (PMGF) from glyphosate-resistant (GR) to -susceptible (GS) common waterhemp using a concentric donor-receptor design. More than 130,000 common waterhemp plants were screened and 26,199 plants were confirmed resistant to glyphosate. Frequency of gene flow from all distances, directions, and years was estimated with a double exponential decay model using Generalized Nonlinear Model (package gnm) in R. PMGF declined by 50% at <3 m distance from the pollen source, whereas 90% reduction was found at 88 m (maximum) depending on the direction of the pollen-receptor blocks. Amplification of the target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), was identified as the mechanism of glyphosate resistance in parent biotype. The EPSPS gene amplification was heritable in common waterhemp and can be transferred via PMGF, and also correlated with glyphosate resistance in pseudo-F 2 progeny. This is the first report of PMGF in GR common waterhemp and the results are critical in explaining the rapid dispersal of GR common waterhemp in Midwestern United States.

  12. Quasispecies theory for horizontal gene transfer and recombination

    Science.gov (United States)

    Muñoz, Enrique; Park, Jeong-Man; Deem, Michael W.

    2008-12-01

    We introduce a generalization of the parallel, or Crow-Kimura, and Eigen models of molecular evolution to represent the exchange of genetic information between individuals in a population. We study the effect of different schemes of genetic recombination on the steady-state mean fitness and distribution of individuals in the population, through an analytic field theoretic mapping. We investigate both horizontal gene transfer from a population and recombination between pairs of individuals. Somewhat surprisingly, these nonlinear generalizations of quasispecies theory to modern biology are analytically solvable. For two-parent recombination, we find two selected phases, one of which is spectrally rigid. We present exact analytical formulas for the equilibrium mean fitness of the population, in terms of a maximum principle, which are generally applicable to any permutation invariant replication rate function. For smooth fitness landscapes, we show that when positive epistatic interactions are present, recombination or horizontal gene transfer introduces a mild load against selection. Conversely, if the fitness landscape exhibits negative epistasis, horizontal gene transfer or recombination introduces an advantage by enhancing selection towards the fittest genotypes. These results prove that the mutational deterministic hypothesis holds for quasispecies models. For the discontinuous single sharp peak fitness landscape, we show that horizontal gene transfer has no effect on the fitness, while recombination decreases the fitness, for both the parallel and the Eigen models. We present numerical and analytical results as well as phase diagrams for the different cases.

  13. Origin of the plant Tm-1-like gene via two independent horizontal transfer events and one gene fusion event.

    Science.gov (United States)

    Yang, Zefeng; Liu, Li; Fang, Huimin; Li, Pengcheng; Xu, Shuhui; Cao, Wei; Xu, Chenwu; Huang, Jinling; Zhou, Yong

    2016-09-20

    The Tomato mosaic virus (ToMV) resistance gene Tm-1 encodes a direct inhibitor of ToMV RNA replication to protect tomato from infection. The plant Tm-1-like (Tm-1L) protein is predicted to contain an uncharacterized N-terminal UPF0261 domain and a C-terminal TIM-barrel signal transduction (TBST) domain. Homologous searches revealed that proteins containing both of these two domains are mainly present in charophyte green algae and land plants but absent from glaucophytes, red algae and chlorophyte green algae. Although Tm-1 homologs are widely present in bacteria, archaea and fungi, UPF0261- and TBST-domain-containing proteins are generally encoded by different genes in these linages. A co-evolution analysis also suggested a putative interaction between UPF0261- and TBST-domain-containing proteins. Phylogenetic analyses based on homologs of these two domains revealed that plants have acquired UPF0261- and TBST-domain-encoding genes through two independent horizontal gene transfer (HGT) events before the origin of land plants from charophytes. Subsequently, gene fusion occurred between these two horizontally acquired genes and resulted in the origin of the Tm-1L gene in streptophytes. Our results demonstrate a novel evolutionary mechanism through which the recipient organism may acquire genes with functional interaction through two different HGT events and further fuse them into one functional gene.

  14. Identification and characterization of antibiotic resistance genes in Lactobacillus reuteri and Lactobacillus plantarum.

    Science.gov (United States)

    Egervärn, M; Roos, S; Lindmark, H

    2009-11-01

    The study aimed to identify the resistance genes mediating atypical minimum inhibitory concentrations (MICs) for tetracycline, erythromycin, clindamycin and chloramphenicol within two sets of representative strains of the species Lactobacillus reuteri and Lactobacillus plantarum and to characterize identified genes by means of gene location and sequencing of flanking regions. A tet(W) gene was found in 24 of the 28 Lact. reuteri strains with atypical MIC for tetracycline, whereas four of the six strains with atypical MIC for erythromycin were positive for erm(B) and one strain each was positive for erm(C) and erm(T). The two Lact. plantarum strains with atypical MIC for tetracycline harboured a plasmid-encoded tet(M) gene. The majority of the tet(W)-positive Lact. reuteri strains and all erm-positive Lact. reuteri strains carried the genes on plasmids, as determined by Southern blot and a real-time PCR method developed in this study. Most of the antibiotic-resistant strains of Lact. reuteri and Lact. plantarum harboured known plasmid-encoded resistance genes. Examples of putative transfer machineries adjacent to both plasmid- and chromosome-located resistance genes were also demonstrated. These data provide some of the knowledge required for assessing the possible risk of using Lact. reuteri and Lact. plantarum strains carrying antibiotic resistance genes as starter cultures and probiotics.

  15. Transfer of antibiotic resistance from Enterococcus faecium of fermented meat origin to Listeria monocytogenes and Listeria innocua.

    Science.gov (United States)

    Jahan, M; Holley, R A

    2016-04-01

    Listeria monocytogenes is an important foodborne pathogen that can cause infection in children, pregnant women, the immunocompromised and the elderly. Antibiotic resistance in this species would represent a significant public health problem since the organism has a high fatality/case ratio and resistance may contribute to failure of therapeutic treatment. This study was designed to explore whether the in vitro transferability of antibiotic resistance from enterococci to Listeria spp. could occur. It was found that 2/8 Listeria strains were able to acquire tetracycline resistance from Enterococcus faecium. Listeria monocytogenes GLM-2 acquired the resistance determinant tet(M) and additional streptomycin resistance through in vitro mating with Ent. faecium S27 isolated from commercial fermented dry sausage. Similarly, Listeria innocua became more resistant to tetracycline, but the genetic basis for this change was not confirmed. It has been suggested that enterococci may transfer antibiotic resistance genes via transposons to Listeria spp., and this may explain, in part, the origin of their antibiotic resistance. Thus, the presence of enterococci in food should not be ignored since they may actively contribute to enhanced antibiotic resistance of L. monocytogenes and other pathogens. Acquisition of antibiotic resistance by pathogenic bacteria in the absence of antibiotic pressure represents an unquantified threat to human health. In the present work resistance to tetracycline and streptomycin were transferred by nonplasmid-based conjugation from Enterococcus faecium isolated from fermented sausage to Listeria monocytogenes and Listeria innocua. Thus, natural transfer of antibiotic resistance to Listeria strains may occur in the future which reinforces the concern about the safety of enterococcal strains present in foods. © 2016 The Society for Applied Microbiology.

  16. Diversity of Plasmids and Antimicrobial Resistance Genes in Multidrug-Resistant Escherichia coli Isolated from Healthy Companion Animals.

    Science.gov (United States)

    Jackson, C R; Davis, J A; Frye, J G; Barrett, J B; Hiott, L M

    2015-09-01

    The presence and transfer of antimicrobial resistance genes from commensal bacteria in companion animals to more pathogenic bacteria may contribute to dissemination of antimicrobial resistance. The purpose of this study was to determine antimicrobial resistance gene content and the presence of genetic elements in antimicrobial resistant Escherichia coli from healthy companion animals. In our previous study, from May to August, 2007, healthy companion animals (155 dogs and 121 cats) from three veterinary clinics in the Athens, GA, USA area were sampled and multidrug-resistant E. coli (n = 36; MDR, resistance to ≥ 2 antimicrobial classes) were obtained. Of the 25 different plasmid replicon types tested by PCR, at least one plasmid replicon type was detected in 94% (34/36) of the MDR E. coli; four isolates contained as many as five different plasmid replicons. Nine replicon types (FIA, FIB, FII, I2, A/C, U, P, I1 and HI2) were identified with FIB, FII, I2 as the most common pattern. The presence of class I integrons (intI) was detected in 61% (22/36) of the isolates with eight isolates containing aminoglycoside- and/or trimethoprim-resistance genes in the variable cassette region of intI. Microarray analysis of a subset of the MDR E. coli (n = 9) identified the presence of genes conferring resistance to aminoglycosides (aac, aad, aph and strA/B), β-lactams (ampC, cmy, tem and vim), chloramphenicol (cat), sulfonamides (sulI and sulII), tetracycline [tet(A), tet(B), tet(C), tet(D) and regulator, tetR] and trimethoprim (dfrA). Antimicrobial resistance to eight antimicrobials (ampicillin, cefoxitin, ceftiofur, amoxicillin/clavulanic acid, streptomycin, gentamicin, sulfisoxazole and trimethoprim-sulfamethoxazole) and five plasmid replicons (FIA, FIB, FII, I1 and I2) were transferred via conjugation. The presence of antimicrobial resistance genes, intI and transferable plasmid replicons indicate that E. coli from companion animals may play an important role in the

  17. Detection of Horizontal Gene Transfers from Phylogenetic Comparisons

    Science.gov (United States)

    Pylro, Victor Satler; Vespoli, Luciano de Souza; Duarte, Gabriela Frois; Yotoko, Karla Suemy Clemente

    2012-01-01

    Bacterial phylogenies have become one of the most important challenges for microbial ecology. This field started in the mid-1970s with the aim of using the sequence of the small subunit ribosomal RNA (16S) tool to infer bacterial phylogenies. Phylogenetic hypotheses based on other sequences usually give conflicting topologies that reveal different evolutionary histories, which in some cases may be the result of horizontal gene transfer events. Currently, one of the major goals of molecular biology is to understand the role that horizontal gene transfer plays in species adaptation and evolution. In this work, we compared the phylogenetic tree based on 16S with the tree based on dszC, a gene involved in the cleavage of carbon-sulfur bonds. Bacteria of several genera perform this survival task when living in environments lacking free mineral sulfur. The biochemical pathway of the desulphurization process was extensively studied due to its economic importance, since this step is expensive and indispensable in fuel production. Our results clearly show that horizontal gene transfer events could be detected using common phylogenetic methods with gene sequences obtained from public sequence databases. PMID:22675653

  18. Influence of tra genes of IncP and F plasmids on the mobilization of small Kanamycin resistance ColE1-Like plasmids in bacterial biofilms

    Science.gov (United States)

    Background: Horizontal gene transfer is a mechanism for movement of antibiotic resistance genes among bacteria. Some small kanamycin resistance (KanR) ColE1-like plasmids isolated from different serotypes of Salmonella enterica were shown to carry mobilization genes; although not self-transmissibl...

  19. Conjugation-Mediated Transfer of Antibiotic-Resistance Plasmids Between Enterobacteriaceae in the Digestive Tract of Blaberus craniifer (Blattodea: Blaberidae).

    Science.gov (United States)

    Anacarso, I; Iseppi, R; Sabia, C; Messi, P; Condò, C; Bondi, M; de Niederhäusern, S

    2016-05-01

    Cockroaches, insects of the order Blattodea, seem to play a crucial role in the possible conjugation-mediated genetic exchanges that occur among bacteria that harbor in the cockroach intestinal tract. The gut of these insects can be thought of as an effective in vivo model for the natural transfer of antimicrobial resistance plasmids among bacteria. In our study, we evaluated the conjugation-mediated horizontal transfer of resistance genes between Escherichia coli and other microorganisms of the same Enterobacteriaceae family within the intestinal tract of Blaberus craniifer Burmeister, 1838 (Blattodea: Blaberidae). Different in vivo mating experiments were performed using E. coli RP4 harboring the RP4 plasmid carrying ampicillin, kanamycin, and tetracycline resistance genes as the donor and E. coli K12 resistant to nalidixic acid or Salmonella enterica serovar Enteritidis IMM39 resistant to streptomycin as the recipients. The RP4 plasmid was successfully transferred to both recipients, producing E. coli K12-RP4 and S. Enteritidis IMM39-RP4 transconjugants. Conjugation frequencies in vivo were similar to those previously observed in vitro. The transfer of the RP4 plasmid in all transconjugants was confirmed by small-scale plasmid isolation and agar gel electrophoresis, suggesting that the intestinal tract of cockroaches is an effective in vivo model for natural gene transfer. Our results confirm that cockroaches allow for the exchange of antimicrobial resistance plasmids among bacteria and may represent a potential reservoir for the dissemination of antibiotic-resistant bacteria in different environments. These findings are particularly significant to human health in the context of health care settings such as hospitals. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Introgression of stem rust resistance genes SrTA10187 and SrTA10171 from Aegilops tauschii to wheat.

    Science.gov (United States)

    Olson, Eric L; Rouse, Matthew N; Pumphrey, Michael O; Bowden, Robert L; Gill, Bikram S; Poland, Jesse A

    2013-10-01

    Aegilops tauschii, the diploid progenitor of the wheat D genome, is a readily accessible germplasm pool for wheat breeding as genes can be transferred to elite wheat cultivars through direct hybridization followed by backcrossing. Gene transfer and genetic mapping can be integrated by developing mapping populations during backcrossing. Using direct crossing, two genes for resistance to the African stem rust fungus race TTKSK (Ug99), were transferred from the Ae. tauschii accessions TA10187 and TA10171 to an elite hard winter wheat line, KS05HW14. BC2 mapping populations were created concurrently with developing advanced backcross lines carrying rust resistance. Bulked segregant analysis on the BC2 populations identified marker loci on 6DS and 7DS linked to stem rust resistance genes transferred from TA10187 and TA10171, respectively. Linkage maps were developed for both genes and closely linked markers reported in this study will be useful for selection and pyramiding with other Ug99-effective stem rust resistance genes. The Ae. tauschii-derived resistance genes were temporarily designated SrTA10187 and SrTA10171 and will serve as valuable resources for stem rust resistance breeding.

  1. RNA-Seq analysis reveals candidate genes for ontogenic resistance in Malus-Venturia pathosystem.

    Directory of Open Access Journals (Sweden)

    Michele Gusberti

    Full Text Available Ontogenic scab resistance in apple leaves and fruits is a horizontal resistance against the plant pathogen Venturia inaequalis and is expressed as a decrease in disease symptoms and incidence with the ageing of the leaves. Several studies at the biochemical level tried to unveil the nature of this resistance; however, no conclusive results were reported. We decided therefore to investigate the genetic origin of this phenomenon by performing a full quantitative transcriptome sequencing and comparison of young (susceptible and old (ontogenic resistant leaves, infected or not with the pathogen. Two time points at 72 and 96 hours post-inoculation were chosen for RNA sampling and sequencing. Comparison between the different conditions (young and old leaves, inoculated or not should allow the identification of differentially expressed genes which may represent different induced plant defence reactions leading to ontogenic resistance or may be the cause of a constitutive (uninoculated with the pathogen shift toward resistance in old leaves. Differentially expressed genes were then characterised for their function by homology to A. thaliana and other plant genes, particularly looking for genes involved in pathways already suspected of appertaining to ontogenic resistance in apple or other hosts, or to plant defence mechanisms in general. IN THIS WORK, FIVE CANDIDATE GENES PUTATIVELY INVOLVED IN THE ONTOGENIC RESISTANCE OF APPLE WERE IDENTIFIED: a gene encoding an "enhanced disease susceptibility 1 protein" was found to be down-regulated in both uninoculated and inoculated old leaves at 96 hpi, while the other four genes encoding proteins (metallothionein3-like protein, lipoxygenase, lipid transfer protein, and a peroxidase 3 were found to be constitutively up-regulated in inoculated and uninoculated old leaves. The modulation of the five candidate genes has been validated using the real-time quantitative PCR. Thus, ontogenic resistance may be the result

  2. High-throughput quantification of antibiotic resistance genes from an urban wastewater treatment plant.

    Science.gov (United States)

    Karkman, Antti; Johnson, Timothy A; Lyra, Christina; Stedtfeld, Robert D; Tamminen, Manu; Tiedje, James M; Virta, Marko

    2016-03-01

    Antibiotic resistance among bacteria is a growing problem worldwide, and wastewater treatment plants have been considered as one of the major contributors to the dissemination of antibiotic resistance to the environment. There is a lack of comprehensive quantitative molecular data on extensive numbers of antibiotic resistance genes (ARGs) in different seasons with a sampling strategy that would cover both incoming and outgoing water together with the excess sludge that is removed from the process. In order to fill that gap we present a highly parallel quantitative analysis of ARGs and horizontal gene transfer potential over four seasons at an urban wastewater treatment plant using a high-throughput qPCR array. All analysed transposases and two-thirds of primer sets targeting ARGs were detected in the wastewater. The relative abundance of most of the genes was highest in influent and lower in effluent water and sludge. The resistance profiles of the samples cluster by sample location with a shift from raw influent through the final effluents and dried sludge to the sediments. Wastewater discharge enriched only a few genes, namely Tn25 type transposase gene and clinical class 1 integrons, in the sediment near the discharge pipe, but those enriched genes may indicate a potential for horizontal gene transfer. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes.

    Science.gov (United States)

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Garg, Sriram; Hazkani-Covo, Einat; Martin, William F

    2015-08-18

    Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners--the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)--and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic genes to three single prokaryotic sources, an issue that hinges crucially upon factors influencing phylogenetic inference. In the age of genomes, single-gene trees, once used to test the predictions of endosymbiotic theory, now spawn new theories that stand to eventually replace endosymbiotic theory with descriptive, gene tree-based variants featuring supernumerary symbionts: prokaryotic partners distinct from the cornerstone trio and whose existence is inferred solely from single-gene trees. We reason that the endosymbiotic ancestors of mitochondria and chloroplasts brought into the eukaryotic--and plant and algal--lineage a genome-sized sample of genes from the proteobacterial and cyanobacterial pangenomes of their respective day and that, even if molecular phylogeny were artifact-free, sampling prokaryotic pangenomes through endosymbiotic gene transfer would lead to inherited chimerism. Recombination in prokaryotes (transduction, conjugation, transformation) differs from recombination in eukaryotes (sex). Prokaryotic recombination leads to pangenomes, and eukaryotic recombination leads to vertical inheritance. Viewed from the perspective of endosymbiotic theory, the critical transition at the eukaryote origin that allowed escape from Muller's ratchet--the origin of eukaryotic recombination, or sex--might have required surprisingly little evolutionary innovation.

  4. Virulence, resistance genes, and transformation amongst environmental isolates of Escherichia coli and Acinetobacter spp.

    Science.gov (United States)

    Doughari, Hamuel James; Ndakidemi, Patrick Alois; Human, Izanne Susan; Benade, Spinney

    2012-01-01

    The association of verotoxic E. coli and Acinetobacter spp. with various antibiotic-resistant, diarrhogenic, and nosocomial infections has been a cause for concern worldwide. E. coli and A. haemolyticus isolated on a number of selective media were screened for virulence factors, antibiotic resistance, and transformation of resistance genes. Out of 69 E. coli isolates obtained, 25 (35.23%), 14 (20.30%), and 28 (40.58%) were positive for Vtx1&2, Vtx1, and Vtx2, respectively, 49 (71.015%) for extendedspectrum beta-lactamases (ESBLs), 34 (49.28%) for serum resistance, 57 (82.61%) for cell surface hydrophobicity, 48 (69.57%) for gelatinase production, and 37 (53.62%) for hemolysin production. For the 14 A. haemolyticus isolates, only 2 (14.29%) in each case from all the samples investigated were positive for Vtx1, Vtx2 and Vtx1&2 respectively, 8 (57.14%) for ESBLs, 7 (50.00%) for serum resistance, 11 (78.57%) for cell surface hydrophobicity, 4 (28.57%) for gelatinase production, and 8 (57.14%) for hemolysin production. Although transformation occurred among the E. coli and Acinetobacter isolates (transformation frequency: 13.3 × 10(-7) -53.4(-7)), there was poor curing of the plasmid genes, a confirmation of the presence of stable antibiotic-resistant genes (DNA concentration between 42.7 and 123.8 microgram) and intragenetic transfer of multidrugresistant genes among the isolates. The isolates were potentially virulent and contained potentially transferable antibiotic resistance genes. Detection of virulence factors, antibiotic resistance genes, and transformation among these isolates is a very significant outcome that will influence approaches to proactive preventive and control measures and future investigations. However, continued surveillance for drug resistance among these bacteria and further investigation of the mechanism of action of their virulence factors are a necessity.

  5. Antimicrobial Resistance and Resistance Genes in Aerobic Bacteria Isolated from Pork at Slaughter

    DEFF Research Database (Denmark)

    Li, Lili; Olsen, Rikke Heidemann; Ye, Lei

    2016-01-01

    The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram......-negative bacteria (92.2%) and gram-positive bacteria (7.8%). High levels of resistance were detected to tetracycline, trimethoprim-sulfamethoxazole, and ampicillin (36.2 to 54.3%), and lower levels were detected to nitrofurantoin, cefotaxime, gentamicin, ciprofloxacin, and chloramphenicol (7.8 to 29.2%). Across...... species, genes conferring antimicrobial resistance were observed with the following frequencies: bla TEM, 40.7%; bla CMY-2, 15.2%; bla CTX-M, 11.5%; sul2, 27.2%; sul1, 14.4%; tet(A), 5.4%;tet(L), 5.4%; tet(M), 5.0%; tet(E), 3.7%; tet(C), 3.3%; tet(S), 2.5%; and tet(K), 0.8%. Various antimicrobial...

  6. Hexachlorophene. Secondary microorganism resistance to hexachlorophene. Conjugative transfer inhibition by the R-plasmid-coded resistance by hexachlorophene.

    Science.gov (United States)

    Volná, F

    1982-01-01

    Strain resistance of the genus Escherichia, Salmonella, and Pseudomonas to hexachlorophene is inducible. Secondary resistance of the Gram-negative microorganisms to hexachlorophene is an inherited property of these strains. There are not any explicit differences of primary sensitivity to hexachlorophene between sensitive strains and those resistant to antibiotics. The secondary resistance level of Gram-negative microorganisms to hexachlorophene is also not dependent on the natural resistance (or sensitivity) of strains to antibiotics. Hexachlorophene, in concentration of 10 micrograms/ml of conjugation mixture, causes 100% inhibition of the conjugation transfer of the resistance determinants to antibiotics from tested strains with conjugative R-plasmid. The indirect secondary resistance conjugation transfer to hexachlorophene was verified in two cases. The resistance to hexachlorophene was transferred, coupled with resistance to chloramphenicol, tetracycline, and streptomycin, from the Escherichia coli strains (No. 8) and Salmonella typhimurium (No. 4) to the recipient Escherichia coli strain K 12, SZK-Ec-329/74 (No. 2).

  7. Association between selected antimicrobial resistance genes and antimicrobial exposure in Danish pig farms

    DEFF Research Database (Denmark)

    Birkegård, Anna Camilla; Hisham Beshara Halasa, Tariq; Græsbøll, Kaare

    2017-01-01

    Bacterial antimicrobial resistance (AMR) in pigs is an important public health concern due to its possible transfer to humans. We aimed at quantifying the relationship between the lifetime exposure of antimicrobials and seven antimicrobial resistance genes in Danish slaughter pig farms. AMR gene...... levels were quantified by qPCR of total-community DNA in faecal samples obtained from 681 batches of slaughter pigs. The lifetime exposure to antimicrobials was estimated at batch level for the piglet, weaner, and finisher periods individually for the sampled batches. We showed that the effect...... of antimicrobial exposure on the levels of AMR genes was complex and unique for each individual gene. Several antimicrobial classes had both negative and positive correlations with the AMR genes. From 10-42% of the variation in AMR gene levels could be explained in the final regression models, indicating...

  8. Immunotherapy of Malignancy by in vivo Gene Transfer into Tumors

    Science.gov (United States)

    Plautz, Gregory E.; Yang, Zhi-Yong; Wu, Bei-Yue; Gao, Xiang; Huang, Leaf; Nabel, Gary J.

    1993-05-01

    The immune system confers protection against a variety of pathogens and contributes to the surveillance and destruction of neoplastic cells. Several cell types participate in the recognition and lysis of tumors, and appropriate immune stimulation provides therapeutic effects in malignancy. Foreign major histocompatibility complex (MHC) proteins also serve as a potent stimulus to the immune system. In this report, a foreign MHC gene was introduced directly into malignant tumors in vivo in an effort to stimulate tumor rejection. In contrast to previous attempts to induce tumor immunity by cell-mediated gene transfer, the recombinant gene was introduced directly into tumors in vivo. Expression of the murine class I H-2K^s gene within the CT26 mouse colon adenocarcinoma (H-2K^d) or the MCA 106 fibrosarcoma (H-2K^b) induced a cytotoxic T-cell response to H-2K^s and, more importantly, to other antigens present on unmodified tumor cells. This immune response attenuated tumor growth and caused complete tumor regression in many cases. Direct gene transfer in vivo can therefore induce cell-mediated immunity against specific gene products, which provides an immunotherapeutic effect for malignancy, and potentially can be applied to the treatment of cancer and infectious diseases in man.

  9. Important aspects of placental-specific gene transfer.

    Science.gov (United States)

    Kaufman, Melissa R; Albers, Renee E; Keoni, Chanel; Kulkarni-Datar, Kashmira; Natale, David R; Brown, Thomas L

    2014-10-15

    The placenta is a unique and highly complex organ that develops only during pregnancy and is essential for growth and survival of the developing fetus. The placenta provides the vital exchange of gases and wastes, the necessary nutrients for fetal development, acts as immune barrier that protects against maternal rejection, and produces numerous hormones and growth factors that promote fetal maturity to regulate pregnancy until parturition. Abnormal placental development is a major underlying cause of pregnancy-associated disorders that often result in preterm birth. Defects in placental stem cell propagation, growth, and differentiation are the major factors that affect embryonic and fetal well-being and dramatically increase the risk of pregnancy complications. Understanding the processes that regulate placentation is important in determining the underlying factors behind abnormal placental development. The ability to manipulate genes in a placenta-specific manner provides a unique tool to analyze development and eliminates potentially confounding results that can occur with traditional gene knockouts. Trophoblast stem cells and mouse embryos are not overly amenable to traditional gene transfer techniques. Most viral vectors, however, have a low infection rate and often lead to mosaic transgenesis. Although the traditional method of embryo transfer is intrauterine surgical implantation, the methodology reported here, combining lentiviral blastocyst infection and nonsurgical embryo transfer, leads to highly efficient and placental-specific gene transfer. Numerous advantages of our optimized procedures include increased investigator safety, a reduction in animal stress, rapid and noninvasive embryo transfer, and higher a rate of pregnancy and live birth. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Impact of pre-application treatment on municipal sludge composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest.

    Science.gov (United States)

    Lau, Calvin Ho-Fung; Li, Bing; Zhang, Tong; Tien, Yuan-Ching; Scott, Andrew; Murray, Roger; Sabourin, Lyne; Lapen, David R; Duenk, Peter; Topp, Edward

    2017-06-01

    In many jurisdictions sludge recovered from the sewage treatment process is a valued fertilizer for crop production. Pre-treatment of sewage sludge prior to land application offers the potential to abate enteric microorganisms that carry genes conferring resistance to antibiotics. Pre-treatment practices that accomplish this should have the desirable effect of reducing the risk of contamination of crops or adjacent water with antibiotic resistance genes carried in these materials. In the present study, we obtained municipal sludge that had been subjected to one of five treatments. There were, anaerobic-digestion or aerobic-digestion, in both instances with and without dewatering; and heat-treatment and pelletization. Each of the five types of biosolids was applied to an agricultural field at commercial rates, following which lettuce, carrots and radishes were planted. Based on qPCR, the estimated antibiotic gene loading rates were comparable with each of the five biosolids. However, the gene abundance in soil following application of the pelletized biosolids was anomalously lower than expected. Following application, the abundance of antibiotic resistance genes decreased in a generally coherent fashion, except sul1 which increased in abundance during the growing season in the soil fertilized with pelletized biosolids. Based on qPCR and high throughput sequencing evidence for transfer of antibiotic resistance genes from the biosolids to the vegetables at harvest was weak. Clostridia were more abundant in soils receiving any of the biosolids except the pelletized. Overall, the behavior of antibiotic resistance genes in soils receiving aerobically or anaerobically-digested biosolids was consistent and coherent with previous studies. However, dynamics of antibiotic resistance genes in soils receiving the heat treated pelletized biosolids were very different, and the underlying mechanisms merit investigation. Crown Copyright © 2017. Published by Elsevier B.V. All

  11. Transformation of Cowpea Vigna unguiculata Cells with an Antibiotic Resistance Gene Using a Ti-Plasmid-Derived Vector

    NARCIS (Netherlands)

    Hille, Jacques; Goldbach, Rob

    1986-01-01

    A chimaeric antibiotic resistance gene was transferred to cowpea (Vigna unguiculata), a member of the legume family. This transfer was established by inoculating cowpea leaf discs with an Agrobacterium tumefaciens strain harboring a Ti-plasmid-derived vector that contained two copies of a chimaeric

  12. Occurrence of antibiotic resistance genes in culturable bacteria isolated from Turkish trout farms and their local aquatic environment.

    Science.gov (United States)

    Capkin, Erol; Terzi, Ertugrul; Altinok, Ilhan

    2015-05-21

    Antibiotic resistance and presence of the resistance genes were investigated in the bacteria isolated from water, sediment, and fish in trout farms. A total of 9 bacterial species, particularly Escherichia coli, were isolated from the water and sediment samples, and 12 species were isolated from fish. The antimicrobial test indicated the highest resistance against sulfamethoxazole and ampicillin in coliform bacteria, and against sulfamethoxazole, imipenem, and aztreonam in known pathogenic bacteria isolated from fish. The most effective antibiotics were rifampicin, chloramphenicol, and tetracycline. The multiple antibiotic resistance index was above the critical limit for almost all of the bacteria isolated. The most common antibiotic resistance gene was ampC, followed by tetA, sul2, blaCTX-M1, and blaTEM in the coliform bacteria. At least one resistance gene was found in 70.8% of the bacteria, and 66.6% of the bacteria had 2 or more resistance genes. Approximately 36.54% of the bacteria that contain plasmids were able to transfer them to other bacteria. The plasmid-mediated transferable resistance genes were ampC, blaCTX-M1, tetA, sul2, and blaTEM. These results indicate that the aquatic environment could play an important role in the development of antibiotic resistance and the dissemination of resistance genes among bacteria.

  13. Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics

    Science.gov (United States)

    Berglund, Björn

    2015-01-01

    Antibiotic resistance is a growing problem which threatens modern healthcare globally. Resistance has traditionally been viewed as a clinical problem, but recently non-clinical environments have been highlighted as an important factor in the dissemination of antibiotic resistance genes (ARGs). Horizontal gene transfer (HGT) events are likely to be common in aquatic environments; integrons in particular are well suited for mediating environmental dissemination of ARGs. A growing body of evidence suggests that ARGs are ubiquitous in natural environments. Particularly, elevated levels of ARGs and integrons in aquatic environments are correlated to proximity to anthropogenic activities. The source of this increase is likely to be routine discharge of antibiotics and resistance genes, for example, via wastewater or run-off from livestock facilities and agriculture. While very high levels of antibiotic contamination are likely to select for resistant bacteria directly, the role of sub-inhibitory concentrations of antibiotics in environmental antibiotic resistance dissemination remains unclear. In vitro studies have shown that low levels of antibiotics can select for resistant mutants and also facilitate HGT, indicating the need for caution. Overall, it is becoming increasingly clear that the environment plays an important role in dissemination of antibiotic resistance; further studies are needed to elucidate key aspects of this process. Importantly, the levels of environmental antibiotic contamination at which resistant bacteria are selected for and HGT is facilitated at should be determined. This would enable better risk analyses and facilitate measures for preventing dissemination and development of antibiotic resistance in the environment. PMID:26356096

  14. Improving Adenovirus Based Gene Transfer: Strategies to Accomplish Immune Evasion

    Directory of Open Access Journals (Sweden)

    Andrea Amalfitano

    2010-09-01

    Full Text Available Adenovirus (Ad based gene transfer vectors continue to be the platform of choice for an increasing number of clinical trials worldwide. In fact, within the last five years, the number of clinical trials that utilize Ad based vectors has doubled, indicating growing enthusiasm for the numerous positive characteristics of this gene transfer platform. For example, Ad vectors can be easily and relatively inexpensively produced to high titers in a cGMP compliant manner, can be stably stored and transported, and have a broad applicability for a wide range of clinical conditions, including both gene therapy and vaccine applications. Ad vector based gene transfer will become more useful as strategies to counteract innate and/or pre-existing adaptive immune responses to Ads are developed and confirmed to be efficacious. The approaches attempting to overcome these limitations can be divided into two broad categories: pre-emptive immune modulation of the host, and selective modification of the Ad vector itself. The first category of methods includes the use of immunosuppressive drugs or specific compounds to block important immune pathways, which are known to be induced by Ads. The second category comprises several innovative strategies inclusive of: (1 Ad-capsid-display of specific inhibitors or ligands; (2 covalent modifications of the entire Ad vector capsid moiety; (3 the use of tissue specific promoters and local administration routes; (4 the use of genome modified Ads; and (5 the development of chimeric or alternative serotype Ads. This review article will focus on both the promise and the limitations of each of these immune evasion strategies, and in the process delineate future directions in developing safer and more efficacious Ad-based gene transfer strategies.

  15. Improving adenovirus based gene transfer: strategies to accomplish immune evasion.

    Science.gov (United States)

    Seregin, Sergey S; Amalfitano, Andrea

    2010-09-01

    Adenovirus (Ad) based gene transfer vectors continue to be the platform of choice for an increasing number of clinical trials worldwide. In fact, within the last five years, the number of clinical trials that utilize Ad based vectors has doubled, indicating growing enthusiasm for the numerous positive characteristics of this gene transfer platform. For example, Ad vectors can be easily and relatively inexpensively produced to high titers in a cGMP compliant manner, can be stably stored and transported, and have a broad applicability for a wide range of clinical conditions, including both gene therapy and vaccine applications. Ad vector based gene transfer will become more useful as strategies to counteract innate and/or pre-existing adaptive immune responses to Ads are developed and confirmed to be efficacious. The approaches attempting to overcome these limitations can be divided into two broad categories: pre-emptive immune modulation of the host, and selective modification of the Ad vector itself. The first category of methods includes the use of immunosuppressive drugs or specific compounds to block important immune pathways, which are known to be induced by Ads. The second category comprises several innovative strategies inclusive of: (1) Ad-capsid-display of specific inhibitors or ligands; (2) covalent modifications of the entire Ad vector capsid moiety; (3) the use of tissue specific promoters and local administration routes; (4) the use of genome modified Ads; and (5) the development of chimeric or alternative serotype Ads. This review article will focus on both the promise and the limitations of each of these immune evasion strategies, and in the process delineate future directions in developing safer and more efficacious Ad-based gene transfer strategies.

  16. Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells

    DEFF Research Database (Denmark)

    Haaber, Jakob Krause; Leisner, Jørgen; Cohn, Marianne Thorup

    2016-01-01

    Prophages are quiescent viruses located in the chromosomes of bacteria. In the human pathogen, Staphylococcus aureus, prophages are omnipresent and are believed to be responsible for the spread of some antibiotic resistance genes. Here we demonstrate that release of phages from a subpopulation of S...... of such particles to the prophage-containing population can drive the transfer of genes encoding potentially useful traits such as antibiotic resistance. This process, which can be viewed as ‘auto-transduction’, allows S. aureus to efficiently acquire antibiotic resistance both in vitro and in an in vivo virulence...... model (wax moth larvae) and enables it to proliferate under strong antibiotic selection pressure. Our results may help to explain the rapid exchange of antibiotic resistance genes observed in S. aureus....

  17. [Establishment of 5 resistant ovarian cancer cell strains and expression of resistance-related genes].

    Science.gov (United States)

    Luan, Ying-zi; Li, Li; Li, Dang-rong; Zhang, Wei; Tang, Bu-jian

    2004-06-01

    To investigate expression difference of several drug resistance related genes between sensitive and resistant ovarian carcinoma cells. Cell lines resistant to cisplatin, carboplatin and taxol were established from ovarian carcinoma cell lines of SKOV3 and A2780, and their biological features were detected. The expressions of several genes related to drug resistance were measured by RT-PCR method. (1) The values of resistance index (RI) of resistant cells to relevant drugs were elevated 3 times or more, with different degrees of cross-resistance to several other drugs (RI 2 approximately 20). They grew more slowly than primary cells (Td elongated 1.4 approximately 2.4 times, P 0.05). Intracellular concentrations of relevant drugs were reduced 2.0 approximately 8.5 times in resistant cells (P p53, lung resistance protein-1 (LRP-1), multiple drug resistance related protein-1 (MRP-1) genes were expressed at lower levels in resistant cells than in sensitive cells; while protein kinase C (PKC), topoisomerase (topo) I, and topo II beta were expressed higher, no obvious alterations were found concerning glutathione S transferase-pi (GST-pi), and topo II alpha. Expression of multiple drug resistance-1 (MDR-1) gene was either elevated or reduced in different cells. The expressions of resistance related genes were widely different in different kinds of resistant cells, suggesting more than one pathway leading to resistance transformation. This adds more difficulties for clinical management.

  18. Viridans group streptococci are donors in horizontal transfer of topoisomerase IV genes to Streptococcus pneumoniae.

    Science.gov (United States)

    Balsalobre, Luz; Ferrándiz, María José; Liñares, Josefina; Tubau, Fe; de la Campa, Adela G

    2003-07-01

    A total of 46 ciprofloxacin-resistant (Cip(r)) Streptococcus pneumoniae strains were isolated from 1991 to 2001 at the Hospital of Bellvitge. Five of these strains showed unexpectedly high rates of nucleotide variations in the quinolone resistance-determining regions (QRDRs) of their parC, parE, and gyrA genes. The nucleotide sequence of the full-length parC, parE, and gyrA genes of one of these isolates revealed a mosaic structure compatible with an interspecific recombination origin. Southern blot analysis and nucleotide sequence determinations showed the presence of an ant-like gene in the intergenic parE-parC regions of the S. pneumoniae Cip(r) isolates with high rates of variations in their parE and parC QRDRs. The ant-like gene was absent from typical S. pneumoniae strains, whereas it was present in the intergenic parE-parC regions of the viridans group streptococci (Streptococcus mitis and Streptococcus oralis). These results suggest that the viridans group streptococci are acting as donors in the horizontal transfer of fluoroquinolone resistance genes to S. pneumoniae.

  19. Contribution of Multiple Inter-kingdom Horizontal Gene Transfers to Evolution and Adaptation of Amphibian-killing Chytrid, Batrachochytrium dendrobatidis

    Directory of Open Access Journals (Sweden)

    Baofa Sun

    2016-08-01

    Full Text Available Amphibian populations are experiencing catastrophic declines driven by the fungal pathogen Batrachochytrium dendrobatidis (Bd. Although horizontal gene transfer (HGT facilitates the evolution and adaptation in many fungi by conferring novel function genes to the recipient fungi, inter-kingdom HGT in Bd remains largely unexplored. In this study, our investigation detects 19 bacterial genes transferred to Bd, including metallo-beta-lactamase and arsenate reductase that play important roles in the resistance to antibiotics and arsenates. Moreover, three probable HGT gene families in Bd are from plants and one gene family coding the ankyrin repeat-containing protein appears to come from oomycetes. The observed multi-copy gene families associated with HGT are probably due to the independent transfer events or gene duplications. Five HGT genes with extracellular locations may relate to infection, and some other genes may participate in a variety of metabolic pathways, and in doing so add important metabolic traits to the recipient. The evolutionary analysis indicates that all the transferred genes evolved under purifying selection, suggesting that their functions in Bd are similar to those of the donors. Collectively, our results indicate that HGT from diverse donors may be an important evolutionary driver of Bd, and improve its adaptations for infecting and colonizing host amphibians.

