WorldWideScience

Sample records for resistance gene clusters

  1. Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture.

    Science.gov (United States)

    Johnson, Timothy A; Stedtfeld, Robert D; Wang, Qiong; Cole, James R; Hashsham, Syed A; Looft, Torey; Zhu, Yong-Guan; Tiedje, James M

    2016-04-12

    Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundance of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk. Agricultural antibiotic use results in clusters of cooccurring resistance genes that together confer resistance to multiple antibiotics. The use of a single antibiotic could select for an entire suite of resistance genes if

  2. Method of Selection of Bacteria Antibiotic Resistance Genes Based on Clustering of Similar Nucleotide Sequences.

    Science.gov (United States)

    Balashov, I S; Naumov, V A; Borovikov, P I; Gordeev, A B; Dubodelov, D V; Lyubasovskaya, L A; Rodchenko, Yu V; Bystritskii, A A; Aleksandrova, N V; Trofimov, D Yu; Priputnevich, T V

    2017-10-01

    A new method for selection of bacterium antibiotic resistance genes is proposed and tested for solving the problems related to selection of primers for PCR assay. The method implies clustering of similar nucleotide sequences and selection of group primers for all genes of each cluster. Clustering of resistance genes for six groups of antibiotics (aminoglycosides, β-lactams, fluoroquinolones, glycopeptides, macrolides and lincosamides, and fusidic acid) was performed. The method was tested for 81 strains of bacteria of different genera isolated from patients (K. pneumoniae, Staphylococcus spp., S. agalactiae, E. faecalis, E. coli, and G. vaginalis). The results obtained by us are comparable to those in the selection of individual genes; this allows reducing the number of primers necessary for maximum coverage of the known antibiotic resistance genes during PCR analysis.

  3. Using SNP genetic markers to elucidate the linkage of the Co-34/Phg-3 anthracnose and angular leaf spot resistance gene cluster with the Ur-14 resistance gene

    Science.gov (United States)

    The Ouro Negro common bean cultivar contains the Co-34/Phg-3 gene cluster that confers resistance to the anthracnose (ANT) and angular leaf spot (ALS) pathogens. These genes are tightly linked on chromosome 4. Ouro Negro also has the Ur-14 rust resistance gene, reportedly in the vicinity of Co- 34; ...

  4. Fine Mapping of Two Wheat Powdery Mildew Resistance Genes Located at the Pm1 Cluster

    Directory of Open Access Journals (Sweden)

    Junchao Liang

    2016-07-01

    Full Text Available Powdery mildew caused by (DC. f. sp. ( is a globally devastating foliar disease of wheat ( L.. More than a dozen genes against this disease, identified from wheat germplasms of different ploidy levels, have been mapped to the region surrounding the locus on the long arm of chromosome 7A, which forms a resistance (-gene cluster. and from einkorn wheat ( L. were two of the genes belonging to this cluster. This study was initiated to fine map these two genes toward map-based cloning. Comparative genomics study showed that macrocolinearity exists between L. chromosome 1 (Bd1 and the – region, which allowed us to develop markers based on the wheat sequences orthologous to genes contained in the Bd1 region. With these and other newly developed and published markers, high-resolution maps were constructed for both and using large F populations. Moreover, a physical map of was constructed through chromosome walking with bacterial artificial chromosome (BAC clones and comparative mapping. Eventually, and were restricted to a 0.12- and 0.86-cM interval, respectively. Based on the closely linked common markers, , , and (another powdery mildew resistance gene in the cluster were not allelic to one another. Severe recombination suppression and disruption of synteny were noted in the region encompassing . These results provided useful information for map-based cloning of the genes in the cluster and interpretation of their evolution.

  5. Noise Resistant Generalized Parametric Validity Index of Clustering for Gene Expression Data.

    Science.gov (United States)

    Fa, Rui; Nandi, Asoke K

    2014-01-01

    Validity indices have been investigated for decades. However, since there is no study of noise-resistance performance of these indices in the literature, there is no guideline for determining the best clustering in noisy data sets, especially microarray data sets. In this paper, we propose a generalized parametric validity (GPV) index which employs two tunable parameters α and β to control the proportions of objects being considered to calculate the dissimilarities. The greatest advantage of the proposed GPV index is its noise-resistance ability, which results from the flexibility of tuning the parameters. Several rules are set to guide the selection of parameter values. To illustrate the noise-resistance performance of the proposed index, we evaluate the GPV index for assessing five clustering algorithms in two gene expression data simulation models with different noise levels and compare the ability of determining the number of clusters with eight existing indices. We also test the GPV in three groups of real gene expression data sets. The experimental results suggest that the proposed GPV index has superior noise-resistance ability and provides fairly accurate judgements.

  6. Pathogen corruption and site-directed recombination at a plant disease resistance gene cluster.

    Science.gov (United States)

    Nagy, Ervin D; Bennetzen, Jeffrey L

    2008-12-01

    The Pc locus of sorghum (Sorghum bicolor) determines dominant sensitivity to a host-selective toxin produced by the fungal pathogen Periconia circinata. The Pc region was cloned by a map-based approach and found to contain three tandemly repeated genes with the structures of nucleotide binding site-leucine-rich repeat (NBS-LRR) disease resistance genes. Thirteen independent Pc-to-pc mutations were analyzed, and each was found to remove all or part of the central gene of the threesome. Hence, this central gene is Pc. Most Pc-to-pc mutations were associated with unequal recombination. Eight recombination events were localized to different sites in a 560-bp region within the approximately 3.7-kb NBS-LRR genes. Because any unequal recombination located within the flanking NBS-LRR genes would have removed Pc, the clustering of cross-over events within a 560-bp segment indicates that a site-directed recombination process exists that specifically targets unequal events to generate LRR diversity in NBS-LRR loci.

  7. vanI: a novel d-Ala-d-Lac vancomycin resistance gene cluster found in Desulfitobacterium hafniense

    NARCIS (Netherlands)

    Kruse, T.; Levisson, M.; Vos, de W.M.; Smidt, H.

    2014-01-01

    The glycopeptide vancomycin was until recently considered a drug of last resort against Gram-positive bacteria. Increasing numbers of bacteria, however, are found to carry genes that confer resistance to this antibiotic. So far, 10 different vancomycin resistance clusters have been described. A

  8. Differential expression of TIR-like genes embedded in the M1-1 gene cluster in nematode-resistant and -susceptible tomato roots

    NARCIS (Netherlands)

    Seifi Abdolabad, A.R.; Visser, R.G.F.; Bai, Y.

    2011-01-01

    Transport inhibitor 1 (TIR1) is an auxin receptor that plays a pivotal role in auxin signaling. It has been reported that TIR-like genes are present in a gene cluster carrying the Mi-1 gene which confers resistance to nematodes, aphids and whiteflies. Since auxin is involved in the pathogenicity of

  9. Evolution and genetic population structure of prickly lettuce (Lactuca serriola) and its RGC2 resistance gene cluster

    NARCIS (Netherlands)

    Kuang, H.; Eck, van H.J.; Sicard, D.; Michelmore, R.; Nevo, E.

    2008-01-01

    Genetic structure and diversity of natural populations of prickly lettuce (Lactuca serriola) were studied using AFLP markers and then compared with the diversity of the RGC2 disease resistance gene cluster. Screening of 696 accessions from 41 populations using 319 AFLP markers showed that eastern

  10. Isolation of Resistance Gene Candidates (RGCs) and characterization of an RGC cluster in cassava.

    Science.gov (United States)

    López, C E; Zuluaga, A P; Cooke, R; Delseny, M; Tohme, J; Verdier, V

    2003-08-01

    Plant disease resistance genes (R genes) show significant similarity amongst themselves in terms of both their DNA sequences and structural motifs present in their protein products. Oligonucleotide primers designed from NBS (Nucleotide Binding Site) domains encoded by several R-genes have been used to amplify NBS sequences from the genomic DNA of various plant species, which have been called Resistance Gene Analogues (RGAs) or Resistance Gene Candidates (RGCs). Using specific primers from the NBS and TIR (Toll/Interleukin-1 Receptor) regions, we identified twelve classes of RGCs in cassava (Manihot esculenta Crantz). Two classes were obtained from the PCR-amplification of the TIR domain. The other 10 classes correspond to the NBS sequences and were grouped into two subfamilies. Classes RCa1 to RCa5 are part of the first subfamily and were linked to a TIR domain in the N terminus. Classes RCa6 to RCa10 corresponded to non-TIR NBS-LRR encoding sequences. BAC library screening with the 12 RGC classes as probes allowed the identification of 42 BAC clones that were assembled into 10 contigs and 19 singletons. Members of the two TIR and non-TIR NBS-LRR subfamilies occurred together within individual BAC clones. The BAC screening and Southern hybridization analyses showed that all RGCs were single copy sequences except RCa6 that represented a large and diverse gene family. One BAC contained five NBS sequences and sequence analysis allowed the identification of two complete RGCs encoding two highly similar proteins. This BAC was located on linkage group J with three other RGC-containing BACs. At least one of these genes, RGC2, is expressed constitutively in cassava tissues.

  11. Characterization of Resistance Genes and Plasmids from Outbreaks and Illness Clusters Caused by Salmonella Resistant to Ceftriaxone in the United States, 2011-2012.

    Science.gov (United States)

    Folster, Jason P; Grass, Julian E; Bicknese, Amelia; Taylor, Julia; Friedman, Cindy R; Whichard, Jean M

    2017-03-01

    Salmonella is an important cause of foodborne illness; however, quickly identifying the source of these infections can be difficult, and source identification is a crucial step in preventing additional illnesses. Although most infections are self-limited, invasive salmonellosis may require antimicrobial treatment. Ceftriaxone, an extended-spectrum cephalosporin, is commonly used for treatment of salmonellosis. Previous studies have identified a correlation between the food animal/retail meat source of ceftriaxone-resistant Salmonella and the type of resistance gene and plasmid it carries. In this study, we examined seven outbreaks of ceftriaxone-resistant Salmonella infections, caused by serotypes Typhimurium, Newport, Heidelberg, and Infantis. All isolates were positive for a plasmid-encoded bla CMY gene. Plasmid incompatibility typing identified five IncI1 and two IncA/C plasmids. Both outbreaks containing bla CMY -IncA/C plasmids were linked to consumption of cattle products. Three of five outbreaks with bla CMY -IncI1 (ST12) plasmids were linked to a poultry source. The remaining IncI1 outbreaks were associated with ground beef (ST20) and tomatoes (ST12). In addition, we examined isolates from five unsolved clusters of ceftriaxone-resistant Salmonella infections and used our plasmid-encoded gene findings to predict the source. Overall, we identified a likely association between the source of ceftriaxone-resistant Salmonella outbreaks and the type of resistance gene/plasmid it carries.

  12. Molecular characterization of a conserved archaeal copper resistance (cop) gene cluster and its copper-responsive regulator in Sulfolobus solfataricus P2

    NARCIS (Netherlands)

    Ettema, T.J.G.; Brinkman, A.B.; Lamers, P.P.; Kornet, N.; Vos, de W.M.; Oost, van der J.

    2006-01-01

    Using a comparative genomics approach, a copper resistance gene cluster has been identified in multiple archaeal genomes. The cop cluster is predicted to encode a metallochaperone (CopM), a P-type copper-exporting ATPase (CopA) and a novel, archaea-specific transcriptional regulator (CopT) which

  13. Hyperdiverse Gene Cluster in Snail Host Conveys Resistance to Human Schistosome Parasites

    Science.gov (United States)

    Tennessen, Jacob A.; Théron, André; Marine, Melanie; Yeh, Jan-Ying; Rognon, Anne; Blouin, Michael S.

    2015-01-01

    Schistosomiasis, a neglected global pandemic, may be curtailed by blocking transmission of the parasite via its intermediate hosts, aquatic snails. Elucidating the genetic basis of snail-schistosome interaction is a key to this strategy. Here we map a natural parasite-resistance polymorphism from a Caribbean population of the snail Biomphalaria glabrata. In independent experimental evolution lines, RAD genotyping shows that the same genomic region responds to selection for resistance to the parasite Schistosoma mansoni. A dominant allele in this region conveys an 8-fold decrease in the odds of infection. Fine-mapping and RNA-Seq characterization reveal a 25%) haplotypes across the GRC, a significantly non-neutral pattern, suggests that balancing selection maintains diversity at the GRC. Thus, the GRC resembles immune gene complexes seen in other taxa and is likely involved in parasite recognition. The GRC is a potential target for controlling transmission of schistosomiasis, including via genetic manipulation of snails. PMID:25775214

  14. A Cluster of Nucleotide-Binding Site–Leucine-Rich Repeat Genes Resides in a Barley Powdery Mildew Resistance Quantitative Trait Loci on 7HL

    Directory of Open Access Journals (Sweden)

    Carlos P. Cantalapiedra

    2016-07-01

    Full Text Available Powdery mildew causes severe yield losses in barley production worldwide. Although many resistance genes have been described, only a few have already been cloned. A strong QTL (quantitative trait locus conferring resistance to a wide array of powdery mildew isolates was identified in a Spanish barley landrace on the long arm of chromosome 7H. Previous studies narrowed down the QTL position, but were unable to identify candidate genes or physically locate the resistance. In this study, the exome of three recombinant lines from a high-resolution mapping population was sequenced and analyzed, narrowing the position of the resistance down to a single physical contig. Closer inspection of the region revealed a cluster of closely related NBS-LRR (nucleotide-binding site–leucine-rich repeat containing protein genes. Large differences were found between the resistant lines and the reference genome of cultivar Morex, in the form of PAV (presence-absence variation in the composition of the NBS-LRR cluster. Finally, a template-guided assembly was performed and subsequent expression analysis revealed that one of the new assembled candidate genes is transcribed. In summary, the results suggest that NBS-LRR genes, absent from the reference and the susceptible genotypes, could be functional and responsible for the powdery mildew resistance. The procedure followed is an example of the use of NGS (next-generation sequencing tools to tackle the challenges of gene cloning when the target gene is absent from the reference genome.

  15. Insulin resistance: regression and clustering.

    Science.gov (United States)

    Yoon, Sangho; Assimes, Themistocles L; Quertermous, Thomas; Hsiao, Chin-Fu; Chuang, Lee-Ming; Hwu, Chii-Min; Rajaratnam, Bala; Olshen, Richard A

    2014-01-01

    In this paper we try to define insulin resistance (IR) precisely for a group of Chinese women. Our definition deliberately does not depend upon body mass index (BMI) or age, although in other studies, with particular random effects models quite different from models used here, BMI accounts for a large part of the variability in IR. We accomplish our goal through application of Gauss mixture vector quantization (GMVQ), a technique for clustering that was developed for application to lossy data compression. Defining data come from measurements that play major roles in medical practice. A precise statement of what the data are is in Section 1. Their family structures are described in detail. They concern levels of lipids and the results of an oral glucose tolerance test (OGTT). We apply GMVQ to residuals obtained from regressions of outcomes of an OGTT and lipids on functions of age and BMI that are inferred from the data. A bootstrap procedure developed for our family data supplemented by insights from other approaches leads us to believe that two clusters are appropriate for defining IR precisely. One cluster consists of women who are IR, and the other of women who seem not to be. Genes and other features are used to predict cluster membership. We argue that prediction with "main effects" is not satisfactory, but prediction that includes interactions may be.

  16. Insulin resistance: regression and clustering.

    Directory of Open Access Journals (Sweden)

    Sangho Yoon

    Full Text Available In this paper we try to define insulin resistance (IR precisely for a group of Chinese women. Our definition deliberately does not depend upon body mass index (BMI or age, although in other studies, with particular random effects models quite different from models used here, BMI accounts for a large part of the variability in IR. We accomplish our goal through application of Gauss mixture vector quantization (GMVQ, a technique for clustering that was developed for application to lossy data compression. Defining data come from measurements that play major roles in medical practice. A precise statement of what the data are is in Section 1. Their family structures are described in detail. They concern levels of lipids and the results of an oral glucose tolerance test (OGTT. We apply GMVQ to residuals obtained from regressions of outcomes of an OGTT and lipids on functions of age and BMI that are inferred from the data. A bootstrap procedure developed for our family data supplemented by insights from other approaches leads us to believe that two clusters are appropriate for defining IR precisely. One cluster consists of women who are IR, and the other of women who seem not to be. Genes and other features are used to predict cluster membership. We argue that prediction with "main effects" is not satisfactory, but prediction that includes interactions may be.

  17. Gene cluster statistics with gene families.

    Science.gov (United States)

    Raghupathy, Narayanan; Durand, Dannie

    2009-05-01

    Identifying genomic regions that descended from a common ancestor is important for understanding the function and evolution of genomes. In distantly related genomes, clusters of homologous gene pairs are evidence of candidate homologous regions. Demonstrating the statistical significance of such "gene clusters" is an essential component of comparative genomic analyses. However, currently there are no practical statistical tests for gene clusters that model the influence of the number of homologs in each gene family on cluster significance. In this work, we demonstrate empirically that failure to incorporate gene family size in gene cluster statistics results in overestimation of significance, leading to incorrect conclusions. We further present novel analytical methods for estimating gene cluster significance that take gene family size into account. Our methods do not require complete genome data and are suitable for testing individual clusters found in local regions, such as contigs in an unfinished assembly. We consider pairs of regions drawn from the same genome (paralogous clusters), as well as regions drawn from two different genomes (orthologous clusters). Determining cluster significance under general models of gene family size is computationally intractable. By assuming that all gene families are of equal size, we obtain analytical expressions that allow fast approximation of cluster probabilities. We evaluate the accuracy of this approximation by comparing the resulting gene cluster probabilities with cluster probabilities obtained by simulating a realistic, power-law distributed model of gene family size, with parameters inferred from genomic data. Surprisingly, despite the simplicity of the underlying assumption, our method accurately approximates the true cluster probabilities. It slightly overestimates these probabilities, yielding a conservative test. We present additional simulation results indicating the best choice of parameter values for data

  18. Protein-protein association and cellular localization of four essential gene products encoded by tellurite resistance-conferring cluster "ter" from pathogenic Escherichia coli.

    Science.gov (United States)

    Valkovicova, Lenka; Vavrova, Silvia Minarikova; Mravec, Jozef; Grones, Jozef; Turna, Jan

    2013-12-01

    Gene cluster "ter" conferring high tellurite resistance has been identified in various pathogenic bacteria including Escherichia coli O157:H7. However, the precise mechanism as well as the molecular function of the respective gene products is unclear. Here we describe protein-protein association and localization analyses of four essential Ter proteins encoded by minimal resistance-conferring fragment (terBCDE) by means of recombinant expression. By using a two-plasmid complementation system we show that the overproduced single Ter proteins are not able to mediate tellurite resistance, but all Ter members play an irreplaceable role within the cluster. We identified several types of homotypic and heterotypic protein-protein associations among the Ter proteins by in vitro and in vivo pull-down assays and determined their cellular localization by cytosol/membrane fractionation. Our results strongly suggest that Ter proteins function involves their mutual association, which probably happens at the interface of the inner plasma membrane and the cytosol.

  19. FunGeneClusterS

    DEFF Research Database (Denmark)

    Vesth, Tammi Camilla; Brandl, Julian; Andersen, Mikael Rørdam

    2016-01-01

    and industrial biotechnology applications. We have previously published a method for accurate prediction of clusters from genome and transcriptome data, which could also suggest cross-chemistry, however, this method was limited both in the number of parameters which could be adjusted as well as in user......Secondary metabolites of fungi are receiving an increasing amount of interest due to their prolific bioactivities and the fact that fungal biosynthesis of secondary metabolites often occurs from co-regulated and co-located gene clusters. This makes the gene clusters attractive for synthetic biology...

  20. Relationship between drug resistance and the clustered, regularly interspaced, short, palindromic repeat-associated protein genes cas1 and cas2 in Shigella from giant panda dung.

    Science.gov (United States)

    Ren, Lu; Deng, Lin-Hua; Zhang, Ri-Peng; Wang, Cheng-Dong; Li, De-Sheng; Xi, Li-Xin; Chen, Zhen-Rong; Yang, Rui; Huang, Jie; Zeng, Yang-Ru; Wu, Hong-Lin; Cao, San-Jie; Wu, Rui; Huang, Yong; Yan, Qi-Gui

    2017-02-01

    To detect drug resistance in Shigella obtained from the dung of the giant panda, explore the factors leading to drug resistance in Shigella, understand the characteristics of clustered, regularly interspaced, short, palindromic repeats (CRISPR), and assess the relationship between CRISPR and drug resistance. We collected fresh feces from 27 healthy giant pandas in the Giant Panda Conservation base (Wolong, China). We identified the strains of Shigella in the samples by using nucleotide sequence analysis. Further, the Kirby-Bauer paper method was used to determine drug sensitivity of the Shigella strains. CRISPR-associated protein genes cas1 and cas2 in Shigella were detected by polymerase chain reaction (PCR), and the PCR products were sequenced and compared. We isolated and identified 17 strains of Shigella from 27 samples, including 14 strains of Shigella flexneri, 2 strains of Shigella sonnei, and 1 strain of Shigella dysenteriae. Further, drug resistance to cefazolin, imipenem, and amoxicillin-clavulanic acid was identified as a serious problem, as multidrug-resistant strains were detected. Further, cas1 and cas2 showed different degrees of point mutations. The CRISPR system widely exists in Shigella and shares homology with that in Escherichia coli. The cas1 and cas 2 mutations contribute to the different levels of resistance. Point mutations at sites 3176455, 3176590, and 3176465 in cas1 (a); sites 3176989, 3176992, and 3176995 in cas1 (b); sites 3176156 and 3176236 in cas2 may affect the resistance of bacteria, cause emergence of multidrug resistance, and increase the types of drug resistance.

  1. Presence of the vancomycin resistance gene cluster vanC1, vanXYc, and vanT in Enterococcus casseliflavus.

    Science.gov (United States)

    Hölzel, Christina; Bauer, Johann; Stegherr, Eva-Maria; Schwaiger, Karin

    2014-04-01

    The three chromosomally located clustered genes vanC1, vanXYc, and vanT confer intrinsic resistance to vancomycin and are used for species identification of Enterococcus gallinarum. In this study, 28 strains belonging to the E. gallinarum/casseliflavus group isolated from cloacal swabs from laying hens were screened for the presence of vanC1. As confirmed by species-specific multiplex PCR, 11 vanC1-positive strains were identified as E. gallinarum. Surprisingly, one yellow pigmented strain, verified as E. casseliflavus by species-specific multiplex PCR, was also vanC1 positive; vanXYc and vanT were additionally detectable in this strain. To our knowledge, this is the first report of vanC1, vanXYc, and vanT in E. casseliflavus. The minimum inhibitory concentration of vancomycin was 4 mg/L. Real-time reverse transcription-PCR revealed that none of the clustered genes was expressed in this strain. Even if the genes seem not to be active, there is a certain risk that they will be transferred to other bacteria where they might be functionally expressed. Therefore, it may be advisable to expand the search for vanC1, vanXYc, and vanT from E. gallinarum to other (enterococcal) species. This study confirms that enterococci live up to their name as being reservoir bacteria and should therefore always be closely monitored.

  2. The Biosynthesis of Capuramycin-type Antibiotics: IDENTIFICATION OF THE A-102395 BIOSYNTHETIC GENE CLUSTER, MECHANISM OF SELF-RESISTANCE, AND FORMATION OF URIDINE-5'-CARBOXAMIDE.

    Science.gov (United States)

    Cai, Wenlong; Goswami, Anwesha; Yang, Zhaoyong; Liu, Xiaodong; Green, Keith D; Barnard-Britson, Sandra; Baba, Satoshi; Funabashi, Masanori; Nonaka, Koichi; Sunkara, Manjula; Morris, Andrew J; Spork, Anatol P; Ducho, Christian; Garneau-Tsodikova, Sylvie; Thorson, Jon S; Van Lanen, Steven G

    2015-05-29

    A-500359s, A-503083s, and A-102395 are capuramycin-type nucleoside antibiotics that were discovered using a screen to identify inhibitors of bacterial translocase I, an essential enzyme in peptidoglycan cell wall biosynthesis. Like the parent capuramycin, A-500359s and A-503083s consist of three structural components: a uridine-5'-carboxamide (CarU), a rare unsaturated hexuronic acid, and an aminocaprolactam, the last of which is substituted by an unusual arylamine-containing polyamide in A-102395. The biosynthetic gene clusters for A-500359s and A-503083s have been reported, and two genes encoding a putative non-heme Fe(II)-dependent α-ketoglutarate:UMP dioxygenase and an l-Thr:uridine-5'-aldehyde transaldolase were uncovered, suggesting that C-C bond formation during assembly of the high carbon (C6) sugar backbone of CarU proceeds from the precursors UMP and l-Thr to form 5'-C-glycyluridine (C7) as a biosynthetic intermediate. Here, isotopic enrichment studies with the producer of A-503083s were used to indeed establish l-Thr as the direct source of the carboxamide of CarU. With this knowledge, the A-102395 gene cluster was subsequently cloned and characterized. A genetic system in the A-102395-producing strain was developed, permitting the inactivation of several genes, including those encoding the dioxygenase (cpr19) and transaldolase (cpr25), which abolished the production of A-102395, thus confirming their role in biosynthesis. Heterologous production of recombinant Cpr19 and CapK, the transaldolase homolog involved in A-503083 biosynthesis, confirmed their expected function. Finally, a phosphotransferase (Cpr17) conferring self-resistance was functionally characterized. The results provide the opportunity to use comparative genomics along with in vivo and in vitro approaches to probe the biosynthetic mechanism of these intriguing structures. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Gene Cluster Conferring Streptomycin, Sulfonamide, and Tetracycline Resistance in Escherichia coli O157:H7 Phage Types 23, 45, and 67 ▿

    Science.gov (United States)

    Ziebell, K.; Johnson, R. P.; Kropinski, A. M.; Reid-Smith, R.; Ahmed, R.; Gannon, V. P.; Gilmour, M.; Boerlin, P.

    2011-01-01

    Multidrug resistance to streptomycin, sulfonamide, and tetracycline (AMR-SSuT) was identified in 156 of 171 isolates of Escherichia coli O157:H7 of phage types 23, 45, and 67. In 154 AMR-SSuT isolates, resistance was encoded by strA, strB, sul2, and tet(B), which in 59 of 63 tested isolates were found clustered together on the chromosome within the cdiA locus. PMID:21239555

  4. Gene cluster conferring streptomycin, sulfonamide, and tetracycline resistance in Escherichia coli O157:H7 phage types 23, 45, and 67.

    Science.gov (United States)

    Ziebell, K; Johnson, R P; Kropinski, A M; Reid-Smith, R; Ahmed, R; Gannon, V P; Gilmour, M; Boerlin, P

    2011-03-01

    Multidrug resistance to streptomycin, sulfonamide, and tetracycline (AMR-SSuT) was identified in 156 of 171 isolates of Escherichia coli O157:H7 of phage types 23, 45, and 67. In 154 AMR-SSuT isolates, resistance was encoded by strA, strB, sul2, and tet(B), which in 59 of 63 tested isolates were found clustered together on the chromosome within the cdiA locus.

  5. Organization of an echinoderm Hox gene cluster

    OpenAIRE

    Martinez, Pedro; Rast, Jonathan P.; Arenas-Mena, César; Davidson, Eric H.

    1999-01-01

    The Strongylocentrotus purpuratus genome contains a single ten-gene Hox complex >0.5 megabase in length. This complex was isolated on overlapping bacterial artificial chromosome and P1 artificial chromosome genomic recombinants by using probes for individual genes and by genomic walking. Echinoderm Hox genes of Paralog Groups (PG) 1 and 2 are reported. The cluster includes genes representing all paralog groups of vertebrate Hox clusters, except that there is a sing...

  6. Resistance Genes in Global Crop Breeding Networks.

    Science.gov (United States)

    Garrett, K A; Andersen, K F; Asche, F; Bowden, R L; Forbes, G A; Kulakow, P A; Zhou, B

    2017-10-01

    Resistance genes are a major tool for managing crop diseases. The networks of crop breeders who exchange resistance genes and deploy them in varieties help to determine the global landscape of resistance and epidemics, an important system for maintaining food security. These networks function as a complex adaptive system, with associated strengths and vulnerabilities, and implications for policies to support resistance gene deployment strategies. Extensions of epidemic network analysis can be used to evaluate the multilayer agricultural networks that support and influence crop breeding networks. Here, we evaluate the general structure of crop breeding networks for cassava, potato, rice, and wheat. All four are clustered due to phytosanitary and intellectual property regulations, and linked through CGIAR hubs. Cassava networks primarily include public breeding groups, whereas others are more mixed. These systems must adapt to global change in climate and land use, the emergence of new diseases, and disruptive breeding technologies. Research priorities to support policy include how best to maintain both diversity and redundancy in the roles played by individual crop breeding groups (public versus private and global versus local), and how best to manage connectivity to optimize resistance gene deployment while avoiding risks to the useful life of resistance genes. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

  7. Leveraging long sequencing reads to investigate R-gene clustering and variation in sugar beet

    Science.gov (United States)

    Host-pathogen interactions are of prime importance to modern agriculture. Plants utilize various types of resistance genes to mitigate pathogen damage. Identification of the specific gene responsible for a specific resistance can be difficult due to duplication and clustering within R-gene families....

  8. Fuzzy clustering analysis of osteosarcoma related genes.

    Science.gov (United States)

    Chen, Kai; Wu, Dajiang; Bai, Yushu; Zhu, Xiaodong; Chen, Ziqiang; Wang, Chuanfeng; Zhao, Yingchuan; Li, Ming

    2014-07-01

    Osteosarcoma is the most common malignant bone-tumor with a peak manifestation during the second and third decade of life. In order to explore the influence of genetic factors on the mechanism of osteosarcoma by analyzing the inter relationship between osteosarcoma and its related genes, and then provide potential genetic references for the prevention, diagnosis and treatment of osteosarcoma, we collected osteosarcoma related gene sequences in Genebank of National Center for Biotechnology Information (NCBI) and local alignment analysis for a pair of sequences was carried out to identify the measurement association among related sequences. Then fuzzy clustering method was used for clustering analysis so as to contact the unknown genes through the consistent osteosarcoma related genes in one class. From the result of fuzzy clustering analysis, we could classify the osteosarcoma related genes into two groups and deduced that the genes clustered into one group had similar function. Based on this knowledge, we found more genes related to the pathogenesis of osteosarcoma and these genes could exert similar function as Runx2, a risk factor confirmed in osteosarcoma, this study may help better understand the genetic mechanism and provide new molecular markers and therapies for osteosarcoma.

  9. Pichia stipitis genomics, transcriptomics, and gene clusters

    Science.gov (United States)

    Thomas W. Jeffries; Jennifer R. Headman Van Vleet

    2009-01-01

    Genome sequencing and subsequent global gene expression studies have advanced our understanding of the lignocellulose-fermenting yeast Pichia stipitis. These studies have provided an insight into its central carbon metabolism, and analysis of its genome has revealed numerous functional gene clusters and tandem repeats. Specialized physiological traits are often the...

  10. Semi-supervised consensus clustering for gene expression data analysis

    OpenAIRE

    Wang, Yunli; Pan, Youlian

    2014-01-01

    Background Simple clustering methods such as hierarchical clustering and k-means are widely used for gene expression data analysis; but they are unable to deal with noise and high dimensionality associated with the microarray gene expression data. Consensus clustering appears to improve the robustness and quality of clustering results. Incorporating prior knowledge in clustering process (semi-supervised clustering) has been shown to improve the consistency between the data partitioning and do...

  11. Gene ordering in partitive clustering using microarray expressions

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    fibroblast data and showed that our approach improves the result quality of partitive clustering solution, by identifying subclusters within big clusters, grouping functionally correlated genes within clusters, minimization of summation of gene expression distances, and the maximization of biological gene ordering using MIPS ...

  12. Determination of rust resistance genes in pakistani bread wheats

    International Nuclear Information System (INIS)

    Qamar, M.; Ahmad, S.D.; Rabbani, M.A.; Shinwari, Z.K.

    2014-01-01

    Stripe and leaf rusts are the major constraints to bread wheat production in Pakistan. Molecular markers were used to investigate the presence of leaf rust and stripe rust resistance gene cluster Lr34/Yr18 and stem rust resistance gene Sr2 in 52 Pakistani bread wheat cultivars/lines. PCR amplification of DNA fragments using DNA marker csLV-34 showed that 13 of the studied cultivars/lines, namely 03FJ26, NR 337, NR 339, NR 347, NR 350, Manthar, Margalla 99, Iqbal 2000, Saleem 2000, Wafaq 2001, Marwat 2001, Pirsabak 2004 and Fareed 2006 carry leaf rust and stripe rust resistance genes Lr34/Yr18. Stem rust resistance gene Sr2 was observed in 36 Pakistani spring wheat cultivars/lines using stm560.3tgag marker. The slow rusting gene Sr2 needs to be combined with additional stem rust resistance genes to establish durable resistance against Ug99 in modern wheat cultivars. Low frequency of Lr34/Yr18 was found in Pakistani wheats. This gene cluster needs to be incorporated into Pakistani wheats for durable rust resistance. (author)

  13. Microarray gene cluster identification and annotation through cluster ensemble and EM-based informative textual summarization.

    Science.gov (United States)

    Hu, Xiaohua; Park, E K; Zhang, Xiaodan

    2009-09-01

    Generating high-quality gene clusters and identifying the underlying biological mechanism of the gene clusters are the important goals of clustering gene expression analysis. To get high-quality cluster results, most of the current approaches rely on choosing the best cluster algorithm, in which the design biases and assumptions meet the underlying distribution of the dataset. There are two issues for this approach: 1) usually, the underlying data distribution of the gene expression datasets is unknown and 2) there are so many clustering algorithms available and it is very challenging to choose the proper one. To provide a textual summary of the gene clusters, the most explored approach is the extractive approach that essentially builds upon techniques borrowed from the information retrieval, in which the objective is to provide terms to be used for query expansion, and not to act as a stand-alone summary for the entire document sets. Another drawback is that the clustering quality and cluster interpretation are treated as two isolated research problems and are studied separately. In this paper, we design and develop a unified system Gene Expression Miner to address these challenging issues in a principled and general manner by integrating cluster ensemble, text clustering, and multidocument summarization and provide an environment for comprehensive gene expression data analysis. We present a novel cluster ensemble approach to generate high-quality gene cluster. In our text summarization module, given a gene cluster, our expectation-maximization based algorithm can automatically identify subtopics and extract most probable terms for each topic. Then, the extracted top k topical terms from each subtopic are combined to form the biological explanation of each gene cluster. Experimental results demonstrate that our system can obtain high-quality clusters and provide informative key terms for the gene clusters.

  14. Some statistical properties of gene expression clustering for array data

    DEFF Research Database (Denmark)

    Abreu, G C G; Pinheiro, A; Drummond, R D

    2010-01-01

    DNA arrays have been a rich source of data for the study of genomic expression of a wide variety of biological systems. Gene clustering is one of the paradigms quite used to assess the significance of a gene (or group of genes). However, most of the gene clustering techniques are applied to cDNA...

  15. The KL24 gene cluster and a genomic island encoding a Wzy polymerase contribute genes needed for synthesis of the K24 capsular polysaccharide by the multiply antibiotic resistant Acinetobacter baumannii isolate RCH51.

    Science.gov (United States)

    Kenyon, Johanna J; Kasimova, Anastasiya A; Shneider, Mikhail M; Shashkov, Alexander S; Arbatsky, Nikolay P; Popova, Anastasiya V; Miroshnikov, Konstantin A; Hall, Ruth M; Knirel, Yuriy A

    2017-03-01

    The whole-genome sequence of the multiply antibiotic resistant Acinetobacter baumannii isolate RCH51 belonging to sequence type ST103 (Institut Pasteur scheme) revealed that the set of genes at the capsule locus, KL24, includes four genes predicted to direct the synthesis of 3-acetamido-3,6-dideoxy-d-galactose (d-Fuc3NAc), and this sugar was found in the capsular polysaccharide (CPS). One of these genes, fdtE, encodes a novel bifunctional protein with an N-terminal FdtA 3,4-ketoisomerase domain and a C-terminal acetyltransferase domain. KL24 lacks a gene encoding a Wzy polymerase to link the oligosaccharide K units to form the CPS found associated with isolate RCH51, and a wzy gene was found in a small genomic island (GI) near the cpn60 gene. This GI is in precisely the same location as another GI carrying wzy and atr genes recently found in several A. baumannii isolates, but it does not otherwise resemble it. The CPS isolated from RCH51, studied by sugar analysis and 1D and 2D 1H and 13C NMR spectroscopy, revealed that the K unit has a branched pentasaccharide structure made up of Gal, GalNAc and GlcNAc residues with d-Fuc3NAc as a side branch, and the K units are linked via a β-d-GlcpNAc-(1→3)-β-d-Galp linkage formed by the Wzy encoded by the GI. The functions of the glycosyltransferases encoded by KL24 were assigned to formation of specific bonds. A correspondence between the order of the genes in KL24 and other KL and the order of the linkages they form was noted, and this may be useful in future predictions of glycosyltransferase specificities.

  16. Obesity genes and insulin resistance.

    Science.gov (United States)

    Belkina, Anna C; Denis, Gerald V

    2010-10-01

    The exploding prevalence of insulin resistance and Type 2 diabetes (T2D) linked to obesity has become an alarming public health concern. Worldwide, approximately 171 million people suffer from obesity-induced diabetes and public health authorities expect this situation to deteriorate rapidly. An interesting clinical population of 'metabolically healthy but obese' (MHO) cases is relatively protected from T2D and its associated cardiovascular risk. The molecular basis for this protection is not well understood but is likely to involve reduced inflammatory responses. The inflammatory cells and pathways that respond to overnutrition are the primary subject matter for this review. The chance discovery of a genetic mutation in the Brd2 gene, which is located in the class II major histocompatibility complex and makes mice enormously fat but protects them from diabetes, offers revolutionary new insights into the cellular mechanisms that link obesity to insulin resistance and T2D. These Brd2-hypomorphic mice have reduced inflammation in fat that is normally associated with insulin resistance, and resemble MHO patients, suggesting novel therapeutic pathways for obese patients at risk for T2D. Deeper understanding of the functional links between genes that control inflammatory responses to diet-induced obesity is crucial to the development of therapies for obese, insulin-resistant patients.

  17. Identifying resistance gene analogs associated with resistances to different pathogens in common bean.

    Science.gov (United States)

    López, Camilo E; Acosta, Iván F; Jara, Carlos; Pedraza, Fabio; Gaitán-Solís, Eliana; Gallego, Gerardo; Beebe, Steve; Tohme, Joe

    2003-01-01

    ABSTRACT A polymerase chain reaction approach using degenerate primers that targeted the conserved domains of cloned plant disease resistance genes (R genes) was used to isolate a set of 15 resistance gene analogs (RGAs) from common bean (Phaseolus vulgaris). Eight different classes of RGAs were obtained from nucleotide binding site (NBS)-based primers and seven from not previously described Toll/Interleukin-1 receptor-like (TIR)-based primers. Putative amino acid sequences of RGAs were significantly similar to R genes and contained additional conserved motifs. The NBS-type RGAs were classified in two subgroups according to the expected final residue in the kinase-2 motif. Eleven RGAs were mapped at 19 loci on eight linkage groups of the common bean genetic map constructed at Centro Internacional de Agricultura Tropical. Genetic linkage was shown for eight RGAs with partial resistance to anthracnose, angular leaf spot (ALS) and Bean golden yellow mosaic virus (BGYMV). RGA1 and RGA2 were associated with resistance loci to anthracnose and BGYMV and were part of two clusters of R genes previously described. A new major cluster was detected by RGA7 and explained up to 63.9% of resistance to ALS and has a putative contribution to anthracnose resistance. These results show the usefulness of RGAs as candidate genes to detect and eventually isolate numerous R genes in common bean.

  18. High presence/absence gene variability in defense-related gene clusters of Cucumis melo.

    Science.gov (United States)

    González, Víctor M; Aventín, Núria; Centeno, Emilio; Puigdomènech, Pere

    2013-11-12

    Changes in the copy number of DNA sequences are one of the main mechanisms generating genome variability in eukaryotes. These changes are often related to phenotypic effects such as genetic disorders or novel pathogen resistance. The increasing availability of genome sequences through the application of next-generation massive sequencing technologies has allowed the study of genomic polymorphisms at both the interspecific and intraspecific levels, thus helping to understand how species adapt to changing environments through genome variability. Data on gene presence/absence variation (PAV) in melon was obtained by resequencing a cultivated accession and an old-relative melon variety, and using previously obtained resequencing data from three other melon cultivars, among them DHL92, on which the current draft melon genome sequence is based. A total of 1,697 PAV events were detected, involving 4.4% of the predicted melon gene complement. In all, an average 1.5% of genes were absent from each analyzed cultivar as compared to the DHL92 reference genome. The most populated functional category among the 304 PAV genes of known function was that of stress response proteins (30% of all classified PAVs). Our results suggest that genes from multi-copy families are five times more likely to be affected by PAV than singleton genes. Also, the chance of genes present in the genome in tandem arrays being affected by PAV is double that of isolated genes, with PAV genes tending to be in longer clusters. The highest concentration of PAV events detected in the melon genome was found in a 1.1 Mb region of linkage group V, which also shows the highest density of melon stress-response genes. In particular, this region contains the longest continuous gene-containing PAV sequence so far identified in melon. The first genome-wide report of PAV variation among several melon cultivars is presented here. Multi-copy and clustered genes, especially those with putative stress-response functions

  19. The efflux pump MlcE from the Penicillium solitum compactin biosynthetic gene cluster increases Saccharomyces cerevisiae resistance to natural statins

    DEFF Research Database (Denmark)

    Ley, Ana; Frandsen, Rasmus John Normand

    these natural producers difficult to culture in bioreactors. The production limitations associated with the use of natural producers can be overcome by heterologous expression of the biosynthetic pathway in Saccharomyces cerevisiae (1), however, it is crucial to establish a nondestructive resistance mechanism...... efflux pump, capable of exporting natural and semi-natural statins from yeast, and overexpression of MlcE in a statinproducing yeast could therefore greatly improve the commercial production of natural and semi-natural statins. Reference: (1) Xu W. et al., (2013), “LovG: The Thioesterase Required...

  20. Gene ordering in partitive clustering using microarray expressions

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    the new hybrid approach, finds comparable or sometimes superior biological gene order in less computation time than those obtained by optimal leaf ordering in hierarchical clustering solution. Ray S S, Bandyopadhyay S and Pal S K 2007 Gene ordering in partitive clustering using microarray expressions; J. Biosci.

  1. Unique nucleotide polymorphism of ankyrin gene cluster in ...

    Indian Academy of Sciences (India)

    The ankyrin (ANK) gene cluster is a part of a multigene family encoding ANK transmembrane proteins in Arabidopsis thaliana, and plays an important role in protein–protein interactions and in signal pathways. In contrast to other regions of a genome, the ANK gene cluster exhibits an extremely high level of DNA ...

  2. Bioinformatics Prediction of Polyketide Synthase Gene Clusters from Mycosphaerella fijiensis.

    Directory of Open Access Journals (Sweden)

    Roslyn D Noar

    Full Text Available Mycosphaerella fijiensis, causal agent of black Sigatoka disease of banana, is a Dothideomycete fungus closely related to fungi that produce polyketides important for plant pathogenicity. We utilized the M. fijiensis genome sequence to predict PKS genes and their gene clusters and make bioinformatics predictions about the types of compounds produced by these clusters. Eight PKS gene clusters were identified in the M. fijiensis genome, placing M. fijiensis into the 23rd percentile for the number of PKS genes compared to other Dothideomycetes. Analysis of the PKS domains identified three of the PKS enzymes as non-reducing and two as highly reducing. Gene clusters contained types of genes frequently found in PKS clusters including genes encoding transporters, oxidoreductases, methyltransferases, and non-ribosomal peptide synthases. Phylogenetic analysis identified a putative PKS cluster encoding melanin biosynthesis. None of the other clusters were closely aligned with genes encoding known polyketides, however three of the PKS genes fell into clades with clusters encoding alternapyrone, fumonisin, and solanapyrone produced by Alternaria and Fusarium species. A search for homologs among available genomic sequences from 103 Dothideomycetes identified close homologs (>80% similarity for six of the PKS sequences. One of the PKS sequences was not similar (< 60% similarity to sequences in any of the 103 genomes, suggesting that it encodes a unique compound. Comparison of the M. fijiensis PKS sequences with those of two other banana pathogens, M. musicola and M. eumusae, showed that these two species have close homologs to five of the M. fijiensis PKS sequences, but three others were not found in either species. RT-PCR and RNA-Seq analysis showed that the melanin PKS cluster was down-regulated in infected banana as compared to growth in culture. Three other clusters, however were strongly upregulated during disease development in banana, suggesting that

  3. Bioinformatics Prediction of Polyketide Synthase Gene Clusters from Mycosphaerella fijiensis.

    Science.gov (United States)

    Noar, Roslyn D; Daub, Margaret E

    2016-01-01

    Mycosphaerella fijiensis, causal agent of black Sigatoka disease of banana, is a Dothideomycete fungus closely related to fungi that produce polyketides important for plant pathogenicity. We utilized the M. fijiensis genome sequence to predict PKS genes and their gene clusters and make bioinformatics predictions about the types of compounds produced by these clusters. Eight PKS gene clusters were identified in the M. fijiensis genome, placing M. fijiensis into the 23rd percentile for the number of PKS genes compared to other Dothideomycetes. Analysis of the PKS domains identified three of the PKS enzymes as non-reducing and two as highly reducing. Gene clusters contained types of genes frequently found in PKS clusters including genes encoding transporters, oxidoreductases, methyltransferases, and non-ribosomal peptide synthases. Phylogenetic analysis identified a putative PKS cluster encoding melanin biosynthesis. None of the other clusters were closely aligned with genes encoding known polyketides, however three of the PKS genes fell into clades with clusters encoding alternapyrone, fumonisin, and solanapyrone produced by Alternaria and Fusarium species. A search for homologs among available genomic sequences from 103 Dothideomycetes identified close homologs (>80% similarity) for six of the PKS sequences. One of the PKS sequences was not similar (< 60% similarity) to sequences in any of the 103 genomes, suggesting that it encodes a unique compound. Comparison of the M. fijiensis PKS sequences with those of two other banana pathogens, M. musicola and M. eumusae, showed that these two species have close homologs to five of the M. fijiensis PKS sequences, but three others were not found in either species. RT-PCR and RNA-Seq analysis showed that the melanin PKS cluster was down-regulated in infected banana as compared to growth in culture. Three other clusters, however were strongly upregulated during disease development in banana, suggesting that they may encode

  4. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes.

    Science.gov (United States)

    Choi, Kyuha; Reinhard, Carsten; Serra, Heïdi; Ziolkowski, Piotr A; Underwood, Charles J; Zhao, Xiaohui; Hardcastle, Thomas J; Yelina, Nataliya E; Griffin, Catherine; Jackson, Matthew; Mézard, Christine; McVean, Gil; Copenhaver, Gregory P; Henderson, Ian R

    2016-07-01

    Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.

  5. Nearest Neighbor Networks: clustering expression data based on gene neighborhoods

    Directory of Open Access Journals (Sweden)

    Olszewski Kellen L

    2007-07-01

    Full Text Available Abstract Background The availability of microarrays measuring thousands of genes simultaneously across hundreds of biological conditions represents an opportunity to understand both individual biological pathways and the integrated workings of the cell. However, translating this amount of data into biological insight remains a daunting task. An important initial step in the analysis of microarray data is clustering of genes with similar behavior. A number of classical techniques are commonly used to perform this task, particularly hierarchical and K-means clustering, and many novel approaches have been suggested recently. While these approaches are useful, they are not without drawbacks; these methods can find clusters in purely random data, and even clusters enriched for biological functions can be skewed towards a small number of processes (e.g. ribosomes. Results We developed Nearest Neighbor Networks (NNN, a graph-based algorithm to generate clusters of genes with similar expression profiles. This method produces clusters based on overlapping cliques within an interaction network generated from mutual nearest neighborhoods. This focus on nearest neighbors rather than on absolute distance measures allows us to capture clusters with high connectivity even when they are spatially separated, and requiring mutual nearest neighbors allows genes with no sufficiently similar partners to remain unclustered. We compared the clusters generated by NNN with those generated by eight other clustering methods. NNN was particularly successful at generating functionally coherent clusters with high precision, and these clusters generally represented a much broader selection of biological processes than those recovered by other methods. Conclusion The Nearest Neighbor Networks algorithm is a valuable clustering method that effectively groups genes that are likely to be functionally related. It is particularly attractive due to its simplicity, its success in the

  6. Differential Retention of Gene Functions in a Secondary Metabolite Cluster.

    Science.gov (United States)

    Reynolds, Hannah T; Slot, Jason C; Divon, Hege H; Lysøe, Erik; Proctor, Robert H; Brown, Daren W

    2017-08-01

    In fungi, distribution of secondary metabolite (SM) gene clusters is often associated with host- or environment-specific benefits provided by SMs. In the plant pathogen Alternaria brassicicola (Dothideomycetes), the DEP cluster confers an ability to synthesize the SM depudecin, a histone deacetylase inhibitor that contributes weakly to virulence. The DEP cluster includes genes encoding enzymes, a transporter, and a transcription regulator. We investigated the distribution and evolution of the DEP cluster in 585 fungal genomes and found a wide but sporadic distribution among Dothideomycetes, Sordariomycetes, and Eurotiomycetes. We confirmed DEP gene expression and depudecin production in one fungus, Fusarium langsethiae. Phylogenetic analyses suggested 6-10 horizontal gene transfers (HGTs) of the cluster, including a transfer that led to the presence of closely related cluster homologs in Alternaria and Fusarium. The analyses also indicated that HGTs were frequently followed by loss/pseudogenization of one or more DEP genes. Independent cluster inactivation was inferred in at least four fungal classes. Analyses of transitions among functional, pseudogenized, and absent states of DEP genes among Fusarium species suggest enzyme-encoding genes are lost at higher rates than the transporter (DEP3) and regulatory (DEP6) genes. The phenotype of an experimentally-induced DEP3 mutant of Fusarium did not support the hypothesis that selective retention of DEP3 and DEP6 protects fungi from exogenous depudecin. Together, the results suggest that HGT and gene loss have contributed significantly to DEP cluster distribution, and that some DEP genes provide a greater fitness benefit possibly due to a differential tendency to form network connections. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2017. This work is written by US Government employees and is in the public domain in the US.

  7. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production

    Science.gov (United States)

    Bailey, Andy M.; Alberti, Fabrizio; Kilaru, Sreedhar; Collins, Catherine M.; de Mattos-Shipley, Kate; Hartley, Amanda J.; Hayes, Patrick; Griffin, Alison; Lazarus, Colin M.; Cox, Russell J.; Willis, Christine L.; O'Dwyer, Karen; Spence, David W.; Foster, Gary D.

    2016-05-01

    Semi-synthetic derivatives of the tricyclic diterpene antibiotic pleuromutilin from the basidiomycete Clitopilus passeckerianus are important in combatting bacterial infections in human and veterinary medicine. These compounds belong to the only new class of antibiotics for human applications, with novel mode of action and lack of cross-resistance, representing a class with great potential. Basidiomycete fungi, being dikaryotic, are not generally amenable to strain improvement. We report identification of the seven-gene pleuromutilin gene cluster and verify that using various targeted approaches aimed at increasing antibiotic production in C. passeckerianus, no improvement in yield was achieved. The seven-gene pleuromutilin cluster was reconstructed within Aspergillus oryzae giving production of pleuromutilin in an ascomycete, with a significant increase (2106%) in production. This is the first gene cluster from a basidiomycete to be successfully expressed in an ascomycete, and paves the way for the exploitation of a metabolically rich but traditionally overlooked group of fungi.

  8. Clustering Algorithms: Their Application to Gene Expression Data.

    Science.gov (United States)

    Oyelade, Jelili; Isewon, Itunuoluwa; Oladipupo, Funke; Aromolaran, Olufemi; Uwoghiren, Efosa; Ameh, Faridah; Achas, Moses; Adebiyi, Ezekiel

    2016-01-01

    Gene expression data hide vital information required to understand the biological process that takes place in a particular organism in relation to its environment. Deciphering the hidden patterns in gene expression data proffers a prodigious preference to strengthen the understanding of functional genomics. The complexity of biological networks and the volume of genes present increase the challenges of comprehending and interpretation of the resulting mass of data, which consists of millions of measurements; these data also inhibit vagueness, imprecision, and noise. Therefore, the use of clustering techniques is a first step toward addressing these challenges, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. The clustering of gene expression data has been proven to be useful in making known the natural structure inherent in gene expression data, understanding gene functions, cellular processes, and subtypes of cells, mining useful information from noisy data, and understanding gene regulation. The other benefit of clustering gene expression data is the identification of homology, which is very important in vaccine design. This review examines the various clustering algorithms applicable to the gene expression data in order to discover and provide useful knowledge of the appropriate clustering technique that will guarantee stability and high degree of accuracy in its analysis procedure.

  9. The Antibiotic Resistant Target Seeker (ARTS), an exploration engine for antibiotic cluster prioritization and novel drug target discovery

    DEFF Research Database (Denmark)

    Alanjary, Mohammad; Kronmiller, Brent; Adamek, Martina

    2017-01-01

    With the rise of multi-drug resistant pathogens and the decline in number of potential new antibiotics in development there is a fervent need to reinvigorate the natural products discovery pipeline. Most antibiotics are derived from secondary metabolites produced by microorganisms and plants....... To avoid suicide, an antibiotic producer harbors resistance genes often found within the same biosynthetic gene cluster (BGC) responsible for manufacturing the antibiotic. Existing mining tools are excellent at detecting BGCs or resistant genes in general, but provide little help in prioritizing...... and identifying gene clusters for compounds active against specific and novel targets. Here we introduce the 'Antibiotic Resistant Target Seeker' (ARTS) available at https://arts.ziemertlab.com. ARTS allows for specific and efficient genome mining for antibiotics with interesting and novel targets. The aim...

  10. Gene cluster encoding cholate catabolism in Rhodococcus spp.

    Science.gov (United States)

    Mohn, William W; Wilbrink, Maarten H; Casabon, Israël; Stewart, Gordon R; Liu, Jie; van der Geize, Robert; Eltis, Lindsay D

    2012-12-01

    Bile acids are highly abundant steroids with important functions in vertebrate digestion. Their catabolism by bacteria is an important component of the carbon cycle, contributes to gut ecology, and has potential commercial applications. We found that Rhodococcus jostii RHA1 grows well on cholate, as well as on its conjugates, taurocholate and glycocholate. The transcriptome of RHA1 growing on cholate revealed 39 genes upregulated on cholate, occurring in a single gene cluster. Reverse transcriptase quantitative PCR confirmed that selected genes in the cluster were upregulated 10-fold on cholate versus on cholesterol. One of these genes, kshA3, encoding a putative 3-ketosteroid-9α-hydroxylase, was deleted and found essential for growth on cholate. Two coenzyme A (CoA) synthetases encoded in the cluster, CasG and CasI, were heterologously expressed. CasG was shown to transform cholate to cholyl-CoA, thus initiating side chain degradation. CasI was shown to form CoA derivatives of steroids with isopropanoyl side chains, likely occurring as degradation intermediates. Orthologous gene clusters were identified in all available Rhodococcus genomes, as well as that of Thermomonospora curvata. Moreover, Rhodococcus equi 103S, Rhodococcus ruber Chol-4 and Rhodococcus erythropolis SQ1 each grew on cholate. In contrast, several mycolic acid bacteria lacking the gene cluster were unable to grow on cholate. Our results demonstrate that the above-mentioned gene cluster encodes cholate catabolism and is distinct from a more widely occurring gene cluster encoding cholesterol catabolism.

  11. Application of Gene Shaving and Mixture Models to Cluster Microarray Gene Expression Data

    Directory of Open Access Journals (Sweden)

    S. Wen

    2007-01-01

    Full Text Available Researchers are frequently faced with the analysis of microarray data of a relatively large number of genes using a small number of tissue samples. We examine the application of two statistical methods for clustering such microarray expression data: EMMIX-GENE and GeneClust. EMMIX-GENE is a mixture-model based clustering approach, designed primarily to cluster tissue samples on the basis of the genes. GeneClust is an implementation of the gene shaving methodology, motivated by research to identify distinct sets of genes for which variation in expression could be related to a biological property of the tissue samples. We illustrate the use of these two methods in the analysis of Affymetrix oligonucleotide arrays of well-known data sets from colon tissue samples with and without tumors, and of tumor tissue samples from patients with leukemia. Although the two approaches have been developed from different perspectives, the results demonstrate a clear correspondence between gene clusters produced by GeneClust and EMMIX-GENE for the colon tissue data. It is demonstrated, for the case of ribosomal proteins and smooth muscle genes in the colon data set, that both methods can classify genes into co-regulated families. It is further demonstrated that tissue types (tumor and normal can be separated on the basis of subtle distributed patterns of genes. Application to the leukemia tissue data produces a division of tissues corresponding closely to the external classification, acute myeloid leukemia (AML and acute lymphoblastic leukaemia (ALL, for both methods. In addition, we also identify genes specifi c for the subgroup of ALL-T cell samples. Overall, we find that the gene shaving method produces gene clusters at great speed; allows variable cluster sizes and can incorporate partial or full supervision; and finds clusters of genes in which the gene expression varies greatly over the tissue samples while maintaining a high level of coherence between the

  12. Survey of rice blast race identity for blast resistance gene identification in the USA and Puerto Rico

    Science.gov (United States)

    Rice blast disease is a significant threat to stable rice production in the USA and worldwide. The major resistance gene (Pi-ta) located within a cluster of resistance genes on rice chromosome 12 has been demonstrated to confer resistance to the rice blast disease. Katy, a rice cultivar released in ...

  13. Mining microbial metatranscriptomes for expression of antibiotic resistance genes under natural conditions

    Science.gov (United States)

    Versluis, Dennis; D'Andrea, Marco Maria; Ramiro Garcia, Javier; Leimena, Milkha M.; Hugenholtz, Floor; Zhang, Jing; Öztürk, Başak; Nylund, Lotta; Sipkema, Detmer; Schaik, Willem Van; de Vos, Willem M.; Kleerebezem, Michiel; Smidt, Hauke; Passel, Mark W. J. Van

    2015-07-01

    Antibiotic resistance genes are found in a broad range of ecological niches associated with complex microbiota. Here we investigated if resistance genes are not only present, but also transcribed under natural conditions. Furthermore, we examined the potential for antibiotic production by assessing the expression of associated secondary metabolite biosynthesis gene clusters. Metatranscriptome datasets from intestinal microbiota of four human adults, one human infant, 15 mice and six pigs, of which only the latter have received antibiotics prior to the study, as well as from sea bacterioplankton, a marine sponge, forest soil and sub-seafloor sediment, were investigated. We found that resistance genes are expressed in all studied ecological niches, albeit with niche-specific differences in relative expression levels and diversity of transcripts. For example, in mice and human infant microbiota predominantly tetracycline resistance genes were expressed while in human adult microbiota the spectrum of expressed genes was more diverse, and also included β-lactam, aminoglycoside and macrolide resistance genes. Resistance gene expression could result from the presence of natural antibiotics in the environment, although we could not link it to expression of corresponding secondary metabolites biosynthesis clusters. Alternatively, resistance gene expression could be constitutive, or these genes serve alternative roles besides antibiotic resistance.

  14. Characterization of the largest effector gene cluster of Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Thomas Brefort

    2014-07-01

    Full Text Available In the genome of the biotrophic plant pathogen Ustilago maydis, many of the genes coding for secreted protein effectors modulating virulence are arranged in gene clusters. The vast majority of these genes encode novel proteins whose expression is coupled to plant colonization. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. Here we present the functional analysis of this genomic region. We show that a 19A deletion mutant behaves like an endophyte, i.e. is still able to colonize plants and complete the infection cycle. However, tumors, the most conspicuous symptoms of maize smut disease, are only rarely formed and fungal biomass in infected tissue is significantly reduced. The generation and analysis of strains carrying sub-deletions identified several genes significantly contributing to tumor formation after seedling infection. Another of the effectors could be linked specifically to anthocyanin induction in the infected tissue. As the individual contributions of these genes to tumor formation were small, we studied the response of maize plants to the whole cluster mutant as well as to several individual mutants by array analysis. This revealed distinct plant responses, demonstrating that the respective effectors have discrete plant targets. We propose that the analysis of plant responses to effector mutant strains that lack a strong virulence phenotype may be a general way to visualize differences in effector function.

  15. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae

    NARCIS (Netherlands)

    Rozwandowicz, M.; Brouwer, M.S.M.; Fischer, J.; Wagenaar, J.A.; Gonzalez-Zorn, B.; Guerra, B.; Mevius, D.J.; Hordijk, J.

    2018-01-01

    Bacterial antimicrobial resistance (AMR) is constantly evolving and horizontal gene transfer through plasmids plays a major role. The identification of plasmid characteristics and their association with different bacterial hosts provides crucial knowledge that is essential to understand the

  16. Identification of acquired antimicrobial resistance genes

    DEFF Research Database (Denmark)

    Zankari, Ea; Hasman, Henrik; Cosentino, Salvatore

    2012-01-01

    ObjectivesIdentification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic laborato......ObjectivesIdentification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic...... laboratories and is anticipated to substitute traditional methods for resistance gene identification. Thus, the current challenge is to extract the relevant information from the large amount of generated data.MethodsWe developed a web-based method, ResFinder that uses BLAST for identification of acquired...... antimicrobial resistance genes in whole-genome data. As input, the method can use both pre-assembled, complete or partial genomes, and short sequence reads from four different sequencing platforms. The method was evaluated on 1862 GenBank files containing 1411 different resistance genes, as well as on 23 de...

  17. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage.

    Directory of Open Access Journals (Sweden)

    Zhimin Dai

    Full Text Available Biological nitrogen fixation is an essential function of acid mine drainage (AMD microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.

  18. Exploring Antibiotic Resistance Genes and Metal Resistance Genes in Plasmid Metagenomes from Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    An-Dong eLi

    2015-09-01

    Full Text Available Plasmids operate as independent genetic elements in microorganism communities. Through horizontal gene transfer, they can provide their host microorganisms with important functions such as antibiotic resistance and heavy metal resistance. In this study, six metagenomic libraries were constructed with plasmid DNA extracted from influent, activated sludge and digested sludge of two wastewater treatment plants. Compared with the metagenomes of the total DNA extracted from the same sectors of the wastewater treatment plant, the plasmid metagenomes had significantly higher annotation rates, indicating that the functional genes on plasmids are commonly shared by those studied microorganisms. Meanwhile, the plasmid metagenomes also encoded many more genes related to defense mechanisms, including ARGs. Searching against an antibiotic resistance genes (ARGs database and a metal resistance genes (MRGs database revealed a broad-spectrum of antibiotic (323 out of a total 618 subtypes and metal resistance genes (23 out of a total 23 types on these plasmid metagenomes. The influent plasmid metagenomes contained many more resistance genes (both ARGs and MRGs than the activated sludge and the digested sludge metagenomes. Sixteen novel plasmids with a complete circular structure that carried these resistance genes were assembled from the plasmid metagenomes. The results of this study demonstrated that the plasmids in wastewater treatment plants could be important reservoirs for resistance genes, and may play a significant role in the horizontal transfer of these genes.

  19. Multiscale electrical contact resistance in clustered contact distribution

    Science.gov (United States)

    Lee, Sangyoung; Cho, Hyun; Jang, Yong Hoon

    2009-08-01

    For contact between rough surfaces of conductors in which a clustered contact spot distribution is dominant through a multiscale process, electrical contact resistance (ECR) is analysed using a smoothed version of Greenwood's model (Jang and Barber 2003 J. Appl. Phys. 94 7215), which is extended to estimate the statistical distribution of contact spots considering the size and the location simultaneously. The application of this statistical method to a contact spot distribution, generated by the finite element method using a fractal surface defined by the random midpoint displacement algorithm, identifies the effect of the clustered contact distribution on ECR, showing that including a finer scale in the fractal contact surface causes the predicted resistance to approach a finite limit. It is also confirmed that the results are close to that of Barber's analogy (Barber 2003 Proc. R. Soc. Lond. A 459 53) regarding incremental stiffness and conductance for elastic contact.

  20. Relationship between Psidium species (Myrtaceae) by resistance gene analog markers: focus on nematode resistance.

    Science.gov (United States)

    Noia, L R; Tuler, A C; Ferreira, A; Ferreira, M F S

    2017-03-16

    Guava (Psidium guajava L.) crop is severely affected by the nematode Meloidogyne enterolobii. Native Psidium species have been reported as sources of resistance against this nematode. Knowledge on the molecular relationship between Psidium species based on plant resistance gene analogs (RGA) can be useful in the genetic breeding of guava for resistance to M. enterolobii. In this study, RGA markers from conserved domains, and structural features of plant R genes, were employed to characterize Psidium species and establish genetic proximity, with a focus on nematode resistance. SSR markers were also applied owing to their neutral nature, thus differing from RGA markers. For this, species reported as sources of resistance to M. enterolobii, such as P. cattleianum and P. friedrichsthalianum, as well as species occurring in the Atlantic Rainforest and susceptible genotypes, were investigated. In 10 evaluated Psidium species, high interspecific genetic variability was verified through RGA and SSR markers, with intraspecific variation in P. guajava higher with SSR, as was expected. Resistant species were clustered by RGA markers, and differential amplicons among genotypes resistant and susceptible to M. enterolobii were identified. Knowledge on the molecular relationships between Psidium species constitutes useful information for breeding of the guava tree, providing direction for hybridization and material for rootstocks. Additionally, the genetic relationship between native species, which have been little studied, and P. guajava were estimated by RGAs, which were confirmed as important markers for genetic diversity related to pathogen resistance.

