WorldWideScience

Sample records for resistance gene clusters

  1. Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture.

    Science.gov (United States)

    Johnson, Timothy A; Stedtfeld, Robert D; Wang, Qiong; Cole, James R; Hashsham, Syed A; Looft, Torey; Zhu, Yong-Guan; Tiedje, James M

    2016-04-12

    Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundance of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk. Agricultural antibiotic use results in clusters of cooccurring resistance genes that together confer resistance to multiple antibiotics. The use of a single antibiotic could select for an entire suite of resistance genes if

  2. Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce.

    Science.gov (United States)

    Shen, K A; Meyers, B C; Islam-Faridi, M N; Chin, D B; Stelly, D M; Michelmore, R W

    1998-08-01

    The recent cloning of genes for resistance against diverse pathogens from a variety of plants has revealed that many share conserved sequence motifs. This provides the possibility of isolating numerous additional resistance genes by polymerase chain reaction (PCR) with degenerate oligonucleotide primers. We amplified resistance gene candidates (RGCs) from lettuce with multiple combinations of primers with low degeneracy designed from motifs in the nucleotide binding sites (NBSs) of RPS2 of Arabidopsis thaliana and N of tobacco. Genomic DNA, cDNA, and bacterial artificial chromosome (BAC) clones were successfully used as templates. Four families of sequences were identified that had the same similarity to each other as to resistance genes from other species. The relationship of the amplified products to resistance genes was evaluated by several sequence and genetic criteria. The amplified products contained open reading frames with additional sequences characteristic of NBSs. Hybridization of RGCs to genomic DNA and to BAC clones revealed large numbers of related sequences. Genetic analysis demonstrated the existence of clustered multigene families for each of the four RGC sequences. This parallels classical genetic data on clustering of disease resistance genes. Two of the four families mapped to known clusters of resistance genes; these two families were therefore studied in greater detail. Additional evidence that these RGCs could be resistance genes was gained by the identification of leucine-rich repeat (LRR) regions in sequences adjoining the NBS similar to those in RPM1 and RPS2 of A. thaliana. Fluorescent in situ hybridization confirmed the clustered genomic distribution of these sequences. The use of PCR with degenerate oligonucleotide primers is therefore an efficient method to identify numerous RGCs in plants.

  3. Organization of a resistance gene cluster linked to rhizomania resistance in sugar beet

    Science.gov (United States)

    Genetic resistance to rhizomania has been in use for over 40 years. Characterization of the molecular basis for susceptibility and resistance has proved challenging. Nucleotide-binding leucine-rich-repeat-containing (NB-LRR) genes have been implicated in numerous gene-for-gene resistance interaction...

  4. Using SNP genetic markers to elucidate the linkage of the Co-34/Phg-3 anthracnose and angular leaf spot resistance gene cluster with the Ur-14 resistance gene

    Science.gov (United States)

    The Ouro Negro common bean cultivar contains the Co-34/Phg-3 gene cluster that confers resistance to the anthracnose (ANT) and angular leaf spot (ALS) pathogens. These genes are tightly linked on chromosome 4. Ouro Negro also has the Ur-14 rust resistance gene, reportedly in the vicinity of Co- 34; ...

  5. Patterns of genetic diversity and differentiation in resistance gene clusters of two hybridizing European Populus species

    OpenAIRE

    Casey, Céline; Stölting, Kai N.; Barbará, Thelma; González-Martínez, Santiago C.; Lexer, Christian

    2015-01-01

    Resistance genes (R-genes) are essential for long-lived organisms such as forest trees, which are exposed to diverse herbivores and pathogens. In short-lived model species, R-genes have been shown to be involved in species isolation. Here, we studied more than 400 trees from two natural hybrid zones of the European Populus species Populus alba and Populus tremula for microsatellite markers located in three R-gene clusters, including one cluster situated in the incipient sex chromosome region....

  6. Fine Mapping of Two Wheat Powdery Mildew Resistance Genes Located at the Pm1 Cluster

    Directory of Open Access Journals (Sweden)

    Junchao Liang

    2016-07-01

    Full Text Available Powdery mildew caused by (DC. f. sp. ( is a globally devastating foliar disease of wheat ( L.. More than a dozen genes against this disease, identified from wheat germplasms of different ploidy levels, have been mapped to the region surrounding the locus on the long arm of chromosome 7A, which forms a resistance (-gene cluster. and from einkorn wheat ( L. were two of the genes belonging to this cluster. This study was initiated to fine map these two genes toward map-based cloning. Comparative genomics study showed that macrocolinearity exists between L. chromosome 1 (Bd1 and the – region, which allowed us to develop markers based on the wheat sequences orthologous to genes contained in the Bd1 region. With these and other newly developed and published markers, high-resolution maps were constructed for both and using large F populations. Moreover, a physical map of was constructed through chromosome walking with bacterial artificial chromosome (BAC clones and comparative mapping. Eventually, and were restricted to a 0.12- and 0.86-cM interval, respectively. Based on the closely linked common markers, , , and (another powdery mildew resistance gene in the cluster were not allelic to one another. Severe recombination suppression and disruption of synteny were noted in the region encompassing . These results provided useful information for map-based cloning of the genes in the cluster and interpretation of their evolution.

  7. Development and mapping of SSR markers linked to resistance-gene homologue clusters in common bean

    Institute of Scientific and Technical Information of China (English)

    Luz; Nayibe; Garzon; Matthew; Wohlgemuth; Blair

    2014-01-01

    Common bean is an important but often a disease-susceptible legume crop of temperate,subtropical and tropical regions worldwide. The crop is affected by bacterial, fungal and viral pathogens. The strategy of resistance-gene homologue(RGH) cloning has proven to be an efficient tool for identifying markers and R(resistance) genes associated with resistances to diseases. Microsatellite or SSR markers can be identified by physical association with RGH clones on large-insert DNA clones such as bacterial artificial chromosomes(BACs). Our objectives in this work were to identify RGH-SSR in a BAC library from the Andean genotype G19833 and to test and map any polymorphic markers to identify associations with known positions of disease resistance genes. We developed a set of specific probes designed for clades of common bean RGH genes and then identified positive BAC clones and developed microsatellites from BACs having SSR loci in their end sequences. A total of 629 new RGH-SSRs were identified and named BMr(bean microsatellite RGH-associated markers). A subset of these markers was screened for detecting polymorphism in the genetic mapping population DOR364 × G19833. A genetic map was constructed with a total of 264 markers,among which were 80 RGH loci anchored to single-copy RFLP and SSR markers. Clusters of RGH-SSRs were observed on most of the linkage groups of common bean and in positions associated with R-genes and QTL. The use of these new markers to select for disease resistance is discussed.

  8. vanI: a novel d-Ala-d-Lac vancomycin resistance gene cluster found in Desulfitobacterium hafniense

    NARCIS (Netherlands)

    Kruse, T.; Levisson, M.; Vos, de W.M.; Smidt, H.

    2014-01-01

    The glycopeptide vancomycin was until recently considered a drug of last resort against Gram-positive bacteria. Increasing numbers of bacteria, however, are found to carry genes that confer resistance to this antibiotic. So far, 10 different vancomycin resistance clusters have been described. A

  9. VRprofile: gene-cluster-detection-based profiling of virulence and antibiotic resistance traits encoded within genome sequences of pathogenic bacteria.

    Science.gov (United States)

    Li, Jun; Tai, Cui; Deng, Zixin; Zhong, Weihong; He, Yongqun; Ou, Hong-Yu

    2017-01-10

    VRprofile is a Web server that facilitates rapid investigation of virulence and antibiotic resistance genes, as well as extends these trait transfer-related genetic contexts, in newly sequenced pathogenic bacterial genomes. The used backend database MobilomeDB was firstly built on sets of known gene cluster loci of bacterial type III/IV/VI/VII secretion systems and mobile genetic elements, including integrative and conjugative elements, prophages, class I integrons, IS elements and pathogenicity/antibiotic resistance islands. VRprofile is thus able to co-localize the homologs of these conserved gene clusters using HMMer or BLASTp searches. With the integration of the homologous gene cluster search module with a sequence composition module, VRprofile has exhibited better performance for island-like region predictions than the other widely used methods. In addition, VRprofile also provides an integrated Web interface for aligning and visualizing identified gene clusters with MobilomeDB-archived gene clusters, or a variety set of bacterial genomes. VRprofile might contribute to meet the increasing demands of re-annotations of bacterial variable regions, and aid in the real-time definitions of disease-relevant gene clusters in pathogenic bacteria of interest. VRprofile is freely available at http://bioinfo-mml.sjtu.edu.cn/VRprofile. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Two Horizontally Transferred Xenobiotic Resistance Gene Clusters Associated with Detoxification of Benzoxazolinones by Fusarium Species

    Science.gov (United States)

    Glenn, Anthony E.; Davis, C. Britton; Gao, Minglu; Gold, Scott E.; Mitchell, Trevor R.; Proctor, Robert H.; Stewart, Jane E.; Snook, Maurice E.

    2016-01-01

    Microbes encounter a broad spectrum of antimicrobial compounds in their environments and often possess metabolic strategies to detoxify such xenobiotics. We have previously shown that Fusarium verticillioides, a fungal pathogen of maize known for its production of fumonisin mycotoxins, possesses two unlinked loci, FDB1 and FDB2, necessary for detoxification of antimicrobial compounds produced by maize, including the γ-lactam 2-benzoxazolinone (BOA). In support of these earlier studies, microarray analysis of F. verticillioides exposed to BOA identified the induction of multiple genes at FDB1 and FDB2, indicating the loci consist of gene clusters. One of the FDB1 cluster genes encoded a protein having domain homology to the metallo-β-lactamase (MBL) superfamily. Deletion of this gene (MBL1) rendered F. verticillioides incapable of metabolizing BOA and thus unable to grow on BOA-amended media. Deletion of other FDB1 cluster genes, in particular AMD1 and DLH1, did not affect BOA degradation. Phylogenetic analyses and topology testing of the FDB1 and FDB2 cluster genes suggested two horizontal transfer events among fungi, one being transfer of FDB1 from Fusarium to Colletotrichum, and the second being transfer of the FDB2 cluster from Fusarium to Aspergillus. Together, the results suggest that plant-derived xenobiotics have exerted evolutionary pressure on these fungi, leading to horizontal transfer of genes that enhance fitness or virulence. PMID:26808652

  11. The Widespread Multidrug-Resistant Serotype O12 Pseudomonas aeruginosa Clone Emerged through Concomitant Horizontal Transfer of Serotype Antigen and Antibiotic Resistance Gene Clusters

    DEFF Research Database (Denmark)

    Thrane, Sandra Wingaard; Taylor, Véronique L.; Freschi, Luca

    2015-01-01

    . aeruginosa O12 OSA gene cluster, an antibiotic resistance determinant (gyrAC248T), and other genes that have been transferred between P. aeruginosa strains with distinct core genome architectures. We showed that these genes were likely acquired from an O12 serotype strain that is closely related to P...... in clinical settings and outbreaks. These serotype O12 isolates exhibit high levels of resistance to various classes of antibiotics. Here, we explore how the P. aeruginosa OSA biosynthesis gene clusters evolve in the population by investigating the association between the phylogenetic relationships among 83 P....... aeruginosa strains and their serotypes. While most serotypes were closely linked to the core genome phylogeny, we observed horizontal exchange of OSA biosynthesis genes among phylogenetically distinct P. aeruginosa strains. Specifically, we identified a "serotype island" ranging from 62 kb to 185 kb containing the P...

  12. Up-regulation of HOXB cluster genes are epigenetically regulated in tamoxifen-resistant MCF7 breast cancer cells.

    Science.gov (United States)

    Yang, Seoyeon; Lee, Ji-Yeon; Hur, Ho; Oh, Ji Hoon; Kim, Myoung Hee

    2018-05-28

    Tamoxifen (TAM) is commonly used to treat estrogen receptor (ER)-positive breast cancer. Despite the remarkable benefits, resistance to TAM presents a serious therapeutic challenge. Since several HOX transcription factors have been proposed as strong candidates in the development of resistance to TAM therapy in breast cancer, we generated an in vitro model of acquired TAM resistance using ER-positive MCF7 breast cancer cells (MCF7-TAMR), and analyzed the expression pattern and epigenetic states of HOX genes. HOXB cluster genes were uniquely up-regulated in MCF7-TAMR cells. Survival analysis of in slico data showed the correlation of high expression of HOXB genes with poor response to TAM in ER-positive breast cancer patients treated with TAM. Gain- and loss-of-function experiments showed that the overexpression of multi HOXB genes in MCF7 renders cancer cells more resistant to TAM, whereas the knockdown restores TAM sensitivity. Furthermore, activation of HOXB genes in MCF7-TAMR was associated with histone modifications, particularly the gain of H3K9ac. These findings imply that the activation of HOXB genes mediate the development of TAM resistance, and represent a target for development of new strategies to prevent or reverse TAM resistance.

  13. Isolation of Resistance Gene Candidates (RGCs) and characterization of an RGC cluster in cassava.

    Science.gov (United States)

    López, C E; Zuluaga, A P; Cooke, R; Delseny, M; Tohme, J; Verdier, V

    2003-08-01

    Plant disease resistance genes (R genes) show significant similarity amongst themselves in terms of both their DNA sequences and structural motifs present in their protein products. Oligonucleotide primers designed from NBS (Nucleotide Binding Site) domains encoded by several R-genes have been used to amplify NBS sequences from the genomic DNA of various plant species, which have been called Resistance Gene Analogues (RGAs) or Resistance Gene Candidates (RGCs). Using specific primers from the NBS and TIR (Toll/Interleukin-1 Receptor) regions, we identified twelve classes of RGCs in cassava (Manihot esculenta Crantz). Two classes were obtained from the PCR-amplification of the TIR domain. The other 10 classes correspond to the NBS sequences and were grouped into two subfamilies. Classes RCa1 to RCa5 are part of the first subfamily and were linked to a TIR domain in the N terminus. Classes RCa6 to RCa10 corresponded to non-TIR NBS-LRR encoding sequences. BAC library screening with the 12 RGC classes as probes allowed the identification of 42 BAC clones that were assembled into 10 contigs and 19 singletons. Members of the two TIR and non-TIR NBS-LRR subfamilies occurred together within individual BAC clones. The BAC screening and Southern hybridization analyses showed that all RGCs were single copy sequences except RCa6 that represented a large and diverse gene family. One BAC contained five NBS sequences and sequence analysis allowed the identification of two complete RGCs encoding two highly similar proteins. This BAC was located on linkage group J with three other RGC-containing BACs. At least one of these genes, RGC2, is expressed constitutively in cassava tissues.

  14. Identification of a cluster IV pleiotropic drug resistance transporter gene expressed in the style of Nicotiana plumbaginifolia.

    Science.gov (United States)

    Trombik, Tomasz; Jasinski, Michal; Crouzet, Jérome; Boutry, Marc

    2008-01-01

    ATP-binding cassette transporters of the pleiotropic drug resistance (PDR) subfamily are composed of five clusters. We have cloned a gene, NpPDR2, belonging to the still uncharacterized cluster IV from Nicotiana plumbaginifolia. NpPDR2 transcripts were found in the roots and mature flowers. In the latter, NpPDR2 expression was restricted to the style and only after pollination. A 1.5-kb genomic sequence containing the putative NpPDR2 transcription promoter was fused to the beta-glucuronidase reporter gene. The GUS expression pattern confirmed the RT-PCR results that NpPDR2 was expressed in roots and the flower style and showed that it was localized around the conductive tissues. Unlike other PDR genes, NpPDR2 expression was not induced in leaf tissues by none of the hormones typically involved in biotic and abiotic stress response. Moreover, unlike NpPDR1 known to be involved in biotic stress response, NpPDR2 expression was not induced in the style upon Botrytis cinerea infection. In N. plumbaginifolia plants in which NpPDR2 expression was prevented by RNA interference, no unusual phenotype was observed, including at the flowering stage, which suggests that NpPDR2 is not essential in the reproductive process under the tested conditions.

  15. Gene cluster statistics with gene families.

    Science.gov (United States)

    Raghupathy, Narayanan; Durand, Dannie

    2009-05-01

    Identifying genomic regions that descended from a common ancestor is important for understanding the function and evolution of genomes. In distantly related genomes, clusters of homologous gene pairs are evidence of candidate homologous regions. Demonstrating the statistical significance of such "gene clusters" is an essential component of comparative genomic analyses. However, currently there are no practical statistical tests for gene clusters that model the influence of the number of homologs in each gene family on cluster significance. In this work, we demonstrate empirically that failure to incorporate gene family size in gene cluster statistics results in overestimation of significance, leading to incorrect conclusions. We further present novel analytical methods for estimating gene cluster significance that take gene family size into account. Our methods do not require complete genome data and are suitable for testing individual clusters found in local regions, such as contigs in an unfinished assembly. We consider pairs of regions drawn from the same genome (paralogous clusters), as well as regions drawn from two different genomes (orthologous clusters). Determining cluster significance under general models of gene family size is computationally intractable. By assuming that all gene families are of equal size, we obtain analytical expressions that allow fast approximation of cluster probabilities. We evaluate the accuracy of this approximation by comparing the resulting gene cluster probabilities with cluster probabilities obtained by simulating a realistic, power-law distributed model of gene family size, with parameters inferred from genomic data. Surprisingly, despite the simplicity of the underlying assumption, our method accurately approximates the true cluster probabilities. It slightly overestimates these probabilities, yielding a conservative test. We present additional simulation results indicating the best choice of parameter values for data

  16. Genetically based location from triploid populations and gene ontology of a 3.3-mb genome region linked to Alternaria brown spot resistance in citrus reveal clusters of resistance genes.

    Directory of Open Access Journals (Sweden)

    José Cuenca

    Full Text Available Genetic analysis of phenotypical traits and marker-trait association in polyploid species is generally considered as a challenge. In the present work, different approaches were combined taking advantage of the particular genetic structures of 2n gametes resulting from second division restitution (SDR to map a genome region linked to Alternaria brown spot (ABS resistance in triploid citrus progeny. ABS in citrus is a serious disease caused by the tangerine pathotype of the fungus Alternaria alternata. This pathogen produces ACT-toxin, which induces necrotic lesions on fruit and young leaves, defoliation and fruit drop in susceptible genotypes. It is a strong concern for triploid breeding programs aiming to produce seedless mandarin cultivars. The monolocus dominant inheritance of susceptibility, proposed on the basis of diploid population studies, was corroborated in triploid progeny. Bulk segregant analysis coupled with genome scan using a large set of genetically mapped SNP markers and targeted genetic mapping by half tetrad analysis, using SSR and SNP markers, allowed locating a 3.3 Mb genomic region linked to ABS resistance near the centromere of chromosome III. Clusters of resistance genes were identified by gene ontology analysis of this genomic region. Some of these genes are good candidates to control the dominant susceptibility to the ACT-toxin. SSR and SNP markers were developed for efficient early marker-assisted selection of ABS resistant hybrids.

  17. Genetically based location from triploid populations and gene ontology of a 3.3-mb genome region linked to Alternaria brown spot resistance in citrus reveal clusters of resistance genes.

    Science.gov (United States)

    Cuenca, José; Aleza, Pablo; Vicent, Antonio; Brunel, Dominique; Ollitrault, Patrick; Navarro, Luis

    2013-01-01

    Genetic analysis of phenotypical traits and marker-trait association in polyploid species is generally considered as a challenge. In the present work, different approaches were combined taking advantage of the particular genetic structures of 2n gametes resulting from second division restitution (SDR) to map a genome region linked to Alternaria brown spot (ABS) resistance in triploid citrus progeny. ABS in citrus is a serious disease caused by the tangerine pathotype of the fungus Alternaria alternata. This pathogen produces ACT-toxin, which induces necrotic lesions on fruit and young leaves, defoliation and fruit drop in susceptible genotypes. It is a strong concern for triploid breeding programs aiming to produce seedless mandarin cultivars. The monolocus dominant inheritance of susceptibility, proposed on the basis of diploid population studies, was corroborated in triploid progeny. Bulk segregant analysis coupled with genome scan using a large set of genetically mapped SNP markers and targeted genetic mapping by half tetrad analysis, using SSR and SNP markers, allowed locating a 3.3 Mb genomic region linked to ABS resistance near the centromere of chromosome III. Clusters of resistance genes were identified by gene ontology analysis of this genomic region. Some of these genes are good candidates to control the dominant susceptibility to the ACT-toxin. SSR and SNP markers were developed for efficient early marker-assisted selection of ABS resistant hybrids.

  18. Protein-protein association and cellular localization of four essential gene products encoded by tellurite resistance-conferring cluster "ter" from pathogenic Escherichia coli.

    Science.gov (United States)

    Valkovicova, Lenka; Vavrova, Silvia Minarikova; Mravec, Jozef; Grones, Jozef; Turna, Jan

    2013-12-01

    Gene cluster "ter" conferring high tellurite resistance has been identified in various pathogenic bacteria including Escherichia coli O157:H7. However, the precise mechanism as well as the molecular function of the respective gene products is unclear. Here we describe protein-protein association and localization analyses of four essential Ter proteins encoded by minimal resistance-conferring fragment (terBCDE) by means of recombinant expression. By using a two-plasmid complementation system we show that the overproduced single Ter proteins are not able to mediate tellurite resistance, but all Ter members play an irreplaceable role within the cluster. We identified several types of homotypic and heterotypic protein-protein associations among the Ter proteins by in vitro and in vivo pull-down assays and determined their cellular localization by cytosol/membrane fractionation. Our results strongly suggest that Ter proteins function involves their mutual association, which probably happens at the interface of the inner plasma membrane and the cytosol.

  19. Relationship between drug resistance and the clustered, regularly interspaced, short, palindromic repeat-associated protein genes cas1 and cas2 in Shigella from giant panda dung.

    Science.gov (United States)

    Ren, Lu; Deng, Lin-Hua; Zhang, Ri-Peng; Wang, Cheng-Dong; Li, De-Sheng; Xi, Li-Xin; Chen, Zhen-Rong; Yang, Rui; Huang, Jie; Zeng, Yang-Ru; Wu, Hong-Lin; Cao, San-Jie; Wu, Rui; Huang, Yong; Yan, Qi-Gui

    2017-02-01

    To detect drug resistance in Shigella obtained from the dung of the giant panda, explore the factors leading to drug resistance in Shigella, understand the characteristics of clustered, regularly interspaced, short, palindromic repeats (CRISPR), and assess the relationship between CRISPR and drug resistance. We collected fresh feces from 27 healthy giant pandas in the Giant Panda Conservation base (Wolong, China). We identified the strains of Shigella in the samples by using nucleotide sequence analysis. Further, the Kirby-Bauer paper method was used to determine drug sensitivity of the Shigella strains. CRISPR-associated protein genes cas1 and cas2 in Shigella were detected by polymerase chain reaction (PCR), and the PCR products were sequenced and compared. We isolated and identified 17 strains of Shigella from 27 samples, including 14 strains of Shigella flexneri, 2 strains of Shigella sonnei, and 1 strain of Shigella dysenteriae. Further, drug resistance to cefazolin, imipenem, and amoxicillin-clavulanic acid was identified as a serious problem, as multidrug-resistant strains were detected. Further, cas1 and cas2 showed different degrees of point mutations. The CRISPR system widely exists in Shigella and shares homology with that in Escherichia coli. The cas1 and cas 2 mutations contribute to the different levels of resistance. Point mutations at sites 3176455, 3176590, and 3176465 in cas1 (a); sites 3176989, 3176992, and 3176995 in cas1 (b); sites 3176156 and 3176236 in cas2 may affect the resistance of bacteria, cause emergence of multidrug resistance, and increase the types of drug resistance.

  20. Presence of the vancomycin resistance gene cluster vanC1, vanXYc, and vanT in Enterococcus casseliflavus.

    Science.gov (United States)

    Hölzel, Christina; Bauer, Johann; Stegherr, Eva-Maria; Schwaiger, Karin

    2014-04-01

    The three chromosomally located clustered genes vanC1, vanXYc, and vanT confer intrinsic resistance to vancomycin and are used for species identification of Enterococcus gallinarum. In this study, 28 strains belonging to the E. gallinarum/casseliflavus group isolated from cloacal swabs from laying hens were screened for the presence of vanC1. As confirmed by species-specific multiplex PCR, 11 vanC1-positive strains were identified as E. gallinarum. Surprisingly, one yellow pigmented strain, verified as E. casseliflavus by species-specific multiplex PCR, was also vanC1 positive; vanXYc and vanT were additionally detectable in this strain. To our knowledge, this is the first report of vanC1, vanXYc, and vanT in E. casseliflavus. The minimum inhibitory concentration of vancomycin was 4 mg/L. Real-time reverse transcription-PCR revealed that none of the clustered genes was expressed in this strain. Even if the genes seem not to be active, there is a certain risk that they will be transferred to other bacteria where they might be functionally expressed. Therefore, it may be advisable to expand the search for vanC1, vanXYc, and vanT from E. gallinarum to other (enterococcal) species. This study confirms that enterococci live up to their name as being reservoir bacteria and should therefore always be closely monitored.

  1. Persistence drives gene clustering in bacterial genomes

    Directory of Open Access Journals (Sweden)

    Rocha Eduardo PC

    2008-01-01

    Full Text Available Abstract Background Gene clustering plays an important role in the organization of the bacterial chromosome and several mechanisms have been proposed to explain its extent. However, the controversies raised about the validity of each of these mechanisms remind us that the cause of this gene organization remains an open question. Models proposed to explain clustering did not take into account the function of the gene products nor the likely presence or absence of a given gene in a genome. However, genomes harbor two very different categories of genes: those genes present in a majority of organisms – persistent genes – and those present in very few organisms – rare genes. Results We show that two classes of genes are significantly clustered in bacterial genomes: the highly persistent and the rare genes. The clustering of rare genes is readily explained by the selfish operon theory. Yet, genes persistently present in bacterial genomes are also clustered and we try to understand why. We propose a model accounting specifically for such clustering, and show that indispensability in a genome with frequent gene deletion and insertion leads to the transient clustering of these genes. The model describes how clusters are created via the gene flux that continuously introduces new genes while deleting others. We then test if known selective processes, such as co-transcription, physical interaction or functional neighborhood, account for the stabilization of these clusters. Conclusion We show that the strong selective pressure acting on the function of persistent genes, in a permanent state of flux of genes in bacterial genomes, maintaining their size fairly constant, that drives persistent genes clustering. A further selective stabilization process might contribute to maintaining the clustering.

  2. Diametrical clustering for identifying anti-correlated gene clusters.

    Science.gov (United States)

    Dhillon, Inderjit S; Marcotte, Edward M; Roshan, Usman

    2003-09-01

    Clustering genes based upon their expression patterns allows us to predict gene function. Most existing clustering algorithms cluster genes together when their expression patterns show high positive correlation. However, it has been observed that genes whose expression patterns are strongly anti-correlated can also be functionally similar. Biologically, this is not unintuitive-genes responding to the same stimuli, regardless of the nature of the response, are more likely to operate in the same pathways. We present a new diametrical clustering algorithm that explicitly identifies anti-correlated clusters of genes. Our algorithm proceeds by iteratively (i). re-partitioning the genes and (ii). computing the dominant singular vector of each gene cluster; each singular vector serving as the prototype of a 'diametric' cluster. We empirically show the effectiveness of the algorithm in identifying diametrical or anti-correlated clusters. Testing the algorithm on yeast cell cycle data, fibroblast gene expression data, and DNA microarray data from yeast mutants reveals that opposed cellular pathways can be discovered with this method. We present systems whose mRNA expression patterns, and likely their functions, oppose the yeast ribosome and proteosome, along with evidence for the inverse transcriptional regulation of a number of cellular systems.

  3. Resistance Genes in Global Crop Breeding Networks.

    Science.gov (United States)

    Garrett, K A; Andersen, K F; Asche, F; Bowden, R L; Forbes, G A; Kulakow, P A; Zhou, B

    2017-10-01

    Resistance genes are a major tool for managing crop diseases. The networks of crop breeders who exchange resistance genes and deploy them in varieties help to determine the global landscape of resistance and epidemics, an important system for maintaining food security. These networks function as a complex adaptive system, with associated strengths and vulnerabilities, and implications for policies to support resistance gene deployment strategies. Extensions of epidemic network analysis can be used to evaluate the multilayer agricultural networks that support and influence crop breeding networks. Here, we evaluate the general structure of crop breeding networks for cassava, potato, rice, and wheat. All four are clustered due to phytosanitary and intellectual property regulations, and linked through CGIAR hubs. Cassava networks primarily include public breeding groups, whereas others are more mixed. These systems must adapt to global change in climate and land use, the emergence of new diseases, and disruptive breeding technologies. Research priorities to support policy include how best to maintain both diversity and redundancy in the roles played by individual crop breeding groups (public versus private and global versus local), and how best to manage connectivity to optimize resistance gene deployment while avoiding risks to the useful life of resistance genes. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

  4. Leveraging long sequencing reads to investigate R-gene clustering and variation in sugar beet

    Science.gov (United States)

    Host-pathogen interactions are of prime importance to modern agriculture. Plants utilize various types of resistance genes to mitigate pathogen damage. Identification of the specific gene responsible for a specific resistance can be difficult due to duplication and clustering within R-gene families....

  5. Pichia stipitis genomics, transcriptomics, and gene clusters

    Science.gov (United States)

    Thomas W. Jeffries; Jennifer R. Headman Van Vleet

    2009-01-01

    Genome sequencing and subsequent global gene expression studies have advanced our understanding of the lignocellulose-fermenting yeast Pichia stipitis. These studies have provided an insight into its central carbon metabolism, and analysis of its genome has revealed numerous functional gene clusters and tandem repeats. Specialized physiological traits are often the...

  6. The novel virulence-related gene nlxA in the lipopolysaccharide cluster of Xanthomonas citri ssp. citri is involved in the production of lipopolysaccharide and extracellular polysaccharide, motility, biofilm formation and stress resistance.

    Science.gov (United States)

    Yan, Qing; Hu, Xiufang; Wang, Nian

    2012-10-01

    Lipopolysaccharide (LPS) is an important virulence factor of Xanthomonas citri ssp. citri, the causative agent of citrus canker disease. In this research, a novel gene, designated as nlxA (novel LPS cluster gene of X. citri ssp. citri), in the LPS cluster of X. citri ssp. citri 306, was characterized. Our results indicate that nlxA is required for O-polysaccharide biosynthesis by encoding a putative rhamnosyltransferase. This is supported by several lines of evidence: (i) NlxA shares 40.14% identity with WsaF, which acts as a rhamnosyltransferase; (ii) sodium dodecylsulphate-polyacrylamide gel electrophoresis analysis showed that four bands of the O-antigen part of LPS were missing in the LPS production of the nlxA mutant; this is also consistent with a previous report that the O-antigen moiety of LPS of X. citri ssp. citri is composed of a rhamnose homo-oligosaccharide; (iii) mutation of nlxA resulted in a significant reduction in the resistance of X. citri ssp. citri to different stresses, including sodium dodecylsulphate, polymyxin B, H(2)O(2), phenol, CuSO(4) and ZnSO(4). In addition, our results indicate that nlxA plays an important role in extracellular polysaccharide production, biofilm formation, stress resistance, motility on semi-solid plates, virulence and in planta growth in the host plant grapefruit. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  7. Determination of rust resistance genes in pakistani bread wheats

    International Nuclear Information System (INIS)

    Qamar, M.; Ahmad, S.D.; Rabbani, M.A.; Shinwari, Z.K.

    2014-01-01

    Stripe and leaf rusts are the major constraints to bread wheat production in Pakistan. Molecular markers were used to investigate the presence of leaf rust and stripe rust resistance gene cluster Lr34/Yr18 and stem rust resistance gene Sr2 in 52 Pakistani bread wheat cultivars/lines. PCR amplification of DNA fragments using DNA marker csLV-34 showed that 13 of the studied cultivars/lines, namely 03FJ26, NR 337, NR 339, NR 347, NR 350, Manthar, Margalla 99, Iqbal 2000, Saleem 2000, Wafaq 2001, Marwat 2001, Pirsabak 2004 and Fareed 2006 carry leaf rust and stripe rust resistance genes Lr34/Yr18. Stem rust resistance gene Sr2 was observed in 36 Pakistani spring wheat cultivars/lines using stm560.3tgag marker. The slow rusting gene Sr2 needs to be combined with additional stem rust resistance genes to establish durable resistance against Ug99 in modern wheat cultivars. Low frequency of Lr34/Yr18 was found in Pakistani wheats. This gene cluster needs to be incorporated into Pakistani wheats for durable rust resistance. (author)

  8. Semi-supervised consensus clustering for gene expression data analysis

    OpenAIRE

    Wang, Yunli; Pan, Youlian

    2014-01-01

    Background Simple clustering methods such as hierarchical clustering and k-means are widely used for gene expression data analysis; but they are unable to deal with noise and high dimensionality associated with the microarray gene expression data. Consensus clustering appears to improve the robustness and quality of clustering results. Incorporating prior knowledge in clustering process (semi-supervised clustering) has been shown to improve the consistency between the data partitioning and do...

  9. Obesity genes and insulin resistance.

    Science.gov (United States)

    Belkina, Anna C; Denis, Gerald V

    2010-10-01

    The exploding prevalence of insulin resistance and Type 2 diabetes (T2D) linked to obesity has become an alarming public health concern. Worldwide, approximately 171 million people suffer from obesity-induced diabetes and public health authorities expect this situation to deteriorate rapidly. An interesting clinical population of 'metabolically healthy but obese' (MHO) cases is relatively protected from T2D and its associated cardiovascular risk. The molecular basis for this protection is not well understood but is likely to involve reduced inflammatory responses. The inflammatory cells and pathways that respond to overnutrition are the primary subject matter for this review. The chance discovery of a genetic mutation in the Brd2 gene, which is located in the class II major histocompatibility complex and makes mice enormously fat but protects them from diabetes, offers revolutionary new insights into the cellular mechanisms that link obesity to insulin resistance and T2D. These Brd2-hypomorphic mice have reduced inflammation in fat that is normally associated with insulin resistance, and resemble MHO patients, suggesting novel therapeutic pathways for obese patients at risk for T2D. Deeper understanding of the functional links between genes that control inflammatory responses to diet-induced obesity is crucial to the development of therapies for obese, insulin-resistant patients.

  10. The KL24 gene cluster and a genomic island encoding a Wzy polymerase contribute genes needed for synthesis of the K24 capsular polysaccharide by the multiply antibiotic resistant Acinetobacter baumannii isolate RCH51.

    Science.gov (United States)

    Kenyon, Johanna J; Kasimova, Anastasiya A; Shneider, Mikhail M; Shashkov, Alexander S; Arbatsky, Nikolay P; Popova, Anastasiya V; Miroshnikov, Konstantin A; Hall, Ruth M; Knirel, Yuriy A

    2017-03-01

    The whole-genome sequence of the multiply antibiotic resistant Acinetobacter baumannii isolate RCH51 belonging to sequence type ST103 (Institut Pasteur scheme) revealed that the set of genes at the capsule locus, KL24, includes four genes predicted to direct the synthesis of 3-acetamido-3,6-dideoxy-d-galactose (d-Fuc3NAc), and this sugar was found in the capsular polysaccharide (CPS). One of these genes, fdtE, encodes a novel bifunctional protein with an N-terminal FdtA 3,4-ketoisomerase domain and a C-terminal acetyltransferase domain. KL24 lacks a gene encoding a Wzy polymerase to link the oligosaccharide K units to form the CPS found associated with isolate RCH51, and a wzy gene was found in a small genomic island (GI) near the cpn60 gene. This GI is in precisely the same location as another GI carrying wzy and atr genes recently found in several A. baumannii isolates, but it does not otherwise resemble it. The CPS isolated from RCH51, studied by sugar analysis and 1D and 2D 1H and 13C NMR spectroscopy, revealed that the K unit has a branched pentasaccharide structure made up of Gal, GalNAc and GlcNAc residues with d-Fuc3NAc as a side branch, and the K units are linked via a β-d-GlcpNAc-(1→3)-β-d-Galp linkage formed by the Wzy encoded by the GI. The functions of the glycosyltransferases encoded by KL24 were assigned to formation of specific bonds. A correspondence between the order of the genes in KL24 and other KL and the order of the linkages they form was noted, and this may be useful in future predictions of glycosyltransferase specificities.

  11. Identifying resistance gene analogs associated with resistances to different pathogens in common bean.

    Science.gov (United States)

    López, Camilo E; Acosta, Iván F; Jara, Carlos; Pedraza, Fabio; Gaitán-Solís, Eliana; Gallego, Gerardo; Beebe, Steve; Tohme, Joe

    2003-01-01

    ABSTRACT A polymerase chain reaction approach using degenerate primers that targeted the conserved domains of cloned plant disease resistance genes (R genes) was used to isolate a set of 15 resistance gene analogs (RGAs) from common bean (Phaseolus vulgaris). Eight different classes of RGAs were obtained from nucleotide binding site (NBS)-based primers and seven from not previously described Toll/Interleukin-1 receptor-like (TIR)-based primers. Putative amino acid sequences of RGAs were significantly similar to R genes and contained additional conserved motifs. The NBS-type RGAs were classified in two subgroups according to the expected final residue in the kinase-2 motif. Eleven RGAs were mapped at 19 loci on eight linkage groups of the common bean genetic map constructed at Centro Internacional de Agricultura Tropical. Genetic linkage was shown for eight RGAs with partial resistance to anthracnose, angular leaf spot (ALS) and Bean golden yellow mosaic virus (BGYMV). RGA1 and RGA2 were associated with resistance loci to anthracnose and BGYMV and were part of two clusters of R genes previously described. A new major cluster was detected by RGA7 and explained up to 63.9% of resistance to ALS and has a putative contribution to anthracnose resistance. These results show the usefulness of RGAs as candidate genes to detect and eventually isolate numerous R genes in common bean.

  12. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes.

    Science.gov (United States)

    Choi, Kyuha; Reinhard, Carsten; Serra, Heïdi; Ziolkowski, Piotr A; Underwood, Charles J; Zhao, Xiaohui; Hardcastle, Thomas J; Yelina, Nataliya E; Griffin, Catherine; Jackson, Matthew; Mézard, Christine; McVean, Gil; Copenhaver, Gregory P; Henderson, Ian R

    2016-07-01

    Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.

  13. Fast gene ontology based clustering for microarray experiments.

    Science.gov (United States)

    Ovaska, Kristian; Laakso, Marko; Hautaniemi, Sampsa

    2008-11-21

    Analysis of a microarray experiment often results in a list of hundreds of disease-associated genes. In order to suggest common biological processes and functions for these genes, Gene Ontology annotations with statistical testing are widely used. However, these analyses can produce a very large number of significantly altered biological processes. Thus, it is often challenging to interpret GO results and identify novel testable biological hypotheses. We present fast software for advanced gene annotation using semantic similarity for Gene Ontology terms combined with clustering and heat map visualisation. The methodology allows rapid identification of genes sharing the same Gene Ontology cluster. Our R based semantic similarity open-source package has a speed advantage of over 2000-fold compared to existing implementations. From the resulting hierarchical clustering dendrogram genes sharing a GO term can be identified, and their differences in the gene expression patterns can be seen from the heat map. These methods facilitate advanced annotation of genes resulting from data analysis.

  14. Clusters of Multidrug-Resistant Mycobacterium tuberculosis Cases, Europe

    Science.gov (United States)

    Kremer, Kristin; Heersma, Herre; Van Soolingen, Dick

    2009-01-01

    Molecular surveillance of multidrug-resistant tuberculosis (MDR TB) was implemented in Europe as case reporting in 2005. For all new MDR TB cases detected from January 2003 through June 2007, countries reported case-based epidemiologic data and DNA fingerprint patterns of MDR TB strains when available. International clusters were detected and analyzed. From 2003 through mid-2007 in Europe, 2,494 cases of MDR TB were reported from 24 European countries. Epidemiologic and molecular data were linked for 593 (39%) cases, and 672 insertion sequence 6110 DNA fingerprint patterns were reported from 19 countries. Of these patterns, 288 (43%) belonged to 18 European clusters; 7 clusters (242/288 cases, 84%) were characterized by strains of the Beijing genotype family, including the largest cluster (175/288 cases, 61%). Both clustering and the Beijing genotype were associated with strains originating in eastern European countries. Molecular cluster detection contributes to identification of transmission profile, risk factors, and control measures. PMID:19624920

  15. Conditions for the evolution of gene clusters in bacterial genomes.

    Directory of Open Access Journals (Sweden)

    Sara Ballouz

    2010-02-01

    Full Text Available Genes encoding proteins in a common pathway are often found near each other along bacterial chromosomes. Several explanations have been proposed to account for the evolution of these structures. For instance, natural selection may directly favour gene clusters through a variety of mechanisms, such as increased efficiency of coregulation. An alternative and controversial hypothesis is the selfish operon model, which asserts that clustered arrangements of genes are more easily transferred to other species, thus improving the prospects for survival of the cluster. According to another hypothesis (the persistence model, genes that are in close proximity are less likely to be disrupted by deletions. Here we develop computational models to study the conditions under which gene clusters can evolve and persist. First, we examine the selfish operon model by re-implementing the simulation and running it under a wide range of conditions. Second, we introduce and study a Moran process in which there is natural selection for gene clustering and rearrangement occurs by genome inversion events. Finally, we develop and study a model that includes selection and inversion, which tracks the occurrence and fixation of rearrangements. Surprisingly, gene clusters fail to evolve under a wide range of conditions. Factors that promote the evolution of gene clusters include a low number of genes in the pathway, a high population size, and in the case of the selfish operon model, a high horizontal transfer rate. The computational analysis here has shown that the evolution of gene clusters can occur under both direct and indirect selection as long as certain conditions hold. Under these conditions the selfish operon model is still viable as an explanation for the evolution of gene clusters.

  16. Conditions for the Evolution of Gene Clusters in Bacterial Genomes

    Science.gov (United States)

    Ballouz, Sara; Francis, Andrew R.; Lan, Ruiting; Tanaka, Mark M.

    2010-01-01

    Genes encoding proteins in a common pathway are often found near each other along bacterial chromosomes. Several explanations have been proposed to account for the evolution of these structures. For instance, natural selection may directly favour gene clusters through a variety of mechanisms, such as increased efficiency of coregulation. An alternative and controversial hypothesis is the selfish operon model, which asserts that clustered arrangements of genes are more easily transferred to other species, thus improving the prospects for survival of the cluster. According to another hypothesis (the persistence model), genes that are in close proximity are less likely to be disrupted by deletions. Here we develop computational models to study the conditions under which gene clusters can evolve and persist. First, we examine the selfish operon model by re-implementing the simulation and running it under a wide range of conditions. Second, we introduce and study a Moran process in which there is natural selection for gene clustering and rearrangement occurs by genome inversion events. Finally, we develop and study a model that includes selection and inversion, which tracks the occurrence and fixation of rearrangements. Surprisingly, gene clusters fail to evolve under a wide range of conditions. Factors that promote the evolution of gene clusters include a low number of genes in the pathway, a high population size, and in the case of the selfish operon model, a high horizontal transfer rate. The computational analysis here has shown that the evolution of gene clusters can occur under both direct and indirect selection as long as certain conditions hold. Under these conditions the selfish operon model is still viable as an explanation for the evolution of gene clusters. PMID:20168992

  17. Bioinformatics Prediction of Polyketide Synthase Gene Clusters from Mycosphaerella fijiensis.

    Science.gov (United States)

    Noar, Roslyn D; Daub, Margaret E

    2016-01-01

    Mycosphaerella fijiensis, causal agent of black Sigatoka disease of banana, is a Dothideomycete fungus closely related to fungi that produce polyketides important for plant pathogenicity. We utilized the M. fijiensis genome sequence to predict PKS genes and their gene clusters and make bioinformatics predictions about the types of compounds produced by these clusters. Eight PKS gene clusters were identified in the M. fijiensis genome, placing M. fijiensis into the 23rd percentile for the number of PKS genes compared to other Dothideomycetes. Analysis of the PKS domains identified three of the PKS enzymes as non-reducing and two as highly reducing. Gene clusters contained types of genes frequently found in PKS clusters including genes encoding transporters, oxidoreductases, methyltransferases, and non-ribosomal peptide synthases. Phylogenetic analysis identified a putative PKS cluster encoding melanin biosynthesis. None of the other clusters were closely aligned with genes encoding known polyketides, however three of the PKS genes fell into clades with clusters encoding alternapyrone, fumonisin, and solanapyrone produced by Alternaria and Fusarium species. A search for homologs among available genomic sequences from 103 Dothideomycetes identified close homologs (>80% similarity) for six of the PKS sequences. One of the PKS sequences was not similar (< 60% similarity) to sequences in any of the 103 genomes, suggesting that it encodes a unique compound. Comparison of the M. fijiensis PKS sequences with those of two other banana pathogens, M. musicola and M. eumusae, showed that these two species have close homologs to five of the M. fijiensis PKS sequences, but three others were not found in either species. RT-PCR and RNA-Seq analysis showed that the melanin PKS cluster was down-regulated in infected banana as compared to growth in culture. Three other clusters, however were strongly upregulated during disease development in banana, suggesting that they may encode

  18. Bioinformatics Prediction of Polyketide Synthase Gene Clusters from Mycosphaerella fijiensis.

    Directory of Open Access Journals (Sweden)

    Roslyn D Noar

    Full Text Available Mycosphaerella fijiensis, causal agent of black Sigatoka disease of banana, is a Dothideomycete fungus closely related to fungi that produce polyketides important for plant pathogenicity. We utilized the M. fijiensis genome sequence to predict PKS genes and their gene clusters and make bioinformatics predictions about the types of compounds produced by these clusters. Eight PKS gene clusters were identified in the M. fijiensis genome, placing M. fijiensis into the 23rd percentile for the number of PKS genes compared to other Dothideomycetes. Analysis of the PKS domains identified three of the PKS enzymes as non-reducing and two as highly reducing. Gene clusters contained types of genes frequently found in PKS clusters including genes encoding transporters, oxidoreductases, methyltransferases, and non-ribosomal peptide synthases. Phylogenetic analysis identified a putative PKS cluster encoding melanin biosynthesis. None of the other clusters were closely aligned with genes encoding known polyketides, however three of the PKS genes fell into clades with clusters encoding alternapyrone, fumonisin, and solanapyrone produced by Alternaria and Fusarium species. A search for homologs among available genomic sequences from 103 Dothideomycetes identified close homologs (>80% similarity for six of the PKS sequences. One of the PKS sequences was not similar (< 60% similarity to sequences in any of the 103 genomes, suggesting that it encodes a unique compound. Comparison of the M. fijiensis PKS sequences with those of two other banana pathogens, M. musicola and M. eumusae, showed that these two species have close homologs to five of the M. fijiensis PKS sequences, but three others were not found in either species. RT-PCR and RNA-Seq analysis showed that the melanin PKS cluster was down-regulated in infected banana as compared to growth in culture. Three other clusters, however were strongly upregulated during disease development in banana, suggesting that

  19. Identification of Clusters that Condition Resistance to Anthracnose in the Common Bean Differential Cultivars AB136 and MDRK.

    Science.gov (United States)

    Campa, Ana; Trabanco, Noemí; Ferreira, Juan José

    2017-12-01

    The correct identification of the anthracnose resistance systems present in the common bean cultivars AB136 and MDRK is important because both are included in the set of 12 differential cultivars proposed for use in classifying the races of the anthracnose causal agent, Colletrotrichum lindemuthianum. In this work, the responses against seven C. lindemuthianum races were analyzed in a recombinant inbred line population derived from the cross AB136 × MDRK. A genetic linkage map of 100 molecular markers distributed across the 11 bean chromosomes was developed in this population to locate the gene or genes conferring resistance against each race, based on linkage analyses and χ 2 tests of independence. The identified anthracnose resistance genes were organized in clusters. Two clusters were found in AB136: one located on linkage group Pv07, which corresponds to the anthracnose resistance cluster Co-5, and the other located at the end of linkage group Pv11, which corresponds to the Co-2 cluster. The presence of resistance genes at the Co-5 cluster in AB136 was validated through an allelism test conducted in the F 2 population TU × AB136. The presence of resistance genes at the Co-2 cluster in AB136 was validated through genetic dissection using the F 2:3 population ABM3 × MDRK, in which it was directly mapped to a genomic position between 46.01 and 47.77 Mb of chromosome Pv11. In MDRK, two independent clusters were identified: one located on linkage group Pv01, corresponding to the Co-1 cluster, and the second located on LG Pv04, corresponding to the Co-3 cluster. This report enhances the understanding of the race-specific Phaseolus vulgaris-C. lindemuthianum interactions and will be useful in breeding programs.

  20. A scale invariant clustering of genes on human chromosome 7

    Directory of Open Access Journals (Sweden)

    Kendal Wayne S

    2004-01-01

    Full Text Available Abstract Background Vertebrate genes often appear to cluster within the background of nontranscribed genomic DNA. Here an analysis of the physical distribution of gene structures on human chromosome 7 was performed to confirm the presence of clustering, and to elucidate possible underlying statistical and biological mechanisms. Results Clustering of genes was confirmed by virtue of a variance of the number of genes per unit physical length that exceeded the respective mean. Further evidence for clustering came from a power function relationship between the variance and mean that possessed an exponent of 1.51. This power function implied that the spatial distribution of genes on chromosome 7 was scale invariant, and that the underlying statistical distribution had a Poisson-gamma (PG form. A PG distribution for the spatial scattering of genes was validated by stringent comparisons of both the predicted variance to mean power function and its cumulative distribution function to data derived from chromosome 7. Conclusion The PG distribution was consistent with at least two different biological models: In the microrearrangement model, the number of genes per unit length of chromosome represented the contribution of a random number of smaller chromosomal segments that had originated by random breakage and reconstruction of more primitive chromosomes. Each of these smaller segments would have necessarily contained (on average a gamma distributed number of genes. In the gene cluster model, genes would be scattered randomly to begin with. Over evolutionary timescales, tandem duplication, mutation, insertion, deletion and rearrangement could act at these gene sites through a stochastic birth death and immigration process to yield a PG distribution. On the basis of the gene position data alone it was not possible to identify the biological model which best explained the observed clustering. However, the underlying PG statistical model implicated neutral

  1. Differential Retention of Gene Functions in a Secondary Metabolite Cluster.

    Science.gov (United States)

    Reynolds, Hannah T; Slot, Jason C; Divon, Hege H; Lysøe, Erik; Proctor, Robert H; Brown, Daren W

    2017-08-01

    In fungi, distribution of secondary metabolite (SM) gene clusters is often associated with host- or environment-specific benefits provided by SMs. In the plant pathogen Alternaria brassicicola (Dothideomycetes), the DEP cluster confers an ability to synthesize the SM depudecin, a histone deacetylase inhibitor that contributes weakly to virulence. The DEP cluster includes genes encoding enzymes, a transporter, and a transcription regulator. We investigated the distribution and evolution of the DEP cluster in 585 fungal genomes and found a wide but sporadic distribution among Dothideomycetes, Sordariomycetes, and Eurotiomycetes. We confirmed DEP gene expression and depudecin production in one fungus, Fusarium langsethiae. Phylogenetic analyses suggested 6-10 horizontal gene transfers (HGTs) of the cluster, including a transfer that led to the presence of closely related cluster homologs in Alternaria and Fusarium. The analyses also indicated that HGTs were frequently followed by loss/pseudogenization of one or more DEP genes. Independent cluster inactivation was inferred in at least four fungal classes. Analyses of transitions among functional, pseudogenized, and absent states of DEP genes among Fusarium species suggest enzyme-encoding genes are lost at higher rates than the transporter (DEP3) and regulatory (DEP6) genes. The phenotype of an experimentally-induced DEP3 mutant of Fusarium did not support the hypothesis that selective retention of DEP3 and DEP6 protects fungi from exogenous depudecin. Together, the results suggest that HGT and gene loss have contributed significantly to DEP cluster distribution, and that some DEP genes provide a greater fitness benefit possibly due to a differential tendency to form network connections. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2017. This work is written by US Government employees and is in the public domain in the US.

  2. Nearest Neighbor Networks: clustering expression data based on gene neighborhoods

    Directory of Open Access Journals (Sweden)

    Olszewski Kellen L

    2007-07-01

    Full Text Available Abstract Background The availability of microarrays measuring thousands of genes simultaneously across hundreds of biological conditions represents an opportunity to understand both individual biological pathways and the integrated workings of the cell. However, translating this amount of data into biological insight remains a daunting task. An important initial step in the analysis of microarray data is clustering of genes with similar behavior. A number of classical techniques are commonly used to perform this task, particularly hierarchical and K-means clustering, and many novel approaches have been suggested recently. While these approaches are useful, they are not without drawbacks; these methods can find clusters in purely random data, and even clusters enriched for biological functions can be skewed towards a small number of processes (e.g. ribosomes. Results We developed Nearest Neighbor Networks (NNN, a graph-based algorithm to generate clusters of genes with similar expression profiles. This method produces clusters based on overlapping cliques within an interaction network generated from mutual nearest neighborhoods. This focus on nearest neighbors rather than on absolute distance measures allows us to capture clusters with high connectivity even when they are spatially separated, and requiring mutual nearest neighbors allows genes with no sufficiently similar partners to remain unclustered. We compared the clusters generated by NNN with those generated by eight other clustering methods. NNN was particularly successful at generating functionally coherent clusters with high precision, and these clusters generally represented a much broader selection of biological processes than those recovered by other methods. Conclusion The Nearest Neighbor Networks algorithm is a valuable clustering method that effectively groups genes that are likely to be functionally related. It is particularly attractive due to its simplicity, its success in the

  3. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production

    Science.gov (United States)

    Bailey, Andy M.; Alberti, Fabrizio; Kilaru, Sreedhar; Collins, Catherine M.; de Mattos-Shipley, Kate; Hartley, Amanda J.; Hayes, Patrick; Griffin, Alison; Lazarus, Colin M.; Cox, Russell J.; Willis, Christine L.; O'Dwyer, Karen; Spence, David W.; Foster, Gary D.

    2016-05-01

    Semi-synthetic derivatives of the tricyclic diterpene antibiotic pleuromutilin from the basidiomycete Clitopilus passeckerianus are important in combatting bacterial infections in human and veterinary medicine. These compounds belong to the only new class of antibiotics for human applications, with novel mode of action and lack of cross-resistance, representing a class with great potential. Basidiomycete fungi, being dikaryotic, are not generally amenable to strain improvement. We report identification of the seven-gene pleuromutilin gene cluster and verify that using various targeted approaches aimed at increasing antibiotic production in C. passeckerianus, no improvement in yield was achieved. The seven-gene pleuromutilin cluster was reconstructed within Aspergillus oryzae giving production of pleuromutilin in an ascomycete, with a significant increase (2106%) in production. This is the first gene cluster from a basidiomycete to be successfully expressed in an ascomycete, and paves the way for the exploitation of a metabolically rich but traditionally overlooked group of fungi.

  4. Identification of acquired antimicrobial resistance genes

    DEFF Research Database (Denmark)

    Zankari, Ea; Hasman, Henrik; Cosentino, Salvatore

    2012-01-01

    ObjectivesIdentification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic laborato......ObjectivesIdentification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic...... laboratories and is anticipated to substitute traditional methods for resistance gene identification. Thus, the current challenge is to extract the relevant information from the large amount of generated data.MethodsWe developed a web-based method, ResFinder that uses BLAST for identification of acquired...... antimicrobial resistance genes in whole-genome data. As input, the method can use both pre-assembled, complete or partial genomes, and short sequence reads from four different sequencing platforms. The method was evaluated on 1862 GenBank files containing 1411 different resistance genes, as well as on 23 de...

  5. Survey of rice blast race identity for blast resistance gene identification in the USA and Puerto Rico

    Science.gov (United States)

    Rice blast disease is a significant threat to stable rice production in the USA and worldwide. The major resistance gene (Pi-ta) located within a cluster of resistance genes on rice chromosome 12 has been demonstrated to confer resistance to the rice blast disease. Katy, a rice cultivar released in ...

  6. HOXA genes cluster: clinical implications of the smallest deletion

    OpenAIRE

    Pezzani, Lidia; Milani, Donatella; Manzoni, Francesca; Baccarin, Marco; Silipigni, Rosamaria; Guerneri, Silvana; Esposito, Susanna

    2015-01-01

    Background HOXA genes cluster plays a fundamental role in embryologic development. Deletion of the entire cluster is known to cause a clinically recognizable syndrome with mild developmental delay, characteristic facies, small feet with unusually short and big halluces, abnormal thumbs, and urogenital malformations. The clinical manifestations may vary with different ranges of deletions of HOXA cluster and flanking regions. Case presentation We report a girl with the smallest deletion reporte...

  7. Minimum Information about a Biosynthetic Gene cluster : commentary

    NARCIS (Netherlands)

    Medema, Marnix H; Kottmann, Renzo; Yilmaz, Pelin; Cummings, Matthew; Biggins, John B; Blin, Kai; de Bruijn, Irene; Chooi, Yit Heng; Claesen, Jan; Coates, R Cameron; Cruz-Morales, Pablo; Duddela, Srikanth; Dusterhus, Stephanie; Edwards, Daniel J; Fewer, David P; Garg, Neha; Geiger, Christoph; Gomez-Escribano, Juan Pablo; Greule, Anja; Hadjithomas, Michalis; Haines, Anthony S; Helfrich, Eric J N; Hillwig, Matthew L; Ishida, Keishi; Jones, Adam C; Jones, Carla S; Jungmann, Katrin; Kegler, Carsten; Kim, Hyun Uk; Kotter, Peter; Krug, Daniel; Masschelein, Joleen; Melnik, Alexey V; Mantovani, Simone M; Monroe, Emily A; Moore, Marcus; Moss, Nathan; Nutzmann, Hans-Wilhelm; Pan, Guohui; Pati, Amrita; Petras, Daniel; Reen, F Jerry; Rosconi, Federico; Rui, Zhe; Tian, Zhenhua; Tobias, Nicholas J; Tsunematsu, Yuta; Wiemann, Philipp; Wyckoff, Elizabeth; Yan, Xiaohui; Yim, Grace; Yu, Fengan; Xie, Yunchang; Aigle, Bertrand; Apel, Alexander K; Balibar, Carl J; Balskus, Emily P; Barona-Gomez, Francisco; Bechthold, Andreas; Bode, Helge B; Borriss, Rainer; Brady, Sean F; Brakhage, Axel A; Caffrey, Patrick; Cheng, Yi-Qiang; Clardy, Jon; Cox, Russell J; De Mot, Rene; Donadio, Stefano; Donia, Mohamed S; van der Donk, Wilfred A; Dorrestein, Pieter C; Doyle, Sean; Driessen, Arnold J M; Ehling-Schulz, Monika; Entian, Karl-Dieter; Fischbach, Michael A; Gerwick, Lena; Gerwick, William H; Gross, Harald; Gust, Bertolt; Hertweck, Christian; Hofte, Monica; Jensen, Susan E; Ju, Jianhua; Katz, Leonard; Kaysser, Leonard; Klassen, Jonathan L; Keller, Nancy P; Kormanec, Jan; Kuipers, Oscar P; Kuzuyama, Tomohisa; Kyrpides, Nikos C; Kwon, Hyung-Jin; Lautru, Sylvie; Lavigne, Rob; Lee, Chia Y; Linquan, Bai; Liu, Xinyu; Liu, Wen; Luzhetskyy, Andriy; Mahmud, Taifo; Mast, Yvonne; Mendez, Carmen; Metsa-Ketela, Mikko; Micklefield, Jason; Mitchell, Douglas A; Moore, Bradley S; Moreira, Leonilde M; Muller, Rolf; Neilan, Brett A; Nett, Markus; Nielsen, Jens; O'Gara, Fergal; Oikawa, Hideaki; Osbourn, Anne; Osburne, Marcia S; Ostash, Bohdan; Payne, Shelley M; Pernodet, Jean-Luc; Petricek, Miroslav; Piel, Jorn; Ploux, Olivier; Raaijmakers, Jos M; Salas, Jose A; Schmitt, Esther K; Scott, Barry; Seipke, Ryan F; Shen, Ben; Sherman, David H; Sivonen, Kaarina; Smanski, Michael J; Sosio, Margherita; Stegmann, Evi; Sussmuth, Roderich D; Tahlan, Kapil; Thomas, Christopher M; Tang, Yi; Truman, Andrew W; Viaud, Muriel; Walton, Jonathan D; Walsh, Christopher T; Weber, Tilmann; van Wezel, Gilles P; Wilkinson, Barrie; Willey, Joanne M; Wohlleben, Wolfgang; Wright, Gerard D; Ziemert, Nadine; Zhang, Changsheng; Zotchev, Sergey B; Breitling, Rainer; Takano, Eriko; Glockner, Frank Oliver

    A wide variety of enzymatic pathways that produce specialized metabolites in bacteria, fungi and plants are known to be encoded in biosynthetic gene clusters. Information about these clusters, pathways and metabolites is currently dispersed throughout the literature, making it difficult to exploit.

  8. Hox gene clusters in the Indonesian coelacanth, Latimeria menadoensis

    Science.gov (United States)

    Koh, Esther G. L.; Lam, Kevin; Christoffels, Alan; Erdmann, Mark V.; Brenner, Sydney; Venkatesh, Byrappa

    2003-01-01

    The Hox genes encode transcription factors that play a key role in specifying body plans of metazoans. They are organized into clusters that contain up to 13 paralogue group members. The complex morphology of vertebrates has been attributed to the duplication of Hox clusters during vertebrate evolution. In contrast to the single Hox cluster in the amphioxus (Branchiostoma floridae), an invertebrate-chordate, mammals have four clusters containing 39 Hox genes. Ray-finned fishes (Actinopterygii) such as zebrafish and fugu possess more than four Hox clusters. The coelacanth occupies a basal phylogenetic position among lobe-finned fishes (Sarcopterygii), which gave rise to the tetrapod lineage. The lobe fins of sarcopterygians are considered to be the evolutionary precursors of tetrapod limbs. Thus, the characterization of Hox genes in the coelacanth should provide insights into the origin of tetrapod limbs. We have cloned the complete second exon of 33 Hox genes from the Indonesian coelacanth, Latimeria menadoensis, by extensive PCR survey and genome walking. Phylogenetic analysis shows that 32 of these genes have orthologs in the four mammalian HOX clusters, including three genes (HoxA6, D1, and D8) that are absent in ray-finned fishes. The remaining coelacanth gene is an ortholog of hoxc1 found in zebrafish but absent in mammals. Our results suggest that coelacanths have four Hox clusters bearing a gene complement more similar to mammals than to ray-finned fishes, but with an additional gene, HoxC1, which has been lost during the evolution of mammals from lobe-finned fishes. PMID:12547909

  9. Bacillus sp.CDB3 isolated from cattle dip-sites possesses two ars gene clusters

    Institute of Scientific and Technical Information of China (English)

    Somanath Bhat; Xi Luo; Zhiqiang Xu; Lixia Liu; Ren Zhang

    2011-01-01

    Contamination of soil and water by arsenic is a global problem.In Australia, the dipping of cattle in arsenic-containing solution to control cattle ticks in last centenary has left many sites heavily contaminated with arsenic and other toxicants.We had previously isolated five soil bacterial strains (CDB1-5) highly resistant to arsenic.To understand the resistance mechanism, molecular studies have been carried out.Two chromosome-encoded arsenic resistance (ars) gene clusters have been cloned from CDB3 (Bacillus sp.).They both function in Escherichia coli and cluster 1 exerts a much higher resistance to the toxic metalloid.Cluster 2 is smaller possessing four open reading frames (ORFs) arsRorf2BC, similar to that identified in Bacillus subtilis Skin element.Among the eight ORFs in cluster 1 five are analogs of common ars genes found in other bacteria, however, organized in a unique order arsRBCDA instead of arsRDABC.Three other putative genes are located directly downstream and designated as arsTIP based on the homologies of their theoretical translation sequences respectively to thioredoxin reductases, iron-sulphur cluster proteins and protein phosphatases.The latter two are novel of any known ars operons.The arsD gene from Bacillus species was cloned for the first time and the predict protein differs from the well studied E.coli ArsD by lacking two pairs of C-terrninal cysteine residues.Its functional involvement in arsenic resistance has been confirmed by a deletion experiment.There exists also an inverted repeat in the intergenic region between arsC and arsD implying some unknown transcription regulation.

  10. Comparative genomic and transcriptomic analysis of selected fatty acid biosynthesis genes and CNL disease resistance genes in oil palm

    Science.gov (United States)

    Rosli, Rozana; Amiruddin, Nadzirah; Ab Halim, Mohd Amin; Chan, Pek-Lan; Chan, Kuang-Lim; Azizi, Norazah; Morris, Priscilla E.; Leslie Low, Eng-Ti; Ong-Abdullah, Meilina; Sambanthamurthi, Ravigadevi; Singh, Rajinder

    2018-01-01

    Comparative genomics and transcriptomic analyses were performed on two agronomically important groups of genes from oil palm versus other major crop species and the model organism, Arabidopsis thaliana. The first analysis was of two gene families with key roles in regulation of oil quality and in particular the accumulation of oleic acid, namely stearoyl ACP desaturases (SAD) and acyl-acyl carrier protein (ACP) thioesterases (FAT). In both cases, these were found to be large gene families with complex expression profiles across a wide range of tissue types and developmental stages. The detailed classification of the oil palm SAD and FAT genes has enabled the updating of the latest version of the oil palm gene model. The second analysis focused on disease resistance (R) genes in order to elucidate possible candidates for breeding of pathogen tolerance/resistance. Ortholog analysis showed that 141 out of the 210 putative oil palm R genes had homologs in banana and rice. These genes formed 37 clusters with 634 orthologous genes. Classification of the 141 oil palm R genes showed that the genes belong to the Kinase (7), CNL (95), MLO-like (8), RLK (3) and Others (28) categories. The CNL R genes formed eight clusters. Expression data for selected R genes also identified potential candidates for breeding of disease resistance traits. Furthermore, these findings can provide information about the species evolution as well as the identification of agronomically important genes in oil palm and other major crops. PMID:29672525

  11. Comparative genomic and transcriptomic analysis of selected fatty acid biosynthesis genes and CNL disease resistance genes in oil palm.

    Science.gov (United States)

    Rosli, Rozana; Amiruddin, Nadzirah; Ab Halim, Mohd Amin; Chan, Pek-Lan; Chan, Kuang-Lim; Azizi, Norazah; Morris, Priscilla E; Leslie Low, Eng-Ti; Ong-Abdullah, Meilina; Sambanthamurthi, Ravigadevi; Singh, Rajinder; Murphy, Denis J

    2018-01-01

    Comparative genomics and transcriptomic analyses were performed on two agronomically important groups of genes from oil palm versus other major crop species and the model organism, Arabidopsis thaliana. The first analysis was of two gene families with key roles in regulation of oil quality and in particular the accumulation of oleic acid, namely stearoyl ACP desaturases (SAD) and acyl-acyl carrier protein (ACP) thioesterases (FAT). In both cases, these were found to be large gene families with complex expression profiles across a wide range of tissue types and developmental stages. The detailed classification of the oil palm SAD and FAT genes has enabled the updating of the latest version of the oil palm gene model. The second analysis focused on disease resistance (R) genes in order to elucidate possible candidates for breeding of pathogen tolerance/resistance. Ortholog analysis showed that 141 out of the 210 putative oil palm R genes had homologs in banana and rice. These genes formed 37 clusters with 634 orthologous genes. Classification of the 141 oil palm R genes showed that the genes belong to the Kinase (7), CNL (95), MLO-like (8), RLK (3) and Others (28) categories. The CNL R genes formed eight clusters. Expression data for selected R genes also identified potential candidates for breeding of disease resistance traits. Furthermore, these findings can provide information about the species evolution as well as the identification of agronomically important genes in oil palm and other major crops.