  20. Can Viruses be Modified to Achieve Sustained Gene Transfer?

    Directory of Open Access Journals (Sweden)

    Hildegund CJ Ertl

    2011-07-01

    Full Text Available It is very easy to replace a faulty gene in an immunocompromised mouse. First, one takes a well-characterized virus, such as an adenovirus or an adeno-associated virus, and incorporates the correct version of the faulty gene together with some regulatory sequences into the genome. Then, one transduces the recombinant genome into helper cells, which will add the viral capsid. At last, one injects the resulting viral vector into the sick mouse, and the mouse is cured. It is not that easy in an immunocompetent mouse, let alone in a human, as over the eons the immune system evolved to eliminate viruses regardless if they penetrate as dangerous pathogens or are injected by a well-meaning gene therapist. Here we offer our perspective on the potential of how viral vectors achieve sustained gene transfer in the face of a hostile immune system.

  1. A Lipid Transfer Protein Increases the Glutathione Content and Enhances Arabidopsis Resistance to a Trichothecene Mycotoxin.

    Directory of Open Access Journals (Sweden)

    John E McLaughlin

    Full Text Available Fusarium head blight (FHB or scab is one of the most important plant diseases worldwide, affecting wheat, barley and other small grains. Trichothecene mycotoxins such as deoxynivalenol (DON accumulate in the grain, presenting a food safety risk and health hazard to humans and animals. Despite considerable breeding efforts, highly resistant wheat or barley cultivars are not available. We screened an activation tagged Arabidopsis thaliana population for resistance to trichothecin (Tcin, a type B trichothecene in the same class as DON. Here we show that one of the resistant lines identified, trichothecene resistant 1 (trr1 contains a T-DNA insertion upstream of two nonspecific lipid transfer protein (nsLTP genes, AtLTP4.4 and AtLTP4.5. Expression of both nsLTP genes was induced in trr1 over 10-fold relative to wild type. Overexpression of AtLTP4.4 provided greater resistance to Tcin than AtLTP4.5 in Arabidopsis thaliana and in Saccharomyces cerevisiae relative to wild type or vector transformed lines, suggesting a conserved protection mechanism. Tcin treatment increased reactive oxygen species (ROS production in Arabidopsis and ROS stain was associated with the chloroplast, the cell wall and the apoplast. ROS levels were attenuated in Arabidopsis and in yeast overexpressing AtLTP4.4 relative to the controls. Exogenous addition of glutathione and other antioxidants enhanced resistance of Arabidopsis to Tcin while the addition of buthionine sulfoximine, an inhibitor of glutathione synthesis, increased sensitivity, suggesting that resistance was mediated by glutathione. Total glutathione content was significantly higher in Arabidopsis and in yeast overexpressing AtLTP4.4 relative to the controls, highlighting the importance of AtLTP4.4 in maintaining the redox state. These results demonstrate that trichothecenes cause ROS accumulation and overexpression of AtLTP4.4 protects against trichothecene-induced oxidative stress by increasing the glutathione

  2. Deep sequence analysis reveals the ovine rumen as a reservoir of antibiotic resistance genes.

    Science.gov (United States)

    Hitch, Thomas C A; Thomas, Ben J; Friedersdorff, Jessica C A; Ougham, Helen; Creevey, Christopher J

    2018-04-01

    Antibiotic resistance is an increasingly important environmental pollutant with direct consequences for human health. Identification of environmental sources of antibiotic resistance genes (ARGs) makes it possible to follow their evolution and prevent their entry into the clinical setting. ARGs have been found in environmental sources exogenous to the original source and previous studies have shown that these genes are capable of being transferred from livestock to humans. Due to the nature of farming and the slaughter of ruminants for food, humans interact with these animals in close proximity, and for this reason it is important to consider the risks to human health. In this study, we characterised the ARG populations in the ovine rumen, termed the resistome. This was done using the Comprehensive Antibiotic Resistance Database (CARD) to identify the presence of genes conferring resistance to antibiotics within the rumen. Genes were successfully mapped to those that confer resistance to a total of 30 different antibiotics. Daptomycin was identified as the most common antibiotic for which resistance is present, suggesting that ruminants may be a source of daptomycin ARGs. Colistin resistance, conferred by the gene pmrE, was also found to be present within all samples, with an average abundance of 800 counts. Due to the high abundance of some ARGs (against daptomycin) and the presence of rare ARGs (against colistin), we suggest further study and monitoring of the rumen resistome as a possible source of clinically relevant ARGs. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Source-sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities.

    Science.gov (United States)

    Hall, James P J; Wood, A Jamie; Harrison, Ellie; Brockhurst, Michael A

    2016-07-19

    Horizontal gene transfer is a fundamental process in bacterial evolution that can accelerate adaptation via the sharing of genes between lineages. Conjugative plasmids are the principal genetic elements mediating the horizontal transfer of genes, both within and between bacterial species. In some species, plasmids are unstable and likely to be lost through purifying selection, but when alternative hosts are available, interspecific plasmid transfer could counteract this and maintain access to plasmid-borne genes. To investigate the evolutionary importance of alternative hosts to plasmid population dynamics in an ecologically relevant environment, we established simple soil microcosm communities comprising two species of common soil bacteria, Pseudomonas fluorescens and Pseudomonas putida, and a mercury resistance (Hg(R)) plasmid, pQBR57, both with and without positive selection [i.e., addition of Hg(II)]. In single-species populations, plasmid stability varied between species: although pQBR57 survived both with and without positive selection in P. fluorescens, it was lost or replaced by nontransferable Hg(R) captured to the chromosome in P. putida A simple mathematical model suggests these differences were likely due to pQBR57's lower intraspecific conjugation rate in P. putida By contrast, in two-species communities, both models and experiments show that interspecific conjugation from P. fluorescens allowed pQBR57 to persist in P. putida via source-sink transfer dynamics. Moreover, the replacement of pQBR57 by nontransferable chromosomal Hg(R) in P. putida was slowed in coculture. Interspecific transfer allows plasmid survival in host species unable to sustain the plasmid in monoculture, promoting community-wide access to the plasmid-borne accessory gene pool and thus potentiating future evolvability.

  4. Characterization of antimicrobial resistance genes in Haemophilus parasuis isolated from pigs in China.

    Science.gov (United States)

    Zhao, Yongda; Guo, Lili; Li, Jie; Huang, Xianhui; Fang, Binghu

    2018-01-01

    Haemophilus parasuis is a common porcine respiratory pathogen that causes high rates of morbidity and mortality in farmed swine. We performed a molecular characterization of antimicrobial resistance genes harbored by H. parasuis from pig farms in China. We screened 143 H. parasuis isolates for antimicrobial susceptibility against six fluoroquinolone antibiotics testing by the broth microdilution method, and the presence of 64 antimicrobial resistance genes by PCR amplification and DNA sequence analysis. We determined quinolone resistance determining region mutations of DNA gyrase ( gyrA and gyrB ) and topoisomerase IV ( parC and parE ). The genetic relatedness among the strains was analyzed by pulsed-field gel electrophoresis. Susceptibility test showed that all isolates were low resistance to lomefloxacin (28.67%), levofloxacin (20.28%), norfloxacin (22.38%), ciprofloxacin (23.78%), however, high resistance levels were found to nalidixic acid (82.52%) and enrofloxacin (55.94%). In addition, we found 14 antimicrobial resistance genes were present in these isolates, including bla TEM-1 , bla ROB-1 , ermB, ermA, flor, catl, tetB, tetC, rmtB, rmtD, aadA1, aac(3')-llc, sul1, and sul2 genes. Interestingly, one isolate carried five antibiotic resistance genes ( tetB, tetC, flor, rmtB, sul1 ). The genes tetB , rmtB, and flor were the most prevalent resistance genes in H. parasuis in China. Alterations in the gyrA gene (S83F/Y, D87Y/N/H/G) were detected in 81% of the strains and parC mutations were often accompanied by a gyrA mutation. Pulsed-field gel electrophoresis typing revealed 51 unique patterns in the isolates carrying high-level antibiotic resistance genes, indicating considerable genetic diversity and suggesting that the genes were spread horizontally. The current study demonstrated that the high antibiotic resistance of H. parasuis in piglets is a combination of transferable antibiotic resistance genes and multiple target gene mutations. These data provide novel

  5. Abundance of antibiotic resistance genes in environmental bacteriophages.

    Science.gov (United States)

    Anand, Taruna; Bera, Bidhan Ch; Vaid, Rajesh K; Barua, Sanjay; Riyesh, Thachamvally; Virmani, Nitin; Hussain, Mubarik; Singh, Raj K; Tripathi, Bhupendra N

    2016-12-01

    The ecosystem is continuously exposed to a wide variety of antimicrobials through waste effluents, agricultural run-offs and animal-related and anthropogenic activities, which contribute to the spread of antibiotic resistance genes (ARGs). The contamination of ecosystems with ARGs may create increased opportunities for their transfer to naive microbes and eventually lead to entry into the human food chain. Transduction is a significant mechanism of horizontal gene transfer in natural environments, which has traditionally been underestimated as compared to transformation. We explored the presence of ARGs in environmental bacteriophages in order to recognize their contribution in the spread of ARGs in environmental settings. Bacteriophages were isolated against environmental bacterial isolates, purified and bulk cultured. They were characterized, and detection of ARG and intI genes including blaTEM, blaOXA-2, intI1, intI2, intI3, tetA and tetW was carried out by PCR. This study revealed the presence of various genes [tetA (12.7 %), intI1 (10.9 %), intI2 (10.9 %), intI3 (9.1 %), tetW (9.1 %) and blaOXA-2 (3.6 %)] and blaTEM in a significantly higher proportion (30.9 %). blaSHV, blaOXA-1, tetO, tetB, tetG, tetM and tetS were not detected in any of the phages. Soil phages were the most versatile in terms of ARG carriage. Also, the relative abundance of tetA differed significantly vis-à-vis source. The phages from organized farms showed varied ARGs as compared to the unorganized sector, although blaTEM ARG incidences did not differ significantly. The study reflects on the role of phages in dissemination of ARGs in environmental reservoirs, which may provide an early warning system for future clinically relevant resistance mechanisms.

  6. Tetracycline Resistance Genes Identified from Distinct Soil Environments in China by Functional Metagenomics.

    Science.gov (United States)

    Wang, Shaochen; Gao, Xia; Gao, Yuejiao; Li, Yanqing; Cao, Mingming; Xi, Zhenhua; Zhao, Lixing; Feng, Zhiyang

    2017-01-01

    Soil microbiota represents one of the ancient evolutionary origins of antibiotic resistance and has been increasingly recognized as a potentially vast unstudied reservoir of resistance genes with possibilities to exchange with pathogens. Tetracycline resistance is one of the most abundant antibiotic resistances that may transfer among clinical and commensal microorganisms. To investigate tetracycline resistance genes from soil bacteria in different habitats, we performed functional analysis of three metagenomic libraries derived from soil samples collected from Yunnan, Sichuan, and Tibet, respectively, in China. We found efflux transporter genes form all the libraries, including 21 major facilitator superfamily efflux pump genes and one multidrug and toxic compound extrusion (MATE) transporter gene. Interestingly, we also identified two tetracycline destructase genes, belonging to a newly described family of tetracycline-inactivating enzymes that scarcely observed in clinical pathogens, from the Tibet library. The inactivation activity of the putative enzyme was confirmed in vitro by biochemical analysis. Our results indicated that efflux pumps distributed predominantly across habitats. Meanwhile, the mechanism of enzymatic inactivation for tetracycline resistance should not be neglected and merits further investigation.

  7. Tetracycline Resistance Genes Identified from Distinct Soil Environments in China by Functional Metagenomics

    Directory of Open Access Journals (Sweden)

    Shaochen Wang

    2017-07-01

    Full Text Available Soil microbiota represents one of the ancient evolutionary origins of antibiotic resistance and has been increasingly recognized as a potentially vast unstudied reservoir of resistance genes with possibilities to exchange with pathogens. Tetracycline resistance is one of the most abundant antibiotic resistances that may transfer among clinical and commensal microorganisms. To investigate tetracycline resistance genes from soil bacteria in different habitats, we performed functional analysis of three metagenomic libraries derived from soil samples collected from Yunnan, Sichuan, and Tibet, respectively, in China. We found efflux transporter genes form all the libraries, including 21 major facilitator superfamily efflux pump genes and one multidrug and toxic compound extrusion (MATE transporter gene. Interestingly, we also identified two tetracycline destructase genes, belonging to a newly described family of tetracycline-inactivating enzymes that scarcely observed in clinical pathogens, from the Tibet library. The inactivation activity of the putative enzyme was confirmed in vitro by biochemical analysis. Our results indicated that efflux pumps distributed predominantly across habitats. Meanwhile, the mechanism of enzymatic inactivation for tetracycline resistance should not be neglected and merits further investigation.

  8. Characterization of an ancient lepidopteran lateral gene transfer.

    Directory of Open Access Journals (Sweden)

    David Wheeler

    Full Text Available Bacteria to eukaryote lateral gene transfers (LGT are an important potential source of material for the evolution of novel genetic traits. The explosion in the number of newly sequenced genomes provides opportunities to identify and characterize examples of these lateral gene transfer events, and to assess their role in the evolution of new genes. In this paper, we describe an ancient lepidopteran LGT of a glycosyl hydrolase family 31 gene (GH31 from an Enterococcus bacteria. PCR amplification between the LGT and a flanking insect gene confirmed that the GH31 was integrated into the Bombyx mori genome and was not a result of an assembly error. Database searches in combination with degenerate PCR on a panel of 7 lepidopteran families confirmed that the GH31 LGT event occurred deep within the Order approximately 65-145 million years ago. The most basal species in which the LGT was found is Plutella xylostella (superfamily: Yponomeutoidea. Array data from Bombyx mori shows that GH31 is expressed, and low dN/dS ratios indicates the LGT coding sequence is under strong stabilizing selection. These findings provide further support for the proposition that bacterial LGTs are relatively common in insects and likely to be an underappreciated source of adaptive genetic material.

  9. Microarray-based Detection of Antibiotic Resisteance Genes in Salmonella

    NARCIS (Netherlands)

    Hoek, van A.H.A.M.; Aarts, H.J.M.

    2008-01-01

    In the presented study, 143 Salmonella isolates belonging to 26 different serovars were screened for the presence of antibiotic resistance genes by microarray analysis. The microarray contained a total of 223 oligonucleotides representing genes encoding for resistance to the following antibiotic

  10. Gene interactions and genetics of blast resistance and yield ...

    Indian Academy of Sciences (India)

    2016-08-26

    Oryza sativa L.) ... four blast resistance genes Pi1, Pi2, Pi33 and Pi54 in combination were used to study the nature and magnitude of gene action for disease resistance and yield attributes. ... Please take note of this change.

  11. Molecular detection of disease resistance genes to powdery mildew ...

    African Journals Online (AJOL)

    A study was conducted to detect the presence of disease resistance genes to infection of wheat powdery mildew (Blumeria graminis f. sp. tritici) in selected wheat cultivars from China using molecular markers. Genomic DNA of sixty cultivars was extracted and tested for the presence of selected prominent resistance genes to ...

  12. Codon-optimized antibiotic resistance gene improves efficiency of ...

    Indian Academy of Sciences (India)

    Success rate of transient transformation and cell growth in selective culture were significantly increased by use of fgmR instead of a native gentamicin resistance gene, suggesting that codon optimization improved translation efficiency of the marker gene and increased antibiotic resistance. Our result shows that similarity in ...

  13. Mapping of stripe rust resistance gene in an Aegilops caudata ...

    Indian Academy of Sciences (India)

    Genetic mapping indicated the introgression of stripe rust resistance gene on wheat chromosome. 5DS in the region carrying leaf rust resistance gene LrAc, but as an independent introgression. Simple sequence repeat (SSR) and sequence-tagged site (STS) markers designed from the survey sequence data of 5DS ...

  14. Genome scanning for identification of resistance gene analogs (RGAs)

    African Journals Online (AJOL)

    Disease resistance in plants is a desirable economic trait. Many disease resistance genes from various plants have been cloned so far. The gene products of some of these can be distinguished by the presence of an N terminal nucleotide binding site and a C-terminal stretch of leucine-rich repeats. Oligonucleotides already ...

  15. [Research progress in sperm mediated gene transfer technology].

    Science.gov (United States)

    Hao, Xiaoxiong; Zhu, Zheng; Cao, Mianfu; Li, Chengren; Lin, Yunlai

    2013-04-01

    With the rapid development of biotechnology, we can change the trait of organism using transgenetic technology. In recent years, there are growing interests in the establishment of sperm mediated gene transfer (SMGT) technology as an effective and convenient method to produce transgenic animals. SMGT technology is a transgenetic method, which is easy in operation and does little harm to the cell compared with the other transgenetic methods. In this review, we expound the background, development, mechanism, operation and application of SMGT.

  16. Transfer and Persistence of a Multi-Drug Resistance Plasmid in situ of the Infant Gut Microbiota in the Absence of Antibiotic Treatment

    DEFF Research Database (Denmark)

    Gumpert, Heidi; Kubicek-Sutherland, Jessica Z; Porse, Andreas

    2017-01-01

    advantage in the mouse gut in spite of a fitness cost in vitro. Our findings highlight the dynamic nature of the human gut microbiota and provide the first genomic description of antibiotic resistance gene transfer between bacteria in the unperturbed human gut. These results exemplify that conjugative...... infections, as well as the loss and acquisition of plasmids in these lineages during their colonization of the human gut. In particular, we captured the exchange of multidrug resistance genes, and identified a clinically relevant conjugative plasmid mediating the transfer. This resistant transconjugant...

  17. New resistance genes in the Zea mays: exserohilum turcicum pathosystem

    Directory of Open Access Journals (Sweden)

    Juliana Bernardi Ogliari

    2005-09-01

    Full Text Available The use of monogenic race-specific resistance is widespread for the control of maize (Zea mays L. helminthosporiosis caused by Exserohilum turcicum. Inoculation of 18 Brazilian isolates of E. turcicum onto elite maize lines containing previously identified resistance genes and onto differential near-isogenic lines allowed the identification of new qualitative resistance genes. The inoculation of one selected isolate on differential near-isogenic lines, F1 generations and a BC1F1 population from the referred elite lines enabled the characterization of the resistance spectrum of three new genes, one dominant (HtP, one recessive (rt and a third with non-identified genetic action. Three physiological races of the pathogen were also identified including two with new virulence factors capable of overcoming the resistance of one of the resistance genes identified here (rt.

  18. Differences in lateral gene transfer in hypersaline versus thermal environments.

    Science.gov (United States)

    Rhodes, Matthew E; Spear, John R; Oren, Aharon; House, Christopher H

    2011-07-08

    The role of lateral gene transfer (LGT) in the evolution of microorganisms is only beginning to be understood. While most LGT events occur between closely related individuals, inter-phylum and inter-domain LGT events are not uncommon. These distant transfer events offer potentially greater fitness advantages and it is for this reason that these "long distance" LGT events may have significantly impacted the evolution of microbes. One mechanism driving distant LGT events is microbial transformation. Theoretically, transformative events can occur between any two species provided that the DNA of one enters the habitat of the other. Two categories of microorganisms that are well-known for LGT are the thermophiles and halophiles. We identified potential inter-class LGT events into both a thermophilic class of Archaea (Thermoprotei) and a halophilic class of Archaea (Halobacteria). We then categorized these LGT genes as originating in thermophiles and halophiles respectively. While more than 68% of transfer events into Thermoprotei taxa originated in other thermophiles, less than 11% of transfer events into Halobacteria taxa originated in other halophiles. Our results suggest that there is a fundamental difference between LGT in thermophiles and halophiles. We theorize that the difference lies in the different natures of the environments. While DNA degrades rapidly in thermal environments due to temperature-driven denaturization, hypersaline environments are adept at preserving DNA. Furthermore, most hypersaline environments, as topographical minima, are natural collectors of cellular debris. Thus halophiles would in theory be exposed to a greater diversity and quantity of extracellular DNA than thermophiles.

  19. Selective Gene Transfer to the Retina Using Intravitreal Ultrasound Irradiation

    Directory of Open Access Journals (Sweden)

    Shozo Sonoda

    2012-01-01

    Full Text Available This paper aims to evaluate the efficacy of intravitreal ultrasound (US irradiation for green fluorescent protein (GFP plasmid transfer into the rabbit retina using a miniature US transducer. Intravitreal US irradiation was performed by a slight modification of the transconjunctival sutureless vitrectomy system utilizing a small probe. After vitrectomy, the US probe was inserted through a scleral incision. A mixture of GFP plasmid (50 μL and bubble liposomes (BLs; 50 μL was injected into the vitreous cavity, and US was generated to the retina using a SonoPore 4000. The control group was not exposed to US. After 72 h, the gene-transfer efficiency was quantified by counting the number of GFP-positive cells. The retinas that received plasmid, BL, and US showed a significant increase in the number (average ± SEM of GFP-positive cells (32±4.9; n=7; P<0.01 . No GFP-positive cells were observed in the control eyes (n=7. Intravitreal retinal US irradiation can transfer the GFP plasmid into the retina without causing any apparent damage. This procedure could be used to transfer genes and drugs directly to the retina and therefore has potential therapeutic value.

  20. Occurrence of integrons and resistance genes among sulphonamide-resistant Shigella spp. from Brazil

    DEFF Research Database (Denmark)

    Peirano, G.; Agersø, Yvonne; Aarestrup, Frank Møller

    2005-01-01

    Objectives: To determine the occurrence of class 1 and 2 integrons and antimicrobial resistance genes among sulphonamide-resistant Shigella strains isolated in Brazil during 1999-2003. Methods: Sixty-two Shigella (Shigella flexneri, n = 47 and Shigella sonnei, n = 15) were tested against 21....... Conclusions: The detection of class 1 and 2 integrons and additional antimicrobial resistance genes allowed us to identify the most frequent antimicrobial resistance patterns of Shigella spp. isolated in Brazil....

  1. A study on the role that quorum sensing play in antibiotic-resistant plasmid conjugative transfer in Escherichia coli.

    Science.gov (United States)

    Zhang, Yueheng; Ma, Qingping; Su, Bingmei; Chen, Rui; Lin, Juan; Lin, Zhifen; Wang, Dali; Yu, Yang

    2018-03-01

    Horizontal genes transfer (HGT) plays an important role in the dissemination of antibiotic resistance genes (ARGs) in the environment. However, the mechanisms of HGT of ARGs under the influence of antibiotics in sub-MIC remain rarely explored. Moreover, given its collective nature, HGT was considered to be relative to quorum sensing (QS) system. To investigate whether QS has any impact on horizontal gene transfer of ARGs, experiments were conducted to determine the conjugative efficiency of plasmid RP4 on Escherichia coli (E.coli) under the influences of tetracyclines (TCs), quorum sensing autoinducers (AIs) and quorum sensing inhibitors (QSIs). The results indicated that the sub-MIC TCs could facilitate the conjugative transfer of RP4, a process which could be enhanced by AIs but inhibited by QSIs. This study demonstrated the roles that QS played in the dissemination of ARGs, and provided theoretical insights into the mechanism of HGT of ARGs in the environment.

  2. Barley Stem Rust Resistance Genes: Structure and Function

    Directory of Open Access Journals (Sweden)

    Andris Kleinhofs

    2009-07-01

    Full Text Available Rusts are biotrophic pathogens that attack many plant species but are particularly destructive on cereal crops. The stem rusts (caused by have historically caused severe crop losses and continue to threaten production today. Barley ( L. breeders have controlled major stem rust epidemics since the 1940s with a single durable resistance gene . As new epidemics have threatened, additional resistance genes were identified to counter new rust races, such as the complex locus against races QCCJ and TTKSK. To understand how these genes work, we initiated research to clone and characterize them. The gene encodes a unique protein kinase with dual kinase domains, an active kinase, and a pseudokinase. Function of both domains is essential to confer resistance. The and genes are closely linked and function coordinately to confer resistance to several wheat ( L. stem rust races, including the race TTKSK (also called Ug99 that threatens the world's barley and wheat crops. The gene encodes typical resistance gene domains NBS, LRR, and protein kinase but is unique in that all three domains reside in a single gene, a previously unknown structure among plant disease resistance genes. The gene encodes an actin depolymerizing factor that functions in cytoskeleton rearrangement.

  3. Sequence diversities of serine-aspartate repeat genes among Staphylococcus aureus isolates from different hosts presumably by horizontal gene transfer.

    Directory of Open Access Journals (Sweden)

    Huping Xue

    Full Text Available BACKGROUND: Horizontal gene transfer (HGT is recognized as one of the major forces for bacterial genome evolution. Many clinically important bacteria may acquire virulence factors and antibiotic resistance through HGT. The comparative genomic analysis has become an important tool for identifying HGT in emerging pathogens. In this study, the Serine-Aspartate Repeat (Sdr family has been compared among different sources of Staphylococcus aureus (S. aureus to discover sequence diversities within their genomes. METHODOLOGY/PRINCIPAL FINDINGS: Four sdr genes were analyzed for 21 different S. aureus strains and 218 mastitis-associated S. aureus isolates from Canada. Comparative genomic analyses revealed that S. aureus strains from bovine mastitis (RF122 and mastitis isolates in this study, ovine mastitis (ED133, pig (ST398, chicken (ED98, and human methicillin-resistant S. aureus (MRSA (TCH130, MRSA252, Mu3, Mu50, N315, 04-02981, JH1 and JH9 were highly associated with one another, presumably due to HGT. In addition, several types of insertion and deletion were found in sdr genes of many isolates. A new insertion sequence was found in mastitis isolates, which was presumably responsible for the HGT of sdrC gene among different strains. Moreover, the sdr genes could be used to type S. aureus. Regional difference of sdr genes distribution was also indicated among the tested S. aureus isolates. Finally, certain associations were found between sdr genes and subclinical or clinical mastitis isolates. CONCLUSIONS: Certain sdr gene sequences were shared in S. aureus strains and isolates from different species presumably due to HGT. Our results also suggest that the distributional assay of virulence factors should detect the full sequences or full functional regions of these factors. The traditional assay using short conserved regions may not be accurate or credible. These findings have important implications with regard to animal husbandry practices that may

  4. Complex Interactions between Fungal Avirulence Genes and Their Corresponding Plant Resistance Genes and Consequences for Disease Resistance Management

    Directory of Open Access Journals (Sweden)

    Yohann Petit-Houdenot

    2017-06-01

    Full Text Available During infection, pathogens secrete an arsenal of molecules, collectively called effectors, key elements of pathogenesis which modulate innate immunity of the plant and facilitate infection. Some of these effectors can be recognized directly or indirectly by resistance (R proteins from the plant and are then called avirulence (AVR proteins. This recognition usually triggers defense responses including the hypersensitive response and results in resistance of the plant. R—AVR gene interactions are frequently exploited in the field to control diseases. Recently, the availability of fungal genomes has accelerated the identification of AVR genes in plant pathogenic fungi, including in fungi infecting agronomically important crops. While single AVR genes recognized by their corresponding R gene were identified, more and more complex interactions between AVR and R genes are reported (e.g., AVR genes recognized by several R genes, R genes recognizing several AVR genes in distinct organisms, one AVR gene suppressing recognition of another AVR gene by its corresponding R gene, two cooperating R genes both necessary to recognize an AVR gene. These complex interactions were particularly reported in pathosystems showing a long co-evolution with their host plant but could also result from the way agronomic crops were obtained and improved (e.g., through interspecific hybridization or introgression of resistance genes from wild related species into cultivated crops. In this review, we describe some complex R—AVR interactions between plants and fungi that were recently reported and discuss their implications for AVR gene evolution and R gene management.

  5. Mapping of stripe rust resistance gene in an Aegilops caudata ...

    Indian Academy of Sciences (India)

    PUNEET INDER TOOR

    end of 5DS linked with a group of four colocated SSRs and two resistance gene analogue (RGA)-STS markers at a distance of 5.3 cM. ... and LrAc appear to be the candidate genes for marker-assisted enrichment of the wheat gene pool for rust resistance. [Toor P. I., Kaur S., Bansal ..... stocks with reduced alien chromatin.

  6. Radiation improves gene transfer into human ovarian carcinoma cells

    International Nuclear Information System (INIS)

    Canaday, Daniel; Zeng Ming; Cerniglia, George; Stevens, Craig W.

    1997-01-01

    Purpose/Objective: Poor gene transfer is the major stumbling block to successful gene therapy today. We hypothesized that ionizing radiation might activate cellular recombination, and so improve stable gene transfer. During studies to quantitate radiation activated recombination, we also found that both plasmid and adenoviral vector transduction could be increased by irradiation. The studies presented here describe the effects of irradiation on gene transduction efficiency (both transient and stable transduction) in several human ovarian carcinoma lines, as a prelude to in vivo animal studies. Materials and Methods: The effect of irradiation on stable gene transfer efficiency was determined in human ovarian carcinoma cell lines (SKOV3, CAOV3 and PA1). Either irradiated or unirradiated cells were transfected with pRSVZ plasmid (containing a LacZ expression cassette) in either the supercoiled and linearized (XmnI) forms and β-galactosidase expression followed with time. Transfection efficiency was measured by flow cytometry following FDG staining at 0, 48, and 96 hours after irradiation. FDG is converted to a fluorescent metabolite by LacZ, and thus reflects the transfection efficiency of the LacZ containing vector. Vector quantitation was also performed by southern hybridization. Stable transduction efficiency was measured 14 -35 days after irradiation. Optimization of the time of irradiation with respect to transfection was performed. Since cells demonstrated increased stable recombination for as long as 96 hours after irradiation, continuous low dose rate and multiple radiation fractions were also tested. These experiments were repeated using the Ad5CMVlacZ. Dividing cells were exposed to Ad5CMVlacZ at an MOI of 0.1,1,5,10 and 100 to determine optimum transfection concentration. Transduction efficiency was again measured at various intervals to determine the radiation dose and interval post transfection which provides the maximum increase in transfection

  7. Prevalence of tetracycline resistance genes among multi-drug resistant bacteria from selected water distribution systems in southwestern Nigeria.

    Science.gov (United States)

    Adesoji, Ayodele T; Ogunjobi, Adeniyi A; Olatoye, Isaac O; Call, Douglas R; Douglas, Douglas R

    2015-06-25

    Antibiotic resistance genes [ARGs] in aquatic systems have drawn increasing attention they could be transferred horizontally to pathogenic bacteria. Water treatment plants (WTPs) are intended to provide quality and widely available water to the local populace they serve. However, WTPs in developing countries may not be dependable for clean water and they could serve as points of dissemination for antibiotic resistant bacteria. Only a few studies have investigated the occurrence of ARGs among these bacteria including tetracycline resistance genes in water distribution systems in Nigeria. Multi-drug resistant (MDR) bacteria, including resistance to tetracycline, were isolated from treated and untreated water distribution systems in southwest Nigeria. MDR bacteria were resistant to >3 classes of antibiotics based on break-point assays. Isolates were characterized using partial 16S rDNA sequencing and PCR assays for six tetracycline-resistance genes. Plasmid conjugation was evaluated using E. coli strain DH5α as the recipient strain. Out of the 105 bacteria, 85 (81 %) and 20 (19 %) were Gram- negative or Gram- positive, respectively. Twenty-nine isolates carried at least one of the targeted tetracycline resistance genes including strains of Aeromonas, Alcaligenes, Bacillus, Klebsiella, Leucobacter, Morganella, Proteus and a sequence matching a previously uncultured bacteria. Tet(A) was the most prevalent (16/29) followed by tet(E) (4/29) and tet30 (2/29). Tet(O) was not detected in any of the isolates. Tet(A) was mostly found with Alcaligenes strains (9/10) and a combination of more than one resistance gene was observed only amongst Alcaligenes strains [tet(A) + tet30 (2/10), tet(A) + tet(E) (3/10), tet(E) + tet(M) (1/10), tet(E) + tet30 (1/10)]. Tet(A) was transferred by conjugation for five Alcaligenes and two E. coli isolates. This study found a high prevalence of plasmid-encoded tet(A) among Alcaligenes isolates, raising the possibility that this

  8. Occurrence of transferable antibiotic resistances in commercialized ready-to-eat mealworms (Tenebrio molitor L.).

    Science.gov (United States)

    Osimani, Andrea; Cardinali, Federica; Aquilanti, Lucia; Garofalo, Cristiana; Roncolini, Andrea; Milanović, Vesna; Pasquini, Marina; Tavoletti, Stefano; Clementi, Francesca

    2017-12-18

    The present study aimed to assess the occurrence of transferable determinants conferring resistance to tetracyclines, macrolide-lincosamide-streptogramin B, vancomycin, beta-lactams, and aminoglycosides in 40 samples of commercialized edible mealworms (Tenebrio molitor L.) purchased from European Union (EU) and non-EU producers. A high prevalence of tet(K) was observed in all of the samples assayed, with percentages of PCR-based positivity that ranged from 80% (samples from Thailand) to 100% (samples from the Netherlands, Belgium and France). For macrolides, erm(B) prevailed, being detected in 57.5% of the samples assayed, whereas erm(A) and erm(C) were detected with lower frequencies. Genes for resistance to vancomycin were only detected in samples produced in France and Belgium, with 90% and 10% of the samples being positive for vanA, respectively. Beta-lactamase genes were found with low occurrence, whereas the gene aac-aph, conferring high resistance to aminoglycosides, was found in 40% of the samples produced in the Netherlands and Belgium and 20% of the samples produced in Thailand. The results of Principal Coordinate Analysis and Principal Component Analysis depicted a clean separation of the samples collected from the four producers based on the distribution of the 12 AR determinants considered. Given the growing interest on the use of mealworms as a novel protein source, AR detection frequencies found in the present study suggest further investigation into the use of antibiotics during rearing of this insect species and more extensive studies focused on the factors that can affect the diffusion of transferable ARs in the production chain. Until such studies are completed, prudent use of antibiotics during rearing of edible insects is recommended. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Horizontal Gene Transfer Contributes to the Evolution of Arthropod Herbivory.

    Science.gov (United States)

    Wybouw, Nicky; Pauchet, Yannick; Heckel, David G; Van Leeuwen, Thomas

    2016-06-27

    Within animals, evolutionary transition toward herbivory is severely limited by the hostile characteristics of plants. Arthropods have nonetheless counteracted many nutritional and defensive barriers imposed by plants and are currently considered as the most successful animal herbivores in terrestrial ecosystems. We gather a body of evidence showing that genomes of various plant feeding insects and mites possess genes whose presence can only be explained by horizontal gene transfer (HGT). HGT is the asexual transmission of genetic information between reproductively isolated species. Although HGT is known to have great adaptive significance in prokaryotes, its impact on eukaryotic evolution remains obscure. Here, we show that laterally transferred genes into arthropods underpin many adaptations to phytophagy, including efficient assimilation and detoxification of plant produced metabolites. Horizontally acquired genes and the traits they encode often functionally diversify within arthropod recipients, enabling the colonization of more host plant species and organs. We demonstrate that HGT can drive metazoan evolution by uncovering its prominent role in the adaptations of arthropods to exploit plants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Aberrant mRNA processing of the maize Rp1-D rust resistance gene in wheat and barley.

    Science.gov (United States)

    Ayliffe, Michael A; Steinau, Martin; Park, Robert F; Rooke, Lee; Pacheco, Maria G; Hulbert, Scot H; Trick, Harold N; Pryor, Anthony J

    2004-08-01

    The maize Rp1-D gene confers race-specific resistance against Puccinia sorghi (common leaf rust) isolates containing a corresponding avrRp1-D avirulence gene. An Rp1-D genomic clone and a similar Rp1-D transgene regulated by the maize ubiquitin promoter were transformed independently into susceptible maize lines and shown to confer Rp1-D resistance, demonstrating that this resistance can be transferred as a single gene. Transfer of these functional transgenes into wheat and barley did not result in novel resistances when these plants were challenged with isolates of wheat stem rust (P. graminis), wheat leaf rust (P. triticina), or barley leaf rust (P. hordei). Regardless of the promoter employed, low levels of gene expression were observed. When constitutive promoters were used for transgene expression, a majority of Rp1-D transcripts were truncated in the nucleotide binding site-encoding region by premature polyadenylation. This aberrant mRNA processing was unrelated to gene function because an inactive version of the gene also generated such transcripts. These data demonstrate that resistance gene transfer between species may not be limited only by divergence of signaling effector molecules and pathogen avirulence ligands, but potentially also by more fundamental gene expression and transcript processing limitations.

  11. Overexpression of antibiotic resistance genes in hospital effluents over time.

    Science.gov (United States)

    Rowe, Will P M; Baker-Austin, Craig; Verner-Jeffreys, David W; Ryan, Jim J; Micallef, Christianne; Maskell, Duncan J; Pearce, Gareth P

    2017-06-01

    Effluents contain a diverse abundance of antibiotic resistance genes that augment the resistome of receiving aquatic environments. However, uncertainty remains regarding their temporal persistence, transcription and response to anthropogenic factors, such as antibiotic usage. We present a spatiotemporal study within a river catchment (River Cam, UK) that aims to determine the contribution of antibiotic resistance gene-containing effluents originating from sites of varying antibiotic usage to the receiving environment. Gene abundance in effluents (municipal hospital and dairy farm) was compared against background samples of the receiving aquatic environment (i.e. the catchment source) to determine the resistome contribution of effluents. We used metagenomics and metatranscriptomics to correlate DNA and RNA abundance and identified differentially regulated gene transcripts. We found that mean antibiotic resistance gene and transcript abundances were correlated for both hospital ( ρ  = 0.9, two-tailed P  resistance genes ( bla GES and bla OXA ) were overexpressed in all hospital effluent samples. High β-lactam resistance gene transcript abundance was related to hospital antibiotic usage over time and hospital effluents contained antibiotic residues. We conclude that effluents contribute high levels of antibiotic resistance genes to the aquatic environment; these genes are expressed at significant levels and are possibly related to the level of antibiotic usage at the effluent source. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  12. A Preliminary List of Horizontally Transferred Genes in Prokaryotes Determined by Tree Reconstruction and Reconciliation

    Directory of Open Access Journals (Sweden)

    Hyeonsoo Jeong

    2017-08-01

    Full Text Available Genome-wide global detection of genes involved in horizontal gene transfer (HGT remains an active area of research in medical microbiology and evolutionary genomics. Utilizing the explicit evolutionary method of comparing topologies of a total of 154,805 orthologous gene trees against corresponding 16S rRNA “reference” trees, we previously detected a total of 660,894 candidate HGT events in 2,472 completely-sequenced prokaryotic genomes. Here, we report an HGT-index for each individual gene-reference tree pair reconciliation, representing the total number of detected HGT events on the gene tree divided by the total number of genomes (taxa member of that tree. HGT-index is thus a simple measure indicating the sensitivity of prokaryotic genes to participate (or not participate in HGT. Our preliminary list provides HGT-indices for a total of 69,365 genes (detected in >10 and <50% available prokaryotic genomes that are involved in a wide range of biological processes such as metabolism, information, and bacterial response to environment. Identification of horizontally-derived genes is important to combat antibiotic resistance and is a step forward toward reconstructions of improved phylogenies describing the history of life. Our effort is thus expected to benefit ongoing research in the fields of clinical microbiology and evolutionary biology.

  13. Generation of novel resistance genes using mutation and targeted gene editing

    Science.gov (United States)

    Classical breeding for virus resistance is a lengthy process and is restricted by the availability of resistance genes. Precise genome editing is a "dream technology" to improve plants for virus resistance and these tools have opened new and very promising ways to generate virus resistant plants by ...