  1. The role of miR-2∼13∼71 cluster in resistance to deltamethrin in Culex pipiens pallens.

    Science.gov (United States)

    Guo, Qin; Huang, Yun; Zou, Feifei; Liu, Bingqian; Tian, Mengmeng; Ye, Wenyun; Guo, Juxin; Sun, Xueli; Zhou, Dan; Sun, Yan; Ma, Lei; Shen, Bo; Zhu, Changliang

    2017-05-01

    Excessive and continuous application of deltamethrin has resulted in the development of deltamethrin resistance among mosquitoes, which becomes a major obstacle for mosquito control. In a previous study, differentially expressed miRNAs between deltamethrin-susceptible (DS) strain and deltamethrin-resistant (DR) strain using illumina sequencing in Culex pipiens pallens were identified. In this study, we applied RNAi and the Centers for Disease Control and Prevention (CDC) bottle bioassay to investigate the relationship between miR-2∼13∼71 cluster (miR-2, miR-13 and miR-71) and deltamethrin resistance. We used quantitative real-time PCR (qRT-PCR) to measure expression levels of miR-2∼13∼71 clusters. MiR-2∼13∼71 cluster was down regulated in adult female mosquitoes from the DR strain and played important roles in deltamethrin resistance through regulating target genes, CYP9J35 and CYP325BG3. Knocking down CYP9J35 and CYP325BG3 resulted in decreased mortality of DR mosquitoes. This study provides the first evidence that miRNA clusters are associated with deltamethrin resistance in mosquitoes. Moreover, we investigated the regulatory networks formed between miR-2∼13∼71 cluster and its target genes, which provide a better understanding of the mechanism involved in deltamethrin resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Calcitonin gene-related peptide antagonism and cluster headache

    DEFF Research Database (Denmark)

    Ashina, Håkan; Newman, Lawrence; Ashina, Sait

    2017-01-01

    Calcitonin gene-related peptide (CGRP) is a key signaling molecule involved in migraine pathophysiology. Efficacy of CGRP monoclonal antibodies and antagonists in migraine treatment has fueled an increasing interest in the prospect of treating cluster headache (CH) with CGRP antagonism. The exact...... role of CGRP and its mechanism of action in CH have not been fully clarified. A search for original studies and randomized controlled trials (RCTs) published in English was performed in PubMed and in ClinicalTrials.gov . The search term used was "cluster headache and calcitonin gene related peptide......" and "primary headaches and calcitonin gene related peptide." Reference lists of identified articles were also searched for additional relevant papers. Human experimental studies have reported elevated plasma CGRP levels during both spontaneous and glyceryl trinitrate-induced cluster attacks. CGRP may play...

  3. IGSA: Individual Gene Sets Analysis, including Enrichment and Clustering.

    Science.gov (United States)

    Wu, Lingxiang; Chen, Xiujie; Zhang, Denan; Zhang, Wubing; Liu, Lei; Ma, Hongzhe; Yang, Jingbo; Xie, Hongbo; Liu, Bo; Jin, Qing

    2016-01-01

    Analysis of gene sets has been widely applied in various high-throughput biological studies. One weakness in the traditional methods is that they neglect the heterogeneity of genes expressions in samples which may lead to the omission of some specific and important gene sets. It is also difficult for them to reflect the severities of disease and provide expression profiles of gene sets for individuals. We developed an application software called IGSA that leverages a powerful analytical capacity in gene sets enrichment and samples clustering. IGSA calculates gene sets expression scores for each sample and takes an accumulating clustering strategy to let the samples gather into the set according to the progress of disease from mild to severe. We focus on gastric, pancreatic and ovarian cancer data sets for the performance of IGSA. We also compared the results of IGSA in KEGG pathways enrichment with David, GSEA, SPIA, ssGSEA and analyzed the results of IGSA clustering and different similarity measurement methods. Notably, IGSA is proved to be more sensitive and specific in finding significant pathways, and can indicate related changes in pathways with the severity of disease. In addition, IGSA provides with significant gene sets profile for each sample.

  4. Genomic and expression analysis of the vanG-like gene cluster of Clostridium difficile.

    Science.gov (United States)

    Peltier, Johann; Courtin, Pascal; El Meouche, Imane; Catel-Ferreira, Manuella; Chapot-Chartier, Marie-Pierre; Lemée, Ludovic; Pons, Jean-Louis

    2013-07-01

    Primary antibiotic treatment of Clostridium difficile intestinal diseases requires metronidazole or vancomycin therapy. A cluster of genes homologous to enterococcal glycopeptides resistance vanG genes was found in the genome of C. difficile 630, although this strain remains sensitive to vancomycin. This vanG-like gene cluster was found to consist of five ORFs: the regulatory region consisting of vanR and vanS and the effector region consisting of vanG, vanXY and vanT. We found that 57 out of 83 C. difficile strains, representative of the main lineages of the species, harbour this vanG-like cluster. The cluster is expressed as an operon and, when present, is found at the same genomic location in all strains. The vanG, vanXY and vanT homologues in C. difficile 630 are co-transcribed and expressed to a low level throughout the growth phases in the absence of vancomycin. Conversely, the expression of these genes is strongly induced in the presence of subinhibitory concentrations of vancomycin, indicating that the vanG-like operon is functional at the transcriptional level in C. difficile. Hydrophilic interaction liquid chromatography (HILIC-HPLC) and MS analysis of cytoplasmic peptidoglycan precursors of C. difficile 630 grown without vancomycin revealed the exclusive presence of a UDP-MurNAc-pentapeptide with an alanine at the C terminus. UDP-MurNAc-pentapeptide [d-Ala] was also the only peptidoglycan precursor detected in C. difficile grown in the presence of vancomycin, corroborating the lack of vancomycin resistance. Peptidoglycan structures of a vanG-like mutant strain and of a strain lacking the vanG-like cluster did not differ from the C. difficile 630 strain, indicating that the vanG-like cluster also has no impact on cell-wall composition.

  5. Mining Association Rules among Gene Functions in Clusters of Similar Gene Expression Maps.

    Science.gov (United States)

    An, Li; Obradovic, Zoran; Smith, Desmond; Bodenreider, Olivier; Megalooikonomou, Vasileios

    2009-11-01

    Association rules mining methods have been recently applied to gene expression data analysis to reveal relationships between genes and different conditions and features. However, not much effort has focused on detecting the relation between gene expression maps and related gene functions. Here we describe such an approach to mine association rules among gene functions in clusters of similar gene expression maps on mouse brain. The experimental results show that the detected association rules make sense biologically. By inspecting the obtained clusters and the genes having the gene functions of frequent itemsets, interesting clues were discovered that provide valuable insight to biological scientists. Moreover, discovered association rules can be potentially used to predict gene functions based on similarity of gene expression maps.

  6. Gene clustering by latent semantic indexing of MEDLINE abstracts.

    Science.gov (United States)

    Homayouni, Ramin; Heinrich, Kevin; Wei, Lai; Berry, Michael W

    2005-01-01

    A major challenge in the interpretation of high-throughput genomic data is understanding the functional associations between genes. Previously, several approaches have been described to extract gene relationships from various biological databases using term-matching methods. However, more flexible automated methods are needed to identify functional relationships (both explicit and implicit) between genes from the biomedical literature. In this study, we explored the utility of Latent Semantic Indexing (LSI), a vector space model for information retrieval, to automatically identify conceptual gene relationships from titles and abstracts in MEDLINE citations. We found that LSI identified gene-to-gene and keyword-to-gene relationships with high average precision. In addition, LSI identified implicit gene relationships based on word usage patterns in the gene abstract documents. Finally, we demonstrate here that pairwise distances derived from the vector angles of gene abstract documents can be effectively used to functionally group genes by hierarchical clustering. Our results provide proof-of-principle that LSI is a robust automated method to elucidate both known (explicit) and unknown (implicit) gene relationships from the biomedical literature. These features make LSI particularly useful for the analysis of novel associations discovered in genomic experiments. The 50-gene document collection used in this study can be interactively queried at http://shad.cs.utk.edu/sgo/sgo.html.

  7. The gentle art of gene arrangement: the meaning of gene clusters

    Science.gov (United States)

    Trowsdale, John

    2002-01-01

    Genome sequence comparisons reveal that some sets of genes are in similar linkage groups in different organisms while other sets are dispersed. Are some linkage groups maintained by chance, or is there an advantage to such an arrangement? Some insights may come from large clusters of genes, such as the major histocompatibility complex which includes many genes involved in immune defense. PMID:11897017

  8. The gentle art of gene arrangement: the meaning of gene clusters

    OpenAIRE

    Trowsdale, John

    2002-01-01

    Genome sequence comparisons reveal that some sets of genes are in similar linkage groups in different organisms while other sets are dispersed. Are some linkage groups maintained by chance, or is there an advantage to such an arrangement? Some insights may come from large clusters of genes, such as the major histocompatibility complex which includes many genes involved in immune defense.

  9. Cloning and Heterologous Expression of the Grecocycline Biosynthetic Gene Cluster.

    Directory of Open Access Journals (Sweden)

    Oksana Bilyk

    Full Text Available Transformation-associated recombination (TAR in yeast is a rapid and inexpensive method for cloning and assembly of large DNA fragments, which relies on natural homologous recombination. Two vectors, based on p15a and F-factor replicons that can be maintained in yeast, E. coli and streptomycetes have been constructed. These vectors have been successfully employed for assembly of the grecocycline biosynthetic gene cluster from Streptomyces sp. Acta 1362. Fragments of the cluster were obtained by PCR and transformed together with the "capture" vector into the yeast cells, yielding a construct carrying the entire gene cluster. The obtained construct was heterologously expressed in S. albus J1074, yielding several grecocycline congeners. Grecocyclines have unique structural moieties such as a dissacharide side chain, an additional amino sugar at the C-5 position and a thiol group. Enzymes from this pathway may be used for the derivatization of known active angucyclines in order to improve their desired biological properties.

  10. Accurate prediction of secondary metabolite gene clusters in filamentous fungi

    DEFF Research Database (Denmark)

    Andersen, Mikael Rørdam; Nielsen, Jakob Blæsbjerg; Klitgaard, Andreas

    2013-01-01

    supporting enzymes for key synthases one cluster at a time. In this study, we design and apply a DNA expression array for Aspergillus nidulans in combination with legacy data to form a comprehensive gene expression compendium. We apply a guilt-by-association-based analysis to predict the extent...

  11. The fimbrial gene cluster of Haemophilus influenzae type b

    NARCIS (Netherlands)

    van Ham, S. M.; van Alphen, L.; Mooi, F. R.; van Putten, J. P.

    1994-01-01

    Haemophilus influenzae infections are preceded by airway colonization, a process facilitated by fimbriae. Here, we identified the complete fimbrial gene cluster of H. influenzae type b. HifA forms the major subunit. HifB, a periplasmic chaperone, and HifC, an outer membrane usher, are typical

  12. The fimbria gene cluster of nonencapsulated Haemophilus influenzae

    NARCIS (Netherlands)

    Geluk, F.; Eijk, P. P.; van Ham, S. M.; Jansen, H. M.; van Alphen, L.

    1998-01-01

    The occurrence of fimbria gene clusters in nonencapsulated Haemophilus influenzae strains from chronic bronchitis patients (n = 58), patients with acute otitis media (n = 13), and healthy carriers (n = 12) was determined by DNA hybridization and PCR, based on sequences of fimbriate H. influenzae

  13. The ergot alkaloid gene cluster: Functional analyses and evolutionary aspects

    Czech Academy of Sciences Publication Activity Database

    Lorenz, N.; Haarmann, T.; Pažoutová, Sylvie; Jung, M.; Tudzynski, P.

    2009-01-01

    Roč. 70, 15-16 (2009), s. 1822-1832 ISSN 0031-9422 Institutional research plan: CEZ:AV0Z50200510 Keywords : Claviceps purpurea * Ergot fungus * Ergot alkaloid gene cluster Subject RIV: EE - Microbiology, Virology Impact factor: 3.104, year: 2009

  14. Unique nucleotide polymorphism of ankyrin gene cluster in ...

    Indian Academy of Sciences (India)

    Genomics 19, 478–493. Krumlauf R. 1992 Evolution of the vertebrate Hox homeobox genes. BioEssays 14, 245–252. Kuittinen H. and Aguadé M. 2000 Nucleotide variation at the. CHALCONE ISOMERASE locus in Arabidopsis thaliana. Ge- netics 155, 863–872. Lercher M. J., Urrutia A. O. and Hurst L. D. 2002 Clustering of.

  15. Gene ordering in partitive clustering using microarray expressions

    Indian Academy of Sciences (India)

    2007-06-28

    Jun 28, 2007 ... Two existing algorithms for optimally ordering cities in travelling salesman problem (TSP), namely, FRAG_GALK and Concorde, are hybridized individually with self organizing MAP to show the importance of gene ordering in partitive clustering framework. We validated our hybrid approach using yeast and ...

  16. The Fusarium graminearum genome reveals more secondary metabolite gene clusters and hints of horizontal gene transfer.

    Directory of Open Access Journals (Sweden)

    Christian M K Sieber

    Full Text Available Fungal secondary metabolite biosynthesis genes are of major interest due to the pharmacological properties of their products (like mycotoxins and antibiotics. The genome of the plant pathogenic fungus Fusarium graminearum codes for a large number of candidate enzymes involved in secondary metabolite biosynthesis. However, the chemical nature of most enzymatic products of proteins encoded by putative secondary metabolism biosynthetic genes is largely unknown. Based on our analysis we present 67 gene clusters with significant enrichment of predicted secondary metabolism related enzymatic functions. 20 gene clusters with unknown metabolites exhibit strong gene expression correlation in planta and presumably play a role in virulence. Furthermore, the identification of conserved and over-represented putative transcription factor binding sites serves as additional evidence for cluster co-regulation. Orthologous cluster search provided insight into the evolution of secondary metabolism clusters. Some clusters are characteristic for the Fusarium phylum while others show evidence of horizontal gene transfer as orthologs can be found in representatives of the Botrytis or Cochliobolus lineage. The presented candidate clusters provide valuable targets for experimental examination.

  17. PEACE: Parallel Environment for Assembly and Clustering of Gene Expression.

    Science.gov (United States)

    Rao, D M; Moler, J C; Ozden, M; Zhang, Y; Liang, C; Karro, J E

    2010-07-01

    We present PEACE, a stand-alone tool for high-throughput ab initio clustering of transcript fragment sequences produced by Next Generation or Sanger Sequencing technologies. It is freely available from www.peace-tools.org. Installed and managed through a downloadable user-friendly graphical user interface (GUI), PEACE can process large data sets of transcript fragments of length 50 bases or greater, grouping the fragments by gene associations with a sensitivity comparable to leading clustering tools. Once clustered, the user can employ the GUI's analysis functions, facilitating the easy collection of statistics and allowing them to single out specific clusters for more comprehensive study or assembly. Using a novel minimum spanning tree-based clustering method, PEACE is the equal of leading tools in the literature, with an interface making it accessible to any user. It produces results of quality virtually identical to those of the WCD tool when applied to Sanger sequences, significantly improved results over WCD and TGICL when applied to the products of Next Generation Sequencing Technology and significantly improved results over Cap3 in both cases. In short, PEACE provides an intuitive GUI and a feature-rich, parallel clustering engine that proves to be a valuable addition to the leading cDNA clustering tools.

  18. Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste.

    Science.gov (United States)

    Agga, Getahun E; Arthur, Terrance M; Durso, Lisa M; Harhay, Dayna M; Schmidt, John W

    2015-01-01

    This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact" environments (an urban lake and a relict prairie). Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR) Gram-negative (Escherichia coli and Salmonella enterica) and Gram-positive (enterococci) bacteria were determined from individual samples (n = 174). The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44) by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine), low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P resistant bacteria and antimicrobial resistance genes exist in cattle, human, and swine waste streams, but a higher diversity of antimicrobial resistance genes are present

  19. Comparative genomics of natural killer cell receptor gene clusters.

    Directory of Open Access Journals (Sweden)

    James Kelley

    2005-08-01

    Full Text Available Many receptors on natural killer (NK cells recognize major histocompatibility complex class I molecules in order to monitor unhealthy tissues, such as cells infected with viruses, and some tumors. Genes encoding families of NK receptors and related sequences are organized into two main clusters in humans: the natural killer complex on Chromosome 12p13.1, which encodes C-type lectin molecules, and the leukocyte receptor complex on Chromosome 19q13.4, which encodes immunoglobulin superfamily molecules. The composition of these gene clusters differs markedly between closely related species, providing evidence for rapid, lineage-specific expansions or contractions of sets of loci. The choice of NK receptor genes is polarized in the two species most studied, mouse and human. In mouse, the C-type lectin-related Ly49 gene family predominates. Conversely, the single Ly49 sequence is a pseudogene in humans, and the immunoglobulin superfamily KIR gene family is extensive. These different gene sets encode proteins that are comparable in function and genetic diversity, even though they have undergone species-specific expansions. Understanding the biological significance of this curious situation may be aided by studying which NK receptor genes are used in other vertebrates, especially in relation to species-specific differences in genes for major histocompatibility complex class I molecules.

  20. Expression Study of Banana Pathogenic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Fenny M. Dwivany

    2016-10-01

    Full Text Available Banana is one of the world's most important trade commodities. However, infection of banana pathogenic fungi (Fusarium oxysporum race 4 is one of the major causes of decreasing production in Indonesia. Genetic engineering has become an alternative way to control this problem by isolating genes that involved in plant defense mechanism against pathogens. Two of the important genes are API5 and ChiI1, each gene encodes apoptosis inhibitory protein and chitinase enzymes. The purpose of this study was to study the expression of API5 and ChiI1 genes as candidate pathogenic resistance genes. The amplified fragments were then cloned, sequenced, and confirmed with in silico studies. Based on sequence analysis, it is showed that partial API5 gene has putative transactivation domain and ChiI1 has 9 chitinase family GH19 protein motifs. Data obtained from this study will contribute in banana genetic improvement.

  1. Evolution and differential expression of a vertebrate vitellogenin gene cluster

    Directory of Open Access Journals (Sweden)

    Kongshaug Heidi

    2009-01-01

    Full Text Available Abstract Background The multiplicity or loss of the vitellogenin (vtg gene family in vertebrates has been argued to have broad implications for the mode of reproduction (placental or non-placental, cleavage pattern (meroblastic or holoblastic and character of the egg (pelagic or benthic. Earlier proposals for the existence of three forms of vertebrate vtgs present conflicting models for their origin and subsequent duplication. Results By integrating phylogenetics of novel vtg transcripts from old and modern teleosts with syntenic analyses of all available genomic variants of non-metatherian vertebrates we identify the gene orthologies between the Sarcopterygii (tetrapod branch and Actinopterygii (fish branch. We argue that the vertebrate vtg gene cluster originated in proto-chromosome m, but that vtg genes have subsequently duplicated and rearranged following whole genome duplications. Sequencing of a novel fourth vtg transcript in labrid species, and the presence of duplicated paralogs in certain model organisms supports the notion that lineage-specific gene duplications frequently occur in teleosts. The data show that the vtg gene cluster is more conserved between acanthomorph teleosts and tetrapods, than in ostariophysan teleosts such as the zebrafish. The differential expression of the labrid vtg genes are further consistent with the notion that neofunctionalized Aa-type vtgs are important determinants of the pelagic or benthic character of the eggs in acanthomorph teleosts. Conclusion The vertebrate vtg gene cluster existed prior to the separation of Sarcopterygii from Actinopterygii >450 million years ago, a period associated with the second round of whole genome duplication. The presence of higher copy numbers in a more highly expressed subcluster is particularly prevalent in teleosts. The differential expression and latent neofunctionalization of vtg genes in acanthomorph teleosts is an adaptive feature associated with oocyte hydration

  2. Clustered Xenopus keratin genes: A genomic, transcriptomic, and proteomic analysis.

    Science.gov (United States)

    Suzuki, Ken-Ichi T; Suzuki, Miyuki; Shigeta, Mitsuki; Fortriede, Joshua D; Takahashi, Shuji; Mawaribuchi, Shuuji; Yamamoto, Takashi; Taira, Masanori; Fukui, Akimasa

    2017-06-15

    Keratin genes belong to the intermediate filament superfamily and their expression is altered following morphological and physiological changes in vertebrate epithelial cells. Keratin genes are divided into two groups, type I and II, and are clustered on vertebrate genomes, including those of Xenopus species. Various keratin genes have been identified and characterized by their unique expression patterns throughout ontogeny in Xenopus laevis; however, compilation of previously reported and newly identified keratin genes in two Xenopus species is required for our further understanding of keratin gene evolution, not only in amphibians but also in all terrestrial vertebrates. In this study, 120 putative type I and II keratin genes in total were identified based on the genome data from two Xenopus species. We revealed that most of these genes are highly clustered on two homeologous chromosomes, XLA9_10 and XLA2 in X. laevis, and XTR10 and XTR2 in X. tropicalis, which are orthologous to those of human, showing conserved synteny among tetrapods. RNA-Seq data from various embryonic stages and adult tissues highlighted the unique expression profiles of orthologous and homeologous keratin genes in developmental stage- and tissue-specific manners. Moreover, we identified dozens of epidermal keratin proteins from the whole embryo, larval skin, tail, and adult skin using shotgun proteomics. In light of our results, we discuss the radiation, diversification, and unique expression of the clustered keratin genes, which are closely related to epidermal development and terrestrial adaptation during amphibian evolution, including Xenopus speciation. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Evolutionary conservation of regulatory elements in vertebrate HOX gene clusters

    Energy Technology Data Exchange (ETDEWEB)

    Santini, Simona; Boore, Jeffrey L.; Meyer, Axel

    2003-12-31

    Due to their high degree of conservation, comparisons of DNA sequences among evolutionarily distantly-related genomes permit to identify functional regions in noncoding DNA. Hox genes are optimal candidate sequences for comparative genome analyses, because they are extremely conserved in vertebrates and occur in clusters. We aligned (Pipmaker) the nucleotide sequences of HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human and mouse (over 500 million years of evolutionary distance). We identified several highly conserved intergenic sequences, likely to be important in gene regulation. Only a few of these putative regulatory elements have been previously described as being involved in the regulation of Hox genes, while several others are new elements that might have regulatory functions. The majority of these newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac). The conserved intergenic regions located between the most rostrally expressed genes in the developing embryo are longer and better retained through evolution. We document that presumed regulatory sequences are retained differentially in either A or A clusters resulting from a genome duplication in the fish lineage. This observation supports both the hypothesis that the conserved elements are involved in gene regulation and the Duplication-Deletion-Complementation model.

  4. The Paraoxonase Gene Cluster Protects Against Abdominal Aortic Aneurysm Formation.

    Science.gov (United States)

    Yan, Yun-Fei; Pei, Jian-Fei; Zhang, Yang; Zhang, Ran; Wang, Fang; Gao, Peng; Zhang, Zhu-Qin; Wang, Ting-Ting; She, Zhi-Gang; Chen, Hou-Zao; Liu, De-Pei

    2017-02-01

    Abdominal aortic aneurysm (AAA) is a life-threatening vascular pathology, the pathogenesis of which is closely related to oxidative stress. However, an effective pharmaceutical treatment is lacking because the exact cause of AAA remains unknown. Here, we aimed at delineating the role of the paraoxonases (PONs) gene cluster (PC), which prevents atherosclerosis through the detoxification of oxidized substrates, in AAA formation. PC transgenic (Tg) mice were crossed to an Apoe -/- background, and an angiotensin II-induced AAA mouse model was used to analyze the effect of the PC on AAA formation. Four weeks after angiotensin II infusion, PC-Tg Apoe -/- mice had a lower AAA incidence, smaller maximal abdominal aortic external diameter, and less medial elastin degradation than Apoe -/- mice. Importantly, PC-Tg Apoe -/- mice exhibited lower aortic reactive oxidative species production and oxidative stress than did the Apoe -/- control mice. As a consequence, the PC transgene alleviated angiotensin II-induced arterial inflammation and suppressed arterial extracellular matrix degradation. Specifically, on angiotensin II stimulation, PC-Tg vascular smooth muscle cells exhibited lower levels of reactive oxidative species production and a decrease in the activities and expression levels of matrix metalloproteinase-2 and matrix metalloproteinase-9. Moreover, PC-Tg serum also enhanced vascular smooth muscle cell oxidative stress resistance and further decreased the expression levels of matrix metalloproteinase-2 and matrix metalloproteinase-9, indicating that circulatory and vascular smooth muscle cell PC members suppress oxidative stress in a synergistic manner. Our findings reveal, for the first time, a protective role of the PC in AAA formation and suggest PONs as promising targets for AAA prevention. © 2016 American Heart Association, Inc.

  5. Mapping of stripe rust resistance gene in an Aegilops caudata ...

    Indian Academy of Sciences (India)

    ... rust resistance depicted a single major gene conditioning adult plant resistance (APR) with stripe rust reaction varying from TR-20MS in resistant RILs signifying the presence of some minor genes as well. Genetic association with leaf rust resistance revealed that two genes are located at a recombination distance of 13%.

  6. Antibiotic-Resistance Genes in Waste Water.

    Science.gov (United States)

    Karkman, Antti; Do, Thi Thuy; Walsh, Fiona; Virta, Marko P J

    2018-03-01

    Waste water and waste water treatment plants can act as reservoirs and environmental suppliers of antibiotic resistance. They have also been proposed to be hotspots for horizontal gene transfer, enabling the spread of antibiotic resistance genes between different bacterial species. Waste water contains antibiotics, disinfectants, and metals which can form a selection pressure for antibiotic resistance, even in low concentrations. Our knowledge of antibiotic resistance in waste water has increased tremendously in the past few years with advances in the molecular methods available. However, there are still some gaps in our knowledge on the subject, such as how active is horizontal gene transfer in waste water and what is the role of the waste water treatment plant in the environmental resistome? The purpose of this review is to briefly describe some of the main methods for studying antibiotic resistance in waste waters and the latest research and main knowledge gaps on the issue. In addition, some future research directions are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Incorporating gene ontology into fuzzy relational clustering of microarray gene expression data.

    Science.gov (United States)

    Paul, Animesh Kumar; Shill, Pintu Chandra

    2018-01-01

    The product of gene expression works together in the cell for each living organism in order to achieve different biological processes. Many proteins are involved in different roles depending on the environment of the organism for the functioning of the cell. In this paper, we propose gene ontology (GO) annotations based semi-supervised clustering algorithm called GO fuzzy relational clustering (GO-FRC) where one gene is allowed to be assigned to multiple clusters which are the most biologically relevant behavior of genes. In the clustering process, GO-FRC utilizes useful biological knowledge which is available in the form of a gene ontology, as a prior knowledge along with the gene expression data. The prior knowledge helps to improve the coherence of the groups concerning the knowledge field. The proposed GO-FRC has been tested on the two yeast (Saccharomyces cerevisiae) expression profiles datasets (Eisen and Dream5 yeast datasets) and compared with other state-of-the-art clustering algorithms. Experimental results imply that GO-FRC is able to produce more biologically relevant clusters with the use of the small amount of GO annotations. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Identification of Nocobactin NA Biosynthetic Gene Clusters in Nocardia farcinica▿ §

    OpenAIRE

    Hoshino, Yasutaka; Chiba, Kazuhiro; Ishino, Keiko; Fukai, Toshio; Igarashi, Yasuhiro; Yazawa, Katsukiyo; Mikami, Yuzuru; Ishikawa, Jun

    2010-01-01

    We identified the biosynthetic gene clusters of the siderophore nocobactin NA. The nbt clusters, which were discovered as genes highly homologous to the mycobactin biosynthesis genes by the genomic sequencing of Nocardia farcinica IFM 10152, consist of 10 genes separately located at two genomic regions. The gene organization of the nbt clusters and the predicted functions of the nbt genes, particularly the cyclization and epimerization domains, were in good agreement with the chemical structu...

  9. EUV resists based on tin-oxo clusters

    Science.gov (United States)

    Cardineau, Brian; Del Re, Ryan; Al-Mashat, Hashim; Marnell, Miles; Vockenhuber, Michaela; Ekinci, Yasin; Sarma, Chandra; Neisser, Mark; Freedman, Daniel A.; Brainard, Robert L.

    2014-03-01

    We have studied the photolysis of tin clusters of the type [(RSn)12O14(OH)6] X2 using extreme ultraviolet (EUV, 13.5 nm) light, and developed these clusters into novel high-resolution photoresists. A thin film of [(BuSn)12O14(OH)6][p-toluenesulfonate]2 (1) was prepared by spin coating a solution of (1) in 2-butanone onto a silicon wafer. Exposure to EUV light caused the compound (1) to be converted into a substance that was markedly less soluble in aqueous isopropanol. To optimize the EUV lithographic performance of resists using tin-oxo clusters, and to gain insight into the mechanism of their photochemical reactions, we prepared several compounds based on [(RSn)12O14(OH)6] X2. The sensitivity of tin-oxide films to EUV light were studied as a function of variations in the structure of the counter-anions (X, primarily carboxylates) and organic ligands bound to tin (R). Correlations were sought between the EUV sensitivity of these complexes vs. the strength of the carbon-carboxylate bonds in the counteranions and vs. the strength of the carbon-tin bonds. No correlation was observed between the strength of the carboncarboxylate bonds in the counter-anions (X) and the EUV photosensitivity. However, the EUV sensitivity of the tinoxide films appears to be well-correlated with the strength of the carbon-tin bonds. We hypothesize this correlation indicates a mechanism of carbon-tin bond homolysis during exposure. Using these tin clusters, 18-nm lines were printed showcasing the high resolution capabilities of these materials as photoresists for EUV lithography.

  10. Gene duplication, modularity and adaptation in the evolution of the aflatoxin gene cluster

    Directory of Open Access Journals (Sweden)

    Jakobek Judy L

    2007-07-01

    Full Text Available Abstract Background The biosynthesis of aflatoxin (AF involves over 20 enzymatic reactions in a complex polyketide pathway that converts acetate and malonate to the intermediates sterigmatocystin (ST and O-methylsterigmatocystin (OMST, the respective penultimate and ultimate precursors of AF. Although these precursors are chemically and structurally very similar, their accumulation differs at the species level for Aspergilli. Notable examples are A. nidulans that synthesizes only ST, A. flavus that makes predominantly AF, and A. parasiticus that generally produces either AF or OMST. Whether these differences are important in the evolutionary/ecological processes of species adaptation and diversification is unknown. Equally unknown are the specific genomic mechanisms responsible for ordering and clustering of genes in the AF pathway of Aspergillus. Results To elucidate the mechanisms that have driven formation of these clusters, we performed systematic searches of aflatoxin cluster homologs across five Aspergillus genomes. We found a high level of gene duplication and identified seven modules consisting of highly correlated gene pairs (aflA/aflB, aflR/aflS, aflX/aflY, aflF/aflE, aflT/aflQ, aflC/aflW, and aflG/aflL. With the exception of A. nomius, contrasts of mean Ka/Ks values across all cluster genes showed significant differences in selective pressure between section Flavi and non-section Flavi species. A. nomius mean Ka/Ks values were more similar to partial clusters in A. fumigatus and A. terreus. Overall, mean Ka/Ks values were significantly higher for section Flavi than for non-section Flavi species. Conclusion Our results implicate several genomic mechanisms in the evolution of ST, OMST and AF cluster genes. Gene modules may arise from duplications of a single gene, whereby the function of the pre-duplication gene is retained in the copy (aflF/aflE or the copies may partition the ancestral function (aflA/aflB. In some gene modules, the

  11. Clustering gene expression regulators: new approach to disease subtyping.

    Directory of Open Access Journals (Sweden)

    Mikhail Pyatnitskiy

    Full Text Available One of the main challenges in modern medicine is to stratify different patient groups in terms of underlying disease molecular mechanisms as to develop more personalized approach to therapy. Here we propose novel method for disease subtyping based on analysis of activated expression regulators on a sample-by-sample basis. Our approach relies on Sub-Network Enrichment Analysis algorithm (SNEA which identifies gene subnetworks with significant concordant changes in expression between two conditions. Subnetwork consists of central regulator and downstream genes connected by relations extracted from global literature-extracted regulation database. Regulators found in each patient separately are clustered together and assigned activity scores which are used for final patients grouping. We show that our approach performs well compared to other related methods and at the same time provides researchers with complementary level of understanding of pathway-level biology behind a disease by identification of significant expression regulators. We have observed the reasonable grouping of neuromuscular disorders (triggered by structural damage vs triggered by unknown mechanisms, that was not revealed using standard expression profile clustering. For another experiment we were able to suggest the clusters of regulators, responsible for colorectal carcinoma vs adenoma discrimination and identify frequently genetically changed regulators that could be of specific importance for the individual characteristics of cancer development. Proposed approach can be regarded as biologically meaningful feature selection, reducing tens of thousands of genes down to dozens of clusters of regulators. Obtained clusters of regulators make possible to generate valuable biological hypotheses about molecular mechanisms related to a clinical outcome for individual patient.

  12. Functional Analysis of the Fusarielin Biosynthetic Gene Cluster

    Directory of Open Access Journals (Sweden)

    Aida Droce

    2016-12-01

    Full Text Available Fusarielins are polyketides with a decalin core produced by various species of Aspergillus and Fusarium. Although the responsible gene cluster has been identified, the biosynthetic pathway remains to be elucidated. In the present study, members of the gene cluster were deleted individually in a Fusarium graminearum strain overexpressing the local transcription factor. The results suggest that a trans-acting enoyl reductase (FSL5 assists the polyketide synthase FSL1 in biosynthesis of a polyketide product, which is released by hydrolysis by a trans-acting thioesterase (FSL2. Deletion of the epimerase (FSL3 resulted in accumulation of an unstable compound, which could be the released product. A novel compound, named prefusarielin, accumulated in the deletion mutant of the cytochrome P450 monooxygenase FSL4. Unlike the known fusarielins from Fusarium, this compound does not contain oxygenized decalin rings, suggesting that FSL4 is responsible for the oxygenation.

  13. Dissection of Resistance Genes to Pseudomonas syringae pv. phaseolicola in UI3 Common Bean Cultivar.

    Science.gov (United States)

    González, Ana M; Godoy, Luís; Santalla, Marta

    2017-11-23

    Few quantitative trait loci have been mapped for resistance to Pseudomonas syringae pv. phaseolicola in common bean. Two F₂ populations were developed from the host differential UI3 cultivar. The objective of this study was to further characterize the resistance to races 1, 5, 7 and 9 of Psp included in UI3. Using a QTL mapping approach, 16 and 11 main-effect QTLs for pod and primary leaf resistance were located on LG10, explaining up to 90% and 26% of the phenotypic variation, respectively. The homologous genomic region corresponding to primary leaf resistance QTLs detected tested positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL), Natural Resistance Associated Macrophage (NRAMP) and Pentatricopeptide Repeat family (PPR) proteins. It is worth noting that the main effect QTLs for resistance in pod were located inside a 3.5 Mb genomic region that included the Phvul.010G021200 gene, which encodes a protein that has the highest sequence similarity to the RIN4 gene of Arabidopsis, and can be considered an important candidate gene for the organ-specific QTLs identified here. These results support that resistance to Psp from UI3 might result from the immune response activated by combinations of R proteins, and suggest the guard model as an important mechanism in pod resistance to halo blight. The candidate genes identified here warrant functional studies that will help in characterizing the actual defense gene(s) in UI3 genotype.

  14. Evaluation of clustering algorithms for gene expression data using gene ontology annotations.

    Science.gov (United States)

    Ma, Ning; Zhang, Zheng-Guo

    2012-09-01

    Clustering is a useful exploratory technique for interpreting gene expression data to reveal groups of genes sharing common functional attributes. Biologists frequently face the problem of choosing an appropriate algorithm. We aimed to provide a standalone, easily accessible and biologically oriented criterion for expression data clustering evaluation. An external criterion utilizing annotation based similarities between genes is proposed in this work. Gene ontology information is employed as the annotation source. Comparisons among six widely used clustering algorithms over various types of gene expression data sets were carried out based on the criterion proposed. The rank of these algorithms given by the criterion coincides with our common knowledge. Single-linkage has significantly poorer performance, even worse than the random algorithm. Ward's method archives the best performance in most cases. The criterion proposed has a strong ability to distinguish among different clustering algorithms with different distance measurements. It is also demonstrated that analyzing main contributors of the criterion may offer some guidelines in finding local compact clusters. As an addition, we suggest using Ward's algorithm for gene expression data analysis.

  15. Unsupervised clustering of gene expression data points at hypoxia as possible trigger for metabolic syndrome

    Directory of Open Access Journals (Sweden)

    York David

    2006-12-01

    Full Text Available Abstract Background Classification of large volumes of data produced in a microarray experiment allows for the extraction of important clues as to the nature of a disease. Results Using multi-dimensional unsupervised FOREL (FORmal ELement algorithm we have re-analyzed three public datasets of skeletal muscle gene expression in connection with insulin resistance and type 2 diabetes (DM2. Our analysis revealed the major line of variation between expression profiles of normal, insulin resistant, and diabetic skeletal muscle. A cluster of most "metabolically sound" samples occupied one end of this line. The distance along this line coincided with the classic markers of diabetes risk, namely obesity and insulin resistance, but did not follow the accepted clinical diagnosis of DM2 as defined by the presence or absence of hyperglycemia. Genes implicated in this expression pattern are those controlling skeletal muscle fiber type and glycolytic metabolism. Additionally myoglobin and hemoglobin were upregulated and ribosomal genes deregulated in insulin resistant patients. Conclusion Our findings are concordant with the changes seen in skeletal muscle with altitude hypoxia. This suggests that hypoxia and shift to glycolytic metabolism may also drive insulin resistance.

  16. The influence of nanoscale morphology on the resistivity of cluster-assembled nanostructured metallic thin films

    International Nuclear Information System (INIS)

    Barborini, E; Bertolini, G; Repetto, P; Leccardi, M; Vinati, S; Corbelli, G; Milani, P

    2010-01-01

    We have studied in situ the evolution of the electrical resistivity of Fe, Pd, Nb, W and Mo cluster-assembled films during their growth by supersonic cluster beam deposition. We observed resistivity of cluster-assembled films several orders of magnitude larger than the bulk, as well as an increase in resistivity by increasing the film thickness in contrast to what was observed for atom-assembled metallic films. This suggests that the nanoscale morphological features typical of ballistic films growth, such as the minimal cluster-cluster interconnection and the evolution of surface roughness with thickness, are responsible for the observed behaviour.

  17. Isolation and characterization of NBS-LRR- resistance gene candidates in turmeric (Curcuma longa cv. surama).

    Science.gov (United States)

    Joshi, R K; Mohanty, S; Subudhi, E; Nayak, S

    2010-09-08

    Turmeric (Curcuma longa), an important asexually reproducing spice crop of the family Zingiberaceae is highly susceptible to bacterial and fungal pathogens. The identification of resistance gene analogs holds great promise for development of resistant turmeric cultivars. Degenerate primers designed based on known resistance genes (R-genes) were used in combinations to elucidate resistance gene analogs from Curcuma longa cultivar surama. The three primers resulted in amplicons with expected sizes of 450-600 bp. The nucleotide sequence of these amplicons was obtained through sequencing; their predicted amino acid sequences compared to each other and to the amino acid sequences of known R-genes revealed significant sequence similarity. The finding of conserved domains, viz., kinase-1a, kinase-2 and hydrophobic motif, provided evidence that the sequences belong to the NBS-LRR class gene family. The presence of tryptophan as the last residue of kinase-2 motif further qualified them to be in the non-TIR-NBS-LRR subfamily of resistance genes. A cluster analysis based on the neighbor-joining method was carried out using Curcuma NBS analogs together with several resistance gene analogs and known R-genes, which classified them into two distinct subclasses, corresponding to clades N3 and N4 of non-TIR-NBS sequences described in plants. The NBS analogs that we isolated can be used as guidelines to eventually isolate numerous R-genes in turmeric.

  18. Fate of antibiotic resistance genes and metal resistance genes during thermophilic aerobic digestion of sewage sludge.

    Science.gov (United States)

    Jang, Hyun Min; Lee, Jangwoo; Kim, Young Beom; Jeon, Jong Hun; Shin, Jingyeong; Park, Mee-Rye; Kim, Young Mo

    2018-02-01

    This study examines the fate of twenty-three representative antibiotic resistance genes (ARGs) encoding tetracyclines, sulfonamides, quinolones, β-lactam antibiotics, macrolides, florfenicol and multidrug resistance during thermophilic aerobic digestion (TAD) of sewage sludge. The bacterial community, class 1 integrons (intI1) and four metal resistance genes (MRGs) were also quantified to determine the key drivers of changes in ARGs during TAD. At the end of digestion, significant decreases in the quantities of ARGs, MRGs and intI1 as well as 16S rRNA genes were observed. Partial redundancy analysis (RDA) showed that shifts in temperature were the key factors affecting a decrease in ARGs. Shifts in temperature led to decreased amounts of ARGs by reducing resistome and bacterial diversity, rather than by lowering horizontal transfer potential via intI1 or co-resistance via MRGs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Plant resistance genes : their structure, function and evolution

    NARCIS (Netherlands)

    Takken, F.L.W.; Joosten, M.H.A.J.

    2000-01-01

    Plants have developed efficient mechanisms to avoid infection or to mount responses that render them resistant upon attack by a pathogen. One of the best-studied defence mechanisms is based on gene-for-gene resistance through which plants, harbouring specific resistance (R) genes, specifically

  20. Resistance Genes and Genetic Elements Associated with Antibiotic Resistance in Clinical and Commensal Isolates of Streptococcus salivarius.

    Science.gov (United States)

    Chaffanel, Fanny; Charron-Bourgoin, Florence; Libante, Virginie; Leblond-Bourget, Nathalie; Payot, Sophie

    2015-06-15

    The diversity of clinical (n = 92) and oral and digestive commensal (n = 120) isolates of Streptococcus salivarius was analyzed by multilocus sequence typing (MLST). No clustering of clinical or commensal strains can be observed in the phylogenetic tree. Selected strains (92 clinical and 46 commensal strains) were then examined for their susceptibilities to tetracyclines, macrolides, lincosamides, aminoglycosides, and phenicol antibiotics. The presence of resistance genes tet(M), tet(O), erm(A), erm(B), mef(A/E), and catQ and associated genetic elements was investigated by PCR, as was the genetic linkage of resistance genes. High rates of erythromycin and tetracycline resistance were observed among the strains. Clinical strains displayed either the erm(B) (macrolide-lincosamide-streptogramin B [MLSB] phenotype) or mef(A/E) (M phenotype) resistance determinant, whereas almost all the commensal strains harbored the mef(A/E) resistance gene, carried by a macrolide efflux genetic assembly (MEGA) element. A genetic linkage between a macrolide resistance gene and genes of Tn916 was detected in 23 clinical strains and 5 commensal strains, with a predominance of Tn3872 elements (n = 13), followed by Tn6002 (n = 11) and Tn2009 (n = 4) elements. Four strains harboring a mef(A/E) gene were also resistant to chloramphenicol and carried a catQ gene. Sequencing of the genome of one of these strains revealed that these genes colocalized on an IQ-like element, as already described for other viridans group streptococci. ICESt3-related elements were also detected in half of the isolates. This work highlights the potential role of S. salivarius in the spread of antibiotic resistance genes both in the oral sphere and in the gut. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Regulatory role of tetR gene in a novel gene cluster of Acidovorax avenae subsp. avenae RS-1 under oxidative stress

    OpenAIRE

    Liu, He; Yang, Chun-Lan; Ge, Meng-Yu; Ibrahim, Muhammad; Li, Bin; Zhao, Wen-Jun; Chen, Gong-You; Zhu, Bo; Xie, Guan-Lin

    2014-01-01

    Acidovorax avenae subsp. avenae is the causal agent of bacterial brown stripe disease in rice. In this study, we characterized a novel horizontal transfer of a gene cluster, including tetR, on the chromosome of A. avenae subsp. avenae RS-1 by genome-wide analysis. TetR acted as a repressor in this gene cluster and the oxidative stress resistance was enhanced in tetR-deletion mutant strain. Electrophoretic mobility shift assay demonstrated that TetR regulator bound directly to the promoter of ...

  2. Evidence for an ergot alkaloid gene cluster in Claviceps purpurea.

    Science.gov (United States)

    Tudzynski, P; Hölter, K; Correia, T; Arntz, C; Grammel, N; Keller, U

    1999-02-01

    A gene (cpd1) coding for the dimethylallyltryptophan synthase (DMATS) that catalyzes the first specific step in the biosynthesis of ergot alkaloids, was cloned from a strain of Claviceps purpurea that produces alkaloids in axenic culture. The derived gene product (CPD1) shows only 70% similarity to the corresponding gene previously isolated from Claviceps strain ATCC 26245, which is likely to be an isolate of C. fusiformis. Therefore, the related cpd1 most probably represents the first C. purpurea gene coding for an enzymatic step of the alkaloid biosynthetic pathway to be cloned. Analysis of the 3'-flanking region of cpd1 revealed a second, closely linked ergot alkaloid biosynthetic gene named cpps1, which codes for a 356-kDa polypeptide showing significant similarity to fungal modular peptide synthetases. The protein contains three amino acid-activating modules, and in the second module a sequence is found which matches that of an internal peptide (17 amino acids in length) obtained from a tryptic digest of lysergyl peptide synthetase 1 (LPS1) of C. purpurea, thus confirming that cpps1 encodes LPS1. LPS1 activates the three amino acids of the peptide portion of ergot peptide alkaloids during D-lysergyl peptide assembly. Chromosome walking revealed the presence of additional genes upstream of cpd1 which are probably also involved in ergot alkaloid biosynthesis: cpox1 probably codes for an FAD-dependent oxidoreductase (which could represent the chanoclavine cyclase), and a second putative oxidoreductase gene, cpox2, is closely linked to it in inverse orientation. RT-PCR experiments confirm that all four genes are expressed under conditions of peptide alkaloid biosynthesis. These results strongly suggest that at least some genes of ergot alkaloid biosynthesis in C. purpurea are clustered, opening the way for a detailed molecular genetic analysis of the pathway.

  3. Global Analysis of miRNA Gene Clusters and Gene Families Reveals Dynamic and Coordinated Expression

    Directory of Open Access Journals (Sweden)

    Li Guo

    2014-01-01

    Full Text Available To further understand the potential expression relationships of miRNAs in miRNA gene clusters and gene families, a global analysis was performed in 4 paired tumor (breast cancer and adjacent normal tissue samples using deep sequencing datasets. The compositions of miRNA gene clusters and families are not random, and clustered and homologous miRNAs may have close relationships with overlapped miRNA species. Members in the miRNA group always had various expression levels, and even some showed larger expression divergence. Despite the dynamic expression as well as individual difference, these miRNAs always indicated consistent or similar deregulation patterns. The consistent deregulation expression may contribute to dynamic and coordinated interaction between different miRNAs in regulatory network. Further, we found that those clustered or homologous miRNAs that were also identified as sense and antisense miRNAs showed larger expression divergence. miRNA gene clusters and families indicated important biological roles, and the specific distribution and expression further enrich and ensure the flexible and robust regulatory network.

  4. Translating biosynthetic gene clusters into fungal armor and weaponry.

    Science.gov (United States)

    Keller, Nancy P

    2015-09-01

    Filamentous fungi are renowned for the production of a diverse array of secondary metabolites (SMs) where the genetic material required for synthesis of a SM is typically arrayed in a biosynthetic gene cluster (BGC). These natural products are valued for their bioactive properties stemming from their functions in fungal biology, key among those protection from abiotic and biotic stress and establishment of a secure niche. The producing fungus must not only avoid self-harm from endogenous SMs but also deliver specific SMs at the right time to the right tissue requiring biochemical aid. This review highlights functions of BGCs beyond the enzymatic assembly of SMs, considering the timing and location of SM production and other proteins in the clusters that control SM activity. Specifically, self-protection is provided by both BGC-encoded mechanisms and non-BGC subcellular containment of toxic SM precursors; delivery and timing is orchestrated through cellular trafficking patterns and stress- and developmental-responsive transcriptional programs.

  5. Discovery of functional genes for systemic acquired resistance in Arabidopsis thaliana through integrated data mining.

    Science.gov (United States)

    Pan, Youlian; Pylatuik, Jeffrey D; Ouyang, Junjun; Famili, A Fazel; Fobert, Pierre R

    2004-12-01

    Various data mining techniques combined with sequence motif information in the promoter region of genes were applied to discover functional genes that are involved in the defense mechanism of systemic acquired resistance (SAR) in Arabidopsis thaliana. A series of K-Means clustering with difference-in-shape as distance measure was initially applied. A stability measure was used to validate this clustering process. A decision tree algorithm with the discover-and-mask technique was used to identify a group of most informative genes. Appearance and abundance of various transcription factor binding sites in the promoter region of the genes were studied. Through the combination of these techniques, we were able to identify 24 candidate genes involved in the SAR defense mechanism. The candidate genes fell into 2 highly resolved categories, each category showing significantly unique profiles of regulatory elements in their promoter regions. This study demonstrates the strength of such integration methods and suggests a broader application of this approach.

  6. Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants

    OpenAIRE

    Li, An-Dong; Li, Li-Guan; Zhang, Tong

    2015-01-01

    Plasmids operate as independent genetic elements in microorganism communities. Through horizontal gene transfer, they can provide their host microorganisms with important functions such as antibiotic resistance and heavy metal resistance. In this study, six metagenomic libraries were constructed with plasmid DNA extracted from influent, activated sludge and digested sludge of two wastewater treatment plants. Compared with the metagenomes of the total DNA extracted from the same sectors of the...

  7. Gene cluster analysis for the biosynthesis of elgicins, novel lantibiotics produced by paenibacillus elgii B69

    Directory of Open Access Journals (Sweden)

    Teng Yi

    2012-03-01

    Full Text Available Abstract Background The recent increase in bacterial resistance to antibiotics has promoted the exploration of novel antibacterial materials. As a result, many researchers are undertaking work to identify new lantibiotics because of their potent antimicrobial activities. The objective of this study was to provide details of a lantibiotic-like gene cluster in Paenibacillus elgii B69 and to produce the antibacterial substances coded by this gene cluster based on culture screening. Results Analysis of the P. elgii B69 genome sequence revealed the presence of a lantibiotic-like gene cluster composed of five open reading frames (elgT1, elgC, elgT2, elgB, and elgA. Screening of culture extracts for active substances possessing the predicted properties of the encoded product led to the isolation of four novel peptides (elgicins AI, AII, B, and C with a broad inhibitory spectrum. The molecular weights of these peptides were 4536, 4593, 4706, and 4820 Da, respectively. The N-terminal sequence of elgicin B was Leu-Gly-Asp-Tyr, which corresponded to the partial sequence of the peptide ElgA encoded by elgA. Edman degradation suggested that the product elgicin B is derived from ElgA. By correlating the results of electrospray ionization-mass spectrometry analyses of elgicins AI, AII, and C, these peptides are deduced to have originated from the same precursor, ElgA. Conclusions A novel lantibiotic-like gene cluster was shown to be present in P. elgii B69. Four new lantibiotics with a broad inhibitory spectrum were isolated, and these appear to be promising antibacterial agents.

  8. Gene prioritization and clustering by multi-view text mining.

    Science.gov (United States)

    Yu, Shi; Tranchevent, Leon-Charles; De Moor, Bart; Moreau, Yves

    2010-01-14

    Text mining has become a useful tool for biologists trying to understand the genetics of diseases. In particular, it can help identify the most interesting candidate genes for a disease for further experimental analysis. Many text mining approaches have been introduced, but the effect of disease-gene identification varies in different text mining models. Thus, the idea of incorporating more text mining models may be beneficial to obtain more refined and accurate knowledge. However, how to effectively combine these models still remains a challenging question in machine learning. In particular, it is a non-trivial issue to guarantee that the integrated model performs better than the best individual model. We present a multi-view approach to retrieve biomedical knowledge using different controlled vocabularies. These controlled vocabularies are selected on the basis of nine well-known bio-ontologies and are applied to index the vast amounts of gene-based free-text information available in the MEDLINE repository. The text mining result specified by a vocabulary is considered as a view and the obtained multiple views are integrated by multi-source learning algorithms. We investigate the effect of integration in two fundamental computational disease gene identification tasks: gene prioritization and gene clustering. The performance of the proposed approach is systematically evaluated and compared on real benchmark data sets. In both tasks, the multi-view approach demonstrates significantly better performance than other comparing methods. In practical research, the relevance of specific vocabulary pertaining to the task is usually unknown. In such case, multi-view text mining is a superior and promising strategy for text-based disease gene identification.

  9. Coordinated evolution of co-expressed gene clusters in the Drosophila transcriptome

    Directory of Open Access Journals (Sweden)

    Jones Corbin D

    2008-01-01

    Full Text Available Abstract Background Co-expression of genes that physically cluster together is a common characteristic of eukaryotic transcriptomes. This organization of transcriptomes suggests that coordinated evolution of gene expression for clustered genes may also be common. Clusters where expression evolution of each gene is not independent of their neighbors are important units for understanding transcriptome evolution. Results We used a common microarray platform to measure gene expression in seven closely related species in the Drosophila melanogaster subgroup, accounting for confounding effects of sequence divergence. To summarize the correlation structure among genes in a chromosomal region, we analyzed the fraction of variation along the first principal component of the correlation matrix. We analyzed the correlation for blocks of consecutive genes to assess patterns of correlation that may be manifest at different scales of coordinated expression. We find that expression of physically clustered genes does evolve in a coordinated manner in many locations throughout the genome. Our analysis shows that relatively few of these clusters are near heterochromatin regions and that these clusters tend to be over-dispersed relative to the rest of the genome. This suggests that these clusters are not the byproduct of local gene clustering. We also analyzed the pattern of co-expression among neighboring genes within a single Drosophila species: D. simulans. For the co-expression clusters identified within this species, we find an under-representation of genes displaying a signature of recurrent adaptive amino acid evolution consistent with previous findings. However, clusters displaying co-evolution of expression among species are enriched for adaptively evolving genes. This finding points to a tie between adaptive sequence evolution and evolution of the transcriptome. Conclusion Our results demonstrate that co-evolution of expression in gene clusters is

  10. Plant agricultural streptomycin formulations do not carry antibiotic resistance genes.

    Science.gov (United States)

    Rezzonico, Fabio; Stockwell, Virginia O; Duffy, Brion

    2009-07-01

    Streptomycin is used in plant agriculture for bacterial disease control, particularly against fire blight in pome fruit orchards. Concerns that this may increase environmental antibiotic resistance have led to bans or restrictions on use. Experience with antibiotic use in animal feeds raises the possible influence of formulation-delivered resistance genes. We demonstrate that agricultural streptomycin formulations do not carry producer organism resistance genes. By using an optimized extraction procedure, Streptomyces 16S rRNA genes and the streptomycin resistance gene strA were not detected in agricultural streptomycin formulations. This diminishes the likelihood for one potential factor in resistance development due to streptomycin use.

  11. Gravitation field algorithm and its application in gene cluster

    Directory of Open Access Journals (Sweden)

    Zheng Ming

    2010-09-01

    Full Text Available Abstract Background Searching optima is one of the most challenging tasks in clustering genes from available experimental data or given functions. SA, GA, PSO and other similar efficient global optimization methods are used by biotechnologists. All these algorithms are based on the imitation of natural phenomena. Results This paper proposes a novel searching optimization algorithm called Gravitation Field Algorithm (GFA which is derived from the famous astronomy theory Solar Nebular Disk Model (SNDM of planetary formation. GFA simulates the Gravitation field and outperforms GA and SA in some multimodal functions optimization problem. And GFA also can be used in the forms of unimodal functions. GFA clusters the dataset well from the Gene Expression Omnibus. Conclusions The mathematical proof demonstrates that GFA could be convergent in the global optimum by probability 1 in three conditions for one independent variable mass functions. In addition to these results, the fundamental optimization concept in this paper is used to analyze how SA and GA affect the global search and the inherent defects in SA and GA. Some results and source code (in Matlab are publicly available at http://ccst.jlu.edu.cn/CSBG/GFA.

  12. Adaptive evolution of the FADS gene cluster within Africa.

    Directory of Open Access Journals (Sweden)

    Rasika A Mathias

    Full Text Available Long chain polyunsaturated fatty acids (LC-PUFAs are essential for brain structure, development, and function, and adequate dietary quantities of LC-PUFAs are thought to have been necessary for both brain expansion and the increase in brain complexity observed during modern human evolution. Previous studies conducted in largely European populations suggest that humans have limited capacity to synthesize brain LC-PUFAs such as docosahexaenoic acid (DHA from plant-based medium chain (MC PUFAs due to limited desaturase activity. Population-based differences in LC-PUFA levels and their product-to-substrate ratios can, in part, be explained by polymorphisms in the fatty acid desaturase (FADS gene cluster, which have been associated with increased conversion of MC-PUFAs to LC-PUFAs. Here, we show evidence that these high efficiency converter alleles in the FADS gene cluster were likely driven to near fixation in African populations by positive selection ∼85 kya. We hypothesize that selection at FADS variants, which increase LC-PUFA synthesis from plant-based MC-PUFAs, played an important role in allowing African populations obligatorily tethered to marine sources for LC-PUFAs in isolated geographic regions, to rapidly expand throughout the African continent 60-80 kya.

  13. Mapping in an apple (Malus x domestica) F1 segregating population based on physical clustering of differentially expressed genes.

    Science.gov (United States)

    Jensen, Philip J; Fazio, Gennaro; Altman, Naomi; Praul, Craig; McNellis, Timothy W

    2014-04-04

    Apple tree breeding is slow and difficult due to long generation times, self-incompatibility, and complex genetics. The identification of molecular markers linked to traits of interest is a way to expedite the breeding process. In the present study, we aimed to identify genes whose steady-state transcript abundance was associated with inheritance of specific traits segregating in an apple (Malus × domestica) rootstock F1 breeding population, including resistance to powdery mildew (Podosphaera leucotricha) disease and woolly apple aphid (Eriosoma lanigerum). Transcription profiling was performed for 48 individual F1 apple trees from a cross of two highly heterozygous parents, using RNA isolated from healthy, actively-growing shoot tips and a custom apple DNA oligonucleotide microarray representing 26,000 unique transcripts. Genome-wide expression profiles were not clear indicators of powdery mildew or woolly apple aphid resistance phenotype. However, standard differential gene expression analysis between phenotypic groups of trees revealed relatively small sets of genes with trait-associated expression levels. For example, thirty genes were identified that were differentially expressed between trees resistant and susceptible to powdery mildew. Interestingly, the genes encoding twenty-four of these transcripts were physically clustered on chromosome 12. Similarly, seven genes were identified that were differentially expressed between trees resistant and susceptible to woolly apple aphid, and the genes encoding five of these transcripts were also clustered, this time on chromosome 17. In each case, the gene clusters were in the vicinity of previously identified major quantitative trait loci for the corresponding trait. Similar results were obtained for a series of molecular traits. Several of the differentially expressed genes were used to develop DNA polymorphism markers linked to powdery mildew disease and woolly apple aphid resistance. Gene expression profiling

  14. Marker mapping and resistance gene associations in soybean

    OpenAIRE

    2011-01-01

    The invention provides novel molecular genetic markers in soybean, where the markers are useful, for example, in the marker-assisted selection of gene alleles that impart disease-resistance, thereby allowing the identification and selection of a disease-resistant plant. The markers also find use in positional cloning of disease-resistance genes.

  15. Indole-Diterpene Gene Cluster from Aspergillus flavus

    Science.gov (United States)

    Zhang, Shuguang; Monahan, Brendon J.; Tkacz, Jan S.; Scott, Barry

    2004-01-01

    Aflatrem is a potent tremorgenic mycotoxin produced by the soil fungus Aspergillus flavus and is a member of a large structurally diverse group of secondary metabolites known as indole-diterpenes. By using degenerate primers for conserved domains of fungal geranylgeranyl diphosphate synthases, we cloned two genes, atmG and ggsA (an apparent pseudogene), from A. flavus. Adjacent to atmG are two other genes, atmC and atmM. These three genes have 64 to 70% amino acid sequence similarity and conserved synteny with a cluster of orthologous genes, paxG, paxC, and paxM, from Penicillium paxilli which are required for indole-diterpene biosynthesis. atmG, atmC, and atmM are coordinately expressed, with transcript levels dramatically increasing at the onset of aflatrem biosynthesis. A genomic copy of atmM can complement a paxM deletion mutant of P. paxilli, demonstrating that atmM is a functional homolog of paxM. Thus, atmG, atmC, and atmM are necessary, but not sufficient, for aflatrem biosynthesis by A. flavus. This provides the first genetic evidence for the biosynthetic pathway of aflatrem in A. flavus. PMID:15528556

  16. Generating in vivo cloning vectors for parallel cloning of large gene clusters by homologous recombination.

    Directory of Open Access Journals (Sweden)

    Jeongmin Lee

    Full Text Available A robust method for the in vivo cloning of large gene clusters was developed based on homologous recombination (HR, requiring only the transformation of PCR products into Escherichia coli cells harboring a receiver plasmid. Positive clones were selected by an acquired antibiotic resistance, which was activated by the recruitment of a short ribosome-binding site plus start codon sequence from the PCR products to the upstream position of a silent antibiotic resistance gene in receiver plasmids. This selection was highly stringent and thus the cloning efficiency of the GFPuv gene (size: 0.7 kb was comparable to that of the conventional restriction-ligation method, reaching up to 4.3 × 10(4 positive clones per μg of DNA. When we attempted parallel cloning of GFPuv fusion genes (size: 2.0 kb and carotenoid biosynthesis pathway clusters (sizes: 4 kb, 6 kb, and 10 kb, the cloning efficiency was similarly high regardless of the DNA size, demonstrating that this would be useful for the cloning of large DNA sequences carrying multiple open reading frames. However, restriction analyses of the obtained plasmids showed that the selected cells may contain significant amounts of receiver plasmids without the inserts. To minimize the amount of empty plasmid in the positive selections, the sacB gene encoding a levansucrase was introduced as a counter selection marker in receiver plasmid as it converts sucrose to a toxic levan in the E. coli cells. Consequently, this method yielded completely homogeneous plasmids containing the inserts via the direct transformation of PCR products into E. coli cells.

  17. Arrangement of the Clostridium baratii F7 toxin gene cluster with identification of a σ factor that recognizes the botulinum toxin gene cluster promoters.

    Science.gov (United States)

    Dover, Nir; Barash, Jason R; Burke, Julianne N; Hill, Karen K; Detter, John C; Arnon, Stephen S

    2014-01-01

    Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bont gene that is part of a toxin gene cluster that includes several accessory genes. We sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. This TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.

  18. In Silico Analysis of Antibiotic Resistance Genes in the Gut Microflora of Individuals from Diverse Geographies and Age-Groups

    Science.gov (United States)

    Ghosh, Tarini Shankar; Gupta, Sourav Sen; Nair, Gopinath Balakrish; Mande, Sharmila S.

    2013-01-01

    The spread of antibiotic resistance, originating from the rampant and unrestrictive use of antibiotics in humans and livestock over the past few decades has emerged as a global health problem. This problem has been further compounded by recent reports implicating the gut microbial communities to act as reservoirs of antibiotic resistance. We have profiled the presence of probable antibiotic resistance genes in the gut flora of 275 individuals from eight different nationalities. For this purpose, available metagenomic data sets corresponding to 275 gut microbiomes were analyzed. Sequence similarity searches of the genomic fragments constituting each of these metagenomes were performed against genes conferring resistance to around 240 antibiotics. Potential antibiotic resistance genes conferring resistance against 53 different antibiotics were detected in the human gut microflora analysed in this study. In addition to several geography/country-specific patterns, four distinct clusters of gut microbiomes, referred to as ‘Resistotypes’, exhibiting similarities in their antibiotic resistance profiles, were identified. Groups of antibiotics having similarities in their resistance patterns within each of these clusters were also detected. Apart from this, mobile multi-drug resistance gene operons were detected in certain gut microbiomes. The study highlighted an alarmingly high abundance of antibiotic resistance genes in two infant gut microbiomes. The results obtained in the present study presents a holistic ‘big picture’ on the spectra of antibiotic resistance within our gut microbiota across different geographies. Such insights may help in implementation of new regulations and stringency on the existing ones. PMID:24391833

  19. DNA microarray analysis reveals that antibiotic resistance-gene diversity in human gut microbiota is age related.

    Science.gov (United States)

    Lu, Na; Hu, Yongfei; Zhu, Liying; Yang, Xi; Yin, Yeshi; Lei, Fang; Zhu, Yongliang; Du, Qin; Wang, Xin; Meng, Zhiqi; Zhu, Baoli

    2014-03-12

    The human gut is a reservoir for antibiotic resistance genes. In this report, we used a DNA microarray chip covering 369 resistance types to investigate the relationship between antibiotic resistance-gene diversity and human age. Metagenomic DNA from fecal samples from 124 healthy volunteers of four different age groups (pre-school-aged children (CH), school-aged children (SC), high school students (HSS) and adults (AD)) were hybridized to the microarray chip. The results showed that 80 different gene types were recovered from the gut microbiota of the 124 individuals: 25 from CH, 37 from SC, 58 from HSS and 72 from AD. Further analysis indicated that the antibiotic resistance genes in the CH, SC and AD groups clustered independently, whereas the gene types in the HSS group were more divergent. Our results indicated that antibiotic resistance genes in the human gut microbiota accumulate from childhood to adulthood and become more complex with age.

  20. DNA microarray analysis reveals that antibiotic resistance-gene diversity in human gut microbiota is age related

    Science.gov (United States)

    Lu, Na; Hu, Yongfei; Zhu, Liying; Yang, Xi; Yin, Yeshi; Lei, Fang; Zhu, Yongliang; Du, Qin; Wang, Xin; Meng, Zhiqi; Zhu, Baoli

    2014-01-01

    The human gut is a reservoir for antibiotic resistance genes. In this report, we used a DNA microarray chip covering 369 resistance types to investigate the relationship between antibiotic resistance-gene diversity and human age. Metagenomic DNA from fecal samples from 124 healthy volunteers of four different age groups (pre-school-aged children (CH), school-aged children (SC), high school students (HSS) and adults (AD)) were hybridized to the microarray chip. The results showed that 80 different gene types were recovered from the gut microbiota of the 124 individuals: 25 from CH, 37 from SC, 58 from HSS and 72 from AD. Further analysis indicated that the antibiotic resistance genes in the CH, SC and AD groups clustered independently, whereas the gene types in the HSS group were more divergent. Our results indicated that antibiotic resistance genes in the human gut microbiota accumulate from childhood to adulthood and become more complex with age. PMID:24618772

  1. Regulatory role of tetR gene in a novel gene cluster of Acidovorax avenae subsp. avenae RS-1 under oxidative stress

    Directory of Open Access Journals (Sweden)

    He eLiu

    2014-10-01

    Full Text Available Acidovorax avenae subsp. avenae is the causal agent of bacterial brown stripe disease in rice. In this study, we characterized a novel horizontal transfer of a gene cluster, including tetR, on the chromosome of A. avenae subsp. avenae RS-1 by genome-wide analysis. TetR acted as a repressor in this gene cluster and the oxidative stress resistance was enhanced in tetR-deletion mutant strain. Electrophoretic mobility shift assay (EMSA demonstrated that TetR regulator bound directly to the promoter of this gene cluster. Consistently, the results of quantitative real-time PCR also showed alterations in expression of associated genes. Moreover, the proteins affected by TetR under oxidative stress were revealed by comparing proteomic profiles of wild-type and mutant strains via 1D SDS-PAGE and LC-MS/MS analyses. Taken together, our results demonstrated that tetR gene in this novel gene cluster contributed to cell survival under oxidative stress, and TetR protein played an important regulatory role in growth kinetics, biofilm-forming capability, SOD and catalase activity, and oxide detoxicating ability.

