WorldWideScience

Sample records for resistance efflux transporters

  1. Cell-penetrating, guanidinium-rich molecular transporters for overcoming efflux-mediated multidrug resistance.

    Science.gov (United States)

    Vargas, Jessica R; Stanzl, Erika Geihe; Teng, Nelson N H; Wender, Paul A

    2014-08-04

    Multidrug resistance (MDR) is a major cause of chemotherapy failure in the clinic. Drugs that were once effective against naïve disease subsequently prove ineffective against recurrent disease, which often exhibits an MDR phenotype. MDR can be attributed to many factors; often dominating among these is the ability of a cell to suppress or block drug entry through upregulation of membrane-bound drug efflux pumps. Efflux pumps exhibit polyspecificity, recognizing and exporting many different types of drugs, especially those whose lipophilic nature contributes to residence in the membrane. We have developed a general strategy to overcome efflux-based resistance. This strategy involves conjugating a known drug that succumbs to efflux-mediated resistance to a cell-penetrating molecular transporter, specifically, the cell-penetrating peptide (CPP), d-octaarginine. The resultant conjugates are discrete single entities (not particle mixtures) and highly water-soluble. They rapidly enter cells, are not substrates for efflux pumps, and release the free drug only after cellular entry at a rate controlled by linker design and favored by target cell chemistry. This general strategy can be applied to many classes of drugs and allows for an exceptionally rapid advance to clinical testing, especially of drugs that succumb to resistance. The efficacy of this strategy has been successfully demonstrated with Taxol in cellular and animal models of resistant cancer and with ex vivo samples from patients with ovarian cancer. Next generation efforts in this area will involve the extension of this strategy to other chemotherapeutics and other MDR-susceptible diseases.

  2. Assessment of three Resistance-Nodulation-Cell Division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Venturi Vittorio

    2009-09-01

    Full Text Available Abstract Background Burkholderia cenocepacia are opportunistic Gram-negative bacteria that can cause chronic pulmonary infections in patients with cystic fibrosis. These bacteria demonstrate a high-level of intrinsic antibiotic resistance to most clinically useful antibiotics complicating treatment. We previously identified 14 genes encoding putative Resistance-Nodulation-Cell Division (RND efflux pumps in the genome of B. cenocepacia J2315, but the contribution of these pumps to the intrinsic drug resistance of this bacterium remains unclear. Results To investigate the contribution of efflux pumps to intrinsic drug resistance of B. cenocepacia J2315, we deleted 3 operons encoding the putative RND transporters RND-1, RND-3, and RND-4 containing the genes BCAS0591-BCAS0593, BCAL1674-BCAL1676, and BCAL2822-BCAL2820. Each deletion included the genes encoding the RND transporter itself and those encoding predicted periplasmic proteins and outer membrane pores. In addition, the deletion of rnd-3 also included BCAL1672, encoding a putative TetR regulator. The B. cenocepacia rnd-3 and rnd-4 mutants demonstrated increased sensitivity to inhibitory compounds, suggesting an involvement of these proteins in drug resistance. Moreover, the rnd-3 and rnd-4 mutants demonstrated reduced accumulation of N-acyl homoserine lactones in the growth medium. In contrast, deletion of the rnd-1 operon had no detectable phenotypes under the conditions assayed. Conclusion Two of the three inactivated RND efflux pumps in B. cenocepacia J2315 contribute to the high level of intrinsic resistance of this strain to some antibiotics and other inhibitory compounds. Furthermore, these efflux systems also mediate accumulation in the growth medium of quorum sensing molecules that have been shown to contribute to infection. A systematic study of RND efflux systems in B. cenocepacia is required to provide a full picture of intrinsic antibiotic resistance in this opportunistic

  3. Drug efflux proteins in multidrug resistant bacteria

    NARCIS (Netherlands)

    vanVeen, HW; Konings, WN

    Bacteria contain an array of transport proteins in their cytoplasmic membrane. Many of these proteins play an important role in conferring resistance to toxic compounds. The multidrug efflux systems encountered in prokaryotic cells are very similar to those observed in eukaryotic cells. Therefore, a

  4. Biochemical Reconstitution and Characterization of Multicomponent Drug Efflux Transporters.

    Science.gov (United States)

    Picard, Martin; Tikhonova, Elena B; Broutin, Isabelle; Lu, Shuo; Verchère, Alice; Zgurskaya, Helen I

    2018-01-01

    Efflux pumps are the major determinants in bacterial multidrug resistance. In Gram-negative bacteria, efflux transporters are organized as macromolecular tripartite machineries that span the two-membrane cell envelope of the bacterium. Biochemical data on purified proteins are essential to draw a mechanistic picture of this highly dynamical, multicomponent, efflux system. We describe protocols for the reconstitution and the in vitro study of transporters belonging to RND and ABC superfamilies: the AcrAB-TolC and MacAB-TolC efflux systems from Escherichia coli and the MexAB-OprM efflux pump from Pseudomonas aeruginosa.

  5. Bafetinib (INNO-406) reverses multidrug resistance by inhibiting the efflux function of ABCB1 and ABCG2 transporters

    Science.gov (United States)

    Zhang, Yun-Kai; Zhang, Guan-Nan; Wang, Yi-Jun; Patel, Bhargav A.; Talele, Tanaji T.; Yang, Dong-Hua; Chen, Zhe-Sheng

    2016-05-01

    ATP-Binding Cassette transporters are involved in the efflux of xenobiotic compounds and are responsible for decreasing drug accumulation in multidrug resistant (MDR) cells. Discovered by structure-based virtual screening algorithms, bafetinib, a Bcr-Abl/Lyn tyrosine kinase inhibitor, was found to have inhibitory effects on both ABCB1- and ABCG2-mediated MDR in this in-vitro investigation. Bafetinib significantly sensitized ABCB1 and ABCG2 overexpressing MDR cells to their anticancer substrates and increased the intracellular accumulation of anticancer drugs, particularly doxorubicin and [3H]-paclitaxel in ABCB1 overexpressing cells; mitoxantrone and [3H]-mitoxantrone in ABCG2 overexpressing cells, respectively. Bafetinib stimulated ABCB1 ATPase activities while inhibited ABCG2 ATPase activities. There were no significant changes in the expression level or the subcellular distribution of ABCB1 and ABCG2 in the cells exposed to 3 μM of bafetinib. Overall, our study indicated that bafetinib reversed ABCB1- and ABCG2-mediated MDR by blocking the drug efflux function of these transporters. These findings might be useful in developing combination therapy for MDR cancer treatment.

  6. The role of multidrug resistance protein (MRP-1) as an active efflux transporter on blood-brain barrier (BBB) permeability.

    Science.gov (United States)

    Lingineni, Karthik; Belekar, Vilas; Tangadpalliwar, Sujit R; Garg, Prabha

    2017-05-01

    Drugs acting on central nervous system (CNS) may take longer duration to reach the market as these compounds have a higher attrition rate in clinical trials due to the complexity of the brain, side effects, and poor blood-brain barrier (BBB) permeability compared to non-CNS-acting compounds. The roles of active efflux transporters with BBB are still unclear. The aim of the present work was to develop a predictive model for BBB permeability that includes the MRP-1 transporter, which is considered as an active efflux transporter. A support vector machine model was developed for the classification of MRP-1 substrates and non-substrates, which was validated with an external data set and Y-randomization method. An artificial neural network model has been developed to evaluate the role of MRP-1 on BBB permeation. A total of nine descriptors were selected, which included molecular weight, topological polar surface area, ClogP, number of hydrogen bond donors, number of hydrogen bond acceptors, number of rotatable bonds, P-gp, BCRP, and MRP-1 substrate probabilities for model development. We identified 5 molecules that fulfilled all criteria required for passive permeation of BBB, but they all have a low logBB value, which suggested that the molecules were effluxed by the MRP-1 transporter.

  7. In vitro drug response and efflux transporters associated with drug resistance in pediatric high grade glioma and diffuse intrinsic pontine glioma.

    Directory of Open Access Journals (Sweden)

    Susanna J E Veringa

    Full Text Available Pediatric high-grade gliomas (pHGG, including diffuse intrinsic pontine gliomas (DIPG, are the leading cause of cancer-related death in children. While it is clear that surgery (if possible, and radiotherapy are beneficial for treatment, the role of chemotherapy for these tumors is still unclear. Therefore, we performed an in vitro drug screen on primary glioma cells, including three DIPG cultures, to determine drug sensitivity of these tumours, without the possible confounding effect of insufficient drug delivery. This screen revealed a high in vitro cytotoxicity for melphalan, doxorubicine, mitoxantrone, and BCNU, and for the novel, targeted agents vandetanib and bortezomib in pHGG and DIPG cells. We subsequently determined the expression of the drug efflux transporters P-gp, BCRP1, and MRP1 in glioma cultures and their corresponding tumor tissues. Results indicate the presence of P-gp, MRP1 and BCRP1 in the tumor vasculature, and expression of MRP1 in the glioma cells themselves. Our results show that pediatric glioma and DIPG tumors per se are not resistant to chemotherapy. Treatment failure observed in clinical trials, may rather be contributed to the presence of drug efflux transporters that constitute a first line of drug resistance located at the blood-brain barrier or other resistance mechanism. As such, we suggest that alternative ways of drug delivery may offer new possibilities for the treatment of pediatric high-grade glioma patients, and DIPG in particular.

  8. Efflux as a mechanism of antimicrobial drug resistance in clinical relevant microorganisms: the role of efflux inhibitors.

    Science.gov (United States)

    Willers, Clarissa; Wentzel, Johannes Frederik; du Plessis, Lissinda Hester; Gouws, Chrisna; Hamman, Josias Hendrik

    2017-01-01

    Microbial resistance against antibiotics is a serious threat to the effective treatment of infectious diseases. Several mechanisms exist through which microorganisms can develop resistance against antimicrobial drugs, of which the overexpression of genes to produce efflux pumps is a major concern. Several efflux transporters have been identified in microorganisms, which infer resistance against specific antibiotics and even multidrug resistance. Areas covered: This paper focuses on microbial resistance against antibiotics by means of the mechanism of efflux and gives a critical overview of studies conducted to overcome this problem by combining efflux pump inhibitors with antibiotics. Information was obtained from a literature search done with MEDLINE, Pubmed, Scopus, ScienceDirect, OneSearch and EBSCO host. Expert opinion: Efflux as a mechanism of multidrug resistance has presented a platform for improved efficacy against resistant microorganisms by co-administration of efflux pump inhibitors with antimicrobial agents. Although proof of concept has been shown for this approach with in vitro experiments, further research is needed to develop more potent inhibitors with low toxicity which is clinically effective.

  9. The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs

    Science.gov (United States)

    Reid, Glen; Wielinga, Peter; Zelcer, Noam; van der Heijden, Ingrid; Kuil, Annemieke; de Haas, Marcel; Wijnholds, Jan; Borst, Piet

    2003-01-01

    Prostaglandins are involved in a wide variety of physiological and pathophysiological processes, but the mechanism of prostaglandin release from cells is not completely understood. Although poorly membrane permeable, prostaglandins are believed to exit cells by passive diffusion. We have investigated the interaction between prostaglandins and members of the ATP-binding cassette (ABC) transporter ABCC [multidrug resistance protein (MRP)] family of membrane export pumps. In inside-out membrane vesicles derived from insect cells or HEK293 cells, MRP4 catalyzed the time- and ATP-dependent uptake of prostaglandin E1 (PGE1) and PGE2. In contrast, MRP1, MRP2, MRP3, and MRP5 did not transport PGE1 or PGE2. The MRP4-mediated transport of PGE1 and PGE2 displayed saturation kinetics, with Km values of 2.1 and 3.4 μM, respectively. Further studies showed that PGF1α, PGF2α, PGA1, and thromboxane B2 were high-affinity inhibitors (and therefore presumably substrates) of MRP4. Furthermore, several nonsteroidal antiinflammatory drugs were potent inhibitors of MRP4 at concentrations that did not inhibit MRP1. In cells expressing the prostaglandin transporter PGT, the steady-state accumulation of PGE1 and PGE2 was reduced proportional to MRP4 expression. Inhibition of MRP4 by an MRP4-specific RNA interference construct or by indomethacin reversed this accumulation deficit. Together, these data suggest that MRP4 can release prostaglandins from cells, and that, in addition to inhibiting prostaglandin synthesis, some nonsteroidal antiinflammatory drugs might also act by inhibiting this release. PMID:12835412

  10. Rationally designed transmembrane peptide mimics of the multidrug transporter protein Cdr1 act as antagonists to selectively block drug efflux and chemosensitize azole-resistant clinical isolates of Candida albicans.

    Science.gov (United States)

    Maurya, Indresh Kumar; Thota, Chaitanya Kumar; Verma, Sachin Dev; Sharma, Jyotsna; Rawal, Manpreet Kaur; Ravikumar, Balaguru; Sen, Sobhan; Chauhan, Neeraj; Lynn, Andrew M; Chauhan, Virander Singh; Prasad, Rajendra

    2013-06-07

    Drug-resistant pathogenic fungi use several families of membrane-embedded transporters to efflux antifungal drugs from the cells. The efflux pump Cdr1 (Candida drug resistance 1) belongs to the ATP-binding cassette (ABC) superfamily of transporters. Cdr1 is one of the most predominant mechanisms of multidrug resistance in azole-resistant (AR) clinical isolates of Candida albicans. Blocking drug efflux represents an attractive approach to combat the multidrug resistance of this opportunistic human pathogen. In this study, we rationally designed and synthesized transmembrane peptide mimics (TMPMs) of Cdr1 protein (Cdr1p) that correspond to each of the 12 transmembrane helices (TMHs) of the two transmembrane domains of the protein to target the primary structure of the Cdr1p. Several FITC-tagged TMPMs specifically bound to Cdr1p and blocked the efflux of entrapped fluorescent dyes from the AR (Gu5) isolate. These TMPMs did not affect the efflux of entrapped fluorescent dye from cells expressing the Cdr1p homologue Cdr2p or from cells expressing a non-ABC transporter Mdr1p. Notably, the time correlation of single photon counting fluorescence measurements confirmed the specific interaction of FITC-tagged TMPMs with their respective TMH. By using mutant variants of Cdr1p, we show that these TMPM antagonists contain the structural information necessary to target their respective TMHs of Cdr1p and specific binding sites that mediate the interactions between the mimics and its respective helix. Additionally, TMPMs that were devoid of any demonstrable hemolytic, cytotoxic, and antifungal activities chemosensitize AR clinical isolates and demonstrate synergy with drugs that further improved the therapeutic potential of fluconazole in vivo.

  11. Effects of efflux-pump inducers and genetic variation of the multidrug transporter cmeB in biocide resistance of Campylobacter jejuni and Campylobacter coli.

    Science.gov (United States)

    Mavri, Ana; Smole Možina, Sonja

    2013-03-01

    Multidrug efflux pumps, such as CmeABC and CmeDEF, are involved in the resistance of Campylobacter to a broad spectrum of antimicrobials. The aim of this study was to analyse the effects of two putative efflux-pump inducers, bile salts and sodium deoxycholate, on the resistance of Campylobacter to biocides (triclosan, benzalkonium chloride, chlorhexidine diacetate, cetylpyridinium chloride and trisodium phosphate), SDS and erythromycin. The involvement of the CmeABC and CmeDEF efflux pumps in this resistance was studied on the basis of the effects of bile salts and sodium deoxycholate in Campylobacter cmeB, cmeF and cmeR mutants. The genetic variation in the cmeB gene was also examined, to see whether this polymorphism is related to the function of the efflux pump. In 15 Campylobacter jejuni and 23 Campylobacter coli strains, bile salts and sodium deoxycholate increased the MICs of benzalkonium chloride, chlorhexidine diacetate, cetylpyridinium chloride and SDS, and decreased the MICs of triclosan, trisodium phosphate and erythromycin. Bile salts and sodium deoxycholate further decreased or increased the MICs of biocides and erythromycin in the cmeF and cmeR mutants. For cmeB polymorphisms, 17 different cmeB-specific PCR-RFLP patterns were identified: six within C. jejuni only, nine within C. coli only and two in both species. In conclusion, bile salts and sodium deoxycholate can increase or decrease bacterial resistance to structurally unrelated antimicrobials. The MIC increases in the cmeF and cmeR mutants indicated that at least one non-CmeABC efflux system is involved in resistance to biocides. These results indicate that the cmeB gene polymorphism identified is not associated with biocide and erythromycin resistance in Campylobacter.

  12. In-silico interaction studies suggest RND efflux pump mediates polymyxin resistance in Acinetobacter baumannii.

    Science.gov (United States)

    Verma, Privita; Maurya, Pramila; Tiwari, Monalisa; Tiwari, Vishvanath

    2017-12-29

    Bacterial efflux pumps have emerged as antibiotic resistance determinants and confers multi-drug resistance to a broad range of antimicrobials as well as non-antibiotic substances. A study about translocation of antibiotic molecules through the efflux transporter, will contribute in determining substrate specificity. In the present study, we have explored RND family efflux pump extensively found in Acinetobacter baumannii i.e. AdeABC. Besides, another well studied RND efflux pump, AcrAB-TolC together with a non-RND efflux pump, NorM was investigated for comparative analysis. We employed a series of computational techniques ranging from molecular docking to binding free energy estimation and molecular dynamics simulations to determine the binding affinity for different classes of drugs, namely aminoglycosides, polymyxins, β-lactams, tetracyclines, glycylcyclines, quinolones and metronidazole with AdeB, AcrB, and NorM efflux proteins. Our results revealed that class polymyxins has the highest binding affinity with the RND efflux pumps i.e. AcrAB-TolC and AdeABC as well as non-RND efflux pump, NorM. The experimental validation study demonstrated bigger zone of inhibition in presence of efflux pump inhibitor than polymyxin alone thus unveiling its specificity toward efflux pump. The reported experimental data comprising of minimum inhibitory concentration of antibiotics toward these efflux pumps also support our finding based on in silico approach. To recapitulate the outcome, polymyxins shows maximum specificity toward RND as well as non-RND efflux pump and may unlatch the way to rationally develop new potential antibacterial agents as well as efflux pump inhibitors in order to combat resistance.

  13. How to Measure Export via Bacterial Multidrug Resistance Efflux Pumps

    Directory of Open Access Journals (Sweden)

    Jessica M. A. Blair

    2016-07-01

    Full Text Available Bacterial multidrug resistance (MDR efflux pumps are an important mechanism of antibiotic resistance and are required for many pathogens to cause infection. They are also being harnessed to improve microbial biotechnological processes, including biofuel production. Therefore, scientists of many specialties must be able to accurately measure efflux activity. However, myriad methodologies have been described and the most appropriate method is not always clear. Within the scientific literature, many methods are misused or data arising are misinterpreted. The methods for measuring efflux activity can be split into two groups, (i those that directly measure efflux and (ii those that measure the intracellular accumulation of a substrate, which is then used to infer efflux activity. Here, we review the methods for measuring efflux and explore the most recent advances in this field, including single-cell or cell-free technologies and mass spectrometry, that are being used to provide more detailed information about efflux pump activity.

  14. In Vivo Exposure of Kaempferol Is Driven by Phase II Metabolic Enzymes and Efflux Transporters.

    Science.gov (United States)

    Zheng, Liang; Zhu, Lijun; Zhao, Min; Shi, Jian; Li, Yuhuan; Yu, Jia; Jiang, Huangyu; Wu, Jinjun; Tong, Yunli; Liu, Yuting; Hu, Ming; Lu, Linlin; Liu, Zhongqiu

    2016-09-01

    Kaempferol is a well-known flavonoid; however, it lacks extensive pharmacokinetic studies. Phase II metabolic enzymes and efflux transporters play an important role in the disposition of flavonoids. This study aimed to investigate the mechanism by which phase II metabolic enzymes and efflux transporters determine the in vivo exposure of kaempferol. Pharmacokinetic analysis in Sprague-Dawley rats revealed that kaempferol was mostly biotransformed to conjugates, namely, kaempferol-3-glucuronide (K-3-G), kaempferol-7-glucuronide (K-7-G), and kaempferol-7-sulfate, in plasma. K-3-G represented the major metabolite. Compared with that in wild-type mice, pharmacokinetics in knockout FVB mice demonstrated that the absence of multidrug resistance protein 2 (MRP2) and breast cancer resistance protein (BCRP) significantly increased the area under the curve (AUC) of the conjugates. The lack of MRP1 resulted in a much lower AUC of the conjugates. Intestinal perfusion in rats revealed that the glucuronide conjugates were mainly excreted in the small intestine, but 7-sulfate was mainly excreted in the colon. In Caco-2 monolayers, K-7-G efflux toward the apical (AP) side was significantly higher than K-3-G efflux. In contrast, K-3-G efflux toward the basolateral (BL) side was significantly higher than K-7-G efflux. The BL-to-AP efflux was significantly reduced in the presence of the MRP2 inhibitor LTC4. The AP-to-BL efflux was significantly decreased in the presence of the BL-side MRPs inhibitor MK571. The BCRP inhibitor Ko143 decreased the glucuronide conjugate efflux. Therefore, kaempferol is mainly exposed as K-3-G in vivo, which is driven by phase II metabolic enzymes and efflux transporters (i.e., BCRP and MRPs).

  15. Resistance to Antimicrobials Mediated by Efflux Pumps in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Isabel Couto

    2013-03-01

    Full Text Available Resistance mediated by efflux has been recognized in Staphylococcus aureus in the last few decades, although its clinical relevance has only been recognized recently. The existence of only a few studies on the individual and overall contribution of efflux to resistance phenotypes associated with the need of well-established methods to assess efflux activity in clinical isolates contributes greatly to the lack of solid knowledge of this mechanism in S. aureus. This study aims to provide information on approaches useful to the assessment and characterization of efflux activity, as well as contributing to our understanding of the role of efflux to phenotypes of antibiotic resistance and biocide tolerance in S. aureus clinical isolates. The results described show that efflux is an important contributor to fluoroquinolone resistance in S. aureus and suggest it as a major mechanism in the early stages of resistance development. We also show that efflux plays an important role on the reduced susceptibility to biocides in S. aureus, strengthening the importance of this long neglected resistance mechanism to the persistence and proliferation of antibiotic/biocide-resistant S. aureus in the hospital environment.

  16. Efflux Pump‑Mediated Resistance in Chemotherapy

    African Journals Online (AJOL)

    their applications are mainly restricted to epidemiological studies. Nonetheless, the search for efficacious and .... rationally designed by manipulation of molecular structures of pump substrates.[27] Classification of efflux ..... Magnet S, Courvalin P, Lambert T. Resistance‑nodulation‑cell division‑type efflux pump involved in ...

  17. Burkholderia pseudomallei resistance to antibiotics in biofilm-induced conditions is related to efflux pumps.

    Science.gov (United States)

    Sirijant, Nopphasul; Sermswan, Rasana W; Wongratanacheewin, Surasakdi

    2016-11-01

    Burkholderia pseudomallei, the causative agent of melioidosis, has been found to increase its resistance to antibiotics when growing as a biofilm. The resistance is related to several mechanisms. One of the possible mechanisms is the efflux pump. Using bioinformatics analysis, it was found that BPSL1661, BPSL1664 and BPSL1665 were orthologous genes of the efflux transporter encoding genes for biofilm-related antibiotic resistance, PA1874-PA1877 genes in Pseudomonas aeruginosa strain PAO1. Expression of selected encoding genes for the efflux transporter system during biofilm formation were investigated. Real-time reverse transcriptase PCR expression of amrB, cytoplasmic membrane protein of AmrAB-OprA efflux transporter encoding gene, was slightly increased, while BPSL1665 was significantly increased during growth of bacteria in biofilm formation. Minimum biofilm inhibition concentration and minimum biofilm eradication concentration (MBEC) of ceftazidime (CTZ), doxycycline (DOX) and imipenem were found to be 2- to 1024-times increased when compared to their MICs for of planktonic cells. Inhibition of the efflux transporter by adding phenylalanine arginine β-napthylamide (PAβN), a universal efflux inhibitor, decreased 2 to 16 times as much as MBEC in B. pseudomallei biofilms with CTZ and DOX. When the intracellular accumulation of antibiotics was tested to reveal the pump inhibition, only the concentrations of CTZ and DOX increased in PAβN treated biofilm. Taken together, these results indicated that BPSL1665, a putative precursor of the efflux pump gene, might be related to the adaptation of B. pseudomallei in biofilm conditions. Inhibition of efflux pumps may lead to a decrease of resistance to CTZ and DOX in biofilm cells.

  18. Drug transport mechanism of the AcrB efflux pump.

    Science.gov (United States)

    Pos, Klaas M

    2009-05-01

    In Gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa, tripartite multidrug efflux systems extrude cytotoxic substances from the cell directly into the medium bypassing periplasm and the outer membrane. In E. coli, the tripartite efflux system AcrA/AcrB/TolC is the pump that extrudes multiple antibiotics, dyes, bile salts and detergents. The inner membrane component AcrB, a member of the Resistance Nodulation cell Division (RND) family, is the major site for substrate recognition and energy transduction of the entire tripartite system. The drug/proton antiport processes in this secondary transporter are suggested to be spatially separated, a feature frequently observed for primary transporters like membrane-bound ATPases. The recently elucidated asymmetric structure of the AcrB trimer reveals three different monomer conformations proposed to represent consecutive states in a directional transport cycle. Each monomer shows a distinct tunnel system with entrances located at the boundary of the outer leaflet of the inner membrane and the periplasm through the periplasmic porter (pore) domain towards the funnel of the trimer and TolC. In one monomer a hydrophobic pocket is present which has been shown to bind the AcrB substrates minocyclin and doxorubicin. The energy conversion from the proton motive force into drug efflux includes proton binding in (and release from) the transmembrane part. The conformational changes observed within a triad of essential, titratable residues (D407/D408/K940) residing in the hydrophobic transmembrane domain appear to be transduced by transmembrane helix 8 and associated with the conformational changes seen in the periplasmic domain. From the asymmetric structure a possible peristaltic pump transport mechanism based on a functional rotation of the AcrB trimer has been postulated. The novel drug transport model combines the alternate access pump mechanism with the rotating site catalysis of F(1)F(o) ATPase as

  19. Emergence of a Potent Multidrug Efflux Pump Variant That Enhances Campylobacter Resistance to Multiple Antibiotics.

    Science.gov (United States)

    Yao, Hong; Shen, Zhangqi; Wang, Yang; Deng, Fengru; Liu, Dejun; Naren, Gaowa; Dai, Lei; Su, Chih-Chia; Wang, Bing; Wang, Shaolin; Wu, Congming; Yu, Edward W; Zhang, Qijing; Shen, Jianzhong

    2016-09-20

    Bacterial antibiotic efflux pumps are key players in antibiotic resistance. Although their role in conferring multidrug resistance is well documented, the emergence of "super" efflux pump variants that enhance bacterial resistance to multiple drugs has not been reported. Here, we describe the emergence of a resistance-enhancing variant (named RE-CmeABC) of the predominant efflux pump CmeABC in Campylobacter, a major zoonotic pathogen whose resistance to antibiotics is considered a serious antibiotic resistance threat in the United States. Compared to the previously characterized CmeABC transporters, RE-CmeABC is much more potent in conferring Campylobacter resistance to antibiotics, which was shown by increased MICs and reduced intracellular accumulation of antibiotics. Structural modeling suggests that sequence variations in the drug-binding pocket of CmeB possibly contribute to the enhanced efflux function. Additionally, RE-CmeABC expands the mutant selection window of ciprofloxacin, enhances the emergence of antibiotic-resistant mutants, and confers exceedingly high-level resistance to fluoroquinolones, an important class of antibiotics for clinical therapy of campylobacteriosis. Furthermore, RE-CmeABC is horizontally transferable, shifts antibiotic MIC distribution among clinical isolates, and is increasingly prevalent in Campylobacter jejuni isolates, suggesting that it confers a fitness advantage under antimicrobial selection. These findings reveal a new mechanism for enhanced multidrug resistance and an effective strategy utilized by bacteria for adaptation to selection from multiple antibiotics. Bacterial antibiotic efflux pumps are ubiquitously present in bacterial organisms and protect bacteria from the antibacterial effects of antimicrobials and other toxic compounds by extruding them out of cells. Thus, these efflux transporters represent an important mechanism for antibiotic resistance. In this study, we discovered the emergence and increasing

  20. Interaction of Food Additives with Intestinal Efflux Transporters.

    Science.gov (United States)

    Sjöstedt, Noora; Deng, Feng; Rauvala, Oskari; Tepponen, Tuomas; Kidron, Heidi

    2017-11-06

    Breast cancer resistance protein (BCRP), multidrug resistance associated protein 2 (MRP2) and P-glycoprotein (P-gp) are ABC transporters that are expressed in the intestine, where they are involved in the efflux of many drugs from enterocytes back into the intestinal lumen. The inhibition of BCRP, MRP2, and P-gp can result in enhanced absorption and exposure of substrate drugs. Food additives are widely used by the food industry to improve the stability, flavor, and consistency of food products. Although they are considered safe for consumption, their interactions with intestinal transporters are poorly characterized. Therefore, in this study, selected food additives, including preservatives, colorants, and sweeteners, were studied in vitro for their inhibitory effects on intestinal ABC transporters. Among the studied compounds, several colorants were able to inhibit BCRP and MRP2, whereas P-gp was fairly insensitive to inhibition. Additionally, one sweetener was identified as a potent inhibitor of BCRP. Dose-response studies revealed that the IC 50 values of the inhibitors were lower than the estimated intestinal concentrations after the consumption of beverages containing food colorants. This suggests that there is potential for previously unrecognized transporter-mediated food additive-drug interactions.