  14. [Transfer of erythromycin-resistance among strains and species of bacteria: plasmid conjugation method in enterococcal isolates].

    Science.gov (United States)

    Lü, Ping; Xu, Xi-wei; Song, Wen-Qi; Zhen, Jing-hui; Yu, Sang-jie; Yang, Yong-hong; Shen, Xu-zhuang

    2007-08-14

    To study if the resistance to macrolide in Enterococcus can be transferred between strains, and species of the same and different genera. Agar dilution was used to screen 30 enterococcal isolates that were resistant to erythromycin. Conjugation was performed by filter mating method. The 30 donor bacteria included 13 strains of Enterococcus faecalis, 16 strains of E. faecium, and 1 strain of E. hirae. The recipient bacteria included 1 strain of E. faecalis sensitive to erythromycin and resistant to tetracycline, and 1 strain of Staphylococcus aureus with the MIC against erythromycin of 0.25 approximately 1 microg/ml. Polymerase chain reaction was used to test the existence of ermB gene and the tranposons Tn1545 and Tn917 in the enterococcal isolates before and after filter mating. The transfer rate between different strains and species of the same genus were all 100%. The MIC(50) and MIC(90) against erythromycin of 13 conjugates were both 512 microg/ml, and Tn1545 and Tn917 were found in the ermB gene of 12 conjugates. 17 conjugates were obtained from 16 strains of donor E. faecium and 1 strain of E. hirae with the MIC(50) and MIC(90) both of 512 microg/ml. The ermB gene was found in 16 of the 17 conjugates, and 11 of the 16 conjugates showed the existence of Tn1545 and Tn917, Tn1545 existed in the ermB gene of 4 conjugates, and Tn917 existed in the ermB gene of 1 conjugate. 30 conjugates of Staphylococcus aureus were obtained by plasmid conjugation and transfer with a transfer rate of 100% and the MIC(50) and MIC(90) both of 512 microg/ml. The ermB gene was found in 28 of the 30 conjugates. Both Tn1545 and Tn917 were found in the ermB gene of 23 of the 28 conjugates, Tn1545 was found in the ermB gene of 4 conjugates, and Tn917 was found in the ermB gene of 1 conjugate. The resistance to macrolide of Enterococcus, related with the existence of ermB gene and transposons Tn1545 and Tn917, can be transferred between strains and species of same and different genera.

  15. Associations between Antimicrobial Resistance Phenotypes, Antimicrobial Resistance Genes, and Virulence Genes of Fecal Escherichia coli Isolates from Healthy Grow-Finish Pigs ▿

    OpenAIRE

    Rosengren, Leigh B.; Waldner, Cheryl L.; Reid-Smith, Richard J.

    2009-01-01

    Escherichia coli often carries linked antimicrobial resistance genes on transmissible genetic elements. Through coselection, antimicrobial use may select for unrelated but linked resistance or virulence genes. This study used unconditional statistical associations to investigate the relationships between antimicrobial resistance phenotypes and antimicrobial resistance genes in 151 E. coli isolates from healthy pigs. Phenotypic resistance to each drug was significantly associated with phenotyp...

  16. Elevation of antibiotic resistance genes at cold temperatures: implications for winter storage of sludge and biosolids.

    Science.gov (United States)

    Miller, J H; Novak, J T; Knocke, W R; Pruden, A

    2014-12-01

    Prior research suggests that cold temperatures may stimulate the proliferation of certain antibiotic resistance genes (ARGs) and gene transfer elements during storage of biosolids. This could have important implications on cold weather storage of biosolids, as often required in northern climates until a time suitable for land application. In this study, levels of an integron-associated gene (intI1) and an ARG (sul1) were monitored in biosolids subject to storage at 4, 10 and 20°C. Both intI1 and sul1 were observed to increase during short-term storage (gene transfer of integron-associated ARGs and that biosolids storage conditions should be considered prior to land application. Wastewater treatment plants have been identified as the hot spots for the proliferation and dissemination of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) to the environment through discharge of treated effluent to water bodies as well as application of biosolids to land. Identifying critical control points within the treatment process may aid in the development of solutions for the reduction of ARGs and ARB and curbing the spread of antibiotic resistance. This study found increases in ARGs during biosolids storage and identifies changes in operational protocols that could help reduce ARG loading to the environment when biosolids are land-applied. © 2014 The Society for Applied Microbiology.

  17. Codon-optimized antibiotic resistance gene improves efficiency of ...

    Indian Academy of Sciences (India)

    2013-10-01

    Oct 1, 2013 ... native gentamicin resistance gene, suggesting that codon optimization improved translation efficiency of the marker gene and ... to be taken into account when exogenous transgenes are expressed in Frankia cells. [Kucho K, Kakoi K, ..... gene coding for the green fluorescent protein (GFP) is a versatile ...

  18. The cfr and cfr-like multiple resistance genes

    DEFF Research Database (Denmark)

    Vester, Birte

    2018-01-01

    . The cfr gene is found in various bacteria in many geographical locations and placed on plasmids or associated with transposons. Cfr-related genes providing similar resistance have been identified in Bacillales, and now also in the pathogens Clostridium difficile and Enterococcus faecium. In addition......, the presence of the cfr gene has been detected in harbours and food markets....

  19. Linking microbial community structure and function to characterize antibiotic resistant bacteria and antibiotic resistant genes from cattle feces

    Science.gov (United States)

    There is widespread interest in monitoring the development of antibiotic resistant bacteria and antibiotic resistance genes in agriculturally impacted environments, however little is known about the relationships between bacterial community structure, and antibiotic resistance gene profiles. Cattl...

  20. Published sequences do not support transfer of oseltamivir resistance mutations from avian to human influenza A virus strains.

    Science.gov (United States)

    Norberg, Peter; Lindh, Magnus; Olofsson, Sigvard

    2015-03-28

    Tamiflu (oseltamivir phosphate ester, OE) is a widely used antiviral active against influenza A virus. Its active metabolite, oseltamivir carboxylate (OC), is chemically stable and secreted into wastewater treatment plants. OC contamination of natural habitats of waterfowl might induce OC resistance in influenza viruses persistently infecting waterfowl, and lead to transfer of OC-resistance from avian to human influenza. The aim of this study was to evaluate whether such has occurred. A genomics approach including phylogenetic analysis and probability calculations for homologous recombination was applied on altogether 19,755 neuraminidase (N1 and N2) genes from virus sampled in humans and birds, with and without resistance mutations. No evidence for transfer of OE resistance mutations from avian to human N genes was obtained, and events suggesting recombination between human and avian influenza virus variants could not be traced in the sequence material studied. The results indicate that resistance in influenza viruses infecting humans is due to the selection pressure posed by the global OE administration in humans rather than transfer from avian influenza A virus strains carrying mutations induced by environmental exposure to OC.

  1. Incidence, distribution, and spread of tetracycline resistance determinants and integron-associated antibiotic resistance genes among motile aeromonads from a fish farming environment

    DEFF Research Database (Denmark)

    Schmidt, Anja S.; Bruun, Morten Sichlau; Dalsgaard, Inger

    2001-01-01

    isolates). In addition, 23 isolates had "empty" integrons without inserted gene cassettes. As far as OTC resistance was concerned, only 66 (30%) out of 216 resistant aeromonads could be assigned to resistance determinant class A (19 isolates), D (n = 6), or E (n = 39); three isolates contained two...... tetracycline resistance determinants (AD, AE, and DE). Forty OTC-resistant isolates containing large plasmids were selected as donors in a conjugation assay, 27 of which also contained a class I integron. Out of 17 successful R- plasmid transfers to Escherichia coli recipients, the respective integrons were...... cotransferred along with the tetracycline resistance determinants in 15 matings. Transconjugants were predominantly tetA positive (10 of 17) and contained class I integrons with two or more inserted antibiotic resistance genes. While there appeared to be a positive correlation between conjugative R...

  2. Retroviral-mediated gene transfer and expression of human phenylalanine hydroxylase in primary mouse hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Peng, H.; Armentano, D.; Mackenzie-Graham, L.; Shen, R.F.; Darlington, G.; Ledley, F.D.; Woo, S.L.C. (Baylor College of Medicine, Houston, TX (USA))

    1988-11-01

    Genetic therapy for phenylketonuria (severe phenylalanine hydroxylase deficiency) may require introduction of a normal phenylalanine hydroxylase gene into hepatic cells of patients. The authors report development of a recombinant retrovirus based on the N2 vector for gene transfer and expression of human phenylalanine hydroxylase cDNA in primary mouse hepatocytes. This construct contains an internal promoter of the human {alpha}{sub 1}-antitrypsin gene driving transcription of the phenylalanine hydroxylase cDNA. Primary mouse hepatocytes were isolated from newborn mice, infected with the recombinant virus, and selected for expression of the neomycin-resistance gene. Hepatocytes transformed with the recombinant virus contained high levels of human phenylalanine hydroxylase mRNA transcripts originating from the retroviral and internal promoters. These results demonstrate that the transcriptional regulatory elements of the {alpha}{sub 1} antitrypsin gene retain their tissue-specific function in the recombinant provirus and establish a method for efficient transfer and high-level expression of human phenylalanine hydroxylase in primary hepatocytes.

  3. Retroviral-mediated gene transfer and expression of human phenylalanine hydroxylase in primary mouse hepatocytes

    International Nuclear Information System (INIS)

    Peng, H.; Armentano, D.; Mackenzie-Graham, L.; Shen, R.F.; Darlington, G.; Ledley, F.D.; Woo, S.L.C.

    1988-01-01

    Genetic therapy for phenylketonuria (severe phenylalanine hydroxylase deficiency) may require introduction of a normal phenylalanine hydroxylase gene into hepatic cells of patients. The authors report development of a recombinant retrovirus based on the N2 vector for gene transfer and expression of human phenylalanine hydroxylase cDNA in primary mouse hepatocytes. This construct contains an internal promoter of the human α 1 -antitrypsin gene driving transcription of the phenylalanine hydroxylase cDNA. Primary mouse hepatocytes were isolated from newborn mice, infected with the recombinant virus, and selected for expression of the neomycin-resistance gene. Hepatocytes transformed with the recombinant virus contained high levels of human phenylalanine hydroxylase mRNA transcripts originating from the retroviral and internal promoters. These results demonstrate that the transcriptional regulatory elements of the α 1 antitrypsin gene retain their tissue-specific function in the recombinant provirus and establish a method for efficient transfer and high-level expression of human phenylalanine hydroxylase in primary hepatocytes

  4. Determination of rust resistance genes in pakistani bread wheats

    International Nuclear Information System (INIS)

    Qamar, M.; Ahmad, S.D.; Rabbani, M.A.; Shinwari, Z.K.

    2014-01-01

    Stripe and leaf rusts are the major constraints to bread wheat production in Pakistan. Molecular markers were used to investigate the presence of leaf rust and stripe rust resistance gene cluster Lr34/Yr18 and stem rust resistance gene Sr2 in 52 Pakistani bread wheat cultivars/lines. PCR amplification of DNA fragments using DNA marker csLV-34 showed that 13 of the studied cultivars/lines, namely 03FJ26, NR 337, NR 339, NR 347, NR 350, Manthar, Margalla 99, Iqbal 2000, Saleem 2000, Wafaq 2001, Marwat 2001, Pirsabak 2004 and Fareed 2006 carry leaf rust and stripe rust resistance genes Lr34/Yr18. Stem rust resistance gene Sr2 was observed in 36 Pakistani spring wheat cultivars/lines using stm560.3tgag marker. The slow rusting gene Sr2 needs to be combined with additional stem rust resistance genes to establish durable resistance against Ug99 in modern wheat cultivars. Low frequency of Lr34/Yr18 was found in Pakistani wheats. This gene cluster needs to be incorporated into Pakistani wheats for durable rust resistance. (author)

  5. Cytogenetic analysis and mapping of leaf rust resistance in Aegilops speltoides Tausch derived bread wheat line Selection2427 carrying putative gametocidal gene(s).

    Science.gov (United States)

    Niranjana, M; Vinod; Sharma, J B; Mallick, Niharika; Tomar, S M S; Jha, S K

    2017-12-01

    Leaf rust (Puccinia triticina) is a major biotic stress affecting wheat yields worldwide. Host-plant resistance is the best method for controlling leaf rust. Aegilops speltoides is a good source of resistance against wheat rusts. To date, five Lr genes, Lr28, Lr35, Lr36, Lr47, and Lr51, have been transferred from Ae. speltoides to bread wheat. In Selection2427, a bread wheat introgresed line with Ae. speltoides as the donor parent, a dominant gene for leaf rust resistance was mapped to the long arm of chromosome 3B (LrS2427). None of the Lr genes introgressed from Ae. speltoides have been mapped to chromosome 3B. Since none of the designated seedling leaf rust resistance genes have been located on chromosome 3B, LrS2427 seems to be a novel gene. Selection2427 showed a unique property typical of gametocidal genes, that when crossed to other bread wheat cultivars, the F 1 showed partial pollen sterility and poor seed setting, whilst Selection2427 showed reasonable male and female fertility. Accidental co-transfer of gametocidal genes with LrS2427 may have occurred in Selection2427. Though LrS2427 did not show any segregation distortion and assorted independently of putative gametocidal gene(s), its utilization will be difficult due to the selfish behavior of gametocidal genes.

  6. Gene ontology based transfer learning for protein subcellular localization

    Directory of Open Access Journals (Sweden)

    Zhou Shuigeng

    2011-02-01

    Full Text Available Abstract Background Prediction of protein subcellular localization generally involves many complex factors, and using only one or two aspects of data information may not tell the true story. For this reason, some recent predictive models are deliberately designed to integrate multiple heterogeneous data sources for exploiting multi-aspect protein feature information. Gene ontology, hereinafter referred to as GO, uses a controlled vocabulary to depict biological molecules or gene products in terms of biological process, molecular function and cellular component. With the rapid expansion of annotated protein sequences, gene ontology has become a general protein feature that can be used to construct predictive models in computational biology. Existing models generally either concatenated the GO terms into a flat binary vector or applied majority-vote based ensemble learning for protein subcellular localization, both of which can not estimate the individual discriminative abilities of the three aspects of gene ontology. Results In this paper, we propose a Gene Ontology Based Transfer Learning Model (GO-TLM for large-scale protein subcellular localization. The model transfers the signature-based homologous GO terms to the target proteins, and further constructs a reliable learning system to reduce the adverse affect of the potential false GO terms that are resulted from evolutionary divergence. We derive three GO kernels from the three aspects of gene ontology to measure the GO similarity of two proteins, and derive two other spectrum kernels to measure the similarity of two protein sequences. We use simple non-parametric cross validation to explicitly weigh the discriminative abilities of the five kernels, such that the time & space computational complexities are greatly reduced when compared to the complicated semi-definite programming and semi-indefinite linear programming. The five kernels are then linearly merged into one single kernel for

  7. Fate of antibiotic resistant bacteria and genes during wastewater chlorination: implication for antibiotic resistance control.

    Directory of Open Access Journals (Sweden)

    Qing-Bin Yuan

    Full Text Available This study investigated fates of nine antibiotic-resistant bacteria as well as two series of antibiotic resistance genes in wastewater treated by various doses of chlorine (0, 15, 30, 60, 150 and 300 mg Cl2 min/L. The results indicated that chlorination was effective in inactivating antibiotic-resistant bacteria. Most bacteria were inactivated completely at the lowest dose (15 mg Cl2 min/L. By comparison, sulfadiazine- and erythromycin-resistant bacteria exhibited tolerance to low chlorine dose (up to 60 mg Cl2 min/L. However, quantitative real-time PCRs revealed that chlorination decreased limited erythromycin or tetracycline resistance genes, with the removal levels of overall erythromycin and tetracycline resistance genes at 0.42 ± 0.12 log and 0.10 ± 0.02 log, respectively. About 40% of erythromycin-resistance genes and 80% of tetracycline resistance genes could not be removed by chlorination. Chlorination was considered not effective in controlling antimicrobial resistance. More concern needs to be paid to the potential risk of antibiotic resistance genes in the wastewater after chlorination.

  8. Fate of antibiotic resistant bacteria and genes during wastewater chlorination: implication for antibiotic resistance control.

    Science.gov (United States)

    Yuan, Qing-Bin; Guo, Mei-Ting; Yang, Jian

    2015-01-01

    This study investigated fates of nine antibiotic-resistant bacteria as well as two series of antibiotic resistance genes in wastewater treated by various doses of chlorine (0, 15, 30, 60, 150 and 300 mg Cl2 min/L). The results indicated that chlorination was effective in inactivating antibiotic-resistant bacteria. Most bacteria were inactivated completely at the lowest dose (15 mg Cl2 min/L). By comparison, sulfadiazine- and erythromycin-resistant bacteria exhibited tolerance to low chlorine dose (up to 60 mg Cl2 min/L). However, quantitative real-time PCRs revealed that chlorination decreased limited erythromycin or tetracycline resistance genes, with the removal levels of overall erythromycin and tetracycline resistance genes at 0.42 ± 0.12 log and 0.10 ± 0.02 log, respectively. About 40% of erythromycin-resistance genes and 80% of tetracycline resistance genes could not be removed by chlorination. Chlorination was considered not effective in controlling antimicrobial resistance. More concern needs to be paid to the potential risk of antibiotic resistance genes in the wastewater after chlorination.

  9. Novel recA-Independent Horizontal Gene Transfer in Escherichia coli K-12.

    Directory of Open Access Journals (Sweden)

    Anthony W Kingston

    Full Text Available In bacteria, mechanisms that incorporate DNA into a genome without strand-transfer proteins such as RecA play a major role in generating novelty by horizontal gene transfer. We describe a new illegitimate recombination event in Escherichia coli K-12: RecA-independent homologous replacements, with very large (megabase-length donor patches replacing recipient DNA. A previously uncharacterized gene (yjiP increases the frequency of RecA-independent replacement recombination. To show this, we used conjugal DNA transfer, combining a classical conjugation donor, HfrH, with modern genome engineering methods and whole genome sequencing analysis to enable interrogation of genetic dependence of integration mechanisms and characterization of recombination products. As in classical experiments, genomic DNA transfer begins at a unique position in the donor, entering the recipient via conjugation; antibiotic resistance markers are then used to select recombinant progeny. Different configurations of this system were used to compare known mechanisms for stable DNA incorporation, including homologous recombination, F'-plasmid formation, and genome duplication. A genome island of interest known as the immigration control region was specifically replaced in a minority of recombinants, at a frequency of 3 X 10(-12 CFU/recipient per hour.

  10. Sponge Microbiota are a Reservoir of Functional Antibiotic Resistance Genes

    DEFF Research Database (Denmark)

    Versluis, Dennis; de Evgrafov, Mari Cristina Rodriguez; Sommer, Morten Otto Alexander

    2016-01-01

    Wide application of antibiotics has contributed to the evolution of multi-drug resistant human pathogens, resulting in poorer treatment outcomes for infections. In the marine environment, seawater samples have been investigated as a resistance reservoir; however, no studies have methodically...... examined sponges as a reservoir of antibiotic resistance. Sponges could be important in this respect because they often contain diverse microbial communities that have the capacity to produce bioactive metabolites. Here, we applied functional metagenomics to study the presence and diversity of functional......). Fifteen of 37 inserts harbored resistance genes that shared resistance gene could be identified with high confidence, in which case we predicted resistance to be mainly mediated by antibiotic efflux. One marine-specific ampicillin-resistance...

  11. Presence of qnr gene in Escherichia coli and Klebsiella pneumoniae resistant to ciprofloxacin isolated from pediatric patients in China

    Directory of Open Access Journals (Sweden)

    Wang Chuanqing

    2008-05-01

    Full Text Available Abstract Background Quinolone resistance in Enterobacteriaceae results mainly from mutations in type II DNA topoisomerase genes and/or changes in the expression of outer membrane and efflux pumps. Several recent studies have indicated that plasmid-mediated resistance mechanisms also play a significant role in fluoroquinolone resistance, and its prevalence is increasing worldwide. In China, the presence of the qnr gene in the clinical isolates of Enterobacteriaceae has been reported, but this transmissible quinolone resistance gene has not been detected in strains isolated singly from pediatric patients. Because quinolones associated with a variety of adverse side effects on children, they are not authorized for pediatric use. This study therefore aimed to investigate the presence of the qnr gene in clinical isolates of E. coli and K. pneumoniae from pediatric patients in China. Methods A total 213 of non-repetitive clinical isolates resistant to ciprofloxacin from E. coli and K. pneumoniae were collected from hospitalized patients at five children's hospital in Beijing, Shanghai, Guangzhou, and Chongqing. The isolates were screened for the plasmid-mediated quinolone resistance genes of qnrA, qnrB, and qnrS by PCR. Transferability was examined by conjugation with the sodium azide-resistant E. coli J53. All qnr-positive were analyzed for clonality by enterobacterial repetitive intergenic consensus (ERIC-PCR. Results The study found that 19 ciprofloxacin-resistant clinical isolates of E. coli and K. pneumoniae were positive for the qnr gene, and most of the qnr positive strains were ESBL producers. Conjugation experiments showed that quinolone resitance could be transferred to recipients. Apart from this, different DNA banding patterns were obtained by ERIC-PCR from positive strains, which means that most of them were not clonally related. Conclusion This report on transferable fluoroquinolone resistance due to the qnr gene among E. coli and K

  12. Elucidating the Molecular Factors Implicated in the Persistence and Evolution of Transferable Antibiotic Resistance

    DEFF Research Database (Denmark)

    Porse, Andreas

    Being the most diverse and abundant domain of life, bacteria exemplify the remarkable ability of evolution to fit organisms into almost any imaginable niche on the planet. Although the capacity of bacteria to diversify and adapt is fundamental to natural ecosystems and modern biotechnology, the s...... and in situ. The conclusions shed light on fundamental evolutionary questions of genome dynamics and bacterial adaptation, which may ultimately improve our ability to predict and prevent the spread of antibiotic resistance and guide the engineering of robust biological systems.......Being the most diverse and abundant domain of life, bacteria exemplify the remarkable ability of evolution to fit organisms into almost any imaginable niche on the planet. Although the capacity of bacteria to diversify and adapt is fundamental to natural ecosystems and modern biotechnology...... mechanisms governing the dynamics of bacterial gene-sharing. Specifically, the focus has been on antibiotic resistance genes and their genetic vectors due to the profound implications of these genetic elements in human health. To observe the extend and impact of gene transfer events in a highly relevant...

  13. Factors that affect transfer of the IncI1 β-lactam resistance plasmid pESBL-283 between E. coli strains.

    Science.gov (United States)

    Händel, Nadine; Otte, Sarah; Jonker, Martijs; Brul, Stanley; ter Kuile, Benno H

    2015-01-01

    The spread of antibiotic resistant bacteria worldwide presents a major health threat to human health care that results in therapy failure and increasing costs. The transfer of resistance conferring plasmids by conjugation is a major route by which resistance genes disseminate at the intra- and interspecies level. High similarities between resistance genes identified in foodborne and hospital-acquired pathogens suggest transmission of resistance conferring and transferrable mobile elements through the food chain, either as part of intact strains, or through transfer of plasmids from foodborne to human strains. To study the factors that affect the rate of plasmid transfer, the transmission of an extended-spectrum β-lactamase (ESBL) plasmid from a foodborne Escherichia coli strain to the β-lactam sensitive E. coli MG1655 strain was documented as a function of simulated environmental factors. The foodborne E. coli isolate used as donor carried a CTX-M-1 harboring IncI1 plasmid that confers resistance to β-lactam antibiotics. Cell density, energy availability and growth rate were identified as factors that affect plasmid transfer efficiency. Transfer rates were highest in the absence of the antibiotic, with almost every acceptor cell picking up the plasmid. Raising the antibiotic concentrations above the minimum inhibitory concentration (MIC) resulted in reduced transfer rates, but also selected for the plasmid carrying donor and recombinant strains. Based on the mutational pattern of transconjugant cells, a common mechanism is proposed which compensates for fitness costs due to plasmid carriage by reducing other cell functions. Reducing potential fitness costs due to maintenance and expression of the plasmid could contribute to persistence of resistance genes in the environment even without antibiotic pressure. Taken together, the results identify factors that drive the spread and persistence of resistance conferring plasmids in natural isolates and shows how these

  14. Transposon characterization of vancomycin-resistant Enterococcus faecium (VREF) and dissemination of resistance associated with transferable plasmids

    DEFF Research Database (Denmark)

    Migura, Lourdes Garcia; Liebana, Ernesto; Jensen, Lars Bogø

    2007-01-01

    of the resistance. Methods and results: One hundred and one vancomycin-resistant Enterococcus faecium isolated from 19 unrelated farms have been investigated. Tn 1546 characterization by long PCR and Clal-digestions of amplicons showed a very low diversity of Tn types (n = 4) in comparison to the high genotypic...... diversity demonstrated by PFGE (n = 62). Conjugation experiments were carried out to assess the transfer of vancomycin resistance. Co-transfer of vanA together with erm(B) positioned on the same conjugative plasmid containing a replicon similar to pRE25 was demonstrated and also the presence of different...... plasmid replicons, associated with antimicrobial resistance on several unrelated farms. Conclusions: Horizontal transfer of vancomycin resistance may play a more important role in the persistence of antimicrobial resistance than clonal spread. The presence of different plasmid replicons, associated...

  15. Differences in lateral gene transfer in hypersaline versus thermal environments

    Directory of Open Access Journals (Sweden)

    House Christopher H

    2011-07-01

    Full Text Available Abstract Background The role of lateral gene transfer (LGT in the evolution of microorganisms is only beginning to be understood. While most LGT events occur between closely related individuals, inter-phylum and inter-domain LGT events are not uncommon. These distant transfer events offer potentially greater fitness advantages and it is for this reason that these "long distance" LGT events may have significantly impacted the evolution of microbes. One mechanism driving distant LGT events is microbial transformation. Theoretically, transformative events can occur between any two species provided that the DNA of one enters the habitat of the other. Two categories of microorganisms that are well-known for LGT are the thermophiles and halophiles. Results We identified potential inter-class LGT events into both a thermophilic class of Archaea (Thermoprotei and a halophilic class of Archaea (Halobacteria. We then categorized these LGT genes as originating in thermophiles and halophiles respectively. While more than 68% of transfer events into Thermoprotei taxa originated in other thermophiles, less than 11% of transfer events into Halobacteria taxa originated in other halophiles. Conclusions Our results suggest that there is a fundamental difference between LGT in thermophiles and halophiles. We theorize that the difference lies in the different natures of the environments. While DNA degrades rapidly in thermal environments due to temperature-driven denaturization, hypersaline environments are adept at preserving DNA. Furthermore, most hypersaline environments, as topographical minima, are natural collectors of cellular debris. Thus halophiles would in theory be exposed to a greater diversity and quantity of extracellular DNA than thermophiles.

  16. Agrobacterium-mediated gene transfer in plants and biosafety considerations.

    Science.gov (United States)

    Mehrotra, Shweta; Goyal, Vinod

    2012-12-01

    Agrobacterium, the natures' genetic engineer, has been used as a vector to create transgenic plants. Agrobacterium-mediated gene transfer in plants is a highly efficient transformation process which is governed by various factors including genotype of the host plant, explant, vector, plasmid, bacterial strain, composition of culture medium, tissue damage, and temperature of co-cultivation. Agrobacterium has been successfully used to transform various economically and horticulturally important monocot and dicot species by standard tissue culture and in planta transformation techniques like floral or seedling infilteration, apical meristem transformation, and the pistil drip methods. Monocots have been comparatively difficult to transform by Agrobacterium. However, successful transformations have been reported in the last few years based on the adjustment of the parameters that govern the responses of monocots to Agrobacterium. A novel Agrobacterium transferred DNA-derived nanocomplex method has been developed which will be highly valuable for plant biology and biotechnology. Agrobacterium-mediated genetic transformation is known to be the preferred method of creating transgenic plants from a commercial and biosafety perspective. Agrobacterium-mediated gene transfer predominantly results in the integration of foreign genes at a single locus in the host plant, without associated vector backbone and is also known to produce marker free plants, which are the prerequisites for commercialization of transgenic crops. Research in Agrobacterium-mediated transformation can provide new and novel insights into the understanding of the regulatory process controlling molecular, cellular, biochemical, physiological, and developmental processes occurring during Agrobacterium-mediated transformation and also into a wide range of aspects on biological safety of transgenic crops to improve crop production to meet the demands of ever-growing world's population.

  17. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA.

    Science.gov (United States)

    Teixeira, Bertinellys; Rodulfo, Hectorina; Carreño, Numirin; Guzmán, Militza; Salazar, Elsa; De Donato, Marcos

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America.

  18. Detection of bacterial blight resistance genes in basmati rice landraces.

    Science.gov (United States)

    Ullah, I; Jamil, S; Iqbal, M Z; Shaheen, H L; Hasni, S M; Jabeen, S; Mehmood, A; Akhter, M

    2012-07-20

    Aromatic basmati rice is vulnerable to bacterial blight disease. Genes conferring resistance to bacterial blight have been identified in coarse rice; however, their incorporation into basmati varieties compromises the prized basmati aroma. We identified bacterial blight resistance genes Xa4, xa5, Xa7, and xa13 in 52 basmati landraces and five basmati cultivars using PCR markers. The Xa7 gene was found to be the most prevalent among the cultivars and landraces. The cultivars Basmati-385 and Basmati-2000 also contained the Xa4 gene; however, xa5 and xa13 were confined to landraces only. Ten landraces were found to have multiple resistance genes. Landraces Basmati-106, Basmati-189 and Basmati-208 contained Xa4 and Xa7 genes. Whereas, landraces Basmati-122, Basmati-427, Basmati-433 were observed to have xa5 and Xa7 genes. Landraces Basmati-48, Basmati-51A, Basmati-334, and Basmati-370A possessed Xa7 and xa13 genes. The use of landraces containing recessive genes xa5 and xa13 as donor parents in hybridization with cultivars Basmati-385 and Basmati-2000, which contain the genes Xa4 and Xa7, will expedite efforts to develop bacterial blight-resistant basmati rice cultivars through marker assisted selection, based on a pyramiding approach, without compromising aroma and grain quality.

  19. Eliminating HIV-1 Packaging Sequences from Lentiviral Vector Proviruses Enhances Safety and Expedites Gene Transfer for Gene Therapy.

    Science.gov (United States)

    Vink, Conrad A; Counsell, John R; Perocheau, Dany P; Karda, Rajvinder; Buckley, Suzanne M K; Brugman, Martijn H; Galla, Melanie; Schambach, Axel; McKay, Tristan R; Waddington, Simon N; Howe, Steven J

    2017-08-02

    Lentiviral vector genomic RNA requires sequences that partially overlap wild-type HIV-1 gag and env genes for packaging into vector particles. These HIV-1 packaging sequences constitute 19.6% of the wild-type HIV-1 genome and contain functional cis elements that potentially compromise clinical safety. Here, we describe the development of a novel lentiviral vector (LTR1) with a unique genomic structure designed to prevent transfer of HIV-1 packaging sequences to patient cells, thus reducing the total HIV-1 content to just 4.8% of the wild-type genome. This has been achieved by reconfiguring the vector to mediate reverse-transcription with a single strand transfer, instead of the usual two, and in which HIV-1 packaging sequences are not copied. We show that LTR1 vectors offer improved safety in their resistance to remobilization in HIV-1 particles and reduced frequency of splicing into human genes. Following intravenous luciferase vector administration to neonatal mice, LTR1 sustained a higher level of liver transgene expression than an equivalent dose of a standard lentivirus. LTR1 vectors produce reverse-transcription products earlier and start to express transgenes significantly quicker than standard lentiviruses after transduction. Finally, we show that LTR1 is an effective lentiviral gene therapy vector as demonstrated by correction of a mouse hemophilia B model. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    Science.gov (United States)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  1. Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar

    Science.gov (United States)

    Das, Gitishree; Rao, G. J. N.

    2015-01-01

    Severe yield loss due to various biotic stresses like bacterial blight (BB), gall midge (insect) and Blast (disease) and abiotic stresses like submergence and salinity are a serious constraint to the rice productivity throughout the world. The most effective and reliable method of management of the stresses is the enhancement of host resistance, through an economical and environmentally friendly approach. Through the application of marker assisted selection (MAS) technique, the present study reports a successful pyramidization of genes/QTLs to confer resistance/tolerance to blast (Pi2, Pi9), gall Midge (Gm1, Gm4), submergence (Sub1), and salinity (Saltol) in a released rice variety CRMAS2621-7-1 as Improved Lalat which had already incorporated with three BB resistance genes xa5, xa13, and Xa21 to supplement the Xa4 gene present in Improved Lalat. The molecular analysis revealed clear polymorphism between the donor and recipient parents for all the markers that are tagged to the target traits. The conventional backcross breeding approach was followed till BC3F1 generation and starting from BC1F1 onwards, marker assisted selection was employed at each step to monitor the transfer of the target alleles with molecular markers. The different BC3F1s having the target genes/QTLs were inter crossed to generate hybrids with all 10 stress resistance/tolerance genes/QTLs into a single plant/line. Homozygous plants for resistance/tolerance genes in different combinations were recovered. The BC3F3 lines were characterized for their agronomic and quality traits and promising progeny lines were selected. The SSR based background selection was done. Most of the gene pyramid lines showed a high degree of similarity to the recurrent parent for both morphological, grain quality traits and in SSR based background selection. Out of all the gene pyramids tested, two lines had all the 10 resistance/tolerance genes and showed adequate levels of resistance/tolerance against the five target

  2. Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes.

    Science.gov (United States)

    Czekalski, Nadine; Sigdel, Radhika; Birtel, Julia; Matthews, Blake; Bürgmann, Helmut

    2015-08-01

    Antibiotic resistance genes (ARGs) are emerging environmental contaminants, known to be continuously discharged into the aquatic environment via human and animal waste. Freshwater aquatic environments represent potential reservoirs for ARG and potentially allow sewage-derived ARG to persist and spread in the environment. This may create increased opportunities for an eventual contact with, and gene transfer to, human and animal pathogens via the food chain or drinking water. However, assessment of this risk requires a better understanding of the level and variability of the natural resistance background and the extent of the human impact. We have analyzed water samples from 21 Swiss lakes, taken at sampling points that were not under the direct influence of local contamination sources and analyzed the relative abundance of ARG using quantitative real-time PCR. Copy numbers of genes mediating resistance to three different broad-spectrum antibiotic classes (sulfonamides: sul1, sul2, tetracyclines: tet(B), tet(M), tet(W) and fluoroquinolones: qnrA) were normalized to copy numbers of bacterial 16S rRNA genes. We used multiple linear regression to assess if ARG abundance is related to human activities in the catchment, microbial community composition and the eutrophication status of the lakes. Sul genes were detected in all sampled lakes, whereas only four lakes contained quantifiable numbers of tet genes, and qnrA remained below detection in all lakes. Our data indicate higher abundance of sul1 in lakes with increasing number and capacity of wastewater treatment plants (WWTPs) in the catchment. sul2 abundance was rather related to long water residence times and eutrophication status. Our study demonstrates the potential of freshwater lakes to preserve antibiotic resistance genes, and provides a reference for ARG abundance from lake systems with low human impact as a baseline for assessing ARG contamination in lake water. Copyright © 2015 Elsevier Ltd. All rights

  3. In vitro transfer of methicillin resistance determinants mecA from methicillin resistant Staphylococcus aureus (MRSA) to methicillin susceptible Staphylococcus aureus (MSSA).

    Science.gov (United States)

    Bitrus, Asinamai Athliamai; Zunita, Zakaria; Bejo, Siti Khairani; Othman, Sarah; Nadzir, Nur Adilah Ahmad

    2017-04-04

    Staphylococcus aureus more than any other human pathogen is a better model for the study of the adaptive evolution of bacterial resistance to antibiotics, as it has demonstrated a remarkable ability in its response to new antibiotics. This study was designed to investigate the in vitro transfer of mecA gene from methicillin resistant S. aureus to methicillin susceptible S. aureus. The recipient transconjugants were resistant to erythromycin, cefpodoxime and were mecA positive. PCR amplification of mecA after mix culture plating on Luria Bertani agar containing 100 μg/mL showed that 75% of the donor and 58.3% of the recipient transconjugants were mecA positive. Additionally, 61.5% of both the donor cells and recipient transconjugants were mecA positive, while 46.2% and 41.75% of both donor and recipient transconjugants were mecA positive on LB agar containing 50 μg/mL and 30 μg/mL respectively. In this study, the direction of transfer of phenotypic resistance as well as mecA was observed to have occurred from the donor to the recipient strains. This study affirmed the importance of horizontal transfer events in the dissemination of antibiotics resistance among different strains of MRSA.

  4. Laterally Transferred Gene Recruited as a Venom in Parasitoid Wasps.

    Science.gov (United States)

    Martinson, Ellen O; Martinson, Vincent G; Edwards, Rachel; Mrinalini; Werren, John H

    2016-04-01

    Parasitoid wasps use venom to manipulate the immunity and metabolism of their host insects in a variety of ways to provide resources for their offspring. Yet, how genes are recruited and evolve to perform venom functions remain open questions. A recently recognized source of eukaryotic genome innovation is lateral gene transfer (LGT). Glycoside hydrolase family 19 (GH19) chitinases are widespread in bacteria, microsporidia, and plants where they are used in nutrient acquisition or defense, but have previously not been known in metazoans. In this study, a GH19 chitinase LGT is described from the unicellular microsporidia/Rozella clade into parasitoid wasps of the superfamily Chalcidoidea, where it has become recruited as a venom protein. The GH19 chitinase is present in 15 species of chalcidoid wasps representing four families, and phylogenetic analysis indicates that it was laterally transferred near or before the origin of Chalcidoidea (∼95 Ma). The GH19 chitinase gene is highly expressed in the venom gland of at least seven species, indicating a role in the complex host manipulations performed by parasitoid wasp venom. RNAi knockdown in the model parasitoid Nasonia vitripennis reveals that-following envenomation-the GH19 chitinase induces fly hosts to upregulate genes involved in an immune response to fungi. A second, independent LGT of GH19 chitinase from microsporidia into mosquitoes was also found, also supported by phylogenetic reconstructions. Besides these two LGT events, GH19 chitinase is not found in any other sequenced animal genome, or in any fungi outside the microsporidia/Rozella clade. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Diversity of Antibiotic Resistance Genes in Enterococcus Strains Isolated from Ready-to-Eat Meat Products.

    Science.gov (United States)

    Chajęcka-Wierzchowska, Wioleta; Zadernowska, Anna; Łaniewska-Trokenheim, Łucja

    2016-10-25

    The objective of the study was to answer the question of whether the ready-to-eat meat products can pose indirect hazard for consumer health serving as reservoir of Enterococcus strains harboring tetracyclines, aminoglycosides, and macrolides resistance genes. A total of 390 samples of ready-to-eat meat products were investigated. Enterococcus strains were found in 74.1% of the samples. A total of 302 strains were classified as: Enterococcus faecalis (48.7%), Enterococcus faecium (39.7%), Enterococcus casseliflavus (4.3%), Enterococcus durans (3.0%), Enterococcus hirae (2.6%), and other Enterococcus spp. (1.7%). A high percentage of isolates were resistant to streptomycin high level (45%) followed by erythromycin (42.7%), fosfomycin (27.2%), rifampicin (19.2%), tetracycline (36.4%), tigecycline (19.9%). The ant(6')-Ia gene was the most frequently found gene (79.6%). Among the other genes that encode aminoglycosides-modifying enzymes, the highest portion of the strains had the aac(6')-Ie-aph(2'')-Ia (18.5%) and aph(3'')-IIIa (16.6%), but resistance of isolates from food is also an effect of the presence of aph(2'')-Ib, aph(2'')-Ic, aph(2'')-Id genes. Resistance to tetracyclines was associated with the presence of tetM (43.7%), tetL (32.1%), tetK (14.6%), tetW (0.7%), and tetO (0.3%) genes. The ermB and ermA genes were found in 33.8% and 18.9% of isolates, respectively. Nearly half of the isolates contained a conjugative transposon of the Tn916/Tn1545 family. Enterococci are widely present in retail ready-to-eat meat products. Many isolated strains (including such species as E. casseliflavus, E. durans, E. hirae, and Enterococcus gallinarum) are antibiotic resistant and carry transferable resistance genes. © 2016 Institute of Food Technologists®.