  2. Regulatory role of tetR gene in a novel gene cluster of Acidovorax avenae subsp. avenae RS-1 under oxidative stress.

    Science.gov (United States)

    Liu, He; Yang, Chun-Lan; Ge, Meng-Yu; Ibrahim, Muhammad; Li, Bin; Zhao, Wen-Jun; Chen, Gong-You; Zhu, Bo; Xie, Guan-Lin

    2014-01-01

    Acidovorax avenae subsp. avenae is the causal agent of bacterial brown stripe disease in rice. In this study, we characterized a novel horizontal transfer of a gene cluster, including tetR, on the chromosome of A. avenae subsp. avenae RS-1 by genome-wide analysis. TetR acted as a repressor in this gene cluster and the oxidative stress resistance was enhanced in tetR-deletion mutant strain. Electrophoretic mobility shift assay demonstrated that TetR regulator bound directly to the promoter of this gene cluster. Consistently, the results of quantitative real-time PCR also showed alterations in expression of associated genes. Moreover, the proteins affected by TetR under oxidative stress were revealed by comparing proteomic profiles of wild-type and mutant strains via 1D SDS-PAGE and LC-MS/MS analyses. Taken together, our results demonstrated that tetR gene in this novel gene cluster contributed to cell survival under oxidative stress, and TetR protein played an important regulatory role in growth kinetics, biofilm-forming capability, superoxide dismutase and catalase activity, and oxide detoxicating ability.

  3. GENE EXPRESSION DYNAMICS IN PATIENTS WITH SEVERE THERAPY-RESISTANT ASTHMA DURING TREATMENT PERIOD

    Directory of Open Access Journals (Sweden)

    Ye. S. Kulikov

    2014-01-01

    Full Text Available Introduction: The leading mechanisms and causes of severe therapy resistant asthma are poorly understood. The aim of this study was to define global patterns of gene expression in adults with severe therapy-resistant asthma in dynamic during treatment period.Methods: Performed 24-week prospective interventional study in parallel groups. Severe asthma patients was aposterior divided at therapy sensitive and resistant patients according to ATS criteria. Global transcriptome profile was characterized using the Affymetrix HuGene ST1.0 chip. Cluster analysis was performed.Results and conclusion: According to our data several mechanisms of therapy resistance may be considered: increased levels of nitric oxide and beta2-agonists nitration, dysregulation of endogenous steroids secretion and involvement in the pathogenesis of Staphylococcus aureus. Absence of suppression of gene expression KEGG-pathway “asthma" may reflect the low efficiency or long period of anti-inflammatory therapy effect realization.

  4. A gene cluster for the biosynthesis of moenomycin family antibiotics in the genome of teicoplanin producer Actinoplanes teichomyceticus.

    Science.gov (United States)

    Horbal, Liliya; Ostash, Bohdan; Luzhetskyy, Andriy; Walker, Suzanne; Kalinowski, Jorn; Fedorenko, Victor

    2016-09-01

    Moenomycins are phosphoglycolipid antibiotics notable for their extreme potency, unique mode of action, and proven record of use in animal nutrition without selection for resistant microflora. There is a keen interest in manipulation of structures of moenomycins in order to better understand their structure-activity relationships and to generate improved analogs. Only two almost identical moenomycin biosynthetic gene clusters are known, limiting our knowledge of the evolution of moenomycin pathways and our ability to genetically diversify them. Here, we report a novel gene cluster (tchm) that directs production of the phosphoglycolipid teichomycin in Actinoplanes teichomyceticus. Its overall genetic architecture is significantly different from that of the moenomycin biosynthesis (moe) gene clusters of Streptomyces ghanaensis and Streptomyces clavuligerus, featuring multiple gene rearrangements and two novel structural genes. Involvement of the tchm cluster in teichomycin biosynthesis was confirmed via heterologous co-expression of amidotransferase tchmH5 and moe genes. Our work sets the background for further engineering of moenomycins and for deeper inquiries into the evolution of this fascinating biosynthetic pathway.

  5. Time-series clustering of gene expression in irradiated and bystander fibroblasts: an application of FBPA clustering

    Directory of Open Access Journals (Sweden)

    Markatou Marianthi

    2011-01-01

    Full Text Available Abstract Background The radiation bystander effect is an important component of the overall biological response of tissues and organisms to ionizing radiation, but the signaling mechanisms between irradiated and non-irradiated bystander cells are not fully understood. In this study, we measured a time-series of gene expression after α-particle irradiation and applied the Feature Based Partitioning around medoids Algorithm (FBPA, a new clustering method suitable for sparse time series, to identify signaling modules that act in concert in the response to direct irradiation and bystander signaling. We compared our results with those of an alternate clustering method, Short Time series Expression Miner (STEM. Results While computational evaluations of both clustering results were similar, FBPA provided more biological insight. After irradiation, gene clusters were enriched for signal transduction, cell cycle/cell death and inflammation/immunity processes; but only FBPA separated clusters by function. In bystanders, gene clusters were enriched for cell communication/motility, signal transduction and inflammation processes; but biological functions did not separate as clearly with either clustering method as they did in irradiated samples. Network analysis confirmed p53 and NF-κB transcription factor-regulated gene clusters in irradiated and bystander cells and suggested novel regulators, such as KDM5B/JARID1B (lysine (K-specific demethylase 5B and HDACs (histone deacetylases, which could epigenetically coordinate gene expression after irradiation. Conclusions In this study, we have shown that a new time series clustering method, FBPA, can provide new leads to the mechanisms regulating the dynamic cellular response to radiation. The findings implicate epigenetic control of gene expression in addition to transcription factor networks.

  6. Lampreys have a single gene cluster for the fast skeletal myosin heavy chain gene family.

    Directory of Open Access Journals (Sweden)

    Daisuke Ikeda

    Full Text Available Muscle tissues contain the most classic sarcomeric myosin, called myosin II, which consists of 2 heavy chains (MYHs and 4 light chains. In the case of humans (tetrapod, a total of 6 fast skeletal-type MYH genes (MYHs are clustered on a single chromosome. In contrast, torafugu (teleost contains at least 13 fast skeletal MYHs, which are distributed in 5 genomic regions; the MYHs are clustered in 3 of these regions. In the present study, the evolutionary relationship among fast skeletal MYHs is elucidated by comparing the MYHs of teleosts and tetrapods with those of cyclostome lampreys, one of two groups of extant jawless vertebrates (agnathans. We found that lampreys contain at least 3 fast skeletal MYHs, which are clustered in a head-to-tail manner in a single genomic region. Although there was apparent synteny in the corresponding MYH cluster regions between lampreys and tetrapods, phylogenetic analysis indicated that lamprey and tetrapod MYHs have independently duplicated and diversified. Subsequent transgenic approaches showed that the 5'-flanking sequences of Japanese lamprey fast skeletal MYHs function as a regulatory sequence to drive specific reporter gene expression in the fast skeletal muscle of zebrafish embryos. Although zebrafish MYH promoters showed apparent activity to direct reporter gene expression in myogenic cells derived from mice, promoters from Japanese lamprey MYHs had no activity. These results suggest that the muscle-specific regulatory mechanisms are partially conserved between teleosts and tetrapods but not between cyclostomes and tetrapods, despite the conserved synteny.

  7. Gene expression profiling in cluster headache: a pilot microarray study.

    Science.gov (United States)

    Sjöstrand, Christina; Duvefelt, Kristina; Steinberg, Anna; Remahl, Ingela Nilsson; Waldenlind, Elisabet; Hillert, Jan

    2006-01-01

    Cluster headache (CH) is a primary neurovascular headache disorder characterized by attacks of excruciating pain accompanied by ipsilateral autonomic symptoms. CH pathophysiology is presumed to involve an activation of hypothalamic and trigeminovascular systems, but inflammation and immunological mechanisms have also been hypothesized to be of importance. To identify differentially expressed genes during different clinical phases of CH, assuming that changes of pathophysiological importance would also be seen in peripheral venous blood. Blood samples were drawn at 3 consecutive occasions from 3 episodic CH patients: during attacks, between attacks and in remission, and at 1 occasion from 3 matched controls. Global gene expression was analyzed with microarray tehnology using the Affymetrix Human Genome U133 2.0 Plus GeneChip Set, covering more than 54,000 gene transcripts, corresponding to almost 22,000 genes. Quantitative RT-PCR on S100P gene expression was analyzed in 6 patients and 14 controls. Overall, quite small differences were seen intraindividually and large differences interindividually. However, pairwise comparisons of signal values showed upregulation of several S100 calcium binding proteins; S100A8 (calgranulin A), S100A12 (calgranulin C), and S100P during active phase of the disease compared to remission. Also, annexin A3 (calcium-binding) and ICAM3 showed upregulation. BIRC1 (neuronal apoptosis inhibitory protein), CREB5, HLA-DQA1, and HLA-DQB1 were upregulated in patients compared to controls. The upregulation of S100P during attack versus remission was confirmed by quantitative RT-PCR analysis. The S100A8 and S100A12 proteins are considered markers of non-infectious inflammatory disease, while the function of S100P is still largely unknown. Furthermore, upregulation of HLA-DQ genes in CH patients may also indicate an inflammatory response. Upregulation of these pro-inflammatory genes during the active phase of CH has not formerly been reported. Data

  8. The ergot alkaloid gene cluster in Claviceps purpurea: extension of the cluster sequence and intra species evolution.

    Science.gov (United States)

    Haarmann, Thomas; Machado, Caroline; Lübbe, Yvonne; Correia, Telmo; Schardl, Christopher L; Panaccione, Daniel G; Tudzynski, Paul

    2005-06-01

    The genomic region of Claviceps purpurea strain P1 containing the ergot alkaloid gene cluster [Tudzynski, P., Hölter, K., Correia, T., Arntz, C., Grammel, N., Keller, U., 1999. Evidence for an ergot alkaloid gene cluster in Claviceps purpurea. Mol. Gen. Genet. 261, 133-141] was explored by chromosome walking, and additional genes probably involved in the ergot alkaloid biosynthesis have been identified. The putative cluster sequence (extending over 68.5kb) contains 4 different nonribosomal peptide synthetase (NRPS) genes and several putative oxidases. Northern analysis showed that most of the genes were co-regulated (repressed by high phosphate), and identified probable flanking genes by lack of co-regulation. Comparison of the cluster sequences of strain P1, an ergotamine producer, with that of strain ECC93, an ergocristine producer, showed high conservation of most of the cluster genes, but significant variation in the NRPS modules, strongly suggesting that evolution of these chemical races of C. purpurea is determined by evolution of NRPS module specificity.

  9. Candidate Gene Sequence Analyses toward Identifying Rsv3-Type Resistance to Soybean Mosaic Virus

    Directory of Open Access Journals (Sweden)

    N. R. Redekar

    2016-07-01

    Full Text Available is one of three genetic loci conferring strain-specific resistance to (SMV. The locus has been mapped to a 154-kb region on chromosome 14, containing a cluster of five nucleotide-binding leucine-rich repeat (NB-LRR resistance genes. High sequence similarity between the candidate genes challenges fine mapping of the locus. Among the five, Glyma14g38533 showed the highest transcript abundance in 1 to 3 h of SMV-G7 inoculation. Comparative sequence analyses were conducted with the five candidate NB-LRR genes from susceptible (-type soybean [ (L. Merr.] cultivar Williams 82, resistant (-type cultivar Hwangkeum, and resistant lines L29 and RRR. Sequence comparisons revealed that Glyma14g38533 had far more polymorphisms than the other candidate genes. Interestingly, Glyma14g38533 gene from -type lines exhibited 150 single-nucleotide polymorphism (SNP and six insertion–deletion (InDel markers relative to -type line, Furthermore, the polymorphisms identified in three -type lines were highly conserved. Several polymorphisms were validated in 18 -type resistant and six -type susceptible lines and were found associated with their disease response. The majority of the polymorphisms were located in LRR domain encoding region, which is involved in pathogen recognition via protein–protein interactions. These findings associating Glyma14g38533 with -type resistance to SMV suggest it is the most likely candidate gene for .

  10. Variations in CCL3L gene cluster sequence and non-specific gene copy numbers

    Directory of Open Access Journals (Sweden)

    Edberg Jeffrey C

    2010-03-01

    Full Text Available Abstract Background Copy number variations (CNVs of the gene CC chemokine ligand 3-like1 (CCL3L1 have been implicated in HIV-1 susceptibility, but the association has been inconsistent. CCL3L1 shares homology with a cluster of genes localized to chromosome 17q12, namely CCL3, CCL3L2, and, CCL3L3. These genes are involved in host defense and inflammatory processes. Several CNV assays have been developed for the CCL3L1 gene. Findings Through pairwise and multiple alignments of these genes, we have shown that the homology between these genes ranges from 50% to 99% in complete gene sequences and from 70-100% in the exonic regions, with CCL3L1 and CCL3L3 being identical. By use of MEGA 4 and BioEdit, we aligned sense primers, anti-sense primers, and probes used in several previously described assays against pre-multiple alignments of all four chemokine genes. Each set of probes and primers aligned and matched with overlapping sequences in at least two of the four genes, indicating that previously utilized RT-PCR based CNV assays are not specific for only CCL3L1. The four available assays measured median copies of 2 and 3-4 in European and African American, respectively. The concordance between the assays ranged from 0.44-0.83 suggesting individual discordant calls and inconsistencies with the assays from the expected gene coverage from the known sequence. Conclusions This indicates that some of the inconsistencies in the association studies could be due to assays that provide heterogenous results. Sequence information to determine CNV of the three genes separately would allow to test whether their association with the pathogenesis of a human disease or phenotype is affected by an individual gene or by a combination of these genes.

  11. Search Engine for Antimicrobial Resistance: A Cloud Compatible Pipeline and Web Interface for Rapidly Detecting Antimicrobial Resistance Genes Directly from Sequence Data.

    Science.gov (United States)

    Rowe, Will; Baker, Kate S; Verner-Jeffreys, David; Baker-Austin, Craig; Ryan, Jim J; Maskell, Duncan; Pearce, Gareth

    2015-01-01

    Antimicrobial resistance remains a growing and significant concern in human and veterinary medicine. Current laboratory methods for the detection and surveillance of antimicrobial resistant bacteria are limited in their effectiveness and scope. With the rapidly developing field of whole genome sequencing beginning to be utilised in clinical practice, the ability to interrogate sequencing data quickly and easily for the presence of antimicrobial resistance genes will become increasingly important and useful for informing clinical decisions. Additionally, use of such tools will provide insight into the dynamics of antimicrobial resistance genes in metagenomic samples such as those used in environmental monitoring. Here we present the Search Engine for Antimicrobial Resistance (SEAR), a pipeline and web interface for detection of horizontally acquired antimicrobial resistance genes in raw sequencing data. The pipeline provides gene information, abundance estimation and the reconstructed sequence of antimicrobial resistance genes; it also provides web links to additional information on each gene. The pipeline utilises clustering and read mapping to annotate full-length genes relative to a user-defined database. It also uses local alignment of annotated genes to a range of online databases to provide additional information. We demonstrate SEAR's application in the detection and abundance estimation of antimicrobial resistance genes in two novel environmental metagenomes, 32 human faecal microbiome datasets and 126 clinical isolates of Shigella sonnei. We have developed a pipeline that contributes to the improved capacity for antimicrobial resistance detection afforded by next generation sequencing technologies, allowing for rapid detection of antimicrobial resistance genes directly from sequencing data. SEAR uses raw sequencing data via an intuitive interface so can be run rapidly without requiring advanced bioinformatic skills or resources. Finally, we show that SEAR

  12. Search Engine for Antimicrobial Resistance: A Cloud Compatible Pipeline and Web Interface for Rapidly Detecting Antimicrobial Resistance Genes Directly from Sequence Data.

    Directory of Open Access Journals (Sweden)

    Will Rowe

    Full Text Available Antimicrobial resistance remains a growing and significant concern in human and veterinary medicine. Current laboratory methods for the detection and surveillance of antimicrobial resistant bacteria are limited in their effectiveness and scope. With the rapidly developing field of whole genome sequencing beginning to be utilised in clinical practice, the ability to interrogate sequencing data quickly and easily for the presence of antimicrobial resistance genes will become increasingly important and useful for informing clinical decisions. Additionally, use of such tools will provide insight into the dynamics of antimicrobial resistance genes in metagenomic samples such as those used in environmental monitoring.Here we present the Search Engine for Antimicrobial Resistance (SEAR, a pipeline and web interface for detection of horizontally acquired antimicrobial resistance genes in raw sequencing data. The pipeline provides gene information, abundance estimation and the reconstructed sequence of antimicrobial resistance genes; it also provides web links to additional information on each gene. The pipeline utilises clustering and read mapping to annotate full-length genes relative to a user-defined database. It also uses local alignment of annotated genes to a range of online databases to provide additional information. We demonstrate SEAR's application in the detection and abundance estimation of antimicrobial resistance genes in two novel environmental metagenomes, 32 human faecal microbiome datasets and 126 clinical isolates of Shigella sonnei.We have developed a pipeline that contributes to the improved capacity for antimicrobial resistance detection afforded by next generation sequencing technologies, allowing for rapid detection of antimicrobial resistance genes directly from sequencing data. SEAR uses raw sequencing data via an intuitive interface so can be run rapidly without requiring advanced bioinformatic skills or resources. Finally, we

  13. Dissection of Resistance Genes to Pseudomonas syringae pv. phaseolicola in UI3 Common Bean Cultivar

    Directory of Open Access Journals (Sweden)

    Ana M. González

    2017-11-01

    Full Text Available Few quantitative trait loci have been mapped for resistance to Pseudomonas syringae pv. phaseolicola in common bean. Two F2 populations were developed from the host differential UI3 cultivar. The objective of this study was to further characterize the resistance to races 1, 5, 7 and 9 of Psp included in UI3. Using a QTL mapping approach, 16 and 11 main-effect QTLs for pod and primary leaf resistance were located on LG10, explaining up to 90% and 26% of the phenotypic variation, respectively. The homologous genomic region corresponding to primary leaf resistance QTLs detected tested positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL, Natural Resistance Associated Macrophage (NRAMP and Pentatricopeptide Repeat family (PPR proteins. It is worth noting that the main effect QTLs for resistance in pod were located inside a 3.5 Mb genomic region that included the Phvul.010G021200 gene, which encodes a protein that has the highest sequence similarity to the RIN4 gene of Arabidopsis, and can be considered an important candidate gene for the organ-specific QTLs identified here. These results support that resistance to Psp from UI3 might result from the immune response activated by combinations of R proteins, and suggest the guard model as an important mechanism in pod resistance to halo blight. The candidate genes identified here warrant functional studies that will help in characterizing the actual defense gene(s in UI3 genotype.

  14. A genomic analysis of disease-resistance genes encoding nucleotide binding sites in Sorghum bicolor

    Directory of Open Access Journals (Sweden)

    Xiao Cheng

    2010-01-01

    Full Text Available A large set of candidate nucleotide-binding site (NBS-encoding genes related to disease resistance was identified in the sorghum (Sorghum bicolor genome. These resistance (R genes were characterized based on their structural diversity, physical chromosomal location and phylogenetic relationships. Based on their N-terminal motifs and leucine-rich repeats (LRR, 50 non-regular NBS genes and 224 regular NBS genes were identified in 274 candidate NBS genes. The regular NBS genes were classified into ten types: CNL, CN, CNLX, CNX, CNXL, CXN, NX, N, NL and NLX. The vast majority (97% of NBS genes occurred in gene clusters, indicating extensive gene duplication in the evolution of S. bicolor NBS genes. Analysis of the S. bicolor NBS phylogenetic tree revealed two major clades. Most NBS genes were located at the distal tip of the long arms of the ten sorghum chromosomes, a pattern significantly different from rice and Arabidopsis, the NBS genes of which have a random chromosomal distribution.

  15. [Establishment of 5 resistant ovarian cancer cell strains and expression of resistance-related genes].

    Science.gov (United States)

    Luan, Ying-zi; Li, Li; Li, Dang-rong; Zhang, Wei; Tang, Bu-jian

    2004-06-01

    To investigate expression difference of several drug resistance related genes between sensitive and resistant ovarian carcinoma cells. Cell lines resistant to cisplatin, carboplatin and taxol were established from ovarian carcinoma cell lines of SKOV3 and A2780, and their biological features were detected. The expressions of several genes related to drug resistance were measured by RT-PCR method. (1) The values of resistance index (RI) of resistant cells to relevant drugs were elevated 3 times or more, with different degrees of cross-resistance to several other drugs (RI 2 approximately 20). They grew more slowly than primary cells (Td elongated 1.4 approximately 2.4 times, P 0.05). Intracellular concentrations of relevant drugs were reduced 2.0 approximately 8.5 times in resistant cells (P p53, lung resistance protein-1 (LRP-1), multiple drug resistance related protein-1 (MRP-1) genes were expressed at lower levels in resistant cells than in sensitive cells; while protein kinase C (PKC), topoisomerase (topo) I, and topo II beta were expressed higher, no obvious alterations were found concerning glutathione S transferase-pi (GST-pi), and topo II alpha. Expression of multiple drug resistance-1 (MDR-1) gene was either elevated or reduced in different cells. The expressions of resistance related genes were widely different in different kinds of resistant cells, suggesting more than one pathway leading to resistance transformation. This adds more difficulties for clinical management.

  16. Challenges in microarray class discovery: a comprehensive examination of normalization, gene selection and clustering

    Science.gov (United States)

    2010-01-01

    Background Cluster analysis, and in particular hierarchical clustering, is widely used to extract information from gene expression data. The aim is to discover new classes, or sub-classes, of either individuals or genes. Performing a cluster analysis commonly involve decisions on how to; handle missing values, standardize the data and select genes. In addition, pre-processing, involving various types of filtration and normalization procedures, can have an effect on the ability to discover biologically relevant classes. Here we consider cluster analysis in a broad sense and perform a comprehensive evaluation that covers several aspects of cluster analyses, including normalization. Result We evaluated 2780 cluster analysis methods on seven publicly available 2-channel microarray data sets with common reference designs. Each cluster analysis method differed in data normalization (5 normalizations were considered), missing value imputation (2), standardization of data (2), gene selection (19) or clustering method (11). The cluster analyses are evaluated using known classes, such as cancer types, and the adjusted Rand index. The performances of the different analyses vary between the data sets and it is difficult to give general recommendations. However, normalization, gene selection and clustering method are all variables that have a significant impact on the performance. In particular, gene selection is important and it is generally necessary to include a relatively large number of genes in order to get good performance. Selecting genes with high standard deviation or using principal component analysis are shown to be the preferred gene selection methods. Hierarchical clustering using Ward's method, k-means clustering and Mclust are the clustering methods considered in this paper that achieves the highest adjusted Rand. Normalization can have a significant positive impact on the ability to cluster individuals, and there are indications that background correction is

  17. Combining Pareto-optimal clusters using supervised learning for identifying co-expressed genes.

    Science.gov (United States)

    Maulik, Ujjwal; Mukhopadhyay, Anirban; Bandyopadhyay, Sanghamitra

    2009-01-20

    The landscape of biological and biomedical research is being changed rapidly with the invention of microarrays which enables simultaneous view on the transcription levels of a huge number of genes across different experimental conditions or time points. Using microarray data sets, clustering algorithms have been actively utilized in order to identify groups of co-expressed genes. This article poses the problem of fuzzy clustering in microarray data as a multiobjective optimization problem which simultaneously optimizes two internal fuzzy cluster validity indices to yield a set of Pareto-optimal clustering solutions. Each of these clustering solutions possesses some amount of information regarding the clustering structure of the input data. Motivated by this fact, a novel fuzzy majority voting approach is proposed to combine the clustering information from all the solutions in the resultant Pareto-optimal set. This approach first identifies the genes which are assigned to some particular cluster with high membership degree by most of the Pareto-optimal solutions. Using this set of genes as the training set, the remaining genes are classified by a supervised learning algorithm. In this work, we have used a Support Vector Machine (SVM) classifier for this purpose. The performance of the proposed clustering technique has been demonstrated on five publicly available benchmark microarray data sets, viz., Yeast Sporulation, Yeast Cell Cycle, Arabidopsis Thaliana, Human Fibroblasts Serum and Rat Central Nervous System. Comparative studies of the use of different SVM kernels and several widely used microarray clustering techniques are reported. Moreover, statistical significance tests have been carried out to establish the statistical superiority of the proposed clustering approach. Finally, biological significance tests have been carried out using a web based gene annotation tool to show that the proposed method is able to produce biologically relevant clusters of co

  18. Combining Pareto-optimal clusters using supervised learning for identifying co-expressed genes

    Directory of Open Access Journals (Sweden)

    Bandyopadhyay Sanghamitra

    2009-01-01

    Full Text Available Abstract Background The landscape of biological and biomedical research is being changed rapidly with the invention of microarrays which enables simultaneous view on the transcription levels of a huge number of genes across different experimental conditions or time points. Using microarray data sets, clustering algorithms have been actively utilized in order to identify groups of co-expressed genes. This article poses the problem of fuzzy clustering in microarray data as a multiobjective optimization problem which simultaneously optimizes two internal fuzzy cluster validity indices to yield a set of Pareto-optimal clustering solutions. Each of these clustering solutions possesses some amount of information regarding the clustering structure of the input data. Motivated by this fact, a novel fuzzy majority voting approach is proposed to combine the clustering information from all the solutions in the resultant Pareto-optimal set. This approach first identifies the genes which are assigned to some particular cluster with high membership degree by most of the Pareto-optimal solutions. Using this set of genes as the training set, the remaining genes are classified by a supervised learning algorithm. In this work, we have used a Support Vector Machine (SVM classifier for this purpose. Results The performance of the proposed clustering technique has been demonstrated on five publicly available benchmark microarray data sets, viz., Yeast Sporulation, Yeast Cell Cycle, Arabidopsis Thaliana, Human Fibroblasts Serum and Rat Central Nervous System. Comparative studies of the use of different SVM kernels and several widely used microarray clustering techniques are reported. Moreover, statistical significance tests have been carried out to establish the statistical superiority of the proposed clustering approach. Finally, biological significance tests have been carried out using a web based gene annotation tool to show that the proposed method is able to

  19. Challenges in microarray class discovery: a comprehensive examination of normalization, gene selection and clustering

    Directory of Open Access Journals (Sweden)

    Landfors Mattias

    2010-10-01

    Full Text Available Abstract Background Cluster analysis, and in particular hierarchical clustering, is widely used to extract information from gene expression data. The aim is to discover new classes, or sub-classes, of either individuals or genes. Performing a cluster analysis commonly involve decisions on how to; handle missing values, standardize the data and select genes. In addition, pre-processing, involving various types of filtration and normalization procedures, can have an effect on the ability to discover biologically relevant classes. Here we consider cluster analysis in a broad sense and perform a comprehensive evaluation that covers several aspects of cluster analyses, including normalization. Result We evaluated 2780 cluster analysis methods on seven publicly available 2-channel microarray data sets with common reference designs. Each cluster analysis method differed in data normalization (5 normalizations were considered, missing value imputation (2, standardization of data (2, gene selection (19 or clustering method (11. The cluster analyses are evaluated using known classes, such as cancer types, and the adjusted Rand index. The performances of the different analyses vary between the data sets and it is difficult to give general recommendations. However, normalization, gene selection and clustering method are all variables that have a significant impact on the performance. In particular, gene selection is important and it is generally necessary to include a relatively large number of genes in order to get good performance. Selecting genes with high standard deviation or using principal component analysis are shown to be the preferred gene selection methods. Hierarchical clustering using Ward's method, k-means clustering and Mclust are the clustering methods considered in this paper that achieves the highest adjusted Rand. Normalization can have a significant positive impact on the ability to cluster individuals, and there are indications that

  20. Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii.

    OpenAIRE

    Jacobson, M R; Brigle, K E; Bennett, L T; Setterquist, R A; Wilson, M S; Cash, V L; Beynon, J; Newton, W E; Dean, D R

    1989-01-01

    Determination of a 28,793-base-pair DNA sequence of a region from the Azotobacter vinelandii genome that includes and flanks the nitrogenase structural gene region was completed. This information was used to revise the previously proposed organization of the major nif cluster. The major nif cluster from A. vinelandii encodes 15 nif-specific genes whose products bear significant structural identity to the corresponding nif-specific gene products from Klebsiella pneumoniae. These genes include ...

  1. Comparative Genomics of Non-TNL Disease Resistance Genes from Six Plant Species.

    Science.gov (United States)

    Nepal, Madhav P; Andersen, Ethan J; Neupane, Surendra; Benson, Benjamin V

    2017-09-30

    Disease resistance genes (R genes), as part of the plant defense system, have coevolved with corresponding pathogen molecules. The main objectives of this project were to identify non-Toll interleukin receptor, nucleotide-binding site, leucine-rich repeat (nTNL) genes and elucidate their evolutionary divergence across six plant genomes. Using reference sequences from Arabidopsis , we investigated nTNL orthologs in the genomes of common bean, Medicago , soybean, poplar, and rice. We used Hidden Markov Models for sequence identification, performed model-based phylogenetic analyses, visualized chromosomal positioning, inferred gene clustering, and assessed gene expression profiles. We analyzed 908 nTNL R genes in the genomes of the six plant species, and classified them into 12 subgroups based on the presence of coiled-coil (CC), nucleotide binding site (NBS), leucine rich repeat (LRR), resistance to Powdery mildew 8 (RPW8), and BED type zinc finger domains. Traditionally classified CC-NBS-LRR (CNL) genes were nested into four clades (CNL A-D) often with abundant, well-supported homogeneous subclades of Type-II R genes. CNL-D members were absent in rice, indicating a unique R gene retention pattern in the rice genome. Genomes from Arabidopsis , common bean, poplar and soybean had one chromosome without any CNL R genes. Medicago and Arabidopsis had the highest and lowest number of gene clusters, respectively. Gene expression analyses suggested unique patterns of expression for each of the CNL clades. Differential gene expression patterns of the nTNL genes were often found to correlate with number of introns and GC content, suggesting structural and functional divergence.

  2. Comparative Genomics of Non-TNL Disease Resistance Genes from Six Plant Species

    Directory of Open Access Journals (Sweden)

    Madhav P. Nepal

    2017-09-01

    Full Text Available Disease resistance genes (R genes, as part of the plant defense system, have coevolved with corresponding pathogen molecules. The main objectives of this project were to identify non-Toll interleukin receptor, nucleotide-binding site, leucine-rich repeat (nTNL genes and elucidate their evolutionary divergence across six plant genomes. Using reference sequences from Arabidopsis, we investigated nTNL orthologs in the genomes of common bean, Medicago, soybean, poplar, and rice. We used Hidden Markov Models for sequence identification, performed model-based phylogenetic analyses, visualized chromosomal positioning, inferred gene clustering, and assessed gene expression profiles. We analyzed 908 nTNL R genes in the genomes of the six plant species, and classified them into 12 subgroups based on the presence of coiled-coil (CC, nucleotide binding site (NBS, leucine rich repeat (LRR, resistance to Powdery mildew 8 (RPW8, and BED type zinc finger domains. Traditionally classified CC-NBS-LRR (CNL genes were nested into four clades (CNL A-D often with abundant, well-supported homogeneous subclades of Type-II R genes. CNL-D members were absent in rice, indicating a unique R gene retention pattern in the rice genome. Genomes from Arabidopsis, common bean, poplar and soybean had one chromosome without any CNL R genes. Medicago and Arabidopsis had the highest and lowest number of gene clusters, respectively. Gene expression analyses suggested unique patterns of expression for each of the CNL clades. Differential gene expression patterns of the nTNL genes were often found to correlate with number of introns and GC content, suggesting structural and functional divergence.

  3. A tripartite clustering analysis on microRNA, gene and disease model.

    Science.gov (United States)

    Shen, Chengcheng; Liu, Ying

    2012-02-01

    Alteration of gene expression in response to regulatory molecules or mutations could lead to different diseases. MicroRNAs (miRNAs) have been discovered to be involved in regulation of gene expression and a wide variety of diseases. In a tripartite biological network of human miRNAs, their predicted target genes and the diseases caused by altered expressions of these genes, valuable knowledge about the pathogenicity of miRNAs, involved genes and related disease classes can be revealed by co-clustering miRNAs, target genes and diseases simultaneously. Tripartite co-clustering can lead to more informative results than traditional co-clustering with only two kinds of members and pass the hidden relational information along the relation chain by considering multi-type members. Here we report a spectral co-clustering algorithm for k-partite graph to find clusters with heterogeneous members. We use the method to explore the potential relationships among miRNAs, genes and diseases. The clusters obtained from the algorithm have significantly higher density than randomly selected clusters, which means members in the same cluster are more likely to have common connections. Results also show that miRNAs in the same family based on the hairpin sequences tend to belong to the same cluster. We also validate the clustering results by checking the correlation of enriched gene functions and disease classes in the same cluster. Finally, widely studied miR-17-92 and its paralogs are analyzed as a case study to reveal that genes and diseases co-clustered with the miRNAs are in accordance with current research findings.

  4. Recursive Cluster Elimination (RCE for classification and feature selection from gene expression data

    Directory of Open Access Journals (Sweden)

    Showe Louise C

    2007-05-01

    Full Text Available Abstract Background Classification studies using gene expression datasets are usually based on small numbers of samples and tens of thousands of genes. The selection of those genes that are important for distinguishing the different sample classes being compared, poses a challenging problem in high dimensional data analysis. We describe a new procedure for selecting significant genes as recursive cluster elimination (RCE rather than recursive feature elimination (RFE. We have tested this algorithm on six datasets and compared its performance with that of two related classification procedures with RFE. Results We have developed a novel method for selecting significant genes in comparative gene expression studies. This method, which we refer to as SVM-RCE, combines K-means, a clustering method, to identify correlated gene clusters, and Support Vector Machines (SVMs, a supervised machine learning classification method, to identify and score (rank those gene clusters for the purpose of classification. K-means is used initially to group genes into clusters. Recursive cluster elimination (RCE is then applied to iteratively remove those clusters of genes that contribute the least to the classification performance. SVM-RCE identifies the clusters of correlated genes that are most significantly differentially expressed between the sample classes. Utilization of gene clusters, rather than individual genes, enhances the supervised classification accuracy of the same data as compared to the accuracy when either SVM or Penalized Discriminant Analysis (PDA with recursive feature elimination (SVM-RFE and PDA-RFE are used to remove genes based on their individual discriminant weights. Conclusion SVM-RCE provides improved classification accuracy with complex microarray data sets when it is compared to the classification accuracy of the same datasets using either SVM-RFE or PDA-RFE. SVM-RCE identifies clusters of correlated genes that when considered together

  5. Identification of the chelocardin biosynthetic gene cluster from Amycolatopsis sulphurea: a platform for producing novel tetracycline antibiotics.

    Science.gov (United States)

    Lukežič, Tadeja; Lešnik, Urška; Podgoršek, Ajda; Horvat, Jaka; Polak, Tomaž; Šala, Martin; Jenko, Branko; Raspor, Peter; Herron, Paul R; Hunter, Iain S; Petković, Hrvoje

    2013-12-01

    Tetracyclines (TCs) are medically important antibiotics from the polyketide family of natural products. Chelocardin (CHD), produced by Amycolatopsis sulphurea, is a broad-spectrum tetracyclic antibiotic with potent bacteriolytic activity against a number of Gram-positive and Gram-negative multi-resistant pathogens. CHD has an unknown mode of action that is different from TCs. It has some structural features that define it as 'atypical' and, notably, is active against tetracycline-resistant pathogens. Identification and characterization of the chelocardin biosynthetic gene cluster from A. sulphurea revealed 18 putative open reading frames including a type II polyketide synthase. Compared to typical TCs, the chd cluster contains a number of features that relate to its classification as 'atypical': an additional gene for a putative two-component cyclase/aromatase that may be responsible for the different aromatization pattern, a gene for a putative aminotransferase for C-4 with the opposite stereochemistry to TCs and a gene for a putative C-9 methylase that is a unique feature of this biosynthetic cluster within the TCs. Collectively, these enzymes deliver a molecule with different aromatization of ring C that results in an unusual planar structure of the TC backbone. This is a likely contributor to its different mode of action. In addition CHD biosynthesis is primed with acetate, unlike the TCs, which are primed with malonamate, and offers a biosynthetic engineering platform that represents a unique opportunity for efficient generation of novel tetracyclic backbones using combinatorial biosynthesis.

  6. Microarray-based Detection of Antibiotic Resisteance Genes in Salmonella

    NARCIS (Netherlands)

    Hoek, van A.H.A.M.; Aarts, H.J.M.

    2008-01-01

    In the presented study, 143 Salmonella isolates belonging to 26 different serovars were screened for the presence of antibiotic resistance genes by microarray analysis. The microarray contained a total of 223 oligonucleotides representing genes encoding for resistance to the following antibiotic

  7. Gene interactions and genetics of blast resistance and yield ...

    Indian Academy of Sciences (India)

    2016-08-26

    Oryza sativa L.) ... four blast resistance genes Pi1, Pi2, Pi33 and Pi54 in combination were used to study the nature and magnitude of gene action for disease resistance and yield attributes. ... Please take note of this change.

  8. Molecular detection of disease resistance genes to powdery mildew ...

    African Journals Online (AJOL)

    A study was conducted to detect the presence of disease resistance genes to infection of wheat powdery mildew (Blumeria graminis f. sp. tritici) in selected wheat cultivars from China using molecular markers. Genomic DNA of sixty cultivars was extracted and tested for the presence of selected prominent resistance genes to ...

  9. Codon-optimized antibiotic resistance gene improves efficiency of ...

    Indian Academy of Sciences (India)

    Success rate of transient transformation and cell growth in selective culture were significantly increased by use of fgmR instead of a native gentamicin resistance gene, suggesting that codon optimization improved translation efficiency of the marker gene and increased antibiotic resistance. Our result shows that similarity in ...

  10. Mapping of stripe rust resistance gene in an Aegilops caudata ...

    Indian Academy of Sciences (India)

    Genetic mapping indicated the introgression of stripe rust resistance gene on wheat chromosome. 5DS in the region carrying leaf rust resistance gene LrAc, but as an independent introgression. Simple sequence repeat (SSR) and sequence-tagged site (STS) markers designed from the survey sequence data of 5DS ...

  11. Genome scanning for identification of resistance gene analogs (RGAs)

    African Journals Online (AJOL)

    Disease resistance in plants is a desirable economic trait. Many disease resistance genes from various plants have been cloned so far. The gene products of some of these can be distinguished by the presence of an N terminal nucleotide binding site and a C-terminal stretch of leucine-rich repeats. Oligonucleotides already ...

  12. Isolation and Cloning of mercuric reductase gene (merA from mercury-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Parisa Khoshniyat

    2018-03-01

    Full Text Available Introduction: Some of the bacteria having merA gene coding mineral mercury reducing enzyme, has genetic potential of Hg removing via reduction of mineral mercury and transformation of that to gas form and finally bioremediation of polluted area. The aim of this study is the isolation of merA gene from resistance bacteria and cloning of that into suitable expression vector and then the environmental bioremediation by the transformation of bacteria with this vector. Materials and methods: A number of bacteria were collected in contaminated areas with mercury in order to isolate merA genes. Polymerase chain reaction had done on the four bacterial genomes including Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia marcescens and Escherichia coli using the specific primers in order to detect merA gene. For cloning, the primers containing restriction enzyme sites are used, merA gene was isolated and amplified. The amplified fragments were cloned in the expression vector pET21a+ and via heat shock method were transformed into E. coli TOP10 competent cell. For clustering of genes, Mega software version 4 was used and bioanformatic studies were achieved for predicted enzyme. Results: merA gene with 1686 bp in length was isolated from K pneumoniae and E. coli. Recombinant vectors in transgenic bacteria were confirmed by various methods and finally were confirmed by sequencing. The result of clustering these genes with existence genes in NCBI showed high similarity. Discussion and conclusion: The existence of merA gene in bacteria that adapted to Hg pollution area is because of resistance, so with cloning this gene into suitable expression vector and transformation of susceptible bacteria with this vector ability of resistance to Hg in bacteria for bioremediation could be given.

  13. New resistance genes in the Zea mays: exserohilum turcicum pathosystem

    Directory of Open Access Journals (Sweden)

    Juliana Bernardi Ogliari

    2005-09-01

    Full Text Available The use of monogenic race-specific resistance is widespread for the control of maize (Zea mays L. helminthosporiosis caused by Exserohilum turcicum. Inoculation of 18 Brazilian isolates of E. turcicum onto elite maize lines containing previously identified resistance genes and onto differential near-isogenic lines allowed the identification of new qualitative resistance genes. The inoculation of one selected isolate on differential near-isogenic lines, F1 generations and a BC1F1 population from the referred elite lines enabled the characterization of the resistance spectrum of three new genes, one dominant (HtP, one recessive (rt and a third with non-identified genetic action. Three physiological races of the pathogen were also identified including two with new virulence factors capable of overcoming the resistance of one of the resistance genes identified here (rt.

  14. The complete coenzyme B12 biosynthesis gene cluster of Lactobacillus reuteri CRL1098

    NARCIS (Netherlands)

    Santos, F.; Vera, J.L.; van der Heijden, R.; Valdez, G.; de Vos, W.M.; Sesma, F.; Hugenholtz, J.

    2008-01-01

    The coenzyme B12 production pathway in Lactobacillus reuteri has been deduced using a combination of genetic, biochemical and bioinformatics approaches. The coenzyme B12 gene cluster of Lb. reuteri CRL1098 has the unique feature of clustering together the cbi, cob and hem genes. It consists of 29

  15. The complete coenzyme B12 biosynthesis gene cluster of Lactobacillus reuteri CRL 1098

    NARCIS (Netherlands)

    Santos, dos F.; Vera, J.L.; Heijden, van der R.; Valdez, G.F.; Vos, de W.M.; Sesma, F.; Hugenholtz, J.

    2008-01-01

    The coenzyme B12 production pathway in Lactobacillus reuteri has been deduced using a combination of genetic, biochemical and bioinformatics approaches. The coenzyme B12 gene cluster of Lb. reuteri CRL1098 has the unique feature of clustering together the cbi, cob and hem genes. It consists of 29

  16. Rough-fuzzy clustering for grouping functionally similar genes from microarray data.

    Science.gov (United States)

    Maji, Pradipta; Paul, Sushmita

    2013-01-01

    Gene expression data clustering is one of the important tasks of functional genomics as it provides a powerful tool for studying functional relationships of genes in a biological process. Identifying coexpressed groups of genes represents the basic challenge in gene clustering problem. In this regard, a gene clustering algorithm, termed as robust rough-fuzzy c-means, is proposed judiciously integrating the merits of rough sets and fuzzy sets. While the concept of lower and upper approximations of rough sets deals with uncertainty, vagueness, and incompleteness in cluster definition, the integration of probabilistic and possibilistic memberships of fuzzy sets enables efficient handling of overlapping partitions in noisy environment. The concept of possibilistic lower bound and probabilistic boundary of a cluster, introduced in robust rough-fuzzy c-means, enables efficient selection of gene clusters. An efficient method is proposed to select initial prototypes of different gene clusters, which enables the proposed c-means algorithm to converge to an optimum or near optimum solutions and helps to discover coexpressed gene clusters. The effectiveness of the algorithm, along with a comparison with other algorithms, is demonstrated both qualitatively and quantitatively on 14 yeast microarray data sets.

  17. Dominant control region of the human β- like globin gene cluster

    NARCIS (Netherlands)

    Blom van Assendelft, Margaretha van

    1989-01-01

    The structure and regulation of the human β -like globin gene cluster has been studied extensively. Genetic disorders connected with this gene cluster are responsible for human diseases associated with high levels of morbidity and mortality, such as β-thalassaemia and sickle cell anaemia. The work

  18. A phylogenomic gene cluster resource: The phylogeneticallyinferred groups (PhlGs) database

    Energy Technology Data Exchange (ETDEWEB)

    Dehal, Paramvir S.; Boore, Jeffrey L.

    2005-08-25

    We present here the PhIGs database, a phylogenomic resource for sequenced genomes. Although many methods exist for clustering gene families, very few attempt to create truly orthologous clusters sharing descent from a single ancestral gene across a range of evolutionary depths. Although these non-phylogenetic gene family clusters have been used broadly for gene annotation, errors are known to be introduced by the artifactual association of slowly evolving paralogs and lack of annotation for those more rapidly evolving. A full phylogenetic framework is necessary for accurate inference of function and for many studies that address pattern and mechanism of the evolution of the genome. The automated generation of evolutionary gene clusters, creation of gene trees, determination of orthology and paralogy relationships, and the correlation of this information with gene annotations, expression information, and genomic context is an important resource to the scientific community.

  19. Occurrence of integrons and resistance genes among sulphonamide-resistant Shigella spp. from Brazil

    DEFF Research Database (Denmark)

    Peirano, G.; Agersø, Yvonne; Aarestrup, Frank Møller

    2005-01-01

    Objectives: To determine the occurrence of class 1 and 2 integrons and antimicrobial resistance genes among sulphonamide-resistant Shigella strains isolated in Brazil during 1999-2003. Methods: Sixty-two Shigella (Shigella flexneri, n = 47 and Shigella sonnei, n = 15) were tested against 21....... Conclusions: The detection of class 1 and 2 integrons and additional antimicrobial resistance genes allowed us to identify the most frequent antimicrobial resistance patterns of Shigella spp. isolated in Brazil....

  20. Barley Stem Rust Resistance Genes: Structure and Function

    Directory of Open Access Journals (Sweden)

    Andris Kleinhofs

    2009-07-01

    Full Text Available Rusts are biotrophic pathogens that attack many plant species but are particularly destructive on cereal crops. The stem rusts (caused by have historically caused severe crop losses and continue to threaten production today. Barley ( L. breeders have controlled major stem rust epidemics since the 1940s with a single durable resistance gene . As new epidemics have threatened, additional resistance genes were identified to counter new rust races, such as the complex locus against races QCCJ and TTKSK. To understand how these genes work, we initiated research to clone and characterize them. The gene encodes a unique protein kinase with dual kinase domains, an active kinase, and a pseudokinase. Function of both domains is essential to confer resistance. The and genes are closely linked and function coordinately to confer resistance to several wheat ( L. stem rust races, including the race TTKSK (also called Ug99 that threatens the world's barley and wheat crops. The gene encodes typical resistance gene domains NBS, LRR, and protein kinase but is unique in that all three domains reside in a single gene, a previously unknown structure among plant disease resistance genes. The gene encodes an actin depolymerizing factor that functions in cytoskeleton rearrangement.

  1. Transfer of tetracycline resistance gene (tetr) between replicons in ...

    African Journals Online (AJOL)

    Antimicrobial susceptibility testing among the isolates showed resistance to amoxicillin (92%), amoxicillin-clavulanic acid (84.4%), tetracycline (71.4%), gentamycin (43.5%), nalidixic acid (38.3%) and nitrofurantoin (7.9%). E. coli showed the highest resistance to most of the antibiotics. Tetracycline resistance gene was ...

  2. High-throughput quantification of antibiotic resistance genes from an urban wastewater treatment plant.

    Science.gov (United States)

    Karkman, Antti; Johnson, Timothy A; Lyra, Christina; Stedtfeld, Robert D; Tamminen, Manu; Tiedje, James M; Virta, Marko

    2016-03-01

    Antibiotic resistance among bacteria is a growing problem worldwide, and wastewater treatment plants have been considered as one of the major contributors to the dissemination of antibiotic resistance to the environment. There is a lack of comprehensive quantitative molecular data on extensive numbers of antibiotic resistance genes (ARGs) in different seasons with a sampling strategy that would cover both incoming and outgoing water together with the excess sludge that is removed from the process. In order to fill that gap we present a highly parallel quantitative analysis of ARGs and horizontal gene transfer potential over four seasons at an urban wastewater treatment plant using a high-throughput qPCR array. All analysed transposases and two-thirds of primer sets targeting ARGs were detected in the wastewater. The relative abundance of most of the genes was highest in influent and lower in effluent water and sludge. The resistance profiles of the samples cluster by sample location with a shift from raw influent through the final effluents and dried sludge to the sediments. Wastewater discharge enriched only a few genes, namely Tn25 type transposase gene and clinical class 1 integrons, in the sediment near the discharge pipe, but those enriched genes may indicate a potential for horizontal gene transfer. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean

    Directory of Open Access Journals (Sweden)

    Kang Yang

    2012-08-01

    infection. From these observations, NBS-LRR genes are suggested to contribute to disease resistance in soybean. Moreover, we propose models for how NBS-LRR genes were duplicated, and apply Ks values for each NBS-LRR gene cluster.

  4. Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean.

    Science.gov (United States)

    Kang, Yang Jae; Kim, Kil Hyun; Shim, Sangrea; Yoon, Min Young; Sun, Suli; Kim, Moon Young; Van, Kyujung; Lee, Suk-Ha

    2012-08-09

    to contribute to disease resistance in soybean. Moreover, we propose models for how NBS-LRR genes were duplicated, and apply Ks values for each NBS-LRR gene cluster.

  5. DNA microarray genotyping and virulence and antimicrobial resistance gene profiling of methicillin-resistant Staphylococcus aureus bloodstream isolates from renal patients.

    LENUS (Irish Health Repository)

    McNicholas, Sinead

    2011-12-01

    Thirty-six methicillin-resistant Staphylococcus aureus (MRSA) bloodstream isolates from renal patients were genetically characterized by DNA microarray analysis and spa typing. The isolates were highly clonal, belonging mainly to ST22-MRSA-IV. The immune evasion and enterotoxin gene clusters were found in 29\\/36 (80%) and 33\\/36 (92%) isolates, respectively.

  6. DNA microarray genotyping and virulence and antimicrobial resistance gene profiling of methicillin-resistant Staphylococcus aureus bloodstream isolates from renal patients.

    LENUS (Irish Health Repository)

    McNicholas, Sinead

    2012-02-01

    Thirty-six methicillin-resistant Staphylococcus aureus (MRSA) bloodstream isolates from renal patients were genetically characterized by DNA microarray analysis and spa typing. The isolates were highly clonal, belonging mainly to ST22-MRSA-IV. The immune evasion and enterotoxin gene clusters were found in 29\\/36 (80%) and 33\\/36 (92%) isolates, respectively.

  7. A Comprehensive Insight into Tetracycline Resistant Bacteria and Antibiotic Resistance Genes in Activated Sludge Using Next-Generation Sequencing

    Science.gov (United States)

    Huang, Kailong; Tang, Junying; Zhang, Xu-Xiang; Xu, Ke; Ren, Hongqiang

    2014-01-01

    In order to comprehensively investigate tetracycline resistance in activated sludge of sewage treatment plants, 454 pyrosequencing and Illumina high-throughput sequencing were used to detect potential tetracycline resistant bacteria (TRB) and antibiotic resistance genes (ARGs) in sludge cultured with different concentrations of tetracycline. Pyrosequencing of 16S rRNA gene revealed that tetracycline treatment greatly affected the bacterial community structure of the sludge. Nine genera consisting of Sulfuritalea, Armatimonas, Prosthecobacter, Hyphomicrobium, Azonexus, Longilinea, Paracoccus, Novosphingobium and Rhodobacter were identified as potential TRB in the sludge. Results of qPCR, molecular cloning and metagenomic analysis consistently indicated that tetracycline treatment could increase both the abundance and diversity of the tet genes, but decreased the occurrence and diversity of non-tetracycline ARG, especially sulfonamide resistance gene sul2. Cluster analysis showed that tetracycline treatment at subinhibitory concentrations (5 mg/L) was found to pose greater effects on the bacterial community composition, which may be responsible for the variations of the ARGs abundance. This study indicated that joint use of 454 pyrosequencing and Illumina high-throughput sequencing can be effectively used to explore ARB and ARGs in the environment, and future studies should include an in-depth investigation of the relationship between microbial community, ARGs and antibiotics in sewage treatment plant (STP) sludge. PMID:24905407

  8. A Comprehensive Insight into Tetracycline Resistant Bacteria and Antibiotic Resistance Genes in Activated Sludge Using Next-Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Kailong Huang

    2014-06-01

    Full Text Available In order to comprehensively investigate tetracycline resistance in activated sludge of sewage treatment plants, 454 pyrosequencing and Illumina high-throughput sequencing were used to detect potential tetracycline resistant bacteria (TRB and antibiotic resistance genes (ARGs in sludge cultured with different concentrations of tetracycline. Pyrosequencing of 16S rRNA gene revealed that tetracycline treatment greatly affected the bacterial community structure of the sludge. Nine genera consisting of Sulfuritalea, Armatimonas, Prosthecobacter, Hyphomicrobium, Azonexus, Longilinea, Paracoccus, Novosphingobium and Rhodobacter were identified as potential TRB in the sludge. Results of qPCR, molecular cloning and metagenomic analysis consistently indicated that tetracycline treatment could increase both the abundance and diversity of the tet genes, but decreased the occurrence and diversity of non-tetracycline ARG, especially sulfonamide resistance gene sul2. Cluster analysis showed that tetracycline treatment at subinhibitory concentrations (5 mg/L was found to pose greater effects on the bacterial community composition, which may be responsible for the variations of the ARGs abundance. This study indicated that joint use of 454 pyrosequencing and Illumina high-throughput sequencing can be effectively used to explore ARB and ARGs in the environment, and future studies should include an in-depth investigation of the relationship between microbial community, ARGs and antibiotics in sewage treatment plant (STP sludge.

  9. A comprehensive insight into tetracycline resistant bacteria and antibiotic resistance genes in activated sludge using next-generation sequencing.

    Science.gov (United States)

    Huang, Kailong; Tang, Junying; Zhang, Xu-Xiang; Xu, Ke; Ren, Hongqiang

    2014-06-05

    In order to comprehensively investigate tetracycline resistance in activated sludge of sewage treatment plants, 454 pyrosequencing and Illumina high-throughput sequencing were used to detect potential tetracycline resistant bacteria (TRB) and antibiotic resistance genes (ARGs) in sludge cultured with different concentrations of tetracycline. Pyrosequencing of 16S rRNA gene revealed that tetracycline treatment greatly affected the bacterial community structure of the sludge. Nine genera consisting of Sulfuritalea, Armatimonas, Prosthecobacter, Hyphomicrobium, Azonexus, Longilinea, Paracoccus, Novosphingobium and Rhodobacter were identified as potential TRB in the sludge. Results of qPCR, molecular cloning and metagenomic analysis consistently indicated that tetracycline treatment could increase both the abundance and diversity of the tet genes, but decreased the occurrence and diversity of non-tetracycline ARG, especially sulfonamide resistance gene sul2. Cluster analysis showed that tetracycline treatment at subinhibitory concentrations (5 mg/L) was found to pose greater effects on the bacterial community composition, which may be responsible for the variations of the ARGs abundance. This study indicated that joint use of 454 pyrosequencing and Illumina high-throughput sequencing can be effectively used to explore ARB and ARGs in the environment, and future studies should include an in-depth investigation of the relationship between microbial community, ARGs and antibiotics in sewage treatment plant (STP) sludge.

  10. Organization and differential regulation of a cluster of lignin peroxidase genes of Phanerochaete chrysosporium

    Science.gov (United States)

    Philip. Stewart; Daniel. Cullen

    1999-06-01

    The lignin peroxidases of Phanerochaete chrysosporium are encoded by a minimum of 10 closely related genes. Physical and genetic mapping of a cluster of eight lip genes revealed six genes occurring in pairs and transcriptionally convergent, suggesting that portions of the lip family arose by gene duplication events. The completed sequence of 1ipG and lipJ, together...

  11. Plasmid Complement of Lactococcus lactis NCDO712 Reveals a Novel Pilus Gene Cluster.

    Science.gov (United States)

    Tarazanova, Mariya; Beerthuyzen, Marke; Siezen, Roland; Fernandez-Gutierrez, Marcela M; de Jong, Anne; van der Meulen, Sjoerd; Kok, Jan; Bachmann, Herwig

    2016-01-01

    Lactococcus lactis MG1363 is an important gram-positive model organism. It is a plasmid-free and phage-cured derivative of strain NCDO712. Plasmid-cured strains facilitate studies on molecular biological aspects, but many properties which make L. lactis an important organism in the dairy industry are plasmid encoded. We sequenced the total DNA of strain NCDO712 and, contrary to earlier reports, revealed that the strain carries 6 rather than 5 plasmids. A new 50-kb plasmid, designated pNZ712, encodes functional nisin immunity (nisCIP) and copper resistance (lcoRSABC). The copper resistance could be used as a marker for the conjugation of pNZ712 to L. lactis MG1614. A genome comparison with the plasmid cured daughter strain MG1363 showed that the number of single nucleotide polymorphisms that accumulated in the laboratory since the strains diverted more than 30 years ago is limited to 11 of which only 5 lead to amino acid changes. The 16-kb plasmid pSH74 was found to contain a novel 8-kb pilus gene cluster spaCB-spaA-srtC1-srtC2, which is predicted to encode a pilin tip protein SpaC, a pilus basal subunit SpaB, and a pilus backbone protein SpaA. The sortases SrtC1/SrtC2 are most likely involved in pilus polymerization while the chromosomally encoded SrtA could act to anchor the pilus to peptidoglycan in the cell wall. Overexpression of the pilus gene cluster from a multi-copy plasmid in L. lactis MG1363 resulted in cell chaining, aggregation, rapid sedimentation and increased conjugation efficiency of the cells. Electron microscopy showed that the over-expression of the pilus gene cluster leads to appendices on the cell surfaces. A deletion of the gene encoding the putative basal protein spaB, by truncating spaCB, led to more pilus-like structures on the cell surface, but cell aggregation and cell chaining were no longer observed. This is consistent with the prediction that spaB is involved in the anchoring of the pili to the cell.

  12. Complex Interactions between Fungal Avirulence Genes and Their Corresponding Plant Resistance Genes and Consequences for Disease Resistance Management

    Directory of Open Access Journals (Sweden)

    Yohann Petit-Houdenot

    2017-06-01

    Full Text Available During infection, pathogens secrete an arsenal of molecules, collectively called effectors, key elements of pathogenesis which modulate innate immunity of the plant and facilitate infection. Some of these effectors can be recognized directly or indirectly by resistance (R proteins from the plant and are then called avirulence (AVR proteins. This recognition usually triggers defense responses including the hypersensitive response and results in resistance of the plant. R—AVR gene interactions are frequently exploited in the field to control diseases. Recently, the availability of fungal genomes has accelerated the identification of AVR genes in plant pathogenic fungi, including in fungi infecting agronomically important crops. While single AVR genes recognized by their corresponding R gene were identified, more and more complex interactions between AVR and R genes are reported (e.g., AVR genes recognized by several R genes, R genes recognizing several AVR genes in distinct organisms, one AVR gene suppressing recognition of another AVR gene by its corresponding R gene, two cooperating R genes both necessary to recognize an AVR gene. These complex interactions were particularly reported in pathosystems showing a long co-evolution with their host plant but could also result from the way agronomic crops were obtained and improved (e.g., through interspecific hybridization or introgression of resistance genes from wild related species into cultivated crops. In this review, we describe some complex R—AVR interactions between plants and fungi that were recently reported and discuss their implications for AVR gene evolution and R gene management.

  13. An effective fuzzy kernel clustering analysis approach for gene expression data.

    Science.gov (United States)

    Sun, Lin; Xu, Jiucheng; Yin, Jiaojiao

    2015-01-01

    Fuzzy clustering is an important tool for analyzing microarray data. A major problem in applying fuzzy clustering method to microarray gene expression data is the choice of parameters with cluster number and centers. This paper proposes a new approach to fuzzy kernel clustering analysis (FKCA) that identifies desired cluster number and obtains more steady results for gene expression data. First of all, to optimize characteristic differences and estimate optimal cluster number, Gaussian kernel function is introduced to improve spectrum analysis method (SAM). By combining subtractive clustering with max-min distance mean, maximum distance method (MDM) is proposed to determine cluster centers. Then, the corresponding steps of improved SAM (ISAM) and MDM are given respectively, whose superiority and stability are illustrated through performing experimental comparisons on gene expression data. Finally, by introducing ISAM and MDM into FKCA, an effective improved FKCA algorithm is proposed. Experimental results from public gene expression data and UCI database show that the proposed algorithms are feasible for cluster analysis, and the clustering accuracy is higher than the other related clustering algorithms.

  14. Mapping of stripe rust resistance gene in an Aegilops caudata ...

    Indian Academy of Sciences (India)

    PUNEET INDER TOOR

    end of 5DS linked with a group of four colocated SSRs and two resistance gene analogue (RGA)-STS markers at a distance of 5.3 cM. ... and LrAc appear to be the candidate genes for marker-assisted enrichment of the wheat gene pool for rust resistance. [Toor P. I., Kaur S., Bansal ..... stocks with reduced alien chromatin.

  15. Overexpression of antibiotic resistance genes in hospital effluents over time.

    Science.gov (United States)

    Rowe, Will P M; Baker-Austin, Craig; Verner-Jeffreys, David W; Ryan, Jim J; Micallef, Christianne; Maskell, Duncan J; Pearce, Gareth P

    2017-06-01

    Effluents contain a diverse abundance of antibiotic resistance genes that augment the resistome of receiving aquatic environments. However, uncertainty remains regarding their temporal persistence, transcription and response to anthropogenic factors, such as antibiotic usage. We present a spatiotemporal study within a river catchment (River Cam, UK) that aims to determine the contribution of antibiotic resistance gene-containing effluents originating from sites of varying antibiotic usage to the receiving environment. Gene abundance in effluents (municipal hospital and dairy farm) was compared against background samples of the receiving aquatic environment (i.e. the catchment source) to determine the resistome contribution of effluents. We used metagenomics and metatranscriptomics to correlate DNA and RNA abundance and identified differentially regulated gene transcripts. We found that mean antibiotic resistance gene and transcript abundances were correlated for both hospital ( ρ  = 0.9, two-tailed P  resistance genes ( bla GES and bla OXA ) were overexpressed in all hospital effluent samples. High β-lactam resistance gene transcript abundance was related to hospital antibiotic usage over time and hospital effluents contained antibiotic residues. We conclude that effluents contribute high levels of antibiotic resistance genes to the aquatic environment; these genes are expressed at significant levels and are possibly related to the level of antibiotic usage at the effluent source. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  16. Generation of novel resistance genes using mutation and targeted gene editing

    Science.gov (United States)

    Classical breeding for virus resistance is a lengthy process and is restricted by the availability of resistance genes. Precise genome editing is a "dream technology" to improve plants for virus resistance and these tools have opened new and very promising ways to generate virus resistant plants by ...

  17. A robust approach based on Weibull distribution for clustering gene expression data

    Directory of Open Access Journals (Sweden)

    Gong Binsheng

    2011-05-01

    Full Text Available Abstract Background Clustering is a widely used technique for analysis of gene expression data. Most clustering methods group genes based on the distances, while few methods group genes according to the similarities of the distributions of the gene expression levels. Furthermore, as the biological annotation resources accumulated, an increasing number of genes have been annotated into functional categories. As a result, evaluating the performance of clustering methods in terms of the functional consistency of the resulting clusters is of great interest. Results In this paper, we proposed the WDCM (Weibull Distribution-based Clustering Method, a robust approach for clustering gene expression data, in which the gene expressions of individual genes are considered as the random variables following unique Weibull distributions. Our WDCM is based on the concept that the genes with similar expression profiles have similar distribution parameters, and thus the genes are clustered via the Weibull distribution parameters. We used the WDCM to cluster three cancer gene expression data sets from the lung cancer, B-cell follicular lymphoma and bladder carcinoma and obtained well-clustered results. We compared the performance of WDCM with k-means and Self Organizing Map (SOM using functional annotation information given by the Gene Ontology (GO. The results showed that the functional annotation ratios of WDCM are higher than those of the other methods. We also utilized the external measure Adjusted Rand Index to validate the performance of the WDCM. The comparative results demonstrate that the WDCM provides the better clustering performance compared to k-means and SOM algorithms. The merit of the proposed WDCM is that it can be applied to cluster incomplete gene expression data without imputing the missing values. Moreover, the robustness of WDCM is also evaluated on the incomplete data sets. Conclusions The results demonstrate that our WDCM produces clusters

  18. CAR gene cluster and transcript levels of carotenogenic genes in Rhodotorula mucilaginosa.

    Science.gov (United States)

    Landolfo, Sara; Ianiri, Giuseppe; Camiolo, Salvatore; Porceddu, Andrea; Mulas, Giuliana; Chessa, Rossella; Zara, Giacomo; Mannazzu, Ilaria

    2018-01-01

    A molecular approach was applied to the study of the carotenoid biosynthetic pathway of Rhodotorula mucilaginosa. At first, functional annotation of the genome of R. mucilaginosa C2.5t1 was carried out and gene ontology categories were assigned to 4033 predicted proteins. Then, a set of genes involved in different steps of carotenogenesis was identified and those coding for phytoene desaturase, phytoene synthase/lycopene cyclase and carotenoid dioxygenase (CAR genes) proved to be clustered within a region of ~10 kb. Quantitative PCR of the genes involved in carotenoid biosynthesis showed that genes coding for 3-hydroxy-3-methylglutharyl-CoA reductase and mevalonate kinase are induced during exponential phase while no clear trend of induction was observed for phytoene synthase/lycopene cyclase and phytoene dehydrogenase encoding genes. Thus, in R. mucilaginosa the induction of genes involved in the early steps of carotenoid biosynthesis is transient and accompanies the onset of carotenoid production, while that of CAR genes does not correlate with the amount of carotenoids produced. The transcript levels of genes coding for carotenoid dioxygenase, superoxide dismutase and catalase A increased during the accumulation of carotenoids, thus suggesting the activation of a mechanism aimed at the protection of cell structures from oxidative stress during carotenoid biosynthesis. The data presented herein, besides being suitable for the elucidation of the mechanisms that underlie carotenoid biosynthesis, will contribute to boosting the biotechnological potential of this yeast by improving the outcome of further research efforts aimed at also exploring other features of interest.