  12. Relationship between Psidium species (Myrtaceae) by resistance gene analog markers: focus on nematode resistance.

    Science.gov (United States)

    Noia, L R; Tuler, A C; Ferreira, A; Ferreira, M F S

    2017-03-16

    Guava (Psidium guajava L.) crop is severely affected by the nematode Meloidogyne enterolobii. Native Psidium species have been reported as sources of resistance against this nematode. Knowledge on the molecular relationship between Psidium species based on plant resistance gene analogs (RGA) can be useful in the genetic breeding of guava for resistance to M. enterolobii. In this study, RGA markers from conserved domains, and structural features of plant R genes, were employed to characterize Psidium species and establish genetic proximity, with a focus on nematode resistance. SSR markers were also applied owing to their neutral nature, thus differing from RGA markers. For this, species reported as sources of resistance to M. enterolobii, such as P. cattleianum and P. friedrichsthalianum, as well as species occurring in the Atlantic Rainforest and susceptible genotypes, were investigated. In 10 evaluated Psidium species, high interspecific genetic variability was verified through RGA and SSR markers, with intraspecific variation in P. guajava higher with SSR, as was expected. Resistant species were clustered by RGA markers, and differential amplicons among genotypes resistant and susceptible to M. enterolobii were identified. Knowledge on the molecular relationships between Psidium species constitutes useful information for breeding of the guava tree, providing direction for hybridization and material for rootstocks. Additionally, the genetic relationship between native species, which have been little studied, and P. guajava were estimated by RGAs, which were confirmed as important markers for genetic diversity related to pathogen resistance.

  13. Characterization of the largest effector gene cluster of Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Thomas Brefort

    2014-07-01

    Full Text Available In the genome of the biotrophic plant pathogen Ustilago maydis, many of the genes coding for secreted protein effectors modulating virulence are arranged in gene clusters. The vast majority of these genes encode novel proteins whose expression is coupled to plant colonization. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. Here we present the functional analysis of this genomic region. We show that a 19A deletion mutant behaves like an endophyte, i.e. is still able to colonize plants and complete the infection cycle. However, tumors, the most conspicuous symptoms of maize smut disease, are only rarely formed and fungal biomass in infected tissue is significantly reduced. The generation and analysis of strains carrying sub-deletions identified several genes significantly contributing to tumor formation after seedling infection. Another of the effectors could be linked specifically to anthocyanin induction in the infected tissue. As the individual contributions of these genes to tumor formation were small, we studied the response of maize plants to the whole cluster mutant as well as to several individual mutants by array analysis. This revealed distinct plant responses, demonstrating that the respective effectors have discrete plant targets. We propose that the analysis of plant responses to effector mutant strains that lack a strong virulence phenotype may be a general way to visualize differences in effector function.

  14. Fast Gene Ontology based clustering for microarray experiments

    Directory of Open Access Journals (Sweden)

    Ovaska Kristian

    2008-11-01

    Full Text Available Abstract Background Analysis of a microarray experiment often results in a list of hundreds of disease-associated genes. In order to suggest common biological processes and functions for these genes, Gene Ontology annotations with statistical testing are widely used. However, these analyses can produce a very large number of significantly altered biological processes. Thus, it is often challenging to interpret GO results and identify novel testable biological hypotheses. Results We present fast software for advanced gene annotation using semantic similarity for Gene Ontology terms combined with clustering and heat map visualisation. The methodology allows rapid identification of genes sharing the same Gene Ontology cluster. Conclusion Our R based semantic similarity open-source package has a speed advantage of over 2000-fold compared to existing implementations. From the resulting hierarchical clustering dendrogram genes sharing a GO term can be identified, and their differences in the gene expression patterns can be seen from the heat map. These methods facilitate advanced annotation of genes resulting from data analysis.

  15. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage.

    Science.gov (United States)

    Dai, Zhimin; Guo, Xue; Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.

  16. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage.

    Directory of Open Access Journals (Sweden)

    Zhimin Dai

    Full Text Available Biological nitrogen fixation is an essential function of acid mine drainage (AMD microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.

  17. Identification of Nitrogen-Fixing Genes and Gene Clusters from Metagenomic Library of Acid Mine Drainage

    Science.gov (United States)

    Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community. PMID:24498417

  18. Expression Study of Banana Pathogenic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Fenny M. Dwivany

    2016-10-01

    Full Text Available Banana is one of the world's most important trade commodities. However, infection of banana pathogenic fungi (Fusarium oxysporum race 4 is one of the major causes of decreasing production in Indonesia. Genetic engineering has become an alternative way to control this problem by isolating genes that involved in plant defense mechanism against pathogens. Two of the important genes are API5 and ChiI1, each gene encodes apoptosis inhibitory protein and chitinase enzymes. The purpose of this study was to study the expression of API5 and ChiI1 genes as candidate pathogenic resistance genes. The amplified fragments were then cloned, sequenced, and confirmed with in silico studies. Based on sequence analysis, it is showed that partial API5 gene has putative transactivation domain and ChiI1 has 9 chitinase family GH19 protein motifs. Data obtained from this study will contribute in banana genetic improvement.

  19. Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste.

    Directory of Open Access Journals (Sweden)

    Getahun E Agga

    Full Text Available This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact" environments (an urban lake and a relict prairie. Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR Gram-negative (Escherichia coli and Salmonella enterica and Gram-positive (enterococci bacteria were determined from individual samples (n = 174. The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44 by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine, low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P < 0.05 in municipal samples than in cattle runoff or swine lagoon samples. In conclusion, we report that AMR is a very widespread phenomenon and that similar

  20. Transcriptome profiling and digital gene expression analysis of genes associated with salinity resistance in peanut

    Directory of Open Access Journals (Sweden)

    Jiongming Sui

    2018-03-01

    Full Text Available Background: Soil salinity can significantly reduce crop production, but the molecular mechanism of salinity tolerance in peanut is poorly understood. A mutant (S1 with higher salinity resistance than its mutagenic parent HY22 (S3 was obtained. Transcriptome sequencing and digital gene expression (DGE analysis were performed with leaves of S1 and S3 before and after plants were irrigated with 250 mM NaCl. Results: A total of 107,725 comprehensive transcripts were assembled into 67,738 unigenes using TIGR Gene Indices clustering tools (TGICL. All unigenes were searched against the euKaryotic Ortholog Groups (KOG, gene ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG databases, and these unigenes were assigned to 26 functional KOG categories, 56 GO terms, 32 KEGG groups, respectively. In total 112 differentially expressed genes (DEGs between S1 and S3 after salinity stress were screened, among them, 86 were responsive to salinity stress in S1 and/or S3. These 86 DEGs included genes that encoded the following kinds of proteins that are known to be involved in resistance to salinity stress: late embryogenesis abundant proteins (LEAs, major intrinsic proteins (MIPs or aquaporins, metallothioneins (MTs, lipid transfer protein (LTP, calcineurin B-like protein-interacting protein kinases (CIPKs, 9-cis-epoxycarotenoid dioxygenase (NCED and oleosins, etc. Of these 86 DEGs, 18 could not be matched with known proteins. Conclusion: The results from this study will be useful for further research on the mechanism of salinity resistance and will provide a useful gene resource for the variety breeding of salinity resistance in peanut. Keywords: Digital gene expression, Gene, Mutant, NaCl, Peanut (Arachis hypogaea L., RNA-seq, Salinity stress, Salinity tolerance, Soil salinity, Transcripts, Unigenes

  1. Calcitonin gene-related peptide antagonism and cluster headache

    DEFF Research Database (Denmark)

    Ashina, Håkan; Newman, Lawrence; Ashina, Sait

    2017-01-01

    Calcitonin gene-related peptide (CGRP) is a key signaling molecule involved in migraine pathophysiology. Efficacy of CGRP monoclonal antibodies and antagonists in migraine treatment has fueled an increasing interest in the prospect of treating cluster headache (CH) with CGRP antagonism. The exact...... role of CGRP and its mechanism of action in CH have not been fully clarified. A search for original studies and randomized controlled trials (RCTs) published in English was performed in PubMed and in ClinicalTrials.gov . The search term used was "cluster headache and calcitonin gene related peptide......" and "primary headaches and calcitonin gene related peptide." Reference lists of identified articles were also searched for additional relevant papers. Human experimental studies have reported elevated plasma CGRP levels during both spontaneous and glyceryl trinitrate-induced cluster attacks. CGRP may play...

  2. IGSA: Individual Gene Sets Analysis, including Enrichment and Clustering.

    Science.gov (United States)

    Wu, Lingxiang; Chen, Xiujie; Zhang, Denan; Zhang, Wubing; Liu, Lei; Ma, Hongzhe; Yang, Jingbo; Xie, Hongbo; Liu, Bo; Jin, Qing

    2016-01-01

    Analysis of gene sets has been widely applied in various high-throughput biological studies. One weakness in the traditional methods is that they neglect the heterogeneity of genes expressions in samples which may lead to the omission of some specific and important gene sets. It is also difficult for them to reflect the severities of disease and provide expression profiles of gene sets for individuals. We developed an application software called IGSA that leverages a powerful analytical capacity in gene sets enrichment and samples clustering. IGSA calculates gene sets expression scores for each sample and takes an accumulating clustering strategy to let the samples gather into the set according to the progress of disease from mild to severe. We focus on gastric, pancreatic and ovarian cancer data sets for the performance of IGSA. We also compared the results of IGSA in KEGG pathways enrichment with David, GSEA, SPIA, ssGSEA and analyzed the results of IGSA clustering and different similarity measurement methods. Notably, IGSA is proved to be more sensitive and specific in finding significant pathways, and can indicate related changes in pathways with the severity of disease. In addition, IGSA provides with significant gene sets profile for each sample.

  3. Bioinformatic analysis of the nucleotide binding site-encoding disease-resistance genes in foxtail millet (Setaria italica (L.) Beauv.).

    Science.gov (United States)

    Zhu, Y B; Xie, X Q; Li, Z Y; Bai, H; Dong, L; Dong, Z P; Dong, J G

    2014-08-28

    The nucleotide-binding site (NBS) disease-resistance genes are the largest category of plant disease-resistance gene analogs. The complete set of disease-resistant candidate genes, which encode the NBS sequence, was filtered in the genomes of two varieties of foxtail millet (Yugu1 and 'Zhang gu'). This study investigated a number of characteristics of the putative NBS genes, such as structural diversity and phylogenetic relationships. A total of 269 and 281 NBS-coding sequences were identified in Yugu1 and 'Zhang gu', respectively. When the two databases were compared, 72 genes were found to be identical and 164 genes showed more than 90% similarity. Physical positioning and gene family analysis of the NBS disease-resistance genes in the genome revealed that the number of genes on each chromosome was similar in both varieties. The eighth chromosome contained the largest number of genes and the ninth chromosome contained the lowest number of genes. Exactly 34 gene clusters containing the 161 genes were found in the Yugu1 genome, with each cluster containing 4.7 genes on average. In comparison, the 'Zhang gu' genome possessed 28 gene clusters, which had 151 genes, with an average of 5.4 genes in each cluster. The largest gene cluster, located on the eighth chromosome, contained 12 genes in the Yugu1 database, whereas it contained 16 genes in the 'Zhang gu' database. The classification results showed that the CC-NBS-LRR gene made up the largest part of each chromosome in the two databases. Two TIR-NBS genes were also found in the Yugu1 genome.

  4. Genomic and expression analysis of the vanG-like gene cluster of Clostridium difficile.

    Science.gov (United States)

    Peltier, Johann; Courtin, Pascal; El Meouche, Imane; Catel-Ferreira, Manuella; Chapot-Chartier, Marie-Pierre; Lemée, Ludovic; Pons, Jean-Louis

    2013-07-01

    Primary antibiotic treatment of Clostridium difficile intestinal diseases requires metronidazole or vancomycin therapy. A cluster of genes homologous to enterococcal glycopeptides resistance vanG genes was found in the genome of C. difficile 630, although this strain remains sensitive to vancomycin. This vanG-like gene cluster was found to consist of five ORFs: the regulatory region consisting of vanR and vanS and the effector region consisting of vanG, vanXY and vanT. We found that 57 out of 83 C. difficile strains, representative of the main lineages of the species, harbour this vanG-like cluster. The cluster is expressed as an operon and, when present, is found at the same genomic location in all strains. The vanG, vanXY and vanT homologues in C. difficile 630 are co-transcribed and expressed to a low level throughout the growth phases in the absence of vancomycin. Conversely, the expression of these genes is strongly induced in the presence of subinhibitory concentrations of vancomycin, indicating that the vanG-like operon is functional at the transcriptional level in C. difficile. Hydrophilic interaction liquid chromatography (HILIC-HPLC) and MS analysis of cytoplasmic peptidoglycan precursors of C. difficile 630 grown without vancomycin revealed the exclusive presence of a UDP-MurNAc-pentapeptide with an alanine at the C terminus. UDP-MurNAc-pentapeptide [d-Ala] was also the only peptidoglycan precursor detected in C. difficile grown in the presence of vancomycin, corroborating the lack of vancomycin resistance. Peptidoglycan structures of a vanG-like mutant strain and of a strain lacking the vanG-like cluster did not differ from the C. difficile 630 strain, indicating that the vanG-like cluster also has no impact on cell-wall composition.

  5. The Antibiotic Resistant Target Seeker (ARTS), an exploration engine for antibiotic cluster prioritization and novel drug target discovery

    DEFF Research Database (Denmark)

    Alanjary, Mohammad; Kronmiller, Brent; Adamek, Martina

    2017-01-01

    and identifying gene clusters for compounds active against specific and novel targets. Here we introduce the 'Antibiotic Resistant Target Seeker' (ARTS) available at https://arts.ziemertlab.com. ARTS allows for specific and efficient genome mining for antibiotics with interesting and novel targets. The aim...

  6. The ergot alkaloid gene cluster: Functional analyses and evolutionary aspects

    Czech Academy of Sciences Publication Activity Database

    Lorenz, N.; Haarmann, T.; Pažoutová, Sylvie; Jung, M.; Tudzynski, P.

    2009-01-01

    Roč. 70, 15-16 (2009), s. 1822-1832 ISSN 0031-9422 Institutional research plan: CEZ:AV0Z50200510 Keywords : Claviceps purpurea * Ergot fungus * Ergot alkaloid gene cluster Subject RIV: EE - Microbiology, Virology Impact factor: 3.104, year: 2009

  7. QTL global meta-analysis: are trait determining genes clustered?

    Directory of Open Access Journals (Sweden)

    Adelson David L

    2009-04-01

    Full Text Available Abstract Background A key open question in biology is if genes are physically clustered with respect to their known functions or phenotypic effects. This is of particular interest for Quantitative Trait Loci (QTL where a QTL region could contain a number of genes that contribute to the trait being measured. Results We observed a significant increase in gene density within QTL regions compared to non-QTL regions and/or the entire bovine genome. By grouping QTL from the Bovine QTL Viewer database into 8 categories of non-redundant regions, we have been able to analyze gene density and gene function distribution, based on Gene Ontology (GO with relation to their location within QTL regions, outside of QTL regions and across the entire bovine genome. We identified a number of GO terms that were significantly over represented within particular QTL categories. Furthermore, select GO terms expected to be associated with the QTL category based on common biological knowledge have also proved to be significantly over represented in QTL regions. Conclusion Our analysis provides evidence of over represented GO terms in QTL regions. This increased GO term density indicates possible clustering of gene functions within QTL regions of the bovine genome. Genes with similar functions may be grouped in specific locales and could be contributing to QTL traits. Moreover, we have identified over-represented GO terminology that from a biological standpoint, makes sense with respect to QTL category type.

  8. Origin and distribution of epipolythiodioxopiperazine (ETP gene clusters in filamentous ascomycetes

    Directory of Open Access Journals (Sweden)

    Gardiner Donald M

    2007-09-01

    Full Text Available Abstract Background Genes responsible for biosynthesis of fungal secondary metabolites are usually tightly clustered in the genome and co-regulated with metabolite production. Epipolythiodioxopiperazines (ETPs are a class of secondary metabolite toxins produced by disparate ascomycete fungi and implicated in several animal and plant diseases. Gene clusters responsible for their production have previously been defined in only two fungi. Fungal genome sequence data have been surveyed for the presence of putative ETP clusters and cluster data have been generated from several fungal taxa where genome sequences are not available. Phylogenetic analysis of cluster genes has been used to investigate the assembly and heredity of these gene clusters. Results Putative ETP gene clusters are present in 14 ascomycete taxa, but absent in numerous other ascomycetes examined. These clusters are discontinuously distributed in ascomycete lineages. Gene content is not absolutely fixed, however, common genes are identified and phylogenies of six of these are separately inferred. In each phylogeny almost all cluster genes form monophyletic clades with non-cluster fungal paralogues being the nearest outgroups. This relatedness of cluster genes suggests that a progenitor ETP gene cluster assembled within an ancestral taxon. Within each of the cluster clades, the cluster genes group together in consistent subclades, however, these relationships do not always reflect the phylogeny of ascomycetes. Micro-synteny of several of the genes within the clusters provides further support for these subclades. Conclusion ETP gene clusters appear to have a single origin and have been inherited relatively intact rather than assembling independently in the different ascomycete lineages. This progenitor cluster has given rise to a small number of distinct phylogenetic classes of clusters that are represented in a discontinuous pattern throughout ascomycetes. The disjunct heredity of

  9. Dissection of Resistance Genes to Pseudomonas syringae pv. phaseolicola in UI3 Common Bean Cultivar.

    Science.gov (United States)

    González, Ana M; Godoy, Luís; Santalla, Marta

    2017-11-23

    Few quantitative trait loci have been mapped for resistance to Pseudomonas syringae pv. phaseolicola in common bean. Two F₂ populations were developed from the host differential UI3 cultivar. The objective of this study was to further characterize the resistance to races 1, 5, 7 and 9 of Psp included in UI3. Using a QTL mapping approach, 16 and 11 main-effect QTLs for pod and primary leaf resistance were located on LG10, explaining up to 90% and 26% of the phenotypic variation, respectively. The homologous genomic region corresponding to primary leaf resistance QTLs detected tested positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL), Natural Resistance Associated Macrophage (NRAMP) and Pentatricopeptide Repeat family (PPR) proteins. It is worth noting that the main effect QTLs for resistance in pod were located inside a 3.5 Mb genomic region that included the Phvul.010G021200 gene, which encodes a protein that has the highest sequence similarity to the RIN4 gene of Arabidopsis, and can be considered an important candidate gene for the organ-specific QTLs identified here. These results support that resistance to Psp from UI3 might result from the immune response activated by combinations of R proteins, and suggest the guard model as an important mechanism in pod resistance to halo blight. The candidate genes identified here warrant functional studies that will help in characterizing the actual defense gene(s) in UI3 genotype.

  10. Evolutionary conservation of regulatory elements in vertebrate HOX gene clusters

    Energy Technology Data Exchange (ETDEWEB)

    Santini, Simona; Boore, Jeffrey L.; Meyer, Axel

    2003-12-31

    Due to their high degree of conservation, comparisons of DNA sequences among evolutionarily distantly-related genomes permit to identify functional regions in noncoding DNA. Hox genes are optimal candidate sequences for comparative genome analyses, because they are extremely conserved in vertebrates and occur in clusters. We aligned (Pipmaker) the nucleotide sequences of HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human and mouse (over 500 million years of evolutionary distance). We identified several highly conserved intergenic sequences, likely to be important in gene regulation. Only a few of these putative regulatory elements have been previously described as being involved in the regulation of Hox genes, while several others are new elements that might have regulatory functions. The majority of these newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac). The conserved intergenic regions located between the most rostrally expressed genes in the developing embryo are longer and better retained through evolution. We document that presumed regulatory sequences are retained differentially in either A or A clusters resulting from a genome duplication in the fish lineage. This observation supports both the hypothesis that the conserved elements are involved in gene regulation and the Duplication-Deletion-Complementation model.

  11. Conservation of gene linkage in dispersed vertebrate NK homeobox clusters.

    Science.gov (United States)

    Wotton, Karl R; Weierud, Frida K; Juárez-Morales, José L; Alvares, Lúcia E; Dietrich, Susanne; Lewis, Katharine E

    2009-10-01

    Nk homeobox genes are important regulators of many different developmental processes including muscle, heart, central nervous system and sensory organ development. They are thought to have arisen as part of the ANTP megacluster, which also gave rise to Hox and ParaHox genes, and at least some NK genes remain tightly linked in all animals examined so far. The protostome-deuterostome ancestor probably contained a cluster of nine Nk genes: (Msx)-(Nk4/tinman)-(Nk3/bagpipe)-(Lbx/ladybird)-(Tlx/c15)-(Nk7)-(Nk6/hgtx)-(Nk1/slouch)-(Nk5/Hmx). Of these genes, only NKX2.6-NKX3.1, LBX1-TLX1 and LBX2-TLX2 remain tightly linked in humans. However, it is currently unclear whether this is unique to the human genome as we do not know which of these Nk genes are clustered in other vertebrates. This makes it difficult to assess whether the remaining linkages are due to selective pressures or because chance rearrangements have "missed" certain genes. In this paper, we identify all of the paralogs of these ancestrally clustered NK genes in several distinct vertebrates. We demonstrate that tight linkages of Lbx1-Tlx1, Lbx2-Tlx2 and Nkx3.1-Nkx2.6 have been widely maintained in both the ray-finned and lobe-finned fish lineages. Moreover, the recently duplicated Hmx2-Hmx3 genes are also tightly linked. Finally, we show that Lbx1-Tlx1 and Hmx2-Hmx3 are flanked by highly conserved noncoding elements, suggesting that shared regulatory regions may have resulted in evolutionary pressure to maintain these linkages. Consistent with this, these pairs of genes have overlapping expression domains. In contrast, Lbx2-Tlx2 and Nkx3.1-Nkx2.6, which do not seem to be coexpressed, are also not associated with conserved noncoding sequences, suggesting that an alternative mechanism may be responsible for the continued clustering of these genes.

  12. Isolation and characterization of NBS-LRR- resistance gene candidates in turmeric (Curcuma longa cv. surama).

    Science.gov (United States)

    Joshi, R K; Mohanty, S; Subudhi, E; Nayak, S

    2010-09-08

    Turmeric (Curcuma longa), an important asexually reproducing spice crop of the family Zingiberaceae is highly susceptible to bacterial and fungal pathogens. The identification of resistance gene analogs holds great promise for development of resistant turmeric cultivars. Degenerate primers designed based on known resistance genes (R-genes) were used in combinations to elucidate resistance gene analogs from Curcuma longa cultivar surama. The three primers resulted in amplicons with expected sizes of 450-600 bp. The nucleotide sequence of these amplicons was obtained through sequencing; their predicted amino acid sequences compared to each other and to the amino acid sequences of known R-genes revealed significant sequence similarity. The finding of conserved domains, viz., kinase-1a, kinase-2 and hydrophobic motif, provided evidence that the sequences belong to the NBS-LRR class gene family. The presence of tryptophan as the last residue of kinase-2 motif further qualified them to be in the non-TIR-NBS-LRR subfamily of resistance genes. A cluster analysis based on the neighbor-joining method was carried out using Curcuma NBS analogs together with several resistance gene analogs and known R-genes, which classified them into two distinct subclasses, corresponding to clades N3 and N4 of non-TIR-NBS sequences described in plants. The NBS analogs that we isolated can be used as guidelines to eventually isolate numerous R-genes in turmeric.

  13. Some statistical properties of gene expression clustering for array data

    DEFF Research Database (Denmark)

    Abreu, G C G; Pinheiro, A; Drummond, R D

    2010-01-01

    DNA array data without a corresponding statistical error measure. We propose an easy-to-implement and simple-to-use technique that uses bootstrap re-sampling to evaluate the statistical error of the nodes provided by SOM-based clustering. Comparisons between SOM and parametric clustering are presented...... for simulated as well as for two real data sets. We also implement a bootstrap-based pre-processing procedure for SOM, that improves the false discovery ratio of differentially expressed genes. Code in Matlab is freely available, as well as some supplementary material, at the following address: https...

  14. Gene duplication, modularity and adaptation in the evolution of the aflatoxin gene cluster

    Directory of Open Access Journals (Sweden)

    Jakobek Judy L

    2007-07-01

    Full Text Available Abstract Background The biosynthesis of aflatoxin (AF involves over 20 enzymatic reactions in a complex polyketide pathway that converts acetate and malonate to the intermediates sterigmatocystin (ST and O-methylsterigmatocystin (OMST, the respective penultimate and ultimate precursors of AF. Although these precursors are chemically and structurally very similar, their accumulation differs at the species level for Aspergilli. Notable examples are A. nidulans that synthesizes only ST, A. flavus that makes predominantly AF, and A. parasiticus that generally produces either AF or OMST. Whether these differences are important in the evolutionary/ecological processes of species adaptation and diversification is unknown. Equally unknown are the specific genomic mechanisms responsible for ordering and clustering of genes in the AF pathway of Aspergillus. Results To elucidate the mechanisms that have driven formation of these clusters, we performed systematic searches of aflatoxin cluster homologs across five Aspergillus genomes. We found a high level of gene duplication and identified seven modules consisting of highly correlated gene pairs (aflA/aflB, aflR/aflS, aflX/aflY, aflF/aflE, aflT/aflQ, aflC/aflW, and aflG/aflL. With the exception of A. nomius, contrasts of mean Ka/Ks values across all cluster genes showed significant differences in selective pressure between section Flavi and non-section Flavi species. A. nomius mean Ka/Ks values were more similar to partial clusters in A. fumigatus and A. terreus. Overall, mean Ka/Ks values were significantly higher for section Flavi than for non-section Flavi species. Conclusion Our results implicate several genomic mechanisms in the evolution of ST, OMST and AF cluster genes. Gene modules may arise from duplications of a single gene, whereby the function of the pre-duplication gene is retained in the copy (aflF/aflE or the copies may partition the ancestral function (aflA/aflB. In some gene modules, the

  15. Clustering gene expression regulators: new approach to disease subtyping.

    Directory of Open Access Journals (Sweden)

    Mikhail Pyatnitskiy

    Full Text Available One of the main challenges in modern medicine is to stratify different patient groups in terms of underlying disease molecular mechanisms as to develop more personalized approach to therapy. Here we propose novel method for disease subtyping based on analysis of activated expression regulators on a sample-by-sample basis. Our approach relies on Sub-Network Enrichment Analysis algorithm (SNEA which identifies gene subnetworks with significant concordant changes in expression between two conditions. Subnetwork consists of central regulator and downstream genes connected by relations extracted from global literature-extracted regulation database. Regulators found in each patient separately are clustered together and assigned activity scores which are used for final patients grouping. We show that our approach performs well compared to other related methods and at the same time provides researchers with complementary level of understanding of pathway-level biology behind a disease by identification of significant expression regulators. We have observed the reasonable grouping of neuromuscular disorders (triggered by structural damage vs triggered by unknown mechanisms, that was not revealed using standard expression profile clustering. For another experiment we were able to suggest the clusters of regulators, responsible for colorectal carcinoma vs adenoma discrimination and identify frequently genetically changed regulators that could be of specific importance for the individual characteristics of cancer development. Proposed approach can be regarded as biologically meaningful feature selection, reducing tens of thousands of genes down to dozens of clusters of regulators. Obtained clusters of regulators make possible to generate valuable biological hypotheses about molecular mechanisms related to a clinical outcome for individual patient.

  16. Transcriptional analysis of exopolysaccharides biosynthesis gene clusters in Lactobacillus plantarum.

    Science.gov (United States)

    Vastano, Valeria; Perrone, Filomena; Marasco, Rosangela; Sacco, Margherita; Muscariello, Lidia

    2016-04-01

    Exopolysaccharides (EPS) from lactic acid bacteria contribute to specific rheology and texture of fermented milk products and find applications also in non-dairy foods and in therapeutics. Recently, four clusters of genes (cps) associated with surface polysaccharide production have been identified in Lactobacillus plantarum WCFS1, a probiotic and food-associated lactobacillus. These clusters are involved in cell surface architecture and probably in release and/or exposure of immunomodulating bacterial molecules. Here we show a transcriptional analysis of these clusters. Indeed, RT-PCR experiments revealed that the cps loci are organized in five operons. Moreover, by reverse transcription-qPCR analysis performed on L. plantarum WCFS1 (wild type) and WCFS1-2 (ΔccpA), we demonstrated that expression of three cps clusters is under the control of the global regulator CcpA. These results, together with the identification of putative CcpA target sequences (catabolite responsive element CRE) in the regulatory region of four out of five transcriptional units, strongly suggest for the first time a role of the master regulator CcpA in EPS gene transcription among lactobacilli.

  17. The influence of nanoscale morphology on the resistivity of cluster-assembled nanostructured metallic thin films

    International Nuclear Information System (INIS)

    Barborini, E; Bertolini, G; Repetto, P; Leccardi, M; Vinati, S; Corbelli, G; Milani, P

    2010-01-01

    We have studied in situ the evolution of the electrical resistivity of Fe, Pd, Nb, W and Mo cluster-assembled films during their growth by supersonic cluster beam deposition. We observed resistivity of cluster-assembled films several orders of magnitude larger than the bulk, as well as an increase in resistivity by increasing the film thickness in contrast to what was observed for atom-assembled metallic films. This suggests that the nanoscale morphological features typical of ballistic films growth, such as the minimal cluster-cluster interconnection and the evolution of surface roughness with thickness, are responsible for the observed behaviour.

  18. Evolution and Diversity of Biosynthetic Gene Clusters in Fusarium

    Directory of Open Access Journals (Sweden)

    Koen Hoogendoorn

    2018-06-01

    Full Text Available Plant pathogenic fungi in the Fusarium genus cause severe damage to crops, resulting in great financial losses and health hazards. Specialized metabolites synthesized by these fungi are known to play key roles in the infection process, and to provide survival advantages inside and outside the host. However, systematic studies of the evolution of specialized metabolite-coding potential across Fusarium have been scarce. Here, we apply a combination of bioinformatic approaches to identify biosynthetic gene clusters (BGCs across publicly available genomes from Fusarium, to group them into annotated families and to study gain/loss events of BGC families throughout the history of the genus. Comparison with MIBiG reference BGCs allowed assignment of 29 gene cluster families (GCFs to pathways responsible for the production of known compounds, while for 57 GCFs, the molecular products remain unknown. Comparative analysis of BGC repertoires using ancestral state reconstruction raised several new hypotheses on how BGCs contribute to Fusarium pathogenicity or host specificity, sometimes surprisingly so: for example, a gene cluster for the biosynthesis of hexadehydro-astechrome was identified in the genome of the biocontrol strain Fusarium oxysporum Fo47, while being absent in that of the tomato pathogen F. oxysporum f.sp. lycopersici. Several BGCs were also identified on supernumerary chromosomes; heterologous expression of genes for three terpene synthases encoded on the Fusarium poae supernumerary chromosome and subsequent GC/MS analysis showed that these genes are functional and encode enzymes that each are able to synthesize koraiol; this observed functional redundancy supports the hypothesis that localization of copies of BGCs on supernumerary chromosomes provides freedom for evolutionary innovations to occur, while the original function remains conserved. Altogether, this systematic overview of biosynthetic diversity in Fusarium paves the way for

  19. Co-evolution of secondary metabolite gene clusters and their host

    DEFF Research Database (Denmark)

    Kjærbølling, Inge; Vesth, Tammi Camilla; Frisvad, Jens Christian

    Secondary metabolite gene cluster evolution is mainly driven by two events: gene duplication and annexation and horizontal gene transfer. Here we use comparative genomics of Aspergillus species to investigate the evolution of secondary metabolite (SM) gene clusters across a wide spectrum of speci....... We investigate the dynamic evolutionary relationship between the cluster and the host by examining the genes within the cluster and the number of homologous genes found within the host and in closely related species.......Secondary metabolite gene cluster evolution is mainly driven by two events: gene duplication and annexation and horizontal gene transfer. Here we use comparative genomics of Aspergillus species to investigate the evolution of secondary metabolite (SM) gene clusters across a wide spectrum of species...

  20. Genome-scale analysis of positional clustering of mouse testis-specific genes

    Directory of Open Access Journals (Sweden)

    Lee Bernett TK

    2005-01-01

    Full Text Available Abstract Background Genes are not randomly distributed on a chromosome as they were thought even after removal of tandem repeats. The positional clustering of co-expressed genes is known in prokaryotes and recently reported in several eukaryotic organisms such as Caenorhabditis elegans, Drosophila melanogaster, and Homo sapiens. In order to further investigate the mode of tissue-specific gene clustering in higher eukaryotes, we have performed a genome-scale analysis of positional clustering of the mouse testis-specific genes. Results Our computational analysis shows that a large proportion of testis-specific genes are clustered in groups of 2 to 5 genes in the mouse genome. The number of clusters is much higher than expected by chance even after removal of tandem repeats. Conclusion Our result suggests that testis-specific genes tend to cluster on the mouse chromosomes. This provides another piece of evidence for the hypothesis that clusters of tissue-specific genes do exist.

  1. Regulatory role of tetR gene in a novel gene cluster of Acidovorax avenae subsp. avenae RS-1 under oxidative stress

    OpenAIRE

    Liu, He; Yang, Chun-Lan; Ge, Meng-Yu; Ibrahim, Muhammad; Li, Bin; Zhao, Wen-Jun; Chen, Gong-You; Zhu, Bo; Xie, Guan-Lin

    2014-01-01

    Acidovorax avenae subsp. avenae is the causal agent of bacterial brown stripe disease in rice. In this study, we characterized a novel horizontal transfer of a gene cluster, including tetR, on the chromosome of A. avenae subsp. avenae RS-1 by genome-wide analysis. TetR acted as a repressor in this gene cluster and the oxidative stress resistance was enhanced in tetR-deletion mutant strain. Electrophoretic mobility shift assay demonstrated that TetR regulator bound directly to the promoter of ...

  2. Global Analysis of miRNA Gene Clusters and Gene Families Reveals Dynamic and Coordinated Expression

    Directory of Open Access Journals (Sweden)

    Li Guo

    2014-01-01

    Full Text Available To further understand the potential expression relationships of miRNAs in miRNA gene clusters and gene families, a global analysis was performed in 4 paired tumor (breast cancer and adjacent normal tissue samples using deep sequencing datasets. The compositions of miRNA gene clusters and families are not random, and clustered and homologous miRNAs may have close relationships with overlapped miRNA species. Members in the miRNA group always had various expression levels, and even some showed larger expression divergence. Despite the dynamic expression as well as individual difference, these miRNAs always indicated consistent or similar deregulation patterns. The consistent deregulation expression may contribute to dynamic and coordinated interaction between different miRNAs in regulatory network. Further, we found that those clustered or homologous miRNAs that were also identified as sense and antisense miRNAs showed larger expression divergence. miRNA gene clusters and families indicated important biological roles, and the specific distribution and expression further enrich and ensure the flexible and robust regulatory network.

  3. GENE EXPRESSION DYNAMICS IN PATIENTS WITH SEVERE THERAPY-RESISTANT ASTHMA DURING TREATMENT PERIOD

    Directory of Open Access Journals (Sweden)

    Ye. S. Kulikov

    2014-01-01

    Full Text Available Introduction: The leading mechanisms and causes of severe therapy resistant asthma are poorly understood. The aim of this study was to define global patterns of gene expression in adults with severe therapy-resistant asthma in dynamic during treatment period.Methods: Performed 24-week prospective interventional study in parallel groups. Severe asthma patients was aposterior divided at therapy sensitive and resistant patients according to ATS criteria. Global transcriptome profile was characterized using the Affymetrix HuGene ST1.0 chip. Cluster analysis was performed.Results and conclusion: According to our data several mechanisms of therapy resistance may be considered: increased levels of nitric oxide and beta2-agonists nitration, dysregulation of endogenous steroids secretion and involvement in the pathogenesis of Staphylococcus aureus. Absence of suppression of gene expression KEGG-pathway “asthma" may reflect the low efficiency or long period of anti-inflammatory therapy effect realization.

  4. Gene cluster analysis for the biosynthesis of elgicins, novel lantibiotics produced by paenibacillus elgii B69

    Directory of Open Access Journals (Sweden)

    Teng Yi

    2012-03-01

    Full Text Available Abstract Background The recent increase in bacterial resistance to antibiotics has promoted the exploration of novel antibacterial materials. As a result, many researchers are undertaking work to identify new lantibiotics because of their potent antimicrobial activities. The objective of this study was to provide details of a lantibiotic-like gene cluster in Paenibacillus elgii B69 and to produce the antibacterial substances coded by this gene cluster based on culture screening. Results Analysis of the P. elgii B69 genome sequence revealed the presence of a lantibiotic-like gene cluster composed of five open reading frames (elgT1, elgC, elgT2, elgB, and elgA. Screening of culture extracts for active substances possessing the predicted properties of the encoded product led to the isolation of four novel peptides (elgicins AI, AII, B, and C with a broad inhibitory spectrum. The molecular weights of these peptides were 4536, 4593, 4706, and 4820 Da, respectively. The N-terminal sequence of elgicin B was Leu-Gly-Asp-Tyr, which corresponded to the partial sequence of the peptide ElgA encoded by elgA. Edman degradation suggested that the product elgicin B is derived from ElgA. By correlating the results of electrospray ionization-mass spectrometry analyses of elgicins AI, AII, and C, these peptides are deduced to have originated from the same precursor, ElgA. Conclusions A novel lantibiotic-like gene cluster was shown to be present in P. elgii B69. Four new lantibiotics with a broad inhibitory spectrum were isolated, and these appear to be promising antibacterial agents.

  5. Functional clustering of time series gene expression data by Granger causality

    Science.gov (United States)

    2012-01-01

    Background A common approach for time series gene expression data analysis includes the clustering of genes with similar expression patterns throughout time. Clustered gene expression profiles point to the joint contribution of groups of genes to a particular cellular process. However, since genes belong to intricate networks, other features, besides comparable expression patterns, should provide additional information for the identification of functionally similar genes. Results In this study we perform gene clustering through the identification of Granger causality between and within sets of time series gene expression data. Granger causality is based on the idea that the cause of an event cannot come after its consequence. Conclusions This kind of analysis can be used as a complementary approach for functional clustering, wherein genes would be clustered not solely based on their expression similarity but on their topological proximity built according to the intensity of Granger causality among them. PMID:23107425

  6. Mapping in an apple (Malus x domestica) F1 segregating population based on physical clustering of differentially expressed genes.

    Science.gov (United States)

    Jensen, Philip J; Fazio, Gennaro; Altman, Naomi; Praul, Craig; McNellis, Timothy W

    2014-04-04

    Apple tree breeding is slow and difficult due to long generation times, self-incompatibility, and complex genetics. The identification of molecular markers linked to traits of interest is a way to expedite the breeding process. In the present study, we aimed to identify genes whose steady-state transcript abundance was associated with inheritance of specific traits segregating in an apple (Malus × domestica) rootstock F1 breeding population, including resistance to powdery mildew (Podosphaera leucotricha) disease and woolly apple aphid (Eriosoma lanigerum). Transcription profiling was performed for 48 individual F1 apple trees from a cross of two highly heterozygous parents, using RNA isolated from healthy, actively-growing shoot tips and a custom apple DNA oligonucleotide microarray representing 26,000 unique transcripts. Genome-wide expression profiles were not clear indicators of powdery mildew or woolly apple aphid resistance phenotype. However, standard differential gene expression analysis between phenotypic groups of trees revealed relatively small sets of genes with trait-associated expression levels. For example, thirty genes were identified that were differentially expressed between trees resistant and susceptible to powdery mildew. Interestingly, the genes encoding twenty-four of these transcripts were physically clustered on chromosome 12. Similarly, seven genes were identified that were differentially expressed between trees resistant and susceptible to woolly apple aphid, and the genes encoding five of these transcripts were also clustered, this time on chromosome 17. In each case, the gene clusters were in the vicinity of previously identified major quantitative trait loci for the corresponding trait. Similar results were obtained for a series of molecular traits. Several of the differentially expressed genes were used to develop DNA polymorphism markers linked to powdery mildew disease and woolly apple aphid resistance. Gene expression profiling

  7. Search Engine for Antimicrobial Resistance: A Cloud Compatible Pipeline and Web Interface for Rapidly Detecting Antimicrobial Resistance Genes Directly from Sequence Data.

    Science.gov (United States)

    Rowe, Will; Baker, Kate S; Verner-Jeffreys, David; Baker-Austin, Craig; Ryan, Jim J; Maskell, Duncan; Pearce, Gareth

    2015-01-01

    Antimicrobial resistance remains a growing and significant concern in human and veterinary medicine. Current laboratory methods for the detection and surveillance of antimicrobial resistant bacteria are limited in their effectiveness and scope. With the rapidly developing field of whole genome sequencing beginning to be utilised in clinical practice, the ability to interrogate sequencing data quickly and easily for the presence of antimicrobial resistance genes will become increasingly important and useful for informing clinical decisions. Additionally, use of such tools will provide insight into the dynamics of antimicrobial resistance genes in metagenomic samples such as those used in environmental monitoring. Here we present the Search Engine for Antimicrobial Resistance (SEAR), a pipeline and web interface for detection of horizontally acquired antimicrobial resistance genes in raw sequencing data. The pipeline provides gene information, abundance estimation and the reconstructed sequence of antimicrobial resistance genes; it also provides web links to additional information on each gene. The pipeline utilises clustering and read mapping to annotate full-length genes relative to a user-defined database. It also uses local alignment of annotated genes to a range of online databases to provide additional information. We demonstrate SEAR's application in the detection and abundance estimation of antimicrobial resistance genes in two novel environmental metagenomes, 32 human faecal microbiome datasets and 126 clinical isolates of Shigella sonnei. We have developed a pipeline that contributes to the improved capacity for antimicrobial resistance detection afforded by next generation sequencing technologies, allowing for rapid detection of antimicrobial resistance genes directly from sequencing data. SEAR uses raw sequencing data via an intuitive interface so can be run rapidly without requiring advanced bioinformatic skills or resources. Finally, we show that SEAR

  8. Gravitation field algorithm and its application in gene cluster

    Directory of Open Access Journals (Sweden)

    Zheng Ming

    2010-09-01

    Full Text Available Abstract Background Searching optima is one of the most challenging tasks in clustering genes from available experimental data or given functions. SA, GA, PSO and other similar efficient global optimization methods are used by biotechnologists. All these algorithms are based on the imitation of natural phenomena. Results This paper proposes a novel searching optimization algorithm called Gravitation Field Algorithm (GFA which is derived from the famous astronomy theory Solar Nebular Disk Model (SNDM of planetary formation. GFA simulates the Gravitation field and outperforms GA and SA in some multimodal functions optimization problem. And GFA also can be used in the forms of unimodal functions. GFA clusters the dataset well from the Gene Expression Omnibus. Conclusions The mathematical proof demonstrates that GFA could be convergent in the global optimum by probability 1 in three conditions for one independent variable mass functions. In addition to these results, the fundamental optimization concept in this paper is used to analyze how SA and GA affect the global search and the inherent defects in SA and GA. Some results and source code (in Matlab are publicly available at http://ccst.jlu.edu.cn/CSBG/GFA.

  9. Dissection of Resistance Genes to Pseudomonas syringae pv. phaseolicola in UI3 Common Bean Cultivar

    Directory of Open Access Journals (Sweden)

    Ana M. González

    2017-11-01

    Full Text Available Few quantitative trait loci have been mapped for resistance to Pseudomonas syringae pv. phaseolicola in common bean. Two F2 populations were developed from the host differential UI3 cultivar. The objective of this study was to further characterize the resistance to races 1, 5, 7 and 9 of Psp included in UI3. Using a QTL mapping approach, 16 and 11 main-effect QTLs for pod and primary leaf resistance were located on LG10, explaining up to 90% and 26% of the phenotypic variation, respectively. The homologous genomic region corresponding to primary leaf resistance QTLs detected tested positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL, Natural Resistance Associated Macrophage (NRAMP and Pentatricopeptide Repeat family (PPR proteins. It is worth noting that the main effect QTLs for resistance in pod were located inside a 3.5 Mb genomic region that included the Phvul.010G021200 gene, which encodes a protein that has the highest sequence similarity to the RIN4 gene of Arabidopsis, and can be considered an important candidate gene for the organ-specific QTLs identified here. These results support that resistance to Psp from UI3 might result from the immune response activated by combinations of R proteins, and suggest the guard model as an important mechanism in pod resistance to halo blight. The candidate genes identified here warrant functional studies that will help in characterizing the actual defense gene(s in UI3 genotype.

  10. Regulatory role of tetR gene in a novel gene cluster of Acidovorax avenae subsp. avenae RS-1 under oxidative stress

    Directory of Open Access Journals (Sweden)

    He eLiu

    2014-10-01

    Full Text Available Acidovorax avenae subsp. avenae is the causal agent of bacterial brown stripe disease in rice. In this study, we characterized a novel horizontal transfer of a gene cluster, including tetR, on the chromosome of A. avenae subsp. avenae RS-1 by genome-wide analysis. TetR acted as a repressor in this gene cluster and the oxidative stress resistance was enhanced in tetR-deletion mutant strain. Electrophoretic mobility shift assay (EMSA demonstrated that TetR regulator bound directly to the promoter of this gene cluster. Consistently, the results of quantitative real-time PCR also showed alterations in expression of associated genes. Moreover, the proteins affected by TetR under oxidative stress were revealed by comparing proteomic profiles of wild-type and mutant strains via 1D SDS-PAGE and LC-MS/MS analyses. Taken together, our results demonstrated that tetR gene in this novel gene cluster contributed to cell survival under oxidative stress, and TetR protein played an important regulatory role in growth kinetics, biofilm-forming capability, SOD and catalase activity, and oxide detoxicating ability.

  11. Regulatory role of tetR gene in a novel gene cluster of Acidovorax avenae subsp. avenae RS-1 under oxidative stress.

    Science.gov (United States)

    Liu, He; Yang, Chun-Lan; Ge, Meng-Yu; Ibrahim, Muhammad; Li, Bin; Zhao, Wen-Jun; Chen, Gong-You; Zhu, Bo; Xie, Guan-Lin

    2014-01-01

    Acidovorax avenae subsp. avenae is the causal agent of bacterial brown stripe disease in rice. In this study, we characterized a novel horizontal transfer of a gene cluster, including tetR, on the chromosome of A. avenae subsp. avenae RS-1 by genome-wide analysis. TetR acted as a repressor in this gene cluster and the oxidative stress resistance was enhanced in tetR-deletion mutant strain. Electrophoretic mobility shift assay demonstrated that TetR regulator bound directly to the promoter of this gene cluster. Consistently, the results of quantitative real-time PCR also showed alterations in expression of associated genes. Moreover, the proteins affected by TetR under oxidative stress were revealed by comparing proteomic profiles of wild-type and mutant strains via 1D SDS-PAGE and LC-MS/MS analyses. Taken together, our results demonstrated that tetR gene in this novel gene cluster contributed to cell survival under oxidative stress, and TetR protein played an important regulatory role in growth kinetics, biofilm-forming capability, superoxide dismutase and catalase activity, and oxide detoxicating ability.

  12. Functional characterization of KanP, a methyltransferase from the kanamycin biosynthetic gene cluster of Streptomyces kanamyceticus.

    Science.gov (United States)

    Nepal, Keshav Kumar; Yoo, Jin Cheol; Sohng, Jae Kyung

    2010-09-20

    KanP, a putative methyltransferase, is located in the kanamycin biosynthetic gene cluster of Streptomyces kanamyceticus ATCC12853. Amino acid sequence analysis of KanP revealed the presence of S-adenosyl-L-methionine binding motifs, which are present in other O-methyltransferases. The kanP gene was expressed in Escherichia coli BL21 (DE3) to generate the E. coli KANP recombinant strain. The conversion of external quercetin to methylated quercetin in the culture extract of E. coli KANP proved the function of kanP as S-adenosyl-L-methionine-dependent methyltransferase. This is the first report concerning the identification of an O-methyltransferase gene from the kanamycin gene cluster. The resistant activity assay and RT-PCR analysis demonstrated the leeway for obtaining methylated kanamycin derivatives from the wild-type strain of kanamycin producer. 2009 Elsevier GmbH. All rights reserved.

  13. Molecular detection of disease resistance genes to powdery mildew ...

    African Journals Online (AJOL)

    A study was conducted to detect the presence of disease resistance genes to infection of wheat powdery mildew (Blumeria graminis f. sp. tritici) in selected wheat cultivars from China using molecular markers. Genomic DNA of sixty cultivars was extracted and tested for the presence of selected prominent resistance genes to ...

  14. Genome scanning for identification of resistance gene analogs (RGAs)

    African Journals Online (AJOL)

    Disease resistance in plants is a desirable economic trait. Many disease resistance genes from various plants have been cloned so far. The gene products of some of these can be distinguished by the presence of an N terminal nucleotide binding site and a C-terminal stretch of leucine-rich repeats. Oligonucleotides already ...

  15. Occurrence of integrons and resistance genes among sulphonamide-resistant Shigella spp. from Brazil

    DEFF Research Database (Denmark)

    Peirano, G.; Agersø, Yvonne; Aarestrup, Frank Møller

    2005-01-01

    Objectives: To determine the occurrence of class 1 and 2 integrons and antimicrobial resistance genes among sulphonamide-resistant Shigella strains isolated in Brazil during 1999-2003. Methods: Sixty-two Shigella (Shigella flexneri, n = 47 and Shigella sonnei, n = 15) were tested against 21...... antimicrobial agents. The presence of integrons classes 1 and 2 and antimicrobial resistance genes was investigated by PCR using specific primers. Results: A total of eight antimicrobial resistance profiles were identified, with the profile of resistance to sulfamethoxazole, trimethoprim, spectinomycin...... of 2214 bp harbouring a gene cassette array conferring resistance to trimethoprim, streptothricin and spectinomycin/streptomycin. The genes coding for resistance to chloramphenicol (catA1), tetracycline [tet(A) and tet(B)] and ampicillin (bla(OXA) and bla(TEM)), were detected in resistant strains...

  16. Recurrent adenylation domain replacement in the microcystin synthetase gene cluster

    Directory of Open Access Journals (Sweden)

    Laakso Kati

    2007-10-01

    Full Text Available Abstract Background Microcystins are small cyclic heptapeptide toxins produced by a range of distantly related cyanobacteria. Microcystins are synthesized on large NRPS-PKS enzyme complexes. Many structural variants of microcystins are produced simulatenously. A recombination event between the first module of mcyB (mcyB1 and mcyC in the microcystin synthetase gene cluster is linked to the simultaneous production of microcystin variants in strains of the genus Microcystis. Results Here we undertook a phylogenetic study to investigate the order and timing of recombination between the mcyB1 and mcyC genes in a diverse selection of microcystin producing cyanobacteria. Our results provide support for complex evolutionary processes taking place at the mcyB1 and mcyC adenylation domains which recognize and activate the amino acids found at X and Z positions. We find evidence for recent recombination between mcyB1 and mcyC in strains of the genera Anabaena, Microcystis, and Hapalosiphon. We also find clear evidence for independent adenylation domain conversion of mcyB1 by unrelated peptide synthetase modules in strains of the genera Nostoc and Microcystis. The recombination events replace only the adenylation domain in each case and the condensation domains of mcyB1 and mcyC are not transferred together with the adenylation domain. Our findings demonstrate that the mcyB1 and mcyC adenylation domains are recombination hotspots in the microcystin synthetase gene cluster. Conclusion Recombination is thought to be one of the main mechanisms driving the diversification of NRPSs. However, there is very little information on how recombination takes place in nature. This study demonstrates that functional peptide synthetases are created in nature through transfer of adenylation domains without the concomitant transfer of condensation domains.

  17. Comparative Genomics of Non-TNL Disease Resistance Genes from Six Plant Species.

    Science.gov (United States)

    Nepal, Madhav P; Andersen, Ethan J; Neupane, Surendra; Benson, Benjamin V

    2017-09-30

    Disease resistance genes (R genes), as part of the plant defense system, have coevolved with corresponding pathogen molecules. The main objectives of this project were to identify non-Toll interleukin receptor, nucleotide-binding site, leucine-rich repeat (nTNL) genes and elucidate their evolutionary divergence across six plant genomes. Using reference sequences from Arabidopsis , we investigated nTNL orthologs in the genomes of common bean, Medicago , soybean, poplar, and rice. We used Hidden Markov Models for sequence identification, performed model-based phylogenetic analyses, visualized chromosomal positioning, inferred gene clustering, and assessed gene expression profiles. We analyzed 908 nTNL R genes in the genomes of the six plant species, and classified them into 12 subgroups based on the presence of coiled-coil (CC), nucleotide binding site (NBS), leucine rich repeat (LRR), resistance to Powdery mildew 8 (RPW8), and BED type zinc finger domains. Traditionally classified CC-NBS-LRR (CNL) genes were nested into four clades (CNL A-D) often with abundant, well-supported homogeneous subclades of Type-II R genes. CNL-D members were absent in rice, indicating a unique R gene retention pattern in the rice genome. Genomes from Arabidopsis , common bean, poplar and soybean had one chromosome without any CNL R genes. Medicago and Arabidopsis had the highest and lowest number of gene clusters, respectively. Gene expression analyses suggested unique patterns of expression for each of the CNL clades. Differential gene expression patterns of the nTNL genes were often found to correlate with number of introns and GC content, suggesting structural and functional divergence.

  18. Hox gene cluster of the ascidian, Halocynthia roretzi, reveals multiple ancient steps of cluster disintegration during ascidian evolution.

    Science.gov (United States)

    Sekigami, Yuka; Kobayashi, Takuya; Omi, Ai; Nishitsuji, Koki; Ikuta, Tetsuro; Fujiyama, Asao; Satoh, Noriyuki; Saiga, Hidetoshi

    2017-01-01

    Hox gene clusters with at least 13 paralog group (PG) members are common in vertebrate genomes and in that of amphioxus. Ascidians, which belong to the subphylum Tunicata (Urochordata), are phylogenetically positioned between vertebrates and amphioxus, and traditionally divided into two groups: the Pleurogona and the Enterogona. An enterogonan ascidian, Ciona intestinalis ( Ci ), possesses nine Hox genes localized on two chromosomes; thus, the Hox gene cluster is disintegrated. We investigated the Hox gene cluster of a pleurogonan ascidian, Halocynthia roretzi ( Hr ) to investigate whether Hox gene cluster disintegration is common among ascidians, and if so, how such disintegration occurred during ascidian or tunicate evolution. Our phylogenetic analysis reveals that the Hr Hox gene complement comprises nine members, including one with a relatively divergent Hox homeodomain sequence. Eight of nine Hr Hox genes were orthologous to Ci-Hox1 , 2, 3, 4, 5, 10, 12 and 13. Following the phylogenetic classification into 13 PGs, we designated Hr Hox genes as Hox1, 2, 3, 4, 5, 10, 11/12/13.a , 11/12/13.b and HoxX . To address the chromosomal arrangement of the nine Hox genes, we performed two-color chromosomal fluorescent in situ hybridization, which revealed that the nine Hox genes are localized on a single chromosome in Hr , distinct from their arrangement in Ci . We further examined the order of the nine Hox genes on the chromosome by chromosome/scaffold walking. This analysis suggested a gene order of Hox1 , 11/12/13.b, 11/12/13.a, 10, 5, X, followed by either Hox4, 3, 2 or Hox2, 3, 4 on the chromosome. Based on the present results and those previously reported in Ci , we discuss the establishment of the Hox gene complement and disintegration of Hox gene clusters during the course of ascidian or tunicate evolution. The Hox gene cluster and the genome must have experienced extensive reorganization during the course of evolution from the ancestral tunicate to Hr and Ci

  19. Isolation and Cloning of mercuric reductase gene (merA from mercury-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Parisa Khoshniyat

    2018-03-01

    Full Text Available Introduction: Some of the bacteria having merA gene coding mineral mercury reducing enzyme, has genetic potential of Hg removing via reduction of mineral mercury and transformation of that to gas form and finally bioremediation of polluted area. The aim of this study is the isolation of merA gene from resistance bacteria and cloning of that into suitable expression vector and then the environmental bioremediation by the transformation of bacteria with this vector. Materials and methods: A number of bacteria were collected in contaminated areas with mercury in order to isolate merA genes. Polymerase chain reaction had done on the four bacterial genomes including Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia marcescens and Escherichia coli using the specific primers in order to detect merA gene. For cloning, the primers containing restriction enzyme sites are used, merA gene was isolated and amplified. The amplified fragments were cloned in the expression vector pET21a+ and via heat shock method were transformed into E. coli TOP10 competent cell. For clustering of genes, Mega software version 4 was used and bioanformatic studies were achieved for predicted enzyme. Results: merA gene with 1686 bp in length was isolated from K pneumoniae and E. coli. Recombinant vectors in transgenic bacteria were confirmed by various methods and finally were confirmed by sequencing. The result of clustering these genes with existence genes in NCBI showed high similarity. Discussion and conclusion: The existence of merA gene in bacteria that adapted to Hg pollution area is because of resistance, so with cloning this gene into suitable expression vector and transformation of susceptible bacteria with this vector ability of resistance to Hg in bacteria for bioremediation could be given.

  20. Time-series clustering of gene expression in irradiated and bystander fibroblasts: an application of FBPA clustering

    Directory of Open Access Journals (Sweden)

    Markatou Marianthi

    2011-01-01

    Full Text Available Abstract Background The radiation bystander effect is an important component of the overall biological response of tissues and organisms to ionizing radiation, but the signaling mechanisms between irradiated and non-irradiated bystander cells are not fully understood. In this study, we measured a time-series of gene expression after α-particle irradiation and applied the Feature Based Partitioning around medoids Algorithm (FBPA, a new clustering method suitable for sparse time series, to identify signaling modules that act in concert in the response to direct irradiation and bystander signaling. We compared our results with those of an alternate clustering method, Short Time series Expression Miner (STEM. Results While computational evaluations of both clustering results were similar, FBPA provided more biological insight. After irradiation, gene clusters were enriched for signal transduction, cell cycle/cell death and inflammation/immunity processes; but only FBPA separated clusters by function. In bystanders, gene clusters were enriched for cell communication/motility, signal transduction and inflammation processes; but biological functions did not separate as clearly with either clustering method as they did in irradiated samples. Network analysis confirmed p53 and NF-κB transcription factor-regulated gene clusters in irradiated and bystander cells and suggested novel regulators, such as KDM5B/JARID1B (lysine (K-specific demethylase 5B and HDACs (histone deacetylases, which could epigenetically coordinate gene expression after irradiation. Conclusions In this study, we have shown that a new time series clustering method, FBPA, can provide new leads to the mechanisms regulating the dynamic cellular response to radiation. The findings implicate epigenetic control of gene expression in addition to transcription factor networks.

  1. Deletion and Gene Expression Analyses Define the Paxilline Biosynthetic Gene Cluster in Penicillium paxilli

    Directory of Open Access Journals (Sweden)

    Emily J. Parker

    2013-08-01

    Full Text Available The indole-diterpene paxilline is an abundant secondary metabolite synthesized by Penicillium paxilli. In total, 21 genes have been identified at the PAX locus of which six have been previously confirmed to have a functional role in paxilline biosynthesis. A combination of bioinformatics, gene expression and targeted gene replacement analyses were used to define the boundaries of the PAX gene cluster. Targeted gene replacement identified seven genes, paxG, paxA, paxM, paxB, paxC, paxP and paxQ that were all required for paxilline production, with one additional gene, paxD, required for regular prenylation of the indole ring post paxilline synthesis. The two putative transcription factors, PP104 and PP105, were not co-regulated with the pax genes and based on targeted gene replacement, including the double knockout, did not have a role in paxilline production. The relationship of indole dimethylallyl transferases involved in prenylation of indole-diterpenes such as paxilline or lolitrem B, can be found as two disparate clades, not supported by prenylation type (e.g., regular or reverse. This paper provides insight into the P. paxilli indole-diterpene locus and reviews the recent advances identified in paxilline biosynthesis.

  2. The gsdf gene locus harbors evolutionary conserved and clustered genes preferentially expressed in fish previtellogenic oocytes.

    Science.gov (United States)

    Gautier, Aude; Le Gac, Florence; Lareyre, Jean-Jacques

    2011-02-01

    display a different cellular localization compared to that of the gsdf gene indicating that the later gene is not co-regulated. Interestingly, our study identifies new clustered genes that are specifically expressed in previtellogenic oocytes (nup54, aff1, klhl8, sdad1). Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Sponge microbiota are a reservoir of functional antibiotic resistance genes

    Directory of Open Access Journals (Sweden)

    Dennis Versluis

    2016-11-01

    Full Text Available Wide application of antibiotics has contributed to the evolution of multi-drug resistant human pathogens, resulting in poorer treatment outcomes for infections. In the marine environment, seawater samples have been investigated as a resistance reservoir; however, no studies have methodically examined sponges as a reservoir of antibiotic resistance. Sponges could be important in this respect because they often contain diverse microbial communities that have the capacity to produce bioactive metabolites. Here, we applied functional metagenomics to study the presence and diversity of functional resistance genes in the sponges Aplysina aerophoba, Petrosia ficiformis and Corticium candelabrum. We obtained 37 insert sequences facilitating resistance to D-cycloserine (n=6, gentamicin (n=1, amikacin (n=7, trimethoprim (n=17, chloramphenicol (n=1, rifampicin (n=2 and ampicillin (n=3. Fifteen of 37 inserts harboured resistance genes that shared <90% amino acid identity with known gene products, whereas on 13 inserts no resistance gene could be identified with high confidence, in which case we predicted resistance to be mainly mediated by antibiotic efflux. One marine-specific ampicillin-resistance-conferring β-lactamase was identified in the genus Pseudovibrio with 41% global amino acid identity to the closest β-lactamase with demonstrated functionality, and subsequently classified into a new family termed PSV. Taken together, our results show that sponge microbiota host diverse and novel resistance genes that may be harnessed by phylogenetically distinct bacteria.

  4. Genetic and physical mapping of homologues of the virus resistance gene Rx1 and the cyst nematode resistance gene Gpa2 in potato.

    Science.gov (United States)

    Bakker, E; Butterbach, P; Rouppe van der Voort, J; van der Vossen, E; van Vliet, J; Bakker, J; Goverse, A

    2003-05-01

    Nine resistance gene homologues (RGHs) were identified in two diploid potato clones (SH and RH), with a specific primer pair based on conserved motifs in the LRR domain of the potato cyst nematode resistance gene Gpa2 and the potato virus X resistance gene Rx1. A modified AFLP method was used to facilitate the genetic mapping of the RGHs in the four haplotypes under investigation. All nine RGHs appeared to be located in the Gpa2/ Rx1 cluster on chromosome XII. Construction of a physical map using bacterial artificial chromosome (BAC) clones for both the Solanum tuberosum ssp. tuberosum and the S. tuberosum ssp. andigena haplotype of SH showed that the RGHs are located within a stretch of less than 200 kb. Sequence analysis of the RGHs revealed that they are highly similar (93 to 95%) to Gpa2 and Rx1. The sequence identities among all RGHs range from 85 to 100%. Two pairs of RGHs are identical, or nearly so (100 and 99.9%), with each member located in a different genotype. Southern-blot analysis on genomic DNA revealed no evidence for additional homologues outside the Gpa2/ Rx1 cluster on chromosome XII.

  5. Variations in CCL3L gene cluster sequence and non-specific gene copy numbers

    Directory of Open Access Journals (Sweden)

    Edberg Jeffrey C

    2010-03-01

    Full Text Available Abstract Background Copy number variations (CNVs of the gene CC chemokine ligand 3-like1 (CCL3L1 have been implicated in HIV-1 susceptibility, but the association has been inconsistent. CCL3L1 shares homology with a cluster of genes localized to chromosome 17q12, namely CCL3, CCL3L2, and, CCL3L3. These genes are involved in host defense and inflammatory processes. Several CNV assays have been developed for the CCL3L1 gene. Findings Through pairwise and multiple alignments of these genes, we have shown that the homology between these genes ranges from 50% to 99% in complete gene sequences and from 70-100% in the exonic regions, with CCL3L1 and CCL3L3 being identical. By use of MEGA 4 and BioEdit, we aligned sense primers, anti-sense primers, and probes used in several previously described assays against pre-multiple alignments of all four chemokine genes. Each set of probes and primers aligned and matched with overlapping sequences in at least two of the four genes, indicating that previously utilized RT-PCR based CNV assays are not specific for only CCL3L1. The four available assays measured median copies of 2 and 3-4 in European and African American, respectively. The concordance between the assays ranged from 0.44-0.83 suggesting individual discordant calls and inconsistencies with the assays from the expected gene coverage from the known sequence. Conclusions This indicates that some of the inconsistencies in the association studies could be due to assays that provide heterogenous results. Sequence information to determine CNV of the three genes separately would allow to test whether their association with the pathogenesis of a human disease or phenotype is affected by an individual gene or by a combination of these genes.

  6. DNA microarray genotyping and virulence and antimicrobial resistance gene profiling of methicillin-resistant Staphylococcus aureus bloodstream isolates from renal patients.

    LENUS (Irish Health Repository)

    McNicholas, Sinead

    2012-02-01

    Thirty-six methicillin-resistant Staphylococcus aureus (MRSA) bloodstream isolates from renal patients were genetically characterized by DNA microarray analysis and spa typing. The isolates were highly clonal, belonging mainly to ST22-MRSA-IV. The immune evasion and enterotoxin gene clusters were found in 29\\/36 (80%) and 33\\/36 (92%) isolates, respectively.

  7. DNA microarray genotyping and virulence and antimicrobial resistance gene profiling of methicillin-resistant Staphylococcus aureus bloodstream isolates from renal patients.

    LENUS (Irish Health Repository)

    McNicholas, Sinead

    2011-12-01

    Thirty-six methicillin-resistant Staphylococcus aureus (MRSA) bloodstream isolates from renal patients were genetically characterized by DNA microarray analysis and spa typing. The isolates were highly clonal, belonging mainly to ST22-MRSA-IV. The immune evasion and enterotoxin gene clusters were found in 29\\/36 (80%) and 33\\/36 (92%) isolates, respectively.

  8. The cfr and cfr-like multiple resistance genes

    DEFF Research Database (Denmark)

    Vester, Birte

    2018-01-01

    . The cfr gene is found in various bacteria in many geographical locations and placed on plasmids or associated with transposons. Cfr-related genes providing similar resistance have been identified in Bacillales, and now also in the pathogens Clostridium difficile and Enterococcus faecium. In addition......, the presence of the cfr gene has been detected in harbours and food markets....