  1. Efflux Pump-mediated Drug Resistance in Burkholderia

    Directory of Open Access Journals (Sweden)

    Nicole L Podnecky

    2015-04-01

    Full Text Available Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in B. cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance.

  2. Efflux Transport Characterization of Resveratrol Glucuronides in UDP-Glucuronosyltransferase 1A1 Transfected HeLa Cells: Application of a Cellular Pharmacokinetic Model to Decipher the Contribution of Multidrug Resistance-Associated Protein 4.

    Science.gov (United States)

    Wang, Shuai; Li, Feng; Quan, Enxi; Dong, Dong; Wu, Baojian

    2016-04-01

    Resveratrol undergoes extensive metabolism to form biologically active glucuronides in humans. However, the transport mechanisms for resveratrol glucuronides are not fully established. Here, we aimed to characterize the efflux transport of resveratrol glucuronides using UGT1A1-overexpressing HeLa cells (HeLa1A1 cells), and to determine the contribution of multidrug resistance-associated protein (MRP) 4 to cellular excretion of the glucuronides. Two glucuronide isomers [i.e., resveratrol 3-O-glucuronide (R3G) and resveratrol 4'-O-glucuronide (R4'G)] were excreted into the extracellular compartment after incubation of resveratrol (1-100 μM) with HeLa1A1 cells. The excretion rate was linearly related to the level of intracellular glucuronide, indicating that glucuronide efflux was a nonsaturable process. MK-571 (a dual inhibitor of UGT1A1 and MRPs) significantly decreased the excretion rates of R3G and R4'G while increasing their intracellular levels. Likewise, short-hairpin RNA (shRNA)-mediated silencing of MRP4 caused a significant reduction in glucuronide excretion but an elevation in glucuronide accumulation. Furthermore, β-glucuronidase expressed in the cells catalyzed the hydrolysis of the glucuronides back to the parent compound. A cellular pharmacokinetic model integrating resveratrol transport/metabolism with glucuronide hydrolysis/excretion was well fitted to the experimental data, allowing derivation of the efflux rate constant values in the absence or presence of shRNA targeting MRP4. It was found that a large percentage of glucuronide excretion (43%-46%) was attributed to MRP4. In conclusion, MRP4 participated in cellular excretion of R3G and R4'G. Integration of mechanistic pharmacokinetic modeling with transporter knockdown was a useful method to derive the contribution percentage of an exporter to overall glucuronide excretion. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants

    Science.gov (United States)

    Blanco, Paula; Hernando-Amado, Sara; Reales-Calderon, Jose Antonio; Corona, Fernando; Lira, Felipe; Alcalde-Rico, Manuel; Bernardini, Alejandra; Sanchez, Maria Blanca; Martinez, Jose Luis

    2016-01-01

    Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics. PMID:27681908

  4. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants.

    Science.gov (United States)

    Blanco, Paula; Hernando-Amado, Sara; Reales-Calderon, Jose Antonio; Corona, Fernando; Lira, Felipe; Alcalde-Rico, Manuel; Bernardini, Alejandra; Sanchez, Maria Blanca; Martinez, Jose Luis

    2016-02-16

    Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics.

  5. Multiple efflux pumps are involved in the transepithelial transport of colchicine: combined effect of p-glycoprotein and multidrug resistance-associated protein 2 leads to decreased intestinal absorption throughout the entire small intestine.

    Science.gov (United States)

    Dahan, Arik; Sabit, Hairat; Amidon, Gordon L

    2009-10-01

    The purpose of this study was to thoroughly characterize the efflux transporters involved in the intestinal permeability of the oral microtubule polymerization inhibitor colchicine and to evaluate the role of these transporters in limiting its oral absorption. The effects of P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP) inhibitors on colchicine bidirectional permeability were studied across Caco-2 cell monolayers, inhibiting one versus multiple transporters simultaneously. Colchicine permeability was then investigated in different regions of the rat small intestine by in situ single-pass perfusion. Correlation with the P-gp/MRP2 expression level throughout different intestinal segments was investigated by immunoblotting. P-gp inhibitors [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918), verapamil, and quinidine], and MRP2 inhibitors [3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid (MK571), indomethacin, and p-aminohippuric acid (p-AH)] significantly increased apical (AP)-basolateral (BL) and decreased BL-AP Caco-2 transport in a concentration-dependent manner. No effect was obtained by the BCRP inhibitors fumitremorgin C (FTC) and pantoprazole. P-gp/MRP2 inhibitors combinations greatly reduced colchicine mucosal secretion, including complete abolishment of efflux (GF120918/MK571). Colchicine displayed low (versus metoprolol) and constant permeability along the rat small-intestine. GF120918 significantly increased colchicine permeability in the ileum with no effect in the jejunum, whereas MK571 augmented jejunal permeability without changing the ileal transport. The GF120918/MK571 combination caused an effect similar to that of MK571 alone in the jejunum and to that of GF120918 alone in the ileum. P-gp expression followed a gradient increasing from

  6. Structures and transport dynamics of a Campylobacter jejuni multidrug efflux pump

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chih-Chia; Yin, Linxiang; Kumar, Nitin; Dai, Lei; Radhakrishnan, Abhijith; Bolla, Jani Reddy; Lei, Hsiang-Ting; Chou, Tsung-Han; Delmar, Jared A.; Rajashankar, Kanagalaghatta R.; Zhang, Qijing; Shin, Yeon-Kyun; Yu, Edward W. (Cornell); (Iowa State)

    2017-08-01

    Resistance-nodulation-cell division efflux pumps are integral membrane proteins that catalyze the export of substrates across cell membranes. Within the hydrophobe-amphiphile efflux subfamily, these resistance-nodulation-cell division proteins largely form trimeric efflux pumps. The drug efflux process has been proposed to entail a synchronized motion between subunits of the trimer to advance the transport cycle, leading to the extrusion of drug molecules. Here we use X-ray crystallography and single-molecule fluorescence resonance energy transfer imaging to elucidate the structures and functional dynamics of the Campylobacter jejuni CmeB multidrug efflux pump. We find that the CmeB trimer displays a very unique conformation. A direct observation of transport dynamics in individual CmeB trimers embedded in membrane vesicles indicates that each CmeB subunit undergoes conformational transitions uncoordinated and independent of each other. On the basis of our findings and analyses, we propose a model for transport mechanism where CmeB protomers function independently within the trimer.

  7. The Role of Efflux Pumps in Schistosoma mansoni Praziquantel Resistant Phenotype

    Science.gov (United States)

    Armada, Ana; Belo, Silvana; Carrilho, Emanuel; Viveiros, Miguel; Afonso, Ana

    2015-01-01

    Background Schistosomiasis is a neglected disease caused by a trematode of the genus Schistosoma that is second only to malaria in public health significance in Africa, South America, and Asia. Praziquantel (PZQ) is the drug of choice to treat this disease due to its high cure rates and no significant side effects. However, in the last years increasingly cases of tolerance to PZQ have been reported, which has caused growing concerns regarding the emergency of resistance to this drug. Methodology/Principal Findings Here we describe the selection of a parasitic strain that has a stable resistance phenotype to PZQ. It has been reported that drug resistance in helminths might involve efflux pumps such as members of ATP-binding cassette transport proteins, including P-glycoprotein and multidrug resistance-associated protein families. Here we evaluate the role of efflux pumps in Schistosoma mansoni resistance to PZQ, by comparing the efflux pumps activity in susceptible and resistant strains. The evaluation of the efflux activity was performed by an ethidium bromide accumulation assay in presence and absence of Verapamil. The role of efflux pumps in resistance to PZQ was further investigated comparing the response of susceptible and resistant parasites in the absence and presence of different doses of Verapamil, in an ex vivo assay, and these results were further reinforced through the comparison of the expression levels of SmMDR2 RNA by RT-PCR. Conclusions/Significance This work strongly suggests the involvement of Pgp-like transporters SMDR2 in Praziquantel drug resistance in S. mansoni. Low doses of Verapamil successfully reverted drug resistance. Our results might give an indication that a combination therapy with PZQ and natural or synthetic Pgp modulators can be an effective strategy for the treatment of confirmed cases of resistance to PZQ in S. mansoni. PMID:26445012

  8. Exposure Characteristics of the Analogous β-Carboline Alkaloids Harmaline and Harmine Based on the Efflux Transporter of Multidrug Resistance Protein 2

    Directory of Open Access Journals (Sweden)

    Shuping Li

    2017-08-01

    Full Text Available Harmaline and harmine occur naturally in plants and are distributed endogenously in human and animal tissues. The two β-carboline alkaloids possess potential for treating Alzheimer's disease, Parkinson's disease, depression and other central nervous system diseases. However, studies have showed that the two compounds have similar structures but with quite different bioavailability. The aim of this study was to elucidate the exposure difference and characterize the in vitro transport, metabolism, and pharmacokinetic properties of harmaline and harmine. The results showed that the harmaline and harmine transport across the Caco-2 and MDCK cell monolayers was varied as the time, concentration, pH and temperature changed. The absorption of harmaline and harmine was significantly decreased when ES (OATPs inhibitor, TEA (OCTs/OCTNs substrate, NaN3 (adenosine triphosphate inhibitor, or sodium vanadate (ATPase Na+/K+-dependent inhibitor was added. However, when given MK571 and probenecid (the typical MRP2 inhibitor, the PappAB of harmine was increased (1.62- and 1.27-folds, and the efflux ratio was decreased from 1.59 to 0.98 and from 1.59 to 1.19, respectively. In addition, the uptake ratio of harmine at 1 μM was >2.65 in the membrane vesicles expressing human MRP2. Furthermore, harmine could slightly up-regulate the expression of MRP2, which implying harmine might be the substrate of MRP2. Particularly, the CLint-value for harmine was ~1.49-folds greater than that of harmaline in human liver microsomes. It was worth noting that the F-value of harmine was increased 1.96-folds after harmine co-administration with probenecid. To summarize, comprehensive analysis indicated that harmaline and harmine were absorbed by transcellular passive diffusion and a pH- and Na+-dependent mechanism might be mediated by OATPs and OCTs/OCTNs. MRP2 but MDR1 or BCRP might be involved in the transport of harmine. Furthermore, harmine was more unstable and easily

  9. Altered localisation of the copper efflux transporters ATP7A and ATP7B associated with cisplatin resistance in human ovarian carcinoma cells

    International Nuclear Information System (INIS)

    Kalayda, Ganna V; Wagner, Christina H; Buß, Irina; Reedijk, Jan; Jaehde, Ulrich

    2008-01-01

    Copper homeostasis proteins ATP7A and ATP7B are assumed to be involved in the intracellular transport of cisplatin. The aim of the present study was to assess the relevance of sub cellular localisation of these transporters for acquired cisplatin resistance in vitro. For this purpose, localisation of ATP7A and ATP7B in A2780 human ovarian carcinoma cells and their cisplatin-resistant variant, A2780cis, was investigated. Sub cellular localisation of ATP7A and ATP7B in sensitive and resistant cells was investigated using confocal fluorescence microscopy after immunohistochemical staining. Co-localisation experiments with a cisplatin analogue modified with a carboxyfluorescein-diacetate residue were performed. Cytotoxicity of the fluorescent cisplatin analogue in A2780 and A2780cis cells was determined using an MTT-based assay. The significance of differences was analysed using Student's t test or Mann-Whitney test as appropriate, p values of < 0.05 were considered significant. In the sensitive cells, both transporters are mainly localised in the trans-Golgi network, whereas they are sequestrated in more peripherally located vesicles in the resistant cells. Altered localisation of ATP7A and ATP7B in A2780cis cells is likely to be a consequence of major abnormalities in intracellular protein trafficking related to a reduced lysosomal compartment in this cell line. Changes in sub cellular localisation of ATP7A and ATP7B may facilitate sequestration of cisplatin in the vesicular structures of A2780cis cells, which may prevent drug binding to genomic DNA and thereby contribute to cisplatin resistance. Our results indicate that alterations in sub cellular localisation of transport proteins may contribute to cisplatin resistance in vitro. Investigation of intracellular protein localisation in primary tumour cell cultures and tumour tissues may help to develop markers of clinically relevant cisplatin resistance. Detection of resistant tumours in patients may in turn

  10. Deciphering the role of RND efflux transporters in Burkholderia cenocepacia.

    Directory of Open Access Journals (Sweden)

    Silvia Bazzini

    Full Text Available Burkholderia cenocepacia J2315 is representative of a highly problematic group of cystic fibrosis (CF pathogens. Eradication of B. cenocepacia is very difficult with the antimicrobial therapy being ineffective due to its high resistance to clinically relevant antimicrobial agents and disinfectants. RND (Resistance-Nodulation-Cell Division efflux pumps are known to be among the mediators of multidrug resistance in gram-negative bacteria. Since the significance of the 16 RND efflux systems present in B. cenocepacia (named RND-1 to -16 has been only partially determined, the aim of this work was to analyze mutants of B. cenocepacia strain J2315 impaired in RND-4 and RND-9 efflux systems, and assess their role in the efflux of toxic compounds. The transcriptomes of mutants deleted individually in RND-4 and RND-9 (named D4 and D9, and a double-mutant in both efflux pumps (named D4-D9, were compared to that of the wild-type B. cenocepacia using microarray analysis. Microarray data were confirmed by qRT-PCR, phenotypic experiments, and by Phenotype MicroArray analysis. The data revealed that RND-4 made a significant contribution to the antibiotic resistance of B. cenocepacia, whereas RND-9 was only marginally involved in this process. Moreover, the double mutant D4-D9 showed a phenotype and an expression profile similar to D4. The microarray data showed that motility and chemotaxis-related genes appeared to be up-regulated in both D4 and D4-D9 strains. In contrast, these gene sets were down-regulated or expressed at levels similar to J2315 in the D9 mutant. Biofilm production was enhanced in all mutants. Overall, these results indicate that in B. cenocepacia RND pumps play a wider role than just in drug resistance, influencing additional phenotypic traits important for pathogenesis.

  11. Two promoter rearrangements in a drug efflux transporter gene are responsible for the appearance and spread of multidrug resistance phenotype MDR2 in Botrytis cinerea isolates in French and German vineyards.

    Science.gov (United States)

    Mernke, D; Dahm, S; Walker, A-S; Lalève, A; Fillinger, S; Leroch, M; Hahn, M

    2011-10-01

    In French and German vineyards, Botrytis cinerea isolates with multiple fungicide resistance phenotypes have been observed with increasing frequencies. Multidrug resistance (MDR) results from mutations that lead to constitutive overexpression of genes encoding drug efflux transporters. In MDR2 and MDR3 strains, overexpression of the major facilitator superfamily transporter gene mfsM2 has been found to result from a rearrangement in the mfsM2 promoter (type A), caused by insertion of a retroelement (RE)-derived sequence. Here, we report the discovery of another, similar RE-induced rearrangement of the mfsM2 promoter (type B) in a subpopulation of French MDR2 isolates. MDR2 isolates harboring either type A or type B mutations in mfsM2 show the same resistance phenotypes and similar levels of mfsM2 overexpression. RE sequences similar to those in mfsM2 were found in low copy numbers in other but not all B. cinerea strains analyzed, including non-MDR2 strains. Population genetic analyses support the hypothesis that the two rearrangement mutations have only occurred once, and are responsible for the appearance and subsequent spread of all known MDR2 and MDR3 strains in French and German wine-growing regions.

  12. Switch-loop flexibility affects transport of large drugs by the promiscuous AcrB multidrug efflux transporter.

    Science.gov (United States)

    Cha, Hi-jea; Müller, Reinke T; Pos, Klaas M

    2014-08-01

    Multidrug efflux transporters recognize a variety of structurally unrelated compounds for which the molecular basis is poorly understood. For the resistance nodulation and cell division (RND) inner membrane component AcrB of the AcrAB-TolC multidrug efflux system from Escherichia coli, drug binding occurs at the access and deep binding pockets. These two binding areas are separated by an 11-amino-acid-residue-containing switch loop whose conformational flexibility is speculated to be essential for drug binding and transport. A G616N substitution in the switch loop has a distinct and local effect on the orientation of the loop and on the ability to transport larger drugs. Here, we report a distinct phenotypical pattern of drug recognition and transport for the G616N variant, indicating that drug substrates with minimal projection areas of >70 Å(2) are less well transported than other substrates. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Zinc chloride rapidly stimulates efflux transporters in renal proximal tubules of killifish (Fundulus heteroclitus).

    Science.gov (United States)

    Zaremba, Alexander; Miller, David S; Fricker, Gert

    2017-11-01

    Multidrug resistance-related protein 2 (Mrp2) is an ATP-driven efflux pump at the luminal membrane in renal proximal tubules. It acts as detoxification mechanism by transporting xenobiotics and metabolic products into urine. The trace element zinc is essential for cellular growth, differentiation and survival. It modulates immune response and is used as dietary supplement. Here, we found that 0.1-10μM ZnCl 2 rapidly stimulated transport of the Mrp2 probe substrate Texas Red (TR) in isolated killifish renal proximal tubules, which provide an established model system to measure efflux transporter activity by using fluorescent probe substrates, confocal microscopy and image analysis. This stimulation was insensitive to the translation inhibitor cycloheximide (CHX), but it was quickly reversed by removing ZnCl 2 from the incubation medium. ZnCl 2 -induced transport stimulation was abolished by inhibitors and antagonists of the endothelin receptor type B (ET B )/nitric oxide synthase (NOS)/protein kinase C (PKC) pathway. Moreover, ZnCl 2 -induced effects were blocked by inhibition of PKCα using Gö6976 and PKCα inhibitor peptide C2-4. Both the phosphatidylinositol 3-kinase (PI3K) inhibitor LY 294002 and the mammalian target of rapamycin (mTOR) inhibitor rapamycin abolished ZnCl 2 -induced transport stimulation. Furthermore, the stimulating effects of ZnCl 2 were blocked by GSK650394, an inhibitor of the downstream target serum- and glucocorticoid-inducible kinase 1 (SGK1). ZnCl 2 also stimulated transport mediated by P-glycoprotein (P-gp) and Breast cancer resistance protein (Bcrp). This is the first report about zinc affecting efflux transporter activity and demonstrates that ZnCl 2 triggers a suite of signaling events to evoke a rapid stimulation of ABC transporter-mediated efflux in killifish proximal tubules. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport

    Energy Technology Data Exchange (ETDEWEB)

    Long, Feng; Su, Chih-Chia; Zimmermann, Michael T.; Boyken, Scott E.; Rajashankar, Kanagalaghatta R.; Jernigan, Robert L.; Yu, Edward W. (Cornell); (Iowa State)

    2010-09-23

    Gram-negative bacteria, such as Escherichia coli, frequently use tripartite efflux complexes in the resistance-nodulation-cell division (RND) family to expel various toxic compounds from the cell. The efflux system CusCBA is responsible for extruding biocidal Cu(I) and Ag(I) ions. No previous structural information was available for the heavy-metal efflux (HME) subfamily of the RND efflux pumps. Here we describe the crystal structures of the inner-membrane transporter CusA in the absence and presence of bound Cu(I) or Ag(I). These CusA structures provide new structural information about the HME subfamily of RND efflux pumps. The structures suggest that the metal-binding sites, formed by a three-methionine cluster, are located within the cleft region of the periplasmic domain. This cleft is closed in the apo-CusA form but open in the CusA-Cu(I) and CusA-Ag(I) structures, which directly suggests a plausible pathway for ion export. Binding of Cu(I) and Ag(I) triggers significant conformational changes in both the periplasmic and transmembrane domains. The crystal structure indicates that CusA has, in addition to the three-methionine metal-binding site, four methionine pairs - three located in the transmembrane region and one in the periplasmic domain. Genetic analysis and transport assays suggest that CusA is capable of actively picking up metal ions from the cytosol, using these methionine pairs or clusters to bind and export metal ions. These structures suggest a stepwise shuttle mechanism for transport between these sites.

  15. Differential expression of drug uptake and efflux transporters in Japanese patients with hepatocellular carcinoma.

    Science.gov (United States)

    Namisaki, Tadashi; Schaeffeler, Elke; Fukui, Hiroshi; Yoshiji, Hitoshi; Nakajima, Yoshiyuki; Fritz, Peter; Schwab, Matthias; Nies, Anne T

    2014-12-01

    Targeted chemotherapy for hepatocellular carcinoma (HCC) is impaired by intrinsic and/or acquired drug resistance. Because drugs used in HCC therapy (e.g., anthracyclines or the tyrosine kinase inhibitor sorafenib) are substrates of uptake and/or efflux transporters, variable expression of these transporters at the plasma membrane of tumor cells may contribute to drug resistance and subsequent clinical response. In this study, the variability of expression of uptake transporters [organic cation transporter (OCT) 1 and OCT3] and efflux transporters [multidrug resistance 1 (MDR1)/P-glycoprotein, multidrug resistance protein (MRP) 1, MRP2, and breast cancer resistance protein (BCRP)], selected for their implication in transporting drugs used in HCC therapy, was investigated. HCC and corresponding nontumor tissue samples were collected from 24 Japanese patients at the time of surgery. Protein expression was determined by immunohistochemistry. Expression data were correlated with clinicopathological characteristics and patients' outcome (median follow-up, 53 months). Generally, expression was highly variable among individual tumor samples. Yet median expression of OCT1, OCT3, and MDR1 in HCC was significantly lower (1.4-, 2.7-, and 2-fold, respectively) than in nontumor tissue, while expression of MRP2 persisted and BCRP showed a trend of increased levels in HCC. Patients with low BCRP expression had significantly shorter overall and recurrence-free survival times. Results suggest different expression patterns of drug transporters in HCC, which are associated only in part with clinicopathological characteristics. Detailed information on expression of drug transporters in HCC may be promising for individualization and optimization of drug therapy for liver cancer. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Efflux-mediated resistance to a benzothiadiazol derivative effective against Burkholderia cenocepacia

    Directory of Open Access Journals (Sweden)

    Viola Camilla eScoffone

    2015-08-01

    Full Text Available Burkholderia cenocepacia is a major concern for people suffering from Cystic Fibrosis as it contributes to serious respiratory tract infections. The lack of drugs effective against this opportunistic pathogen, along with the high level of resistance to multiple antibiotics, render the treatment of these infections particularly difficult.Here a new compound, belonging to the 2,1,3-benzothiadiazol-5-yl family (10126109, with a bactericidal effect and a MIC of 8 µg/ml against B. cenocepacia, is described. The compound is not cytotoxic and effective against B. cenocepacia clinical isolates and members of all the known Burkholderia cepacia complex species.Spontaneous mutants resistant to 10126109 were isolated and mutations in the MerR transcriptional regulator BCAM1948 were identified. In this way, a mechanism of resistance to this new molecule was described, which relies on the overexpression of the RND-9 efflux pump. Indeed, rnd-9 overexpression was confirmed by qRT-PCR, and RND-9 was identified in the membrane fractions of the mutant strains. Moreover, the increase in the MIC values of different drugs in the mutant strains, together with complementation experiments, suggested the involvement of RND-9 in the efflux of 10126109, thus indicating again the central role of efflux transporters in B. cenocepacia drug resistance.

  17. Trans-Plasma Membrane Electron Transport and Ascorbate Efflux by Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Amanda M. Eccardt

    2017-11-01

    Full Text Available Trans-plasma membrane electron transport (tPMET and the antioxidant roles of ascorbate reportedly play a role in protection of cells from damage by reactive oxygen species, which have been implicated in causing metabolic dysfunction such as insulin resistance. Skeletal muscle comprises the largest whole-body organ fraction suggesting a potential role of tPMET and ascorbate export as a major source of extracellular antioxidant. We hypothesized that skeletal muscle is capable of tPMET and ascorbate efflux. To measure these processes, we assayed the ability of cultured muscle cells, satellite cells, and isolated extensor digitorum longus (EDL and soleus (SOL to reduce two extracellular electron acceptors, water soluble tetrazolium salt 1 (WST-1, and dichlorophenolindophenol (DPIP. Ascorbate oxidase (AO was utilized to determine which portion of WST-1 reduction was dependent on ascorbate efflux. We found that muscle cells can reduce extracellular electron acceptors. In C2C12 myotubes and satellite cells, a substantial portion of this reduction was dependent on ascorbate. In myotubes, glucose transporter 1 (GLUT1 inhibitors along with a pan-GLUT inhibitor suppressed tPMET and ascorbate efflux, while a GLUT4 inhibitor had no effect. The adenosine 5′-monophosphate (AMP-activated protein kinase activator 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR suppressed both tPMET and ascorbate efflux by myotubes, while insulin had no effect. Taken together, our data suggest that muscle cells are capable of tPMET and ascorbate efflux supported by GLUT1, thus illustrating a model in which resting muscle exports electrons and antioxidant to the extracellular environment.