  19. Associations between Antimicrobial Resistance Phenotypes, Antimicrobial Resistance Genes, and Virulence Genes of Fecal Escherichia coli Isolates from Healthy Grow-Finish Pigs ▿

    OpenAIRE

    Rosengren, Leigh B.; Waldner, Cheryl L.; Reid-Smith, Richard J.

    2009-01-01

    Escherichia coli often carries linked antimicrobial resistance genes on transmissible genetic elements. Through coselection, antimicrobial use may select for unrelated but linked resistance or virulence genes. This study used unconditional statistical associations to investigate the relationships between antimicrobial resistance phenotypes and antimicrobial resistance genes in 151 E. coli isolates from healthy pigs. Phenotypic resistance to each drug was significantly associated with phenotyp...

  20. Effects of gene disruptions in the nisin gene cluster of Lactococcus lactis on nisin production and producer immunity

    NARCIS (Netherlands)

    Ra, Runar; Beerthuyzen, Marke M.; Vos, Willem M. de; Saris, Per E.J.; Kuipers, Oscar P.

    1999-01-01

    The lantibiotic nisin is produced by several strains of Lactococcus lactis subsp. lactis. The chromosomally located gene cluster nisABTCIPRKFEG is required for biosynthesis, development of immunity, and regulation of gene expression. In-frame deletions in the nisB and nisT genes, and disruption of

  1. Codon-optimized antibiotic resistance gene improves efficiency of ...

    Indian Academy of Sciences (India)

    2013-10-01

    Oct 1, 2013 ... native gentamicin resistance gene, suggesting that codon optimization improved translation efficiency of the marker gene and ... to be taken into account when exogenous transgenes are expressed in Frankia cells. [Kucho K, Kakoi K, ..... gene coding for the green fluorescent protein (GFP) is a versatile ...

  2. The cfr and cfr-like multiple resistance genes

    DEFF Research Database (Denmark)

    Vester, Birte

    2018-01-01

    . The cfr gene is found in various bacteria in many geographical locations and placed on plasmids or associated with transposons. Cfr-related genes providing similar resistance have been identified in Bacillales, and now also in the pathogens Clostridium difficile and Enterococcus faecium. In addition......, the presence of the cfr gene has been detected in harbours and food markets....

  3. Linking microbial community structure and function to characterize antibiotic resistant bacteria and antibiotic resistant genes from cattle feces

    Science.gov (United States)

    There is widespread interest in monitoring the development of antibiotic resistant bacteria and antibiotic resistance genes in agriculturally impacted environments, however little is known about the relationships between bacterial community structure, and antibiotic resistance gene profiles. Cattl...

  4. GidB mutation as a phylogenetic marker for Q1 cluster Mycobacterium tuberculosis isolates and intermediate-level streptomycin resistance determinant in Lisbon, Portugal.

    Science.gov (United States)

    Perdigão, J; Macedo, R; Machado, D; Silva, C; Jordão, L; Couto, I; Viveiros, M; Portugal, I

    2014-05-01

    Development of streptomycin resistance in Mycobacterium tuberculosis is usually associated with mutations in rpsL and rrs genes, although up to 50% of clinical streptomycin-resistant isolates may present no mutation in either of these genes. In the present report we investigate the role of gidB gene mutations in streptomycin resistance. We have analyzed 52 streptomycin-resistant and 30 streptomycin-susceptible Mycobacterium tuberculosis clinical isolates by sequencing and endonuclease analysis of the gidB and rpsL genes. All clinical isolates were genotyped by 12-loci MIRU-VNTR. The gidB gene of 18 streptomycin-resistant isolates was sequenced and four missense mutations were found: F12L (1/18), L16R (18/18), A80P (4/18) and S100F (18/18). The remaining isolates were screened by endonuclease analysis for mutations A80P in the gidB gene and K43R in the rpsL gene. Overall, mutation A80P in the gidB gene was found in eight streptomycin-resistant isolates and 11 streptomycin-susceptible multidrug-resistant isolates. Also noteworthy, is the fact that gidB mutations were only present in isolates without rpsL and rrs mutations, all from genetic cluster Q1. Streptomycin quantitative drug susceptibility testing showed that isolates carrying the gidB A80P mutation were streptomycin intermediate-level resistant and that standard drug susceptibility testing yielded inconsistent results, probably due to borderline resistance. We conclude that gidB mutations may explain the high number of streptomycin-resistant strains with no mutation in rpsL or rrs. These mutations might occasionally confer low-level streptomycin resistance that will go undetected in standard susceptibility testing. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  5. Mobile antibiotic resistance – the spread of genes determining the resistance of bacteria through food products

    Directory of Open Access Journals (Sweden)

    Jolanta Godziszewska

    2016-07-01

    Full Text Available In recent years, more and more antibiotics have become ineffective in the treatment of bacterial nfections. The acquisition of antibiotic resistance by bacteria is associated with circulation of genes in the environment. Determinants of antibiotic resistance may be transferred to pathogenic bacteria. It has been shown that conjugation is one of the key mechanisms responsible for spread of antibiotic resistance genes, which is highly efficient and allows the barrier to restrictions and modifications to be avoided. Some conjugative modules enable the transfer of plasmids even between phylogenetically distant bacterial species. Many scientific reports indicate that food is one of the main reservoirs of these genes. Antibiotic resistance genes have been identified in meat products, milk, fruits and vegetables. The reason for such a wide spread of antibiotic resistance genes is the overuse of antibiotics by breeders of plants and animals, as well as by horizontal gene transfer. It was shown, that resistance determinants located on mobile genetic elements, which are isolated from food products, can easily be transferred to another niche. The antibiotic resistance genes have been in the environment for 30 000 years. Their removal from food products is not possible, but the risks associated with the emergence of multiresistant pathogenic strains are very large. The only option is to control the emergence, selection and spread of these genes. Therefore measures are sought to prevent horizontal transfer of genes. Promising concepts involve the combination of developmental biology, evolution and ecology in the fight against the spread of antibiotic resistance.

  6. Mobile antibiotic resistance - the spread of genes determining the resistance of bacteria through food products.

    Science.gov (United States)

    Godziszewska, Jolanta; Guzek, Dominika; Głąbski, Krzysztof; Wierzbicka, Agnieszka

    2016-07-07

    In recent years, more and more antibiotics have become ineffective in the treatment of bacterial nfections. The acquisition of antibiotic resistance by bacteria is associated with circulation of genes in the environment. Determinants of antibiotic resistance may be transferred to pathogenic bacteria. It has been shown that conjugation is one of the key mechanisms responsible for spread of antibiotic resistance genes, which is highly efficient and allows the barrier to restrictions and modifications to be avoided. Some conjugative modules enable the transfer of plasmids even between phylogenetically distant bacterial species. Many scientific reports indicate that food is one of the main reservoirs of these genes. Antibiotic resistance genes have been identified in meat products, milk, fruits and vegetables. The reason for such a wide spread of antibiotic resistance genes is the overuse of antibiotics by breeders of plants and animals, as well as by horizontal gene transfer. It was shown, that resistance determinants located on mobile genetic elements, which are isolated from food products, can easily be transferred to another niche. The antibiotic resistance genes have been in the environment for 30 000 years. Their removal from food products is not possible, but the risks associated with the emergence of multiresistant pathogenic strains are very large. The only option is to control the emergence, selection and spread of these genes. Therefore measures are sought to prevent horizontal transfer of genes. Promising concepts involve the combination of developmental biology, evolution and ecology in the fight against the spread of antibiotic resistance.

  7. High frequency of silver resistance genes in invasive isolates of Enterobacter and Klebsiella species.

    Science.gov (United States)

    Sütterlin, S; Dahlö, M; Tellgren-Roth, C; Schaal, W; Melhus, Å

    2017-07-01

    Silver-based products have been marketed as an alternative to antibiotics, and their consumption has increased. Bacteria may, however, develop resistance to silver. To study the presence of genes encoding silver resistance (silE, silP, silS) over time in three clinically important Enterobacteriaceae genera. Using polymerase chain reaction (PCR), 752 bloodstream isolates from the years 1990-2010 were investigated. Age, gender, and ward of patients were registered, and the susceptibility to antibiotics and silver nitrate was tested. Clonality and single nucleotide polymorphism were assessed with repetitive element sequence-based PCR, multi-locus sequence typing, and whole-genome sequencing. Genes encoding silver resistance were detected most frequently in Enterobacter spp. (48%), followed by Klebsiella spp. (41%) and Escherichia coli 4%. Phenotypical resistance to silver nitrate was found in Enterobacter (13%) and Klebsiella (3%) isolates. The lowest carriage rate of sil genes was observed in blood isolates from the neonatology ward (24%), and the highest in blood isolates from the oncology/haematology wards (66%). Presence of sil genes was observed in international high-risk clones. Sequences of the sil and pco clusters indicated that a single mutational event in the silS gene could have caused the phenotypic resistance. Despite a restricted consumption of silver-based products in Swedish health care, silver resistance genes are widely represented in clinical isolates of Enterobacter and Klebsiella species. To avoid further selection and spread of silver-resistant bacteria with a high potential for healthcare-associated infections, the use of silver-based products needs to be controlled and the silver resistance monitored. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  8. Analysis of acetohydroxyacid synthase1 gene in chickpea conferring resistance to imazamox herbicide.

    Science.gov (United States)

    Jain, Parul; Tar'an, Bunyamin

    2014-11-01

    Chickpea (Cicer arietinum L.) production in the Canadian prairies is challenging due to a lack of effective weed management mainly because of poor competition ability of the crop and limited registered herbicide options. Chickpea genotype with resistance to imidazolinone (IMI) herbicides has been identified. A point mutation in the acetohydroxyacid synthase1 (AHAS1) gene at C581 to T581, resulting in an amino acid substitution from Ala194 to Val194 (position 205, standardized to arabidopsis), confers the resistance to imazamox in chickpea. However, the molecular mechanism leading to the resistance is not fully understood. In many plant species, contrasting transcription levels of AHAS gene has been implicated in the resistant and susceptible genotypes in response to IMI. The objectives of this research were to compare the AHAS gene expression and AHAS enzyme activity in resistant and susceptible chickpea cultivars in response to imazamox herbicide treatment. Results from RT-qPCR indicated that there is no significant change in the transcript levels of AHAS1 between the susceptible and the resistant genotypes in response to imazamox treatment. Protein hydrophobic cluster analysis, protein-ligand docking analysis, and AHAS enzyme activity assay all indicated that the resistance to imazamox in chickpea is due to the alteration of interaction of the AHAS1 enzyme with the imazamox herbicide.

  9. Clustering of Drosophila melanogaster immune genes in interplay with recombination rate.

    Directory of Open Access Journals (Sweden)

    K Mathias Wegner

    Full Text Available BACKGROUND: Gene order in eukaryotic chromosomes is not random and has been linked to coordination of gene expression, chromatin structure and also recombination rate. The evolution of recombination rate is especially relevant for genes involved in immunity because host-parasite co-evolution could select for increased recombination rate (Red Queen hypothesis. To identify patterns left by the intimate interaction between hosts and parasites, I analysed the genomic parameters of the immune genes from 24 gene families/groups of Drosophila melanogaster. PRINCIPAL FINDINGS: Immune genes that directly interact with the pathogen (i.e. recognition and effector genes clustered in regions of higher recombination rates. Out of these, clustered effector genes were transcribed fastest indicating that transcriptional control might be one major cause for cluster formation. The relative position of clusters to each other, on the other hand, cannot be explained by transcriptional control per se. Drosophila immune genes that show epistatic interactions can be found at an average distance of 15.44+/-2.98 cM, which is considerably closer than genes that do not interact (30.64+/-1.95 cM. CONCLUSIONS: Epistatically interacting genes rarely belong to the same cluster, which supports recent models of optimal recombination rates between interacting genes in antagonistic host-parasite co-evolution. These patterns suggest that formation of local clusters might be a result of transcriptional control, but that in the condensed genome of D. melanogaster relative position of these clusters may be a result of selection for optimal rather than maximal recombination rates between these clusters.

  10. A Functional Bikaverin Biosynthesis Gene Cluster in Rare Strains of Botrytis cinerea Is Positively Controlled by VELVET

    Science.gov (United States)

    Schumacher, Julia; Gautier, Angélique; Morgant, Guillaume; Studt, Lena; Ducrot, Paul-Henri; Le Pêcheur, Pascal; Azeddine, Saad; Fillinger, Sabine; Leroux, Pierre; Tudzynski, Bettina; Viaud, Muriel

    2013-01-01

    The gene cluster responsible for the biosynthesis of the red polyketidic pigment bikaverin has only been characterized in Fusarium ssp. so far. Recently, a highly homologous but incomplete and nonfunctional bikaverin cluster has been found in the genome of the unrelated phytopathogenic fungus Botrytis cinerea. In this study, we provided evidence that rare B. cinerea strains such as 1750 have a complete and functional cluster comprising the six genes orthologous to Fusarium fujikuroi ffbik1-ffbik6 and do produce bikaverin. Phylogenetic analysis confirmed that the whole cluster was acquired from Fusarium through a horizontal gene transfer (HGT). In the bikaverin-nonproducing strain B05.10, the genes encoding bikaverin biosynthesis enzymes are nonfunctional due to deleterious mutations (bcbik2-3) or missing (bcbik1) but interestingly, the genes encoding the regulatory proteins BcBIK4 and BcBIK5 do not harbor deleterious mutations which suggests that they may still be functional. Heterologous complementation of the F. fujikuroi Δffbik4 mutant confirmed that bcbik4 of strain B05.10 is indeed fully functional. Deletion of bcvel1 in the pink strain 1750 resulted in loss of bikaverin and overproduction of melanin indicating that the VELVET protein BcVEL1 regulates the biosynthesis of the two pigments in an opposite manner. Although strain 1750 itself expresses a truncated BcVEL1 protein (100 instead of 575 aa) that is nonfunctional with regard to sclerotia formation, virulence and oxalic acid formation, it is sufficient to regulate pigment biosynthesis (bikaverin and melanin) and fenhexamid HydR2 type of resistance. Finally, a genetic cross between strain 1750 and a bikaverin-nonproducing strain sensitive to fenhexamid revealed that the functional bikaverin cluster is genetically linked to the HydR2 locus. PMID:23308280

  11. Fate of antibiotic resistant bacteria and genes during wastewater chlorination: implication for antibiotic resistance control.

    Directory of Open Access Journals (Sweden)

    Qing-Bin Yuan

    Full Text Available This study investigated fates of nine antibiotic-resistant bacteria as well as two series of antibiotic resistance genes in wastewater treated by various doses of chlorine (0, 15, 30, 60, 150 and 300 mg Cl2 min/L. The results indicated that chlorination was effective in inactivating antibiotic-resistant bacteria. Most bacteria were inactivated completely at the lowest dose (15 mg Cl2 min/L. By comparison, sulfadiazine- and erythromycin-resistant bacteria exhibited tolerance to low chlorine dose (up to 60 mg Cl2 min/L. However, quantitative real-time PCRs revealed that chlorination decreased limited erythromycin or tetracycline resistance genes, with the removal levels of overall erythromycin and tetracycline resistance genes at 0.42 ± 0.12 log and 0.10 ± 0.02 log, respectively. About 40% of erythromycin-resistance genes and 80% of tetracycline resistance genes could not be removed by chlorination. Chlorination was considered not effective in controlling antimicrobial resistance. More concern needs to be paid to the potential risk of antibiotic resistance genes in the wastewater after chlorination.

  12. Fate of antibiotic resistant bacteria and genes during wastewater chlorination: implication for antibiotic resistance control.

    Science.gov (United States)

    Yuan, Qing-Bin; Guo, Mei-Ting; Yang, Jian

    2015-01-01

    This study investigated fates of nine antibiotic-resistant bacteria as well as two series of antibiotic resistance genes in wastewater treated by various doses of chlorine (0, 15, 30, 60, 150 and 300 mg Cl2 min/L). The results indicated that chlorination was effective in inactivating antibiotic-resistant bacteria. Most bacteria were inactivated completely at the lowest dose (15 mg Cl2 min/L). By comparison, sulfadiazine- and erythromycin-resistant bacteria exhibited tolerance to low chlorine dose (up to 60 mg Cl2 min/L). However, quantitative real-time PCRs revealed that chlorination decreased limited erythromycin or tetracycline resistance genes, with the removal levels of overall erythromycin and tetracycline resistance genes at 0.42 ± 0.12 log and 0.10 ± 0.02 log, respectively. About 40% of erythromycin-resistance genes and 80% of tetracycline resistance genes could not be removed by chlorination. Chlorination was considered not effective in controlling antimicrobial resistance. More concern needs to be paid to the potential risk of antibiotic resistance genes in the wastewater after chlorination.

  13. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters

    OpenAIRE

    Miller, Jennifer H.; Novak, John T.; Knocke, William R.; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) versus their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1- a Pseudomonas sp.) and thermophilic (Iso T10- a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts ...

  14. Sponge Microbiota are a Reservoir of Functional Antibiotic Resistance Genes

    DEFF Research Database (Denmark)

    Versluis, Dennis; de Evgrafov, Mari Cristina Rodriguez; Sommer, Morten Otto Alexander

    2016-01-01

    Wide application of antibiotics has contributed to the evolution of multi-drug resistant human pathogens, resulting in poorer treatment outcomes for infections. In the marine environment, seawater samples have been investigated as a resistance reservoir; however, no studies have methodically...... examined sponges as a reservoir of antibiotic resistance. Sponges could be important in this respect because they often contain diverse microbial communities that have the capacity to produce bioactive metabolites. Here, we applied functional metagenomics to study the presence and diversity of functional......). Fifteen of 37 inserts harbored resistance genes that shared resistance gene could be identified with high confidence, in which case we predicted resistance to be mainly mediated by antibiotic efflux. One marine-specific ampicillin-resistance...

  15. DNACLUST: accurate and efficient clustering of phylogenetic marker genes

    Directory of Open Access Journals (Sweden)

    Liu Bo

    2011-06-01

    Full Text Available Abstract Background Clustering is a fundamental operation in the analysis of biological sequence data. New DNA sequencing technologies have dramatically increased the rate at which we can generate data, resulting in datasets that cannot be efficiently analyzed by traditional clustering methods. This is particularly true in the context of taxonomic profiling of microbial communities through direct sequencing of phylogenetic markers (e.g. 16S rRNA - the domain that motivated the work described in this paper. Many analysis approaches rely on an initial clustering step aimed at identifying sequences that belong to the same operational taxonomic unit (OTU. When defining OTUs (which have no universally accepted definition, scientists must balance a trade-off between computational efficiency and biological accuracy, as accurately estimating an environment's phylogenetic composition requires computationally-intensive analyses. We propose that efficient and mathematically well defined clustering methods can benefit existing taxonomic profiling approaches in two ways: (i the resulting clusters can be substituted for OTUs in certain applications; and (ii the clustering effectively reduces the size of the data-sets that need to be analyzed by complex phylogenetic pipelines (e.g., only one sequence per cluster needs to be provided to downstream analyses. Results To address the challenges outlined above, we developed DNACLUST, a fast clustering tool specifically designed for clustering highly-similar DNA sequences. Given a set of sequences and a sequence similarity threshold, DNACLUST creates clusters whose radius is guaranteed not to exceed the specified threshold. Underlying DNACLUST is a greedy clustering strategy that owes its performance to novel sequence alignment and k-mer based filtering algorithms. DNACLUST can also produce multiple sequence alignments for every cluster, allowing users to manually inspect clustering results, and enabling more

  16. The border sequence of the balhimycin biosynthesis gene cluster from Amycolatopsis balhimycina contains bbr, encoding a StrR-like pathway-specific regulator

    NARCIS (Netherlands)

    Shawky, Riham M.; Puk, Oliver; Wietzorrek, Andreas; Pelzer, Stefan; Takano, Eriko; Wohlleben, Wolfgang; Stegmann, Efthimia

    2007-01-01

    Balhimycin, produced by the actinomycete Amycolatopsis balhimycina DSM5908, is a glycopeptide antibiotic highly similar to vancomycin, the antibiotic of 'last resort' used for the treatment of resistant Gram-positive pathogenic bacteria. Partial sequence of the balhimycin biosynthesis gene cluster

  17. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA.

    Science.gov (United States)

    Teixeira, Bertinellys; Rodulfo, Hectorina; Carreño, Numirin; Guzmán, Militza; Salazar, Elsa; De Donato, Marcos

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America.

  18. Detection of bacterial blight resistance genes in basmati rice landraces.

    Science.gov (United States)

    Ullah, I; Jamil, S; Iqbal, M Z; Shaheen, H L; Hasni, S M; Jabeen, S; Mehmood, A; Akhter, M

    2012-07-20

    Aromatic basmati rice is vulnerable to bacterial blight disease. Genes conferring resistance to bacterial blight have been identified in coarse rice; however, their incorporation into basmati varieties compromises the prized basmati aroma. We identified bacterial blight resistance genes Xa4, xa5, Xa7, and xa13 in 52 basmati landraces and five basmati cultivars using PCR markers. The Xa7 gene was found to be the most prevalent among the cultivars and landraces. The cultivars Basmati-385 and Basmati-2000 also contained the Xa4 gene; however, xa5 and xa13 were confined to landraces only. Ten landraces were found to have multiple resistance genes. Landraces Basmati-106, Basmati-189 and Basmati-208 contained Xa4 and Xa7 genes. Whereas, landraces Basmati-122, Basmati-427, Basmati-433 were observed to have xa5 and Xa7 genes. Landraces Basmati-48, Basmati-51A, Basmati-334, and Basmati-370A possessed Xa7 and xa13 genes. The use of landraces containing recessive genes xa5 and xa13 as donor parents in hybridization with cultivars Basmati-385 and Basmati-2000, which contain the genes Xa4 and Xa7, will expedite efforts to develop bacterial blight-resistant basmati rice cultivars through marker assisted selection, based on a pyramiding approach, without compromising aroma and grain quality.

  19. An Effective Tri-Clustering Algorithm Combining Expression Data with Gene Regulation Information

    Directory of Open Access Journals (Sweden)

    Ao Li

    2009-04-01

    Full Text Available Motivation: Bi-clustering algorithms aim to identify sets of genes sharing similar expression patterns across a subset of conditions. However direct interpretation or prediction of gene regulatory mechanisms may be difficult as only gene expression data is used. Information about gene regulators may also be available, most commonly about which transcription factors may bind to the promoter region and thus control the expression level of a gene. Thus a method to integrate gene expression and gene regulation information is desirable for clustering and analyzing. Methods: By incorporating gene regulatory information with gene expression data, we define regulated expression values (REV as indicators of how a gene is regulated by a specific factor. Existing bi-clustering methods are extended to a three dimensional data space by developing a heuristic TRI-Clustering algorithm. An additional approach named Automatic Boundary Searching algorithm (ABS is introduced to automatically determine the boundary threshold. Results: Results based on incorporating ChIP-chip data representing transcription factor-gene interactions show that the algorithms are efficient and robust for detecting tri-clusters. Detailed analysis of the tri-cluster extracted from yeast sporulation REV data shows genes in this cluster exhibited significant differences during the middle and late stages. The implicated regulatory network was then reconstructed for further study of defined regulatory mechanisms. Topological and statistical analysis of this network demonstrated evidence of significant changes of TF activities during the different stages of yeast sporulation, and suggests this approach might be a general way to study regulatory networks undergoing transformations.

  20. Lichen Biosynthetic Gene Clusters Part II: Homology Mapping Suggests a Functional Diversity.

    Science.gov (United States)

    Bertrand, Robert L; Abdel-Hameed, Mona; Sorensen, John L

    2018-02-27

    Lichens are renowned for their diverse natural products though little is known of the genetic programming dictating lichen natural product biosynthesis. We sequenced the genome of Cladonia uncialis and profiled its secondary metabolite biosynthetic gene clusters. Through a homology searching approach, we can now propose specific functions for gene products as well as the biosynthetic pathways that are encoded in several of these gene clusters. This analysis revealed that the lichen genome encodes the required enzymes for patulin and betaenones A-C biosynthesis, fungal toxins not known to be produced by lichens. Within several gene clusters, some (but not all) genes are genetically similar to genes devoted to secondary metabolite biosynthesis in Fungi. These lichen clusters also contain accessory tailoring genes without such genetic similarity, suggesting that the encoded tailoring enzymes perform distinct chemical transformations. We hypothesize that C. uncialis gene clusters have evolved by shuffling components of ancestral fungal clusters to create new series of chemical steps, leading to the production of hitherto undiscovered derivatives of fungal secondary metabolites.

  1. Horizontal transfer of a nitrate assimilation gene cluster and ecological transitions in fungi: a phylogenetic study.

    Directory of Open Access Journals (Sweden)

    Jason C Slot

    Full Text Available High affinity nitrate assimilation genes in fungi occur in a cluster (fHANT-AC that can be coordinately regulated. The clustered genes include nrt2, which codes for a high affinity nitrate transporter; euknr, which codes for nitrate reductase; and NAD(PH-nir, which codes for nitrite reductase. Homologs of genes in the fHANT-AC occur in other eukaryotes and prokaryotes, but they have only been found clustered in the oomycete Phytophthora (heterokonts. We performed independent and concatenated phylogenetic analyses of homologs of all three genes in the fHANT-AC. Phylogenetic analyses limited to fungal sequences suggest that the fHANT-AC has been transferred horizontally from a basidiomycete (mushrooms and smuts to an ancestor of the ascomycetous mold Trichoderma reesei. Phylogenetic analyses of sequences from diverse eukaryotes and eubacteria, and cluster structure, are consistent with a hypothesis that the fHANT-AC was assembled in a lineage leading to the oomycetes and was subsequently transferred to the Dikarya (Ascomycota+Basidiomycota, which is a derived fungal clade that includes the vast majority of terrestrial fungi. We propose that the acquisition of high affinity nitrate assimilation contributed to the success of Dikarya on land by allowing exploitation of nitrate in aerobic soils, and the subsequent transfer of a complete assimilation cluster improved the fitness of T. reesei in a new niche. Horizontal transmission of this cluster of functionally integrated genes supports the "selfish operon" hypothesis for maintenance of gene clusters.

  2. Antimicrobial Peptide Resistance Genes in the Plant Pathogen Dickeya dadantii.

    Science.gov (United States)

    Pandin, Caroline; Caroff, Martine; Condemine, Guy

    2016-11-01

    Modification of teichoic acid through the incorporation of d-alanine confers resistance in Gram-positive bacteria to antimicrobial peptides (AMPs). This process involves the products of the dltXABCD genes. These genes are widespread in Gram-positive bacteria, and they are also found in a few Gram-negative bacteria. Notably, these genes are present in all soft-rot enterobacteria (Pectobacterium and Dickeya) whose dltDXBAC operons have been sequenced. We studied the function and regulation of these genes in Dickeya dadantii dltB expression was induced in the presence of the AMP polymyxin. It was not regulated by PhoP, which controls the expression of some genes involved in AMP resistance, but was regulated by ArcA, which has been identified as an activator of genes involved in AMP resistance. However, arcA was not the regulator responsible for polymyxin induction of these genes in this bacterium, which underlines the complexity of the mechanisms controlling AMP resistance in D. dadantii Two other genes involved in resistance to AMPs have also been characterized, phoS and phoH dltB, phoS, phoH, and arcA but not dltD mutants were more sensitive to polymyxin than the wild-type strain. Decreased fitness of the dltB, phoS, and phoH mutants in chicory leaves indicates that their products are important for resistance to plant AMPs. Gram-negative bacteria can modify their lipopolysaccharides (LPSs) to resist antimicrobial peptides (AMPs). Soft-rot enterobacteria (Dickeya and Pectobacterium spp.) possess homologues of the dlt genes in their genomes which, in Gram-positive bacteria, are involved in resistance to AMPs. In this study, we show that these genes confer resistance to AMPs, probably by modifying LPSs, and that they are required for the fitness of the bacteria during plant infection. Two other new genes involved in resistance were also analyzed. These results show that bacterial resistance to AMPs can occur in bacteria through many different mechanisms that need to be

  3. A multiple genome analysis of Mycobacterium tuberculosis reveals specific novel genes and mutations associated with pyrazinamide resistance.

    Science.gov (United States)

    Sheen, Patricia; Requena, David; Gushiken, Eduardo; Gilman, Robert H; Antiparra, Ricardo; Lucero, Bryan; Lizárraga, Pilar; Cieza, Basilio; Roncal, Elisa; Grandjean, Louis; Pain, Arnab; McNerney, Ruth; Clark, Taane G; Moore, David; Zimic, Mirko

    2017-10-11

    Tuberculosis (TB) is a major global health problem and drug resistance compromises the efforts to control this disease. Pyrazinamide (PZA) is an important drug used in both first and second line treatment regimes. However, its complete mechanism of action and resistance remains unclear. We genotyped and sequenced the complete genomes of 68 M. tuberculosis strains isolated from unrelated TB patients in Peru. No clustering pattern of the strains was verified based on spoligotyping. We analyzed the association between PZA resistance with non-synonymous mutations and specific genes. We found mutations in pncA and novel genes significantly associated with PZA resistance in strains without pncA mutations. These included genes related to transportation of metal ions, pH regulation and immune system evasion. These results suggest potential alternate mechanisms of PZA resistance that have not been found in other populations, supporting that the antibacterial activity of PZA may hit multiple targets.

  4. A multiple genome analysis of Mycobacterium tuberculosis reveals specific novel genes and mutations associated with pyrazinamide resistance

    KAUST Repository

    Sheen, Patricia

    2017-10-11

    Tuberculosis (TB) is a major global health problem and drug resistance compromises the efforts to control this disease. Pyrazinamide (PZA) is an important drug used in both first and second line treatment regimes. However, its complete mechanism of action and resistance remains unclear.We genotyped and sequenced the complete genomes of 68 M. tuberculosis strains isolated from unrelated TB patients in Peru. No clustering pattern of the strains was verified based on spoligotyping. We analyzed the association between PZA resistance with non-synonymous mutations and specific genes. We found mutations in pncA and novel genes significantly associated with PZA resistance in strains without pncA mutations. These included genes related to transportation of metal ions, pH regulation and immune system evasion.These results suggest potential alternate mechanisms of PZA resistance that have not been found in other populations, supporting that the antibacterial activity of PZA may hit multiple targets.

  5. Resistance gene management: concepts and practice

    Science.gov (United States)

    Christopher C. Mundt

    2012-01-01

    There is now a very long history of genetics/breeding for disease resistance in annual crops. These efforts have resulted in conceptual advances and frustrations, as well as practical successes and failures. This talk will review this history and its relevance to the genetics of resistance in forest species. All plant breeders and pathologists are familiar with boom-...

  6. High or low correlation between co-occuring gene clusters and 16S rRNA gene phylogeny.

    Science.gov (United States)

    Rudi, Knut; Sekelja, Monika

    2013-02-01

    Ribosomal RNA (rRNA) genes are universal for all living organisms. Yet, the correspondence between genome composition and rRNA phylogeny remains poorly known. The aim of this study was to use the information from genome sequence databases to address the correlation between rRNA gene phylogeny and total gene composition in bacteria. This was done by analysing 327 genomes with TIGRFAM functional gene annotations. Our approach consisted of two steps. First, we searched for discriminatory clusters of co-occurring genes. Using a multivariate statistical approach, we identified 11 such clusters which contain genes that were co-occurring only in a subset of genomes and contributed to explain the gene content differences between genome subsets. Second, we mapped the discovered clusters to 16S rRNA-based phylogeny and calculated the correlation between co-occuring genes and phylogeny. Six of the 11 clusters exhibited significant correlation with 16S rRNA gene phylogeny. The most distinct phylogenetic finding was a high correlation between iron-sulfur oxidoreductases in combination with carbon nitrogen ligases and Chlorobium. The other correlations identified covered relatively large phylogroups: Actinobacteria were positively associated with kinases, while Gammaproteobacteria were positively associated with methylases and acyltransferases. The suggested functional differences between higher phylogroups, however, need experimental verification. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. A physical map of the heterozygous grapevine 'Cabernet Sauvignon' allows mapping candidate genes for disease resistance

    Directory of Open Access Journals (Sweden)

    Scalabrin Simone

    2008-06-01

    Full Text Available Abstract Background Whole-genome physical maps facilitate genome sequencing, sequence assembly, mapping of candidate genes, and the design of targeted genetic markers. An automated protocol was used to construct a Vitis vinifera 'Cabernet Sauvignon' physical map. The quality of the result was addressed with regard to the effect of high heterozygosity on the accuracy of contig assembly. Its usefulness for the genome-wide mapping of genes for disease resistance, which is an important trait for grapevine, was then assessed. Results The physical map included 29,727 BAC clones assembled into 1,770 contigs, spanning 715,684 kbp, and corresponding to 1.5-fold the genome size. Map inflation was due to high heterozygosity, which caused either the separation of allelic BACs in two different contigs, or local mis-assembly in contigs containing BACs from the two haplotypes. Genetic markers anchored 395 contigs or 255,476 kbp to chromosomes. The fully automated assembly and anchorage procedures were validated by BAC-by-BAC blast of the end sequences against the grape genome sequence, unveiling 7.3% of chimerical contigs. The distribution across the physical map of candidate genes for non-host and host resistance, and for defence signalling pathways was then studied. NBS-LRR and RLK genes for host resistance were found in 424 contigs, 133 of them (32% were assigned to chromosomes, on which they are mostly organised in clusters. Non-host and defence signalling genes were found in 99 contigs dispersed without a discernable pattern across the genome. Conclusion Despite some limitations that interfere with the correct assembly of heterozygous clones into contigs, the 'Cabernet Sauvignon' physical map is a useful and reliable intermediary step between a genetic map and the genome sequence. This tool was successfully exploited for a quick mapping of complex families of genes, and it strengthened previous clues of co-localisation of major NBS-LRR clusters and

  8. Analysis of metal and biocides resistance genes in drug resistance and susceptible Salmonella enterica from food animals

    Science.gov (United States)

    Background Generally drug resistant bacteria carry antibiotic resistance genes and heavy metal and biocide resistance genes on large conjugative plasmids. The presence of these metal and biocide resistance genes in susceptible bacteria are not assessed comprehensively. Hence, WGS data of susceptib...

  9. Activation and clustering of a Plasmodium falciparum var gene are affected by subtelomeric sequences.

    Science.gov (United States)

    Duffy, Michael F; Tang, Jingyi; Sumardy, Fransisca; Nguyen, Hanh H T; Selvarajah, Shamista A; Josling, Gabrielle A; Day, Karen P; Petter, Michaela; Brown, Graham V

    2017-01-01

    The Plasmodium falciparum var multigene family encodes the cytoadhesive, variant antigen PfEMP1. P. falciparum antigenic variation and cytoadhesion specificity are controlled by epigenetic switching between the single, or few, simultaneously expressed var genes. Most var genes are maintained in perinuclear clusters of heterochromatic telomeres. The active var gene(s) occupy a single, perinuclear var expression site. It is unresolved whether the var expression site forms in situ at a telomeric cluster or whether it is an extant compartment to which single chromosomes travel, thus controlling var switching. Here we show that transcription of a var gene did not require decreased colocalisation with clusters of telomeres, supporting var expression site formation in situ. However following recombination within adjacent subtelomeric sequences, the same var gene was persistently activated and did colocalise less with telomeric clusters. Thus, participation in stable, heterochromatic, telomere clusters and var switching are independent but are both affected by subtelomeric sequences. The var expression site colocalised with the euchromatic mark H3K27ac to a greater extent than it did with heterochromatic H3K9me3. H3K27ac was enriched within the active var gene promoter even when the var gene was transiently repressed in mature parasites and thus H3K27ac may contribute to var gene epigenetic memory. © 2016 Federation of European Biochemical Societies.

  10. The antimicrobial resistance crisis: management through gene monitoring

    Science.gov (United States)

    2016-01-01

    Antimicrobial resistance (AMR) is an acknowledged crisis for humanity. Its genetic origins and dire potential outcomes are increasingly well understood. However, diagnostic techniques for monitoring the crisis are currently largely limited to enumerating the increasing incidence of resistant pathogens. Being the end-stage of the evolutionary process that produces antimicrobial resistant pathogens, these measurements, while diagnostic, are not prognostic, and so are not optimal in managing this crisis. A better test is required. Here, using insights from an understanding of evolutionary processes ruling the changing abundance of genes under selective pressure, we suggest a predictive framework for the AMR crisis. We then discuss the likely progression of resistance for both existing and prospective antimicrobial therapies. Finally, we suggest that by the environmental monitoring of resistance gene frequency, resistance may be detected and tracked presumptively, and how this tool may be used to guide decision-making in the local and global use of antimicrobials. PMID:27831476

  11. The Number of Genes Controlling Resistance in Beans to Common ...

    African Journals Online (AJOL)

    Ten crosses were made between resistant (R), susceptible (S), RxS susceptible and Intermediate (I), SxI and RxR bean lines to common bacterial blight. The F1 were advanced to F2 and in each cross over 250 F2 plants were used to evaluate for the number of genes controlling resistance using Mendelian genetics and ...

  12. Prevalence, antibiotic-resistance properties and enterotoxin gene ...

    African Journals Online (AJOL)

    Prevalence, antibiotic-resistance properties and enterotoxin gene profile of Bacillus cereus strains isolated from milk-based baby foods. ... Conclusion: Considerable prevalence of resistant and toxigenic B. cereus and high consumption of milk-based infant foods in Iran, represent an important public health issue which ...

  13. Occurrence and reservoirs of antibiotic resistance genes in the environment

    NARCIS (Netherlands)

    Seveno, N.; Kallifidas, D.; Smalla, K.; Elsas, van J.D.; Collard, J.M.; Karagouni, A.; Wellington, E.M.H.

    2002-01-01

    Antibiotic resistance genes have become highly mobile since the development of antibiotic chemotherapy. A considerable body of evidence exists proving the link between antibiotic use and the significant increase in drug-resistant human bacterial pathogens. The application of molecular detection and

  14. Identification of bacterial blight resistance genes Xa4 in Pakistani ...

    African Journals Online (AJOL)

    Identification of bacterial blight resistance genes Xa4 in Pakistani rice germplasm using PCR. M Arif, M Jaffar, M Babar, MA Sheikh, S Kousar, A Arif, Y Zafar. Abstract. Bacterial blight (BB) caused by Xanthomonas oryzae pv oryzae (Xoo) is a major biotic constraint in the irrigated rice belts. Genetic resistance is the most ...

  15. Spread of tetracycline resistance genes at a conventional dairy farm

    NARCIS (Netherlands)

    Kyselková, Martina; Jirout, Jiří; Vrchotová, Naděžda; Schmitt, Heike; Elhottová, Dana

    2015-01-01

    The use of antibiotics in animal husbandry contributes to the worldwide problem of increasing antibiotic resistance in animal and human pathogens. Intensive animal production is considered an important source of antibiotic resistance genes released to the environment, while the contribution of

  16. gene effects for resistance to groundnut rossette disease in exotic ...

    African Journals Online (AJOL)

    ACSS

    2016-02-25

    Feb 25, 2016 ... Opposite and significant signs of dominance [d] and dominance × dominance [l] components indicated the importance of duplicate epitasis in the latter crosses in the control of GRD resistance, which revealed a complex nature of inheritance of GRD resistance. Key Words: Arachis hypogaea, gene effects, ...

  17. Progress on introduction of rust resistance genes into confection sunflower

    Science.gov (United States)

    Sunflower rust (Puccinia helianthi) emerged as a serious disease in the last few years. Confection sunflower is particularly vulnerable to the disease due to the lack of resistance sources. The objectives of this project are to transfer rust resistance genes from oil sunflower to confectionery sunfl...

  18. Isolation and characterization of a candidate gene for resistance to ...

    African Journals Online (AJOL)

    ARC) domain, and a leucine-rich repeat (LRR) domain, all of which are typical characteristics of resistance genes. We proposed the resistance mechanism of CreV8 based on functional analysis and predictions from its conserved domains and ...

  19. Evolutionarily Dynamic, but Robust, Targeting of Resistance Genes by the miR482/2118 Gene Family in the Solanaceae.

    Science.gov (United States)

    de Vries, Sophie; Kloesges, Thorsten; Rose, Laura E

    2015-11-19

    Plants are exposed to pathogens around the clock. A common resistance response in plants upon pathogen detection is localized cell death. Given the irreversible nature of this response, multiple layers of negative regulation are present to prevent the untimely or misexpression of resistance genes. One layer of negative regulation is provided by a recently discovered microRNA (miRNA) gene family, miR482/2118. This family targets the transcripts of resistance genes in plants. We investigated the evolutionary history and specificity of this miRNA gene family within the Solanaceae. This plant family includes many important crop species, providing a set of well-defined resistance gene repertoires. Across 14 species from the Solanaceae, we identified eight distinct miR482/2118 gene family members. Our studies show conservation of miRNA type and number in the group of wild tomatoes and, to a lesser extent, throughout the Solanaceae. The eight orthologous miRNA gene clusters evolved under different evolutionary constraints, allowing for individual subfunctionalization of the miRNAs. Despite differences in the predicted targeting behavior of each miRNA, the miRNA-R-gene network is robust due to its high degree of interconnectivity and redundant targeting. Our data suggest that the miR482/2118 gene family acts as an evolutionary buffer for R-gene sequence diversity. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Gene pyramiding enhances durable blast disease resistance in rice

    OpenAIRE

    Fukuoka, Shuichi; Saka, Norikuni; Mizukami, Yuko; Koga, Hironori; Yamanouchi, Utako; Yoshioka, Yosuke; Hayashi, Nagao; Ebana, Kaworu; Mizobuchi, Ritsuko; Yano, Masahiro

    2015-01-01

    Effective control of blast, a devastating fungal disease of rice, would increase and stabilize worldwide food production. Resistance mediated by quantitative trait loci (QTLs), which usually have smaller individual effects than R-genes but confer broad-spectrum or non-race-specific resistance, is a promising alternative to less durable race-specific resistance for crop improvement, yet evidence that validates the impact of QTL combinations (pyramids) on the durability of plant disease resista...

  1. Cracking the regulatory code of biosynthetic gene clusters as a strategy for natural product discovery.

    Science.gov (United States)

    Rigali, Sébastien; Anderssen, Sinaeda; Naômé, Aymeric; van Wezel, Gilles P

    2018-01-05

    The World Health Organization (WHO) describes antibiotic resistance as "one of the biggest threats to global health, food security, and development today", as the number of multi- and pan-resistant bacteria is rising dangerously. Acquired resistance phenomena also impair antifungals, antivirals, anti-cancer drug therapy, while herbicide resistance in weeds threatens the crop industry. On the positive side, it is likely that the chemical space of natural products goes far beyond what has currently been discovered. This idea is fueled by genome sequencing of microorganisms which unveiled numerous so-called cryptic biosynthetic gene clusters (BGCs), many of which are transcriptionally silent under laboratory culture conditions, and by the fact that most bacteria cannot yet be cultivated in the laboratory. However, brute force antibiotic discovery does not yield the same results as it did in the past, and researchers have had to develop creative strategies in order to unravel the hidden potential of microorganisms such as Streptomyces and other antibiotic-producing microorganisms. Identifying the cis elements and their corresponding transcription factors(s) involved in the control of BGCs through bioinformatic approaches is a promising strategy. Theoretically, we are a few 'clicks' away from unveiling the culturing conditions or genetic changes needed to activate the production of cryptic metabolites or increase the production yield of known compounds to make them economically viable. In this opinion article, we describe and illustrate the idea beyond 'cracking' the regulatory code for natural product discovery, by presenting a series of proofs of concept, and discuss what still should be achieved to increase the rate of success of this strategy. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Distribution of Florfenicol Resistance Genes fexA and cfr among Chloramphenicol-Resistant Staphylococcus Isolates

    Science.gov (United States)

    Kehrenberg, Corinna; Schwarz, Stefan

    2006-01-01

    A total of 302 chloramphenicol-resistant Staphylococcus isolates were screened for the presence of the florfenicol/chloramphenicol resistance genes fexA and cfr and their localization on mobile genetic elements. Of the 114 isolates from humans, only a single Staphylococcus aureus isolate showed an elevated MIC to florfenicol, but did not carry either of the known resistance genes, cfr or fexA. In contrast, 11 of the 188 staphylococci from animal sources were considered florfenicol resistant and carried either cfr (one isolate), fexA (five isolates), or both resistance genes (five isolates). In nine cases we confirmed that these genes were carried on a plasmid. Five different types of plasmids could be differentiated on the basis of their sizes, restriction patterns, and resistance genes. The gene fexA, which has previously been shown to be part of the nonconjugative transposon Tn558, was identified in 10 of the 11 resistant isolates from animals. PCR assays were developed to detect different parts of this transposon as well as their physical linkage. Complete copies of Tn558 were found in five different isolates and shown by inverse PCR to be functionally active. Truncated copies of Tn558, in which the tnpA-tnpB area was in part deleted by the integration of a 4,674-bp segment including the gene cfr and a novel 2,446-bp IS21-like insertion sequence, were seen in a plasmid present in three staphylococcal isolates. PMID:16569824

  3. AntiSMASH 4.0 - improvements in chemistry prediction and gene cluster boundary identification

    NARCIS (Netherlands)

    Blin, Kai; Wolf, Thomas; Chevrette, Marc G.; Lu, Xiaowen; Schwalen, Christopher J.; Kautsar, Satria A.; Suarez Duran, Hernando G.; Los Santos, De Emmanuel L.C.; Kim, Hyun Uk; Nave, Mariana; Dickschat, Jeroen S.; Mitchell, Douglas A.; Shelest, Ekaterina; Breitling, Rainer; Takano, Eriko; Lee, Sang Yup; Weber, Tilmann; Medema, Marnix H.

    2017-01-01

    Many antibiotics, chemotherapeutics, crop protection agents and food preservatives originate from molecules produced by bacteria, fungi or plants. In recent years, genome mining methodologies have been widely adopted to identify and characterize the biosynthetic gene clusters encoding the production

  4. CASSIS and SMIPS: promoter-based prediction of secondary metabolite gene clusters in eukaryotic genomes.

    Science.gov (United States)

    Wolf, Thomas; Shelest, Vladimir; Nath, Neetika; Shelest, Ekaterina

    2016-04-15

    Secondary metabolites (SM) are structurally diverse natural products of high pharmaceutical importance. Genes involved in their biosynthesis are often organized in clusters, i.e., are co-localized and co-expressed. In silico cluster prediction in eukaryotic genomes remains problematic mainly due to the high variability of the clusters' content and lack of other distinguishing sequence features. We present Cluster Assignment by Islands of Sites (CASSIS), a method for SM cluster prediction in eukaryotic genomes, and Secondary Metabolites by InterProScan (SMIPS), a tool for genome-wide detection of SM key enzymes ('anchor' genes): polyketide synthases, non-ribosomal peptide synthetases and dimethylallyl tryptophan synthases. Unlike other tools based on protein similarity, CASSIS exploits the idea of co-regulation of the cluster genes, which assumes the existence of common regulatory patterns in the cluster promoters. The method searches for 'islands' of enriched cluster-specific motifs in the vicinity of anchor genes. It was validated in a series of cross-validation experiments and showed high sensitivity and specificity. CASSIS and SMIPS are freely available at https://sbi.hki-jena.de/cassis thomas.wolf@leibniz-hki.de or ekaterina.shelest@leibniz-hki.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  5. Characterization of the fumonisin B2 biosynthetic gene cluster in Aspergillus niger and A. awamori.

    Science.gov (United States)

    Aspergillus niger and A. awamori strains isolated from grapes cultivated in Mediterranean basin were examined for fumonisin B2 (FB2) production and presence/absence of sequences within the fumonisin biosynthetic gene (fum) cluster. Presence of 13 regions in the fum cluster was evaluated by PCR assay...

  6. Molecular population genetics of the β-esterase gene cluster of ...

    Indian Academy of Sciences (India)

    However there are some 'footprints' of directional and balancing selection shaping specific distribution of nucleotide polymorphism within the cluster. Intergenic epistatic selection between Est-6 and Est-6 may play an important role in the evolution of the -esterase gene cluster preserving the putative pseudogene from ...

  7. Intranuclear and higher-order chromatin organization of the major histone gene cluster in breast cancer.

    Science.gov (United States)

    Fritz, Andrew J; Ghule, Prachi N; Boyd, Joseph R; Tye, Coralee E; Page, Natalie A; Hong, Deli; Shirley, David J; Weinheimer, Adam S; Barutcu, Ahmet R; Gerrard, Diana L; Frietze, Seth; van Wijnen, Andre J; Zaidi, Sayyed K; Imbalzano, Anthony N; Lian, Jane B; Stein, Janet L; Stein, Gary S

    2018-02-01

    Alterations in nuclear morphology are common in cancer progression. However, the degree to which gross morphological abnormalities translate into compromised higher-order chromatin organization is poorly understood. To explore the functional links between gene expression and chromatin structure in breast cancer, we performed RNA-seq gene expression analysis on the basal breast cancer progression model based on human MCF10A cells. Positional gene enrichment identified the major histone gene cluster at chromosome 6p22 as one of the most significantly upregulated (and not amplified) clusters of genes from the normal-like MCF10A to premalignant MCF10AT1 and metastatic MCF10CA1a cells. This cluster is subdivided into three sub-clusters of histone genes that are organized into hierarchical topologically associating domains (TADs). Interestingly, the sub-clusters of histone genes are located at TAD boundaries and interact more frequently with each other than the regions in-between them, suggesting that the histone sub-clusters form an active chromatin hub. The anchor sites of loops within this hub are occupied by CTCF, a known chromatin organizer. These histone genes are transcribed and processed at a specific sub-nuclear microenvironment termed the major histone locus body (HLB). While the overall chromatin structure of the major HLB is maintained across breast cancer progression, we detected alterations in its structure that may relate to gene expression. Importantly, breast tumor specimens also exhibit a coordinate pattern of upregulation across the major histone gene cluster. Our results provide a novel insight into the connection between the higher-order chromatin organization of the major HLB and its regulation during breast cancer progression. © 2017 Wiley Periodicals, Inc.

  8. Isolation and characterization of resistance and defense gene analogs in cotton (Gossypium barbadense L.).

    Science.gov (United States)

    Gao, Yulong; Guo, Wangzhen; Wang, Lei; Zhang, Tianzhen

    2006-12-01

    Plant disease resistance gene (R gene) and defense response gene encode some conserved motifs. In the present work, a PCR strategy was used to clone resistance gene analogs (RGAs) and defense gene analogs (DGAs) from Sea-island cotton variety Hai7124 using oligonucleotide primers based on the nucleotide-binding site (NBS) and serine/threonine kinase (STK) in the R-gene and pathogenesis-related proteins of class 2 (PR2) of defense response gene. 79 NBS sequences, 21 STK sequences and 11 DGAs were cloned from disease-resistance cotton. Phylogenic analysis of 79 NBS-RGAs and NBS-RGAs nucleotide sequences of cotton already deposited in GenBank identified one new sub-cluster. The deduced amino acid sequences of NBS-RGAs and STK-RGAs were divided into two distinct groups respectively: Toll/Interleukin-1 receptor (TIR) group and non-TIR group, A group and B group. The expression of RGAs and DGAs having consecutive open reading frame (ORF) was also investigated and it was found that 6 NBS-RGAs and 1 STK-RGA were induced, and 1 DGA was up-regulated by infection of Verticillium dahliae strain VD8. 4 TIR-NBS-RGAs and 4 non-TIR-NBS-RGAs were arbitrarily used as probes for Southern-blotting. There existed 2-10 blotted bands. In addition, since three non-TIR-NBS-RGAs have the same hybridization pattern, we conjecture that these three RGAs form a cluster distribution in the genome.

  9. Candidate gene approach for parasite resistance in sheep--variation in immune pathway genes and association with fecal egg count.

    Directory of Open Access Journals (Sweden)

    Kathiravan Periasamy

    Full Text Available Sheep chromosome 3 (Oar3 has the largest number of QTLs reported to be significantly associated with resistance to gastro-intestinal nematodes. This study aimed to identify single nucleotide polymorphisms (SNPs within candidate genes located in sheep chromosome 3 as well as genes involved in major immune pathways. A total of 41 SNPs were identified across 38 candidate genes in a panel of unrelated sheep and genotyped in 713 animals belonging to 22 breeds across Asia, Europe and South America. The variations and evolution of immune pathway genes were assessed in sheep populations across these macro-environmental regions that significantly differ in the diversity and load of pathogens. The mean minor allele frequency (MAF did not vary between Asian and European sheep reflecting the absence of ascertainment bias. Phylogenetic analysis revealed two major clusters with most of South Asian, South East Asian and South West Asian breeds clustering together while European and South American sheep breeds clustered together distinctly. Analysis of molecular variance revealed strong phylogeographic structure at loci located in immune pathway genes, unlike microsatellite and genome wide SNP markers. To understand the influence of natural selection processes, SNP loci located in chromosome 3 were utilized to reconstruct haplotypes, the diversity of which showed significant deviations from selective neutrality. Reduced Median network of reconstructed haplotypes showed balancing selection in force at these loci. Preliminary association of SNP genotypes with phenotypes recorded 42 days post challenge revealed significant differences (P<0.05 in fecal egg count, body weight change and packed cell volume at two, four and six SNP loci respectively. In conclusion, the present study reports strong phylogeographic structure and balancing selection operating at SNP loci located within immune pathway genes. Further, SNP loci identified in the study were found to have

  10. Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Data Analysis and Visualization (IDAV) and the Department of Computer Science, University of California, Davis, One Shields Avenue, Davis CA 95616, USA,; nternational Research Training Group ``Visualization of Large and Unstructured Data Sets,' ' University of Kaiserslautern, Germany; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA; Genomics Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA; Life Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA,; Computer Science Division,University of California, Berkeley, CA, USA,; Computer Science Department, University of California, Irvine, CA, USA,; All authors are with the Berkeley Drosophila Transcription Network Project, Lawrence Berkeley National Laboratory,; Rubel, Oliver; Weber, Gunther H.; Huang, Min-Yu; Bethel, E. Wes; Biggin, Mark D.; Fowlkes, Charless C.; Hendriks, Cris L. Luengo; Keranen, Soile V. E.; Eisen, Michael B.; Knowles, David W.; Malik, Jitendra; Hagen, Hans; Hamann, Bernd

    2008-05-12

    The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex datasets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss (i) integration of data clustering and visualization into one framework; (ii) application of data clustering to 3D gene expression data; (iii) evaluation of the number of clusters k in the context of 3D gene expression clustering; and (iv) improvement of overall analysis quality via dedicated post-processing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.

  11. Induced mutations of rust resistance genes in wheat

    International Nuclear Information System (INIS)

    McIntosh, R.A.

    1983-01-01

    Induced mutations are being used as a tool to study genes for resistance in wheat. It was found that Pm1 can be separated from Lr20 and Sr15, but these two react like a single pleiotropic gene. Mutants were further examined in crosses and backmutations have been attempted. (author)

  12. Characterization of genomic sequence of a drought-resistant gene ...

    Indian Academy of Sciences (India)

    Characterization of genomic sequence of a drought-resistant gene. TaSnRK2.7 in wheat species. HONG YING ZHANG1,2, WEI LI3, XIN GUO MAO1 and RUI LIAN JING1∗. 1The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science,. Chinese Academy of Agricultural Sciences, ...

  13. Testing of disease-resistance of pokeweed antiviral protein gene ...

    African Journals Online (AJOL)

    Transformation of pokeweed antiviral protein gene (PAP) into plants was shown to improve plant resistance to several viruses or fungi pathogens with no much negative effect on plant growth. The non-virulent defective PAP inhibits only the virus but does not interfere with the host. A non-virulent defective PAP gene ...

  14. Isolation and characterization of a candidate gene for resistance to ...

    African Journals Online (AJOL)

    xudelin

    2012-05-17

    May 17, 2012 ... Cereal cyst nematode (CCN) (Heterodera avenae Woll.) is one of the most economically damaging endoparasite pests of wheat worldwide. We isolated and characterized a novel cereal CCN resistance candidate gene, CreV8, from Aegilops variabilis (2n = 28, UUSvSv). The gene was 3,568 bp long and.

  15. A Single Gene Cluster for Chalcomycins and Aldgamycins: Genetic Basis for Bifurcation of Their Biosynthesis.

    Science.gov (United States)

    Tang, Xiao-Long; Dai, Ping; Gao, Hao; Wang, Chuan-Xi; Chen, Guo-Dong; Hong, Kui; Hu, Dan; Yao, Xin-Sheng

    2016-07-01

    Aldgamycins are 16-membered macrolide antibiotics with a rare branched-chain sugar d-aldgarose or decarboxylated d-aldgarose at C-5. In our efforts to clone the gene cluster for aldgamycins from a marine-derived Streptomyces sp. HK-2006-1 capable of producing both aldgamycins and chalcomycins, we found that both are biosynthesized from a single gene cluster. Whole-genome sequencing combined with gene disruption established the entire gene cluster of aldgamycins: nine new genes are incorporated with the previously identified chalcomycin gene cluster. Functional analysis of these genes revealed that almDI/almDII, (encoding α/β subunits of pyruvate dehydrogenase) triggers the biosynthesis of aldgamycins, whereas almCI (encoding an oxidoreductase) initiates chalcomycins biosynthesis. This is the first report that aldgamycins and chalcomycins are derived from a single gene cluster and of the genetic basis for bifurcation in their biosynthesis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A phylogenomic gene cluster resource: the Phylogenetically Inferred Groups (PhIGs database

    Directory of Open Access Journals (Sweden)

    Boore Jeffrey L

    2006-04-01

    Full Text Available Abstract Background We present here the PhIGs database, a phylogenomic resource for sequenced genomes. Although many methods exist for clustering gene families, very few attempt to create truly orthologous clusters sharing descent from a single ancestral gene across a range of evolutionary depths. Although these non-phylogenetic gene family clusters have been used broadly for gene annotation, errors are known to be introduced by the artifactual association of slowly evolving paralogs and lack of annotation for those more rapidly evolving. A full phylogenetic framework is necessary for accurate inference of function and for many studies that address pattern and mechanism of the evolution of the genome. The automated generation of evolutionary gene clusters, creation of gene trees, determination of orthology and paralogy relationships, and the correlation of this information with gene annotations, expression information, and genomic context is an important resource to the scientific community. Discussion The PhIGs database currently contains 23 completely sequenced genomes of fungi and metazoans, containing 409,653 genes that have been grouped into 42,645 gene clusters. Each gene cluster is built such that the gene sequence distances are consistent with the known organismal relationships and in so doing, maximizing the likelihood for the clusters to represent truly orthologous genes. The PhIGs website contains tools that allow the study of genes within their phylogenetic framework through keyword searches on annotations, such as GO and InterPro assignments, and sequence similarity searches by BLAST and HMM. In addition to displaying the evolutionary relationships of the genes in each cluster, the website also allows users to view the relative physical positions of homologous genes in specified sets of genomes. Summary Accurate analyses of genes and genomes can only be done within their full phylogenetic context. The PhIGs database and

  17. Unusual Gene Order and Organization of the Sea Urchin HoxCluster

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Paul M.; Lucas, Susan; Cameron, R. Andrew; Rowen,Lee; Nesbitt, Ryan; Bloom, Scott; Rast, Jonathan P.; Berney, Kevin; Arenas-Mena, Cesar; Martinez, Pedro; Davidson, Eric H.; Peterson, KevinJ.; Hood, Leroy

    2005-05-10

    The highly consistent gene order and axial colinear expression patterns found in vertebrate hox gene clusters are less well conserved across the rest of bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3' gene is Hox5. (The gene order is : 5'-Hox1,2, 3, 11/13c, 11/13b, '11/13a, 9/10, 8, 7, 6, 5 - 3)'. The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.

  18. Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes

    Directory of Open Access Journals (Sweden)

    Datta Somnath

    2006-08-01

    Full Text Available Abstract Background A cluster analysis is the most commonly performed procedure (often regarded as a first step on a set of gene expression profiles. In most cases, a post hoc analysis is done to see if the genes in the same clusters can be functionally correlated. While past successes of such analyses have often been reported in a number of microarray studies (most of which used the standard hierarchical clustering, UPGMA, with one minus the Pearson's correlation coefficient as a measure of dissimilarity, often times such groupings could be misleading. More importantly, a systematic evaluation of the entire set of clusters produced by such unsupervised procedures is necessary since they also contain genes that are seemingly unrelated or may have more than one common function. Here we quantify the performance of a given unsupervised clustering algorithm applied to a given microarray study in terms of its ability to produce biologically meaningful clusters using a reference set of functional classes. Such a reference set may come from prior biological knowledge specific to a microarray study or may be formed using the growing databases of gene ontologies (GO for the annotated genes of the relevant species. Results In this paper, we introduce two performance measures for evaluating the results of a clustering algorithm in its ability to produce biologically meaningful clusters. The first measure is a biological homogeneity index (BHI. As the name suggests, it is a measure of how biologically homogeneous the clusters are. This can be used to quantify the performance of a given clustering algorithm such as UPGMA in grouping genes for a particular data set and also for comparing the performance of a number of competing clustering algorithms applied to the same data set. The second performance measure is called a biological stability index (BSI. For a given clustering algorithm and an expression data set, it measures the consistency of the clustering

  19. A Link-Based Cluster Ensemble Approach For Improved Gene Expression Data Analysis

    Directory of Open Access Journals (Sweden)

    P.Balaji

    2015-01-01

    Full Text Available Abstract It is difficult from possibilities to select a most suitable effective way of clustering algorithm and its dataset for a defined set of gene expression data because we have a huge number of ways and huge number of gene expressions. At present many researchers are preferring to use hierarchical clustering in different forms this is no more totally optimal. Cluster ensemble research can solve this type of problem by automatically merging multiple data partitions from a wide range of different clusterings of any dimensions to improve both the quality and robustness of the clustering result. But we have many existing ensemble approaches using an association matrix to condense sample-cluster and co-occurrence statistics and relations within the ensemble are encapsulated only at raw level while the existing among clusters are totally discriminated. Finding these missing associations can greatly expand the capability of those ensemble methodologies for microarray data clustering. We propose general K-means cluster ensemble approach for the clustering of general categorical data into required number of partitions.

  20. Long-term occipital nerve stimulation for drug-resistant chronic cluster headache.

    Science.gov (United States)

    Leone, Massimo; Proietti Cecchini, Alberto; Messina, Giuseppe; Franzini, Angelo

    2017-07-01

    Introduction Chronic cluster headache is rare and some of these patients become drug-resistant. Occipital nerve stimulation has been successfully employed in open studies to treat chronic drug-resistant cluster headache. Data from large group of occipital nerve stimulation-treated chronic cluster headache patients with long duration follow-up are advantageous. Patients and methods Efficacy of occipital nerve stimulation has been evaluated in an experimental monocentric open-label study including 35 chronic drug-resistant cluster headache patients (mean age 42 years; 30 men; mean illness duration: 6.7 years). The primary end-point was a reduction in number of daily attacks. Results After a median follow-up of 6.1 years (range 1.6-10.7), 20 (66.7%) patients were responders (≥50% reduction in headache number per day): 12 (40%) responders showed a stable condition characterized by sporadic attacks, five responders had a 60-80% reduction in headache number per day and in the remaining three responders chronic cluster headache was transformed in episodic cluster headache. Ten (33.3%) patients were non-responders; half of these have been responders for a long period (mean 14.6 months; range 2-48 months). Battery depletion (21 patients 70%) and electrode migration (six patients - 20%) were the most frequent adverse events. Conclusions Occipital nerve stimulation efficacy is confirmed in chronic drug-resistant cluster headaches even after an exceptional long-term follow-up. Tolerance can occur years after improvement.

  1. Salicin regulates the expression of functional 'youth gene clusters' to reflect a more youthful gene expression profile.

    Science.gov (United States)

    Gopaul, R; Knaggs, H E; Lephart, J

    2011-10-01

    There are a variety of biological mechanisms that contribute to specific characteristics of ageing skin; for example, the loss of skin structure proteins, increased susceptibility to UV-induced pigmentation and/or loss of hydration. Each of these biological processes is influenced by specific groups of genes. In this research, we have identified groups of genes associated with specific clinical signs of skin ageing and refer to these as functional 'youth gene clusters'. In this study, quantitative real-time polymerase chain reaction (qPCR) was used to investigate the effects of topical application of salicin in regulating the expression of functional 'youth gene clusters' to reflect a more youthful skin profile and reduce the appearance of attributes associated with skin ageing. Results showed that salicin significantly influences the gene expression profiles of treated human equivalent full-thickness skin, by regulating the expression of genes associated with various biological processes involving skin structure, skin hydration, pigmentation and cellular differentiation. Based on the findings from this experiment, salicin was identified as a key ingredient that may regulate functional 'youth gene clusters' to reflect a more youthful gene expression profile by increasing the expression of genes responsible for youthful skin and decreasing the expression of genes responsible for the appearance of aged skin. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  2. Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters

    Science.gov (United States)

    Schorn, Michelle A.; Alanjary, Mohammad M.; Aguinaldo, Kristen; Korobeynikov, Anton; Podell, Sheila; Patin, Nastassia; Lincecum, Tommie; Jensen, Paul R.; Ziemert, Nadine

    2016-01-01

    Traditional natural product discovery methods have nearly exhausted the accessible diversity of microbial chemicals, making new sources and techniques paramount in the search for new molecules. Marine actinomycete bacteria have recently come into the spotlight as fruitful producers of structurally diverse secondary metabolites, and remain relatively untapped. In this study, we sequenced 21 marine-derived actinomycete strains, rarely studied for their secondary metabolite potential and under-represented in current genomic databases. We found that genome size and phylogeny were good predictors of biosynthetic gene cluster diversity, with larger genomes rivalling the well-known marine producers in the Streptomyces and Salinispora genera. Genomes in the Micrococcineae suborder, however, had consistently the lowest number of biosynthetic gene clusters. By networking individual gene clusters into gene cluster families, we were able to computationally estimate the degree of novelty each genus contributed to the current sequence databases. Based on the similarity measures between all actinobacteria in the Joint Genome Institute's Atlas of Biosynthetic gene Clusters database, rare marine genera show a high degree of novelty and diversity, with Corynebacterium, Gordonia, Nocardiopsis, Saccharomonospora and Pseudonocardia genera representing the highest gene cluster diversity. This research validates that rare marine actinomycetes are important candidates for exploration, as they are relatively unstudied, and their relatives are historically rich in secondary metabolites. PMID:27902408

  3. Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters.