  6. Multiple roles for Enterococcus faecalis glycosyltransferases in biofilm-associated antibiotic resistance, cell envelope integrity, and conjugative transfer.

    Science.gov (United States)

    Dale, Jennifer L; Cagnazzo, Julian; Phan, Chi Q; Barnes, Aaron M T; Dunny, Gary M

    2015-07-01

    The emergence of multidrug-resistant bacteria and the limited availability of new antibiotics are of increasing clinical concern. A compounding factor is the ability of microorganisms to form biofilms (communities of cells encased in a protective extracellular matrix) that are intrinsically resistant to antibiotics. Enterococcus faecalis is an opportunistic pathogen that readily forms biofilms and also has the propensity to acquire resistance determinants via horizontal gene transfer. There is intense interest in the genetic basis for intrinsic and acquired antibiotic resistance in E. faecalis, since clinical isolates exhibiting resistance to multiple antibiotics are not uncommon. We performed a genetic screen using a library of transposon (Tn) mutants to identify E. faecalis biofilm-associated antibiotic resistance determinants. Five Tn mutants formed wild-type biofilms in the absence of antibiotics but produced decreased biofilm biomass in the presence of antibiotic concentrations that were subinhibitory to the parent strain. Genetic determinants responsible for biofilm-associated antibiotic resistance include components of the quorum-sensing system (fsrA, fsrC, and gelE) and two glycosyltransferase (GTF) genes (epaI and epaOX). We also found that the GTFs play additional roles in E. faecalis resistance to detergent and bile salts, maintenance of cell envelope integrity, determination of cell shape, polysaccharide composition, and conjugative transfer of the pheromone-inducible plasmid pCF10. The epaOX gene is located in a variable extended region of the enterococcal polysaccharide antigen (epa) locus. These data illustrate the importance of GTFs in E. faecalis adaptation to diverse growth conditions and suggest new targets for antimicrobial design. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Lack of evidence that DNA in antibiotic preparations is a source of antibiotic resistance genes in bacteria from animal or human sources

    OpenAIRE

    Yuen, KY; Lau, SKP; Woo, PCY; Lau, ATK; To, APC

    2004-01-01

    Although DNA encoding antibiotic resistance has been discovered in antibiotic preparations, its significance for the development of antibiotic resistance in bacteria is unknown. No phylogenetic evidence was obtained for recent horizontal transfer of antibiotic resistance genes from antibiotic-producing organisms to bacteria from human or animal sources.

  8. Impact of co-carriage of IncA/C plasmids with additional plasmids on the transfer of antimicrobial resistance in Salmonella enterica isolates.

    Science.gov (United States)

    Han, Jing; Pendleton, Sean J; Deck, Joanna; Singh, Ruby; Gilbert, Jeffrey; Johnson, Timothy J; Sanad, Yasser M; Nayak, Rajesh; Foley, Steven L

    2018-04-20

    Antimicrobial resistance in Salmonella enterica is often plasmid encoded. A key resistance plasmid group is the incompatibility group (Inc) A/C plasmids that often carry multiple resistance determinants. Previous studies showed that IncA/C plasmids were often co-located with other plasmids. The current study was undertaken to evaluate the impact of plasmid co-carriage on antimicrobial resistance and plasmid transfer. A total of 1267 Salmonella isolates, representing multiple serotypes and sources were previously subjected to susceptibility testing and 251 isolates with resistance to at least 5 antimicrobial agents were identified for further study. Each isolate was subjected to PCR-based replicon typing, and those with IncA/C plasmids were selected for plasmid isolation, PCR-based mapping of IncA/C plasmid backbone genes, and conjugation assays to evaluate resistance plasmid transferability. Of the 87 identified IncA/C positive isolates, approximately 75% carried a plasmid with another identified replicon type, with the most common being I1 (39%), FIA, FIIA, FIB and HI2 (each 15%). PCR-based mapping indicated significant diversity in IncA/C backbone content, especially in regions encoding transfer-associated and hypothetical proteins. Conjugation experiments showed that nearly 68% of the isolates transferred resistance plasmids, with 90% containing additional identified plasmids or larger (>50 kb) non-typeable plasmids. The majority of IncA/C-positive strains were able to conjugally transfer antimicrobial resistance to the recipient, encoded by IncA/C and/or co-carried plasmids. These findings highlight the importance of co-located plasmids for resistance dissemination either by directly transferring resistance genes or by potentially providing the needed conjugation machinery for IncA/C plasmid transfer. Copyright © 2018. Published by Elsevier B.V.

  9. Antimicrobial Peptide Resistance Genes in the Plant Pathogen Dickeya dadantii.

    Science.gov (United States)

    Pandin, Caroline; Caroff, Martine; Condemine, Guy

    2016-11-01

    Modification of teichoic acid through the incorporation of d-alanine confers resistance in Gram-positive bacteria to antimicrobial peptides (AMPs). This process involves the products of the dltXABCD genes. These genes are widespread in Gram-positive bacteria, and they are also found in a few Gram-negative bacteria. Notably, these genes are present in all soft-rot enterobacteria (Pectobacterium and Dickeya) whose dltDXBAC operons have been sequenced. We studied the function and regulation of these genes in Dickeya dadantii dltB expression was induced in the presence of the AMP polymyxin. It was not regulated by PhoP, which controls the expression of some genes involved in AMP resistance, but was regulated by ArcA, which has been identified as an activator of genes involved in AMP resistance. However, arcA was not the regulator responsible for polymyxin induction of these genes in this bacterium, which underlines the complexity of the mechanisms controlling AMP resistance in D. dadantii Two other genes involved in resistance to AMPs have also been characterized, phoS and phoH dltB, phoS, phoH, and arcA but not dltD mutants were more sensitive to polymyxin than the wild-type strain. Decreased fitness of the dltB, phoS, and phoH mutants in chicory leaves indicates that their products are important for resistance to plant AMPs. Gram-negative bacteria can modify their lipopolysaccharides (LPSs) to resist antimicrobial peptides (AMPs). Soft-rot enterobacteria (Dickeya and Pectobacterium spp.) possess homologues of the dlt genes in their genomes which, in Gram-positive bacteria, are involved in resistance to AMPs. In this study, we show that these genes confer resistance to AMPs, probably by modifying LPSs, and that they are required for the fitness of the bacteria during plant infection. Two other new genes involved in resistance were also analyzed. These results show that bacterial resistance to AMPs can occur in bacteria through many different mechanisms that need to be

  10. Gene Transfer Enhancement by Alkylcarboxylation of Poly(propylenimine

    Directory of Open Access Journals (Sweden)

    Maryam Hashemi

    2013-01-01

    Full Text Available Abstract Among synthetic carriers, dendrimers with the more flexible structure have attracted a great deal of researchers’ attention in the field of gene delivery. Followed by the promising results upon hydrophobic modification on polymeric structures in our laboratory, alkylcarboxylated poly (propylenimine-based carriers were synthesized by nucleophilic substitution of amines with alkyl moieties and were further characterized for their physicochemical and biological characteristics for plasmid DNA delivery. Although not noticeably effective gene transfer activity for hexanoate- and hexadecanoate-modified series was observed, but alkylation by decanoic acid significantly improved the transfection efficiency of the final constructs up to 60 fold in comparison with unmodified poly(propylenimine (PPI. PPI modified by 10-bromodecanoic acid at 50% grafting, showed significantly higher gene expression at c/p ratio of 2 compared to Superfect as positive control.  Overall, modification of PPI with 50% primary amines grafting with 10-bromodecanoic acid could increase the transfection efficiency which is occurred at lower c/p ratio when compared to Superfect, i.e. less amount of modified vector is required to exhibit the same efficiency as Superfect. Therefore, the obtained constructs seem to be safer carriers for long-term gene therapy applications.

  11. Resistance gene management: concepts and practice

    Science.gov (United States)

    Christopher C. Mundt

    2012-01-01

    There is now a very long history of genetics/breeding for disease resistance in annual crops. These efforts have resulted in conceptual advances and frustrations, as well as practical successes and failures. This talk will review this history and its relevance to the genetics of resistance in forest species. All plant breeders and pathologists are familiar with boom-...

  12. Prediction and analysis of three gene families related to leaf rust (Puccinia triticina) resistance in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Peng, Fred Y; Yang, Rong-Cai

    2017-06-20

    The resistance to leaf rust (Lr) caused by Puccinia triticina in wheat (Triticum aestivum L.) has been well studied over the past decades with over 70 Lr genes being mapped on different chromosomes and numerous QTLs (quantitative trait loci) being detected or mapped using DNA markers. Such resistance is often divided into race-specific and race-nonspecific resistance. The race-nonspecific resistance can be further divided into resistance to most or all races of the same pathogen and resistance to multiple pathogens. At the molecular level, these three types of resistance may cover across the whole spectrum of pathogen specificities that are controlled by genes encoding different protein families in wheat. The objective of this study is to predict and analyze genes in three such families: NBS-LRR (nucleotide-binding sites and leucine-rich repeats or NLR), START (Steroidogenic Acute Regulatory protein [STaR] related lipid-transfer) and ABC (ATP-Binding Cassette) transporter. The focus of the analysis is on the patterns of relationships between these protein-coding genes within the gene families and QTLs detected for leaf rust resistance. We predicted 526 ABC, 1117 NLR and 144 START genes in the hexaploid wheat genome through a domain analysis of wheat proteome. Of the 1809 SNPs from leaf rust resistance QTLs in seedling and adult stages of wheat, 126 SNPs were found within coding regions of these genes or their neighborhood (5 Kb upstream from transcription start site [TSS] or downstream from transcription termination site [TTS] of the genes). Forty-three of these SNPs for adult resistance and 18 SNPs for seedling resistance reside within coding or neighboring regions of the ABC genes whereas 14 SNPs for adult resistance and 29 SNPs for seedling resistance reside within coding or neighboring regions of the NLR gene. Moreover, we found 17 nonsynonymous SNPs for adult resistance and five SNPs for seedling resistance in the ABC genes, and five nonsynonymous SNPs for

  13. Analysis of metal and biocides resistance genes in drug resistance and susceptible Salmonella enterica from food animals

    Science.gov (United States)

    Background Generally drug resistant bacteria carry antibiotic resistance genes and heavy metal and biocide resistance genes on large conjugative plasmids. The presence of these metal and biocide resistance genes in susceptible bacteria are not assessed comprehensively. Hence, WGS data of susceptib...

  14. The antimicrobial resistance crisis: management through gene monitoring

    Science.gov (United States)

    2016-01-01

    Antimicrobial resistance (AMR) is an acknowledged crisis for humanity. Its genetic origins and dire potential outcomes are increasingly well understood. However, diagnostic techniques for monitoring the crisis are currently largely limited to enumerating the increasing incidence of resistant pathogens. Being the end-stage of the evolutionary process that produces antimicrobial resistant pathogens, these measurements, while diagnostic, are not prognostic, and so are not optimal in managing this crisis. A better test is required. Here, using insights from an understanding of evolutionary processes ruling the changing abundance of genes under selective pressure, we suggest a predictive framework for the AMR crisis. We then discuss the likely progression of resistance for both existing and prospective antimicrobial therapies. Finally, we suggest that by the environmental monitoring of resistance gene frequency, resistance may be detected and tracked presumptively, and how this tool may be used to guide decision-making in the local and global use of antimicrobials. PMID:27831476

  15. Recombinant adenovirus-mediated gene transfer suppresses experimental arthritis

    Directory of Open Access Journals (Sweden)

    E. Quattrocchi

    2011-09-01

    Full Text Available Collagen Induced Arthritis (CIA is a widely studied animal model to develop and test novel therapeutic approaches for treating Rheumatoid Arthritis (RA in humans. Soluble Cytotoxic T-Lymphocyte Antigen 4 (CTLA4-Ig, which binds B7 molecule on antigen presenting cells and blocks CD28 mediated T-lymphocyte activation, has been shown to ameliorate experimental autoimmune diseases such as lupus, diabetes and CIA. Objective of our research was to investigate in vivo the effectiveness of blocking the B7/CD28 T-lymphocyte co-stimulatory pathway, utilizing a gene transfer technology, as a therapeutic strategy against CIA. Replication-deficient adenoviruses encoding a chimeric CTLA4-Ig fusion protein, or β-galactosidase as control, have been injected intravenously once at arthritis onset. Disease activity has been monitored by the assessment of clinical score, paw thickness and type II collagen (CII specific cellular and humoral immune responses for 21 days. The adenovirally delivered CTLA4-Ig fusion protein at a dose of 2×108 pfu suppressed established CIA, whereas the control β-galactosidase did not significantly affect the disease course. CII-specific lymphocyte proliferation, IFNg production and anti-CII antibodies were significantly reduced by CTLA4-Ig treatment. Our results demonstrate that blockade of the B7/CD28 co-stimulatory pathway by adenovirus-mediated CTLA4-Ig gene transfer is effective in treating established CIA suggesting its potential in treating RA.

  16. Effect of wastewater colloids on membrane removal of microconstituent antibiotic resistance genes

    OpenAIRE

    Riquelme Breazeal, Maria Virginia

    2011-01-01

    Anthropogenically generated antibiotic resistance genes (ARGs) are considered emerging contaminants, as they are associated with a critical human health challenge, are persist independent of a bacterial host, are subject to transfer between bacteria, and are present at amplified levels in human-impacted environments. Given the gravity of the problem, there is growing interest in advancing water treatment processes capable of limiting ARG dissemination. This study examined the potential for m...

  17. Functional genomics in Campylobacter coli identified a novel streptomycin resistance gene located in a hypervariable genomic region.

    Science.gov (United States)

    Olkkola, Satu; Culebro, Alejandra; Juntunen, Pekka; Hänninen, Marja-Liisa; Rossi, Mirko

    2016-07-01

    Numerous aminoglycoside resistance genes have been reported in Campylobacter spp. often resembling those from Gram-positive bacterial species and located in transferable genetic elements with other resistance genes. We discovered a new streptomycin (STR) resistance gene in Campylobactercoli showing 27-34 % amino acid identity to aminoglycoside 6-nucleotidyl-transferases described previously in Campylobacter. STR resistance was verified by gene expression and insertional inactivation. This ant-like gene differs from the previously described aminoglycoside resistance genes in Campylobacter spp. in several aspects. It does not appear to originate from Gram-positive bacteria and is located in a region corresponding to a previously described hypervariable region 14 of C. jejuni with no other known resistance genes detected in close proximity. Finally, it does not belong to a multiple drug resistance plasmid or transposon. This novel ant-like gene appears widely spread among C. coli as it is found in strains originating both from Europe and the United States and from several, apparently unrelated, hosts and environmental sources. The closest homologue (60 % amino acid identity) was found in certain C. jejuni and C. coli strains in a similar genomic location, but an association with STR resistance was not detected. Based on the findings presented here, we hypothesize that Campylobacter ant-like gene A has originated from a common ancestral proto-resistance element in Campylobacter spp., possibly encoding a protein with a different function. In conclusion, whole genome sequencing allowed us to fill in a knowledge gap concerning STR resistance in C. coli by revealing a novel STR resistance gene possibly inherent to Campylobacter.

  18. The Number of Genes Controlling Resistance in Beans to Common ...

    African Journals Online (AJOL)

    Ten crosses were made between resistant (R), susceptible (S), RxS susceptible and Intermediate (I), SxI and RxR bean lines to common bacterial blight. The F1 were advanced to F2 and in each cross over 250 F2 plants were used to evaluate for the number of genes controlling resistance using Mendelian genetics and ...

  19. Prevalence, antibiotic-resistance properties and enterotoxin gene ...

    African Journals Online (AJOL)

    Prevalence, antibiotic-resistance properties and enterotoxin gene profile of Bacillus cereus strains isolated from milk-based baby foods. ... Conclusion: Considerable prevalence of resistant and toxigenic B. cereus and high consumption of milk-based infant foods in Iran, represent an important public health issue which ...

  20. Occurrence and reservoirs of antibiotic resistance genes in the environment

    NARCIS (Netherlands)

    Seveno, N.; Kallifidas, D.; Smalla, K.; Elsas, van J.D.; Collard, J.M.; Karagouni, A.; Wellington, E.M.H.

    2002-01-01

    Antibiotic resistance genes have become highly mobile since the development of antibiotic chemotherapy. A considerable body of evidence exists proving the link between antibiotic use and the significant increase in drug-resistant human bacterial pathogens. The application of molecular detection and

  1. Identification of bacterial blight resistance genes Xa4 in Pakistani ...

    African Journals Online (AJOL)

    Identification of bacterial blight resistance genes Xa4 in Pakistani rice germplasm using PCR. M Arif, M Jaffar, M Babar, MA Sheikh, S Kousar, A Arif, Y Zafar. Abstract. Bacterial blight (BB) caused by Xanthomonas oryzae pv oryzae (Xoo) is a major biotic constraint in the irrigated rice belts. Genetic resistance is the most ...

  2. Spread of tetracycline resistance genes at a conventional dairy farm

    NARCIS (Netherlands)

    Kyselková, Martina; Jirout, Jiří; Vrchotová, Naděžda; Schmitt, Heike; Elhottová, Dana

    2015-01-01

    The use of antibiotics in animal husbandry contributes to the worldwide problem of increasing antibiotic resistance in animal and human pathogens. Intensive animal production is considered an important source of antibiotic resistance genes released to the environment, while the contribution of

  3. gene effects for resistance to groundnut rossette disease in exotic ...

    African Journals Online (AJOL)

    ACSS

    2016-02-25

    Feb 25, 2016 ... Opposite and significant signs of dominance [d] and dominance × dominance [l] components indicated the importance of duplicate epitasis in the latter crosses in the control of GRD resistance, which revealed a complex nature of inheritance of GRD resistance. Key Words: Arachis hypogaea, gene effects, ...

  4. Isolation and characterization of a candidate gene for resistance to ...

    African Journals Online (AJOL)

    ARC) domain, and a leucine-rich repeat (LRR) domain, all of which are typical characteristics of resistance genes. We proposed the resistance mechanism of CreV8 based on functional analysis and predictions from its conserved domains and ...

  5. Gene pyramiding enhances durable blast disease resistance in rice

    OpenAIRE

    Fukuoka, Shuichi; Saka, Norikuni; Mizukami, Yuko; Koga, Hironori; Yamanouchi, Utako; Yoshioka, Yosuke; Hayashi, Nagao; Ebana, Kaworu; Mizobuchi, Ritsuko; Yano, Masahiro

    2015-01-01

    Effective control of blast, a devastating fungal disease of rice, would increase and stabilize worldwide food production. Resistance mediated by quantitative trait loci (QTLs), which usually have smaller individual effects than R-genes but confer broad-spectrum or non-race-specific resistance, is a promising alternative to less durable race-specific resistance for crop improvement, yet evidence that validates the impact of QTL combinations (pyramids) on the durability of plant disease resista...

  6. AAV5-Factor VIII Gene Transfer in Severe Hemophilia A.

    Science.gov (United States)

    Rangarajan, Savita; Walsh, Liron; Lester, Will; Perry, David; Madan, Bella; Laffan, Michael; Yu, Hua; Vettermann, Christian; Pierce, Glenn F; Wong, Wing Y; Pasi, K John

    2017-12-28

    Patients with hemophilia A rely on exogenous factor VIII to prevent bleeding in joints, soft tissue, and the central nervous system. Although successful gene transfer has been reported in patients with hemophilia B, the large size of the factor VIII coding region has precluded improved outcomes with gene therapy in patients with hemophilia A. We infused a single intravenous dose of a codon-optimized adeno-associated virus serotype 5 (AAV5) vector encoding a B-domain-deleted human factor VIII (AAV5-hFVIII-SQ) in nine men with severe hemophilia A. Participants were enrolled sequentially into one of three dose cohorts (low dose [one participant], intermediate dose [one participant], and high dose [seven participants]) and were followed through 52 weeks. Factor VIII activity levels remained at 3 IU or less per deciliter in the recipients of the low or intermediate dose. In the high-dose cohort, the factor VIII activity level was more than 5 IU per deciliter between weeks 2 and 9 after gene transfer in all seven participants, and the level in six participants increased to a normal value (>50 IU per deciliter) that was maintained at 1 year after receipt of the dose. In the high-dose cohort, the median annualized bleeding rate among participants who had previously received prophylactic therapy decreased from 16 events before the study to 1 event after gene transfer, and factor VIII use for participant-reported bleeding ceased in all the participants in this cohort by week 22. The primary adverse event was an elevation in the serum alanine aminotransferase level to 1.5 times the upper limit of the normal range or less. Progression of preexisting chronic arthropathy in one participant was the only serious adverse event. No neutralizing antibodies to factor VIII were detected. The infusion of AAV5-hFVIII-SQ was associated with the sustained normalization of factor VIII activity level over a period of 1 year in six of seven participants who received a high dose, with

  7. Antimicrobial resistance and antimicrobial resistance genes in marine bacteria from salmon aquaculture and non-aquaculture sites.

    Science.gov (United States)

    Shah, Syed Q A; Cabello, Felipe C; L'abée-Lund, Trine M; Tomova, Alexandra; Godfrey, Henry P; Buschmann, Alejandro H; Sørum, Henning

    2014-05-01

    Antimicrobial resistance (AR) detected by disc diffusion and antimicrobial resistance genes detected by DNA hybridization and polymerase chain reaction with amplicon sequencing were studied in 124 marine bacterial isolates from a Chilean salmon aquaculture site and 76 from a site without aquaculture 8 km distant. Resistance to one or more antimicrobials was present in 81% of the isolates regardless of site. Resistance to tetracycline was most commonly encoded by tetA and tetG; to trimethoprim, by dfrA1, dfrA5 and dfrA12; to sulfamethizole, by sul1 and sul2; to amoxicillin, by blaTEM ; and to streptomycin, by strA-strB. Integron integrase intl1 was detected in 14 sul1-positive isolates, associated with aad9 gene cassettes in two from the aquaculture site. intl2 Integrase was only detected in three dfrA1-positive isolates from the aquaculture site and was not associated with gene cassettes in any. Of nine isolates tested for conjugation, two from the aquaculture site transferred AR determinants to Escherichia coli. High levels of AR in marine sediments from aquaculture and non-aquaculture sites suggest that dispersion of the large amounts of antimicrobials used in Chilean salmon aquaculture has created selective pressure in areas of the marine environment far removed from the initial site of use of these agents. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Breeding bread wheat cultivars for high protein content by transfer of protein genes from Triticum dicoccoides

    International Nuclear Information System (INIS)

    Grama, A.; Gerechter-Amitai, Z.K.; Blum, A.; Rubenthaler, G.L.

    1984-01-01

    Triticum dicoccoides sel. G-25, a selection of wild emmer with a protein content of 20.5% and a kernel weight of 31.5 mg, was used as the donor of protein genes. Since this selection is highly resistant to stripe rust, the object of the crossing programme was to transfer this resistance, together with the high protein potential, to durum and bread wheat cultivars susceptible to the disease. In the tetraploid lines obtained from the T. dicoccoides/T. durum cross, the protein values ranged from 17 to 22%. These lines had resistance to stripe rust from the wild emmer and to stem rust from the durum. After two further crosses between these tetraploid lines and T. aestivum cultivars, several lines were selected which combined good yield, high protein level and resistance to rust diseases. These lines attained protein levels of 14 to 19% in the whole grain and 14 to 17% in the flour, combined with yields of 4.5 to 6.0 t/ha. They had also inherited resistance to stem rust, and in some instances also to leaf rust, from the cultivated wheat parental lines. (author)

  9. Distribution of Florfenicol Resistance Genes fexA and cfr among Chloramphenicol-Resistant Staphylococcus Isolates

    Science.gov (United States)

    Kehrenberg, Corinna; Schwarz, Stefan

    2006-01-01

    A total of 302 chloramphenicol-resistant Staphylococcus isolates were screened for the presence of the florfenicol/chloramphenicol resistance genes fexA and cfr and their localization on mobile genetic elements. Of the 114 isolates from humans, only a single Staphylococcus aureus isolate showed an elevated MIC to florfenicol, but did not carry either of the known resistance genes, cfr or fexA. In contrast, 11 of the 188 staphylococci from animal sources were considered florfenicol resistant and carried either cfr (one isolate), fexA (five isolates), or both resistance genes (five isolates). In nine cases we confirmed that these genes were carried on a plasmid. Five different types of plasmids could be differentiated on the basis of their sizes, restriction patterns, and resistance genes. The gene fexA, which has previously been shown to be part of the nonconjugative transposon Tn558, was identified in 10 of the 11 resistant isolates from animals. PCR assays were developed to detect different parts of this transposon as well as their physical linkage. Complete copies of Tn558 were found in five different isolates and shown by inverse PCR to be functionally active. Truncated copies of Tn558, in which the tnpA-tnpB area was in part deleted by the integration of a 4,674-bp segment including the gene cfr and a novel 2,446-bp IS21-like insertion sequence, were seen in a plasmid present in three staphylococcal isolates. PMID:16569824

  10. Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils

    Directory of Open Access Journals (Sweden)

    Wang Gejiao

    2009-01-01

    Full Text Available Abstract Background Arsenic is known as a toxic metalloid, which primarily exists in inorganic form [As(III and As(V] and can be transformed by microbial redox processes in the natural environment. As(III is much more toxic and mobile than As(V, hence microbial arsenic redox transformation has a major impact on arsenic toxicity and mobility which can greatly influence the human health. Our main purpose was to investigate the distribution and diversity of microbial arsenite-resistant species in three different arsenic-contaminated soils, and further study the As(III resistance levels and related functional genes of these species. Results A total of 58 arsenite-resistant bacteria were identified from soils with three different arsenic-contaminated levels. Highly arsenite-resistant bacteria (MIC > 20 mM were only isolated from the highly arsenic-contaminated site and belonged to Acinetobacter, Agrobacterium, Arthrobacter, Comamonas, Rhodococcus, Stenotrophomonas and Pseudomonas. Five arsenite-oxidizing bacteria that belonged to Achromobacter, Agrobacterium and Pseudomonas were identified and displayed a higher average arsenite resistance level than the non-arsenite oxidizers. 5 aoxB genes encoding arsenite oxidase and 51 arsenite transporter genes [18 arsB, 12 ACR3(1 and 21 ACR3(2] were successfully amplified from these strains using PCR with degenerate primers. The aoxB genes were specific for the arsenite-oxidizing bacteria. Strains containing both an arsenite oxidase gene (aoxB and an arsenite transporter gene (ACR3 or arsB displayed a higher average arsenite resistance level than those possessing an arsenite transporter gene only. Horizontal transfer of ACR3(2 and arsB appeared to have occurred in strains that were primarily isolated from the highly arsenic-contaminated soil. Conclusion Soils with long-term arsenic contamination may result in the evolution of highly diverse arsenite-resistant bacteria and such diversity was probably caused in

  11. The impact of a freshwater fish farm on the community of tetracycline-resistant bacteria and the structure of tetracycline resistance genes in river water.

    Science.gov (United States)

    Harnisz, Monika; Korzeniewska, Ewa; Gołaś, Iwona

    2015-06-01

    The aim of this study was to assess the impact of a fish farm on the structure of antibiotic resistant bacteria and antibiotic resistance genes in water of Drwęca River. Samples of upstream river waters; post-production waters and treated post-production waters from fish farm; as well as downstream river waters were monitored for tetracycline resistant bacteria, tetracycline resistant genes, basic physico-chemical parameters and tetracyclines concentration. The river waters was characterized by low levels of pollution, which was determined based on water temperature, pH and concentrations of dissolved oxygen and tetracycline antibiotics. Culture-dependent (heterotrophic plate counts, counts of bacteria resistant to oxytetracycline (OTC(R)) and doxycycline (DOX(R)), minimum inhibitory concentrations for oxytetracycline and doxycycline, multidrug resistance of OTC(R) and DOX(R), qualitative composition of OTC(R) and DOX(R), prevalence of tet genes in resistant isolates) and culture-independent surveys (quantity of tet gene copies) revealed no significant differences in the abundance of antibiotic-resistant bacteria and antibiotic resistance genes between the studied samples. The only way in which the fish farm influenced water quality in the Drwęca River was by increasing the diversity of tetracycline-resistance genes. However, it should also be noted that the bacteria of the genera Aeromonas sp. and Acinetobacter sp. were able to transfer 6 out of 13 tested tet genes into Escherichiacoli, which can promote the spread of antibiotic resistance in the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Induced mutations of rust resistance genes in wheat

    International Nuclear Information System (INIS)

    McIntosh, R.A.

    1983-01-01

    Induced mutations are being used as a tool to study genes for resistance in wheat. It was found that Pm1 can be separated from Lr20 and Sr15, but these two react like a single pleiotropic gene. Mutants were further examined in crosses and backmutations have been attempted. (author)

  13. Characterization of genomic sequence of a drought-resistant gene ...

    Indian Academy of Sciences (India)

    Characterization of genomic sequence of a drought-resistant gene. TaSnRK2.7 in wheat species. HONG YING ZHANG1,2, WEI LI3, XIN GUO MAO1 and RUI LIAN JING1∗. 1The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science,. Chinese Academy of Agricultural Sciences, ...

  14. Testing of disease-resistance of pokeweed antiviral protein gene ...

    African Journals Online (AJOL)

    Transformation of pokeweed antiviral protein gene (PAP) into plants was shown to improve plant resistance to several viruses or fungi pathogens with no much negative effect on plant growth. The non-virulent defective PAP inhibits only the virus but does not interfere with the host. A non-virulent defective PAP gene ...

  15. Isolation and characterization of a candidate gene for resistance to ...

    African Journals Online (AJOL)

    xudelin

    2012-05-17

    May 17, 2012 ... Cereal cyst nematode (CCN) (Heterodera avenae Woll.) is one of the most economically damaging endoparasite pests of wheat worldwide. We isolated and characterized a novel cereal CCN resistance candidate gene, CreV8, from Aegilops variabilis (2n = 28, UUSvSv). The gene was 3,568 bp long and.

  16. A novel method to discover fluoroquinolone antibiotic resistance (qnr genes in fragmented nucleotide sequences

    Directory of Open Access Journals (Sweden)

    Boulund Fredrik

    2012-12-01

    Full Text Available Abstract Background Broad-spectrum fluoroquinolone antibiotics are central in modern health care and are used to treat and prevent a wide range of bacterial infections. The recently discovered qnr genes provide a mechanism of resistance with the potential to rapidly spread between bacteria using horizontal gene transfer. As for many antibiotic resistance genes present in pathogens today, qnr genes are hypothesized to originate from environmental bacteria. The vast amount of data generated by shotgun metagenomics can therefore be used to explore the diversity of qnr genes in more detail. Results In this paper we describe a new method to identify qnr genes in nucleotide sequence data. We show, using cross-validation, that the method has a high statistical power of correctly classifying sequences from novel classes of qnr genes, even for fragments as short as 100 nucleotides. Based on sequences from public repositories, the method was able to identify all previously reported plasmid-mediated qnr genes. In addition, several fragments from novel putative qnr genes were identified in metagenomes. The method was also able to annotate 39 chromosomal variants of which 11 have previously not been reported in literature. Conclusions The method described in this paper significantly improves the sensitivity and specificity of identification and annotation of qnr genes in nucleotide sequence data. The predicted novel putative qnr genes in the metagenomic data support the hypothesis of a large and uncharacterized diversity within this family of resistance genes in environmental bacterial communities. An implementation of the method is freely available at http://bioinformatics.math.chalmers.se/qnr/.

  17. Substrate analog interaction with MCR-1 offers insight into the rising threat of the plasmid-mediated transferable colistin resistance.

    Science.gov (United States)

    Wei, Pengcheng; Song, Guangji; Shi, Mengyang; Zhou, Yafei; Liu, Yang; Lei, Jun; Chen, Peng; Yin, Lei

    2018-02-01

    Colistin is considered a last-resort antibiotic against most gram-negative bacteria. Recent discoveries of a plasmid-mediated, transferable mobilized colistin-resistance gene ( mcr-1) on all continents have heralded the imminent emergence of pan-drug-resistant superbacteria. The inner-membrane protein MCR-1 can catalyze the transfer of phosphoethanolamine (PEA) to lipid A, resulting in colistin resistance. However, little is known about the mechanism, and few drugs exist to address this issue. We present crystal structures revealing the MCR-1 catalytic domain (cMCR-1) as a monozinc metalloprotein with ethanolamine (ETA) and d-glucose, respectively, thus highlighting 2 possible substrate-binding pockets in the MCR-1-catalyzed PEA transfer reaction. Mutation of the residues involved in ETA and d-glucose binding impairs colistin resistance in recombinant Escherichia coli containing full-length MCR-1. Partial analogs of the substrate are used for cocrystallization with cMCR-1, providing valuable information about the family of PEA transferases. One of the analogs, ETA, causes clear inhibition of polymyxin B resistance, highlighting its potential for drug development. These data demonstrate the crucial role of the PEA- and lipid A-binding pockets and provide novel insights into the structure-based mechanisms, important drug-target hot spots, and a drug template for further drug development to combat the urgent, rising threat of MCR-1-mediated antibiotic resistance.-Wei, P., Song, G., Shi, M., Zhou, Y., Liu, Y., Lei, J., Chen, P., Yin, L. Substrate analog interaction with MCR-1 offers insight into the rising threat of the plasmid-mediated transferable colistin resistance.

  18. Understanding Transfer as Personal Change: Concerns, Intentions, and Resistance

    Science.gov (United States)

    Young, Jeani C.

    2013-01-01

    Adult education is about change. Change in knowledge and understanding. Change in attitudes and beliefs. Change in skills and behaviors. The transfer that adult educators and learners often want to achieve is that change. In situations where transfer equals change, models of change can be useful to describe, support, and predict transfer. This…

  19. Adenovirus gene transfer to amelogenesis imperfecta ameloblast-like cells.

    Directory of Open Access Journals (Sweden)

    Anton V Borovjagin

    Full Text Available To explore gene therapy strategies for amelogenesis imperfecta (AI, a human ameloblast-like cell population was established from third molars of an AI-affected patient. These cells were characterized by expression of cytokeratin 14, major enamel proteins and alkaline phosphatase staining. Suboptimal transduction of the ameloblast-like cells by an adenovirus type 5 (Ad5 vector was consistent with lower levels of the coxsackie-and-adenovirus receptor (CAR on those cells relative to CAR-positive A549 cells. To overcome CAR -deficiency, we evaluated capsid-modified Ad5 vectors with various genetic capsid modifications including "pK7" and/or "RGD" motif-containing short peptides incorporated in the capsid protein fiber as well as fiber chimera with the Ad serotype 3 (Ad3 fiber "knob" domain. All fiber modifications provided an augmented transduction of AI-ameloblasts, revealed following vector dose normalization in A549 cells with a superior effect (up to 404-fold of pK7/RGD double modification. This robust infectivity enhancement occurred through vector binding to both α(vβ3/α(vβ5 integrins and heparan sulfate proteoglycans (HSPGs highly expressed by AI-ameloblasts as revealed by gene transfer blocking experiments. This work thus not only pioneers establishment of human AI ameloblast-like cell population as a model for in vitro studies but also reveals an optimal infectivity-enhancement strategy for a potential Ad5 vector-mediated gene therapy for AI.

  20. Environmental cycle of antibiotic resistance encoded genes: A systematic review

    Directory of Open Access Journals (Sweden)

    R. ghanbari

    2017-12-01

    Full Text Available Antibiotic-resistant bacteria and genes enter the environment in different ways. The release of these factors into the environment has increased concerns related to public health. The aim of the study was to evaluate the antibiotic resistance genes (ARGs in the environmental resources. In this systematic review, the data were extracted from valid sources of information including ScienceDirect, PubMed, Google Scholar and SID. Evaluation and selection of articles were conducted on the basis of the PRISMA checklist. A total of 39 articles were included in the study, which were chosen from a total of 1249 papers. The inclusion criterion was the identification of genes encoding antibiotic resistance against the eight important groups of antibiotics determined by using the PCR technique in the environmental sources including municipal and hospital wastewater treatment plants, animal and agricultural wastes, effluents from treatment plants, natural waters, sediments, and drinking waters. In this study, 113 genes encoding antibiotic resistance to eight groups of antibiotics (beta-lactams, aminoglycosides, tetracyclines, macrolides, sulfonamides, chloramphenicol, glycopeptides and quinolones were identified in various environments. Antibiotic resistance genes were found in all the investigated environments. The investigation of microorganisms carrying these genes shows that most of the bacteria especially gram-negative bacteria are effective in the acquisition and the dissemination of these pollutants in the environment. Discharging the raw wastewaters and effluents from wastewater treatments acts as major routes in the dissemination of ARGs into environment sources and can pose hazards to public health.

  1. Transgenic sugarcane resistant to Sorghum mosaic virus based on coat protein gene silencing by RNA interference.

    Science.gov (United States)

    Guo, Jinlong; Gao, Shiwu; Lin, Qinliang; Wang, Hengbo; Que, Youxiong; Xu, Liping

    2015-01-01

    As one of the critical diseases of sugarcane, sugarcane mosaic disease can lead to serious decline in stalk yield and sucrose content. It is mainly caused by Potyvirus sugarcane mosaic virus (SCMV) and/or Sorghum mosaic virus (SrMV), with additional differences in viral strains. RNA interference (RNAi) is a novel strategy for producing viral resistant plants. In this study, based on multiple sequence alignment conducted on genomic sequences of different strains and isolates of SrMV, the conserved region of coat protein (CP) genes was selected as the target gene and the interference sequence with size of 423 bp in length was obtained through PCR amplification. The RNAi vector pGII00-HACP with an expression cassette containing both hairpin interference sequence and cp4-epsps herbicide-tolerant gene was transferred to sugarcane cultivar ROC22 via Agrobacterium-mediated transformation. After herbicide screening, PCR molecular identification, and artificial inoculation challenge, anti-SrMV positive transgenic lines were successfully obtained. SrMV resistance rate of the transgenic lines with the interference sequence was 87.5% based on SrMV challenge by artificial inoculation. The genetically modified SrMV-resistant lines of cultivar ROC22 provide resistant germplasm for breeding lines and can also serve as resistant lines having the same genetic background for study of resistance mechanisms.

  2. Transgenic Sugarcane Resistant to Sorghum mosaic virus Based on Coat Protein Gene Silencing by RNA Interference

    Directory of Open Access Journals (Sweden)

    Jinlong Guo

    2015-01-01

    Full Text Available As one of the critical diseases of sugarcane, sugarcane mosaic disease can lead to serious decline in stalk yield and sucrose content. It is mainly caused by Potyvirus sugarcane mosaic virus (SCMV and/or Sorghum mosaic virus (SrMV, with additional differences in viral strains. RNA interference (RNAi is a novel strategy for producing viral resistant plants. In this study, based on multiple sequence alignment conducted on genomic sequences of different strains and isolates of SrMV, the conserved region of coat protein (CP genes was selected as the target gene and the interference sequence with size of 423 bp in length was obtained through PCR amplification. The RNAi vector pGII00-HACP with an expression cassette containing both hairpin interference sequence and cp4-epsps herbicide-tolerant gene was transferred to sugarcane cultivar ROC22 via Agrobacterium-mediated transformation. After herbicide screening, PCR molecular identification, and artificial inoculation challenge, anti-SrMV positive transgenic lines were successfully obtained. SrMV resistance rate of the transgenic lines with the interference sequence was 87.5% based on SrMV challenge by artificial inoculation. The genetically modified SrMV-resistant lines of cultivar ROC22 provide resistant germplasm for breeding lines and can also serve as resistant lines having the same genetic background for study of resistance mechanisms.