  18. Role of novel multidrug efflux pump involved in drug resistance in Klebsiella pneumoniae.

    Directory of Open Access Journals (Sweden)

    Vijaya Bharathi Srinivasan

    Full Text Available BACKGROUND: Multidrug resistant Klebsiella pneumoniae have caused major therapeutic problems worldwide due to the emergence of the extended-spectrum β-lactamase producing strains. Although there are >10 major facilitator super family (MFS efflux pumps annotated in the genome sequence of the K. pneumoniae bacillus, apparently less is known about their physiological relevance. PRINCIPAL FINDINGS: Insertional inactivation of kpnGH resulting in increased susceptibility to antibiotics such as azithromycin, ceftazidime, ciprofloxacin, ertapenem, erythromycin, gentamicin, imipenem, ticarcillin, norfloxacin, polymyxin-B, piperacillin, spectinomycin, tobramycin and streptomycin, including dyes and detergents such as ethidium bromide, acriflavine, deoxycholate, sodium dodecyl sulphate, and disinfectants benzalkonium chloride, chlorhexidine and triclosan signifies the wide substrate specificity of the transporter in K. pneumoniae. Growth inactivation and direct fluorimetric efflux assays provide evidence that kpnGH mediates antimicrobial resistance by active extrusion in K. pneumoniae. The kpnGH isogenic mutant displayed decreased tolerance to cell envelope stressors emphasizing its added role in K. pneumoniae physiology. CONCLUSIONS AND SIGNIFICANCE: The MFS efflux pump KpnGH involves in crucial physiological functions besides being an intrinsic resistance determinant in K. pneumoniae.

  19. Alternate efflux pump mechanism may contribute to drug resistance in extensively drug-resistant isolates of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Akbar Kanji

    2016-01-01

    Conclusion: Our data show an nsSNP in the drrA efflux pump gene that may result in upregulation of drug efflux mechanisms in MTB strains. It is therefore imperative to understand the mechanism of efflux and its role in drug resistance, which will enable the identification of new drug targets and development of new drug regimens to counteract the drug efflux mechanism of MTB.

  20. Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Staphylococcus aureus

    LENUS (Irish Health Repository)

    Costa, Sofia SANTOS

    2011-10-27

    Abstract Background Antimicrobial resistance mediated by efflux systems is still poorly characterized in Staphylococcus aureus, despite the description of several efflux pumps (EPs) for this bacterium. In this work we used several methodologies to characterize the efflux activity of 52 S. aureus isolates resistant to ciprofloxacin collected in a hospital in Lisbon, Portugal, in order to understand the role played by these systems in the resistance to fluoroquinolones. Results Augmented efflux activity was detected in 12 out of 52 isolates and correlated with increased resistance to fluoroquinolones. Addition of efflux inhibitors did not result in the full reversion of the fluoroquinolone resistance phenotype, yet it implied a significant decrease in the resistance levels, regardless of the type(s) of mutation(s) found in the quinolone-resistance determining region of grlA and gyrA genes, which accounted for the remaining resistance that was not efflux-mediated. Expression analysis of the genes coding for the main efflux pumps revealed increased expression only in the presence of inducing agents. Moreover, it showed that not only different substrates can trigger expression of different EP genes, but also that the same substrate can promote a variable response, according to its concentration. We also found isolates belonging to the same clonal type that showed different responses towards drug exposure, thus evidencing that highly related clinical isolates may diverge in the efflux-mediated response to noxious agents. The data gathered by real-time fluorometric and RT-qPCR assays suggest that S. aureus clinical isolates may be primed to efflux antimicrobial compounds. Conclusions The results obtained in this work do not exclude the importance of mutations in resistance to fluoroquinolones in S. aureus, yet they underline the contribution of efflux systems for the emergence of high-level resistance. All together, the results presented in this study show the potential

  1. Expression of multidrug resistance associated protein 5 (MRP5) on cornea and its role in drug efflux.

    Science.gov (United States)

    Karla, Pradeep K; Quinn, Tim L; Herndon, Betty L; Thomas, Priscilla; Pal, Dhananjay; Mitra, Ashim

    2009-04-01

    The purpose of this manuscript is to investigate the presence of nucleoside/nucleotide efflux transporter in cornea and to evaluate the role in ocular drug efflux. RT-PCR, immunoprecipitation followed by Western blot analysis and immunostaining were employed to establish molecular presence of multidrug resistance associated protein 5 (MRP5) on cornea. Corneal efflux by MRP5 was studied with bis(POM)-PMEA and acyclovir using rabbit and human corneal epithelial cells along with MRP5 over expressing cells (MDCKII-MRP5). Ex vivo studies using excised rabbit cornea and in vivo ocular microdialysis in male New Zealand white rabbits were used to further evaluate the role of MRP5 in conferring ocular drug resistance. RT-PCR confirms the expression of MRP5 in both rabbit and human corneal epithelial cells along with MDCKII-MRP5 cells. Immunoprecipitation followed by Western blot analysis using a rat (M511-54) monoclonal antibody that reacts with human epitope confirms the expression of MRP5 protein in human corneal epithelial cells and MDCKII-MRP5 cells. Immunostaining performed on human cornea indicates the localization of this efflux pump on both epithelium and endothelium. Efflux studies reveal that depletion of ATP decreased PMEA efflux significantly. MRP5 inhibitors also diminished PMEA and acyclovir efflux. However, depletion of glutathione did not alter efflux. MDR1 and MRP2 did not contribute to PMEA efflux. However, MRP2 is involved in acyclovir efflux while MDR1 do not participate in this process. TLC/autoradiography suggested the conversion of bis(POM)-PMEA to PMEA in rabbit and human corneal epithelial cells. Two well known antiglaucoma drugs, bimatoprost and latanoprost were rapidly effluxed by MRP5. Ex vivo study on intact rabbit corneas demonstrated accumulation of PMEA in cornea in the presence of ATP-depleting medium. In vivo ocular pharmacokinetics also revealed a significant increase in maximum aqueous humor concentration (C(max)) and area under the

  2. The AcrB efflux pump: conformational cycling and peristalsis lead to multidrug resistance.

    Science.gov (United States)

    Seeger, Markus A; Diederichs, Kay; Eicher, Thomas; Brandstätter, Lorenz; Schiefner, André; Verrey, François; Pos, Klaas M

    2008-09-01

    Antimicrobial resistance of human pathogenic bacteria is an emerging problem for global public health. This resistance is often associated with the overproduction of membrane transport proteins that are capable to pump chemotherapeutics, antibiotics, detergents, dyes and organic solvents out of the cell. In Gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa, tripartite multidrug efflux systems extrude a large variety of cytotoxic substances from the cell membrane directly into the medium bypassing the periplasm and the outer membrane. In E. coli, the tripartite efflux system AcrA/AcrB/TolC is the pump in charge of the efflux of multiple antibiotics, dyes, bile salts and detergents. The trimeric outer membrane factor (OMF) TolC forms a beta-barrel pore in the outer membrane and exhibits a long periplasmic alpha-helical conduit. The periplasmic membrane fusion protein (MFP) AcrA serves as a linker between TolC and the trimeric resistance nodulation cell division (RND) pump AcrB, located in the inner membrane acting as a proton/drug antiporter. The newly elucidated asymmetric structure of trimeric AcrB reveals three different monomer conformations representing consecutive states in a transport cycle. The monomers show tunnels with occlusions at different sites leading from the lateral side through the periplasmic porter (pore) domains towards the funnel of the trimer and TolC. The structural changes create a hydrophobic pocket in one monomer, which is not present in the other two monomers. Minocyclin and doxorubicin, both AcrB substrates, specifically bind to this pocket substantiating its role as drug binding pocket. The energy transduction from the proton motive force into drug efflux includes proton binding in (and release from) the transmembrane part. The conformational changes observed within a triad of essential, titratable residues (Asp407/Asp408/Lys940) residing in the hydrophobic transmembrane domain appear to be transduced by

  3. Antibiotics: Pharmacokinetics, toxicity, resistance and multidrug efflux pumps.

    Science.gov (United States)

    Yılmaz, Çiğdem; Özcengiz, Gülay

    2017-06-01

    The discovery of penicillin followed by streptomycin, tetracycline, cephalosporins and other natural, semi-synthetic and synthetic antimicrobials completely revolutionized medicine by reducing human morbidity and mortality from most of the common infections. However, shortly after they were introduced to clinical practice, the development of resistance was emerged. The decreasing interest from antibiotic industry in spite of rapid global emergence of antibiotic resistance is a tough dilemma from the pointview of public health. The efficiency of antimicrobial treatment is determined by both pharmacokinetics and pharmacodynamics. In spite of their selective toxicity, antibiotics still cause severe, life-threatening adverse reactions in host body mostly due to defective drug metabolism or excessive dosing regimen. The present article aims at updating current knowledge on pharmacokinetics/pharmacodynamics concepts and models, toxicity of antibiotics as well as antibiotic resistance mechanisms, resistome analyses and search for novel antibiotic resistance determinants with special emphasis given to the-state-of-the-art regarding multidrug efflux pumps and their additional physiological functions in stress adaptation and virulence of bacteria. All these issues are highly linked to each other and not only important for most efficient and prolonged use of current antibiotics, but also for discovery and development of new antibiotics and novel inhibitors of antibiotic resistance determinants of pathogens. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Effects of acylcarnitines on efflux transporting system in Caco-2 cell monolayers.

    Science.gov (United States)

    Tomita, Mikio; Doi, Nobuyuki; Hayashi, Masahiro

    2010-09-01

    This study examined the effects of the absorption enhancers, acylcarnitines, on efflux transporting systems, including P-glycoprotein (P-gp) and other efflux transporters, and elucidated the importance of acyl chain length and the concentration of acylcarnitine on the activity of efflux transport. The effects of two acyl (lauroyl and palmitoyl) carnitines on the influx and efflux of lucifer yellow and fluorescein isothiocyanate dextran 4,000, which have characteristic vectorial transport, were examined in Caco-2 cell monolayers. Lauroylcarnitine and palmitoylcarnitine increased influx and decreased efflux of these substrates, in a manner dependent on their concentration and acyl chain lengths by increasing influx and inhibiting efflux of the substrates. The results indicated that both the acyl moiety and long acyl chains play important roles in the modification of influx and efflux transport. Because no marked changes in the levels of P-gp protein or the leakage of LDH were observed at 1 h after the application of acylcarnitines, it was concluded that these acylcarnitines had an effect on modulation of the function of P-gp or other efflux transporters without cytotoxicity.

  5. Multidrug Efflux Pumps at the Crossroad between Antibiotic Resistance and Bacterial Virulence.

    Science.gov (United States)

    Alcalde-Rico, Manuel; Hernando-Amado, Sara; Blanco, Paula; Martínez, José L

    2016-01-01

    Multidrug efflux pumps can be involved in bacterial resistance to antibiotics at different levels. Some efflux pumps are constitutively expressed at low levels and contribute to intrinsic resistance. In addition, their overexpression may allow higher levels of resistance. This overexpression can be transient, in the presence of an effector (phenotypic resistance), or constitutive when mutants in the regulatory elements of the expression of efflux pumps are selected (acquired resistance). Efflux pumps are present in all cells, from human to bacteria and are highly conserved, which indicates that they are ancient elements in the evolution of different organisms. Consequently, it has been suggested that, besides antibiotic resistance, bacterial multidrug efflux pumps would likely contribute to other relevant processes of the microbial physiology. In the current article, we discuss some specific examples of the role that efflux pumps may have in the bacterial virulence of animals' and plants' pathogens, including the processes of intercellular communication. Based in these evidences, we propose that efflux pumps are at the crossroad between resistance and virulence of bacterial pathogens. Consequently, the comprehensive study of multidrug efflux pumps requires addressing these functions, which are of relevance for the bacterial-host interactions during infection.

  6. Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence

    Directory of Open Access Journals (Sweden)

    Manuel Alcalde-Rico

    2016-09-01

    Full Text Available Multidrug efflux pumps can be involved in bacterial resistance to antibiotics at different levels. Some efflux pumps are constitutively expressed at low levels and contribute to intrinsic resistance. In addition, their overexpression may allow higher levels of resistance. This overexpression can be transient, in the presence of an effector (phenotypic resistance, or constitutive when mutants in the regulatory elements of the expression of efflux pumps are selected (acquired resistance. Efflux pumps are present in all cells, from human to bacteria and are highly conserved, which indicates that they are ancient elements in the evolution of different organisms. Consequently, it has been suggested that, besides antibiotic resistance, bacterial multidrug efflux pumps would likely contribute to other relevant process of the microbial physiology. In the current article, we discuss some specific examples of the role that efflux pumps may have in the bacterial virulence of animals' and plants' pathogens, including the processes of intercellular communication. Based in these evidences, we propose that efflux pumps are at the crossroad between resistance and virulence of bacterial pathogens. Consequently, the comprehensive study of multidrug efflux pumps requires addressing these functions, which are of relevance for the bacterial-host interactions during infection.

  7. Identification of an Efflux Transporter LmrB Regulating Stress Response and Extracellular Polysaccharide Synthesis in Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2017-06-01

    Full Text Available Efflux transporters have been implicated in regulating bacterial virulence properties such as resistance to antibiotics, biofilm formation and colonization. The pathogenicity of Streptococcus mutans, the primary etiologic agent of human dental caries, relies on the bacterium’s ability to form biofilms on tooth surface. However, the studies on efflux transporters in S. mutans are scare and the function of these transporters remained to be clarified. In this study, we identified an efflux transporter (LmrB in S. mutans through cloning the lmrB gene into Escherichia coli. Introducing lmrB into E. coli conferred a multidrug-resistant phenotype and resulted in higher EtBr efflux activity which could be suppressed by efflux inhibitor. To explore whether LmrB was involved in S. mutans virulence properties regulation, we constructed the lmrB inactivation mutant and examined the phenotypes of the mutant. It was found that LmrB deficiency resulted in increased IPS storage and prolonged acid production. Enhanced biofilm formation characterized by increased extracellular polysaccharides (EPS production and elevated resistance to hydrogen peroxide and antimicrobials were also observed in lmrB mutant. To gain a better understanding of the global role of LmrB, a transcriptome analysis was performed using lmrB mutant strain. The expression of 107 genes was up- or down-regulated in the lmrB mutant compared with the wild type. Notably, expression of genes in several genomic islands was differentially modulated, such as stress-related GroELS and scnRK, sugar metabolism associated glg operons and msmREFGK transporter. The results presented here indicate that LmrB plays a vital global role in the regulation of several important virulence properties in S. mutans.

  8. The role of efflux pumps in Bacteroides fragilis resistance to antibiotics.

    Science.gov (United States)

    Ghotaslou, Reza; Yekani, Mina; Memar, Mohammad Yousef

    2018-05-01

    The resistance of Bacteroides fragilis to the most antimicrobial agents has been reported in the world. Identification of the microbial resistance mechanisms can play an important role in controlling these resistances. Currently, B. fragilis is resistant to most antibiotics. The multi-drug efflux pumps have been shown to underlie the antimicrobial resistance in B. fragilis strains. Two types of these efflux pumps including RND and MATE can be regarded as main structures responsible for antibiotic resistance. Therefore, the strategy for suppressing of this efflux system may be useful in the treatment and control of the multidrug-resistant B. fragilis. The purpose of this study is to review the B. fragilis efflux pumps and their functions in the resistance to antibiotics. Copyright © 2018 Elsevier GmbH. All rights reserved.

  9. [Bacterial efflux pumps - their role in antibiotic resistance and potential inhibitors].

    Science.gov (United States)

    Hricová, Kristýna; Kolář, Milan

    2014-12-01

    Efflux pumps capable of actively draining antibiotic agents from bacterial cells may be considered one of potential mechanisms of the development of antimicrobial resistance. The most important group of efflux pumps capable of removing several types of antibiotics include RND (resistance - nodulation - division) pumps. These are three proteins that cross the bacterial cell wall, allowing direct expulsion of the agent out from the bacterial cell. The most investigated efflux pumps are the AcrAB-TolC system in Escherichia coli and the MexAB-OprM system in Pseudomonas aeruginosa. Moreover, efflux pumps are able to export other than antibacterial agents such as disinfectants, thus decreasing their effectiveness. One potential approach to inactivation of an efflux pump is to use the so-called efflux pump inhibitors (EPIs). Potential inhibitors tested in vitro involve, for example, phenylalanyl-arginyl-b-naphthylamide (PAbN), carbonyl cyanide m-chlorophenylhydrazone (CCCP) or agents of the phenothiazine class.

  10. Efflux-mediated fluoroquinolone resistance in the multidrug-resistant Pseudomonas aeruginosa clinical isolate PA7: identification of a novel MexS variant involved in upregulation of the mexEF-oprN multidrug efflux operon.

    Science.gov (United States)

    Morita, Yuji; Tomida, Junko; Kawamura, Yoshiaki

    2015-01-01

    The emergence of multidrug-resistant Pseudomonas aeruginosa has become a serious problem in medical settings. P. aeruginosa clinical isolate PA7 is resistant to fluoroquinolones, aminoglycosides, and most β-lactams but not imipenem. In this study, enhanced efflux-mediated fluoroquinolone resistance of PA7 was shown to reflect increased expression of two resistance nodulation cell division (RND) -type multidrug efflux operons, mexEF-oprN and mexXY-oprA. Such a clinical isolate has rarely been reported because MexEF-OprN-overproducing mutants often increase susceptibility to aminoglycosides apparently owing to impairment of the MexXY system. A mutant of PA7 lacking three RND-type multidrug efflux operons (mexAB-oprM, mexEF-oprN, and mexXY-oprA) was susceptible to all anti-pseudomonas agents we tested, supporting an idea that these RND-type multidrug efflux transporters are molecular targets to overcome multidrug resistance in P. aeruginosa. mexEF-oprN-upregulation in P. aeruginosa PA7 was shown due to a MexS variant harboring the Valine-155 amino acid residue. This is the first genetic evidence shown that a MexS variant causes mexEF-oprN-upregulation in P. aeruginosa clinical isolates.

  11. Efflux-mediated fluoroquinolone resistance in the multidrug-resistant Pseudomonas aeruginosa clinical isolate PA7: identification of a novel MexS variant involved in upregulation of the mexEF-oprN multidrug efflux operon

    Directory of Open Access Journals (Sweden)

    Yuji eMorita

    2015-01-01

    Full Text Available The emergence of multidrug-resistant Pseudomonas aeruginosa has become a serious problem in medical settings. P. aeruginosa clinical isolate PA7 is resistant to fluoroquinolones, aminoglycosides, and most -lactams but not imipenem. In this study, enhanced efflux-mediated fluoroquinolone resistance of PA7 was shown to reflect increased expression of two resistance nodulation cell division (RND -type multidrug efflux operons, mexEF-oprN and mexXY-oprA. Such a clinical isolate has rarely been reported because MexEF-OprN-overproducing mutants often increase susceptibility to aminoglycosides apparently owing to impairment of the MexXY system. A mutant of PA7 lacking three RND-type multidrug efflux operons (mexAB-oprM, mexEF-oprN, and mexXY-oprA was susceptible to all anti-pseudomonas agents we tested, supporting an idea that these RND-type multidrug efflux transporters are molecular targets to overcome multidrug resistance in P. aeruginosa. mexEF-oprN-upregulation in P. aeruginosa PA7 was shown due to a MexS variant harboring the Valine-155 amino acid residue. This is the first genetic evidence shown that a MexS variant causes mexEF-oprN-upregulation in P. aeruginosa clinical isolates.

  12. Water-mediated interactions enable smooth substrate transport in a bacterial efflux pump.

    Science.gov (United States)

    Vargiu, Attilio Vittorio; Ramaswamy, Venkata Krishnan; Malvacio, Ivana; Malloci, Giuliano; Kleinekathöfer, Ulrich; Ruggerone, Paolo

    2018-04-01

    Efflux pumps of the Resistance-Nodulation-cell Division superfamily confer multi-drug resistance to Gram-negative bacteria. The most-studied polyspecific transporter belonging to this class is the inner-membrane trimeric antiporter AcrB of Escherichia coli. In previous studies, a functional rotation mechanism was proposed for its functioning, according to which the three monomers undergo concerted conformational changes facilitating the extrusion of substrates. However, the molecular determinants and the energetics of this mechanism still remain unknown, so its feasibility must be proven mechanistically. A computational protocol able to mimic the functional rotation mechanism in AcrB was developed. By using multi-bias molecular dynamics simulations we characterized the translocation of the substrate doxorubicin driven by conformational changes of the protein. In addition, we estimated for the first time the free energy profile associated to this process. We provided a molecular view of the process in agreement with experimental data. Moreover, we showed that the conformational changes occurring in AcrB enable the formation of a layer of structured waters on the internal surface of the transport channel. This water layer, in turn, allows for a fairly constant hydration of the substrate, facilitating its diffusion over a smooth free energy profile. Our findings reveal a new molecular mechanism of polyspecific transport whereby water contributes by screening potentially strong substrate-protein interactions. We provided a mechanistic understanding of a fundamental process related to multi-drug transport. Our results can help rationalizing the behavior of other polyspecific transporters and designing compounds avoiding extrusion or inhibitors of efflux pumps. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  13. Enhancement of antibiotic activity by efflux inhibitors against multidrug resistant Mycobacterium tuberculosis clinical isolates from Brazil

    Directory of Open Access Journals (Sweden)

    Tatiane eCoelho

    2015-04-01

    Full Text Available Drug resistant tuberculosis continues to increase and new approaches for its treatment are necessary. The identification of M. tuberculosis clinical isolates presenting efflux as part of their resistant phenotype has a major impact in tuberculosis treatment. In this work, we used a checkerboard procedure combined with the tetrazolium microplate-based assay (TEMA to study single combinations between antituberculosis drugs and efflux inhibitors (EIs against multidrug resistant M. tuberculosis clinical isolates using the fully susceptible strain H37Rv as reference. Efflux activity was studied on a real-time basis by a fluorometric method that uses ethidium bromide as efflux substrate. Quantification of efflux pump genes mRNA transcriptional levels were performed by RT-qPCR. The fractional inhibitory concentrations (FIC indicated synergistic activity for the interactions between isoniazid, rifampicin, amikacin, ofloxacin, and ethidium bromide plus the EIs verapamil, thioridazine and chlorpromazine. The FICs ranged from 0.25, indicating a four-fold reduction on the MICs, to 0.015, 64-fold reduction. The detection of active efflux by real-time fluorometry showed that all strains presented intrinsic efflux activity that contributes to the overall resistance which can be inhibited in the presence of the EIs. The quantification of the mRNA levels of the most important efflux pump genes on these strains shows that they are intrinsically predisposed to expel toxic compounds as the exposure to subinhibitory concentrations of antibiotics were not necessary to increase the pump mRNA levels when compared with the non-exposed counterpart. The results obtained in this study confirm that the intrinsic efflux activity contributes to the overall resistance in multidrug resistant clinical isolates of M. tuberculosis and that the inhibition of efflux pumps by the EIs can enhance the clinical effect of antibiotics that are their substrates.

  14. Inhibition of the Human ABC Efflux Transporters P-gp and ...

    Science.gov (United States)

    High body burdens of polybrominated diphenyl ethers (PBDEs) in infants and young children have led to increased concern over their potential impact on human development. PBDE exposure can alter the expression of genes involved in thyroid homeostasis, including those of ATP-binding cassette (ABC) transporters, which mediate cellular xenobiotic efflux. However, little information exists on how PBDEs interact with ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP). The purpose of this study was to evaluate the interactions of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) and its hydroxylated metabolite 6-OH-BDE-47 with P-gp and BCRP, using human MDR1- and BCRP-expressing membrane vesicles and stably transfected NIH-3T3-MDR1 and MDCK-BCRP cells. In P-gp membranes, BDE-47 did not affect P-gp activity; however, 6-OH-BDE-47 inhibited P-gp activity at low µM concentrations (IC50 = 11.7 µM). In BCRP membranes, BDE-47 inhibited BCRP activity; however, 6-OH-BDE-47 was a stronger inhibitor [IC50 = 45.9 µM (BDE-47) vs. IC50 = 9.4 µM (6-OH-BDE-47)]. Intracellular concentrations of known P-gp and BCRP substrates [(3H)-paclitaxel and (3H)-prazosin, respectively] were significantly higher (indicating less efflux) in NIH-3T3-MDR1 and MDCK-BCRP cells in the presence of 6-OH-BDE-47, but not BDE-47. Collectively, our results indicate that the BDE-47 metabolite 6-OH-BDE-47 is an inhibitor of both P-gp and BCRP efflux activity.

  15. Adaptive and Mutational Resistance: Role of Porins and Efflux Pumps in Drug Resistance

    Science.gov (United States)

    Fernández, Lucía

    2012-01-01

    Summary: The substantial use of antibiotics in the clinic, combined with a dearth of new antibiotic classes, has led to a gradual increase in the resistance of bacterial pathogens to these compounds. Among the various mechanisms by which bacteria endure the action of antibiotics, those affecting influx and efflux are of particular importance, as they limit the interaction of the drug with its intracellular targets and, consequently, its deleterious effects on the cell. This review evaluates the impact of porins and efflux pumps on two major types of resistance, namely, mutational and adaptive types of resistance, both of which are regarded as key phenomena in the global rise of antibiotic resistance among pathogenic microorganisms. In particular, we explain how adaptive and mutational events can dramatically influence the outcome of antibiotic therapy by altering the mechanisms of influx and efflux of antibiotics. The identification of porins and pumps as major resistance markers has opened new possibilities for the development of novel therapeutic strategies directed specifically against these mechanisms. PMID:23034325

  16. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm

    OpenAIRE

    Soto, Sara M.

    2013-01-01

    Biofilms are complex microbial associations anchored to abiotic or biotic surfaces, embedded in extracellular matrix produced by the biofilms themselves where they interact with each other and the environment. One of the main properties of biofilms is their capacity to be more resistant to antimicrobial agents than planktonic cells. Efflux pumps have been reported as one of the mechanisms responsible for the antimicrobial resistance in biofilm structures. Evidence of the role of efflux pump i...

  17. Study of antibiotic resistance by efflux in clinical isolates of Pseudomonas aeruginosa.

    Science.gov (United States)

    Abdi-Ali, A; Rahmani-Badi, A; Falsafi, T; Nikname, V

    2007-03-15

    Twenty three multidrug resistant (MDR) strains were selected from 104 clinical isolates of P. aeruginosa and screened for resistance to ceftazidim, ceftriaxone, ciprofloxacin, ofloxacin and ethidium bromide by determining MICs. The MICs of EtBr and antibiotics were also measured in presence of proton conductor, carbonyl cyanide m-chlorophenyl hydrazone (CCCP). The presence of proton gradient-dependent efflux mechanism was assessed using ethidium bromide accumulation assays. Drug accumulation studies for these antibiotics were performed to determine the drug specificity of efflux. PCR was used to identify the mexAB-oprM gene as a major factor in MDR intrinsic resistance of clinical isolates of P. aeruginosa. In absence of CCCP, the MICs of these antimicrobial agents were > or = 4 microg L(-1). CCCP reduced the MICs of them at least in 1 dilution. Ethidium bromide accumulation assays confirmed the presence of proton gradient-dependent efflux mechanism in clinical isolates of P. aeruginosa and results of accumulation assays of drugs demonstrate that, active efflux in this bacterium are due to broadly-specific multidrug efflux system(s). PCR products demonstrate the presence of mexAB-oprM operon in 4 strains from 23 clinical isolates. These results confirmed the presence of proton gradient-dependent efflux mechanism in all of the clinical isolates of P. aeruginosa and demonstrate that, efflux pumps in this bacterium are broadly-specific multidrug efflux systems. In this study we show that MexAB-OprM multidrug efflux system was expressed in only 17% of clinical isolates of P. aeruginosa. These results confirmed the presence of other multidrug efflux pumps in clinical isolates of P. aeruginosa.