    Science.gov (United States)

    Montiel, Daniel; Kang, Hahk-Soo; Chang, Fang-Yuan; Charlop-Powers, Zachary; Brady, Sean F

    2015-07-21

    Large-scale sequencing of prokaryotic (meta)genomic DNA suggests that most bacterial natural product gene clusters are not expressed under common laboratory culture conditions. Silent gene clusters represent a promising resource for natural product discovery and the development of a new generation of therapeutics. Unfortunately, the characterization of molecules encoded by these clusters is hampered owing to our inability to express these gene clusters in the laboratory. To address this bottleneck, we have developed a promoter-engineering platform to transcriptionally activate silent gene clusters in a model heterologous host. Our approach uses yeast homologous recombination, an auxotrophy complementation-based yeast selection system and sequence orthogonal promoter cassettes to exchange all native promoters in silent gene clusters with constitutively active promoters. As part of this platform, we constructed and validated a set of bidirectional promoter cassettes consisting of orthogonal promoter sequences, Streptomyces ribosome binding sites, and yeast selectable marker genes. Using these tools we demonstrate the ability to simultaneously insert multiple promoter cassettes into a gene cluster, thereby expediting the reengineering process. We apply this method to model active and silent gene clusters (rebeccamycin and tetarimycin) and to the silent, cryptic pseudogene-containing, environmental DNA-derived Lzr gene cluster. Complete promoter refactoring and targeted gene exchange in this "dead" cluster led to the discovery of potent indolotryptoline antiproliferative agents, lazarimides A and B. This potentially scalable and cost-effective promoter reengineering platform should streamline the discovery of natural products from silent natural product biosynthetic gene clusters.

  4. Emergence of Plasmid-Borne dfrA14 Trimethoprim Resistance Gene in Shigella sonnei

    Directory of Open Access Journals (Sweden)

    ALFONSO MIRANDA

    2016-07-01

    Full Text Available The most common mechanism of trimethoprim (TMP-resistance is the acquisition of dihydrofolate reductase enzyme resistant to this drug. Previous molecular characterization of TMP-genes resistance in Chilean isolates of S. sonnei searching for dfrA1 and dfrA8, showed solely the presence of dfrA8 (formerly dhfrIIIc. However, these genetic markers were absent in S. sonnei strains further isolated during an outbreak in 2009. To identify the TMP-resistance gene in these strains, a genomic DNA library from a TMP-resistant (TMPR S. sonnei representative strain for the outbreak was used to clone, select and identify a TMP-resistance marker. The TMPR clone was sequenced by primer walking, identifying the presence of the dfrA14 gene in the sul2-strA’-dfrA14-‘strA-strB gene arrangement, harbored in a native 6,779-bp plasmid. The same plasmid was isolated by transforming with a ~4.2 MDa plasmid extracted from several TMPR S. sonnei strains into E. coli. This plasmid, named pABC-3, was present only in dfrA14-positive strains and was homologous to a previously described pCERC-1, but different due to the absence of an 11-bp repetitive unit. The distribution of dfrA1, dfrA8 and dfrA14 TMP-resistance genes was determined in 126 TMPR S. sonnei isolates. Most of the strains (96 % carried only one of the three TMP-resistance genes assessed. Thus, all strains obtained during the 2009-outbreak harbored only dfrA14, whereas, dfrA8 was the most abundant gene marker before outbreak and, after the outbreak dfrA1 seems have appeared in circulating strains. According to PFGE, dfrA14-positive strains were clustered in a genetically related group including some dfrA1- and dfrA8-positive strains; meanwhile other genetic group included most of the dfrA8-positive strains. This distribution also correlated with the isolation period, showing a dynamics of trimethoprim genetic markers prevalent in Chilean S. sonnei strains. To our knowledge, dfrA14 gene associated to a small

  5. Comparative phylogenomic analyses of teleost fish Hox gene clusters: lessons from the cichlid fish Astatotilapia burtoni

    Directory of Open Access Journals (Sweden)

    Kuehl Jennifer V

    2007-09-01

    Full Text Available Abstract Background Teleost fish have seven paralogous clusters of Hox genes stemming from two complete genome duplications early in vertebrate evolution, and an additional genome duplication during the evolution of ray-finned fish, followed by the secondary loss of one cluster. Gene duplications on the one hand, and the evolution of regulatory sequences on the other, are thought to be among the most important mechanisms for the evolution of new gene functions. Cichlid fish, the largest family of vertebrates with about 2500 species, are famous examples of speciation and morphological diversity. Since this diversity could be based on regulatory changes, we chose to study the coding as well as putative regulatory regions of their Hox clusters within a comparative genomic framework. Results We sequenced and characterized all seven Hox clusters of Astatotilapia burtoni, a haplochromine cichlid fish. Comparative analyses with data from other teleost fish such as zebrafish, two species of pufferfish, stickleback and medaka were performed. We traced losses of genes and microRNAs of Hox clusters, the medaka lineage seems to have lost more microRNAs than the other fish lineages. We found that each teleost genome studied so far has a unique set of Hox genes. The hoxb7a gene was lost independently several times during teleost evolution, the most recent event being within the radiation of East African cichlid fish. The conserved non-coding sequences (CNS encompass a surprisingly large part of the clusters, especially in the HoxAa, HoxCa, and HoxDa clusters. Across all clusters, we observe a trend towards an increased content of CNS towards the anterior end. Conclusion The gene content of Hox clusters in teleost fishes is more variable than expected, with each species studied so far having a different set. Although the highest loss rate of Hox genes occurred immediately after whole genome duplications, our analyses showed that gene loss continued and is

  6. Porcine E. coli: virulence-associated genes, resistance genes and adhesion and probiotic activity tested by a new screening method.

    Science.gov (United States)

    Schierack, Peter; Rödiger, Stefan; Kuhl, Christoph; Hiemann, Rico; Roggenbuck, Dirk; Li, Ganwu; Weinreich, Jörg; Berger, Enrico; Nolan, Lisa K; Nicholson, Bryon; Römer, Antje; Frömmel, Ulrike; Wieler, Lothar H; Schröder, Christian

    2013-01-01

    We established an automated screening method to characterize adhesion of Escherichia coli to intestinal porcine epithelial cells (IPEC-J2) and their probiotic activity against infection by enteropathogenic E. coli (EPEC). 104 intestinal E. coli isolates from domestic pigs were tested by PCR for the occurrence of virulence-associated genes, genes coding for resistances to antimicrobial agents and metals, and for phylogenetic origin by PCR. Adhesion rates and probiotic activity were examined for correlation with the presence of these genes. Finally, data were compared with those from 93 E. coli isolates from wild boars. Isolates from domestic pigs carried a broad variety of all tested genes and showed great diversity in gene patterns. Adhesions varied with a maximum of 18.3 or 24.2 mean bacteria adherence per epithelial cell after 2 or 6 hours respectively. Most isolates from domestic pigs and wild boars showed low adherence, with no correlation between adhesion/probiotic activity and E. coli genes or gene clusters. The gene sfa/foc, encoding for a subunit of F1C fimbriae did show a positive correlative association with adherence and probiotic activity; however E. coli isolates from wild boars with the sfa/foc gene showed less adhesion and probiotic activity than E. coli with the sfa/foc gene isolated from domestic pigs after 6 hour incubation. In conclusion, screening porcine E. coli for virulence associated genes genes, adhesion to intestinal epithelial cells, and probiotic activity revealed a single important adhesion factor, several probiotic candidates, and showed important differences between E. coli of domestic pigs and wild boars.

  7. Porcine E. coli: virulence-associated genes, resistance genes and adhesion and probiotic activity tested by a new screening method.

    Directory of Open Access Journals (Sweden)

    Peter Schierack

    Full Text Available We established an automated screening method to characterize adhesion of Escherichia coli to intestinal porcine epithelial cells (IPEC-J2 and their probiotic activity against infection by enteropathogenic E. coli (EPEC. 104 intestinal E. coli isolates from domestic pigs were tested by PCR for the occurrence of virulence-associated genes, genes coding for resistances to antimicrobial agents and metals, and for phylogenetic origin by PCR. Adhesion rates and probiotic activity were examined for correlation with the presence of these genes. Finally, data were compared with those from 93 E. coli isolates from wild boars. Isolates from domestic pigs carried a broad variety of all tested genes and showed great diversity in gene patterns. Adhesions varied with a maximum of 18.3 or 24.2 mean bacteria adherence per epithelial cell after 2 or 6 hours respectively. Most isolates from domestic pigs and wild boars showed low adherence, with no correlation between adhesion/probiotic activity and E. coli genes or gene clusters. The gene sfa/foc, encoding for a subunit of F1C fimbriae did show a positive correlative association with adherence and probiotic activity; however E. coli isolates from wild boars with the sfa/foc gene showed less adhesion and probiotic activity than E. coli with the sfa/foc gene isolated from domestic pigs after 6 hour incubation. In conclusion, screening porcine E. coli for virulence associated genes genes, adhesion to intestinal epithelial cells, and probiotic activity revealed a single important adhesion factor, several probiotic candidates, and showed important differences between E. coli of domestic pigs and wild boars.

  8. Presence of the resistance genes vanC1 and pbp5 in phenotypically vancomycin and ampicillin susceptible Enterococcus faecalis.

    Science.gov (United States)

    Schwaiger, Karin; Bauer, Johann; Hörmansdorfer, Stefan; Mölle, Gabriele; Preikschat, Petra; Kämpf, Peter; Bauer-Unkauf, Ilse; Bischoff, Meike; Hölzel, Christina

    2012-08-01

    Ampicillin and vancomycin are important antibiotics for the therapy of Enterococcus faecalis infections. The ampicillin resistance gene pbp5 is intrinsic in Enterococcus faecium. The vanC1 gene confers resistance to vancomycin and serves as a species marker for Enterococcus gallinarum. Both genes are chromosomally located. Resistance to ampicillin and vancomycin was determined in 484 E. faecalis of human and porcine origin by microdilution. Since E. faecalis are highly skilled to acquire resistance genes, all strains were investigated for the presence of pbp5 (and, in positive strains, for the penicillin-binding protein synthesis repressor gene psr) and vanC1 (and, in positive strains, for vanXYc and vanT) by using polymerase chain reaction (PCR). One porcine and one human isolate were phenotypically resistant to ampicillin; no strain was vancomycin resistant. Four E. faecalis (3/1 of porcine/human origin) carried pbp5 (MIC=1 mg/L), and four porcine strains were vanC1 positive (minimum inhibitory concentration [MIC]=1 mg/L). Real-time reverse transcriptase (RT)-PCR revealed that the genes were not expressed. The psr gene was absent in the four pbp5-positive strains; the vanXYc gene was absent in the four vanC1-positive strains. However, vanT of the vanC gene cluster was detected in two vanC1-positive strains. To our knowledge, this is the first report on the presence of pbp5, identical with the "E. faecium pbp5 gene," and of vanC1/vanT in E. faecalis. Even if resistance is not expressed in these strains, this study shows that E. faecalis have a strong ability to acquire resistance genes-and potentially to spread them to other bacteria. Therefore, close monitoring of this species should be continued.

  9. Environmental cycle of antibiotic resistance encoded genes: A systematic review

    Directory of Open Access Journals (Sweden)

    R. ghanbari

    2017-12-01

    Full Text Available Antibiotic-resistant bacteria and genes enter the environment in different ways. The release of these factors into the environment has increased concerns related to public health. The aim of the study was to evaluate the antibiotic resistance genes (ARGs in the environmental resources. In this systematic review, the data were extracted from valid sources of information including ScienceDirect, PubMed, Google Scholar and SID. Evaluation and selection of articles were conducted on the basis of the PRISMA checklist. A total of 39 articles were included in the study, which were chosen from a total of 1249 papers. The inclusion criterion was the identification of genes encoding antibiotic resistance against the eight important groups of antibiotics determined by using the PCR technique in the environmental sources including municipal and hospital wastewater treatment plants, animal and agricultural wastes, effluents from treatment plants, natural waters, sediments, and drinking waters. In this study, 113 genes encoding antibiotic resistance to eight groups of antibiotics (beta-lactams, aminoglycosides, tetracyclines, macrolides, sulfonamides, chloramphenicol, glycopeptides and quinolones were identified in various environments. Antibiotic resistance genes were found in all the investigated environments. The investigation of microorganisms carrying these genes shows that most of the bacteria especially gram-negative bacteria are effective in the acquisition and the dissemination of these pollutants in the environment. Discharging the raw wastewaters and effluents from wastewater treatments acts as major routes in the dissemination of ARGs into environment sources and can pose hazards to public health.

  10. The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence.

    Science.gov (United States)

    Rinaldo, Amy; Gilbert, Brian; Boni, Rainer; Krattinger, Simon G; Singh, Davinder; Park, Robert F; Lagudah, Evans; Ayliffe, Michael

    2017-07-01

    The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad-spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field-grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome-encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up-regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress-response genes were up-regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad-spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Interspecies gene transfer provides soybean resistance to a fungal pathogen.

    Science.gov (United States)

    Langenbach, Caspar; Schultheiss, Holger; Rosendahl, Martin; Tresch, Nadine; Conrath, Uwe; Goellner, Katharina

    2016-02-01

    Fungal pathogens pose a major challenge to global crop production. Crop varieties that resist disease present the best defence and offer an alternative to chemical fungicides. Exploiting durable nonhost resistance (NHR) for crop protection often requires identification and transfer of NHR-linked genes to the target crop. Here, we identify genes associated with NHR of Arabidopsis thaliana to Phakopsora pachyrhizi, the causative agent of the devastating fungal disease called Asian soybean rust. We transfer selected Arabidopsis NHR-linked genes to the soybean host and discover enhanced resistance to rust disease in some transgenic soybean lines in the greenhouse. Interspecies NHR gene transfer thus presents a promising strategy for genetically engineered control of crop diseases. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, Kira S. [National Center for Biotechnology Information; Omelchenko, Marina [National Center for Biotechnology Information; Gaidamakova, Elena [Uniformed Services University of the Health Sciences (USUHS); Matrosova, Vera [Uniformed Services University of the Health Sciences (USUHS); Vasilenko, Alexander [Uniformed Services University of the Health Sciences (USUHS); Zhai, Min [Uniformed Services University of the Health Sciences (USUHS); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Kim, Edwin [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Pitluck, Samual [U.S. Department of Energy, Joint Genome Institute; Richardson, P M [U.S. Department of Energy, Joint Genome Institute; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Brettin, Tom [Los Alamos National Laboratory (LANL); Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Lai, Barry [Argonne National Laboratory (ANL); Ravel, Bruce [Argonne National Laboratory (ANL); Kemner, Kenneth M [Argonne National Laboratory (ANL); Wolf, Yuri [National Center for Biotechnology Information; Sorokin, Alexei [Genetique Microbienne; Gerasimova, Anna [Research Institute of Genetics and Selection of Industrial Microorganisms, Mosco; Gelfand, Mikhail [Moscow State University; Fredrickson, James K [Pacific Northwest National Laboratory (PNNL); Koonin, Eugene [National Center for Biotechnology Information; Daly, Michael [Uniformed Services University of the Health Sciences (USUHS)

    2007-01-01

    Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to

  13. Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, Kira S.; Omelchenko, Marina V.; Gaidamakova, Elena K.; Matrosova, Vera Y.; Vasilenko, Alexander; Zhai, Min; Lapidus, Alla; Copeland, Alex; Kim, Edwin; Land, Miriam; Mavrommatis, Konstantinos; Pitluck, Samuel; Richardson, Paul M.; Detter, Chris; Brettin, Thomas; Saunders, Elizabeth; Lai, Barry; Ravel, Bruce; Kemner, Kenneth M.; Wolf, Yuri I.; Sorokin, Alexander; Gerasimova, Anna V.; Gelfand, Mikhail S.; Fredrickson, James K.; Koonin, Eugene V.; Daly, Michael J.

    2007-07-24

    Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at itsoptimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to

  14. Antibiotic resistance and virulence genes in coliform water isolates.

    Science.gov (United States)

    Stange, C; Sidhu, J P S; Tiehm, A; Toze, S

    2016-11-01

    Widespread fecal pollution of surface water may present a major health risk and a significant pathway for dissemination of antibiotic resistance bacteria. The River Rhine is one of the longest and most important rivers in Europe and an important raw water source for drinking water production. A total of 100 coliform isolates obtained from River Rhine (Germany) were examined for their susceptibility to seven antimicrobial agents. Resistances against amoxicillin, trimethoprim/sulfamethoxazole and tetracycline were detected in 48%, 11% and 9% of isolates respectively. The antibiotic resistance could be traced back to the resistance genes bla TEM , bla SHV , ampC, sul1, sul2, dfrA1, tet(A) and tet(B). Whereby, the ampC gene represents a special case, because its presence is not inevitably linked to a phenotypic antibiotic resistance. Multiple antibiotics resistance was often accompanied by the occurrence of class 1 or 2 integrons. E. coli isolates belonging to phylogenetic groups A and B1 (commensal) were more predominant (57%) compared to B2 and D groups (43%) which are known to carry virulent genes. Additionally, six E. coli virulence genes were also detected. However, the prevalence of virulence genes in the E. coli isolates was low (not exceeding 4.3% per gene) and no diarrheagenic E. coli pathotypes were detected. This study demonstrates that surface water is an important reservoir of ARGs for a number of antibiotic classes such as sulfonamide, trimethoprim, beta-lactam-antibiotics and tetracycline. The occurrence of antibiotic resistance in coliform bacteria isolated from River Rhine provides evidence for the need to develop management strategies to limit the spread of antibiotic resistant bacteria in aquatic environment. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks.

    Directory of Open Access Journals (Sweden)

    Kira S Makarova

    2007-09-01

    Full Text Available Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR, ultraviolet light (UV and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and

  16. Clustering based gene expression feature selection method: A computational approach to enrich the classifier efficiency of differentially expressed genes

    KAUST Repository

    Abusamra, Heba

    2016-07-20

    The native nature of high dimension low sample size of gene expression data make the classification task more challenging. Therefore, feature (gene) selection become an apparent need. Selecting a meaningful and relevant genes for classifier not only decrease the computational time and cost, but also improve the classification performance. Among different approaches of feature selection methods, however most of them suffer from several problems such as lack of robustness, validation issues etc. Here, we present a new feature selection technique that takes advantage of clustering both samples and genes. Materials and methods We used leukemia gene expression dataset [1]. The effectiveness of the selected features were evaluated by four different classification methods; support vector machines, k-nearest neighbor, random forest, and linear discriminate analysis. The method evaluate the importance and relevance of each gene cluster by summing the expression level for each gene belongs to this cluster. The gene cluster consider important, if it satisfies conditions depend on thresholds and percentage otherwise eliminated. Results Initial analysis identified 7120 differentially expressed genes of leukemia (Fig. 15a), after applying our feature selection methodology we end up with specific 1117 genes discriminating two classes of leukemia (Fig. 15b). Further applying the same method with more stringent higher positive and lower negative threshold condition, number reduced to 58 genes have be tested to evaluate the effectiveness of the method (Fig. 15c). The results of the four classification methods are summarized in Table 11. Conclusions The feature selection method gave good results with minimum classification error. Our heat-map result shows distinct pattern of refines genes discriminating between two classes of leukemia.

  17. Cloning, reassembling and integration of the entire nikkomycin biosynthetic gene cluster into Streptomyces ansochromogenes lead to an improved nikkomycin production

    Directory of Open Access Journals (Sweden)

    Yang Haihua

    2010-01-01

    Full Text Available Abstract Background Nikkomycins are a group of peptidyl nucleoside antibiotics produced by Streptomyces ansochromogenes. They are competitive inhibitors of chitin synthase and show potent fungicidal, insecticidal, and acaricidal activities. Nikkomycin X and Z are the main components produced by S. ansochromogenes. Generation of a high-producing strain is crucial to scale up nikkomycins production for further clinical trials. Results To increase the yields of nikkomycins, an additional copy of nikkomycin biosynthetic gene cluster (35 kb was introduced into nikkomycin producing strain, S. ansochromogenes 7100. The gene cluster was first reassembled into an integrative plasmid by Red/ET technology combining with classic cloning methods and then the resulting plasmid(pNIKwas introduced into S. ansochromogenes by conjugal transfer. Introduction of pNIK led to enhanced production of nikkomycins (880 mg L-1, 4 -fold nikkomycin X and 210 mg L-1, 1.8-fold nikkomycin Z in the resulting exconjugants comparing with the parent strain (220 mg L-1 nikkomycin X and 120 mg L-1 nikkomycin Z. The exconjugants are genetically stable in the absence of antibiotic resistance selection pressure. Conclusion A high nikkomycins producing strain (1100 mg L-1 nikkomycins was obtained by introduction of an extra nikkomycin biosynthetic gene cluster into the genome of S. ansochromogenes. The strategies presented here could be applicable to other bacteria to improve the yields of secondary metabolites.

  18. Copper resistance in Enterococcus faecium, mediated by the tcrB gene, is selected by supplementation of pig feed with copper sulfate

    DEFF Research Database (Denmark)

    Hasman, Henrik; Kempf, I.; Chidaine, B.

    2006-01-01

    The tcr gene cluster mediates in vitro copper resistance in Enterococcus faecium. Here we describe the selection of tcr-mediated copper resistance in E. faecium in an animal feeding experiment with young pigs fed 175 mg copper/kg feed (ppm), which is the concentration commonly used for piglets...

  19. Genes involved in barley yellow dwarf virus resistance of maize.

    Science.gov (United States)

    Horn, Frederike; Habekuß, Antje; Stich, Benjamin

    2014-12-01

    The results of our study suggest that genes involved in general resistance mechanisms of plants contribute to variation of BYDV resistance in maize. With increasing winter temperatures in Europe, Barley yellow dwarf virus (BYDV) is expected to become a prominent problem in maize cultivation. Breeding for resistance is the best strategy to control the disease and break the transmission cycle of the virus. The objectives of our study were (1) to determine genetic variation with respect to BYDV resistance in a broad germplasm set and (2) to identify single nucleotide polymorphism (SNP) markers linked to genes that are involved in BYDV resistance. An association mapping population with 267 genotypes representing the world's maize gene pool was grown in the greenhouse. Plants were inoculated with BYDV-PAV using viruliferous Rhopalosiphum padi. In the association mapping population, we observed considerable genotypic variance for the trait virus extinction as measured by double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) and the infection rate. In a genome-wide association study, we observed three SNPs significantly [false discovery rate (FDR) = 0.05] associated with the virus extinction on chromosome 10 explaining together 25 % of the phenotypic variance and five SNPs for the infection rate on chromosomes 4 and 10 explaining together 33 % of the phenotypic variance. The SNPs significantly associated with BYDV resistance can be used in marker assisted selection and will accelerate the breeding process for the development of BYDV resistant maize genotypes. Furthermore, these SNPs were located within genes which were in other organisms described to play a role in general resistance mechanisms. This suggests that these genes contribute to variation of BYDV resistance in maize.

  20. The relationship between codon usage bias and cold resistant genes

    International Nuclear Information System (INIS)

    Barozai, M.Y.; Din, M.

    2014-01-01

    This research is based on synonymous codon usage which has been well-known as a feature that affects typical expression level of protein in an organism. Different organisms prefer different codons for same amino acid and this is called Codon Usage Bias (CUB). The codon usage directly affects the level or even direction of changes in protein expression in responses to environmental stimuli. Cold stress is a major abiotic factor that limits the agricultural productivity of plants. In the recent study CUB has been studied in Arabidopsis thaliana cold resistant and housekeeping genes and their homologs in rice (Oryza sativa) to understand the cold stress and housekeeping genes relation with CUB. Six cold resistant and three housekeeping genes in Arabidopsis thaliana and their homologs in rice, were subjected to CUB analysis. The three cold resistant genes (DREB1B, RCI and MYB15) showed more than 50% (52%, 61% and 66% respectively) similar codon usage bias for Arabidopsis thaliana and rice. On the other hand three cold resistant genes (MPK3, ICE1 and ZAT12) showed less than 50% (38%, 38% and 47% respectively) similar codon usage bias for Arabidopsis thaliana and rice. The three housekeeping genes (Actin, Tubulin and Ubiquitin) showed 76% similar codon usage bias for Arabidopsis thaliana and rice. This study will help to manage the plant gene expression through codon optimization under the cold stress. (author)

  1. Host genetic resistance to root-knot nematodes, Meloidogyne spp., in Solanaceae: from genes to the field.

    Science.gov (United States)

    Barbary, Arnaud; Djian-Caporalino, Caroline; Palloix, Alain; Castagnone-Sereno, Philippe

    2015-12-01

    Root-knot nematodes (RKNs) heavily damage most solanaceous crops worldwide. Fortunately, major resistance genes are available in a number of plant species, and their use provides a safe and economically relevant strategy for RKN control. From a structural point of view, these genes often harbour NBS-LRR motifs (i.e. a nucleotide binding site and a leucine rich repeat region near the carboxy terminus) and are organised in syntenic clusters in solanaceous genomes. Their introgression from wild to cultivated plants remains a challenge for breeders, although facilitated by marker-assisted selection. As shown with other pathosystems, the genetic background into which the resistance genes are introgressed is of prime importance to both the expression of the resistance and its durability, as exemplified by the recent discovery of quantitative trait loci conferring quantitative resistance to RKNs in pepper. The deployment of resistance genes at a large scale may result in the emergence and spread of virulent nematode populations able to overcome them, as already reported in tomato and pepper. Therefore, careful management of the resistance genes available in solanaceous crops is crucial to avoid significant reduction in the duration of RKN genetic control in the field. From that perspective, only rational management combining breeding and cultivation practices will allow the design and implementation of innovative, sustainable crop production systems that protect the resistance genes and maintain their durability. © 2015 Society of Chemical Industry.

  2. Antibiotic Resistance Genetic Markers and Integrons in White Soft Cheese: Aspects of Clinical Resistome and Potentiality of Horizontal Gene Transfer

    Directory of Open Access Journals (Sweden)

    Ana Caroline L. de Paula

    2018-02-01

    Full Text Available Antibiotic resistance poses an important threat to global public health and has become a challenge to modern medicine. The occurrence of antibiotic-resistant bacteria in a broad range of foods has led to a growing concern about the impact that food may have as a reservoir of antibiotic resistance genes. Considering Minas Frescal Cheese (MFC—a typical Brazilian white soft cheese—and its economic and cultural values, in this study, medically relevant antimicrobial-resistance genetic markers (AR genes were screened, and the occurrence of integrons were evaluated in manufactured MFC using culture-independent approaches. Through a fingerprinting analysis, the tested MFCs were brand-clustered, indicating reproducibility along the production chain. A common core of resistance markers in all brands evaluated and related antimicrobials such as β-lactams, tetracyclines, quinolones, and sulfonamide was detected. Several other markers, including efflux pumps and aminoglycosides-resistance were distributed among brands. Class 1 and 2 integrons were observed, respectively, in 77% and 97% of the samples. The presence of AR genes is of special interest due to their clinical relevance. Taken together, the data may suggest that the production chain of MFC might contribute to the spread of putative drug-resistant bacteria, which could greatly impact human health. Furthermore, detection of class 1 and class 2 integrons in MFC has led to discussions about resistance gene spread in this traditional cheese, providing evidence of potential horizontal transfer of AR genes to human gut microbiota.

  3. The genome of tolypocladium inflatum: evolution, organization, and expression of the cyclosporin biosynthetic gene cluster.

    Directory of Open Access Journals (Sweden)

    Kathryn E Bushley

    2013-06-01

    Full Text Available The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921, the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology between the nonribosomal peptide synthetase (NRPS that encodes for cyclosporin synthetase (simA and those of other secondary metabolites with activities against insects (e.g., beauvericin, destruxins, etc., and demonstrate the roles of module duplication and gene fusion in diversification of NRPSs. The secondary metabolite gene cluster responsible for cyclosporin biosynthesis is described. In addition to genes necessary for cyclosporin biosynthesis, it harbors a gene for a cyclophilin, which is a member of a family of immunophilins known to bind cyclosporin. Comparative analyses support a lineage specific origin of the cyclosporin gene cluster rather than horizontal gene transfer from bacteria or other fungi. RNA-Seq transcriptome analyses in a cyclosporin-inducing medium delineate the boundaries of the cyclosporin cluster and reveal high levels of expression of the gene cluster cyclophilin. In medium containing insect hemolymph, weaker but significant upregulation of several genes within the cyclosporin cluster, including the highly expressed cyclophilin gene, was observed. T. inflatum also represents the first reference draft genome of Ophiocordycipitaceae, a third family of insect pathogenic fungi within the fungal order Hypocreales, and supports parallel and qualitatively distinct radiations of insect pathogens. The T. inflatum genome provides additional insight into the evolution and biosynthesis of cyclosporin and lays a foundation for further

  4. The Local Maximum Clustering Method and Its Application in Microarray Gene Expression Data Analysis

    Directory of Open Access Journals (Sweden)

    Chen Yidong

    2004-01-01

    Full Text Available An unsupervised data clustering method, called the local maximum clustering (LMC method, is proposed for identifying clusters in experiment data sets based on research interest. A magnitude property is defined according to research purposes, and data sets are clustered around each local maximum of the magnitude property. By properly defining a magnitude property, this method can overcome many difficulties in microarray data clustering such as reduced projection in similarities, noises, and arbitrary gene distribution. To critically evaluate the performance of this clustering method in comparison with other methods, we designed three model data sets with known cluster distributions and applied the LMC method as well as the hierarchic clustering method, the -mean clustering method, and the self-organized map method to these model data sets. The results show that the LMC method produces the most accurate clustering results. As an example of application, we applied the method to cluster the leukemia samples reported in the microarray study of Golub et al. (1999.

  5. Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42.

    Science.gov (United States)

    Chen, Xiao-Hua; Vater, Joachim; Piel, Jörn; Franke, Peter; Scholz, Romy; Schneider, Kathrin; Koumoutsi, Alexandra; Hitzeroth, Gabriele; Grammel, Nicolas; Strittmatter, Axel W; Gottschalk, Gerhard; Süssmuth, Roderich D; Borriss, Rainer

    2006-06-01

    Although bacterial polyketides are of considerable biomedical interest, the molecular biology of polyketide biosynthesis in Bacillus spp., one of the richest bacterial sources of bioactive natural products, remains largely unexplored. Here we assign for the first time complete polyketide synthase (PKS) gene clusters to Bacillus antibiotics. Three giant modular PKS systems of the trans-acyltransferase type were identified in Bacillus amyloliquefaciens FZB 42. One of them, pks1, is an ortholog of the pksX operon with a previously unknown function in the sequenced model strain Bacillus subtilis 168, while the pks2 and pks3 clusters are novel gene clusters. Cassette mutagenesis combined with advanced mass spectrometric techniques such as matrix-assisted laser desorption ionization-time of flight mass spectrometry and liquid chromatography-electrospray ionization mass spectrometry revealed that the pks1 (bae) and pks3 (dif) gene clusters encode the biosynthesis of the polyene antibiotics bacillaene and difficidin or oxydifficidin, respectively. In addition, B. subtilis OKB105 (pheA sfp(0)), a transformant of the B. subtilis 168 derivative JH642, was shown to produce bacillaene, demonstrating that the pksX gene cluster directs the synthesis of that polyketide. The GenBank accession numbers for gene clusters pks1(bae), pks2, and pks3(dif) are AJ 634060.2, AJ 6340601.2, and AJ 6340602.2, respectively.

  6. Shared gene structures and clusters of mutually exclusive spliced exons within the metazoan muscle myosin heavy chain genes.

    Directory of Open Access Journals (Sweden)

    Martin Kollmar

    Full Text Available Multicellular animals possess two to three different types of muscle tissues. Striated muscles have considerable ultrastructural similarity and contain a core set of proteins including the muscle myosin heavy chain (Mhc protein. The ATPase activity of this myosin motor protein largely dictates muscle performance at the molecular level. Two different solutions to adjusting myosin properties to different muscle subtypes have been identified so far: Vertebrates and nematodes contain many independent differentially expressed Mhc genes while arthropods have single Mhc genes with clusters of mutually exclusive spliced exons (MXEs. The availability of hundreds of metazoan genomes now allowed us to study whether the ancient bilateria already contained MXEs, how MXE complexity subsequently evolved, and whether additional scenarios to control contractile properties in different muscles could be proposed, By reconstructing the Mhc genes from 116 metazoans we showed that all intron positions within the motor domain coding regions are conserved in all bilateria analysed. The last common ancestor of the bilateria already contained a cluster of MXEs coding for part of the loop-2 actin-binding sequence. Subsequently the protostomes and later the arthropods gained many further clusters while MXEs got completely lost independently in several branches (vertebrates and nematodes and species (for example the annelid Helobdella robusta and the salmon louse Lepeophtheirus salmonis. Several bilateria have been found to encode multiple Mhc genes that might all or in part contain clusters of MXEs. Notable examples are a cluster of six tandemly arrayed Mhc genes, of which two contain MXEs, in the owl limpet Lottia gigantea and four Mhc genes with three encoding MXEs in the predatory mite Metaseiulus occidentalis. Our analysis showed that similar solutions to provide different myosin isoforms (multiple genes or clusters of MXEs or both have independently been developed

  7. Prediction of operon-like gene clusters in the Arabidopsis thaliana genome based on co-expression analysis of neighboring genes.

    Science.gov (United States)

    Wada, Masayoshi; Takahashi, Hiroki; Altaf-Ul-Amin, Md; Nakamura, Kensuke; Hirai, Masami Y; Ohta, Daisaku; Kanaya, Shigehiko

    2012-07-15

    Operon-like arrangements of genes occur in eukaryotes ranging from yeasts and filamentous fungi to nematodes, plants, and mammals. In plants, several examples of operon-like gene clusters involved in metabolic pathways have recently been characterized, e.g. the cyclic hydroxamic acid pathways in maize, the avenacin biosynthesis gene clusters in oat, the thalianol pathway in Arabidopsis thaliana, and the diterpenoid momilactone cluster in rice. Such operon-like gene clusters are defined by their co-regulation or neighboring positions within immediate vicinity of chromosomal regions. A comprehensive analysis of the expression of neighboring genes therefore accounts a crucial step to reveal the complete set of operon-like gene clusters within a genome. Genome-wide prediction of operon-like gene clusters should contribute to functional annotation efforts and provide novel insight into evolutionary aspects acquiring certain biological functions as well. We predicted co-expressed gene clusters by comparing the Pearson correlation coefficient of neighboring genes and randomly selected gene pairs, based on a statistical method that takes false discovery rate (FDR) into consideration for 1469 microarray gene expression datasets of A. thaliana. We estimated that A. thaliana contains 100 operon-like gene clusters in total. We predicted 34 statistically significant gene clusters consisting of 3 to 22 genes each, based on a stringent FDR threshold of 0.1. Functional relationships among genes in individual clusters were estimated by sequence similarity and functional annotation of genes. Duplicated gene pairs (determined based on BLAST with a cutoff of EOperon-like clusters tend to include genes encoding bio-machinery associated with ribosomes, the ubiquitin/proteasome system, secondary metabolic pathways, lipid and fatty-acid metabolism, and the lipid transfer system. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Influence of Soil Use on Prevalence of Tetracycline, Streptomycin, and Erythromycin Resistance and Associated Resistance Genes

    Science.gov (United States)

    Rzeczycka, Marzenna; Miernik, Antoni; Krawczyk-Balska, Agata; Walsh, Fiona; Duffy, Brion

    2012-01-01

    This study examined differences in antibiotic-resistant soil bacteria and the presence and quantity of resistance genes in soils with a range of management histories. We analyzed four soils from agricultural systems that were amended with manure from animals treated with erythromycin and exposed to streptomycin and/or oxytetracycline, as well as non-manure-amended compost and forest soil. Low concentrations of certain antibiotic resistance genes were detected using multiplex quantitative real-time PCR (qPCR), with tet(B), aad(A), and str(A) each present in only one soil and tet(M) and tet(W) detected in all soils. The most frequently detected resistance genes were tet(B), tet(D), tet(O), tet(T), and tet(W) for tetracycline resistance, str(A), str(B), and aac for streptomycin resistance, and erm(C), erm(V), erm(X), msr(A), ole(B), and vga for erythromycin resistance. Transposon genes specific for Tn916, Tn1549, TnB1230, Tn4451, and Tn5397 were detected in soil bacterial isolates. The MIC ranges of isolated bacteria for tetracycline, streptomycin, and erythromycin were 8 to >256 μg/ml, 6 to >1,024 μg/ml, and 0.094 to >256 μg/ml, respectively. Based on 16S rRNA gene similarity, isolated bacteria showed high sequence identity to genera typical of soil communities. Bacteria with the highest MICs were detected in manure-amended soils or soils from agricultural systems with a history of antibiotic use. Non-manure-amended soils yielded larger proportions of antibiotic-resistant bacteria, but these had lower MICs, carried fewer antibiotic resistance genes, and did not display multidrug resistance (MDR). PMID:22203596

  9. Influence of soil use on prevalence of tetracycline, streptomycin, and erythromycin resistance and associated resistance genes.

    Science.gov (United States)

    Popowska, Magdalena; Rzeczycka, Marzenna; Miernik, Antoni; Krawczyk-Balska, Agata; Walsh, Fiona; Duffy, Brion

    2012-03-01

    This study examined differences in antibiotic-resistant soil bacteria and the presence and quantity of resistance genes in soils with a range of management histories. We analyzed four soils from agricultural systems that were amended with manure from animals treated with erythromycin and exposed to streptomycin and/or oxytetracycline, as well as non-manure-amended compost and forest soil. Low concentrations of certain antibiotic resistance genes were detected using multiplex quantitative real-time PCR (qPCR), with tet(B), aad(A), and str(A) each present in only one soil and tet(M) and tet(W) detected in all soils. The most frequently detected resistance genes were tet(B), tet(D), tet(O), tet(T), and tet(W) for tetracycline resistance, str(A), str(B), and aac for streptomycin resistance, and erm(C), erm(V), erm(X), msr(A), ole(B), and vga for erythromycin resistance. Transposon genes specific for Tn916, Tn1549, TnB1230, Tn4451, and Tn5397 were detected in soil bacterial isolates. The MIC ranges of isolated bacteria for tetracycline, streptomycin, and erythromycin were 8 to >256 μg/ml, 6 to >1,024 μg/ml, and 0.094 to >256 μg/ml, respectively. Based on 16S rRNA gene similarity, isolated bacteria showed high sequence identity to genera typical of soil communities. Bacteria with the highest MICs were detected in manure-amended soils or soils from agricultural systems with a history of antibiotic use. Non-manure-amended soils yielded larger proportions of antibiotic-resistant bacteria, but these had lower MICs, carried fewer antibiotic resistance genes, and did not display multidrug resistance (MDR).

  10. Marker-Assisted Molecular Profiling, Deletion Mutant Analysis, and RNA-Seq Reveal a Disease Resistance Cluster Associated with Uromyces appendiculatus Infection in Common Bean Phaseolus vulgaris L.

    Science.gov (United States)

    Todd, Antonette R; Donofrio, Nicole; Sripathi, Venkateswara R; McClean, Phillip E; Lee, Rian K; Pastor-Corrales, Marcial; Kalavacharla, Venu Kal

    2017-05-23

    Common bean ( Phaseolus vulgaris L.) is an important legume, useful for its high protein and dietary fiber. The fungal pathogen Uromyces appendiculatus (Pers.) Unger can cause major loss in susceptible varieties of the common bean. The Ur-3 locus provides race specific resistance to virulent strains or races of the bean rust pathogen along with Crg , (Complements resistance gene), which is required for Ur-3 -mediated rust resistance. In this study, we inoculated two common bean genotypes (resistant "Sierra" and susceptible crg) with rust race 53 of U. appendiculatus , isolated leaf RNA at specific time points, and sequenced their transcriptomes. First, molecular markers were used to locate and identify a 250 kb deletion on chromosome 10 in mutant crg (which carries a deletion at the Crg locus). Next, we identified differential expression of several disease resistance genes between Mock Inoculated (MI) and Inoculated (I) samples of "Sierra" leaf RNA within the 250 kb delineated region. Both marker assisted molecular profiling and RNA-seq were used to identify possible transcriptomic locations of interest regarding the resistance in the common bean to race 53. Identification of differential expression among samples in disease resistance clusters in the bean genome may elucidate significant genes underlying rust resistance. Along with preserving favorable traits in the crop, the current research may also aid in global sustainability of food stocks necessary for many populations.

  11. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA

    Directory of Open Access Journals (Sweden)

    Bertinellys TEIXEIRA

    2016-01-01

    Full Text Available The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC, aminoglycoside-adenyltransferases (AAD, and aminoglycoside-phosphotransferases (APH, is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137 were identified from the Intensive Care Unit (ICU, mainly from discharges (96/137. The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively. Phenotype VI, resistant to these antibiotics, was the most frequent (14/49, followed by phenotype I, resistant to all the aminoglycosides tested (12/49. The aac(6´-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America.

  12. Molecular Scree ning of Blast Resistance Genes in Rice Germplasms Resistant to Magnaporthe oryzae

    Directory of Open Access Journals (Sweden)

    Liang Yan

    2017-01-01

    Full Text Available Molecular screening of major rice blast resistance genes was determined with molecular markers, which showed close-set linkage to 11 major rice blast resistance genes (Pi-d2, Pi-z, Piz-t, Pi-9, Pi-36, Pi-37, Pi5, Pi-b, Pik-p, Pik-h and Pi-ta2, in a collection of 32 accessions resistant to Magnaporthe oryzae. Out of the 32 accessions, the Pi-d2 and Pi-z appeared to be omnipresent and gave positive express. As the second dominant, Pi-b and Piz-t gene frequencies were 96.9% and 87.5%. And Pik-h and Pik-p gene frequencies were 43.8% and 28.1%, respectively. The molecular marker linkage to Pi-ta2 produced positive bands in eleven accessions, while the molecular marker linkage to Pi-36 and Pi-37 in only three and four accessions, respectively. The natural field evaluation analysis showed that 30 of the 32 accessions were resistant, one was moderately resistant and one was susceptible. Infection types were negatively correlated with the genotype scores of Pi-9, Pi5, Pi-b, Pi-ta2 and Pik-p, although the correlation coefficients were very little. These results are useful in identification and incorporation of functional resistance genes from these germplasms into elite cultivars through marker-assisted selection for improved blast resistance in China and worldwide.

  13. Mycobiota and identification of aflatoxin gene cluster in marketed spices in West Africa

    DEFF Research Database (Denmark)

    Gnonlonfin, G. J. B.; Adjovi, Y. C.; Tokpo, A. F.

    2013-01-01

    of Aspergillus were dominant on all marketed dried and milled spices irrespective of country. Gene characterization and amplification analysis showed that most of the Aspergillus flavus isolates possess the cluster genes for aflatoxin production. Aflatoxin B1 assessment by Thin Layer Chromatography showed...

  14. iBBiG: iterative binary bi-clustering of gene sets.

    Science.gov (United States)

    Gusenleitner, Daniel; Howe, Eleanor A; Bentink, Stefan; Quackenbush, John; Culhane, Aedín C

    2012-10-01

    Meta-analysis of genomics data seeks to identify genes associated with a biological phenotype across multiple datasets; however, merging data from different platforms by their features (genes) is challenging. Meta-analysis using functionally or biologically characterized gene sets simplifies data integration is biologically intuitive and is seen as having great potential, but is an emerging field with few established statistical methods. We transform gene expression profiles into binary gene set profiles by discretizing results of gene set enrichment analyses and apply a new iterative bi-clustering algorithm (iBBiG) to identify groups of gene sets that are coordinately associated with groups of phenotypes across multiple studies. iBBiG is optimized for meta-analysis of large numbers of diverse genomics data that may have unmatched samples. It does not require prior knowledge of the number or size of clusters. When applied to simulated data, it outperforms commonly used clustering methods, discovers overlapping clusters of diverse sizes and is robust in the presence of noise. We apply it to meta-analysis of breast cancer studies, where iBBiG extracted novel gene set-phenotype association that predicted tumor metastases within tumor subtypes. Implemented in the Bioconductor package iBBiG CONTACT: aedin@jimmy.harvard.edu.

  15. The rpg4/Rpg5 stem rust resistance locus in barley: resistance genes and cytoskeleton dynamics.

    Science.gov (United States)

    Brueggeman, Robert; Steffenson, Brian J; Kleinhofs, Andris

    2009-04-01

    Two closely linked resistance genes, rpg4 and Rpg5, conferring resistance to several races of Puccinia graminis, were cloned and characterized. The Rpg5 gene confers resistance to an isolate of Puccinia graminis f. sp. secalis (Pgs), while rpg4 confers resistance to Puccinia graminis f. sp. tritici (Pgt). Rpg5 is a novel gene containing nucleotide binding site-leucine rich repeat domains in combination with a serine threonine protein kinase domain. High-resolution mapping plus allele and recombinant sequencing identified the rpg4 gene, which encodes an actin depolymerizing factor-like protein (ADF2). Resistance against the Pgt races QCCJ, MCCF, TTKSK (aka Ug99) and RCRS requires both Rpg5 and rpg4, while Rpg5 alone confers resistance to Pgs isolate 92-MN-90. The dependency on the actin modifying protein ADF2 indicates cytoskeleton reorganization or redirection plays a role in pathogen-host interactions. Rpg5 may interact with ADF2 to activate or deactivate its function in the resistance response. Alternatively, Rpg5 could initiate signal transduction leading to resistance in response to detecting ADF2 protein modification. Pgt may redirect the actin cytoskeleton by inducing modifications of ADF2. The redirection of actin could possibly enable the pathogen to develop a haustoria-plant cell cytoskeleton interface for acquisition of nutrients.

  16. A novel gene of Kalanchoe daigremontiana confers plant drought resistance.

    Science.gov (United States)

    Wang, Li; Zhu, Chen; Jin, Lin; Xiao, Aihua; Duan, Jie; Ma, Luyi

    2018-02-07

    Kalanchoe (K.) daigremontiana is important for studying asexual reproduction under different environmental conditions. Here, we describe a novel KdNOVEL41 (KdN41) gene that may confer drought resistance and could thereby affect K. daigremontiana development. The detected subcellular localization of a KdN41/Yellow Fluorescent Protein (YFP) fusion protein was in the nucleus and cell membrane. Drought, salt, and heat stress treatment in tobacco plants containing the KdN41 gene promoter driving β-glucuronidase (GUS) gene transcription revealed that only drought stress triggered strong GUS staining in the vascular tissues. Overexpression (OE) of the KdN41 gene conferred improved drought resistance in tobacco plants compared to wild-type and transformed with empty vector plants by inducing higher antioxidant enzyme activities, decreasing cell membrane damage, increasing abscisic acid (ABA) content, causing reinforced drought resistance related gene expression profiles. The 3,3'-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining results also showed less relative oxygen species (ROS) content in KdN41-overexpressing tobacco leaf during drought stress. Surprisingly, by re-watering after drought stress, KdN41-overexpressing tobacco showed earlier flowering. Overall, the KdN41 gene plays roles in ROS scavenging and osmotic damage reduction to improve tobacco drought resistance, which may increase our understanding of the molecular network involved in developmental manipulation under drought stress in K. daigremontiana.

  17. Nonlinear dimensionality reduction of gene expression data for visualization and clustering analysis of cancer tissue samples.

    Science.gov (United States)

    Shi, Jinlong; Luo, Zhigang

    2010-08-01

    Gene expression data are the representation of nonlinear interactions among genes and environmental factors. Computing analysis of these data is expected to gain knowledge of gene functions and disease mechanisms. Clustering is a classical exploratory technique of discovering similar expression patterns and function modules. However, gene expression data are usually of high dimensions and relatively small samples, which results in the main difficulty for the application of clustering algorithms. Principal component analysis (PCA) is usually used to reduce the data dimensions for further clustering analysis. While PCA estimates the similarity between expression profiles based on the Euclidean distance, which cannot reveal the nonlinear connections between genes. This paper uses nonlinear dimensionality reduction (NDR) as a preprocessing strategy for feature selection and visualization, and then applies clustering algorithms to the reduced feature spaces. In order to estimate the effectiveness of NDR for capturing biologically relevant structures, the comparative analysis between NDR and PCA is exploited to five real cancer expression datasets. Results show that NDR can perform better than PCA in visualization and clustering analysis of complex gene expression data. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria

    OpenAIRE

    Adelowo, Olawale O.; Fagade, Obasola E.; Agersø, Yvonne

    2014-01-01

    Introduction: This study investigated the mechanisms of resistance in 36 E. coli isolated from waste, litter, soil and water samples collected from poultry farms in Southwestern Nigeria. Methodology: Minimum inhibitory concentration (MIC) distributions of the isolates were determined using the methods of the Clinical and Laboratory Standard Institute and resistance genes detected by PCR. Results: A total of 30 isolates (94%) showed resistance to more than one antimicrobial. Percentage resista...

  19. Combining affinity propagation clustering and mutual information network to investigate key genes in fibroid.

    Science.gov (United States)

    Chen, Qian-Song; Wang, Dan; Liu, Bao-Lian; Gao, Shu-Feng; Gao, Dan-Li; Li, Gui-Rong

    2017-07-01

    The aim of the present study was to investigate key genes in fibroids based on the multiple affinity propogation-Krzanowski and Lai (mAP-KL) method, which included the maxT multiple hypothesis, Krzanowski and Lai (KL) cluster quality index, affinity propagation (AP) clustering algorithm and mutual information network (MIN) constructed by the context likelihood of relatedness (CLR) algorithm. In order to achieve this goal, mAP-KL was initially implemented to investigate exemplars in fibroid, and the maxT function was employed to rank the genes of training and test sets, and the top 200 genes were obtained for further study. In addition, the KL cluster index was applied to determine the quantity of clusters and the AP clustering algorithm was conducted to identify the clusters and their exemplars. Subsequently, the support vector machine (SVM) model was selected to evaluate the classification performance of mAP-KL. Finally, topological properties (degree, closeness, betweenness and transitivity) of exemplars in MIN constructed according to the CLR algorithm were assessed to investigate key genes in fibroid. The SVM model validated that the classification between normal controls and fibroid patients by mAP-KL had a good performance. A total of 9 clusters and exemplars were identified based on mAP-KL, which were comprised of CALCOCO2 , COL4A2 , COPS8 , SNCG , PA2G4 , C17orf70 , MARK3 , BTNL3 and TBC1D13 . By accessing the topological analysis for exemplars in MIN, SNCG and COL4A2 were identified as the two most significant genes of four types of methods, and they were denoted as key genes in the progress of fibroid. In conclusion, two key genes ( SNCG and COL4A2 ) and 9 exemplars were successfully investigated, and these may be potential biomarkers for the detection and treatment of fibroid.

  20. Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland.

    Science.gov (United States)

    Lanz, Roland; Kuhnert, Peter; Boerlin, Patrick

    2003-01-02

    Antimicrobial susceptibility testing was performed on a total of 581 clinical Escherichia coli isolates from diarrhea and edema disease in pigs, from acute mastitis in dairy cattle, from urinary tract infections in dogs and cats, and from septicemia in laying hens collected in Switzerland between 1999 and 2001. Among the 16 antimicrobial agents tested, resistance was most frequent for sulfonamides, tetracycline, and streptomycin. Isolates from swine presented significantly more resistance than those from the other animal species. The distribution of the resistance determinants for sulfonamides, tetracycline, and streptomycin was assessed by hybridization and PCR in resistant isolates. Significant differences in the distribution of resistance determinants for tetracycline (tetA, tetB) and sulfonamides (sulII) were observed between the isolates from swine and those from the other species. Resistance to sulfonamides could not be explained by known resistance mechanisms in more than a quarter of the sulfonamide-resistant and sulfonamide-intermediate isolates from swine, dogs and cats. This finding suggests that one or several new resistance mechanisms for sulfonamides may be widespread among E. coli isolates from these animal species. The integrase gene (intI) from class I integrons was detected in a large proportion of resistant isolates in association with the sulI and aadA genes, thus demonstrating the importance of integrons in the epidemiology of resistance in clinical E. coli isolates from animals.

  1. Structural variation of the ribosomal gene cluster within the class Insecta

    Energy Technology Data Exchange (ETDEWEB)

    Mukha, D.V.; Sidorenko, A.P.; Lazebnaya, I.V. [Vavilov Institute of General Genetics, Moscow (Russian Federation)] [and others

    1995-09-01

    General estimation of ribosomal DNA variation within the class Insecta is presented. It is shown that, using blot-hybridization, one can detect differences in the structure of the ribosomal gene cluster not only between genera within an order, but also between species within a genera, including sibling species. Structure of the ribosomal gene cluster of the Coccinellidae family (ladybirds) is analyzed. It is shown that cloned highly conservative regions of ribosomal DNA of Tetrahymena pyriformis can be used as probes for analyzing ribosomal genes in insects. 24 refs., 4 figs.

  2. Genome-Wide Distribution, Organisation and Functional Characterization of Disease Resistance and Defence Response Genes across Rice Species

    Science.gov (United States)

    Singh, Sangeeta; Chand, Suresh; Singh, N. K.; Sharma, Tilak Raj

    2015-01-01

    The resistance (R) genes and defense response (DR) genes have become very important resources for the development of disease resistant cultivars. In the present investigation, genome-wide identification, expression, phylogenetic and synteny analysis was done for R and DR-genes across three species of rice viz: Oryza sativa ssp indica cv 93-11, Oryza sativa ssp japonica and wild rice species, Oryza brachyantha. We used the in silico approach to identify and map 786 R -genes and 167 DR-genes, 672 R-genes and 142 DR-genes, 251 R-genes and 86 DR-genes in the japonica, indica and O. brachyanth a genomes, respectively. Our analysis showed that 60.5% and 55.6% of the R-genes are tandemly repeated within clusters and distributed over all the rice chromosomes in indica and japonica genomes, respectively. The phylogenetic analysis along with motif distribution shows high degree of conservation of R- and DR-genes in clusters. In silico expression analysis of R-genes and DR-genes showed more than 85% were expressed genes showing corresponding EST matches in the databases. This study gave special emphasis on mechanisms of gene evolution and duplication for R and DR genes across species. Analysis of paralogs across rice species indicated 17% and 4.38% R-genes, 29% and 11.63% DR-genes duplication in indica and Oryza brachyantha, as compared to 20% and 26% duplication of R-genes and DR-genes in japonica respectively. We found that during the course of duplication only 9.5% of R- and DR-genes changed their function and rest of the genes have maintained their identity. Syntenic relationship across three genomes inferred that more orthology is shared between indica and japonica genomes as compared to brachyantha genome. Genome wide identification of R-genes and DR-genes in the rice genome will help in allele mining and functional validation of these genes, and to understand molecular mechanism of disease resistance and their evolution in rice and related species. PMID:25902056

  3. Effect of swine manure application timing on the persistence and transport of antibiotic-resistant Enterococcus and resistance genes

    Science.gov (United States)

    Swine manure applied to agricultural fields may lead to the transport of antibiotic resistant bacteria and antibiotic resistance genes to freshwater systems. Enterococci were studied because they are fecal indicator bacteria associated with manure. Resistance genes include genes from live cells, dea...

  4. Vancomycin-resistance phenotypes, vancomycin-resistance genes, and resistance to antibiotics of enterococci isolated from food of animal origin.

    Science.gov (United States)

    Gousia, Panagiota; Economou, Vangelis; Bozidis, Petros; Papadopoulou, Chrissanthy

    2015-03-01

    In the present study, 500 raw beef, pork, and chicken meat samples and 100 pooled egg samples were analyzed for the presence of vancomycin-resistant enterococci, vancomycin-resistance phenotypes, and resistance genes. Of 141 isolates of enterococci, 88 strains of Enterococcus faecium and 53 strains of E. faecalis were identified. The most prevalent species was E. faecium. Resistance to ampicillin (n = 93, 66%), ciprofloxacin (n = 74, 52.5%), erythromycin (n = 73, 51.8%), penicillin (n = 59, 41.8%) and tetracycline (n = 52, 36.9%) was observed, while 53.2% (n = 75) of the isolates were multiresistant and 15.6% (n = 22) were susceptible to all antibiotics. Resistance to vancomycin was exhibited in 34.1% (n = 30) of the E. faecium isolates (n = 88) and 1.9% (n = 1) of the E. faecalis isolates (n = 53) using the disc-diffusion test and the E-test. All isolates were tested for vanA and vanB using real-time polymerase chain reaction (PCR) and multiplex PCR, and for vanC, vanD, vanE, vanG genes using multiplex PCR only. Among E. faecalis isolates, no resistance genes were identified. Among the E. faecium isolates, 28 carried the vanA gene when tested by multiplex PCR and 29 when tested with real-time PCR. No isolate carrying the vanC, vanD, vanE, or vanG genes was identified. Melting-curve analysis of the positive real-time PCR E. faecium isolates showed that 22 isolates carried the vanA gene only, 2 isolates the vanB2,3 genes only, and seven isolates carried both the vanA and vanB2,3 genes. Enterococci should be considered a significant zoonotic pathogen and a possible reservoir of genes encoding resistance potentially transferred to other bacterial species.

  5. Antibiotic Resistance and Antibiotic Resistance Genes in Escherichia coli Isolates from Hospital Wastewater in Vietnam

    Science.gov (United States)

    Lan, Pham Thi; Chuc, Nguyen Thi Kim; Hoa, Nguyen Quynh; Nhung, Pham Hong; Thoa, Nguyen Thi Minh; Diwan, Vishal; Tamhankar, Ashok J.; Stålsby Lundborg, Cecilia

    2017-01-01

    The environmental spread of antibiotic-resistant bacteria has been recognised as a growing public health threat for which hospitals play a significant role. The aims of this study were to investigate the prevalence of antibiotic resistance and antibiotic resistance genes (ARGs) in Escherichia coli isolates from hospital wastewater in Vietnam. Wastewater samples before and after treatment were collected using continuous sampling every month over a year. Standard disk diffusion and E-test were used for antibiotic susceptibility testing. Extended-spectrum beta-lactamase (ESBL) production was tested using combined disk diffusion. ARGs were detected by polymerase chain reactions. Resistance to at least one antibiotic was detected in 83% of isolates; multidrug resistance was found in 32%. The highest resistance prevalence was found for co-trimoxazole (70%) and the lowest for imipenem (1%). Forty-three percent of isolates were ESBL-producing, with the blaTEM gene being more common than blaCTX-M. Co-harbouring of the blaCTX-M, blaTEM and qepA genes was found in 46% of isolates resistant to ciprofloxacin. The large presence of antibiotic-resistant E. coli isolates combined with ARGs in hospital wastewater, even post-treatment, poses a threat to public health. It highlights the need to develop effective processes for hospital wastewater treatment plants to eliminate antibiotic resistant bacteria and ARGs. PMID:28661465

  6. Antibiotic Resistance and Antibiotic Resistance Genes in Escherichia coli Isolates from Hospital Wastewater in Vietnam.

    Science.gov (United States)

    Lien, La Thi Quynh; Lan, Pham Thi; Chuc, Nguyen Thi Kim; Hoa, Nguyen Quynh; Nhung, Pham Hong; Thoa, Nguyen Thi Minh; Diwan, Vishal; Tamhankar, Ashok J; Stålsby Lundborg, Cecilia

    2017-06-29

    The environmental spread of antibiotic-resistant bacteria has been recognised as a growing public health threat for which hospitals play a significant role. The aims of this study were to investigate the prevalence of antibiotic resistance and antibiotic resistance genes (ARGs) in Escherichia coli isolates from hospital wastewater in Vietnam. Wastewater samples before and after treatment were collected using continuous sampling every month over a year. Standard disk diffusion and E-test were used for antibiotic susceptibility testing. Extended-spectrum beta-lactamase (ESBL) production was tested using combined disk diffusion. ARGs were detected by polymerase chain reactions. Resistance to at least one antibiotic was detected in 83% of isolates; multidrug resistance was found in 32%. The highest resistance prevalence was found for co-trimoxazole (70%) and the lowest for imipenem (1%). Forty-three percent of isolates were ESBL-producing, with the bla TEM gene being more common than bla CTX-M . Co-harbouring of the bla CTX-M , bla TEM and qepA genes was found in 46% of isolates resistant to ciprofloxacin. The large presence of antibiotic-resistant E. coli isolates combined with ARGs in hospital wastewater, even post-treatment, poses a threat to public health. It highlights the need to develop effective processes for hospital wastewater treatment plants to eliminate antibiotic resistant bacteria and ARGs.

  7. The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence

    OpenAIRE

    Rinaldo, Amy; Gilbert, Brian; Boni, Rainer; Krattinger, Simon G.; Singh, Davinder; Park, Robert F.; Lagudah, Evans; Ayliffe, Michael

    2017-01-01

    Summary The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad?spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field?grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when ...

  8. Gene interactions and genetics of blast resistance and yield

    Indian Academy of Sciences (India)

    Blast disease caused by the pathogen Pyricularia oryzae is a serious threat to rice production. Six generations viz., P1, P2, F1, F2, B1 and B2 of a cross between blast susceptible high-yielding rice cultivar ADT 43 and resistant near isogenic line (NIL) CT13432-3R, carrying four blast resistance genes Pi1, Pi2, Pi33 and Pi54 ...

  9. Cluster formula of Fe-containing Monel alloys with high corrosion-resistance

    Energy Technology Data Exchange (ETDEWEB)

    Li Baozeng; Gu Junjie [Key Lab of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Wang Qing, E-mail: wangq@dlut.edu.cn [Key Lab of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Ji Chunjun [College of Energy Source and Power, Dalian University of Science and Technology, Dalian, 116024 (China); Wang Yingmin; Qiang Jianbing [Key Lab of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Dong Chuang, E-mail: dong@dlut.edu.cn [Key Lab of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2012-06-15

    The cluster-plus-glue-atom model is applied in the composition interpretation of Monel alloys. This model considers ideal atomic nearest neighbor configurations among the constituent elements and has been used in understanding compositions of complex alloys like quasicrystals, amorphous alloys, and cupronickels. According to this model, any structure can be expressed by cluster formula [cluster](glue atom){sub x}, x denoting the number of glue atoms matching one cluster. According to this model, two groups of experimental composition series [Fe{sub 1}Ni{sub 12}]Cu{sub x} and [Fe{sub y}Ni{sub 12}]Cu{sub 5} were designed which fell close to conventional Fe-containing Monel alloys. The designed alloys after solution treatment plus water quenching, are monolithic FCC Ni-based solid solutions. Among them, the [Fe{sub 1}Ni{sub 12}]Cu{sub 5} alloy has the highest corrosion resistance in simulated sea water, and its performance is superior to that of industrial Monel 400 alloy. - Highlights: Black-Right-Pointing-Pointer A stable solid solution model is proposed using our 'cluster-plus-glue-atom model'. Black-Right-Pointing-Pointer This model is used to develop Monel corrosion resistant alloys. Black-Right-Pointing-Pointer Single FCC structure is easily retained. Black-Right-Pointing-Pointer The alloys show good corrosion properties. Black-Right-Pointing-Pointer This work contributes to the general understanding of engineering alloys.

  10. Antibiotic discovery throughout the Small World Initiative: A molecular strategy to identify biosynthetic gene clusters involved in antagonistic activity.

    Science.gov (United States)

    Davis, Elizabeth; Sloan, Tyler; Aurelius, Krista; Barbour, Angela; Bodey, Elijah; Clark, Brigette; Dennis, Celeste; Drown, Rachel; Fleming, Megan; Humbert, Allison; Glasgo, Elizabeth; Kerns, Trent; Lingro, Kelly; McMillin, MacKenzie; Meyer, Aaron; Pope, Breanna; Stalevicz, April; Steffen, Brittney; Steindl, Austin; Williams, Carolyn; Wimberley, Carmen; Zenas, Robert; Butela, Kristen; Wildschutte, Hans

    2017-06-01

    The emergence of bacterial pathogens resistant to all known antibiotics is a global health crisis. Adding to this problem is that major pharmaceutical companies have shifted away from antibiotic discovery due to low profitability. As a result, the pipeline of new antibiotics is essentially dry and many bacteria now resist the effects of most commonly used drugs. To address this global health concern, citizen science through the Small World Initiative (SWI) was formed in 2012. As part of SWI, students isolate bacteria from their local environments, characterize the strains, and assay for antibiotic production. During the 2015 fall semester at Bowling Green State University, students isolated 77 soil-derived bacteria and genetically characterized strains using the 16S rRNA gene, identified strains exhibiting antagonistic activity, and performed an expanded SWI workflow using transposon mutagenesis to identify a biosynthetic gene cluster involved in toxigenic compound production. We identified one mutant with loss of antagonistic activity and through subsequent whole-genome sequencing and linker-mediated PCR identified a 24.9 kb biosynthetic gene locus likely involved in inhibitory activity in that mutant. Further assessment against human pathogens demonstrated the inhibition of Bacillus cereus, Listeria monocytogenes, and methicillin-resistant Staphylococcus aureus in the presence of this compound, thus supporting our molecular strategy as an effective research pipeline for SWI antibiotic discovery and genetic characterization. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  11. Discovery of Unusual Biaryl Polyketides by Activation of a Silent Streptomyces venezuelae Biosynthetic Gene Cluster.