  3. Origin-of-transfer sequences facilitate mobilisation of non-conjugative antimicrobial-resistance plasmids in Staphylococcus aureus

    Science.gov (United States)

    O'Brien, Frances G.; Yui Eto, Karina; Murphy, Riley J. T.; Fairhurst, Heather M.; Coombs, Geoffrey W.; Grubb, Warren B.; Ramsay, Joshua P.

    2015-01-01

    Staphylococcus aureus is a common cause of hospital, community and livestock-associated infections and is increasingly resistant to multiple antimicrobials. A significant proportion of antimicrobial-resistance genes are plasmid-borne, but only a minority of S. aureus plasmids encode proteins required for conjugative transfer or Mob relaxase proteins required for mobilisation. The pWBG749 family of S. aureus conjugative plasmids can facilitate the horizontal transfer of diverse antimicrobial-resistance plasmids that lack Mob genes. Here we reveal that these mobilisable plasmids carry copies of the pWBG749 origin-of-transfer (oriT) sequence and that these oriT sequences facilitate mobilisation by pWBG749. Sequences resembling the pWBG749 oriT were identified on half of all sequenced S. aureus plasmids, including the most prevalent large antimicrobial-resistance/virulence-gene plasmids, pIB485, pMW2 and pUSA300HOUMR. oriT sequences formed five subfamilies with distinct inverted-repeat-2 (IR2) sequences. pWBG749-family plasmids encoding each IR2 were identified and pWBG749 mobilisation was found to be specific for plasmids carrying matching IR2 sequences. Specificity of mobilisation was conferred by a putative ribbon-helix-helix-protein gene smpO. Several plasmids carried 2–3 oriT variants and pWBG749-mediated recombination occurred between distinct oriT sites during mobilisation. These observations suggest this relaxase-in trans mechanism of mobilisation by pWBG749-family plasmids is a common mechanism of plasmid dissemination in S. aureus. PMID:26243776

  4. Frequency of conjugative transfer of plasmid-encoded ISEcp1 - blaCTX-M-15 and aac(6'-lb-cr genes in Enterobacteriaceae at a tertiary care center in Lebanon - role of transferases

    Directory of Open Access Journals (Sweden)

    Araj George F

    2010-07-01

    Full Text Available Abstract Background The frequency of transfer of genes encoding resistance to antimicrobial agents was determined by conjugation in ESBL-producing and/or fluoroquinolone or aminoglycoside resistant Enterobacteriaceae clinical isolates at a tertiary care center in Lebanon. In addition, the role of tra genes encoding transferases in mediating conjugation was assessed. Methods Conjugation experiments were done on 53 ESBL-producing and/or fluoroquinolone resistant E. coli and K. pneumoniae and ESBL-producing S. sonnei isolates. Antimicrobial susceptibility testing on parent and transconjugant isolates, and PCR amplifications on plasmid extracts of the resistance-encoding genes: blaCTX-M-15 with the ISEcp1 insertion sequence, the aac(6'-lb-cr and qnrS genes, as well as tra encoding transferases genes were done. Random amplified polymorphic DNA (RAPD analysis was performed to demonstrate whether conjugative isolates are clonal and whether they are linked epidemiologically to a particular source. Results Antimicrobial susceptibility testing on transconjugants revealed that 26 out of 53 (49% ESBL-producing Enterobacteriaceae were able to transfer antimicrobial resistance to the recipients. Transfer of high-level resistance to the transconjugants encoded by the blaCTX-M-15 gene downstream the ISEcp1 insertion sequence against 3rd generation cephalosporins, and of low-level resistance against ciprofloxacin, and variable levels of resistance against aminoglycosides encoded by aac(6'-lb-cr gene, were observed in transconjugants. tra encoding transferase genes were detected exclusively in conjugative isolates. Conclusion In conclusion, the frequency of transfer of antimicrobial resistance in non clonal Enterobacteriaceae at the tertiary care center by conjugation was 49%. Conjugation occurred in isolates expressing the tra encoding transferase genes. Multiple conjugative strains harboring the plasmid encoded antimicrobial resistant genes were circulating in

  5. Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, Kira S. [National Center for Biotechnology Information; Omelchenko, Marina [National Center for Biotechnology Information; Gaidamakova, Elena [Uniformed Services University of the Health Sciences (USUHS); Matrosova, Vera [Uniformed Services University of the Health Sciences (USUHS); Vasilenko, Alexander [Uniformed Services University of the Health Sciences (USUHS); Zhai, Min [Uniformed Services University of the Health Sciences (USUHS); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Kim, Edwin [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Pitluck, Samual [U.S. Department of Energy, Joint Genome Institute; Richardson, P M [U.S. Department of Energy, Joint Genome Institute; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Brettin, Tom [Los Alamos National Laboratory (LANL); Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Lai, Barry [Argonne National Laboratory (ANL); Ravel, Bruce [Argonne National Laboratory (ANL); Kemner, Kenneth M [Argonne National Laboratory (ANL); Wolf, Yuri [National Center for Biotechnology Information; Sorokin, Alexei [Genetique Microbienne; Gerasimova, Anna [Research Institute of Genetics and Selection of Industrial Microorganisms, Mosco; Gelfand, Mikhail [Moscow State University; Fredrickson, James K [Pacific Northwest National Laboratory (PNNL); Koonin, Eugene [National Center for Biotechnology Information; Daly, Michael [Uniformed Services University of the Health Sciences (USUHS)

    2007-01-01

    Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to

  6. Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, Kira S.; Omelchenko, Marina V.; Gaidamakova, Elena K.; Matrosova, Vera Y.; Vasilenko, Alexander; Zhai, Min; Lapidus, Alla; Copeland, Alex; Kim, Edwin; Land, Miriam; Mavrommatis, Konstantinos; Pitluck, Samuel; Richardson, Paul M.; Detter, Chris; Brettin, Thomas; Saunders, Elizabeth; Lai, Barry; Ravel, Bruce; Kemner, Kenneth M.; Wolf, Yuri I.; Sorokin, Alexander; Gerasimova, Anna V.; Gelfand, Mikhail S.; Fredrickson, James K.; Koonin, Eugene V.; Daly, Michael J.

    2007-07-24

    Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at itsoptimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to

  7. Antibiotic resistance and virulence genes in coliform water isolates.

    Science.gov (United States)

    Stange, C; Sidhu, J P S; Tiehm, A; Toze, S

    2016-11-01

    Widespread fecal pollution of surface water may present a major health risk and a significant pathway for dissemination of antibiotic resistance bacteria. The River Rhine is one of the longest and most important rivers in Europe and an important raw water source for drinking water production. A total of 100 coliform isolates obtained from River Rhine (Germany) were examined for their susceptibility to seven antimicrobial agents. Resistances against amoxicillin, trimethoprim/sulfamethoxazole and tetracycline were detected in 48%, 11% and 9% of isolates respectively. The antibiotic resistance could be traced back to the resistance genes bla TEM , bla SHV , ampC, sul1, sul2, dfrA1, tet(A) and tet(B). Whereby, the ampC gene represents a special case, because its presence is not inevitably linked to a phenotypic antibiotic resistance. Multiple antibiotics resistance was often accompanied by the occurrence of class 1 or 2 integrons. E. coli isolates belonging to phylogenetic groups A and B1 (commensal) were more predominant (57%) compared to B2 and D groups (43%) which are known to carry virulent genes. Additionally, six E. coli virulence genes were also detected. However, the prevalence of virulence genes in the E. coli isolates was low (not exceeding 4.3% per gene) and no diarrheagenic E. coli pathotypes were detected. This study demonstrates that surface water is an important reservoir of ARGs for a number of antibiotic classes such as sulfonamide, trimethoprim, beta-lactam-antibiotics and tetracycline. The occurrence of antibiotic resistance in coliform bacteria isolated from River Rhine provides evidence for the need to develop management strategies to limit the spread of antibiotic resistant bacteria in aquatic environment. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks.

    Directory of Open Access Journals (Sweden)

    Kira S Makarova

    2007-09-01

    Full Text Available Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR, ultraviolet light (UV and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and

  9. Novel “Superspreader” Bacteriophages Promote Horizontal Gene Transfer by Transformation

    Directory of Open Access Journals (Sweden)

    Eric C. Keen

    2017-01-01

    Full Text Available Bacteriophages infect an estimated 1023 to 1025 bacterial cells each second, many of which carry physiologically relevant plasmids (e.g., those encoding antibiotic resistance. However, even though phage-plasmid interactions occur on a massive scale and have potentially significant evolutionary, ecological, and biomedical implications, plasmid fate upon phage infection and lysis has not been investigated to date. Here we show that a subset of the natural lytic phage population, which we dub “superspreaders,” releases substantial amounts of intact, transformable plasmid DNA upon lysis, thereby promoting horizontal gene transfer by transformation. Two novel Escherichia coli phage superspreaders, SUSP1 and SUSP2, liberated four evolutionarily distinct plasmids with equal efficiency, including two close relatives of prominent antibiotic resistance vectors in natural environments. SUSP2 also mediated the extensive lateral transfer of antibiotic resistance in unbiased communities of soil bacteria from Maryland and Wyoming. Furthermore, the addition of SUSP2 to cocultures of kanamycin-resistant E. coli and kanamycin-sensitive Bacillus sp. bacteria resulted in roughly 1,000-fold more kanamycin-resistant Bacillus sp. bacteria than arose in phage-free controls. Unlike many other lytic phages, neither SUSP1 nor SUSP2 encodes homologs to known hydrolytic endonucleases, suggesting a simple potential mechanism underlying the superspreading phenotype. Consistent with this model, the deletion of endonuclease IV and the nucleoid-disrupting protein ndd from coliphage T4, a phage known to extensively degrade chromosomal DNA, significantly increased its ability to promote plasmid transformation. Taken together, our results suggest that phage superspreaders may play key roles in microbial evolution and ecology but should be avoided in phage therapy and other medical applications.

  10. Novel “Superspreader” Bacteriophages Promote Horizontal Gene Transfer by Transformation

    Science.gov (United States)

    Bliskovsky, Valery V.; Malagon, Francisco; Baker, James D.; Prince, Jeffrey S.; Klaus, James S.; Adhya, Sankar L.

    2017-01-01

    ABSTRACT Bacteriophages infect an estimated 1023 to 1025 bacterial cells each second, many of which carry physiologically relevant plasmids (e.g., those encoding antibiotic resistance). However, even though phage-plasmid interactions occur on a massive scale and have potentially significant evolutionary, ecological, and biomedical implications, plasmid fate upon phage infection and lysis has not been investigated to date. Here we show that a subset of the natural lytic phage population, which we dub “superspreaders,” releases substantial amounts of intact, transformable plasmid DNA upon lysis, thereby promoting horizontal gene transfer by transformation. Two novel Escherichia coli phage superspreaders, SUSP1 and SUSP2, liberated four evolutionarily distinct plasmids with equal efficiency, including two close relatives of prominent antibiotic resistance vectors in natural environments. SUSP2 also mediated the extensive lateral transfer of antibiotic resistance in unbiased communities of soil bacteria from Maryland and Wyoming. Furthermore, the addition of SUSP2 to cocultures of kanamycin-resistant E. coli and kanamycin-sensitive Bacillus sp. bacteria resulted in roughly 1,000-fold more kanamycin-resistant Bacillus sp. bacteria than arose in phage-free controls. Unlike many other lytic phages, neither SUSP1 nor SUSP2 encodes homologs to known hydrolytic endonucleases, suggesting a simple potential mechanism underlying the superspreading phenotype. Consistent with this model, the deletion of endonuclease IV and the nucleoid-disrupting protein ndd from coliphage T4, a phage known to extensively degrade chromosomal DNA, significantly increased its ability to promote plasmid transformation. Taken together, our results suggest that phage superspreaders may play key roles in microbial evolution and ecology but should be avoided in phage therapy and other medical applications. PMID:28096488

  11. Genes involved in barley yellow dwarf virus resistance of maize.

    Science.gov (United States)

    Horn, Frederike; Habekuß, Antje; Stich, Benjamin

    2014-12-01

    The results of our study suggest that genes involved in general resistance mechanisms of plants contribute to variation of BYDV resistance in maize. With increasing winter temperatures in Europe, Barley yellow dwarf virus (BYDV) is expected to become a prominent problem in maize cultivation. Breeding for resistance is the best strategy to control the disease and break the transmission cycle of the virus. The objectives of our study were (1) to determine genetic variation with respect to BYDV resistance in a broad germplasm set and (2) to identify single nucleotide polymorphism (SNP) markers linked to genes that are involved in BYDV resistance. An association mapping population with 267 genotypes representing the world's maize gene pool was grown in the greenhouse. Plants were inoculated with BYDV-PAV using viruliferous Rhopalosiphum padi. In the association mapping population, we observed considerable genotypic variance for the trait virus extinction as measured by double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) and the infection rate. In a genome-wide association study, we observed three SNPs significantly [false discovery rate (FDR) = 0.05] associated with the virus extinction on chromosome 10 explaining together 25 % of the phenotypic variance and five SNPs for the infection rate on chromosomes 4 and 10 explaining together 33 % of the phenotypic variance. The SNPs significantly associated with BYDV resistance can be used in marker assisted selection and will accelerate the breeding process for the development of BYDV resistant maize genotypes. Furthermore, these SNPs were located within genes which were in other organisms described to play a role in general resistance mechanisms. This suggests that these genes contribute to variation of BYDV resistance in maize.

  12. Identifying resistance gene analogs associated with resistances to different pathogens in common bean.

    Science.gov (United States)

    López, Camilo E; Acosta, Iván F; Jara, Carlos; Pedraza, Fabio; Gaitán-Solís, Eliana; Gallego, Gerardo; Beebe, Steve; Tohme, Joe

    2003-01-01

    ABSTRACT A polymerase chain reaction approach using degenerate primers that targeted the conserved domains of cloned plant disease resistance genes (R genes) was used to isolate a set of 15 resistance gene analogs (RGAs) from common bean (Phaseolus vulgaris). Eight different classes of RGAs were obtained from nucleotide binding site (NBS)-based primers and seven from not previously described Toll/Interleukin-1 receptor-like (TIR)-based primers. Putative amino acid sequences of RGAs were significantly similar to R genes and contained additional conserved motifs. The NBS-type RGAs were classified in two subgroups according to the expected final residue in the kinase-2 motif. Eleven RGAs were mapped at 19 loci on eight linkage groups of the common bean genetic map constructed at Centro Internacional de Agricultura Tropical. Genetic linkage was shown for eight RGAs with partial resistance to anthracnose, angular leaf spot (ALS) and Bean golden yellow mosaic virus (BGYMV). RGA1 and RGA2 were associated with resistance loci to anthracnose and BGYMV and were part of two clusters of R genes previously described. A new major cluster was detected by RGA7 and explained up to 63.9% of resistance to ALS and has a putative contribution to anthracnose resistance. These results show the usefulness of RGAs as candidate genes to detect and eventually isolate numerous R genes in common bean.

  13. Gene expression system in green sulfur bacteria by conjugative plasmid transfer.

    Directory of Open Access Journals (Sweden)

    Chihiro Azai

    Full Text Available Gene transfer and expression systems in green sulfur bacteria were established by bacterial conjugation with Escherichia coli. Conjugative plasmid transfer from E. coli S17-1 to a thermophilic green sulfur bacterium, Chlorobaculum tepidum (formerly Chlorobium tepidum WT2321, was executed with RSF1010-derivative broad-host-range plasmids, named pDSK5191 and pDSK5192, that confer erythromycin and streptomycin/spectinomycin resistance, respectively. The transconjugants harboring these plasmids were reproducibly obtained at a frequency of approximately 10(-5 by selection with erythromycin and a combination of streptomycin and spectinomycin, respectively. These plasmids were stably maintained in C. tepidum cells in the presence of these antibiotics. The plasmid transfer to another mesophilic green sulfur bacterium, C. limnaeum (formerly Chlorobium phaeobacteroides RK-j-1, was also achieved with pDSK5192. The expression plasmid based on pDSK5191 was constructed by incorporating the upstream and downstream regions of the pscAB gene cluster on the C. tepidum genome, since these regions were considered to include a constitutive promoter and a ρ-independent terminator, respectively. Growth defections of the ∆cycA and ∆soxB mutants were completely rescued after introduction of pDSK5191-cycA and -soxB that were designed to express their complementary genes. On the other hand, pDSK5191-6xhis-pscAB, which incorporated the gene cluster of 6xhis-pscA and pscB, produced approximately four times more of the photosynthetic reaction center complex with His-tagged PscA as compared with that expressed in the genome by the conventional natural transformation method. This expression system, based on conjugative plasmid, would be applicable to general molecular biological studies of green sulfur bacteria.

  14. The relationship between codon usage bias and cold resistant genes

    International Nuclear Information System (INIS)

    Barozai, M.Y.; Din, M.

    2014-01-01

    This research is based on synonymous codon usage which has been well-known as a feature that affects typical expression level of protein in an organism. Different organisms prefer different codons for same amino acid and this is called Codon Usage Bias (CUB). The codon usage directly affects the level or even direction of changes in protein expression in responses to environmental stimuli. Cold stress is a major abiotic factor that limits the agricultural productivity of plants. In the recent study CUB has been studied in Arabidopsis thaliana cold resistant and housekeeping genes and their homologs in rice (Oryza sativa) to understand the cold stress and housekeeping genes relation with CUB. Six cold resistant and three housekeeping genes in Arabidopsis thaliana and their homologs in rice, were subjected to CUB analysis. The three cold resistant genes (DREB1B, RCI and MYB15) showed more than 50% (52%, 61% and 66% respectively) similar codon usage bias for Arabidopsis thaliana and rice. On the other hand three cold resistant genes (MPK3, ICE1 and ZAT12) showed less than 50% (38%, 38% and 47% respectively) similar codon usage bias for Arabidopsis thaliana and rice. The three housekeeping genes (Actin, Tubulin and Ubiquitin) showed 76% similar codon usage bias for Arabidopsis thaliana and rice. This study will help to manage the plant gene expression through codon optimization under the cold stress. (author)

  15. Evolutionary Origins of the Eukaryotic Shikimate Pathway: Gene Fusions, Horizontal Gene Transfer, and Endosymbiotic Replacements†

    Science.gov (United States)

    Richards, Thomas A.; Dacks, Joel B.; Campbell, Samantha A.; Blanchard, Jeffrey L.; Foster, Peter G.; McLeod, Rima; Roberts, Craig W.

    2006-01-01

    Currently the shikimate pathway is reported as a metabolic feature of prokaryotes, ascomycete fungi, apicomplexans, and plants. The plant shikimate pathway enzymes have similarities to prokaryote homologues and are largely active in chloroplasts, suggesting ancestry from the plastid progenitor genome. Toxoplasma gondii, which also possesses an alga-derived plastid organelle, encodes a shikimate pathway with similarities to ascomycete genes, including a five-enzyme pentafunctional arom. These data suggests that the shikimate pathway and the pentafunctional arom either had an ancient origin in the eukaryotes or was conveyed by eukaryote-to-eukaryote horizontal gene transfer (HGT). We expand sampling and analyses of the shikimate pathway genes to include the oomycetes, ciliates, diatoms, basidiomycetes, zygomycetes, and the green and red algae. Sequencing of cDNA from Tetrahymena thermophila confirmed the presence of a pentafused arom, as in fungi and T. gondii. Phylogenies and taxon distribution suggest that the arom gene fusion event may be an ancient eukaryotic innovation. Conversely, the Plantae lineage (represented here by both Viridaeplantae and the red algae) acquired different prokaryotic genes for all seven steps of the shikimate pathway. Two of the phylogenies suggest a derivation of the Plantae genes from the cyanobacterial plastid progenitor genome, but if the full Plantae pathway was originally of cyanobacterial origin, then the five other shikimate pathway genes were obtained from a minimum of two other eubacterial genomes. Thus, the phylogenies demonstrate both separate HGTs and shared derived HGTs within the Plantae clade either by primary HGT transfer or secondarily via the plastid progenitor genome. The shared derived characters support the holophyly of the Plantae lineage and a single ancestral primary plastid endosymbiosis. Our analyses also pinpoints a minimum of 50 gene/domain loss events, demonstrating that loss and replacement events have been

  16. Detection of antibiotic resistance genes in wastewater treatment plant – molecular and classical approach

    Directory of Open Access Journals (Sweden)

    Ziembińska-Buczyńska Aleksandra

    2015-12-01

    Full Text Available Antibiotics are a group of substances potentially harmful to the environment. They can play a role in bacterial resistance transfer among pathogenic and non-pathogenic bacteria. In this experiment three representatives of medically important chemotherapeutics, confirmed to be present in high concentrations in wastewater treatment plants with HPLC analysis were used: erythromycin, sulfamethoxazole and trimethoprim. Erythromycin concentration in activated sludge was not higher than 20 ng L−1. N-acetylo-sulfamethoxazole concentration was 3349 ± 719 in winter and 2933 ± 429 ng L−1 in summer. Trimethoprim was present in wastewater at concentrations 400 ± 22 and 364 ± 60 ng L−1, respectively in winter and summer. Due to a wide variety of PCR-detectable resistance mechanisms towards these substances, the most common found in literature was chosen. For erythromycin: erm and mef genes, for sulfamethoxazole: sul1, sul2, sul3 genes, in the case of trimethoprim resistance dhfrA1 and dhfr14 were used in this study. The presence of resistance genes were analyzed in pure strains isolated from activated sludge and in the activated sludge sample itself. The research revealed that the value of minimal inhibitory concentration (MIC did not correspond with the expected presence of more than one resistance mechanisms. Most of the isolates possessed only one of the genes responsible for a particular chemotherapeutic resistance. It was confirmed that it is possible to monitor the presence of resistance genes directly in activated sludge using PCR. Due to the limited isolates number used in the experiment these results should be regarded as preliminary.

  17. Detecting rare gene transfer events in bacterial populations

    Directory of Open Access Journals (Sweden)

    Kaare Magne Nielsen

    2014-01-01

    Full Text Available Horizontal gene transfer (HGT enables bacteria to access, share, and recombine genetic variation, resulting in genetic diversity that cannot be obtained through mutational processes alone. In most cases, the observation of evolutionary successful HGT events relies on the outcome of initially rare events that lead to novel functions in the new host, and that exhibit a positive effect on host fitness. Conversely, the large majority of HGT events occurring in bacterial populations will go undetected due to lack of replication success of transformants. Moreover, other HGT events that would be highly beneficial to new hosts can fail to ensue due to lack of physical proximity to the donor organism, lack of a suitable gene transfer mechanism, genetic compatibility, and stochasticity in tempo-spatial occurrence. Experimental attempts to detect HGT events in bacterial populations have typically focused on the transformed cells or their immediate offspring. However, rare HGT events occurring in large and structured populations are unlikely to reach relative population sizes that will allow their immediate identification; the exception being the unusually strong positive selection conferred by antibiotics. Most HGT events are not expected to alter the likelihood of host survival to such an extreme extent, and will confer only minor changes in host fitness. Due to the large population sizes of bacteria and the time scales involved, the process and outcome of HGT are often not amenable to experimental investigation. Population genetic modeling of the growth dynamics of bacteria with differing HGT rates and resulting fitness changes is therefore necessary to guide sampling design and predict realistic time frames for detection of HGT, as it occurs in laboratory or natural settings. Here we review the key population genetic parameters, consider their complexity and highlight knowledge gaps for further research.

  18. Molecular Cloning and Characterization of a Wild Eggplant Solanum aculeatissimum NBS-LRR Gene, Involved in Plant Resistance to Meloidogyne incognita

    OpenAIRE

    Xiaohui Zhou; Jun Liu; Shengyou Bao; Yan Yang; Yong Zhuang

    2018-01-01

    Root-knot nematodes, Meloidogyne spp., cause considerable damage in eggplant production. Transferring of resistance genes from wild relatives would be valuable for the continued improvement of eggplant. Solanum aculeatissimum, a wild relative of eggplant possessing resistance to Meloidogyne incognita, is potentially useful for genetically enhancing eggplant. In the present study, we have isolated and characterized a nucleotide-binding site leucine-rich repeat (NBS-LRR) resistance gene, design...

  19. Euglena gracilis chloroplast transfer RNA transcription units. I. Physical map of the transfer RNA gene loci.

    Science.gov (United States)

    Orozco, E M; Hallick, R B

    1982-03-25

    The locations of transfer RNA genes with respect to the restriction endonuclease cleavage map of Euglena gracilis Klebs, strain Z Pringsheim chloroplast DNA have been determined. Purified chloroplast tRNAs were treated with snake venom phosphodiesterase to remove the 3'-CCA terminus, and radioactively labeled by the action of Escherichia coli tRNA nucleotidyltransferase in the presence of [alpha-32P]CTP. Chloroplast DNA was treated individually and with combinations of the enzymes Bal I, Bam HI, Eco RI, Pst I, Pvu II, Sal I, and Xho I. The location of tRNA genes with respect to the cleavage sites for these enzymes was determined by hybridization of the 32P-labeled tRNAs to membrane filter blots of the chloroplast DNA restriction nuclease fragments following gel electrophoresis. The 145-kilobase pair genome was resolved into nine areas of strong tRNA hybridization, separated by areas of weak or no tRNA hybridization. The loci of tRNA genes are within the Eco RI fragments Eco A, B, G, H, I, J', P, Q, and V.

  20. Influence of Soil Use on Prevalence of Tetracycline, Streptomycin, and Erythromycin Resistance and Associated Resistance Genes

    Science.gov (United States)

    Rzeczycka, Marzenna; Miernik, Antoni; Krawczyk-Balska, Agata; Walsh, Fiona; Duffy, Brion

    2012-01-01

    This study examined differences in antibiotic-resistant soil bacteria and the presence and quantity of resistance genes in soils with a range of management histories. We analyzed four soils from agricultural systems that were amended with manure from animals treated with erythromycin and exposed to streptomycin and/or oxytetracycline, as well as non-manure-amended compost and forest soil. Low concentrations of certain antibiotic resistance genes were detected using multiplex quantitative real-time PCR (qPCR), with tet(B), aad(A), and str(A) each present in only one soil and tet(M) and tet(W) detected in all soils. The most frequently detected resistance genes were tet(B), tet(D), tet(O), tet(T), and tet(W) for tetracycline resistance, str(A), str(B), and aac for streptomycin resistance, and erm(C), erm(V), erm(X), msr(A), ole(B), and vga for erythromycin resistance. Transposon genes specific for Tn916, Tn1549, TnB1230, Tn4451, and Tn5397 were detected in soil bacterial isolates. The MIC ranges of isolated bacteria for tetracycline, streptomycin, and erythromycin were 8 to >256 μg/ml, 6 to >1,024 μg/ml, and 0.094 to >256 μg/ml, respectively. Based on 16S rRNA gene similarity, isolated bacteria showed high sequence identity to genera typical of soil communities. Bacteria with the highest MICs were detected in manure-amended soils or soils from agricultural systems with a history of antibiotic use. Non-manure-amended soils yielded larger proportions of antibiotic-resistant bacteria, but these had lower MICs, carried fewer antibiotic resistance genes, and did not display multidrug resistance (MDR). PMID:22203596

  1. Influence of soil use on prevalence of tetracycline, streptomycin, and erythromycin resistance and associated resistance genes.

    Science.gov (United States)

    Popowska, Magdalena; Rzeczycka, Marzenna; Miernik, Antoni; Krawczyk-Balska, Agata; Walsh, Fiona; Duffy, Brion

    2012-03-01

    This study examined differences in antibiotic-resistant soil bacteria and the presence and quantity of resistance genes in soils with a range of management histories. We analyzed four soils from agricultural systems that were amended with manure from animals treated with erythromycin and exposed to streptomycin and/or oxytetracycline, as well as non-manure-amended compost and forest soil. Low concentrations of certain antibiotic resistance genes were detected using multiplex quantitative real-time PCR (qPCR), with tet(B), aad(A), and str(A) each present in only one soil and tet(M) and tet(W) detected in all soils. The most frequently detected resistance genes were tet(B), tet(D), tet(O), tet(T), and tet(W) for tetracycline resistance, str(A), str(B), and aac for streptomycin resistance, and erm(C), erm(V), erm(X), msr(A), ole(B), and vga for erythromycin resistance. Transposon genes specific for Tn916, Tn1549, TnB1230, Tn4451, and Tn5397 were detected in soil bacterial isolates. The MIC ranges of isolated bacteria for tetracycline, streptomycin, and erythromycin were 8 to >256 μg/ml, 6 to >1,024 μg/ml, and 0.094 to >256 μg/ml, respectively. Based on 16S rRNA gene similarity, isolated bacteria showed high sequence identity to genera typical of soil communities. Bacteria with the highest MICs were detected in manure-amended soils or soils from agricultural systems with a history of antibiotic use. Non-manure-amended soils yielded larger proportions of antibiotic-resistant bacteria, but these had lower MICs, carried fewer antibiotic resistance genes, and did not display multidrug resistance (MDR).

  2. Natural transformation facilitates transfer of transposons, integrons and gene cassettes between bacterial species.

    Science.gov (United States)

    Domingues, Sara; Harms, Klaus; Fricke, W Florian; Johnsen, Pål J; da Silva, Gabriela J; Nielsen, Kaare Magne

    2012-01-01

    We have investigated to what extent natural transformation acting on free DNA substrates can facilitate transfer of mobile elements including transposons, integrons and/or gene cassettes between bacterial species. Naturally transformable cells of Acinetobacter baylyi were exposed to DNA from integron-carrying strains of the genera Acinetobacter, Citrobacter, Enterobacter, Escherichia, Pseudomonas, and Salmonella to determine the nature and frequency of transfer. Exposure to the various DNA sources resulted in acquisition of antibiotic resistance traits as well as entire integrons and transposons, over a 24 h exposure period. DNA incorporation was not solely dependent on integrase functions or the genetic relatedness between species. DNA sequence analyses revealed that several mechanisms facilitated stable integration in the recipient genome depending on the nature of the donor DNA; homologous or heterologous recombination and various types of transposition (Tn21-like and IS26-like). Both donor strains and transformed isolates were extensively characterized by antimicrobial susceptibility testing, integron- and cassette-specific PCRs, DNA sequencing, pulsed field gel electrophoreses (PFGE), Southern blot hybridizations, and by re-transformation assays. Two transformant strains were also genome-sequenced. Our data demonstrate that natural transformation facilitates interspecies transfer of genetic elements, suggesting that the transient presence of DNA in the cytoplasm may be sufficient for genomic integration to occur. Our study provides a plausible explanation for why sequence-conserved transposons, IS elements and integrons can be found disseminated among bacterial species. Moreover, natural transformation of integron harboring populations of competent bacteria revealed that interspecies exchange of gene cassettes can be highly efficient, and independent on genetic relatedness between donor and recipient. In conclusion, natural transformation provides a much

  3. Heat-transfer-based detection of SNPs in the PAH gene of PKU patients

    Directory of Open Access Journals (Sweden)

    Vanden Bon N

    2014-03-01

    Full Text Available Natalie Vanden Bon,1 Bart van Grinsven,2 Mohammed Sharif Murib,2 Weng Siang Yeap,2 Ken Haenen,2,3 Ward De Ceuninck,2,3 Patrick Wagner,2,3 Marcel Ameloot,1 Veronique Vermeeren,1 Luc Michiels11Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium; 2Institute for Materials Research, Hasselt University, Diepenbeek, Belgium; 3IMOMEC, Diepenbeek, BelgiumAbstract: Conventional neonatal diagnosis of phenylketonuria is based on the presence of abnormal levels of phenylalanine in the blood. However, for carrier detection and prenatal diagnosis, direct detection of disease-correlated mutations is needed. To speed up and simplify mutation screening in genes, new technologies are developed. In this study, a heat-transfer method is evaluated as a mutation-detection technology in entire exons of the phenylalanine hydroxylase (PAH gene. This method is based on the change in heat-transfer resistance (Rth upon thermal denaturation of dsDNA (double-stranded DNA on nanocrystalline diamond. First, ssDNA (single-stranded DNA fragments that span the size range of the PAH exons were successfully immobilized on nanocrystalline diamond. Next, it was studied whether an Rth change could be observed during the thermal denaturation of these DNA fragments after hybridization to their complementary counterpart. A clear Rth shift during the denaturation of exon 5, exon 9, and exon 12 dsDNA was observed, corresponding to lengths of up to 123 bp. Finally, Rth was shown to detect prevalent single-nucleotide polymorphisms, c.473G>A (R158Q, c.932T>C (p.L311P, and c.1222C>T (R408W, correlated with phenylketonuria, displaying an effect related to the different melting temperatures of homoduplexes and heteroduplexes.Keywords: mutation detection, heat-transfer resistance, melting temperature, nanocrystalline diamond, persistence length

  4. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA

    Directory of Open Access Journals (Sweden)

    Bertinellys TEIXEIRA

    2016-01-01

    Full Text Available The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC, aminoglycoside-adenyltransferases (AAD, and aminoglycoside-phosphotransferases (APH, is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137 were identified from the Intensive Care Unit (ICU, mainly from discharges (96/137. The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively. Phenotype VI, resistant to these antibiotics, was the most frequent (14/49, followed by phenotype I, resistant to all the aminoglycosides tested (12/49. The aac(6´-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America.

  5. Widespread impact of horizontal gene transfer on plant colonization of land.

    Science.gov (United States)

    Yue, Jipei; Hu, Xiangyang; Sun, Hang; Yang, Yongping; Huang, Jinling

    2012-01-01

    In complex multicellular eukaryotes such as animals and plants, horizontal gene transfer is commonly considered rare with very limited evolutionary significance. Here we show that horizontal gene transfer is a dynamic process occurring frequently in the early evolution of land plants. Our genome analyses of the moss Physcomitrella patens identified 57 families of nuclear genes that were acquired from prokaryotes, fungi or viruses. Many of these gene families were transferred to the ancestors of green or land plants. Available experimental evidence shows that these anciently acquired genes are involved in some essential or plant-specific activities such as xylem formation, plant defence, nitrogen recycling as well as the biosynthesis of starch, polyamines, hormones and glutathione. These findings suggest that horizontal gene transfer had a critical role in the transition of plants from aquatic to terrestrial environments. On the basis of these findings, we propose a model of horizontal gene transfer mechanism in nonvascular and seedless vascular plants.

  6. Molecular Scree ning of Blast Resistance Genes in Rice Germplasms Resistant to Magnaporthe oryzae

    Directory of Open Access Journals (Sweden)

    Liang Yan

    2017-01-01

    Full Text Available Molecular screening of major rice blast resistance genes was determined with molecular markers, which showed close-set linkage to 11 major rice blast resistance genes (Pi-d2, Pi-z, Piz-t, Pi-9, Pi-36, Pi-37, Pi5, Pi-b, Pik-p, Pik-h and Pi-ta2, in a collection of 32 accessions resistant to Magnaporthe oryzae. Out of the 32 accessions, the Pi-d2 and Pi-z appeared to be omnipresent and gave positive express. As the second dominant, Pi-b and Piz-t gene frequencies were 96.9% and 87.5%. And Pik-h and Pik-p gene frequencies were 43.8% and 28.1%, respectively. The molecular marker linkage to Pi-ta2 produced positive bands in eleven accessions, while the molecular marker linkage to Pi-36 and Pi-37 in only three and four accessions, respectively. The natural field evaluation analysis showed that 30 of the 32 accessions were resistant, one was moderately resistant and one was susceptible. Infection types were negatively correlated with the genotype scores of Pi-9, Pi5, Pi-b, Pi-ta2 and Pik-p, although the correlation coefficients were very little. These results are useful in identification and incorporation of functional resistance genes from these germplasms into elite cultivars through marker-assisted selection for improved blast resistance in China and worldwide.

  7. The rpg4/Rpg5 stem rust resistance locus in barley: resistance genes and cytoskeleton dynamics.

    Science.gov (United States)

    Brueggeman, Robert; Steffenson, Brian J; Kleinhofs, Andris

    2009-04-01

    Two closely linked resistance genes, rpg4 and Rpg5, conferring resistance to several races of Puccinia graminis, were cloned and characterized. The Rpg5 gene confers resistance to an isolate of Puccinia graminis f. sp. secalis (Pgs), while rpg4 confers resistance to Puccinia graminis f. sp. tritici (Pgt). Rpg5 is a novel gene containing nucleotide binding site-leucine rich repeat domains in combination with a serine threonine protein kinase domain. High-resolution mapping plus allele and recombinant sequencing identified the rpg4 gene, which encodes an actin depolymerizing factor-like protein (ADF2). Resistance against the Pgt races QCCJ, MCCF, TTKSK (aka Ug99) and RCRS requires both Rpg5 and rpg4, while Rpg5 alone confers resistance to Pgs isolate 92-MN-90. The dependency on the actin modifying protein ADF2 indicates cytoskeleton reorganization or redirection plays a role in pathogen-host interactions. Rpg5 may interact with ADF2 to activate or deactivate its function in the resistance response. Alternatively, Rpg5 could initiate signal transduction leading to resistance in response to detecting ADF2 protein modification. Pgt may redirect the actin cytoskeleton by inducing modifications of ADF2. The redirection of actin could possibly enable the pathogen to develop a haustoria-plant cell cytoskeleton interface for acquisition of nutrients.

  8. A novel gene of Kalanchoe daigremontiana confers plant drought resistance.

    Science.gov (United States)

    Wang, Li; Zhu, Chen; Jin, Lin; Xiao, Aihua; Duan, Jie; Ma, Luyi

    2018-02-07

    Kalanchoe (K.) daigremontiana is important for studying asexual reproduction under different environmental conditions. Here, we describe a novel KdNOVEL41 (KdN41) gene that may confer drought resistance and could thereby affect K. daigremontiana development. The detected subcellular localization of a KdN41/Yellow Fluorescent Protein (YFP) fusion protein was in the nucleus and cell membrane. Drought, salt, and heat stress treatment in tobacco plants containing the KdN41 gene promoter driving β-glucuronidase (GUS) gene transcription revealed that only drought stress triggered strong GUS staining in the vascular tissues. Overexpression (OE) of the KdN41 gene conferred improved drought resistance in tobacco plants compared to wild-type and transformed with empty vector plants by inducing higher antioxidant enzyme activities, decreasing cell membrane damage, increasing abscisic acid (ABA) content, causing reinforced drought resistance related gene expression profiles. The 3,3'-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining results also showed less relative oxygen species (ROS) content in KdN41-overexpressing tobacco leaf during drought stress. Surprisingly, by re-watering after drought stress, KdN41-overexpressing tobacco showed earlier flowering. Overall, the KdN41 gene plays roles in ROS scavenging and osmotic damage reduction to improve tobacco drought resistance, which may increase our understanding of the molecular network involved in developmental manipulation under drought stress in K. daigremontiana.

  9. What tangled web: barriers to rampant horizontal gene transfer.

    Science.gov (United States)

    Kurland, Charles G

    2005-07-01

    Dawkins in his The Selfish Gene(1) quite aptly applies the term "selfish" to parasitic repetitive DNA sequences endemic to eukaryotic genomes, especially vertebrates. Doolittle and Sapienza(2) as well as Orgel and Crick(3) enlivened this notion of selfish DNA with the identification of such repetitive sequences as remnants of mobile elements such as transposons. In addition, Orgel and Crick(3) associated parasitic DNA with a potential to outgrow their host genomes by propagating both vertically via conventional genome replication as well as infectiously by horizontal gene transfer (HGT) to other genomes. Still later, Doolittle(4) speculated that unchecked HGT between unrelated genomes so complicates phylogeny that the conventional representation of a tree of life would have to be replaced by a thicket or a web of life.(4) In contrast, considerable data now show that reconstructions based on whole genome sequences are consistent with the conventional "tree of life".(5-10) Here, we identify natural barriers that protect modern genome populations from the inroads of rampant HGT. Copyright (c) 2005 Wiley Periodicals, Inc.