  18. New Roads Leading to Old Destinations: Efflux Pumps as Targets to Reverse Multidrug Resistance in Bacteria

    Directory of Open Access Journals (Sweden)

    Gabriella Spengler

    2017-03-01

    Full Text Available Multidrug resistance (MDR has appeared in response to selective pressures resulting from the incorrect use of antibiotics and other antimicrobials. This inappropriate application and mismanagement of antibiotics have led to serious problems in the therapy of infectious diseases. Bacteria can develop resistance by various mechanisms and one of the most important factors resulting in MDR is efflux pump-mediated resistance. Because of the importance of the efflux-related multidrug resistance the development of new therapeutic approaches aiming to inhibit bacterial efflux pumps is a promising way to combat bacteria having over-expressed MDR efflux systems. The definition of an efflux pump inhibitor (EPI includes the ability to render the bacterium increasingly more sensitive to a given antibiotic or even reverse the multidrug resistant phenotype. In the recent years numerous EPIs have been developed, although so far their clinical application has not yet been achieved due to their in vivo toxicity and side effects. In this review, we aim to give a short overview of efflux mediated resistance in bacteria, EPI compounds of plant and synthetic origin, and the possible methods to investigate and screen EPI compounds in bacterial systems.

  19. Effect of proinflammatory cytokine IL-6 on efflux transport of rebamipide in Caco-2 cells.

    Science.gov (United States)

    Miyake, Masateru; Nakai, Daisuke

    2017-09-01

    1. Effect of IL-6, a pro-inflammatory cytokine, on efflux transport of rebamipide, an antiulcer drug, was investigated in Caco-2 cells. 2. Rebamipide had a greater basal-to-apical than apical-to-basal transport rate. Efflux transport of rebamipide was inhibited by cyclosporine A, a P-gp inhibitor, and probenecid, which is a general MRP inhibitor, but not by Ko143, a BCRP inhibitor. 3. By the addition of IL-6, mannitol transport was slightly increased in a concentration-dependent manner in both directions of absorption and efflux. The addition of IL-6 did not change efflux transport of rebamipide even though efflux transport of digoxin, a typical substrate of P-gp, was significantly decreased by the addition of IL-6, indicating decrease of the function of P-gp. 4. Therefore, it was suggested that increase of MRP(s)-mediated transport compensates for the decrease of P-gp mediated transport of rebamipide. These findings suggested that rebamipide absorption is unlikely to be changed in IBD patients.

  20. Multixenobiotic resistance efflux activity in Daphnia magna and Lumbriculus variegatus

    OpenAIRE

    Vehniäinen, Eeva-Riikka; Kukkonen, Jussi

    2015-01-01

    Multixenobiotic resistance is a phenomenon in which ATP-binding cassette (ABC) family proteins transfer harmful compounds out of cells. Daphnia magna and Lumbriculus variegatus are model species in aquatic ecotoxicology, but the presence and activity of ABC proteins have not been well described in these species. The aim of this work was to study the presence, activity, and inhibition of ABC transport proteins in D. magna and L. variegatus. The presence of abcb1 and abcc transcripts in 8–9-day...

  1. The arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier

    Science.gov (United States)

    Chen, R.; Hilson, P.; Sedbrook, J.; Rosen, E.; Caspar, T.; Masson, P. H.

    1998-01-01

    Auxins are plant hormones that mediate many aspects of plant growth and development. In higher plants, auxins are polarly transported from sites of synthesis in the shoot apex to their sites of action in the basal regions of shoots and in roots. Polar auxin transport is an important aspect of auxin functions and is mediated by cellular influx and efflux carriers. Little is known about the molecular identity of its regulatory component, the efflux carrier [Estelle, M. (1996) Current Biol. 6, 1589-1591]. Here we show that mutations in the Arabidopsis thaliana AGRAVITROPIC 1 (AGR1) gene involved in root gravitropism confer increased root-growth sensitivity to auxin and decreased sensitivity to ethylene and an auxin transport inhibitor, and cause retention of exogenously added auxin in root tip cells. We used positional cloning to show that AGR1 encodes a putative transmembrane protein whose amino acid sequence shares homologies with bacterial transporters. When expressed in Saccharomyces cerevisiae, AGR1 promotes an increased efflux of radiolabeled IAA from the cells and confers increased resistance to fluoro-IAA, a toxic IAA-derived compound. AGR1 transcripts were localized to the root distal elongation zone, a region undergoing a curvature response upon gravistimulation. We have identified several AGR1-related genes in Arabidopsis, suggesting a global role of this gene family in the control of auxin-regulated growth and developmental processes.

  2. Efflux of drugs and solutes from brain: the interactive roles of diffusional transcapillary transport, bulk flow and capillary transporters.

    Science.gov (United States)

    Groothuis, Dennis R; Vavra, Michael W; Schlageter, Kurt E; Kang, Eric W-Y; Itskovich, Andrea C; Hertzler, Shannon; Allen, Cathleen V; Lipton, Howard L

    2007-01-01

    We examined the roles of diffusion, convection and capillary transporters in solute removal from extracellular space (ECS) of the brain. Radiolabeled solutes (eight with passive distribution and four with capillary or cell transporters) were injected into the brains of rats (n=497) and multiple-time point experiments measured the amount remaining in brain as a function of time. For passively distributed compounds, there was a relationship between lipid:water solubility and total brain efflux:diffusional efflux, which dominated when k(p), the transcapillary efflux rate constant, was >10(0) h(-1); when 10(-1)efflux dominated. Para-aminohippuric acid (PAH) experiments (n=112) showed that PAH entered the brain passively, but had efflux transporters. The total efflux rate constant, k(eff), was the sum of a passive component (k(p)=0.0018 h(-1)), a convective component (k(csf)=0.2 h(-1)), and a variable, concentration-dependent component (k(x)=0 to 0.45 h(-1)). Compounds with cell membrane transporters had longer clearance half times as did an oligonucleotide, which interacted with cell surface receptors. Manipulation of physiologic state (n=35) did not affect efflux, but sucrose efflux half time was longer with pentobarbital anesthesia (24 h) than with no anesthesia or ketamine-xylazine anesthesia (2 to 3 h). These results show that solute clearance from normal brain ECS may involve multiple physiologic pathways, may be affected by anesthesia, and suggests that convection-mediated efflux may be manipulated to increase or decrease drug clearance from brain.

  3. Evaluation of a series of 2-napthamide derivatives as inhibitors of the drug efflux pump AcrB for the reversal of antimicrobial resistance.

    Science.gov (United States)

    Wang, Yinhu; Mowla, Rumana; Guo, Liwei; Ogunniyi, Abiodun D; Rahman, Taufiq; De Barros Lopes, Miguel A; Ma, Shutao; Venter, Henrietta

    2017-02-15

    Drug efflux pumps confer multidrug resistance to dangerous pathogens which makes these pumps important drug targets. We have synthesised a novel series of compounds based on a 2-naphthamide pharmacore aimed at inhibiting the efflux pumps from Gram-negative bacteria. The archeatypical transporter AcrB from Escherichia coli was used as model efflux pump as AcrB is widely conserved throughout Gram-negative organisms. The compounds were tested for their antibacterial action, ability to potentiate the action of antibiotics and for their ability to inhibit Nile Red efflux by AcrB. None of the compounds were antimicrobial against E. coli wild type cells. Most of the compounds were able to inhibit Nile Red efflux indicating that they are substrates of the AcrB efflux pump. Three compounds were able to synergise with antibiotics and reverse resistance in the resistant phenotype. Compound A3, 4-(isopentyloxy)-2-naphthamide, reduced the MICs of erythromycin and chloramphenicol to the MIC levels of the drug sensitive strain that lacks an efflux pump. A3 had no effect on the MIC of the non-substrate rifampicin indicating that this compound acts specifically through the AcrB efflux pump. A3 also does not act through non-specific mechanisms such as outer membrane or inner membrane permeabilisation and is not cytotoxic against mammalian cell lines. Therefore, we have designed and synthesised a novel chemical compound with great potential to further optimisation as inhibitor of drug efflux pumps. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The solvent efflux system of Pseudomonas putida S12 is not involved in antibiotic resistance.

    Science.gov (United States)

    Isken, S; De Bont, J A

    2000-11-01

    The active efflux system contributing to the solvent tolerance of Pseudomonas putida S12 was characterized physiologically. The mutant P. putida JK1, which lacks the active efflux system, was compared with the wild-type organism. None of 20 known substrates of common multi-drug-resistant pumps had a stronger growth-inhibiting effect on the mutant than on the wild type. The amount of [14C]toluene accumulating in P. putida S12 increased in the presence of the solvent xylene and in the presence of uncouplers. The effect of uncouplers confirms the proton dependency of the efflux system in P. putida S12. Other compounds, potential substrates for the solvent pump, did not affect the accumulation of [14C]toluene. These results show that the efflux system in P. putida S12 is specific for organic solvents and does not export antibiotics or other known substrates of multi-drug-resistant pumps.

  5. Adaptive Resistance in Bacteria Requires Epigenetic Inheritance, Genetic Noise, and Cost of Efflux Pumps

    Science.gov (United States)

    Motta, Santiago Sandoval; Cluzel, Philippe; Aldana, Maximino

    2015-01-01

    Adaptive resistance emerges when populations of bacteria are subjected to gradual increases of antibiotics. It is characterized by a rapid emergence of resistance and fast reversibility to the non-resistant phenotype when the antibiotic is removed from the medium. Recent work shows that adaptive resistance requires epigenetic inheritance and heterogeneity of gene expression patterns that are, in particular, associated with the production of porins and efflux pumps. However, the precise mechanisms by which inheritance and variability govern adaptive resistance, and what processes cause its reversibility remain unclear. Here, using an efflux pump regulatory network (EPRN) model, we show that the following three mechanisms are essential to obtain adaptive resistance in a bacterial population: 1) intrinsic variability in the expression of the EPRN transcription factors; 2) epigenetic inheritance of the transcription rate of EPRN associated genes; and 3) energetic cost of the efflux pumps activity that slows down cell growth. While the first two mechanisms acting together are responsible for the emergence and gradual increase of the resistance, the third one accounts for its reversibility. In contrast with the standard assumption, our model predicts that adaptive resistance cannot be explained by increased mutation rates. Our results identify the molecular mechanism of epigenetic inheritance as the main target for therapeutic treatments against the emergence of adaptive resistance. Finally, our theoretical framework unifies known and newly identified determinants such as the burden of efflux pumps that underlie bacterial adaptive resistance to antibiotics. PMID:25781931

  6. Adaptive resistance in bacteria requires epigenetic inheritance, genetic noise, and cost of efflux pumps.

    Science.gov (United States)

    Motta, Santiago Sandoval; Cluzel, Philippe; Aldana, Maximino

    2015-01-01

    Adaptive resistance emerges when populations of bacteria are subjected to gradual increases of antibiotics. It is characterized by a rapid emergence of resistance and fast reversibility to the non-resistant phenotype when the antibiotic is removed from the medium. Recent work shows that adaptive resistance requires epigenetic inheritance and heterogeneity of gene expression patterns that are, in particular, associated with the production of porins and efflux pumps. However, the precise mechanisms by which inheritance and variability govern adaptive resistance, and what processes cause its reversibility remain unclear. Here, using an efflux pump regulatory network (EPRN) model, we show that the following three mechanisms are essential to obtain adaptive resistance in a bacterial population: 1) intrinsic variability in the expression of the EPRN transcription factors; 2) epigenetic inheritance of the transcription rate of EPRN associated genes; and 3) energetic cost of the efflux pumps activity that slows down cell growth. While the first two mechanisms acting together are responsible for the emergence and gradual increase of the resistance, the third one accounts for its reversibility. In contrast with the standard assumption, our model predicts that adaptive resistance cannot be explained by increased mutation rates. Our results identify the molecular mechanism of epigenetic inheritance as the main target for therapeutic treatments against the emergence of adaptive resistance. Finally, our theoretical framework unifies known and newly identified determinants such as the burden of efflux pumps that underlie bacterial adaptive resistance to antibiotics.

  7. Adaptive resistance in bacteria requires epigenetic inheritance, genetic noise, and cost of efflux pumps.

    Directory of Open Access Journals (Sweden)

    Santiago Sandoval Motta

    Full Text Available Adaptive resistance emerges when populations of bacteria are subjected to gradual increases of antibiotics. It is characterized by a rapid emergence of resistance and fast reversibility to the non-resistant phenotype when the antibiotic is removed from the medium. Recent work shows that adaptive resistance requires epigenetic inheritance and heterogeneity of gene expression patterns that are, in particular, associated with the production of porins and efflux pumps. However, the precise mechanisms by which inheritance and variability govern adaptive resistance, and what processes cause its reversibility remain unclear. Here, using an efflux pump regulatory network (EPRN model, we show that the following three mechanisms are essential to obtain adaptive resistance in a bacterial population: 1 intrinsic variability in the expression of the EPRN transcription factors; 2 epigenetic inheritance of the transcription rate of EPRN associated genes; and 3 energetic cost of the efflux pumps activity that slows down cell growth. While the first two mechanisms acting together are responsible for the emergence and gradual increase of the resistance, the third one accounts for its reversibility. In contrast with the standard assumption, our model predicts that adaptive resistance cannot be explained by increased mutation rates. Our results identify the molecular mechanism of epigenetic inheritance as the main target for therapeutic treatments against the emergence of adaptive resistance. Finally, our theoretical framework unifies known and newly identified determinants such as the burden of efflux pumps that underlie bacterial adaptive resistance to antibiotics.

  8. In vitro transport activity of the fully assembled MexAB-OprM efflux pump from Pseudomonas aeruginosa

    Science.gov (United States)

    Verchère, Alice; Dezi, Manuela; Adrien, Vladimir; Broutin, Isabelle; Picard, Martin

    2015-04-01

    Antibiotic resistance is a major public health issue and many bacteria responsible for human infections have now developed a variety of antibiotic resistance mechanisms. For instance, Pseudomonas aeruginosa, a disease-causing Gram-negative bacteria, is now resistant to almost every class of antibiotics. Much of this resistance is attributable to multidrug efflux pumps, which are tripartite membrane protein complexes that span both membranes and actively expel antibiotics. Here we report an in vitro procedure to monitor transport by the tripartite MexAB-OprM pump. By combining proteoliposomes containing the MexAB and OprM portions of the complex, we are able to assay energy-dependent substrate translocation in a system that mimics the dual-membrane architecture of Gram-negative bacteria. This assay facilitates the study of pump transport dynamics and could be used to screen pump inhibitors with potential clinical use in restoring therapeutic activity of old antibiotics.

  9. Efflux Pump.Mediated Resistance in Chemotherapy | Ughachukwu ...

    African Journals Online (AJOL)

    Efflux pump mechanisms perform important physiological functions such as prevention of toxin absorption from the gastrointestinal tract, elimination of bile from the hepatocytes, effective functioning of the blood.brain barrier and placental barrier, and renal excretion of drugs. They exist in all living cells, but those in the ...

  10. The antibiotic resistance arrow of time: efflux pump induction is a general first step in the evolution of mycobacterial drug resistance.

    Science.gov (United States)

    Schmalstieg, Aurelia M; Srivastava, Shashikant; Belkaya, Serkan; Deshpande, Devyani; Meek, Claudia; Leff, Richard; van Oers, Nicolai S C; Gumbo, Tawanda

    2012-09-01

    We hypothesize that low-level efflux pump expression is the first step in the development of high-level drug resistance in mycobacteria. We performed 28-day azithromycin dose-effect and dose-scheduling studies in our hollow-fiber model of disseminated Mycobacterium avium-M. intracellulare complex. Both microbial kill and resistance emergence were most closely linked to the within-macrophage area under the concentration-time curve (AUC)/MIC ratio. Quantitative PCR revealed that subtherapeutic azithromycin exposures over 3 days led to a 56-fold increase in expression of MAV_3306, which encodes a putative ABC transporter, and MAV_1406, which encodes a putative major facilitator superfamily pump, in M. avium. By day 7, a subpopulation of M. avium with low-level resistance was encountered and exhibited the classic inverted U curve versus AUC/MIC ratios. The resistance was abolished by an efflux pump inhibitor. While the maximal microbial kill started to decrease after day 7, a population with high-level azithromycin resistance appeared at day 28. This resistance could not be reversed by efflux pump inhibitors. Orthologs of pumps encoded by MAV_3306 and MAV_1406 were identified in Mycobacterium tuberculosis, Mycobacterium leprae, Mycobacterium marinum, Mycobacterium abscessus, and Mycobacterium ulcerans. All had highly conserved protein secondary structures. We propose that induction of several efflux pumps is the first step in a general pathway to drug resistance that eventually leads to high-level chromosomal-mutation-related resistance in mycobacteria as ordered events in an "antibiotic resistance arrow of time."

  11. Effects of Catechins and Their Related Compounds on Cellular Accumulation and Efflux Transport of Mitoxantrone in Caco-2 Cell Monolayers.

    Science.gov (United States)

    Sugihara, Narumi; Kuroda, Norihiko; Watanabe, Fumiya; Choshi, Tominari; Kamishikiryo, Jun; Seo, Makoto

    2017-05-01

    The ability of catechins and their related compounds to inhibit breast cancer resistance protein (BCRP) function in Caco-2 cell monolayers was investigated with mitoxantrone as a BCRP substrate. The gallate or pyrogallol moiety on the catechin structure seemed to promote increased cellular accumulation and inhibit efflux transport of mitoxantrone. The ability of gallate catechins such as (-)-epigallocatechin gallate (EGCG) and (-)-epicatechin gallate (ECG) to increase cellular accumulation and inhibit efflux transport of mitoxantrone was greater than that of nongallate catechins. Gallic acid octyl ester (GAO) also increased intracellular mitoxantrone accumulation. Experiments using GAO derivatives indicated that the gallate moiety required the presence of a long carbon chain for BCRP inhibition. Cellular accumulation and reduced efflux transport of mitoxantrone were greater with epigallocatechin 3-(3″-O-butyl) gallate than with EGCG. EGCG inhibition of BCRP seemed to be restricted by hydrophobicity. The co-administration of catechins, particularly EGCG and related compounds, with greater hydrophobicity may increase the therapeutic activities of BCRP substrates such as mitoxantrone. © 2017 Institute of Food Technologists®.

  12. In vivo assessment of the impact of efflux transporter on oral drug absorption using portal vein-cannulated rats.

    Science.gov (United States)

    Matsuda, Yoshiki; Konno, Yoshihiro; Hashimoto, Takashi; Nagai, Mika; Taguchi, Takayuki; Satsukawa, Masahiro; Yamashita, Shinji

    2013-08-01

    The purpose of this study was to evaluate the impact of intestinal efflux transporters on the in vivo oral absorption process. Three model drugs-fexofenadine (FEX), sulfasalazine (SASP), and topotecan (TPT)-were selected as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and P-gp and BCRP substrates, respectively. The drugs were orally administered to portal vein-cannulated rats after pretreatment with zosuquidar (ZSQ), P-gp inhibitor, and/or Ko143, BCRP inhibitor. Intestinal availability (Fa·Fg) of the drugs was calculated from the difference between portal and systemic plasma concentrations. When rats were orally pretreated with ZSQ, Fa·Fg of FEX increased 4-fold and systemic clearance decreased to 75% of the control. In contrast, intravenous pretreatment with ZSQ did not affect Fa·Fg of FEX, although systemic clearance decreased significantly. These data clearly show that the method presented herein using portal vein-cannulated rats can evaluate the effects of intestinal transporters on Fa·Fg of drugs independently of variable systemic clearance. In addition, it was revealed that 71% of FEX taken up into enterocytes underwent selective efflux via P-gp to the apical surface, while 79% of SASP was effluxed by Bcrp. In the case of TPT, both transporters were involved in its oral absorption. Quantitative analysis indicated a 3.5-fold higher contribution from Bcrp than P-gp. In conclusion, the use of portal vein-cannulated rats enabled the assessment of the impact of efflux transporters on intestinal absorption of model drugs. This experimental system is useful for clarifying the cause of low bioavailability of various drugs.

  13. Involvement of a Novel Efflux System in Biofilm-Specific Resistance to Antibiotics▿

    OpenAIRE

    Zhang, Li; Mah, Thien-Fah

    2008-01-01

    Bacteria growing in biofilms are more resistant to antibiotics than their planktonic counterparts. How this transition occurs is unclear, but it is likely there are multiple mechanisms of resistance that act together in order to provide an increased overall level of resistance to the biofilm. We have identified a novel efflux pump in Pseudomonas aeruginosa that is important for biofilm-specific resistance to a subset of antibiotics. Complete deletion of the genes encoding this pump, PA1874 to...

  14. Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides.

    Science.gov (United States)

    Aires, J R; Köhler, T; Nikaido, H; Plésiat, P

    1999-11-01

    A mutant, named 11B, hypersusceptible to aminoglycosides, tetracycline, and erythromycin was isolated after Tn501 insertion mutagenesis of Pseudomonas aeruginosa PAO1. Cloning and sequencing experiments showed that 11B was deficient in an, at that time, unknown active efflux system that contains homologs of MexAB. This locus also contained a putative regulatory gene, mexZ, transcribed divergently from the efflux operon. Introduction of a recombinant plasmid that carries the genes of the efflux system restored the resistance of 11B to parental levels, whereas overexpression of these genes strongly increased the MICs of substrate antibiotics for the PAO1 host. Antibiotic accumulation studies confirmed that this new system is an energy-dependent active efflux system that pumps out aminoglycosides. Furthermore, this system appeared to function with an outer membrane protein, OprM. While the present paper was being written and reviewed, genes with a sequence identical to our pump genes, mexXY of P. aeruginosa, have been reported to increase resistance to erythromycin, fluoroquinolones, and organic cations in Escherichia coli hosts, although efflux of aminoglycosides was not examined (Mine et al., Antimicrob. Agents Chemother. 43:415-417, 1999). Our study thus shows that the MexXY system plays an important role in the intrinsic resistance of P. aeruginosa to aminoglycosides. Although overexpression of MexXY increased the level of resistance to fluoroquinolones, disruption of the mexXY operon in P. aeruginosa had no detectable effect on susceptibility to these agents.

  15. Efflux Pumps Might Not Be the Major Drivers of QAC Resistance in Methicillin-Resistant Staphylococcus aureus.

    Science.gov (United States)

    Jennings, Megan C; Forman, Megan E; Duggan, Stephanie M; Minbiole, Kevin P C; Wuest, William M

    2017-08-17

    Quaternary ammonium compounds (QACs) are commonly used antiseptics that are now known to be subject to bacterial resistance. The prevalence and mechanisms of such resistance, however, remain underexplored. We investigated a variety of QACs, including those with multicationic structures (multiQACs), and the resistance displayed by a variety of Staphylococcus aureus strains with and without genes encoding efflux pumps, the purported main driver of bacterial resistance in MRSA. Through minimum inhibitory concentration (MIC)-, kinetic-, and efflux-based assays, we found that neither the qacR/qacA system present in S. aureus nor another efflux pump system is the main reason for bacterial resistance to QACs. Our findings suggest that membrane composition could be the predominant driver that allows CA-MRSA to withstand the assault of conventional QAC antiseptics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Overexpression of MexAB-OprM efflux pump in carbapenem-resistant Pseudomonas aeruginosa.

    Science.gov (United States)

    Pan, Ya-Ping; Xu, Yuan-Hong; Wang, Zhong-Xin; Fang, Ya-Ping; Shen, Ji-Lu

    2016-08-01

    Efflux pump systems are one of the most important mechanisms conferring multidrug resistance in Pseudomonas aeruginosa. MexAB-OprM efflux pump is one of the largest multi-drug resistant efflux pumps with high-level expression, which is controlled by regulatory genes mexR, nalC, and nalD. This study investigated the role of efflux pump MexAB-OprM in 75 strains of carbapenem-resistant P. aeruginosa and evaluated the influence of point mutation of the regulatory genes. The minimum inhibitory concentrations of imipenem and meropenem, with or without MC207110, an efflux pump inhibitor, were determined by agar dilution method to select the positive strains for an overexpressed active efflux pump. Carba NP test and EDTA-disk synergy test were used for the detection of carbapenemase and metallo-β-lactamases, respectively. The gene mexA, responsible for the fusion protein structure, and the reference gene rpoD of the MexAB-OprM pump were amplified by real-time PCR. The quantity of relative mRNA expression was determined simultaneously. By PCR method, the efflux regulatory genes mexR, nalC, and nalD and outer membrane protein OprD2 were amplified for the strains showing overexpression of MexAB-OprM and subsequently analyzed by BLAST. Among the 75 P. aeruginosa strains, the prevalence of efflux pump-positive phenotype was 17.3 % (13/75). Carba NP test and EDTA-disk synergy test were all negative in the 13 strains. PCR assay results showed that ten strains overexpressed the MexAB-OprM efflux pump and were all positive for the regulatory genes mexR, nalC, and nalD. Sequence analysis indicated that of the ten isolates, nine had a mutation (Gly → Glu) at 71st amino acid position in NalC, and eight also had a mutation (Ser → Arg) at 209th position in NalC. Only one strain had a mutation (Thr → Ile) at the 158th amino acid position in NalD, whereas eight isolates had mutations in MexR. In conclusion, overexpression of efflux pump MexAB-OprM plays an important role in

  17. An original deal for new molecule: reversal of efflux pump activity, a rational strategy to combat gram-negative resistant bacteria.

    Science.gov (United States)

    Pagès, J-M; Amaral, L; Fanning, S

    2011-01-01

    The worldwide dissemination of «multi-drug resistant» (MDR) pathogens has severely reduced the efficacy of our antibiotic arsenal and increased the frequency of therapeutic failure. MDR bacteria over-express efflux pumps and this active mechanism can extrude all classes of antibiotics from the cell. It is necessary to clearly decipher the genetic, structural and functional aspects of this transport system in order to combat this polyselective mechanism. By understanding how efflux pumps work we may be able to develop a new group of antibacterial agents, collectively termed efflux reversals, including membrane permeabilisers, efflux pump inhibitors and flux-competitive agents, specific blockers, energy poisons, etc. Several chemical families of efflux pump inhibitors have been described and characterized. Among them several inhibitor compounds demonstrate efficient blocking of the efflux pump activity involved in the MDR phenotype as observed in many Gram-negative clinical isolates. This new family of molecules represents the first antibacterial class of compound specifically targeting active transport in the bacterial cell.