    Science.gov (United States)

    Thanapipatsiri, Anyarat; Gomez-Escribano, Juan Pablo; Song, Lijiang; Bibb, Maureen J; Al-Bassam, Mahmoud; Chandra, Govind; Thamchaipenet, Arinthip; Challis, Gregory L; Bibb, Mervyn J

    2016-11-17

    Comparative transcriptional profiling of a ΔbldM mutant of Streptomyces venezuelae with its unmodified progenitor revealed that the expression of a cryptic biosynthetic gene cluster containing both type I and type III polyketide synthase genes is activated in the mutant. The 29.5 kb gene cluster, which was predicted to encode an unusual biaryl metabolite, which we named venemycin, and potentially halogenated derivatives, contains 16 genes including one-vemR-that encodes a transcriptional activator of the large ATP-binding LuxR-like (LAL) family. Constitutive expression of vemR in the ΔbldM mutant led to the production of sufficient venemycin for structural characterisation, confirming its unusual biaryl structure. Co-expression of the venemycin biosynthetic gene cluster and vemR in the heterologous host Streptomyces coelicolor also resulted in venemycin production. Although the gene cluster encodes two halogenases and a flavin reductase, constitutive expression of all three genes led to the accumulation only of a monohalogenated venemycin derivative, both in the native producer and the heterologous host. A competition experiment in which equimolar quantities of sodium chloride and sodium bromide were fed to the venemycin-producing strains resulted in the preferential incorporation of bromine, thus suggesting that bromide is the preferred substrate for one or both halogenases. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  12. Functional Repertoire of Antibiotic Resistance Genes in Antibiotic Manufacturing Effluents and Receiving Freshwater Sediments

    Science.gov (United States)

    González-Plaza, Juan J.; Šimatović, Ana; Milaković, Milena; Bielen, Ana; Wichmann, Fabienne; Udiković-Kolić, Nikolina

    2018-01-01

    Environments polluted by direct discharges of effluents from antibiotic manufacturing are important reservoirs for antibiotic resistance genes (ARGs), which could potentially be transferred to human pathogens. However, our knowledge about the identity and diversity of ARGs in such polluted environments remains limited. We applied functional metagenomics to explore the resistome of two Croatian antibiotic manufacturing effluents and sediments collected upstream of and at the effluent discharge sites. Metagenomic libraries built from an azithromycin-production site were screened for resistance to macrolide antibiotics, whereas the libraries from a site producing veterinary antibiotics were screened for resistance to sulfonamides, tetracyclines, trimethoprim, and beta-lactams. Functional analysis of eight libraries identified a total of 82 unique, often clinically relevant ARGs, which were frequently found in clusters and flanked by mobile genetic elements. The majority of macrolide resistance genes identified from matrices exposed to high levels of macrolides were similar to known genes encoding ribosomal protection proteins, macrolide phosphotransferases, and transporters. Potentially novel macrolide resistance genes included one most similar to a 23S rRNA methyltransferase from Clostridium and another, derived from upstream unpolluted sediment, to a GTPase HflX from Emergencia. In libraries deriving from sediments exposed to lower levels of veterinary antibiotics, we found 8 potentially novel ARGs, including dihydrofolate reductases and beta-lactamases from classes A, B, and D. In addition, we detected 7 potentially novel ARGs in upstream sediment, including thymidylate synthases, dihydrofolate reductases, and class D beta-lactamase. Taken together, in addition to finding known gene types, we report the discovery of novel and diverse ARGs in antibiotic-polluted industrial effluents and sediments, providing a qualitative basis for monitoring the dispersal of ARGs

  13. Comparative genome analysis and resistance gene mapping in grain legumes

    International Nuclear Information System (INIS)

    Young, N.D.

    1998-01-01

    Using, DNA markers and genome organization, several important disease resistance genes have been analyzed in mungbean (Vigna radiata), cowpea (Vigna unguiculata), common bean (Phaseolus vulgaris), and soybean (Glycine max). In the process, medium-density linkage maps consisting of restriction fragment length polymorphism (RFLP) markers were constructed for both mungbean and cowpea. Comparisons between these maps, as well as the maps of soybean and common bean, indicate that there is significant conservation of DNA marker order, though the conserved blocks in soybean are much shorter than in the others. DNA mapping results also indicate that a gene for seed weight may be conserved between mungbean and cowpea. Using the linkage maps, genes that control bruchid (genus Callosobruchus) and powdery mildew (Erysiphe polygoni) resistance in mungbean, aphid resistance in cowpea (Aphis craccivora), and cyst nematode (Heterodera glycines) resistance in soybean have all been mapped and characterized. For some of these traits resistance was found to be oligogenic and DNA mapping uncovered multiple genes involved in the phenotype. (author)

  14. An integrative analysis of cellular contexts, miRNAs and mRNAs reveals network clusters associated with antiestrogen-resistant breast cancer cells

    Directory of Open Access Journals (Sweden)

    Nam Seungyoon

    2012-12-01

    Full Text Available Abstract Background A major goal of the field of systems biology is to translate genome-wide profiling data (e.g., mRNAs, miRNAs into interpretable functional networks. However, employing a systems biology approach to better understand the complexities underlying drug resistance phenotypes in cancer continues to represent a significant challenge to the field. Previously, we derived two drug-resistant breast cancer sublines (tamoxifen- and fulvestrant-resistant cell lines from the MCF7 breast cancer cell line and performed genome-wide mRNA and microRNA profiling to identify differential molecular pathways underlying acquired resistance to these important antiestrogens. In the current study, to further define molecular characteristics of acquired antiestrogen resistance we constructed an “integrative network”. We combined joint miRNA-mRNA expression profiles, cancer contexts, miRNA-target mRNA relationships, and miRNA upstream regulators. In particular, to reduce the probability of false positive connections in the network, experimentally validated, rather than prediction-oriented, databases were utilized to obtain connectivity. Also, to improve biological interpretation, cancer contexts were incorporated into the network connectivity. Results Based on the integrative network, we extracted “substructures” (network clusters representing the drug resistant states (tamoxifen- or fulvestrant-resistance cells compared to drug sensitive state (parental MCF7 cells. We identified un-described network clusters that contribute to antiestrogen resistance consisting of miR-146a, -27a, -145, -21, -155, -15a, -125b, and let-7s, in addition to the previously described miR-221/222. Conclusions By integrating miRNA-related network, gene/miRNA expression and text-mining, the current study provides a computational-based systems biology approach for further investigating the molecular mechanism underlying antiestrogen resistance in breast cancer cells. In

  15. A CLUSTERING OF DJA STOCKS - THE APPLICATION IN FINANCE OF A METHOD FIRST USED IN GENE TRAJECTORY STUDY

    Directory of Open Access Journals (Sweden)

    Silaghi Gheorghe Cosmin

    2009-05-01

    Full Text Available Previously we employed the Gene Trajectory Clustering methodology to search for different associations of the stocks composing the DJA index, with the aim of finding different, logic clusters, supported by economic reasons, preferably different than the

  16. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens

    DEFF Research Database (Denmark)

    Jiang, Xinglin; Ellabaan, Mostafa M Hashim; Charusanti, Pep

    2017-01-01

    It has been hypothesized that some antibiotic resistance genes (ARGs) found in pathogenic bacteria derive from antibiotic-producing actinobacteria. Here we provide bioinformatic and experimental evidence supporting this hypothesis. We identify genes in proteobacteria, including some pathogens......, that appear to be closely related to actinobacterial ARGs known to confer resistance against clinically important antibiotics. Furthermore, we identify two potential examples of recent horizontal transfer of actinobacterial ARGs to proteobacterial pathogens. Based on this bioinformatic evidence, we propose...... results support the existence of ancient and, possibly, recent transfers of ARGs from antibiotic-producing actinobacteria to proteobacteria, and provide evidence for a defined mechanism....

  17. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria.

    Science.gov (United States)

    Adelowo, Olawale O; Fagade, Obasola E; Agersø, Yvonne

    2014-09-12

    This study investigated the mechanisms of resistance in 36 E. coli isolated from waste, litter, soil and water samples collected from poultry farms in Southwestern Nigeria. Minimum inhibitory concentration (MIC) distributions of the isolates were determined using the methods of the Clinical and Laboratory Standard Institute and resistance genes detected by PCR. A total of 30 isolates (94%) showed resistance to more than one antimicrobial. Percentage resistance was: tetracycline 81%, sulphamethoxazole 67%, streptomycin 56%, trimethoprim 47 %, ciprofloxacin 42%, ampicillin 36%, spectinomycin 28%, nalidixic acid 25%, chloramphenicol 22%, neomycin 14%, gentamicin 8%, amoxicillin-clavulanate, ceftiofur, cefotaxime, colistin, florfenicol and apramycin 0%. Resistance genes found among the isolates include bla-TEM (85%), sul2 (67%), sul3 (17%), aadA (65%), strA (70%), strB (61%), catA1 (25%), cmlA1 (13%), tetA (21%) and tetB (17%). Class 1 and 2 integrons were found in five (14%) and six (17%) isolates, respectively, while one isolate was positive for both classes of integrons. Seven out of eight isolates with resistance to ciprofloxacin and MIC ≤ 32 mg/L to nalidixic acid contained qnrS genes. Our findings provided additional evidence that the poultry production environment in Nigeria represents an important reservoir of antibiotic resistance genes such as qnrS that may spread from livestock production farms to human populations via manure and water.

  18. MS/MS networking guided analysis of molecule and gene cluster families

    Science.gov (United States)

    Nguyen, Don Duy; Wu, Cheng-Hsuan; Moree, Wilna J.; Lamsa, Anne; Medema, Marnix H.; Zhao, Xiling; Gavilan, Ronnie G.; Aparicio, Marystella; Atencio, Librada; Jackson, Chanaye; Ballesteros, Javier; Sanchez, Joel; Watrous, Jeramie D.; Phelan, Vanessa V.; van de Wiel, Corine; Kersten, Roland D.; Mehnaz, Samina; De Mot, René; Shank, Elizabeth A.; Charusanti, Pep; Nagarajan, Harish; Duggan, Brendan M.; Moore, Bradley S.; Bandeira, Nuno; Palsson, Bernhard Ø.; Pogliano, Kit; Gutiérrez, Marcelino; Dorrestein, Pieter C.

    2013-01-01

    The ability to correlate the production of specialized metabolites to the genetic capacity of the organism that produces such molecules has become an invaluable tool in aiding the discovery of biotechnologically applicable molecules. Here, we accomplish this task by matching molecular families with gene cluster families, making these correlations to 60 microbes at one time instead of connecting one molecule to one organism at a time, such as how it is traditionally done. We can correlate these families through the use of nanospray desorption electrospray ionization MS/MS, an ambient pressure MS technique, in conjunction with MS/MS networking and peptidogenomics. We matched the molecular families of peptide natural products produced by 42 bacilli and 18 pseudomonads through the generation of amino acid sequence tags from MS/MS data of specific clusters found in the MS/MS network. These sequence tags were then linked to biosynthetic gene clusters in publicly accessible genomes, providing us with the ability to link particular molecules with the genes that produced them. As an example of its use, this approach was applied to two unsequenced Pseudoalteromonas species, leading to the discovery of the gene cluster for a molecular family, the bromoalterochromides, in the previously sequenced strain P. piscicida JCM 20779T. The approach itself is not limited to 60 related strains, because spectral networking can be readily adopted to look at molecular family–gene cluster families of hundreds or more diverse organisms in one single MS/MS network. PMID:23798442

  19. A genomics based discovery of secondary metabolite biosynthetic gene clusters in Aspergillus ustus.

    Directory of Open Access Journals (Sweden)

    Borui Pi

    Full Text Available Secondary metabolites (SMs produced by Aspergillus have been extensively studied for their crucial roles in human health, medicine and industrial production. However, the resulting information is almost exclusively derived from a few model organisms, including A. nidulans and A. fumigatus, but little is known about rare pathogens. In this study, we performed a genomics based discovery of SM biosynthetic gene clusters in Aspergillus ustus, a rare human pathogen. A total of 52 gene clusters were identified in the draft genome of A. ustus 3.3904, such as the sterigmatocystin biosynthesis pathway that was commonly found in Aspergillus species. In addition, several SM biosynthetic gene clusters were firstly identified in Aspergillus that were possibly acquired by horizontal gene transfer, including the vrt cluster that is responsible for viridicatumtoxin production. Comparative genomics revealed that A. ustus shared the largest number of SM biosynthetic gene clusters with A. nidulans, but much fewer with other Aspergilli like A. niger and A. oryzae. These findings would help to understand the diversity and evolution of SM biosynthesis pathways in genus Aspergillus, and we hope they will also promote the development of fungal identification methodology in clinic.

  20. High chlorpyrifos resistance in Culex pipiens mosquitoes: strong synergy between resistance genes.

    Science.gov (United States)

    Alout, H; Labbé, P; Berthomieu, A; Makoundou, P; Fort, P; Pasteur, N; Weill, M

    2016-02-01

    We investigated the genetic determinism of high chlorpyrifos resistance (HCR), a phenotype first described in 1999 in Culex pipiens mosquitoes surviving chlorpyrifos doses ⩾1 mg l(-1) and more recently found in field samples from Tunisia, Israel or Indian Ocean islands. Through chlorpyrifos selection, we selected several HCR strains that displayed over 10 000-fold resistance. All strains were homozygous for resistant alleles at two main loci: the ace-1 gene, with the resistant ace-1(R) allele expressing the insensitive G119S acetylcholinesterase, and a resistant allele of an unknown gene (named T) linked to the sex and ace-2 genes. We constructed a strain carrying only the T-resistant allele and studied its resistance characteristics. By crossing this strain with strains harboring different alleles at the ace-1 locus, we showed that the resistant ace-1(R) and the T alleles act in strong synergy, as they elicited a resistance 100 times higher than expected from a simple multiplicative effect. This effect was specific to chlorpyrifos and parathion and was not affected by synergists. We also examined how HCR was expressed in strains carrying other ace-1-resistant alleles, such as ace-1(V) or the duplicated ace-1(D) allele, currently spreading worldwide. We identified two major parameters that influenced the level of resistance: the number and the nature of the ace-1-resistant alleles and the number of T alleles. Our data fit a model that predicts that the T allele acts by decreasing chlorpyrifos concentration in the compartment targeted in insects.

  1. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors

    Directory of Open Access Journals (Sweden)

    Masayoshi Hashimoto

    2016-10-01

    Full Text Available The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species.

  2. Spread of tetracycline resistance genes at a conventional dairy farm

    Directory of Open Access Journals (Sweden)

    Martina eKyselkova

    2015-05-01

    Full Text Available The use of antibiotics in animal husbandry contributes to the worldwide problem of increasing antibiotic resistance in animal and human pathogens. Intensive animal production is considered an important source of antibiotic resistance genes released to the environment, while the contribution of smaller farms remains to be evaluated. Here we monitor the spread of tetracycline resistance (TC-r genes at a middle-size conventional dairy farm, where chlortetracycline (CTC, as intrauterine suppository is prophylactically used after each calving. Our study has shown that animals at the farm acquired the TC-r genes in their early age (1-2 weeks, likely due to colonization with TC-resistant bacteria from their mothers and/or the farm environment. The relative abundance of the TC-r genes tet(W, tet(Q and tet(M in fresh excrements of calves was about 1-2 orders of magnitude higher compared to heifers and dairy cows, possibly due to the presence of antibiotic residues in milk fed to calves. The occurrence and abundance of TC-r genes in fresh excrements of heifers and adult cows remained unaffected by intrauterine CTC applications, with tet(O, tet(Q and tet(W representing a ‘core TC-resistome’ of the farm, and tet(A, tet(M, tet(Y and tet(X occurring occasionally. The genes tet(A, tet(M, tet(Y and tet(X were shown to be respectively harbored by Shigella, Lactobacillus and Clostridium, Acinetobacter, and Wautersiella. Soil in the farm proximity, as well as field soil to which manure from the farm was applied, was contaminated with TC-r genes occurring in the farm, and some of the TC-r genes persisted in the field over 3 months following the manure application. Concluding, our study shows that antibiotic resistance genes may be a stable part of the intestinal metagenome of cattle even if antibiotics are not used for growth stimulation, and that smaller dairy farms may also contribute to environmental pollution with antibiotic resistance genes.

  3. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria

    DEFF Research Database (Denmark)

    Adelowo, Olawale O.; Fagade, Obasola E.; Agersø, Yvonne

    2014-01-01

    Introduction: This study investigated the mechanisms of resistance in 36 E. coli isolated from waste, litter, soil and water samples collected from poultry farms in Southwestern Nigeria. Methodology: Minimum inhibitory concentration (MIC) distributions of the isolates were determined using...... the methods of the Clinical and Laboratory Standard Institute and resistance genes detected by PCR. Results: A total of 30 isolates (94%) showed resistance to more than one antimicrobial. Percentage resistance was: tetracycline 81%, sulphamethoxazole 67%, streptomycin 56%, trimethoprim 47 %, ciprofloxacin 42......%, ampicillin 36%, spectinomycin 28%, nalidixic acid 25%, chloramphenicol 22%, neomycin 14%, gentamicin 8%, amoxicillin-clavulanate, ceftiofur, cefotaxime, colistin, florfenicol and apramycin 0%. Resistance genes found among the isolates include bla-TEM (85%), sul2 (67%), sul3 (17%), aadA (65%), strA (70%), str...

  4. Dissemination of metal resistance genes among animal methicillin-resistant coagulase-negative Staphylococci.

    Science.gov (United States)

    Argudín, M Angeles; Butaye, Patrick

    2016-04-01

    The use of metals as feed supplement has been recognized as a potential driver for co-selection of methicillin-resistant Staphylococcus aureus in pigs. However, the prevalence of these determinants in methicillin-resistant coagulase-negative staphylococci (MRCoNS) is largely unknown. In this study, a collection of 130 MRCoNS from pigs and veal calves were investigated for the presence of metal-resistance genes (czrC, copB, cadD, arsA) associated to SCCmec. Near half of the isolates carried metal resistance genes (czrC 5.4%, copB 38.5%, cadD 7.7%, arsA 26.2%) regardless of their SCCmec type. The increased use of metals in livestock animals, especially zinc in pigs in several European countries may co-select for methicillin-resistance in several staphylococcal species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Tagging of resistance gene(s) to rhizomania disease in sugar beet ...

    African Journals Online (AJOL)

    SERVER

    2008-02-19

    Feb 19, 2008 ... plasmodiophoride-like fungus, Polymyxa betae Keskin. (1964) (Tamada and Richard, 1992). Source of resistance to rhizomania were found in Holly sugar beet company source (Lewellen, 1987). Resistance in Holly is simply inherited by a single dominant gene(Rz1). (Lewellen et al., 1987; Scholten et al., ...

  6. Tagging of resistance gene(s) to rhizomania disease in sugar beet ...

    African Journals Online (AJOL)

    The rhizomania disease is one of the most important diseases in Iran and some other parts of the world which potentially could play a role in decreasing sugar yield in fields. One approach to combat with this disease is the use of resistance varieties. This varieties have been identified which are having resistance genes to ...

  7. Regulation of Three Nitrogenase Gene Clusters in the Cyanobacterium Anabaena variabilis ATCC 29413

    Directory of Open Access Journals (Sweden)

    Teresa Thiel

    2014-12-01

    Full Text Available The filamentous cyanobacterium Anabaena variabilis ATCC 29413 fixes nitrogen under aerobic conditions in specialized cells called heterocysts that form in response to an environmental deficiency in combined nitrogen. Nitrogen fixation is mediated by the enzyme nitrogenase, which is very sensitive to oxygen. Heterocysts are microxic cells that allow nitrogenase to function in a filament comprised primarily of vegetative cells that produce oxygen by photosynthesis. A. variabilis is unique among well-characterized cyanobacteria in that it has three nitrogenase gene clusters that encode different nitrogenases, which function under different environmental conditions. The nif1 genes encode a Mo-nitrogenase that functions only in heterocysts, even in filaments grown anaerobically. The nif2 genes encode a different Mo-nitrogenase that functions in vegetative cells, but only in filaments grown under anoxic conditions. An alternative V-nitrogenase is encoded by vnf genes that are expressed only in heterocysts in an environment that is deficient in Mo. Thus, these three nitrogenases are expressed differentially in response to environmental conditions. The entire nif1 gene cluster, comprising at least 15 genes, is primarily under the control of the promoter for the first gene, nifB1. Transcriptional control of many of the downstream nif1 genes occurs by a combination of weak promoters within the coding regions of some downstream genes and by RNA processing, which is associated with increased transcript stability. The vnf genes show a similar pattern of transcriptional and post-transcriptional control of expression suggesting that the complex pattern of regulation of the nif1 cluster is conserved in other cyanobacterial nitrogenase gene clusters.

  8. Genome-Wide Analysis of Secondary Metabolite Gene Clusters in Ophiostoma ulmi and Ophiostoma novo-ulmi Reveals a Fujikurin-Like Gene Cluster with a Putative Role in Infection

    Directory of Open Access Journals (Sweden)

    Nicolau Sbaraini

    2017-06-01

    Full Text Available The emergence of new microbial pathogens can result in destructive outbreaks, since their hosts have limited resistance and pathogens may be excessively aggressive. Described as the major ecological incident of the twentieth century, Dutch elm disease, caused by ascomycete fungi from the Ophiostoma genus, has caused a significant decline in elm tree populations (Ulmus sp. in North America and Europe. Genome sequencing of the two main causative agents of Dutch elm disease (Ophiostoma ulmi and Ophiostoma novo-ulmi, along with closely related species with different lifestyles, allows for unique comparisons to be made to identify how pathogens and virulence determinants have emerged. Among several established virulence determinants, secondary metabolites (SMs have been suggested to play significant roles during phytopathogen infection. Interestingly, the secondary metabolism of Dutch elm pathogens remains almost unexplored, and little is known about how SM biosynthetic genes are organized in these species. To better understand the metabolic potential of O. ulmi and O. novo-ulmi, we performed a deep survey and description of SM biosynthetic gene clusters (BGCs in these species and assessed their conservation among eight species from the Ophiostomataceae family. Among 19 identified BGCs, a fujikurin-like gene cluster (OpPKS8 was unique to Dutch elm pathogens. Phylogenetic analysis revealed that orthologs for this gene cluster are widespread among phytopathogens and plant-associated fungi, suggesting that OpPKS8 may have been horizontally acquired by the Ophiostoma genus. Moreover, the detailed identification of several BGCs paves the way for future in-depth research and supports the potential impact of secondary metabolism on Ophiostoma genus’ lifestyle.

  9. Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in 'Thatcher' Wheat.

    Directory of Open Access Journals (Sweden)

    Colin W Hiebert

    Full Text Available Stem rust, caused by Puccinia graminis (Pgt, is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. 'Thatcher' wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in 'Thatcher' and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for 'Thatcher'-derived APR in several environments and this resistance was enhanced in the presence of Lr34.

  10. Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in 'Thatcher' Wheat.

    Science.gov (United States)

    Hiebert, Colin W; Kolmer, James A; McCartney, Curt A; Briggs, Jordan; Fetch, Tom; Bariana, Harbans; Choulet, Frederic; Rouse, Matthew N; Spielmeyer, Wolfgang

    2016-01-01

    Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. 'Thatcher' wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in 'Thatcher' and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for 'Thatcher'-derived APR in several environments and this resistance was enhanced in the presence of Lr34.

  11. Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in ‘Thatcher’ Wheat

    Science.gov (United States)

    Hiebert, Colin W.; Kolmer, James A.; McCartney, Curt A.; Briggs, Jordan; Fetch, Tom; Bariana, Harbans; Choulet, Frederic; Rouse, Matthew N.; Spielmeyer, Wolfgang

    2016-01-01

    Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. ‘Thatcher’ wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in ‘Thatcher’ and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for ‘Thatcher’-derived APR in several environments and this resistance was enhanced in the presence of Lr34. PMID:27309724

  12. Identification of biosynthetic gene clusters from metagenomic libraries using PPTase complementation in a Streptomyces host.

    Science.gov (United States)

    Bitok, J Kipchirchir; Lemetre, Christophe; Ternei, Melinda A; Brady, Sean F

    2017-09-01

    The majority of environmental bacteria are not readily cultured in the lab, leaving the natural products they make inaccessible using culture-dependent discovery methods. Cloning and heterologous expression of DNA extracted from environmental samples (environmental DNA, eDNA) provides a means of circumventing this discovery bottleneck. To facilitate the identification of clones containing biosynthetic gene clusters, we developed a model heterologous expression reporter strain Streptomyces albus::bpsA ΔPPTase. This strain carries a 4΄-phosphopantetheinyl transferase (PPTase)-dependent blue pigment synthase A gene, bpsA, in a PPTase deletion background. eDNA clones that express a functional PPTase restore production of the blue pigment, indigoidine. As PPTase genes often occur in biosynthetic gene clusters (BGCs), indigoidine production can be used to identify eDNA clones containing BGCs. We screened a soil eDNA library hosted in S. albus::bpsA ΔPPTase and identified clones containing non-ribosomal peptide synthetase (NRPS), polyketide synthase (PKS) and mixed NRPS/PKS biosynthetic gene clusters. One NRPS gene cluster was shown to confer the production of myxochelin A to S. albus::bpsA ΔPPTase. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Methods for simultaneously identifying coherent local clusters with smooth global patterns in gene expression profiles

    Directory of Open Access Journals (Sweden)

    Lee Yun-Shien

    2008-03-01

    Full Text Available Abstract Background The hierarchical clustering tree (HCT with a dendrogram 1 and the singular value decomposition (SVD with a dimension-reduced representative map 2 are popular methods for two-way sorting the gene-by-array matrix map employed in gene expression profiling. While HCT dendrograms tend to optimize local coherent clustering patterns, SVD leading eigenvectors usually identify better global grouping and transitional structures. Results This study proposes a flipping mechanism for a conventional agglomerative HCT using a rank-two ellipse (R2E, an improved SVD algorithm for sorting purpose seriation by Chen 3 as an external reference. While HCTs always produce permutations with good local behaviour, the rank-two ellipse seriation gives the best global grouping patterns and smooth transitional trends. The resulting algorithm automatically integrates the desirable properties of each method so that users have access to a clustering and visualization environment for gene expression profiles that preserves coherent local clusters and identifies global grouping trends. Conclusion We demonstrate, through four examples, that the proposed method not only possesses better numerical and statistical properties, it also provides more meaningful biomedical insights than other sorting algorithms. We suggest that sorted proximity matrices for genes and arrays, in addition to the gene-by-array expression matrix, can greatly aid in the search for comprehensive understanding of gene expression structures. Software for the proposed methods can be obtained at http://gap.stat.sinica.edu.tw/Software/GAP.

  14. Sequencing and transcriptional analysis of the biosynthesis gene cluster of abscisic acid-producing Botrytis cinerea.

    Science.gov (United States)

    Gong, Tao; Shu, Dan; Yang, Jie; Ding, Zhong-Tao; Tan, Hong

    2014-09-29

    Botrytis cinerea is a model species with great importance as a pathogen of plants and has become used for biotechnological production of ABA. The ABA cluster of B. cinerea is composed of an open reading frame without significant similarities (bcaba3), followed by the genes (bcaba1 and bcaba2) encoding P450 monooxygenases and a gene probably coding for a short-chain dehydrogenase/reductase (bcaba4). In B. cinerea ATCC58025, targeted inactivation of the genes in the cluster suggested at least three genes responsible for the hydroxylation at carbon atom C-1' and C-4' or oxidation at C-4' of ABA. Our group has identified an ABA-overproducing strain, B. cinerea TB-3-H8. To differentiate TB-3-H8 from other B. cinerea strains with the functional ABA cluster, the DNA sequence of the 12.11-kb region containing the cluster of B. cinerea TB-3-H8 was determined. Full-length cDNAs were also isolated for bcaba1, bcaba2, bcaba3 and bcaba4 from B. cinerea TB-3-H8. Sequence comparison of the four genes and their flanking regions respectively derived from B. cinerea TB-3-H8, B05.10 and T4 revealed that major variations were located in intergenic sequences. In B. cinerea TB-3-H8, the expression profiles of the four function genes under ABA high-yield conditions were also analyzed by real-time PCR.

  15. Hessian regularization based non-negative matrix factorization for gene expression data clustering.

    Science.gov (United States)

    Liu, Xiao; Shi, Jun; Wang, Congzhi

    2015-01-01

    Since a key step in the analysis of gene expression data is to detect groups of genes that have similar expression patterns, clustering technique is then commonly used to analyze gene expression data. Data representation plays an important role in clustering analysis. The non-negative matrix factorization (NMF) is a widely used data representation method with great success in machine learning. Although the traditional manifold regularization method, Laplacian regularization (LR), can improve the performance of NMF, LR still suffers from the problem of its weak extrapolating power. Hessian regularization (HR) is a newly developed manifold regularization method, whose natural properties make it more extrapolating, especially for small sample data. In this work, we propose the HR-based NMF (HR-NMF) algorithm, and then apply it to represent gene expression data for further clustering task. The clustering experiments are conducted on five commonly used gene datasets, and the results indicate that the proposed HR-NMF outperforms LR-based NMM and original NMF, which suggests the potential application of HR-NMF for gene expression data.

  16. Association mapping and gene-gene interaction for stem rust resistance in CIMMYT spring wheat germplasm.

    Science.gov (United States)

    Yu, Long-Xi; Lorenz, Aaron; Rutkoski, Jessica; Singh, Ravi P; Bhavani, Sridhar; Huerta-Espino, Julio; Sorrells, Mark E

    2011-12-01

    The recent emergence of wheat stem rust Ug99 and evolution of new races within the lineage threatens global wheat production because they overcome widely deployed stem rust resistance (Sr) genes that had been effective for many years. To identify loci conferring adult plant resistance to races of Ug99 in wheat, we employed an association mapping approach for 276 current spring wheat breeding lines from the International Maize and Wheat Improvement Center (CIMMYT). Breeding lines were genotyped with Diversity Array Technology (DArT) and microsatellite markers. Phenotypic data was collected on these lines for stem rust race Ug99 resistance at the adult plant stage in the stem rust resistance screening nursery in Njoro, Kenya in seasons 2008, 2009 and 2010. Fifteen marker loci were found to be significantly associated with stem rust resistance. Several markers appeared to be linked to known Sr genes, while other significant markers were located in chromosome regions where no Sr genes have been previously reported. Most of these new loci colocalized with QTLs identified recently in different biparental populations. Using the same data and Q + K covariate matrices, we investigated the interactions among marker loci using linear regression models to calculate P values for pairwise marker interactions. Resistance marker loci including the Sr2 locus on 3BS and the wPt1859 locus on 7DL had significant interaction effects with other loci in the same chromosome arm and with markers on chromosome 6B. Other resistance marker loci had significant pairwise interactions with markers on different chromosomes. Based on these results, we propose that a complex network of gene-gene interactions is, in part, responsible for resistance to Ug99. Further investigation may provide insight for understanding mechanisms that contribute to this resistance gene network.

  17. A remarkably stable TipE gene cluster: evolution of insect Para sodium channel auxiliary subunits

    Directory of Open Access Journals (Sweden)

    Li Jia

    2011-11-01

    Full Text Available Abstract Background First identified in fruit flies with temperature-sensitive paralysis phenotypes, the Drosophila melanogaster TipE locus encodes four voltage-gated sodium (NaV channel auxiliary subunits. This cluster of TipE-like genes on chromosome 3L, and a fifth family member on chromosome 3R, are important for the optional expression and functionality of the Para NaV channel but appear quite distinct from auxiliary subunits in vertebrates. Here, we exploited available arthropod genomic resources to trace the origin of TipE-like genes by mapping their evolutionary histories and examining their genomic architectures. Results We identified a remarkably conserved synteny block of TipE-like orthologues with well-maintained local gene arrangements from 21 insect species. Homologues in the water flea, Daphnia pulex, suggest an ancestral pancrustacean repertoire of four TipE-like genes; a subsequent gene duplication may have generated functional redundancy allowing gene losses in the silk moth and mosquitoes. Intronic nesting of the insect TipE gene cluster probably occurred following the divergence from crustaceans, but in the flour beetle and silk moth genomes the clusters apparently escaped from nesting. Across Pancrustacea, TipE gene family members have experienced intronic nesting, escape from nesting, retrotransposition, translocation, and gene loss events while generally maintaining their local gene neighbourhoods. D. melanogaster TipE-like genes exhibit coordinated spatial and temporal regulation of expression distinct from their host gene but well-correlated with their regulatory target, the Para NaV channel, suggesting that functional constraints may preserve the TipE gene cluster. We identified homology between TipE-like NaV channel regulators and vertebrate Slo-beta auxiliary subunits of big-conductance calcium-activated potassium (BKCa channels, which suggests that ion channel regulatory partners have evolved distinct lineage

  18. Thioridazine affects transcription of genes involved in cell wall biosynthesis in methicillin-resistant Staphylococcus aureus

    DEFF Research Database (Denmark)

    Bonde, Mette; Højland, Dorte Heidi; Kolmos, Hans Jørn

    2011-01-01

    have previously shown that the expression of some resistance genes is abolished after treatment with thioridazine and oxacillin. To further understand the mechanism underlying the reversal of resistance, we tested the expression of genes involved in antibiotic resistance and cell wall biosynthesis...... reversal of resistance by thioridazine relies on decreased expression of specific genes involved in cell wall biosynthesis....

  19. Isolation of NBS-LRR class resistant gene (I2 gene) from tomato ...

    African Journals Online (AJOL)

    aghomotsegin

    2013-10-16

    Oct 16, 2013 ... Isolation of NBS-LRR class resistant gene (I2 gene) from tomato cultivar Heamsona ... avirulence protein or effector protein secreted by fungal pathogen during the host colonization in tomato. These effector proteins .... and efficient method for isolation of genomic DNA from plant tissue. J. Cell Tissue Res.

  20. plantiSMASH: automated identification, annotation and expression analysis of plant biosynthetic gene clusters

    DEFF Research Database (Denmark)

    Kautsar, Satria A.; Suarez Duran, Hernando G.; Blin, Kai

    2017-01-01

    in specific genomic loci: biosynthetic gene clusters (BGCs). Here, we introduce plantiSMASH, a versatile online analysis platform that automates the identification of candidate plant BGCs. Moreover, it allows integration of transcriptomic data to prioritize candidate BGCs based on the coexpression patterns......Plant specialized metabolites are chemically highly diverse, play key roles in host-microbe interactions, have important nutritional value in crops and are frequently applied as medicines. It has recently become clear that plant biosynthetic pathway-encoding genes are sometimes densely clustered...... of predicted biosynthetic enzyme-coding genes, and facilitates comparative genomic analysis to study the evolutionary conservation of each cluster. Applied on 48 high-quality plant genomes, plantiSMASH identifies a rich diversity of candidate plant BGCs. These results will guide further experimental...

  1. The CHRNA5-A3-B4 Gene Cluster and Smoking: From Discovery to Therapeutics.

    Science.gov (United States)

    Lassi, Glenda; Taylor, Amy E; Timpson, Nicholas J; Kenny, Paul J; Mather, Robert J; Eisen, Tim; Munafò, Marcus R

    2016-12-01

    Genome-wide association studies (GWASs) have identified associations between the CHRNA5-CHRNA3-CHRNB4 gene cluster and smoking heaviness and nicotine dependence. Studies in rodents have described the anatomical localisation and function of the nicotinic acetylcholine receptors (nAChRs) formed by the subunits encoded by this gene cluster. Further investigations that complemented these studies highlighted the variability of individuals' smoking behaviours and their ability to adjust nicotine intake. GWASs of smoking-related health outcomes have also identified this signal in the CHRNA5-CHRNA3-CHRNB4 gene cluster. This insight underpins approaches to strengthen causal inference in observational data. Combining genetic and mechanistic studies of nicotine dependence and smoking heaviness may reveal novel targets for medication development. Validated targets can inform genetic therapeutic interventions for smoking cessation and tobacco-related diseases. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Clustering Time-Series Gene Expression Data Using Smoothing Spline Derivatives

    Directory of Open Access Journals (Sweden)

    Martin PGP

    2007-01-01

    Full Text Available Microarray data acquired during time-course experiments allow the temporal variations in gene expression to be monitored. An original postprandial fasting experiment was conducted in the mouse and the expression of 200 genes was monitored with a dedicated macroarray at 11 time points between 0 and 72 hours of fasting. The aim of this study was to provide a relevant clustering of gene expression temporal profiles. This was achieved by focusing on the shapes of the curves rather than on the absolute level of expression. Actually, we combined spline smoothing and first derivative computation with hierarchical and partitioning clustering. A heuristic approach was proposed to tune the spline smoothing parameter using both statistical and biological considerations. Clusters are illustrated a posteriori through principal component analysis and heatmap visualization. Most results were found to be in agreement with the literature on the effects of fasting on the mouse liver and provide promising directions for future biological investigations.

  3. Clustering Time-Series Gene Expression Data Using Smoothing Spline Derivatives

    Directory of Open Access Journals (Sweden)

    S. Déjean

    2007-06-01

    Full Text Available Microarray data acquired during time-course experiments allow the temporal variations in gene expression to be monitored. An original postprandial fasting experiment was conducted in the mouse and the expression of 200 genes was monitored with a dedicated macroarray at 11 time points between 0 and 72 hours of fasting. The aim of this study was to provide a relevant clustering of gene expression temporal profiles. This was achieved by focusing on the shapes of the curves rather than on the absolute level of expression. Actually, we combined spline smoothing and first derivative computation with hierarchical and partitioning clustering. A heuristic approach was proposed to tune the spline smoothing parameter using both statistical and biological considerations. Clusters are illustrated a posteriori through principal component analysis and heatmap visualization. Most results were found to be in agreement with the literature on the effects of fasting on the mouse liver and provide promising directions for future biological investigations.

  4. Form gene clustering method about pan-ethnic-group products based on emotional semantic

    Science.gov (United States)

    Chen, Dengkai; Ding, Jingjing; Gao, Minzhuo; Ma, Danping; Liu, Donghui

    2016-09-01

    The use of pan-ethnic-group products form knowledge primarily depends on a designer's subjective experience without user participation. The majority of studies primarily focus on the detection of the perceptual demands of consumers from the target product category. A pan-ethnic-group products form gene clustering method based on emotional semantic is constructed. Consumers' perceptual images of the pan-ethnic-group products are obtained by means of product form gene extraction and coding and computer aided product form clustering technology. A case of form gene clustering about the typical pan-ethnic-group products is investigated which indicates that the method is feasible. This paper opens up a new direction for the future development of product form design which improves the agility of product design process in the era of Industry 4.0.

  5. Evaluation of gene-expression clustering via mutual information distance measure

    Directory of Open Access Journals (Sweden)

    Maimon Oded

    2007-03-01

    Full Text Available Abstract Background The definition of a distance measure plays a key role in the evaluation of different clustering solutions of gene expression profiles. In this empirical study we compare different clustering solutions when using the Mutual Information (MI measure versus the use of the well known Euclidean distance and Pearson correlation coefficient. Results Relying on several public gene expression datasets, we evaluate the homogeneity and separation scores of different clustering solutions. It was found that the use of the MI measure yields a more significant differentiation among erroneous clustering solutions. The proposed measure was also used to analyze the performance of several known clustering algorithms. A comparative study of these algorithms reveals that their "best solutions" are ranked almost oppositely when using different distance measures, despite the found correspondence between these measures when analysing the averaged scores of groups of solutions. Conclusion In view of the results, further attention should be paid to the selection of a proper distance measure for analyzing the clustering of gene expression data.

  6. Multiple herbicide resistance in Lolium multiflorum and identification of conserved regulatory elements of herbicide resistance genes

    Directory of Open Access Journals (Sweden)

    Khalid Mahmood

    2016-08-01

    Full Text Available Herbicide resistance is a ubiquitous challenge to herbicide sustainability and a looming threat to control weeds in crops. Recently four genes were found constituently over-expressed in herbicide resistant individuals of Lolium rigidum, a close relative of L. multiflorum. These include two cytochrome P450s, one nitronate monooxygenase and one glycosyl-transferase. Higher expressions of these four herbicide metabolism related (HMR genes were also observed after herbicides exposure in the gene expression databases, indicating them a reliable marker. In order to get an overview of herbicidal resistance status of Lolium multiflorum L, 19 field populations were collected. Among these populations, four populations were found to be resistant to acetolactate synthase (ALS inhibitors while three exhibited resistance to acetyl-CoA carboxylase (ACCase inhibitors in our initial screening and dose response study. The genotyping showed the presence of mutations Trp-574-Leu and Ile-2041-Asn in ALS and ACCase, respectively and qPCR experiments revealed the enhanced expression of HMR genes in individuals of certain resistant populations. Moreover, co-expression networks and promoter analyses of HMR genes in O.sativa and A.thaliana resulted in the identification of a cis-regulatory motif and zinc finger transcription factors. The identified transcription factors were highly expressed similar to HMR genes in response to xenobiotics whereas the identified motif known to play a vital role in coping with environmental stresses and maintaining genome stability. Overall, our findings provide an important step forward towards a better understanding of metabolism-based herbicide resistance that can be utilized to devise novel strategies of weed management.

  7. Antibiotic resistance and ndvB gene expression among biofilm ...

    African Journals Online (AJOL)

    A novel antibiotic resistant mechanism among biofilms is glucan-mediated sequestration in which ndvB gene encodes a glucosyltransferase involved in the formation of this glucans. We studied the biofilm formation and antibiotic susceptibility pattern of P. aeruginosa isolated from clinical samples, and measured the ...

  8. Gene pyramiding as a Bt resistance management strategy: How ...

    African Journals Online (AJOL)

    Reports on the emergence of insect resistance to Bacillus thuringiensis delta endotoxins have raised doubts on the sustainability of Bt-toxin based pest management technologies. Corporate industry has responded to this challenge with innovations that include gene pyramiding among others. Pyramiding entails stacking ...

  9. Determination and expression of genes for resistance to blast ...

    African Journals Online (AJOL)

    Determination and expression of genes for resistance to blast (Magnaporthe oryza) in Basmati and non-Basmati indica rices (Oryza sativa L.) Naveen Kumar, D Singh, S Gupta, A Sirohi, B Ramesh, Preeti Sirohi, Parul Sirohi, Atar Singh, N Kumar, A Kumar, Rajendra Kumar, R Kumar, J Singh, P. Kumar, P. Chauhan, ...

  10. Gene interactions and genetics of blast resistance and yield ...

    Indian Academy of Sciences (India)

    2014-08-11

    Aug 11, 2014 ... Keywords. blast; gene action; generation mean analysis; resistance; yield. Journal of Genetics, Vol. 93, No. .... Utilizing the variance of different generations, the variances of A, B, C and D scales were ...... Jia Y. 2003 Marker assisted selection for the control of rice blast disease. Pesticide Outlook 14 ...

  11. Evaluating antibiotic resistance genes in soils with applied manures

    Science.gov (United States)

    Antibiotics are commonly used in livestock production to promote growth and combat disease. Recent studies have shown the potential for spread of antibiotic resistance genes (ARG) to the environment following application of livestock manures. In this study, concentrations of bacteria with ARG in soi...

  12. Absence of meca gene in methicillin-resistant staphylococcus ...

    African Journals Online (AJOL)

    Methicillin-resistant Staphylococcus aureus has emerged as a serious threat to public health, causing both hospital and community-associated infections. The gold standard for MRSA detection is the amplification of the mecA gene that codes for the production of the altered penicillin-binding protein (PBP2a) responsible for ...

  13. Molecular Detection of Virulence Genes and Antibiotic Resistance ...

    African Journals Online (AJOL)

    Escherichia coli O157:H7 is an important food-borne pathogen that can cause diarrhea, haemorrhagic colitis and haemolytic uremic syndrome. This study was conducted to investigate the prevalence, virulence genes and antibiotic resistance patterns of E. coli O157:H7 in raw beef meat sold in Abeokuta, South west Nigeria ...

  14. Molecular detection of disease resistance genes to powdery mildew ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2017-01-04

    Jan 4, 2017 ... 2. State Key Laboratory of Biology for Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of. Agricultural Sciences, Beijing 100193, China. Received 10 October, 2016; Accepted 14 December, 2016. A study was conducted to detect the presence of disease resistance genes to ...

  15. Cloning of a carbendazim-resistant gene from Colletotrichum ...

    African Journals Online (AJOL)

    Cloning of a carbendazim-resistant gene from Colletotrichum gloeosporioides of mango in South China. ... Abstract. Mango anthracnose caused by Colletotrichum gloeosporioides is an important disease and prevalent in tropical regions of China. High carbendazim ... employed to further test the above results. It involved an ...

  16. Cloning and characterization of NBS-LRR resistance gene ...

    African Journals Online (AJOL)

    biotech

    2013-07-03

    Jul 3, 2013 ... Resistance genes honologues I theobroma cacao as useful genetic markers. Theor. Appl. Gent. 107:191-202. Kumar S, Tamura K, Nei M (2004). MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5:150-163. Lacock L, Niekerk CV, Loots S, ...

  17. Cloning and characterization of NBS-LRR resistance gene ...

    African Journals Online (AJOL)

    biotech

    2013-07-03

    Jul 3, 2013 ... Full Length Research Paper. Cloning and characterization of NBS-LRR resistance gene analogues of Musa spp. and their expression profiling studies against Pratylenchus coffeae. S. Backiyarani*, S. Uma, G. Arunkumar, M. S. Saraswathi and P. Sundararaju. National Research Centre for Banana (ICAR), ...

  18. Prevalence, antibiotic-resistance properties and enterotoxin gene ...

    African Journals Online (AJOL)

    milk-based infant foods in Iran, represent an important public health issue which should be considered ... Keywords: Prevalence, Bacillus cereus, Antibiotic resistance, Enterotoxigenic genes, Milk-based infant food. Tropical Journal of Pharmaceutical Research is indexed by Science ..... and cereals collected in Korea.

  19. Codon-optimized antibiotic resistance gene improves efficiency of ...

    Indian Academy of Sciences (India)

    We generated a synthetic gentamicin resistance gene whose codon usage is optimized to Frankia (fgmR) and evaluated its usefulness as a selection marker using a transient transformation system. Success rate of transient transformation and cell growth in selective culture were significantly increased by use of fgmR ...

  20. Resistance-related gene transcription and antioxidant enzyme ...

    African Journals Online (AJOL)

    The two tobacco relatives of Nicotiana alata and Nicotiana longiflora display a high level of resistance against Colletotrichum nicotianae and the two genes NTF6 and NtPAL related to pathogen defense transcription were higher in N. alata and N. longiflora than the commercial cv. K326. Inoculation with C. nicotianae ...

  1. Genetic analysis and location of a resistance gene to Puccinia ...

    Indian Academy of Sciences (India)

    Administrator

    Electrophoresis was carried out at 1400. V for 1.0 - 1.5 h. Gel staining and visualization was done as previously described (Chen et al. 1998). Polymorphic markers were used to genotype the F2 population. Genotype data were used to construct a genetic map and locate the resistance gene. Mapping and Data analysis.

  2. Gene microarray data analysis using parallel point-symmetry-based clustering.

    Science.gov (United States)

    Sarkar, Anasua; Maulik, Ujjwal

    2015-01-01

    Identification of co-expressed genes is the central goal in microarray gene expression analysis. Point-symmetry-based clustering is an important unsupervised learning technique for recognising symmetrical convex- or non-convex-shaped clusters. To enable fast clustering of large microarray data, we propose a distributed time-efficient scalable approach for point-symmetry-based K-Means algorithm. A natural basis for analysing gene expression data using symmetry-based algorithm is to group together genes with similar symmetrical expression patterns. This new parallel implementation also satisfies linear speedup in timing without sacrificing the quality of clustering solution on large microarray data sets. The parallel point-symmetry-based K-Means algorithm is compared with another new parallel symmetry-based K-Means and existing parallel K-Means over eight artificial and benchmark microarray data sets, to demonstrate its superiority, in both timing and validity. The statistical analysis is also performed to establish the significance of this message-passing-interface based point-symmetry K-Means implementation. We also analysed the biological relevance of clustering solutions.

  3. Resistivity recovery simulations of electron-irradiated iron: Kinetic Monte Carlo versus cluster dynamics

    International Nuclear Information System (INIS)

    Dalla Torre, J.; Fu, C.-C.; Willaime, F.; Barbu, A.; Bocquet, J.-L.

    2006-01-01

    The isochronal resistivity recovery in high purity α-iron irradiated by electrons was successfully reproduced by a multiscale modelling approach. The stability and mobility of small self-defect clusters determined by ab initio methods were used as input data for an event based Kinetic Monte Carlo (KMC) model, used to explore the defect population evolution during the annealing and to extract the resistivity recovery peaks. In this paper, we investigate the possibility of using an efficient mesoscale model, the Cluster Dynamics (CD), instead of KMC in this approach. The comparison between the two methods for various CD initial conditions shows the importance of spatial correlations between defects, which are neglected in the CD model. However, using appropriate initial conditions, e.g. starting from the concentration of Frenkel pairs after the uncorrelated stage I E , the CD model captures the main characteristics of subsequent defect population evolution, and it can therefore be used for fast and semi-quantitative investigations

  4. Functional screening of antibiotic resistance genes from human gut microbiota reveals a novel gene fusion.

    Science.gov (United States)

    Cheng, Gong; Hu, Yongfei; Yin, Yeshi; Yang, Xi; Xiang, Chunsheng; Wang, Baohong; Chen, Yanfei; Yang, Fengling; Lei, Fang; Wu, Na; Lu, Na; Li, Jing; Chen, Quanze; Li, Lanjuan; Zhu, Baoli

    2012-11-01

    The human gut microbiota has a high density of bacteria that are considered a reservoir for antibiotic resistance genes (ARGs). In this study, one fosmid metagenomic library generated from the gut microbiota of four healthy humans was used to screen for ARGs against seven antibiotics. Eight new ARGs were obtained: one against amoxicillin, six against d-cycloserine, and one against kanamycin. The new amoxicillin resistance gene encodes a protein with 53% identity to a class D β-lactamase from Riemerella anatipestifer RA-GD. The six new d-cycloserine resistance genes encode proteins with 73-81% identity to known d-alanine-d-alanine ligases. The new kanamycin resistance gene encodes a protein of 274 amino acids with an N-terminus (amino acids 1-189) that has 42% identity to the 6'-aminoglycoside acetyltransferase [AAC(6')] from Enterococcus hirae and a C-terminus (amino acids 190-274) with 35% identity to a hypothetical protein from Clostridiales sp. SSC/2. A functional study on the novel kanamycin resistance gene showed that only the N-terminus conferred kanamycin resistance. Our results showed that functional metagenomics is a useful tool for the identification of new ARGs. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. Isolation by distance, resistance and/or clusters? Lessons learned from a forest-dwelling carnivore inhabiting a heterogeneous landscape.

    Science.gov (United States)

    Ruiz-Gonzalez, Aritz; Cushman, Samuel A; Madeira, María José; Randi, Ettore; Gómez-Moliner, Benjamín J

    2015-10-01

    Landscape genetics provides a valuable framework to understand how landscape features influence gene flow and to disentangle the factors that lead to discrete and/or clinal population structure. Here, we attempt to differentiate between these processes in a forest-dwelling small carnivore [European pine marten (Martes martes)]. Specifically, we used complementary analytical approaches to quantify the spatially explicit genetic structure and diversity and analyse patterns of gene flow for 140 individuals genotyped at 15 microsatellite loci. We first used spatially explicit and nonspatial Bayesian clustering algorithms to partition the sample into discrete clusters and evaluate hypotheses of 'isolation by barriers' (IBB). We further characterized the relationships between genetic distance and geographical ('isolation by distance', IBD) and ecological distances ('isolation by resistance', IBR) obtained from optimized landscape models. Using a reciprocal causal modelling approach, we competed the IBD, IBR and IBB hypotheses with each other to unravel factors driving population genetic structure. Additionally, we further assessed spatially explicit indices of genetic diversity using sGD across potentially overlapping genetic neighbourhoods that matched the inferred population structure. Our results revealed a complex spatial genetic cline that appears to be driven jointly by IBD and partial barriers to gene flow (IBB) associated with poor habitat and interspecific competition. Habitat loss and fragmentation, in synergy with past overharvesting and possible interspecific competition with sympatric stone marten (Martes foina), are likely the main factors responsible for the spatial genetic structure we observed. These results emphasize the need for a more thorough evaluation of discrete and clinal hypotheses governing gene flow in landscape genetic studies, and the potential influence of different limiting factors affecting genetic structure at different spatial scales.

  6. Genetic mapping, marker assisted selection and allelic relationships for the Pu 6 gene conferring rust resistance in sunflower.

    Science.gov (United States)

    Bulos, Mariano; Vergani, Pablo Nicolas; Altieri, Emiliano

    2014-09-01

    Rust resistance in the sunflower line P386 is controlled by Pu 6 , a gene which was reported to segregate independently from other rust resistant genes, such as R 4 . The objectives of this work were to map Pu 6 , to provide and validate molecular tools for its identification, and to determine the linkage relationship of Pu 6 and R 4 . Genetic mapping of Pu 6 with six markers covered 24.8 cM of genetic distance on the lower end of linkage Group 13 of the sunflower consensus map. The marker most closely linked to Pu 6 was ORS316 at 2.5 cM in the distal position. ORS316 presented five alleles when was assayed with a representative set of resistant and susceptible lines. Allelism test between Pu 6 and R 4 indicated that both genes are linked at a genetic distance of 6.25 cM. This is the first confirmation based on an allelism test that at least two members of the R adv /R 4 /R 11 / R 13a /R 13b /Pu 6 cluster of genes are at different loci. A fine elucidation of the architecture of this complex locus will allow designing and constructing completely new genomic regions combining genes from different resistant sources and the elimination of the linkage drag around each resistant gene.

  7. Putative resistance genes in the CitEST database

    Directory of Open Access Journals (Sweden)

    Simone Guidetti-Gonzalez

    2007-01-01

    Full Text Available Disease resistance in plants is usually associated with the activation of a wide variety of defense responses to prevent pathogen replication and/or movement. The ability of the host plant to recognize the pathogen and to activate defense responses is regulated by direct or indirect interaction between the products of plant resistance (R and pathogen avirulence (Avr genes. Attempted infection of plants by avirulent pathogens elicits a battery of defenses often followed by the collapse of the challenged host cells. Localized host cell death may help to prevent the pathogen from spreading to uninfected tissues, known as hypersensitive response (HR. When either the plant or the pathogen lacks its cognate gene, activation of the plant’s defense responses fails to occur or is delayed and does not prevent pathogen colonization. In the CitEST database, we identified 1,300 reads related to R genes in Citrus which have been reported in other plant species. These reads were translated in silico, and alignments of their amino acid sequences revealed the presence of characteristic domains and motifs that are specific to R gene classes. The description of the reads identified suggests that they function as resistance genes in citrus.

  8. Identification of antimicrobial resistance genes in multidrug-resistant clinical Bacteroides fragilis isolates by whole genome shotgun sequencing

    DEFF Research Database (Denmark)

    Sydenham, Thomas Vognbjerg; Sóki, József; Hasman, Henrik

    2015-01-01

    Bacteroides fragilis constitutes the most frequent anaerobic bacterium causing bacteremia in humans. The genetic background for antimicrobial resistance in B. fragilis is diverse with some genes requiring insertion sequence (IS) elements inserted upstream for increased expression. To evaluate whole...... genome shotgun sequencing as a method for predicting antimicrobial resistance properties, one meropenem resistant and five multidrug-resistant blood culture isolates were sequenced and antimicrobial resistance genes and IS elements identified using ResFinder 2.1 (http...

  9. Effects of ultraviolet disinfection on antibiotic-resistant Escherichia coli from wastewater: inactivation, antibiotic resistance profiles and antibiotic resistance genes.

    Science.gov (United States)

    Zhang, Chong-Miao; Xu, Li-Mei; Wang, Xiaochang C; Zhuang, Kai; Liu, Qiang-Qiang

    2017-04-29

    To evaluate the effect of ultraviolet (UV) disinfection on antibiotic-resistant Escherichia coli (E. coli). Antibiotic-resistant E. coli strains were isolated from a wastewater treatment plant and subjected to UV disinfection. The effect of UV disinfection on the antibiotic resistance profiles and the antibiotic resistance genes (ARGs) of antibiotic-resistant E. coli was evaluated by a combination of antibiotic susceptibility analysis and molecular methods. Results indicated that multiple-antibiotic-resistant (MAR) E. coli were more resistant at low UV doses and required a higher UV dose (20 mJ cm -2 ) to enter the tailing phase compared with those of antibiotic-sensitive E. coli (8 mJ cm -2 ). UV disinfection caused a selective change in the inhibition zone diameters of surviving antibiotic-resistant E. coli and a slight damage to ARGs. The inhibition zone diameters of the strains resistant to antibiotics were more difficult to alter than those susceptible to antibiotics because of the existence and persistence of corresponding ARGs. The resistance of MAR bacteria to UV disinfection at low UV doses and the changes in inhibition zone diameters could potentially contribute to the selection of ARB in wastewater treatment after UV disinfection. The risk of spread of antibiotic resistance still exists owing to the persistence of ARGs. Our study highlights the acquisition of other methods to control the spread of ARGs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Bacteria from Animals as a Pool of Antimicrobial Resistance Genes

    Science.gov (United States)

    Argudín, Maria Angeles; Deplano, Ariane; Meghraoui, Alaeddine; Dodémont, Magali; Heinrichs, Amelie; Denis, Olivier; Nonhoff, Claire; Roisin, Sandrine

    2017-01-01

    Antimicrobial agents are used in both veterinary and human medicine. The intensive use of antimicrobials in animals may promote the fixation of antimicrobial resistance genes in bacteria, which may be zoonotic or capable to transfer these genes to human-adapted pathogens or to human gut microbiota via direct contact, food or the environment. This review summarizes the current knowledge of the use of antimicrobial agents in animal health and explores the role of bacteria from animals as a pool of antimicrobial resistance genes for human bacteria. This review focused in relevant examples within the ESC(K)APE (Enterococcus faecium, Staphylococcus aureus, Clostridium difficile (Klebsiella pneumoniae), Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae) group of bacterial pathogens that are the leading cause of nosocomial infections throughout the world. PMID:28587316

  11. Cloning of the biosynthetic gene cluster for naphthoxanthene antibiotic FD-594 from Streptomyces sp. TA-0256.

    Science.gov (United States)

    Kudo, Fumitaka; Yonezawa, Takanori; Komatsubara, Akiko; Mizoue, Kazutoshi; Eguchi, Tadashi

    2011-01-01

    FD-594 is an unique pyrano[4',3':6,7]naphtho[1,2-b]xanthene polyketide with a trisaccharide of 2,6-dideoxysugars. In this study, we cloned the FD-594 biosynthetic gene cluster from the producer strain Streptomyces sp. TA-0256 to investigate its biosynthesis. The identified pnx gene cluster was 38143 bp, consisting of 40 open reading frames, including a minimal PKS gene, TDP-olivose biosynthetic genes, two glycosyltransferase genes, two methyltransferase genes and many oxygenase/reductase genes. Most of these enzymes coded in the pnx cluster were reasonably assigned to a plausible biosynthetic pathway for FD-594, in which an unique ring opening process via Baeyer-Villiger-type oxidation catalyzed by a putative flavin adenine dinucleotide (FAD)-dependent monooxygenase, is speculated to lead to the unique xanthene structure. To clarify the involvement of pnx genes in the FD-594 biosynthesis, a glycosyltransferase, PnxGT2, and a methyltransferase, PnxMT2, were characterized enzymatically with the recombinant proteins expressed in Escherichia coli. As a result, PnxGT2 catalyzed the triple olivose transfers to the FD-594 aglycon with TDP-olivose as the glycosyl donor to afford triolivoside. Surprisingly, in the PnxGT2 enzymatic reaction, tetraolivoside and pentaolivoside were significantly detected along with the expected triolivoside. To our knowledge, PnxGT2 is the first contiguous oligosaccharide-forming glycosyltransferase in secondary metabolism. Furthermore, addition of PnxMT2 and S-adenosyl-L-methionine into the PnxGT2 reaction mixture afforded natural FD-594 to confirm that the PnxGT2 reaction product was the expected regiospecifically glycosylated compound. Consequently, the identified pnx gene cluster appears to be involved in FD-594 biosynthesis.

  12. Rearrangements of the beta-globin gene cluster in apparently typical betaS haplotypes.

    Science.gov (United States)

    Zago, M A; Silva, W A; Gualandro, S; Yokomizu, I K; Araujo, A G; Tavela, M H; Gerard, N; Krishnamoorthy, R; Elion, J

    2001-02-01

    The majority of the chromosomes with the betaS gene have one of the five common haplotypes, designated as Benin, Bantu, Senegal, Cameroon, and Arab-Indian haplotypes. However, 5-10% of the chromosomes have less common haplotypes, usually referred to as atypical haplotypes. We have demonstrated that most atypical haplotypes are generated by recombinations. The present study was carried out in order to explore whether recombination also occurs in chromosomes with the common (or typical) haplotypes. We screened the HS-2 region of the beta-globin gene locus control region (LCR) in 244 sickle cell patients who had typical restriction fragment length polymorphism (RFLP)-defined haplotypes of the betaS-gene cluster. For 14 cases in which the expected and the observed LCR repeat-sequence sizes were discrepant, the analysis was extended to other unexplored polymorphic markers of the bS-globin gene cluster, i.e.: pre-Ggamma framework, pre-Ggamma 6-bp deletion, HS-2 LCR (AT)xR(AT)y and pre-beta(AT)xTy repeats, and the intragenic beta-globin gene framework. In all 14 cases (15 chromosomes) in which the LCR repeat-sequence sizes were discrepant, a recombination involving a typical 3' segment of the betaS globin gene cluster was demonstrated. In most of the cases, the recombination site was located between the beta-globin gene and the betaLCR. Nine cases involving recombination were detected among 156 Brazilian HbS homozygotes and five among 88 African patients homozygotes for the Benin haplotype. INTERPRETATION AND CONCLUSIONS. Thus, 3.1% of apparently typical haplotypes linked to the sickle cell gene involve recombinations similar to those that generate the atypical haplotypes, a finding that reinforces the picture of the beta-globin gene cluster as highly dynamic.

  13. A genome-wide analysis of nonribosomal peptide synthetase gene clusters and their peptides in a Planktothrix rubescens strain

    Directory of Open Access Journals (Sweden)

    Nederbragt Alexander J

    2009-08-01

    Full Text Available Abstract Background Cyanobacteria often produce several different oligopeptides, with unknown biological functions, by nonribosomal peptide synthetases (NRPS. Although some cyanobacterial NRPS gene cluster types are well described, the entire NRPS genomic content within a single cyanobacterial strain has never been investigated. Here we have combined a genome-wide analysis using massive parallel pyrosequencing ("454" and mass spectrometry screening of oligopeptides produced in the strain Planktothrix rubescens NIVA CYA 98 in order to identify all putative gene clusters for oligopeptides. Results Thirteen types of oligopeptides were uncovered by mass spectrometry (MS analyses. Microcystin, cyanopeptolin and aeruginosin synthetases, highly similar to already characterized NRPS, were present in the genome. Two novel NRPS gene clusters were associated with production of anabaenopeptins and microginins, respectively. Sequence-depth of the genome and real-time PCR data revealed three copies of the microginin gene cluster. Since NRPS gene cluster candidates for microviridin and oscillatorin synthesis could not be found, putative (gene encoded precursor peptide sequences to microviridin and oscillatorin were found in the genes mdnA and oscA, respectively. The genes flanking the microviridin and oscillatorin precursor genes encode putative modifying enzymes of the precursor oligopeptides. We therefore propose ribosomal pathways involving modifications and cyclisation for microviridin and oscillatorin. The microviridin, anabaenopeptin and cyanopeptolin gene clusters are situated in close proximity to each other, constituting an oligopeptide island. Conclusion Altogether seven nonribosomal peptide synthetase (NRPS gene clusters and two gene clusters putatively encoding ribosomal oligopeptide biosynthetic pathways were revealed. Our results demonstrate that whole genome shotgun sequencing combined with MS-directed determination of oligopeptides successfully

  14. A phase synchronization clustering algorithm for identifying interesting groups of genes from cell cycle expression data

    Directory of Open Access Journals (Sweden)

    Tcha Hong

    2008-01-01

    Full Text Available Abstract Background The previous studies of genome-wide expression patterns show that a certain percentage of genes are cell cycle regulated. The expression data has been analyzed in a number of different ways to identify cell cycle dependent genes. In this study, we pose the hypothesis that cell cycle dependent genes are considered as oscillating systems with a rhythm, i.e. systems producing response signals with period and frequency. Therefore, we are motivated to apply the theory of multivariate phase synchronization for clustering cell cycle specific genome-wide expression data. Results We propose the strategy to find groups of genes according to the specific biological process by analyzing cell cycle specific gene expression data. To evaluate the propose method, we use the modified Kuramoto model, which is a phase governing equation that provides the long-term dynamics of globally coupled oscillators. With this equation, we simulate two groups of expression signals, and the simulated signals from each group shares their own common rhythm. Then, the simulated expression data are mixed with randomly generated expression data to be used as input data set to the algorithm. Using these simulated expression data, it is shown that the algorithm is able to identify expression signals that are involved in the same oscillating process. We also evaluate the method with yeast cell cycle expression data. It is shown that the output clusters by the proposed algorithm include genes, which are closely associated with each other by sharing significant Gene Ontology terms of biological process and/or having relatively many known biological interactions. Therefore, the evaluation analysis indicates that the method is able to identify expression signals according to the specific biological process. Our evaluation analysis also indicates that some portion of output by the proposed algorithm is not obtainable by the traditional clustering algorithm with

  15. Identification of a gene cluster associated with triclosan catabolism.

    Science.gov (United States)

    Kagle, Jeanne M; Paxson, Clayton; Johnstone, Precious; Hay, Anthony G

    2015-06-01

    Aerobic degradation of bis-aryl ethers like the antimicrobial triclosan typically proceeds through oxygenase-dependent catabolic pathways. Although several studies have reported on bacteria capable of degrading triclosan aerobically, there are no reports describing the genes responsible for this process. In this study, a gene encoding the large subunit of a putative triclosan oxygenase, designated tcsA was identified in a triclosan-degrading fosmid clone from a DNA library of Sphingomonas sp. RD1. Consistent with tcsA's similarity to two-part dioxygenases, a putative FMN-dependent ferredoxin reductase, designated tcsB was found immediately downstream of tcsA. Both tcsAB were found in the midst of a putative chlorocatechol degradation operon. We show that RD1 produces hydroxytriclosan and chlorocatechols during triclosan degradation and that tcsA is induced by triclosan. This is the first study to report on the genetics of triclosan degradation.

  16. Identification of certain cancer-mediating genes using Gaussian fuzzy cluster validity index.

    Science.gov (United States)

    Ghosh, Anupam; De, Rajat K

    2015-10-01

    In this article, we have used an index, called Gaussian fuzzy index (GFI), recently developed by the authors, based on the notion of fuzzy set theory, for validating the clusters obtained by a clustering algorithm applied on cancer gene expression data. GFI is then used for the identification of genes that have altered quite significantly from normal state to carcinogenic state with respect to their mRNA expression patterns. The effectiveness of the methodology has been demonstrated on three gene expression cancer datasets dealing with human lung, colon and leukemia. The performance of GFI is compared with 19 exiting cluster validity indices. The results are appropriately validated biologically and statistically. In this context, we have used biochemical pathways, p-value statistics of GO attributes, t-test and zscore for the validation of the results. It has been reported that GFI is capable of identifying high-quality enriched clusters of genes, and thereby is able to select more cancer-mediating genes.