  10. Acinetobacter baumannii transfers the blaNDM-1 gene via outer membrane vesicles.

    Science.gov (United States)

    Chatterjee, Somdatta; Mondal, Ayan; Mitra, Shravani; Basu, Sulagna

    2017-08-01

    To investigate the transmission of the gene encoding New Delhi metallo-β-lactamase-1 ( bla NDM-1 ) through outer membrane vesicles (OMVs) released from an Acinetobacter baumannii strain (A_115). Isolation and purification of OMVs by density gradient from a carbapenem-resistant clinical strain of A. baumannii harbouring plasmid-mediated bla NDM-1 and aac(6')-Ib-cr genes was performed. DNA was purified from the OMVs and used for PCR and dot-blot analysis. Vesicles treated with DNase I and proteinase K were used to transform A. baumannii ATCC 19606 and Escherichia coli JM109 strains. MIC values for the transformants were determined, followed by PCR and restriction digestion of plasmids. PFGE was done for A_115 and transformants of ATCC 19606 and JM109. The A. baumannii strain (ST 1462) released vesicles (25-100 nm) during in vitro growth at late log phase. PCR and dot-blot analysis confirmed the presence of bla NDM-1 and aac(6')-Ib-cr genes in intravesicular DNA. bla NDM-1 and aac(6')-Ib-cr genes were transferred to both the A. baumannii ATCC 19606 and E. coli JM109 recipient cells. The transformation frequency of the purified OMVs was in the range of 10 -5 -10 -6 and gradually reduced with storage of OMVs. The sizes of the plasmids in the transformants and their restriction digestion patterns were identical to the plasmid in A_115. The transformants showed elevated MIC values of the β-lactam group of antibiotics, which confirmed the presence of a bla NDM-1 -harbouring plasmid. This is the first experimental evidence of intra- and inter-species transfer of a plasmid harbouring a bla NDM-1 gene in A. baumannii via OMVs with high transformation frequency. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria

    OpenAIRE

    Adelowo, Olawale O.; Fagade, Obasola E.; Agersø, Yvonne

    2014-01-01

    Introduction: This study investigated the mechanisms of resistance in 36 E. coli isolated from waste, litter, soil and water samples collected from poultry farms in Southwestern Nigeria. Methodology: Minimum inhibitory concentration (MIC) distributions of the isolates were determined using the methods of the Clinical and Laboratory Standard Institute and resistance genes detected by PCR. Results: A total of 30 isolates (94%) showed resistance to more than one antimicrobial. Percentage resista...

  12. Effect of the environment on horizontal gene transfer between bacteria and archaea.

    Science.gov (United States)

    Fuchsman, Clara A; Collins, Roy Eric; Rocap, Gabrielle; Brazelton, William J

    2017-01-01

    Horizontal gene transfer, the transfer and incorporation of genetic material between different species of organisms, has an important but poorly quantified role in the adaptation of microbes to their environment. Previous work has shown that genome size and the number of horizontally transferred genes are strongly correlated. Here we consider how genome size confuses the quantification of horizontal gene transfer because the number of genes an organism accumulates over time depends on its evolutionary history and ecological context (e.g., the nutrient regime for which it is adapted). We investigated horizontal gene transfer between archaea and bacteria by first counting reciprocal BLAST hits among 448 bacterial and 57 archaeal genomes to find shared genes. Then we used the DarkHorse algorithm, a probability-based, lineage-weighted method (Podell & Gaasterland, 2007), to identify potential horizontally transferred genes among these shared genes. By removing the effect of genome size in the bacteria, we have identified bacteria with unusually large numbers of shared genes with archaea for their genome size. Interestingly, archaea and bacteria that live in anaerobic and/or high temperature conditions are more likely to share unusually large numbers of genes. However, high salt was not found to significantly affect the numbers of shared genes. Numbers of shared (genome size-corrected, reciprocal BLAST hits) and transferred genes (identified by DarkHorse) were strongly correlated. Thus archaea and bacteria that live in anaerobic and/or high temperature conditions are more likely to share horizontally transferred genes. These horizontally transferred genes are over-represented by genes involved in energy conversion as well as the transport and metabolism of inorganic ions and amino acids. Anaerobic and thermophilic bacteria share unusually large numbers of genes with archaea. This is mainly due to horizontal gene transfer of genes from the archaea to the bacteria. In

  13. Effect of the environment on horizontal gene transfer between bacteria and archaea

    Directory of Open Access Journals (Sweden)

    Clara A. Fuchsman

    2017-09-01

    Full Text Available Background Horizontal gene transfer, the transfer and incorporation of genetic material between different species of organisms, has an important but poorly quantified role in the adaptation of microbes to their environment. Previous work has shown that genome size and the number of horizontally transferred genes are strongly correlated. Here we consider how genome size confuses the quantification of horizontal gene transfer because the number of genes an organism accumulates over time depends on its evolutionary history and ecological context (e.g., the nutrient regime for which it is adapted. Results We investigated horizontal gene transfer between archaea and bacteria by first counting reciprocal BLAST hits among 448 bacterial and 57 archaeal genomes to find shared genes. Then we used the DarkHorse algorithm, a probability-based, lineage-weighted method (Podell & Gaasterland, 2007, to identify potential horizontally transferred genes among these shared genes. By removing the effect of genome size in the bacteria, we have identified bacteria with unusually large numbers of shared genes with archaea for their genome size. Interestingly, archaea and bacteria that live in anaerobic and/or high temperature conditions are more likely to share unusually large numbers of genes. However, high salt was not found to significantly affect the numbers of shared genes. Numbers of shared (genome size-corrected, reciprocal BLAST hits and transferred genes (identified by DarkHorse were strongly correlated. Thus archaea and bacteria that live in anaerobic and/or high temperature conditions are more likely to share horizontally transferred genes. These horizontally transferred genes are over-represented by genes involved in energy conversion as well as the transport and metabolism of inorganic ions and amino acids. Conclusions Anaerobic and thermophilic bacteria share unusually large numbers of genes with archaea. This is mainly due to horizontal gene transfer of

  14. Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland.

    Science.gov (United States)

    Lanz, Roland; Kuhnert, Peter; Boerlin, Patrick

    2003-01-02

    Antimicrobial susceptibility testing was performed on a total of 581 clinical Escherichia coli isolates from diarrhea and edema disease in pigs, from acute mastitis in dairy cattle, from urinary tract infections in dogs and cats, and from septicemia in laying hens collected in Switzerland between 1999 and 2001. Among the 16 antimicrobial agents tested, resistance was most frequent for sulfonamides, tetracycline, and streptomycin. Isolates from swine presented significantly more resistance than those from the other animal species. The distribution of the resistance determinants for sulfonamides, tetracycline, and streptomycin was assessed by hybridization and PCR in resistant isolates. Significant differences in the distribution of resistance determinants for tetracycline (tetA, tetB) and sulfonamides (sulII) were observed between the isolates from swine and those from the other species. Resistance to sulfonamides could not be explained by known resistance mechanisms in more than a quarter of the sulfonamide-resistant and sulfonamide-intermediate isolates from swine, dogs and cats. This finding suggests that one or several new resistance mechanisms for sulfonamides may be widespread among E. coli isolates from these animal species. The integrase gene (intI) from class I integrons was detected in a large proportion of resistant isolates in association with the sulI and aadA genes, thus demonstrating the importance of integrons in the epidemiology of resistance in clinical E. coli isolates from animals.

  15. Effect of swine manure application timing on the persistence and transport of antibiotic-resistant Enterococcus and resistance genes

    Science.gov (United States)

    Swine manure applied to agricultural fields may lead to the transport of antibiotic resistant bacteria and antibiotic resistance genes to freshwater systems. Enterococci were studied because they are fecal indicator bacteria associated with manure. Resistance genes include genes from live cells, dea...

  16. Related antimicrobial resistance genes detected in different bacterial species co-isolated from swine fecal samples.

    Science.gov (United States)

    Frye, Jonathan G; Lindsey, Rebecca L; Meinersmann, Richard J; Berrang, Mark E; Jackson, Charlene R; Englen, Mark D; Turpin, Jennifer B; Fedorka-Cray, Paula J

    2011-06-01

    A potential factor leading to the spread of antimicrobial resistance (AR) in bacteria is the horizontal transfer of resistance genes between bacteria in animals or their environment. To investigate this, swine fecal samples were collected on-farm and cultured for Escherichia coli, Salmonella enterica, Campylobacter spp., and Enterococcus spp. which are all commonly found in swine. Forty-nine of the samples from which all four bacteria were recovered were selected yielding a total of 196 isolates for analysis. Isolates were tested for antimicrobial susceptibility followed by hybridization to a DNA microarray designed to detect 775 AR-related genes. E. coli and Salmonella isolated from the same fecal sample had the most AR genes in common among the four bacteria. Genes detected encoded resistance to aminoglycosides (aac(3), aadA1, aadB, and strAB), β-lactams (ampC, ampR, and bla(TEM)), chloramphenicols (cat and floR), sulfanillic acid (sul1/sulI), tetracyclines (tet(A), tet(D), tet(C), tet(G), and tet(R)), and trimethoprim (dfrA1 and dfh). Campylobacter coli and Enterococcus isolated from the same sample frequently had tet(O) and aphA-3 genes detected in common. Almost half (47%) of E. coli and Salmonella isolated from the same fecal sample shared resistance genes at a significant level (χ², p genes between these bacteria or there may be a common source of AR genes in the swine environment for E. coli and Salmonella.

  17. Detection of antibiotic resistance genes β-lactamics in bacterial strains isolated from Umbilical Cord Blood Units for transplant

    Directory of Open Access Journals (Sweden)

    J.M. Bello-López

    2017-01-01

    Conclusions: The genotype detection encoding antibiotic resistance in isolates of UCBU clearly indicates the potential risk of sepsis difficult to eradicate in the patient, if present in a UCBU available for transplant. Additionally, the existence of these genes reveals horizontal transfer events of genetic material between bacteria. So the importance to realize this studies before transplant.

  18. Antibiotic Resistance and Antibiotic Resistance Genes in Escherichia coli Isolates from Hospital Wastewater in Vietnam

    Science.gov (United States)

    Lan, Pham Thi; Chuc, Nguyen Thi Kim; Hoa, Nguyen Quynh; Nhung, Pham Hong; Thoa, Nguyen Thi Minh; Diwan, Vishal; Tamhankar, Ashok J.; Stålsby Lundborg, Cecilia

    2017-01-01

    The environmental spread of antibiotic-resistant bacteria has been recognised as a growing public health threat for which hospitals play a significant role. The aims of this study were to investigate the prevalence of antibiotic resistance and antibiotic resistance genes (ARGs) in Escherichia coli isolates from hospital wastewater in Vietnam. Wastewater samples before and after treatment were collected using continuous sampling every month over a year. Standard disk diffusion and E-test were used for antibiotic susceptibility testing. Extended-spectrum beta-lactamase (ESBL) production was tested using combined disk diffusion. ARGs were detected by polymerase chain reactions. Resistance to at least one antibiotic was detected in 83% of isolates; multidrug resistance was found in 32%. The highest resistance prevalence was found for co-trimoxazole (70%) and the lowest for imipenem (1%). Forty-three percent of isolates were ESBL-producing, with the blaTEM gene being more common than blaCTX-M. Co-harbouring of the blaCTX-M, blaTEM and qepA genes was found in 46% of isolates resistant to ciprofloxacin. The large presence of antibiotic-resistant E. coli isolates combined with ARGs in hospital wastewater, even post-treatment, poses a threat to public health. It highlights the need to develop effective processes for hospital wastewater treatment plants to eliminate antibiotic resistant bacteria and ARGs. PMID:28661465

  19. Antibiotic Resistance and Antibiotic Resistance Genes in Escherichia coli Isolates from Hospital Wastewater in Vietnam.

    Science.gov (United States)

    Lien, La Thi Quynh; Lan, Pham Thi; Chuc, Nguyen Thi Kim; Hoa, Nguyen Quynh; Nhung, Pham Hong; Thoa, Nguyen Thi Minh; Diwan, Vishal; Tamhankar, Ashok J; Stålsby Lundborg, Cecilia

    2017-06-29

    The environmental spread of antibiotic-resistant bacteria has been recognised as a growing public health threat for which hospitals play a significant role. The aims of this study were to investigate the prevalence of antibiotic resistance and antibiotic resistance genes (ARGs) in Escherichia coli isolates from hospital wastewater in Vietnam. Wastewater samples before and after treatment were collected using continuous sampling every month over a year. Standard disk diffusion and E-test were used for antibiotic susceptibility testing. Extended-spectrum beta-lactamase (ESBL) production was tested using combined disk diffusion. ARGs were detected by polymerase chain reactions. Resistance to at least one antibiotic was detected in 83% of isolates; multidrug resistance was found in 32%. The highest resistance prevalence was found for co-trimoxazole (70%) and the lowest for imipenem (1%). Forty-three percent of isolates were ESBL-producing, with the bla TEM gene being more common than bla CTX-M . Co-harbouring of the bla CTX-M , bla TEM and qepA genes was found in 46% of isolates resistant to ciprofloxacin. The large presence of antibiotic-resistant E. coli isolates combined with ARGs in hospital wastewater, even post-treatment, poses a threat to public health. It highlights the need to develop effective processes for hospital wastewater treatment plants to eliminate antibiotic resistant bacteria and ARGs.

  20. Transfer of Hessian fly resistance from rye to wheat via radiation-induced terminal and intercalary chromosomal translocations

    International Nuclear Information System (INIS)

    Friebe, B.; Hatchett, J.H.; Gill, B.S.; Mukai, Y.; Sebesta, E.E.

    1991-01-01

    A new Hessian fly (Mayetiola destructor) resistance gene derived from 'Balbo' rye and its transfer to hexaploid wheat via radiation-induced terminal and intercalary chromosomal translocations are described. Crosses between resistant 'Balbo' rye and susceptible 'Suwon 92' wheat and between the F1 amphidiploids and susceptible 'TAM 106' and 'Amigo' wheats produced resistant BC2F3 lines that were identified by C-banding analysis as being 6RL telocentric addition lines. Comparative chromosomal analyses and resistance tests revealed that the resistance gene is located on the 6RL telocentric chromosome. X-irradiated pollen of 6RL addition plants was used to fertilize plants of susceptible wheats 'TAM 106,' 'TAM 101,' and 'Vona.' After several generations of selection for resistance, new sublines were obtained that were homogeneous for resistance. Thirteen of these lines were analyzed by C-banding, and three different wheat-6RL chromosomal translocations (T) were identified. Wheat chromosomes involved in the translocations were 6B, 4B, and 4A. Almost the complete 6RL arm is present in T6BS · 6BL-6RL. Only the distal half of 6RL is present in T4BS · 4BL-6RL, which locates the resistance gene in the distal half of 6RL. Only a very small segment (ca 1.0 μm) of the distal region of 6RL is present in an intercalary translocation (Ti) Ti4AS · 4AL-6RL-4AL. The 6RL segment is inserted in the intercalary region between the centromere of chromosome 4A and the large proximal C-band of 4AL. The break-points of the translocations are outside the region of the centromere, indicating that they were induced by the X-ray treatment. All three translocations are cytologically stable and can be used directly in wheat breeding programs

  1. Evaluation of biolistic gene transfer methods in vivo using non-invasive bioluminescent imaging techniques

    Directory of Open Access Journals (Sweden)

    Daniell Henry

    2011-06-01

    Full Text Available Abstract Background Gene therapy continues to hold great potential for treating many different types of disease and dysfunction. Safe and efficient techniques for gene transfer and expression in vivo are needed to enable gene therapeutic strategies to be effective in patients. Currently, the most commonly used methods employ replication-defective viral vectors for gene transfer, while physical gene transfer methods such as biolistic-mediated ("gene-gun" delivery to target tissues have not been as extensively explored. In the present study, we evaluated the efficacy of biolistic gene transfer techniques in vivo using non-invasive bioluminescent imaging (BLI methods. Results Plasmid DNA carrying the firefly luciferase (LUC reporter gene under the control of the human Cytomegalovirus (CMV promoter/enhancer was transfected into mouse skin and liver using biolistic methods. The plasmids were coupled to gold microspheres (1 μm diameter using different DNA Loading Ratios (DLRs, and "shot" into target tissues using a helium-driven gene gun. The optimal DLR was found to be in the range of 4-10. Bioluminescence was measured using an In Vivo Imaging System (IVIS-50 at various time-points following transfer. Biolistic gene transfer to mouse skin produced peak reporter gene expression one day after transfer. Expression remained detectable through four days, but declined to undetectable levels by six days following gene transfer. Maximum depth of tissue penetration following biolistic transfer to abdominal skin was 200-300 μm. Similarly, biolistic gene transfer to mouse liver in vivo also produced peak early expression followed by a decline over time. In contrast to skin, however, liver expression of the reporter gene was relatively stable 4-8 days post-biolistic gene transfer, and remained detectable for nearly two weeks. Conclusions The use of bioluminescence imaging techniques enabled efficient evaluation of reporter gene expression in vivo. Our results

  2. Transferable antibiotic resistance plasmids from biogas plant digestates often belong to the IncP-1ε subgroup

    Directory of Open Access Journals (Sweden)

    Birgit eWolters

    2015-01-01

    Full Text Available Manure is known to contain residues of antibiotics administered to farm animals as well as bacteria carrying antibiotic resistance genes (ARGs. These genes are often located on mobile genetic elements. In biogas plants (BGPs, organic substrates such as manure and plant material are mixed and fermented in order to provide energy, and resulting digestates are used for soil fertilization. The fate of plasmid carrying bacteria from manure during the fermentation process is unknown. The present study focused on transferable antibiotic resistance plasmids from digestates of seven BGPs, using manure as a co-substrate, and their phenotypic and genotypic characterization. Plasmids conferring resistance to either tetracycline or sulfadiazine were captured by means of exogenous plasmid isolation from digestates into Pseudomonas putida KT2442 and Escherichia coli CV601 recipients, at transfer frequencies ranging from 10-5 to 10-7. Transconjugants (n = 101 were screened by PCR-Southern blot hybridization and real-time PCR for the presence of IncP-1, IncP-1ε, IncW, IncN, IncP-7, IncP-9, LowGC and IncQ plasmids. While 61 plasmids remained unassigned, 40 plasmids belonged to the IncP-1ε subgroup. All these IncP-1ε plasmids were shown to harbor the genes tetA, sul1, qacE∆1, intI1 and integron gene cassette amplicons of different size. Further analysis of 16 representative IncP-1ε plasmids showed that they conferred six different multiple antibiotic resistance patterns and their diversity seemed to be driven by the gene cassette arrays. IncP-1ε plasmids displaying similar restriction and antibiotic resistance patterns were captured from different BGPs, suggesting that they may be typical for this environment. Our study showed that BGP digestates are a potential source of transferable antibiotic resistance plasmids and in particular the broad host range IncP-1ε plasmids might contribute to the spread of ARGs when digestates are used as fertilizer.

  3. Transferable and non-transferable drug resistance in enteric bacteria from hospital and from general practice

    DEFF Research Database (Denmark)

    Møller, JK; Bak, AL; Bülow, P

    1976-01-01

    Drug resistance to 8 different antibiotics in Enterobacteriaceae isolated from different hospitals and two groups of general practitioners was studied. Escherichia coli dominated among the 632 strains investigated. Drug resistance was found in 62% of the 512 hospital strains and in 38% of the 120...... strains from general practice. Multiple resistance was common especially in strains from hospital. R factors was found in 23% of the 317 drug-resistant strains from hospital and in 11% of the 46 drug-resistant strains from general practice. Resistance to streptomycin, sulphonamide and tetracycline either...

  4. The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence

    OpenAIRE

    Rinaldo, Amy; Gilbert, Brian; Boni, Rainer; Krattinger, Simon G.; Singh, Davinder; Park, Robert F.; Lagudah, Evans; Ayliffe, Michael

    2017-01-01

    Summary The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad?spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field?grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when ...

  5. Abundances of Clinically Relevant Antibiotic Resistance Genes and Bacterial Community Diversity in the Weihe River, China

    Directory of Open Access Journals (Sweden)

    Xiaojuan Wang

    2018-04-01

    Full Text Available The spread of antibiotic resistance genes in river systems is an emerging environmental issue due to their potential threat to aquatic ecosystems and public health. In this study, we used droplet digital polymerase chain reaction (ddPCR to evaluate pollution with clinically relevant antibiotic resistance genes (ARGs at 13 monitoring sites along the main stream of the Weihe River in China. Six clinically relevant ARGs and a class I integron-integrase (intI1 gene were analyzed using ddPCR, and the bacterial community was evaluated based on the bacterial 16S rRNA V3–V4 regions using MiSeq sequencing. The results indicated Proteobacteria, Actinobacteria, Cyanobacteria, and Bacteroidetes as the dominant phyla in the water samples from the Weihe River. Higher abundances of blaTEM, strB, aadA, and intI1 genes (103 to 105 copies/mL were detected in the surface water samples compared with the relatively low abundances of strA, mecA, and vanA genes (0–1.94 copies/mL. Eight bacterial genera were identified as possible hosts of the intI1 gene and three ARGs (strA, strB, and aadA based on network analysis. The results suggested that the bacterial community structure and horizontal gene transfer were associated with the variations in ARGs.

  6. Gene interactions and genetics of blast resistance and yield

    Indian Academy of Sciences (India)

    Blast disease caused by the pathogen Pyricularia oryzae is a serious threat to rice production. Six generations viz., P1, P2, F1, F2, B1 and B2 of a cross between blast susceptible high-yielding rice cultivar ADT 43 and resistant near isogenic line (NIL) CT13432-3R, carrying four blast resistance genes Pi1, Pi2, Pi33 and Pi54 ...

  7. The Fusarium graminearum genome reveals more secondary metabolite gene clusters and hints of horizontal gene transfer.

    Directory of Open Access Journals (Sweden)

    Christian M K Sieber

    Full Text Available Fungal secondary metabolite biosynthesis genes are of major interest due to the pharmacological properties of their products (like mycotoxins and antibiotics. The genome of the plant pathogenic fungus Fusarium graminearum codes for a large number of candidate enzymes involved in secondary metabolite biosynthesis. However, the chemical nature of most enzymatic products of proteins encoded by putative secondary metabolism biosynthetic genes is largely unknown. Based on our analysis we present 67 gene clusters with significant enrichment of predicted secondary metabolism related enzymatic functions. 20 gene clusters with unknown metabolites exhibit strong gene expression correlation in planta and presumably play a role in virulence. Furthermore, the identification of conserved and over-represented putative transcription factor binding sites serves as additional evidence for cluster co-regulation. Orthologous cluster search provided insight into the evolution of secondary metabolism clusters. Some clusters are characteristic for the Fusarium phylum while others show evidence of horizontal gene transfer as orthologs can be found in representatives of the Botrytis or Cochliobolus lineage. The presented candidate clusters provide valuable targets for experimental examination.

  8. Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group.

    Science.gov (United States)

    Saintenac, Cyrille; Zhang, Wenjun; Salcedo, Andres; Rouse, Matthew N; Trick, Harold N; Akhunov, Eduard; Dubcovsky, Jorge

    2013-08-16

    Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a devastating disease that can cause severe yield losses. A previously uncharacterized Pgt race, designated Ug99, has overcome most of the widely used resistance genes and is threatening major wheat production areas. Here, we demonstrate that the Sr35 gene from Triticum monococcum is a coiled-coil, nucleotide-binding, leucine-rich repeat gene that confers near immunity to Ug99 and related races. This gene is absent in the A-genome diploid donor and in polyploid wheat but is effective when transferred from T. monococcum to polyploid wheat. The cloning of Sr35 opens the door to the use of biotechnological approaches to control this devastating disease and to analyses of the molecular interactions that define the wheat-rust pathosystem.

  9. Complete genome sequence of Enterobacter cloacae R11 reveals multiple genes potentially associated with high-level polymyxin E resistance.

    Science.gov (United States)

    Zhong, Chuanqing; Zhang, Chao; Fu, Jiafang; Chen, Wenbing; Jiang, Tianyi; Cao, Guangxiang

    2018-01-01

    Enterobacter cloacae strain R11 is a multidrug-resistant bacterium isolated from sewage water near a swine feedlot in China. Strain R11 can survive in medium containing up to 192 μg/mL polymyxin E, indicating a tolerance for this antibiotic that is significantly higher than that reported for other gram-negative bacteria. In this study, conjugation experiments showed that partial polymyxin E resistance could be transferred from strain R11 to Escherichia coli strain 25922, revealing that some genes related to polymyxin E resistance are plasmid-based. The complete genome sequence of this strain was determined, yielding a total of 4 993 008 bp (G+C content, 53.15%) and 4908 genes for the circular chromosome and 4 circular plasmids. Genome analysis revealed a total of 73 putative antibiotic resistance genes, including several polymyxin E resistance genes and genes potentially involved in multidrug resistance. These data provide insights into the genetic basis of the polymyxin E resistance and multidrug resistance of E. cloacae.

  10. Hypothalamic gene transfer of BDNF inhibits breast cancer progression and metastasis in middle age obese mice.

    Science.gov (United States)

    Liu, Xianglan; McMurphy, Travis; Xiao, Run; Slater, Andrew; Huang, Wei; Cao, Lei

    2014-07-01

    Activation of the hypothalamus-adipocyte axis is associated with an antiobesity and anticancer phenotype in animal models of melanoma and colon cancer. Brain-derived neurotrophic factor (BDNF) is a key mediator in the hypothalamus leading to preferential sympathoneural activation of adipose tissue and the ensuing resistance to obesity and cancer. Here, we generated middle age obese mice by high fat diet feeding for a year and investigated the effects of hypothalamic gene transfer of BDNF on a hormone receptor-positive mammary tumor model. The recombinant adeno-associated viral vector-mediated overexpression of BDNF led to marked weight loss and decrease of adiposity without change of food intake. BDNF gene therapy improved glucose tolerance, alleviated steatosis, reduced leptin level, inhibited mouse breast cancer EO771 growth, and prevented the metastasis. The reduced tumor growth in BDNF-treated mice was associated with reduced angiogenesis, decreased proliferation, increased apoptosis, and reduced adipocyte recruitment and lipid accumulation. Moreover, BDNF gene therapy reduced inflammation markers in the hypothalamus, the mammary gland, the subcutaneous fat, and the mammary tumor. Our results suggest that manipulating a single gene in the brain may influence multiple mechanisms implicated in obesity-cancer association and provide a target for the prevention and treatment of both obesity and cancer.

  11. Comparative genome analysis and resistance gene mapping in grain legumes

    International Nuclear Information System (INIS)

    Young, N.D.

    1998-01-01

    Using, DNA markers and genome organization, several important disease resistance genes have been analyzed in mungbean (Vigna radiata), cowpea (Vigna unguiculata), common bean (Phaseolus vulgaris), and soybean (Glycine max). In the process, medium-density linkage maps consisting of restriction fragment length polymorphism (RFLP) markers were constructed for both mungbean and cowpea. Comparisons between these maps, as well as the maps of soybean and common bean, indicate that there is significant conservation of DNA marker order, though the conserved blocks in soybean are much shorter than in the others. DNA mapping results also indicate that a gene for seed weight may be conserved between mungbean and cowpea. Using the linkage maps, genes that control bruchid (genus Callosobruchus) and powdery mildew (Erysiphe polygoni) resistance in mungbean, aphid resistance in cowpea (Aphis craccivora), and cyst nematode (Heterodera glycines) resistance in soybean have all been mapped and characterized. For some of these traits resistance was found to be oligogenic and DNA mapping uncovered multiple genes involved in the phenotype. (author)

  12. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria.

    Science.gov (United States)

    Adelowo, Olawale O; Fagade, Obasola E; Agersø, Yvonne

    2014-09-12

    This study investigated the mechanisms of resistance in 36 E. coli isolated from waste, litter, soil and water samples collected from poultry farms in Southwestern Nigeria. Minimum inhibitory concentration (MIC) distributions of the isolates were determined using the methods of the Clinical and Laboratory Standard Institute and resistance genes detected by PCR. A total of 30 isolates (94%) showed resistance to more than one antimicrobial. Percentage resistance was: tetracycline 81%, sulphamethoxazole 67%, streptomycin 56%, trimethoprim 47 %, ciprofloxacin 42%, ampicillin 36%, spectinomycin 28%, nalidixic acid 25%, chloramphenicol 22%, neomycin 14%, gentamicin 8%, amoxicillin-clavulanate, ceftiofur, cefotaxime, colistin, florfenicol and apramycin 0%. Resistance genes found among the isolates include bla-TEM (85%), sul2 (67%), sul3 (17%), aadA (65%), strA (70%), strB (61%), catA1 (25%), cmlA1 (13%), tetA (21%) and tetB (17%). Class 1 and 2 integrons were found in five (14%) and six (17%) isolates, respectively, while one isolate was positive for both classes of integrons. Seven out of eight isolates with resistance to ciprofloxacin and MIC ≤ 32 mg/L to nalidixic acid contained qnrS genes. Our findings provided additional evidence that the poultry production environment in Nigeria represents an important reservoir of antibiotic resistance genes such as qnrS that may spread from livestock production farms to human populations via manure and water.

  13. Controversy Associated With the Common Component of Most Transgenic Plants – Kanamycin Resistance Marker Gene

    Directory of Open Access Journals (Sweden)

    Srećko Jelenić

    2003-01-01

    Full Text Available Plant genetic engineering is a powerful tool for producing crops resistant to pests, diseases and abiotic stress or crops with improved nutritional value or better quality products. Currently over 70 genetically modified (GM crops have been approved for use in different countries. These cover a wide range of plant species with significant number of different modified traits. However, beside the technology used for their improvement, the common component of most GM crops is the neomycin phosphotransferase II gene (nptII, which confers resistance to the antibiotics kanamycin and neomycin. The nptII gene is present in GM crops as a marker gene to select transformed plant cells during the first steps of the transformation process. The use of antibiotic-resistance genes is subject to controversy and intense debate, because of the likelihood that clinical therapy could be compromised due to inactivation of the oral dose of the antibiotic from consumption of food derived from the transgenic plant, and because of the risk of gene transfer from plants to gut and soil microorganisms or to consumer’s cells. The present article discusses these possibilities in the light of current scientific knowledge.

  14. Concentration of facultative pathogenic bacteria and antibiotic resistance genes during sewage treatment and in receiving rivers.

    Science.gov (United States)

    Heß, Stefanie; Lüddeke, Frauke; Gallert, Claudia

    2016-10-01

    Whereas the hygienic condition of drinking and bathing water by law must be monitored by culture-based methods, for quantification of microbes and antibiotic resistance in soil or the aquatic environment, often molecular genetic assays are used. For comparison of both methods, knowledge of their correlation is necessary. Therefore the population of total bacteria, Escherichia coli, enterococci and staphylococci during sewage treatment and in receiving river water was compared by agar plating and quantitative polymerase chain reaction (qPCR) assays. In parallel, all samples were investigated for clinically relevant antibiotic resistance genes. Whereas plating and qPCR data for total bacteria correlated well in sewage after primary treatment, qPCR data of river water indicated higher cell numbers for E. coli. It is unknown if these cells are 'only' not growing under standard conditions or if they are dead. Corresponding to the amount of non-culturable cells, the 'breakpoints' for monitoring water quality should be adapted. The abundances of clinically relevant antibiotic resistance genes in river water were in the same order of magnitude or even higher than in treated sewage. For estimation of the health risk it is important to investigate which species carry respective genes and whether these genes are disseminated via gene transfer.

  15. Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements

    Directory of Open Access Journals (Sweden)

    Shaomin Liu

    2007-01-01

    Full Text Available Parameterizations of aerodynamic resistance to heat and water transfer have a significant impact on the accuracy of models of land – atmosphere interactions and of estimated surface fluxes using spectro-radiometric data collected from aircrafts and satellites. We have used measurements from an eddy correlation system to derive the aerodynamic resistance to heat transfer over a bare soil surface as well as over a maize canopy. Diurnal variations of aerodynamic resistance have been analyzed. The results showed that the diurnal variation of aerodynamic resistance during daytime (07:00 h–18:00 h was significant for both the bare soil surface and the maize canopy although the range of variation was limited. Based on the measurements made by the eddy correlation system, a comprehensive evaluation of eight popularly used parameterization schemes of aerodynamic resistance was carried out. The roughness length for heat transfer is a crucial parameter in the estimation of aerodynamic resistance to heat transfer and can neither be taken as a constant nor be neglected. Comparing with the measurements, the parameterizations by Choudhury et al. (1986, Viney (1991, Yang et al. (2001 and the modified forms of Verma et al. (1976 and Mahrt and Ek (1984 by inclusion of roughness length for heat transfer gave good agreements with the measurements, while the parameterizations by Hatfield et al. (1983 and Xie (1988 showed larger errors even though the roughness length for heat transfer has been taken into account.

  16. Transferability of antimicrobial resistance from multidrug-resistant Escherichia coli isolated from cattle in the USA to E. coli and Salmonella Newport recipients.

    Science.gov (United States)

    Poole, T L; Callaway, T R; Norman, K N; Scott, H M; Loneragan, G H; Ison, S A; Beier, R C; Harhay, D M; Norby, B; Nisbet, D J

    2017-12-01

    This study aimed to evaluate conjugative transfer of cephalosporin resistance among 100 strains of multidrug-resistant Escherichia coli (MDRE) to Salmonella enterica serotype Newport and E. coli DH5α recipients. Phenotypic and genotypic profiles were determined for MDRE as well as for Salmonella Newport (trSN) and E. coli DH5α (trDH) transconjugants. Of 95 MDRE donor isolates, 26 (27%) and 27 (28%) transferred resistance to trSN and trDH recipients, respectively. A total of 27 MDRE (27%) were confirmed as extended-spectrum β-lactamase (ESBL)-producers based on the double-disk synergy assay and whole-genome sequencing (WGS). WGS was performed on 25 of the ESBL-producing isolates, showing that 2 isolates carried bla CTX-M-6 , 22 possessed bla CTX-M-32 and 1 was negative for bla CTX-M genes. Fourteen of the ESBLs sequenced were qnrB19. Differential transfer of IncA/C and IncN from MDRE32 was observed between trSN32 and trDH32. IncN-positive trDH32 displayed an ESBL phenotype, whereas IncA/C-positive trSN32 displayed an AmpC phenotype. The rate of ESBL transfer to trSN and trDH recipients was 11% and 96%, respectively. Twenty-seven MDRE were phenotypically identified as ESBL-producers. WGS of 25 MDRE revealed that 2 and 22 isolates carried bla CTX-M-6 and bla CTX-M-32 , respectively. One multidrug-resistant isolate exhibited conversion from an AmpC phenotype to an ESBL phenotype with the transfer of only the IncN plasmid. The rate of resistance transfer to Salmonella or E. coli recipients was nearly identical. However, the ESBL phenotype was transferred with significantly greater prevalence to E. coli compared with Salmonella Newport (96% and 11%, respectively). Copyright © 2017. Published by Elsevier Ltd.

  17. Transfer of antibiotic resistant bacteria from animals to man

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar; Aarestrup, Frank Møller; Gerner-Smidt, P.

    1999-01-01

    Antibiotic resistance develops in zoonotic bacteria in response to antibiotics used in food animals. A close association exists between the amounts of antibiotics used and the levels of resistance observed. The classes of antibiotics routinely used for treatment of human infections are also used...... for animals either for therapy or for growth promotion. Antibiotic resistance in zoonotic bacteria constitute a public health hazard, primarily through the increased risk of treatment failures. This paper describes the zoonotic bacteria, salmonella, campylobacter, yersinia and enterohaemorrhagic E. coli (EHEC......). Infections with these agents do not generally require antibiotic therapy, but in some cases antibiotics are essential to obtain a successful cure. The levels and types of resistance observed in zoonotic bacteria in some countries, especially the increasing levels of fluoroquinolone resistance in salmonella...

  18. High chlorpyrifos resistance in Culex pipiens mosquitoes: strong synergy between resistance genes.

    Science.gov (United States)

    Alout, H; Labbé, P; Berthomieu, A; Makoundou, P; Fort, P; Pasteur, N; Weill, M

    2016-02-01

    We investigated the genetic determinism of high chlorpyrifos resistance (HCR), a phenotype first described in 1999 in Culex pipiens mosquitoes surviving chlorpyrifos doses ⩾1 mg l(-1) and more recently found in field samples from Tunisia, Israel or Indian Ocean islands. Through chlorpyrifos selection, we selected several HCR strains that displayed over 10 000-fold resistance. All strains were homozygous for resistant alleles at two main loci: the ace-1 gene, with the resistant ace-1(R) allele expressing the insensitive G119S acetylcholinesterase, and a resistant allele of an unknown gene (named T) linked to the sex and ace-2 genes. We constructed a strain carrying only the T-resistant allele and studied its resistance characteristics. By crossing this strain with strains harboring different alleles at the ace-1 locus, we showed that the resistant ace-1(R) and the T alleles act in strong synergy, as they elicited a resistance 100 times higher than expected from a simple multiplicative effect. This effect was specific to chlorpyrifos and parathion and was not affected by synergists. We also examined how HCR was expressed in strains carrying other ace-1-resistant alleles, such as ace-1(V) or the duplicated ace-1(D) allele, currently spreading worldwide. We identified two major parameters that influenced the level of resistance: the number and the nature of the ace-1-resistant alleles and the number of T alleles. Our data fit a model that predicts that the T allele acts by decreasing chlorpyrifos concentration in the compartment targeted in insects.

  19. The Power to Resist: Irrigation Management Transfer in Indonesia

    NARCIS (Netherlands)

    Suhardiman, D.

    2013-01-01

    In the last two decades, international donors have promoted Irrigation Management Transfer (IMT) as an international remedy to management problems in government irrigation systems in many developing countries. This article analyses the political processes that shape IMT policy formulation and

  20. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors

    Directory of Open Access Journals (Sweden)

    Masayoshi Hashimoto

    2016-10-01

    Full Text Available The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species.

  1. Spread of tetracycline resistance genes at a conventional dairy farm

    Directory of Open Access Journals (Sweden)

    Martina eKyselkova

    2015-05-01

    Full Text Available The use of antibiotics in animal husbandry contributes to the worldwide problem of increasing antibiotic resistance in animal and human pathogens. Intensive animal production is considered an important source of antibiotic resistance genes released to the environment, while the contribution of smaller farms remains to be evaluated. Here we monitor the spread of tetracycline resistance (TC-r genes at a middle-size conventional dairy farm, where chlortetracycline (CTC, as intrauterine suppository is prophylactically used after each calving. Our study has shown that animals at the farm acquired the TC-r genes in their early age (1-2 weeks, likely due to colonization with TC-resistant bacteria from their mothers and/or the farm environment. The relative abundance of the TC-r genes tet(W, tet(Q and tet(M in fresh excrements of calves was about 1-2 orders of magnitude higher compared to heifers and dairy cows, possibly due to the presence of antibiotic residues in milk fed to calves. The occurrence and abundance of TC-r genes in fresh excrements of heifers and adult cows remained unaffected by intrauterine CTC applications, with tet(O, tet(Q and tet(W representing a ‘core TC-resistome’ of the farm, and tet(A, tet(M, tet(Y and tet(X occurring occasionally. The genes tet(A, tet(M, tet(Y and tet(X were shown to be respectively harbored by Shigella, Lactobacillus and Clostridium, Acinetobacter, and Wautersiella. Soil in the farm proximity, as well as field soil to which manure from the farm was applied, was contaminated with TC-r genes occurring in the farm, and some of the TC-r genes persisted in the field over 3 months following the manure application. Concluding, our study shows that antibiotic resistance genes may be a stable part of the intestinal metagenome of cattle even if antibiotics are not used for growth stimulation, and that smaller dairy farms may also contribute to environmental pollution with antibiotic resistance genes.