  9. Heterologous expression of pikromycin biosynthetic gene cluster using Streptomyces artificial chromosome system.

    Science.gov (United States)

    Pyeon, Hye-Rim; Nah, Hee-Ju; Kang, Seung-Hoon; Choi, Si-Sun; Kim, Eung-Soo

    2017-05-31

    Heterologous expression of biosynthetic gene clusters of natural microbial products has become an essential strategy for titer improvement and pathway engineering of various potentially-valuable natural products. A Streptomyces artificial chromosomal conjugation vector, pSBAC, was previously successfully applied for precise cloning and tandem integration of a large polyketide tautomycetin (TMC) biosynthetic gene cluster (Nah et al. in Microb Cell Fact 14(1):1, 2015), implying that this strategy could be employed to develop a custom overexpression scheme of natural product pathway clusters present in actinomycetes. To validate the pSBAC system as a generally-applicable heterologous overexpression system for a large-sized polyketide biosynthetic gene cluster in Streptomyces, another model polyketide compound, the pikromycin biosynthetic gene cluster, was preciously cloned and heterologously expressed using the pSBAC system. A unique HindIII restriction site was precisely inserted at one of the border regions of the pikromycin biosynthetic gene cluster within the chromosome of Streptomyces venezuelae, followed by site-specific recombination of pSBAC into the flanking region of the pikromycin gene cluster. Unlike the previous cloning process, one HindIII site integration step was skipped through pSBAC modification. pPik001, a pSBAC containing the pikromycin biosynthetic gene cluster, was directly introduced into two heterologous hosts, Streptomyces lividans and Streptomyces coelicolor, resulting in the production of 10-deoxymethynolide, a major pikromycin derivative. When two entire pikromycin biosynthetic gene clusters were tandemly introduced into the S. lividans chromosome, overproduction of 10-deoxymethynolide and the presence of pikromycin, which was previously not detected, were both confirmed. Moreover, comparative qRT-PCR results confirmed that the transcription of pikromycin biosynthetic genes was significantly upregulated in S. lividans containing tandem

  10. Associations between Antimicrobial Resistance Phenotypes, Antimicrobial Resistance Genes, and Virulence Genes of Fecal Escherichia coli Isolates from Healthy Grow-Finish Pigs ▿

    OpenAIRE

    Rosengren, Leigh B.; Waldner, Cheryl L.; Reid-Smith, Richard J.

    2009-01-01

    Escherichia coli often carries linked antimicrobial resistance genes on transmissible genetic elements. Through coselection, antimicrobial use may select for unrelated but linked resistance or virulence genes. This study used unconditional statistical associations to investigate the relationships between antimicrobial resistance phenotypes and antimicrobial resistance genes in 151 E. coli isolates from healthy pigs. Phenotypic resistance to each drug was significantly associated with phenotyp...

  11. Glycosulfatase-Encoding Gene Cluster in Bifidobacterium breve UCC2003.

    Science.gov (United States)

    Egan, Muireann; Jiang, Hao; O'Connell Motherway, Mary; Oscarson, Stefan; van Sinderen, Douwe

    2016-11-15

    Bifidobacteria constitute a specific group of commensal bacteria typically found in the gastrointestinal tract (GIT) of humans and other mammals. Bifidobacterium breve strains are numerically prevalent among the gut microbiota of many healthy breastfed infants. In the present study, we investigated glycosulfatase activity in a bacterial isolate from a nursling stool sample, B. breve UCC2003. Two putative sulfatases were identified on the genome of B. breve UCC2003. The sulfated monosaccharide N-acetylglucosamine-6-sulfate (GlcNAc-6-S) was shown to support the growth of B. breve UCC2003, while N-acetylglucosamine-3-sulfate, N-acetylgalactosamine-3-sulfate, and N-acetylgalactosamine-6-sulfate did not support appreciable growth. By using a combination of transcriptomic and functional genomic approaches, a gene cluster designated ats2 was shown to be specifically required for GlcNAc-6-S metabolism. Transcription of the ats2 cluster is regulated by a repressor open reading frame kinase (ROK) family transcriptional repressor. This study represents the first description of glycosulfatase activity within the Bifidobacterium genus. Bifidobacteria are saccharolytic organisms naturally found in the digestive tract of mammals and insects. Bifidobacterium breve strains utilize a variety of plant- and host-derived carbohydrates that allow them to be present as prominent members of the infant gut microbiota as well as being present in the gastrointestinal tract of adults. In this study, we introduce a previously unexplored area of carbohydrate metabolism in bifidobacteria, namely, the metabolism of sulfated carbohydrates. B. breve UCC2003 was shown to metabolize N-acetylglucosamine-6-sulfate (GlcNAc-6-S) through one of two sulfatase-encoding gene clusters identified on its genome. GlcNAc-6-S can be found in terminal or branched positions of mucin oligosaccharides, the glycoprotein component of the mucous layer that covers the digestive tract. The results of this study provide

  12. High frequency of silver resistance genes in invasive isolates of Enterobacter and Klebsiella species.

    Science.gov (United States)

    Sütterlin, S; Dahlö, M; Tellgren-Roth, C; Schaal, W; Melhus, Å

    2017-07-01

    Silver-based products have been marketed as an alternative to antibiotics, and their consumption has increased. Bacteria may, however, develop resistance to silver. To study the presence of genes encoding silver resistance (silE, silP, silS) over time in three clinically important Enterobacteriaceae genera. Using polymerase chain reaction (PCR), 752 bloodstream isolates from the years 1990-2010 were investigated. Age, gender, and ward of patients were registered, and the susceptibility to antibiotics and silver nitrate was tested. Clonality and single nucleotide polymorphism were assessed with repetitive element sequence-based PCR, multi-locus sequence typing, and whole-genome sequencing. Genes encoding silver resistance were detected most frequently in Enterobacter spp. (48%), followed by Klebsiella spp. (41%) and Escherichia coli 4%. Phenotypical resistance to silver nitrate was found in Enterobacter (13%) and Klebsiella (3%) isolates. The lowest carriage rate of sil genes was observed in blood isolates from the neonatology ward (24%), and the highest in blood isolates from the oncology/haematology wards (66%). Presence of sil genes was observed in international high-risk clones. Sequences of the sil and pco clusters indicated that a single mutational event in the silS gene could have caused the phenotypic resistance. Despite a restricted consumption of silver-based products in Swedish health care, silver resistance genes are widely represented in clinical isolates of Enterobacter and Klebsiella species. To avoid further selection and spread of silver-resistant bacteria with a high potential for healthcare-associated infections, the use of silver-based products needs to be controlled and the silver resistance monitored. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  13. Isolation of NBS-LRR class resistant gene (I2 gene) from tomato ...

    African Journals Online (AJOL)

    aghomotsegin

    2013-10-16

    Oct 16, 2013 ... type of F. oxysporum f. sp. lycopersici observed commonly which require presence of I1 gene in tomato plant for the incompatibility ... Key words: Fusarium wilt, race, R-gene, resistance, tomato. ... MATERIALS AND METHODS.

  14. Genetic Mapping of a Major Resistance Gene to Pea Aphid (Acyrthosipon pisum in the Model Legume Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Lars G. Kamphuis

    2016-07-01

    Full Text Available Resistance to the Australian pea aphid (PA; Acyrthosiphon pisum biotype in cultivar Jester of the model legume Medicago truncatula is mediated by a single dominant gene and is phloem-mediated. The genetic map position for this resistance gene, APR (Acyrthosiphon pisum resistance, is provided and shows that APR maps 39 centiMorgans (cM distal of the A. kondoi resistance (AKR locus, which mediates resistance to a closely related species of the same genus bluegreen aphid (A. kondoi. The APR region on chromosome 3 is dense in classical nucleotide binding site leucine-rich repeats (NLRs and overlaps with the region harbouring the RAP1 gene which confers resistance to a European PA biotype in the accession Jemalong A17. Further screening of a core collection of M. truncatula accessions identified seven lines with strong resistance to PA. Allelism experiments showed that the single dominant resistance to PA in M. truncatula accessions SA10481 and SA1516 are allelic to SA10733, the donor of the APR locus in cultivar Jester. While it remains unclear whether there are multiple PA resistance genes in an R-gene cluster or the resistance loci identified in the other M. truncatula accessions are allelic to APR, the introgression of APR into current M. truncatula cultivars will provide more durable resistance to PA.

  15. Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii.

    OpenAIRE

    Jacobson, M R; Brigle, K E; Bennett, L T; Setterquist, R A; Wilson, M S; Cash, V L; Beynon, J; Newton, W E; Dean, D R

    1989-01-01

    Determination of a 28,793-base-pair DNA sequence of a region from the Azotobacter vinelandii genome that includes and flanks the nitrogenase structural gene region was completed. This information was used to revise the previously proposed organization of the major nif cluster. The major nif cluster from A. vinelandii encodes 15 nif-specific genes whose products bear significant structural identity to the corresponding nif-specific gene products from Klebsiella pneumoniae. These genes include ...

  16. Fate of antibiotic resistant bacteria and genes during wastewater chlorination: implication for antibiotic resistance control.

    Directory of Open Access Journals (Sweden)

    Qing-Bin Yuan

    Full Text Available This study investigated fates of nine antibiotic-resistant bacteria as well as two series of antibiotic resistance genes in wastewater treated by various doses of chlorine (0, 15, 30, 60, 150 and 300 mg Cl2 min/L. The results indicated that chlorination was effective in inactivating antibiotic-resistant bacteria. Most bacteria were inactivated completely at the lowest dose (15 mg Cl2 min/L. By comparison, sulfadiazine- and erythromycin-resistant bacteria exhibited tolerance to low chlorine dose (up to 60 mg Cl2 min/L. However, quantitative real-time PCRs revealed that chlorination decreased limited erythromycin or tetracycline resistance genes, with the removal levels of overall erythromycin and tetracycline resistance genes at 0.42 ± 0.12 log and 0.10 ± 0.02 log, respectively. About 40% of erythromycin-resistance genes and 80% of tetracycline resistance genes could not be removed by chlorination. Chlorination was considered not effective in controlling antimicrobial resistance. More concern needs to be paid to the potential risk of antibiotic resistance genes in the wastewater after chlorination.

  17. Analysis of acetohydroxyacid synthase1 gene in chickpea conferring resistance to imazamox herbicide.

    Science.gov (United States)

    Jain, Parul; Tar'an, Bunyamin

    2014-11-01

    Chickpea (Cicer arietinum L.) production in the Canadian prairies is challenging due to a lack of effective weed management mainly because of poor competition ability of the crop and limited registered herbicide options. Chickpea genotype with resistance to imidazolinone (IMI) herbicides has been identified. A point mutation in the acetohydroxyacid synthase1 (AHAS1) gene at C581 to T581, resulting in an amino acid substitution from Ala194 to Val194 (position 205, standardized to arabidopsis), confers the resistance to imazamox in chickpea. However, the molecular mechanism leading to the resistance is not fully understood. In many plant species, contrasting transcription levels of AHAS gene has been implicated in the resistant and susceptible genotypes in response to IMI. The objectives of this research were to compare the AHAS gene expression and AHAS enzyme activity in resistant and susceptible chickpea cultivars in response to imazamox herbicide treatment. Results from RT-qPCR indicated that there is no significant change in the transcript levels of AHAS1 between the susceptible and the resistant genotypes in response to imazamox treatment. Protein hydrophobic cluster analysis, protein-ligand docking analysis, and AHAS enzyme activity assay all indicated that the resistance to imazamox in chickpea is due to the alteration of interaction of the AHAS1 enzyme with the imazamox herbicide.

  18. Challenges in microarray class discovery: a comprehensive examination of normalization, gene selection and clustering

    Directory of Open Access Journals (Sweden)

    Landfors Mattias

    2010-10-01

    Full Text Available Abstract Background Cluster analysis, and in particular hierarchical clustering, is widely used to extract information from gene expression data. The aim is to discover new classes, or sub-classes, of either individuals or genes. Performing a cluster analysis commonly involve decisions on how to; handle missing values, standardize the data and select genes. In addition, pre-processing, involving various types of filtration and normalization procedures, can have an effect on the ability to discover biologically relevant classes. Here we consider cluster analysis in a broad sense and perform a comprehensive evaluation that covers several aspects of cluster analyses, including normalization. Result We evaluated 2780 cluster analysis methods on seven publicly available 2-channel microarray data sets with common reference designs. Each cluster analysis method differed in data normalization (5 normalizations were considered, missing value imputation (2, standardization of data (2, gene selection (19 or clustering method (11. The cluster analyses are evaluated using known classes, such as cancer types, and the adjusted Rand index. The performances of the different analyses vary between the data sets and it is difficult to give general recommendations. However, normalization, gene selection and clustering method are all variables that have a significant impact on the performance. In particular, gene selection is important and it is generally necessary to include a relatively large number of genes in order to get good performance. Selecting genes with high standard deviation or using principal component analysis are shown to be the preferred gene selection methods. Hierarchical clustering using Ward's method, k-means clustering and Mclust are the clustering methods considered in this paper that achieves the highest adjusted Rand. Normalization can have a significant positive impact on the ability to cluster individuals, and there are indications that

  19. Challenges in microarray class discovery: a comprehensive examination of normalization, gene selection and clustering

    Science.gov (United States)

    2010-01-01

    Background Cluster analysis, and in particular hierarchical clustering, is widely used to extract information from gene expression data. The aim is to discover new classes, or sub-classes, of either individuals or genes. Performing a cluster analysis commonly involve decisions on how to; handle missing values, standardize the data and select genes. In addition, pre-processing, involving various types of filtration and normalization procedures, can have an effect on the ability to discover biologically relevant classes. Here we consider cluster analysis in a broad sense and perform a comprehensive evaluation that covers several aspects of cluster analyses, including normalization. Result We evaluated 2780 cluster analysis methods on seven publicly available 2-channel microarray data sets with common reference designs. Each cluster analysis method differed in data normalization (5 normalizations were considered), missing value imputation (2), standardization of data (2), gene selection (19) or clustering method (11). The cluster analyses are evaluated using known classes, such as cancer types, and the adjusted Rand index. The performances of the different analyses vary between the data sets and it is difficult to give general recommendations. However, normalization, gene selection and clustering method are all variables that have a significant impact on the performance. In particular, gene selection is important and it is generally necessary to include a relatively large number of genes in order to get good performance. Selecting genes with high standard deviation or using principal component analysis are shown to be the preferred gene selection methods. Hierarchical clustering using Ward's method, k-means clustering and Mclust are the clustering methods considered in this paper that achieves the highest adjusted Rand. Normalization can have a significant positive impact on the ability to cluster individuals, and there are indications that background correction is

  20. GraphTeams: a method for discovering spatial gene clusters in Hi-C sequencing data.

    Science.gov (United States)

    Schulz, Tizian; Stoye, Jens; Doerr, Daniel

    2018-05-08

    Hi-C sequencing offers novel, cost-effective means to study the spatial conformation of chromosomes. We use data obtained from Hi-C experiments to provide new evidence for the existence of spatial gene clusters. These are sets of genes with associated functionality that exhibit close proximity to each other in the spatial conformation of chromosomes across several related species. We present the first gene cluster model capable of handling spatial data. Our model generalizes a popular computational model for gene cluster prediction, called δ-teams, from sequences to graphs. Following previous lines of research, we subsequently extend our model to allow for several vertices being associated with the same label. The model, called δ-teams with families, is particular suitable for our application as it enables handling of gene duplicates. We develop algorithmic solutions for both models. We implemented the algorithm for discovering δ-teams with families and integrated it into a fully automated workflow for discovering gene clusters in Hi-C data, called GraphTeams. We applied it to human and mouse data to find intra- and interchromosomal gene cluster candidates. The results include intrachromosomal clusters that seem to exhibit a closer proximity in space than on their chromosomal DNA sequence. We further discovered interchromosomal gene clusters that contain genes from different chromosomes within the human genome, but are located on a single chromosome in mouse. By identifying δ-teams with families, we provide a flexible model to discover gene cluster candidates in Hi-C data. Our analysis of Hi-C data from human and mouse reveals several known gene clusters (thus validating our approach), but also few sparsely studied or possibly unknown gene cluster candidates that could be the source of further experimental investigations.

  1. Recursive Cluster Elimination (RCE for classification and feature selection from gene expression data

    Directory of Open Access Journals (Sweden)

    Showe Louise C

    2007-05-01

    Full Text Available Abstract Background Classification studies using gene expression datasets are usually based on small numbers of samples and tens of thousands of genes. The selection of those genes that are important for distinguishing the different sample classes being compared, poses a challenging problem in high dimensional data analysis. We describe a new procedure for selecting significant genes as recursive cluster elimination (RCE rather than recursive feature elimination (RFE. We have tested this algorithm on six datasets and compared its performance with that of two related classification procedures with RFE. Results We have developed a novel method for selecting significant genes in comparative gene expression studies. This method, which we refer to as SVM-RCE, combines K-means, a clustering method, to identify correlated gene clusters, and Support Vector Machines (SVMs, a supervised machine learning classification method, to identify and score (rank those gene clusters for the purpose of classification. K-means is used initially to group genes into clusters. Recursive cluster elimination (RCE is then applied to iteratively remove those clusters of genes that contribute the least to the classification performance. SVM-RCE identifies the clusters of correlated genes that are most significantly differentially expressed between the sample classes. Utilization of gene clusters, rather than individual genes, enhances the supervised classification accuracy of the same data as compared to the accuracy when either SVM or Penalized Discriminant Analysis (PDA with recursive feature elimination (SVM-RFE and PDA-RFE are used to remove genes based on their individual discriminant weights. Conclusion SVM-RCE provides improved classification accuracy with complex microarray data sets when it is compared to the classification accuracy of the same datasets using either SVM-RFE or PDA-RFE. SVM-RCE identifies clusters of correlated genes that when considered together

  2. Identification of the chelocardin biosynthetic gene cluster from Amycolatopsis sulphurea: a platform for producing novel tetracycline antibiotics.

    Science.gov (United States)

    Lukežič, Tadeja; Lešnik, Urška; Podgoršek, Ajda; Horvat, Jaka; Polak, Tomaž; Šala, Martin; Jenko, Branko; Raspor, Peter; Herron, Paul R; Hunter, Iain S; Petković, Hrvoje

    2013-12-01

    Tetracyclines (TCs) are medically important antibiotics from the polyketide family of natural products. Chelocardin (CHD), produced by Amycolatopsis sulphurea, is a broad-spectrum tetracyclic antibiotic with potent bacteriolytic activity against a number of Gram-positive and Gram-negative multi-resistant pathogens. CHD has an unknown mode of action that is different from TCs. It has some structural features that define it as 'atypical' and, notably, is active against tetracycline-resistant pathogens. Identification and characterization of the chelocardin biosynthetic gene cluster from A. sulphurea revealed 18 putative open reading frames including a type II polyketide synthase. Compared to typical TCs, the chd cluster contains a number of features that relate to its classification as 'atypical': an additional gene for a putative two-component cyclase/aromatase that may be responsible for the different aromatization pattern, a gene for a putative aminotransferase for C-4 with the opposite stereochemistry to TCs and a gene for a putative C-9 methylase that is a unique feature of this biosynthetic cluster within the TCs. Collectively, these enzymes deliver a molecule with different aromatization of ring C that results in an unusual planar structure of the TC backbone. This is a likely contributor to its different mode of action. In addition CHD biosynthesis is primed with acetate, unlike the TCs, which are primed with malonamate, and offers a biosynthetic engineering platform that represents a unique opportunity for efficient generation of novel tetracyclic backbones using combinatorial biosynthesis.

  3. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA.

    Science.gov (United States)

    Teixeira, Bertinellys; Rodulfo, Hectorina; Carreño, Numirin; Guzmán, Militza; Salazar, Elsa; De Donato, Marcos

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America.

  4. Comparative analysis of clustering methods for gene expression time course data

    Directory of Open Access Journals (Sweden)

    Ivan G. Costa

    2004-01-01

    Full Text Available This work performs a data driven comparative study of clustering methods used in the analysis of gene expression time courses (or time series. Five clustering methods found in the literature of gene expression analysis are compared: agglomerative hierarchical clustering, CLICK, dynamical clustering, k-means and self-organizing maps. In order to evaluate the methods, a k-fold cross-validation procedure adapted to unsupervised methods is applied. The accuracy of the results is assessed by the comparison of the partitions obtained in these experiments with gene annotation, such as protein function and series classification.

  5. Are duplicated genes responsible for anthracnose resistance in common bean?

    Science.gov (United States)

    Costa, Larissa Carvalho; Nalin, Rafael Storto; Ramalho, Magno Antonio Patto; de Souza, Elaine Aparecida

    2017-01-01

    The race 65 of Colletotrichum lindemuthianum, etiologic agent of anthracnose in common bean, is distributed worldwide, having great importance in breeding programs for anthracnose resistance. Several resistance alleles have been identified promoting resistance to this race. However, the variability that has been detected within race has made it difficult to obtain cultivars with durable resistance, because cultivars may have different reactions to each strain of race 65. Thus, this work aimed at studying the resistance inheritance of common bean lines to different strains of C. lindemuthianum, race 65. We used six C. lindemuthianum strains previously characterized as belonging to the race 65 through the international set of differential cultivars of anthracnose and nine commercial cultivars, adapted to the Brazilian growing conditions and with potential ability to discriminate the variability within this race. To obtain information on the resistance inheritance related to nine commercial cultivars to six strains of race 65, these cultivars were crossed two by two in all possible combinations, resulting in 36 hybrids. Segregation in the F2 generations revealed that the resistance to each strain is conditioned by two independent genes with the same function, suggesting that they are duplicated genes, where the dominant allele promotes resistance. These results indicate that the specificity between host resistance genes and pathogen avirulence genes is not limited to races, it also occurs within strains of the same race. Further research may be carried out in order to establish if the alleles identified in these cultivars are different from those described in the literature.

  6. A phylogenomic gene cluster resource: The phylogeneticallyinferred groups (PhlGs) database

    Energy Technology Data Exchange (ETDEWEB)

    Dehal, Paramvir S.; Boore, Jeffrey L.

    2005-08-25

    We present here the PhIGs database, a phylogenomic resource for sequenced genomes. Although many methods exist for clustering gene families, very few attempt to create truly orthologous clusters sharing descent from a single ancestral gene across a range of evolutionary depths. Although these non-phylogenetic gene family clusters have been used broadly for gene annotation, errors are known to be introduced by the artifactual association of slowly evolving paralogs and lack of annotation for those more rapidly evolving. A full phylogenetic framework is necessary for accurate inference of function and for many studies that address pattern and mechanism of the evolution of the genome. The automated generation of evolutionary gene clusters, creation of gene trees, determination of orthology and paralogy relationships, and the correlation of this information with gene annotations, expression information, and genomic context is an important resource to the scientific community.

  7. Correlation between Group B Streptococcal Genotypes, Their Antimicrobial Resistance Profiles, and Virulence Genes among Pregnant Women in Lebanon

    Directory of Open Access Journals (Sweden)

    Antoine Hannoun

    2009-01-01

    Full Text Available The antimicrobial susceptibility profiles of 76 Streptococcus agalactiae (Group B Streptococci [GBS] isolates from vaginal specimens of pregnant women near term were correlated to their genotypes generated by Random Amplified Polymorphic DNA analysis and their virulence factors encoding genes cylE, lmb, scpB, rib, and bca by PCR. Based on the distribution of the susceptibility patterns, six profiles were generated. RAPD analysis detected 7 clusters of genotypes. The cylE gene was present in 99% of the isolates, the lmb in 96%, scpB in 94.7%, rib in 33%, and bca in 56.5% of isolates. The isolates demonstrated a significant correlation between antimicrobial resistance and genotype clusters denoting the distribution of particular clones with different antimicrobial resistance profiles, entailing the practice of caution in therapeutic options. All virulence factors encoding genes were detected in all seven genotypic clusters with rib and bca not coexisting in the same genome.

  8. The complete coenzyme B12 biosynthesis gene cluster of Lactobacillus reuteri CRL 1098

    NARCIS (Netherlands)

    Santos, dos F.; Vera, J.L.; Heijden, van der R.; Valdez, G.F.; Vos, de W.M.; Sesma, F.; Hugenholtz, J.

    2008-01-01

    The coenzyme B12 production pathway in Lactobacillus reuteri has been deduced using a combination of genetic, biochemical and bioinformatics approaches. The coenzyme B12 gene cluster of Lb. reuteri CRL1098 has the unique feature of clustering together the cbi, cob and hem genes. It consists of 29

  9. Variation in sequence and location of the fumonisin mycotoxin niosynthetic gene cluster in Fusarium

    NARCIS (Netherlands)

    Proctor, R.H.; Hove, van F.; Susca, A.; Stea, A.; Busman, M.; Lee, van der T.A.J.; Waalwijk, C.; Moretti, A.

    2010-01-01

    In Fusarium, the ability to produce fumonisins is governed by a 17-gene fumonisin biosynthetic gene (FUM) cluster. Here, we examined the cluster in F. oxysporum strain O-1890 and nine other species selected to represent a wide range of the genetic diversity within the GFSC.

  10. Dominant control region of the human β- like globin gene cluster

    NARCIS (Netherlands)

    Blom van Assendelft, Margaretha van

    1989-01-01

    The structure and regulation of the human β -like globin gene cluster has been studied extensively. Genetic disorders connected with this gene cluster are responsible for human diseases associated with high levels of morbidity and mortality, such as β-thalassaemia and sickle cell anaemia. The work

  11. Overexpression of antibiotic resistance genes in hospital effluents over time.

    Science.gov (United States)

    Rowe, Will P M; Baker-Austin, Craig; Verner-Jeffreys, David W; Ryan, Jim J; Micallef, Christianne; Maskell, Duncan J; Pearce, Gareth P

    2017-06-01

    Effluents contain a diverse abundance of antibiotic resistance genes that augment the resistome of receiving aquatic environments. However, uncertainty remains regarding their temporal persistence, transcription and response to anthropogenic factors, such as antibiotic usage. We present a spatiotemporal study within a river catchment (River Cam, UK) that aims to determine the contribution of antibiotic resistance gene-containing effluents originating from sites of varying antibiotic usage to the receiving environment. Gene abundance in effluents (municipal hospital and dairy farm) was compared against background samples of the receiving aquatic environment (i.e. the catchment source) to determine the resistome contribution of effluents. We used metagenomics and metatranscriptomics to correlate DNA and RNA abundance and identified differentially regulated gene transcripts. We found that mean antibiotic resistance gene and transcript abundances were correlated for both hospital ( ρ  = 0.9, two-tailed P  hospital effluent samples. High β-lactam resistance gene transcript abundance was related to hospital antibiotic usage over time and hospital effluents contained antibiotic residues. We conclude that effluents contribute high levels of antibiotic resistance genes to the aquatic environment; these genes are expressed at significant levels and are possibly related to the level of antibiotic usage at the effluent source. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  12. Induced resistance and gene expression in wheat against leaf rust ...

    African Journals Online (AJOL)

    uvp

    2013-05-15

    May 15, 2013 ... 2Department of Soil, Crop and Climate Sciences, University of the Free State, P.O Box ... Key words: Wheat leaf rust, induced resistance, priming, gene ..... transformation: susceptibility of transgenic Nicotiana sylvestris plants.

  13. Molecular Detection of Virulence Genes and Antibiotic Resistance ...

    African Journals Online (AJOL)

    Pathogen, E. coli O157:H7, virulence genes, antibiotic-resistance, beef meat. Correspondence: ... box to the laboratory for further processing. Isolation and identification of ... Technologies (IDT) Inc, U.S.A. The sequences and annealing ...

  14. Mapping of stripe rust resistance gene in an Aegilops caudata ...

    Indian Academy of Sciences (India)

    PUNEET INDER TOOR

    A pair of stripe rust and leaf rust resistance genes was introgressed from Aegilops caudata, a nonprogenitor diploid species with the CC genome, to cultivated .... infector rows and experimental material with the mixture of uredinospores of Pst ...

  15. Plasmid Complement of Lactococcus lactis NCDO712 Reveals a Novel Pilus Gene Cluster.

    Science.gov (United States)

    Tarazanova, Mariya; Beerthuyzen, Marke; Siezen, Roland; Fernandez-Gutierrez, Marcela M; de Jong, Anne; van der Meulen, Sjoerd; Kok, Jan; Bachmann, Herwig

    2016-01-01

    Lactococcus lactis MG1363 is an important gram-positive model organism. It is a plasmid-free and phage-cured derivative of strain NCDO712. Plasmid-cured strains facilitate studies on molecular biological aspects, but many properties which make L. lactis an important organism in the dairy industry are plasmid encoded. We sequenced the total DNA of strain NCDO712 and, contrary to earlier reports, revealed that the strain carries 6 rather than 5 plasmids. A new 50-kb plasmid, designated pNZ712, encodes functional nisin immunity (nisCIP) and copper resistance (lcoRSABC). The copper resistance could be used as a marker for the conjugation of pNZ712 to L. lactis MG1614. A genome comparison with the plasmid cured daughter strain MG1363 showed that the number of single nucleotide polymorphisms that accumulated in the laboratory since the strains diverted more than 30 years ago is limited to 11 of which only 5 lead to amino acid changes. The 16-kb plasmid pSH74 was found to contain a novel 8-kb pilus gene cluster spaCB-spaA-srtC1-srtC2, which is predicted to encode a pilin tip protein SpaC, a pilus basal subunit SpaB, and a pilus backbone protein SpaA. The sortases SrtC1/SrtC2 are most likely involved in pilus polymerization while the chromosomally encoded SrtA could act to anchor the pilus to peptidoglycan in the cell wall. Overexpression of the pilus gene cluster from a multi-copy plasmid in L. lactis MG1363 resulted in cell chaining, aggregation, rapid sedimentation and increased conjugation efficiency of the cells. Electron microscopy showed that the over-expression of the pilus gene cluster leads to appendices on the cell surfaces. A deletion of the gene encoding the putative basal protein spaB, by truncating spaCB, led to more pilus-like structures on the cell surface, but cell aggregation and cell chaining were no longer observed. This is consistent with the prediction that spaB is involved in the anchoring of the pili to the cell.

  16. Resistance gene management: concepts and practice

    Science.gov (United States)

    Christopher C. Mundt

    2012-01-01

    There is now a very long history of genetics/breeding for disease resistance in annual crops. These efforts have resulted in conceptual advances and frustrations, as well as practical successes and failures. This talk will review this history and its relevance to the genetics of resistance in forest species. All plant breeders and pathologists are familiar with boom-...

  17. Gene Expression Analysis of Four Radiation-resistant Bacteria

    OpenAIRE

    Gao, Na; Ma, Bin-Guang; Zhang, Yu-Sheng; Song, Qin; Chen, Ling-Ling; Zhang, Hong-Yu

    2009-01-01

    To investigate the general radiation-resistant mechanisms of bacteria, bioinformatic method was employed to predict highly expressed genes for four radiation-resistant bacteria, i.e. Deinococcus geothermalis (D. geo), Deinococcus radiodurans (D. rad), Kineococcus radiotolerans (K. rad) and Rubrobacter xylanophilus (R. xyl). It is revealed that most of the three reference gene sets, i.e. ribosomal proteins, transcription factors and major chaperones, are generally highly expressed in the four ...

  18. Overexpression of antibiotic resistance genes in hospital effluents over time

    OpenAIRE

    Rowe, Will P. M.; Baker-Austin, Craig; Verner-Jeffreys, David W.; Ryan, Jim J.; Micallef, Christianne; Maskell, Duncan J.; Pearce, Gareth P.

    2017-01-01

    $\\textbf{Objectives}$: Effluents contain a diverse abundance of antibiotic resistance genes that augment the resistome of receiving aquatic environments. However, uncertainty remains regarding their temporal persistence, transcription and response to anthropogenic factors, such as antibiotic usage. We present a spatiotemporal study within a river catchment (River Cam, UK) that aims to determine the contribution of antibiotic resistance gene-containing effluents originating from sites of varyi...

  19. CAR gene cluster and transcript levels of carotenogenic genes in Rhodotorula mucilaginosa.

    Science.gov (United States)

    Landolfo, Sara; Ianiri, Giuseppe; Camiolo, Salvatore; Porceddu, Andrea; Mulas, Giuliana; Chessa, Rossella; Zara, Giacomo; Mannazzu, Ilaria

    2018-01-01

    A molecular approach was applied to the study of the carotenoid biosynthetic pathway of Rhodotorula mucilaginosa. At first, functional annotation of the genome of R. mucilaginosa C2.5t1 was carried out and gene ontology categories were assigned to 4033 predicted proteins. Then, a set of genes involved in different steps of carotenogenesis was identified and those coding for phytoene desaturase, phytoene synthase/lycopene cyclase and carotenoid dioxygenase (CAR genes) proved to be clustered within a region of ~10 kb. Quantitative PCR of the genes involved in carotenoid biosynthesis showed that genes coding for 3-hydroxy-3-methylglutharyl-CoA reductase and mevalonate kinase are induced during exponential phase while no clear trend of induction was observed for phytoene synthase/lycopene cyclase and phytoene dehydrogenase encoding genes. Thus, in R. mucilaginosa the induction of genes involved in the early steps of carotenoid biosynthesis is transient and accompanies the onset of carotenoid production, while that of CAR genes does not correlate with the amount of carotenoids produced. The transcript levels of genes coding for carotenoid dioxygenase, superoxide dismutase and catalase A increased during the accumulation of carotenoids, thus suggesting the activation of a mechanism aimed at the protection of cell structures from oxidative stress during carotenoid biosynthesis. The data presented herein, besides being suitable for the elucidation of the mechanisms that underlie carotenoid biosynthesis, will contribute to boosting the biotechnological potential of this yeast by improving the outcome of further research efforts aimed at also exploring other features of interest.

  20. A recently transferred cluster of bacterial genes in Trichomonas vaginalis - lateral gene transfer and the fate of acquired genes

    Science.gov (United States)

    2014-01-01

    Background Lateral Gene Transfer (LGT) has recently gained recognition as an important contributor to some eukaryote proteomes, but the mechanisms of acquisition and fixation in eukaryotic genomes are still uncertain. A previously defined norm for LGTs in microbial eukaryotes states that the majority are genes involved in metabolism, the LGTs are typically localized one by one, surrounded by vertically inherited genes on the chromosome, and phylogenetics shows that a broad collection of bacterial lineages have contributed to the transferome. Results A unique 34 kbp long fragment with 27 clustered genes (TvLF) of prokaryote origin was identified in the sequenced genome of the protozoan parasite Trichomonas vaginalis. Using a PCR based approach we confirmed the presence of the orthologous fragment in four additional T. vaginalis strains. Detailed sequence analyses unambiguously suggest that TvLF is the result of one single, recent LGT event. The proposed donor is a close relative to the firmicute bacterium Peptoniphilus harei. High nucleotide sequence similarity between T. vaginalis strains, as well as to P. harei, and the absence of homologs in other Trichomonas species, suggests that the transfer event took place after the radiation of the genus Trichomonas. Some genes have undergone pseudogenization and degradation, indicating that they may not be retained in the future. Functional annotations reveal that genes involved in informational processes are particularly prone to degradation. Conclusions We conclude that, although the majority of eukaryote LGTs are single gene occurrences, they may be acquired in clusters of several genes that are subsequently cleansed of evolutionarily less advantageous genes. PMID:24898731

  1. Improvement of oxytetracycline production mediated via cooperation of resistance genes in Streptomyces rimosus.

    Science.gov (United States)

    Yin, Shouliang; Wang, Xuefeng; Shi, Mingxin; Yuan, Fang; Wang, Huizhuan; Jia, Xiaole; Yuan, Fang; Sun, Jinliang; Liu, Tiejun; Yang, Keqian; Zhang, Yuxiu; Fan, Keqiang; Li, Zilong

    2017-09-01

    Increasing the self-resistance levels of Streptomyces is an effective strategy to improve the production of antibiotics. To increase the oxytetracycline (OTC) production in Streptomyces rimosus, we investigated the cooperative effect of three co-overexpressing OTC resistance genes: one gene encodes a ribosomal protection protein (otrA) and the other two express efflux proteins (otrB and otrC). Results indicated that combinational overexpression of otrA, otrB, and otrC (MKABC) exerted a synergetic effect. OTC production increased by 179% in the recombinant strain compared with that of the wild-type strain M4018. The resistance level to OTC was increased by approximately two-fold relative to the parental strain, thereby indicating that applying the cooperative effect of self-resistance genes is useful to improve OTC production. Furthermore, the previously identified cluster-situated activator OtcR was overexpressed in MKABC in constructing the recombinant strain MKRABC; such strain can produce OTC of approximately 7.49 g L -1 , which represents an increase of 19% in comparison with that of the OtcR-overexpressing strain alone. Our work showed that the cooperative overexpression of self-resistance genes is a promising strategy to enhance the antibiotics production in Streptomyces.

  2. Analysis of metal and biocides resistance genes in drug resistance and susceptible Salmonella enterica from food animals

    Science.gov (United States)

    Background Generally drug resistant bacteria carry antibiotic resistance genes and heavy metal and biocide resistance genes on large conjugative plasmids. The presence of these metal and biocide resistance genes in susceptible bacteria are not assessed comprehensively. Hence, WGS data of susceptib...

  3. The antimicrobial resistance crisis: management through gene monitoring

    Science.gov (United States)

    2016-01-01

    Antimicrobial resistance (AMR) is an acknowledged crisis for humanity. Its genetic origins and dire potential outcomes are increasingly well understood. However, diagnostic techniques for monitoring the crisis are currently largely limited to enumerating the increasing incidence of resistant pathogens. Being the end-stage of the evolutionary process that produces antimicrobial resistant pathogens, these measurements, while diagnostic, are not prognostic, and so are not optimal in managing this crisis. A better test is required. Here, using insights from an understanding of evolutionary processes ruling the changing abundance of genes under selective pressure, we suggest a predictive framework for the AMR crisis. We then discuss the likely progression of resistance for both existing and prospective antimicrobial therapies. Finally, we suggest that by the environmental monitoring of resistance gene frequency, resistance may be detected and tracked presumptively, and how this tool may be used to guide decision-making in the local and global use of antimicrobials. PMID:27831476

  4. The Number of Genes Controlling Resistance in Beans to Common ...

    African Journals Online (AJOL)

    Ten crosses were made between resistant (R), susceptible (S), RxS susceptible and Intermediate (I), SxI and RxR bean lines to common bacterial blight. The F1 were advanced to F2 and in each cross over 250 F2 plants were used to evaluate for the number of genes controlling resistance using Mendelian genetics and ...

  5. Prevalence, antibiotic-resistance properties and enterotoxin gene ...

    African Journals Online (AJOL)

    Prevalence, antibiotic-resistance properties and enterotoxin gene profile of Bacillus cereus strains isolated from milk-based baby foods. ... Conclusion: Considerable prevalence of resistant and toxigenic B. cereus and high consumption of milk-based infant foods in Iran, represent an important public health issue which ...

  6. Spread of tetracycline resistance genes at a conventional dairy farm

    NARCIS (Netherlands)

    Kyselková, Martina; Jirout, Jiří; Vrchotová, Naděžda; Schmitt, Heike; Elhottová, Dana

    2015-01-01

    The use of antibiotics in animal husbandry contributes to the worldwide problem of increasing antibiotic resistance in animal and human pathogens. Intensive animal production is considered an important source of antibiotic resistance genes released to the environment, while the contribution of

  7. Isolation and characterization of a candidate gene for resistance to ...

    African Journals Online (AJOL)

    ARC) domain, and a leucine-rich repeat (LRR) domain, all of which are typical characteristics of resistance genes. We proposed the resistance mechanism of CreV8 based on functional analysis and predictions from its conserved domains and ...

  8. A robust approach based on Weibull distribution for clustering gene expression data

    Directory of Open Access Journals (Sweden)

    Gong Binsheng

    2011-05-01

    Full Text Available Abstract Background Clustering is a widely used technique for analysis of gene expression data. Most clustering methods group genes based on the distances, while few methods group genes according to the similarities of the distributions of the gene expression levels. Furthermore, as the biological annotation resources accumulated, an increasing number of genes have been annotated into functional categories. As a result, evaluating the performance of clustering methods in terms of the functional consistency of the resulting clusters is of great interest. Results In this paper, we proposed the WDCM (Weibull Distribution-based Clustering Method, a robust approach for clustering gene expression data, in which the gene expressions of individual genes are considered as the random variables following unique Weibull distributions. Our WDCM is based on the concept that the genes with similar expression profiles have similar distribution parameters, and thus the genes are clustered via the Weibull distribution parameters. We used the WDCM to cluster three cancer gene expression data sets from the lung cancer, B-cell follicular lymphoma and bladder carcinoma and obtained well-clustered results. We compared the performance of WDCM with k-means and Self Organizing Map (SOM using functional annotation information given by the Gene Ontology (GO. The results showed that the functional annotation ratios of WDCM are higher than those of the other methods. We also utilized the external measure Adjusted Rand Index to validate the performance of the WDCM. The comparative results demonstrate that the WDCM provides the better clustering performance compared to k-means and SOM algorithms. The merit of the proposed WDCM is that it can be applied to cluster incomplete gene expression data without imputing the missing values. Moreover, the robustness of WDCM is also evaluated on the incomplete data sets. Conclusions The results demonstrate that our WDCM produces clusters

  9. Pediatric fecal microbiota harbor diverse and novel antibiotic resistance genes.

    Directory of Open Access Journals (Sweden)

    Aimée M Moore

    Full Text Available Emerging antibiotic resistance threatens human health. Gut microbes are an epidemiologically important reservoir of resistance genes (resistome, yet prior studies indicate that the true diversity of gut-associated resistomes has been underestimated. To deeply characterize the pediatric gut-associated resistome, we created metagenomic recombinant libraries in an Escherichia coli host using fecal DNA from 22 healthy infants and children (most without recent antibiotic exposure, and performed functional selections for resistance to 18 antibiotics from eight drug classes. Resistance-conferring DNA fragments were sequenced (Illumina HiSeq 2000, and reads assembled and annotated with the PARFuMS computational pipeline. Resistance to 14 of the 18 antibiotics was found in stools of infants and children. Recovered genes included chloramphenicol acetyltransferases, drug-resistant dihydrofolate reductases, rRNA methyltransferases, transcriptional regulators, multidrug efflux pumps, and every major class of beta-lactamase, aminoglycoside-modifying enzyme, and tetracycline resistance protein. Many resistance-conferring sequences were mobilizable; some had low identity to any known organism, emphasizing cryptic organisms as potentially important resistance reservoirs. We functionally confirmed three novel resistance genes, including a 16S rRNA methylase conferring aminoglycoside resistance, and two tetracycline-resistance proteins nearly identical to a bifidobacterial MFS transporter (B. longum s. longum JDM301. We provide the first report to our knowledge of resistance to folate-synthesis inhibitors conferred by a predicted Nudix hydrolase (part of the folate synthesis pathway. This functional metagenomic survey of gut-associated resistomes, the largest of its kind to date, demonstrates that fecal resistomes of healthy children are far more diverse than previously suspected, that clinically relevant resistance genes are present even without recent selective

  10. A physical map of the heterozygous grapevine 'Cabernet Sauvignon' allows mapping candidate genes for disease resistance

    Directory of Open Access Journals (Sweden)

    Scalabrin Simone

    2008-06-01

    Full Text Available Abstract Background Whole-genome physical maps facilitate genome sequencing, sequence assembly, mapping of candidate genes, and the design of targeted genetic markers. An automated protocol was used to construct a Vitis vinifera 'Cabernet Sauvignon' physical map. The quality of the result was addressed with regard to the effect of high heterozygosity on the accuracy of contig assembly. Its usefulness for the genome-wide mapping of genes for disease resistance, which is an important trait for grapevine, was then assessed. Results The physical map included 29,727 BAC clones assembled into 1,770 contigs, spanning 715,684 kbp, and corresponding to 1.5-fold the genome size. Map inflation was due to high heterozygosity, which caused either the separation of allelic BACs in two different contigs, or local mis-assembly in contigs containing BACs from the two haplotypes. Genetic markers anchored 395 contigs or 255,476 kbp to chromosomes. The fully automated assembly and anchorage procedures were validated by BAC-by-BAC blast of the end sequences against the grape genome sequence, unveiling 7.3% of chimerical contigs. The distribution across the physical map of candidate genes for non-host and host resistance, and for defence signalling pathways was then studied. NBS-LRR and RLK genes for host resistance were found in 424 contigs, 133 of them (32% were assigned to chromosomes, on which they are mostly organised in clusters. Non-host and defence signalling genes were found in 99 contigs dispersed without a discernable pattern across the genome. Conclusion Despite some limitations that interfere with the correct assembly of heterozygous clones into contigs, the 'Cabernet Sauvignon' physical map is a useful and reliable intermediary step between a genetic map and the genome sequence. This tool was successfully exploited for a quick mapping of complex families of genes, and it strengthened previous clues of co-localisation of major NBS-LRR clusters and

  11. Comparison of two schemes for automatic keyword extraction from MEDLINE for functional gene clustering.

    Science.gov (United States)

    Liu, Ying; Ciliax, Brian J; Borges, Karin; Dasigi, Venu; Ram, Ashwin; Navathe, Shamkant B; Dingledine, Ray

    2004-01-01

    One of the key challenges of microarray studies is to derive biological insights from the unprecedented quatities of data on gene-expression patterns. Clustering genes by functional keyword association can provide direct information about the nature of the functional links among genes within the derived clusters. However, the quality of the keyword lists extracted from biomedical literature for each gene significantly affects the clustering results. We extracted keywords from MEDLINE that describes the most prominent functions of the genes, and used the resulting weights of the keywords as feature vectors for gene clustering. By analyzing the resulting cluster quality, we compared two keyword weighting schemes: normalized z-score and term frequency-inverse document frequency (TFIDF). The best combination of background comparison set, stop list and stemming algorithm was selected based on precision and recall metrics. In a test set of four known gene groups, a hierarchical algorithm correctly assigned 25 of 26 genes to the appropriate clusters based on keywords extracted by the TDFIDF weighting scheme, but only 23 og 26 with the z-score method. To evaluate the effectiveness of the weighting schemes for keyword extraction for gene clusters from microarray profiles, 44 yeast genes that are differentially expressed during the cell cycle were used as a second test set. Using established measures of cluster quality, the results produced from TFIDF-weighted keywords had higher purity, lower entropy, and higher mutual information than those produced from normalized z-score weighted keywords. The optimized algorithms should be useful for sorting genes from microarray lists into functionally discrete clusters.

  12. A multiple genome analysis of Mycobacterium tuberculosis reveals specific novel genes and mutations associated with pyrazinamide resistance

    KAUST Repository

    Sheen, Patricia

    2017-10-11

    Tuberculosis (TB) is a major global health problem and drug resistance compromises the efforts to control this disease. Pyrazinamide (PZA) is an important drug used in both first and second line treatment regimes. However, its complete mechanism of action and resistance remains unclear.We genotyped and sequenced the complete genomes of 68 M. tuberculosis strains isolated from unrelated TB patients in Peru. No clustering pattern of the strains was verified based on spoligotyping. We analyzed the association between PZA resistance with non-synonymous mutations and specific genes. We found mutations in pncA and novel genes significantly associated with PZA resistance in strains without pncA mutations. These included genes related to transportation of metal ions, pH regulation and immune system evasion.These results suggest potential alternate mechanisms of PZA resistance that have not been found in other populations, supporting that the antibacterial activity of PZA may hit multiple targets.

  13. A multiple genome analysis of Mycobacterium tuberculosis reveals specific novel genes and mutations associated with pyrazinamide resistance

    KAUST Repository

    Sheen, Patricia; Requena, David; Gushiken, Eduardo; Gilman, Robert H.; Antiparra, Ricardo; Lucero, Bryan; Lizá rraga, Pilar; Cieza, Basilio; Roncal, Elisa; Grandjean, Louis; Pain, Arnab; McNerney, Ruth; Clark, Taane G.; Moore, David; Zimic, Mirko

    2017-01-01

    Tuberculosis (TB) is a major global health problem and drug resistance compromises the efforts to control this disease. Pyrazinamide (PZA) is an important drug used in both first and second line treatment regimes. However, its complete mechanism of action and resistance remains unclear.We genotyped and sequenced the complete genomes of 68 M. tuberculosis strains isolated from unrelated TB patients in Peru. No clustering pattern of the strains was verified based on spoligotyping. We analyzed the association between PZA resistance with non-synonymous mutations and specific genes. We found mutations in pncA and novel genes significantly associated with PZA resistance in strains without pncA mutations. These included genes related to transportation of metal ions, pH regulation and immune system evasion.These results suggest potential alternate mechanisms of PZA resistance that have not been found in other populations, supporting that the antibacterial activity of PZA may hit multiple targets.

  14. Cloning and characterization of NBS-LRR resistance gene ...

    African Journals Online (AJOL)

    biotech

    2013-07-03

    Jul 3, 2013 ... Rose using degernate primers designed from the conserved motifs of different plant resistance genes. A total of 40 sequences were hit with various R genes, of which 20 .... absorption ratio OD260 nm/OD280 nm between 1.80 and ..... status and outlook for small-holders agriculture in C S Gold and B.

  15. Induced mutations of rust resistance genes in wheat

    International Nuclear Information System (INIS)

    McIntosh, R.A.

    1983-01-01

    Induced mutations are being used as a tool to study genes for resistance in wheat. It was found that Pm1 can be separated from Lr20 and Sr15, but these two react like a single pleiotropic gene. Mutants were further examined in crosses and backmutations have been attempted. (author)

  16. Dihydropteroate synthase gene mutations in Pneumocystis and sulfa resistance

    DEFF Research Database (Denmark)

    Huang, Laurence; Crothers, Kristina; Atzori, Chiara

    2004-01-01

    in the dihydropteroate synthase (DHPS) gene. Similar mutations have been observed in P. jirovecii. Studies have consistently demonstrated a significant association between the use of sulfa drugs for PCP prophylaxis and DHPS gene mutations. Whether these mutations confer resistance to TMP-SMX or dapsone plus trimethoprim...

  17. Testing of disease-resistance of pokeweed antiviral protein gene ...

    African Journals Online (AJOL)

    Transformation of pokeweed antiviral protein gene (PAP) into plants was shown to improve plant resistance to several viruses or fungi pathogens with no much negative effect on plant growth. The non-virulent defective PAP inhibits only the virus but does not interfere with the host. A non-virulent defective PAP gene ...

  18. Clustering approaches to identifying gene expression patterns from DNA microarray data.

    Science.gov (United States)

    Do, Jin Hwan; Choi, Dong-Kug

    2008-04-30

    The analysis of microarray data is essential for large amounts of gene expression data. In this review we focus on clustering techniques. The biological rationale for this approach is the fact that many co-expressed genes are co-regulated, and identifying co-expressed genes could aid in functional annotation of novel genes, de novo identification of transcription factor binding sites and elucidation of complex biological pathways. Co-expressed genes are usually identified in microarray experiments by clustering techniques. There are many such methods, and the results obtained even for the same datasets may vary considerably depending on the algorithms and metrics for dissimilarity measures used, as well as on user-selectable parameters such as desired number of clusters and initial values. Therefore, biologists who want to interpret microarray data should be aware of the weakness and strengths of the clustering methods used. In this review, we survey the basic principles of clustering of DNA microarray data from crisp clustering algorithms such as hierarchical clustering, K-means and self-organizing maps, to complex clustering algorithms like fuzzy clustering.

  19. A functional bikaverin biosynthesis gene cluster in rare strains of Botrytis cinerea is positively controlled by VELVET.

    Directory of Open Access Journals (Sweden)

    Julia Schumacher

    Full Text Available The gene cluster responsible for the biosynthesis of the red polyketidic pigment bikaverin has only been characterized in Fusarium ssp. so far. Recently, a highly homologous but incomplete and nonfunctional bikaverin cluster has been found in the genome of the unrelated phytopathogenic fungus Botrytis cinerea. In this study, we provided evidence that rare B. cinerea strains such as 1750 have a complete and functional cluster comprising the six genes orthologous to Fusarium fujikuroi ffbik1-ffbik6 and do produce bikaverin. Phylogenetic analysis confirmed that the whole cluster was acquired from Fusarium through a horizontal gene transfer (HGT. In the bikaverin-nonproducing strain B05.10, the genes encoding bikaverin biosynthesis enzymes are nonfunctional due to deleterious mutations (bcbik2-3 or missing (bcbik1 but interestingly, the genes encoding the regulatory proteins BcBIK4 and BcBIK5 do not harbor deleterious mutations which suggests that they may still be functional. Heterologous complementation of the F. fujikuroi Δffbik4 mutant confirmed that bcbik4 of strain B05.10 is indeed fully functional. Deletion of bcvel1 in the pink strain 1750 resulted in loss of bikaverin and overproduction of melanin indicating that the VELVET protein BcVEL1 regulates the biosynthesis of the two pigments in an opposite manner. Although strain 1750 itself expresses a truncated BcVEL1 protein (100 instead of 575 aa that is nonfunctional with regard to sclerotia formation, virulence and oxalic acid formation, it is sufficient to regulate pigment biosynthesis (bikaverin and melanin and fenhexamid HydR2 type of resistance. Finally, a genetic cross between strain 1750 and a bikaverin-nonproducing strain sensitive to fenhexamid revealed that the functional bikaverin cluster is genetically linked to the HydR2 locus.

  20. Candidate gene approach for parasite resistance in sheep--variation in immune pathway genes and association with fecal egg count.

    Directory of Open Access Journals (Sweden)

    Kathiravan Periasamy

    Full Text Available Sheep chromosome 3 (Oar3 has the largest number of QTLs reported to be significantly associated with resistance to gastro-intestinal nematodes. This study aimed to identify single nucleotide polymorphisms (SNPs within candidate genes located in sheep chromosome 3 as well as genes involved in major immune pathways. A total of 41 SNPs were identified across 38 candidate genes in a panel of unrelated sheep and genotyped in 713 animals belonging to 22 breeds across Asia, Europe and South America. The variations and evolution of immune pathway genes were assessed in sheep populations across these macro-environmental regions that significantly differ in the diversity and load of pathogens. The mean minor allele frequency (MAF did not vary between Asian and European sheep reflecting the absence of ascertainment bias. Phylogenetic analysis revealed two major clusters with most of South Asian, South East Asian and South West Asian breeds clustering together while European and South American sheep breeds clustered together distinctly. Analysis of molecular variance revealed strong phylogeographic structure at loci located in immune pathway genes, unlike microsatellite and genome wide SNP markers. To understand the influence of natural selection processes, SNP loci located in chromosome 3 were utilized to reconstruct haplotypes, the diversity of which showed significant deviations from selective neutrality. Reduced Median network of reconstructed haplotypes showed balancing selection in force at these loci. Preliminary association of SNP genotypes with phenotypes recorded 42 days post challenge revealed significant differences (P<0.05 in fecal egg count, body weight change and packed cell volume at two, four and six SNP loci respectively. In conclusion, the present study reports strong phylogeographic structure and balancing selection operating at SNP loci located within immune pathway genes. Further, SNP loci identified in the study were found to have

  1. Environmental cycle of antibiotic resistance encoded genes: A systematic review

    Directory of Open Access Journals (Sweden)

    R. ghanbari

    2017-12-01

    Full Text Available Antibiotic-resistant bacteria and genes enter the environment in different ways. The release of these factors into the environment has increased concerns related to public health. The aim of the study was to evaluate the antibiotic resistance genes (ARGs in the environmental resources. In this systematic review, the data were extracted from valid sources of information including ScienceDirect, PubMed, Google Scholar and SID. Evaluation and selection of articles were conducted on the basis of the PRISMA checklist. A total of 39 articles were included in the study, which were chosen from a total of 1249 papers. The inclusion criterion was the identification of genes encoding antibiotic resistance against the eight important groups of antibiotics determined by using the PCR technique in the environmental sources including municipal and hospital wastewater treatment plants, animal and agricultural wastes, effluents from treatment plants, natural waters, sediments, and drinking waters. In this study, 113 genes encoding antibiotic resistance to eight groups of antibiotics (beta-lactams, aminoglycosides, tetracyclines, macrolides, sulfonamides, chloramphenicol, glycopeptides and quinolones were identified in various environments. Antibiotic resistance genes were found in all the investigated environments. The investigation of microorganisms carrying these genes shows that most of the bacteria especially gram-negative bacteria are effective in the acquisition and the dissemination of these pollutants in the environment. Discharging the raw wastewaters and effluents from wastewater treatments acts as major routes in the dissemination of ARGs into environment sources and can pose hazards to public health.

  2. RESISTANCE-RELATED GENE TRANSCRIPTION AND ...

    African Journals Online (AJOL)

    jdx

    2014-02-05

    Feb 5, 2014 ... By 72 hpi, the pathogen switched to necrotrophic growth to avoid contact with the increasing ... A better understanding of the gene network underlying ... 5.0 software under default parameters and were custom-ordered.

  3. The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence.

    Science.gov (United States)

    Rinaldo, Amy; Gilbert, Brian; Boni, Rainer; Krattinger, Simon G; Singh, Davinder; Park, Robert F; Lagudah, Evans; Ayliffe, Michael

    2017-07-01

    The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad-spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field-grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome-encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up-regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress-response genes were up-regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad-spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Antibiotic resistance and virulence genes in coliform water isolates.

    Science.gov (United States)

    Stange, C; Sidhu, J P S; Tiehm, A; Toze, S

    2016-11-01

    Widespread fecal pollution of surface water may present a major health risk and a significant pathway for dissemination of antibiotic resistance bacteria. The River Rhine is one of the longest and most important rivers in Europe and an important raw water source for drinking water production. A total of 100 coliform isolates obtained from River Rhine (Germany) were examined for their susceptibility to seven antimicrobial agents. Resistances against amoxicillin, trimethoprim/sulfamethoxazole and tetracycline were detected in 48%, 11% and 9% of isolates respectively. The antibiotic resistance could be traced back to the resistance genes bla TEM , bla SHV , ampC, sul1, sul2, dfrA1, tet(A) and tet(B). Whereby, the ampC gene represents a special case, because its presence is not inevitably linked to a phenotypic antibiotic resistance. Multiple antibiotics resistance was often accompanied by the occurrence of class 1 or 2 integrons. E. coli isolates belonging to phylogenetic groups A and B1 (commensal) were more predominant (57%) compared to B2 and D groups (43%) which are known to carry virulent genes. Additionally, six E. coli virulence genes were also detected. However, the prevalence of virulence genes in the E. coli isolates was low (not exceeding 4.3% per gene) and no diarrheagenic E. coli pathotypes were detected. This study demonstrates that surface water is an important reservoir of ARGs for a number of antibiotic classes such as sulfonamide, trimethoprim, beta-lactam-antibiotics and tetracycline. The occurrence of antibiotic resistance in coliform bacteria isolated from River Rhine provides evidence for the need to develop management strategies to limit the spread of antibiotic resistant bacteria in aquatic environment. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, Kira S.; Omelchenko, Marina V.; Gaidamakova, Elena K.; Matrosova, Vera Y.; Vasilenko, Alexander; Zhai, Min; Lapidus, Alla; Copeland, Alex; Kim, Edwin; Land, Miriam; Mavrommatis, Konstantinos; Pitluck, Samuel; Richardson, Paul M.; Detter, Chris; Brettin, Thomas; Saunders, Elizabeth; Lai, Barry; Ravel, Bruce; Kemner, Kenneth M.; Wolf, Yuri I.; Sorokin, Alexander; Gerasimova, Anna V.; Gelfand, Mikhail S.; Fredrickson, James K.; Koonin, Eugene V.; Daly, Michael J.

    2007-07-24

    Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at itsoptimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to

  6. Porcine E. coli: virulence-associated genes, resistance genes and adhesion and probiotic activity tested by a new screening method.

    Science.gov (United States)

    Schierack, Peter; Rödiger, Stefan; Kuhl, Christoph; Hiemann, Rico; Roggenbuck, Dirk; Li, Ganwu; Weinreich, Jörg; Berger, Enrico; Nolan, Lisa K; Nicholson, Bryon; Römer, Antje; Frömmel, Ulrike; Wieler, Lothar H; Schröder, Christian

    2013-01-01

    We established an automated screening method to characterize adhesion of Escherichia coli to intestinal porcine epithelial cells (IPEC-J2) and their probiotic activity against infection by enteropathogenic E. coli (EPEC). 104 intestinal E. coli isolates from domestic pigs were tested by PCR for the occurrence of virulence-associated genes, genes coding for resistances to antimicrobial agents and metals, and for phylogenetic origin by PCR. Adhesion rates and probiotic activity were examined for correlation with the presence of these genes. Finally, data were compared with those from 93 E. coli isolates from wild boars. Isolates from domestic pigs carried a broad variety of all tested genes and showed great diversity in gene patterns. Adhesions varied with a maximum of 18.3 or 24.2 mean bacteria adherence per epithelial cell after 2 or 6 hours respectively. Most isolates from domestic pigs and wild boars showed low adherence, with no correlation between adhesion/probiotic activity and E. coli genes or gene clusters. The gene sfa/foc, encoding for a subunit of F1C fimbriae did show a positive correlative association with adherence and probiotic activity; however E. coli isolates from wild boars with the sfa/foc gene showed less adhesion and probiotic activity than E. coli with the sfa/foc gene isolated from domestic pigs after 6 hour incubation. In conclusion, screening porcine E. coli for virulence associated genes genes, adhesion to intestinal epithelial cells, and probiotic activity revealed a single important adhesion factor, several probiotic candidates, and showed important differences between E. coli of domestic pigs and wild boars.

  7. Porcine E. coli: virulence-associated genes, resistance genes and adhesion and probiotic activity tested by a new screening method.

    Directory of Open Access Journals (Sweden)

    Peter Schierack

    Full Text Available We established an automated screening method to characterize adhesion of Escherichia coli to intestinal porcine epithelial cells (IPEC-J2 and their probiotic activity against infection by enteropathogenic E. coli (EPEC. 104 intestinal E. coli isolates from domestic pigs were tested by PCR for the occurrence of virulence-associated genes, genes coding for resistances to antimicrobial agents and metals, and for phylogenetic origin by PCR. Adhesion rates and probiotic activity were examined for correlation with the presence of these genes. Finally, data were compared with those from 93 E. coli isolates from wild boars. Isolates from domestic pigs carried a broad variety of all tested genes and showed great diversity in gene patterns. Adhesions varied with a maximum of 18.3 or 24.2 mean bacteria adherence per epithelial cell after 2 or 6 hours respectively. Most isolates from domestic pigs and wild boars showed low adherence, with no correlation between adhesion/probiotic activity and E. coli genes or gene clusters. The gene sfa/foc, encoding for a subunit of F1C fimbriae did show a positive correlative association with adherence and probiotic activity; however E. coli isolates from wild boars with the sfa/foc gene showed less adhesion and probiotic activity than E. coli with the sfa/foc gene isolated from domestic pigs after 6 hour incubation. In conclusion, screening porcine E. coli for virulence associated genes genes, adhesion to intestinal epithelial cells, and probiotic activity revealed a single important adhesion factor, several probiotic candidates, and showed important differences between E. coli of domestic pigs and wild boars.

  8. The relationship between codon usage bias and cold resistant genes

    International Nuclear Information System (INIS)

    Barozai, M.Y.; Din, M.

    2014-01-01

    This research is based on synonymous codon usage which has been well-known as a feature that affects typical expression level of protein in an organism. Different organisms prefer different codons for same amino acid and this is called Codon Usage Bias (CUB). The codon usage directly affects the level or even direction of changes in protein expression in responses to environmental stimuli. Cold stress is a major abiotic factor that limits the agricultural productivity of plants. In the recent study CUB has been studied in Arabidopsis thaliana cold resistant and housekeeping genes and their homologs in rice (Oryza sativa) to understand the cold stress and housekeeping genes relation with CUB. Six cold resistant and three housekeeping genes in Arabidopsis thaliana and their homologs in rice, were subjected to CUB analysis. The three cold resistant genes (DREB1B, RCI and MYB15) showed more than 50% (52%, 61% and 66% respectively) similar codon usage bias for Arabidopsis thaliana and rice. On the other hand three cold resistant genes (MPK3, ICE1 and ZAT12) showed less than 50% (38%, 38% and 47% respectively) similar codon usage bias for Arabidopsis thaliana and rice. The three housekeeping genes (Actin, Tubulin and Ubiquitin) showed 76% similar codon usage bias for Arabidopsis thaliana and rice. This study will help to manage the plant gene expression through codon optimization under the cold stress. (author)

  9. AutoSOME: a clustering method for identifying gene expression modules without prior knowledge of cluster number

    Directory of Open Access Journals (Sweden)

    Cooper James B

    2010-03-01

    Full Text Available Abstract Background Clustering the information content of large high-dimensional gene expression datasets has widespread application in "omics" biology. Unfortunately, the underlying structure of these natural datasets is often fuzzy, and the computational identification of data clusters generally requires knowledge about cluster number and geometry. Results We integrated strategies from machine learning, cartography, and graph theory into a new informatics method for automatically clustering self-organizing map ensembles of high-dimensional data. Our new method, called AutoSOME, readily identifies discrete and fuzzy data clusters without prior knowledge of cluster number or structure in diverse datasets including whole genome microarray data. Visualization of AutoSOME output using network diagrams and differential heat maps reveals unexpected variation among well-characterized cancer cell lines. Co-expression analysis of data from human embryonic and induced pluripotent stem cells using AutoSOME identifies >3400 up-regulated genes associated with pluripotency, and indicates that a recently identified protein-protein interaction network characterizing pluripotency was underestimated by a factor of four. Conclusions By effectively extracting important information from high-dimensional microarray data without prior knowledge or the need for data filtration, AutoSOME can yield systems-level insights from whole genome microarray expression studies. Due to its generality, this new method should also have practical utility for a variety of data-intensive applications, including the results of deep sequencing experiments. AutoSOME is available for download at http://jimcooperlab.mcdb.ucsb.edu/autosome.

  10. Persistence of antimicrobial resistance genes from sows to finisher pigs

    DEFF Research Database (Denmark)

    Birkegård, Anna Camilla; Halasa, Tariq; Folkesson, Anders

    2018-01-01

    Antimicrobial resistance in pigs has been under scrutiny for many years. However, many questions remain unanswered, including whether the initial antimicrobial resistance level of a pig will influence the antimicrobial resistance found at slaughter. Faecal samples from finishers pigs from 681 farms...... and from sows from 82 farms were collected, and levels of seven antimicrobial resistance genes, ermB, ermF, sulI, sulII, tet(M), tet(O), and tet(W), were quantified by high-capacity qPCR. There were 40 pairs of observations where the finishers were born in the farms of the sows. The objective of this study...

  11. Statistical indicators of collective behavior and functional clusters in gene networks of yeast

    Science.gov (United States)

    Živković, J.; Tadić, B.; Wick, N.; Thurner, S.