  17. Anthropogenic antibiotic resistance genes mobilization to the polar regions.

    Science.gov (United States)

    Hernández, Jorge; González-Acuña, Daniel

    2016-01-01

    Anthropogenic influences in the southern polar region have been rare, but lately microorganisms associated with humans have reached Antarctica, possibly from military bases, fishing boats, scientific expeditions, and/or ship-borne tourism. Studies of seawater in areas of human intervention and proximal to fresh penguin feces revealed the presence of Escherichia coli strains least resistant to antibiotics in penguins, whereas E. coli from seawater elsewhere showed resistance to one or more of the following antibiotics: ampicillin, tetracycline, streptomycin, and trim-sulfa. In seawater samples, bacteria were found carrying extended-spectrum β-lactamase (ESBL)-type CTX-M genes in which multilocus sequencing typing (MLST) showed different sequence types (STs), previously reported in humans. In the Arctic, on the contrary, people have been present for a long time, and the presence of antibiotic resistance genes (ARGs) appears to be much more wide-spread than was previously reported. Studies of E coli from Arctic birds (Bering Strait) revealed reduced susceptibility to antibiotics, but one globally spreading clone of E. coli genotype O25b-ST131, carrying genes of ESBL-type CTX-M, was identified. In the few years between sample collections in the same area, differences in resistance pattern were observed, with E. coli from birds showing resistance to a maximum of five different antibiotics. Presence of resistance-type ESBLs (TEM, SHV, and CTX-M) in E. coli and Klebsiella pneumoniae was also confirmed by specified PCR methods. MLST revealed that those bacteria carried STs that connect them to previously described strains in humans. In conclusion, bacteria previously related to humans could be found in relatively pristine environments, and presently human-associated, antibiotic-resistant bacteria have reached a high global level of distribution that they are now found even in the polar regions.

  18. Anthropogenic antibiotic resistance genes mobilization to the polar regions

    Directory of Open Access Journals (Sweden)

    Jorge Hernández

    2016-12-01

    Full Text Available Anthropogenic influences in the southern polar region have been rare, but lately microorganisms associated with humans have reached Antarctica, possibly from military bases, fishing boats, scientific expeditions, and/or ship-borne tourism. Studies of seawater in areas of human intervention and proximal to fresh penguin feces revealed the presence of Escherichia coli strains least resistant to antibiotics in penguins, whereas E. coli from seawater elsewhere showed resistance to one or more of the following antibiotics: ampicillin, tetracycline, streptomycin, and trim-sulfa. In seawater samples, bacteria were found carrying extended-spectrum β-lactamase (ESBL-type CTX-M genes in which multilocus sequencing typing (MLST showed different sequence types (STs, previously reported in humans. In the Arctic, on the contrary, people have been present for a long time, and the presence of antibiotic resistance genes (ARGs appears to be much more wide-spread than was previously reported. Studies of E coli from Arctic birds (Bering Strait revealed reduced susceptibility to antibiotics, but one globally spreading clone of E. coli genotype O25b-ST131, carrying genes of ESBL-type CTX-M, was identified. In the few years between sample collections in the same area, differences in resistance pattern were observed, with E. coli from birds showing resistance to a maximum of five different antibiotics. Presence of resistance-type ESBLs (TEM, SHV, and CTX-M in E. coli and Klebsiella pneumoniae was also confirmed by specified PCR methods. MLST revealed that those bacteria carried STs that connect them to previously described strains in humans. In conclusion, bacteria previously related to humans could be found in relatively pristine environments, and presently human-associated, antibiotic-resistant bacteria have reached a high global level of distribution that they are now found even in the polar regions.

  19. Magnitude of gene mutations conferring drug resistance in mycobacterium tuberculosis isolates from lymph node aspirates in ethiopia.

    Science.gov (United States)

    Biadglegne, Fantahun; Tessema, Belay; Rodloff, Arne C; Sack, Ulrich

    2013-01-01

    Resistance to drugs is due to particular genomic mutations in the specific genes of Mycobacterium tuberculosis. Timely genetic characterization will allow identification of resistance mutations that will optimize an effective antibiotic treatment regimen. We determine the magnitude of gene mutations conferring resistance to isoniazid (INH), rifampicin (RMP) and ethambutol (EMB) among tuberculosis (TB) lymphadenitis patients. A cross sectional prospective study was conducted among 226 M.tuberculosis isolates from culture positive lymph node aspirates collected from TB lymphadenitis patients between April 2012 and May 2012. Detection of mutations conferring resistance to drugs was carried out using GenoType(®) MTBDRplus and GenoType® MTBDRsl assay. Out of the 226 strains, mutations conferring resistance to INH, RMP, multidrug resistance tuberculosis (MDR-TB) and EMB were 8, 3, 2 and 2 isolates, respectively. There was no isolated strain that showed mutation in the inhA promoter region gene. All INH resistant strains had mutations in the katG gene at codon 315 with amino acid change of S315T1. Among rifampicin resistant strains, two isolates displayed mutations at codon 531 in the rpoB gene with amino acid change of S531L and one isolate was by omission of wild type probes at Q513L. According to mutations associated with ethambutol resistance, all of the isolates had mutations in the embB gene with aminoacid change of M306I. All isolates resistant to INH, RMP and MDR using BacT/AlerT 3D system were correctly identified by GenoType® MTBDRplus assay. We observed mutations conferring resistance to INH at S315T1 of the katG gene, RMP at S531L and Q513L in the rpoB genes and EMB at M306I of the embB gene. In the absence of conventional drug susceptibility testing, the effort to develop easy, rapid and cost effective molecular assays for drug resistance TB monitoring is definitely desirable and the GenoType® MTBDRplus assay was found to be a useful method for diagnosis

  20. Intact cluster and chordate-like expression of ParaHox genes in a sea star.

    Science.gov (United States)

    Annunziata, Rossella; Martinez, Pedro; Arnone, Maria Ina

    2013-06-27

    The ParaHox genes are thought to be major players in patterning the gut of several bilaterian taxa. Though this is a fundamental role that these transcription factors play, their activities are not limited to the endoderm and extend to both ectodermal and mesodermal tissues. Three genes compose the ParaHox group: Gsx, Xlox and Cdx. In some taxa (mostly chordates but to some degree also in protostomes) the three genes are arranged into a genomic cluster, in a similar fashion to what has been shown for the better-known Hox genes. Sea urchins possess the full complement of ParaHox genes but they are all dispersed throughout the genome, an arrangement that, perhaps, represented the primitive condition for all echinoderms. In order to understand the evolutionary history of this group of genes we cloned and characterized all ParaHox genes, studied their expression patterns and identified their genomic loci in a member of an earlier branching group of echinoderms, the asteroid Patiria miniata. We identified the three ParaHox orthologs in the genome of P. miniata. While one of them, PmGsx is provided as maternal message, with no zygotic activation afterwards, the other two, PmLox and PmCdx are expressed during embryogenesis, within restricted domains of both endoderm and ectoderm. Screening of a Patiria bacterial artificial chromosome (BAC) library led to the identification of a clone containing the three genes. The transcriptional directions of PmGsx and PmLox are opposed to that of the PmCdx gene within the cluster. The identification of P. miniata ParaHox genes has revealed the fact that these genes are clustered in the genome, in contrast to what has been reported for echinoids. Since the presence of an intact cluster, or at least a partial cluster, has been reported in chordates and polychaetes respectively, it becomes clear that within echinoderms, sea urchins have modified the original bilaterian arrangement. Moreover, the sea star ParaHox domains of expression show

  1. Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants.

    Science.gov (United States)

    Das, Surajit; Dash, Hirak R; Chakraborty, Jaya

    2016-04-01

    Metal pollution is one of the most persistent and complex environmental issues, causing threat to the ecosystem and human health. On exposure to several toxic metals such as arsenic, cadmium, chromium, copper, lead, and mercury, several bacteria has evolved with many metal-resistant genes as a means of their adaptation. These genes can be further exploited for bioremediation of the metal-contaminated environments. Many operon-clustered metal-resistant genes such as cadB, chrA, copAB, pbrA, merA, and NiCoT have been reported in bacterial systems for cadmium, chromium, copper, lead, mercury, and nickel resistance and detoxification, respectively. The field of environmental bioremediation has been ameliorated by exploiting diverse bacterial detoxification genes. Genetic engineering integrated with bioremediation assists in manipulation of bacterial genome which can enhance toxic metal detoxification that is not usually performed by normal bacteria. These techniques include genetic engineering with single genes or operons, pathway construction, and alternations of the sequences of existing genes. However, numerous facets of bacterial novel metal-resistant genes are yet to be explored for application in microbial bioremediation practices. This review describes the role of bacteria and their adaptive mechanisms for toxic metal detoxification and restoration of contaminated sites.

  2. Functional study of the novel multidrug resistance gene HA117 and its comparison to multidrug resistance gene 1

    Directory of Open Access Journals (Sweden)

    Chen Tingfu

    2010-07-01

    Full Text Available Abstract Background The novel gene HA117 is a multidrug resistance (MDR gene expressed by all-trans retinoic acid-resistant HL-60 cells. In the present study, we compared the multidrug resistance of the HA117 with that of the classical multidrug resistance gene 1 (MDR1 in breast cancer cell line 4T1. Methods Transduction of the breast cancer cell line 4T1 with adenoviral vectors encoding the HA117 gene and the green fluorescence protein gene (GFP (Ad-GFP-HA117, the MDR1 and GFP (Ad-GFP-MDR1 or GFP (Ad-GFP was respectively carried out. The transduction efficiency and the multiplicity of infection (MOI were detected by fluorescence microscope and flow cytometry. The transcription of HA117 gene and MDR1 gene were detected by reverse transcription polymerase chain reaction (RT-PCR. Western blotting analysis was used to detect the expression of P-glycoprotein (P-gp but the expression of HA117 could not be analyzed as it is a novel gene and its antibody has not yet been synthesized. The drug-excretion activity of HA117 and MDR1 were determined by daunorubicin (DNR efflux assay. The drug sensitivities of 4T1/HA117 and 4T1/MDR1 to chemotherapeutic agents were detected by Methyl-Thiazolyl-Tetrazolium (MTT assay. Results The transducted efficiency of Ad-GFP-HA117 and Ad-GFP-MDR1 were 75%-80% when MOI was equal to 50. The transduction of Ad-GFP-HA117 and Ad-GFP-MDR1 could increase the expression of HA117 and MDR1. The drug resistance index to Adriamycin (ADM, vincristine (VCR, paclitaxel (Taxol and bleomycin (BLM increased to19.8050, 9.0663, 9.7245, 3.5650 respectively for 4T1/HA117 and 24.2236, 11.0480, 11.3741, 0.9630 respectively for 4T1/MDR1 as compared to the control cells. There were no significant differences in drug sensitivity between 4T1/HA117 and 4T1/MDR1 for the P-gp substrates (ADM, VCR and Taxol (P Conclusions These results confirm that HA117 is a strong MDR gene in both HL-60 and 4T1 cells. Furthermore, our results indicate that the MDR

  3. Mapping of the {alpha}{sub 4} subunit gene (GABRA4) to human chromosome 4 defines an {alpha}{sub 2}-{alpha}{sub 4}-{beta}{sub 1}-{gamma}{sub 1} gene cluster: Further evidence that modern GABA{sub a} receptor gene clusters are derived from an ancestral cluster

    Energy Technology Data Exchange (ETDEWEB)

    McLean, P.J.; Farb, D.H.; Russek, S.J. [Boston Univ. School of Medicine, MA (United States)] [and others

    1995-04-10

    We demonstrated previously that an {alpha}{sub 1}-{beta}{sub 2}-{gamma}{sub 2} gene cluster of the {gamma}-aminobutyric acid (GABA{sub A}) receptor is located on human chromosome 5q34-q35 and that an ancestral {alpha}-{beta}-{gamma} gene cluster probably spawned clusters on chromosomes 4, 5, and 15. Here, we report that the {alpha}{sub 4} gene (GABRA4) maps to human chromosome 4p14-q12, defining a cluster comprising the {alpha}{sub 2}, {alpha}{sub 4}, {beta}{sub 1}, and {gamma}{sub 1} genes. The existence of an {alpha}{sub 2}-{alpha}{sub 4}-{beta}{sub 1}-{gamma}{sub 2} cluster on chromosome 4 and an {alpha}{sub 1}-{alpha}{sub 6}-{beta}{sub 2}-{gamma}{sub 2} cluster on chromosome 5 provides further evidence that the number of ancestral GABA{sub A} receptor subunit genes has been expanded by duplication within an ancestral gene cluster. Moreover, if duplication of the {alpha} gene occurred before duplication of the ancestral gene cluster, then a heretofore undiscovered subtype of a subunit should be located on human chromosome 15q11-q13 within an {alpha}{sub 5}-{alpha}{sub x}-{beta}{sub 3}-{gamma}{sub 3} gene cluster at the locus for Angelman and Prader-Willi syndromes. 34 refs., 6 figs., 1 tab.

  4. clusters

    Indian Academy of Sciences (India)

    2017-09-27

    Sep 27, 2017 ... while CuCoNO, Co3NO, Cu3CoNO, Cu2Co3NO, Cu3Co3NO and Cu6CoNO clusters display stronger chemical stability. Magnetic and electronic properties are also discussed. The magnetic moment is affected by charge transfer and the spd hybridization. Keywords. CumConNO (m + n = 2–7) clusters; ...

  5. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes

    DEFF Research Database (Denmark)

    Venkatesan, Meera; Gadalla, Nahla B; Stepniewska, Kasia

    2014-01-01

    Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated...... with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized...

  6. Fluoroquinolone Resistance in Atypical Pneumococci and Oral Streptococci: Evidence of Horizontal Gene Transfer of Fluoroquinolone Resistance Determinants from Streptococcus pneumoniae▿ †

    Science.gov (United States)

    Ip, Margaret; Chau, Shirley S. L.; Chi, Fang; Tang, Julian; Chan, Paul K.

    2007-01-01

    Atypical strains, presumed to be pneumococcus, with ciprofloxacin MICs of ≥4.0 μg/ml and unique sequence variations within the quinolone resistance-determining regions (QRDRs) of the gyrase and topoisomerase genes in comparison with the Streptococcus pneumoniae R6 strain, were examined. These strains were reidentified using phenotypic methods, including detection of optochin susceptibility, bile solubility, and agglutination by serotype-specific antisera, and genotypic methods, including detection of pneumolysin and autolysin genes by PCR, 16S rRNA sequencing, and multilocus sequence typing (MLST). The analysis based on concatenated sequences of the six MLST loci distinguished the “atypical” strains from pneumococci, and these strains clustered closely with S. mitis. However, all these strains and five of nine strains from the viridans streptococcal group possessed one to three gyrA, gyrB, parC, and parE genes whose QRDR sequences clustered with those of S. pneumoniae, providing evidence of horizontal transfer of the QRDRs of the gyrase and topoisomerase genes from pneumococci into viridans streptococci. These genes also conferred fluoroquinolone resistance to viridans streptococci. In addition, the fluoroquinolone resistance determinants of 32 well-characterized Streptococcus mitis and Streptococcus oralis strains from bacteremic patients were also compared. These strains have unique amino acid substitutions in GyrA and ParC that were distinguishable from those in fluoroquinolone-resistant pneumococci and the “atypical” isolates. Both recombinational events and de novo mutations play an important role in the development of fluoroquinolone resistance. PMID:17548487

  7. Disruption of Transporters Affiliated with Enantio-Pyochelin Biosynthesis Gene Cluster of Pseudomonas protegens Pf-5 Has Pleiotropic Effects.

    Science.gov (United States)

    Lim, Chee Kent; Penesyan, Anahit; Hassan, Karl A; Loper, Joyce E; Paulsen, Ian T

    2016-01-01

    Pseudomonas protegens Pf-5 (formerly Pseudomonas fluorescens) is a biocontrol bacterium that produces the siderophore enantio-pyochelin under conditions of iron starvation in a process that is often accompanied by the secretion of its biosynthesis intermediates, salicylic acid and dihydroaeruginoic acid. In this study, we investigated whether several transporters that are encoded by genes within or adjacent to the enantio-pyochelin biosynthetic cluster, serve as efflux systems for enantio-pyochelin and/or its intermediates. In addition, we determined whether these transporters have broad substrates range specificity using a Phenotype Microarray system. Intriguingly, knockouts of the pchH and fetF transporter genes resulted in mutant strains that secrete higher levels of enantio-pyochelin as well as its intermediates salicylic acid and dihydroaeruginoic acid. Analyses of these mutants did not indicate significant change in transcription of biosynthetic genes involved in enantio-pyochelin production. In contrast, the deletion mutant of PFL_3504 resulted in reduced transcription of the biosynthetic genes as well as decreased dihydroaeruginoic acid concentrations in the culture supernatant, which could either point to regulation of gene expression by the transporter or its role in dihydroaeruginoic acid transport. Disruption of each of the transporters resulted in altered stress and/or chemical resistance profile of Pf-5, which may reflect that these transporters could have specificity for rather a broad range of substrates.

  8. Disruption of Transporters Affiliated with Enantio-Pyochelin Biosynthesis Gene Cluster of Pseudomonas protegens Pf-5 Has Pleiotropic Effects.

    Directory of Open Access Journals (Sweden)

    Chee Kent Lim

    Full Text Available Pseudomonas protegens Pf-5 (formerly Pseudomonas fluorescens is a biocontrol bacterium that produces the siderophore enantio-pyochelin under conditions of iron starvation in a process that is often accompanied by the secretion of its biosynthesis intermediates, salicylic acid and dihydroaeruginoic acid. In this study, we investigated whether several transporters that are encoded by genes within or adjacent to the enantio-pyochelin biosynthetic cluster, serve as efflux systems for enantio-pyochelin and/or its intermediates. In addition, we determined whether these transporters have broad substrates range specificity using a Phenotype Microarray system. Intriguingly, knockouts of the pchH and fetF transporter genes resulted in mutant strains that secrete higher levels of enantio-pyochelin as well as its intermediates salicylic acid and dihydroaeruginoic acid. Analyses of these mutants did not indicate significant change in transcription of biosynthetic genes involved in enantio-pyochelin production. In contrast, the deletion mutant of PFL_3504 resulted in reduced transcription of the biosynthetic genes as well as decreased dihydroaeruginoic acid concentrations in the culture supernatant, which could either point to regulation of gene expression by the transporter or its role in dihydroaeruginoic acid transport. Disruption of each of the transporters resulted in altered stress and/or chemical resistance profile of Pf-5, which may reflect that these transporters could have specificity for rather a broad range of substrates.

  9. Teaching Gene Technology in an Outreach Lab: Students' Assigned Cognitive Load Clusters and the Clusters' Relationships to Learner Characteristics, Laboratory Variables, and Cognitive Achievement

    Science.gov (United States)

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2013-01-01

    This study classified students into different cognitive load (CL) groups by means of cluster analysis based on their experienced CL in a gene technology outreach lab which has instructionally been designed with regard to CL theory. The relationships of the identified student CL clusters to learner characteristics, laboratory variables, and…

  10. Gene pyramiding enhances durable blast disease resistance in rice.

    Science.gov (United States)

    Fukuoka, Shuichi; Saka, Norikuni; Mizukami, Yuko; Koga, Hironori; Yamanouchi, Utako; Yoshioka, Yosuke; Hayashi, Nagao; Ebana, Kaworu; Mizobuchi, Ritsuko; Yano, Masahiro

    2015-01-14

    Effective control of blast, a devastating fungal disease of rice, would increase and stabilize worldwide food production. Resistance mediated by quantitative trait loci (QTLs), which usually have smaller individual effects than R-genes but confer broad-spectrum or non-race-specific resistance, is a promising alternative to less durable race-specific resistance for crop improvement, yet evidence that validates the impact of QTL combinations (pyramids) on the durability of plant disease resistance has been lacking. Here, we developed near-isogenic experimental lines representing all possible combinations of four QTL alleles from a durably resistant cultivar. These lines enabled us to evaluate the QTLs singly and in combination in a homogeneous genetic background. We present evidence that pyramiding QTL alleles, each controlling a different response to M. oryzae, confers strong, non-race-specific, environmentally stable resistance to blast disease. Our results suggest that this robust defence system provides durable resistance, thus avoiding an evolutionary "arms race" between a crop and its pathogen.

  11. Persistence of antimicrobial resistance genes from sows to finisher pigs

    DEFF Research Database (Denmark)

    Birkegård, Anna Camilla; Halasa, Tariq; Folkesson, Anders

    2018-01-01

    Antimicrobial resistance in pigs has been under scrutiny for many years. However, many questions remain unanswered, including whether the initial antimicrobial resistance level of a pig will influence the antimicrobial resistance found at slaughter. Faecal samples from finishers pigs from 681 farms...... and from sows from 82 farms were collected, and levels of seven antimicrobial resistance genes, ermB, ermF, sulI, sulII, tet(M), tet(O), and tet(W), were quantified by high-capacity qPCR. There were 40 pairs of observations where the finishers were born in the farms of the sows. The objective of this study...... was to evaluate whether the levels of AMR genes found in finisher pigs at slaughter were associated with the levels in the farm where the finishers were born, and whether the levels of the AMR genes were equal in the sow and finisher pig populations. We found a significant positive correlation between the levels...

  12. Mapping fusiform rust resistance genes within a complex mating design of loblolly pine

    Science.gov (United States)

    Tania Quesada; Marcio F.R. Resende Jr.; Patricio Munoz; Jill L. Wegrzyn; David B. Neale; Matias Kirst; Gary F. Peter; Salvador A. Gezan; C.Dana Nelson; John M. Davis

    2014-01-01

    Fusiform rust resistance can involve gene-for-gene interactions where resistance (Fr) genes in the host interact with corresponding avirulence genes in the pathogen, Cronartium quercuum f.sp. fusiforme (Cqf). Here, we identify trees with Fr genes in a loblolly pine population derived from a complex mating design challenged with two Cqf inocula (one gall and 10 gall...

  13. Resistance-Gene Cassettes Associated With Salmonella enterica Genotypes.

    Science.gov (United States)

    Bakhshi, Bita; Ghafari, Mohsen; Pourshafie, Mohammad R; Zarbakhsh, Behnaz; Katouli, Mohammad; Rahbar, Mohammad; Hajia, Masoud; Hosseini-Aliabad, Neda; Boustanshenas, Mina

    2015-01-01

    The epidemiology of salmonellosis is complex because of the diversity and different serotypes of Salmonella enterica (S. enterica) that occur in different reservoirs and geographic incidences. To determine the genotype distribution and resistance-gene content of 2 classes of integron among S. enterica isolates. Thirty-six S. enterica species were isolated and tested for their serological distribution and the resistance-gene contents of 2 classes of integron, as well as for their genetic diversity, using the pulsed-field gel electrophoresis (PFGE) genotyping method. Serogroups E (36.1%) and D (30.5%) were dominant among the isolates. All of the isolates in serogroup D belonged to the serovar enteritidis. The aadA1 gene was found within all resistance-gene cassettes. We observed 4 common and 26 single pulsotypes among the isolates, which indicated a high degree of genetic diversity among the isolates. Using the PulseNet International standard protocol, it was found that these isolates were different from those reported previously in Iran. The presence of a few common and new pulsotypes among the isolates suggests the emergence and spread of new clones of S. enterica in Iran. Copyright© by the American Society for Clinical Pathology (ASCP).

  14. Continental-scale pollution of estuaries with antibiotic resistance genes.

    Science.gov (United States)

    Zhu, Yong-Guan; Zhao, Yi; Li, Bing; Huang, Chu-Long; Zhang, Si-Yu; Yu, Shen; Chen, Yong-Shan; Zhang, Tong; Gillings, Michael R; Su, Jian-Qiang

    2017-01-30

    Antibiotic resistance genes (ARGs) have moved from the environmental resistome into human commensals and pathogens, driven by human selection with antimicrobial agents. These genes have increased in abundance in humans and domestic animals, to become common components of waste streams. Estuarine habitats lie between terrestrial/freshwater and marine ecosystems, acting as natural filtering points for pollutants. Here, we have profiled ARGs in sediments from 18 estuaries over 4,000 km of coastal China using high-throughput quantitative polymerase chain reaction, and investigated their relationship with bacterial communities, antibiotic residues and socio-economic factors. ARGs in estuarine sediments were diverse and abundant, with over 200 different resistance genes being detected, 18 of which were found in all 90 sediment samples. The strong correlations of identified resistance genes with known mobile elements, network analyses and partial redundancy analysis all led to the conclusion that human activity is responsible for the abundance and dissemination of these ARGs. Such widespread pollution with xenogenetic elements has environmental, agricultural and medical consequences.

  15. Resistance gene transfer during treatments for experimental avian colibacillosis.

    Science.gov (United States)

    Dheilly, Alexandra; Le Devendec, Laëtitia; Mourand, Gwenaëlle; Bouder, Axelle; Jouy, Eric; Kempf, Isabelle

    2012-01-01

    An experiment was conducted in animal facilities to compare the impacts of four avian colibacillosis treatments-oxytetracycline (OTC), trimethoprim-sulfadimethoxine (SXT), amoxicillin (AMX), or enrofloxacin (ENR)-on the susceptibility of Escherichia coli in broiler intestinal tracts. Birds were first orally inoculated with rifampin-resistant E. coli strains bearing plasmid genes conferring resistance to fluoroquinolones (qnr), cephalosporins (bla(CTX-M) or bla(FOX)), trimethoprim-sulfonamides, aminoglycosides, or tetracyclines. Feces samples were collected before, during, and after antimicrobial treatments. The susceptibilities of E. coli strains were studied, and resistance gene transfer was analyzed. An increase in the tetracycline-resistant E. coli population was observed only in OTC-treated birds, whereas multiresistant E. coli was detected in the dominant E. coli populations of SXT-, AMX-, or ENR-treated birds. Most multiresistant E. coli strains were susceptible to rifampin and exhibited various pulsed-field gel electrophoresis profiles, suggesting the transfer of one of the multiresistance plasmids from the inoculated strains to other E. coli strains in the intestinal tract. In conclusion, this study clearly illustrates how, in E. coli, "old" antimicrobials may coselect antimicrobial resistance to recent and critical molecules.

  16. Bacterial Whole-Genome Sequencing Revisited: Portable, Scalable, and Standardized Analysis for Typing and Detection of Virulence and Antibiotic Resistance Genes

    Science.gov (United States)

    Leopold, Shana R.; Goering, Richard V.; Witten, Anika; Harmsen, Dag

    2014-01-01

    Multidrug-resistant nosocomial pathogens present a major burden for hospitals. Rapid cluster identification and pathogen profiling, i.e., of antibiotic resistance and virulence genes, are crucial for effective infection control. Methicillin-resistant Staphylococcus aureus (MRSA), in particular, is now one of the leading causes of nosocomial infections. In this study, whole-genome sequencing (WGS) was applied retrospectively to an unusual spike in MRSA cases in two intensive care units (ICUs) over the course of 4 weeks. While the epidemiological investigation concluded that there were two separate clusters, each associated with one ICU, S. aureus protein A gene (spa) typing data suggested that they belonged to single clonal cluster (all cases shared spa type t001). Standardized gene sets were used to extract an allele-based profile for typing and an antibiotic resistance and toxin gene profile. The WGS results produced high-resolution allelic profiles, which were used to discriminate the MRSA clusters, corroborating the epidemiological investigation and identifying previously unsuspected transmission events. The antibiotic resistance profile was in agreement with the original clinical laboratory susceptibility profile, and the toxin profile provided additional, previously unknown information. WGS coupled with allelic profiling provided a high-resolution method that can be implemented as regular screening for effective infection control. PMID:24759713

  17. Identification of the Viridicatumtoxin and Griseofulvin Gene Clusters from Penicillium aethiopicum

    Science.gov (United States)

    Chooi, Yit-Heng; Cacho, Ralph; Tang, Yi

    2010-01-01

    SUMMARY Penicillium aethiopicum produces two structurally interesting and biologically active polyketides: the tetracycline-like viridicatumtoxin 1 and the classic antifungal agent griseofulvin 2. Here, we report the concurrent discovery of the two corresponding biosynthetic gene clusters (vrt and gsf) by 454 shotgun sequencing. Gene deletions confirmed two nonreducing PKSs (NRPKS), vrtA and gsfA, are required for the biosynthesis of 1 and 2, respectively. Both PKSs share similar domain architectures and lack a C-terminal thioesterase domain. We identified gsfI as the chlorinase involved in the biosynthesis of 2, as deletion of gsfI resulted in the accumulation of decholorogriseofulvin 3. Comparative analysis with the P. chrysogenum genome revealed that both clusters are embedded within conserved syntenic regions of P. aethiopicum chromosomes. Discovery of the vrt and gsf clusters provided the basis for genetic and biochemical studies of the pathways. PMID:20534346

  18. Gene Prioritization of Resistant Rice Gene against Xanthomas oryzae pv. oryzae by Using Text Mining Technologies

    Directory of Open Access Journals (Sweden)

    Jingbo Xia

    2013-01-01

    Full Text Available To effectively assess the possibility of the unknown rice protein resistant to Xanthomonas oryzae pv. oryzae, a hybrid strategy is proposed to enhance gene prioritization by combining text mining technologies with a sequence-based approach. The text mining technique of term frequency inverse document frequency is used to measure the importance of distinguished terms which reflect biomedical activity in rice before candidate genes are screened and vital terms are produced. Afterwards, a built-in classifier under the chaos games representation algorithm is used to sieve the best possible candidate gene. Our experiment results show that the combination of these two methods achieves enhanced gene prioritization.

  19. Evolutionary history of the phl gene cluster in the plant-associated bacterium Pseudomonas fluorescens

    NARCIS (Netherlands)

    Moynihan, J.A.; Morrissey, J.P.; Coppoolse, E.; Stiekema, W.J.; O'Gara, F.; Boyd, E.F.

    2009-01-01

    Pseudomonas fluorescens is of agricultural and economic importance as a biological control agent largely because of its plant-association and production of secondary metabolites, in particular 2, 4-diacetylphloroglucinol (2, 4-DAPG). This polyketide, which is encoded by the eight gene phl cluster,

  20. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters

    NARCIS (Netherlands)

    Cimermancic, P.; Medema, Marnix; Claesen, J.; Kurika, K.; Wieland Brown, L.C.; Mavrommatis, K.; Pati, A.; Godfrey, P.A.; Koehrsen, M.; Clardy, J.; Birren, B. W.; Takano, Eriko; Sali, A.; Linington, R.G.; Fischbach, M.A.

    2014-01-01

    Although biosynthetic gene clusters (BGCs) have been discovered for hundreds of bacterial metabolites, our knowledge of their diversity remains limited. Here, we used a novel algorithm to systematically identify BGCs in the extensive extant microbial sequencing data. Network analysis of the

  1. Molecular population genetics of the β-esterase gene cluster of ...

    Indian Academy of Sciences (India)

    We suggest that the demographic history (bottleneck and admixture of genetically differentiated populations) is the major factor shaping the pattern of nucleotide polymorphism in the -esterase gene cluster. However there are some 'footprints' of directional and balancing selection shaping specific distribution of nucleotide ...

  2. Molecular population genetics of the β-esterase gene cluster of ...

    Indian Academy of Sciences (India)

    Unknown

    neutrality with recombination are significant for the β−esterase gene cluster in the non-African samples but not signi- ficant in the African one. We suggest ...... I. Viability studies. Genetics 102,. 467–483. Selva E. M., New L., Crouse G. F. and Lahue R. S. 1995 Mis- match correction acts as a barrier to homologous recombina-.

  3. Spread of tetracycline resistance genes at a conventional dairy farm

    Czech Academy of Sciences Publication Activity Database

    Kyselková, Martina; Jirout, Jiří; Vrchotová, Naděžda; Schmitt, H.; Elhottová, Dana

    2015-01-01

    Roč. 6, may (2015), s. 536 ISSN 1664-302X R&D Projects: GA ČR GAP504/10/2077; GA MŠk(CZ) EE2.3.30.0032; GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 ; RVO:60077344 Keywords : antibiotic resistance spread * animal manure * cattle intestinal microflora * chlortetracycline * dairy cattle * dairy farm * heavy metals * tetracycline resistance genes Subject RIV: EI - Biotechnology ; Bionics; EE - Microbiology, Virology (BC-A) Impact factor: 4.165, year: 2015

  4. De Novo Sequencing-Based Transcriptome and Digital Gene Expression Analysis Reveals Insecticide Resistance-Relevant Genes in Propylaea japonica (Thunberg) (Coleoptea: Coccinellidae)

    Science.gov (United States)

    Jin, Feng-Liang; Qiu, Bao-Li; Wu, Jian-Hui; Ren, Shun-Xiang

    2014-01-01

    The ladybird Propylaea japonica (Thunberg) is one of most important natural enemies of aphids in China. This species is threatened by the extensive use of insecticides but genomics-based information on the molecular mechanisms underlying insecticide resistance is limited. Hence, we analyzed the transcriptome and expression profile data of P. japonica in order to gain a deeper understanding of insecticide resistance in ladybirds. We performed de novo assembly of a transcriptome using Illumina's Solexa sequencing technology and short reads. A total of 27,243,552 reads were generated. These were assembled into 81,458 contigs and 33,647 unigenes (6,862 clusters and 26,785 singletons). Of the unigenes, 23,965 (71.22%) have putative homologues in the non-redundant (nr) protein database from NCBI, using BLASTX, with a cut-off E-value of 10−5. We examined COG, GO and KEGG annotations to better understand the functions of these unigenes. Digital gene expression (DGE) libraries showed differences in gene expression profiles between two insecticide resistant strains. When compared with an insecticide susceptible profile, a total of 4,692 genes were significantly up- or down- regulated in a moderately resistant strain. Among these genes, 125 putative insecticide resistance genes were identified. To confirm the DGE results, 16 selected genes were validated using quantitative real time PCR (qRT-PCR). This study is the first to report genetic information on P. japonica and has greatly enriched the sequence data for ladybirds. The large number of gene sequences produced from the transcriptome and DGE sequencing will greatly improve our understanding of this important insect, at the molecular level, and could contribute to the in-depth research into insecticide resistance mechanisms. PMID:24959827

  5. De novo sequencing-based transcriptome and digital gene expression analysis reveals insecticide resistance-relevant genes in Propylaea japonica (Thunberg (Coleoptea: Coccinellidae.

    Directory of Open Access Journals (Sweden)

    Liang-De Tang

    Full Text Available The ladybird Propylaea japonica (Thunberg is one of most important natural enemies of aphids in China. This species is threatened by the extensive use of insecticides but genomics-based information on the molecular mechanisms underlying insecticide resistance is limited. Hence, we analyzed the transcriptome and expression profile data of P. japonica in order to gain a deeper understanding of insecticide resistance in ladybirds. We performed de novo assembly of a transcriptome using Illumina's Solexa sequencing technology and short reads. A total of 27,243,552 reads were generated. These were assembled into 81,458 contigs and 33,647 unigenes (6,862 clusters and 26,785 singletons. Of the unigenes, 23,965 (71.22% have putative homologues in the non-redundant (nr protein database from NCBI, using BLASTX, with a cut-off E-value of 10(-5. We examined COG, GO and KEGG annotations to better understand the functions of these unigenes. Digital gene expression (DGE libraries showed differences in gene expression profiles between two insecticide resistant strains. When compared with an insecticide susceptible profile, a total of 4,692 genes were significantly up- or down- regulated in a moderately resistant strain. Among these genes, 125 putative insecticide resistance genes were identified. To confirm the DGE results, 16 selected genes were validated using quantitative real time PCR (qRT-PCR. This study is the first to report genetic information on P. japonica and has greatly enriched the sequence data for ladybirds. The large number of gene sequences produced from the transcriptome and DGE sequencing will greatly improve our understanding of this important insect, at the molecular level, and could contribute to the in-depth research into insecticide resistance mechanisms.

  6. GenClust: A genetic algorithm for clustering gene expression data

    Directory of Open Access Journals (Sweden)

    Raimondi Alessandra

    2005-12-01

    Full Text Available Abstract Background Clustering is a key step in the analysis of gene expression data, and in fact, many classical clustering algorithms are used, or more innovative ones have been designed and validated for the task. Despite the widespread use of artificial intelligence techniques in bioinformatics and, more generally, data analysis, there are very few clustering algorithms based on the genetic paradigm, yet that paradigm has great potential in finding good heuristic solutions to a difficult optimization problem such as clustering. Results GenClust is a new genetic algorithm for clustering gene expression data. It has two key features: (a a novel coding of the search space that is simple, compact and easy to update; (b it can be used naturally in conjunction with data driven internal validation methods. We have experimented with the FOM methodology, specifically conceived for validating clusters of gene expression data. The validity of GenClust has been assessed experimentally on real data sets, both with the use of validation measures and in comparison with other algorithms, i.e., Average Link, Cast, Click and K-means. Conclusion Experiments show that none of the algorithms we have used is markedly superior to the others across data sets and validation measures; i.e., in many cases the observed differences between the worst and best performing algorithm may be statistically insignificant and they could be considered equivalent. However, there are cases in which an algorithm may be better than others and therefore worthwhile. In particular, experiments for GenClust show that, although simple in its data representation, it converges very rapidly to a local optimum and that its ability to identify meaningful clusters is comparable, and sometimes superior, to that of more sophisticated algorithms. In addition, it is well suited for use in conjunction with data driven internal validation measures and, in particular, the FOM methodology.

  7. Genome Comparison of Erythromycin Resistant Campylobacter from Turkeys Identifies Hosts and Pathways for Horizontal Spread of erm(B Genes

    Directory of Open Access Journals (Sweden)

    Diego Florez-Cuadrado

    2017-11-01

    Full Text Available Pathogens in the genus Campylobacter are the most common cause of food-borne bacterial gastro-enteritis. Campylobacteriosis, caused principally by Campylobacter jejuni and Campylobacter coli, is transmitted to humans by food of animal origin, especially poultry. As for many pathogens, antimicrobial resistance in Campylobacter is increasing at an alarming rate. Erythromycin prescription is the treatment of choice for clinical cases requiring antimicrobial therapy but this is compromised by mobility of the erythromycin resistance gene erm(B between strains. Here, we evaluate resistance to six antimicrobials in 170 Campylobacter isolates (133 C. coli and 37 C. jejuni from turkeys. Erythromycin resistant isolates (n = 85; 81 C. coli and 4 C. jejuni were screened for the presence of the erm(B gene, that has not previously been identified in isolates from turkeys. The genomes of two positive C. coli isolates were sequenced and in both isolates the erm(B gene clustered with resistance determinants against aminoglycosides plus tetracycline, including aad9, aadE, aph(2″-IIIa, aph(3′-IIIa, and tet(O genes. Comparative genomic analysis identified identical erm(B sequences among Campylobacter from turkeys, Streptococcus suis from pigs and Enterococcus faecium and Clostridium difficile from humans. This is consistent with multiple horizontal transfer events among different bacterial species colonizing turkeys. This example highlights the potential for dissemination of antimicrobial resistance across bacterial species boundaries which may compromise their effectiveness in antimicrobial therapy.

  8. Identification, characterization and metagenome analysis of oocyte-specific genes organized in clusters in the mouse genome

    Directory of Open Access Journals (Sweden)

    Vaiman Daniel

    2005-05-01

    Full Text Available Abstract Background Genes specifically expressed in the oocyte play key roles in oogenesis, ovarian folliculogenesis, fertilization and/or early embryonic development. In an attempt to identify novel oocyte-specific genes in the mouse, we have used an in silico subtraction methodology, and we have focused our attention on genes that are organized in genomic clusters. Results In the present work, five clusters have been studied: a cluster of thirteen genes characterized by an F-box domain localized on chromosome 9, a cluster of six genes related to T-cell leukaemia/lymphoma protein 1 (Tcl1 on chromosome 12, a cluster composed of a SPErm-associated glutamate (E-Rich (Speer protein expressed in the oocyte in the vicinity of four unknown genes specifically expressed in the testis on chromosome 14, a cluster composed of the oocyte secreted protein-1 (Oosp-1 gene and two Oosp-related genes on chromosome 19, all three being characterized by a partial N-terminal zona pellucida-like domain, and another small cluster of two genes on chromosome 19 as well, composed of a TWIK-Related spinal cord K+ channel encoding-gene, and an unknown gene predicted in silico to be testis-specific. The specificity of expression was confirmed by RT-PCR and in situ hybridization for eight and five of them, respectively. Finally, we showed by comparing all of the isolated and clustered oocyte-specific genes identified so far in the mouse genome, that the oocyte-specific clusters are significantly closer to telomeres than isolated oocyte-specific genes are. Conclusion We have studied five clusters of genes specifically expressed in female, some of them being also expressed in male germ-cells. Moreover, contrarily to non-clustered oocyte-specific genes, those that are organized in clusters tend to map near chromosome ends, suggesting that this specific near-telomere position of oocyte-clusters in rodents could constitute an evolutionary advantage. Understanding the biological

  9. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying

    2013-07-31

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  10. Effects of Plyometric and Cluster Resistance Training on Explosive Power and Maximum Strength in Karate Players

    Directory of Open Access Journals (Sweden)

    Mohsen Aminaei

    2017-08-01

    Full Text Available The purpose of this study was to investigate the effects of plyometric and cluster resistance training on explosive power and maximum strength in karate players. Eighteen women, karate players (age mean ± SD 18.22 ± 3.02 years, mean height 163 ± 0.63cm, and mean body mass 53.25 ± 7.34 kg were selected as volunteer samples. They were divided into two groups with respect to their recorded one repetition maximum squat exercise: [1] plyometric training (PT=9 and [2] Cluster training (CT=9 groups and performed a 9-week resistance training protocol that included three stages; [1] General fitness (2 weeks, [2] Strength (4 weeks and [3] Power (3 weeks. Each group performed strength and power trainings for 7 weeks in stage two and three with owned protocol. The subjects were evaluated three times before stage one and after two and three stages for maximum strength and power. Data was analyzed using two way Repeated Measures (ANOVA at a significance level of (P≤0.05. The statistical analysis showed that training stages on all research variables had a significant impact. The maximum strength of the pre-test, post-test strength and post-test power were in cluster group: 29.05 ± 1.54; 32.89 ± 2.80 and 48.74 ± 4.33w and in plyometric group were 26.98 ± 1.54; 38.48 ± 2.80 and 49.82 ± 4.33w respectively. The explosive power of the pre-test, post-test strength and post-test power in cluster group were 359.32±36.20; 427.91±34.56 and 460.55±36.80w and in plyometric group were 333.90±36.20; 400.33±34.56 and 465.20±36.80w respectively. However, there were not statistically significant differences in research variables between resistance cluster and plyometric training groups after 7 weeks. The results indicated both cluster and plyometric training program seems to improve physical fitness elements at the same levels.

  11. Multiple antibiotic resistance genes distribution in ten large-scale membrane bioreactors for municipal wastewater treatment.

    Science.gov (United States)

    Sun, Yanmei; Shen, Yue-Xiao; Liang, Peng; Zhou, Jizhong; Yang, Yunfeng; Huang, Xia

    2016-12-01

    Wastewater treatment plants are thought to be potential reservoirs of antibiotic resistance genes. In this study, GeoChip was used for analyzing multiple antibiotic resistance genes, including four multidrug efflux system gene groups and three β-lactamase genes in ten large-scale membrane bioreactors (MBRs) for municipal wastewater treatment. Results revealed that the diversity of antibiotic genes varied a lot among MBRs, but about 40% common antibiotic resistance genes were existent. The average signal intensity of each antibiotic resistance group was similar among MBRs, nevertheless the total abundance of each group varied remarkably and the dominant resistance gene groups were different in individual MBR. The antibiotic resistance genes majorly derived from Proteobacteria and Actinobacteria. Further study indicated that TN, TP and COD of influent, temperature and conductivity of mixed liquor were significant (Pantibiotic resistance genes distribution in MBRs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Abundant rifampin resistance genes and significant correlations of antibiotic resistance genes and plasmids in various environments revealed by metagenomic analysis.

    Science.gov (United States)

    Ma, Liping; Li, Bing; Zhang, Tong

    2014-06-01

    In the present study, a newly developed metagenomic analysis approach was applied to investigate the abundance and diversity of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in aquaculture farm sediments, activated sludge, biofilm, anaerobic digestion sludge, and river water. BLASTX analysis against the Comprehensive Antibiotic Resistance Database was conducted for the metagenomic sequence data of each sample and then the ARG-like sequences were sorted based on structured sub-database using customized scripts. The results showed that freshwater fishpond sediment had the highest abundance (196 ppm), and anaerobic digestion sludge possessed the highest diversity (133 subtypes) of ARGs among the samples in this study. Significantly, rifampin resistance genes were universal in all the diverse samples and consistently accounted for 26.9~38.6 % of the total annotated ARG sequences. Furthermore, a significant linear correlation (R (2) = 0.924) was found between diversities (number of subtypes) of ARGs and diversities of plasmids in diverse samples. This work provided a wide spectrum scan of ARGs and MGEs in different environments and revealed the prevalence of rifampin resistance genes and the strong correlation between ARG diversity and plasmid diversity for the first time.

  13. Multiplexed CRISPR/Cas9- and TAR-Mediated Promoter Engineering of Natural Product Biosynthetic Gene Clusters in Yeast.

    Science.gov (United States)

    Kang, Hahk-Soo; Charlop-Powers, Zachary; Brady, Sean F

    2016-09-16

    The use of DNA sequencing to guide the discovery of natural products has emerged as a new paradigm for revealing chemistries encoded in bacterial genomes. A major obstacle to implementing this approach to natural product discovery is the transcriptional silence of biosynthetic gene clusters under laboratory growth conditions. Here we describe an improved yeast-based promoter engineering platform (mCRISTAR) that combines CRISPR/Cas9 and TAR to enable single-marker multiplexed promoter engineering of large gene clusters. mCRISTAR highlights the first application of the CRISPR/Cas9 system to multiplexed promoter engineering of natural product biosynthetic gene clusters. In this method, CRISPR/Cas9 is used to induce DNA double-strand breaks in promoter regions of biosynthetic gene clusters, and the resulting operon fragments are reassembled by TAR using synthetic gene-cluster-specific promoter cassettes. mCRISTAR uses a CRISPR array to simplify the construction of a CRISPR plasmid for multiplex CRISPR and a single auxotrophic selection to improve the inefficiency of using a CRISPR array for multiplex gene cluster refactoring. mCRISTAR is a simple and generic method for multiplexed replacement of promoters in biosynthetic gene clusters that will facilitate the discovery of natural products from the rapidly growing collection of gene clusters found in microbial genome and metagenome sequencing projects.

  14. Clustering of two genes putatively involved in cyanate detoxification evolved recently and independently in multiple fungal lineages

    Science.gov (United States)

    Fungi that have the enzymes cyanase and carbonic anhydrase show a limited capacity to detoxify cyanate, a fungicide employed by both plants and humans. Here, we describe a novel two-gene cluster that comprises duplicated cyanase and carbonic anhydrase copies, which we name the CCA gene cluster, trac...

  15. Gene clustering analysis in human osteoporosis disease and modifications of the jawbone.

    Science.gov (United States)

    Toti, Paolo; Sbordone, Carolina; Martuscelli, Ranieri; Califano, Luigi; Ramaglia, Luca; Sbordone, Ludovico

    2013-08-01

    An analysis of the genes involved in both osteoporosis and modifications of the jawbone, through text mining, using a web search tool, of information regarding gene/protein interaction. The final set of genes involved in the present phenomenon was obtained by expansion-filtering loop. Using a web-available software (STRING), interactions among all genes were searched for, and a clustering procedure was performed in which only high-confidence predicted associations were considered. Two hundred forty-two genes potentially involved in osteoporosis and in modifications of the jawbone were recorded. Seven "leader genes" were identified (CTNNB1, IL1B, IL6, JUN, RUNX2, SPP1, TGFB1), while another 10 genes formed the cluster B group (BMP2, BMP7, COL1A1, ICAM1, IGF1, IL10, MMP9, NFKB1, TNFSF11, VEGFA). Ninety-eight genes had no interactions, and were defined as "orphan genes". The expansion of knowledge regarding the molecular basis causing osteoporotic traits has been brought about with the help of a de novo identification, based on the data mining of genes involved in osteoporosis and in modification of the jawbone. A comparison of the present data, in which no role was verified for 98 genes that had been previously supposed to have a role, with that of the literature, in which another 81 genes, as obtained from GWAS reviews and meta-analyses, appeared to be strongly associated with osteoporosis, probably attests to a lack of information on osteoporotic disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Microarray-based analysis of IncA/C plasmid-associated genes from multidrug-resistant Salmonella enterica.

    Science.gov (United States)

    Lindsey, Rebecca L; Frye, Jonathan G; Fedorka-Cray, Paula J; Meinersmann, Richard J

    2011-10-01

    In the family Enterobacteriaceae, plasmids have been classified according to 27 incompatibility (Inc) or replicon types that are based on the inability of different plasmids with the same replication mechanism to coexist in the same cell. Certain replicon types such as IncA/C are associated with multidrug resistance (MDR). We developed a microarray that contains 286 unique 70-mer oligonucleotide probes based on sequences from five IncA/C plasmids: pYR1 (Yersinia ruckeri), pPIP1202 (Yersinia pestis), pP99-018 (Photobacterium damselae), pSN254 (Salmonella enterica serovar Newport), and pP91278 (Photobacterium damselae). DNA from 59 Salmonella enterica isolates was hybridized to the microarray and analyzed for the presence or absence of genes. These isolates represented 17 serovars from 14 different animal hosts and from different geographical regions in the United States. Qualitative cluster analysis was performed using CLUSTER 3.0 to group microarray hybridization results. We found that IncA/C plasmids occurred in two lineages distinguished by a major insertion-deletion (indel) region that contains genes encoding mostly hypothetical proteins. The most variable genes were represented by transposon-associated genes as well as four antimicrobial resistance genes (aphA, merP, merA, and aadA). Sixteen mercury resistance genes were identified and highly conserved, suggesting that mercury ion-related exposure is a stronger pressure than anticipated. We used these data to construct a core IncA/C genome and an accessory genome. The results of our studies suggest that the transfer of antimicrobial resistance determinants by transfer of IncA/C plasmids is somewhat less common than exchange within the plasmids orchestrated by transposable elements, such as transposons, integrating and conjugative elements (ICEs), and insertion sequence common regions (ISCRs), and thus pose less opportunity for exchange of antimicrobial resistance.

  17. Transcriptome analyses and virus induced gene silencing identify genes in the Rpp4-mediated Asian soybean rust resistance pathway

    Science.gov (United States)

    Rpp4 (Resistance to Phakopsora pachyrhizi 4) confers resistance to P. pachyrhizi, the causal agent of Asian soybean rust (ASR). By combining expression profiling and virus induced gene silencing (VIGS), we are developing a genetic framework for Rpp4-mediated resistance. We measured gene expression i...

  18. Fate and transport of antibiotic resistant bacteria and resistance genes in artificially drained agricultural fields receiving swine manure application

    Science.gov (United States)

    While previous studies have examined the occurrence of antibiotic resistant bacteria and antibiotic resistant genes around confined swine feeding operations, little information is known about their release and transport from artificially drained fields receiving swine manure application. Much of the...

  19. A novel resistance gene, lnu(H), conferring resistance to lincosamides in Riemerella anatipestifer CH-2.

    Science.gov (United States)

    Luo, Hong-Yan; Liu, Ma-Feng; Wang, Ming-Shu; Zhao, Xin-Xin; Jia, Ren-Yong; Chen, Shun; Sun, Kun-Feng; Yang, Qiao; Wu, Ying; Chen, Xiao-Yue; Biville, Francis; Zou, Yuan-Feng; Jing, Bo; Cheng, An-Chun; Zhu, De-Kang

    2018-01-01

    The Gram-negative bacterium Riemerella anatipestifer CH-2 is resistant to lincosamides, having a lincomycin (LCM) minimum inhibitory concentration (MIC) of 128 µg/mL. The G148_1775 gene of R. anatipestifer CH-2, designated lnu(H), encodes a 260-amino acid protein with ≤41% identity to other reported lincosamide nucleotidylyltransferases. Escherichia coli Rosetta TM (DE3) containing the pBAD24-lnu(H) plasmid showed four- and two-fold increases in the MICs of LCM and clindamycin (CLI), respectively. A kinetic assay of the purified Lnu(H) enzyme for LCM and CLI showed that the protein could inactive lincosamides. Mass spectrometry analysis demonstrated that the Lnu(H) enzyme catalysed adenylylation of lincosamides. In addition, an lnu(H) gene deletion strain exhibited 512- and 32-fold decreases in LCM and CLI MICs, respectively. The wild-type level of lincosamide resistance could be restored by complementation with a shuttle plasmid carrying the lnu(H) gene. The transformant R. anatipestifer ATCC 11845 [lnu(H)] acquired by natural transformation also exhibited high-level lincosamide resistance. Moreover, among 175 R. anatipestifer field isolates, 56 (32.0%) were positive for the lnu(H) gene by PCR. In conclusion, Lnu(H) is a novel lincosamide nucleotidylyltransferase that inactivates LCM and CLI by nucleotidylylation, thus conferring high-level lincosamide resistance to R. anatipestifer CH-2. Copyright © 2017. Published by Elsevier B.V.

  20. Spectrum of Resistance Conferred by ml-o Powdery Mildew Resistance Genes in Barley

    DEFF Research Database (Denmark)

    Jørgensen, Jørgen Helms

    1977-01-01

    /(4) in all tests. They were also resistant to field populations of the pathogen when scored in disease nurseries at more than 78 locations in 29 countries in Europe, the Near East, North and South America. New Zealand, and Japan. This indicates that the 11 genes confer the same, world-wide spectrum...

  1. Genetic mapping of rust resistance genes in confection sunflower line HA-R6 and oilseed line RHA 397.

    Science.gov (United States)

    Gong, L; Gulya, T J; Markell, S G; Hulke, B S; Qi, L L

    2013-08-01

    Few widely effective resistance sources to sunflower rust, incited by Puccinia helianthi Schwein., have been identified in confection sunflower (Helianthus annuus L.). The USDA inbred line HA-R6 is one of the few confection sunflower lines resistant to rust. A previous allelism test indicated that rust resistance genes in HA-R6 and RHA 397, an oilseed-type restorer line, are either allelic or closely linked; however, neither have been characterized nor molecularly mapped. The objectives of this study are (1) to locate the rust resistance genes in HA-R6 and RHA 397 on a molecular map, (2) to develop closely linked molecular markers for rust resistance diagnostics, and (3) to determine the resistance spectrum of two lines when compared with other rust-resistant lines. Two populations of 140 F2:3 families each from the crosses of HA 89, as susceptible parent, with HA-R6 and RHA 397 were inoculated with race 336 of P. helianthi in the greenhouse. The resistance genes (R-genes) in HA-R6 and RHA 397 were molecularly mapped to the lower end of linkage group 13, which encompasses a large R-gene cluster, and were designated as R 13a and R 13b, respectively. In the initial maps, SSR (simple sequence repeat) and InDel (insertion and deletion) markers revealed 2.8 and 8.2 cM flanking regions for R 13a and R 13b, respectively, linked with a common marker set of four co-segregating markers, ORS191, ORS316, ORS581, and ZVG61, in the distal side and one marker ORS464 in the proximal side. To identify new markers closer to the genes, sunflower RGC (resistance gene candidate) markers linked to the downy mildew R-gene Pl 8 and located at the same region as R 13a and R 13b were selected to screen the two F2 populations. The RGC markers RGC15/16 and a newly developed marker SUN14 designed from a BAC contig anchored by RGC251 further narrowed down the region flanking R 13a and R 13b to 1.1 and 0.1 cM, respectively. Both R 13a and R 13b are highly effective against all rust races

  2. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters

    Science.gov (United States)

    Miller, Jennifer H.; Novak, John T.; Knocke, William R.; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1—a Pseudomonas sp.) and thermophilic (Iso T10—a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457–0.829, P digested sludge or thermophilic digested sludge (Spearman rho = 0.130–0.486, P = 0.075–0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene transfer between raw sludge bacteria and the digester microbial community. PMID:27014196

  3. Occurrence of antibiotic resistance and characterization of resistant genes and integrons in Enterobacteriaceae isolated from integrated fish farms south China

    Science.gov (United States)

    Su, Hao-Chang; Ying, Guang-Guo; Tao, Ran; Zhang, Rui-Quan; Fogarty, Lisa R.; Kolpin, Dana W.

    2011-01-01

    Antibiotics are still widely applied in animal husbandry to prevent diseases and used as feed additives to promote animal growth. This could result in antibiotic resistance to bacteria and antibiotic residues in animals. In this paper, Enterobacteriaceae isolated from four integrated fish farms in Zhongshan, South China were tested for antibiotic resistance, tetracycline resistance genes, sulfonamide resistance genes, and class 1 integrons. The Kirby-Bauer disk diffusion method and polymerase chain reaction (PCR) assays were carried out to test antibiotic susceptibility and resistance genes, respectively. Relatively high antibiotic resistance frequencies were found, especially for ampicillin (80%), tetracycline (52%), and trimethoprim (50%). Out of 203 Enterobacteriaceae isolates, 98.5% were resistant to one or more antibiotics tested. Multiple antibiotic resistance (MAR) was found highest in animal manures with a MAR index of 0.56. Tetracycline resistance genes (tet(A), tet(C)) and sulfonamide resistance genes (sul2) were detected in more than 50% of the isolates. The intI1 gene was found in 170 isolates (83.7%). Both classic and non-classic class 1 integrons were found. Four genes, aadA5, aadA22, dfr2, and dfrA17, were detected. To our knowledge, this is the first report for molecular characterization of antibiotic resistance genes in Enterobacteriaceae isolated from integrated fish farms in China and the first time that gene cassette array dfrA17-aadA5 has been detected in such fish farms. Results of this study indicated that fish farms may be a reservoir of highly diverse and abundant antibiotic resistant genes and gene cassettes. Integrons may play a key role in multiple antibiotic resistances posing potential health risks to the general public and aquaculture.

  4. Antibiotic resistance genes and residual antimicrobials in cattle feedlot surface soil

    Science.gov (United States)

    Antibiotic residues and resistant bacteria in cattle feedlot manure may impact antibiotic resistance in the environment. This study investigated common antimicrobials (tetracyclines and monensin) and associated resistance genes in cattle feedlot soils over time. Animal diets and other feedlot soil...

  5. Novel streptomycin and spectinomycin resistance gene as a gene cassette within a class 1 integron isolated from Escherichia coli

    DEFF Research Database (Denmark)

    Sandvang, D.

    1999-01-01

    The aadA genes, encoding resistance to streptomycin and spectinomycin, have been found as gene cassettes in different gram-negative and gram-positive bacterial species. The present study has revealed the sequence of a new gene, aadA5, integrated as a gene cassette together with the trimethoprim...... resistance gene dfr7 in a class 1 integron. The integron was located on a plasmid and was identified in a pathogenic porcine Escherichia coli isolate....

  6. Novel Streptomycin and Spectinomycin Resistance Gene as a Gene Cassette within a Class 1 Integron Isolated from Escherichia coli

    Science.gov (United States)

    Sandvang, Dorthe

    1999-01-01

    The aadA genes, encoding resistance to streptomycin and spectinomycin, have been found as gene cassettes in different gram-negative and gram-positive bacterial species. The present study has revealed the sequence of a new gene, aadA5, integrated as a gene cassette together with the trimethoprim resistance gene dfr7 in a class 1 integron. The integron was located on a plasmid and was identified in a pathogenic porcine Escherichia coli isolate. PMID:10582907

  7. Inactivation Effect of Antibiotic-Resistant Gene Using Chlorine Disinfection

    Directory of Open Access Journals (Sweden)

    Takashi Furukawa

    2017-07-01

    Full Text Available The aim of this study was to elucidate the inactivation effects on the antibiotic-resistance gene (vanA of vancomycin-resistant enterococci (VRE using chlorination, a disinfection method widely used in various water treatment facilities. Suspensions of VRE were prepared by adding VRE to phosphate-buffered saline, or the sterilized secondary effluent of a wastewater treatment plant. The inactivation experiments were carried out at several chlorine concentrations and stirring time. Enterococci concentration and presence of vanA were determined. The enterococci concentration decreased as chlorine concentrations and stirring times increased, with more than 7.0 log reduction occurring under the following conditions: 40 min stirring at 0.5 mg Cl2/L, 20 min stirring at 1.0 mg Cl2/L, and 3 min stirring at 3.0 mg Cl2/L. In the inactivation experiment using VRE suspended in secondary effluent, the culturable enterococci required much higher chlorine concentration and longer treatment time for complete disinfection than the cases of suspension of VRE. However, vanA was detected in all chlorinated suspensions of VRE, even in samples where no enterococcal colonies were present on the medium agar plate. The chlorine disinfection was not able to destroy antibiotic-resistance genes, though it can inactivate and decrease bacterial counts of antibiotic-resistant bacteria (ARB. Therefore, it was suggested that remaining ARB and/or antibiotic-resistance gene in inactivated bacterial cells after chlorine disinfection tank could be discharged into water environments.

  8. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury

    DEFF Research Database (Denmark)

    Ryge, J.; Winther, Ole; Wienecke, J.

    2010-01-01

    Background: Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence...... of modulatory inputs from the brain correlates with the development of spasticity. Results: Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use...... a rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. Consensus clustering identifies 12 gene clusters with distinct time...

  9. Transport of tylosin and tylosin-resistance genes in subsurface drainage water from manured fields

    Science.gov (United States)

    Animal agriculture appears to contribute to the spread of antibiotic resistance genes, but few studies have quantified gene transport in agricultural fields. The transport of tylosin, tylosin-resistance genes (erm B, F, A) and tylosin-resistant Enterococcus were measured in tile drainage water from ...

  10. Antimicrobial susceptibility and occurrence of resistance genes among Salmonella enterica serovar Weltevreden from different countries

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Lertworapreecha, M.; Evans, M.C.

    2003-01-01

    and gentamicin. All nine ampicillin-resistant isolates contained a sequence similar to the bla(TEM-1b) gene, one of the eight chloramphenicol-resistant isolates a sequence similar to the catA1 gene, all three neomycin-resistant isolates a sequence similar to the aphA-2 gene, 16 (73%) of the 22 streptomycin...

  11. cluster

    Indian Academy of Sciences (India)

    has been investigated electrochemically in positive and negative microenvironments, both in solution and in film. Charge nature around the active centre ... in plants, bacteria and also in mammals. This cluster is also an important constituent of a ..... selection of non-cysteine amino acid in the active centre of Rieske proteins.

  12. Heavy metal and disinfectant resistance genes among livestock-associated methicillin-resistant Staphylococcus aureus isolates

    DEFF Research Database (Denmark)

    Argudin, Maria Angeles; Lauzat, Birgit; Kraushaar, Britta

    2016-01-01

    substances with antimicrobial activity applied in animal feed, including metal-containing compounds might contribute to their selection. Some of these genes have been found in various novel SCCmec cassettes. The aim of this study was to assess the occurrence of metal-resistance genes among a LA-S. aureus...... collection [n = 554, including 542 MRSA and 12 methicillin-susceptible S. aureus (MSSA)] isolated from livestock and food thereof. Most LA-MRSA isolates (76%) carried at least one metal-resistance gene. Among the LA-MRSA CC398 isolates (n = 456), 4.8%, 0.2%, 24.3% and 71.5% were positive for arsA (arsenic......, 72% carried one metal-resistance gene, and the remaining harboured two or more in different combinations. Differences between LA-MRSA CC398 and non-CC398 were statistically significant for arsA and czrC. The czrC gene was almost exclusively found (98%) in the presence of SCCmec V in both CC398...

  13. Characterisation of the paralytic shellfish toxin biosynthesis gene clusters in Anabaena circinalis AWQC131C and Aphanizomenon sp. NH-5

    Directory of Open Access Journals (Sweden)

    Neilan Brett A

    2009-03-01

    Full Text Available Abstract Background Saxitoxin and its analogues collectively known as the paralytic shellfish toxins (PSTs are neurotoxic alkaloids and are the cause of the syndrome named paralytic shellfish poisoning. PSTs are produced by a unique biosynthetic pathway, which involves reactions that are rare in microbial metabolic pathways. Nevertheless, distantly related organisms such as dinoflagellates and cyanobacteria appear to produce these toxins using the same pathway. Hypothesised explanations for such an unusual phylogenetic distribution of this shared uncommon metabolic pathway, include a polyphyletic origin, an involvement of symbiotic bacteria, and horizontal gene transfer. Results We describe the identification, annotation and bioinformatic characterisation of the putative paralytic shellfish toxin biosynthesis clusters in an Australian isolate of Anabaena circinalis and an American isolate of Aphanizomenon sp., both members of the Nostocales. These putative PST gene clusters span approximately 28 kb and contain genes coding for the biosynthesis and export of the toxin. A putative insertion/excision site in the Australian Anabaena circinalis AWQC131C was identified, and the organization and evolution of the gene clusters are discussed. A biosynthetic pathway leading to the formation of saxitoxin and its analogues in these organisms is proposed. Conclusion The PST biosynthesis gene cluster presents a mosaic structure, whereby genes have apparently transposed in segments of varying size, resulting in different gene arrangements in all three sxt clusters sequenced so far. The gene cluster organizational structure and sequence similarity seems to reflect the phylogeny of the producer organisms, indicating that the gene clusters have an ancient origin, or that their lateral transfer was also an ancient event. The knowledge we gain from the characterisation of the PST biosynthesis gene clusters, including the identity and sequence of the genes involved

  14. Characterisation of the paralytic shellfish toxin biosynthesis gene clusters in Anabaena circinalis AWQC131C and Aphanizomenon sp. NH-5.