  2. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria

    DEFF Research Database (Denmark)

    Adelowo, Olawale O.; Fagade, Obasola E.; Agersø, Yvonne

    2014-01-01

    Introduction: This study investigated the mechanisms of resistance in 36 E. coli isolated from waste, litter, soil and water samples collected from poultry farms in Southwestern Nigeria. Methodology: Minimum inhibitory concentration (MIC) distributions of the isolates were determined using...... the methods of the Clinical and Laboratory Standard Institute and resistance genes detected by PCR. Results: A total of 30 isolates (94%) showed resistance to more than one antimicrobial. Percentage resistance was: tetracycline 81%, sulphamethoxazole 67%, streptomycin 56%, trimethoprim 47 %, ciprofloxacin 42......%, ampicillin 36%, spectinomycin 28%, nalidixic acid 25%, chloramphenicol 22%, neomycin 14%, gentamicin 8%, amoxicillin-clavulanate, ceftiofur, cefotaxime, colistin, florfenicol and apramycin 0%. Resistance genes found among the isolates include bla-TEM (85%), sul2 (67%), sul3 (17%), aadA (65%), strA (70%), str...

  3. Dissemination of metal resistance genes among animal methicillin-resistant coagulase-negative Staphylococci.

    Science.gov (United States)

    Argudín, M Angeles; Butaye, Patrick

    2016-04-01

    The use of metals as feed supplement has been recognized as a potential driver for co-selection of methicillin-resistant Staphylococcus aureus in pigs. However, the prevalence of these determinants in methicillin-resistant coagulase-negative staphylococci (MRCoNS) is largely unknown. In this study, a collection of 130 MRCoNS from pigs and veal calves were investigated for the presence of metal-resistance genes (czrC, copB, cadD, arsA) associated to SCCmec. Near half of the isolates carried metal resistance genes (czrC 5.4%, copB 38.5%, cadD 7.7%, arsA 26.2%) regardless of their SCCmec type. The increased use of metals in livestock animals, especially zinc in pigs in several European countries may co-select for methicillin-resistance in several staphylococcal species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Horizontal Gene Transfer of Functional Type VI Killing Genes by Natural Transformation

    Directory of Open Access Journals (Sweden)

    Jacob Thomas

    2017-07-01

    Full Text Available Horizontal gene transfer (HGT can have profound effects on bacterial evolution by allowing individuals to rapidly acquire adaptive traits that shape their strategies for competition. One strategy for intermicrobial antagonism often used by Proteobacteria is the genetically encoded contact-dependent type VI secretion system (T6SS, a weapon used to kill heteroclonal neighbors by direct injection of toxic effectors. Here, we experimentally demonstrate that Vibrio cholerae can acquire new T6SS effector genes via horizontal transfer and utilize them to kill neighboring cells. Replacement of one or more parental alleles with novel effectors allows the recombinant strain to dramatically outcompete its parent. Using spatially explicit modeling, we examine how this process could affect the ecology and evolution of surface-attached microbial populations. HGT of T6SS effector-immunity pairs is risky: transformation brings a cell into conflict with its former clone mates but can be adaptive when superior T6SS alleles are acquired. More generally, we find that these costs and benefits are not symmetric and that high rates of HGT can act as a hedge against competitors with unpredictable T6SS efficacy. We conclude that antagonism and horizontal transfer drive successive rounds of weapon optimization and selective sweeps, dynamically shaping the composition of microbial communities.

  5. Tagging of resistance gene(s) to rhizomania disease in sugar beet ...

    African Journals Online (AJOL)

    SERVER

    2008-02-19

    Feb 19, 2008 ... plasmodiophoride-like fungus, Polymyxa betae Keskin. (1964) (Tamada and Richard, 1992). Source of resistance to rhizomania were found in Holly sugar beet company source (Lewellen, 1987). Resistance in Holly is simply inherited by a single dominant gene(Rz1). (Lewellen et al., 1987; Scholten et al., ...

  6. Tagging of resistance gene(s) to rhizomania disease in sugar beet ...

    African Journals Online (AJOL)

    The rhizomania disease is one of the most important diseases in Iran and some other parts of the world which potentially could play a role in decreasing sugar yield in fields. One approach to combat with this disease is the use of resistance varieties. This varieties have been identified which are having resistance genes to ...

  7. Next-Generation Sequence Analysis Reveals Transfer of Methicillin Resistance to a Methicillin-Susceptible Staphylococcus aureus Strain That Subsequently Caused a Methicillin-Resistant Staphylococcus aureus Outbreak: a Descriptive Study.

    NARCIS (Netherlands)

    Weterings, Veronica; Bosch, Thijs; Witteveen, Sandra; Landman, Fabian; Schouls, Leo; Kluytmans, Jan

    Resistance to methicillin in Staphylococcus aureus is caused primarily by the mecA gene, which is carried on a mobile genetic element, the staphylococcal cassette chromosome mec (SCCmec). Horizontal transfer of this element is supposed to be an important factor in the emergence of new clones of

  8. Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in 'Thatcher' Wheat.

    Directory of Open Access Journals (Sweden)

    Colin W Hiebert

    Full Text Available Stem rust, caused by Puccinia graminis (Pgt, is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. 'Thatcher' wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in 'Thatcher' and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for 'Thatcher'-derived APR in several environments and this resistance was enhanced in the presence of Lr34.

  9. Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in 'Thatcher' Wheat.

    Science.gov (United States)

    Hiebert, Colin W; Kolmer, James A; McCartney, Curt A; Briggs, Jordan; Fetch, Tom; Bariana, Harbans; Choulet, Frederic; Rouse, Matthew N; Spielmeyer, Wolfgang

    2016-01-01

    Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. 'Thatcher' wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in 'Thatcher' and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for 'Thatcher'-derived APR in several environments and this resistance was enhanced in the presence of Lr34.

  10. Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in ‘Thatcher’ Wheat

    Science.gov (United States)

    Hiebert, Colin W.; Kolmer, James A.; McCartney, Curt A.; Briggs, Jordan; Fetch, Tom; Bariana, Harbans; Choulet, Frederic; Rouse, Matthew N.; Spielmeyer, Wolfgang

    2016-01-01

    Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. ‘Thatcher’ wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in ‘Thatcher’ and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for ‘Thatcher’-derived APR in several environments and this resistance was enhanced in the presence of Lr34. PMID:27309724

  11. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential.

    Science.gov (United States)

    Pal, Chandan; Bengtsson-Palme, Johan; Kristiansson, Erik; Larsson, D G Joakim

    2015-11-17

    Antibacterial biocides and metals can co-select for antibiotic resistance when bacteria harbour resistance or tolerance genes towards both types of compounds. Despite numerous case studies, systematic and quantitative data on co-occurrence of such genes on plasmids and chromosomes is lacking, as is knowledge on environments and bacterial taxa that tend to carry resistance genes to such compounds. This effectively prevents identification of risk scenarios. Therefore, we aimed to identify general patterns for which biocide/metal resistance genes (BMRGs) and antibiotic resistance genes (ARGs) that tend to occur together. We also aimed to quantify co-occurrence of resistance genes in different environments and taxa, and investigate to what extent plasmids carrying both types of genes are conjugative and/or are carrying toxin-antitoxin systems. Co-occurrence patterns of resistance genes were derived from publicly available, fully sequenced bacterial genomes (n = 2522) and plasmids (n = 4582). The only BMRGs commonly co-occurring with ARGs on plasmids were mercury resistance genes and the qacE∆1 gene that provides low-level resistance to quaternary ammonium compounds. Novel connections between cadmium/zinc and macrolide/aminoglycoside resistance genes were also uncovered. Several clinically important bacterial taxa were particularly prone to carry both BMRGs and ARGs. Bacteria carrying BMRGs more often carried ARGs compared to bacteria without (p bacterial genomes, and co-occurred with ARGs in 17 % of the cases. In contrast, co-occurrences of BMRGs and ARGs were rare on plasmids from all external environments (resistance genes. This is the first large-scale identification of compounds, taxa and environments of particular concern for co-selection of resistance against antibiotics, biocides and metals. Genetic co-occurrences suggest that plasmids provide limited opportunities for biocides and metals to promote horizontal transfer of antibiotic resistance through co

  12. Inter- and Intraspecies Plasmid-Mediated Transfer of Florfenicol Resistance in Enterobacteriaceae Isolates from Swine▿

    OpenAIRE

    Rayamajhi, Nabin; Cha, Seung Bin; Kang, Mi Lan; Lee, Su In; Lee, Hee Soo; Yoo, Han Sang

    2009-01-01

    Florfenicol resistance was analyzed in 230 enteric pig isolates collected between 1998 and 2006. PCR, plasmid profiling, Southern blot hybridization, and a mixed-broth conjugation assay suggested the intra- and interspecies plasmid-mediated transfer of florfenicol resistance among the isolates that exhibited MICs for florfenicol between 4 to 128 mg/liter.

  13. Inter- and Intraspecies Plasmid-Mediated Transfer of Florfenicol Resistance in Enterobacteriaceae Isolates from Swine▿

    Science.gov (United States)

    Rayamajhi, Nabin; Cha, Seung Bin; Kang, Mi Lan; Lee, Su In; Lee, Hee Soo; Yoo, Han Sang

    2009-01-01

    Florfenicol resistance was analyzed in 230 enteric pig isolates collected between 1998 and 2006. PCR, plasmid profiling, Southern blot hybridization, and a mixed-broth conjugation assay suggested the intra- and interspecies plasmid-mediated transfer of florfenicol resistance among the isolates that exhibited MICs for florfenicol between 4 to 128 mg/liter. PMID:19592530

  14. Intercountry Transfer of Triazole-Resistant Aspergillus fumigatus on Plant Bulbs

    NARCIS (Netherlands)

    Dunne, K.; Hagen, F.; Pomeroy, N.; Meis, J.F.G.M.; Rogers, T.R.

    2017-01-01

    We investigated whether plants imported to Ireland from the Netherlands might harbor triazole-resistant Aspergillus fumigatus. Samples of plant bulbs were positive for triazole-resistant A. fumigatus with CYP51A mutations. We hypothesize that this represents a route for intercountry transfer of an

  15. Development of Gene-Pyramid Lines of the Elite Restorer Line, RPHR-1005 Possessing Durable Bacterial Blight and Blast Resistance.

    Science.gov (United States)

    Abhilash Kumar, V; Balachiranjeevi, C H; Bhaskar Naik, S; Rambabu, R; Rekha, G; Harika, G; Hajira, S K; Pranathi, K; Anila, M; Kousik, M; Vijay Kumar, S; Yugander, A; Aruna, J; Dilip Kumar, T; Vijaya Sudhakara Rao, K; Hari Prasad, A S; Madhav, M S; Laha, G S; Balachandran, S M; Prasad, M S; Viraktamath, B C; Ravindra Babu, V; Sundaram, R M

    2016-01-01

    RPHR-1005, the stable restorer line of the popular medium slender (MS) grain type rice hybrid, DRRH-3 was improved in this study for resistance against bacterial blight (BB) and blast diseases through marker-assisted backcross breeding (MABB). In this study, four major resistance genes (i.e., Xa21 and Xa33 for BB resistance and Pi2 and Pi54 for blast resistance) have been transferred to RPHR-1005 using RPBio Patho-1 (possessing Xa21 + Pi2), RPBio Patho-2 (possessing Xa21 + Pi54) and FBR1-15EM (possessing Xa33) as the donors. Foreground selection was carried out using PCR-based molecular markers specific for the target resistance genes and the major fertility restorer genes, Rf3 and Rf4, while background selection was carried out using a set of parental polymorphic rice SSR markers and backcrossing was continued uptoBC2 generation. At BC2F2, plants possessing the gene combination- Xa21 + Pi2, Xa21 + Pi54 and Xa33 in homozygous condition and with >92% recovery of the recurrent parent genome (RPG) were identified and intercrossed to combine all the four resistance genes. Twenty-two homozygous, pyramid lines of RPHR-1005 comprising of three single-gene containing lines, six 2-gene containing lines, eight 3-gene containing lines, and five 4-gene containing lines were identified among the double intercross lines at F3 generation (DICF3). They were then evaluated for their resistance against BB and blast, fertility restoration ability and for key agro-morphological traits. While single gene containing lines were resistant to either BB or blast, the 2-gene, 3-gene, and 4-gene pyramid lines showed good level of resistance against both and/or either of the two diseases. Most of the 2-gene, 3-gene, and 4-gene containing pyramid lines showed yield levels and other key agro-morphological and grain quality traits comparable to the original recurrent parent and showed complete fertility restoration ability, with a few showing higher yield as compared to RPHR-1005. Further, the

  16. Association mapping and gene-gene interaction for stem rust resistance in CIMMYT spring wheat germplasm.

    Science.gov (United States)

    Yu, Long-Xi; Lorenz, Aaron; Rutkoski, Jessica; Singh, Ravi P; Bhavani, Sridhar; Huerta-Espino, Julio; Sorrells, Mark E

    2011-12-01

    The recent emergence of wheat stem rust Ug99 and evolution of new races within the lineage threatens global wheat production because they overcome widely deployed stem rust resistance (Sr) genes that had been effective for many years. To identify loci conferring adult plant resistance to races of Ug99 in wheat, we employed an association mapping approach for 276 current spring wheat breeding lines from the International Maize and Wheat Improvement Center (CIMMYT). Breeding lines were genotyped with Diversity Array Technology (DArT) and microsatellite markers. Phenotypic data was collected on these lines for stem rust race Ug99 resistance at the adult plant stage in the stem rust resistance screening nursery in Njoro, Kenya in seasons 2008, 2009 and 2010. Fifteen marker loci were found to be significantly associated with stem rust resistance. Several markers appeared to be linked to known Sr genes, while other significant markers were located in chromosome regions where no Sr genes have been previously reported. Most of these new loci colocalized with QTLs identified recently in different biparental populations. Using the same data and Q + K covariate matrices, we investigated the interactions among marker loci using linear regression models to calculate P values for pairwise marker interactions. Resistance marker loci including the Sr2 locus on 3BS and the wPt1859 locus on 7DL had significant interaction effects with other loci in the same chromosome arm and with markers on chromosome 6B. Other resistance marker loci had significant pairwise interactions with markers on different chromosomes. Based on these results, we propose that a complex network of gene-gene interactions is, in part, responsible for resistance to Ug99. Further investigation may provide insight for understanding mechanisms that contribute to this resistance gene network.

  17. Emergence of vancomycin resistance in the genus Streptococcus: characterization of a vanB transferable determinant in Streptococcus bovis.

    Science.gov (United States)

    Poyart, C; Pierre, C; Quesne, G; Pron, B; Berche, P; Trieu-Cuot, P

    1997-01-01

    Streptococcus bovis NEM760 was isolated from a stool swab collected on admission from a patient as surveillance for vancomycin-resistant enterococci. Strain NEM760 was identified as S. bovis by conventional biochemical methods and partial sequence analysis of its 16S rRNA. This strain was resistant to a low level of vancomycin (MIC, 64 micrograms/ml) but was susceptible to teicoplanin (MIC, 1 micrograms/ml), and vancomycin induced resistance to both glycopeptides. The presence of a vanB-related gene in NEM760 was demonstrated in a PCR assay which enabled specific amplification of a 635-hp internal segment of vanB. Sequence analysis of the corresponding PCR product revealed that it was highly homologous (96% identity) to the prototype vanB sequence of Enterococcus faecalis V583. The VanB resistance of determinant of S. bovis NEM760 was transferred by conjugation to E. faecalis and Enterococcus faecium at a similar frequency of 2 x 10(-5) per donor. SmaI-digested genomic DNAs of independently obtained transconjugants of E. faecalis and E. faecium were analyzed by pulsed-field gel electrophoresis and Southern hybridization with a vanB DNA probe. The electrophoretic and hybridization patterns obtained with all transconjugants of the same species were indistinguishable and revealed vanB-containing chromosomal insertions of approximately 100 kb. These results suggest that the genes mediating VanB-type resistance in S. bovis NEM760 are part of large transferable genetic elements. The results presented in the report demonstrate for the first time the role of streptococci in the dissemination of vancomycin resistance among gram-positive bacteria. PMID:8980749

  18. Insights into the molecular pathogenesis of atherosclerosis and therapeutic strategies using gene transfer.

    Science.gov (United States)

    Hiltunen, M O; Turunen, M P; Laitinen, M; Ylä-Herttuala, S

    2000-01-01

    Gene therapy for the treatment of atherosclerosis and related diseases has shown its potential in animal models and in the first human trials. Gene transfer to the vascular system can be performed both via intravascular and extravascular periadventitial routes. Intravascular gene transfer can be done with several types of catheters under fluoroscopic control. Extravascular gene transfer, on the other hand, provides a well-targeted gene delivery route available during vascular surgery. It can be done with direct injection or by using perivascular cuffs or surgical collagen sheets. Ex vivo gene delivery via transfected smooth muscle cells or endothelial cells might be useful for the production of secreted therapeutic compounds. Gene transfer to the liver has been used for the treatment of hyperlipidemia. The first clinical trials for the induction of therapeutic angiogenesis in ischemic myocardium or peripheral muscles with VEGF or FGF gene transfer are under way and preliminary results are promising. VEGF has also been used for the prevention of postangioplasty restenosis because of its capability to induce endothelial repair and production of NO and prostacyclin. However, further basic research is needed to fully understand the pathophysiological mechanisms involved in conditions related to atherosclerosis. Also, further development of gene transfer vectors and gene delivery techniques will improve the efficacy and safety of human gene therapy.

  19. Thioridazine affects transcription of genes involved in cell wall biosynthesis in methicillin-resistant Staphylococcus aureus

    DEFF Research Database (Denmark)

    Bonde, Mette; Højland, Dorte Heidi; Kolmos, Hans Jørn

    2011-01-01

    have previously shown that the expression of some resistance genes is abolished after treatment with thioridazine and oxacillin. To further understand the mechanism underlying the reversal of resistance, we tested the expression of genes involved in antibiotic resistance and cell wall biosynthesis...... reversal of resistance by thioridazine relies on decreased expression of specific genes involved in cell wall biosynthesis....

  20. Isolation of NBS-LRR class resistant gene (I2 gene) from tomato ...

    African Journals Online (AJOL)

    aghomotsegin

    2013-10-16

    Oct 16, 2013 ... Isolation of NBS-LRR class resistant gene (I2 gene) from tomato cultivar Heamsona ... avirulence protein or effector protein secreted by fungal pathogen during the host colonization in tomato. These effector proteins .... and efficient method for isolation of genomic DNA from plant tissue. J. Cell Tissue Res.

  1. Abundance and distribution of Macrolide-Lincosamide-Streptogramin resistance genes in an anaerobic-aerobic system treating spiramycin production wastewater.

    Science.gov (United States)

    Liu, Miaomiao; Ding, Ran; Zhang, Yu; Gao, Yingxin; Tian, Zhe; Zhang, Tong; Yang, Min

    2014-10-15

    The behaviors of the Macrolide-Lincosamide-Streptogramin (MLS) resistance genes were investigated in an anaerobic-aerobic pilot-scale system treating spiramycin (SPM) production wastewater. After screening fifteen typical MLS resistance genes with different mechanisms using conventional PCR, eight detected genes were determined by quantitative PCR, together with three mobile elements. Aerobic sludge in the pilot system exhibited a total relative abundance of MLS resistance genes (per 16S rRNA gene) 2.5 logs higher than those in control samples collected from sewage and inosine wastewater treatment systems (P resistance genes. However, the total relative gene abundance in anaerobic sludge (4.3 × 10(-1)) was lower than that in aerobic sludge (3.7 × 10(0)) despite of the higher SPM level in anaerobic reactor, showing the advantage of anaerobic treatment in reducing the production of MLS resistance genes. The rRNA methylase genes (erm(B), erm(F), erm(X)) were the most abundant in the aerobic sludge (5.3 × 10(-1)-1.7 × 10(0)), followed by esterase gene ere(A) (1.3 × 10(-1)) and phosphorylase gene mph(B) (5.7 × 10(-2)). In anaerobic sludge, erm(B), erm(F), ere(A), and msr(D) were the major ones (1.2 × 10(-2)-3.2 × 10(-1)). These MLS resistance genes (except for msr(D)) were positively correlated with Class 1 integron (r(2) = 0.74-0.93, P < 0.05), implying the significance of horizontal transfer in their proliferation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The Power to Resist: Irrigation Management Transfer in Indonesia

    Directory of Open Access Journals (Sweden)

    Diana Suhardiman

    2013-02-01

    Full Text Available In the last two decades, international donors have promoted Irrigation Management Transfer (IMT as an international remedy to management problems in government irrigation systems in many developing countries. This article analyses the political processes that shape IMT policy formulation and implementation in Indonesia. It links IMT with the issue of bureaucratic reform and argues that its potential to address current problems in government irrigation systems cannot be achieved if the irrigation agency is not convinced about the need for management transfer. IMT’s significance cannot be measured only through IMT outcomes and impacts, without linking these with how the irrigation agency perceives the idea of management transfer in the first place, how this perception (redefines the agency’s position in IMT, and how it shapes the agency’s action and strategy in the policy formulation and implementation. I illustrate how the irrigation agency contested the idea of management transfer by referring to IMT policy adoption in 1987 and its renewal in 1999. The article concludes that for management transfer to be meaningful it is pertinent that the issue of bureaucratic reform is incorporated into current policy discussions.

  3. Horizontal transfer of antibiotic resistance from Enterococcus faecium of fermented meat origin to clinical isolates of E. faecium and Enterococcus faecalis.

    Science.gov (United States)

    Jahan, Musarrat; Zhanel, George G; Sparling, Richard; Holley, Richard A

    2015-04-16

    Enterococcus species are part of the normal intestinal flora of a large number of mammals including humans and consequently, they can be used as indicators of faecal contamination in food and water for human consumption. Their presence in large numbers in foods may indicate a lapse in sanitation and their ability to serve as a genetic reservoir of transferable antibiotic resistance is of concern. In the present study, Enterococcus spp., isolated from commercially fermented meat and human clinical specimen were studied to determine genetic relationships. SmaI pulsed-field gel electrophoresis (PFGE) patterns exhibited genomic heterogeneity within and between both groups of isolates. However, in spite of this heterogeneity there were still substantial phenotypic similarities which suggested that food might be a potential vehicle for distribution of resistant bacteria among humans. In vitro conjugation experiments demonstrated transfer of the tetracycline resistant determinant, tet(M), from Enterococcus faecium S27 isolated from fermented sausage to clinical isolates of both E. faecium and Enterococcus faecalis. The streptomycin resistance of E. faecium S27 was also transferred to a clinical strain, E. faecalis 82916, which was confirmed by the presence of the streptomycin resistance gene, aadA, in the donor and transconjugant strains. Since the aadA gene is associated with a class 1 integron, results also suggested that resistance transfer might have occurred via an integron. It appears this is the first identification of a class 1 integron in E. faecium isolated from food. The importance of food enterococci as a reservoir of antibiotic resistance genes and the potential for their genetic transfer to human strains following consumption of uncooked or undercooked contaminated meat is underlined by this work. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Somatostatin receptor gene transfer inhibits established pancreatic cancer xenografts.

    Science.gov (United States)

    Celinski, Scott A; Fisher, William E; Amaya, Felipe; Wu, Yuan Qing; Yao, Q; Youker, Keith A; Li, Min

    2003-11-01

    Most human pancreatic adenocarcinoma cells do not express somatostatin receptors, and somatostatin does not inhibit the growth of these cancers. We have demonstrated previously that somatostatin inhibits the growth of pancreatic cancers expressing somatostatin receptor subtype-2 (SSTR2), but not receptor-negative cancers. SSTR2 expression may be an important tumor-suppressor pathway that is lost in human pancreatic cancer. We hypothesized that SSTR2 gene transfer would restore the growth-inhibitory response of human pancreatic cancer to somatostatin. Palpable human pancreatic adenocarcinoma tumors were established on the backs of nude mice by subcutaneous injection of cultured cells (Panc-1). The animals were divided into 5 groups (n = 10/group). Group I served as an untreated control. Group II received an intramuscular injection of the long-acting somatostatin analogue Sandostatin LAR. Group III received Lac-Z expressing adenovirus via intraperitoneal injection. Group IV received SSTR2 expressing adenovirus via intraperitoneal injection. Group V received SSTR2 expressing adenovirus via intraperitoneal injection and an intramuscular injection of Sandostatin LAR. The rate of tumor growth was assessed with calipers. After 28 days, the animals were anesthetized and exsanguanated, and the tumors were excised and weighed. Plasma somatostatin and octreotide levels were measured by radioimmunoassay. Expression of cell-surface somatostatin-receptor protein and known tumor-suppressor proteins was determined by reverse transcriptase-polymerase chain reaction, Western blot, and immunohistochemistry. Systemic delivery of SSTR2-expressing adenovirus by intraperitoneal injection resulted in expression of SSTR2 protein in the subcutaneous human pancreatic cancers. Final tumor weight was significantly decreased in the groups expressing SSTR2 receptors compared to the other 3 groups. Treatment with Sandostatin LAR increased plasma octreotide levels as determined by radioimmunoassay

  5. Multiple herbicide resistance in Lolium multiflorum and identification of conserved regulatory elements of herbicide resistance genes

    Directory of Open Access Journals (Sweden)

    Khalid Mahmood

    2016-08-01

    Full Text Available Herbicide resistance is a ubiquitous challenge to herbicide sustainability and a looming threat to control weeds in crops. Recently four genes were found constituently over-expressed in herbicide resistant individuals of Lolium rigidum, a close relative of L. multiflorum. These include two cytochrome P450s, one nitronate monooxygenase and one glycosyl-transferase. Higher expressions of these four herbicide metabolism related (HMR genes were also observed after herbicides exposure in the gene expression databases, indicating them a reliable marker. In order to get an overview of herbicidal resistance status of Lolium multiflorum L, 19 field populations were collected. Among these populations, four populations were found to be resistant to acetolactate synthase (ALS inhibitors while three exhibited resistance to acetyl-CoA carboxylase (ACCase inhibitors in our initial screening and dose response study. The genotyping showed the presence of mutations Trp-574-Leu and Ile-2041-Asn in ALS and ACCase, respectively and qPCR experiments revealed the enhanced expression of HMR genes in individuals of certain resistant populations. Moreover, co-expression networks and promoter analyses of HMR genes in O.sativa and A.thaliana resulted in the identification of a cis-regulatory motif and zinc finger transcription factors. The identified transcription factors were highly expressed similar to HMR genes in response to xenobiotics whereas the identified motif known to play a vital role in coping with environmental stresses and maintaining genome stability. Overall, our findings provide an important step forward towards a better understanding of metabolism-based herbicide resistance that can be utilized to devise novel strategies of weed management.

  6. ICESag37, a Novel Integrative and Conjugative Element Carrying Antimicrobial Resistance Genes and Potential Virulence Factors in Streptococcus agalactiae

    Directory of Open Access Journals (Sweden)

    Kaixin Zhou

    2017-10-01

    Full Text Available ICESag37, a novel integrative and conjugative element carrying multidrug resistance and potential virulence factors, was characterized in a clinical isolate of Streptococcus agalactiae. Two clinical strains of S. agalactiae, Sag37 and Sag158, were isolated from blood samples of new-borns with bacteremia. Sag37 was highly resistant to erythromycin and tetracycline, and susceptible to levofloxacin and penicillin, while Sag158 was resistant to tetracycline and levofloxacin, and susceptible to erythromycin. Transfer experiments were performed and selection was carried out with suitable antibiotic concentrations. Through mating experiments, the erythromycin resistance gene was found to be transferable from Sag37 to Sag158. SmaI-PFGE revealed a new SmaI fragment, confirming the transfer of the fragment containing the erythromycin resistance gene. Whole genome sequencing and sequence analysis revealed a mobile element, ICESag37, which was characterized using several molecular methods and in silico analyses. ICESag37 was excised to generate a covalent circular intermediate, which was transferable to S. agalactiae. Inverse PCR was performed to detect the circular form. A serine family integrase mediated its chromosomal integration into rumA, which is a known hotspot for the integration of streptococcal ICEs. The integration site was confirmed using PCR. ICESag37 carried genes for resistance to multiple antibiotics, including erythromycin [erm(B], tetracycline [tet(O], and aminoglycosides [aadE, aphA, and ant(6]. Potential virulence factors, including a two-component signal transduction system (nisK/nisR, were also observed in ICESag37. S1-PFGE analysis ruled out the existence of plasmids. ICESag37 is the first ICESa2603 family-like element identified in S. agalactiae carrying both resistance and potential virulence determinants. It might act as a vehicle for the dissemination of multidrug resistance and pathogenicity among S. agalactiae.

  7. ICESag37, a Novel Integrative and Conjugative Element Carrying Antimicrobial Resistance Genes and Potential Virulence Factors in Streptococcus agalactiae

    Science.gov (United States)

    Zhou, Kaixin; Xie, Lianyan; Han, Lizhong; Guo, Xiaokui; Wang, Yong; Sun, Jingyong

    2017-01-01

    ICESag37, a novel integrative and conjugative element carrying multidrug resistance and potential virulence factors, was characterized in a clinical isolate of Streptococcus agalactiae. Two clinical strains of S. agalactiae, Sag37 and Sag158, were isolated from blood samples of new-borns with bacteremia. Sag37 was highly resistant to erythromycin and tetracycline, and susceptible to levofloxacin and penicillin, while Sag158 was resistant to tetracycline and levofloxacin, and susceptible to erythromycin. Transfer experiments were performed and selection was carried out with suitable antibiotic concentrations. Through mating experiments, the erythromycin resistance gene was found to be transferable from Sag37 to Sag158. SmaI-PFGE revealed a new SmaI fragment, confirming the transfer of the fragment containing the erythromycin resistance gene. Whole genome sequencing and sequence analysis revealed a mobile element, ICESag37, which was characterized using several molecular methods and in silico analyses. ICESag37 was excised to generate a covalent circular intermediate, which was transferable to S. agalactiae. Inverse PCR was performed to detect the circular form. A serine family integrase mediated its chromosomal integration into rumA, which is a known hotspot for the integration of streptococcal ICEs. The integration site was confirmed using PCR. ICESag37 carried genes for resistance to multiple antibiotics, including erythromycin [erm(B)], tetracycline [tet(O)], and aminoglycosides [aadE, aphA, and ant(6)]. Potential virulence factors, including a two-component signal transduction system (nisK/nisR), were also observed in ICESag37. S1-PFGE analysis ruled out the existence of plasmids. ICESag37 is the first ICESa2603 family-like element identified in S. agalactiae carrying both resistance and potential virulence determinants. It might act as a vehicle for the dissemination of multidrug resistance and pathogenicity among S. agalactiae. PMID:29051752

  8. Antibiotic resistance and ndvB gene expression among biofilm ...

    African Journals Online (AJOL)

    A novel antibiotic resistant mechanism among biofilms is glucan-mediated sequestration in which ndvB gene encodes a glucosyltransferase involved in the formation of this glucans. We studied the biofilm formation and antibiotic susceptibility pattern of P. aeruginosa isolated from clinical samples, and measured the ...

  9. Gene pyramiding as a Bt resistance management strategy: How ...

    African Journals Online (AJOL)

    Reports on the emergence of insect resistance to Bacillus thuringiensis delta endotoxins have raised doubts on the sustainability of Bt-toxin based pest management technologies. Corporate industry has responded to this challenge with innovations that include gene pyramiding among others. Pyramiding entails stacking ...

  10. Determination and expression of genes for resistance to blast ...

    African Journals Online (AJOL)

    Determination and expression of genes for resistance to blast (Magnaporthe oryza) in Basmati and non-Basmati indica rices (Oryza sativa L.) Naveen Kumar, D Singh, S Gupta, A Sirohi, B Ramesh, Preeti Sirohi, Parul Sirohi, Atar Singh, N Kumar, A Kumar, Rajendra Kumar, R Kumar, J Singh, P. Kumar, P. Chauhan, ...

  11. Gene interactions and genetics of blast resistance and yield ...

    Indian Academy of Sciences (India)

    2014-08-11

    Aug 11, 2014 ... Keywords. blast; gene action; generation mean analysis; resistance; yield. Journal of Genetics, Vol. 93, No. .... Utilizing the variance of different generations, the variances of A, B, C and D scales were ...... Jia Y. 2003 Marker assisted selection for the control of rice blast disease. Pesticide Outlook 14 ...

  12. Evaluating antibiotic resistance genes in soils with applied manures

    Science.gov (United States)

    Antibiotics are commonly used in livestock production to promote growth and combat disease. Recent studies have shown the potential for spread of antibiotic resistance genes (ARG) to the environment following application of livestock manures. In this study, concentrations of bacteria with ARG in soi...

  13. Absence of meca gene in methicillin-resistant staphylococcus ...

    African Journals Online (AJOL)

    Methicillin-resistant Staphylococcus aureus has emerged as a serious threat to public health, causing both hospital and community-associated infections. The gold standard for MRSA detection is the amplification of the mecA gene that codes for the production of the altered penicillin-binding protein (PBP2a) responsible for ...

  14. Molecular Detection of Virulence Genes and Antibiotic Resistance ...

    African Journals Online (AJOL)

    Escherichia coli O157:H7 is an important food-borne pathogen that can cause diarrhea, haemorrhagic colitis and haemolytic uremic syndrome. This study was conducted to investigate the prevalence, virulence genes and antibiotic resistance patterns of E. coli O157:H7 in raw beef meat sold in Abeokuta, South west Nigeria ...

  15. Molecular detection of disease resistance genes to powdery mildew ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2017-01-04

    Jan 4, 2017 ... 2. State Key Laboratory of Biology for Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of. Agricultural Sciences, Beijing 100193, China. Received 10 October, 2016; Accepted 14 December, 2016. A study was conducted to detect the presence of disease resistance genes to ...

  16. Cloning of a carbendazim-resistant gene from Colletotrichum ...

    African Journals Online (AJOL)

    Cloning of a carbendazim-resistant gene from Colletotrichum gloeosporioides of mango in South China. ... Abstract. Mango anthracnose caused by Colletotrichum gloeosporioides is an important disease and prevalent in tropical regions of China. High carbendazim ... employed to further test the above results. It involved an ...

  17. Cloning and characterization of NBS-LRR resistance gene ...

    African Journals Online (AJOL)

    biotech

    2013-07-03

    Jul 3, 2013 ... Resistance genes honologues I theobroma cacao as useful genetic markers. Theor. Appl. Gent. 107:191-202. Kumar S, Tamura K, Nei M (2004). MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5:150-163. Lacock L, Niekerk CV, Loots S, ...

  18. Cloning and characterization of NBS-LRR resistance gene ...

    African Journals Online (AJOL)

    biotech

    2013-07-03

    Jul 3, 2013 ... Full Length Research Paper. Cloning and characterization of NBS-LRR resistance gene analogues of Musa spp. and their expression profiling studies against Pratylenchus coffeae. S. Backiyarani*, S. Uma, G. Arunkumar, M. S. Saraswathi and P. Sundararaju. National Research Centre for Banana (ICAR), ...

  19. Prevalence, antibiotic-resistance properties and enterotoxin gene ...

    African Journals Online (AJOL)

    milk-based infant foods in Iran, represent an important public health issue which should be considered ... Keywords: Prevalence, Bacillus cereus, Antibiotic resistance, Enterotoxigenic genes, Milk-based infant food. Tropical Journal of Pharmaceutical Research is indexed by Science ..... and cereals collected in Korea.

  20. Codon-optimized antibiotic resistance gene improves efficiency of ...

    Indian Academy of Sciences (India)

    We generated a synthetic gentamicin resistance gene whose codon usage is optimized to Frankia (fgmR) and evaluated its usefulness as a selection marker using a transient transformation system. Success rate of transient transformation and cell growth in selective culture were significantly increased by use of fgmR ...

  1. Resistance-related gene transcription and antioxidant enzyme ...

    African Journals Online (AJOL)

    The two tobacco relatives of Nicotiana alata and Nicotiana longiflora display a high level of resistance against Colletotrichum nicotianae and the two genes NTF6 and NtPAL related to pathogen defense transcription were higher in N. alata and N. longiflora than the commercial cv. K326. Inoculation with C. nicotianae ...

  2. Genetic analysis and location of a resistance gene to Puccinia ...

    Indian Academy of Sciences (India)

    Administrator

    Electrophoresis was carried out at 1400. V for 1.0 - 1.5 h. Gel staining and visualization was done as previously described (Chen et al. 1998). Polymorphic markers were used to genotype the F2 population. Genotype data were used to construct a genetic map and locate the resistance gene. Mapping and Data analysis.

  3. Activation and Transfer of the Chromosomal Phage Resistance Mechanism AbiV in Lactococcus lactis

    DEFF Research Database (Denmark)

    Haaber, J.; Moineau, S.; Hammer, Karin

    2009-01-01

    AbiV is a chromosomally encoded phage resistance mechanism that is silent in the wild-type phage-sensitive strain Lactococcus lactis subsp. cremoris MG1363. Spontaneous phage-resistant mutants of L. lactis MG1363 were analyzed by reverse transcriptase PCR and shown to express AbiV. This expression...... was related to a reorganization in the upstream region of abiV. Transfer of abiV between two lactococcal strains, most likely by conjugation, was also demonstrated. To our knowledge, this is the first report of natural transfer of a chromosomally encoded phage resistance mechanism....

  4. Functional screening of antibiotic resistance genes from human gut microbiota reveals a novel gene fusion.

    Science.gov (United States)

    Cheng, Gong; Hu, Yongfei; Yin, Yeshi; Yang, Xi; Xiang, Chunsheng; Wang, Baohong; Chen, Yanfei; Yang, Fengling; Lei, Fang; Wu, Na; Lu, Na; Li, Jing; Chen, Quanze; Li, Lanjuan; Zhu, Baoli

    2012-11-01

    The human gut microbiota has a high density of bacteria that are considered a reservoir for antibiotic resistance genes (ARGs). In this study, one fosmid metagenomic library generated from the gut microbiota of four healthy humans was used to screen for ARGs against seven antibiotics. Eight new ARGs were obtained: one against amoxicillin, six against d-cycloserine, and one against kanamycin. The new amoxicillin resistance gene encodes a protein with 53% identity to a class D β-lactamase from Riemerella anatipestifer RA-GD. The six new d-cycloserine resistance genes encode proteins with 73-81% identity to known d-alanine-d-alanine ligases. The new kanamycin resistance gene encodes a protein of 274 amino acids with an N-terminus (amino acids 1-189) that has 42% identity to the 6'-aminoglycoside acetyltransferase [AAC(6')] from Enterococcus hirae and a C-terminus (amino acids 190-274) with 35% identity to a hypothetical protein from Clostridiales sp. SSC/2. A functional study on the novel kanamycin resistance gene showed that only the N-terminus conferred kanamycin resistance. Our results showed that functional metagenomics is a useful tool for the identification of new ARGs. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. Functional Repertoire of Antibiotic Resistance Genes in Antibiotic Manufacturing Effluents and Receiving Freshwater Sediments

    Science.gov (United States)

    González-Plaza, Juan J.; Šimatović, Ana; Milaković, Milena; Bielen, Ana; Wichmann, Fabienne; Udiković-Kolić, Nikolina

    2018-01-01

    Environments polluted by direct discharges of effluents from antibiotic manufacturing are important reservoirs for antibiotic resistance genes (ARGs), which could potentially be transferred to human pathogens. However, our knowledge about the identity and diversity of ARGs in such polluted environments remains limited. We applied functional metagenomics to explore the resistome of two Croatian antibiotic manufacturing effluents and sediments collected upstream of and at the effluent discharge sites. Metagenomic libraries built from an azithromycin-production site were screened for resistance to macrolide antibiotics, whereas the libraries from a site producing veterinary antibiotics were screened for resistance to sulfonamides, tetracyclines, trimethoprim, and beta-lactams. Functional analysis of eight libraries identified a total of 82 unique, often clinically relevant ARGs, which were frequently found in clusters and flanked by mobile genetic elements. The majority of macrolide resistance genes identified from matrices exposed to high levels of macrolides were similar to known genes encoding ribosomal protection proteins, macrolide phosphotransferases, and transporters. Potentially novel macrolide resistance genes included one most similar to a 23S rRNA methyltransferase from Clostridium and another, derived from upstream unpolluted sediment, to a GTPase HflX from Emergencia. In libraries deriving from sediments exposed to lower levels of veterinary antibiotics, we found 8 potentially novel ARGs, including dihydrofolate reductases and beta-lactamases from classes A, B, and D. In addition, we detected 7 potentially novel ARGs in upstream sediment, including thymidylate synthases, dihydrofolate reductases, and class D beta-lactamase. Taken together, in addition to finding known gene types, we report the discovery of novel and diverse ARGs in antibiotic-polluted industrial effluents and sediments, providing a qualitative basis for monitoring the dispersal of ARGs

  6. The identification of a tetracycline resistance gene tet(M), on a Tn916-like transposon, in the Bacillus cereus group

    DEFF Research Database (Denmark)

    Agersø, Yvonne; Jensen, Lars Bogø; Givskov, Michael Christian

    2002-01-01

    In order to investigate whether resistance genes present in bacteria in manure could transfer to indigenous soil bacteria, resistant isolates belonging to the Bacillus cereus group (Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis) were isolated from farm soil (72 isolates) and manure...