    2006-03-01

    We analyze gene expression time-series data of yeast (S. cerevisiae) measured along two full cell-cycles. We quantify these data by using q-exponentials, gene expression ranking and a temporal mean-variance analysis. We construct gene interaction networks based on correlation coefficients and study the formation of the corresponding giant components and minimum spanning trees. By coloring genes according to their cell function we find functional clusters in the correlation networks and functional branches in the associated trees. Our results suggest that a percolation point of functional clusters can be identified on these gene expression correlation networks.

  12. Presence of the resistance genes vanC1 and pbp5 in phenotypically vancomycin and ampicillin susceptible Enterococcus faecalis.

    Science.gov (United States)

    Schwaiger, Karin; Bauer, Johann; Hörmansdorfer, Stefan; Mölle, Gabriele; Preikschat, Petra; Kämpf, Peter; Bauer-Unkauf, Ilse; Bischoff, Meike; Hölzel, Christina

    2012-08-01

    Ampicillin and vancomycin are important antibiotics for the therapy of Enterococcus faecalis infections. The ampicillin resistance gene pbp5 is intrinsic in Enterococcus faecium. The vanC1 gene confers resistance to vancomycin and serves as a species marker for Enterococcus gallinarum. Both genes are chromosomally located. Resistance to ampicillin and vancomycin was determined in 484 E. faecalis of human and porcine origin by microdilution. Since E. faecalis are highly skilled to acquire resistance genes, all strains were investigated for the presence of pbp5 (and, in positive strains, for the penicillin-binding protein synthesis repressor gene psr) and vanC1 (and, in positive strains, for vanXYc and vanT) by using polymerase chain reaction (PCR). One porcine and one human isolate were phenotypically resistant to ampicillin; no strain was vancomycin resistant. Four E. faecalis (3/1 of porcine/human origin) carried pbp5 (MIC=1 mg/L), and four porcine strains were vanC1 positive (minimum inhibitory concentration [MIC]=1 mg/L). Real-time reverse transcriptase (RT)-PCR revealed that the genes were not expressed. The psr gene was absent in the four pbp5-positive strains; the vanXYc gene was absent in the four vanC1-positive strains. However, vanT of the vanC gene cluster was detected in two vanC1-positive strains. To our knowledge, this is the first report on the presence of pbp5, identical with the "E. faecium pbp5 gene," and of vanC1/vanT in E. faecalis. Even if resistance is not expressed in these strains, this study shows that E. faecalis have a strong ability to acquire resistance genes-and potentially to spread them to other bacteria. Therefore, close monitoring of this species should be continued.

  13. Molecular screening for erythromycin resistance genes in ...

    African Journals Online (AJOL)

    Aghomotsegin

    2015-07-15

    Jul 15, 2015 ... in Streptococcus pyogenes isolated from Iraqi patients with tonsilo-pharyngites. Hassan .... is an automated colorimetric method used for identification of bacteria and for .... counter medicines in private pharmacies against the regulations. ... Effect of telithromycin on erythromycin resistant S. pyogenes. In this ...

  14. An Effective Tri-Clustering Algorithm Combining Expression Data with Gene Regulation Information

    Directory of Open Access Journals (Sweden)

    Ao Li

    2009-04-01

    Full Text Available Motivation: Bi-clustering algorithms aim to identify sets of genes sharing similar expression patterns across a subset of conditions. However direct interpretation or prediction of gene regulatory mechanisms may be difficult as only gene expression data is used. Information about gene regulators may also be available, most commonly about which transcription factors may bind to the promoter region and thus control the expression level of a gene. Thus a method to integrate gene expression and gene regulation information is desirable for clustering and analyzing. Methods: By incorporating gene regulatory information with gene expression data, we define regulated expression values (REV as indicators of how a gene is regulated by a specific factor. Existing bi-clustering methods are extended to a three dimensional data space by developing a heuristic TRI-Clustering algorithm. An additional approach named Automatic Boundary Searching algorithm (ABS is introduced to automatically determine the boundary threshold. Results: Results based on incorporating ChIP-chip data representing transcription factor-gene interactions show that the algorithms are efficient and robust for detecting tri-clusters. Detailed analysis of the tri-cluster extracted from yeast sporulation REV data shows genes in this cluster exhibited significant differences during the middle and late stages. The implicated regulatory network was then reconstructed for further study of defined regulatory mechanisms. Topological and statistical analysis of this network demonstrated evidence of significant changes of TF activities during the different stages of yeast sporulation, and suggests this approach might be a general way to study regulatory networks undergoing transformations.

  15. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology.

    Science.gov (United States)

    Gibson, Molly K; Forsberg, Kevin J; Dantas, Gautam

    2015-01-01

    Antibiotic resistance is a dire clinical problem with important ecological dimensions. While antibiotic resistance in human pathogens continues to rise at alarming rates, the impact of environmental resistance on human health is still unclear. To investigate the relationship between human-associated and environmental resistomes, we analyzed functional metagenomic selections for resistance against 18 clinically relevant antibiotics from soil and human gut microbiota as well as a set of multidrug-resistant cultured soil isolates. These analyses were enabled by Resfams, a new curated database of protein families and associated highly precise and accurate profile hidden Markov models, confirmed for antibiotic resistance function and organized by ontology. We demonstrate that the antibiotic resistance functions that give rise to the resistance profiles observed in environmental and human-associated microbial communities significantly differ between ecologies. Antibiotic resistance functions that most discriminate between ecologies provide resistance to β-lactams and tetracyclines, two of the most widely used classes of antibiotics in the clinic and agriculture. We also analyzed the antibiotic resistance gene composition of over 6000 sequenced microbial genomes, revealing significant enrichment of resistance functions by both ecology and phylogeny. Together, our results indicate that environmental and human-associated microbial communities harbor distinct resistance genes, suggesting that antibiotic resistance functions are largely constrained by ecology.

  16. ICGE: an R package for detecting relevant clusters and atypical units in gene expression

    Directory of Open Access Journals (Sweden)

    Irigoien Itziar

    2012-02-01

    Full Text Available Abstract Background Gene expression technologies have opened up new ways to diagnose and treat cancer and other diseases. Clustering algorithms are a useful approach with which to analyze genome expression data. They attempt to partition the genes into groups exhibiting similar patterns of variation in expression level. An important problem associated with gene classification is to discern whether the clustering process can find a relevant partition as well as the identification of new genes classes. There are two key aspects to classification: the estimation of the number of clusters, and the decision as to whether a new unit (gene, tumor sample... belongs to one of these previously identified clusters or to a new group. Results ICGE is a user-friendly R package which provides many functions related to this problem: identify the number of clusters using mixed variables, usually found by applied biomedical researchers; detect whether the data have a cluster structure; identify whether a new unit belongs to one of the pre-identified clusters or to a novel group, and classify new units into the corresponding cluster. The functions in the ICGE package are accompanied by help files and easy examples to facilitate its use. Conclusions We demonstrate the utility of ICGE by analyzing simulated and real data sets. The results show that ICGE could be very useful to a broad research community.

  17. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA

    Directory of Open Access Journals (Sweden)

    Bertinellys TEIXEIRA

    2016-01-01

    Full Text Available The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC, aminoglycoside-adenyltransferases (AAD, and aminoglycoside-phosphotransferases (APH, is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137 were identified from the Intensive Care Unit (ICU, mainly from discharges (96/137. The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively. Phenotype VI, resistant to these antibiotics, was the most frequent (14/49, followed by phenotype I, resistant to all the aminoglycosides tested (12/49. The aac(6´-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America.

  18. Antibiotic Resistance Genetic Markers and Integrons in White Soft Cheese: Aspects of Clinical Resistome and Potentiality of Horizontal Gene Transfer.

    Science.gov (United States)

    de Paula, Ana Caroline L; Medeiros, Julliane D; de Azevedo, Analice C; de Assis Chagas, Jéssica M; da Silva, Vânia L; Diniz, Cláudio G

    2018-02-19

    Antibiotic resistance poses an important threat to global public health and has become a challenge to modern medicine. The occurrence of antibiotic-resistant bacteria in a broad range of foods has led to a growing concern about the impact that food may have as a reservoir of antibiotic resistance genes. Considering Minas Frescal Cheese (MFC)-a typical Brazilian white soft cheese-and its economic and cultural values, in this study, medically relevant antimicrobial-resistance genetic markers (AR genes) were screened, and the occurrence of integrons were evaluated in manufactured MFC using culture-independent approaches. Through a fingerprinting analysis, the tested MFCs were brand-clustered, indicating reproducibility along the production chain. A common core of resistance markers in all brands evaluated and related antimicrobials such as β-lactams, tetracyclines, quinolones, and sulfonamide was detected. Several other markers, including efflux pumps and aminoglycosides-resistance were distributed among brands. Class 1 and 2 integrons were observed, respectively, in 77% and 97% of the samples. The presence of AR genes is of special interest due to their clinical relevance. Taken together, the data may suggest that the production chain of MFC might contribute to the spread of putative drug-resistant bacteria, which could greatly impact human health. Furthermore, detection of class 1 and class 2 integrons in MFC has led to discussions about resistance gene spread in this traditional cheese, providing evidence of potential horizontal transfer of AR genes to human gut microbiota.

  19. Antibiotic Resistance Genetic Markers and Integrons in White Soft Cheese: Aspects of Clinical Resistome and Potentiality of Horizontal Gene Transfer

    Directory of Open Access Journals (Sweden)

    Ana Caroline L. de Paula

    2018-02-01

    Full Text Available Antibiotic resistance poses an important threat to global public health and has become a challenge to modern medicine. The occurrence of antibiotic-resistant bacteria in a broad range of foods has led to a growing concern about the impact that food may have as a reservoir of antibiotic resistance genes. Considering Minas Frescal Cheese (MFC—a typical Brazilian white soft cheese—and its economic and cultural values, in this study, medically relevant antimicrobial-resistance genetic markers (AR genes were screened, and the occurrence of integrons were evaluated in manufactured MFC using culture-independent approaches. Through a fingerprinting analysis, the tested MFCs were brand-clustered, indicating reproducibility along the production chain. A common core of resistance markers in all brands evaluated and related antimicrobials such as β-lactams, tetracyclines, quinolones, and sulfonamide was detected. Several other markers, including efflux pumps and aminoglycosides-resistance were distributed among brands. Class 1 and 2 integrons were observed, respectively, in 77% and 97% of the samples. The presence of AR genes is of special interest due to their clinical relevance. Taken together, the data may suggest that the production chain of MFC might contribute to the spread of putative drug-resistant bacteria, which could greatly impact human health. Furthermore, detection of class 1 and class 2 integrons in MFC has led to discussions about resistance gene spread in this traditional cheese, providing evidence of potential horizontal transfer of AR genes to human gut microbiota.

  20. Molecular Scree ning of Blast Resistance Genes in Rice Germplasms Resistant to Magnaporthe oryzae

    Directory of Open Access Journals (Sweden)

    Liang Yan

    2017-01-01

    Full Text Available Molecular screening of major rice blast resistance genes was determined with molecular markers, which showed close-set linkage to 11 major rice blast resistance genes (Pi-d2, Pi-z, Piz-t, Pi-9, Pi-36, Pi-37, Pi5, Pi-b, Pik-p, Pik-h and Pi-ta2, in a collection of 32 accessions resistant to Magnaporthe oryzae. Out of the 32 accessions, the Pi-d2 and Pi-z appeared to be omnipresent and gave positive express. As the second dominant, Pi-b and Piz-t gene frequencies were 96.9% and 87.5%. And Pik-h and Pik-p gene frequencies were 43.8% and 28.1%, respectively. The molecular marker linkage to Pi-ta2 produced positive bands in eleven accessions, while the molecular marker linkage to Pi-36 and Pi-37 in only three and four accessions, respectively. The natural field evaluation analysis showed that 30 of the 32 accessions were resistant, one was moderately resistant and one was susceptible. Infection types were negatively correlated with the genotype scores of Pi-9, Pi5, Pi-b, Pi-ta2 and Pik-p, although the correlation coefficients were very little. These results are useful in identification and incorporation of functional resistance genes from these germplasms into elite cultivars through marker-assisted selection for improved blast resistance in China and worldwide.

  1. Horizontal transfer of a nitrate assimilation gene cluster and ecological transitions in fungi: a phylogenetic study.

    Directory of Open Access Journals (Sweden)

    Jason C Slot

    Full Text Available High affinity nitrate assimilation genes in fungi occur in a cluster (fHANT-AC that can be coordinately regulated. The clustered genes include nrt2, which codes for a high affinity nitrate transporter; euknr, which codes for nitrate reductase; and NAD(PH-nir, which codes for nitrite reductase. Homologs of genes in the fHANT-AC occur in other eukaryotes and prokaryotes, but they have only been found clustered in the oomycete Phytophthora (heterokonts. We performed independent and concatenated phylogenetic analyses of homologs of all three genes in the fHANT-AC. Phylogenetic analyses limited to fungal sequences suggest that the fHANT-AC has been transferred horizontally from a basidiomycete (mushrooms and smuts to an ancestor of the ascomycetous mold Trichoderma reesei. Phylogenetic analyses of sequences from diverse eukaryotes and eubacteria, and cluster structure, are consistent with a hypothesis that the fHANT-AC was assembled in a lineage leading to the oomycetes and was subsequently transferred to the Dikarya (Ascomycota+Basidiomycota, which is a derived fungal clade that includes the vast majority of terrestrial fungi. We propose that the acquisition of high affinity nitrate assimilation contributed to the success of Dikarya on land by allowing exploitation of nitrate in aerobic soils, and the subsequent transfer of a complete assimilation cluster improved the fitness of T. reesei in a new niche. Horizontal transmission of this cluster of functionally integrated genes supports the "selfish operon" hypothesis for maintenance of gene clusters.

  2. Expressional and Biochemical Characterization of Rice Disease Resistance Gene Xa3/Xa26 Family

    Institute of Scientific and Technical Information of China (English)

    Songjie Xu; Yinglong Cao; Xianghua Li; Shiping Wang

    2007-01-01

    The rice (Oryza sativa L.) Xa3/Xa26 gene, conferring race-specific resistance to bacterial blight disease and encoding a leucine-rich repeat (LRR) receptor kinase-like protein, belongs to a multigene family consisting of tandem clustered homologous genes, colocalizing with several uncharacterized genes for resistance to bacterial blight or fungal blast. To provide more information on the expressional and biochemical characteristics of the Xa3/Xa26 family, we analyzed the family members. Four Xa3/Xa26 family members in the indica rice variety Teqing, which carries a bacterial blight resistance gene with a chromosomal location tightly linked to Xa3/Xa26, and five Xa3/Xa26 family members in the japonica rice variety Nipponbare, which carries at least one uncharacterized blast resistance gene, were constitutively expressed in leaf tissue. The result suggests that some of the family members may be candidates of these uncharacterized resistance genes. At least five putative N-glycosylation sites in the LRR domain of XA3/XA26 protein are not glycosylated. The XA3/XA26 and its family members MRKa and MRKc all possess the consensus sequences of paired cysteines, which putatively function in dimerization of the receptor proteins for signal transduction, immediately before the first LRR and immediately after the last LRR. However, no homo-dimer between the XA3/XA26 molecules or hetero-dimer between XA3/XA26 and MRKa or MRKc were formed, indicating that XA3/XA26 protein might function either as a monomer or a hetero-dimer formed with other protein outside of the XA3/XA26 family. These results provide valuable information for further extensive investigation into this multiple protein family.

  3. A novel gene of Kalanchoe daigremontiana confers plant drought resistance.

    Science.gov (United States)

    Wang, Li; Zhu, Chen; Jin, Lin; Xiao, Aihua; Duan, Jie; Ma, Luyi

    2018-02-07

    Kalanchoe (K.) daigremontiana is important for studying asexual reproduction under different environmental conditions. Here, we describe a novel KdNOVEL41 (KdN41) gene that may confer drought resistance and could thereby affect K. daigremontiana development. The detected subcellular localization of a KdN41/Yellow Fluorescent Protein (YFP) fusion protein was in the nucleus and cell membrane. Drought, salt, and heat stress treatment in tobacco plants containing the KdN41 gene promoter driving β-glucuronidase (GUS) gene transcription revealed that only drought stress triggered strong GUS staining in the vascular tissues. Overexpression (OE) of the KdN41 gene conferred improved drought resistance in tobacco plants compared to wild-type and transformed with empty vector plants by inducing higher antioxidant enzyme activities, decreasing cell membrane damage, increasing abscisic acid (ABA) content, causing reinforced drought resistance related gene expression profiles. The 3,3'-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining results also showed less relative oxygen species (ROS) content in KdN41-overexpressing tobacco leaf during drought stress. Surprisingly, by re-watering after drought stress, KdN41-overexpressing tobacco showed earlier flowering. Overall, the KdN41 gene plays roles in ROS scavenging and osmotic damage reduction to improve tobacco drought resistance, which may increase our understanding of the molecular network involved in developmental manipulation under drought stress in K. daigremontiana.

  4. Molecular characterization of antimicrobial resistance genes against Staphylococcus aureus isolates from Trinidad and Tobago.

    Science.gov (United States)

    Akpaka, Patrick E; Roberts, Rashida; Monecke, Stefan

    Staphylococcus aureus continues to pose major public health challenges in many areas because of antibiotic resistance problems. In the Caribbean, especially Trinidad and Tobago, the challenge is not different. This study was performed to evaluate the antimicrobial resistance gene prevalence among S. aureus isolates in Trinidad and Tobago. Standard and molecular microbiological methods, including the Microscan automated system, DNA microarray and multi locus sequence typing (MLST) analysis, were performed on 309 clinical S. aureus isolates recovered from patients who were treated at three of the country's main health institutions. S. aureus exhibited susceptibilities ≥80% to eleven of the 19 antimicrobials tested against it, and these belong to the most commonly used and available antibiotics in the country. While the antibiotic to which it was most susceptible of the commonly used antibiotics was trimethoprim/sulfamethoxazole, the antibiotics to which it was least susceptible or most resistant to were ampicillin and penicillin. S. aureus isolates from the pediatric ward produced the greatest rate of susceptibility among the isolates recovered from patients admitted into hospitals, while isolates from Accident and Emergency rooms displayed the greatest susceptibilities among patients from the community. S. aureus isolates from the country did not harbor acquired resistant genes targeting clindamycin/macrolides (ermB), linezolid (cfr) or vancomycin (vanA). The blaZ gene, which is the most common beta lactam (Penicillinase) resistance mechanism for S. aureus, was observed in 88.7% of the methicillin susceptible S. aureus, while methicillin resistance mediated by the mec gene was present in 13.6%. Most of the resistance markers found in MRSA isolates were significantly associated with the ST239-MRSA-III strain in this study, and all isolates that belonged to the USA300 strain, which additionally encoded both the PVL gene and ACME cluster, belonged to CC8. Several

  5. Molecular characterization of antimicrobial resistance genes against Staphylococcus aureus isolates from Trinidad and Tobago

    Directory of Open Access Journals (Sweden)

    Patrick E. Akpaka

    2017-05-01

    Full Text Available Summary: Staphylococcus aureus continues to pose major public health challenges in many areas because of antibiotic resistance problems. In the Caribbean, especially Trinidad and Tobago, the challenge is not different. This study was performed to evaluate the antimicrobial resistance gene prevalence among S. aureus isolates in Trinidad and Tobago.Standard and molecular microbiological methods, including the Microscan automated system, DNA microarray and multi locus sequence typing (MLST analysis, were performed on 309 clinical S. aureus isolates recovered from patients who were treated at three of the country's main health institutions.S. aureus exhibited susceptibilities ≥80% to eleven of the 19 antimicrobials tested against it, and these belong to the most commonly used and available antibiotics in the country. While the antibiotic to which it was most susceptible of the commonly used antibiotics was trimethoprim/sulfamethoxazole, the antibiotics to which it was least susceptible or most resistant to were ampicillin and penicillin. S. aureus isolates from the pediatric ward produced the greatest rate of susceptibility among the isolates recovered from patients admitted into hospitals, while isolates from Accident and Emergency rooms displayed the greatest susceptibilities among patients from the community.S. aureus isolates from the country did not harbor acquired resistant genes targeting clindamycin/macrolides (ermB, linezolid (cfr or vancomycin (vanA. The blaZ gene, which is the most common beta lactam (Penicillinase resistance mechanism for S. aureus, was observed in 88.7% of the methicillin susceptible S. aureus, while methicillin resistance mediated by the mec gene was present in 13.6%. Most of the resistance markers found in MRSA isolates were significantly associated with the ST239-MRSA-III strain in this study, and all isolates that belonged to the USA300 strain, which additionally encoded both the PVL gene and ACME cluster

  6. MADIBA: A web server toolkit for biological interpretation of Plasmodium and plant gene clusters

    Directory of Open Access Journals (Sweden)

    Louw Abraham I

    2008-02-01

    Full Text Available Abstract Background Microarray technology makes it possible to identify changes in gene expression of an organism, under various conditions. Data mining is thus essential for deducing significant biological information such as the identification of new biological mechanisms or putative drug targets. While many algorithms and software have been developed for analysing gene expression, the extraction of relevant information from experimental data is still a substantial challenge, requiring significant time and skill. Description MADIBA (MicroArray Data Interface for Biological Annotation facilitates the assignment of biological meaning to gene expression clusters by automating the post-processing stage. A relational database has been designed to store the data from gene to pathway for Plasmodium, rice and Arabidopsis. Tools within the web interface allow rapid analyses for the identification of the Gene Ontology terms relevant to each cluster; visualising the metabolic pathways where the genes are implicated, their genomic localisations, putative common transcriptional regulatory elements in the upstream sequences, and an analysis specific to the organism being studied. Conclusion MADIBA is an integrated, online tool that will assist researchers in interpreting their results and understand the meaning of the co-expression of a cluster of genes. Functionality of MADIBA was validated by analysing a number of gene clusters from several published experiments – expression profiling of the Plasmodium life cycle, and salt stress treatments of Arabidopsis and rice. In most of the cases, the same conclusions found by the authors were quickly and easily obtained after analysing the gene clusters with MADIBA.

  7. Activation and clustering of a Plasmodium falciparum var gene are affected by subtelomeric sequences.

    Science.gov (United States)

    Duffy, Michael F; Tang, Jingyi; Sumardy, Fransisca; Nguyen, Hanh H T; Selvarajah, Shamista A; Josling, Gabrielle A; Day, Karen P; Petter, Michaela; Brown, Graham V

    2017-01-01

    The Plasmodium falciparum var multigene family encodes the cytoadhesive, variant antigen PfEMP1. P. falciparum antigenic variation and cytoadhesion specificity are controlled by epigenetic switching between the single, or few, simultaneously expressed var genes. Most var genes are maintained in perinuclear clusters of heterochromatic telomeres. The active var gene(s) occupy a single, perinuclear var expression site. It is unresolved whether the var expression site forms in situ at a telomeric cluster or whether it is an extant compartment to which single chromosomes travel, thus controlling var switching. Here we show that transcription of a var gene did not require decreased colocalisation with clusters of telomeres, supporting var expression site formation in situ. However following recombination within adjacent subtelomeric sequences, the same var gene was persistently activated and did colocalise less with telomeric clusters. Thus, participation in stable, heterochromatic, telomere clusters and var switching are independent but are both affected by subtelomeric sequences. The var expression site colocalised with the euchromatic mark H3K27ac to a greater extent than it did with heterochromatic H3K9me3. H3K27ac was enriched within the active var gene promoter even when the var gene was transiently repressed in mature parasites and thus H3K27ac may contribute to var gene epigenetic memory. © 2016 Federation of European Biochemical Societies.

  8. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria

    OpenAIRE

    Adelowo, Olawale O.; Fagade, Obasola E.; Agersø, Yvonne

    2014-01-01

    Introduction: This study investigated the mechanisms of resistance in 36 E. coli isolated from waste, litter, soil and water samples collected from poultry farms in Southwestern Nigeria. Methodology: Minimum inhibitory concentration (MIC) distributions of the isolates were determined using the methods of the Clinical and Laboratory Standard Institute and resistance genes detected by PCR. Results: A total of 30 isolates (94%) showed resistance to more than one antimicrobial. Percentage resista...

  9. Spatial patterns of antimicrobial resistance genes in a cross-sectional sample of pig farms with indoor non-organic production of finishers

    DEFF Research Database (Denmark)

    Birkegård, Anna Camilla; Ersbøll, Annette Kjær; Hisham Beshara Halasa, Tariq

    2017-01-01

    Antimicrobial resistance (AMR) in pig populations is a public health concern. There is a lack of information of spatial distributions of AMR genes in pig populations at large scales. The objective of the study was to describe the spatial pattern of AMR genes in faecal samples from pig farms...... spatial clusters were identified for ermB, ermF, sulII and tet(W). The broad spatial trends in AMR resistance evident in the risk maps were in agreement with the results of the cluster analysis. However, they also showed that there were only small scale spatial differences in the gene levels. We conclude...

  10. Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland.

    Science.gov (United States)

    Lanz, Roland; Kuhnert, Peter; Boerlin, Patrick

    2003-01-02

    Antimicrobial susceptibility testing was performed on a total of 581 clinical Escherichia coli isolates from diarrhea and edema disease in pigs, from acute mastitis in dairy cattle, from urinary tract infections in dogs and cats, and from septicemia in laying hens collected in Switzerland between 1999 and 2001. Among the 16 antimicrobial agents tested, resistance was most frequent for sulfonamides, tetracycline, and streptomycin. Isolates from swine presented significantly more resistance than those from the other animal species. The distribution of the resistance determinants for sulfonamides, tetracycline, and streptomycin was assessed by hybridization and PCR in resistant isolates. Significant differences in the distribution of resistance determinants for tetracycline (tetA, tetB) and sulfonamides (sulII) were observed between the isolates from swine and those from the other species. Resistance to sulfonamides could not be explained by known resistance mechanisms in more than a quarter of the sulfonamide-resistant and sulfonamide-intermediate isolates from swine, dogs and cats. This finding suggests that one or several new resistance mechanisms for sulfonamides may be widespread among E. coli isolates from these animal species. The integrase gene (intI) from class I integrons was detected in a large proportion of resistant isolates in association with the sulI and aadA genes, thus demonstrating the importance of integrons in the epidemiology of resistance in clinical E. coli isolates from animals.

  11. Comparative mapping of powdery mildew resistance gene Pm21 and functional characterization of resistance-related genes in wheat.

    Science.gov (United States)

    He, Huagang; Zhu, Shanying; Jiang, Zhengning; Ji, Yaoyong; Wang, Feng; Zhao, Renhui; Bie, Tongde

    2016-04-01

    The powdery mildew resistance gene Pm21 was physically and comparatively mapped by newly developed markers. Seven candidate genes were verified to be required for Pm21 -mediated resistance to wheat powdery mildew. Pm21, a gene derived from wheat wild relative Dasypyrum villosum, has been transferred into common wheat and widely utilized in wheat resistance breeding for powdery mildew. Previously, Pm21 has been located to the bin FL0.45-0.58 of 6VS by using deletion stocks. However, its fine mapping is still a hard work. In the present study, 30 gene-derived 6VS-specific markers were obtained based on the collinearity among genomes of Brachypodium distachyon, Oryza and Triticeae, and then physically and comparatively mapped in the bin FL0.45-0.58 and its nearby chromosome region. According to the maps, the bin FL0.45-0.58 carrying Pm21 was closely flanked by the markers 6VS-03 and 6VS-23, which further narrowed the orthologous regions to 1.06 Mb in Brachypodium and 1.38 Mb in rice, respectively. Among the conserved genes shared by Brachypodium and rice, four serine/threonine protein kinase genes (DvMPK1, DvMLPK, DvUPK and DvPSYR1), one protein phosphatase gene (DvPP2C) and two transcription factor genes (DvGATA and DvWHY) were confirmed to be required for Pm21-mediated resistance to wheat powdery mildew by barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) and transcriptional pattern analyses. In summary, this study gives new insights into the genetic basis of the Pm21 locus and the disease resistance pathways mediated by Pm21.

  12. The Prevalence of Transmitted Drug Resistance in Newly Diagnosed HIV-Infected Individuals in Croatia: The Role of Transmission Clusters of Men Who Have Sex with Men Carrying the T215S Surveillance Drug Resistance Mutation

    Science.gov (United States)

    Grgic, Ivana; Lunar, Maja M.; Poljak, Mario; Vince, Adriana; Vrakela, Ivana Baca; Planinic, Ana; Seme, Katja; Begovac, Josip

    2013-01-01

    Abstract The aim of this study was to determine the prevalence of transmitted drug resistance (TDR) in newly diagnosed and treatment-naive HIV-infected patients from Croatia and evaluate a possible contribution of transmission clusters to the spread of resistant virus. The study enrolled treatment-naive HIV-infected patients that entered clinical care at the Croatian Reference Center for HIV/AIDS between 2006 and 2008. The protease gene and a part of the reverse transcriptase gene of the HIV-1 genome were sequenced by using the Trugene HIV-1 Genotyping System. The prevalence of transmitted drug resistance was analyzed by using the surveillance drug resistance mutations (SDRM) list recommended by the WHO in 2009. We report findings for 118 of 180 eligible patients (65.6% coverage). SDRM were detected in 26 of 118 patients (22.0%) who were infected with subtype B and belonged mostly to the men having sex with men (MSM). The majority of patients with primary resistance carried SDRM associated with resistance to nucleoside analogues reverse transcriptase inhibitors (NRTIs, 23 of 118 patients, 19.5%). The most frequently found NRTI SDRM was T215S (17 of 118 patients, 14.4%). SDRM associated with resistance to nonnucleoside reverse transcriptase inhibitors were detected in three (2.5%) patients and primary resistance to protease inhibitors was not detected. Non-B subtypes were detected in 13/118 patients (11%). A total of 12 transmission pairs and eight distinct transmission clusters were identified with the largest cluster harboring sequences from 19 patients; among them all but two were carrying the T215S mutation. This study showed a high prevalence of TDR in newly diagnosed MSM from Croatia and is an important contribution concerning the relationship between local transmission clusters and the spread of resistant virus. PMID:22906365

  13. Occurrence and Distribution of Antibiotic-resistant Bacteria and Transfer of Resistance Genes in Lake Taihu

    Science.gov (United States)

    Yin, Qian; Yue, Dongmei; Peng, Yuke; Liu, Ying; Xiao, Lin

    2013-01-01

    The overuse of antibiotics has accelerated antibiotic resistance in the natural environment, especially fresh water, generating a potential risk for public health around the world. In this study, antibiotic resistance in Lake Taihu was investigated and this was the first thorough data obtained through culture-dependent methods. High percentages of resistance to streptomycin and ampicillin among bacterial isolates were detected, followed by tetracycline and chloramphenicol. Especially high levels of ampicillin resistance in the western and northern regions were illustrated. Bacterial identification of the isolates selected for further study indicated the prevalence of some opportunistic pathogens and 62.0% of the 78 isolates exhibited multiple antibiotic resistance. The presence of ESBLs genes was in the following sequence: blaTEM > blaSHV > blaCTMX and 38.5% of the isolates had a class I integrase gene. Of all tested strains, 80.8% were able to transfer antibiotic resistance through conjugation. We also concluded that some new families of human-associated ESBLs and AmpC genes can be found in natural environmental isolates. The prevalence of antibiotic resistance and the dissemination of transferable antibiotic resistance in bacterial isolates (especially in opportunistic pathogens) was alarming and clearly indicated the urgency of realizing the health risks of antibiotic resistance to human and animal populations who are dependent on Lake Taihu for water consumption. PMID:24240317

  14. Antibiotic Resistance and Antibiotic Resistance Genes in Escherichia coli Isolates from Hospital Wastewater in Vietnam.

    Science.gov (United States)

    Lien, La Thi Quynh; Lan, Pham Thi; Chuc, Nguyen Thi Kim; Hoa, Nguyen Quynh; Nhung, Pham Hong; Thoa, Nguyen Thi Minh; Diwan, Vishal; Tamhankar, Ashok J; Stålsby Lundborg, Cecilia

    2017-06-29

    The environmental spread of antibiotic-resistant bacteria has been recognised as a growing public health threat for which hospitals play a significant role. The aims of this study were to investigate the prevalence of antibiotic resistance and antibiotic resistance genes (ARGs) in Escherichia coli isolates from hospital wastewater in Vietnam. Wastewater samples before and after treatment were collected using continuous sampling every month over a year. Standard disk diffusion and E-test were used for antibiotic susceptibility testing. Extended-spectrum beta-lactamase (ESBL) production was tested using combined disk diffusion. ARGs were detected by polymerase chain reactions. Resistance to at least one antibiotic was detected in 83% of isolates; multidrug resistance was found in 32%. The highest resistance prevalence was found for co-trimoxazole (70%) and the lowest for imipenem (1%). Forty-three percent of isolates were ESBL-producing, with the bla TEM gene being more common than bla CTX-M . Co-harbouring of the bla CTX-M , bla TEM and qepA genes was found in 46% of isolates resistant to ciprofloxacin. The large presence of antibiotic-resistant E. coli isolates combined with ARGs in hospital wastewater, even post-treatment, poses a threat to public health. It highlights the need to develop effective processes for hospital wastewater treatment plants to eliminate antibiotic resistant bacteria and ARGs.

  15. Antimicrobial resistance and prevalence of resistance genes of obligate anaerobes isolated from periodontal abscesses.

    Science.gov (United States)

    Xie, Yi; Chen, Jiazhen; He, Junlin; Miao, Xinyu; Xu, Meng; Wu, Xingwen; Xu, Beiyun; Yu, Liying; Zhang, Wenhong

    2014-02-01

    This study attempts to determine the antimicrobial resistance profiles of obligate anaerobic bacteria that were isolated from a periodontal abscess and to evaluate the prevalence of resistance genes in these bacteria. Forty-one periodontal abscess samples were cultivated on selective and non-selective culture media to isolate the oral anaerobes. Their antibiotic susceptibilities to clindamycin, doxycycline, amoxicillin, imipenem, cefradine, cefixime, roxithromycin, and metronidazole were determined using the agar dilution method, and polymerase chain reaction assays were performed to detect the presence of the ermF, tetQ, nim, and cfxA drug resistance genes. A total of 60 different bacterial colonies was isolated and identified. All of the isolates were sensitive to imipenem. Of the strains, 6.7%, 13.3%, 16.7%, and 25% were resistant to doxycycline, metronidazole, cefixime, and amoxicillin, respectively. The resistance rate for both clindamycin and roxithromycin was 31.7%. Approximately 60.7% of the strains had the ermF gene, and 53.3% of the amoxicillin-resistant strains were found to have the cfxA gene. Two nim genes that were found in eight metronidazole-resistant strains were identified as nimB. In the present study, the Prevotella species are the most frequently isolated obligate anaerobes from periodontal abscesses. The current results show their alarmingly high resistance rate against clindamycin and roxithromycin; thus, the use of these antibiotics is unacceptable for the empirical therapy of periodontal abscesses. A brief prevalence of four resistance genes in the anaerobic bacteria that were isolated was also demonstrated.

  16. Candidate genes that may be responsible for the unusual resistances exhibited by Bacillus pumilus SAFR-032 spores.

    Directory of Open Access Journals (Sweden)

    Madhan R Tirumalai

    Full Text Available The spores of several Bacillus species, including Bacillus pumilus SAFR-032 and B. safensis FO-36b, which were isolated from the spacecraft assembly facility at NASA's Jet Propulsion Laboratory, are unusually resistant to UV radiation and hydrogen peroxide. In order to identify candidate genes that might be associated with these resistances, the whole genome of B. pumilus SAFR-032, and the draft genome of B. safensis FO-36b were compared in detail with the very closely related type strain B. pumilus ATCC7061(T. 170 genes are considered characteristic of SAFR-032, because they are absent from both FO-36b and ATCC7061(T. Forty of these SAFR-032 characteristic genes are entirely unique open reading frames. In addition, four genes are unique to the genomes of the resistant SAFR-032 and FO-36b. Fifty three genes involved in spore coat formation, regulation and germination, DNA repair, and peroxide resistance, are missing from all three genomes. The vast majority of these are cleanly deleted from their usual genomic context without any obvious replacement. Several DNA repair and peroxide resistance genes earlier reported to be unique to SAFR-032 are in fact shared with ATCC7061(T and no longer considered to be promising candidates for association with the elevated resistances. Instead, several SAFR-032 characteristic genes were identified, which along with one or more of the unique SAFR-032 genes may be responsible for the elevated resistances. These new candidates include five genes associated with DNA repair, namely, BPUM_0608 a helicase, BPUM_0652 an ATP binding protein, BPUM_0653 an endonuclease, BPUM_0656 a DNA cytosine-5- methyltransferase, and BPUM_3674 a DNA helicase. Three of these candidate genes are in immediate proximity of two conserved hypothetical proteins, BPUM_0654 and BPUM_0655 that are also absent from both FO-36b and ATCC7061(T. This cluster of five genes is considered to be an especially promising target for future experimental

  17. Cracking the regulatory code of biosynthetic gene clusters as a strategy for natural product discovery.

    Science.gov (United States)

    Rigali, Sébastien; Anderssen, Sinaeda; Naômé, Aymeric; van Wezel, Gilles P

    2018-01-05

    The World Health Organization (WHO) describes antibiotic resistance as "one of the biggest threats to global health, food security, and development today", as the number of multi- and pan-resistant bacteria is rising dangerously. Acquired resistance phenomena also impair antifungals, antivirals, anti-cancer drug therapy, while herbicide resistance in weeds threatens the crop industry. On the positive side, it is likely that the chemical space of natural products goes far beyond what has currently been discovered. This idea is fueled by genome sequencing of microorganisms which unveiled numerous so-called cryptic biosynthetic gene clusters (BGCs), many of which are transcriptionally silent under laboratory culture conditions, and by the fact that most bacteria cannot yet be cultivated in the laboratory. However, brute force antibiotic discovery does not yield the same results as it did in the past, and researchers have had to develop creative strategies in order to unravel the hidden potential of microorganisms such as Streptomyces and other antibiotic-producing microorganisms. Identifying the cis elements and their corresponding transcription factors(s) involved in the control of BGCs through bioinformatic approaches is a promising strategy. Theoretically, we are a few 'clicks' away from unveiling the culturing conditions or genetic changes needed to activate the production of cryptic metabolites or increase the production yield of known compounds to make them economically viable. In this opinion article, we describe and illustrate the idea beyond 'cracking' the regulatory code for natural product discovery, by presenting a series of proofs of concept, and discuss what still should be achieved to increase the rate of success of this strategy. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Correlation between the resistivity and the atomic clusters in liquid Cu-Sn alloys

    Science.gov (United States)

    Jia, Peng; Zhang, Jinyang; Hu, Xun; Li, Cancan; Zhao, Degang; Teng, XinYing; Yang, Cheng

    2018-05-01

    The liquid structure of CuxSn100-x (x = 0, 10, 20, 33, 40, 50, 60, 75, 80 and 100) alloys with atom percentage were investigated with resistivity and viscosity methods. It can be found from the resistivity data that the liquid Cu75Sn25 and Cu80Sn20 alloys had a negative temperature coefficient of resistivity (TCR), and liquid Cu75Sn25 alloy had a minimum value of -9.24 μΩ cm K-1. While the rest of liquid Cu-Sn alloys had a positive TCR. The results indicated that the Cu75Sn25 atomic clusters existed in Cu-Sn alloys. In addition, the method of calculating the percentage of Cu75Sn25 atomic clusters was established on the basis of resistivity theory and the law of conservation of mass. The Cu75Sn25 alloy had a maximum volume of the atomic clusters and a highest activation energy. The results further proved the existence of Cu75Sn25 atomic clusters. Furthermore, the correlation between the liquid structure and the resistivity was established. These results provide a useful reference for the investigation of liquid structure via the sensitive physical properties to the liquid structure.

  19. Genome-Wide Distribution, Organisation and Functional Characterization of Disease Resistance and Defence Response Genes across Rice Species

    Science.gov (United States)

    Singh, Sangeeta; Chand, Suresh; Singh, N. K.; Sharma, Tilak Raj

    2015-01-01

    The resistance (R) genes and defense response (DR) genes have become very important resources for the development of disease resistant cultivars. In the present investigation, genome-wide identification, expression, phylogenetic and synteny analysis was done for R and DR-genes across three species of rice viz: Oryza sativa ssp indica cv 93-11, Oryza sativa ssp japonica and wild rice species, Oryza brachyantha. We used the in silico approach to identify and map 786 R -genes and 167 DR-genes, 672 R-genes and 142 DR-genes, 251 R-genes and 86 DR-genes in the japonica, indica and O. brachyanth a genomes, respectively. Our analysis showed that 60.5% and 55.6% of the R-genes are tandemly repeated within clusters and distributed over all the rice chromosomes in indica and japonica genomes, respectively. The phylogenetic analysis along with motif distribution shows high degree of conservation of R- and DR-genes in clusters. In silico expression analysis of R-genes and DR-genes showed more than 85% were expressed genes showing corresponding EST matches in the databases. This study gave special emphasis on mechanisms of gene evolution and duplication for R and DR genes across species. Analysis of paralogs across rice species indicated 17% and 4.38% R-genes, 29% and 11.63% DR-genes duplication in indica and Oryza brachyantha, as compared to 20% and 26% duplication of R-genes and DR-genes in japonica respectively. We found that during the course of duplication only 9.5% of R- and DR-genes changed their function and rest of the genes have maintained their identity. Syntenic relationship across three genomes inferred that more orthology is shared between indica and japonica genomes as compared to brachyantha genome. Genome wide identification of R-genes and DR-genes in the rice genome will help in allele mining and functional validation of these genes, and to understand molecular mechanism of disease resistance and their evolution in rice and related species. PMID:25902056

  20. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    KAUST Repository

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S.; Qian, Pei-Yuan

    2015-01-01

    validating this direct cloning plug-and-playa approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation

  1. Variation in the fumonisin biosynthetic gene cluster in fumonisin-producing and nonproducing black aspergilli.

    Science.gov (United States)

    Susca, Antonia; Proctor, Robert H; Butchko, Robert A E; Haidukowski, Miriam; Stea, Gaetano; Logrieco, Antonio; Moretti, Antonio

    2014-12-01

    The ability to produce fumonisin mycotoxins varies among members of the black aspergilli. Previously, analyses of selected genes in the fumonisin biosynthetic gene (fum) cluster in black aspergilli from California grapes indicated that fumonisin-nonproducing isolates of Aspergillus welwitschiae lack six fum genes, but nonproducing isolates of Aspergillus niger do not. In the current study, analyses of black aspergilli from grapes from the Mediterranean Basin indicate that the genomic context of the fum cluster is the same in isolates of A. niger and A. welwitschiae regardless of fumonisin-production ability and that full-length clusters occur in producing isolates of both species and nonproducing isolates of A. niger. In contrast, the cluster has undergone an eight-gene deletion in fumonisin-nonproducing isolates of A. welwitschiae. Phylogenetic analyses suggest each species consists of a mixed population of fumonisin-producing and nonproducing individuals, and that existence of both production phenotypes may provide a selective advantage to these species. Differences in gene content of fum cluster homologues and phylogenetic relationships of fum genes suggest that the mutation(s) responsible for the nonproduction phenotype differs, and therefore arose independently, in the two species. Partial fum cluster homologues were also identified in genome sequences of four other black Aspergillus species. Gene content of these partial clusters and phylogenetic relationships of fum sequences indicate that non-random partial deletion of the cluster has occurred multiple times among the species. This in turn suggests that an intact cluster and fumonisin production were once more widespread among black aspergilli. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Characterization of the fumonisin B2 biosynthetic gene cluster in Aspergillus niger and A. awamori.

    Science.gov (United States)

    Aspergillus niger and A. awamori strains isolated from grapes cultivated in Mediterranean basin were examined for fumonisin B2 (FB2) production and presence/absence of sequences within the fumonisin biosynthetic gene (fum) cluster. Presence of 13 regions in the fum cluster was evaluated by PCR assay...

  3. Comparative genome analysis and resistance gene mapping in grain legumes

    International Nuclear Information System (INIS)

    Young, N.D.

    1998-01-01

    Using, DNA markers and genome organization, several important disease resistance genes have been analyzed in mungbean (Vigna radiata), cowpea (Vigna unguiculata), common bean (Phaseolus vulgaris), and soybean (Glycine max). In the process, medium-density linkage maps consisting of restriction fragment length polymorphism (RFLP) markers were constructed for both mungbean and cowpea. Comparisons between these maps, as well as the maps of soybean and common bean, indicate that there is significant conservation of DNA marker order, though the conserved blocks in soybean are much shorter than in the others. DNA mapping results also indicate that a gene for seed weight may be conserved between mungbean and cowpea. Using the linkage maps, genes that control bruchid (genus Callosobruchus) and powdery mildew (Erysiphe polygoni) resistance in mungbean, aphid resistance in cowpea (Aphis craccivora), and cyst nematode (Heterodera glycines) resistance in soybean have all been mapped and characterized. For some of these traits resistance was found to be oligogenic and DNA mapping uncovered multiple genes involved in the phenotype. (author)

  4. Long-term occipital nerve stimulation for drug-resistant chronic cluster headache.

    Science.gov (United States)

    Leone, Massimo; Proietti Cecchini, Alberto; Messina, Giuseppe; Franzini, Angelo

    2017-07-01

    Introduction Chronic cluster headache is rare and some of these patients become drug-resistant. Occipital nerve stimulation has been successfully employed in open studies to treat chronic drug-resistant cluster headache. Data from large group of occipital nerve stimulation-treated chronic cluster headache patients with long duration follow-up are advantageous. Patients and methods Efficacy of occipital nerve stimulation has been evaluated in an experimental monocentric open-label study including 35 chronic drug-resistant cluster headache patients (mean age 42 years; 30 men; mean illness duration: 6.7 years). The primary end-point was a reduction in number of daily attacks. Results After a median follow-up of 6.1 years (range 1.6-10.7), 20 (66.7%) patients were responders (≥50% reduction in headache number per day): 12 (40%) responders showed a stable condition characterized by sporadic attacks, five responders had a 60-80% reduction in headache number per day and in the remaining three responders chronic cluster headache was transformed in episodic cluster headache. Ten (33.3%) patients were non-responders; half of these have been responders for a long period (mean 14.6 months; range 2-48 months). Battery depletion (21 patients 70%) and electrode migration (six patients - 20%) were the most frequent adverse events. Conclusions Occipital nerve stimulation efficacy is confirmed in chronic drug-resistant cluster headaches even after an exceptional long-term follow-up. Tolerance can occur years after improvement.

  5. Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Data Analysis and Visualization (IDAV) and the Department of Computer Science, University of California, Davis, One Shields Avenue, Davis CA 95616, USA,; nternational Research Training Group ``Visualization of Large and Unstructured Data Sets,' ' University of Kaiserslautern, Germany; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA; Genomics Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA; Life Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA,; Computer Science Division,University of California, Berkeley, CA, USA,; Computer Science Department, University of California, Irvine, CA, USA,; All authors are with the Berkeley Drosophila Transcription Network Project, Lawrence Berkeley National Laboratory,; Rubel, Oliver; Weber, Gunther H.; Huang, Min-Yu; Bethel, E. Wes; Biggin, Mark D.; Fowlkes, Charless C.; Hendriks, Cris L. Luengo; Keranen, Soile V. E.; Eisen, Michael B.; Knowles, David W.; Malik, Jitendra; Hagen, Hans; Hamann, Bernd

    2008-05-12

    The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex datasets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss (i) integration of data clustering and visualization into one framework; (ii) application of data clustering to 3D gene expression data; (iii) evaluation of the number of clusters k in the context of 3D gene expression clustering; and (iv) improvement of overall analysis quality via dedicated post-processing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.

  6. Large clusters of co-expressed genes in the Drosophila genome.

    Science.gov (United States)

    Boutanaev, Alexander M; Kalmykova, Alla I; Shevelyov, Yuri Y; Nurminsky, Dmitry I

    2002-12-12

    Clustering of co-expressed, non-homologous genes on chromosomes implies their co-regulation. In lower eukaryotes, co-expressed genes are often found in pairs. Clustering of genes that share aspects of transcriptional regulation has also been reported in higher eukaryotes. To advance our understanding of the mode of coordinated gene regulation in multicellular organisms, we performed a genome-wide analysis of the chromosomal distribution of co-expressed genes in Drosophila. We identified a total of 1,661 testes-specific genes, one-third of which are clustered on chromosomes. The number of clusters of three or more genes is much higher than expected by chance. We observed a similar trend for genes upregulated in the embryo and in the adult head, although the expression pattern of individual genes cannot be predicted on the basis of chromosomal position alone. Our data suggest that the prevalent mechanism of transcriptional co-regulation in higher eukaryotes operates with extensive chromatin domains that comprise multiple genes.

  7. Unusual Gene Order and Organization of the Sea Urchin HoxCluster

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Paul M.; Lucas, Susan; Cameron, R. Andrew; Rowen,Lee; Nesbitt, Ryan; Bloom, Scott; Rast, Jonathan P.; Berney, Kevin; Arenas-Mena, Cesar; Martinez, Pedro; Davidson, Eric H.; Peterson, KevinJ.; Hood, Leroy

    2005-05-10

    The highly consistent gene order and axial colinear expression patterns found in vertebrate hox gene clusters are less well conserved across the rest of bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3' gene is Hox5. (The gene order is : 5'-Hox1,2, 3, 11/13c, 11/13b, '11/13a, 9/10, 8, 7, 6, 5 - 3)'. The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.

  8. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria.

    Science.gov (United States)

    Adelowo, Olawale O; Fagade, Obasola E; Agersø, Yvonne

    2014-09-12

    This study investigated the mechanisms of resistance in 36 E. coli isolated from waste, litter, soil and water samples collected from poultry farms in Southwestern Nigeria. Minimum inhibitory concentration (MIC) distributions of the isolates were determined using the methods of the Clinical and Laboratory Standard Institute and resistance genes detected by PCR. A total of 30 isolates (94%) showed resistance to more than one antimicrobial. Percentage resistance was: tetracycline 81%, sulphamethoxazole 67%, streptomycin 56%, trimethoprim 47 %, ciprofloxacin 42%, ampicillin 36%, spectinomycin 28%, nalidixic acid 25%, chloramphenicol 22%, neomycin 14%, gentamicin 8%, amoxicillin-clavulanate, ceftiofur, cefotaxime, colistin, florfenicol and apramycin 0%. Resistance genes found among the isolates include bla-TEM (85%), sul2 (67%), sul3 (17%), aadA (65%), strA (70%), strB (61%), catA1 (25%), cmlA1 (13%), tetA (21%) and tetB (17%). Class 1 and 2 integrons were found in five (14%) and six (17%) isolates, respectively, while one isolate was positive for both classes of integrons. Seven out of eight isolates with resistance to ciprofloxacin and MIC ≤ 32 mg/L to nalidixic acid contained qnrS genes. Our findings provided additional evidence that the poultry production environment in Nigeria represents an important reservoir of antibiotic resistance genes such as qnrS that may spread from livestock production farms to human populations via manure and water.

  9. Lampreys, the jawless vertebrates, contain only two ParaHox gene clusters.

    Science.gov (United States)

    Zhang, Huixian; Ravi, Vydianathan; Tay, Boon-Hui; Tohari, Sumanty; Pillai, Nisha E; Prasad, Aravind; Lin, Qiang; Brenner, Sydney; Venkatesh, Byrappa

    2017-08-22

    ParaHox genes ( Gsx , Pdx , and Cdx ) are an ancient family of developmental genes closely related to the Hox genes. They play critical roles in the patterning of brain and gut. The basal chordate, amphioxus, contains a single ParaHox cluster comprising one member of each family, whereas nonteleost jawed vertebrates contain four ParaHox genomic loci with six or seven ParaHox genes. Teleosts, which have experienced an additional whole-genome duplication, contain six ParaHox genomic loci with six ParaHox genes. Jawless vertebrates, represented by lampreys and hagfish, are the most ancient group of vertebrates and are crucial for understanding the origin and evolution of vertebrate gene families. We have previously shown that lampreys contain six Hox gene loci. Here we report that lampreys contain only two ParaHox gene clusters (designated as α- and β-clusters) bearing five ParaHox genes ( Gsxα , Pdxα , Cdxα , Gsxβ , and Cdxβ ). The order and orientation of the three genes in the α-cluster are identical to that of the single cluster in amphioxus. However, the orientation of Gsxβ in the β-cluster is inverted. Interestingly, Gsxβ is expressed in the eye, unlike its homologs in jawed vertebrates, which are expressed mainly in the brain. The lamprey Pdxα is expressed in the pancreas similar to jawed vertebrate Pdx genes, indicating that the pancreatic expression of Pdx was acquired before the divergence of jawless and jawed vertebrate lineages. It is likely that the lamprey Pdxα plays a crucial role in pancreas specification and insulin production similar to the Pdx of jawed vertebrates.

  10. High chlorpyrifos resistance in Culex pipiens mosquitoes: strong synergy between resistance genes

    Science.gov (United States)

    Alout, H; Labbé, P; Berthomieu, A; Makoundou, P; Fort, P; Pasteur, N; Weill, M

    2016-01-01

    We investigated the genetic determinism of high chlorpyrifos resistance (HCR), a phenotype first described in 1999 in Culex pipiens mosquitoes surviving chlorpyrifos doses ⩾1 mg l−1 and more recently found in field samples from Tunisia, Israel or Indian Ocean islands. Through chlorpyrifos selection, we selected several HCR strains that displayed over 10 000-fold resistance. All strains were homozygous for resistant alleles at two main loci: the ace-1 gene, with the resistant ace-1R allele expressing the insensitive G119S acetylcholinesterase, and a resistant allele of an unknown gene (named T) linked to the sex and ace-2 genes. We constructed a strain carrying only the T-resistant allele and studied its resistance characteristics. By crossing this strain with strains harboring different alleles at the ace-1 locus, we showed that the resistant ace-1R and the T alleles act in strong synergy, as they elicited a resistance 100 times higher than expected from a simple multiplicative effect. This effect was specific to chlorpyrifos and parathion and was not affected by synergists. We also examined how HCR was expressed in strains carrying other ace-1-resistant alleles, such as ace-1V or the duplicated ace-1D allele, currently spreading worldwide. We identified two major parameters that influenced the level of resistance: the number and the nature of the ace-1-resistant alleles and the number of T alleles. Our data fit a model that predicts that the T allele acts by decreasing chlorpyrifos concentration in the compartment targeted in insects. PMID:26463842

  11. Spread of tetracycline resistance genes at a conventional dairy farm

    Directory of Open Access Journals (Sweden)

    Martina eKyselkova

    2015-05-01

    Full Text Available The use of antibiotics in animal husbandry contributes to the worldwide problem of increasing antibiotic resistance in animal and human pathogens. Intensive animal production is considered an important source of antibiotic resistance genes released to the environment, while the contribution of smaller farms remains to be evaluated. Here we monitor the spread of tetracycline resistance (TC-r genes at a middle-size conventional dairy farm, where chlortetracycline (CTC, as intrauterine suppository is prophylactically used after each calving. Our study has shown that animals at the farm acquired the TC-r genes in their early age (1-2 weeks, likely due to colonization with TC-resistant bacteria from their mothers and/or the farm environment. The relative abundance of the TC-r genes tet(W, tet(Q and tet(M in fresh excrements of calves was about 1-2 orders of magnitude higher compared to heifers and dairy cows, possibly due to the presence of antibiotic residues in milk fed to calves. The occurrence and abundance of TC-r genes in fresh excrements of heifers and adult cows remained unaffected by intrauterine CTC applications, with tet(O, tet(Q and tet(W representing a ‘core TC-resistome’ of the farm, and tet(A, tet(M, tet(Y and tet(X occurring occasionally. The genes tet(A, tet(M, tet(Y and tet(X were shown to be respectively harbored by Shigella, Lactobacillus and Clostridium, Acinetobacter, and Wautersiella. Soil in the farm proximity, as well as field soil to which manure from the farm was applied, was contaminated with TC-r genes occurring in the farm, and some of the TC-r genes persisted in the field over 3 months following the manure application. Concluding, our study shows that antibiotic resistance genes may be a stable part of the intestinal metagenome of cattle even if antibiotics are not used for growth stimulation, and that smaller dairy farms may also contribute to environmental pollution with antibiotic resistance genes.

  12. Gene structure and expression characteristic of a novel odorant receptor gene cluster in the parasitoid wasp Microplitis mediator (Hymenoptera: Braconidae).

    Science.gov (United States)

    Wang, S-N; Shan, S; Zheng, Y; Peng, Y; Lu, Z-Y; Yang, Y-Q; Li, R-J; Zhang, Y-J; Guo, Y-Y

    2017-08-01

    Odorant receptors (ORs) expressed in the antennae of parasitoid wasps are responsible for detection of various lipophilic airborne molecules. In the present study, 107 novel OR genes were identified from Microplitis mediator antennal transcriptome data. Phylogenetic analysis of the set of OR genes from M. mediator and Microplitis demolitor revealed that M. mediator OR (MmedOR) genes can be classified into different subfamilies, and the majority of MmedORs in each subfamily shared high sequence identities and clear orthologous relationships to M. demolitor ORs. Within a subfamily, six MmedOR genes, MmedOR98, 124, 125, 126, 131 and 155, shared a similar gene structure and were tightly linked in the genome. To evaluate whether the clustered MmedOR genes share common regulatory features, the transcription profile and expression characteristics of the six closely related OR genes were investigated in M. mediator. Rapid amplification of cDNA ends-PCR experiments revealed that the OR genes within the cluster were transcribed as single mRNAs, and a bicistronic mRNA for two adjacent genes (MmedOR124 and MmedOR98) was also detected in female antennae by reverse transcription PCR. In situ hybridization experiments indicated that each OR gene within the cluster was expressed in a different number of cells. Moreover, there was no co-expression of the two highly related OR genes, MmedOR124 and MmedOR98, which appeared to be individually expressed in a distinct population of neurons. Overall, there were distinct expression profiles of closely related MmedOR genes from the same cluster in M. mediator. These data provide a basic understanding of the olfactory coding in parasitoid wasps. © 2017 The Royal Entomological Society.

  13. Clustering based gene expression feature selection method: A computational approach to enrich the classifier efficiency of differentially expressed genes

    KAUST Repository

    Abusamra, Heba

    2016-07-20

    The native nature of high dimension low sample size of gene expression data make the classification task more challenging. Therefore, feature (gene) selection become an apparent need. Selecting a meaningful and relevant genes for classifier not only decrease the computational time and cost, but also improve the classification performance. Among different approaches of feature selection methods, however most of them suffer from several problems such as lack of robustness, validation issues etc. Here, we present a new feature selection technique that takes advantage of clustering both samples and genes. Materials and methods We used leukemia gene expression dataset [1]. The effectiveness of the selected features were evaluated by four different classification methods; support vector machines, k-nearest neighbor, random forest, and linear discriminate analysis. The method evaluate the importance and relevance of each gene cluster by summing the expression level for each gene belongs to this cluster. The gene cluster consider important, if it satisfies conditions depend on thresholds and percentage otherwise eliminated. Results Initial analysis identified 7120 differentially expressed genes of leukemia (Fig. 15a), after applying our feature selection methodology we end up with specific 1117 genes discriminating two classes of leukemia (Fig. 15b). Further applying the same method with more stringent higher positive and lower negative threshold condition, number reduced to 58 genes have be tested to evaluate the effectiveness of the method (Fig. 15c). The results of the four classification methods are summarized in Table 11. Conclusions The feature selection method gave good results with minimum classification error. Our heat-map result shows distinct pattern of refines genes discriminating between two classes of leukemia.

  14. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors

    Directory of Open Access Journals (Sweden)

    Masayoshi Hashimoto

    2016-10-01

    Full Text Available The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species.

  15. A Link-Based Cluster Ensemble Approach For Improved Gene Expression Data Analysis

    Directory of Open Access Journals (Sweden)

    P.Balaji

    2015-01-01

    Full Text Available Abstract It is difficult from possibilities to select a most suitable effective way of clustering algorithm and its dataset for a defined set of gene expression data because we have a huge number of ways and huge number of gene expressions. At present many researchers are preferring to use hierarchical clustering in different forms this is no more totally optimal. Cluster ensemble research can solve this type of problem by automatically merging multiple data partitions from a wide range of different clusterings of any dimensions to improve both the quality and robustness of the clustering result. But we have many existing ensemble approaches using an association matrix to condense sample-cluster and co-occurrence statistics and relations within the ensemble are encapsulated only at raw level while the existing among clusters are totally discriminated. Finding these missing associations can greatly expand the capability of those ensemble methodologies for microarray data clustering. We propose general K-means cluster ensemble approach for the clustering of general categorical data into required number of partitions.

  16. Functional Repertoire of Antibiotic Resistance Genes in Antibiotic Manufacturing Effluents and Receiving Freshwater Sediments

    Science.gov (United States)

    González-Plaza, Juan J.; Šimatović, Ana; Milaković, Milena; Bielen, Ana; Wichmann, Fabienne; Udiković-Kolić, Nikolina

    2018-01-01

    Environments polluted by direct discharges of effluents from antibiotic manufacturing are important reservoirs for antibiotic resistance genes (ARGs), which could potentially be transferred to human pathogens. However, our knowledge about the identity and diversity of ARGs in such polluted environments remains limited. We applied functional metagenomics to explore the resistome of two Croatian antibiotic manufacturing effluents and sediments collected upstream of and at the effluent discharge sites. Metagenomic libraries built from an azithromycin-production site were screened for resistance to macrolide antibiotics, whereas the libraries from a site producing veterinary antibiotics were screened for resistance to sulfonamides, tetracyclines, trimethoprim, and beta-lactams. Functional analysis of eight libraries identified a total of 82 unique, often clinically relevant ARGs, which were frequently found in clusters and flanked by mobile genetic elements. The majority of macrolide resistance genes identified from matrices exposed to high levels of macrolides were similar to known genes encoding ribosomal protection proteins, macrolide phosphotransferases, and transporters. Potentially novel macrolide resistance genes included one most similar to a 23S rRNA methyltransferase from Clostridium and another, derived from upstream unpolluted sediment, to a GTPase HflX from Emergencia. In libraries deriving from sediments exposed to lower levels of veterinary antibiotics, we found 8 potentially novel ARGs, including dihydrofolate reductases and beta-lactamases from classes A, B, and D. In addition, we detected 7 potentially novel ARGs in upstream sediment, including thymidylate synthases, dihydrofolate reductases, and class D beta-lactamase. Taken together, in addition to finding known gene types, we report the discovery of novel and diverse ARGs in antibiotic-polluted industrial effluents and sediments, providing a qualitative basis for monitoring the dispersal of ARGs

  17. Functional Repertoire of Antibiotic Resistance Genes in Antibiotic Manufacturing Effluents and Receiving Freshwater Sediments

    Directory of Open Access Journals (Sweden)

    Juan J. González-Plaza

    2018-01-01

    Full Text Available Environments polluted by direct discharges of effluents from antibiotic manufacturing are important reservoirs for antibiotic resistance genes (ARGs, which could potentially be transferred to human pathogens. However, our knowledge about the identity and diversity of ARGs in such polluted environments remains limited. We applied functional metagenomics to explore the resistome of two Croatian antibiotic manufacturing effluents and sediments collected upstream of and at the effluent discharge sites. Metagenomic libraries built from an azithromycin-production site were screened for resistance to macrolide antibiotics, whereas the libraries from a site producing veterinary antibiotics were screened for resistance to sulfonamides, tetracyclines, trimethoprim, and beta-lactams. Functional analysis of eight libraries identified a total of 82 unique, often clinically relevant ARGs, which were frequently found in clusters and flanked by mobile genetic elements. The majority of macrolide resistance genes identified from matrices exposed to high levels of macrolides were similar to known genes encoding ribosomal protection proteins, macrolide phosphotransferases, and transporters. Potentially novel macrolide resistance genes included one most similar to a 23S rRNA methyltransferase from Clostridium and another, derived from upstream unpolluted sediment, to a GTPase HflX from Emergencia. In libraries deriving from sediments exposed to lower levels of veterinary antibiotics, we found 8 potentially novel ARGs, including dihydrofolate reductases and beta-lactamases from classes A, B, and D. In addition, we detected 7 potentially novel ARGs in upstream sediment, including thymidylate synthases, dihydrofolate reductases, and class D beta-lactamase. Taken together, in addition to finding known gene types, we report the discovery of novel and diverse ARGs in antibiotic-polluted industrial effluents and sediments, providing a qualitative basis for monitoring the

  18. Bacterial metal resistance genes and metal bioavailability in contaminated sediments

    International Nuclear Information System (INIS)

    Roosa, Stéphanie; Wattiez, Ruddy; Prygiel, Emilie; Lesven, Ludovic; Billon, Gabriel; Gillan, David C.

    2014-01-01

    In bacteria a metal may be defined as bioavailable if it crosses the cytoplasmic membrane to reach the cytoplasm. Once inside the cell, specific metal resistance systems may be triggered. In this research, specific metal resistance genes were used to estimate metal bioavailability in sediment microbial communities. Gene levels were measured by quantitative PCR and correlated to metals in sediments using five different protocols to estimate dissolved, particle-adsorbed and occluded metals. The best correlations were obtained with czcA (a Cd/Zn/Co efflux pump) and Cd/Zn adsorbed or occluded in particles. Only adsorbed Co was correlated to czcA levels. We concluded that the measurement of czcA gene levels by quantitative PCR is a promising tool which may complement the classical approaches used to estimate Cd/Zn/Co bioavailability in sediment compartments. - Highlights: • Metal resistance genes were used to estimate metal bioavailability in sediments. • Gene levels were correlated to metals using 5 different metal extraction protocols. • CzcA gene levels determined by quantitative PCR is a promising tool for Cd/Zn/Co. - Capsule Bacterial czcA is a potential biomarker of Cd, Zn and Co bioavailability in aquatic sediments as shown by quantitative PCR and sequential metal extraction

  19. Sponge Microbiota are a Reservoir of Functional Antibiotic Resistance Genes

    DEFF Research Database (Denmark)

    Versluis, Dennis; de Evgrafov, Mari Cristina Rodriguez; Sommer, Morten Otto Alexander

    2016-01-01

    examined sponges as a reservoir of antibiotic resistance. Sponges could be important in this respect because they often contain diverse microbial communities that have the capacity to produce bioactive metabolites. Here, we applied functional metagenomics to study the presence and diversity of functional...... resistance genes in the sponges Aplysina aerophoba, Petrosia ficiformis, and Corticium candelabrum. We obtained 37 insert sequences facilitating resistance to D-cycloserine (n = 6), gentamicin (n = 1), amikacin (n = 7), trimethoprim (n = 17), chloramphenicol (n = 1), rifampicin (n = 2) and ampicillin (n = 3......-resistance-conferring β-lactamase was identified in the genus Pseudovibrio with 41% global amino acid identity to the closest β-lactamase with demonstrated functionality, and subsequently classified into a new family termed PSV. Taken together, our results show that sponge microbiota host diverse and novel resistance...