  18. Efflux pump genes of the resistance-nodulation-division family in Burkholderia cenocepacia genome

    Directory of Open Access Journals (Sweden)

    Manina Giulia

    2006-07-01

    Full Text Available Abstract Background Burkholderia cenocepacia is recognized as opportunistic pathogen that can cause lung infections in cystic fibrosis patients. A hallmark of B. cenocepacia infections is the inability to eradicate the organism because of multiple intrinsic antibiotic resistance. As Resistance-Nodulation-Division (RND efflux systems are responsible for much of the intrinsic multidrug resistance in Gram-negative bacteria, this study aims to identify RND genes in the B. cenocepacia genome and start to investigate their involvement into antimicrobial resistance. Results Genome analysis and homology searches revealed 14 open reading frames encoding putative drug efflux pumps belonging to RND family in B. cenocepacia J2315 strain. By reverse transcription (RT-PCR analysis, it was found that orf3, orf9, orf11, and orf13 were expressed at detectable levels, while orf10 appeared to be weakly expressed in B. cenocepacia. Futhermore, orf3 was strongly induced by chloramphenicol. The orf2 conferred resistance to fluoroquinolones, tetraphenylphosphonium, streptomycin, and ethidium bromide when cloned and expressed in Escherichia coli KAM3, a strain lacking the multidrug efflux pump AcrAB. The orf2-overexpressing E. coli also accumulate low concentrations of ethidium bromide, which was restored to wild type level in the presence of CCCP, an energy uncoupler altering the energy of the drug efflux pump. Conclusion The 14 RND pumps gene we have identified in the genome of B. cenocepacia suggest that active efflux could be a major mechanism underlying antimicrobial resistance in this microorganism. We have characterized the ORF2 pump, one of these 14 potential RND efflux systems. Its overexpression in E. coli conferred resistance to several antibiotics and to ethidium bromide but it remains to be determined if this pump play a significant role in the antimicrobial intrinsic resistance of B. cenocepacia. The characterization of antibiotic efflux pumps in B

  19. Lack of efflux mediated quinolone resistance in Salmonella enterica serovars Typhi and Paratyphi A

    Directory of Open Access Journals (Sweden)

    Sylvie eBaucheron

    2014-01-01

    Full Text Available Salmonella enterica serovars Typhi and Paratyphi A isolates from human patients in France displaying different levels of resistance to quinolones or fluoroquinolones were studied for resistance mechanisms to these antimicrobial agents. All resistant isolates carried either single or multiple target gene mutations (i.e. in gyrA, gyrB, or parC correlating with the resistance levels observed. Active efflux, through upregulation of multipartite efflux systems, has also been previously reported as contributing mechanism for other serovars. Therefore, we investigated also the occurrence of non-target gene mutations in regulatory regions affecting efflux pump expression. However, no mutation was detected in these regions in both Typhi and Paratyphi isolates of this study. Besides, no overexpression of the major efflux systems was observed for these isolates. Nevertheless, a large deletion of 2334 bp was identified in the acrS-acrE region of all S. Typhi strains but which did not affect the resistance phenotype. As being specific to S. Typhi, this deletion could be used for specific molecular detection purposes. In conclusion, the different levels of quinolone or FQ resistance in both S. Typhi and S. Paratyphi A seem to rely only on target modifications.

  20. The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria

    Science.gov (United States)

    Plésiat, Patrick

    2015-01-01

    SUMMARY The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps. PMID:25788514

  1. Dual effects of the PI3K inhibitor ZSTK474 on multidrug efflux pumps in resistant cancer cells.

    Science.gov (United States)

    Muthiah, Divya; Callaghan, Richard

    2017-11-15

    ZSTK474 is a potent phosphoinositide 3-kinase (PI3K) inhibitor that reduces cell proliferation via G 1 -arrest. However, there is little information on the susceptibility of this anticancer drug to resistance conferred by the multidrug pumps P-glycoprotein (ABCB1) and ABCG2. We have demonstrated that ZSTK474 generated cytotoxicity in cells over-expressing either pump with potency similar to that in drug sensitive cells. In addition, the co-administration of ZSTK474 with the cytotoxic anti-cancer drugs vinblastine and mitoxantrone caused a potentiated cytotoxic effect in both drug sensitive and efflux pump expressing cells. These observations suggest that ZSTK474 is unaffected by the presence of multidrug efflux pumps and may circumvent their activities. Indeed, ZSTK474 increased the cellular accumulation of calcein-AM and mitoxantrone in cells expressing ABCB1 and ABCG2, respectively. ZSTK474 treatment also resulted in reduced expression of both efflux pumps in multidrug resistant cancer cells. Measurement of ABCB1 or ABCG2 mRNA levels demonstrated that the reduction was not due to altered transcription. Similarly, inhibitor studies showed that the proteasomal degradation pathway for ABCB1 and the lysosomal route for ABCG2 degradation were unaffected by ZSTK474. Thus the mechanism underlying reduced ABCB1 and ABCG2 levels caused by ZSTK474 was due to a reduction in overall protein synthesis; a process influenced by the PI3K pathway. In summary, ZSTK474 is not susceptible to efflux by the resistance mediators ABCB1 and ABCG2. Moreover, it inhibits the drug transport function of the pumps and leads to a reduction in their cellular expression levels. Our observations demonstrate that ZSTK474 is a powerful anticancer drug. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The H2 receptor antagonist nizatidine is a P-glycoprotein substrate: characterization of its intestinal epithelial cell efflux transport.

    Science.gov (United States)

    Dahan, Arik; Sabit, Hairat; Amidon, Gordon L

    2009-06-01

    The aim of this study was to elucidate the intestinal epithelial cell efflux transport processes that are involved in the intestinal transport of the H(2) receptor antagonist nizatidine. The intestinal epithelial efflux transport mechanisms of nizatidine were investigated and characterized across Caco-2 cell monolayers, in the concentration range 0.05-10 mM in both apical-basolateral (AP-BL) and BL-AP directions, and the transport constants of P-glycoprotein (P-gp) efflux activity were calculated. The concentration-dependent effects of various P-gp (verapamil, quinidine, erythromycin, ketoconazole, and cyclosporine A), multidrug resistant-associated protein 2 (MRP2; MK-571, probenecid, indomethacin, and p-aminohipuric acid), and breast cancer resistance protein (BCRP; Fumitremorgin C) inhibitors on nizatidine bidirectional transport were examined. Nizatidine exhibited 7.7-fold higher BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. All P-gp inhibitors investigated displayed concentration-dependent inhibition on nizatidine secretion in both directions. The IC(50) of verapamil on nizatidine P-gp secretion was 1.2 x 10(-2) mM. In the absence of inhibitors, nizatidine displayed concentration-dependent secretion, with one saturable (J(max) = 5.7 x 10(-3) nmol cm(-2) s(-1) and K(m) = 2.2 mM) and one nonsaturable component (K(d) = 7 x 10(-4) microL cm(-2) s(-1)). Under complete P-gp inhibition, nizatidine exhibited linear secretory flux, with a slope similar to the nonsaturable component. V(max) and K(m) estimated for nizatidine P-gp-mediated secretion were 4 x 10(-3) nmol cm(-2) s(-1) and 1.2 mM, respectively. No effect was obtained with the MRP2 or the BCRP inhibitors. Being a drug commonly used in pediatrics, adults, and elderly, nizatidine susceptibility to efflux transport by P-gp revealed in this paper may be of significance in its absorption, distribution, and clearance, as well as possible drug-drug interactions.

  3. Identification and molecular characterization of an efflux system involved in Pseudomonas putida S12 multidrug resistance.

    Science.gov (United States)

    Kieboom, J; de Bont, J

    2001-01-01

    The authors previously described srpABC, an operon involved in proton-dependent solvent efflux in the solvent-tolerant Pseudomonas putida S12. Recently, it was shown that organic solvents and not antibiotics induce this operon. In the present study, the authors characterize a new efflux pump, designated ArpABC, on the basis of two isolated chloramphenicol-sensitive transposon mutants. The arpABC operon is involved in the active efflux of multiple antibiotics, such as tetracycline, chloramphenicol, carbenicillin, streptomycin, erythromycin and novobiocin. The deduced amino acid sequences encoded by the three genes involved show a striking resemblance to proteins of the resistance/nodulation/cell division family, which are involved in both organic solvent and multiple drug efflux. These findings demonstrate that ArpABC is highly homologous to the MepABC and TtgABC efflux systems for organic solvents and multiple antibiotics. However, ArpABC does not contribute to organic solvent tolerance in P. putida S12 but is solely involved in multidrug resistance.

  4. Efflux-mediated fluoroquinolone resistance in the multidrug-resistant Pseudomonas aeruginosa clinical isolate PA7: identification of a novel MexS variant involved in upregulation of the mexEF-oprN multidrug efflux operon

    OpenAIRE

    Morita, Yuji; Tomida, Junko; Kawamura, Yoshiaki

    2015-01-01

    The emergence of multidrug-resistant Pseudomonas aeruginosa has become a serious problem in medical settings. P. aeruginosa clinical isolate PA7 is resistant to fluoroquinolones, aminoglycosides, and most β-lactams but not imipenem. In this study, enhanced efflux-mediated fluoroquinolone resistance of PA7 was shown to reflect increased expression of two resistance nodulation cell division (RND) -type multidrug efflux operons, mexEF-oprN and mexXY-oprA. Such a clinical isolate has rarely been ...

  5. Evidence for regulation of polar auxin transport at the efflux carrier in maize coleoptile sections

    International Nuclear Information System (INIS)

    Vesper, M.J.

    1989-01-01

    Previously we have shown that conditions which result in an increased auxin-induced growth response in maize (Zea mays L.) coleoptile sections also result in a decrease in the velocity of polar auxin transport. Coleoptile sections given conditions which result in slower transport of IAA have different kinetics for net IAA accumulation compared to sections given conditions which result in faster transport. In further experiments, sections were loaded with 30 nM ( 3 H)IAA in the presence of increasing unlabeled IAA at low pH. Efflux of ( 3 H)IAA was then followed as a function of unlabeled IAA. Saturation of efflux appears to occur at a lower conc. of IAA in sections showing slower transport

  6. Multidrug Efflux Pumps: Expression Patterns and Contribution to Antibiotic Resistance in Pseudomonas aeruginosa Biofilms

    Science.gov (United States)

    De Kievit, Teresa R.; Parkins, Michael D.; Gillis, Richard J.; Srikumar, Ramakrishnan; Ceri, Howard; Poole, Keith; Iglewski, Barbara H.; Storey, Douglas G.

    2001-01-01

    Pseudomonas aeruginosa biofilms are intrinsically resistant to antimicrobial chemotherapies. At present, very little is known about the physiological changes that occur during the transition from the planktonic to biofilm mode of growth. The resistance of P. aeruginosa biofilms to numerous antimicrobial agents that are substrates subject to active efflux from planktonic cells suggests that efflux pumps may substantially contribute to the innate resistance of biofilms. In this study, we investigated the expression of genes associated with two multidrug resistance (MDR) efflux pumps, MexAB-OprM and MexCD-OprJ, throughout the course of biofilm development. Using fusions to gfp, we were able to analyze spatial and temporal expression of mexA and mexC in the developing biofilm. Remarkably, expression of mexAB-oprM and mexCD-oprJ was not upregulated but rather decreased over time in the developing biofilm. Northern blot analysis confirmed that these pumps were not hyperexpressed in the biofilm. Furthermore, spatial differences in mexAB-oprM and mexCD-oprJ expression were observed, with maximal activity occurring at the biofilm substratum. Using a series of MDR mutants, we assessed the contribution of the MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY efflux pumps to P. aeruginosa biofilm resistance. These analyses led to the surprising discovery that the four characterized efflux pumps do not play a role in the antibiotic-resistant phenotype of P. aeruginosa biofilms. PMID:11353623

  7. Mutations in the central cavity and periplasmic domain affect efflux activity of the resistance-nodulation-division pump EmhB from Pseudomonas fluorescens cLP6a.

    Science.gov (United States)

    Hearn, Elizabeth M; Gray, Murray R; Foght, Julia M

    2006-01-01

    The EmhABC efflux system in Pseudomonas fluorescens cLP6a is homologous to the multidrug and solvent efflux systems belonging to the resistance-nodulation-division (RND) family and is responsible for polycyclic aromatic hydrocarbon transport, antibiotic resistance, and toluene efflux. To gain a better understanding of substrate transport in RND efflux pumps, the EmhB pump was subjected to mutational analysis. Mutagenesis of amino acids within the central cavity of the predicted three-dimensional structure of EmhB showed selective activity towards antibiotic substrates. An A384P/A385Y double mutant showed increased susceptibility toward rhodamine 6G compared to the wild type, and F386A and N99A single mutants showed increased susceptibility to dequalinium compared to the wild type. As well, the carboxylic acid side chain of D101, located in the central cavity region, was found to be essential for polycyclic aromatic hydrocarbon transport and resistance to all antibiotic substrates of EmhB. Phenylalanine residues located within the periplasmic pore domain were also targeted for mutagenesis, and the F325A and F281A mutations significantly impaired efflux activity for all EmhB substrates. One mutation (A206S) in the outer membrane protein docking domain increased antibiotic resistance and toluene tolerance, demonstrating the important role of this domain in transport activity. These data demonstrate the roles of the central cavity and periplasmic domains in the function of the RND efflux pump EmhB.

  8. Human paraoxonase 1 overexpression in mice stimulates HDL cholesterol efflux and reverse cholesterol transport

    Science.gov (United States)

    Ikhlef, Souade; Berrougui, Hicham; Kamtchueng Simo, Olivier; Zerif, Echarki

    2017-01-01

    This study was aimed to investigate the effect of human PON1 overexpression in mice on cholesterol efflux and reverse cholesterol transport. PON1 overexpression in PON1-Tg mice induced a significant 3-fold (pparaoxonase activity and a significant ~30% (p<0.0001) increase in the capacity of HDL to mediate cholesterol efflux from J774 macrophages compared to wild-type mice. It also caused a significant 4-fold increase (p<0.0001) in the capacity of macrophages to transfer cholesterol to apoA-1, a significant 2-fold (p<0.0003) increase in ABCA1 mRNA and protein expression, and a significant increase in the expression of PPARγ (p<0.0003 and p<0.04, respectively) and LXRα (p<0.0001 and p<0.01, respectively) mRNA and protein compared to macrophages from wild-type mice. Moreover, transfection of J774 macrophages with human PON1 also increased ABCA1, PPARγ and LXRα protein expression and stimulates macrophages cholesterol efflux to apo A1. In vivo measurements showed that the overexpression of PON1 significantly increases the fecal elimination of macrophage-derived cholesterol in PON1-Tg mice. Overall, our results suggested that the overexpression of PON1 in mice may contribute to the regulation of the cholesterol homeostasis by improving the capacity of HDL to mediate cholesterol efflux and by stimulating reverse cholesterol transport. PMID:28278274

  9. Characterization of zebrafish Abcc4 as an efflux transporter of organochlorine pesticides.

    Directory of Open Access Journals (Sweden)

    Xing Lu

    Full Text Available DDT and lindane are highly toxic organochlorine pesticides and posing adverse effects on the environment and public health due to their frequent usage in developing countries. ABCC4/MRP4 is an organic anion transporter that mediates cellular efflux of a wide range of exogenous and endogenous compounds such as cyclic nucleotides and anti-cancer drugs; however, it remains unclear whether ABCC4 and its orthologs function in the detoxification of organochlorine pesticides. Here, we demonstrated the roles of zebrafish Abcc4 in cellular efflux of DDT and lindane. Zebrafish abcc4 was maternally expressed in the oocytes and its transcripts were detected in the lens, pancreas, gills, liver, intestine and bladder of developing embryos and in adult tissues examined. DDT and lindane were able to induce the expression of abcc4 gene and overexpression of Abcc4 significantly decreased the cytotoxicity and accumulation of DDT and lindane in LLC-PK1 cells and developing embryos. In contrast, overexpression of an Abcc4-G1188D mutant abolished its transporter function without effects on its substrate binding activity, and sensitized LLC-PK1 cells and developing embryos to toxic pesticides. Moreover, glutathione (GSH was involved in the efflux of cellular pesticides and ATPase activity in developing embryos can be induced by DDT or lindane. Thus, zebrafish Abcc4 plays crucial roles in cellular efflux of organochlorine pesticides and can be used a potential molecular marker for the monitor of DDT and lindane contamination in the aquatic environment.

  10. PPAR-α, a lipid-sensing transcription factor, regulates blood-brain barrier efflux transporter expression.

    Science.gov (United States)

    More, Vijay R; Campos, Christopher R; Evans, Rebecca A; Oliver, Keith D; Chan, Gary Ny; Miller, David S; Cannon, Ronald E

    2017-04-01

    Lipid sensor peroxisome proliferator-activated receptor alpha (PPAR- α) is the master regulator of lipid metabolism. Dietary release of endogenous free fatty acids, fibrates, and certain persistent environmental pollutants, e.g. perfluoroalkyl fire-fighting foam components, are peroxisome proliferator-activated receptor alpha ligands. Here, we define a role for peroxisome proliferator-activated receptor alpha in regulating the expression of three ATP-driven drug efflux transporters at the rat and mouse blood-brain barriers: P-glycoprotein (Abcb1), breast cancer resistance protein (Bcrp/Abcg2), and multidrug resistance-associated protein 2 (Mrp2/Abcc2). Exposing isolated rat brain capillaries to linoleic acid, clofibrate, or PKAs increased the transport activity and protein expression of the three ABC transporters. These effects were blocked by the PPAR- α antagonist, GW6471. Dosing rats with 20 mg/kg or 200 mg/kg of clofibrate decreased the brain accumulation of the P-glycoprotein substrate, verapamil, by 50% (in situ brain perfusion; effects blocked by GW6471) and increased P-glycoprotein expression and activity in capillaries ex vivo. Fasting C57Bl/6 wild-type mice for 24 h increased both serum lipids and brain capillary P-glycoprotein transport activity. Fasting did not alter P-glycoprotein activity in PPAR- α knockout mice. These results indicate that hyperlipidemia, lipid-lowering fibrates and exposure to certain fire-fighting foam components activate blood-brain barrier peroxisome proliferator-activated receptor alpha, increase drug efflux transporter expression and reduce drug delivery to the brain.

  11. Active efflux of toluene in a solvent-resistant bacterium.

    OpenAIRE

    Isken, S; de Bont, J A

    1996-01-01

    We investigated the mechanisms behind the organic-solvent resistance of the solvent-tolerant strain Pseudomonas putida S12. By use of 14C-labeled toluene, we obtained evidence that an energy-dependent export system may be responsible for this resistance to toluene.

  12. Silicon efflux transporters isolated from two pumpkin cultivars contrasting in Si uptake

    Science.gov (United States)

    Mitani-Ueno, Namiki; Yamaji, Naoki

    2011-01-01

    The accumulation of silicon (Si) differs greatly with plant species and cultivars due to different ability of the roots to take up Si. In Si accumulating plants such as rice, barley and maize, Si uptake is mediated by the influx (Lsi1) and efflux (Lsi2) transporters. Here we report isolation and functional analysis of two Si efflux transporters (CmLsi2-1 and CmLsi2-2) from two pumpkin (Cucurbita moschata Duch.) cultivars contrasting in Si uptake. These cultivars are used for rootstocks of bloom and bloomless cucumber, respectively. Different from mutations in the Si influx transporter CmLsi1, there was no difference in the sequence of either CmLsi2 between two cultivars. Both CmLsi2-1 and CmLsi2-2 showed an efflux transport activity for Si and they were expressed in both the roots and shoots. These results confirm our previous finding that mutation in CmLsi1, but not in CmLsi2-1 and CmLsi2-2 are responsible for bloomless phenotype resulting from low Si uptake. PMID:21617377

  13. The effects of active efflux pumps on antibiotic resistance in Pseudomonas aeruginosa.

    Science.gov (United States)

    Terzi, Huseyin Agah; Kulah, Canan; Ciftci, Ihsan Hakkı

    2014-10-01

    In this study, we investigated the roles of active efflux pumps in antibiotic resistance. The transcription efflux pump genes were analyzed by real-time polymerase chain reaction (qPCR) to determine their role in drug resistance. Antibiotic sensitivity testing was carried out using the Vitek 2 automated system (bioMérieux, France). Isolates were divided into four groups according to their resistance status: multiple-drug resistant (MDR), isolated carbapenem resistant (ICR), isolated quinolone resistant (IQR), and carbapenem and quinolone resistant (CQR). Transcript levels of mexB, mexD, mexF, and mexY were analyzed by qPCR using a LightCycler instrument (Roche, Germany). The genetic similarity between isolates was determined using arbitrarily primed PCR (AP-PCR). Among the 50 isolates investigated, the frequency of genes classified as overexpressed were 88 % for mexD, 76 % for mexB, 46 % for mexF, and 40 % for mexY. Within the MDR group, mexB was overexpressed in 15 of 22 isolates, mexD in 20 of 22, mexF in 15 of 22, and mexY in 19 of 22. In the ICR group, isolates mexB and mexD were each overexpressed in five isolates. mexD overexpression was observed in all seven CQR isolates. Within the IQR group, mexB and mexD were overexpressed in all 12 isolates. mexF overexpression was detected in 7 of 12 isolates in this group. 18 distinct banding patterns were determined by AP-PCR. Increased transcription of mexB was directly correlated with meropenem resistance in the majority of isolates tested, while MexCD-OprJ and MexEF-OprN were related to quinolone resistance; the MexCD-OprJ efflux pump was also related to multidrug resistance. Increased transcription of mexY may contribute to the gentamicin resistance.

  14. Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB.

    Science.gov (United States)

    Eicher, Thomas; Seeger, Markus A; Anselmi, Claudio; Zhou, Wenchang; Brandstätter, Lorenz; Verrey, François; Diederichs, Kay; Faraldo-Gómez, José D; Pos, Klaas M

    2014-09-19

    Membrane transporters of the RND superfamily confer multidrug resistance to pathogenic bacteria, and are essential for cholesterol metabolism and embryonic development in humans. We use high-resolution X-ray crystallography and computational methods to delineate the mechanism of the homotrimeric RND-type proton/drug antiporter AcrB, the active component of the major efflux system AcrAB-TolC in Escherichia coli, and one most complex and intriguing membrane transporters known to date. Analysis of wildtype AcrB and four functionally-inactive variants reveals an unprecedented mechanism that involves two remote alternating-access conformational cycles within each protomer, namely one for protons in the transmembrane region and another for drugs in the periplasmic domain, 50 Å apart. Each of these cycles entails two distinct types of collective motions of two structural repeats, coupled by flanking α-helices that project from the membrane. Moreover, we rationalize how the cross-talk among protomers across the trimerization interface might lead to a more kinetically efficient efflux system.

  15. Bacillus cereus efflux protein BC3310 - a multidrug transporter of the unknown major facilitator family, UMF-2

    Directory of Open Access Journals (Sweden)

    Jasmin K Kroeger

    2015-10-01

    Full Text Available Phylogenetic classification divides the major facilitator superfamily (MFS into 82 families, including 25 families that are comprised of transporters with no characterized functions. This study describes functional data for BC3310 from Bacillus cereus ATCC 14579, a member of the unknown major facilitator family 2 (UMF 2. BC3310 was shown to be a multidrug efflux pump conferring resistance to ethidium bromide, SDS and silver nitrate when heterologously expressed in E. coli DH5α ΔacrAB. A conserved aspartate residue (D105 in putative transmembrane helix 4 was identified, which was essential for the energy dependent ethidium bromide efflux by BC3310. Transport proteins of the MFS comprise specific sequence motifs. Sequence analysis of UMF 2 proteins revealed that they carry a variant of the MFS motif A, which may be used as a marker to distinguish easily between this family and other MFS proteins. Genes orthologous to bc3310 are highly conserved within the B. cereus group of organisms and thus belong to the core genome, suggesting an important conserved functional role in the normal physiology of these bacteria.

  16. Involvement of a Novel Efflux System in Biofilm-Specific Resistance to Antibiotics▿

    Science.gov (United States)

    Zhang, Li; Mah, Thien-Fah

    2008-01-01

    Bacteria growing in biofilms are more resistant to antibiotics than their planktonic counterparts. How this transition occurs is unclear, but it is likely there are multiple mechanisms of resistance that act together in order to provide an increased overall level of resistance to the biofilm. We have identified a novel efflux pump in Pseudomonas aeruginosa that is important for biofilm-specific resistance to a subset of antibiotics. Complete deletion of the genes encoding this pump, PA1874 to PA1877 (PA1874-1877) genes, in an P. aeruginosa PA14 background results in an increase in sensitivity to tobramycin, gentamicin, and ciprofloxacin, specifically when this mutant strain is growing in a biofilm. This efflux pump is more highly expressed in biofilm cells than in planktonic cells, providing an explanation for why these genes are important for biofilm but not planktonic resistance to antibiotics. Furthermore, expression of these genes in planktonic cells increases their resistance to antibiotics. We have previously shown that ndvB is important for biofilm-specific resistance (T. F. Mah, B. Pitts, B. Pellock, G. C. Walker, P. S. Stewart, and G. A. O'Toole, Nature 426:306-310, 2003). Our discovery that combining the ndvB mutation with the PA1874-1877 gene deletion results in a mutant strain that is more sensitive to antibiotics than either single mutant strain suggests that ndvB and PA1874-1877 contribute to two different mechanisms of biofilm-specific resistance to antibiotics. PMID:18469108

  17. Involvement of a novel efflux system in biofilm-specific resistance to antibiotics.

    Science.gov (United States)

    Zhang, Li; Mah, Thien-Fah

    2008-07-01

    Bacteria growing in biofilms are more resistant to antibiotics than their planktonic counterparts. How this transition occurs is unclear, but it is likely there are multiple mechanisms of resistance that act together in order to provide an increased overall level of resistance to the biofilm. We have identified a novel efflux pump in Pseudomonas aeruginosa that is important for biofilm-specific resistance to a subset of antibiotics. Complete deletion of the genes encoding this pump, PA1874 to PA1877 (PA1874-1877) genes, in an P. aeruginosa PA14 background results in an increase in sensitivity to tobramycin, gentamicin, and ciprofloxacin, specifically when this mutant strain is growing in a biofilm. This efflux pump is more highly expressed in biofilm cells than in planktonic cells, providing an explanation for why these genes are important for biofilm but not planktonic resistance to antibiotics. Furthermore, expression of these genes in planktonic cells increases their resistance to antibiotics. We have previously shown that ndvB is important for biofilm-specific resistance (T. F. Mah, B. Pitts, B. Pellock, G. C. Walker, P. S. Stewart, and G. A. O'Toole, Nature 426:306-310, 2003). Our discovery that combining the ndvB mutation with the PA1874-1877 gene deletion results in a mutant strain that is more sensitive to antibiotics than either single mutant strain suggests that ndvB and PA1874-1877 contribute to two different mechanisms of biofilm-specific resistance to antibiotics.

  18. The ABCG2 efflux transporter from rabbit placenta: Cloning and functional characterization.

    Science.gov (United States)

    Halwachs, Sandra; Kneuer, Carsten; Gohlsch, Katrin; Müller, Marian; Ritz, Vera; Honscha, Walther

    2016-02-01

    In human placenta, the ATP-binding cassette efflux transporter ABCG2 is highly expressed in syncytiotrophoblast cells and mediates cellular excretion of various drugs and toxins. Hence, physiological ABCG2 activity substantially contributes to the fetoprotective placenta barrier function during gestation. Developmental toxicity studies are often performed in rabbit. However, despite its toxicological relevance, there is no data so far on functional ABCG2 expression in this species. Therefore, we cloned ABCG2 from placenta tissues of chinchilla rabbit. Sequencing showed 84-86% amino acid sequence identity to the orthologues from man, rat and mouse. We transduced the rabbit ABCG2 clone (rbABCG2) in MDCKII cells and stable rbABCG2 gene and protein expression was shown by RT-PCR and Western blot analysis. The rbABCG2 efflux activity was demonstrated with the Hoechst H33342 assay using the specific ABCG2 inhibitor Ko143. We further tested the effect of established human ABCG2 (hABCG2) drug substrates including the antibiotic danofloxacin or the histamine H2-receptor antagonist cimetidine on H33342 accumulation in MDCKII-rbABCG2 or -hABCG2 cells. Human therapeutic plasma concentrations of all tested drugs caused a comparable competitive inhibition of H33342 excretion in both ABCG2 clones. Altogether, we first showed functional expression of the ABCG2 efflux transporter in rabbit placenta. Moreover, our data suggest a similar drug substrate spectrum of the rabbit and the human ABCG2 efflux transporter. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Conservation of the multidrug resistance efflux gene oprM in Pseudomonas aeruginosa.