  7. Putative resistance genes in the CitEST database

    Directory of Open Access Journals (Sweden)

    Simone Guidetti-Gonzalez

    2007-01-01

    Full Text Available Disease resistance in plants is usually associated with the activation of a wide variety of defense responses to prevent pathogen replication and/or movement. The ability of the host plant to recognize the pathogen and to activate defense responses is regulated by direct or indirect interaction between the products of plant resistance (R and pathogen avirulence (Avr genes. Attempted infection of plants by avirulent pathogens elicits a battery of defenses often followed by the collapse of the challenged host cells. Localized host cell death may help to prevent the pathogen from spreading to uninfected tissues, known as hypersensitive response (HR. When either the plant or the pathogen lacks its cognate gene, activation of the plant’s defense responses fails to occur or is delayed and does not prevent pathogen colonization. In the CitEST database, we identified 1,300 reads related to R genes in Citrus which have been reported in other plant species. These reads were translated in silico, and alignments of their amino acid sequences revealed the presence of characteristic domains and motifs that are specific to R gene classes. The description of the reads identified suggests that they function as resistance genes in citrus.

  8. Identification of antimicrobial resistance genes in multidrug-resistant clinical Bacteroides fragilis isolates by whole genome shotgun sequencing

    DEFF Research Database (Denmark)

    Sydenham, Thomas Vognbjerg; Sóki, József; Hasman, Henrik

    2015-01-01

    Bacteroides fragilis constitutes the most frequent anaerobic bacterium causing bacteremia in humans. The genetic background for antimicrobial resistance in B. fragilis is diverse with some genes requiring insertion sequence (IS) elements inserted upstream for increased expression. To evaluate whole...... genome shotgun sequencing as a method for predicting antimicrobial resistance properties, one meropenem resistant and five multidrug-resistant blood culture isolates were sequenced and antimicrobial resistance genes and IS elements identified using ResFinder 2.1 (http...

  9. Effects of ultraviolet disinfection on antibiotic-resistant Escherichia coli from wastewater: inactivation, antibiotic resistance profiles and antibiotic resistance genes.

    Science.gov (United States)

    Zhang, Chong-Miao; Xu, Li-Mei; Wang, Xiaochang C; Zhuang, Kai; Liu, Qiang-Qiang

    2017-04-29

    To evaluate the effect of ultraviolet (UV) disinfection on antibiotic-resistant Escherichia coli (E. coli). Antibiotic-resistant E. coli strains were isolated from a wastewater treatment plant and subjected to UV disinfection. The effect of UV disinfection on the antibiotic resistance profiles and the antibiotic resistance genes (ARGs) of antibiotic-resistant E. coli was evaluated by a combination of antibiotic susceptibility analysis and molecular methods. Results indicated that multiple-antibiotic-resistant (MAR) E. coli were more resistant at low UV doses and required a higher UV dose (20 mJ cm -2 ) to enter the tailing phase compared with those of antibiotic-sensitive E. coli (8 mJ cm -2 ). UV disinfection caused a selective change in the inhibition zone diameters of surviving antibiotic-resistant E. coli and a slight damage to ARGs. The inhibition zone diameters of the strains resistant to antibiotics were more difficult to alter than those susceptible to antibiotics because of the existence and persistence of corresponding ARGs. The resistance of MAR bacteria to UV disinfection at low UV doses and the changes in inhibition zone diameters could potentially contribute to the selection of ARB in wastewater treatment after UV disinfection. The risk of spread of antibiotic resistance still exists owing to the persistence of ARGs. Our study highlights the acquisition of other methods to control the spread of ARGs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Rapid startup of thermophilic anaerobic digester to remove tetracycline and sulfonamides resistance genes from sewage sludge.

    Science.gov (United States)

    Xu, Rui; Yang, Zhao-Hui; Wang, Qing-Peng; Bai, Yang; Liu, Jian-Bo; Zheng, Yue; Zhang, Yan-Ru; Xiong, Wei-Ping; Ahmad, Kito; Fan, Chang-Zheng

    2018-01-15

    Spread of antibiotic resistance genes (ARGs) originating from sewage sludge is highlighted as an eminent health threat. This study established a thermophilic anaerobic digester using one-step startup strategy to quickly remove tetracycline and sulfonamides resistance genes from sewage sludge. At least 20days were saved in the startup period from mesophilic to thermophilic condition. Based on the results of 16S rDNA amplicons sequencing and predicted metagenomic method, the successful startup largely relied on the fast colonization of core thermophilic microbial population (e.g. Firmicutes, Proteobacteria, Actinobacteria). Microbial metabolic gene pathways for substrate degradation and methane production was also increased by one-step mode. In addition, real-time quantitative PCR approach revealed that most targeted tetracycline and sulfonamides resistance genes ARGs (sulI, tetA, tetO, tetX) were substantially removed during thermophilic digestion (removal efficiency>80%). Network analysis showed that the elimination of ARGs was attributed to the decline of their horizontal (intI1 item) and vertical (potential hosts) transfer-related elements under high-temperature. This research demonstrated that rapid startup thermophilic anaerobic digestion of wastewater solids would be a suitable technology for reducing quantities of various ARGs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Transfer of tetracycline resistance gene (tet ) between replicons in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-17

    Sep 17, 2008 ... to epidemics of diarrhea because some strains appear to have acquired plasmid from E. coli that code for heat labile and heat stable enterotoxins (Wang et al., 2006). Most diarrhoael infected patients in Nigeria treat diarrhea with tetracycline prior to .... surveillance of children from urban mexico. Antimicrob.

  12. Fluoroquinolone-induced gene transfer in multidrug-resistant Salmonella

    Science.gov (United States)

    Fluoroquinolones are broad spectrum antibiotics that inhibit bacterial DNA gyrase and topoisomerase activity. Bacterial exposure to fluoroquinolones can cause DNA damage and induce a bacterial SOS response to stimulate repair of damaged DNA. Certain prophages (integrated in bacterial chromosomes) ...

  13. Extended-spectrum β-lactamases, transferable quinolone resistance, and virulotyping in extra-intestinal E. coli in Uruguay.

    Science.gov (United States)

    Vignoli, Rafael; García-Fulgueiras, Virginia; Cordeiro, Nicolás F; Bado, Inés; Seija, Verónica; Aguerrebere, Paula; Laguna, Gabriel; Araújo, Lucía; Bazet, Cristina; Gutkind, Gabriel; Chabalgoity, José

    2016-01-31

    To characterize extended-spectrum β-lactamases (ESBLs) and plasmid-mediated quinolone resistance (PMQR) genes in Escherichia coli isolates obtained from extra-intestinal samples in three Uruguayan hospitals. Fifty-five ESBL-producing E. coli isolates were studied. Virulence genes, ESBLs, and PMQR genes were detected by polymerase chain reaction. ESBL-producing isolates were compared by pulsed-field gel electrophoresis. Multi-locus sequence typing was also performed on 13 selected isolates. Thirty-seven isolates harbored blaCTX-M-15 (67.3%), eight blaCTX-M-2 (14.6%), five blaCTX-M-14 (9.1%), three carried both blaCTX-M-2 and blaCTX-M-14, one blaCTX-M-9, and one blaCTX-M-8. Among the CTX-M-15 producers, 92% belonged to sequence types ST131 and ST405, and carried aac(6')Ib-cr as well. Isolates harboring blaCTX-M-2, blaCTX-M-14, blaCTX-M-9, or blaCTX-M-8 were found to be genetically unrelated. The successful dissemination of CTX-M-15-producing E.coli isolates seems to be linked to the spreading of high-risk clones and horizontal gene transfer. A trade-off between carrying more antibiotic resistance and less virulence-related genes could partially account for the evolutionary advantages featured by successful clones.

  14. Anthropogenic antibiotic resistance genes mobilization to the polar regions.

    Science.gov (United States)

    Hernández, Jorge; González-Acuña, Daniel

    2016-01-01

    Anthropogenic influences in the southern polar region have been rare, but lately microorganisms associated with humans have reached Antarctica, possibly from military bases, fishing boats, scientific expeditions, and/or ship-borne tourism. Studies of seawater in areas of human intervention and proximal to fresh penguin feces revealed the presence of Escherichia coli strains least resistant to antibiotics in penguins, whereas E. coli from seawater elsewhere showed resistance to one or more of the following antibiotics: ampicillin, tetracycline, streptomycin, and trim-sulfa. In seawater samples, bacteria were found carrying extended-spectrum β-lactamase (ESBL)-type CTX-M genes in which multilocus sequencing typing (MLST) showed different sequence types (STs), previously reported in humans. In the Arctic, on the contrary, people have been present for a long time, and the presence of antibiotic resistance genes (ARGs) appears to be much more wide-spread than was previously reported. Studies of E coli from Arctic birds (Bering Strait) revealed reduced susceptibility to antibiotics, but one globally spreading clone of E. coli genotype O25b-ST131, carrying genes of ESBL-type CTX-M, was identified. In the few years between sample collections in the same area, differences in resistance pattern were observed, with E. coli from birds showing resistance to a maximum of five different antibiotics. Presence of resistance-type ESBLs (TEM, SHV, and CTX-M) in E. coli and Klebsiella pneumoniae was also confirmed by specified PCR methods. MLST revealed that those bacteria carried STs that connect them to previously described strains in humans. In conclusion, bacteria previously related to humans could be found in relatively pristine environments, and presently human-associated, antibiotic-resistant bacteria have reached a high global level of distribution that they are now found even in the polar regions.

  15. Anthropogenic antibiotic resistance genes mobilization to the polar regions

    Directory of Open Access Journals (Sweden)

    Jorge Hernández

    2016-12-01

    Full Text Available Anthropogenic influences in the southern polar region have been rare, but lately microorganisms associated with humans have reached Antarctica, possibly from military bases, fishing boats, scientific expeditions, and/or ship-borne tourism. Studies of seawater in areas of human intervention and proximal to fresh penguin feces revealed the presence of Escherichia coli strains least resistant to antibiotics in penguins, whereas E. coli from seawater elsewhere showed resistance to one or more of the following antibiotics: ampicillin, tetracycline, streptomycin, and trim-sulfa. In seawater samples, bacteria were found carrying extended-spectrum β-lactamase (ESBL-type CTX-M genes in which multilocus sequencing typing (MLST showed different sequence types (STs, previously reported in humans. In the Arctic, on the contrary, people have been present for a long time, and the presence of antibiotic resistance genes (ARGs appears to be much more wide-spread than was previously reported. Studies of E coli from Arctic birds (Bering Strait revealed reduced susceptibility to antibiotics, but one globally spreading clone of E. coli genotype O25b-ST131, carrying genes of ESBL-type CTX-M, was identified. In the few years between sample collections in the same area, differences in resistance pattern were observed, with E. coli from birds showing resistance to a maximum of five different antibiotics. Presence of resistance-type ESBLs (TEM, SHV, and CTX-M in E. coli and Klebsiella pneumoniae was also confirmed by specified PCR methods. MLST revealed that those bacteria carried STs that connect them to previously described strains in humans. In conclusion, bacteria previously related to humans could be found in relatively pristine environments, and presently human-associated, antibiotic-resistant bacteria have reached a high global level of distribution that they are now found even in the polar regions.

  16. Predicting the Liquid Phase Mass Transfer Resistance of Structured Packings

    NARCIS (Netherlands)

    Olujic, Z.; Seibert, A.F.

    2014-01-01

    Published correlations for estimating the liquid phase mass transfer coefficients of structured packings are compared using experimental evidence on the efficiency of Montz-Pak B1–250MN and B1–500MN structured packings as measured in total reflux distillation tests using the

  17. Relationship between Psidium species (Myrtaceae) by resistance gene analog markers: focus on nematode resistance.

    Science.gov (United States)

    Noia, L R; Tuler, A C; Ferreira, A; Ferreira, M F S

    2017-03-16

    Guava (Psidium guajava L.) crop is severely affected by the nematode Meloidogyne enterolobii. Native Psidium species have been reported as sources of resistance against this nematode. Knowledge on the molecular relationship between Psidium species based on plant resistance gene analogs (RGA) can be useful in the genetic breeding of guava for resistance to M. enterolobii. In this study, RGA markers from conserved domains, and structural features of plant R genes, were employed to characterize Psidium species and establish genetic proximity, with a focus on nematode resistance. SSR markers were also applied owing to their neutral nature, thus differing from RGA markers. For this, species reported as sources of resistance to M. enterolobii, such as P. cattleianum and P. friedrichsthalianum, as well as species occurring in the Atlantic Rainforest and susceptible genotypes, were investigated. In 10 evaluated Psidium species, high interspecific genetic variability was verified through RGA and SSR markers, with intraspecific variation in P. guajava higher with SSR, as was expected. Resistant species were clustered by RGA markers, and differential amplicons among genotypes resistant and susceptible to M. enterolobii were identified. Knowledge on the molecular relationships between Psidium species constitutes useful information for breeding of the guava tree, providing direction for hybridization and material for rootstocks. Additionally, the genetic relationship between native species, which have been little studied, and P. guajava were estimated by RGAs, which were confirmed as important markers for genetic diversity related to pathogen resistance.

  18. Functional study of the novel multidrug resistance gene HA117 and its comparison to multidrug resistance gene 1

    Directory of Open Access Journals (Sweden)

    Chen Tingfu

    2010-07-01

    Full Text Available Abstract Background The novel gene HA117 is a multidrug resistance (MDR gene expressed by all-trans retinoic acid-resistant HL-60 cells. In the present study, we compared the multidrug resistance of the HA117 with that of the classical multidrug resistance gene 1 (MDR1 in breast cancer cell line 4T1. Methods Transduction of the breast cancer cell line 4T1 with adenoviral vectors encoding the HA117 gene and the green fluorescence protein gene (GFP (Ad-GFP-HA117, the MDR1 and GFP (Ad-GFP-MDR1 or GFP (Ad-GFP was respectively carried out. The transduction efficiency and the multiplicity of infection (MOI were detected by fluorescence microscope and flow cytometry. The transcription of HA117 gene and MDR1 gene were detected by reverse transcription polymerase chain reaction (RT-PCR. Western blotting analysis was used to detect the expression of P-glycoprotein (P-gp but the expression of HA117 could not be analyzed as it is a novel gene and its antibody has not yet been synthesized. The drug-excretion activity of HA117 and MDR1 were determined by daunorubicin (DNR efflux assay. The drug sensitivities of 4T1/HA117 and 4T1/MDR1 to chemotherapeutic agents were detected by Methyl-Thiazolyl-Tetrazolium (MTT assay. Results The transducted efficiency of Ad-GFP-HA117 and Ad-GFP-MDR1 were 75%-80% when MOI was equal to 50. The transduction of Ad-GFP-HA117 and Ad-GFP-MDR1 could increase the expression of HA117 and MDR1. The drug resistance index to Adriamycin (ADM, vincristine (VCR, paclitaxel (Taxol and bleomycin (BLM increased to19.8050, 9.0663, 9.7245, 3.5650 respectively for 4T1/HA117 and 24.2236, 11.0480, 11.3741, 0.9630 respectively for 4T1/MDR1 as compared to the control cells. There were no significant differences in drug sensitivity between 4T1/HA117 and 4T1/MDR1 for the P-gp substrates (ADM, VCR and Taxol (P Conclusions These results confirm that HA117 is a strong MDR gene in both HL-60 and 4T1 cells. Furthermore, our results indicate that the MDR

  19. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes

    DEFF Research Database (Denmark)

    Venkatesan, Meera; Gadalla, Nahla B; Stepniewska, Kasia

    2014-01-01

    Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated...... with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized...

  20. Ectopic expression of Arabidopsis L-type lectin receptor kinase genes LecRK-I.9 and LecRK-IX.1 in Nicotiana benthamiana confers Phytophthora resistance

    NARCIS (Netherlands)

    Wang, Yan; Nsibo, D.L.; Juhar, H.M.; Govers, Francine; Bouwmeester, Klaas

    2016-01-01

    Key message: TransgenicNicotiana benthamianalines with constitutive expression of an Arabidopsis lectin receptor kinase gene (LecRK-I.9orLecRK-IX.1) show enhanced resistance toPhytophthorapathogens, demonstrating conserved gene functionality after interfamily transfer.Abstract: In plants, cell

  1. Transfer of Multidrug Resistance among Bacteria Isolated from ...

    African Journals Online (AJOL)

    One hundred and twenty two (122) bacterial isolates belonging to the genera Micrococcus, Streptococcus, Pseudomonas, Actinomyces, Bacillus, Corynebacterium, Brucella, Shigella, Hafnia, Proteus and Salmonella were isolated from four different industrial waste sites. Thirty five (28.68%) of these were resistant to two or ...

  2. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes.

    Science.gov (United States)

    Choi, Kyuha; Reinhard, Carsten; Serra, Heïdi; Ziolkowski, Piotr A; Underwood, Charles J; Zhao, Xiaohui; Hardcastle, Thomas J; Yelina, Nataliya E; Griffin, Catherine; Jackson, Matthew; Mézard, Christine; McVean, Gil; Copenhaver, Gregory P; Henderson, Ian R

    2016-07-01

    Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.

  3. Environmental factors influencing gene transfer agent (GTA mediated transduction in the subtropical ocean.

    Directory of Open Access Journals (Sweden)

    Lauren D McDaniel

    Full Text Available Microbial genomic sequence analyses have indicated widespread horizontal gene transfer (HGT. However, an adequate mechanism accounting for the ubiquity of HGT has been lacking. Recently, high frequencies of interspecific gene transfer have been documented, catalyzed by Gene Transfer Agents (GTAs of marine α-Proteobacteria. It has been proposed that the presence of bacterial genes in highly purified viral metagenomes may be due to GTAs. However, factors influencing GTA-mediated gene transfer in the environment have not yet been determined. Several genomically sequenced strains containing complete GTA sequences similar to Rhodobacter capsulatus (RcGTA, type strain were screened to ascertain if they produced putative GTAs, and at what abundance. Five of nine marine strains screened to date spontaneously produced virus-like particles (VLP's in stationary phase. Three of these strains have demonstrated gene transfer activity, two of which were documented by this lab. These two strains Roseovarius nubinhibens ISM and Nitratireductor 44B9s, were utilized to produce GTAs designated RnGTA and NrGTA and gene transfer activity was verified in culture. Cell-free preparations of purified RnGTA and NrGTA particles from marked donor strains were incubated with natural microbial assemblages to determine the level of GTA-mediated gene transfer. In conjunction, several ambient environmental parameters were measured including lysogeny indicated by prophage induction. GTA production in culture systems indicated that approximately half of the strains produced GTA-like particles and maximal GTA counts ranged from 10-30% of host abundance. Modeling of GTA-mediated gene transfer frequencies in natural samples, along with other measured environmental variables, indicated a strong relationship between GTA mediated gene transfer and the combined factors of salinity, multiplicity of infection (MOI and ambient bacterial abundance. These results indicate that GTA

  4. Gene pyramiding enhances durable blast disease resistance in rice.

    Science.gov (United States)

    Fukuoka, Shuichi; Saka, Norikuni; Mizukami, Yuko; Koga, Hironori; Yamanouchi, Utako; Yoshioka, Yosuke; Hayashi, Nagao; Ebana, Kaworu; Mizobuchi, Ritsuko; Yano, Masahiro

    2015-01-14

    Effective control of blast, a devastating fungal disease of rice, would increase and stabilize worldwide food production. Resistance mediated by quantitative trait loci (QTLs), which usually have smaller individual effects than R-genes but confer broad-spectrum or non-race-specific resistance, is a promising alternative to less durable race-specific resistance for crop improvement, yet evidence that validates the impact of QTL combinations (pyramids) on the durability of plant disease resistance has been lacking. Here, we developed near-isogenic experimental lines representing all possible combinations of four QTL alleles from a durably resistant cultivar. These lines enabled us to evaluate the QTLs singly and in combination in a homogeneous genetic background. We present evidence that pyramiding QTL alleles, each controlling a different response to M. oryzae, confers strong, non-race-specific, environmentally stable resistance to blast disease. Our results suggest that this robust defence system provides durable resistance, thus avoiding an evolutionary "arms race" between a crop and its pathogen.

  5. Persistence of antimicrobial resistance genes from sows to finisher pigs

    DEFF Research Database (Denmark)

    Birkegård, Anna Camilla; Halasa, Tariq; Folkesson, Anders

    2018-01-01

    Antimicrobial resistance in pigs has been under scrutiny for many years. However, many questions remain unanswered, including whether the initial antimicrobial resistance level of a pig will influence the antimicrobial resistance found at slaughter. Faecal samples from finishers pigs from 681 farms...... and from sows from 82 farms were collected, and levels of seven antimicrobial resistance genes, ermB, ermF, sulI, sulII, tet(M), tet(O), and tet(W), were quantified by high-capacity qPCR. There were 40 pairs of observations where the finishers were born in the farms of the sows. The objective of this study...... was to evaluate whether the levels of AMR genes found in finisher pigs at slaughter were associated with the levels in the farm where the finishers were born, and whether the levels of the AMR genes were equal in the sow and finisher pig populations. We found a significant positive correlation between the levels...

  6. Mapping fusiform rust resistance genes within a complex mating design of loblolly pine

    Science.gov (United States)

    Tania Quesada; Marcio F.R. Resende Jr.; Patricio Munoz; Jill L. Wegrzyn; David B. Neale; Matias Kirst; Gary F. Peter; Salvador A. Gezan; C.Dana Nelson; John M. Davis

    2014-01-01

    Fusiform rust resistance can involve gene-for-gene interactions where resistance (Fr) genes in the host interact with corresponding avirulence genes in the pathogen, Cronartium quercuum f.sp. fusiforme (Cqf). Here, we identify trees with Fr genes in a loblolly pine population derived from a complex mating design challenged with two Cqf inocula (one gall and 10 gall...

  7. Transfer of alien genes into cultivated wheat and triticale genotypes by the use of homoeologous pairing mutants

    International Nuclear Information System (INIS)

    Ceoloni, C.

    1988-01-01

    Alien species, both wild and cultivated, can greatly help in broadening the genetic base of presently cultivated wheats, thanks to the large reservoir of useful genes they contain. However, introduction of substantial portions of alien genomes into cultivated genotypes in most cases makes them unfit for commercial use, due to the contemporary presence of positive and negative traits carried by the alien material. Therefore, what appears to be generally needed is to obtain transfers that include the shortest possible alien segment(s). Preliminary results are reported here of a work aimed at transferring to common wheat a gene for resistance to powdery mildew derived from Triticum longissimum, a diploid species with a very closely related genome to the B genome of polyploid wheats. As donor line a T. longissimum ditelosomic addition to Chinese Spring was used. The alien telo, bearing the resistance gene(s), corresponded to the short arm of chromosome G, whose homoeology with the group-3 chromosomes of common wheat had been established. A transfer scheme has been adopted that, within two generations of crosses, of which one with the ph1 mutant of Chinese Spring, provided plants having in single dose the alien telocentric, its wheat homoeologue and a 5B/ph1 chromosome. Such plants were then pollinated by the standard euploid for the recovery of recombinant types. The frequency of recombinant resistant plants detected so far suggests that the pairing frequency between the alien telo and its wheat homoeologues was quite high, most probably ranging between 25 and 30%, on an average. Extensive use is also being made of the ph1 6X triticale as one the parents in various wide crosses with different D genome sources, including common wheat and synthetic amphiploids. The results show that the ph1 mediated recombination is a promising method for triticale improvement. 18 refs, 1 fig, 2 tabs

  8. Resistance-Gene Cassettes Associated With Salmonella enterica Genotypes.

    Science.gov (United States)

    Bakhshi, Bita; Ghafari, Mohsen; Pourshafie, Mohammad R; Zarbakhsh, Behnaz; Katouli, Mohammad; Rahbar, Mohammad; Hajia, Masoud; Hosseini-Aliabad, Neda; Boustanshenas, Mina

    2015-01-01

    The epidemiology of salmonellosis is complex because of the diversity and different serotypes of Salmonella enterica (S. enterica) that occur in different reservoirs and geographic incidences. To determine the genotype distribution and resistance-gene content of 2 classes of integron among S. enterica isolates. Thirty-six S. enterica species were isolated and tested for their serological distribution and the resistance-gene contents of 2 classes of integron, as well as for their genetic diversity, using the pulsed-field gel electrophoresis (PFGE) genotyping method. Serogroups E (36.1%) and D (30.5%) were dominant among the isolates. All of the isolates in serogroup D belonged to the serovar enteritidis. The aadA1 gene was found within all resistance-gene cassettes. We observed 4 common and 26 single pulsotypes among the isolates, which indicated a high degree of genetic diversity among the isolates. Using the PulseNet International standard protocol, it was found that these isolates were different from those reported previously in Iran. The presence of a few common and new pulsotypes among the isolates suggests the emergence and spread of new clones of S. enterica in Iran. Copyright© by the American Society for Clinical Pathology (ASCP).

  9. Continental-scale pollution of estuaries with antibiotic resistance genes.

    Science.gov (United States)

    Zhu, Yong-Guan; Zhao, Yi; Li, Bing; Huang, Chu-Long; Zhang, Si-Yu; Yu, Shen; Chen, Yong-Shan; Zhang, Tong; Gillings, Michael R; Su, Jian-Qiang

    2017-01-30

    Antibiotic resistance genes (ARGs) have moved from the environmental resistome into human commensals and pathogens, driven by human selection with antimicrobial agents. These genes have increased in abundance in humans and domestic animals, to become common components of waste streams. Estuarine habitats lie between terrestrial/freshwater and marine ecosystems, acting as natural filtering points for pollutants. Here, we have profiled ARGs in sediments from 18 estuaries over 4,000 km of coastal China using high-throughput quantitative polymerase chain reaction, and investigated their relationship with bacterial communities, antibiotic residues and socio-economic factors. ARGs in estuarine sediments were diverse and abundant, with over 200 different resistance genes being detected, 18 of which were found in all 90 sediment samples. The strong correlations of identified resistance genes with known mobile elements, network analyses and partial redundancy analysis all led to the conclusion that human activity is responsible for the abundance and dissemination of these ARGs. Such widespread pollution with xenogenetic elements has environmental, agricultural and medical consequences.

  10. The qacC Gene Has Recently Spread between Rolling Circle Plasmids of Staphylococcus, Indicative of a Novel Gene Transfer Mechanism

    DEFF Research Database (Denmark)

    Wassenaar, Trudy M; Ussery, David W; Ingmer, Hanne

    2016-01-01

    Resistance of Staphylococcus species to quaternary ammonium compounds, frequently used as disinfectants and biocides, can be attributed to qac genes. Most qac gene products belong to the Small Multidrug Resistant (SMR) protein family, and are often encoded by rolling-circle (RC) replicating...... in RC-plasmids, which has also been employed by other genes, such as lnuA (conferring lincomycin resistance). The proposed gene mobility has aided to the wide spread of clinically relevant resistance genes in Staphylococcus populations....

  11. Prevalence of Antibiotic Resistance Genes among Human Gut-Derived Bifidobacteria.

    Science.gov (United States)

    Duranti, Sabrina; Lugli, Gabriele Andrea; Mancabelli, Leonardo; Turroni, Francesca; Milani, Christian; Mangifesta, Marta; Ferrario, Chiara; Anzalone, Rosaria; Viappiani, Alice; van Sinderen, Douwe; Ventura, Marco

    2017-02-01

    The microbiota of the human gastrointestinal tract (GIT) may regularly be exposed to antibiotics, which are used to prevent and treat infectious diseases caused by bacteria and fungi. Bacterial communities of the gut retain a reservoir of antibiotic resistance (AR) genes, and antibiotic therapy thus positively selects for those microorganisms that harbor such genetic features, causing microbiota modulation. During the first months following birth, bifidobacteria represent some of the most dominant components of the human gut microbiota, although little is known about their AR gene complement (or resistome). In the current study, we assessed the resistome of the Bifidobacterium genus based on phenotypic and genotypic data of members that represent all currently recognized bifidobacterial (sub)species. Moreover, a comparison between the bifidobacterial resistome and gut metagenome data sets from adults and infants shows that the bifidobacterial community present at the first week following birth possesses a reduced AR arsenal compared to that present in the infant bifidobacterial population in subsequent weeks of the first year of life. Our findings reinforce the concept that the early infant gut microbiota is more susceptible to disturbances by antibiotic treatment than the gut microbiota developed at a later life stage. The spread of resistance to antibiotics among bacterial communities has represented a major concern since their discovery in the last century. The risk of genetic transfer of resistance genes between microorganisms has been extensively investigated due to its relevance to human health. In contrast, there is only limited information available on antibiotic resistance among human gut commensal microorganisms such as bifidobacteria, which are widely exploited by the food industry as health-promoting microorganisms or probiotic ingredients. In the current study, we explored the occurrence of antibiotic resistance genes in the genomes of bifidobacteria

  12. Vancomycin-resistant Enterococcus faecium with vanA gene isolated for the first time from wildlife in Slovakia.

    Science.gov (United States)

    Oravcova, Veronika; Hadelova, Daniela; Literak, Ivan

    2016-10-15

    Corvids have been identified as an important vector of vancomycin-resistant enterococci (VRE) in several European countries. The aim of this study was to assess the prevalence of VRE in wildlife in Slovakia and to characterize vanA-carrying VRE. At the beginning of 2013, we collected 287 fecal samples of common raven (Corvus corax) in Petrovce and 99 fecal samples of rooks (Corvus frugilegus) in Kosice. Samples were cultured selectively on Slanetz-Bartley agar with vancomycin and screened for vanA, other resistance genes, and virulence genes. PCR mapping of Tn1546 carrying vanA gene was performed. Multilocus sequence typing and pulsed-field gel electrophoresis were used to examine the genotypic diversity of vanA-containing VRE. The mobility of vancomycin resistance traits was tested in vitro, using filter mating experiments. VRE with the vanA gene were found in 4 (1.4%) of 287 raven samples and in one (1%) of 99 rook samples. All 5 isolates belonged to Enterococcus faecium and were multiresistant with resistance to erythromycin encoded by the erm(B) gene, tetracycline (tet(M) and tet(L) genes), and ampicillin (mutations in C-terminal region of pbp5 gene). Isolates from Petrovce also were resistant to chloramphenicol. Virulence genes were not proven. The vanA gene was carried by Tn1546 types E (combined with insertion sequence IS1216) or F5 (IS1251). One isolate from a rook in Kosice belonged to ST (sequence type) 6 and the remaining four from ravens in Petrovce belonged to new ST917 (a single locus variant of ST18). All tested VRE were able to transfer the vancomycin resistance trait. In conclusion, we identified clinically important enterococci with the vanA gene in corvids in Slovakia. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Gene Prioritization of Resistant Rice Gene against Xanthomas oryzae pv. oryzae by Using Text Mining Technologies

    Directory of Open Access Journals (Sweden)

    Jingbo Xia

    2013-01-01

    Full Text Available To effectively assess the possibility of the unknown rice protein resistant to Xanthomonas oryzae pv. oryzae, a hybrid strategy is proposed to enhance gene prioritization by combining text mining technologies with a sequence-based approach. The text mining technique of term frequency inverse document frequency is used to measure the importance of distinguished terms which reflect biomedical activity in rice before candidate genes are screened and vital terms are produced. Afterwards, a built-in classifier under the chaos games representation algorithm is used to sieve the best possible candidate gene. Our experiment results show that the combination of these two methods achieves enhanced gene prioritization.

  14. A first glimpse into the pattern and scale of gene transfer in the Apicomplexa

    DEFF Research Database (Denmark)

    Huang, J.L.; Mullapudi, N.; Sicheritz-Pontén, Thomas

    2004-01-01

    with a phylogenomic approach to detect potential gene transfers in four apicomplexan genomes. We have detected genes of algal nuclear, chloroplast (cyanobacterial) and proteobacterial origin. Plant-like genes were detected in species not currently harbouring a plastid (e.g. Cryptosporidium parvum) and putatively...

  15. Prevalence and characterization of plasmids carrying sulfonamide resistance genes among Escherichia coli from pigs, pig carcasses and human.

    Science.gov (United States)

    Wu, Shuyu; Dalsgaard, Anders; Hammerum, Anette M; Porsbo, Lone J; Jensen, Lars B

    2010-07-30

    Sulfonamide resistance is very common in Escherichia coli. The aim of this study was to characterize plasmids carrying sulfonamide resistance genes (sul1, sul2 and sul3) in E. coli isolated from pigs and humans with a specific objective to assess the genetic diversity of plasmids involved in the mobility of sul genes. A total of 501 E. coli isolates from pig feces, pig carcasses and human stools were tested for their susceptibility to selected antimicrobial. Multiplex PCR was conducted to detect the presence of three sul genes among the sulfonamide-resistant E. coli isolates. Fifty-seven sulfonamide-resistant E. coli were selected based on presence of sul resistance genes and subjected to conjugation and/or transformation experiments. S1 nuclease digestion followed by pulsed-field gel electrophoresis was used to visualize and determine the size of plasmids. Plasmids carrying sul genes were characterized by PCR-based replicon typing to allow a comparison of the types of sul genes, the reservoir and plasmid present. A total of 109/501 isolates exhibited sulfonamide resistance. The relative prevalences of sul genes from the three reservoirs (pigs, pig carcasses and humans) were 65%, 45% and 12% for sul2, sul1, and sul3, respectively. Transfer of resistance through conjugation was observed in 42/57 isolates. Resistances to streptomycin, ampicillin and trimethoprim were co-transferred in most strains. Class 1 integrons were present in 80% of sul1-carrying plasmids and 100% of sul3-carrying plasmids, but only in 5% of sul2-carrying plasmids. The sul plasmids ranged from 33 to 160-kb in size and belonged to nine different incompatibility (Inc) groups: FII, FIB, I1, FIA, B/O, FIC, N, HI1 and X1. IncFII was the dominant type in sul2-carrying plasmids (52%), while IncI1 was the most common type in sul1 and sul3-carrying plasmids (33% and 45%, respectively). Multireplicons were found associated with all three sul genes. Sul genes were distributed widely in E. coli isolated

  16. Prevalence and characterization of plasmids carrying sulfonamide resistance genes among Escherichia coli from pigs, pig carcasses and human

    Directory of Open Access Journals (Sweden)

    Hammerum Anette M

    2010-07-01

    Full Text Available Abstract Background Sulfonamide resistance is very common in Escherichia coli. The aim of this study was to characterize plasmids carrying sulfonamide resistance genes (sul1, sul2 and sul3 in E. coli isolated from pigs and humans with a specific objective to assess the genetic diversity of plasmids involved in the mobility of sul genes. Methods A total of 501 E. coli isolates from pig feces, pig carcasses and human stools were tested for their susceptibility to selected antimicrobial. Multiplex PCR was conducted to detect the presence of three sul genes among the sulfonamide-resistant E. coli isolates. Fifty-seven sulfonamide-resistant E. coli were selected based on presence of sul resistance genes and subjected to conjugation and/or transformation experiments. S1 nuclease digestion followed by pulsed-field gel electrophoresis was used to visualize and determine the size of plasmids. Plasmids carrying sul genes were characterized by PCR-based replicon typing to allow a comparison of the types of sul genes, the reservoir and plasmid present. Results A total of 109/501 isolates exhibited sulfonamide resistance. The relative prevalences of sul genes from the three reservoirs (pigs, pig carcasses and humans were 65%, 45% and 12% for sul2, sul1, and sul3, respectively. Transfer of resistance through conjugation was observed in 42/57 isolates. Resistances to streptomycin, ampicillin and trimethoprim were co-transferred in most strains. Class 1 integrons were present in 80% of sul1-carrying plasmids and 100% of sul3-carrying plasmids, but only in 5% of sul2-carrying plasmids. The sul plasmids ranged from 33 to 160-kb in size and belonged to nine different incompatibility (Inc groups: FII, FIB, I1, FIA, B/O, FIC, N, HI1 and X1. IncFII was the dominant type in sul2-carrying plasmids (52%, while IncI1 was the most common type in sul1 and sul3-carrying plasmids (33% and 45%, respectively. Multireplicons were found associated with all three sul genes

  17. Spread of tetracycline resistance genes at a conventional dairy farm

    Czech Academy of Sciences Publication Activity Database

    Kyselková, Martina; Jirout, Jiří; Vrchotová, Naděžda; Schmitt, H.; Elhottová, Dana

    2015-01-01

    Roč. 6, may (2015), s. 536 ISSN 1664-302X R&D Projects: GA ČR GAP504/10/2077; GA MŠk(CZ) EE2.3.30.0032; GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 ; RVO:60077344 Keywords : antibiotic resistance spread * animal manure * cattle intestinal microflora * chlortetracycline * dairy cattle * dairy farm * heavy metals * tetracycline resistance genes Subject RIV: EI - Biotechnology ; Bionics; EE - Microbiology, Virology (BC-A) Impact factor: 4.165, year: 2015

  18. Antimicrobial resistance genes in marine bacteria and human uropathogenic Escherichia coli from a region of intensive aquaculture.

    Science.gov (United States)

    Tomova, Alexandra; Ivanova, Larisa; Buschmann, Alejandro H; Rioseco, Maria Luisa; Kalsi, Rajinder K; Godfrey, Henry P; Cabello, Felipe C

    2015-10-01

    Antimicrobials are heavily used in Chilean salmon aquaculture. We previously found significant differences in antimicrobial-resistant bacteria between sediments from an aquaculture and a non-aquaculture site. We now show that levels of antimicrobial resistance genes (ARG) are significantly higher in antimicrobial-selected marine bacteria than in unselected bacteria from these sites. While ARG in tetracycline- and florfenicol-selected bacteria from aquaculture and non-aquaculture sites were equally frequent, there were significantly more plasmid-mediated quinolone resistance genes per bacterium and significantly higher numbers of qnrB genes in quinolone-selected bacteria from the aquaculture site. Quinolone-resistant urinary Escherichia coli from patients in the Chilean aquacultural region were significantly enriched for qnrB (including a novel qnrB gene), qnrS, qnrA and aac(6')-1b, compared with isolates from New York City. Sequences of qnrA1, qnrB1 and qnrS1 in quinolon