  20. Tagging of resistance gene(s) to rhizomania disease in sugar beet ...

    African Journals Online (AJOL)

    SERVER

    2008-02-19

    Feb 19, 2008 ... plasmodiophoride-like fungus, Polymyxa betae Keskin. (1964) (Tamada and Richard, 1992). Source of resistance to rhizomania were found in Holly sugar beet company source (Lewellen, 1987). Resistance in Holly is simply inherited by a single dominant gene(Rz1). (Lewellen et al., 1987; Scholten et al., ...

  1. Tagging of resistance gene(s) to rhizomania disease in sugar beet ...

    African Journals Online (AJOL)

    The rhizomania disease is one of the most important diseases in Iran and some other parts of the world which potentially could play a role in decreasing sugar yield in fields. One approach to combat with this disease is the use of resistance varieties. This varieties have been identified which are having resistance genes to ...

  2. Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in 'Thatcher' Wheat.

    Science.gov (United States)

    Hiebert, Colin W; Kolmer, James A; McCartney, Curt A; Briggs, Jordan; Fetch, Tom; Bariana, Harbans; Choulet, Frederic; Rouse, Matthew N; Spielmeyer, Wolfgang

    2016-01-01

    Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. 'Thatcher' wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in 'Thatcher' and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for 'Thatcher'-derived APR in several environments and this resistance was enhanced in the presence of Lr34.

  3. Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in ‘Thatcher’ Wheat

    Science.gov (United States)

    Hiebert, Colin W.; Kolmer, James A.; McCartney, Curt A.; Briggs, Jordan; Fetch, Tom; Bariana, Harbans; Choulet, Frederic; Rouse, Matthew N.; Spielmeyer, Wolfgang

    2016-01-01

    Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. ‘Thatcher’ wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in ‘Thatcher’ and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for ‘Thatcher’-derived APR in several environments and this resistance was enhanced in the presence of Lr34. PMID:27309724

  4. Cloning, reassembling and integration of the entire nikkomycin biosynthetic gene cluster into Streptomyces ansochromogenes lead to an improved nikkomycin production

    Directory of Open Access Journals (Sweden)

    Yang Haihua

    2010-01-01

    Full Text Available Abstract Background Nikkomycins are a group of peptidyl nucleoside antibiotics produced by Streptomyces ansochromogenes. They are competitive inhibitors of chitin synthase and show potent fungicidal, insecticidal, and acaricidal activities. Nikkomycin X and Z are the main components produced by S. ansochromogenes. Generation of a high-producing strain is crucial to scale up nikkomycins production for further clinical trials. Results To increase the yields of nikkomycins, an additional copy of nikkomycin biosynthetic gene cluster (35 kb was introduced into nikkomycin producing strain, S. ansochromogenes 7100. The gene cluster was first reassembled into an integrative plasmid by Red/ET technology combining with classic cloning methods and then the resulting plasmid(pNIKwas introduced into S. ansochromogenes by conjugal transfer. Introduction of pNIK led to enhanced production of nikkomycins (880 mg L-1, 4 -fold nikkomycin X and 210 mg L-1, 1.8-fold nikkomycin Z in the resulting exconjugants comparing with the parent strain (220 mg L-1 nikkomycin X and 120 mg L-1 nikkomycin Z. The exconjugants are genetically stable in the absence of antibiotic resistance selection pressure. Conclusion A high nikkomycins producing strain (1100 mg L-1 nikkomycins was obtained by introduction of an extra nikkomycin biosynthetic gene cluster into the genome of S. ansochromogenes. The strategies presented here could be applicable to other bacteria to improve the yields of secondary metabolites.

  5. Ensemble attribute profile clustering: discovering and characterizing groups of genes with similar patterns of biological features

    Directory of Open Access Journals (Sweden)

    Bissell MJ

    2006-03-01

    Full Text Available Abstract Background Ensemble attribute profile clustering is a novel, text-based strategy for analyzing a user-defined list of genes and/or proteins. The strategy exploits annotation data present in gene-centered corpora and utilizes ideas from statistical information retrieval to discover and characterize properties shared by subsets of the list. The practical utility of this method is demonstrated by employing it in a retrospective study of two non-overlapping sets of genes defined by a published investigation as markers for normal human breast luminal epithelial cells and myoepithelial cells. Results Each genetic locus was characterized using a finite set of biological properties and represented as a vector of features indicating attributes associated with the locus (a gene attribute profile. In this study, the vector space models for a pre-defined list of genes were constructed from the Gene Ontology (GO terms and the Conserved Domain Database (CDD protein domain terms assigned to the loci by the gene-centered corpus LocusLink. This data set of GO- and CDD-based gene attribute profiles, vectors of binary random variables, was used to estimate multiple finite mixture models and each ensuing model utilized to partition the profiles into clusters. The resultant partitionings were combined using a unanimous voting scheme to produce consensus clusters, sets of profiles that co-occured consistently in the same cluster. Attributes that were important in defining the genes assigned to a consensus cluster were identified. The clusters and their attributes were inspected to ascertain the GO and CDD terms most associated with subsets of genes and in conjunction with external knowledge such as chromosomal location, used to gain functional insights into human breast biology. The 52 luminal epithelial cell markers and 89 myoepithelial cell markers are disjoint sets of genes. Ensemble attribute profile clustering-based analysis indicated that both lists

  6. The Genome of Tolypocladium inflatum: Evolution, Organization, and Expression of the Cyclosporin Biosynthetic Gene Cluster

    Science.gov (United States)

    Bushley, Kathryn E.; Raja, Rajani; Jaiswal, Pankaj; Cumbie, Jason S.; Nonogaki, Mariko; Boyd, Alexander E.; Owensby, C. Alisha; Knaus, Brian J.; Elser, Justin; Miller, Daniel; Di, Yanming; McPhail, Kerry L.; Spatafora, Joseph W.

    2013-01-01

    The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921), the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology between the nonribosomal peptide synthetase (NRPS) that encodes for cyclosporin synthetase (simA) and those of other secondary metabolites with activities against insects (e.g., beauvericin, destruxins, etc.), and demonstrate the roles of module duplication and gene fusion in diversification of NRPSs. The secondary metabolite gene cluster responsible for cyclosporin biosynthesis is described. In addition to genes necessary for cyclosporin biosynthesis, it harbors a gene for a cyclophilin, which is a member of a family of immunophilins known to bind cyclosporin. Comparative analyses support a lineage specific origin of the cyclosporin gene cluster rather than horizontal gene transfer from bacteria or other fungi. RNA-Seq transcriptome analyses in a cyclosporin-inducing medium delineate the boundaries of the cyclosporin cluster and reveal high levels of expression of the gene cluster cyclophilin. In medium containing insect hemolymph, weaker but significant upregulation of several genes within the cyclosporin cluster, including the highly expressed cyclophilin gene, was observed. T. inflatum also represents the first reference draft genome of Ophiocordycipitaceae, a third family of insect pathogenic fungi within the fungal order Hypocreales, and supports parallel and qualitatively distinct radiations of insect pathogens. The T. inflatum genome provides additional insight into the evolution and biosynthesis of cyclosporin and lays a foundation for further investigations of the role

  7. [Cluster of multidrug-resistant tuberculosis cases in a school of the district of Ica, Peru].

    Science.gov (United States)

    Torres, Julio; Sardón, Victoria; Soto, Mirtha G; Anicama, Rolado; Arroyo-Hernández, Hugo; Munayco, César V

    2011-01-01

    We describe the evolution and features of a cluster of Multidrug-resistant tuberculosis (MDR TB) cases that occurred in 2001, in a school located in a sub-urban area of the district of Ica, Peru. We identified 15 students related before becoming infected with tuberculosis. The mean age of the cluster was 15 years. A total of 12 students were MDR-TB cases and 7 were drug-resistant to 5 first-line drugs (RHEZS). Five out of the 15 cases received at least 3 different anti-tuberculosis treatment schemes. The average treatment duration was 37 months (minimum 21 and maximum 59 months). A total of 13 cases recovered and 2 died. This study describes a cluster of MDR -TB cases in an educational facility, which due to the epidemiological link and time presentation, is probably an outbreak of MDR TB with a satisfactory outcome after prolonged treatment.

  8. Prediction of operon-like gene clusters in the Arabidopsis thaliana genome based on co-expression analysis of neighboring genes.

    Science.gov (United States)

    Wada, Masayoshi; Takahashi, Hiroki; Altaf-Ul-Amin, Md; Nakamura, Kensuke; Hirai, Masami Y; Ohta, Daisaku; Kanaya, Shigehiko

    2012-07-15

    Operon-like arrangements of genes occur in eukaryotes ranging from yeasts and filamentous fungi to nematodes, plants, and mammals. In plants, several examples of operon-like gene clusters involved in metabolic pathways have recently been characterized, e.g. the cyclic hydroxamic acid pathways in maize, the avenacin biosynthesis gene clusters in oat, the thalianol pathway in Arabidopsis thaliana, and the diterpenoid momilactone cluster in rice. Such operon-like gene clusters are defined by their co-regulation or neighboring positions within immediate vicinity of chromosomal regions. A comprehensive analysis of the expression of neighboring genes therefore accounts a crucial step to reveal the complete set of operon-like gene clusters within a genome. Genome-wide prediction of operon-like gene clusters should contribute to functional annotation efforts and provide novel insight into evolutionary aspects acquiring certain biological functions as well. We predicted co-expressed gene clusters by comparing the Pearson correlation coefficient of neighboring genes and randomly selected gene pairs, based on a statistical method that takes false discovery rate (FDR) into consideration for 1469 microarray gene expression datasets of A. thaliana. We estimated that A. thaliana contains 100 operon-like gene clusters in total. We predicted 34 statistically significant gene clusters consisting of 3 to 22 genes each, based on a stringent FDR threshold of 0.1. Functional relationships among genes in individual clusters were estimated by sequence similarity and functional annotation of genes. Duplicated gene pairs (determined based on BLAST with a cutoff of EOperon-like clusters tend to include genes encoding bio-machinery associated with ribosomes, the ubiquitin/proteasome system, secondary metabolic pathways, lipid and fatty-acid metabolism, and the lipid transfer system. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Resistance-related gene transcription and antioxidant enzyme ...

    African Journals Online (AJOL)

    The two tobacco relatives of Nicotiana alata and Nicotiana longiflora display a high level of resistance against Colletotrichum nicotianae and the two genes NTF6 and NtPAL related to pathogen defense transcription were higher in N. alata and N. longiflora than the commercial cv. K326. Inoculation with C. nicotianae ...

  10. Antibiotic resistance and ndvB gene expression among biofilm ...

    African Journals Online (AJOL)

    A novel antibiotic resistant mechanism among biofilms is glucan-mediated sequestration in which ndvB gene encodes a glucosyltransferase involved in the formation of this glucans. We studied the biofilm formation and antibiotic susceptibility pattern of P. aeruginosa isolated from clinical samples, and measured the ...

  11. Gene pyramiding as a Bt resistance management strategy: How ...

    African Journals Online (AJOL)

    Reports on the emergence of insect resistance to Bacillus thuringiensis delta endotoxins have raised doubts on the sustainability of Bt-toxin based pest management technologies. Corporate industry has responded to this challenge with innovations that include gene pyramiding among others. Pyramiding entails stacking ...

  12. Prevalence, antibiotic-resistance properties and enterotoxin gene ...

    African Journals Online (AJOL)

    milk-based infant foods in Iran, represent an important public health issue which should be considered ... Keywords: Prevalence, Bacillus cereus, Antibiotic resistance, Enterotoxigenic genes, Milk-based infant food. Tropical Journal of Pharmaceutical Research is indexed by Science ..... and cereals collected in Korea.

  13. Spatial patterns of Antimicrobial Resistance Genes in Danish Pig Farms

    DEFF Research Database (Denmark)

    Birkegård, Anna Camilla; Ersbøll, A. K.; Hisham Beshara Halasa, Tariq

    2016-01-01

    antimicrobial resistance genes, ermB, ermF, sulI, sulII, tet(M), tet(O) and tet(W), was quantified by a high-throughput qPCR. It was evaluated whether the sample method resulted in a study population representative of Danish pig farms with finishers where it was found that the study population was biased...

  14. Molecular Detection of Virulence Genes and Antibiotic Resistance ...

    African Journals Online (AJOL)

    Escherichia coli O157:H7 is an important food-borne pathogen that can cause diarrhea, haemorrhagic colitis and haemolytic uremic syndrome. This study was conducted to investigate the prevalence, virulence genes and antibiotic resistance patterns of E. coli O157:H7 in raw beef meat sold in Abeokuta, South west Nigeria ...

  15. The Local Maximum Clustering Method and Its Application in Microarray Gene Expression Data Analysis

    Directory of Open Access Journals (Sweden)

    Chen Yidong

    2004-01-01

    Full Text Available An unsupervised data clustering method, called the local maximum clustering (LMC method, is proposed for identifying clusters in experiment data sets based on research interest. A magnitude property is defined according to research purposes, and data sets are clustered around each local maximum of the magnitude property. By properly defining a magnitude property, this method can overcome many difficulties in microarray data clustering such as reduced projection in similarities, noises, and arbitrary gene distribution. To critically evaluate the performance of this clustering method in comparison with other methods, we designed three model data sets with known cluster distributions and applied the LMC method as well as the hierarchic clustering method, the -mean clustering method, and the self-organized map method to these model data sets. The results show that the LMC method produces the most accurate clustering results. As an example of application, we applied the method to cluster the leukemia samples reported in the microarray study of Golub et al. (1999.

  16. High prevalence of the PER-1 gene among carbapenem-resistant Acinetobacter baumannii in Riyadh, Saudi Arabia.

    Science.gov (United States)

    Aly, M M; Abu Alsoud, N M; Elrobh, M S; Al Johani, S M; Balkhy, H H

    2016-11-01

    The prevalence of carbapenem-resistant Acinetobacter baumannii in Saudi Arabia and their resistance genetic mechanisms are yet to be identified. We studied the prevalence and genetic diversity of extended-spectrum beta-lactamase genes, particularly the PER-1 gene, among carbapenem-resistant A. baumannii strains from patients at a tertiary care hospital in Riyadh, Saudi Arabia between 2006 and 2014. Fresh subcultured samples were tested for antimicrobial susceptibility minimum inhibitory concentration (MIC). Total genomic DNA was extracted from each isolate and further used for polymerase chain reaction (PCR) genotyping, sequence-based typing (SBT) of PER-1 and OXA-51-like gene, and multilocus sequence typing (MLST) of positive isolates. Randomly selected clinical isolates (n = 100) were subjected to MLST. A total of 503 isolates were characterized as multidrug-resistant (MDR) using the MIC. Isolates were further PCR tested for bla -TEM and bla -PER-1 resistance genes (n = 503). The genotyping results showed that 68/503 (14 %) isolates were positive to bla TEM. The genotyping results of PER-1-like genes showed that 384/503 (76.3 %) were positive among MDR Acinetobacter isolates. Based on SBT, the majority of these isolates were clustered into three main groups including isolates harboring PER-1: AB11 (bla -PER-1 ), isolate AB16 (bla -PER-1 ), and, finally, the plasmid pAB154 (bla -PER-7 ). Remarkably, many isolates were concealing the PER-1 gene and harboring the TEM resistance genes as well. MLST results for selected isolates (n = 100) identified four main sequence types (STs: 2, 19, 20, and 25) and four novel isolates (ST 486-489). We report 76.3 % prevalence of the PER-1 resistance gene among Acinetobacter clinical isolates from Riyadh, Saudi Arabia. Further work is needed to explore the clinical risks and patient outcome with such resistance related to healthcare-associated infections and investigate the genetic and molecular mechanisms that confer the MDR

  17. Comparison of Expression of Secondary Metabolite Biosynthesis Cluster Genes in Aspergillus flavus, A. parasiticus, and A. oryzae

    OpenAIRE

    Ehrlich, Kenneth C.; Mack, Brian M.

    2014-01-01

    Fifty six secondary metabolite biosynthesis gene clusters are predicted to be in the Aspergillus flavus genome. In spite of this, the biosyntheses of only seven metabolites, including the aflatoxins, kojic acid, cyclopiazonic acid and aflatrem, have been assigned to a particular gene cluster. We used RNA-seq to compare expression of secondary metabolite genes in gene clusters for the closely related fungi A. parasiticus, A. oryzae, and A. flavus S and L sclerotial morphotypes. The data help ...

  18. Increasing Power by Sharing Information from Genetic Background and Treatment in Clustering of Gene Expression Time Series

    OpenAIRE

    Sura Zaki Alrashid; Muhammad Arifur Rahman; Nabeel H Al-Aaraji; Neil D Lawrence; Paul R Heath

    2018-01-01

    Clustering of gene expression time series gives insight into which genes may be co-regulated, allowing us to discern the activity of pathways in a given microarray experiment. Of particular interest is how a given group of genes varies with different conditions or genetic background. This paper develops
a new clustering method that allows each cluster to be parameterised according to whether the behaviour of the genes across conditions is correlated or anti-correlated. By specifying correlati...

  19. Gene identification and protein classification in microbial metagenomic sequence data via incremental clustering

    Directory of Open Access Journals (Sweden)

    Li Weizhong

    2008-04-01

    Full Text Available Abstract Background The identification and study of proteins from metagenomic datasets can shed light on the roles and interactions of the source organisms in their communities. However, metagenomic datasets are characterized by the presence of organisms with varying GC composition, codon usage biases etc., and consequently gene identification is challenging. The vast amount of sequence data also requires faster protein family classification tools. Results We present a computational improvement to a sequence clustering approach that we developed previously to identify and classify protein coding genes in large microbial metagenomic datasets. The clustering approach can be used to identify protein coding genes in prokaryotes, viruses, and intron-less eukaryotes. The computational improvement is based on an incremental clustering method that does not require the expensive all-against-all compute that was required by the original approach, while still preserving the remote homology detection capabilities. We present evaluations of the clustering approach in protein-coding gene identification and classification, and also present the results of updating the protein clusters from our previous work with recent genomic and metagenomic sequences. The clustering results are available via CAMERA, (http://camera.calit2.net. Conclusion The clustering paradigm is shown to be a very useful tool in the analysis of microbial metagenomic data. The incremental clustering method is shown to be much faster than the original approach in identifying genes, grouping sequences into existing protein families, and also identifying novel families that have multiple members in a metagenomic dataset. These clusters provide a basis for further studies of protein families.

  20. Putative resistance genes in the CitEST database

    Directory of Open Access Journals (Sweden)

    Simone Guidetti-Gonzalez

    2007-01-01

    Full Text Available Disease resistance in plants is usually associated with the activation of a wide variety of defense responses to prevent pathogen replication and/or movement. The ability of the host plant to recognize the pathogen and to activate defense responses is regulated by direct or indirect interaction between the products of plant resistance (R and pathogen avirulence (Avr genes. Attempted infection of plants by avirulent pathogens elicits a battery of defenses often followed by the collapse of the challenged host cells. Localized host cell death may help to prevent the pathogen from spreading to uninfected tissues, known as hypersensitive response (HR. When either the plant or the pathogen lacks its cognate gene, activation of the plant’s defense responses fails to occur or is delayed and does not prevent pathogen colonization. In the CitEST database, we identified 1,300 reads related to R genes in Citrus which have been reported in other plant species. These reads were translated in silico, and alignments of their amino acid sequences revealed the presence of characteristic domains and motifs that are specific to R gene classes. The description of the reads identified suggests that they function as resistance genes in citrus.

  1. Transcriptional interference networks coordinate the expression of functionally related genes clustered in the same genomic loci.

    Science.gov (United States)

    Boldogköi, Zsolt

    2012-01-01

    The regulation of gene expression is essential for normal functioning of biological systems in every form of life. Gene expression is primarily controlled at the level of transcription, especially at the phase of initiation. Non-coding RNAs are one of the major players at every level of genetic regulation, including the control of chromatin organization, transcription, various post-transcriptional processes, and translation. In this study, the Transcriptional Interference Network (TIN) hypothesis was put forward in an attempt to explain the global expression of antisense RNAs and the overall occurrence of tandem gene clusters in the genomes of various biological systems ranging from viruses to mammalian cells. The TIN hypothesis suggests the existence of a novel layer of genetic regulation, based on the interactions between the transcriptional machineries of neighboring genes at their overlapping regions, which are assumed to play a fundamental role in coordinating gene expression within a cluster of functionally linked genes. It is claimed that the transcriptional overlaps between adjacent genes are much more widespread in genomes than is thought today. The Waterfall model of the TIN hypothesis postulates a unidirectional effect of upstream genes on the transcription of downstream genes within a cluster of tandemly arrayed genes, while the Seesaw model proposes a mutual interdependence of gene expression between the oppositely oriented genes. The TIN represents an auto-regulatory system with an exquisitely timed and highly synchronized cascade of gene expression in functionally linked genes located in close physical proximity to each other. In this study, we focused on herpesviruses. The reason for this lies in the compressed nature of viral genes, which allows a tight regulation and an easier investigation of the transcriptional interactions between genes. However, I believe that the same or similar principles can be applied to cellular organisms too.

  2. Identification of antimicrobial resistance genes in multidrug-resistant clinical Bacteroides fragilis isolates by whole genome shotgun sequencing

    DEFF Research Database (Denmark)

    Sydenham, Thomas Vognbjerg; Sóki, József; Hasman, Henrik

    2015-01-01

    Bacteroides fragilis constitutes the most frequent anaerobic bacterium causing bacteremia in humans. The genetic background for antimicrobial resistance in B. fragilis is diverse with some genes requiring insertion sequence (IS) elements inserted upstream for increased expression. To evaluate whole...... genome shotgun sequencing as a method for predicting antimicrobial resistance properties, one meropenem resistant and five multidrug-resistant blood culture isolates were sequenced and antimicrobial resistance genes and IS elements identified using ResFinder 2.1 (http...

  3. Anthropogenic antibiotic resistance genes mobilization to the polar regions.

    Science.gov (United States)

    Hernández, Jorge; González-Acuña, Daniel

    2016-01-01

    Anthropogenic influences in the southern polar region have been rare, but lately microorganisms associated with humans have reached Antarctica, possibly from military bases, fishing boats, scientific expeditions, and/or ship-borne tourism. Studies of seawater in areas of human intervention and proximal to fresh penguin feces revealed the presence of Escherichia coli strains least resistant to antibiotics in penguins, whereas E. coli from seawater elsewhere showed resistance to one or more of the following antibiotics: ampicillin, tetracycline, streptomycin, and trim-sulfa. In seawater samples, bacteria were found carrying extended-spectrum β-lactamase (ESBL)-type CTX-M genes in which multilocus sequencing typing (MLST) showed different sequence types (STs), previously reported in humans. In the Arctic, on the contrary, people have been present for a long time, and the presence of antibiotic resistance genes (ARGs) appears to be much more wide-spread than was previously reported. Studies of E coli from Arctic birds (Bering Strait) revealed reduced susceptibility to antibiotics, but one globally spreading clone of E. coli genotype O25b-ST131, carrying genes of ESBL-type CTX-M, was identified. In the few years between sample collections in the same area, differences in resistance pattern were observed, with E. coli from birds showing resistance to a maximum of five different antibiotics. Presence of resistance-type ESBLs (TEM, SHV, and CTX-M) in E. coli and Klebsiella pneumoniae was also confirmed by specified PCR methods. MLST revealed that those bacteria carried STs that connect them to previously described strains in humans. In conclusion, bacteria previously related to humans could be found in relatively pristine environments, and presently human-associated, antibiotic-resistant bacteria have reached a high global level of distribution that they are now found even in the polar regions.

  4. Clustering gene expression data based on predicted differential effects of GV interaction.

    Science.gov (United States)

    Pan, Hai-Yan; Zhu, Jun; Han, Dan-Fu

    2005-02-01

    Microarray has become a popular biotechnology in biological and medical research. However, systematic and stochastic variabilities in microarray data are expected and unavoidable, resulting in the problem that the raw measurements have inherent "noise" within microarray experiments. Currently, logarithmic ratios are usually analyzed by various clustering methods directly, which may introduce bias interpretation in identifying groups of genes or samples. In this paper, a statistical method based on mixed model approaches was proposed for microarray data cluster analysis. The underlying rationale of this method is to partition the observed total gene expression level into various variations caused by different factors using an ANOVA model, and to predict the differential effects of GV (gene by variety) interaction using the adjusted unbiased prediction (AUP) method. The predicted GV interaction effects can then be used as the inputs of cluster analysis. We illustrated the application of our method with a gene expression dataset and elucidated the utility of our approach using an external validation.

  5. Functional study of the novel multidrug resistance gene HA117 and its comparison to multidrug resistance gene 1

    Directory of Open Access Journals (Sweden)

    Chen Tingfu

    2010-07-01

    Full Text Available Abstract Background The novel gene HA117 is a multidrug resistance (MDR gene expressed by all-trans retinoic acid-resistant HL-60 cells. In the present study, we compared the multidrug resistance of the HA117 with that of the classical multidrug resistance gene 1 (MDR1 in breast cancer cell line 4T1. Methods Transduction of the breast cancer cell line 4T1 with adenoviral vectors encoding the HA117 gene and the green fluorescence protein gene (GFP (Ad-GFP-HA117, the MDR1 and GFP (Ad-GFP-MDR1 or GFP (Ad-GFP was respectively carried out. The transduction efficiency and the multiplicity of infection (MOI were detected by fluorescence microscope and flow cytometry. The transcription of HA117 gene and MDR1 gene were detected by reverse transcription polymerase chain reaction (RT-PCR. Western blotting analysis was used to detect the expression of P-glycoprotein (P-gp but the expression of HA117 could not be analyzed as it is a novel gene and its antibody has not yet been synthesized. The drug-excretion activity of HA117 and MDR1 were determined by daunorubicin (DNR efflux assay. The drug sensitivities of 4T1/HA117 and 4T1/MDR1 to chemotherapeutic agents were detected by Methyl-Thiazolyl-Tetrazolium (MTT assay. Results The transducted efficiency of Ad-GFP-HA117 and Ad-GFP-MDR1 were 75%-80% when MOI was equal to 50. The transduction of Ad-GFP-HA117 and Ad-GFP-MDR1 could increase the expression of HA117 and MDR1. The drug resistance index to Adriamycin (ADM, vincristine (VCR, paclitaxel (Taxol and bleomycin (BLM increased to19.8050, 9.0663, 9.7245, 3.5650 respectively for 4T1/HA117 and 24.2236, 11.0480, 11.3741, 0.9630 respectively for 4T1/MDR1 as compared to the control cells. There were no significant differences in drug sensitivity between 4T1/HA117 and 4T1/MDR1 for the P-gp substrates (ADM, VCR and Taxol (P Conclusions These results confirm that HA117 is a strong MDR gene in both HL-60 and 4T1 cells. Furthermore, our results indicate that the MDR

  6. Genetic mapping, marker assisted selection and allelic relationships for the Pu 6 gene conferring rust resistance in sunflower.

    Science.gov (United States)

    Bulos, Mariano; Vergani, Pablo Nicolas; Altieri, Emiliano

    2014-09-01

    Rust resistance in the sunflower line P386 is controlled by Pu 6 , a gene which was reported to segregate independently from other rust resistant genes, such as R 4 . The objectives of this work were to map Pu 6 , to provide and validate molecular tools for its identification, and to determine the linkage relationship of Pu 6 and R 4 . Genetic mapping of Pu 6 with six markers covered 24.8 cM of genetic distance on the lower end of linkage Group 13 of the sunflower consensus map. The marker most closely linked to Pu 6 was ORS316 at 2.5 cM in the distal position. ORS316 presented five alleles when was assayed with a representative set of resistant and susceptible lines. Allelism test between Pu 6 and R 4 indicated that both genes are linked at a genetic distance of 6.25 cM. This is the first confirmation based on an allelism test that at least two members of the R adv /R 4 /R 11 / R 13a /R 13b /Pu 6 cluster of genes are at different loci. A fine elucidation of the architecture of this complex locus will allow designing and constructing completely new genomic regions combining genes from different resistant sources and the elimination of the linkage drag around each resistant gene.

  7. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes

    DEFF Research Database (Denmark)

    Venkatesan, Meera; Gadalla, Nahla B; Stepniewska, Kasia

    2014-01-01

    Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated...... with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized...

  8. An integrative analysis of cellular contexts, miRNAs and mRNAs reveals network clusters associated with antiestrogen-resistant breast cancer cells

    Directory of Open Access Journals (Sweden)

    Nam Seungyoon

    2012-12-01

    Full Text Available Abstract Background A major goal of the field of systems biology is to translate genome-wide profiling data (e.g., mRNAs, miRNAs into interpretable functional networks. However, employing a systems biology approach to better understand the complexities underlying drug resistance phenotypes in cancer continues to represent a significant challenge to the field. Previously, we derived two drug-resistant breast cancer sublines (tamoxifen- and fulvestrant-resistant cell lines from the MCF7 breast cancer cell line and performed genome-wide mRNA and microRNA profiling to identify differential molecular pathways underlying acquired resistance to these important antiestrogens. In the current study, to further define molecular characteristics of acquired antiestrogen resistance we constructed an “integrative network”. We combined joint miRNA-mRNA expression profiles, cancer contexts, miRNA-target mRNA relationships, and miRNA upstream regulators. In particular, to reduce the probability of false positive connections in the network, experimentally validated, rather than prediction-oriented, databases were utilized to obtain connectivity. Also, to improve biological interpretation, cancer contexts were incorporated into the network connectivity. Results Based on the integrative network, we extracted “substructures” (network clusters representing the drug resistant states (tamoxifen- or fulvestrant-resistance cells compared to drug sensitive state (parental MCF7 cells. We identified un-described network clusters that contribute to antiestrogen resistance consisting of miR-146a, -27a, -145, -21, -155, -15a, -125b, and let-7s, in addition to the previously described miR-221/222. Conclusions By integrating miRNA-related network, gene/miRNA expression and text-mining, the current study provides a computational-based systems biology approach for further investigating the molecular mechanism underlying antiestrogen resistance in breast cancer cells. In

  9. Distribution-based fuzzy clustering of electrical resistivity tomography images for interface detection

    Science.gov (United States)

    Ward, W. O. C.; Wilkinson, P. B.; Chambers, J. E.; Oxby, L. S.; Bai, L.

    2014-04-01

    A novel method for the effective identification of bedrock subsurface elevation from electrical resistivity tomography images is described. Identifying subsurface boundaries in the topographic data can be difficult due to smoothness constraints used in inversion, so a statistical population-based approach is used that extends previous work in calculating isoresistivity surfaces. The analysis framework involves a procedure for guiding a clustering approach based on the fuzzy c-means algorithm. An approximation of resistivity distributions, found using kernel density estimation, was utilized as a means of guiding the cluster centroids used to classify data. A fuzzy method was chosen over hard clustering due to uncertainty in hard edges in the topography data, and a measure of clustering uncertainty was identified based on the reciprocal of cluster membership. The algorithm was validated using a direct comparison of known observed bedrock depths at two 3-D survey sites, using real-time GPS information of exposed bedrock by quarrying on one site, and borehole logs at the other. Results show similarly accurate detection as a leading isosurface estimation method, and the proposed algorithm requires significantly less user input and prior site knowledge. Furthermore, the method is effectively dimension-independent and will scale to data of increased spatial dimensions without a significant effect on the runtime. A discussion on the results by automated versus supervised analysis is also presented.

  10. Clustering Gene Expression Time Series with Coregionalization: Speed propagation of ALS

    OpenAIRE

    Rahman, Muhammad Arifur; Heath, Paul R.; Lawrence, Neil D.

    2018-01-01

    Clustering of gene expression time series gives insight into which genes may be coregulated, allowing us to discern the activity of pathways in a given microarray experiment. Of particular interest is how a given group of genes varies with different model conditions or genetic background. Amyotrophic lateral sclerosis (ALS), an irreversible diverse neurodegenerative disorder showed consistent phenotypic differences and the disease progression is heterogeneous with significant variability. Thi...

  11. Antibiotic discovery throughout the Small World Initiative: A molecular strategy to identify biosynthetic gene clusters involved in antagonistic activity.

    Science.gov (United States)

    Davis, Elizabeth; Sloan, Tyler; Aurelius, Krista; Barbour, Angela; Bodey, Elijah; Clark, Brigette; Dennis, Celeste; Drown, Rachel; Fleming, Megan; Humbert, Allison; Glasgo, Elizabeth; Kerns, Trent; Lingro, Kelly; McMillin, MacKenzie; Meyer, Aaron; Pope, Breanna; Stalevicz, April; Steffen, Brittney; Steindl, Austin; Williams, Carolyn; Wimberley, Carmen; Zenas, Robert; Butela, Kristen; Wildschutte, Hans

    2017-06-01

    The emergence of bacterial pathogens resistant to all known antibiotics is a global health crisis. Adding to this problem is that major pharmaceutical companies have shifted away from antibiotic discovery due to low profitability. As a result, the pipeline of new antibiotics is essentially dry and many bacteria now resist the effects of most commonly used drugs. To address this global health concern, citizen science through the Small World Initiative (SWI) was formed in 2012. As part of SWI, students isolate bacteria from their local environments, characterize the strains, and assay for antibiotic production. During the 2015 fall semester at Bowling Green State University, students isolated 77 soil-derived bacteria and genetically characterized strains using the 16S rRNA gene, identified strains exhibiting antagonistic activity, and performed an expanded SWI workflow using transposon mutagenesis to identify a biosynthetic gene cluster involved in toxigenic compound production. We identified one mutant with loss of antagonistic activity and through subsequent whole-genome sequencing and linker-mediated PCR identified a 24.9 kb biosynthetic gene locus likely involved in inhibitory activity in that mutant. Further assessment against human pathogens demonstrated the inhibition of Bacillus cereus, Listeria monocytogenes, and methicillin-resistant Staphylococcus aureus in the presence of this compound, thus supporting our molecular strategy as an effective research pipeline for SWI antibiotic discovery and genetic characterization. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  12. Identification of antibiotic resistance genes in the multidrug-resistant Acinetobacter baumannii strain, MDR-SHH02, using whole-genome sequencing.

    Science.gov (United States)

    Wang, Hualiang; Wang, Jinghua; Yu, Peijuan; Ge, Ping; Jiang, Yanqun; Xu, Rong; Chen, Rong; Liu, Xuejie

    2017-02-01

    This study aimed to investigate antibiotic resistance genes in the multidrug-resistant (MDR) Acinetobacter baumannii (A. baumanii) strain, MDR-SHH02, using whole‑genome sequencing (WGS). The antibiotic resistance of MDR-SHH02 isolated from a patient with breast cancer to 19 types of antibiotics was determined using the Kirby‑Bauer method. WGS of MDR-SHH02 was then performed. Following quality control and transcriptome assembly, functional annotation of genes was conducted, and the phylogenetic tree of MDR-SHH02, along with another 5 A. baumanii species and 2 Acinetobacter species, was constructed using PHYLIP 3.695 and FigTree v1.4.2. Furthermore, pathogenicity islands (PAIs) were predicted by the pathogenicity island database. Potential antibiotic resistance genes in MDR-SHH02 were predicted based on the information in the Antibiotic Resistance Genes Database (ARDB). MDR-SHH02 was found to be resistant to all of the tested antibiotics. The total draft genome length of MDR-SHH02 was 4,003,808 bp. There were 74.25% of coding sequences to be annotated into 21 of the Clusters of Orthologous Groups (COGs) of protein terms, such as 'transcription' and 'amino acid transport and metabolism'. Furthermore, there were 45 PAIs homologous to the sequence MDRSHH02000806. Additionally, a total of 12 gene sequences in MDR-SHH02 were highly similar to the sequences of antibiotic resistance genes in ARDB, including genes encoding aminoglycoside‑modifying enzymes [e.g., aac(3)-Ia, ant(2'')‑Ia, aph33ib and aph(3')-Ia], β-lactamase genes (bl2b_tem and bl2b_tem1), sulfonamide-resistant dihydropteroate synthase genes (sul1 and sul2), catb3 and tetb. These results suggest that numerous genes mediate resistance to various antibiotics in MDR-SHH02, and provide a clinical guidance for the personalized therapy of A. baumannii-infected patients.

  13. Multi drug resistance to cancer chemotherapy: Genes involved and blockers

    International Nuclear Information System (INIS)

    Sayed-Ahmed, Mohamed M.

    2007-01-01

    During the last three decades, important and considerable research efforts had been performed to investigate the mechanism through which cancer cells overcome the cytotoxic effects of a variety of chemotherapeutic drugs. Most of the previously published work has been focused on the resistance of tumor cells to those anticancer drugs of natural source. Multidrug resistance (MDR) is a cellular cross-resistance to a broad spectrum of natural products used in cancer chemotherapy and is believed to be the major cause of the therapeutic failures of the drugs belonging to different naturally obtained or semisynthetic groups including vinca alkaloids, taxans, epipodophyllotoxins and certain antibiotics. This phenomenon results from overexpression of four MDR genes and their corresponding proteins that act as membrane-bound ATP consuming pumps. These proteins mediate the efflux of many structurally and functionally unrelated anticancer drugs of natural source. MDR may be intrinsic or acquired following exposure to chemotherapy. The existence of intrinsically resistant tumor cell clone before and following chemotherapeutic treatment has been associated with a worse final outcome because of increased incidence of distant metasis. In view of irreplaceability of natural product anticancer drugs as effective chemotherapeutic agents, and in view of MDR as a major obstacle to successful chemotherapy, this review is aimed to highlight the genes involved in MDR, classical MDR blockers and gene therapy approaches to overcome MDR. (author)

  14. Mapping fusiform rust resistance genes within a complex mating design of loblolly pine

    Science.gov (United States)

    Tania Quesada; Marcio F.R. Resende Jr.; Patricio Munoz; Jill L. Wegrzyn; David B. Neale; Matias Kirst; Gary F. Peter; Salvador A. Gezan; C.Dana Nelson; John M. Davis

    2014-01-01

    Fusiform rust resistance can involve gene-for-gene interactions where resistance (Fr) genes in the host interact with corresponding avirulence genes in the pathogen, Cronartium quercuum f.sp. fusiforme (Cqf). Here, we identify trees with Fr genes in a loblolly pine population derived from a complex mating design challenged with two Cqf inocula (one gall and 10 gall...

  15. A CLUSTERING OF DJA STOCKS - THE APPLICATION IN FINANCE OF A METHOD FIRST USED IN GENE TRAJECTORY STUDY

    Directory of Open Access Journals (Sweden)

    Silaghi Gheorghe Cosmin

    2009-05-01

    Full Text Available Previously we employed the Gene Trajectory Clustering methodology to search for different associations of the stocks composing the DJA index, with the aim of finding different, logic clusters, supported by economic reasons, preferably different than the

  16. A genomics based discovery of secondary metabolite biosynthetic gene clusters in Aspergillus ustus.

    Directory of Open Access Journals (Sweden)

    Borui Pi

    Full Text Available Secondary metabolites (SMs produced by Aspergillus have been extensively studied for their crucial roles in human health, medicine and industrial production. However, the resulting information is almost exclusively derived from a few model organisms, including A. nidulans and A. fumigatus, but little is known about rare pathogens. In this study, we performed a genomics based discovery of SM biosynthetic gene clusters in Aspergillus ustus, a rare human pathogen. A total of 52 gene clusters were identified in the draft genome of A. ustus 3.3904, such as the sterigmatocystin biosynthesis pathway that was commonly found in Aspergillus species. In addition, several SM biosynthetic gene clusters were firstly identified in Aspergillus that were possibly acquired by horizontal gene transfer, including the vrt cluster that is responsible for viridicatumtoxin production. Comparative genomics revealed that A. ustus shared the largest number of SM biosynthetic gene clusters with A. nidulans, but much fewer with other Aspergilli like A. niger and A. oryzae. These findings would help to understand the diversity and evolution of SM biosynthesis pathways in genus Aspergillus, and we hope they will also promote the development of fungal identification methodology in clinic.

  17. A Genomics Based Discovery of Secondary Metabolite Biosynthetic Gene Clusters in Aspergillus ustus

    Science.gov (United States)

    Pi, Borui; Yu, Dongliang; Dai, Fangwei; Song, Xiaoming; Zhu, Congyi; Li, Hongye; Yu, Yunsong

    2015-01-01

    Secondary metabolites (SMs) produced by Aspergillus have been extensively studied for their crucial roles in human health, medicine and industrial production. However, the resulting information is almost exclusively derived from a few model organisms, including A. nidulans and A. fumigatus, but little is known about rare pathogens. In this study, we performed a genomics based discovery of SM biosynthetic gene clusters in Aspergillus ustus, a rare human pathogen. A total of 52 gene clusters were identified in the draft genome of A. ustus 3.3904, such as the sterigmatocystin biosynthesis pathway that was commonly found in Aspergillus species. In addition, several SM biosynthetic gene clusters were firstly identified in Aspergillus that were possibly acquired by horizontal gene transfer, including the vrt cluster that is responsible for viridicatumtoxin production. Comparative genomics revealed that A. ustus shared the largest number of SM biosynthetic gene clusters with A. nidulans, but much fewer with other Aspergilli like A. niger and A. oryzae. These findings would help to understand the diversity and evolution of SM biosynthesis pathways in genus Aspergillus, and we hope they will also promote the development of fungal identification methodology in clinic. PMID:25706180

  18. Spread of tetracycline resistance genes at a conventional dairy farm

    Czech Academy of Sciences Publication Activity Database

    Kyselková, Martina; Jirout, Jiří; Vrchotová, Naděžda; Schmitt, H.; Elhottová, Dana

    2015-01-01

    Roč. 6, may (2015), s. 536 ISSN 1664-302X R&D Projects: GA ČR GAP504/10/2077; GA MŠk(CZ) EE2.3.30.0032; GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 ; RVO:60077344 Keywords : antibiotic resistance spread * animal manure * cattle intestinal microflora * chlortetracycline * dairy cattle * dairy farm * heavy metals * tetracycline resistance genes Subject RIV: EI - Biotechnology ; Bionics; EE - Microbiology, Virology (BC-A) Impact factor: 4.165, year: 2015

  19. Genome-Wide Analysis of Secondary Metabolite Gene Clusters in Ophiostoma ulmi and Ophiostoma novo-ulmi Reveals a Fujikurin-Like Gene Cluster with a Putative Role in Infection

    Directory of Open Access Journals (Sweden)

    Nicolau Sbaraini

    2017-06-01

    Full Text Available The emergence of new microbial pathogens can result in destructive outbreaks, since their hosts have limited resistance and pathogens may be excessively aggressive. Described as the major ecological incident of the twentieth century, Dutch elm disease, caused by ascomycete fungi from the Ophiostoma genus, has caused a significant decline in elm tree populations (Ulmus sp. in North America and Europe. Genome sequencing of the two main causative agents of Dutch elm disease (Ophiostoma ulmi and Ophiostoma novo-ulmi, along with closely related species with different lifestyles, allows for unique comparisons to be made to identify how pathogens and virulence determinants have emerged. Among several established virulence determinants, secondary metabolites (SMs have been suggested to play significant roles during phytopathogen infection. Interestingly, the secondary metabolism of Dutch elm pathogens remains almost unexplored, and little is known about how SM biosynthetic genes are organized in these species. To better understand the metabolic potential of O. ulmi and O. novo-ulmi, we performed a deep survey and description of SM biosynthetic gene clusters (BGCs in these species and assessed their conservation among eight species from the Ophiostomataceae family. Among 19 identified BGCs, a fujikurin-like gene cluster (OpPKS8 was unique to Dutch elm pathogens. Phylogenetic analysis revealed that orthologs for this gene cluster are widespread among phytopathogens and plant-associated fungi, suggesting that OpPKS8 may have been horizontally acquired by the Ophiostoma genus. Moreover, the detailed identification of several BGCs paves the way for future in-depth research and supports the potential impact of secondary metabolism on Ophiostoma genus’ lifestyle.

  20. Overexpression of SOS genes in ciprofloxacin resistant Escherichia coli mutants.

    Science.gov (United States)

    Pourahmad Jaktaji, Razieh; Pasand, Shirin

    2016-01-15

    Fluoroquinolones are important antibiotics for the treatment of urinary tract infections caused by Escherichia coli. Mutational studies have shown that ciprofloxacin, a member of fluoroquinolones induces SOS response and mutagenesis in pathogenic bacteria which in turn develop antibiotic resistance. However, inhibition of SOS response can increase recombination activity which in turn leads to genetic variation. The aim of this study was to measure 5 SOS genes expressions in nine E. coli mutants with different MICs for ciprofloxacin following exposure to ciprofloxacin. Gene expression was assessed by quantitative real time PCR. Gene alteration assessment was conducted by PCR amplification and DNA sequencing. Results showed that the expression of recA was increased in 5 mutants. This overexpression is not related to gene alteration, and enhances the expression of polB and umuCD genes encoding nonmutagenic and mutagenic polymerases, respectively. The direct relationship between the level of SOS expression and the level of resistance to ciprofloxacin was also indicated. It was concluded that novel therapeutic strategy that inhibits RecA activity would enhance the efficiency of common antibiotics against pathogenic bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    Science.gov (United States)

    Hong, Pei-Ying; Al-Jassim, Nada; Ansari, Mohd Ikram; Mackie, Roderick I.

    2013-01-01

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water. PMID:27029309

  2. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying; Aljassim, Nada I.; Ansari, Mohd Ikram; Mackie, Roderick

    2013-01-01

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  3. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Roderick I. Mackie

    2013-07-01

    Full Text Available Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  4. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying

    2013-07-31

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  5. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens

    DEFF Research Database (Denmark)

    Jiang, Xinglin; Ellabaan, Mostafa M Hashim; Charusanti, Pep

    2017-01-01

    It has been hypothesized that some antibiotic resistance genes (ARGs) found in pathogenic bacteria derive from antibiotic-producing actinobacteria. Here we provide bioinformatic and experimental evidence supporting this hypothesis. We identify genes in proteobacteria, including some pathogens...... and experimentally test a 'carry-back' mechanism for the transfer, involving conjugative transfer of a carrier sequence from proteobacteria to actinobacteria, recombination of the carrier sequence with the actinobacterial ARG, followed by natural transformation of proteobacteria with the carrier-sandwiched ARG. Our...... results support the existence of ancient and, possibly, recent transfers of ARGs from antibiotic-producing actinobacteria to proteobacteria, and provide evidence for a defined mechanism....

  6. Genetic recombination as a major cause of mutagenesis in the human globin gene clusters.

    Science.gov (United States)

    Borg, Joseph; Georgitsi, Marianthi; Aleporou-Marinou, Vassiliki; Kollia, Panagoula; Patrinos, George P

    2009-12-01

    Homologous recombination is a frequent phenomenon in multigene families and as such it occurs several times in both the alpha- and beta-like globin gene families. In numerous occasions, genetic recombination has been previously implicated as a major mechanism that drives mutagenesis in the human globin gene clusters, either in the form of unequal crossover or gene conversion. Unequal crossover results in the increase or decrease of the human globin gene copies, accompanied in the majority of cases with minor phenotypic consequences, while gene conversion contributes either to maintaining sequence homogeneity or generating sequence diversity. The role of genetic recombination, particularly gene conversion in the evolution of the human globin gene families has been discussed elsewhere. Here, we summarize our current knowledge and review existing experimental evidence outlining the role of genetic recombination in the mutagenic process in the human globin gene families.

  7. Methods for simultaneously identifying coherent local clusters with smooth global patterns in gene expression profiles

    Directory of Open Access Journals (Sweden)

    Lee Yun-Shien

    2008-03-01

    Full Text Available Abstract Background The hierarchical clustering tree (HCT with a dendrogram 1 and the singular value decomposition (SVD with a dimension-reduced representative map 2 are popular methods for two-way sorting the gene-by-array matrix map employed in gene expression profiling. While HCT dendrograms tend to optimize local coherent clustering patterns, SVD leading eigenvectors usually identify better global grouping and transitional structures. Results This study proposes a flipping mechanism for a conventional agglomerative HCT using a rank-two ellipse (R2E, an improved SVD algorithm for sorting purpose seriation by Chen 3 as an external reference. While HCTs always produce permutations with good local behaviour, the rank-two ellipse seriation gives the best global grouping patterns and smooth transitional trends. The resulting algorithm automatically integrates the desirable properties of each method so that users have access to a clustering and visualization environment for gene expression profiles that preserves coherent local clusters and identifies global grouping trends. Conclusion We demonstrate, through four examples, that the proposed method not only possesses better numerical and statistical properties, it also provides more meaningful biomedical insights than other sorting algorithms. We suggest that sorted proximity matrices for genes and arrays, in addition to the gene-by-array expression matrix, can greatly aid in the search for comprehensive understanding of gene expression structures. Software for the proposed methods can be obtained at http://gap.stat.sinica.edu.tw/Software/GAP.

  8. Hessian regularization based non-negative matrix factorization for gene expression data clustering.

    Science.gov (United States)

    Liu, Xiao; Shi, Jun; Wang, Congzhi

    2015-01-01

    Since a key step in the analysis of gene expression data is to detect groups of genes that have similar expression patterns, clustering technique is then commonly used to analyze gene expression data. Data representation plays an important role in clustering analysis. The non-negative matrix factorization (NMF) is a widely used data representation method with great success in machine learning. Although the traditional manifold regularization method, Laplacian regularization (LR), can improve the performance of NMF, LR still suffers from the problem of its weak extrapolating power. Hessian regularization (HR) is a newly developed manifold regularization method, whose natural properties make it more extrapolating, especially for small sample data. In this work, we propose the HR-based NMF (HR-NMF) algorithm, and then apply it to represent gene expression data for further clustering task. The clustering experiments are conducted on five commonly used gene datasets, and the results indicate that the proposed HR-NMF outperforms LR-based NMM and original NMF, which suggests the potential application of HR-NMF for gene expression data.

  9. A remarkably stable TipE gene cluster: evolution of insect Para sodium channel auxiliary subunits

    Directory of Open Access Journals (Sweden)

    Li Jia

    2011-11-01

    Full Text Available Abstract Background First identified in fruit flies with temperature-sensitive paralysis phenotypes, the Drosophila melanogaster TipE locus encodes four voltage-gated sodium (NaV channel auxiliary subunits. This cluster of TipE-like genes on chromosome 3L, and a fifth family member on chromosome 3R, are important for the optional expression and functionality of the Para NaV channel but appear quite distinct from auxiliary subunits in vertebrates. Here, we exploited available arthropod genomic resources to trace the origin of TipE-like genes by mapping their evolutionary histories and examining their genomic architectures. Results We identified a remarkably conserved synteny block of TipE-like orthologues with well-maintained local gene arrangements from 21 insect species. Homologues in the water flea, Daphnia pulex, suggest an ancestral pancrustacean repertoire of four TipE-like genes; a subsequent gene duplication may have generated functional redundancy allowing gene losses in the silk moth and mosquitoes. Intronic nesting of the insect TipE gene cluster probably occurred following the divergence from crustaceans, but in the flour beetle and silk moth genomes the clusters apparently escaped from nesting. Across Pancrustacea, TipE gene family members have experienced intronic nesting, escape from nesting, retrotransposition, translocation, and gene loss events while generally maintaining their local gene neighbourhoods. D. melanogaster TipE-like genes exhibit coordinated spatial and temporal regulation of expression distinct from their host gene but well-correlated with their regulatory target, the Para NaV channel, suggesting that functional constraints may preserve the TipE gene cluster. We identified homology between TipE-like NaV channel regulators and vertebrate Slo-beta auxiliary subunits of big-conductance calcium-activated potassium (BKCa channels, which suggests that ion channel regulatory partners have evolved distinct lineage

  10. A novel resistance gene, lnu(H), conferring resistance to lincosamides in Riemerella anatipestifer CH-2.

    Science.gov (United States)

    Luo, Hong-Yan; Liu, Ma-Feng; Wang, Ming-Shu; Zhao, Xin-Xin; Jia, Ren-Yong; Chen, Shun; Sun, Kun-Feng; Yang, Qiao; Wu, Ying; Chen, Xiao-Yue; Biville, Francis; Zou, Yuan-Feng; Jing, Bo; Cheng, An-Chun; Zhu, De-Kang

    2018-01-01

    The Gram-negative bacterium Riemerella anatipestifer CH-2 is resistant to lincosamides, having a lincomycin (LCM) minimum inhibitory concentration (MIC) of 128 µg/mL. The G148_1775 gene of R. anatipestifer CH-2, designated lnu(H), encodes a 260-amino acid protein with ≤41% identity to other reported lincosamide nucleotidylyltransferases. Escherichia coli Rosetta TM (DE3) containing the pBAD24-lnu(H) plasmid showed four- and two-fold increases in the MICs of LCM and clindamycin (CLI), respectively. A kinetic assay of the purified Lnu(H) enzyme for LCM and CLI showed that the protein could inactive lincosamides. Mass spectrometry analysis demonstrated that the Lnu(H) enzyme catalysed adenylylation of lincosamides. In addition, an lnu(H) gene deletion strain exhibited 512- and 32-fold decreases in LCM and CLI MICs, respectively. The wild-type level of lincosamide resistance could be restored by complementation with a shuttle plasmid carrying the lnu(H) gene. The transformant R. anatipestifer ATCC 11845 [lnu(H)] acquired by natural transformation also exhibited high-level lincosamide resistance. Moreover, among 175 R. anatipestifer field isolates, 56 (32.0%) were positive for the lnu(H) gene by PCR. In conclusion, Lnu(H) is a novel lincosamide nucleotidylyltransferase that inactivates LCM and CLI by nucleotidylylation, thus conferring high-level lincosamide resistance to R. anatipestifer CH-2. Copyright © 2017. Published by Elsevier B.V.

  11. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria

    DEFF Research Database (Denmark)

    Adelowo, Olawale O.; Fagade, Obasola E.; Agersø, Yvonne

    2014-01-01

    %, ampicillin 36%, spectinomycin 28%, nalidixic acid 25%, chloramphenicol 22%, neomycin 14%, gentamicin 8%, amoxicillin-clavulanate, ceftiofur, cefotaxime, colistin, florfenicol and apramycin 0%. Resistance genes found among the isolates include bla-TEM (85%), sul2 (67%), sul3 (17%), aadA (65%), strA (70%), str...

  12. Antimicrobial susceptibility and occurrence of resistance genes among Salmonella enterica serovar Weltevreden from different countries

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Lertworapreecha, M.; Evans, M.C.

    2003-01-01

    and gentamicin. All nine ampicillin-resistant isolates contained a sequence similar to the bla(TEM-1b) gene, one of the eight chloramphenicol-resistant isolates a sequence similar to the catA1 gene, all three neomycin-resistant isolates a sequence similar to the aphA-2 gene, 16 (73%) of the 22 streptomycin...... isolates were examined for susceptibility to antimicrobial agents, and resistant isolates were examined for the presence of selected resistance genes by PCR. Results: Only 48 (9.5%) of the isolates were resistant to one or more of the antimicrobial agents tested. A low frequency of resistance was found...

  13. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury

    Directory of Open Access Journals (Sweden)

    Westerdahl Ann-Charlotte

    2010-06-01

    Full Text Available Abstract Background Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of modulatory inputs from the brain correlates with the development of spasticity. Results Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. Consensus clustering identifies 12 gene clusters with distinct time expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials in the late phase of the injury response. Transcription factor motif analysis identifies differentially expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified biological processes and their associated genes underlying the changes in motor neuron excitability. Conclusions This analysis provides important clues to the underlying mechanisms of transcriptional regulation responsible for the increased excitability observed in motor neurons in the late chronic phase of spinal cord injury suggesting alternative targets for treatment of spinal cord injury. Several transcription factors were identified as potential regulators of gene clusters containing elements related to motor neuron hyper

  14. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury.

    Science.gov (United States)

    Ryge, Jesper; Winther, Ole; Wienecke, Jacob; Sandelin, Albin; Westerdahl, Ann-Charlotte; Hultborn, Hans; Kiehn, Ole

    2010-06-09

    Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of modulatory inputs from the brain correlates with the development of spasticity. Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. Consensus clustering identifies 12 gene clusters with distinct time expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials in the late phase of the injury response. Transcription factor motif analysis identifies differentially expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified biological processes and their associated genes underlying the changes in motor neuron excitability. This analysis provides important clues to the underlying mechanisms of transcriptional regulation responsible for the increased excitability observed in motor neurons in the late chronic phase of spinal cord injury suggesting alternative targets for treatment of spinal cord injury. Several transcription factors were identified as potential regulators of gene clusters containing elements related to motor neuron hyper-excitability, the manipulation of which potentially could be

  15. Genome Comparison of Erythromycin Resistant Campylobacter from Turkeys Identifies Hosts and Pathways for Horizontal Spread of erm(B Genes

    Directory of Open Access Journals (Sweden)

    Diego Florez-Cuadrado

    2017-11-01

    Full Text Available Pathogens in the genus Campylobacter are the most common cause of food-borne bacterial gastro-enteritis. Campylobacteriosis, caused principally by Campylobacter jejuni and Campylobacter coli, is transmitted to humans by food of animal origin, especially poultry. As for many pathogens, antimicrobial resistance in Campylobacter is increasing at an alarming rate. Erythromycin prescription is the treatment of choice for clinical cases requiring antimicrobial therapy but this is compromised by mobility of the erythromycin resistance gene erm(B between strains. Here, we evaluate resistance to six antimicrobials in 170 Campylobacter isolates (133 C. coli and 37 C. jejuni from turkeys. Erythromycin resistant isolates (n = 85; 81 C. coli and 4 C. jejuni were screened for the presence of the erm(B gene, that has not previously been identified in isolates from turkeys. The genomes of two positive C. coli isolates were sequenced and in both isolates the erm(B gene clustered with resistance determinants against aminoglycosides plus tetracycline, including aad9, aadE, aph(2″-IIIa, aph(3′-IIIa, and tet(O genes. Comparative genomic analysis identified identical erm(B sequences among Campylobacter from turkeys, Streptococcus suis from pigs and Enterococcus faecium and Clostridium difficile from humans. This is consistent with multiple horizontal transfer events among different bacterial species colonizing turkeys. This example highlights the potential for dissemination of antimicrobial resistance across bacterial species boundaries which may compromise their effectiveness in antimicrobial therapy.

  16. Form gene clustering method about pan-ethnic-group products based on emotional semantic

    Science.gov (United States)

    Chen, Dengkai; Ding, Jingjing; Gao, Minzhuo; Ma, Danping; Liu, Donghui

    2016-09-01

    The use of pan-ethnic-group products form knowledge primarily depends on a designer's subjective experience without user participation. The majority of studies primarily focus on the detection of the perceptual demands of consumers from the target product category. A pan-ethnic-group products form gene clustering method based on emotional semantic is constructed. Consumers' perceptual images of the pan-ethnic-group products are obtained by means of product form gene extraction and coding and computer aided product form clustering technology. A case of form gene clustering about the typical pan-ethnic-group products is investigated which indicates that the method is feasible. This paper opens up a new direction for the future development of product form design which improves the agility of product design process in the era of Industry 4.0.

  17. Resistivity recovery simulations of electron-irradiated iron: Kinetic Monte Carlo versus cluster dynamics

    International Nuclear Information System (INIS)

    Dalla Torre, J.; Fu, C.-C.; Willaime, F.; Barbu, A.; Bocquet, J.-L.

    2006-01-01

    The isochronal resistivity recovery in high purity α-iron irradiated by electrons was successfully reproduced by a multiscale modelling approach. The stability and mobility of small self-defect clusters determined by ab initio methods were used as input data for an event based Kinetic Monte Carlo (KMC) model, used to explore the defect population evolution during the annealing and to extract the resistivity recovery peaks. In this paper, we investigate the possibility of using an efficient mesoscale model, the Cluster Dynamics (CD), instead of KMC in this approach. The comparison between the two methods for various CD initial conditions shows the importance of spatial correlations between defects, which are neglected in the CD model. However, using appropriate initial conditions, e.g. starting from the concentration of Frenkel pairs after the uncorrelated stage I E , the CD model captures the main characteristics of subsequent defect population evolution, and it can therefore be used for fast and semi-quantitative investigations

  18. Evolution of resistance against CRISPR/Cas9 gene drive

    OpenAIRE

    Clark, Andrew; Unckless, Robert; Messer, Philipp

    2016-01-01

    CRISPR/Cas9 gene drive (CGD) promises to be a highly adaptable approach for spreading genetically engineered alleles throughout a species, even if those alleles impair reproductive success. CGD has been shown to be effective in laboratory crosses of insects, yet it remains unclear to what extent potential resistance mechanisms will affect the dynamics of this process in large natural populations. Here we develop a comprehensive population genetic framework for modeling CGD dynamics, which inc...

  19. Evaluation of gene-expression clustering via mutual information distance measure

    Directory of Open Access Journals (Sweden)

    Maimon Oded

    2007-03-01

    Full Text Available Abstract Background The definition of a distance measure plays a key role in the evaluation of different clustering solutions of gene expression profiles. In this empirical study we compare different clustering solutions when using the Mutual Information (MI measure versus the use of the well known Euclidean distance and Pearson correlation coefficient. Results Relying on several public gene expression datasets, we evaluate the homogeneity and separation scores of different clustering solutions. It was found that the use of the MI measure yields a more significant differentiation among erroneous clustering solutions. The proposed measure was also used to analyze the performance of several known clustering algorithms. A comparative study of these algorithms reveals that their "best solutions" are ranked almost oppositely when using different distance measures, despite the found correspondence between these measures when analysing the averaged scores of groups of solutions. Conclusion In view of the results, further attention should be paid to the selection of a proper distance measure for analyzing the clustering of gene expression data.

  20. Inactivation Effect of Antibiotic-Resistant Gene Using Chlorine Disinfection

    Directory of Open Access Journals (Sweden)

    Takashi Furukawa

    2017-07-01

    Full Text Available The aim of this study was to elucidate the inactivation effects on the antibiotic-resistance gene (vanA of vancomycin-resistant enterococci (VRE using chlorination, a disinfection method widely used in various water treatment facilities. Suspensions of VRE were prepared by adding VRE to phosphate-buffered saline, or the sterilized secondary effluent of a wastewater treatment plant. The inactivation experiments were carried out at several chlorine concentrations and stirring time. Enterococci concentration and presence of vanA were determined. The enterococci concentration decreased as chlorine concentrations and stirring times increased, with more than 7.0 log reduction occurring under the following conditions: 40 min stirring at 0.5 mg Cl2/L, 20 min stirring at 1.0 mg Cl2/L, and 3 min stirring at 3.0 mg Cl2/L. In the inactivation experiment using VRE suspended in secondary effluent, the culturable enterococci required much higher chlorine concentration and longer treatment time for complete disinfection than the cases of suspension of VRE. However, vanA was detected in all chlorinated suspensions of VRE, even in samples where no enterococcal colonies were present on the medium agar plate. The chlorine disinfection was not able to destroy antibiotic-resistance genes, though it can inactivate and decrease bacterial counts of antibiotic-resistant bacteria (ARB. Therefore, it was suggested that remaining ARB and/or antibiotic-resistance gene in inactivated bacterial cells after chlorine disinfection tank could be discharged into water environments.

  1. Occurrence of antibiotic resistance and characterization of resistant genes and integrons in Enterobacteriaceae isolated from integrated fish farms south China

    Science.gov (United States)

    Su, Hao-Chang; Ying, Guang-Guo; Tao, Ran; Zhang, Rui-Quan; Fogarty, Lisa R.; Kolpin, Dana W.

    2011-01-01

    Antibiotics are still widely applied in animal husbandry to prevent diseases and used as feed additives to promote animal growth. This could result in antibiotic resistance to bacteria and antibiotic residues in animals. In this paper, Enterobacteriaceae isolated from four integrated fish farms in Zhongshan, South China were tested for antibiotic resistance, tetracycline resistance genes, sulfonamide resistance genes, and class 1 integrons. The Kirby-Bauer disk diffusion method and polymerase chain reaction (PCR) assays were carried out to test antibiotic susceptibility and resistance genes, respectively. Relatively high antibiotic resistance frequencies were found, especially for ampicillin (80%), tetracycline (52%), and trimethoprim (50%). Out of 203 Enterobacteriaceae isolates, 98.5% were resistant to one or more antibiotics tested. Multiple antibiotic resistance (MAR) was found highest in animal manures with a MAR index of 0.56. Tetracycline resistance genes (tet(A), tet(C)) and sulfonamide resistance genes (sul2) were detected in more than 50% of the isolates. The intI1 gene was found in 170 isolates (83.7%). Both classic and non-classic class 1 integrons were found. Four genes, aadA5, aadA22, dfr2, and dfrA17, were detected. To our knowledge, this is the first report for molecular characterization of antibiotic resistance genes in Enterobacteriaceae isolated from integrated fish farms in China and the first time that gene cassette array dfrA17-aadA5 has been detected in such fish farms. Results of this study indicated that fish farms may be a reservoir of highly diverse and abundant antibiotic resistant genes and gene cassettes. Integrons may play a key role in multiple antibiotic resistances posing potential health risks to the general public and aquaculture.

  2. Sulfonamide-Resistant Bacteria and Their Resistance Genes in Soils Fertilized with Manures from Jiangsu Province, Southeastern China

    OpenAIRE

    Wang, Na; Yang, Xiaohong; Jiao, Shaojun; Zhang, Jun; Ye, Boping; Gao, Shixiang

    2014-01-01

    Antibiotic-resistant bacteria and genes are recognized as new environmental pollutants that warrant special concern. There were few reports on veterinary antibiotic-resistant bacteria and genes in China. This work systematically analyzed the prevalence and distribution of sulfonamide resistance genes in soils from the environments around poultry and livestock farms in Jiangsu Province, Southeastern China. The results showed that the animal manure application made the spread and abundance of a...

  3. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae

    Science.gov (United States)

    2013-01-01

    Background Secondary metabolite production, a hallmark of filamentous fungi, is an expanding area of research for the Aspergilli. These compounds are potent chemicals, ranging from deadly toxins to therapeutic antibiotics to potential anti-cancer drugs. The genome sequences for multiple Aspergilli have been determined, and provide a wealth of predictive information about secondary metabolite production. Sequence analysis and gene overexpression strategies have enabled the discovery of novel secondary metabolites and the genes involved in their biosynthesis. The Aspergillus Genome Database (AspGD) provides a central repository for gene annotation and protein information for Aspergillus species. These annotations include Gene Ontology (GO) terms, phenotype data, gene names and descriptions and they are crucial for interpreting both small- and large-scale data and for aiding in the design of new experiments that further Aspergillus research. Results We have manually curated Biological Process GO annotations for all genes in AspGD with recorded functions in secondary metabolite production, adding new GO terms that specifically describe each secondary metabolite. We then leveraged these new annotations to predict roles in secondary metabolism for genes lacking experimental characterization. As a starting point for manually annotating Aspergillus secondary metabolite gene clusters, we used antiSMASH (antibiotics and Secondary Metabolite Analysis SHell) and SMURF (Secondary Metabolite Unknown Regions Finder) algorithms to identify potential clusters in A. nidulans, A. fumigatus, A. niger and A. oryzae, which we subsequently refined through manual curation. Conclusions This set of 266 manually curated secondary metabolite gene clusters will facilitate the investigation of novel Aspergillus secondary metabolites. PMID:23617571

  4. Unique nucleotide polymorphism of ankyrin gene cluster in ...

    Indian Academy of Sciences (India)

    gene order is nonrandomly distributed in eukaryote genomes. (Lercher et al. 2002 ... Birth in a birth-and-death process relates to the origin of paralogues, presumably ... are small, or the rate of concerted evolution is very slow (Nei et al. 2000).