    Science.gov (United States)

    Mihali, Troco K; Kellmann, Ralf; Neilan, Brett A

    2009-03-30

    Saxitoxin and its analogues collectively known as the paralytic shellfish toxins (PSTs) are neurotoxic alkaloids and are the cause of the syndrome named paralytic shellfish poisoning. PSTs are produced by a unique biosynthetic pathway, which involves reactions that are rare in microbial metabolic pathways. Nevertheless, distantly related organisms such as dinoflagellates and cyanobacteria appear to produce these toxins using the same pathway. Hypothesised explanations for such an unusual phylogenetic distribution of this shared uncommon metabolic pathway, include a polyphyletic origin, an involvement of symbiotic bacteria, and horizontal gene transfer. We describe the identification, annotation and bioinformatic characterisation of the putative paralytic shellfish toxin biosynthesis clusters in an Australian isolate of Anabaena circinalis and an American isolate of Aphanizomenon sp., both members of the Nostocales. These putative PST gene clusters span approximately 28 kb and contain genes coding for the biosynthesis and export of the toxin. A putative insertion/excision site in the Australian Anabaena circinalis AWQC131C was identified, and the organization and evolution of the gene clusters are discussed. A biosynthetic pathway leading to the formation of saxitoxin and its analogues in these organisms is proposed. The PST biosynthesis gene cluster presents a mosaic structure, whereby genes have apparently transposed in segments of varying size, resulting in different gene arrangements in all three sxt clusters sequenced so far. The gene cluster organizational structure and sequence similarity seems to reflect the phylogeny of the producer organisms, indicating that the gene clusters have an ancient origin, or that their lateral transfer was also an ancient event. The knowledge we gain from the characterisation of the PST biosynthesis gene clusters, including the identity and sequence of the genes involved in the biosynthesis, may also afford the identification of

  15. A scan statistic to extract causal gene clusters from case-control genome-wide rare CNV data

    Directory of Open Access Journals (Sweden)

    Scherer Stephen W

    2011-05-01

    Full Text Available Abstract Background Several statistical tests have been developed for analyzing genome-wide association data by incorporating gene pathway information in terms of gene sets. Using these methods, hundreds of gene sets are typically tested, and the tested gene sets often overlap. This overlapping greatly increases the probability of generating false positives, and the results obtained are difficult to interpret, particularly when many gene sets show statistical significance. Results We propose a flexible statistical framework to circumvent these problems. Inspired by spatial scan statistics for detecting clustering of disease occurrence in the field of epidemiology, we developed a scan statistic to extract disease-associated gene clusters from a whole gene pathway. Extracting one or a few significant gene clusters from a global pathway limits the overall false positive probability, which results in increased statistical power, and facilitates the interpretation of test results. In the present study, we applied our method to genome-wide association data for rare copy-number variations, which have been strongly implicated in common diseases. Application of our method to a simulated dataset demonstrated the high accuracy of this method in detecting disease-associated gene clusters in a whole gene pathway. Conclusions The scan statistic approach proposed here shows a high level of accuracy in detecting gene clusters in a whole gene pathway. This study has provided a sound statistical framework for analyzing genome-wide rare CNV data by incorporating topological information on the gene pathway.

  16. Resistance of Antimicrobial Peptide Gene Transgenic Rice to Bacterial Blight

    Directory of Open Access Journals (Sweden)

    Wei WANG

    2011-03-01

    Full Text Available Antimicrobial peptide is a polypeptide with antimicrobial activity. Antimicrobial peptide genes Np3 and Np5 from Chinese shrimp (Fenneropenaeus Chinensis were integrated into Oryza sativa L. subsp. japonica cv. Aichi ashahi by Agrobacterium mediated transformation system. PCR analysis showed that the positive ratios of Np3 and Np5 were 36% and 45% in T0 generation, respectively. RT-PCR analysis showed that the antimicrobial peptide genes were expressed in T1 generation, and there was no obvious difference in agronomic traits between transgenic plants and non-transgenic plants. Four Np3 and Np5 transgenic lines in T1 generation were inoculated with Xanthomonas oryzae pv. oryzae strain CR4, and all the four transgenic lines had significantly enhanced resistance to bacterial blight caused by the strain CR4. The Np5 transgenic lines also showed higher resistance to bacterial blight caused by strains JS97-2, Zhe 173 and OS-225. It is suggested that transgenic lines with Np5 gene might possess broad spectrum resistance to rice bacterial blight.

  17. Two Gene Clusters Coordinate Galactose and Lactose Metabolism in Streptococcus gordonii

    Science.gov (United States)

    Zeng, Lin; Martino, Nicole C.

    2012-01-01

    Streptococcus gordonii is an early colonizer of the human oral cavity and an abundant constituent of oral biofilms. Two tandemly arranged gene clusters, designated lac and gal, were identified in the S. gordonii DL1 genome, which encode genes of the tagatose pathway (lacABCD) and sugar phosphotransferase system (PTS) enzyme II permeases. Genes encoding a predicted phospho-β-galactosidase (LacG), a DeoR family transcriptional regulator (LacR), and a transcriptional antiterminator (LacT) were also present in the clusters. Growth and PTS assays supported that the permease designated EIILac transports lactose and galactose, whereas EIIGal transports galactose. The expression of the gene for EIIGal was markedly upregulated in cells growing on galactose. Using promoter-cat fusions, a role for LacR in the regulation of the expressions of both gene clusters was demonstrated, and the gal cluster was also shown to be sensitive to repression by CcpA. The deletion of lacT caused an inability to grow on lactose, apparently because of its role in the regulation of the expression of the genes for EIILac, but had little effect on galactose utilization. S. gordonii maintained a selective advantage over Streptococcus mutans in a mixed-species competition assay, associated with its possession of a high-affinity galactose PTS, although S. mutans could persist better at low pHs. Collectively, these results support the concept that the galactose and lactose systems of S. gordonii are subject to complex regulation and that a high-affinity galactose PTS may be advantageous when S. gordonii is competing against the caries pathogen S. mutans in oral biofilms. PMID:22660715

  18. DMRT gene cluster analysis in the platypus: new insights into genomic organization and regulatory regions.

    Science.gov (United States)

    El-Mogharbel, Nisrine; Wakefield, Matthew; Deakin, Janine E; Tsend-Ayush, Enkhjargal; Grützner, Frank; Alsop, Amber; Ezaz, Tariq; Marshall Graves, Jennifer A

    2007-01-01

    We isolated and characterized a cluster of platypus DMRT genes and compared their arrangement, location, and sequence across vertebrates. The DMRT gene cluster on human 9p24.3 harbors, in order, DMRT1, DMRT3, and DMRT2, which share a DM domain. DMRT1 is highly conserved and involved in sexual development in vertebrates, and deletions in this region cause sex reversal in humans. Sequence comparisons of DMRT genes between species have been valuable in identifying exons, control regions, and conserved nongenic regions (CNGs). The addition of platypus sequences is expected to be particularly valuable, since monotremes fill a gap in the vertebrate genome coverage. We therefore isolated and fully sequenced platypus BAC clones containing DMRT3 and DMRT2 as well as DMRT1 and then generated multispecies alignments and ran prediction programs followed by experimental verification to annotate this gene cluster. We found that the three genes have 58-66% identity to their human orthologues, lie in the same order as in other vertebrates, and colocate on 1 of the 10 platypus sex chromosomes, X5. We also predict that optimal annotation of the newly sequenced platypus genome will be challenging. The analysis of platypus sequence revealed differences in structure and sequence of the DMRT gene cluster. Multispecies comparison was particularly effective for detecting CNGs, revealing several novel potential regulatory regions within DMRT3 and DMRT2 as well as DMRT1. RT-PCR indicated that platypus DMRT1 and DMRT3 are expressed specifically in the adult testis (and not ovary), but DMRT2 has a wider expression profile, as it does for other mammals. The platypus DMRT1 expression pattern, and its location on an X chromosome, suggests an involvement in monotreme sexual development.

  19. Expression levels of resistant genes affect cervical cancer prognosis.

    Science.gov (United States)

    Yang, Fengmei; Gao, Bo; Li, Rui; Li, Wencui; Chen, Wei; Yu, Zongtao; Zhang, Jicai

    2017-05-01

    Tumor cells may develop multidrug resistance (MDR) to various chemotherapy regimens. Such resistance reduces the sensitivity of cells to chemotherapy drugs, leading to the failure of cervical cancer (CC) treatment and disease progression. The present study aimed to investigate the role of MDR1, lung resistance protein (LRP) and placental glutathione S‑transferase π 1 (GSTP1) in CC and MDR, and the prognostic value of these genes. The mRNA expression levels of these resistance‑associated genes were determined in 47 CC and 20 healthy cervical tissue samples. Subsequently, the data was analyzed alongside clinicopathological parameters. The mRNA expression levels of MDR1, LRP and GSTP1 in CC were 0.57±0.32, 0.58±0.29 and 0.44±0.24, respectively, whereas those in healthy cervical tissues were 0.19±0.10, 0.17±0.14 and 0.18±0.10, respectively. Therefore, the expression levels of these genes were significantly greater in CC compared with healthy cervical tissue (PMRD1 were increased in the well differentiated group (0.68±0.27) compared with the poorly differentiated group (0.38±0.33; P0.05). Multivariate logistic regression indicated that the degree of differentiation and the MDR1 gene expression levels were predictors of CC prognosis (P<0.05). The survival rate of patients in the MDR1‑negative group was significantly greater compared with the MDR1‑positive group (P<0.05). The results of the present study therefore suggested that MDR1 gene expression is a predictor of poor survival in CC.

  20. A novel method incorporating gene ontology information for unsupervised clustering and feature selection.

    Directory of Open Access Journals (Sweden)

    Shireesh Srivastava

    Full Text Available Among the primary goals of microarray analysis is the identification of genes that could distinguish between different phenotypes (feature selection. Previous studies indicate that incorporating prior information of the genes' function could help identify physiologically relevant features. However, current methods that incorporate prior functional information do not provide a relative estimate of the effect of different genes on the biological processes of interest.Here, we present a method that integrates gene ontology (GO information and expression data using Bayesian regression mixture models to perform unsupervised clustering of the samples and identify physiologically relevant discriminating features. As a model application, the method was applied to identify the genes that play a role in the cytotoxic responses of human hepatoblastoma cell line (HepG2 to saturated fatty acid (SFA and tumor necrosis factor (TNF-alpha, as compared to the non-toxic response to the unsaturated FFAs (UFA and TNF-alpha. Incorporation of prior knowledge led to a better discrimination of the toxic phenotypes from the others. The model identified roles of lysosomal ATPases and adenylate cyclase (AC9 in the toxicity of palmitate. To validate the role of AC in palmitate-treated cells, we measured the intracellular levels of cyclic AMP (cAMP. The cAMP levels were found to be significantly reduced by palmitate treatment and not by the other FFAs, in accordance with the model selection of AC9.A framework is presented that incorporates prior ontology information, which helped to (a perform unsupervised clustering of the phenotypes, and (b identify the genes relevant to each cluster of phenotypes. We demonstrate the proposed framework by applying it to identify physiologically-relevant feature genes that conferred differential toxicity to saturated vs. unsaturated FFAs. The framework can be applied to other problems to efficiently integrate ontology information and

  1. An enhanced deterministic K-Means clustering algorithm for cancer subtype prediction from gene expression data.

    Science.gov (United States)

    Nidheesh, N; Abdul Nazeer, K A; Ameer, P M

    2017-12-01

    Clustering algorithms with steps involving randomness usually give different results on different executions for the same dataset. This non-deterministic nature of algorithms such as the K-Means clustering algorithm limits their applicability in areas such as cancer subtype prediction using gene expression data. It is hard to sensibly compare the results of such algorithms with those of other algorithms. The non-deterministic nature of K-Means is due to its random selection of data points as initial centroids. We propose an improved, density based version of K-Means, which involves a novel and systematic method for selecting initial centroids. The key idea of the algorithm is to select data points which belong to dense regions and which are adequately separated in feature space as the initial centroids. We compared the proposed algorithm to a set of eleven widely used single clustering algorithms and a prominent ensemble clustering algorithm which is being used for cancer data classification, based on the performances on a set of datasets comprising ten cancer gene expression datasets. The proposed algorithm has shown better overall performance than the others. There is a pressing need in the Biomedical domain for simple, easy-to-use and more accurate Machine Learning tools for cancer subtype prediction. The proposed algorithm is simple, easy-to-use and gives stable results. Moreover, it provides comparatively better predictions of cancer subtypes from gene expression data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Identification of Gene Resistance to Avian InfluenzaVirus (Mx Gene among Wild Waterbirds

    Directory of Open Access Journals (Sweden)

    Dewi Elfidasari

    2013-04-01

    Full Text Available The Mx gene is an antiviral gene used to determine the resistance or the susceptibility to different types of viruses, including the Avian Influenza (AI virus subtype H5N1. The AI virus subtype H5N1 infection in chickens causes Mx gene polymorphism. The Mx+ gene shows resistant to the AIvirus subtype H5N1, whereas the Mx-gene shows signs of susceptible. The objective of thisresearch was to detect the Mxgene in wild aquatic birds using the Polymerase Chain Reaction Restriction Fragment Length Polymorphism (PCR-RFLP method with the primer pairs F2 and NE-R2/R and the RsaI restriction enzyme. DNA samples were obtained from eight species of wild waterbirds with positive and negative exposure to the AI virus subtype H5N1. DNA amplification results showed that the Mxgene in wild aquatic birds is found in a 100 bp fragment, which is the same as the Mx gene found in chickens. However, unlike chickens, the Mxgene in wild aquatic birds did not show any polymorphism. This study proves that Mx- based resistance to AI virus subtype H5N1 in different in wild birds than in chickens.

  3. A novel approach for multi-domain and multi-gene family identification provides insights into evolutionary dynamics of disease resistance genes in core eudicot plants.

    Science.gov (United States)

    Hofberger, Johannes A; Zhou, Beifei; Tang, Haibao; Jones, Jonathan D G; Schranz, M Eric

    2014-11-08

    Recent advances in DNA sequencing techniques resulted in more than forty sequenced plant genomes representing a diverse set of taxa of agricultural, energy, medicinal and ecological importance. However, gene family curation is often only inferred from DNA sequence homology and lacks insights into evolutionary processes contributing to gene family dynamics. In a comparative genomics framework, we integrated multiple lines of evidence provided by gene synteny, sequence homology and protein-based Hidden Markov Modelling to extract homologous super-clusters composed of multi-domain resistance (R)-proteins of the NB-LRR type (for NUCLEOTIDE BINDING/LEUCINE-RICH REPEATS), that are involved in plant innate immunity. To assess the diversity of R-proteins within and between species, we screened twelve eudicot plant genomes including six major crops and found a total of 2,363 NB-LRR genes. Our curated R-proteins set shows a 50% average for tandem duplicates and a 22% fraction of gene copies retained from ancient polyploidy events (ohnologs). We provide evidence for strong positive selection and show significant differences in molecular evolution rates (Ka/Ks-ratio) among tandem- (mean = 1.59), ohnolog (mean = 1.36) and singleton (mean = 1.22) R-gene duplicates. To foster the process of gene-edited plant breeding, we report species-specific presence/absence of all 140 NB-LRR genes present in the model plant Arabidopsis and describe four distinct clusters of NB-LRR "gatekeeper" loci sharing syntenic orthologs across all analyzed genomes. By curating a near-complete set of multi-domain R-protein clusters in an eudicot-wide scale, our analysis offers significant insight into evolutionary dynamics underlying diversification of the plant innate immune system. Furthermore, our methods provide a blueprint for future efforts to identify and more rapidly clone functional NB-LRR genes from any plant species.

  4. Genetic variations and haplotype diversity of the UGT1 gene cluster in the Chinese population.

    Directory of Open Access Journals (Sweden)

    Jing Yang

    Full Text Available Vertebrates require tremendous molecular diversity to defend against numerous small hydrophobic chemicals. UDP-glucuronosyltransferases (UGTs are a large family of detoxification enzymes that glucuronidate xenobiotics and endobiotics, facilitating their excretion from the body. The UGT1 gene cluster contains a tandem array of variable first exons, each preceded by a specific promoter, and a common set of downstream constant exons, similar to the genomic organization of the protocadherin (Pcdh, immunoglobulin, and T-cell receptor gene clusters. To assist pharmacogenomics studies in Chinese, we sequenced nine first exons, promoter and intronic regions, and five common exons of the UGT1 gene cluster in a population sample of 253 unrelated Chinese individuals. We identified 101 polymorphisms and found 15 novel SNPs. We then computed allele frequencies for each polymorphism and reconstructed their linkage disequilibrium (LD map. The UGT1 cluster can be divided into five linkage blocks: Block 9 (UGT1A9, Block 9/7/6 (UGT1A9, UGT1A7, and UGT1A6, Block 5 (UGT1A5, Block 4/3 (UGT1A4 and UGT1A3, and Block 3' UTR. Furthermore, we inferred haplotypes and selected their tagSNPs. Finally, comparing our data with those of three other populations of the HapMap project revealed ethnic specificity of the UGT1 genetic diversity in Chinese. These findings have important implications for future molecular genetic studies of the UGT1 gene cluster as well as for personalized medical therapies in Chinese.

  5. Historical introgression of the downy mildew resistance gene Rpv12 from the Asian species Vitis amurensis into grapevine varieties.

    Directory of Open Access Journals (Sweden)

    Silvia Venuti

    Full Text Available The Amur grape (Vitis amurensis Rupr. thrives naturally in cool climates of Northeast Asia. Resistance against the introduced pathogen Plasmopara viticola is common among wild ecotypes that were propagated from Manchuria into Chinese vineyards or collected by Soviet botanists in Siberia, and used for the introgression of resistance into wine grapes (Vitis vinifera L.. A QTL analysis revealed a dominant gene Rpv12 that explained 79% of the phenotypic variance for downy mildew resistance and was inherited independently of other resistance genes. A Mendelian component of resistance-a hypersensitive response in leaves challenged with P. viticola-was mapped in an interval of 0.2 cM containing an array of coiled-coil NB-LRR genes on chromosome 14. We sequenced 10-kb genic regions in the Rpv12(+ haplotype and identified polymorphisms in 12 varieties of V. vinifera using next-generation sequencing. The combination of two SNPs in single-copy genes flanking the NB-LRR cluster distinguished the resistant haplotype from all others found in 200 accessions of V. vinifera, V. amurensis, and V. amurensis x V. vinifera crosses. The Rpv12(+ haplotype is shared by 15 varieties, the most ancestral of which are the century-old 'Zarja severa' and 'Michurinets'. Before this knowledge, the chromosome segment around Rpv12(+ became introgressed, shortened, and pyramided with another downy mildew resistance gene from North American grapevines (Rpv3 only by phenotypic selection. Rpv12(+ has an additive effect with Rpv3(+ to protect vines against natural infections, and confers foliar resistance to strains that are virulent on Rpv3(+ plants.

  6. Cluster of linezolid-resistant Enterococcus faecium ST117 in Norwegian hospitals.

    Science.gov (United States)

    Hegstad, Kristin; Longva, Jørn-Åge; Hide, Reidar; Aasnæs, Bettina; Lunde, Tracy M; Simonsen, Gunnar Skov

    2014-10-01

    A linezolid-resistant, vancomycin-susceptible Enterococcus faecium strain was isolated from 3 patients who had not received linezolid. The first patient was hospitalized in the same hospitals and wards as the 2 following patients. The E. faecium isolates were resistant to linezolid (minimum inhibitory concentration 8-32 mg/l), ampicillin, and high levels of gentamicin. Resistance to linezolid was associated with a G2576T mutation in 23S rDNA. The cfr linezolid resistance gene was not detected. The 3 isolates showed identical DNA fingerprints by pulsed-field gel electrophoresis, belonged to ST117, and harboured virulence genes esp, hyl, acm, efaAfm, srgA, ecbA, scm, pilA, pilB, and pstD typically associated with high-risk E. faecium genotypes. The linezolid-resistant E. faecium high-risk clone caused bacteraemia in the first 2 cancer patients and survived in the hospital environment for more than a year before appearing in the urethral catheter of the third patient.

  7. Virulence Genes and Antimicrobial Resistance Profiles of Pasteurella multocida Strains Isolated from Rabbits in Brazil

    Directory of Open Access Journals (Sweden)

    Thais Sebastiana Porfida Ferreira

    2012-01-01

    Full Text Available Pasteurella multocida is responsible for a wide range of diseases in domestic animals. In rabbits, the agent is related to nasal discharge, pneumonia, otitis media, pyometra, orchitis, abscess, and septicemia. One hundred and forty rabbits with respiratory diseases from four rabbitries in São Paulo State, Brazil were evaluated for the detection of P. multocida in their nasal cavities. A total of twenty-nine animals were positive to P. multocida isolation, and 46 strains were selected and characterized by means of biochemical tests and PCR. P. multocida strains were tested for capsular type, virulence genes, and resistance profile. A total of 45.6% (21/46 of isolates belonged to capsular type A, and 54.34% (25/46 of the isolates were untypeable. None of the strains harboured toxA or pfhA genes. The frequency of the other twenty genes tested was variable, and the data generated was used to build a dendrogram, showing the relatedness of strains, which were clustered according to origin. Resistance revealed to be more common against sulfonamides and cotrimoxazole, followed by erythromycin, penicillin, and amoxicillin.

  8. Characterization of Antimicrobial Resistance Patterns and Detection of Virulence Genes in Campylobacter Isolates in Italy

    Directory of Open Access Journals (Sweden)

    Elisabetta Di Giannatale

    2014-02-01

    Full Text Available Campylobacter has developed resistance to several antimicrobial agents over the years, including macrolides, quinolones and fluoroquinolones, becoming a significant public health hazard. A total of 145 strains derived from raw milk, chicken faeces, chicken carcasses, cattle faeces and human faeces collected from various Italian regions, were screened for antimicrobial susceptibility, molecular characterization (SmaI pulsed-field gel electrophoresis and detection of virulence genes (sequencing and DNA microarray analysis. The prevalence of C. jejuni and C. coli was 62.75% and 37.24% respectively. Antimicrobial susceptibility revealed a high level of resistance for ciprofloxacin (62.76%, tetracycline (55.86% and nalidixic acid (55.17%. Genotyping of Campylobacter isolates using PFGE revealed a total of 86 unique SmaI patterns. Virulence gene profiles were determined using a new microbial diagnostic microarray composed of 70-mer oligonucleotide probes targeting genes implicated in Campylobacter pathogenicity. Correspondence between PFGE and microarray clusters was observed. Comparisons of PFGE and virulence profiles reflected the high genetic diversity of the strains examined, leading us to speculate different degrees of pathogenicity inside Campylobacter populations.

  9. Characterization of antimicrobial resistance patterns and detection of virulence genes in Campylobacter isolates in Italy.

    Science.gov (United States)

    Di Giannatale, Elisabetta; Di Serafino, Gabriella; Zilli, Katiuscia; Alessiani, Alessandra; Sacchini, Lorena; Garofolo, Giuliano; Aprea, Giuseppe; Marotta, Francesca

    2014-02-19

    Campylobacter has developed resistance to several antimicrobial agents over the years, including macrolides, quinolones and fluoroquinolones, becoming a significant public health hazard. A total of 145 strains derived from raw milk, chicken faeces, chicken carcasses, cattle faeces and human faeces collected from various Italian regions, were screened for antimicrobial susceptibility, molecular characterization (SmaI pulsed-field gel electrophoresis) and detection of virulence genes (sequencing and DNA microarray analysis). The prevalence of C. jejuni and C. coli was 62.75% and 37.24% respectively. Antimicrobial susceptibility revealed a high level of resistance for ciprofloxacin (62.76%), tetracycline (55.86%) and nalidixic acid (55.17%). Genotyping of Campylobacter isolates using PFGE revealed a total of 86 unique SmaI patterns. Virulence gene profiles were determined using a new microbial diagnostic microarray composed of 70-mer oligonucleotide probes targeting genes implicated in Campylobacter pathogenicity. Correspondence between PFGE and microarray clusters was observed. Comparisons of PFGE and virulence profiles reflected the high genetic diversity of the strains examined, leading us to speculate different degrees of pathogenicity inside Campylobacter populations.

  10. Characterization of Antimicrobial Resistance Patterns and Detection of Virulence Genes in Campylobacter Isolates in Italy

    Science.gov (United States)

    Di Giannatale, Elisabetta; Di Serafino, Gabriella; Zilli, Katiuscia; Alessiani, Alessandra; Sacchini, Lorena; Garofolo, Giuliano; Aprea, Giuseppe; Marotta, Francesca

    2014-01-01

    Campylobacter has developed resistance to several antimicrobial agents over the years, including macrolides, quinolones and fluoroquinolones, becoming a significant public health hazard. A total of 145 strains derived from raw milk, chicken faeces, chicken carcasses, cattle faeces and human faeces collected from various Italian regions, were screened for antimicrobial susceptibility, molecular characterization (SmaI pulsed-field gel electrophoresis) and detection of virulence genes (sequencing and DNA microarray analysis). The prevalence of C. jejuni and C. coli was 62.75% and 37.24% respectively. Antimicrobial susceptibility revealed a high level of resistance for ciprofloxacin (62.76%), tetracycline (55.86%) and nalidixic acid (55.17%). Genotyping of Campylobacter isolates using PFGE revealed a total of 86 unique SmaI patterns. Virulence gene profiles were determined using a new microbial diagnostic microarray composed of 70-mer oligonucleotide probes targeting genes implicated in Campylobacter pathogenicity. Correspondence between PFGE and microarray clusters was observed. Comparisons of PFGE and virulence profiles reflected the high genetic diversity of the strains examined, leading us to speculate different degrees of pathogenicity inside Campylobacter populations. PMID:24556669

  11. Antibiotic Resistance Genes and Correlations with Microbial Community and Metal Resistance Genes in Full-Scale Biogas Reactors As Revealed by Metagenomic Analysis.

    Science.gov (United States)

    Luo, Gang; Li, Bing; Li, Li-Guan; Zhang, Tong; Angelidaki, Irini

    2017-04-04

    Digested residues from biogas plants are often used as biofertilizers for agricultural crops cultivation. The antibiotic resistance genes (ARGs) in digested residues pose a high risk to public health due to their potential spread to the disease-causing microorganisms and thus reduce the susceptibility of disease-causing microorganisms to antibiotics in medical treatment. A high-throughput sequencing (HTS)-based metagenomic approach was used in the present study to investigate the variations of ARGs in full-scale biogas reactors and the correlations of ARGs with microbial communities and metal resistance genes (MRGs). The total abundance of ARGs in all the samples varied from 7 × 10 -3 to 1.08 × 10 -1 copy of ARG/copy of 16S-rRNA gene, and the samples obtained from thermophilic biogas reactors had a lower total abundance of ARGs, indicating the superiority of thermophilic anaerobic digestion for ARGs removal. ARGs in all the samples were composed of 175 ARG subtypes; however, only 7 ARG subtypes were shared by all the samples. Principal component analysis and canonical correspondence analysis clustered the samples into three groups (samples from manure-based mesophilic reactors, manure-based thermophilic reactors, and sludge-based mesophilic reactors), and substrate, temperature, and hydraulic retention time (HRT) as well as volatile fatty acids (VFAs) were identified as crucial environmental variables affecting the ARGs compositions. Procrustes analysis revealed microbial community composition was the determinant of ARGs composition in biogas reactors, and there was also a significant correlation between ARGs composition and MRGs composition. Network analysis further revealed the co-occurrence of ARGs with specific microorganisms and MRGs.

  12. Sequencing and transcriptional analysis of the Streptococcus thermophilus histamine biosynthesis gene cluster: factors that affect differential hdcA expression

    DEFF Research Database (Denmark)

    Calles-Enríquez, Marina; Hjort, Benjamin Benn; Andersen, Pia Skov

    2010-01-01

    to produce histamine. The hdc clusters of S. thermophilus CHCC1524 and CHCC6483 were sequenced, and the factors that affect histamine biosynthesis and histidine-decarboxylating gene (hdcA) expression were studied. The hdc cluster began with the hdcA gene, was followed by a transporter (hdcP), and ended...... with the hdcB gene, which is of unknown function. The three genes were orientated in the same direction. The genetic organization of the hdc cluster showed a unique organization among the lactic acid bacterial group and resembled those of Staphylococcus and Clostridium species, thus indicating possible...... acquisition through a horizontal transfer mechanism. Transcriptional analysis of the hdc cluster revealed the existence of a polycistronic mRNA covering the three genes. The histidine-decarboxylating gene (hdcA) of S. thermophilus demonstrated maximum expression during the stationary growth phase, with high...

  13. MeSH key terms for validation and annotation of gene expression clusters

    Energy Technology Data Exchange (ETDEWEB)

    Rechtsteiner, A. (Andreas); Rocha, L. M. (Luis Mateus)

    2004-01-01

    Integration of different sources of information is a great challenge for the analysis of gene expression data, and for the field of Functional Genomics in general. As the availability of numerical data from high-throughput methods increases, so does the need for technologies that assist in the validation and evaluation of the biological significance of results extracted from these data. In mRNA assaying with microarrays, for example, numerical analysis often attempts to identify clusters of co-expressed genes. The important task to find the biological significance of the results and validate them has so far mostly fallen to the biological expert who had to perform this task manually. One of the most promising avenues to develop automated and integrative technology for such tasks lies in the application of modern Information Retrieval (IR) and Knowledge Management (KM) algorithms to databases with biomedical publications and data. Examples of databases available for the field are bibliographic databases c ntaining scientific publications (e.g. MEDLINE/PUBMED), databases containing sequence data (e.g. GenBank) and databases of semantic annotations (e.g. the Gene Ontology Consortium and Medical Subject Headings (MeSH)). We present here an approach that uses the MeSH terms and their concept hierarchies to validate and obtain functional information for gene expression clusters. The controlled and hierarchical MeSH vocabulary is used by the National Library of Medicine (NLM) to index all the articles cited in MEDLINE. Such indexing with a controlled vocabulary eliminates some of the ambiguity due to polysemy (terms that have multiple meanings) and synonymy (multiple terms have similar meaning) that would be encountered if terms would be extracted directly from the articles due to differing article contexts or author preferences and background. Further, the hierarchical organization of the MeSH terms can illustrate the conceptuallfunctional relationships of genes

  14. A highly conserved NB-LRR encoding gene cluster effective against Setosphaeria turcica in sorghum

    Directory of Open Access Journals (Sweden)

    Martin Tom

    2011-11-01

    Full Text Available Abstract Background The fungal pathogen Setosphaeria turcica causes turcicum or northern leaf blight disease on maize, sorghum and related grasses. A prevalent foliar disease found worldwide where the two host crops, maize and sorghum are grown. The aim of the present study was to find genes controlling the host defense response to this devastating plant pathogen. A cDNA-AFLP approach was taken to identify candidate sequences, which functions were further validated via virus induced gene silencing (VIGS, and real-time PCR analysis. Phylogenetic analysis was performed to address evolutionary events. Results cDNA-AFLP analysis was run on susceptible and resistant sorghum and maize genotypes to identify resistance-related sequences. One CC-NB-LRR encoding gene GRMZM2G005347 was found among the up-regulated maize transcripts after fungal challenge. The new plant resistance gene was designated as St referring to S. turcica. Genome sequence comparison revealed that the CC-NB-LRR encoding St genes are located on chromosome 2 in maize, and on chromosome 5 in sorghum. The six St sorghum genes reside in three pairs in one locus. When the sorghum St genes were silenced via VIGS, the resistance was clearly compromised, an observation that was supported by real-time PCR. Database searches and phylogenetic analysis suggest that the St genes have a common ancestor present before the grass subfamily split 50-70 million years ago. Today, 6 genes are present in sorghum, 9 in rice and foxtail millet, respectively, 3 in maize and 4 in Brachypodium distachyon. The St gene homologs have all highly conserved sequences, and commonly reside as gene pairs in the grass genomes. Conclusions Resistance genes to S. turcica, with a CC-NB-LRR protein domain architecture, have been found in maize and sorghum. VIGS analysis revealed their importance in the surveillance to S. turcica in sorghum. The St genes are highly conserved in sorghum, rice, foxtail millet, maize and

  15. A double EPSPS gene mutation endowing glyphosate resistance shows a remarkably high resistance cost.

    Science.gov (United States)

    Han, Heping; Vila-Aiub, Martin M; Jalaludin, Adam; Yu, Qin; Powles, Stephen B

    2017-12-01

    A novel glyphosate resistance double point mutation (T102I/P106S, TIPS) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene has been recently identified for the first time only in the weed species Eleusine indica. Quantification of plant resistance cost associated with the TIPS and the often reported glyphosate resistance single P106S mutation was performed. A significant resistance cost (50% in seed number currency) associated with the homozygous TIPS but not the homozygous P106S EPSPS variant was identified in E. indica plants. The resistance cost associated with the TIPS mutation escalated to 85% in plants under resource competition with rice crops. The resistance cost was not detected in nonhomozygous TIPS plants denoting the recessive nature of the cost associated with the TIPS allele. An excess of 11-fold more shikimate and sixfold more quinate in the shikimate pathway was detected in TIPS plants in the absence of glyphosate treatment compared to wild type, whereas no changes in these compounds were observed in P106S plants when compared to wild type. TIPS plants show altered metabolite levels in several other metabolic pathways that may account for the expression of the observed resistance cost. © 2017 John Wiley & Sons Ltd.

  16. Rearranged Biosynthetic Gene Cluster and Synthesis of Hassallidin E in Planktothrix serta PCC 8927.

    Science.gov (United States)

    Pancrace, Claire; Jokela, Jouni; Sassoon, Nathalie; Ganneau, Christelle; Desnos-Ollivier, Marie; Wahlsten, Matti; Humisto, Anu; Calteau, Alexandra; Bay, Sylvie; Fewer, David P; Sivonen, Kaarina; Gugger, Muriel

    2017-07-21

    Cyanobacteria produce a wide range of natural products with antifungal bioactivity. The cyclic glycosylated lipopeptides of the hassallidin family have potent antifungal activity and display a great degree of chemical diversity. Here, we report the discovery of a hassallidin biosynthetic gene cluster from the filamentous cyanobacterium Planktothrix serta PCC 8927. The hassallidin gene cluster showed heavy rearrangement and marks of genomic plasticity. Nucleotide bias, differences in GC content, and phylogenetic incongruence suggested the acquisition of the hassallidin biosynthetic gene cluster in Planktothrix serta PCC 8927 by horizontal gene transfer. Chemical analyses by liquid chromatography and mass spectrometry demonstrated that this strain produced hassallidin E, a new glycosylated hassallidin variant. Hassallidin E was the only structural variant produced by Planktothrix serta PCC 8927 in all tested conditions. Further evaluated on human pathogenic fungi, hassallidin E showed an antifungal bioactivity. Hassallidin production levels correlated with nitrogen availability, in the only nitrogen-fixing Planktothrix described so far. Our results provide insights into the distribution and chemical diversity of cyanobacterial antifungal compounds as well as raise questions on their ecological relevance.

  17. Resistance gene homologues in melon are linked to genetic loci conferring disease and pest resistance.

    Science.gov (United States)

    Brotman, Y.; Silberstein, L.; Kovalski, I.; Perin, C.; Dogimont, C.; Pitrat, M.; Klingler, J.; Thompson, A.; Perl-Treves, R.

    2002-05-01

    Genomic and cDNA fragments with homology to known disease resistance genes (RGH fragments) were cloned from Cucumis melo using degenerate-primer PCR. Fifteen homologues of the NBS-LRR gene family have been isolated. The NBS-LRR homologues show high divergence and, based on the partial NBS-fragment sequences, appear to include members of the two major subfamilies that have been described in dicot plants, one that possesses a TIR-protein element and one that lacks such a domain. Genomic organization of these sequences was explored by DNA gel-blot analysis, and conservation among other Cucurbitaceae was assessed. Two mapping populations that segregate for several disease and pest resistance loci were used to map the RGH probes onto the melon genetic map. Several NBS-LRR related sequences mapped to the vicinity of genetic loci that control resistance to papaya ringspot virus, Fusarium oxysporum race 1, F. oxysporum race 2 and to the insect pest Aphis gossypii. The utility of such markers for breeding resistant melon cultivars and for cloning the respective R-genes is discussed.

  18. High sintering resistance of size-selected platinum cluster catalysts by suppressed ostwald ripening

    DEFF Research Database (Denmark)

    Wettergren, Kristina; Schweinberger, Florian F.; Deiana, Davide

    2014-01-01

    Employing rationally designed model systems with precise atom-by-atom particle size control, we demonstrate by means of combining noninvasive in situ indirect nanoplasmonic sensing and ex situ scanning transmission electron microscopy that monomodal size-selected platinum cluster catalysts...... on different supports exhibit remarkable intrinsic sintering resistance even under reaction conditions. The observed stability is related to suppression of Ostwald ripening by elimination of its main driving force via size-selection. This study thus constitutes a general blueprint for the rational design...... of sintering resistant catalyst systems and for efficient experimental strategies to determine sintering mechanisms. Moreover, this is the first systematic experimental investigation of sintering processes in nanoparticle systems with an initially perfectly monomodal size distribution under ambient conditions....

  19. Genomic organization, tissue distribution and functional characterization of the rat Pate gene cluster.

    Directory of Open Access Journals (Sweden)

    Angireddy Rajesh

    Full Text Available The cysteine rich prostate and testis expressed (Pate proteins identified till date are thought to resemble the three fingered protein/urokinase-type plasminogen activator receptor proteins. In this study, for the first time, we report the identification, cloning and characterization of rat Pate gene cluster and also determine the expression pattern. The rat Pate genes are clustered on chromosome 8 and their predicted proteins retained the ten cysteine signature characteristic to TFP/Ly-6 protein family. PATE and PATE-F three dimensional protein structure was found to be similar to that of the toxin bucandin. Though Pate gene expression is thought to be prostate and testis specific, we observed that rat Pate genes are also expressed in seminal vesicle and epididymis and in tissues beyond the male reproductive tract. In the developing rats (20-60 day old, expression of Pate genes seem to be androgen dependent in the epididymis and testis. In the adult rat, androgen ablation resulted in down regulation of the majority of Pate genes in the epididymides. PATE and PATE-F proteins were found to be expressed abundantly in the male reproductive tract of rats and on the sperm. Recombinant PATE protein exhibited potent antibacterial activity, whereas PATE-F did not exhibit any antibacterial activity. Pate expression was induced in the epididymides when challenged with LPS. Based on our results, we conclude that rat PATE proteins may contribute to the reproductive and defense functions.

  20. Conserved gene clusters in bacterial genomes provide further support for the primacy of RNA

    Science.gov (United States)

    Siefert, J. L.; Martin, K. A.; Abdi, F.; Widger, W. R.; Fox, G. E.

    1997-01-01

    Five complete bacterial genome sequences have been released to the scientific community. These include four (eu)Bacteria, Haemophilus influenzae, Mycoplasma genitalium, M. pneumoniae, and Synechocystis PCC 6803, as well as one Archaeon, Methanococcus jannaschii. Features of organization shared by these genomes are likely to have arisen very early in the history of the bacteria and thus can be expected to provide further insight into the nature of early ancestors. Results of a genome comparison of these five organisms confirm earlier observations that gene order is remarkably unpreserved. There are, nevertheless, at least 16 clusters of two or more genes whose order remains the same among the four (eu)Bacteria and these are presumed to reflect conserved elements of coordinated gene expression that require gene proximity. Eight of these gene orders are essentially conserved in the Archaea as well. Many of these clusters are known to be regulated by RNA-level mechanisms in Escherichia coli, which supports the earlier suggestion that this type of regulation of gene expression may have arisen very early. We conclude that although the last common ancestor may have had a DNA genome, it likely was preceded by progenotes with an RNA genome.

  1. QServer: a biclustering server for prediction and assessment of co-expressed gene clusters.

    Directory of Open Access Journals (Sweden)

    Fengfeng Zhou

    Full Text Available BACKGROUND: Biclustering is a powerful technique for identification of co-expressed gene groups under any (unspecified substantial subset of given experimental conditions, which can be used for elucidation of transcriptionally co-regulated genes. RESULTS: We have previously developed a biclustering algorithm, QUBIC, which can solve more general biclustering problems than previous biclustering algorithms. To fully utilize the analysis power the algorithm provides, we have developed a web server, QServer, for prediction, computational validation and analyses of co-expressed gene clusters. Specifically, the QServer has the following capabilities in addition to biclustering by QUBIC: (i prediction and assessment of conserved cis regulatory motifs in promoter sequences of the predicted co-expressed genes; (ii functional enrichment analyses of the predicted co-expressed gene clusters using Gene Ontology (GO terms, and (iii visualization capabilities in support of interactive biclustering analyses. QServer supports the biclustering and functional analysis for a wide range of organisms, including human, mouse, Arabidopsis, bacteria and archaea, whose underlying genome database will be continuously updated. CONCLUSION: We believe that QServer provides an easy-to-use and highly effective platform useful for hypothesis formulation and testing related to transcription co-regulation.

  2. QServer: a biclustering server for prediction and assessment of co-expressed gene clusters.

    Science.gov (United States)

    Zhou, Fengfeng; Ma, Qin; Li, Guojun; Xu, Ying

    2012-01-01

    Biclustering is a powerful technique for identification of co-expressed gene groups under any (unspecified) substantial subset of given experimental conditions, which can be used for elucidation of transcriptionally co-regulated genes. We have previously developed a biclustering algorithm, QUBIC, which can solve more general biclustering problems than previous biclustering algorithms. To fully utilize the analysis power the algorithm provides, we have developed a web server, QServer, for prediction, computational validation and analyses of co-expressed gene clusters. Specifically, the QServer has the following capabilities in addition to biclustering by QUBIC: (i) prediction and assessment of conserved cis regulatory motifs in promoter sequences of the predicted co-expressed genes; (ii) functional enrichment analyses of the predicted co-expressed gene clusters using Gene Ontology (GO) terms, and (iii) visualization capabilities in support of interactive biclustering analyses. QServer supports the biclustering and functional analysis for a wide range of organisms, including human, mouse, Arabidopsis, bacteria and archaea, whose underlying genome database will be continuously updated. We believe that QServer provides an easy-to-use and highly effective platform useful for hypothesis formulation and testing related to transcription co-regulation.

  3. Spatial expression of Hox cluster genes in the ontogeny of a sea urchin

    Science.gov (United States)

    Arenas-Mena, C.; Cameron, A. R.; Davidson, E. H.

    2000-01-01

    The Hox cluster of the sea urchin Strongylocentrous purpuratus contains ten genes in a 500 kb span of the genome. Only two of these genes are expressed during embryogenesis, while all of eight genes tested are expressed during development of the adult body plan in the larval stage. We report the spatial expression during larval development of the five 'posterior' genes of the cluster: SpHox7, SpHox8, SpHox9/10, SpHox11/13a and SpHox11/13b. The five genes exhibit a dynamic, largely mesodermal program of expression. Only SpHox7 displays extensive expression within the pentameral rudiment itself. A spatially sequential and colinear arrangement of expression domains is found in the somatocoels, the paired posterior mesodermal structures that will become the adult perivisceral coeloms. No such sequential expression pattern is observed in endodermal, epidermal or neural tissues of either the larva or the presumptive juvenile sea urchin. The spatial expression patterns of the Hox genes illuminate the evolutionary process by which the pentameral echinoderm body plan emerged from a bilateral ancestor.

  4. A Novel Phytophthora sojae Resistance Rps12 Gene Mapped to a Genomic Region That Contains Several Rps Genes.

    Science.gov (United States)

    Sahoo, Dipak K; Abeysekara, Nilwala S; Cianzio, Silvia R; Robertson, Alison E; Bhattacharyya, Madan K

    2017-01-01

    Phytophthora sojae Kaufmann and Gerdemann, which causes Phytophthora root rot, is a widespread pathogen that limits soybean production worldwide. Development of Phytophthora resistant cultivars carrying Phytophthora resistance Rps genes is a cost-effective approach in controlling this disease. For this mapping study of a novel Rps gene, 290 recombinant inbred lines (RILs) (F7 families) were developed by crossing the P. sojae resistant cultivar PI399036 with the P. sojae susceptible AR2 line, and were phenotyped for responses to a mixture of three P. sojae isolates that overcome most of the known Rps genes. Of these 290 RILs, 130 were homozygous resistant, 12 heterzygous and segregating for Phytophthora resistance, and 148 were recessive homozygous and susceptible. From this population, 59 RILs homozygous for Phytophthora sojae resistance and 61 susceptible to a mixture of P. sojae isolates R17 and Val12-11 or P7074 that overcome resistance encoded by known Rps genes mapped to Chromosome 18 were selected for mapping novel Rps gene. A single gene accounted for the 1:1 segregation of resistance and susceptibility among the RILs. The gene encoding the Phytophthora resistance mapped to a 5.8 cM interval between the SSR markers BARCSOYSSR_18_1840 and Sat_064 located in the lower arm of Chromosome 18. The gene is mapped 2.2 cM proximal to the NBSRps4/6-like sequence that was reported to co-segregate with the Phytophthora resistance genes Rps4 and Rps6. The gene is mapped to a highly recombinogenic, gene-rich genomic region carrying several nucleotide binding site-leucine rich repeat (NBS-LRR)-like genes. We named this novel gene as Rps12, which is expected to be an invaluable resource in breeding soybeans for Phytophthora resistance.

  5. A Novel Phytophthora sojae Resistance Rps12 Gene Mapped to a Genomic Region That Contains Several Rps Genes.

    Directory of Open Access Journals (Sweden)

    Dipak K Sahoo

    Full Text Available Phytophthora sojae Kaufmann and Gerdemann, which causes Phytophthora root rot, is a widespread pathogen that limits soybean production worldwide. Development of Phytophthora resistant cultivars carrying Phytophthora resistance Rps genes is a cost-effective approach in controlling this disease. For this mapping study of a novel Rps gene, 290 recombinant inbred lines (RILs (F7 families were developed by crossing the P. sojae resistant cultivar PI399036 with the P. sojae susceptible AR2 line, and were phenotyped for responses to a mixture of three P. sojae isolates that overcome most of the known Rps genes. Of these 290 RILs, 130 were homozygous resistant, 12 heterzygous and segregating for Phytophthora resistance, and 148 were recessive homozygous and susceptible. From this population, 59 RILs homozygous for Phytophthora sojae resistance and 61 susceptible to a mixture of P. sojae isolates R17 and Val12-11 or P7074 that overcome resistance encoded by known Rps genes mapped to Chromosome 18 were selected for mapping novel Rps gene. A single gene accounted for the 1:1 segregation of resistance and susceptibility among the RILs. The gene encoding the Phytophthora resistance mapped to a 5.8 cM interval between the SSR markers BARCSOYSSR_18_1840 and Sat_064 located in the lower arm of Chromosome 18. The gene is mapped 2.2 cM proximal to the NBSRps4/6-like sequence that was reported to co-segregate with the Phytophthora resistance genes Rps4 and Rps6. The gene is mapped to a highly recombinogenic, gene-rich genomic region carrying several nucleotide binding site-leucine rich repeat (NBS-LRR-like genes. We named this novel gene as Rps12, which is expected to be an invaluable resource in breeding soybeans for Phytophthora resistance.

  6. [State-of-the-art status on airborne antibiotic resistant bacteria and antibiotic resistance genes].

    Science.gov (United States)

    Li, J; Yao, M S

    2018-04-06

    The world is facing more deaths due to increasing antibiotic-resistant bacterial infections and the shortage of new highly effective antibiotics, however the air media as its important transmission route has not been adequately studied. Based on the latest literature acquired in this work, we have discussed the state-of-the-art research progress of the concentration, distribution and spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in different environmental air media, and also analyzed some future prevention and control measures. The large use of antibiotics in the medical settings and animal husbandry places has resulted in higher abundances of ARB and ARGs in the relevant and surrounding atmosphere than in urban and general indoor air environments. ARGs can be spread by adhering to airborne particles, and researchers have also found that air media contain more abundant ARGs than other environmental media such as soil, water and sediment. It was suggested in this review that strengthening the monitoring, study on spreading factors and biological toxicity, and also research and development on pathogen accurate diagnosis and new green antibiotic are expected to help effectively monitor, prevent and control of the impacts of airborne resistant bacteria and resistance genes on both human and ecologies.

  7. Study on drug resistance of mycobacterium tuberculosis in patients with pulmonary tuberculosis by drug resistance gene detecting

    International Nuclear Information System (INIS)

    Wang Wei; Li Hongmin; Wu Xueqiong; Wang Ansheng; Ye Yixiu; Wang Zhongyuan; Liu Jinwei; Chen Hongbing; Lin Minggui; Wang Jinhe; Li Sumei; Jiang Ping; Feng Bai; Chen Dongjing

    2004-01-01

    To investigate drug resistance of mycobacterium tuberculosis in different age group, compare detecting effect of two methods and evaluate their the clinical application value, all of the strains of mycobacterium tuberculosis were tested for resistance to RFP, INH SM PZA and EMB by the absolute concentration method on Lowenstein-Jensen medium and the mutation of the rpoB, katG, rpsL, pncA and embB resistance genes in M. tuberculosis was tested by PCR-SSCP. In youth, middle and old age group, the rate of acquired drug resistance was 89.2%, 85.3% and 67.6% respectively, the gene mutation rate was 76.2%, 81.3% and 63.2% respectively. The rate of acquired drug resistance and multiple drug resistance in youth group was much higher than those in other groups. The gene mutation was correlated with drug resistance level of mycobacterium tuberculosis. The gene mutation rate was higher in strains isolated from high concentration resistance than those in strains isolated from low concentration resistance. The more irregular treatment was longer, the rate of drug resistance was higher. Acquired drug resistance varies in different age group. It suggested that surveillance of drug resistence in different age group should be taken seriously, especially in youth group. PCR - SSCP is a sensitive and specific method for rapid detecting rpoB, katG, rpsL, pncA and embB genes mutations of MTB. (authors)

  8. Incidence of antimicrobial-resistance genes and integrons in antibiotic-resistant bacteria isolated from eels and aquaculture ponds.

    Science.gov (United States)

    Lin, Mao; Wu, Xiaomei; Yan, Qingpi; Ma, Ying; Huang, Lixing; Qin, Yingxue; Xu, Xiaojin

    2016-07-07

    The overuse of antimicrobials in aquaculture has promoted the selection of antimicrobial-resistant bacteria. Here we investigated the abundance of antimicrobial-resistance genes and integrons in 108 strains of antibiotic-resistant bacteria isolated from eels and aquaculture ponds in China. Conventional PCR was implemented to examine common antibiotic-resistance genes, integrons, and their gene cassette arrays. The results showed that the antibiotic-resistance genes blaTEM, tetC, sulI, aadA, floR, and qnrB were detected at high percentages, as were a number of other resistance genes. Class I integrons were present in 79.63% of the strains, and 10 out of 108 isolates carried class II integrons. Class III integrons were not detected. Three strains carried both class I and class II integrons, and 73.26% of the class I integron-positive isolates contained the qacEΔ1/sul1 gene. Fourteen types of integron cassette arrays were found among class I integron-positive isolates. A new array, dfrB4-catB3-blaOXA-10-aadA1, was discovered in this study. The gene cassette array dfrA12-orfF-aadA2 was the most widely distributed. In summary, 23 different gene cassettes encoding resistance to 8 classes of antibiotics were identified in the class I integrons, and the main cassettes contained genes encoding resistance to aminoglycosides (aad) and trimethoprim (dfr). All class II integron-positive strains had only a single gene cassette array, viz. dfrA1-catB2-sat2-aadA1. High levels of antimicrobial-resistance genes and integrons in eels and auqauculture ponds suggest that the overuse of antimicrobials should be strictly controlled and that the levels of bacterial antimicrobial-resistance genes in aquaculture should be monitored.

  9. Space-time clustering of ampicillin resistant Escherichia coli isolated from Danish pigs at slaughter between 1997 and 2005

    DEFF Research Database (Denmark)

    Abatih, E. N.; Ersbøll, A. K.; Wong, Danilo Lo Fo

    2009-01-01

    In Denmark, antimicrobial resistance in bacteria in animals, animal products and humans, is routinely monitored. This study aimed at determining whether the observed variations in the prevalence of ampicillin resistant Escherichia coli isolated from healthy pigs at slaughter were random....... The clusters of ampicillin resistant E coli appeared at the same time as the national consumption of ampicillin in pigs increased, however antimicrobial consumption at the herd level did not appear to have any effects on space-time clustering in this study. The results could serve as a platform to highlight...... or clustered in space and time. Data on E coli isolates between 1997 and 2005 were obtained from the Danish Integrated Antimicrobial Resistance Monitoring and Research Programme (DANMAP) whereas data on the quantity of ampicillin consumed was obtained from the Danish Register of Veterinary Medicines (Vet...

  10. Evolution by Pervasive Gene Fusion in Antibiotic Resistance and Antibiotic Synthesizing Genes

    Directory of Open Access Journals (Sweden)

    Orla Coleman

    2015-03-01

    Full Text Available Phylogenetic (tree-based approaches to understanding evolutionary history are unable to incorporate convergent evolutionary events where two genes merge into one. In this study, as exemplars of what can be achieved when a tree is not assumed a priori, we have analysed the evolutionary histories of polyketide synthase genes and antibiotic resistance genes and have shown that their history is replete with convergent events as well as divergent events. We demonstrate that the overall histories of these genes more closely resembles the remodelling that might be seen with the children’s toy Lego, than the standard model of the phylogenetic tree. This work demonstrates further that genes can act as public goods, available for re-use and incorporation into other genetic goods.

  11. DNA tagging of blast resistant gene(s in three Brazilian rice cultivars

    Directory of Open Access Journals (Sweden)

    S.S. Sandhu

    2003-12-01

    Full Text Available Rice blast is the most important fungal disease of rice and is caused by Pyricularia oryzae Sacc. (Telomorph Magnoporthe grisea Barr.. Seven randomly amplified polymorphic DNA (RAPD markers OPA5, OPG17, OPG18, OPG19, OPF9, OPF17 and OPF19 showed very clear polymorphism in resistant cultivar lines which differed from susceptible lines. By comparing different susceptible lines, nine DNA amplifications of seven primers (OPA5(1000, OPA5(1200, OPG17(700, OPG18(850, OPG19(500, OPG19(600, OPF9(600, OPF17(1200 and OPF19(600 were identified as dominant markers for the blast resistant gene in resistant cultivar lines. These loci facilitate the indirect scoring of blast resistant and blast susceptible genotypes. The codomine RAPDs markers will facilitate marker-assisted selection of the blast resistant gene in two blast resistant genotypes of rice (Labelle and Line 11 and will be useful in rice breeding programs.

  12. A Web-Based Multidrug-Resistant Organisms Surveillance and Outbreak Detection System with Rule-Based Classification and Clustering

    OpenAIRE

    Tseng, Yi-Ju; Wu, Jung-Hsuan; Ping, Xiao-Ou; Lin, Hui-Chi; Chen, Ying-Yu; Shang, Rung-Ji; Chen, Ming-Yuan; Lai, Feipei; Chen, Yee-Chun

    2012-01-01

    Background The emergence and spread of multidrug-resistant organisms (MDROs) are causing a global crisis. Combating antimicrobial resistance requires prevention of transmission of resistant organisms and improved use of antimicrobials. Objectives To develop a Web-based information system for automatic integration, analysis, and interpretation of the antimicrobial susceptibility of all clinical isolates that incorporates rule-based classification and cluster analysis of MDROs and implements co...

  13. Multi-class clustering of cancer subtypes through SVM based ensemble of pareto-optimal solutions for gene marker identification.

    Science.gov (United States)

    Mukhopadhyay, Anirban; Bandyopadhyay, Sanghamitra; Maulik, Ujjwal

    2010-11-12

    With the advancement of microarray technology, it is now possible to study the expression profiles of thousands of genes across different experimental conditions or tissue samples simultaneously. Microarray cancer datasets, organized as samples versus genes fashion, are being used for classification of tissue samples into benign and malignant or their subtypes. They are also useful for identifying potential gene markers for each cancer subtype, which helps in successful diagnosis of particular cancer types. In this article, we have presented an unsupervised cancer classification technique based on multiobjective genetic clustering of the tissue samples. In this regard, a real-coded encoding of the cluster centers is used and cluster compactness and separation are simultaneously optimized. The resultant set of near-Pareto-optimal solutions contains a number of non-dominated solutions. A novel approach to combine the clustering information possessed by the non-dominated solutions through Support Vector Machine (SVM) classifier has been proposed. Final clustering is obtained by consensus among the clusterings yielded by different kernel functions. The performance of the proposed multiobjective clustering method has been compared with that of several other microarray clustering algorithms for three publicly available benchmark cancer datasets. Moreover, statistical significance tests have been conducted to establish the statistical superiority of the proposed clustering method. Furthermore, relevant gene markers have been identified using the clustering result produced by the proposed clustering method and demonstrated visually. Biological relationships among the gene markers are also studied based on gene ontology. The results obtained are found to be promising and can possibly have important impact in the area of unsupervised cancer classification as well as gene marker identification for multiple cancer subtypes.

  14. Occurrence of the mcr-1 Colistin Resistance Gene and other Clinically Relevant Antibiotic Resistance Genes in Microbial Populations at Different Municipal Wastewater Treatment Plants in Germany

    Directory of Open Access Journals (Sweden)

    Norman Hembach

    2017-07-01

    Full Text Available Seven wastewater treatment plants (WWTPs with different population equivalents and catchment areas were screened for the prevalence of the colistin resistance gene mcr-1 mediating resistance against last resort antibiotic polymyxin E. The abundance of the plasmid-associated mcr-1 gene in total microbial populations during water treatment processes was quantitatively analyzed by qPCR analyses. The presence of the colistin resistance gene was documented for all of the influent wastewater samples of the seven WWTPs. In some cases the mcr-1 resistance gene was also detected in effluent samples of the WWTPs after conventional treatment reaching the aquatic environment. In addition to the occurrence of mcr-1 gene, CTX-M-32, blaTEM, CTX-M, tetM, CMY-2, and ermB genes coding for clinically relevant antibiotic resistances were quantified in higher abundances in all WWTPs effluents. In parallel, the abundances of Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli were quantified via qPCR using specific taxonomic gene markers which were detected in all influent and effluent wastewaters in significant densities. Hence, opportunistic pathogens and clinically relevant antibiotic resistance genes in wastewaters of the analyzed WWTPs bear a risk of dissemination to the aquatic environment. Since many of the antibiotic resistance gene are associated with mobile genetic elements horizontal gene transfer during wastewater treatment can't be excluded.

  15. Characterization of Metagenomes in Urban Aquatic Compartments Reveals High Prevalence of Clinically Relevant Antibiotic Resistance Genes in Wastewaters

    Directory of Open Access Journals (Sweden)

    Charmaine Ng

    2017-11-01

    Full Text Available The dissemination of antimicrobial resistance (AMR is an escalating problem and a threat to public health. Comparative metagenomics was used to investigate the occurrence of antibiotic resistant genes (ARGs in wastewater and urban surface water environments in Singapore. Hospital and municipal wastewater (n = 6 were found to have higher diversity and average abundance of ARGs (303 ARG subtypes, 197,816 x/Gb compared to treated wastewater effluent (n = 2, 58 ARG subtypes, 2,692 x/Gb and surface water (n = 5, 35 subtypes, 7,985 x/Gb. A cluster analysis showed that the taxonomic composition of wastewaters was highly similar and had a bacterial community composition enriched in gut bacteria (Bacteroides, Faecalibacterium, Bifidobacterium, Blautia, Roseburia, Ruminococcus, the Enterobacteriaceae group (Klebsiella, Aeromonas, Enterobacter and opportunistic pathogens (Prevotella, Comamonas, Neisseria. Wastewater, treated effluents and surface waters had a shared resistome of 21 ARGs encoding multidrug resistant efflux pumps or resistance to aminoglycoside, macrolide-lincosamide-streptogramins (MLS, quinolones, sulfonamide, and tetracycline resistance which suggests that these genes are wide spread across different environments. Wastewater had a distinctively higher average abundance of clinically relevant, class A beta-lactamase resistant genes (i.e., blaKPC, blaCTX-M, blaSHV, blaTEM. The wastewaters from clinical isolation wards, in particular, had a exceedingly high levels of blaKPC-2 genes (142,200 x/Gb, encoding for carbapenem resistance. Assembled scaffolds (16 and 30 kbp from isolation ward wastewater samples indicated this gene was located on a Tn3-based transposon (Tn4401, a mobilization element found in Klebsiella pneumonia plasmids. In the longer scaffold, transposable elements were flanked by a toxin–antitoxin (TA system and other metal resistant genes that likely increase the persistence, fitness and propagation of the plasmid in the

  16. Natural product proteomining, a quantitative proteomics platform, allows rapid discovery of biosynthetic gene clusters for different classes of natural products.

    Science.gov (United States)

    Gubbens, Jacob; Zhu, Hua; Girard, Geneviève; Song, Lijiang; Florea, Bogdan I; Aston, Philip; Ichinose, Koji; Filippov, Dmitri V; Choi, Young H; Overkleeft, Herman S; Challis, Gregory L; van Wezel, Gilles P

    2014-06-19

    Information on gene clusters for natural product biosynthesis is accumulating rapidly because of the current boom of available genome sequencing data. However, linking a natural product to a specific gene cluster remains challenging. Here, we present a widely applicable strategy for the identification of gene clusters for specific natural products, which we name natural product proteomining. The method is based on using fluctuating growth conditions that ensure differential biosynthesis of the bioactivity of interest. Subsequent combination of metabolomics and quantitative proteomics establishes correlations between abundance of natural products and concomitant changes in the protein pool, which allows identification of the relevant biosynthetic gene cluster. We used this approach to elucidate gene clusters for different natural products in Bacillus and Streptomyces, including a novel juglomycin-type antibiotic. Natural product proteomining does not require prior knowledge of the gene cluster or secondary metabolite and therefore represents a general strategy for identification of all types of gene clusters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Lichen Biosynthetic Gene Clusters. Part I. Genome Sequencing Reveals a Rich Biosynthetic Potential.

    Science.gov (United States)

    Bertrand, Robert L; Abdel-Hameed, Mona; Sorensen, John L

    2018-02-27

    Lichens are symbionts of fungi and algae that produce diverse secondary metabolites with useful properties. Little is known of lichen natural product biosynthesis because of the challenges of working with lichenizing fungi. We describe the first attempt to comprehensively profile the genetic secondary metabolome of a lichenizing fungus. An Illumina platform combined with the Antibiotics and Secondary Metabolites Analysis Shell (FungiSMASH, version 4.0) was used to sequence and annotate assembled contigs of the fungal partner of Cladonia uncialis. Up to 48 putative gene clusters are described comprising type I and type III polyketide synthases (PKS), nonribosomal peptide synthetases (NRPS), hybrid PKS-NRPS, and terpene synthases. The number of gene clusters revealed by this work dwarfs the number of known secondary metabolites from C. uncialis, suggesting that lichenizing fungi have an unexplored biosynthetic potential.

  18. Hierarchical clustering of breast cancer methylomes revealed differentially methylated and expressed breast cancer genes.

    Directory of Open Access Journals (Sweden)

    I-Hsuan Lin

    Full Text Available Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs and the hypomethylation of the megabase-sized partially methylated domains (PMDs are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation.

  19. Molecular analysis of an inactive aflatoxin biosynthesis gene cluster in Aspergillus oryzae RIB strains.

    Science.gov (United States)

    Tominaga, Mihoko; Lee, Yun-Hae; Hayashi, Risa; Suzuki, Yuji; Yamada, Osamu; Sakamoto, Kazutoshi; Gotoh, Kuniyasu; Akita, Osamu

    2006-01-01

    To help assess the potential for aflatoxin production by Aspergillus oryzae, the structure of an aflatoxin biosynthesis gene homolog cluster in A. oryzae RIB 40 was analyzed. Although most genes in the corresponding cluster exhibited from 97 to 99% similarity to those of Aspergillus flavus, three genes shared 93% similarity or less. A 257-bp deletion in the aflT region, a frameshift mutation in norA, and a base pair substitution in verA were found in A. oryzae RIB 40. In the aflR promoter, two substitutions were found in one of the three putative AreA binding sites and in the FacB binding site. PCR primers were designed to amplify homologs of aflT, nor-1, aflR, norA, avnA, verB, and vbs and were used to detect these genes in 210 A. oryzae strains. Based on the PCR results, the A. oryzae RIB strains were classified into three groups, although most of them fell into two of the groups. Group 1, in which amplification of all seven genes was confirmed, contained 122 RIB strains (58.1% of examined strains), including RIB 40. Seventy-seven strains (36.7%) belonged to group 2, characterized by having only vbs, verB, and avnA in half of the cluster. Although slight expression of aflR was detected by reverse transcription-PCR in some group 1 strains, including RIB 40, other genes (avnA, vbs, verB, and omtA) related to aflatoxin production were not detected. aflR was not detected in group 2 strains by Southern analysis.

  20. Bacterial plasmid-mediated quinolone resistance genes in aquatic environments in China

    OpenAIRE

    Yan, Lei; Liu, Dan; Wang, Xin-Hua; Wang, Yunkun; Zhang, Bo; Wang, Mingyu; Xu, Hai

    2017-01-01

    Emerging antimicrobial resistance is a major threat to human?s health in the 21st century. Understanding and combating this issue requires a full and unbiased assessment of the current status on the prevalence of antimicrobial resistance genes and their correlation with each other and bacterial groups. In aquatic environments that are known reservoirs for antimicrobial resistance genes, we were able to reach this goal on plasmid-mediated quinolone resistance (PMQR) genes that lead to resistan...

  1. Genetic clusters and sex-biased gene flow in a unicolonial Formica ant

    Directory of Open Access Journals (Sweden)

    Chapuisat Michel

    2009-03-01

    Full Text Available Abstract Background Animal societies are diverse, ranging from small family-based groups to extraordinarily large social networks in which many unrelated individuals interact. At the extreme of this continuum, some ant species form unicolonial populations in which workers and queens can move among multiple interconnected nests without eliciting aggression. Although unicoloniality has been mostly studied in invasive ants, it also occurs in some native non-invasive species. Unicoloniality is commonly associated with very high queen number, which may result in levels of relatedness among nestmates being so low as to raise the question of the maintenance of altruism by kin selection in such systems. However, the actual relatedness among cooperating individuals critically depends on effective dispersal and the ensuing pattern of genetic structuring. In order to better understand the evolution of unicoloniality in native non-invasive ants, we investigated the fine-scale population genetic structure and gene flow in three unicolonial populations of the wood ant F. paralugubris. Results The analysis of geo-referenced microsatellite genotypes and mitochondrial haplotypes revealed the presence of cryptic clusters of genetically-differentiated nests in the three populations of F. paralugubris. Because of this spatial genetic heterogeneity, members of the same clusters were moderately but significantly related. The comparison of nuclear (microsatellite and mitochondrial differentiation indicated that effective gene flow was male-biased in all populations. Conclusion The three unicolonial populations exhibited male-biased and mostly local gene flow. The high number of queens per nest, exchanges among neighbouring nests and restricted long-distance gene flow resulted in large clusters of genetically similar nests. The positive relatedness among clustermates suggests that kin selection may still contribute to the maintenance of altruism in unicolonial

  2. Gene Clusters for Insecticidal Loline Alkaloids in the Grass-Endophytic F