    OpenAIRE

    Bianco, N; Neshat, S; Poole, K

    1997-01-01

    An intragenic probe derived from the multidrug resistance gene oprM hybridized with genomic DNA from all 20 serotypes of Pseudomonas aeruginosa and from all 34 environmental and clinical isolates tested, indicating that the MexA-MexB-OprM multidrug efflux system is highly conserved in this organism. The oprM probe also hybridized with genomic DNA from Pseudomonas aureofaciens, Pseudomonas chlororaphis, Pseudomonas syringae, Burkholderia pseudomallei, and Pseudomonas putida, suggesting that ef...

  20. Efflux pump regulatory genes mutations in multidrug resistance Pseudomonas aeruginosa isolated from wound infections in Isfahan hospitals

    Directory of Open Access Journals (Sweden)

    Hamid Vaez

    2014-01-01

    Conclusions: P. aeruginosa isolates with mutation in efflux pump regulatory genes such as mexR and nfxB could be a main factor contributed to antibiotic resistance and must be considered in antibiotic treatment.

  1. Contribution of efflux pumps in fluroquinolone resistance in multi-drug resistant nosocomial isolates of Pseudomanas aeruginosa from a tertiary referral hospital in north east India

    Directory of Open Access Journals (Sweden)

    D Choudhury

    2015-01-01

    Full Text Available Background: Pseudomonas aeruginosa is one of the leading opportunistic pathogen and its ability to acquire resistance against series of antimicrobial agents confine treatment option for nosocomial infections. Increasing resistance to fluroquinolone (FQ agents has further worsened the scenario. The major mechanism of resistance to FQs includes mutation in FQs target genes in bacteria (DNA gyrase and/or topoisomerases and overexpression of antibiotic efflux pumps. Objective: We have investigated the role of efflux pump mediated FQ resistance in nosocomial isolates of P. aeruginosa from a tertiary referral hospital in north eastern part of India. Materials and Methods: A total of 234 non-duplicate, consecutive clinical isolates of P. aeruginosa were obtained from a tertiary referral hospital of north-east India. An efflux pump inhibitor (EPI, carbonyl cyanide m-chlorophenylhydrazone (CCCP based method was used for determination of efflux pump activity and multiplex polymerase chain reaction (PCR was performed for molecular characterisation of efflux pump. Minimum inhibitory concentration (MIC reduction assay was also performed for all the isolates. Results and Conclusion: A total number of 56 (23% have shown efflux mediated FQ resistance. MexAB-OprM efflux system was predominant type. This is the first report of efflux pump mediated FQ resistance from this part of the world and the continued emergence of these mutants with such high MIC range from this part of the world demands serious awareness, diagnostic intervention, and proper therapeutic option.

  2. Contribution of efflux pumps in fluroquinolone resistance in multi-drug resistant nosocomial isolates of Pseudomanas aeruginosa from a tertiary referral hospital in north east India.

    Science.gov (United States)

    Choudhury, D; Talukdar, A Das; Maurya, A P; Choudhury, M Dutta; Dhar Chanda, D; Chakravarty, A; Bhattacharjee, A

    2015-01-01

    Pseudomonas aeruginosa is one of the leading opportunistic pathogen and its ability to acquire resistance against series of antimicrobial agents confine treatment option for nosocomial infections. Increasing resistance to fluroquinolone (FQ) agents has further worsened the scenario. The major mechanism of resistance to FQs includes mutation in FQs target genes in bacteria (DNA gyrase and/or topoisomerases) and overexpression of antibiotic efflux pumps. We have investigated the role of efflux pump mediated FQ resistance in nosocomial isolates of P. aeruginosa from a tertiary referral hospital in north eastern part of India. A total of 234 non-duplicate, consecutive clinical isolates of P. aeruginosa were obtained from a tertiary referral hospital of north-east India. An efflux pump inhibitor (EPI), carbonyl cyanide m-chlorophenylhydrazone (CCCP) based method was used for determination of efflux pump activity and multiplex polymerase chain reaction (PCR) was performed for molecular characterisation of efflux pump. Minimum inhibitory concentration (MIC) reduction assay was also performed for all the isolates. A total number of 56 (23%) have shown efflux mediated FQ resistance. MexAB-OprM efflux system was predominant type. This is the first report of efflux pump mediated FQ resistance from this part of the world and the continued emergence of these mutants with such high MIC range from this part of the world demands serious awareness, diagnostic intervention, and proper therapeutic option.

  3. Topoisomerase mutations and efflux are associated with fluoroquinolone resistance in Enterococcus faecalis.

    Science.gov (United States)

    Oyamada, Yoshihiro; Ito, Hideaki; Inoue, Matsuhisa; Yamagishi, Jun-ichi

    2006-10-01

    To understand better the mechanisms of fluoroquinolone resistance in Enterococcus faecalis, fluoroquinolone-resistant mutants isolated from Ent. faecalis ATCC 29212 by stepwise selection with sparfloxacin (SPX) and norfloxacin (NOR) were analysed. The results showed the following. (i) In general, fluoroquinolone-resistance mechanisms in Ent. faecalis are similar to those in other Gram-positive bacteria, such as Staphylococcus aureus and Streptococcus pneumoniae, namely, mutants with amino acid changes in both GyrA and ParC exhibited high fluoroquinolone resistance, and single GyrA mutants and a single ParC mutant were more resistant to SPX and NOR, respectively, than the parent strain, indicating that the primary targets of SPX and NOR in Ent. faecalis are DNA gyrase and topoisomerase IV, respectively. (ii) Alterations in GyrB (DeltaKGA, residues 395-397) and ParE (Glu-459 to Lys) were associated with fluoroquinolone resistance in some mutants. Moreover, the facts that the NOR MIC, but not the SPX MIC, decreased in the presence of multidrug efflux pump inhibitors, that NOR accumulation decreased in the cells, and that the EmeA mRNA expression level did not change, strongly suggested that a NorA-like efflux pump, rather than EmeA, was involved in resistance to NOR.

  4. Cooperation between prokaryotic (Lde) and eukaryotic (MRP) efflux transporters in J774 macrophages infected with Listeria monocytogenes: studies with ciprofloxacin and moxifloxacin.

    Science.gov (United States)

    Lismond, Ann; Tulkens, Paul M; Mingeot-Leclercq, Marie-Paule; Courvalin, Patrice; Van Bambeke, Françoise

    2008-09-01

    Antibiotic efflux is observed in both eukaryotic and prokaryotic cells, modulating accumulation and resistance. The present study examines whether eukaryotic and prokaryotic fluoroquinolone transporters can cooperate in the context of an intracellular infection. We have used (i) J774 macrophages (comparing a ciprofloxacin-resistant cell line overexpressing an MRP-like transporter with wild-type cells with basal expression), (ii) Listeria monocytogenes (comparing a clinical isolate [CLIP21369] displaying ciprofloxacin resistance associated with overexpression of the Lde efflux system with a wild-type strain [EGD]), (iii) ciprofloxacin (substrate of both Lde and MRP) and moxifloxacin (nonsubstrate), and (iv) probenecid and reserpine (preferential inhibitors of MRP and Lde, respectively). The ciprofloxacin MICs for EGD were unaffected by reserpine, while those for CLIP21369 were decreased approximately fourfold (and made similar to those of EGD). Neither probenecid nor reserpine affected the moxifloxacin MICs against EGD or CLIP21369. In dose-response studies (0.01x to 100x MIC) in broth, reserpine fully restored the susceptibility of CLIP21369 to ciprofloxacin (no effect on EGD) but did not influence the activity of moxifloxacin. In studies with intracellular bacteria, reserpine, probenecid, and their combination increased the activity of ciprofloxacin in wild-type and ciprofloxacin-resistant macrophages in parallel with an increase in ciprofloxacin accumulation in macrophages for EGD and an increase in accumulation and decrease in MIC (in broth) for CLIP21369. Moxifloxacin accumulation and intracellular activity were consistently not affected by the inhibitors. A bacterial efflux pump may thus actively cooperate with a eukaryotic efflux transporter to reduce the activity of a common substrate (ciprofloxacin) toward an intracellular bacterial target.

  5. Temporal interplay between efflux pumps and target mutations in development of antibiotic resistance in Escherichia coli.

    Science.gov (United States)

    Singh, Renu; Swick, Michelle C; Ledesma, Kimberly R; Yang, Zhen; Hu, Ming; Zechiedrich, Lynn; Tam, Vincent H

    2012-04-01

    The emergence of resistance presents a debilitating change in the management of infectious diseases. Currently, the temporal relationship and interplay between various mechanisms of drug resistance are not well understood. A thorough understanding of the resistance development process is needed to facilitate rational design of countermeasure strategies. Using an in vitro hollow-fiber infection model that simulates human drug treatment, we examined the appearance of efflux pump (acrAB) overexpression and target topoisomerase gene (gyrA and parC) mutations over time in the emergence of quinolone resistance in Escherichia coli. Drug-resistant isolates recovered early (24 h) had 2- to 8-fold elevation in the MIC due to acrAB overexpression, but no point mutations were noted. In contrast, high-level (≥ 64× MIC) resistant isolates with target site mutations (gyrA S83L with or without parC E84K) were selected more readily after 120 h, and regression of acrAB overexpression was observed at 240 h. Using a similar dosing selection pressure, the emergence of levofloxacin resistance was delayed in a strain with acrAB deleted compared to the isogenic parent. The role of efflux pumps in bacterial resistance development may have been underappreciated. Our data revealed the interplay between two mechanisms of quinolone resistance and provided a new mechanistic framework in the development of high-level resistance. Early low-level levofloxacin resistance conferred by acrAB overexpression preceded and facilitated high-level resistance development mediated by target site mutation(s). If this interpretation is correct, then these findings represent a paradigm shift in the way quinolone resistance is thought to develop.

  6. Efflux pump contribution to multidrug resistance in clinical isolates of Pseudomonas aeruginosa.

    Science.gov (United States)

    Kiser, Tyree H; Obritsch, Marilee D; Jung, Rose; MacLaren, Robert; Fish, Douglas N

    2010-07-01

    To determine if increased expression of efflux pumps, mutations in the genes encoding regulatory proteins for efflux pumps, or the combination is associated with multidrug-resistant (MDR) Pseudomonas aeruginosa isolates. Microbiologic evaluation of prospectively collected Pseudomonas aeruginosa isolates. University teaching hospital. ISOLATES: One hundred eight unique P. aeruginosa isolates-50 non-MDR and 58 MDR isolates-obtained from pulmonary or blood sources from patients admitted to the intensive care unit between January 1, 1999, and December 31, 2004. Isolates were considered MDR if they were resistant to at least three of the following four drugs: ciprofloxacin, tobramycin, ceftazidime, or imipenem. Possible mutations in efflux regulatory genes mexR, nfxB, and mexZ were analyzed by using polymerase chain reaction amplification and DNA sequencing. Determination of the expression of outer membrane proteins OprM and OprJ was performed by using sodium dodecyl sulfate- polyacrylamide gel electrophoresis immunoblotting. Differences in regulatory gene mutations and outer membrane protein expression were compared between non-MDR and MDR isolates. Among the 108 P. aeruginosa isolates, the MDR isolates were more likely to overexpress OprM compared with non-MDR isolates (64% vs 2%, pMutations in mexR and mexZ were present in 64% and 26% of MDR strains, respectively, but were not associated with OprM overexpression or multidrug resistance. Expression of OprJ was not associated with MDR isolates (odds ratio [OR] 3.7, 95% confidence interval [CI] 0.7-18.5, p=0.11). Mutations in nfxB (12% of MDR strains) were also not associated with multidrug resistance (OR 3.5, 95% CI 0.7-17.8, p=0.13). Eight (100%) of 8 isolates with OprJ expression plus OprM overexpression, 12 (92%) of 13 isolates with combined mexR and mexZ mutations, 5 (100%) of 5 isolates with nfxB plus mexZ mutations, and 16 (100%) of 16 isolates with OprM overexpression plus mexZ mutations were MDR isolates. The

  7. Interaction of dipeptide prodrugs of saquinavir with multidrug resistance protein-2 (MRP-2): evasion of MRP-2 mediated efflux.

    Science.gov (United States)

    Jain, Ritesh; Agarwal, Sheetal; Mandava, Nanda Kishore; Sheng, Ye; Mitra, Ashim K

    2008-10-01

    Saquinavir (SQV), the first protease inhibitor approved by FDA to treat HIV-1 infection. This drug is a well-known substrate for multidrug resistance protein-2 (MRP-2). The objective of this study was to investigate whether derivatization of SQV to dipeptide prodrugs, valine-valine-saquinavir (Val-Val-SQV) and glycine-valine-saquinavir (Gly-Val-SQV), targeting peptide transporter can circumvent MRP-2 mediated efflux. Uptake and transport studies were carried out across MDCKII-MRP2 cell monolayers to investigate the interaction of SQV and its prodrugs with MRP-2. In situ single pass intestinal perfusion experiments in rat jejunum were performed to calculate intestinal absorption rate constants and permeabilities of SQV, Val-Val-SQV and Gly-Val-SQV. Uptake studies demonstrated that the prodrugs have significantly lower interaction with MRP-2 relative to SQV. Transepithelial transport of Val-Val-SQV and Gly-Val-SQV across MDCKII-MRP2 cells exhibited an enhanced absorptive flux and reduced secretory flux as compared to SQV. Intestinal perfusion studies revealed that synthesized prodrugs have higher intestinal permeabilities relative to SQV. Enhanced absorption of Val-Val-SQV and Gly-Val-SQV relative to SQV can be attributed to their translocation by the peptide transporter in the jejunum. In the presence of MK-571, a MRP family inhibitor, there was a significant increase in the permeabilities of SQV and Gly-Val-SQV indicating that these compounds are probably substrates for MRP-2. However, there was no change in the permeability of Val-Val-SQV with MK-571 indicating lack of any interaction of Val-Val-SQV with MRP-2. In conclusion, peptide transporter targeted prodrug modification of MRP-2 substrates may lead to shielding of these drug molecules from MRP-2 efflux pumps.

  8. Differential roles of RND efflux pumps in antimicrobial drug resistance of sessile and planktonic Burkholderia cenocepacia cells.

    Science.gov (United States)

    Buroni, Silvia; Matthijs, Nele; Spadaro, Francesca; Van Acker, Heleen; Scoffone, Viola C; Pasca, Maria Rosalia; Riccardi, Giovanna; Coenye, Tom

    2014-12-01

    Burkholderia cenocepacia is notorious for causing respiratory tract infections in people with cystic fibrosis. Infections with this organism are particularly difficult to treat due to its high level of intrinsic resistance to most antibiotics. Multidrug resistance in B. cenocepacia can be ascribed to different mechanisms, including the activity of efflux pumps and biofilm formation. In the present study, the effects of deletion of the 16 operons encoding resistance-nodulation-cell division (RND)-type efflux pumps in B. cenocepacia strain J2315 were investigated by determining the MICs of various antibiotics and by investigating the antibiofilm effect of these antibiotics. Finally, the expression levels of selected RND genes in treated and untreated cultures were investigated using reverse transcriptase quantitative PCR (RT-qPCR). Our data indicate that the RND-3 and RND-4 efflux pumps are important for resistance to various antimicrobial drugs (including tobramycin and ciprofloxacin) in planktonic B. cenocepacia J2315 populations, while the RND-3, RND-8, and RND-9 efflux systems protect biofilm-grown cells against tobramycin. The RND-8 and RND-9 efflux pumps are not involved in ciprofloxacin resistance. Results from the RT-qPCR experiments on the wild-type strain B. cenocepacia J2315 suggest that there is little regulation at the level of mRNA expression for these efflux pumps under the conditions tested. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. A proposed role for efflux transporters in the pathogenesis of hydrocephalus

    Science.gov (United States)

    Krishnamurthy, Satish; Tichenor, Michael D.; Satish, Akhila G.; Lehmann, David B.

    2014-01-01

    Hydrocephalus is a common brain disorder that is treated only with surgery. The basis for surgical treatment rests on the circulation theory. However, clinical and experimental data to substantiate circulation theory have remained inconclusive. In brain tissue and in the ventricles, we see that osmotic gradients drive water diffusion in water-permeable tissue. As the osmolarity of ventricular CSF increases within the cerebral ventricles, water movement into the ventricles increases and causes hydrocephalus. Macromolecular clearance from the ventricles is a mechanism to establish the normal CSF osmolarity, and therefore ventricular volume. Efflux transporters, (p-glycoprotein), are located along the blood brain barrier and play an important role in the clearance of macromolecules (endobiotics and xenobiotics) from the brain to the blood. There is clinical and experimental data to show that macromolecules are cleared out of the brain in normal and hydrocephalic brains. This article summarizes the existing evidence to support the role of efflux transporters in the pathogenesis of hydrocephalus. The location of p-gp along the pathways of macromolecular clearance and the broad substrate specificity of this abundant transporter to a variety of different macromolecules are reviewed. Involvement of p-gp in the transport of amyloid beta in Alzheimer disease and its relation to normal pressure hydrocephalus is reviewed. Finally, individual variability of p-gp expression might explain the variability in the development of hydrocephalus following intraventricular hemorrhage. PMID:25165050

  10. Antimicrobial resistance (AMR) nanomachines-mechanisms for fluoroquinolone and glycopeptide recognition, efflux and/or deactivation.

    Science.gov (United States)

    Phillips-Jones, Mary K; Harding, Stephen E

    2018-04-01

    In this review, we discuss mechanisms of resistance identified in bacterial agents Staphylococcus aureus and the enterococci towards two priority classes of antibiotics-the fluoroquinolones and the glycopeptides. Members of both classes interact with a number of components in the cells of these bacteria, so the cellular targets are also considered. Fluoroquinolone resistance mechanisms include efflux pumps (MepA, NorA, NorB, NorC, MdeA, LmrS or SdrM in S. aureus and EfmA or EfrAB in the enterococci) for removal of fluoroquinolone from the intracellular environment of bacterial cells and/or protection of the gyrase and topoisomerase IV target sites in Enterococcus faecalis by Qnr-like proteins. Expression of efflux systems is regulated by GntR-like (S. aureus NorG), MarR-like (MgrA, MepR) regulators or a two-component signal transduction system (TCS) (S. aureus ArlSR). Resistance to the glycopeptide antibiotic teicoplanin occurs via efflux regulated by the TcaR regulator in S. aureus. Resistance to vancomycin occurs through modification of the D-Ala-D-Ala target in the cell wall peptidoglycan and removal of high affinity precursors, or by target protection via cell wall thickening. Of the six Van resistance types (VanA-E, VanG), the VanA resistance type is considered in this review, including its regulation by the VanSR TCS. We describe the recent application of biophysical approaches such as the hydrodynamic technique of analytical ultracentrifugation and circular dichroism spectroscopy to identify the possible molecular effector of the VanS receptor that activates expression of the Van resistance genes; both approaches demonstrated that vancomycin interacts with VanS, suggesting that vancomycin itself (or vancomycin with an accessory factor) may be an effector of vancomycin resistance. With 16 and 19 proteins or protein complexes involved in fluoroquinolone and glycopeptide resistances, respectively, and the complexities of bacterial sensing mechanisms that

  11. Multidrug efflux pumps in Staphylococcus aureus and their clinical implications.

    Science.gov (United States)

    Jang, Soojin

    2016-01-01

    Antibiotic resistance is rapidly spreading among bacteria such as Staphylococcus aureus, an opportunistic bacterial pathogen that causes a variety of diseases in humans. For the last two decades, bacterial multidrug efflux pumps have drawn attention due to their potential association with clinical multidrug resistance. Numerous researchers have demonstrated efflux-mediated resistance in vitro and in vivo and found novel multidrug transporters using advanced genomic information about bacteria. This article aims to provide a concise summary of multidrug efflux pumps and their important clinical implications, focusing on recent findings concerning S. aureus efflux pumps.

  12. Interaction of BDE-47 and its Hydroxylated Metabolite 6-OH-BDE-47 with the Human ABC Efflux Transporters P-gp and BCRP: Considerations for Human Exposure and Risk Assessment

    Science.gov (United States)

    ATP binding cassette (ABC) transporters, including P-glycoprotein (P-gp; also known as MDR1, ABCB1) and breast cancer resistance protein (BCRP; also known as ABCG2), are membrane-bound proteins that mediate the cellular efflux of xenobiotics as an important defense against chemic...

  13. Intrinsic resistance of Escherichia coli to mureidomycin A and C due to expression of the multidrug efflux system AcrAB-TolC: comparison with the efflux systems of mureidomycin-susceptible Pseudomonas aeruginosa.

    Science.gov (United States)

    Gotoh, Naomasa; Murata, Takeshi; Ozaki, Toru; Kimura, Tadashi; Kondo, Akiko; Nishino, Takeshi

    2003-03-01

    Intrinsic resistance to mureidomycin is shown in Escherichia coli. This is in contrast to Pseudomonas aeruginosa, which generally displays intrinsic resistance to a variety of antimicrobial agents, but not to mureidomycin. Isogenic efflux system mutants from both species were subjected to antibiotic susceptibility tests. These studies showed that the differences regarding the susceptibility of E. coli and P. aeruginosa to mureidomycin A and C may be explained by the expression of efflux systems that mediate resistance to mureidomycin A and C.

  14. Overexpression and deletion of phospholipid transfer protein reduce HDL mass and cholesterol efflux capacity but not macrophage reverse cholesterol transport[S

    Science.gov (United States)

    Kuwano, Takashi; Bi, Xin; Cipollari, Eleonora; Yasuda, Tomoyuki; Lagor, William R.; Szapary, Hannah J.; Tohyama, Junichiro; Millar, John S.; Billheimer, Jeffrey T.; Lyssenko, Nicholas N.; Rader, Daniel J.

    2017-01-01

    Phospholipid transfer protein (PLTP) may affect macrophage reverse cholesterol transport (mRCT) through its role in the metabolism of HDL. Ex vivo cholesterol efflux capacity and in vivo mRCT were assessed in PLTP deletion and PLTP overexpression mice. PLTP deletion mice had reduced HDL mass and cholesterol efflux capacity, but unchanged in vivo mRCT. To directly compare the effects of PLTP overexpression and deletion on mRCT, human PLTP was overexpressed in the liver of wild-type animals using an adeno-associated viral (AAV) vector, and control and PLTP deletion animals were injected with AAV-null. PLTP overexpression and deletion reduced plasma HDL mass and cholesterol efflux capacity. Both substantially decreased ABCA1-independent cholesterol efflux, whereas ABCA1-dependent cholesterol efflux remained the same or increased, even though preβ HDL levels were lower. Neither PLTP overexpression nor deletion affected excretion of macrophage-derived radiocholesterol in the in vivo mRCT assay. The ex vivo and in vivo assays were modified to gauge the rate of cholesterol efflux from macrophages to plasma. PLTP activity did not affect this metric. Thus, deviations in PLTP activity from the wild-type level reduce HDL mass and ex vivo cholesterol efflux capacity, but not the rate of macrophage cholesterol efflux to plasma or in vivo mRCT. PMID:28137768

  15. Identification of mutations related to streptomycin resistance in clinical isolates of Mycobacterium tuberculosis and possible involvement of efflux mechanism.

    Science.gov (United States)

    Spies, Fernanda S; da Silva, Pedro E Almeida; Ribeiro, Marta O; Rossetti, Maria Lucia; Zaha, Arnaldo

    2008-08-01

    The MIC for streptomycin in the presence of efflux pump (EP) inhibitors and the sequencing of rpsL, rrs, and gidB genes provided evidence for the possible participation of EP in low-level streptomycin (STR) resistance of some isolates without mutations. Mutation in the gidB gene and an EP could act synergistically to confer low STR resistance.

  16. Brain barriers and functional interfaces with sequential appearance of ABC efflux transporters during human development

    DEFF Research Database (Denmark)

    Møllgård, Kjeld; Dziegielewska, Katarzyna M.; Holst, Camilla B.

    2017-01-01

    Adult brain is protected from entry of drugs and toxins by specific mechanisms such as ABC (ATP-binding Cassette) efflux transporters. Little is known when these appear in human brain during development. Cellular distribution of three main ABC transporters (ABCC1, ABCG2, ABCB1) was determined...... at blood-brain barriers and interfaces in human embryos and fetuses in first half of gestation. Antibodies against claudin-5 and-11 and antibodies to α-fetoprotein were used to describe morphological and functional aspects of brain barriers. First exchange interfaces to be established, probably at 4......-5 weeks post conception, are between brain and embryonic cerebrospinal fluid (eCSF) and between outer surface of brain anlage and primary meninx. They already exclude α-fetoprotein and are immunopositive for both claudins, ABCC1 and ABCG2. ABCB1 is detectable within a week of blood vessels first...

  17. Efflux transporters in blood-brain interfaces of the developing brain

    Directory of Open Access Journals (Sweden)

    Nathalie eStrazielle

    2015-02-01

    Full Text Available The cerebral microvessel endothelium forming the blood-brain barrier (BBB and the epithelium of the choroid plexuses forming the blood-CSF barrier (BCSFB operate as gatekeepers for the CNS. Exposure of the vulnerable developing brain to chemical insults can have dramatic consequences for brain maturation and lead to life-long neurological diseases. The ability of blood-brain interfaces (BBIs to efficiently protect the immature brain is therefore an important pathophysiological issue. This is also key to our understanding of drug entry into the brain of neonatal and pediatric patients. Nonspecific paracellular diffusion through BBIs is restricted early during development, but other neuroprotective properties of these interfaces differ between the developing and adult brains. This review focuses on the developmental expression and function of multispecific efflux transporters of the ABCB, ABCC, ABCG, SLC21, SLC22, and SLC15 families. These transporters play a key role in preventing brain entry of blood-borne molecules such as drugs, environmental toxicants, and endogenous metabolites, or else in increasing the clearance of potentially harmful organic ions from the brain. The limited data available for laboratory animals and human highlight transporter-specific developmental patterns of expression and function, which differ between BBIs. The BCSFB achieves an adult phenotype earlier than the BBB. Efflux transporters at the BBB appear to be regulated by various factors subsequently secreted by neural progenitors, and astrocytes during development. Their expression is also modulated by oxidative stress, inflammation, and exposure to xenobiotic inducers. A better understanding of these regulatory pathways during development, in particular the signaling pathways triggered by oxidative stress and xenobiotics, may open new opportunities to therapeutic manipulation in view to improve or restore neuroprotective functions of the BBIs in the context of

  18. RND efflux pump and its interrelationship with quorum sensing system.

    Science.gov (United States)

    Liang, Zhi-bin; Chen, Yu-mei; Chen, Yu-fan; Cheng, Ying-ying; Zhang, Lian-hui

    2016-10-20

    Antibiotic resistance has become a serious concern in treatment of bacterial infections. Overexpression of efflux pump is one of the important mechanisms in antibiotic resistance. In Gram negative bacteria, RND (Resistance-nodulation-cell division) superfamily efflux pump plays a vital important role in antibiotics resistance. Recent research progress unveils an intriguing interrelationship between RND efflux pump and the bacterial quorum sensing system, whose regulation is dependent on small signal molecules. This article reviews the latest findings on the structure and transport mechanism of RND efflux pump, as well as the general features and regulatory mechanisms of quorum sensing, with a special focus on the role and mechanism of quorum sensing system in regulation of RND efflux pump, and the influence of efflux pump on quorum sensing signal transportation. Further investigation of the interrelationship between RND efflux pumps and the bacterial quorum sensing systems is critical for elucidation of the regulatory mechanisms that govern the expression of the RND efflux pumps genes, and may also provide useful clues to overcome the efflux pump mediated antibiotic resistance.