  5. In silico exploration of Red Sea Bacillus genomes for natural product biosynthetic gene clusters

    KAUST Repository

    Othoum, Ghofran K

    2018-05-22

    BackgroundThe increasing spectrum of multidrug-resistant bacteria is a major global public health concern, necessitating discovery of novel antimicrobial agents. Here, members of the genus Bacillus are investigated as a potentially attractive source of novel antibiotics due to their broad spectrum of antimicrobial activities. We specifically focus on a computational analysis of the distinctive biosynthetic potential of Bacillus paralicheniformis strains isolated from the Red Sea, an ecosystem exposed to adverse, highly saline and hot conditions.ResultsWe report the complete circular and annotated genomes of two Red Sea strains, B. paralicheniformis Bac48 isolated from mangrove mud and B. paralicheniformis Bac84 isolated from microbial mat collected from Rabigh Harbor Lagoon in Saudi Arabia. Comparing the genomes of B. paralicheniformis Bac48 and B. paralicheniformis Bac84 with nine publicly available complete genomes of B. licheniformis and three genomes of B. paralicheniformis, revealed that all of the B. paralicheniformis strains in this study are more enriched in nonribosomal peptides (NRPs). We further report the first computationally identified trans-acyltransferase (trans-AT) nonribosomal peptide synthetase/polyketide synthase (PKS/ NRPS) cluster in strains of this species.ConclusionsB. paralicheniformis species have more genes associated with biosynthesis of antimicrobial bioactive compounds than other previously characterized species of B. licheniformis, which suggests that these species are better potential sources for novel antibiotics. Moreover, the genome of the Red Sea strain B. paralicheniformis Bac48 is more enriched in modular PKS genes compared to B. licheniformis strains and other B. paralicheniformis strains. This may be linked to adaptations that strains surviving in the Red Sea underwent to survive in the relatively hot and saline ecosystems.

  6. Microarray-based analysis of IncA/C plasmid-associated genes from multidrug-resistant Salmonella enterica.

    Science.gov (United States)

    Lindsey, Rebecca L; Frye, Jonathan G; Fedorka-Cray, Paula J; Meinersmann, Richard J

    2011-10-01

    In the family Enterobacteriaceae, plasmids have been classified according to 27 incompatibility (Inc) or replicon types that are based on the inability of different plasmids with the same replication mechanism to coexist in the same cell. Certain replicon types such as IncA/C are associated with multidrug resistance (MDR). We developed a microarray that contains 286 unique 70-mer oligonucleotide probes based on sequences from five IncA/C plasmids: pYR1 (Yersinia ruckeri), pPIP1202 (Yersinia pestis), pP99-018 (Photobacterium damselae), pSN254 (Salmonella enterica serovar Newport), and pP91278 (Photobacterium damselae). DNA from 59 Salmonella enterica isolates was hybridized to the microarray and analyzed for the presence or absence of genes. These isolates represented 17 serovars from 14 different animal hosts and from different geographical regions in the United States. Qualitative cluster analysis was performed using CLUSTER 3.0 to group microarray hybridization results. We found that IncA/C plasmids occurred in two lineages distinguished by a major insertion-deletion (indel) region that contains genes encoding mostly hypothetical proteins. The most variable genes were represented by transposon-associated genes as well as four antimicrobial resistance genes (aphA, merP, merA, and aadA). Sixteen mercury resistance genes were identified and highly conserved, suggesting that mercury ion-related exposure is a stronger pressure than anticipated. We used these data to construct a core IncA/C genome and an accessory genome. The results of our studies suggest that the transfer of antimicrobial resistance determinants by transfer of IncA/C plasmids is somewhat less common than exchange within the plasmids orchestrated by transposable elements, such as transposons, integrating and conjugative elements (ICEs), and insertion sequence common regions (ISCRs), and thus pose less opportunity for exchange of antimicrobial resistance.

  7. Identification of new genes in a cell envelope-cell division gene cluster of Escherichia coli: cell envelope gene murG.

    Science.gov (United States)

    Salmond, G P; Lutkenhaus, J F; Donachie, W D

    1980-01-01

    We report the identification, cloning, and mapping of a new cell envelope gene, murG. This lies in a group of five genes of similar phenotype (in the order murE murF murG murC ddl) all concerned with peptidoglycan biosynthesis. This group is in a larger cluster of at least 10 genes, all of which are involved in some way with cell envelope growth. Images PMID:6998962

  8. Identification of Gene Resistance to Avian InfluenzaVirus (Mx Gene among Wild Waterbirds

    Directory of Open Access Journals (Sweden)

    Dewi Elfidasari

    2013-04-01

    Full Text Available The Mx gene is an antiviral gene used to determine the resistance or the susceptibility to different types of viruses, including the Avian Influenza (AI virus subtype H5N1. The AI virus subtype H5N1 infection in chickens causes Mx gene polymorphism. The Mx+ gene shows resistant to the AIvirus subtype H5N1, whereas the Mx-gene shows signs of susceptible. The objective of thisresearch was to detect the Mxgene in wild aquatic birds using the Polymerase Chain Reaction Restriction Fragment Length Polymorphism (PCR-RFLP method with the primer pairs F2 and NE-R2/R and the RsaI restriction enzyme. DNA samples were obtained from eight species of wild waterbirds with positive and negative exposure to the AI virus subtype H5N1. DNA amplification results showed that the Mxgene in wild aquatic birds is found in a 100 bp fragment, which is the same as the Mx gene found in chickens. However, unlike chickens, the Mxgene in wild aquatic birds did not show any polymorphism. This study proves that Mx- based resistance to AI virus subtype H5N1 in different in wild birds than in chickens.

  9. A genome-wide analysis of nonribosomal peptide synthetase gene clusters and their peptides in a Planktothrix rubescens strain

    Directory of Open Access Journals (Sweden)

    Nederbragt Alexander J

    2009-08-01

    Full Text Available Abstract Background Cyanobacteria often produce several different oligopeptides, with unknown biological functions, by nonribosomal peptide synthetases (NRPS. Although some cyanobacterial NRPS gene cluster types are well described, the entire NRPS genomic content within a single cyanobacterial strain has never been investigated. Here we have combined a genome-wide analysis using massive parallel pyrosequencing ("454" and mass spectrometry screening of oligopeptides produced in the strain Planktothrix rubescens NIVA CYA 98 in order to identify all putative gene clusters for oligopeptides. Results Thirteen types of oligopeptides were uncovered by mass spectrometry (MS analyses. Microcystin, cyanopeptolin and aeruginosin synthetases, highly similar to already characterized NRPS, were present in the genome. Two novel NRPS gene clusters were associated with production of anabaenopeptins and microginins, respectively. Sequence-depth of the genome and real-time PCR data revealed three copies of the microginin gene cluster. Since NRPS gene cluster candidates for microviridin and oscillatorin synthesis could not be found, putative (gene encoded precursor peptide sequences to microviridin and oscillatorin were found in the genes mdnA and oscA, respectively. The genes flanking the microviridin and oscillatorin precursor genes encode putative modifying enzymes of the precursor oligopeptides. We therefore propose ribosomal pathways involving modifications and cyclisation for microviridin and oscillatorin. The microviridin, anabaenopeptin and cyanopeptolin gene clusters are situated in close proximity to each other, constituting an oligopeptide island. Conclusion Altogether seven nonribosomal peptide synthetase (NRPS gene clusters and two gene clusters putatively encoding ribosomal oligopeptide biosynthetic pathways were revealed. Our results demonstrate that whole genome shotgun sequencing combined with MS-directed determination of oligopeptides successfully

  10. Sequencing, physical organization and kinetic expression of the patulin biosynthetic gene cluster from Penicillium expansum

    International Nuclear Information System (INIS)

    Tannous, J.; El Khoury, R.; El Khoury, A.; Lteif, R.; Snini, S.; Lippi, Y.; Oswald, I.; Olivier, P.; Atoui, A.

    2014-01-01

    Patulin is a polyketide-derived mycotoxin produced by numerous filamentous fungi. Among them, Penicillium expansum is by far the most problematic species. This fungus is a destructive phytopathogen capable of growing on fruit, provoking the blue mold decay of apples and producing significant amounts of patulin. The biosynthetic pathway of this mycotoxin is chemically well-characterized, but its genetic bases remain largely unknown with only few characterized genes in less economic relevant species. The present study consisted of the identification and positional organization of the patulin gene cluster in P. expansum strain NRRL 35695. Several amplification reactions were performed with degenerative primers that were designed based on sequences from the orthologous genes available in other species. An improved genome Walking approach was used in order to sequence the remaining adjacent genes of the cluster. RACE-PCR was also carried out from mRNAs to determine the start and stop codons of the coding sequences. The patulin gene cluster in P. expansum consists of 15 genes in the following order: patH, patG, patF, patE, patD, patC, patB, patA, patM, patN, patO, patL, patI, patJ, and patK. These genes share 60–70% of identity with orthologous genes grouped differently, within a putative patulin cluster described in a non-producing strain of Aspergillus clavatus. The kinetics of patulin cluster genes expression was studied under patulin-permissive conditions (natural apple-based medium) and patulin-restrictive conditions (Eagle's minimal essential medium), and demonstrated a significant association between gene expression and patulin production. In conclusion, the sequence of the patulin cluster in P. expansum constitutes a key step for a better understanding of themechanisms leading to patulin production in this fungus. It will allow the role of each gene to be elucidated, and help to define strategies to reduce patulin production in apple-based products

  11. Isolation of Hox cluster genes from insects reveals an accelerated sequence evolution rate.

    Directory of Open Access Journals (Sweden)

    Heike Hadrys

    Full Text Available Among gene families it is the Hox genes and among metazoan animals it is the insects (Hexapoda that have attracted particular attention for studying the evolution of development. Surprisingly though, no Hox genes have been isolated from 26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and 22% from Diptera. We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx from six insect orders, which are crucial to insect phylogenetics. These new gene sequences provide a first step towards comparative Hox gene studies in insects. Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate and species radiation success with insects showing the highest rate of homeobox sequence evolution.

  12. Presence of antiseptic resistance genes in porcine methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Wong, T Z; Zhang, M; O'Donoghue, M; Boost, M

    2013-03-23

    Numerous studies have documented the presence of methicillin-resistant Staphylococcus aureus (MRSA) in meat-producing animals, which has led to concern about its spread into the community. Disinfectants play an important role in reduction of contamination in both animal husbandry and food-preparation, helping control spread of organisms from foodstuffs, including raw meat. Plasmid-borne antiseptic resistance (AR) genes increasing tolerance to several disinfectants have been reported in S. aureus of human origin (qacA/B and smr) and from bovine, equine, and caprine staphylococcal isolates (qacG, qacH, and qacJ). This study investigated the presence of AR genes in porcine MRSA isolates. Plasmid DNA from 100 MRSA ST9 strains isolated from pig carcasses was amplified for the presence of AR genes. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) to benzalkonium chloride (BC) and chlorhexidine gluconate (CHX) were determined in AR gene-positive isolates. qacG was present in 45 strains, eight of which also harbored smr. No strains carried qacA/B, qacH or qacJ. Presence of smr increased MICs to both BC and CHX and MBCs of CHX, but qacG presence only resulted in elevated MBC for CHX. This is the first report of AR genes from a porcine source. AR gene positivity has previously been associated with methicillin resistance and AR gene presence in these strains may increase their ability to persist in the environment. Improved implementation of hygiene measures during transportation and pre- and post-slaughter should be considered to prevent spread in the community. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Molecular comparison of the structural proteins encoding gene clusters of two related Lactobacillus delbrueckii bacteriophages.

    Science.gov (United States)

    Vasala, A; Dupont, L; Baumann, M; Ritzenthaler, P; Alatossava, T

    1993-01-01

    Virulent phage LL-H and temperate phage mv4 are two related bacteriophages of Lactobacillus delbrueckii. The gene clusters encoding structural proteins of these two phages have been sequenced and further analyzed. Six open reading frames (ORF-1 to ORF-6) were detected. Protein sequencing and Western immunoblotting experiments confirmed that ORF-3 (g34) encoded the main capsid protein Gp34. The presence of a putative late promoter in front of the phage LL-H g34 gene was suggested by primer extension experiments. Comparative sequence analysis between phage LL-H and phage mv4 revealed striking similarities in the structure and organization of this gene cluster, suggesting that the genes encoding phage structural proteins belong to a highly conservative module. Images PMID:8497043

  14. A double EPSPS gene mutation endowing glyphosate resistance shows a remarkably high resistance cost.

    Science.gov (United States)

    Han, Heping; Vila-Aiub, Martin M; Jalaludin, Adam; Yu, Qin; Powles, Stephen B

    2017-12-01

    A novel glyphosate resistance double point mutation (T102I/P106S, TIPS) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene has been recently identified for the first time only in the weed species Eleusine indica. Quantification of plant resistance cost associated with the TIPS and the often reported glyphosate resistance single P106S mutation was performed. A significant resistance cost (50% in seed number currency) associated with the homozygous TIPS but not the homozygous P106S EPSPS variant was identified in E. indica plants. The resistance cost associated with the TIPS mutation escalated to 85% in plants under resource competition with rice crops. The resistance cost was not detected in nonhomozygous TIPS plants denoting the recessive nature of the cost associated with the TIPS allele. An excess of 11-fold more shikimate and sixfold more quinate in the shikimate pathway was detected in TIPS plants in the absence of glyphosate treatment compared to wild type, whereas no changes in these compounds were observed in P106S plants when compared to wild type. TIPS plants show altered metabolite levels in several other metabolic pathways that may account for the expression of the observed resistance cost. © 2017 John Wiley & Sons Ltd.

  15. The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum.

    Science.gov (United States)

    Schnippenkoetter, Wendelin; Lo, Clive; Liu, Guoquan; Dibley, Katherine; Chan, Wai Lung; White, Jodie; Milne, Ricky; Zwart, Alexander; Kwong, Eunjung; Keller, Beat; Godwin, Ian; Krattinger, Simon G; Lagudah, Evans

    2017-11-01

    The ability of the wheat Lr34 multipathogen resistance gene (Lr34res) to function across a wide taxonomic boundary was investigated in transgenic Sorghum bicolor. Increased resistance to sorghum rust and anthracnose disease symptoms following infection with the biotrophic pathogen Puccinia purpurea and the hemibiotroph Colletotrichum sublineolum, respectively, occurred in transgenic plants expressing the Lr34res ABC transporter. Transgenic sorghum lines that highly expressed the wheat Lr34res gene exhibited immunity to sorghum rust compared to the low-expressing single copy Lr34res genotype that conferred partial resistance. Pathogen-induced pigmentation mediated by flavonoid phytoalexins was evident on transgenic sorghum leaves following P. purpurea infection within 24-72 h, which paralleled Lr34res gene expression. Elevated expression of flavone synthase II, flavanone 4-reductase and dihydroflavonol reductase genes which control the biosynthesis of flavonoid phytoalexins characterized the highly expressing Lr34res transgenic lines 24-h post-inoculation with P. purpurea. Metabolite analysis of mesocotyls infected with C. sublineolum showed increased levels of 3-deoxyanthocyanidin metabolites were associated with Lr34res expression, concomitant with reduced symptoms of anthracnose. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Data mining and influential analysis of gene expression data for plant resistance gene identification in tomato (Solanum lycopersicum

    Directory of Open Access Journals (Sweden)

    Francisco Torres-Avilés

    2014-03-01

    Conclusion: Application of different statistical analyses to detect potential resistance genes reliably has shown to conduct interesting results that improve knowledge on molecular mechanisms of plant resistance to pathogens.

  17. Virulence Genes and Antimicrobial Resistance Profiles of Pasteurella multocida Strains Isolated from Rabbits in Brazil

    Directory of Open Access Journals (Sweden)

    Thais Sebastiana Porfida Ferreira

    2012-01-01

    Full Text Available Pasteurella multocida is responsible for a wide range of diseases in domestic animals. In rabbits, the agent is related to nasal discharge, pneumonia, otitis media, pyometra, orchitis, abscess, and septicemia. One hundred and forty rabbits with respiratory diseases from four rabbitries in São Paulo State, Brazil were evaluated for the detection of P. multocida in their nasal cavities. A total of twenty-nine animals were positive to P. multocida isolation, and 46 strains were selected and characterized by means of biochemical tests and PCR. P. multocida strains were tested for capsular type, virulence genes, and resistance profile. A total of 45.6% (21/46 of isolates belonged to capsular type A, and 54.34% (25/46 of the isolates were untypeable. None of the strains harboured toxA or pfhA genes. The frequency of the other twenty genes tested was variable, and the data generated was used to build a dendrogram, showing the relatedness of strains, which were clustered according to origin. Resistance revealed to be more common against sulfonamides and cotrimoxazole, followed by erythromycin, penicillin, and amoxicillin.

  18. Characterization of Antimicrobial Resistance Patterns and Detection of Virulence Genes in Campylobacter Isolates in Italy

    Science.gov (United States)

    Di Giannatale, Elisabetta; Di Serafino, Gabriella; Zilli, Katiuscia; Alessiani, Alessandra; Sacchini, Lorena; Garofolo, Giuliano; Aprea, Giuseppe; Marotta, Francesca

    2014-01-01

    Campylobacter has developed resistance to several antimicrobial agents over the years, including macrolides, quinolones and fluoroquinolones, becoming a significant public health hazard. A total of 145 strains derived from raw milk, chicken faeces, chicken carcasses, cattle faeces and human faeces collected from various Italian regions, were screened for antimicrobial susceptibility, molecular characterization (SmaI pulsed-field gel electrophoresis) and detection of virulence genes (sequencing and DNA microarray analysis). The prevalence of C. jejuni and C. coli was 62.75% and 37.24% respectively. Antimicrobial susceptibility revealed a high level of resistance for ciprofloxacin (62.76%), tetracycline (55.86%) and nalidixic acid (55.17%). Genotyping of Campylobacter isolates using PFGE revealed a total of 86 unique SmaI patterns. Virulence gene profiles were determined using a new microbial diagnostic microarray composed of 70-mer oligonucleotide probes targeting genes implicated in Campylobacter pathogenicity. Correspondence between PFGE and microarray clusters was observed. Comparisons of PFGE and virulence profiles reflected the high genetic diversity of the strains examined, leading us to speculate different degrees of pathogenicity inside Campylobacter populations. PMID:24556669

  19. [State-of-the-art status on airborne antibiotic resistant bacteria and antibiotic resistance genes].

    Science.gov (United States)

    Li, J; Yao, M S

    2018-04-06

    The world is facing more deaths due to increasing antibiotic-resistant bacterial infections and the shortage of new highly effective antibiotics, however the air media as its important transmission route has not been adequately studied. Based on the latest literature acquired in this work, we have discussed the state-of-the-art research progress of the concentration, distribution and spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in different environmental air media, and also analyzed some future prevention and control measures. The large use of antibiotics in the medical settings and animal husbandry places has resulted in higher abundances of ARB and ARGs in the relevant and surrounding atmosphere than in urban and general indoor air environments. ARGs can be spread by adhering to airborne particles, and researchers have also found that air media contain more abundant ARGs than other environmental media such as soil, water and sediment. It was suggested in this review that strengthening the monitoring, study on spreading factors and biological toxicity, and also research and development on pathogen accurate diagnosis and new green antibiotic are expected to help effectively monitor, prevent and control of the impacts of airborne resistant bacteria and resistance genes on both human and ecologies.

  20. Historical introgression of the downy mildew resistance gene Rpv12 from the Asian species Vitis amurensis into grapevine varieties.

    Directory of Open Access Journals (Sweden)

    Silvia Venuti

    Full Text Available The Amur grape (Vitis amurensis Rupr. thrives naturally in cool climates of Northeast Asia. Resistance against the introduced pathogen Plasmopara viticola is common among wild ecotypes that were propagated from Manchuria into Chinese vineyards or collected by Soviet botanists in Siberia, and used for the introgression of resistance into wine grapes (Vitis vinifera L.. A QTL analysis revealed a dominant gene Rpv12 that explained 79% of the phenotypic variance for downy mildew resistance and was inherited independently of other resistance genes. A Mendelian component of resistance-a hypersensitive response in leaves challenged with P. viticola-was mapped in an interval of 0.2 cM containing an array of coiled-coil NB-LRR genes on chromosome 14. We sequenced 10-kb genic regions in the Rpv12(+ haplotype and identified polymorphisms in 12 varieties of V. vinifera using next-generation sequencing. The combination of two SNPs in single-copy genes flanking the NB-LRR cluster distinguished the resistant haplotype from all others found in 200 accessions of V. vinifera, V. amurensis, and V. amurensis x V. vinifera crosses. The Rpv12(+ haplotype is shared by 15 varieties, the most ancestral of which are the century-old 'Zarja severa' and 'Michurinets'. Before this knowledge, the chromosome segment around Rpv12(+ became introgressed, shortened, and pyramided with another downy mildew resistance gene from North American grapevines (Rpv3 only by phenotypic selection. Rpv12(+ has an additive effect with Rpv3(+ to protect vines against natural infections, and confers foliar resistance to strains that are virulent on Rpv3(+ plants.

  1. Accurate prediction of secondary metabolite gene clusters in filamentous fungi

    DEFF Research Database (Denmark)

    Andersen, Mikael Rørdam; Nielsen, Jakob Blæsbjerg; Klitgaard, Andreas

    2013-01-01

    Biosynthetic pathways of secondary metabolites from fungi are currently subject to an intense effort to elucidate the genetic basis for these compounds due to their large potential within pharmaceutics and synthetic biochemistry. The preferred method is methodical gene deletions to identify...... used A. nidulans for our method development and validation due to the wealth of available biochemical data, but the method can be applied to any fungus with a sequenced and assembled genome, thus supporting further secondary metabolite pathway elucidation in the fungal kingdom....

  2. Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P.

    Science.gov (United States)

    Li, Huanhuan; Jiang, Bo; Wang, Jingchang; Lu, Yuqing; Zhang, Jinpeng; Pan, Cuili; Yang, Xinming; Li, Xiuquan; Liu, Weihua; Li, Lihui

    2017-01-01

    A physical map of Agropyron cristatum 2P chromosome was constructed for the first time and the novel powdery mildew resistance gene(s) from chromosome 2P was(were) also mapped. Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), a wild relative of common wheat, is highly resistant to powdery mildew. Previous studies showed that wheat-A. cristatum 2P disomic addition line II-9-3 displayed high resistance to powdery mildew, and the resistance was attributable to A. cristatum chromosome 2P. To utilize and physically map the powdery mildew resistance gene(s), 15 wheat-A. cristatum 2P translocation lines and three A. cristatum 2P deletion lines with different chromosomal segment sizes, obtained from II-9-3 using 60 Co-γ ray irradiation, were characterized using cytogenetic and molecular marker analysis. A. cristatum 2P chromosomal segments in the translocations were translocated to different wheat chromosomes, including 1A, 4A, 5A, 6A, 7A, 1B, 2B, 3B, 7B, 3D, 4D, and 6D. A physical map of the 2P chromosome was constructed with 82 STS markers, consisting of nine bins with 34 markers on 2PS and eight bins with 48 markers on 2PL. The BC 1 F 2 populations of seven wheat-A. cristatum 2P translocation lines (2PT-3, 2PT-4, 2PT-5, 2PT-6, 2PT-8, 2PT-9, and 2PT-10) were developed by self-pollination, tested with powdery mildew and genotyped with 2P-specific STS markers. From these results, the gene(s) conferring powdery mildew resistance was(were) located on 2PL bin FL 0.66-0.86 and 19 2P-specific markers were identified in this bin. Moreover, two new powdery mildew-resistant translocation lines (2PT-4 and 2PT-5) with small 2PL chromosome segments were obtained. The newly developed wheat lines with powdery mildew resistance and the closely linked molecular markers will be valuable for wheat disease breeding in the future.

  3. Evolution by Pervasive Gene Fusion in Antibiotic Resistance and Antibiotic Synthesizing Genes

    Directory of Open Access Journals (Sweden)

    Orla Coleman

    2015-03-01

    Full Text Available Phylogenetic (tree-based approaches to understanding evolutionary history are unable to incorporate convergent evolutionary events where two genes merge into one. In this study, as exemplars of what can be achieved when a tree is not assumed a priori, we have analysed the evolutionary histories of polyketide synthase genes and antibiotic resistance genes and have shown that their history is replete with convergent events as well as divergent events. We demonstrate that the overall histories of these genes more closely resembles the remodelling that might be seen with the children’s toy Lego, than the standard model of the phylogenetic tree. This work demonstrates further that genes can act as public goods, available for re-use and incorporation into other genetic goods.

  4. [Optimization of cluster analysis based on drug resistance profiles of MRSA isolates].

    Science.gov (United States)

    Tani, Hiroya; Kishi, Takahiko; Gotoh, Minehiro; Yamagishi, Yuka; Mikamo, Hiroshige

    2015-12-01

    We examined 402 methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from clinical specimens in our hospital between November 19, 2010 and December 27, 2011 to evaluate the similarity between cluster analysis of drug susceptibility tests and pulsed-field gel electrophoresis (PFGE). The results showed that the 402 strains tested were classified into 27 PFGE patterns (151 subtypes of patterns). Cluster analyses of drug susceptibility tests with the cut-off distance yielding a similar classification capability showed favorable results--when the MIC method was used, and minimum inhibitory concentration (MIC) values were used directly in the method, the level of agreement with PFGE was 74.2% when 15 drugs were tested. The Unweighted Pair Group Method with Arithmetic mean (UPGMA) method was effective when the cut-off distance was 16. Using the SIR method in which susceptible (S), intermediate (I), and resistant (R) were coded as 0, 2, and 3, respectively, according to the Clinical and Laboratory Standards Institute (CLSI) criteria, the level of agreement with PFGE was 75.9% when the number of drugs tested was 17, the method used for clustering was the UPGMA, and the cut-off distance was 3.6. In addition, to assess the reproducibility of the results, 10 strains were randomly sampled from the overall test and subjected to cluster analysis. This was repeated 100 times under the same conditions. The results indicated good reproducibility of the results, with the level of agreement with PFGE showing a mean of 82.0%, standard deviation of 12.1%, and mode of 90.0% for the MIC method and a mean of 80.0%, standard deviation of 13.4%, and mode of 90.0% for the SIR method. In summary, cluster analysis for drug susceptibility tests is useful for the epidemiological analysis of MRSA.

  5. A Novel Phytophthora sojae Resistance Rps12 Gene Mapped to a Genomic Region That Contains Several Rps Genes.

    Science.gov (United States)

    Sahoo, Dipak K; Abeysekara, Nilwala S; Cianzio, Silvia R; Robertson, Alison E; Bhattacharyya, Madan K

    2017-01-01

    Phytophthora sojae Kaufmann and Gerdemann, which causes Phytophthora root rot, is a widespread pathogen that limits soybean production worldwide. Development of Phytophthora resistant cultivars carrying Phytophthora resistance Rps genes is a cost-effective approach in controlling this disease. For this mapping study of a novel Rps gene, 290 recombinant inbred lines (RILs) (F7 families) were developed by crossing the P. sojae resistant cultivar PI399036 with the P. sojae susceptible AR2 line, and were phenotyped for responses to a mixture of three P. sojae isolates that overcome most of the known Rps genes. Of these 290 RILs, 130 were homozygous resistant, 12 heterzygous and segregating for Phytophthora resistance, and 148 were recessive homozygous and susceptible. From this population, 59 RILs homozygous for Phytophthora sojae resistance and 61 susceptible to a mixture of P. sojae isolates R17 and Val12-11 or P7074 that overcome resistance encoded by known Rps genes mapped to Chromosome 18 were selected for mapping novel Rps gene. A single gene accounted for the 1:1 segregation of resistance and susceptibility among the RILs. The gene encoding the Phytophthora resistance mapped to a 5.8 cM interval between the SSR markers BARCSOYSSR_18_1840 and Sat_064 located in the lower arm of Chromosome 18. The gene is mapped 2.2 cM proximal to the NBSRps4/6-like sequence that was reported to co-segregate with the Phytophthora resistance genes Rps4 and Rps6. The gene is mapped to a highly recombinogenic, gene-rich genomic region carrying several nucleotide binding site-leucine rich repeat (NBS-LRR)-like genes. We named this novel gene as Rps12, which is expected to be an invaluable resource in breeding soybeans for Phytophthora resistance.

  6. A Novel Phytophthora sojae Resistance Rps12 Gene Mapped to a Genomic Region That Contains Several Rps Genes.

    Directory of Open Access Journals (Sweden)

    Dipak K Sahoo

    Full Text Available Phytophthora sojae Kaufmann and Gerdemann, which causes Phytophthora root rot, is a widespread pathogen that limits soybean production worldwide. Development of Phytophthora resistant cultivars carrying Phytophthora resistance Rps genes is a cost-effective approach in controlling this disease. For this mapping study of a novel Rps gene, 290 recombinant inbred lines (RILs (F7 families were developed by crossing the P. sojae resistant cultivar PI399036 with the P. sojae susceptible AR2 line, and were phenotyped for responses to a mixture of three P. sojae isolates that overcome most of the known Rps genes. Of these 290 RILs, 130 were homozygous resistant, 12 heterzygous and segregating for Phytophthora resistance, and 148 were recessive homozygous and susceptible. From this population, 59 RILs homozygous for Phytophthora sojae resistance and 61 susceptible to a mixture of P. sojae isolates R17 and Val12-11 or P7074 that overcome resistance encoded by known Rps genes mapped to Chromosome 18 were selected for mapping novel Rps gene. A single gene accounted for the 1:1 segregation of resistance and susceptibility among the RILs. The gene encoding the Phytophthora resistance mapped to a 5.8 cM interval between the SSR markers BARCSOYSSR_18_1840 and Sat_064 located in the lower arm of Chromosome 18. The gene is mapped 2.2 cM proximal to the NBSRps4/6-like sequence that was reported to co-segregate with the Phytophthora resistance genes Rps4 and Rps6. The gene is mapped to a highly recombinogenic, gene-rich genomic region carrying several nucleotide binding site-leucine rich repeat (NBS-LRR-like genes. We named this novel gene as Rps12, which is expected to be an invaluable resource in breeding soybeans for Phytophthora resistance.

  7. Study on drug resistance of mycobacterium tuberculosis in patients with pulmonary tuberculosis by drug resistance gene detecting

    International Nuclear Information System (INIS)

    Wang Wei; Li Hongmin; Wu Xueqiong; Wang Ansheng; Ye Yixiu; Wang Zhongyuan; Liu Jinwei; Chen Hongbing; Lin Minggui; Wang Jinhe; Li Sumei; Jiang Ping; Feng Bai; Chen Dongjing

    2004-01-01

    To investigate drug resistance of mycobacterium tuberculosis in different age group, compare detecting effect of two methods and evaluate their the clinical application value, all of the strains of mycobacterium tuberculosis were tested for resistance to RFP, INH SM PZA and EMB by the absolute concentration method on Lowenstein-Jensen medium and the mutation of the rpoB, katG, rpsL, pncA and embB resistance genes in M. tuberculosis was tested by PCR-SSCP. In youth, middle and old age group, the rate of acquired drug resistance was 89.2%, 85.3% and 67.6% respectively, the gene mutation rate was 76.2%, 81.3% and 63.2% respectively. The rate of acquired drug resistance and multiple drug resistance in youth group was much higher than those in other groups. The gene mutation was correlated with drug resistance level of mycobacterium tuberculosis. The gene mutation rate was higher in strains isolated from high concentration resistance than those in strains isolated from low concentration resistance. The more irregular treatment was longer, the rate of drug resistance was higher. Acquired drug resistance varies in different age group. It suggested that surveillance of drug resistence in different age group should be taken seriously, especially in youth group. PCR - SSCP is a sensitive and specific method for rapid detecting rpoB, katG, rpsL, pncA and embB genes mutations of MTB. (authors)

  8. DNA tagging of blast resistant gene(s in three Brazilian rice cultivars

    Directory of Open Access Journals (Sweden)

    S.S. Sandhu

    2003-12-01

    Full Text Available Rice blast is the most important fungal disease of rice and is caused by Pyricularia oryzae Sacc. (Telomorph Magnoporthe grisea Barr.. Seven randomly amplified polymorphic DNA (RAPD markers OPA5, OPG17, OPG18, OPG19, OPF9, OPF17 and OPF19 showed very clear polymorphism in resistant cultivar lines which differed from susceptible lines. By comparing different susceptible lines, nine DNA amplifications of seven primers (OPA5(1000, OPA5(1200, OPG17(700, OPG18(850, OPG19(500, OPG19(600, OPF9(600, OPF17(1200 and OPF19(600 were identified as dominant markers for the blast resistant gene in resistant cultivar lines. These loci facilitate the indirect scoring of blast resistant and blast susceptible genotypes. The codomine RAPDs markers will facilitate marker-assisted selection of the blast resistant gene in two blast resistant genotypes of rice (Labelle and Line 11 and will be useful in rice breeding programs.

  9. plantiSMASH: automated identification, annotation and expression analysis of plant biosynthetic gene clusters

    DEFF Research Database (Denmark)

    Kautsar, Satria A.; Suarez Duran, Hernando G.; Blin, Kai

    2017-01-01

    exploration of the nature and dynamics of gene clustering in plant metabolism. Moreover, spurred by the continuing decrease in costs of plant genome sequencing, they will allow genome mining technologies to be applied to plant natural product discovery. The plantiSMASH web server, precalculated results...

  10. Synteny in toxigenic Fusarium species: the fumonisin gene cluster and the mating type region as examples

    NARCIS (Netherlands)

    Waalwijk, C.; Lee, van der T.A.J.; Vries, de P.M.; Hesselink, T.; Arts, J.; Kema, G.H.J.

    2004-01-01

    A comparative genomic approach was used to study the mating type locus and the gene cluster involved in toxin production ( fumonisin) in Fusarium proliferatum, a pathogen with a wide host range and a complex toxin profile. A BAC library, generated from F. proliferatum isolate ITEM 2287, was used to

  11. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters

    NARCIS (Netherlands)

    Cimermancic, P.; Medema, Marnix; Claesen, J.; Kurika, K.; Wieland Brown, L.C.; Mavrommatis, K.; Pati, A.; Godfrey, P.A.; Koehrsen, M.; Clardy, J.; Birren, B. W.; Takano, Eriko; Sali, A.; Linington, R.G.; Fischbach, M.A.

    2014-01-01

    Although biosynthetic gene clusters (BGCs) have been discovered for hundreds of bacterial metabolites, our knowledge of their diversity remains limited. Here, we used a novel algorithm to systematically identify BGCs in the extensive extant microbial sequencing data. Network analysis of the

  12. Evolutionary history of the phl gene cluster in the plant-associated bacterium Pseudomonas fluorescens

    NARCIS (Netherlands)

    Moynihan, J.A.; Morrissey, J.P.; Coppoolse, E.; Stiekema, W.J.; O'Gara, F.; Boyd, E.F.

    2009-01-01

    Pseudomonas fluorescens is of agricultural and economic importance as a biological control agent largely because of its plant-association and production of secondary metabolites, in particular 2, 4-diacetylphloroglucinol (2, 4-DAPG). This polyketide, which is encoded by the eight gene phl cluster,

  13. Molecular population genetics of the β-esterase gene cluster of ...

    Indian Academy of Sciences (India)

    We suggest that the demographic history (bottleneck and admixture of genetically differentiated populations) is the major factor shaping the pattern of nucleotide polymorphism in the -esterase gene cluster. However there are some 'footprints' of directional and balancing selection shaping specific distribution of nucleotide ...

  14. Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea

    OpenAIRE

    Wolf Yuri I; Novichkov Pavel S; Sorokin Alexander V; Makarova Kira S; Koonin Eugene V

    2007-01-01

    Abstract Background An evolutionary classification of genes from sequenced genomes that distinguishes between orthologs and paralogs is indispensable for genome annotation and evolutionary reconstruction. Shortly after multiple genome sequences of bacteria, archaea, and unicellular eukaryotes became available, an attempt on such a classification was implemented in Clusters of Orthologous Groups of proteins (COGs). Rapid accumulation of genome sequences creates opportunities for refining COGs ...

  15. Occurrence of the mcr-1 Colistin Resistance Gene and other Clinically Relevant Antibiotic Resistance Genes in Microbial Populations at Different Municipal Wastewater Treatment Plants in Germany

    Directory of Open Access Journals (Sweden)

    Norman Hembach

    2017-07-01

    Full Text Available Seven wastewater treatment plants (WWTPs with different population equivalents and catchment areas were screened for the prevalence of the colistin resistance gene mcr-1 mediating resistance against last resort antibiotic polymyxin E. The abundance of the plasmid-associated mcr-1 gene in total microbial populations during water treatment processes was quantitatively analyzed by qPCR analyses. The presence of the colistin resistance gene was documented for all of the influent wastewater samples of the seven WWTPs. In some cases the mcr-1 resistance gene was also detected in effluent samples of the WWTPs after conventional treatment reaching the aquatic environment. In addition to the occurrence of mcr-1 gene, CTX-M-32, blaTEM, CTX-M, tetM, CMY-2, and ermB genes coding for clinically relevant antibiotic resistances were quantified in higher abundances in all WWTPs effluents. In parallel, the abundances of Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli were quantified via qPCR using specific taxonomic gene markers which were detected in all influent and effluent wastewaters in significant densities. Hence, opportunistic pathogens and clinically relevant antibiotic resistance genes in wastewaters of the analyzed WWTPs bear a risk of dissemination to the aquatic environment. Since many of the antibiotic resistance gene are associated with mobile genetic elements horizontal gene transfer during wastewater treatment can't be excluded.

  16. Effects of Plyometric and Cluster Resistance Training on Explosive Power and Maximum Strength in Karate Players

    Directory of Open Access Journals (Sweden)

    Mohsen Aminaei

    2017-08-01

    Full Text Available The purpose of this study was to investigate the effects of plyometric and cluster resistance training on explosive power and maximum strength in karate players. Eighteen women, karate players (age mean ± SD 18.22 ± 3.02 years, mean height 163 ± 0.63cm, and mean body mass 53.25 ± 7.34 kg were selected as volunteer samples. They were divided into two groups with respect to their recorded one repetition maximum squat exercise: [1] plyometric training (PT=9 and [2] Cluster training (CT=9 groups and performed a 9-week resistance training protocol that included three stages; [1] General fitness (2 weeks, [2] Strength (4 weeks and [3] Power (3 weeks. Each group performed strength and power trainings for 7 weeks in stage two and three with owned protocol. The subjects were evaluated three times before stage one and after two and three stages for maximum strength and power. Data was analyzed using two way Repeated Measures (ANOVA at a significance level of (P≤0.05. The statistical analysis showed that training stages on all research variables had a significant impact. The maximum strength of the pre-test, post-test strength and post-test power were in cluster group: 29.05 ± 1.54; 32.89 ± 2.80 and 48.74 ± 4.33w and in plyometric group were 26.98 ± 1.54; 38.48 ± 2.80 and 49.82 ± 4.33w respectively. The explosive power of the pre-test, post-test strength and post-test power in cluster group were 359.32±36.20; 427.91±34.56 and 460.55±36.80w and in plyometric group were 333.90±36.20; 400.33±34.56 and 465.20±36.80w respectively. However, there were not statistically significant differences in research variables between resistance cluster and plyometric training groups after 7 weeks. The results indicated both cluster and plyometric training program seems to improve physical fitness elements at the same levels.

  17. GenClust: A genetic algorithm for clustering gene expression data

    Directory of Open Access Journals (Sweden)

    Raimondi Alessandra

    2005-12-01

    Full Text Available Abstract Background Clustering is a key step in the analysis of gene expression data, and in fact, many classical clustering algorithms are used, or more innovative ones have been designed and validated for the task. Despite the widespread use of artificial intelligence techniques in bioinformatics and, more generally, data analysis, there are very few clustering algorithms based on the genetic paradigm, yet that paradigm has great potential in finding good heuristic solutions to a difficult optimization problem such as clustering. Results GenClust is a new genetic algorithm for clustering gene expression data. It has two key features: (a a novel coding of the search space that is simple, compact and easy to update; (b it can be used naturally in conjunction with data driven internal validation methods. We have experimented with the FOM methodology, specifically conceived for validating clusters of gene expression data. The validity of GenClust has been assessed experimentally on real data sets, both with the use of validation measures and in comparison with other algorithms, i.e., Average Link, Cast, Click and K-means. Conclusion Experiments show that none of the algorithms we have used is markedly superior to the others across data sets and validation measures; i.e., in many cases the observed differences between the worst and best performing algorithm may be statistically insignificant and they could be considered equivalent. However, there are cases in which an algorithm may be better than others and therefore worthwhile. In particular, experiments for GenClust show that, although simple in its data representation, it converges very rapidly to a local optimum and that its ability to identify meaningful clusters is comparable, and sometimes superior, to that of more sophisticated algorithms. In addition, it is well suited for use in conjunction with data driven internal validation measures and, in particular, the FOM methodology.

  18. Identification, characterization and metagenome analysis of oocyte-specific genes organized in clusters in the mouse genome

    Directory of Open Access Journals (Sweden)

    Vaiman Daniel

    2005-05-01

    Full Text Available Abstract Background Genes specifically expressed in the oocyte play key roles in oogenesis, ovarian folliculogenesis, fertilization and/or early embryonic development. In an attempt to identify novel oocyte-specific genes in the mouse, we have used an in silico subtraction methodology, and we have focused our attention on genes that are organized in genomic clusters. Results In the present work, five clusters have been studied: a cluster of thirteen genes characterized by an F-box domain localized on chromosome 9, a cluster of six genes related to T-cell leukaemia/lymphoma protein 1 (Tcl1 on chromosome 12, a cluster composed of a SPErm-associated glutamate (E-Rich (Speer protein expressed in the oocyte in the vicinity of four unknown genes specifically expressed in the testis on chromosome 14, a cluster composed of the oocyte secreted protein-1 (Oosp-1 gene and two Oosp-related genes on chromosome 19, all three being characterized by a partial N-terminal zona pellucida-like domain, and another small cluster of two genes on chromosome 19 as well, composed of a TWIK-Related spinal cord K+ channel encoding-gene, and an unknown gene predicted in silico to be testis-specific. The specificity of expression was confirmed by RT-PCR and in situ hybridization for eight and five of them, respectively. Finally, we showed by comparing all of the isolated and clustered oocyte-specific genes identified so far in the mouse genome, that the oocyte-specific clusters are significantly closer to telomeres than isolated oocyte-specific genes are. Conclusion We have studied five clusters of genes specifically expressed in female, some of them being also expressed in male germ-cells. Moreover, contrarily to non-clustered oocyte-specific genes, those that are organized in clusters tend to map near chromosome ends, suggesting that this specific near-telomere position of oocyte-clusters in rodents could constitute an evolutionary advantage. Understanding the biological

  19. antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters

    DEFF Research Database (Denmark)

    Weber, Tilmann; Blin, Kai; Duddela, Srikanth

    2015-01-01

    Microbial secondary metabolism constitutes a rich source of antibiotics, chemotherapeutics, insecticides and other high-value chemicals. Genome mining of gene clusters that encode the biosynthetic pathways for these metabolites has become a key methodology for novel compound discovery. In 2011, we...... introduced antiSMASH, a web server and stand-alone tool for the automatic genomic identification and analysis of biosynthetic gene clusters, available at http://antismash.secondarymetabolites.org. Here, we present version 3.0 of antiSMASH, which has undergone major improvements. A full integration...... of the recently published ClusterFinder algorithm now allows using this probabilistic algorithm to detect putative gene clusters of unknown types. Also, a new dereplication variant of the ClusterBlast module now identifies similarities of identified clusters to any of 1172 clusters with known end products...

  20. Antimicrobial Resistance and Resistance Genes in Aerobic Bacteria Isolated from Pork at Slaughter.

    Science.gov (United States)

    Li, Lili; Heidemann Olsen, Rikke; Ye, Lei; Yan, He; Nie, Qing; Meng, Hecheng; Shi, Lei

    2016-04-01

    The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram-negative bacteria (92.2%) and gram-positive bacteria (7.8%). High levels of resistance were detected to tetracycline, trimethoprim-sulfamethoxazole, and ampicillin (36.2 to 54.3%), and lower levels were detected to nitrofurantoin, cefotaxime, gentamicin, ciprofloxacin, and chloramphenicol (7.8 to 29.2%). Across species, genes conferring antimicrobial resistance were observed with the following frequencies: blaTEM, 40.7%; blaCMY-2, 15.2%; blaCTX-M, 11.5%; sul2, 27.2%; sul1, 14.4%; tet(A), 5.4%; tet(L), 5.4%; tet(M), 5.0%; tet(E), 3.7%; tet(C), 3.3%; tet(S), 2.5%; and tet(K), 0.8%. Various antimicrobial resistance genes were found in new carriers: blaTEM in Lactococcus garvieae, Myroides odoratimimus, Aeromonas hydrophila, Staphylococcus sciuri, Raoultella terrigena, Macrococcus caseolyticus, Acinetobacter ursingii, Sphingobacterium sp., and Oceanobacillus sp.; blaCMY-2 in Lactococcus lactis, Klebsiella oxytoca, Serratia marcescens, Acinetobacter baumannii, and Myroides phaeus; tet(L) in M. caseolyticus; sul1 in Vibrio cincinnatiensis; sul2 in Acinetobacter bereziniae, Acinetobacter johnsonii, and V. cincinnatiensis; and the class 1 integron and gene cassette aadA2 in V. cincinnatiensis. Approximately 6.6% of isolates contained class 1 integrons, and one isolate harbored class 2 integrons. Plasmid associated intI1 and androgen receptor- encoding genes were transferred into Escherichia coli J53 and E. coli DH5α by conjugation and transformation experiments, respectively. Our study highlights the importance of aerobic bacteria from pork as reservoirs for antimicrobial resistance genes and mobile genetic elements that can readily be transferred intra- and interspecies.

  1. Identification and analysis of the paulomycin biosynthetic gene cluster and titer improvement of the paulomycins in Streptomyces paulus NRRL 8115.

    Directory of Open Access Journals (Sweden)

    Jine Li

    Full Text Available The paulomycins are a group of glycosylated compounds featuring a unique paulic acid moiety. To locate their biosynthetic gene clusters, the genomes of two paulomycin producers, Streptomyces paulus NRRL 8115 and Streptomyces sp. YN86, were sequenced. The paulomycin biosynthetic gene clusters were defined by comparative analyses of the two genomes together with the genome of the third paulomycin producer Streptomyces albus J1074. Subsequently, the identity of the paulomycin biosynthetic gene cluster was confirmed by inactivation of two genes involved in biosynthesis of the paulomycose branched chain (pau11 and the ring A moiety (pau18 in Streptomyces paulus NRRL 8115. After determining the gene cluster boundaries, a convergent biosynthetic model was proposed for paulomycin based on the deduced functions of the pau genes. Finally, a paulomycin high-producing strain was constructed by expressing an activator-encoding gene (pau13 in S. paulus, setting the stage for future investigations.

  2. Clustering of two genes putatively involved in cyanate detoxification evolved recently and independently in multiple fungal lineages

    Science.gov (United States)

    Fungi that have the enzymes cyanase and carbonic anhydrase show a limited capacity to detoxify cyanate, a fungicide employed by both plants and humans. Here, we describe a novel two-gene cluster that comprises duplicated cyanase and carbonic anhydrase copies, which we name the CCA gene cluster, trac...

  3. Characterization of Metagenomes in Urban Aquatic Compartments Reveals High Prevalence of Clinically Relevant Antibiotic Resistance Genes in Wastewaters

    Directory of Open Access Journals (Sweden)

    Charmaine Ng

    2017-11-01

    Full Text Available The dissemination of antimicrobial resistance (AMR is an escalating problem and a threat to public health. Comparative metagenomics was used to investigate the occurrence of antibiotic resistant genes (ARGs in wastewater and urban surface water environments in Singapore. Hospital and municipal wastewater (n = 6 were found to have higher diversity and average abundance of ARGs (303 ARG subtypes, 197,816 x/Gb compared to treated wastewater effluent (n = 2, 58 ARG subtypes, 2,692 x/Gb and surface water (n = 5, 35 subtypes, 7,985 x/Gb. A cluster analysis showed that the taxonomic composition of wastewaters was highly similar and had a bacterial community composition enriched in gut bacteria (Bacteroides, Faecalibacterium, Bifidobacterium, Blautia, Roseburia, Ruminococcus, the Enterobacteriaceae group (Klebsiella, Aeromonas, Enterobacter and opportunistic pathogens (Prevotella, Comamonas, Neisseria. Wastewater, treated effluents and surface waters had a shared resistome of 21 ARGs encoding multidrug resistant efflux pumps or resistance to aminoglycoside, macrolide-lincosamide-streptogramins (MLS, quinolones, sulfonamide, and tetracycline resistance which suggests that these genes are wide spread across different environments. Wastewater had a distinctively higher average abundance of clinically relevant, class A beta-lactamase resistant genes (i.e., blaKPC, blaCTX-M, blaSHV, blaTEM. The wastewaters from clinical isolation wards, in particular, had a exceedingly high levels of blaKPC-2 genes (142,200 x/Gb, encoding for carbapenem resistance. Assembled scaffolds (16 and 30 kbp from isolation ward wastewater samples indicated this gene was located on a Tn3-based transposon (Tn4401, a mobilization element found in Klebsiella pneumonia plasmids. In the longer scaffold, transposable elements were flanked by a toxin–antitoxin (TA system and other metal resistant genes that likely increase the persistence, fitness and propagation of the plasmid in the

  4. Candidate gene association analyses for ketosis resistance in Holsteins.

    Science.gov (United States)

    Kroezen, V; Schenkel, F S; Miglior, F; Baes, C F; Squires, E J

    2018-06-01

    High-yielding dairy cattle are susceptible to ketosis, a metabolic disease that negatively affects the health, fertility, and milk production of the cow. Interest in breeding for more robust dairy cattle with improved resistance to disease is global; however, genetic evaluations for ketosis would benefit from the additional information provided by genetic markers. Candidate genes that are proposed to have a biological role in the pathogenesis of ketosis were investigated in silico and a custom panel of 998 putative single nucleotide polymorphism (SNP) markers was developed. The objective of this study was to test the associations of these new markers with deregressed estimated breeding values (EBV) for ketosis. A sample of 653 Canadian Holstein cows that had been previously genotyped with a medium-density SNP chip were regenotyped with the custom panel. The EBV for ketosis in first and later lactations were obtained for each animal and deregressed for use as pseudo-phenotypes for association analyses. Results of the mixed inheritance model for single SNP association analyses suggested 15 markers in 6 unique candidate genes were associated with the studied trait. Genes encoding proteins involved in metabolic processes, including the synthesis and degradation of fatty acids and ketone bodies, gluconeogenesis, lipid mobilization, and the citric acid cycle, were identified to contain SNP associated with ketosis resistance. This work confirmed the presence of previously described quantitative trait loci for dairy cattle, suggested novel markers for ketosis-resistance, and provided insight into the underlying biology of this disease. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. A highly divergent gene cluster in honey bees encodes a novel silk family

    OpenAIRE

    Sutherland, Tara D.; Campbell, Peter M.; Weisman, Sarah; Trueman, Holly E.; Sriskantha, Alagacone; Wanjura, Wolfgang J.; Haritos, Victoria S.

    2006-01-01

    The pupal cocoon of the domesticated silk moth Bombyx mori is the best known and most extensively studied insect silk. It is not widely known that Apis mellifera larvae also produce silk. We have used a combination of genomic and proteomic techniques to identify four honey bee fiber genes (AmelFibroin1–4) and two silk-associated genes (AmelSA1 and 2). The four fiber genes are small, comprise a single exon each, and are clustered on a short genomic region where the open reading frames are GC-r...

  6. Molecular study on some antibiotic resistant genes in Salmonella spp. isolates

    Science.gov (United States)

    Nabi, Ari Q.

    2017-09-01

    Studying the genes related with antimicrobial resistance in Salmonella spp. is a crucial step toward a correct and faster treatment of infections caused by the pathogen. In this work Integron mediated antibiotic resistant gene IntI1 (Class I Integrase IntI1) and some plasmid mediated antibiotic resistance genes (Qnr) were scanned among the isolated non-Typhoid Salmonellae strains with known resistance to some important antimicrobial drugs using Sybr Green real time PCR. The aim of the study was to correlate the multiple antibiotics and antimicrobial resistance of Salmonella spp. with the presence of integrase (IntI1) gene and plasmid mediated quinolone resistant genes. Results revealed the presence of Class I Integrase gene in 76% of the isolates with confirmed multiple antibiotic resistances. Moreover, about 32% of the multiple antibiotic resistant serotypes showed a positive R-PCR for plasmid mediated qnrA gene encoding for nalidixic acid and ciprofloxacin resistance. No positive results could be revealed form R-PCRs targeting qnrB or qnrS. In light of these results we can conclude that the presence of at least one of the qnr genes and/or the presence of Integrase Class I gene were responsible for the multiple antibiotic resistance to for nalidixic acid and ciprofloxacin from the studied Salmonella spp. and further studies required to identify the genes related with multiple antibiotic resistance of the pathogen.

  7. Strategies to regulate transcription factor-mediated gene positioning and interchromosomal clustering at the nuclear periphery.

    Science.gov (United States)

    Randise-Hinchliff, Carlo; Coukos, Robert; Sood, Varun; Sumner, Michael Chas; Zdraljevic, Stefan; Meldi Sholl, Lauren; Garvey Brickner, Donna; Ahmed, Sara; Watchmaker, Lauren; Brickner, Jason H

    2016-03-14

    In budding yeast, targeting of active genes to the nuclear pore complex (NPC) and interchromosomal clustering is mediated by transcription factor (TF) binding sites in the gene promoters. For example, the binding sites for the TFs Put3, Ste12, and Gcn4 are necessary and sufficient to promote positioning at the nuclear periphery and interchromosomal clustering. However, in all three cases, gene positioning and interchromosomal clustering are regulated. Under uninducing conditions, local recruitment of the Rpd3(L) histone deacetylase by transcriptional repressors blocks Put3 DNA binding. This is a general function of yeast repressors: 16 of 21 repressors blocked Put3-mediated subnuclear positioning; 11 of these required Rpd3. In contrast, Ste12-mediated gene positioning is regulated independently of DNA binding by mitogen-activated protein kinase phosphorylation of the Dig2 inhibitor, and Gcn4-dependent targeting is up-regulated by increasing Gcn4 protein levels. These different regulatory strategies provide either qualitative switch-like control or quantitative control of gene positioning over different time scales. © 2016 Randise-Hinchliff et al.

  8. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters.

    Science.gov (United States)

    Miller, Jennifer H; Novak, John T; Knocke, William R; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1-a Pseudomonas sp.) and thermophilic (Iso T10-a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457-0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130-0.486, P = 0.075-0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene

  9. Getting insight into the prevalence of antibiotic resistance genes in specimens of marketed edible insects.

    Science.gov (United States)

    Milanović, Vesna; Osimani, Andrea; Pasquini, Marina; Aquilanti, Lucia; Garofalo, Cristiana; Taccari, Manuela; Cardinali, Federica; Riolo, Paola; Clementi, Francesca

    2016-06-16

    This study was aimed at investigating the occurrence of 11 transferable antibiotic resistance (AR) genes [erm(A), erm(B), erm(C), vanA, vanB, tet(M), tet(O), tet(S), tet(K), mecA, blaZ] in 11 species of marketed edible insects (small crickets powder, small crickets, locusts, mealworm larvae, giant waterbugs, black ants, winged termite alates, rhino beetles, mole crickets, silkworm pupae, and black scorpions) in order to provide a first baseline for risk assessment. Among the AR genes under study, tet(K) occurred with the highest frequency, followed by erm(B), tet(S) and blaZ. A high variability was seen among the samples, in terms of occurrence of different AR determinants. Cluster Analysis and Principal Coordinates Analysis allowed the 11 samples to be grouped in two main clusters, one including all but one samples produced in Thailand and the other including those produced in the Netherlands. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A scan statistic to extract causal gene clusters from case-control genome-wide rare CNV data

    Directory of Open Access Journals (Sweden)

    Scherer Stephen W

    2011-05-01

    Full Text Available Abstract Background Several statistical tests have been developed for analyzing genome-wide association data by incorporating gene pathway information in terms of gene sets. Using these methods, hundreds of gene sets are typically tested, and the tested gene sets often overlap. This overlapping greatly increases the probability of generating false positives, and the results obtained are difficult to interpret, particularly when many gene sets show statistical significance. Results We propose a flexible statistical framework to circumvent these problems. Inspired by spatial scan statistics for detecting clustering of disease occurrence in the field of epidemiology, we developed a scan statistic to extract disease-associated gene clusters from a whole gene pathway. Extracting one or a few significant gene clusters from a global pathway limits the overall false positive probability, which results in increased statistical power, and facilitates the interpretation of test results. In the present study, we applied our method to genome-wide association data for rare copy-number variations, which have been strongly implicated in common diseases. Application of our method to a simulated dataset demonstrated the high accuracy of this method in detecting disease-associated gene clusters in a whole gene pathway. Conclusions The scan statistic approach proposed here shows a high level of accuracy in detecting gene clusters in a whole gene pathway. This study has provided a sound statistical framework for analyzing genome-wide rare CNV data by incorporating topological information on the gene pathway.

  11. Genetic mapping of the rice resistance-breaking gene of the brown planthopper Nilaparvata lugens

    OpenAIRE

    Kobayashi, Tetsuya; Yamamoto, Kimiko; Suetsugu, Yoshitaka; Kuwazaki, Seigo; Hattori, Makoto; Jairin, Jirapong; Sanada-Morimura, Sachiyo; Matsumura, Masaya

    2014-01-01

    Host plant resistance has been widely used for controlling the major rice pest brown planthopper (BPH, Nilaparvata lugens). However, adaptation of the wild BPH population to resistance limits the effective use of resistant rice varieties. Quantitative trait locus (QTL) analysis was conducted to identify resistance-breaking genes against the anti-feeding mechanism mediated by the rice resistance gene Bph1. QTL analysis in iso-female BPH lines with single-nucleotide polymorphism (SNP) markers d...

  12. Open reading frame 176 in the photosynthesis gene cluster of Rhodobacter capsulatus encodes idi, a gene for isopentenyl diphosphate isomerase.

    OpenAIRE

    Hahn, F M; Baker, J A; Poulter, C D

    1996-01-01

    Isopentenyl diphosphate (IPP) isomerase catalyzes an essential activation step in the isoprenoid biosynthetic pathway. A database search based on probes from the highly conserved regions in three eukaryotic IPP isomerases revealed substantial similarity with ORF176 in the photosynthesis gene cluster in Rhodobacter capsulatus. The open reading frame was cloned into an Escherichia coli expression vector. The encoded 20-kDa protein, which was purified in two steps by ion exchange and hydrophobic...

  13. Analysis of differentially expressed genes related to resistance in spinosad- and neonicotinoid-resistant Musca domestica L. (Diptera: Muscidae) strains

    DEFF Research Database (Denmark)

    Castberg, Dorte Heidi Højland; Kristensen, Michael

    2017-01-01

    strains differing significantly in their response to insecticides. High differential expression of P450s and genes coding for cuticle protein indicates a combination of factors involved in metabolic neonicotinoid and spinosad resistance. Conclusion Resistance in these strains is apparently not linked...... interesting in terms of neonicotinoid resistance, while cyp4d9 was overexpressed in 791spin compared to spinosad-susceptible strains. GSTs, ESTs and UGTs were mostly overexpressed, but not to the same degree as P450s. We present a comprehensive and comparative picture of gene expression in three housefly......Background The housefly is a global pest that has developed resistance to most insecticides applied against it. Resistance of the spinosad-resistant strain 791spin and the neonicotinoid-resistant 766b strain is believed to be due to metabolism. We investigate differentially expressed genes...

  14. Genomic organization of the rat alpha 2u-globulin gene cluster.

    Science.gov (United States)

    McFadyen, D A; Addison, W; Locke, J

    1999-05-01

    The alpha 2u-globulin are a group of similar proteins, belonging to the lipocalin superfamily of proteins, that are synthesized in a subset of secretory tissues in rats. The many alpha 2u-globulin isoforms are encoded by a multigene family that exhibits extensive homology. Despite a high degree of sequence identity, individual family members show diverse expression patterns involving complex hormonal, tissue-specific, and developmental regulation. Analysis suggests that there are approximately 20 alpha 2u-globulin genes in the rat genome. We have used fluorescence in situ hybridization (FISH) to show that the alpha 2u-globulin genes are clustered at a single site on rat Chromosome (Chr) 5 (5q22-24). Southern blots of rat genomic DNA separated by pulsed field gel electrophoresis indicated that the alpha 2u-globulin genes are contained on two NruI fragments with a total size of 880 kbp. Analysis of three P1 clones containing alpha 2u-globulin genes indicated that the alpha 2u-globulin genes are tandemly arranged in a head-to-tail fashion. The organization of the alpha 2u-globulin genes in the rat as a tandem array of single genes differs from the homologous major urinary protein genes in the mouse, which are organized as tandem arrays of divergently oriented gene pairs. The structure of these gene clusters may have consequences for the proposed function, as a pheromone transporter, for the protein products encoded by these genes.

  15. An improved Pearson's correlation proximity-based hierarchical clustering for mining biological association between genes.

    Science.gov (United States)

    Booma, P M; Prabhakaran, S; Dhanalakshmi, R

    2014-01-01

    Microarray gene expression datasets has concerned great awareness among molecular biologist, statisticians, and computer scientists. Data mining that extracts the hidden and usual information from datasets fails to identify the most significant biological associations between genes. A search made with heuristic for standard biological process measures only the gene expression level, threshold, and response time. Heuristic search identifies and mines the best biological solution, but the association process was not efficiently addressed. To monitor higher rate of expression levels between genes, a hierarchical clustering model was proposed, where the biological association between genes is measured simultaneously using proximity measure of improved Pearson's correlation (PCPHC). Additionally, the Seed Augment algorithm adopts average linkage methods on rows and columns in order to expand a seed PCPHC model into a maximal global PCPHC (GL-PCPHC) model and to identify association between the clusters. Moreover, a GL-PCPHC applies pattern growing method to mine the PCPHC patterns. Compared to existing gene expression analysis, the PCPHC model achieves better performance. Experimental evaluations are conducted for GL-PCPHC model with standard benchmark gene expression datasets extracted from UCI repository and GenBank database in terms of execution time, size of pattern, significance level, biological association efficiency, and pattern quality.

  16. Two Gene Clusters Coordinate Galactose and Lactose Metabolism in Streptococcus gordonii

    Science.gov (United States)

    Zeng, Lin; Martino, Nicole C.

    2012-01-01

    Streptococcus gordonii is an early colonizer of the human oral cavity and an abundant constituent of oral biofilms. Two tandemly arranged gene clusters, designated lac and gal, were identified in the S. gordonii DL1 genome, which encode genes of the tagatose pathway (lacABCD) and sugar phosphotransferase system (PTS) enzyme II permeases. Genes encoding a predicted phospho-β-galactosidase (LacG), a DeoR family transcriptional regulator (LacR), and a transcriptional antiterminator (LacT) were also present in the clusters. Growth and PTS assays supported that the permease designated EIILac transports lactose and galactose, whereas EIIGal transports galactose. The expression of the gene for EIIGal was markedly upregulated in cells growing on galactose. Using promoter-cat fusions, a role for LacR in the regulation of the expressions of both gene clusters was demonstrated, and the gal cluster was also shown to be sensitive to repression by CcpA. The deletion of lacT caused an inability to grow on lactose, apparently because of its role in the regulation of the expression of the genes for EIILac, but had little effect on galactose utilization. S. gordonii maintained a selective advantage over Streptococcus mutans in a mixed-species competition assay, associated with its possession of a high-affinity galactose PTS, although S. mutans could persist better at low pHs. Collectively, these results support the concept that the galactose and lactose systems of S. gordonii are subject to complex regulation and that a high-affinity galactose PTS may be advantageous when S. gordonii is competing against the caries pathogen S. mutans in oral biofilms. PMID:22660715

  17. Pyramiding, alternating or mixing: comparative performances of deployment strategies of nematode resistance genes to promote plant resistance efficiency and durability.

    Science.gov (United States)

    Djian-Caporalino, Caroline; Palloix, Alain; Fazari, Ariane; Marteu, Nathalie; Barbary, Arnaud; Abad, Pierre; Sage-Palloix, Anne-Marie; Mateille, Thierry; Risso, Sabine; Lanza, Roger; Taussig, Catherine; Castagnone-Sereno, Philippe

    2014-02-22

    Resistant cultivars are key elements for pathogen control and pesticide reduction, but their repeated use may lead to the emergence of virulent pathogen populations, able to overcome the resistance. Increased research efforts, mainly based on theoretical studies, explore spatio-temporal deployment strategies of resistance genes in order to maximize their durability. We evaluated experimentally three of these strategies to control root-knot nematodes: cultivar mixtures, alternating and pyramiding resistance genes, under controlled and field conditions over a 3-years period, assessing the efficiency and the durability of resistance in a protected crop rotation system with pepper as summer crop and lettuce as winter crop. The choice of the resistance gene and the genetic background in which it is introgressed, affected the frequency of resistance breakdown. The pyramiding of two different resistance genes in one genotype suppressed the emergence of virulent isolates. Alternating different resistance genes in rotation was also efficient to decrease virulent populations in fields due to the specificity of the virulence and the trapping effect of resistant plants. Mixing resistant cultivars together appeared as a less efficient strategy to control nematodes. This work provides experimental evidence that, in a cropping system with seasonal sequences of vegetable species, pyramiding or alternating resistance genes benefit yields in the long-term by increasing the durability of resistant cultivars and improving the long-term control of a soil-borne pest. To our knowledge, this result is the first one obtained for a plant-nematode interaction, which helps demonstrate the general applicability of such strategies for breeding and sustainable management of resistant cultivars against pathogens.

  18. Sulfonamide-resistant bacteria and their resistance genes in soils fertilized with manures from Jiangsu Province, Southeastern China.

    Science.gov (United States)

    Wang, Na; Yang, Xiaohong; Jiao, Shaojun; Zhang, Jun; Ye, Boping; Gao, Shixiang

    2014-01-01

    Antibiotic-resistant bacteria and genes are recognized as new environmental pollutants that warrant special concern. There were few reports on veterinary antibiotic-resistant bacteria and genes in China. This work systematically analyzed the prevalence and distribution of sulfonamide resistance genes in soils from the environments around poultry and livestock farms in Jiangsu Province, Southeastern China. The results showed that the animal manure application made the spread and abundance of antibiotic resistance genes (ARGs) increasingly in the soil. The frequency of sulfonamide resistance genes was sul1 > sul2 > sul3 in pig-manured soil DNA and sul2 > sul1 > sul3 in chicken-manured soil DNA. Further analysis suggested that the frequency distribution of the sul genes in the genomic DNA and plasmids of the SR isolates from manured soil was sul2 > sul1 > sul3 overall (psulfonamide resistance genes. The present study also indicated that Bacillus, Pseudomonas and Shigella were the most prevalent sul-positive genera in the soil, suggesting a potential human health risk. The above results could be important in the evaluation of antibiotic-resistant bacteria and genes from manure as sources of agricultural soil pollution; the results also demonstrate the necessity and urgency of the regulation and supervision of veterinary antibiotics in China.

  19. An enhanced deterministic K-Means clustering algorithm for cancer subtype prediction from gene expression data.

    Science.gov (United States)

    Nidheesh, N; Abdul Nazeer, K A; Ameer, P M

    2017-12-01

    Clustering algorithms with steps involving randomness usually give different results on different executions for the same dataset. This non-deterministic nature of algorithms such as the K-Means clustering algorithm limits their applicability in areas such as cancer subtype prediction using gene expression data. It is hard to sensibly compare the results of such algorithms with those of other algorithms. The non-deterministic nature of K-Means is due to its random selection of data points as initial centroids. We propose an improved, density based version of K-Means, which involves a novel and systematic method for selecting initial centroids. The key idea of the algorithm is to select data points which belong to dense regions and which are adequately separated in feature space as the initial centroids. We compared the proposed algorithm to a set of eleven widely used single clustering algorithms and a prominent ensemble clustering algorithm which is being used for cancer data classification, based on the performances on a set of datasets comprising ten cancer gene expression datasets. The proposed algorithm has shown better overall performance than the others. There is a pressing need in the Biomedical domain for simple, easy-to-use and more accurate Machine Learning tools for cancer subtype prediction. The proposed algorithm is simple, easy-to-use and gives stable results. Moreover, it provides comparatively better predictions of cancer subtypes from gene expression data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Gene expression data clustering and it’s application in differential analysis of leukemia

    Directory of Open Access Journals (Sweden)

    M. Vahedi

    2008-02-01

    Full Text Available Introduction: DNA microarray technique is one of the most important categories in bioinformatics,which allows the possibility of monitoring thousands of expressed genes has been resulted in creatinggiant data bases of gene expression data, recently. Statistical analysis of such databases includednormalization, clustering, classification and etc.Materials and Methods: Golub et al (1999 collected data bases of leukemia based on the method ofoligonucleotide. The data is on the internet. In this paper, we analyzed gene expression data. It wasclustered by several methods including multi-dimensional scaling, hierarchical and non-hierarchicalclustering. Data set included 20 Acute Lymphoblastic Leukemia (ALL patients and 14 Acute MyeloidLeukemia (AML patients. The results of tow methods of clustering were compared with regard to realgrouping (ALL & AML. R software was used for data analysis.Results: Specificity and sensitivity of divisive hierarchical clustering in diagnosing of ALL patientswere 75% and 92%, respectively. Specificity and sensitivity of partitioning around medoids indiagnosing of ALL patients were 90% and 93%, respectively. These results showed a wellaccomplishment of both methods of clustering. It is considerable that, due to clustering methodsresults, one of the samples was placed in ALL groups, which was in AML group in clinical test.Conclusion: With regard to concordance of the results with real grouping of data, therefore we canuse these methods in the cases where we don't have accurate information of real grouping of data.Moreover, Results of clustering might distinct subgroups of data in such a way that would be necessaryfor concordance with clinical outcomes, laboratory results and so on.

  1. Resistance to Downy Mildew in Lettuce 'La Brillante' is Conferred by Dm50 Gene and Multiple QTL.

    Science.gov (United States)

    Simko, Ivan; Ochoa, Oswaldo E; Pel, Mathieu A; Tsuchida, Cayla; Font I Forcada, Carolina; Hayes, Ryan J; Truco, Maria-Jose; Antonise, Rudie; Galeano, Carlos H; Michelmore, Richard W

    2015-09-01

    Many cultivars of lettuce (Lactuca sativa L.) are susceptible to downy mildew, a nearly globally ubiquitous disease caused by Bremia lactucae. We previously determined that Batavia type cultivar 'La Brillante' has a high level of field resistance to the disease in California. Testing of a mapping population developed from a cross between 'Salinas 88' and La Brillante in multiple field and laboratory experiments revealed that at least five loci conferred resistance in La Brillante. The presence of a new dominant resistance gene (designated Dm50) that confers complete resistance to specific isolates was detected in laboratory tests of seedlings inoculated with multiple diverse isolates. Dm50 is located in the major resistance cluster on linkage group 2 that contains at least eight major, dominant Dm genes conferring resistance to downy mildew. However, this Dm gene is ineffective against the isolates of B. lactucae prevalent in the field in California and the Netherlands. A quantitative trait locus (QTL) located at the Dm50 chromosomal region (qDM2.2) was detected, though, when the amount of disease was evaluated a month before plants reached harvest maturity. Four additional QTL for resistance to B. lactucae were identified on linkage groups 4 (qDM4.1 and qDM4.2), 7 (qDM7.1), and 9 (qDM9.2). The largest effect was associated with qDM7.1 (up to 32.9% of the total phenotypic variance) that determined resistance in multiple field experiments. Markers identified in the present study will facilitate introduction of these resistance loci into commercial cultivars of lettuce.

  2. Antimicrobial Resistance and Resistance Genes in Aerobic Bacteria Isolated from Pork at Slaughter

    DEFF Research Database (Denmark)

    Li, Lili; Olsen, Rikke Heidemann; Ye, Lei

    2016-01-01

    The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram-negative bac......The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram......-negative bacteria (92.2%) and gram-positive bacteria (7.8%). High levels of resistance were detected to tetracycline, trimethoprim-sulfamethoxazole, and ampicillin (36.2 to 54.3%), and lower levels were detected to nitrofurantoin, cefotaxime, gentamicin, ciprofloxacin, and chloramphenicol (7.8 to 29.2%). Across.......6% of isolates contained class 1 integrons, and one isolate harbored class 2 integrons. Plasmid associated intI1 and androgen receptor– encoding genes were transferred into Escherichia coli J53 and E. coli DH5α by conjugation and transformation experiments, respectively. Our study highlights the importance...

  3. Genetic variations and haplotype diversity of the UGT1 gene cluster in the Chinese population.

    Directory of Open Access Journals (Sweden)

    Jing Yang

    Full Text Available Vertebrates require tremendous molecular diversity to defend against numerous small hydrophobic chemicals. UDP-glucuronosyltransferases (UGTs are a large family of detoxification enzymes that glucuronidate xenobiotics and endobiotics, facilitating their excretion from the body. The UGT1 gene cluster contains a tandem array of variable first exons, each preceded by a specific promoter, and a common set of downstream constant exons, similar to the genomic organization of the protocadherin (Pcdh, immunoglobulin, and T-cell receptor gene clusters. To assist pharmacogenomics studies in Chinese, we sequenced nine first exons, promoter and intronic regions, and five common exons of the UGT1 gene cluster in a population sample of 253 unrelated Chinese individuals. We identified 101 polymorphisms and found 15 novel SNPs. We then computed allele frequencies for each polymorphism and reconstructed their linkage disequilibrium (LD map. The UGT1 cluster can be divided into five linkage blocks: Block 9 (UGT1A9, Block 9/7/6 (UGT1A9, UGT1A7, and UGT1A6, Block 5 (UGT1A5, Block 4/3 (UGT1A4 and UGT1A3, and Block 3' UTR. Furthermore, we inferred haplotypes and selected their tagSNPs. Finally, comparing our data with those of three other populations of the HapMap project revealed ethnic specificity of the UGT1 genetic diversity in Chinese. These findings have important implications for future molecular genetic studies of the UGT1 gene cluster as well as for personalized medical therapies in Chinese.

  4. MeSH key terms for validation and annotation of gene expression clusters

    Energy Technology Data Exchange (ETDEWEB)

    Rechtsteiner, A. (Andreas); Rocha, L. M. (Luis Mateus)

    2004-01-01

    Integration of different sources of information is a great challenge for the analysis of gene expression data, and for the field of Functional Genomics in general. As the availability of numerical data from high-throughput methods increases, so does the need for technologies that assist in the validation and evaluation of the biological significance of results extracted from these data. In mRNA assaying with microarrays, for example, numerical analysis often attempts to identify clusters of co-expressed genes. The important task to find the biological significance of the results and validate them has so far mostly fallen to the biological expert who had to perform this task manually. One of the most promising avenues to develop automated and integrative technology for such tasks lies in the application of modern Information Retrieval (IR) and Knowledge Management (KM) algorithms to databases with biomedical publications and data. Examples of databases available for the field are bibliographic databases c ntaining scientific publications (e.g. MEDLINE/PUBMED), databases containing sequence data (e.g. GenBank) and databases of semantic annotations (e.g. the Gene Ontology Consortium and Medical Subject Headings (MeSH)). We present here an approach that uses the MeSH terms and their concept hierarchies to validate and obtain functional information for gene expression clusters. The controlled and hierarchical MeSH vocabulary is used by the National Library of Medicine (NLM) to index all the articles cited in MEDLINE. Such indexing with a controlled vocabulary eliminates some of the ambiguity due to polysemy (terms that have multiple meanings) and synonymy (multiple terms have similar meaning) that would be encountered if terms would be extracted directly from the articles due to differing article contexts or author preferences and background. Further, the hierarchical organization of the MeSH terms can illustrate the conceptuallfunctional relationships of genes

  5. Sequencing and transcriptional analysis of the Streptococcus thermophilus histamine biosynthesis gene cluster: factors that affect differential hdcA expression

    DEFF Research Database (Denmark)

    Calles-Enríquez, Marina; Hjort, Benjamin Benn; Andersen, Pia Skov

    2010-01-01

    to produce histamine. The hdc clusters of S. thermophilus CHCC1524 and CHCC6483 were sequenced, and the factors that affect histamine biosynthesis and histidine-decarboxylating gene (hdcA) expression were studied. The hdc cluster began with the hdcA gene, was followed by a transporter (hdcP), and ended...... with the hdcB gene, which is of unknown function. The three genes were orientated in the same direction. The genetic organization of the hdc cluster showed a unique organization among the lactic acid bacterial group and resembled those of Staphylococcus and Clostridium species, thus indicating possible...... acquisition through a horizontal transfer mechanism. Transcriptional analysis of the hdc cluster revealed the existence of a polycistronic mRNA covering the three genes. The histidine-decarboxylating gene (hdcA) of S. thermophilus demonstrated maximum expression during the stationary growth phase, with high...

  6. Genetic homogeneity of Clostridium botulinum type A1 strains with unique toxin gene clusters.

    Science.gov (United States)

    Raphael, Brian H; Luquez, Carolina; McCroskey, Loretta M; Joseph, Lavin A; Jacobson, Mark J; Johnson, Eric A; Maslanka, Susan E; Andreadis, Joanne D

    2008-07-01

    A group of five clonally related Clostridium botulinum type A strains isolated from different sources over a period of nearly 40 years harbored several conserved genetic properties. These strains contained a variant bont/A1 with five nucleotide polymorphisms compared to the gene in C. botulinum strain ATCC 3502. The strains also had a common toxin gene cluster composition (ha-/orfX+) similar to that associated with bont/A in type A strains containing an unexpressed bont/B [termed A(B) strains]. However, bont/B was not identified in the strains examined. Comparative genomic hybridization demonstrated identical genomic content among the strains relative to C. botulinum strain ATCC 3502. In addition, microarray data demonstrated the absence of several genes flanking the toxin gene cluster among the ha-/orfX+ A1 strains, suggesting the presence of genomic rearrangements with respect to this region compared to the C. botulinum ATCC 3502 strain. All five strains were shown to have identical flaA variable region nucleotide sequences. The pulsed-field gel electrophoresis patterns of the strains were indistinguishable when digested with SmaI, and a shift in the size of at least one band was observed in a single strain when digested with XhoI. These results demonstrate surprising genomic homogeneity among a cluster of unique C. botulinum type A strains of diverse origin.

  7. Spatial expression of Hox cluster genes in the ontogeny of a sea urchin

    Science.gov (United States)

    Arenas-Mena, C.; Cameron, A. R.; Davidson, E. H.

    2000-01-01

    The Hox cluster of the sea urchin Strongylocentrous purpuratus contains ten genes in a 500 kb span of the genome. Only two of these genes are expressed during embryogenesis, while all of eight genes tested are expressed during development of the adult body plan in the larval stage. We report the spatial expression during larval development of the five 'posterior' genes of the cluster: SpHox7, SpHox8, SpHox9/10, SpHox11/13a and SpHox11/13b. The five genes exhibit a dynamic, largely mesodermal program of expression. Only SpHox7 displays extensive expression within the pentameral rudiment itself. A spatially sequential and colinear arrangement of expression domains is found in the somatocoels, the paired posterior mesodermal structures that will become the adult perivisceral coeloms. No such sequential expression pattern is observed in endodermal, epidermal or neural tissues of either the larva or the presumptive juvenile sea urchin. The spatial expression patterns of the Hox genes illuminate the evolutionary process by which the pentameral echinoderm body plan emerged from a bilateral ancestor.

  8. Genomic organization, tissue distribution and functional characterization of the rat Pate gene cluster.

    Directory of Open Access Journals (Sweden)

    Angireddy Rajesh

    Full Text Available The cysteine rich prostate and testis expressed (Pate proteins identified till date are thought to resemble the three fingered protein/urokinase-type plasminogen activator receptor proteins. In this study, for the first time, we report the identification, cloning and characterization of rat Pate gene cluster and also determine the expression pattern. The rat Pate genes are clustered on chromosome 8 and their predicted proteins retained the ten cysteine signature characteristic to TFP/Ly-6 protein family. PATE and PATE-F three dimensional protein structure was found to be similar to that of the toxin bucandin. Though Pate gene expression is thought to be prostate and testis specific, we observed that rat Pate genes are also expressed in seminal vesicle and epididymis and in tissues beyond the male reproductive tract. In the developing rats (20-60 day old, expression of Pate genes seem to be androgen dependent in the epididymis and testis. In the adult rat, androgen ablation resulted in down regulation of the majority of Pate genes in the epididymides. PATE and PATE-F proteins were found to be expressed abundantly in the male reproductive tract of rats and on the sperm. Recombinant PATE protein exhibited potent antibacterial activity, whereas PATE-F did not exhibit any antibacterial activity. Pate expression was induced in the epididymides when challenged with LPS. Based on our results, we conclude that rat PATE proteins may contribute to the reproductive and defense functions.

  9. Linkage of the Nit1C gene cluster to bacterial cyanide assimilation as a nitrogen source.

    Science.gov (United States)

    Jones, Lauren B; Ghosh, Pallab; Lee, Jung-Hyun; Chou, Chia-Ni; Kunz, Daniel A

    2018-05-21

    A genetic linkage between a conserved gene cluster (Nit1C) and the ability of bacteria to utilize cyanide as the sole nitrogen source was demonstrated for nine different bacterial species. These included three strains whose cyanide nutritional ability has formerly been documented (Pseudomonas fluorescens Pf11764, Pseudomonas putida BCN3 and Klebsiella pneumoniae BCN33), and six not previously known to have this ability [Burkholderia (Paraburkholderia) xenovorans LB400, Paraburkholderia phymatum STM815, Paraburkholderia phytofirmans PsJN, Cupriavidus (Ralstonia) eutropha H16, Gluconoacetobacter diazotrophicus PA1 5 and Methylobacterium extorquens AM1]. For all bacteria, growth on or exposure to cyanide led to the induction of the canonical nitrilase (NitC) linked to the gene cluster, and in the case of Pf11764 in particular, transcript levels of cluster genes (nitBCDEFGH) were raised, and a nitC knock-out mutant failed to grow. Further studies demonstrated that the highly conserved nitB gene product was also significantly elevated. Collectively, these findings provide strong evidence for a genetic linkage between Nit1C and bacterial growth on cyanide, supporting use of the term cyanotrophy in describing what may represent a new nutritional paradigm in microbiology. A broader search of Nit1C genes in presently available genomes revealed its presence in 270 different bacteria, all contained within the domain Bacteria, including Gram-positive Firmicutes and Actinobacteria, and Gram-negative Proteobacteria and Cyanobacteria. Absence of the cluster in the Archaea is congruent with events that may have led to the inception of Nit1C occurring coincidentally with the first appearance of cyanogenic species on Earth, dating back 400-500 million years.

  10. Space-time clustering of ampicillin resistant Escherichia coli isolated from Danish pigs at slaughter between 1997 and 2005

    DEFF Research Database (Denmark)

    Abatih, E. N.; Ersbøll, A. K.; Wong, Danilo Lo Fo

    2009-01-01

    In Denmark, antimicrobial resistance in bacteria in animals, animal products and humans, is routinely monitored. This study aimed at determining whether the observed variations in the prevalence of ampicillin resistant Escherichia coli isolated from healthy pigs at slaughter were random....... The clusters of ampicillin resistant E coli appeared at the same time as the national consumption of ampicillin in pigs increased, however antimicrobial consumption at the herd level did not appear to have any effects on space-time clustering in this study. The results could serve as a platform to highlight...... or clustered in space and time. Data on E coli isolates between 1997 and 2005 were obtained from the Danish Integrated Antimicrobial Resistance Monitoring and Research Programme (DANMAP) whereas data on the quantity of ampicillin consumed was obtained from the Danish Register of Veterinary Medicines (Vet...

  11. A highly divergent gene cluster in honey bees encodes a novel silk family.

    Science.gov (United States)

    Sutherland, Tara D; Campbell, Peter M; Weisman, Sarah; Trueman, Holly E; Sriskantha, Alagacone; Wanjura, Wolfgang J; Haritos, Victoria S

    2006-11-01

    The pupal cocoon of the domesticated silk moth Bombyx mori is the best known and most extensively studied insect silk. It is not widely known that Apis mellifera larvae also produce silk. We have used a combination of genomic and proteomic techniques to identify four honey bee fiber genes (AmelFibroin1-4) and two silk-associated genes (AmelSA1 and 2). The four fiber genes are small, comprise a single exon each, and are clustered on a short genomic region where the open reading frames are GC-rich amid low GC intergenic regions. The genes encode similar proteins that are highly helical and predicted to form unusually tight coiled coils. Despite the similarity in size, structure, and composition of the encoded proteins, the genes have low primary sequence identity. We propose that the four fiber genes have arisen from gene duplication events but have subsequently diverged significantly. The silk-associated genes encode proteins likely to act as a glue (AmelSA1) and involved in silk processing (AmelSA2). Although the silks of honey bees and silkmoths both originate in larval labial glands, the silk proteins are completely different in their primary, secondary, and tertiary structures as well as the genomic arrangement of the genes encoding them. This implies independent evolutionary origins for these functionally related proteins.

  12. Characterization of resistance gene analogues (RGAs in apple (Malus × domestica Borkh. and their evolutionary history of the Rosaceae family.

    Directory of Open Access Journals (Sweden)

    Michele Perazzolli

    Full Text Available The family of resistance gene analogues (RGAs with a nucleotide-binding site (NBS domain accounts for the largest number of disease resistance genes and is one of the largest gene families in plants. We have identified 868 RGAs in the genome of the apple (Malus × domestica Borkh. cultivar 'Golden Delicious'. This represents 1.51% of the total number of predicted genes for this cultivar. Several evolutionary features are pronounced in M. domestica, including a high fraction (80% of RGAs occurring in clusters. This suggests frequent tandem duplication and ectopic translocation events. Of the identified RGAs, 56% are located preferentially on six chromosomes (Chr 2, 7, 8, 10, 11, and 15, and 25% are located on Chr 2. TIR-NBS and non-TIR-NBS classes of RGAs are primarily exclusive of different chromosomes, and 99% of non-TIR-NBS RGAs are located on Chr 11. A phylogenetic reconstruction was conducted to study the evolution of RGAs in the Rosaceae family. More than 1400 RGAs were identified in six species based on their NBS domain, and a neighbor-joining analysis was used to reconstruct the phylogenetic relationships among the protein sequences. Specific phylogenetic clades were found for RGAs of Malus, Fragaria, and Rosa, indicating genus-specific evolution of resistance genes. However, strikingly similar RGAs were shared in Malus, Pyrus, and Prunus, indicating high conservation of specific RGAs and suggesting a monophyletic origin of these three genera.

  13. Characterization of Resistance Gene Analogues (RGAs) in Apple (Malus × domestica Borkh.) and Their Evolutionary History of the Rosaceae Family

    Science.gov (United States)

    Baldo, Angela; Righetti, Laura; Bailey, Aubrey; Fontana, Paolo; Velasco, Riccardo; Malnoy, Mickael

    2014-01-01

    The family of resistance gene analogues (RGAs) with a nucleotide-binding site (NBS) domain accounts for the largest number of disease resistance genes and is one of the largest gene families in plants. We have identified 868 RGAs in the genome of the apple (Malus × domestica Borkh.) cultivar ‘Golden Delicious’. This represents 1.51% of the total number of predicted genes for this cultivar. Several evolutionary features are pronounced in M. domestica, including a high fraction (80%) of RGAs occurring in clusters. This suggests frequent tandem duplication and ectopic translocation events. Of the identified RGAs, 56% are located preferentially on six chromosomes (Chr 2, 7, 8, 10, 11, and 15), and 25% are located on Chr 2. TIR-NBS and non-TIR-NBS classes of RGAs are primarily exclusive of different chromosomes, and 99% of non-TIR-NBS RGAs are located on Chr 11. A phylogenetic reconstruction was conducted to study the evolution of RGAs in the Rosaceae family. More than 1400 RGAs were identified in six species based on their NBS domain, and a neighbor-joining analysis was used to reconstruct the phylogenetic relationships among the protein sequences. Specific phylogenetic clades were found for RGAs of Malus, Fragaria, and Rosa, indicating genus-specific evolution of resistance genes. However, strikingly similar RGAs were shared in Malus, Pyrus, and Prunus, indicating high conservation of specific RGAs and suggesting a monophyletic origin of these three genera. PMID:24505246

  14. Characterization of resistance gene analogues (RGAs) in apple (Malus × domestica Borkh.) and their evolutionary history of the Rosaceae family.

    Science.gov (United States)

    Perazzolli, Michele; Malacarne, Giulia; Baldo, Angela; Righetti, Laura; Bailey, Aubrey; Fontana, Paolo; Velasco, Riccardo; Malnoy, Mickael

    2014-01-01

    The family of resistance gene analogues (RGAs) with a nucleotide-binding site (NBS) domain accounts for the largest number of disease resistance genes and is one of the largest gene families in plants. We have identified 868 RGAs in the genome of the apple (Malus × domestica Borkh.) cultivar 'Golden Delicious'. This represents 1.51% of the total number of predicted genes for this cultivar. Several evolutionary features are pronounced in M. domestica, including a high fraction (80%) of RGAs occurring in clusters. This suggests frequent tandem duplication and ectopic translocation events. Of the identified RGAs, 56% are located preferentially on six chromosomes (Chr 2, 7, 8, 10, 11, and 15), and 25% are located on Chr 2. TIR-NBS and non-TIR-NBS classes of RGAs are primarily exclusive of different chromosomes, and 99% of non-TIR-NBS RGAs are located on Chr 11. A phylogenetic reconstruction was conducted to study the evolution of RGAs in the Rosaceae family. More than 1400 RGAs were identified in six species based on their NBS domain, and a neighbor-joining analysis was used to reconstruct the phylogenetic relationships among the protein sequences. Specific phylogenetic clades were found for RGAs of Malus, Fragaria, and Rosa, indicating genus-specific evolution of resistance genes. However, strikingly similar RGAs were shared in Malus, Pyrus, and Prunus, indicating high conservation of specific RGAs and suggesting a monophyletic origin of these three genera.

  15. Expression Analysis of Stress-Related Genes in Kernels of Different Maize (Zea mays L.) Inbred Lines with Different Resistance to Aflatoxin Contamination

    Science.gov (United States)

    Jiang, Tingbo; Zhou, Boru; Luo, Meng; Abbas, Hamed K.; Kemerait, Robert; Lee, Robert Dewey; Scully, Brian T.; Guo, Baozhu

    2011-01-01

    This research examined the expression patterns of 94 stress-related genes in seven maize inbred lines with differential expressions of resistance to aflatoxin contamination. The objective was to develop a set of genes/probes associated with resistance to A. flavus and/or aflatoxin contamination. Ninety four genes were selected from previous gene expression studies with abiotic stress to test the differential expression in maize lines, A638, B73, Lo964, Lo1016, Mo17, Mp313E, and Tex6, using real-time RT-PCR. Based on the relative-expression levels, the seven maize inbred lines clustered into two different groups. One group included B73, Lo1016 and Mo17, which had higher levels of aflatoxin contamination and lower levels of overall gene expression. The second group which included Tex6, Mp313E, Lo964 and A638 had lower levels of aflatoxin contamination and higher overall levels of gene expressions. A total of six “cross-talking” genes were identified between the two groups, which are highly expressed in the resistant Group 2 but down-regulated in susceptible Group 1. When further subjected to drought stress, Tex6 expressed more genes up-regulated and B73 has fewer genes up-regulated. The transcript patterns and interactions measured in these experiments indicate that the resistant mechanism is an interconnected process involving many gene products and transcriptional regulators, as well as various host interactions with environmental factors, particularly, drought and high temperature. PMID:22069724

  16. Host range of antibiotic resistance genes in wastewater treatment plant influent and effluent.

    Science.gov (United States)

    Hultman, Jenni; Tamminen, Manu; Pärnänen, Katariina; Cairns, Johannes; Karkman, Antti; Virta, Marko

    2018-04-01

    Wastewater treatment plants (WWTPs) collect wastewater from various sources for a multi-step treatment process. By mixing a large variety of bacteria and promoting their proximity, WWTPs constitute potential hotspots for the emergence of antibiotic resistant bacteria. Concerns have been expressed regarding the potential of WWTPs to spread antibiotic resistance genes (ARGs) from environmental reservoirs to human pathogens. We utilized epicPCR (Emulsion, Paired Isolation and Concatenation PCR) to detect the bacterial hosts of ARGs in two WWTPs. We identified the host distribution of four resistance-associated genes (tetM, int1, qacEΔ1and blaOXA-58) in influent and effluent. The bacterial hosts of these resistance genes varied between the WWTP influent and effluent, with a generally decreasing host range in the effluent. Through 16S rRNA gene sequencing, it was determined that the resistance gene carrying bacteria include both abundant and rare taxa. Our results suggest that the studied WWTPs mostly succeed in decreasing the host range of the resistance genes during the treatment process. Still, there were instances where effluent contained resistance genes in bacterial groups not carrying these genes in the influent. By permitting exhaustive profiling of resistance-associated gene hosts in WWTP bacterial communities, the application of epicPCR provides a new level of precision to our resistance gene risk estimates.

  17. Genome-wide and expression-profiling analyses suggest the main cytochrome P450 genes related to pyrethroid resistance in the malaria vector, Anopheles sinensis (Diptera Culicidae).

    Science.gov (United States)

    Yan, Zheng-Wen; He, Zheng-Bo; Yan, Zhen-Tian; Si, Feng-Ling; Zhou, Yong; Chen, Bin

    2018-02-02

    Anopheles sinensis is one of the major malaria vectors. However, pyrethroid resistance in An. sinensis is threatening malaria control. Cytochrome P450-mediated detoxification is an important pyrethroid resistance mechanism that has been unexplored in An. sinensis. In this study, we performed a comprehensive analysis of the An. sinensis P450 gene superfamily with special attention to their role in pyrethroid resistance using bioinformatics and molecular approaches. Our data revealed the presence of 112 individual P450 genes in An. sinensis, which were classified into four major clans (mitochondrial, CYP2, CYP3 and CYP4), 18 families and 50 subfamilies. Sixty-seven genes formed nine gene clusters, and genes within the same cluster and the same gene family had a similar gene structure. Phylogenetic analysis showed that most of An. sinensis P450s (82/112) had very close 1: 1 orthology with Anopheles gambiae P450s. Five genes (AsCYP6Z2, AsCYP6P3v1, AsCYP6P3v2, AsCYP9J5 and AsCYP306A1) were significantly upregulated in three pyrethroid-resistant populations in both RNA-seq and RT-qPCR analyses, suggesting that they could be the most important P450 genes involved in pyrethroid resistance in An. sinensis. Our study provides insight on the diversity of An. sinensis P450 superfamily and basis for further elucidating pyrethroid resistance mechanism in this mosquito species. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  18. Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China

    International Nuclear Information System (INIS)

    Tao Ran; Ying Guangguo; Su Haochang; Zhou Hongwei; Sidhu, Jatinder P.S.

    2010-01-01

    This study investigated antibiotic resistance profiles and tetracycline resistance genes in Enterobacteriaceae family isolates from the Pearl rivers. The Enterobacteriaceae isolates were tested for susceptibility to seven antibiotics ampicillin, chloramphenicol, ciprofloxacin, levofloxacin, sulphamethoxazole/trimethoprim, tetracycline and trimethoprim. In Liuxi reservoir, with an exception to ampicillin resistant strains (11%) no other antibiotic resistance bacterial strains were detected. However, multiple drug resistance in bacterial isolates from the other sites of Pearl rivers was observed which is possibly due to sewage discharge and input from other anthropogenic sources along the rivers. Four tetracycline resistance genes tet A, tet B, tet C and tet D were detected in the isolates from the rivers. The genes tet A and tet B were widely detected with the detection frequencies of 43% and 40% respectively. Ciprofloxacin and levofloxacin resistant enteric bacteria were also isolated from the pig and duck manures which suggest a wider distribution of human specific drugs in the environment. This investigation provided a baseline data on antibiotic resistance profiles and tetracycline resistance genes in the Pearl rivers delta. - High rates of antibiotic resistance in Enterobacteriaceae from river water are attributed to wastewater contamination.

  19. Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China

    Energy Technology Data Exchange (ETDEWEB)

    Tao Ran [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Ying Guangguo, E-mail: guangguo.ying@gmail.co [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Su Haochang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Zhou Hongwei [Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, 1838 North Guangzhou Street, Baiyun District, Guangzhou 510515 (China); Sidhu, Jatinder P.S. [CSIRO Land and Water, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia QLD 4067 (Australia)

    2010-06-15

    This study investigated antibiotic resistance profiles and tetracycline resistance genes in Enterobacteriaceae family isolates from the Pearl rivers. The Enterobacteriaceae isolates were tested for susceptibility to seven antibiotics ampicillin, chloramphenicol, ciprofloxacin, levofloxacin, sulphamethoxazole/trimethoprim, tetracycline and trimethoprim. In Liuxi reservoir, with an exception to ampicillin resistant strains (11%) no other antibiotic resistance bacterial strains were detected. However, multiple drug resistance in bacterial isolates from the other sites of Pearl rivers was observed which is possibly due to sewage discharge and input from other anthropogenic sources along the rivers. Four tetracycline resistance genes tet A, tet B, tet C and tet D were detected in the isolates from the rivers. The genes tet A and tet B were widely detected with the detection frequencies of 43% and 40% respectively. Ciprofloxacin and levofloxacin resistant enteric bacteria were also isolated from the pig and duck manures which suggest a wider distribution of human specific drugs in the environment. This investigation provided a baseline data on antibiotic resistance profiles and tetracycline resistance genes in the Pearl rivers delta. - High rates of antibiotic resistance in Enterobacteriaceae from river water are attributed to wastewater contamination.

  20. Strategy of gene silencing in cassava for validation of resistance genes

    International Nuclear Information System (INIS)

    Cortes, Simon; Lopez, Camilo

    2010-01-01

    Cassava (Manihot esculenta) is a major source of food for more than 1000 million people in the world and constitutes an important staple crop. Cassava bacterial blight, caused by the gram negative bacterium Xanthomonas axonopodis pv. manihotis, is one of the most important constraints for this crop. A candidate resistance gene against cassava bacterial blight, named RXam1, has been identified previously. In this work, we employed the gene silencing approach using the African cassava mosaic virus (ACMV) to validate the function of the RXam1 gene. We used as positive control the su gen, which produce photo blanching in leaves when is silenced. Plants from the SG10735 variety were bombardment with the ACMV-A-SU+ACMV-B y ACMV-A-RXam1+ACMV-B constructions. The silencing efficiency employing the su gene was low, only one of seven plants showed photo blanching. In the putative silenced plants for the RXam1 gene, no presence of siRNAs corresponding to RXam1 was observed; although a low diminution of the RXam1 gene expression was obtained. The growth curves for the Xam strain CIO136 in cassava plants inoculated showing a little but no significance difference in the susceptibility in the silenced plants compared to not silenced

  1. clusters

    Indian Academy of Sciences (India)

    2017-09-27

    Sep 27, 2017 ... Author for correspondence (zh4403701@126.com). MS received 15 ... lic clusters using density functional theory (DFT)-GGA of the DMOL3 package. ... In the process of geometric optimization, con- vergence thresholds ..... and Postgraduate Research & Practice Innovation Program of. Jiangsu Province ...

  2. clusters

    Indian Academy of Sciences (India)

    environmental as well as technical problems during fuel gas utilization. ... adsorption on some alloys of Pd, namely PdAu, PdAg ... ried out on small neutral and charged Au24,26,27, Cu,28 ... study of Zanti et al.29 on Pdn (n = 1–9) clusters.

  3. Hierarchical clustering of breast cancer methylomes revealed differentially methylated and expressed breast cancer genes.

    Directory of Open Access Journals (Sweden)

    I-Hsuan Lin

    Full Text Available Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs and the hypomethylation of the megabase-sized partially methylated domains (PMDs are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation.

  4. Gene co-expression analysis identifies gene clusters associated with isotropic and polarized growth in Aspergillus fumigatus conidia.

    Science.gov (United States)

    Baltussen, Tim J H; Coolen, Jordy P M; Zoll, Jan; Verweij, Paul E; Melchers, Willem J G

    2018-04-26

    Aspergillus fumigatus is a saprophytic fungus that extensively produces conidia. These microscopic asexually reproductive structures are small enough to reach the lungs. Germination of conidia followed by hyphal growth inside human lungs is a key step in the establishment of infection in immunocompromised patients. RNA-Seq was used to analyze the transcriptome of dormant and germinating A. fumigatus conidia. Construction of a gene co-expression network revealed four gene clusters (modules) correlated with a growth phase (dormant, isotropic growth, polarized growth). Transcripts levels of genes encoding for secondary metabolites were high in dormant conidia. During isotropic growth, transcript levels of genes involved in cell wall modifications increased. Two modules encoding for growth and cell cycle/DNA processing were associated with polarized growth. In addition, the co-expression network was used to identify highly connected intermodular hub genes. These genes may have a pivotal role in the respective module and could therefore be compelling therapeutic targets. Generally, cell wall remodeling is an important process during isotropic and polarized growth, characterized by an increase of transcripts coding for hyphal growth and cell cycle/DNA processing when polarized growth is initiated. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Functional screen for genes responsible for tamoxifen resistance in human breast cancer cells

    NARCIS (Netherlands)

    Meijer, Danielle; van Agthoven, Ton; Bosma, Peter T.; Nooter, Kees; Dorssers, Lambert C. J.

    2006-01-01

    Antiestrogens, such as tamoxifen, are widely used for endocrine treatment of estrogen receptor-positive breast cancer. However, as breast cancer progresses, development of tamoxifen resistance is inevitable. The mechanisms underlying this resistance are not well understood. To identify genes

  6. Output ordering and prioritisation system (OOPS): ranking biosynthetic gene clusters to enhance bioactive metabolite discovery.

    Science.gov (United States)

    Peña, Alejandro; Del Carratore, Francesco; Cummings, Matthew; Takano, Eriko; Breitling, Rainer

    2017-12-18

    The rapid increase of publicly available microbial genome sequences has highlighted the presence of hundreds of thousands of biosynthetic gene clusters (BGCs) encoding valuable secondary metabolites. The experimental characterization of new BGCs is extremely laborious and struggles to keep pace with the in silico identification of potential BGCs. Therefore, the prioritisation of promising candidates among computationally predicted BGCs represents a pressing need. Here, we propose an output ordering and prioritisation system (OOPS) which helps sorting identified BGCs by a wide variety of custom-weighted biological and biochemical criteria in a flexible and user-friendly interface. OOPS facilitates a judicious prioritisation of BGCs using G+C content, coding sequence length, gene number, cluster self-similarity and codon bias parameters, as well as enabling the user to rank BGCs based upon BGC type, novelty, and taxonomic distribution. Effective prioritisation of BGCs will help to reduce experimental attrition rates and improve the breadth of bioactive metabolites characterized.

  7. Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters.

    Science.gov (United States)

    Hensman, James; Lawrence, Neil D; Rattray, Magnus

    2013-08-20

    Time course data from microarrays and high-throughput sequencing experiments require simple, computationally efficient and powerful statistical models to extract meaningful biological signal, and for tasks such as data fusion and clustering. Existing methodologies fail to capture either the temporal or replicated nature of the experiments, and often impose constraints on the data collection process, such as regularly spaced samples, or similar sampling schema across replications. We propose hierarchical Gaussian processes as a general model of gene expression time-series, with application to a variety of problems. In particular, we illustrate the method's capacity for missing data imputation, data fusion and clustering.The method can impute data which is missing both systematically and at random: in a hold-out test on real data, performance is significantly better than commonly used imputation methods. The method's ability to model inter- and intra-cluster variance leads to more biologically meaningful clusters. The approach removes the necessity for evenly spaced samples, an advantage illustrated on a developmental Drosophila dataset with irregular replications. The hierarchical Gaussian process model provides an excellent statistical basis for several gene-expression time-series tasks. It has only a few additional parameters over a regular GP, has negligible additional complexity, is easily implemented and can be integrated into several existing algorithms. Our experiments were implemented in python, and are available from the authors' website: http://staffwww.dcs.shef.ac.uk/people/J.Hensman/.

  8. Comparison of expression of secondary metabolite biosynthesis cluster genes in Aspergillus flavus, A. parasiticus, and A. oryzae.

    Science.gov (United States)

    Ehrlich, Kenneth C; Mack, Brian M

    2014-06-23

    Fifty six secondary metabolite biosynthesis gene clusters are predicted to be in the Aspergillus flavus genome. In spite of this, the biosyntheses of only seven metabolites, including the aflatoxins, kojic acid, cyclopiazonic acid and aflatrem, have been assigned to a particular gene cluster. We used RNA-seq to compare expression of secondary metabolite genes in gene clusters for the closely related fungi A. parasiticus, A. oryzae, and A. flavus S and L sclerotial morphotypes. The data help to refine the identification of probable functional gene clusters within these species. Our results suggest that A. flavus, a prevalent contaminant of maize, cottonseed, peanuts and tree nuts, is capable of producing metabolites which, besides aflatoxin, could be an underappreciated contributor to its toxicity.

  9. A maize resistance gene functions against bacterial streak disease in rice

    OpenAIRE

    Zhao, Bingyu; Lin, Xinghua; Poland, Jesse; Trick, Harold; Leach, Jan; Hulbert, Scot

    2005-01-01

    Although cereal crops all belong to the grass family (Poacea), most of their diseases are specific to a particular species. Thus, a given cereal species is typically resistant to diseases of other grasses, and this nonhost resistance is generally stable. To determine the feasibility of transferring nonhost resistance genes (R genes) between distantly related grasses to control specific diseases, we identified a maize R gene that recognizes a rice pathogen, Xanthomonas oryzae pv. oryzicola, wh...

  10. Mycobiota and identification of aflatoxin gene cluster in marketed spices in West Africa

    DEFF Research Database (Denmark)

    Gnonlonfin, G. J. B.; Adjovi, Y. C.; Tokpo, A. F.

    2013-01-01

    Fungal infection and aflatoxin contamination were evaluated on 114 samples of dried and milled spices such as ginger, garlic and black pepper from southern Benin and Togo collected in November 2008 -January 2009. These products are dried to preserve them for lean periods available throughout...... of Aspergillus were dominant on all marketed dried and milled spices irrespective of country. Gene characterization and amplification analysis showed that most of the Aspergillus flavus isolates possess the cluster genes for aflatoxin production. Aflatoxin B1 assessment by Thin Layer Chromatography showed...... further for other products such as dried and milled spices. Crown Copyright (C) 2013 Published by Elsevier Ltd. All rights reserved....

  11. Gene Clusters for Insecticidal Loline Alkaloids in the Grass-Endophytic Fungus Neotyphodium uncinatum

    OpenAIRE

    Spiering, Martin J.; Moon, Christina D.; Wilkinson, Heather H.; Schardl, Christopher L.

    2005-01-01

    Loline alkaloids are produced by mutualistic fungi symbiotic with grasses, and they protect the host plants from insects. Here we identify in the fungal symbiont, Neotyphodium uncinatum, two homologous gene clusters (LOL-1 and LOL-2) associated with loline-alkaloid production. Nine genes were identified in a 25-kb region of LOL-1 and designated (in order) lolF-1, lolC-1, lolD-1, lolO-1, lolA-1, lolU-1, lolP-1, lolT-1, and lolE-1. LOL-2 contained the homologs lolC-2 through lolE-2 in the same ...

  12. Characterization of the biosynthetic gene cluster for cryptic phthoxazolin A in Streptomyces avermitilis.

    Directory of Open Access Journals (Sweden)

    Dian Anggraini Suroto

    Full Text Available Phthoxazolin A, an oxazole-containing polyketide, has a broad spectrum of anti-oomycete activity and herbicidal activity. We recently identified phthoxazolin A as a cryptic metabolite of Streptomyces avermitilis that produces the important anthelmintic agent avermectin. Even though genome data of S. avermitilis is publicly available, no plausible biosynthetic gene cluster for phthoxazolin A is apparent in the sequence data. Here, we identified and characterized the phthoxazolin A (ptx biosynthetic gene cluster through genome sequencing, comparative genomic analysis, and gene disruption. Sequence analysis uncovered that the putative ptx biosynthetic genes are laid on an extra genomic region that is not found in the public database, and 8 open reading frames in the extra genomic region could be assigned roles in the biosynthesis of the oxazole ring, triene polyketide and carbamoyl moieties. Disruption of the ptxA gene encoding a discrete acyltransferase resulted in a complete loss of phthoxazolin A production, confirming that the trans-AT type I PKS system is responsible for the phthoxazolin A biosynthesis. Based on the predicted functional domains in the ptx assembly line, we propose the biosynthetic pathway of phthoxazolin A.

  13. Genetic clusters and sex-biased gene flow in a unicolonial Formica ant

    Directory of Open Access Journals (Sweden)

    Chapuisat Michel

    2009-03-01

    Full Text Available Abstract Background Animal societies are diverse, ranging from small family-based groups to extraordinarily large social networks in which many unrelated individuals interact. At the extreme of this continuum, some ant species form unicolonial populations in which workers and queens can move among multiple interconnected nests without eliciting aggression. Although unicoloniality has been mostly studied in invasive ants, it also occurs in some native non-invasive species. Unicoloniality is commonly associated with very high queen number, which may result in levels of relatedness among nestmates being so low as to raise the question of the maintenance of altruism by kin selection in such systems. However, the actual relatedness among cooperating individuals critically depends on effective dispersal and the ensuing pattern of genetic structuring. In order to better understand the evolution of unicoloniality in native non-invasive ants, we investigated the fine-scale population genetic structure and gene flow in three unicolonial populations of the wood ant F. paralugubris. Results The analysis of geo-referenced microsatellite genotypes and mitochondrial haplotypes revealed the presence of cryptic clusters of genetically-differentiated nests in the three populations of F. paralugubris. Because of this spatial genetic heterogeneity, members of the same clusters were moderately but significantly related. The comparison of nuclear (microsatellite and mitochondrial differentiation indicated that effective gene flow was male-biased in all populations. Conclusion The three unicolonial populations exhibited male-biased and mostly local gene flow. The high number of queens per nest, exchanges among neighbouring nests and restricted long-distance gene flow resulted in large clusters of genetically similar nests. The positive relatedness among clustermates suggests that kin selection may still contribute to the maintenance of altruism in unicolonial

  14. Functional dissection of HOXD cluster genes in regulation of neuroblastoma cell proliferation and differentiation.

    Directory of Open Access Journals (Sweden)

    Yunhong Zha

    Full Text Available Retinoic acid (RA can induce growth arrest and neuronal differentiation of neuroblastoma cells and has been used in clinic for treatment of neuroblastoma. It has been reported that RA induces the expression of several HOXD genes in human neuroblastoma cell lines, but their roles in RA action are largely unknown. The HOXD cluster contains nine genes (HOXD1, HOXD3, HOXD4, and HOXD8-13 that are positioned sequentially from 3' to 5', with HOXD1 at the 3' end and HOXD13 the 5' end. Here we show that all HOXD genes are induced by RA in the human neuroblastoma BE(2-C cells, with the genes located at the 3' end being activated generally earlier than those positioned more 5' within the cluster. Individual induction of HOXD8, HOXD9, HOXD10 or HOXD12 is sufficient to induce both growth arrest and neuronal differentiation, which is associated with downregulation of cell cycle-promoting genes and upregulation of neuronal differentiation genes. However, induction of other HOXD genes either has no effect (HOXD1 or has partial effects (HOXD3, HOXD4, HOXD11 and HOXD13 on BE(2-C cell proliferation or differentiation. We further show that knockdown of HOXD8 expression, but not that of HOXD9 expression, significantly inhibits the differentiation-inducing activity of RA. HOXD8 directly activates the transcription of HOXC9, a key effector of RA action in neuroblastoma cells. These findings highlight the distinct functions of HOXD genes in RA induction of neuroblastoma cell differentiation.

  15. Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids

    Directory of Open Access Journals (Sweden)

    Woods Donald E

    2009-12-01

    Full Text Available Abstract Background Rhamnolipids are surface active molecules composed of rhamnose and β-hydroxydecanoic acid. These biosurfactants are produced mainly by Pseudomonas aeruginosa and have been thoroughly investigated since their early discovery. Recently, they have attracted renewed attention because of their involvement in various multicellular behaviors. Despite this high interest, only very few studies have focused on the production of rhamnolipids by Burkholderia species. Results Orthologs of rhlA, rhlB and rhlC, which are responsible for the biosynthesis of rhamnolipids in P. aeruginosa, have been found in the non-infectious Burkholderia thailandensis, as well as in the genetically similar important pathogen B. pseudomallei. In contrast to P. aeruginosa, both Burkholderia species contain these three genes necessary for rhamnolipid production within a single gene cluster. Furthermore, two identical, paralogous copies of this gene cluster are found on the second chromosome of these bacteria. Both Burkholderia spp. produce rhamnolipids containing 3-hydroxy fatty acid moieties with longer side chains than those described for P. aeruginosa. Additionally, the rhamnolipids produced by B. thailandensis contain a much larger proportion of dirhamnolipids versus monorhamnolipids when compared to P. aeruginosa. The rhamnolipids produced by B. thailandensis reduce the surface tension of water to 42 mN/m while displaying a critical micelle concentration value of 225 mg/L. Separate mutations in both rhlA alleles, which are responsible for the synthesis of the rhamnolipid precursor 3-(3-hydroxyalkanoyloxyalkanoic acid, prove that both copies of the rhl gene cluster are functional, but one contributes more to the total production than the other. Finally, a double ΔrhlA mutant that is completely devoid of rhamnolipid production is incapable of swarming motility, showing that both gene clusters contribute to this phenotype. Conclusions Collectively, these

  16. Comparative Investigation of Guided Fuzzy Clustering and Mean Shift Clustering for Edge Detection in Electrical Resistivity Tomography Images of Mineral Deposits

    Science.gov (United States)

    Ward, Wil; Wilkinson, Paul; Chambers, Jon; Bai, Li

    2014-05-01

    Geophysical surveying using electrical resistivity tomography (ERT) can be used as a rapid non-intrusive method to investigate mineral deposits [1]. One of the key challenges with this approach is to find a robust automated method to assess and characterise deposits on the basis of an ERT image. Recent research applying edge detection techniques has yielded a framework that can successfully locate geological interfaces in ERT images using a minimal assumption data clustering technique, the guided fuzzy clustering method (gfcm) [2]. Non-parametric clustering techniques are statistically grounded methods of image segmentation that do not require any assumptions about the distribution of data under investigation. This study is a comparison of two such methods to assess geological structure based on the resistivity images. In addition to gfcm, a method called mean-shift clustering [3] is investigated with comparisons directed at accuracy, computational expense, and degree of user interaction. Neither approach requires the number of clusters as input (a common parameter and often impractical), rather they are based on a similar theory that data can be clustered based on peaks in the probability density function (pdf) of the data. Each local maximum in these functions represents the modal value of a particular population corresponding to a cluster and as such the data are assigned based on their relationships to these model values. The two methods differ in that gfcm approximates the pdf using kernel density estimation and identifies population means, assigning cluster membership probabilities to each resistivity value in the model based on its distance from the distribution averages. Whereas, in mean-shift clustering, the density function is not calculated, but a gradient ascent method creates a vector that leads each datum towards high density distributions iteratively using weighted kernels to calculate locally dense regions. The only parameter needed in both methods

  17. Comprehensive identification and clustering of CLV3/ESR-related (CLE) genes in plants finds groups with potentially shared function.

    Science.gov (United States)

    Goad, David M; Zhu, Chuanmei; Kellogg, Elizabeth A

    2017-10-01

    CLV3/ESR (CLE) proteins are important signaling peptides in plants. The short CLE peptide (12-13 amino acids) is cleaved from a larger pre-propeptide and functions as an extracellular ligand. The CLE family is large and has resisted attempts at classification because the CLE domain is too short for reliable phylogenetic analysis and the pre-propeptide is too variable. We used a model-based search for CLE domains from 57 plant genomes and used the entire pre-propeptide for comprehensive clustering analysis. In total, 1628 CLE genes were identified in land plants, with none recognizable from green algae. These CLEs form 12 groups within which CLE domains are largely conserved and pre-propeptides can be aligned. Most clusters contain sequences from monocots, eudicots and Amborella trichopoda, with sequences from Picea abies, Selaginella moellendorffii and Physcomitrella patens scattered in some clusters. We easily identified previously known clusters involved in vascular differentiation and nodulation. In addition, we found a number of discrete groups whose function remains poorly characterized. Available data indicate that CLE proteins within a cluster are likely to share function, whereas those from different clusters play at least partially different roles. Our analysis provides a foundation for future evolutionary and functional studies. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  18. Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2007-11-01

    Full Text Available Abstract Background An evolutionary classification of genes from sequenced genomes that distinguishes between orthologs and paralogs is indispensable for genome annotation and evolutionary reconstruction. Shortly after multiple genome sequences of bacteria, archaea, and unicellular eukaryotes became available, an attempt on such a classification was implemented in Clusters of Orthologous Groups of proteins (COGs. Rapid accumulation of genome sequences creates opportunities for refining COGs but also represents a challenge because of error amplification. One of the practical strategies involves construction of refined COGs for phylogenetically compact subsets of genomes. Results New Archaeal Clusters of Orthologous Genes (arCOGs were constructed for 41 archaeal genomes (13 Crenarchaeota, 27 Euryarchaeota and one Nanoarchaeon using an improved procedure that employs a similarity tree between smaller, group-specific clusters, semi-automatically partitions orthology domains in multidomain proteins, and uses profile searches for identification of remote orthologs. The annotation of arCOGs is a consensus between three assignments based on the COGs, the CDD database, and the annotations of homologs in the NR database. The 7538 arCOGs, on average, cover ~88% of the genes in a genome compared to a ~76% coverage in COGs. The finer granularity of ortholog identification in the arCOGs is apparent from the fact that 4538 arCOGs correspond to 2362 COGs; ~40% of the arCOGs are new. The archaeal gene core (protein-coding genes found in all 41 genome consists of 166 arCOGs. The arCOGs were used to reconstruct gene loss and gene gain events during archaeal evolution and gene sets of ancestral forms. The Last Archaeal Common Ancestor (LACA is conservatively estimated to possess 996 genes compared to 1245 and 1335 genes for the last common ancestors of Crenarchaeota and Euryarchaeota, respectively. It is inferred that LACA was a chemoautotrophic hyperthermophile

  19. Structure and gene cluster of the O-antigen of Escherichia coli O54.

    Science.gov (United States)

    Naumenko, Olesya I; Guo, Xi; Senchenkova, Sof'ya N; Geng, Peng; Perepelov, Andrei V; Shashkov, Alexander S; Liu, Bin; Knirel, Yuriy A

    2018-06-15

    Mild acid hydrolysis of the lipopolysaccharide of Escherichia coli O54 afforded an O-polysaccharide, which was studied by sugar analysis, solvolysis with anhydrous trifluoroacetic acid, and 1 H and 13 C NMR spectroscopy. Solvolysis cleaved predominantly the linkage of β-d-Ribf and, to a lesser extent, that of β-d-GlcpNAc, whereas the other linkages, including the linkage of α-l-Rhap, were stable under selected conditions (40 °C, 5 h). The following structure of the O-polysaccharide was established: →4)-α-d-GalpA-(1 → 2)-α-l-Rhap-(1 → 2)-β-d-Ribf-(1 → 4)-β-d-Galp-(1 → 3)-β-d-GlcpNAc-(1→ The O-antigen gene cluster of E. coli O54 was analyzed and found to be consistent in general with the O-polysaccharide structure established but there were two exceptions: i) in the cluster, there were genes for phosphoserine phosphatase and serine transferase, which have no apparent role in the O-polysaccharide synthesis, and ii) no ribofuranosyltransferase gene was present in the cluster. Both uncommon features are shared by some other enteric bacteria. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. The diversity of antimicrobial resistance genes among staphylococci of animal origin.

    Science.gov (United States)

    Wendlandt, Sarah; Feßler, Andrea T; Monecke, Stefan; Ehricht, Ralf; Schwarz, Stefan; Kadlec, Kristina

    2013-08-01

    Staphylococci of animal origin harbor a wide variety of resistance genes. So far, more than 40 different resistance genes have been identified in staphylococci from animals. This includes genes that confer resistance to virtually all classes of antimicrobial agents approved for use in animals, such as penicillins, cephalosporins, tetracyclines, macrolides, lincosamides, phenicols, aminoglycosides, aminocyclitols, pleuromutilins, and diaminopyrimidines. The gene products of some of these resistance genes confer resistance to only specific members of a class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into three major categories: (i) enzymatic inactivation, (ii) active efflux, or (iii) protection/modification/replacement of the cellular target sites of the antimicrobial agents. Mobile genetic elements, in particular plasmids and transposons, play a major role as carriers of antimicrobial resistance genes in animal staphylococci. They facilitate the exchange of resistance genes with staphylococci of human origin but also with other Gram-positive bacteria. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. Clustering gene expression time series data using an infinite Gaussian process mixture model.

    Science.gov (United States)

    McDowell, Ian C; Manandhar, Dinesh; Vockley, Christopher M; Schmid, Amy K; Reddy, Timothy E; Engelhardt, Barbara E

    2018-01-01

    Transcriptome-wide time series expression profiling is used to characterize the cellular response to environmental perturbations. The first step to analyzing transcriptional response data is often to cluster genes with similar responses. Here, we present a nonparametric model-based method, Dirichlet process Gaussian process mixture model (DPGP), which jointly models data clusters with a Dirichlet process and temporal dependencies with Gaussian processes. We demonstrate the accuracy of DPGP in comparison to state-of-the-art approaches using hundreds of simulated data sets. To further test our method, we apply DPGP to published microarray data from a microbial model organism exposed to stress and to novel RNA-seq data from a human cell line exposed to the glucocorticoid dexamethasone. We validate our clusters by examining local transcription factor binding and histone modifications. Our results demonstrate that jointly modeling cluster number and temporal dependencies can reveal shared regulatory mechanisms. DPGP software is freely available online at https://github.com/PrincetonUniversity/DP_GP_cluster.

  2. Clustering gene expression time series data using an infinite Gaussian process mixture model.

    Directory of Open Access Journals (Sweden)

    Ian C McDowell

    2018-01-01

    Full Text Available Transcriptome-wide time series expression profiling is used to characterize the cellular response to environmental perturbations. The first step to analyzing transcriptional response data is often to cluster genes with similar responses. Here, we present a nonparametric model-based method, Dirichlet process Gaussian process mixture model (DPGP, which jointly models data clusters with a Dirichlet process and temporal dependencies with Gaussian processes. We demonstrate the accuracy of DPGP in comparison to state-of-the-art approaches using hundreds of simulated data sets. To further test our method, we apply DPGP to published microarray data from a microbial model organism exposed to stress and to novel RNA-seq data from a human cell line exposed to the glucocorticoid dexamethasone. We validate our clusters by examining local transcription factor binding and histone modifications. Our results demonstrate that jointly modeling cluster number and temporal dependencies can reveal shared regulatory mechanisms. DPGP software is freely available online at https://github.com/PrincetonUniversity/DP_GP_cluster.

  3. Thioridazine affects transcription of genes involved in cell wall biosynthesis in methicillin-resistant Staphylococcus aureus

    DEFF Research Database (Denmark)

    Bonde, Mette; Højland, Dorte Heidi; Kolmos, Hans Jørn

    2011-01-01

    have previously shown that the expression of some resistance genes is abolished after treatment with thioridazine and oxacillin. To further understand the mechanism underlying the reversal of resistance, we tested the expression of genes involved in antibiotic resistance and cell wall biosynthesis...... in response to thioridazine in combination with oxacillin. We observed that the oxacillin-induced expression of genes belonging to the VraSR regulon is reduced by the addition of thioridazine. The exclusion of such key factors involved in cell wall biosynthesis will most likely lead to a weakened cell wall...... reversal of resistance by thioridazine relies on decreased expression of specific genes involved in cell wall biosynthesis....

  4. Candidate genes for cross-resistance against DNA-damaging drugs

    DEFF Research Database (Denmark)

    Wittig, Rainer; Nessling, Michelle; Will, Rainer D

    2002-01-01

    Drug resistance of tumor cells leads to major drawbacks in the treatment of cancer. To identify candidate genes for drug resistance, we compared the expression patterns of the drug-sensitive human malignant melanoma cell line MeWo and three derived sublines with acquired resistance to the DNA...... as several apoptosis-related genes, in particular STK17A and CRYAB. As MPP1 and CRYAB are also among the 14 genes differentially expressed in all three of the drug-resistant sublines, they represent the strongest candidates for resistance against DNA-damaging drugs....

  5. Antibiotic resistance genes in anaerobic bacteria isolated from primary dental root canal infections.

    Science.gov (United States)

    Rôças, Isabela N; Siqueira, José F

    2012-12-01

    Fourty-one bacterial strains isolated from infected dental root canals and identified by 16S rRNA gene sequence were screened for the presence of 14 genes encoding resistance to beta-lactams, tetracycline and macrolides. Thirteen isolates (32%) were positive for at least one of the target antibiotic resistance genes. These strains carrying at least one antibiotic resistance gene belonged to 11 of the 26 (42%) infected root canals sampled. Two of these positive cases had two strains carrying resistance genes. Six out of 7 Fusobacterium strains harbored at least one of the target resistance genes. One Dialister invisus strain was positive for 3 resistance genes, and 4 other strains carried two of the target genes. Of the 6 antibiotic resistance genes detected in root canal strains, the most prevalent were blaTEM (17% of the strains), tetW (10%), and ermC (10%). Some as-yet-uncharacterized Fusobacterium and Prevotella isolates were positive for blaTEM, cfxA and tetM. Findings demonstrated that an unexpectedly large proportion of dental root canal isolates, including as-yet-uncharacterized strains previously regarded as uncultivated phylotypes, can carry antibiotic resistance genes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. High-throughput genotyping-by-sequencing facilitates molecular tagging of a novel rust resistance gene, R 15 , in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Ma, G J; Song, Q J; Markell, S G; Qi, L L

    2018-03-21

    A novel rust resistance gene, R 15 , derived from the cultivated sunflower HA-R8 was assigned to linkage group 8 of the sunflower genome using a genotyping-by-sequencing approach. SNP markers closely linked to R 15 were identified, facilitating marker-assisted selection of resistance genes. The rust virulence gene is co-evolving with the resistance gene in sunflower, leading to the emergence of new physiologic pathotypes. This presents a continuous threat to the sunflower crop necessitating the development of resistant sunflower hybrids providing a more efficient, durable, and environmentally friendly host plant resistance. The inbred line HA-R8 carries a gene conferring resistance to all known races of the rust pathogen in North America and can be used as a broad-spectrum resistance resource. Based on phenotypic assessments of 140 F 2 individuals derived from a cross of HA 89 with HA-R8, rust resistance in the population was found to be conferred by a single dominant gene (R 15 ) originating from HA-R8. Genotypic analysis with the currently available SSR markers failed to find any association between rust resistance and any markers. Therefore, we used genotyping-by-sequencing (GBS) analysis to achieve better genomic coverage. The GBS data showed that R 15 was located at the top end of linkage group (LG) 8. Saturation with 71 previously mapped SNP markers selected within this region further showed that it was located in a resistance gene cluster on LG8, and mapped to a 1.0-cM region between three co-segregating SNP makers SFW01920, SFW00128, and SFW05824 as well as the NSA_008457 SNP marker. These closely linked markers will facilitate marker-assisted selection and breeding in sunflower.

  7. Gene Expression Profiling and Identification of Resistance Genes to Aspergillus flavus Infection in Peanut through EST and Microarray Strategies

    Directory of Open Access Journals (Sweden)

    Baozhu Guo

    2011-06-01

    Full Text Available Aspergillus flavus and A. parasiticus infect peanut seeds and produce aflatoxins, which are associated with various diseases in domestic animals and humans throughout the world. The most cost-effective strategy to minimize aflatoxin contamination involves the development of peanut cultivars that are resistant to fungal infection and/or aflatoxin production. To identify peanut Aspergillus-interactive and peanut Aspergillus-resistance genes, we carried out a large scale peanut Expressed Sequence Tag (EST project which we used to construct a peanut glass slide oligonucleotide microarray. The fabricated microarray represents over 40% of the protein coding genes in the peanut genome. For expression profiling, resistant and susceptible peanut cultivars were infected with a mixture of Aspergillus flavus and parasiticus spores. The subsequent microarray analysis identified 62 genes in resistant cultivars that were up-expressed in response to Aspergillus infection. In addition, we identified 22 putative Aspergillus-resistance genes that were constitutively up-expressed in the resistant cultivar in comparison to the susceptible cultivar. Some of these genes were homologous to peanut, corn, and soybean genes that were previously shown to confer resistance to fungal infection. This study is a first step towards a comprehensive genome-scale platform for developing Aspergillus-resistant peanut cultivars through targeted marker-assisted breeding and genetic engineering.

  8. Radiation enhanced copper clustering processes in Fe-Cu alloys during electron and ion irradiations as measured by electrical resistivity

    International Nuclear Information System (INIS)

    Ishino, S.; Chimi, Y.; Bagiyono; Tobita, T.; Ishikawa, N.; Suzuki, M.; Iwase, A.

    2003-01-01

    To study the mechanism of radiation-enhanced clustering of copper atoms in Fe-Cu alloys, in situ electrical resistivity measurements are performed during irradiation with 100 MeV carbon ions and with 2 MeV electrons at 300 K. Two kinds of highly pure Fe-Cu alloys with Cu content of 0.02 and 0.6 wt% are used. The results are summarized as follows: - Although there is a steep initial resistivity increase below about 10 μdpa, the resistivity steadily decreases after this initial transient in Fe-0.6wt%Cu alloy, while in Fe-0.02wt%Cu alloy, the resistivity either decreases slowly or stays almost constant. The rate of change in resistivity depends on copper concentration. - The rate of change in resistivity per dpa is larger for electron irradiation than for ion irradiation. - Change in dose rate from 10 -8 to 10 -9 dpa/s slightly enhances the rate of resistivity change per dpa. The decrease in resistivity with dose is considered to be due to clustering or precipitation of copper atoms. The initial abrupt increase in resistivity is too large to be accounted for by initial introduction of point defects before copper clustering. Tentatively the phenomenon is explained as due to the formation of embryos of copper precipitates with a large strain field around them. Quantitative evaluation of the results using resistivity contribution of a unit concentration of Frenkel pairs and that of copper atoms gives an important conclusion that more than one copper atom are removed from solid solution by one Frenkel pair. The clustering efficiency is surprisingly high in the present case compared with the ordinary radiation-induced or radiation-enhanced precipitation processes

  9. Association of paraoxonase gene cluster polymorphisms with ALS in France, Quebec, and Sweden.

    Science.gov (United States)

    Valdmanis, P N; Kabashi, E; Dyck, A; Hince, P; Lee, J; Dion, P; D'Amour, M; Souchon, F; Bouchard, J-P; Salachas, F; Meininger, V; Andersen, P M; Camu, W; Dupré, N; Rouleau, G A

    2008-08-12

    The paraoxonase gene cluster on chromosome 7 comprising the PON1-3 genes is an attractive candidate for association in amyotrophic lateral sclerosis (ALS) given the role of paraoxonase genes during the response to oxidative stress and their contribution to the enzymatic break down of nerve toxins. Oxidative stress is considered one of the mechanisms involved in ALS pathogenesis. Evidence for this includes the fact that mutations of SOD1, which normally reduce the production of toxic superoxide anion, account for 12% to 23% of familial cases in ALS. In addition, PON variants were shown to be associated with susceptibility to ALS in several North American and European populations. We extended this analysis to examine 20 single nucleotide polymorphisms (SNPs) across the PON gene cluster in a set of patients from France (480 cases, 475 controls), Quebec (159 cases, 95 controls), and Sweden (558 cases, 506 controls). Although individual SNPs were not considered associated on their own, a haplotype of SNPs at the C-terminal portion of PON2 that includes the PON2 C311S amino acid change was significant in the French (p value 0.0075) and Quebec (p value 0.026) populations as well as all three populations combined (p value 1.69 x 10(-6)). Stratification of the samples showed that this variation was pertinent to ALS susceptibility as a whole, and not to a particular subset of patients. These findings contribute to the increasing weight of evidence that genetic variants in the paraoxonase gene cluster are associated with amyotrophic lateral sclerosis.

  10. Transcriptome Analysis of an Insecticide Resistant Housefly Strain: Insights about SNPs and Regulatory Elements in Cytochrome P450 Genes.

    Science.gov (United States)

    Mahmood, Khalid; Højland, Dorte H; Asp, Torben; Kristensen, Michael

    2016-01-01

    Insecticide resistance in the housefly, Musca domestica, has been investigated for more than 60 years. It will enter a new era after the recent publication of the housefly genome and the development of multiple next generation sequencing technologies. The genetic background of the xenobiotic response can now be investigated in greater detail. Here, we investigate the 454-pyrosequencing transcriptome of the spinosad-resistant 791spin strain in relation to the housefly genome with focus on P450 genes. The de novo assembly of clean reads gave 35,834 contigs consisting of 21,780 sequences of the spinosad resistant strain. The 3,648 sequences were annotated with an enzyme code EC number and were mapped to 124 KEGG pathways with metabolic processes as most highly represented pathway. One hundred and twenty contigs were annotated as P450s covering 44 different P450 genes of housefly. Eight differentially expressed P450s genes were identified and investigated for SNPs, CpG islands and common regulatory motifs in promoter and coding regions. Functional annotation clustering of metabolic related genes and motif analysis of P450s revealed their association with epigenetic, transcription and gene expression related functions. The sequence variation analysis resulted in 12 SNPs and eight of them found in cyp6d1. There is variation in location, size and frequency of CpG islands and specific motifs were also identified in these P450s. Moreover, identified motifs were associated to GO terms and transcription factors using bioinformatic tools. Transcriptome data of a spinosad resistant strain provide together with genome data fundamental support for future research to understand evolution of resistance in houseflies. Here, we report for the first time the SNPs, CpG islands and common regulatory motifs in differentially expressed P450s. Taken together our findings will serve as a stepping stone to advance understanding of the mechanism and role of P450s in xenobiotic detoxification.