  19. Multidrug efflux transporter activity in sea urchin embryos:Does localization provide a diffusive advantage?

    Science.gov (United States)

    Song, Xianfeng; Setayeshgar, Sima; Cole, Bryan; Hamdoun, Amro; Epel, David

    2008-03-01

    Experiments have shown upregulation of multidrug efflux transporter activity approximately 30 min after fertilization in the sea urchin embryo [1]. These ATP-hydrolyzing transporter proteins pump moderately hydrophobic molecules out of the cell and represent the cell's first line of defense againstexogenous toxins. It has also been shown that transporters are moved in vesicles along microfilaments and localized to tips of microvilli prior to activation. We have constructed a geometrically realistic model of the embryo, including microvilli, to explore the functional role of this localization in the efficient elimination of toxins from the standpoint of diffusion. We compute diffusion of toxins in extracellular, membrane and intracellular spaces coupled with transporter activity, using experimentally derived values for physical parameters. For transporters uniformly distributed along microvilli and tip-localized transporters we compare regions in parameter space where each distribution provides diffusive advantage, and comment on the physically expected conditions. [1] A. M. Hamdoun, G. N. Cherr, T. A. Roepke and D. Epel, Developmental Biology 276 452 (2004).

  20. Berberine Is a Novel Type Efflux Inhibitor Which Attenuates the MexXY-Mediated Aminoglycoside Resistance in Pseudomonas aeruginosa.

    Science.gov (United States)

    Morita, Yuji; Nakashima, Ken-Ichi; Nishino, Kunihiko; Kotani, Kenta; Tomida, Junko; Inoue, Makoto; Kawamura, Yoshiaki

    2016-01-01

    The emergence and spread of multidrug-resistant P. aeruginosa infections is of great concern, as very few agents are effective against strains of this species. Methanolic extracts from the Coptidis Rhizoma (the rhizomes of Coptis japonica var. major Satake) or Phellodendri Cortex (the bark of Phellodendron chinense Schneider) markedly reduced resistance to anti-pseudomonal aminoglycosides (e.g., amikacin) in multidrug-resistant P. aeruginosa strains. Berberine, the most abundant benzylisoquinoline alkaloid in the two extracts, reduced aminoglycoside resistance of P. aeruginosa via a mechanism that required the MexXY multidrug efflux system; berberine also reduced aminoglycoside MICs in Achromobacter xylosoxidans and Burkholderia cepacia, two species that harbor intrinsic multidrug efflux systems very similar to the MexXY. Furthermore this compound inhibited MexXY-dependent antibiotic resistance of other classes including cephalosporins (cefepime), macrolides (erythromycin), and lincosamides (lincomycin) demonstrated using a pseudomonad lacking the four other major Mex pumps. Although phenylalanine-arginine beta-naphthylamide (PAβN), a well-known efflux inhibitor, antagonized aminoglycoside in a MexXY-dependent manner, a lower concentration of berberine was sufficient to reduce amikacin resistance of P. aeruginosa in the presence of PAβN. Moreover, berberine enhanced the synergistic effects of amikacin and piperacillin (and vice versa) in multidrug-resistant P. aeruginosa strains. Thus, berberine appears to be a novel type inhibitor of the MexXY-dependent aminoglycoside efflux in P. aeruginosa. As aminoglycosides are molecules of choice to treat severe infections the clinical impact is potentially important.

  1. The relative contribution of efflux and target gene mutations to fluoroquinolone resistance in recent clinical isolates of Pseudomonas aeruginosa.

    Science.gov (United States)

    Dunham, S A; McPherson, C J; Miller, A A

    2010-03-01

    The clinical utility of fluoroquinolones (FQs) for the treatment of Pseudomonas aeruginosa (PA) and other serious Gram-negative infections is currently decreasing due to the rapid emergence of resistance. Because previous studies have shown that efflux is a common mechanism contributing to FQ resistance in PA, one suggested approach to extend the longevity of this class of drugs is combination therapy with an efflux pump inhibitor (EPI). In order to determine the viability of this approach, it is necessary to understand the relative contribution of efflux- vs. target-mediated mechanisms of FQ resistance in the clinic. A set of 26 recent PA clinical isolates were characterized for antibiotic resistance profiles, efflux pump expression, topoisomerase mutations, and FQ susceptibility with and without an EPI. The contribution of OprM to the overall antibiotic resistance was assessed in a subset of these strains. Our results suggest that the co-administration of an EPI with FQs or other antibiotics currently in use would not be sufficient to combat the complexity of resistance mechanisms now present in many clinical isolates.

  2. Resistance-nodulation-division efflux pump acrAB is modulated by florfenicol and contributes to drug resistance in the fish pathogen Piscirickettsia salmonis.

    Science.gov (United States)

    Sandoval, Rodrigo; Oliver, Cristian; Valdivia, Sharin; Valenzuela, Karla; Haro, Ronie E; Sánchez, Patricio; Olavarría, Víctor H; Valenzuela, Paulina; Avendaño-Herrera, Rubén; Romero, Alex; Cárcamo, Juan G; Figueroa, Jaime E; Yáñez, Alejandro J

    2016-06-01

    Piscirickettsia salmonis is a fastidious intracellular pathogen responsible for high mortality rates in farmed salmonids, with serious economic consequences for the Chilean aquaculture industry. Oxytetracycline and florfenicol are the most frequently used antibiotics against P. salmonis, but routine use could contribute to drug resistance. This study identified differentiated florfenicol susceptibilities in two P. salmonis strains, LF-89 and AUSTRAL-005. The less susceptible isolate, AUSTRAL-005, also showed a high ethidium bromide efflux rate, indicating a higher activity of general efflux pump genes than LF-89. The P. salmonis genome presented resistance nodulation division (RND) family members, a family containing typical multidrug resistance-related efflux pumps in Gram-negative bacteria. Additionally, efflux pump acrAB genes were overexpressed in AUSTRAL-005 following exposure to the tolerated maximal concentration of florfenicol, in contrast to LF-89. These results indicate that tolerated maximum concentrations of florfenicol can modulate RND gene expression and increase efflux pump activity. We propose that the acrAB efflux pump is essential for P. salmonis survival at critical florfenicol concentrations and for the generation of antibiotic-resistant bacterial strains. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Screening compounds with a novel high-throughput ABCB1-mediated efflux assay identifies drugs with known therapeutic targets at risk for multidrug resistance interference.

    Directory of Open Access Journals (Sweden)

    Megan R Ansbro

    Full Text Available ABCB1, also known as P-glycoprotein (P-gp or multidrug resistance protein 1 (MDR1, is a membrane-associated multidrug transporter of the ATP-binding cassette (ABC transporter family. It is one of the most widely studied transporters that enable cancer cells to develop drug resistance. Reliable high-throughput assays that can identify compounds that interact with ABCB1 are crucial for developing new therapeutic drugs. A high-throughput assay for measuring ABCB1-mediated calcein AM efflux was developed using a fluorescent and phase-contrast live cell imaging system. This assay demonstrated the time- and dose-dependent accumulation of fluorescent calcein in ABCB1-overexpressing KB-V1 cells. Validation of the assay was performed with known ABCB1 inhibitors, XR9576, verapamil, and cyclosporin A, all of which displayed dose-dependent inhibition of ABCB1-mediated calcein AM efflux in this assay. Phase-contrast and fluorescent images taken by the imaging system provided additional opportunities for evaluating compounds that are cytotoxic or produce false positive signals. Compounds with known therapeutic targets and a kinase inhibitor library were screened. The assay identified multiple agents as inhibitors of ABCB1-mediated efflux and is highly reproducible. Among compounds identified as ABCB1 inhibitors, BEZ235, BI 2536, IKK 16, and ispinesib were further evaluated. The four compounds inhibited calcein AM efflux in a dose-dependent manner and were also active in the flow cytometry-based calcein AM efflux assay. BEZ235, BI 2536, and IKK 16 also successfully inhibited the labeling of ABCB1 with radiolabeled photoaffinity substrate [(125I]iodoarylazidoprazosin. Inhibition of ABCB1 with XR9576 and cyclosporin A enhanced the cytotoxicity of BI 2536 to ABCB1-overexpressing cancer cells, HCT-15-Pgp, and decreased the IC50 value of BI 2536 by several orders of magnitude. This efficient, reliable, and simple high-throughput assay has identified ABCB1

  4. Expression of the MexXY efflux pump in amikacin-resistant isolates of Pseudomonas aeruginosa.

    Science.gov (United States)

    Islam, S; Jalal, S; Wretlind, B

    2004-10-01

    The MexZ-MexX-MexY multidrug efflux system in Pseudomonas aeruginosa was studied to determine its contribution to aminoglycoside resistance. Amikacin-resistant (AR) mutants were generated from P. aeruginosa strain PAO1, and clinical isolates of P. aeruginosa were collected from cystic fibrosis patients. The regulatory gene mexZ and the intergenic region (mexOZ) between mexZ and mexX were investigated for mutation by PCR and DNA sequence analysis. The results showed that 14 of 15 AR clinical isolates and one of ten laboratory mutants had at least one mutation in mexZ and/or mexOZ. To study the effect of mexZ and mexOZ mutations, the production of MexY mRNA was investigated quantitatively by real-time PCR. Seven of ten AR mutants (MIC 4-8 mg/L) produced 8-21-fold more MexY mRNA than PAO1. These isolates were sensitive to fluoroquinolones, carbapenems and ceftazidime. One AR mutant (MIC 64 mg/L) that produced > 200-fold more MexY mRNA than PAO1 was also resistant to fluoroquinolones, carbapenems and ceftazidime. Thirteen of 15 AR clinical isolates produced 3.4-727-fold more MexY mRNA. No evidence was found for the aminoglycoside-modifying enzymes 6'-N-acetyltransferase type Ib, 4'-O-nucleotidyltransferase type IIb or aminoglycoside 3'-phosphotransferase IIps in these strains. Nine AR mutants overproduced MexY without mutations in mexZ or mexOZ, suggesting that MexXY efflux is also regulated by gene(s) other than mexZ.

  5. Contribution of EmrAB efflux pumps to colistin resistance in Acinetobacter baumannii.

    Science.gov (United States)

    Lin, Ming-Feng; Lin, Yun-You; Lan, Chung-Yu

    2017-02-01

    Efflux pumps play an important role in antimicrobial resistance for Acinetobacter baumannii. However, the function of the Emr pump system and the relationship between Emr and drug resistance has not been characterized in A. baumannii. In this study, four possible groups of emr-like genes were found by searching a genome database. Among them, A1S_1772 (emrB) and A1S_1773 (emrA) were demonstrated to be co-transcribed as a single operon. Moreover, during osmotic stress, A1S_1772 showed the largest change in gene expression compared to the other emrB-like genes, and deletion of A1S_1772 (AB ΔemrB) significantly slowed cell growth in 20% sucrose. Using a phenotypic microarray analysis, the AB ΔemrB mutant was more susceptible to colistin and nafcillin, paromomycin, spiramycin, and D,L-serine hydroxmate than the wild type. The spot assay, time kill assay and minimal inhibition concentration determination also indicated that the wild type could tolerate colistin better than the AB ΔemrB mutant. Finally, the increased expression levels of all emrB-like genes, including A1S_0775, A1S_0909, A1S_1772, and A1S_1799, in colistin resistance-induced A. baumannii further supported the possible involvement of the emrB genes in A. baumannii colistin resistance. Together, the Emr pump systems in A. baumannii contribute to adaptation to osmotic stress and resistance to colistin.

  6. Insight into Two ABC Transporter Families Involved in Lantibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Rebecca Clemens

    2018-01-01

    Full Text Available Antimicrobial peptides, which contain (methyl-lanthionine-rings are called lantibiotics. They are produced by several Gram-positive bacteria and are mainly active against these bacteria. Although these are highly potent antimicrobials, some human pathogenic bacteria express specific ABC transporters that confer resistance and counteract their antimicrobial activity. Two distinct ABC transporter families are known to be involved in this process. These are the Cpr- and Bce-type ABC transporter families, named after their involvement in cationic peptide resistance in Clostridium difficile, and bacitracin efflux in Bacillus subtilis, respectively. Both resistance systems differentiate to each other in terms of the proteins involved. Here, we summarize the current knowledge and describe the divergence as well as the common features present in both the systems to confer lantibiotic resistance.

  7. Contribution of efflux pumps, porins, and β-lactamases to multidrug resistance in clinical isolates of Acinetobacter baumannii.

    Science.gov (United States)

    Rumbo, C; Gato, E; López, M; Ruiz de Alegría, C; Fernández-Cuenca, F; Martínez-Martínez, L; Vila, J; Pachón, J; Cisneros, J M; Rodríguez-Baño, J; Pascual, A; Bou, G; Tomás, M

    2013-11-01

    We investigated the mechanisms of resistance to carbapenems, aminoglycosides, glycylcyclines, tetracyclines, and quinolones in 90 multiresistant clinical strains of Acinetobacter baumannii isolated from two genetically unrelated A. baumannii clones: clone PFGE-ROC-1 (53 strains producing the OXA-58 β-lactamase enzyme and 18 strains with the OXA-24 β-lactamase) and clone PFGE-HUI-1 (19 strains susceptible to carbapenems). We used real-time reverse transcriptase PCR to correlate antimicrobial resistance (MICs) with expression of genes encoding chromosomal β-lactamases (AmpC and OXA-51), porins (OmpA, CarO, Omp33, Dcap-like, OprB, Omp25, OprC, OprD, and OmpW), and proteins integral to six efflux systems (AdeABC, AdeIJK, AdeFGH, CraA, AbeM, and AmvA). Overexpression of the AdeABC system (level of expression relative to that by A. baumannii ATCC 17978, 30- to 45-fold) was significantly associated with resistance to tigecycline, minocycline, and gentamicin and other biological functions. However, hyperexpression of the AdeIJK efflux pump (level of expression relative to that by A. baumannii ATCC 17978, 8- to 10-fold) was significantly associated only with resistance to tigecycline and minocycline (to which the TetB efflux system also contributed). TetB and TetA(39) efflux pumps were detected in clinical strains and were associated with resistance to tetracyclines and doxycycline. The absence of the AdeABC system and the lack of expression of other mechanisms suggest that tigecycline-resistant strains of the PFGE-HUI-1 clone may be associated with a novel resistance-nodulation-cell efflux pump (decreased MICs in the presence of the inhibitor Phe-Arg β-naphthylamide dihydrochloride) and the TetA(39) system.

  8. An Electrically Tight In Vitro Blood-Brain Barrier Model Displays Net Brain-to-Blood Efflux of Substrates for the ABC Transporters, P-gp, Bcrp and Mrp-1

    DEFF Research Database (Denmark)

    Helms, Hans Christian; Hersom, Maria; Kuhlmann, Louise Borella

    2014-01-01

    if a bovine endothelial/rat astrocyte in vitro BBB co-culture model displayed polarized transport of known efflux transporter substrates. The co-culture model displayed low mannitol permeabilities of 0.95 ± 0.1 · 10(-6) cm·s(-1) and high transendothelial electrical resistances of 1,177 ± 101 Ω·cm(2...

  9. Tannic acid affects the phenotype of Staphylococcus aureus resistant to tetracycline and erythromycin by inhibition of efflux pumps.

    Science.gov (United States)

    Tintino, Saulo R; Morais-Tintino, Cícera D; Campina, Fábia F; Costa, Maria do S; Menezes, Irwin R A; de Matos, Yedda Maria L S; Calixto-Júnior, João T; Pereira, Pedro S; Siqueira-Junior, José P; Leal-Balbino, Teresa C; Coutinho, Henrique D M; Balbino, Valdir Q

    2017-10-01

    The widespread use of antibiotics created selective pressure for the emergence of strains that would persist despite antibiotic toxicity. The bacterial resistance mechanisms are several, with efflux pumps being one of the main ones. These pumps are membrane proteins with the function of removing antibiotics from the cell cytoplasm. Due to this importance, the aim of this work was to evaluate the inhibitory effect of tannic acid against efflux pumps expressed by the Staphylococcus aureus RN4220 and IS-58 strains. The efflux pump inhibition was assayed using a sub-inhibitory concentration of efflux pump standard inhibitors and tannic acid (MIC/8), observing their capacity to decrease the MIC of Ethidium bromide (EtBr) and antibiotics due the possible inhibitory effect of these substances. The MICs of EtBr and antibiotics were significantly different in the presence of tannic acid, indicating the inhibitory effect of this product against efflux pumps of both strains. These results indicate the possible usage of tannic acid asan inhibitor and an adjuvant in the antibiotic therapy against multidrug resistant bacteria (MDR). Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The putative drug efflux systems of the Bacillus cereus group.

    Science.gov (United States)

    Hassan, Karl A; Fagerlund, Annette; Elbourne, Liam D H; Vörös, Aniko; Kroeger, Jasmin K; Simm, Roger; Tourasse, Nicolas J; Finke, Sarah; Henderson, Peter J F; Økstad, Ole Andreas; Paulsen, Ian T; Kolstø, Anne-Brit

    2017-01-01

    The Bacillus cereus group of bacteria includes seven closely related species, three of which, B. anthracis, B. cereus and B. thuringiensis, are pathogens of humans, animals and/or insects. Preliminary investigations into the transport capabilities of different bacterial lineages suggested that genes encoding putative efflux systems were unusually abundant in the B. cereus group compared to other bacteria. To explore the drug efflux potential of the B. cereus group all putative efflux systems were identified in the genomes of prototypical strains of B. cereus, B. anthracis and B. thuringiensis using our Transporter Automated Annotation Pipeline. More than 90 putative drug efflux systems were found within each of these strains, accounting for up to 2.7% of their protein coding potential. Comparative analyses demonstrated that the efflux systems are highly conserved between these species; 70-80% of the putative efflux pumps were shared between all three strains studied. Furthermore, 82% of the putative efflux system proteins encoded by the prototypical B. cereus strain ATCC 14579 (type strain) were found to be conserved in at least 80% of 169 B. cereus group strains that have high quality genome sequences available. However, only a handful of these efflux pumps have been functionally characterized. Deletion of individual efflux pump genes from B. cereus typically had little impact to drug resistance phenotypes or the general fitness of the strains, possibly because of the large numbers of alternative efflux systems that may have overlapping substrate specificities. Therefore, to gain insight into the possible transport functions of efflux systems in B. cereus, we undertook large-scale qRT-PCR analyses of efflux pump gene expression following drug shocks and other stress treatments. Clustering of gene expression changes identified several groups of similarly regulated systems that may have overlapping drug resistance functions. In this article we review current

  11. Tigecycline susceptibility and the role of efflux pumps in tigecycline resistance in KPC-producing Klebsiella pneumoniae.

    Directory of Open Access Journals (Sweden)

    Fang He

    Full Text Available KPC-producing Klebsiella pneumoniae isolates have emerged as important pathogens of nosocomial infections, and tigecycline is one of the antibiotics recommended for severe infections caused by KPC-producing K. pneumoniae. To identify the susceptibility profile of KPC-producing K. pneumoniae to tigecycline and investigate the role of efflux pumps in tigecycline resistance, a total of 215 KPC-producing K. pneumoniae isolates were collected. The minimum inhibitory concentration (MIC of tigecycline was determined by standard broth microdilution tests. Isolates showing resistance to tigecycline underwent susceptibility test with efflux pump inhibitors. Expression levels of efflux pump genes (acrB and oqxB and their regulators (ramA, marA, soxS and rarA were examined by real-time PCR, and the correlation between tigecycline MICs and gene expression levels were analysed. Our results show that the tigecycline resistance rate in these isolates was 11.2%. Exposure of the tigecycline-resistant isolates to the efflux pump inhibitor NMP resulted in an obvious decrease in MICs and restored susceptibility to tigecycline in 91.7% of the isolates. A statistically significant association between acrB expression and tigecycline MICs was observed, and overexpression of ramA was found in three tigecycline-resistant isolates, further analysis confirmed ramR mutations existed in these isolates. Transformation of one mutant with wild-type ramR restored susceptibility to tigecycline and repressed overexpression of ramA and acrB. These data indicate that efflux pump AcrAB, which can be up-regulated by ramR mutations and subsequent ramA activation, contributed to tigecycline resistance in K. pneumoniae clinical isolates.

  12. Excessive Cellular S-nitrosothiol Impairs Endocytosis of Auxin Efflux Transporter PIN2

    Directory of Open Access Journals (Sweden)

    Min Ni

    2017-11-01

    Full Text Available S-nitrosoglutathione reductase (GSNOR1 is the key enzyme that regulates cellular levels of S-nitrosylation across kingdoms. We have previously reported that loss of GSNOR1 resulted in impaired auxin signaling and compromised auxin transport in Arabidopsis, leading to the auxin-related morphological phenotypes. However, the molecular mechanism underpinning the compromised auxin transport in gsnor1-3 mutant is still unknown. Endocytosis of plasma-membrane (PM-localized efflux PIN proteins play critical roles in auxin transport. Therefore, we investigate whether loss of GSNOR1 function has any effects on the endocytosis of PIN-FORMED (PIN proteins. It was found that the endocytosis of either the endogenous PIN2 or the transgenically expressed PIN2-GFP was compromised in the root cells of gsnor1-3 seedlings relative to Col-0. The internalization of PM-associated PIN2 or PIN2-GFP into Brefeldin A (BFA bodies was significantly reduced in gsnor1-3 upon BFA treatment in a manner independent of de novo protein synthesis. In addition, the exogenously applied GSNO not only compromised the endocytosis of PIN2-GFP but also inhibited the root elongation in a concentration-dependent manner. Taken together, our results indicate that, besides the reduced PIN2 level, one or more compromised components in the endocytosis pathway could account for the reduced endocytosis of PIN2 in gsnor1-3.

  13. Interspecies signalling: Pseudomonas putida efflux pump TtgGHI is activated by indole to increase antibiotic resistance.

    Science.gov (United States)

    Molina-Santiago, Carlos; Daddaoua, Abdelali; Fillet, Sandy; Duque, Estrella; Ramos, Juan-Luis

    2014-05-01

    In Gram-negative bacteria, multidrug efflux pumps are responsible for the extrusion of chemicals that are deleterious for growth. Some of these efflux pumps are induced by endogenously produced effectors, while abiotic or biotic signals induce the expression of other efflux pumps. In Pseudomonas putida, the TtgABC efflux pump is the main antibiotic extrusion system that respond to exogenous antibiotics through the modulation of the expression of this operon mediated by TtgR. The plasmid-encoded TtgGHI efflux pump in P. putida plays a minor role in antibiotic resistance in the parental strain; however, its role is critical in isogenic backgrounds deficient in TtgABC. Expression of ttgGHI is repressed by the TtgV regulator that recognizes indole as an effector, although P. putida does not produce indole itself. Because indole is not produced by Pseudomonas, the indole-dependent antibiotic resistance seems to be part of an antibiotic resistance programme at the community level. Pseudomonas putida recognizes indole added to the medium or produced by Escherichia coli in mixed microbial communities. Transcriptomic analyses revealed that the indole-specific response involves activation of 43 genes and repression of 23 genes. Indole enhances not only the expression of the TtgGHI pump but also a set of genes involved in iron homeostasis, as well as genes for amino acid catabolism. In a ttgABC-deficient P. putida, background ampicillin and other bactericidal compounds lead to cell death. Co-culture of E. coli and P. putida ΔttgABC allowed growth of the P. putida mutant in the presence of ampicillin because of induction of the indole-dependent efflux pump. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Charged Amino Acids (R83, E567, D617, E625, R669, and K678) of CusA Are Required for Metal Ion Transport in the Cus Efflux System

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chih-Chia; Long, Feng; Lei, Hsiang-Ting; Reddy Bolla, Jani; Do, Sylvia V.; Rajashankar, Kanagalaghatta R.; Yu, Edward W. (Cornell); (Iowa State)

    2012-10-23

    Gram-negative bacteria expel various toxic chemicals via tripartite efflux pumps belonging to the resistance-nodulation-cell division superfamily. These pumps span both the inner and outer membranes of the cell. The three components of these tripartite systems are an inner-membrane, substrate-binding transporter (or pump); a periplasmic membrane fusion protein (or adaptor); and an outer-membrane-anchored channel. These three efflux proteins interact in the periplasmic space to form the three-part complexes. We previously presented the crystal structures of both the inner-membrane transporter CusA and membrane fusion protein CusB of the CusCBA tripartite efflux system from Escherichia coli. We also described the co-crystal structure of the CusBA adaptor-transporter, revealing that the trimeric CusA efflux pump assembles with six CusB protein molecules to form the complex CusB{sub 6}-CusA{sub 3}. We here report three different conformers of the crystal structures of CusBA-Cu(I), suggesting a mechanism on how Cu(I) binding initiates a sequence of conformational transitions in the transport cycle. Genetic analysis and transport assays indicate that charged residues, in addition to the methionine pairs and clusters, are essential for extruding metal ions out of the cell.

  15. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates.

    Science.gov (United States)

    Quale, John; Bratu, Simona; Gupta, Jyoti; Landman, David

    2006-05-01

    Carbapenems are important agents for the therapy of infections due to multidrug-resistant Pseudomonas aeruginosa; the development of carbapenem resistance hampers effective therapeutic options. To assess the mechanisms leading to resistance, 33 clinical isolates with differing degrees of carbapenem susceptibility were analyzed for the expression of the chromosomal beta-lactamase (ampC), the porin that is important for the entry of carbapenems (oprD), and the proteins involved in four efflux systems (mexA, mexC, mexE, and mexX). Real-time reverse transcriptase PCR was performed using primers and fluorescent probes for each of the target genes. The sequencing of regulatory genes (ampR, mexR, nalC, nalD, mexT, and mexZ) was also performed. Diminished expression of oprD was present in all imipenem- and meropenem-resistant isolates but was not required for ertapenem resistance. Increased expression of ampC was not observed in several isolates that were overtly resistant to carbapenems. Increased expression of several efflux systems was observed in many of the carbapenem-resistant isolates. Increased efflux activity correlated with high-level ertapenem resistance and reduced susceptibility to meropenem and aztreonam. Most isolates with increased expression of mexA had mutations affecting nalC and/or nalD. Two isolates with mutations leading to a premature stop codon in mexZ had markedly elevated mexX expressions, although mutations in mexZ were not a prerequisite for overexpression. beta-Lactam resistance in clinical isolates of P. aeruginosa is a result of the interplay between diminished production of oprD, increased activity of ampC, and several efflux systems.

  16. The boron efflux transporter ROTTEN EAR is required for maize inflorescence development and fertility.

    Science.gov (United States)

    Chatterjee, Mithu; Tabi, Zara; Galli, Mary; Malcomber, Simon; Buck, Amy; Muszynski, Michael; Gallavotti, Andrea

    2014-07-01

    Although boron has a relatively low natural abundance, it is an essential plant micronutrient. Boron deficiencies cause major crop losses in several areas of the world, affecting reproduction and yield in diverse plant species. Despite the importance of boron in crop productivity, surprisingly little is known about its effects on developing reproductive organs. We isolated a maize (Zea mays) mutant, called rotten ear (rte), that shows distinct defects in vegetative and reproductive development, eventually causing widespread sterility in its inflorescences, the tassel and the ear. Positional cloning revealed that rte encodes a membrane-localized boron efflux transporter, co-orthologous to the Arabidopsis thaliana BOR1 protein. Depending on the availability of boron in the soil, rte plants show a wide range of phenotypic defects that can be fully rescued by supplementing the soil with exogenous boric acid, indicating that rte is crucial for boron transport into aerial tissues. rte is expressed in cells surrounding the xylem in both vegetative and reproductive tissues and is required for meristem activity and organ development. We show that low boron supply to the inflorescences results in widespread defects in cell and cell wall integrity, highlighting the structural importance of boron in the formation of fully fertile reproductive organs. © 2014 American Society of Plant Biologists. All rights reserved.