  11. Alteration of gene expression and DNA methylation in drug-resistant gastric cancer.

    Science.gov (United States)

    Maeda, Osamu; Ando, Takafumi; Ohmiya, Naoki; Ishiguro, Kazuhiro; Watanabe, Osamu; Miyahara, Ryoji; Hibi, Yoko; Nagai, Taku; Yamada, Kiyofumi; Goto, Hidemi

    2014-04-01

    The mechanisms of drug resistance in cancer are not fully elucidated. To study the drug resistance of gastric cancer, we analyzed gene expression and DNA methylation profiles of 5-fluorouracil (5-FU)- and cisplatin (CDDP)-resistant gastric cancer cells and biopsy specimens. Drug-resistant gastric cancer cells were established with culture for >10 months in a medium containing 5-FU or CDDP. Endoscopic biopsy specimens were obtained from gastric cancer patients who underwent chemotherapy with oral fluoropyrimidine S-1 and CDDP. Gene expression and DNA methylation analyses were performed using microarray, and validated using real-time PCR and pyrosequencing, respectively. Out of 17,933 genes, 541 genes commonly increased and 569 genes decreased in both 5-FU- and CDDP-resistant AGS cells. Genes with expression changed by drugs were related to GO term 'extracellular region' and 'p53 signaling pathway' in both 5-FU- and CDDP-treated cells. Expression of 15 genes including KLK13 increased and 12 genes including ETV7 decreased, in both drug-resistant cells and biopsy specimens of two patients after chemotherapy. Out of 10,365 genes evaluated with both expression microarray and methylation microarray, 74 genes were hypermethylated and downregulated, or hypomethylated and upregulated in either 5-FU-resistant or CDDP-resistant cells. Of these genes, expression of 21 genes including FSCN1, CPT1C and NOTCH3, increased from treatment with a demethylating agent. There are alterations of gene expression and DNA methylation in drug-resistant gastric cancer; they may be related to mechanisms of drug resistance and may be useful as biomarkers of gastric cancer drug sensitivity.

  12. Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2012-12-01

    Full Text Available Abstract Background Collections of Clusters of Orthologous Genes (COGs provide indispensable tools for comparative genomic analysis, evolutionary reconstruction and functional annotation of new genomes. Initially, COGs were made for all complete genomes of cellular life forms that were available at the time. However, with the accumulation of thousands of complete genomes, construction of a comprehensive COG set has become extremely computationally demanding and prone to error propagation, necessitating the switch to taxon-specific COG collections. Previously, we reported the collection of COGs for 41 genomes of Archaea (arCOGs. Here we present a major update of the arCOGs and describe evolutionary reconstructions to reveal general trends in the evolution of Archaea. Results The updated version of the arCOG database incorporates 91% of the pangenome of 120 archaea (251,032 protein-coding genes altogether into 10,335 arCOGs. Using this new set of arCOGs, we performed maximum likelihood reconstruction of the genome content of archaeal ancestral forms and gene gain and loss events in archaeal evolution. This reconstruction shows that the last Common Ancestor of the extant Archaea was an organism of greater complexity than most of the extant archaea, probably with over 2,500 protein-coding genes. The subsequent evolution of almost all archaeal lineages was apparently dominated by gene loss resulting in genome streamlining. Overall, in the evolution of Archaea as well as a representative set of bacteria that was similarly analyzed for comparison, gene losses are estimated to outnumber gene gains at least 4 to 1. Analysis of specific patterns of gene gain in Archaea shows that, although some groups, in particular Halobacteria, acquire substantially more genes than others, on the whole, gene exchange between major groups of Archaea appears to be largely random, with no major ‘highways’ of horizontal gene transfer. Conclusions The updated collection

  13. In planta functions of cytochrome P450 monooxygenase genes in the phytocassane biosynthetic gene cluster on rice chromosome 2.

    Science.gov (United States)

    Ye, Zhongfeng; Yamazaki, Kohei; Minoda, Hiromi; Miyamoto, Koji; Miyazaki, Sho; Kawaide, Hiroshi; Yajima, Arata; Nojiri, Hideaki; Yamane, Hisakazu; Okada, Kazunori

    2018-06-01

    In response to environmental stressors such as blast fungal infections, rice produces phytoalexins, an antimicrobial diterpenoid compound. Together with momilactones, phytocassanes are among the major diterpenoid phytoalexins. The biosynthetic genes of diterpenoid phytoalexin are organized on the chromosome in functional gene clusters, comprising diterpene cyclase, dehydrogenase, and cytochrome P450 monooxygenase genes. Their functions have been studied extensively using in vitro enzyme assay systems. Specifically, P450 genes (CYP71Z6, Z7; CYP76M5, M6, M7, M8) on rice chromosome 2 have multifunctional activities associated with ent-copalyl diphosphate-related diterpene hydrocarbons, but the in planta contribution of these genes to diterpenoid phytoalexin production remains unknown. Here, we characterized cyp71z7 T-DNA mutant and CYP76M7/M8 RNAi lines to find that potential phytoalexin intermediates accumulated in these P450-suppressed rice plants. The results suggested that in planta, CYP71Z7 is responsible for C2-hydroxylation of phytocassanes and that CYP76M7/M8 is involved in C11α-hydroxylation of 3-hydroxy-cassadiene. Based on these results, we proposed potential routes of phytocassane biosynthesis in planta.

  14. Gene expression patterns of oxidative phosphorylation complex I subunits are organized in clusters.

    Directory of Open Access Journals (Sweden)

    Yael Garbian

    Full Text Available After the radiation of eukaryotes, the NUO operon, controlling the transcription of the NADH dehydrogenase complex of the oxidative phosphorylation system (OXPHOS complex I, was broken down and genes encoding this protein complex were dispersed across the nuclear genome. Seven genes, however, were retained in the genome of the mitochondrion, the ancient symbiote of eukaryotes. This division, in combination with the three-fold increase in subunit number from bacteria (N = approximately 14 to man (N = 45, renders the transcription regulation of OXPHOS complex I a challenge. Recently bioinformatics analysis of the promoter regions of all OXPHOS genes in mammals supported patterns of co-regulation, suggesting that natural selection favored a mechanism facilitating the transcriptional regulatory control of genes encoding subunits of these large protein complexes. Here, using real time PCR of mitochondrial (mtDNA- and nuclear DNA (nDNA-encoded transcripts in a panel of 13 different human tissues, we show that the expression pattern of OXPHOS complex I genes is regulated in several clusters. Firstly, all mtDNA-encoded complex I subunits (N = 7 share a similar expression pattern, distinct from all tested nDNA-encoded subunits (N = 10. Secondly, two sub-clusters of nDNA-encoded transcripts with significantly different expression patterns were observed. Thirdly, the expression patterns of two nDNA-encoded genes, NDUFA4 and NDUFA5, notably diverged from the rest of the nDNA-encoded subunits, suggesting a certain degree of tissue specificity. Finally, the expression pattern of the mtDNA-encoded ND4L gene diverged from the rest of the tested mtDNA-encoded transcripts that are regulated by the same promoter, consistent with post-transcriptional regulation. These findings suggest, for the first time, that the regulation of complex I subunits expression in humans is complex rather than reflecting global co-regulation.

  15. Cloning and Characterization of the Polyether Salinomycin Biosynthesis Gene Cluster of Streptomyces albus XM211

    Science.gov (United States)

    Jiang, Chunyan; Wang, Hougen; Kang, Qianjin; Liu, Jing

    2012-01-01

    Salinomycin is widely used in animal husbandry as a food additive due to its antibacterial and anticoccidial activities. However, its biosynthesis had only been studied by feeding experiments with isotope-labeled precursors. A strategy with degenerate primers based on the polyether-specific epoxidase sequences was successfully developed to clone the salinomycin gene cluster. Using this strategy, a putative epoxidase gene, slnC, was cloned from the salinomycin producer Streptomyces albus XM211. The targeted replacement of slnC and subsequent trans-complementation proved its involvement in salinomycin biosynthesis. A 127-kb DNA region containing slnC was sequenced, including genes for polyketide assembly and release, oxidative cyclization, modification, export, and regulation. In order to gain insight into the salinomycin biosynthesis mechanism, 13 gene replacements and deletions were conducted. Including slnC, 7 genes were identified as essential for salinomycin biosynthesis and putatively responsible for polyketide chain release, oxidative cyclization, modification, and regulation. Moreover, 6 genes were found to be relevant to salinomycin biosynthesis and possibly involved in precursor supply, removal of aberrant extender units, and regulation. Sequence analysis and a series of gene replacements suggest a proposed pathway for the biosynthesis of salinomycin. The information presented here expands the understanding of polyether biosynthesis mechanisms and paves the way for targeted engineering of salinomycin activity and productivity. PMID:22156425

  16. Characterization of the ecological role of genes mediating acid resistance in Lactobacillus reuteri during colonization of the gastrointestinal tract.

    Science.gov (United States)

    Krumbeck, Janina A; Marsteller, Nathan L; Frese, Steven A; Peterson, Daniel A; Ramer-Tait, Amanda E; Hutkins, Robert W; Walter, Jens

    2016-07-01

    Rodent-derived strains of Lactobacillus reuteri densely colonize the forestomach of mice and possess several genes whose predicted functions constitute adaptations towards an acidic environment. The objective of this study was to systematically determine which genes of L. reuteri 100-23 contribute to tolerance towards host gastric acid secretion. Genes predicted to be involved in acid resistance were inactivated, and their contribution to survival under acidic conditions was confirmed in model gastric juice. Fitness of five mutants that showed impaired in vitro acid resistance were then compared through competition experiments in ex-germ-free mice that were either treated with omeprazole, a proton-pump inhibitor that suppresses acid secretion in the stomach, or left untreated. This analysis revealed that the urease cluster was the predominant factor in mediating resistance to gastric acid production. Population levels of the mutant, which were substantially decreased in untreated mice, were almost completely restored through omeprazole, demonstrating that urease production in L. reuteri is mainly devoted to overcome gastric acid. The findings provide novel information on the mechanisms by which L. reuteri colonizes its gastric niche and demonstrate that in silico gene predictions and in vitro tests have limitations for predicting the ecological functions of colonization factors in bacterial symbionts. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance.

    Science.gov (United States)

    Santos, Jansen Rodrigo Pereira; Ndeve, Arsenio Daniel; Huynh, Bao-Lam; Matthews, William Charles; Roberts, Philip Alan

    2018-01-01

    Cowpea is one of the most important food and forage legumes in drier regions of the tropics and subtropics. However, cowpea yield worldwide is markedly below the known potential due to abiotic and biotic stresses, including parasitism by root-knot nematodes (Meloidogyne spp., RKN). Two resistance genes with dominant effect, Rk and Rk2, have been reported to provide resistance against RKN in cowpea. Despite their description and use in breeding for resistance to RKN and particularly genetic mapping of the Rk locus, the exact genes conferring resistance to RKN remain unknown. In the present work, QTL mapping using recombinant inbred line (RIL) population 524B x IT84S-2049 segregating for a newly mapped locus and analysis of the transcriptome changes in two cowpea near-isogenic lines (NIL) were used to identify candidate genes for Rk and the newly mapped locus. A major QTL, designated QRk-vu9.1, associated with resistance to Meloidogyne javanica reproduction, was detected and mapped on linkage group LG9 at position 13.37 cM using egg production data. Transcriptome analysis on resistant and susceptible NILs 3 and 9 days after inoculation revealed up-regulation of 109 and 98 genes and down-regulation of 110 and 89 genes, respectively, out of 19,922 unique genes mapped to the common bean reference genome. Among the differentially expressed genes, four and nine genes were found within the QRk-vu9.1 and QRk-vu11.1 QTL intervals, respectively. Six of these genes belong to the TIR-NBS-LRR family of resistance genes and three were upregulated at one or more time-points. Quantitative RT-PCR validated gene expression to be positively correlated with RNA-seq expression pattern for eight genes. Future functional analysis of these cowpea genes will enhance our understanding of Rk-mediated resistance and identify the specific gene responsible for the resistance.

  18. QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance.

    Directory of Open Access Journals (Sweden)

    Jansen Rodrigo Pereira Santos

    Full Text Available Cowpea is one of the most important food and forage legumes in drier regions of the tropics and subtropics. However, cowpea yield worldwide is markedly below the known potential due to abiotic and biotic stresses, including parasitism by root-knot nematodes (Meloidogyne spp., RKN. Two resistance genes with dominant effect, Rk and Rk2, have been reported to provide resistance against RKN in cowpea. Despite their description and use in breeding for resistance to RKN and particularly genetic mapping of the Rk locus, the exact genes conferring resistance to RKN remain unknown. In the present work, QTL mapping using recombinant inbred line (RIL population 524B x IT84S-2049 segregating for a newly mapped locus and analysis of the transcriptome changes in two cowpea near-isogenic lines (NIL were used to identify candidate genes for Rk and the newly mapped locus. A major QTL, designated QRk-vu9.1, associated with resistance to Meloidogyne javanica reproduction, was detected and mapped on linkage group LG9 at position 13.37 cM using egg production data. Transcriptome analysis on resistant and susceptible NILs 3 and 9 days after inoculation revealed up-regulation of 109 and 98 genes and down-regulation of 110 and 89 genes, respectively, out of 19,922 unique genes mapped to the common bean reference genome. Among the differentially expressed genes, four and nine genes were found within the QRk-vu9.1 and QRk-vu11.1 QTL intervals, respectively. Six of these genes belong to the TIR-NBS-LRR family of resistance genes and three were upregulated at one or more time-points. Quantitative RT-PCR validated gene expression to be positively correlated with RNA-seq expression pattern for eight genes. Future functional analysis of these cowpea genes will enhance our understanding of Rk-mediated resistance and identify the specific gene responsible for the resistance.

  19. Class 1 and 2 integrons, sul resistance genes and antibiotic resistance in Escherichia coli isolated from Dongjiang River, South China

    International Nuclear Information System (INIS)

    Su Haochang; Ying Guangguo; Tao Ran; Zhang Ruiquan; Zhao Jianliang; Liu Yousheng

    2012-01-01

    Antibiotic susceptibility, detection of sul gene types and presence of class 1, 2 and 3 integrons and gene cassettes using PCR assays were investigated in 3456 Escherichia coli isolates obtained from 38 sampling sites of the Dongjiang River catchment in the dry and wet seasons. 89.1% of the isolates were resistant and 87.5% showed resistance to at least three antibiotics. sul2 was detected most frequently in 89.2% of 1403 SXT-resistant isolates. The presence of integrons (class 1 and 2) was frequently observed (82.3%) while no class 3 integron was found. In these integrons, 21 resistance genes of 14 gene cassette arrays and 10 different families of resistance genes were identified. Three gene cassette arrays, aac(6')-Ib-cr-aar-3-dfrA27-aadA16, aacA4-catB3-dfrA1 and aadA2-lnuF, were detected for the first time in surface water. The results showed that bacterial resistance in the catchment was seriously influenced by human activities, especially discharge of wastewater. Highlights: ► Antibiotic resistance was investigated for a river catchment of southern China. ► 87.5% of E coli isolates showed resistance to at least three antibiotics. ► The presence of integrons (class 1 and 2) was frequently observed (82.3%). ► Bacterial resistance in the catchment was seriously influenced by human activities. - Bacterial resistance to antibiotics in a catchment is related to the discharge of wastewater into the aquatic environment.

  20. The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation

    DEFF Research Database (Denmark)

    Harris, Abigail K P; Williamson, Neil R; Slater, Holly

    2004-01-01

    The prodigiosin biosynthesis gene cluster (pig cluster) from two strains of Serratia (S. marcescens ATCC 274 and Serratia sp. ATCC 39006) has been cloned, sequenced and expressed in heterologous hosts. Sequence analysis of the respective pig clusters revealed 14 ORFs in S. marcescens ATCC 274...... and 15 ORFs in Serratia sp. ATCC 39006. In each Serratia species, predicted gene products showed similarity to polyketide synthases (PKSs), non-ribosomal peptide synthases (NRPSs) and the Red proteins of Streptomyces coelicolor A3(2). Comparisons between the two Serratia pig clusters and the red cluster...... from Str. coelicolor A3(2) revealed some important differences. A modified scheme for the biosynthesis of prodigiosin, based on the pathway recently suggested for the synthesis of undecylprodigiosin, is proposed. The distribution of the pig cluster within several Serratia sp. isolates is demonstrated...

  1. Identification and functional analysis of gene cluster involvement in biosynthesis of the cyclic lipopeptide antibiotic pelgipeptin produced by Paenibacillus elgii

    Directory of Open Access Journals (Sweden)

    Qian Chao-Dong

    2012-09-01

    Full Text Available Abstract Background Pelgipeptin, a potent antibacterial and antifungal agent, is a non-ribosomally synthesised lipopeptide antibiotic. This compound consists of a β-hydroxy fatty acid and nine amino acids. To date, there is no information about its biosynthetic pathway. Results A potential pelgipeptin synthetase gene cluster (plp was identified from Paenibacillus elgii B69 through genome analysis. The gene cluster spans 40.8 kb with eight open reading frames. Among the genes in this cluster, three large genes, plpD, plpE, and plpF, were shown to encode non-ribosomal peptide synthetases (NRPSs, with one, seven, and one module(s, respectively. Bioinformatic analysis of the substrate specificity of all nine adenylation domains indicated that the sequence of the NRPS modules is well collinear with the order of amino acids in pelgipeptin. Additional biochemical analysis of four recombinant adenylation domains (PlpD A1, PlpE A1, PlpE A3, and PlpF A1 provided further evidence that the plp gene cluster involved in pelgipeptin biosynthesis. Conclusions In this study, a gene cluster (plp responsible for the biosynthesis of pelgipeptin was identified from the genome sequence of Paenibacillus elgii B69. The identification of the plp gene cluster provides an opportunity to develop novel lipopeptide antibiotics by genetic engineering.

  2. Phylogenetic relatedness determined between antibiotic resistance and 16S rRNA genes in actinobacteria.

    Science.gov (United States)

    Sagova-Mareckova, Marketa; Ulanova, Dana; Sanderova, Petra; Omelka, Marek; Kamenik, Zdenek; Olsovska, Jana; Kopecky, Jan

    2015-04-01

    Distribution and evolutionary history of resistance genes in environmental actinobacteria provide information on intensity of antibiosis and evolution of specific secondary metabolic pathways at a given site. To this day, actinobacteria producing biologically active compounds were isolated mostly from soil but only a limited range of soil environments were commonly sampled. Consequently, soil remains an unexplored environment in search for novel producers and related evolutionary questions. Ninety actinobacteria strains isolated at contrasting soil sites were characterized phylogenetically by 16S rRNA gene, for presence of erm and ABC transporter resistance genes and antibiotic production. An analogous analysis was performed in silico with 246 and 31 strains from Integrated Microbial Genomes (JGI_IMG) database selected by the presence of ABC transporter genes and erm genes, respectively. In the isolates, distances of erm gene sequences were significantly correlated to phylogenetic distances based on 16S rRNA genes, while ABC transporter gene distances were not. The phylogenetic distance of isolates was significantly correlated to soil pH and organic matter content of isolation sites. In the analysis of JGI_IMG datasets the correlation between phylogeny of resistance genes and the strain phylogeny based on 16S rRNA genes or five housekeeping genes was observed for both the erm genes and ABC transporter genes in both actinobacteria and streptomycetes. However, in the analysis of sequences from genomes where both resistance genes occurred together the correlation was observed for both ABC transporter and erm genes in actinobacteria but in streptomycetes only in the erm gene. The type of erm resistance gene sequences was influenced by linkage to 16S rRNA gene sequences and site characteristics. The phylogeny of ABC transporter gene was correlated to 16S rRNA genes mainly above the genus level. The results support the concept of new specific secondary metabolite

  3. Introgression and pyramiding into common bean market class fabada of genes conferring resistance to anthracnose and potyvirus.

    Science.gov (United States)

    Ferreira, Juan José; Campa, Ana; Pérez-Vega, Elena; Rodríguez-Suárez, Cristina; Giraldez, Ramón

    2012-03-01

    Anthracnose and bean common mosaic (BCM) are considered major diseases in common bean crop causing severe yield losses worldwide. This work describes the introgression and pyramiding of genes conferring genetic resistance to BCM and anthracnose local races into line A25, a bean genotype classified as market class fabada. Resistant plants were selected using resistance tests or combining resistance tests and marker-assisted selection. Lines A252, A321, A493, Sanilac BC6-Are, and BRB130 were used as resistance sources. Resistance genes to anthracnose (Co-2 ( C ), Co-2 ( A252 ) and Co-3/9) and/or BCM (I and bc-3) were introgressed in line A25 through six parallel backcrossing programs, and six breeding lines showing a fabada seed phenotype were obtained after six backcross generations: line A1258 from A252; A1231 from A321; A1220 from A493; A1183 and A1878 from Sanilac BC6-Are; and line A2418 from BRB130. Pyramiding of different genes were developed using the pedigree method from a single cross between lines obtained in the introgression step: line A1699 (derived from cross A1258 × A1220), A2438 (A1220 × A1183), A2806 (A1878 × A2418), and A3308 (A1699 × A2806). A characterization based on eight morpho-agronomic traits revealed a limited differentiation among the obtained breeding lines and the recurrent line A25. However, using a set of seven molecular markers linked to the loci used in the breeding programs it was possible to differentiate the 11 fabada lines. Considering the genetic control of the resistance in resistant donor lines, the observed segregations in the last backcrossing generation, the reaction against the pathogens, and the expression of the molecular markers it was also possible to infer the genotype conferring resistance in the ten fabada breeding lines obtained. As a result of these breeding programs, genetic resistance to three anthracnose races controlled by genes included in clusters Co-2 and Co-3/9, and genetic resistance to BCM controlled

  4. Gene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum.

    Science.gov (United States)

    Spiering, Martin J; Moon, Christina D; Wilkinson, Heather H; Schardl, Christopher L

    2005-03-01

    Loline alkaloids are produced by mutualistic fungi symbiotic with grasses, and they protect the host plants from insects. Here we identify in the fungal symbiont, Neotyphodium uncinatum, two homologous gene clusters (LOL-1 and LOL-2) associated with loline-alkaloid production. Nine genes were identified in a 25-kb region of LOL-1 and designated (in order) lolF-1, lolC-1, lolD-1, lolO-1, lolA-1, lolU-1, lolP-1, lolT-1, and lolE-1. LOL-2 contained the homologs lolC-2 through lolE-2 in the same order and orientation. Also identified was lolF-2, but its possible linkage with either cluster was undetermined. Most lol genes were regulated in N. uncinatum and N. coenophialum, and all were expressed concomitantly with loline-alkaloid biosynthesis. A lolC-2 RNA-interference (RNAi) construct was introduced into N. uncinatum, and in two independent transformants, RNAi significantly decreased lolC expression (P lol-gene products indicate that the pathway has evolved from various different primary and secondary biosynthesis pathways.

  5. ATNT: an enhanced system for expression of polycistronic secondary metabolite gene clusters in Aspergillus niger.

    Science.gov (United States)

    Geib, Elena; Brock, Matthias

    2017-01-01

    Fungi are treasure chests for yet unexplored natural products. However, exploitation of their real potential remains difficult as a significant proportion of biosynthetic gene clusters appears silent under standard laboratory conditions. Therefore, elucidation of novel products requires gene activation or heterologous expression. For heterologous gene expression, we previously developed an expression platform in Aspergillus niger that is based on the transcriptional regulator TerR and its target promoter P terA . In this study, we extended this system by regulating expression of terR  by the doxycycline inducible Tet-on system. Reporter genes cloned under the control of the target promoter P terA remained silent in the absence of doxycycline, but were strongly expressed when doxycycline was added. Reporter quantification revealed that the coupled system results in about five times higher expression rates compared to gene expression under direct control of the Tet-on system. As production of secondary metabolites generally requires the expression of several biosynthetic genes, the suitability of the self-cleaving viral peptide sequence P2A was tested in this optimised expression system. P2A allowed polycistronic expression of genes required for Asp-melanin formation in combination with the gene coding for the red fluorescent protein tdTomato. Gene expression and Asp-melanin formation was prevented in the absence of doxycycline and strongly induced by addition of doxycycline. Fluorescence studies confirmed the correct subcellular localisation of the respective enzymes. This tightly regulated but strongly inducible expression system enables high level production of secondary metabolites most likely even those with toxic potential. Furthermore, this system is compatible with polycistronic gene expression and, thus, suitable for the discovery of novel natural products.

  6. Antibiotic Resistant Bacteria And Their Associated Resistance Genes in a Conventional Municipal Wastewater Treatment Plant

    KAUST Repository

    Aljassim, Nada I.

    2013-12-01

    With water scarcity as a pressing issue in Saudi Arabia and other Middle Eastern countries, the treatment and reuse of municipal wastewater is increasingly being used as an alternative water source to supplement country water needs. Standards are in place to ensure a safe treated wastewater quality, however they do not regulate pathogenic bacteria and emerging contaminants. Information is lacking on the levels of risk to public health associated with these factors, the efficiency of conventional treatment strategies in removing them, and on wastewater treatment in Saudi Arabia in general. In this study, a municipal wastewater treatment plant in Saudi Arabia is investigated to assess the efficiency of conventional treatment in meeting regulations and removing pathogens and emerging contaminants. The study found pathogenic bacterial genera, antibiotic resistance genes and antibiotic resistant bacteria, many of which were multi-resistant in plant discharges. It was found that although the treatments are able to meet traditional quality guidelines, there remains a risk from the discussed contaminants with wastewater reuse. A deeper understanding of this risk, and suggestions for more thorough guidelines and monitoring are needed.

  7. Acquisition and evolution of plant pathogenesis-associated gene clusters and candidate determinants of tissue-specificity in xanthomonas.

    Directory of Open Access Journals (Sweden)

    Hong Lu

    Full Text Available Xanthomonas is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown.To assess potential contributions to host- and tissue-specificity, pathogenesis-associated gene clusters were compared across genomes of eight Xanthomonas strains representing vascular or non-vascular pathogens of rice, brassicas, pepper and tomato, and citrus. The gum cluster for extracellular polysaccharide is conserved except for gumN and sequences downstream. The xcs and xps clusters for type II secretion are conserved, except in the rice pathogens, in which xcs is missing. In the otherwise conserved hrp cluster, sequences flanking the core genes for type III secretion vary with respect to insertion sequence element and putative effector gene content. Variation at the rpf (regulation of pathogenicity factors cluster is more pronounced, though genes with established functional relevance are conserved. A cluster for synthesis of lipopolysaccharide varies highly, suggesting multiple horizontal gene transfers and reassortments, but this variation does not correlate with host- or tissue-specificity. Phylogenetic trees based on amino acid alignments of gum, xps, xcs, hrp, and rpf cluster products generally reflect strain phylogeny. However, amino acid residues at four positions correlate with tissue specificity, revealing hpaA and xpsD as candidate determinants. Examination of genome sequences of xanthomonads Xylella fastidiosa and Stenotrophomonas maltophilia revealed that the hrp, gum, and xcs clusters are recent acquisitions in the Xanthomonas lineage.Our results provide insight into the ancestral Xanthomonas genome and indicate that differentiation with respect to host- and tissue-specificity involved not major modifications or wholesale exchange of clusters, but subtle changes in a small

  8. A Gene Homologous to rRNA Methylase Genes Confers Erythromycin and Clindamycin Resistance in Bifidobacterium breve.

    Science.gov (United States)

    Martínez, Noelia; Luque, Roberto; Milani, Christian; Ventura, Marco; Bañuelos, Oscar; Margolles, Abelardo

    2018-05-15

    Bifidobacteria are mutualistic intestinal bacteria, and their presence in the human gut has been associated with health-promoting activities. The presence of antibiotic resistance genes in this genus is controversial, since, although bifidobacteria are nonpathogenic microorganisms, they could serve as reservoirs of resistance determinants for intestinal pathogens. However, until now, few antibiotic resistance determinants have been functionally characterized in this genus. In this work, we show that Bifidobacterium breve CECT7263 displays atypical resistance to erythromycin and clindamycin. In order to delimit the genomic region responsible for the observed resistance phenotype, a library of genomic DNA was constructed and a fragment of 5.8 kb containing a gene homologous to rRNA methylase genes was able to confer erythromycin resistance in Escherichia coli This genomic region seems to be very uncommon, and homologs of the gene have been detected in only one strain of Bifidobacterium longum and two other strains of B. breve In this context, analysis of shotgun metagenomics data sets revealed that the gene is also uncommon in the microbiomes of adults and infants. The structural gene and its upstream region were cloned into a B. breve -sensitive strain, which became resistant after acquiring the genetic material. In vitro conjugation experiments did not allow us to detect gene transfer to other recipients. Nevertheless, prediction of genes potentially acquired through horizontal gene transfer events revealed that the gene is located in a putative genomic island. IMPORTANCE Bifidobacterium breve is a very common human intestinal bacterium. Often described as a pioneer microorganism in the establishment of early-life intestinal microbiota, its presence has been associated with several beneficial effects for the host, including immune stimulation and protection against infections. Therefore, some strains of this species are considered probiotics. In relation to this

  9. Inactivation of human α-globin gene expression by a de novo deletion located upstream of the α-globin gene cluster

    International Nuclear Information System (INIS)

    Liebhaber, S.A.; Weiss, I.; Cash, F.E.; Griese, E.U.; Horst, J.; Ayyub, H.; Higgs, D.R.

    1990-01-01

    Synthesis of normal human hemoglobin A, α 2 β 2 , is based upon balanced expression of genes in the α-globin gene cluster on chromosome 15 and the β-globin gene cluster on chromosome 11. Full levels of erythroid-specific activation of the β-globin cluster depend on sequences located at a considerable distance 5' to the β-globin gene, referred to as the locus-activating or dominant control region. The existence of an analogous element(s) upstream of the α-globin cluster has been suggested from observations on naturally occurring deletions and experimental studies. The authors have identified an individual with α-thalassemia in whom structurally normal α-globin genes have been inactivated in cis by a discrete de novo 35-kilobase deletion located ∼30 kilobases 5' from the α-globin gene cluster. They conclude that this deletion inactivates expression of the α-globin genes by removing one or more of the previously identified upstream regulatory sequences that are critical to expression of the α-globin genes

  10. Heterologous Reconstitution of the Intact Geodin Gene Cluster in Aspergillus nidulans through a Simple and Versatile PCR Based Approach

    DEFF Research Database (Denmark)

    Nielsen, Morten Thrane; Nielsen, Jakob Blæsbjerg; Anyaogu, Dianna Chinyere

    2013-01-01

    was transferred in a two step procedure to an expression platform in A. nidulans. The individual cluster fragments were generated by PCR and assembled via efficient USER fusion prior to ransformation and integration via re-iterative gene targeting. A total of 13 open reading frames contained in 25 kb of DNA were...... of solid methodology for genetic manipulation of most species severely hampers pathway haracterization. Here we present a simple PCR based approach for heterologous reconstitution of intact gene clusters. Specifically, the putative gene cluster responsible for geodin production from Aspergillus terreus...... successfully transferred between the two species enabling geodin synthesis in A. nidulans. Subsequently, functions of three genes in the cluster were validated by genetic and chemical analyses. Specifically, ATEG_08451 (gedC) encodes a polyketide synthase, ATEG_08453 (gedR) encodes a transcription factor...

  11. The Cremeomycin Biosynthetic Gene Cluster Encodes a Pathway for Diazo Formation.

    Science.gov (United States)

    Waldman, Abraham J; Pechersky, Yakov; Wang, Peng; Wang, Jennifer X; Balskus, Emily P

    2015-10-12

    Diazo groups are found in a range of natural products that possess potent biological activities. Despite longstanding interest in these metabolites, diazo group biosynthesis is not well understood, in part because of difficulties in identifying specific genes linked to diazo formation. Here we describe the discovery of the gene cluster that produces the o-diazoquinone natural product cremeomycin and its heterologous expression in Streptomyces lividans. We used stable isotope feeding experiments and in vitro characterization of biosynthetic enzymes to decipher the order of events in this pathway and establish that diazo construction involves late-stage N-N bond formation. This work represents the first successful production of a diazo-containing metabolite in a heterologous host, experimentally linking a set of genes with diazo formation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dental care resistance prevention and antibiotic prescribing modification-the cluster-randomised controlled DREAM trial.

    Science.gov (United States)

    Löffler, Christin; Böhmer, Femke; Hornung, Anne; Lang, Hermann; Burmeister, Ulrike; Podbielski, Andreas; Wollny, Anja; Kundt, Günther; Altiner, Attila

    2014-02-22

    Bacterial resistance development is one of the most urgent problems in healthcare worldwide. In Europe, dentistry accounts for a comparatively high amount of antibiotic prescriptions. In light of increasing levels of bacterial resistance, this development is alarming. So far, very few interventional studies have been performed, and further research is urgently needed. By means of a complex educational intervention, the DREAM trial aims at optimising antibiotic prescribing behaviour of general dentists in Germany. This is a cluster-randomised controlled trial, where each cluster consists of one dental practice and all of its patients in a defined period. Participants are general dentists practicing in the German region of Mecklenburg-Western Pomerania. Randomisation takes place after baseline data collection (6 months) and will be stratified by the antibiotic prescribing rates of the participating dental practices. Dentists randomised into the intervention group will participate in a complex small group educational seminar that aims at: increasing knowledge on bacterial resistance, pharmacology, and prophylaxis of infectious endocarditis; increasing awareness of dentist-patient communication using video-taped vignettes of dentist-patient communication on antibiotic treatment; improving collaboration between general dentists, general practitioners, and practice-based cardiologists on the necessity of antibiotic prophylaxis; enhancing awareness of the dentists' own prescribing habits by providing antibiotic prescribing feedback; and increasing patient knowledge on antibiotic treatment by providing patient-centred information material on antibiotic prophylaxis of endocarditis. The dentists randomised into the control group will not receive any educational programme and provide care as usual. Primary outcome is the overall antibiotic prescribing rate measured at T1 (period of six months after intervention). In a subgroup of adult patients affected by odontogenic

  13. Fine mapping and identification of a candidate gene for the barley Un8 true loose smut resistance gene.

    Science.gov (United States)

    Zang, Wen; Eckstein, Peter E; Colin, Mark; Voth, Doug; Himmelbach, Axel; Beier, Sebastian; Stein, Nils; Scoles, Graham J; Beattie, Aaron D

    2015-07-01

    The candidate gene for the barley Un8 true loose smut resistance gene encodes a deduced protein containing two tandem protein kinase domains. In North America, durable resistance against all known isolates of barley true loose smut, caused by the basidiomycete pathogen Ustilago nuda (Jens.) Rostr. (U. nuda), is under the control of the Un8 resistance gene. Previous genetic studies mapped Un8 to the long arm of chromosome 5 (1HL). Here, a population of 4625 lines segregating for Un8 was used to delimit the Un8 gene to a 0.108 cM interval on chromosome arm 1HL, and assign it to fingerprinted contig 546 of the barley physical map. The minimal tilling path was identified for the Un8 locus using two flanking markers and consisted of two overlapping bacterial artificial chromosomes. One gene located close to a marker co-segregating with Un8 showed high sequence identity to a disease resistance gene containing two kinase domains. Sequence of the candidate gene from the parents of the segregating population, and in an additional 19 barley lines representing a broader spectrum of diversity, showed there was no intron in alleles present in either resistant or susceptible lines, and fifteen amino acid variations unique to the deduced protein sequence in resistant lines differentiated it from the deduced protein sequences in susceptible lines. Some of these variations were present within putative functional domains which may cause a loss of function in the deduced protein sequences within susceptible lines.

  14. Coevolution and hierarchical interactions of Tomato mosaic virus and the resistance gene Tm-1.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Ishibashi

    Full Text Available During antagonistic coevolution between viruses and their hosts, viruses have a major advantage by evolving more rapidly. Nevertheless, viruses and their hosts coexist and have coevolved, although the processes remain largely unknown. We previously identified Tm-1 that confers resistance to Tomato mosaic virus (ToMV, and revealed that it encodes a protein that binds ToMV replication proteins and inhibits RNA replication. Tm-1 was introgressed from a wild tomato species Solanum habrochaites into the cultivated tomato species Solanum lycopersicum. In this study, we analyzed Tm-1 alleles in S. habrochaites. Although most part of this gene was under purifying selection, a cluster of nonsynonymous substitutions in a small region important for inhibitory activity was identified, suggesting that the region is under positive selection. We then examined the resistance of S. habrochaites plants to ToMV. Approximately 60% of 149 individuals from 24 accessions were resistant to ToMV, while the others accumulated detectable levels of coat protein after inoculation. Unexpectedly, many S. habrochaites plants were observed in which even multiplication of the Tm-1-resistance-breaking ToMV mutant LT1 was inhibited. An amino acid change in the positively selected region of the Tm-1 protein was responsible for the inhibition of LT1 multiplication. This amino acid change allowed Tm-1 to bind LT1 replication proteins without losing the ability to bind replication proteins of wild-type ToMV. The antiviral spectra and biochemical properties suggest that Tm-1 has evolved by changing the strengths of its inhibitory activity rather than diversifying the recognition spectra. In the LT1-resistant S. habrochaites plants inoculated with LT1, mutant viruses emerged whose multiplication was not inhibited by the Tm-1 allele that confers resistance to LT1. However, the resistance-breaking mutants were less competitive than the parental strains in the absence of Tm-1. Based on

  15. Comparison of loline alkaloid gene clusters across fungal endophytes: predicting the co-regulatory sequence motifs and the evolutionary history.

    Science.gov (United States)

    Kutil, Brandi L; Greenwald, Charles; Liu, Gang; Spiering, Martin J; Schardl, Christopher L; Wilkinson, Heather H

    2007-10-01

    LOL, a fungal secondary metabolite gene cluster found in Epichloë and Neotyphodium species, is responsible for production of insecticidal loline alkaloids. To analyze the genetic architecture and to predict the evolutionary history of LOL, we compared five clusters from four fungal species (single clusters from Epichloë festucae, Neotyphodium sp. PauTG-1, Neotyphodium coenophialum, and two clusters we previously characterized in Neotyphodium uncinatum). Using PhyloCon to compare putative lol gene promoter regions, we have identified four motifs conserved across the lol genes in all five clusters. Each motif has significant similarity to known fungal transcription factor binding sites in the TRANSFAC database. Conservation of these motifs is further support for the hypothesis that the lol genes are co-regulated. Interestingly, the history of asexual Neotyphodium spp. includes multiple interspecific hybridization events. Comparing clusters from three Neotyphodium species and E. festucae allowed us to determine which Epichloë ancestors are the most likely contributors of LOL in these asexual species. For example, while no present day Epichloë typhina isolates are known to produce lolines, our data support the hypothesis that the E. typhina ancestor(s) of three asexual endophyte species contained a LOL gene cluster. Thus, these data support a model of evolution in which the polymorphism in loline alkaloid production phenotypes among endophyte species is likely due to the loss of the trait over time.

  16. The nanocoherer: an electrically and mechanically resettable resistive switching device based on gold clusters assembled on paper

    Science.gov (United States)

    Minnai, Chloé; Mirigliano, Matteo; Brown, Simon A.; Milani, Paolo

    2018-03-01

    We report the realization of a resettable resistive switching device based on a nanostructured film fabricated by supersonic cluster beam deposition of gold clusters on plain paper substrates. Through the application of suitable voltage ramps, we obtain, in the same device, either a complex pattern of resistive switchings, or reproducible and stable switchings between low resistance and high resistance states, with an amplitude up to five orders of magnitude. Our device retains a state of internal resistance following the history of the applied voltage similar to that reported for memristors. The two different switching regimes in the same device are both stable, the transition between them is reversible, and it can be controlled by applying voltage ramps or by mechanical deformation of the substrate. The device behavior can be related to the formation, growth and breaking of junctions between the loosely aggregated gold clusters forming the nanostructured films. The fact that our cluster-assembled device is mechanically resettable suggests that it can be considered as the analog of the coherer: a switching device based on metallic powders used for the first radio communication system.

  17. MicroRNA-424/503 cluster members regulate bovine granulosa cell proliferation and cell cycle progression by targeting SMAD7 gene through activin signalling pathway.

    Science.gov (United States)

    Pande, Hari Om; Tesfaye, Dawit; Hoelker, Michael; Gebremedhn, Samuel; Held, Eva; Neuhoff, Christiane; Tholen, Ernst; Schellander, Karl; Wondim, Dessie Salilew

    2018-05-01

    The granulosa cells are indispensable for follicular development and its function is orchestrated by several genes, which in turn posttranscriptionally regulated by microRNAs (miRNA). In our previous study, the miRRNA-424/503 cluster was found to be highly abundant in bovine granulosa cells (bGCs) of preovulatory dominant follicle compared to subordinate counterpart at day 19 of the bovine estrous cycle. Other study also indicated the involvement of miR-424/503 cluster in tumour cell resistance to apoptosis suggesting this miRNA cluster may involve in cell survival. However, the role of miR-424/503 cluster in granulosa cell function remains elusive Therefore, this study aimed to investigate the role of miRNA-424/503 cluster in bGCs function using microRNA gain- and loss-of-function approaches. The role of miR-424/503 cluster members in granulosa cell function was investigated by overexpressing or inhibiting its activity in vitro cultured granulosa cells using miR-424/503 mimic or inhibitor, respectively. Luciferase reporter assay showed that SMAD7 and ACVR2A are the direct targets of the miRNA-424/503 cluster members. In line with this, overexpression of miRNA-424/503 cluster members using its mimic and inhibition of its activity by its inhibitor reduced and increased, respectively the expression of SMAD7 and ACVR2A. Furthermore, flow cytometric analysis indicated that overexpression of miRNA-424/503 cluster members enhanced bGCs proliferation by promoting G1- to S- phase cell cycle transition. Modulation of miRNA-424/503 cluster members tended to increase phosphorylation of SMAD2/3 in the Activin signalling pathway. Moreover, sequence specific knockdown of SMAD7, the target gene of miRNA-424/503 cluster members, using small interfering RNA also revealed similar phenotypic and molecular alterations observed when miRNA-424/503 cluster members were overexpressed. Similarly, to get more insight about the role of miRNA-424/503 cluster members in activin signalling

  18. Transcriptional organization of the DNA region controlling expression of the K99 gene cluster.

    Science.gov (United States)

    Roosendaal, B; Damoiseaux, J; Jordi, W; de Graaf, F K

    1989-01-01

    The transcriptional organization of the K99 gene cluster was investigated in two ways. First, the DNA region, containing the transcriptional signals was analyzed using a transcription vector system with Escherichia coli galactokinase (GalK) as assayable marker and second, an in vitro transcription system was employed. A detailed analysis of the transcription signals revealed that a strong promoter PA and a moderate promoter PB are located upstream of fanA and fanB, respectively. No promoter activity was detected in the intercistronic region between fanB and fanC. Factor-dependent terminators of transcription were detected and are probably located in the intercistronic region between fanA and fanB (T1), and between fanB and fanC (T2). A third terminator (T3) was observed between fanC and fanD and has an efficiency of 90%. Analysis of the regulatory region in an in vitro transcription system confirmed the location of the respective transcription signals. A model for the transcriptional organization of the K99 cluster is presented. Indications were obtained that the trans-acting regulatory polypeptides FanA and FanB both function as anti-terminators. A model for the regulation of expression of the K99 gene cluster is postulated.

  19. Identification and characterization of two novel bla(KLUC resistance genes through large-scale resistance plasmids sequencing.

    Directory of Open Access Journals (Sweden)

    Teng Xu

    Full Text Available Plasmids are important antibiotic resistance determinant carriers that can disseminate various drug resistance genes among species or genera. By using a high throughput sequencing approach, two groups of plasmids of Escherichia coli (named E1 and E2, each consisting of 160 clinical E. coli strains isolated from different periods of time were sequenced and analyzed. A total of 20 million reads were obtained and mapped onto the known resistance gene sequences. As a result, a total of 9 classes, including 36 types of antibiotic resistant genes, were identified. Among these genes, 25 and 27 single nucleotide polymorphisms (SNPs appeared, of which 9 and 12 SNPs are nonsynonymous substitutions in the E1 and E2 samples. It is interesting to find that a novel genotype of bla(KLUC, whose close relatives, bla(KLUC-1 and bla(KLUC-2, have been previously reported as carried on the Kluyvera cryocrescens chromosome and Enterobacter cloacae plasmid, was identified. It shares 99% and 98% amino acid identities with Kluc-1 and Kluc-2, respectively. Further PCR screening of 608 Enterobacteriaceae family isolates yielded a second variant (named bla(KLUC-4. It was interesting to find that Kluc-3 showed resistance to several cephalosporins including cefotaxime, whereas bla(KLUC-4 did not show any resistance to the antibiotics tested. This may be due to a positively charged residue, Arg, replaced by a neutral residue, Leu, at position 167, which is located within an omega-loop. This work represents large-scale studies on resistance gene distribution, diversification and genetic variation in pooled multi-drug resistance plasmids, and provides insight into the use of high throughput sequencing technology for microbial resistance gene detection.

  20. Two whitebacked planthopper resistance genes in rice share the same loci with those for brown planthopper resistance.

    Science.gov (United States)

    Tan, G X; Weng, Q M; Ren, X; Huang, Z; Zhu, L L; He, G C

    2004-03-01

    The whitebacked planthopper (WBPH), Sogatella furcifera, and brown planthopper (BPH) Nilaparvata lugens Stål are important sucking insects of rice (Oryza sativa L.) crops throughout the world. Rice 'B5', which has derived its resistance genes from the wild rice O. officinalis Wall ex Watt, is a line that is highly resistant to both WBPH and BPH. Previously, two resistance genes against BPH, Qbp1, and Qbp2 in 'B5' had been mapped onto chromosome 3 and chromosome 4, respectively. In this study, we employed a mapping population composed of 187 recombinant inbred lines (RILs), produced from a cross between 'B5' and susceptible variety 'Minghui63', to locate the WBPH and BPH resistance genes. A RFLP survey of the bulked extremes from the RIL population identified two genomic regions, one on chromosome 3 and the other on chromosome 4, likely containing the resistance genes to planthoppers. QTL analysis of the RILs further confirmed that two WBPH resistance genes were mapped on the same loci as Qbp1 and Qbp2, using a linkage map with 242 molecular markers distributed on 12 rice chromosomes. Of the two WBPH resistance genes, one designated Wbph7(t) was located within a 1.1-cM region between R1925 and G1318 on chromosome 3, the other designated Wbph8(t) was within a 0.3-cM region flanked by R288 and S11182 on chromosome 4. A two-way analysis of variance showed that two loci acted independently with each other in determining WBPH resistance. The results have significant implications in studying the interactions between sucking insects and plants and in breeding programs of resistance to rice planthoppers.

  1. Targeted insertion of the neomycin phosphotransferase gene into the tubulin gene cluster of Trypanosoma brucei

    NARCIS (Netherlands)

    ten Asbroek, A. L.; Ouellette, M.; Borst, P.

    1990-01-01

    Kinetoplastids are unicellular eukaryotes that include important parasites of man, such as trypanosomes and leishmanias. The study of these organisms received a recent boost from the development of transient transformation allowing the short-term expression of genes reintroduced into parasites like

  2. Loss of Major DNase I Hypersensitive Sites in Duplicatedglobin Gene Cluster Incompletely Silences HBB Gene Expression

    Czech Academy of Sciences Publication Activity Database

    Reading, N. S.; Shooter, C.; Song, J.; Miller, R.; Agarwal, A.; Láníková, Lucie; Clark, B.; Thein, S.L.; Divoký, V.; Prchal, J.T.

    2016-01-01

    Roč. 37, č. 11 (2016), s. 1153-1156 ISSN 1059-7794 R&D Projects: GA MŠk(CZ) LH15223 Institutional support: RVO:68378050 Keywords : globin genes * regulation * sickle cell disease * HBB duplication Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.601, year: 2016

  3. Sulfonamide-resistant bacteria and their resistance genes in soils fertilized with manures from Jiangsu Province, Southeastern China.

    Directory of Open Access Journals (Sweden)

    Na Wang

    Full Text Available Antibiotic-resistant bacteria and genes are recognized as new environmental pollutants that warrant special concern. There were few reports on veterinary antibiotic-resistant bacteria and genes in China. This work systematically analyzed the prevalence and distribution of sulfonamide resistance genes in soils from the environments around poultry and livestock farms in Jiangsu Province, Southeastern China. The results showed that the animal manure application made the spread and abundance of antibiotic resistance genes (ARGs increasingly in the soil. The frequency of sulfonamide resistance genes was sul1 > sul2 > sul3 in pig-manured soil DNA and sul2 > sul1 > sul3 in chicken-manured soil DNA. Further analysis suggested that the frequency distribution of the sul genes in the genomic DNA and plasmids of the SR isolates from manured soil was sul2 > sul1 > sul3 overall (p<0.05. The combination of sul1 and sul2 was the most frequent, and the co-existence of sul1 and sul3 was not found either in the genomic DNA or plasmids. The sample type, animal type and sampling time can influence the prevalence and distribution pattern of sulfonamide resistance genes. The present study also indicated that Bacillus, Pseudomonas and Shigella were the most prevalent sul-positive genera in the soil, suggesting a potential human health risk. The above results could be important in the evaluation of antibiotic-resistant bacteria and genes from manure as sources of agricultural soil pollution; the results also demonstrate the necessity and urgency of the regulation and supervision of veterinary antibiotics in China.

  4. Increasing Power by Sharing Information from Genetic Background and Treatment in Clustering of Gene Expression Time Series

    Directory of Open Access Journals (Sweden)

    Sura Zaki Alrashid

    2018-02-01

    Full Text Available Clustering of gene expression time series gives insight into which genes may be co-regulated, allowing us to discern the activity of pathways in a given microarray experiment. Of particular interest is how a given group of genes varies with different conditions or genetic background. This paper develops
a new clustering method that allows each cluster to be parameterised according to whether the behaviour of the genes across conditions is correlated or anti-correlated. By specifying correlation between such genes,more information is gain within the cluster about how the genes interrelate. Amyotrophic lateral sclerosis (ALS is an irreversible neurodegenerative disorder that kills the motor neurons and results in death within 2 to 3 years from the symptom onset. Speed of progression for different patients are heterogeneous with significant variability. The SOD1G93A transgenic mice from different backgrounds (129Sv and C57 showed consistent phenotypic differences for disease progression. A hierarchy of Gaussian isused processes to model condition-specific and gene-specific temporal co-variances. This study demonstrated about finding some significant gene expression profiles and clusters of associated or co-regulated gene expressions together from four groups of data (SOD1G93A and Ntg from 129Sv and C57 backgrounds. Our study shows the effectiveness of sharing information between replicates and different model conditions when modelling gene expression time series. Further gene enrichment score analysis and ontology pathway analysis of some specified clusters for a particular group may lead toward identifying features underlying the differential speed of disease progression.

  5. Isoeugenol monooxygenase and its putative regulatory gene are located in the eugenol metabolic gene cluster in Pseudomonas nitroreducens Jin1.

    Science.gov (United States)

    Ryu, Ji-Young; Seo, Jiyoung; Unno, Tatsuya; Ahn, Joong-Hoon; Yan, Tao; Sadowsky, Michael J; Hur, Hor-Gil

    2010-03-01

    The plant-derived phenylpropanoids eugenol and isoeugenol have been proposed as useful precursors for the production of natural vanillin. Genes involved in the metabolism of eugenol and isoeugenol were clustered in region of about a 30 kb of Pseudomonas nitroreducens Jin1. Two of the 23 ORFs in this region, ORFs 26 (iemR) and 27 (iem), were predicted to be involved in the conversion of isoeugenol to vanillin. The deduced amino acid sequence of isoeugenol monooxygenase (Iem) of strain Jin1 had 81.4% identity to isoeugenol monooxygenase from Pseudomonas putida IE27, which also transforms isoeugenol to vanillin. Iem was expressed in E. coli BL21(DE3) and was found to lead to isoeugenol to vanillin transformation. Deletion and cloning analyses indicated that the gene iemR, located upstream of iem, is required for expression of iem in the presence of isoeugenol, suggesting it to be the iem regulatory gene. Reverse transcription, real-time PCR analyses indicated that the genes involved in the metabolism of eugenol and isoeugenol were differently induced by isoeugenol, eugenol, and vanillin.

  6. Natural variation of rice blast resistance gene Pi-d2

    Science.gov (United States)

    Studying natural variation of rice resistance (R) genes in cultivated and wild rice relatives can predict resistance stability to rice blast fungus. In the present study, the protein coding regions of rice R gene Pi-d2 in 35 rice accessions of subgroups, aus (AUS), indica (IND), temperate japonica (...

  7. Transport and transformation of genetic information in the critical zone: The case of antibiotic resistance genes

    Science.gov (United States)

    Zhu, Y. G.

    2015-12-01

    In addition to material and energy flows, the dynamics and functions of the Earth's critical zone are intensively mediated by biological actions performed by diverse organisms. These biological actions are modulated by the expression of functional genes and their translation into enzymes that catalyze geochemical reactions, such as nutrient turnover and pollutant biodegradation. Although geobiology, as an interdisciplinary research area, is playing and vital role in linking biological and geochemical processes at different temporal and spatial scales, the distribution and transport of functional genes have rarely been investigated from the Earth's critical zone perspectives. To illustrate the framework of studies on the transport and transformation of genetic information in the critical zone, antibiotic resistance is taken as an example. Antibiotic resistance genes are considered as a group of emerging contaminants, and their emergence and spread within the critical zone on one hand are induced by anthropogenic activities, and on other hand are threatening human health worldwide. The transport and transformation of antibiotic resistance genes are controlled by both horizontal gene transfer between bacterial cells and the movement of bacteria harboring antibiotic resistance genes. In this paper, the fate and behavior of antibiotic resistance genes will be discussed in the following aspects: 1) general overview of environmental antibiotic resistance; 2) high through quantification of the resistome in various environmental media; 3) pathways of resistance gene flow within the critical zone; and 4) potential strategies in mitigating antibiotic resistance, particularly from the critical zone perspectives.

  8. Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa.

    Science.gov (United States)

    Ueno, Hiroki; Matsumoto, Etsuo; Aruga, Daisuke; Kitagawa, Satoshi; Matsumura, Hideo; Hayashida, Nobuaki

    2012-12-01

    Clubroot disease is one of the major diseases affecting Brassicaceae crops, and a number of these crops grown commercially, such as Chinese cabbage (Brassica rapa L. ssp. pekinensis), are known to be highly susceptible to clubroot disease. To provide protection from this disease, plant breeders have introduced genes for resistance to clubroot from the European turnip into susceptible lines. The CRa gene confers specific resistance to the clubroot pathogen Plasmodiophora brassicae isolate M85. Fine mapping of the CRa locus using synteny to the Arabidopsis thaliana genome and partial genome sequences of B. rapa revealed a candidate gene encoding a TIR-NBS-LRR protein. Several structural differences in this candidate gene were found between susceptible and resistant lines, and CRa expression was observed only in the resistant line. Four mutant lines lacking clubroot resistance were obtained by the UV irradiation of pollen from a resistant line, and all of these mutant lines carried independent mutations in the candidate TIR-NBS-LRR gene. This genetic and molecular evidence strongly suggests that the identified gene is CRa. This is the first report on the molecular characterization of a clubroot Resistance gene in Brassicaceae and of the disease resistance gene in B. rapa.

  9. An AFLP marker linked to turnip mosaic virus resistance gene in pak ...

    African Journals Online (AJOL)

    An AFLP marker linked to turnip mosaic virus resistance gene in pak-choi. W Xinhua, C Huoying, Z Yuying, H Ruixian. Abstract. Pak-choi is one of the most important vegetable crops in China. Turnip mosaic virus (TuMV) is one of its main pathogen. Screening the molecular marker linked to the TuMV resistance gene is an ...

  10. Identification of leaf rust resistant gene Lr10 in Pakistani wheat ...

    African Journals Online (AJOL)

    Leaf (brown) rust is the major disease of wheat in Pakistan and other countries. The disease is more effectively controlled when several rust resistance genes are pyramided into a single line. Molecular survey was conducted to screen 25 Pakistan wheat germplasm for the presence of leaf rust resistance gene Lr10 using ...

  11. Characterization of the psoRPM1 gene for resistance to root-knot ...

    African Journals Online (AJOL)

    Several root-knot nematode (Meloidogyne spp.) resistance genes have been discovered in different stone fruit crops. However, none of them has yet been cloned and they were only located on the chromosomes. In this study, a candidate root-knot nematode resistance gene (designated as psoRPM1) was isolated from the ...

  12. Identifying clinically relevant drug resistance genes in drug-induced resistant cancer cell lines and post-chemotherapy tissues.

    Science.gov (United States)

    Tong, Mengsha; Zheng, Weicheng; Lu, Xingrong; Ao, Lu; Li, Xiangyu; Guan, Qingzhou; Cai, Hao; Li, Mengyao; Yan, Haidan; Guo, You; Chi, Pan; Guo, Zheng

    2015-12-01

    Until recently, few molecular signatures of drug resistance identified in drug-induced resistant cancer cell models can be translated into clinical practice. Here, we defined differentially expressed genes (DEGs) between pre-chemotherapy colorectal cancer (CRC) tissue samples of non-responders and responders for 5-fluorouracil and oxaliplatin-based therapy as clinically relevant drug resistance genes (CRG5-FU/L-OHP). Taking CRG5-FU/L-OHP as reference, we evaluated the clinical relevance of several types of genes derived from HCT116 CRC cells with resistance to 5-fluorouracil and oxaliplatin, respectively. The results revealed that DEGs between parental and resistant cells, when both were treated with the corresponding drug for a certain time, were significantly consistent with the CRG5-FU/L-OHP as well as the DEGs between the post-chemotherapy CRC specimens of responders and non-responders. This study suggests a novel strategy to extract clinically relevant drug resistance genes from both drug-induced resistant cell models and post-chemotherapy cancer tissue specimens.

  13. Genetic diversity and structure of Lolium perenne ssp. multiflorum in California vineyards and orchards indicate potential for spread of herbicide resistance via gene flow.

    Science.gov (United States)

    Karn, Elizabeth; Jasieniuk, Marie

    2017-07-01

    Management of agroecosystems with herbicides imposes strong selection pressures on weedy plants leading to the evolution of resistance against those herbicides. Resistance to glyphosate in populations of Lolium perenne L. ssp. multiflorum is increasingly common in California, USA, causing economic losses and the loss of effective management tools. To gain insights into the recent evolution of glyphosate resistance in L. perenne in perennial cropping systems of northwest California and to inform management, we investigated the frequency of glyphosate resistance and the genetic diversity and structure of 14 populations. The sampled populations contained frequencies of resistant plants ranging from 10% to 89%. Analyses of neutral genetic variation using microsatellite markers indicated very high genetic diversity within all populations regardless of resistance frequency. Genetic variation was distributed predominantly among individuals within populations rather than among populations or sampled counties, as would be expected for a wide-ranging outcrossing weed species. Bayesian clustering analysis provided evidence of population structuring with extensive admixture between two genetic clusters or gene pools. High genetic diversity and admixture, and low differentiation between populations, strongly suggest the potential for spread of resistance through gene flow and the need for management that limits seed and pollen dispersal in L. perenne .

  14. The expression of antibiotic resistance genes in antibiotic-producing bacteria.

    Science.gov (United States)

    Mak, Stefanie; Xu, Ye; Nodwell, Justin R

    2014-08-01

    Antibiotic-producing bacteria encode antibiotic resistance genes that protect them from the biologically active molecules that they produce. The expression of these genes needs to occur in a timely manner: either in advance of or concomitantly with biosynthesis. It appears that there have been at least two general solutions to this problem. In many cases, the expression of resistance genes is tightly linked to that of antibiotic biosynthetic genes. In others, the resistance genes can be induced by their cognate antibiotics or by intermediate molecules from their biosynthetic pathways. The regulatory mechanisms that couple resistance to antibiotic biosynthesis are mechanistically diverse and potentially relevant to the origins of clinical antibiotic resistance. © 2014 John Wiley & Sons Ltd.

  15. Motif-Independent De Novo Detection of Secondary Metabolite Gene Clusters – Towards Identification of Novel Secondary Metabolisms from Filamentous Fungi -

    Directory of Open Access Journals (Sweden)

    Myco eUmemura

    2015-05-01

    Full Text Available Secondary metabolites are produced mostly by clustered genes that are essential to their biosynthesis. The transcriptional expression of these genes is often cooperatively regulated by a transcription factor located inside or close to a cluster. Most of the secondary metabolism biosynthesis (SMB gene clusters identified to date contain so-called core genes with distinctive sequence features, such as polyketide synthase (PKS and non-ribosomal peptide synthetase (NRPS. Recent efforts in sequencing fungal genomes have revealed far more SMB gene clusters than expected based on the number of core genes in the genomes. Several bioinformatics tools have been developed to survey SMB gene clusters using the sequence motif information of the core genes, including SMURF and antiSMASH.More recently, accompanied by the development of sequencing techniques allowing to obtain large-scale genomic and transcriptomic data, motif-independent prediction methods of SMB gene clusters, including MIDDAS-M, have been developed. Most these methods detect the clusters in which the genes are cooperatively regulated at transcriptional levels, thus allowing the identification of novel SMB gene clusters regardless of the presence of the core genes. Another type of the method, MIPS-CG, uses the characteristics of SMB genes, which are highly enriched in non-syntenic blocks (NSBs, enabling the prediction even without transcriptome data although the results have not been evaluated in detail. Considering that large portion of SMB gene clusters might be sufficiently expressed only in limited uncommon conditions, it seems that prediction of SMB gene clusters by bioinformatics and successive experimental validation is an only way to efficiently uncover hidden SMB gene clusters. Here, we describe and discuss possible novel approaches for the determination of SMB gene clusters that have not been identified using conventional methods.

  16. Mapping, isolation and characterization of genes responsible for late blight resistance in potato

    NARCIS (Netherlands)

    Pel, M.

    2010-01-01

    Late blight (LB), caused by the oomycete Phytophthora infestans, is one of the most
    devastating diseases on potato. Resistance (R) genes from the wild species Solanum demissum
    have been used by breeders to generate late blight resistant cultivars, but resistance was soon
    overcome

  17. In Silico Assigned Resistance Genes Confer Bifidobacterium with Partial Resistance to Aminoglycosides but Not to Β-Lactams

    Science.gov (United States)

    Fouhy, Fiona; O’Connell Motherway, Mary; Fitzgerald, Gerald F.; Ross, R. Paul; Stanton, Catherine; van Sinderen, Douwe; Cotter, Paul D.

    2013-01-01

    Bifidobacteria have received significant attention due to their contribution to human gut health and the use of specific strains as probiotics. It is thus not surprising that there has also been significant interest with respect to their antibiotic resistance profile. Numerous culture-based studies have demonstrated that bifidobacteria are resistant to the majority of aminoglycosides, but are sensitive to β-lactams. However, limited research exists with respect to the genetic basis for the resistance of bifidobacteria to aminoglycosides. Here we performed an in-depth in silico analysis of putative Bifidobacterium-encoded aminoglycoside resistance proteins and β-lactamases and assess the contribution of these proteins to antibiotic resistance. The in silico-based screen detected putative aminoglycoside and β-lactam resistance proteins across the Bifidobacterium genus. Laboratory-based investigations of a number of representative bifidobacteria strains confirmed that despite containing putative β-lactamases, these strains were sensitive to β-lactams. In contrast, all strains were resistant to the aminoglycosides tested. To assess the contribution of genes encoding putative aminoglycoside resistance proteins in Bifidobacterium sp. two genes, namely Bbr_0651 and Bbr_1586, were targeted for insertional inactivation in B. breve UCC2003. As compared to the wild-type, the UCC2003 insertion mutant strains exhibited decreased resistance to gentamycin, kanamycin and streptomycin. This study highlights the associated risks of relying on the in silico assignment of gene function. Although several putative β-lactam resistance proteins are located in bifidobacteria, their presence does not coincide with resistance to these antibiotics. In contrast however, this approach has resulted in the identification of two loci that contribute to the aminoglycoside resistance of B. breve UCC2003 and, potentially, many other bifidobacteria. PMID:24324818

  18. In silico assigned resistance genes confer Bifidobacterium with partial resistance to aminoglycosides but not to β-lactams.

    Directory of Open Access Journals (Sweden)

    Fiona Fouhy

    Full Text Available Bifidobacteria have received significant attention due to their contribution to human gut health and the use of specific strains as probiotics. It is thus not surprising that there has also been significant interest with respect to their antibiotic resistance profile. Numerous culture-based studies have demonstrated that bifidobacteria are resistant to the majority of aminoglycosides, but are sensitive to β-lactams. However, limited research exists with respect to the genetic basis for the resistance of bifidobacteria to aminoglycosides. Here we performed an in-depth in silico analysis of putative Bifidobacterium-encoded aminoglycoside resistance proteins and β-lactamases and assess the contribution of these proteins to antibiotic resistance. The in silico-based screen detected putative aminoglycoside and β-lactam resistance proteins across the Bifidobacterium genus. Laboratory-based investigations of a number of representative bifidobacteria strains confirmed that despite containing putative β-lactamases, these strains were sensitive to β-lactams. In contrast, all strains were resistant to the aminoglycosides tested. To assess the contribution of genes encoding putative aminoglycoside resistance proteins in Bifidobacterium sp. two genes, namely Bbr_0651 and Bbr_1586, were targeted for insertional inactivation in B. breve UCC2003. As compared to the wild-type, the UCC2003 insertion mutant strains exhibited decreased resistance to gentamycin, kanamycin and streptomycin. This study highlights the associated risks of relying on the in silico assignment of gene function. Although several putative β-lactam resistance proteins are located in bifidobacteria, their presence does not coincide with resistance to these antibiotics. In contrast however, this approach has resulted in the identification of two loci that contribute to the aminoglycoside resistance of B. breve UCC2003 and, potentially, many other bifidobacteria.

  19. Characterization of Soybean WRKY Gene Family and Identification of Soybean WRKY Genes that Promote Resistance to Soybean Cyst Nematode.

    Science.gov (United States)

    Yang, Yan; Zhou, Yuan; Chi, Yingjun; Fan, Baofang; Chen, Zhixiang

    2017-12-19

    WRKY proteins are a superfamily of plant transcription factors with important roles in plants. WRKY proteins have been extensively analyzed in plant species including Arabidopsis and rice. Here we report characterization of soybean WRKY gene family and their functional analysis in resistance