  17. Evaluation of HP0605 and HP0971 genes of efflux pumps in Helicobacter pylori resistance to Metronidazole

    Directory of Open Access Journals (Sweden)

    Mohammad hasan Shirazi

    2009-12-01

    Full Text Available Background: The presence of antibiotic resistance has been reported in H.pylori and it is a major cause of treatment failure. Five families of multidrug efflux pumps are defined in bacteria and resistance-nodulation-division (RND pumps are found mainly in gram negative bacteria. TolC is one of RND pump components and play a critical role in drug resistance. It hasn’t been established that RND family has a role in drug resistance in H.pylori. In this study, we assessed the role of two efflux genes in resistant to metronidazole in H.pylori by evaluation of overexpression TolC genes by RT-PCR method. Methods: In five metronidazole resistant strains of H.pylori, total RNA was extracted. RNA treated with DNase and RNA reverse transcribed to cDNA. Aliquots of the cDNA solution were assayed by RT- PCR for HP0605 and HP0971 genes. The levels of mRNA expression were evaluated by densitometry analysis. Results: All five strains displayed overexpression for HP0605 basis of increased concentration of metronidazole. Three strains showed transcripts for HP0971. One of these had transcripts for HP0971 only in Metronidazole concentration equaled to 16 µg/ml but two strains overexpressed adapt to increase concentration of metronidazole. Conclusion: According to current study, HP0605 and HP0971 genes overexpressed due to increase metronidazole. So, increasing of Metronidazole affects in H.pylori΄s efflux system in transcription level.

  18. Berberine is a novel type efflux inhibitor which attenuates the MexXY-mediated aminoglycoside resistance in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Yuji Morita

    2016-08-01

    Full Text Available The emergence and spread of multidrug-resistant P. aeruginosa infections is of great concern, as very few agents are effective against strains of this species. Methanolic extracts from the Coptidis Rhizoma (the rhizomes of Coptis japonica var. major Satake or Phellodendri Cortex (the bark of Phellodendron chinense Schneider markedly reduced resistance to anti-pseudomonal aminoglycosides (e.g. amikacin in multidrug-resistant P. aeruginosa strains. Berberine, the most abundant benzylisoquinoline alkaloid in the two extracts, reduced aminoglycoside resistance of P. aeruginosa via a mechanism that required the MexXY multidrug efflux system; berberine also reduced aminoglycoside MICs in Achromobacter xylosoxidans and Burkholderia cepacia, two species that harbor intrinsic multidrug efflux systems very similar to the MexXY. Furthermore this compound inhibited MexXY-dependent antibiotic resistance of other classes including cephalosporins (cefepime, macrolides (erythromycin, and lincosamides (lincomycin demonstrated using a pseudomonad lacking the 4 other major Mex pumps. Although phenylalanine-arginine beta-naphthylamide (PAβN, a well-known efflux inhibitor, antagonized aminoglycoside in a MexXY-dependent manner, a lower concentration of berberine was sufficient to reduce amikacin resistance of P. aeruginosa in the presence of PAβN. Moreover, berberine enhanced the synergistic effects of amikacin and piperacillin (and vice versa in multidrug-resistant P. aeruginosa strains. Thus, berberine appears to be a novel type inhibitor of the MexXY-dependent aminoglycoside efflux in P. aeruginosa. As aminoglycosides are molecules of choice to treat severe infections the clinical impact is potentially important.

  19. CmeABC Multidrug Efflux Pump Contributes to Antibiotic Resistance and Promotes Campylobacter jejuni Survival and Multiplication in Acanthamoeba polyphaga

    Science.gov (United States)

    Vieira, Ana; Ramesh, Amritha; Seddon, Alan M.

    2017-01-01

    ABSTRACT Campylobacter jejuni is a foodborne pathogen that is recognized as the leading cause of human bacterial gastroenteritis. The widespread use of antibiotics in medicine and in animal husbandry has led to an increased incidence of antibiotic resistance in Campylobacter. In addition to a role in multidrug resistance (MDR), the Campylobacter CmeABC resistance-nodulation-division (RND)-type efflux pump may be involved in virulence. As a vehicle for pathogenic microorganisms, the protozoan Acanthamoeba is a good model for investigations of bacterial survival in the environment and the molecular mechanisms of pathogenicity. The interaction between C. jejuni 81-176 and Acanthamoeba polyphaga was investigated in this study by using a modified gentamicin protection assay. In addition, a possible role for the CmeABC MDR pump in this interaction was explored. Here we report that this MDR pump is beneficial for the intracellular survival and multiplication of C. jejuni in A. polyphaga but is dispensable for biofilm formation and motility. IMPORTANCE The endosymbiotic relationship between amoebae and microbial pathogens may contribute to persistence and spreading of the latter in the environment, which has significant implications for human health. In this study, we found that Campylobacter jejuni was able to survive and to multiply inside Acanthamoeba polyphaga; since these microorganisms can coexist in the same environment (e.g., on poultry farms), the latter may increase the risk of infection with Campylobacter. Our data suggest that, in addition to its role in antibiotic resistance, the CmeABC MDR efflux pump plays a role in bacterial survival within amoebae. Furthermore, we demonstrated synergistic effects of the CmeABC MDR efflux pump and TetO on bacterial resistance to tetracycline. Due to its role in both the antibiotic resistance and the virulence of C. jejuni, the CmeABC MDR efflux pump could be considered a good target for the development of antibacterial

  20. Effects of stachyose on absorption and transportation of tea catechins in mice: possible role of Phase II metabolic enzymes and efflux transporters inhibition by stachyose.

    Science.gov (United States)

    Li, Wenfeng; Lu, Yalong; Huang, Di; Han, Xiao; Yang, Xingbin

    2016-01-01

    Nutritional and absorption-promoting properties of stachyose combined with tea catechins (TC) have been revealed. However, the mechanism involved in non-digestible oligosaccharides-mediated enhancement of flavonoid absorption has largely remained elusive. This study was designed to investigate the molecular mechanism of stachyose in enhancing absorption and transportation of TC in mice. Mice were orally pre-treated with stachyose (50, 250, and 500 mg/kg·bw) for 0-8 weeks, and 1 h before sacrifice, mice were treated with TC (250 mg/kg·bw). Gas chromatography-mass spectrometry analysis showed that serum concentrations of epicatechin, epigallocatechin, epicatechin gallate, and epigallocatechin gallate were dose- and time-dependently elevated with stachyose pre-treatment in mice. Furthermore, pre-treatment with stachyose in mice reduced intestinal sulfotransferase and uridine diphosphate-glucuronosyltransferase levels by 3.3-43.2% and 23.9-30.4%, relative to control mice, respectively. Moreover, intestinal P-glycoprotein and multidrug resistance-associated protein-1 contents were decreased in mice by pre-administration of stachyose in dose- and time-dependent manner. This is the first time to demonstrate that suppression of Phase II metabolic enzymes and efflux transporters of TC in the intestine can play a major role in increasing absorption of TC by stachyose feeding.

  1. Ion Channel Blockers as Antimicrobial Agents, Efflux Inhibitors, and Enhancers of Macrophage Killing Activity against Drug Resistant Mycobacterium tuberculosis

    Science.gov (United States)

    Perdigão, João; Couto, Isabel; Portugal, Isabel; Martins, Marta; Amaral, Leonard; Anes, Elsa; Viveiros, Miguel

    2016-01-01

    Given the ability of M. tuberculosis to survive as an intracellular pathogen and its propensity to develop resistance to the existing antituberculosis drugs, its treatment requires new approaches. Here the antimycobacterial properties of verapamil, thioridazine, chlorpromazine, flupenthixol and haloperidol were investigated against a panel of drug resistant M. tuberculosis strains, both in vitro and on human-infected macrophages. These compounds are efflux inhibitors that share among them the characteristic of being ion channel blockers. In vitro, all compounds exhibited synergistic inhibitory activities when combined with isoniazid and rifampicin, and were able to inhibit active efflux, demonstrating their role as efflux inhibitors. Gene expression analysis showed that M. tuberculosis efflux genes were overexpressed in response to antibiotic exposure, in vitro and within macrophages, irrespective of their resistance pattern. These compounds displayed a rapid and high killing activity against M. tuberculosis, associated with a decrease in intracellular ATP levels demonstrating that the bactericidal action of the ion channel blockers against M. tuberculosis clinical strains is associated with their interference with energy metabolism. The compounds led to a decrease in the intracellular mycobacterial load by increasing phagosome acidification and activating lysosomal hydrolases. The results presented in this study enable us to propose the following mechanism of action for these compounds: a) in the bacteria, the compounds generate a cascade of events involving the inhibition of the respiratory chain complexes and energy production for efflux activity. Indirectly, this reduce the resistance level to antituberculosis drugs potentiating their activity; b) on the host cell, the treatment with the ion channel blockers increases phagosome acidification and induces the expression of phagosomal hydrolases, leading to bacterial growth restriction irrespective of their

  2. Ion Channel Blockers as Antimicrobial Agents, Efflux Inhibitors, and Enhancers of Macrophage Killing Activity against Drug Resistant Mycobacterium tuberculosis.

    Science.gov (United States)

    Machado, Diana; Pires, David; Perdigão, João; Couto, Isabel; Portugal, Isabel; Martins, Marta; Amaral, Leonard; Anes, Elsa; Viveiros, Miguel

    2016-01-01

    Given the ability of M. tuberculosis to survive as an intracellular pathogen and its propensity to develop resistance to the existing antituberculosis drugs, its treatment requires new approaches. Here the antimycobacterial properties of verapamil, thioridazine, chlorpromazine, flupenthixol and haloperidol were investigated against a panel of drug resistant M. tuberculosis strains, both in vitro and on human-infected macrophages. These compounds are efflux inhibitors that share among them the characteristic of being ion channel blockers. In vitro, all compounds exhibited synergistic inhibitory activities when combined with isoniazid and rifampicin, and were able to inhibit active efflux, demonstrating their role as efflux inhibitors. Gene expression analysis showed that M. tuberculosis efflux genes were overexpressed in response to antibiotic exposure, in vitro and within macrophages, irrespective of their resistance pattern. These compounds displayed a rapid and high killing activity against M. tuberculosis, associated with a decrease in intracellular ATP levels demonstrating that the bactericidal action of the ion channel blockers against M. tuberculosis clinical strains is associated with their interference with energy metabolism. The compounds led to a decrease in the intracellular mycobacterial load by increasing phagosome acidification and activating lysosomal hydrolases. The results presented in this study enable us to propose the following mechanism of action for these compounds: a) in the bacteria, the compounds generate a cascade of events involving the inhibition of the respiratory chain complexes and energy production for efflux activity. Indirectly, this reduce the resistance level to antituberculosis drugs potentiating their activity; b) on the host cell, the treatment with the ion channel blockers increases phagosome acidification and induces the expression of phagosomal hydrolases, leading to bacterial growth restriction irrespective of their

  3. Identification and molecular characterization of an efflux system involved in Pseudomonas putida 12 multidrug resistance

    NARCIS (Netherlands)

    Kieboom, J.; Bont, de J.A.M.

    2001-01-01

    The authors previously described srpABC, an operon involved in proton-dependent solvent efflux in the solvent-tolerant Pseudomonas putida S12. Recently, it was shown that organic solvents and not antibiotics induce this operon. In the present study, the authors characterize a new efflux pump,

  4. Extra-Renal Elimination of Uric Acid via Intestinal Efflux Transporter BCRP/ABCG2

    Science.gov (United States)

    Hosomi, Atsushi; Nakanishi, Takeo; Fujita, Takuya; Tamai, Ikumi

    2012-01-01

    Urinary excretion accounts for two-thirds of total elimination of uric acid and the remainder is excreted in feces. However, the mechanism of extra-renal elimination is poorly understood. In the present study, we aimed to clarify the mechanism and the extent of elimination of uric acid through liver and intestine using oxonate-treated rats and Caco-2 cells as a model of human intestinal epithelium. In oxonate-treated rats, significant amounts of externally administered and endogenous uric acid were recovered in the intestinal lumen, while biliary excretion was minimal. Accordingly, direct intestinal secretion was thought to be a substantial contributor to extra-renal elimination of uric acid. Since human efflux transporter BCRP/ABCG2 accepts uric acid as a substrate and genetic polymorphism causing a decrease of BCRP activity is known to be associated with hyperuricemia and gout, the contribution of rBcrp to intestinal secretion was examined. rBcrp was confirmed to transport uric acid in a membrane vesicle study, and intestinal regional differences of expression of rBcrp mRNA were well correlated with uric acid secretory activity into the intestinal lumen. Bcrp1 knockout mice exhibited significantly decreased intestinal secretion and an increased plasma concentration of uric acid. Furthermore, a Bcrp inhibitor, elacridar, caused a decrease of intestinal secretion of uric acid. In Caco-2 cells, uric acid showed a polarized flux from the basolateral to apical side, and this flux was almost abolished in the presence of elacridar. These results demonstrate that BCRP contributes at least in part to the intestinal excretion of uric acid as extra-renal elimination pathway in humans and rats. PMID:22348008

  5. Accident resistant transport container

    Science.gov (United States)

    Anderson, J.A.; Cole, K.K.

    The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

  6. MexXY efflux pump overexpression and aminoglycoside resistance in cystic fibrosis isolates of Pseudomonas aeruginosa from chronic infections.

    Science.gov (United States)

    Singh, Manu; Yau, Yvonne C W; Wang, Shirley; Waters, Valerie; Kumar, Ayush

    2017-12-01

    In this study, we analyzed 15 multidrug-resistant cystic fibrosis isolates of Pseudomonas aeruginosa from chronic lung infections for expression of 4 different multidrug efflux systems (MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY), using quantitative reverse transcriptase PCR. Overexpression of MexXY pump was observed in all of the isolates tested. Analysis of regulatory genes that control the expression of these 4 efflux pumps revealed a number of previously uncharacterized mutations. Our work shows that MexXY pump overexpression is common in cystic fibrosis isolates and could be contributing to their reduced aminoglycoside susceptibility. Further, we also identified novel mutations in the regulatory genes of the 4 abovementioned Resistance-Nodulation-Division superfamily pumps that may be involved in the overexpression of these pumps.

  7. Metabolic Compensation of Fitness Costs Is a General Outcome for Antibiotic-Resistant Pseudomonas aeruginosa Mutants Overexpressing Efflux Pumps

    Science.gov (United States)

    Olivares Pacheco, Jorge; Alvarez-Ortega, Carolina; Alcalde Rico, Manuel

    2017-01-01

    ABSTRACT It is generally assumed that the acquisition of antibiotic resistance is associated with a fitness cost. We have shown that overexpression of the MexEF-OprN efflux pump does not decrease the fitness of a resistant Pseudomonas aeruginosa strain compared to its wild-type counterpart. This lack of fitness cost was associated with a metabolic rewiring that includes increased expression of the anaerobic nitrate respiratory chain when cells are growing under fully aerobic conditions. It was not clear whether this metabolic compensation was exclusive to strains overexpressing MexEF-OprN or if it extended to other resistant strains that overexpress similar systems. To answer this question, we studied a set of P. aeruginosa mutants that independently overexpress the MexAB-OprM, MexCD-OprJ, or MexXY efflux pumps. We observed increased expression of the anaerobic nitrate respiratory chain in all cases, with a concomitant increase in NO3 consumption and NO production. These efflux pumps are proton/substrate antiporters, and their overexpression may lead to intracellular H+ accumulation, which may in turn offset the pH homeostasis. Indeed, all studied mutants showed a decrease in intracellular pH under anaerobic conditions. The fastest way to eliminate the excess of protons is by increasing oxygen consumption, a feature also displayed by all analyzed mutants. Taken together, our results support metabolic rewiring as a general mechanism to avoid the fitness costs derived from overexpression of P. aeruginosa multidrug efflux pumps. The development of drugs that block this metabolic “reaccommodation” might help in reducing the persistence and spread of antibiotic resistance elements among bacterial populations. PMID:28743808

  8. Metabolic Compensation of Fitness Costs Is a General Outcome for Antibiotic-Resistant Pseudomonas aeruginosa Mutants Overexpressing Efflux Pumps.

    Science.gov (United States)

    Olivares Pacheco, Jorge; Alvarez-Ortega, Carolina; Alcalde Rico, Manuel; Martínez, José Luis

    2017-07-25

    It is generally assumed that the acquisition of antibiotic resistance is associated with a fitness cost. We have shown that overexpression of the MexEF-OprN efflux pump does not decrease the fitness of a resistant Pseudomonas aeruginosa strain compared to its wild-type counterpart. This lack of fitness cost was associated with a metabolic rewiring that includes increased expression of the anaerobic nitrate respiratory chain when cells are growing under fully aerobic conditions. It was not clear whether this metabolic compensation was exclusive to strains overexpressing MexEF-OprN or if it extended to other resistant strains that overexpress similar systems. To answer this question, we studied a set of P. aeruginosa mutants that independently overexpress the MexAB-OprM, MexCD-OprJ, or MexXY efflux pumps. We observed increased expression of the anaerobic nitrate respiratory chain in all cases, with a concomitant increase in NO 3 consumption and NO production. These efflux pumps are proton/substrate antiporters, and their overexpression may lead to intracellular H + accumulation, which may in turn offset the pH homeostasis. Indeed, all studied mutants showed a decrease in intracellular pH under anaerobic conditions. The fastest way to eliminate the excess of protons is by increasing oxygen consumption, a feature also displayed by all analyzed mutants. Taken together, our results support metabolic rewiring as a general mechanism to avoid the fitness costs derived from overexpression of P. aeruginosa multidrug efflux pumps. The development of drugs that block this metabolic "reaccommodation" might help in reducing the persistence and spread of antibiotic resistance elements among bacterial populations. IMPORTANCE It is widely accepted that the acquisition of resistance confers a fitness cost in such a way that in the absence of antibiotics, resistant populations will be outcompeted by susceptible ones. Based on this assumption, antibiotic cycling regimes have been

  9. KpnEF, a New Member of the Klebsiella pneumoniae Cell Envelope Stress Response Regulon, Is an SMR-Type Efflux Pump Involved in Broad-Spectrum Antimicrobial Resistance

    Science.gov (United States)

    Rajamohan, Govindan

    2013-01-01

    Klebsiella pneumoniae has been frequently associated with nosocomial infections. Efflux systems are ubiquitous transporters that also function in drug resistance. Genome analysis of K. pneumoniae strain NTUH-K2044 revealed the presence of ∼15 putative drug efflux systems. We discuss here for the first time the characterization of a putative SMR-type efflux pump, an ebrAB homolog (denoted here as kpnEF) with respect to Klebsiella physiology and the multidrug-resistant phenotype. Analysis of hypermucoviscosity revealed direct involvement of kpnEF in capsule synthesis. The ΔkpnEF mutant displayed higher sensitivity to hyperosmotic (∼2.8-fold) and high bile (∼4.0-fold) concentrations. Mutation in kpnEF resulted in increased susceptibility to cefepime, ceftriaxone, colistin, erythromycin, rifampin, tetracycline, and streptomycin; mutated strains changed from being resistant to being susceptible, and the resistance was restored upon complementation. The ΔkpnEF mutant displayed enhanced sensitivity toward structurally related compounds such as sodium dodecyl sulfate, deoxycholate, and dyes, including clinically relevant disinfectants such as benzalkonium chloride, chlorhexidine, and triclosan. The prevalence of kpnEF in clinical strains broadens the diversity of antibiotic resistance in K. pneumoniae. Experimental evidence of CpxR binding to the efflux pump promoter and quantification of its expression in a cpxAR mutant background demonstrated kpnEF to be a member of the Cpx regulon. This study helps to elucidate the unprecedented biological functions of the SMR-type efflux pump in Klebsiella spp. PMID:23836167

  10. Substrate specificities and efflux efficiencies of RND efflux pumps of Acinetobacter baumannii.

    Science.gov (United States)

    Leus, Inga V; Weeks, Jon W; Bonifay, Vincent; Smith, Lauren; Richardson, Sophie; Zgurskaya, Helen I

    2018-04-16

    Antibiotic resistant Acinetobacter baumannii causes infections that are extremely difficult to treat. A significant role in these resistance profiles is attributed to multidrug efflux pumps, especially those belonging to Resistance-Nodulation-cell Division (RND) superfamily of transporters. In this study, we analyzed functions and properties of RND efflux pumps in A. baumannii ATCC 17978. This strain is susceptible to antibiotics and does not contain mutations that are commonly selected upon exposure to high concentrations of antibiotics. We constructed derivatives of ATCC 17978 lacking chromosomally encoded RND pumps and complemented these strains by the plasmid-borne genes. We analyzed the substrate selectivities and efficiencies of the individual pumps in the context of native outer membranes and their hyperporinated variants. Our results show that inactivation of AdeIJK provides the strongest potentiation of antibiotic activities, whereas inactivation of AdeFGH triggers the overexpression of AdeAB. The plasmid-borne overproduction complements the hypersusceptible phenotypes of the efflux deletion mutants to the levels of the parental ATCC 17978. Only a few antibiotics strongly benefitted from the overproduction of efflux pumps and antibacterial activities of some of those depended on the synergistic interaction with the low permeability barrier of the outer membrane. Either overproduction or inactivation of efflux pumps change dramatically the lipidome of ATCC 17978. We conclude that efflux pumps of A. baumannii are tightly integrated into physiology of this bacterium and that clinical levels of antibiotic resistance in A. baumannii isolates are unlikely to be reached solely due to overproduction of RND efflux pumps. Importance RND-type efflux pumps are important contributors in development of clinical antibiotic resistance in A. baumannii However, their specific roles and the extent of contribution to antibiotic resistance remain unclear. We analyzed

  11. Botrytis fragariae, a New Species Causing Gray Mold on Strawberries, Shows High Frequencies of Specific and Efflux-Based Fungicide Resistance

    Science.gov (United States)

    Rupp, Sabrina; Plesken, Cecilia; Rumsey, Sibylle; Dowling, Madeline; Schnabel, Guido; Weber, Roland W. S.

    2017-01-01

    ABSTRACT Botrytis cinerea causes pre- and postharvest decay of many fruit and vegetable crops. A survey of German strawberry fields revealed Botrytis strains that differed from B. cinerea in diagnostic PCR markers and growth appearance. Phylogenetic analyses showed that these strains belong to an undescribed species in Botrytis clade 2, named Botrytis fragariae sp. nov. Isolates of B. fragariae were detected in strawberry fields throughout Germany, sometimes at frequencies similar to those of B. cinerea, and in the southeastern United States. B. fragariae was isolated from overwintering strawberry tissue but not from freshly infected fruit. B. fragariae invaded strawberry tissues with an efficiency similar to or lower than that of B. cinerea but showed poor colonization of inoculated nonhost plant tissues. These data and the exclusive occurrence of this fungus on strawberry plants indicate that B. fragariae is host specific and has a tissue preference different from that of B. cinerea. Various fungicide resistance patterns were observed in B. fragariae populations. Many B. fragariae strains showed resistance to one or several chemical classes of fungicides and an efflux-based multidrug resistance (MDR1) phenotype previously described in B. cinerea. Resistance-related mutations in B. fragariae were identical or similar to those of B. cinerea for carbendazim (E198A mutation in tubA), azoxystrobin (G143A in cytB), iprodione (G367A+V368F in bos1), and MDR1 (gain-of-function mutations in the transcription factor mrr1 gene and overexpression of the drug efflux transporter gene atrB). The widespread occurrence of B. fragariae indicates that this species is adapted to fungicide-treated strawberry fields and may be of local importance as a gray mold pathogen alongside B. cinerea. IMPORTANCE Gray mold is the most important fruit rot on strawberries worldwide and requires fungicide treatments for control. For a long time, it was believed to be caused only by Botrytis cinerea

  12. Botrytis fragariae, a New Species Causing Gray Mold on Strawberries, Shows High Frequencies of Specific and Efflux-Based Fungicide Resistance.

    Science.gov (United States)

    Rupp, Sabrina; Plesken, Cecilia; Rumsey, Sibylle; Dowling, Madeline; Schnabel, Guido; Weber, Roland W S; Hahn, Matthias

    2017-05-01

    Botrytis cinerea causes pre- and postharvest decay of many fruit and vegetable crops. A survey of German strawberry fields revealed Botrytis strains that differed from B. cinerea in diagnostic PCR markers and growth appearance. Phylogenetic analyses showed that these strains belong to an undescribed species in Botrytis clade 2, named Botrytis fragariae sp. nov. Isolates of B fragariae were detected in strawberry fields throughout Germany, sometimes at frequencies similar to those of B. cinerea , and in the southeastern United States. B fragariae was isolated from overwintering strawberry tissue but not from freshly infected fruit. B fragariae invaded strawberry tissues with an efficiency similar to or lower than that of B. cinerea but showed poor colonization of inoculated nonhost plant tissues. These data and the exclusive occurrence of this fungus on strawberry plants indicate that B fragariae is host specific and has a tissue preference different from that of B. cinerea Various fungicide resistance patterns were observed in B fragariae populations. Many B fragariae strains showed resistance to one or several chemical classes of fungicides and an efflux-based multidrug resistance (MDR1) phenotype previously described in B. cinerea Resistance-related mutations in B fragariae were identical or similar to those of B. cinerea for carbendazim (E198A mutation in tubA ), azoxystrobin (G143A in cytB ), iprodione (G367A+V368F in bos1 ), and MDR1 (gain-of-function mutations in the transcription factor mrr1 gene and overexpression of the drug efflux transporter gene atrB ). The widespread occurrence of B fragariae indicates that this species is adapted to fungicide-treated strawberry fields and may be of local importance as a gray mold pathogen alongside B. cinerea IMPORTANCE Gray mold is the most important fruit rot on strawberries worldwide and requires fungicide treatments for control. For a long time, it was believed to be caused only by Botrytis cinerea , a ubiquitous

  13. ABC transporters and multidrug resistance in Aspergillus nidulans

    NARCIS (Netherlands)

    Andrade, A.C.

    2000-01-01

    The term multidrug resistance (MDR) stands for simultaneous cellular resistance to chemically unrelated toxicants and is often associated with overproduction of multidrug-efflux proteins of the A TP- b inding-

  14. Inhibition of multixenobiotic resistance transporters (MXR) by silver nanoparticles and ions in vitro and in Daphnia magna

    NARCIS (Netherlands)

    Georgantzopoulou, Anastasia; Cambier, Sébastien; Serchi, Tommaso; Kruszewski, Marcin; Balachandran, Yekkuni L.; Grysan, Patrick; Audinot, Jean Nicolas; Ziebel, Johanna; Guignard, Cédric; Gutleb, Arno C.; Murk, A.J.

    2016-01-01

    The P-glycoprotein (P-gp, ABCB1) and multidrug resistance associated protein 1 (MRP1), important members of the ABC (ATP-binding cassette) transporters, protect cells and organisms via efflux of xenobiotics and are responsible for the phenomenon of multidrug or multixenobiotic resistance (MXR).

  15. The Antibiotic Resistance Arrow of Time: Efflux Pump Induction Is a General First Step in the Evolution of Mycobacterial Drug Resistance

    OpenAIRE

    Schmalstieg, Aurelia M.; Srivastava, Shashikant; Belkaya, Serkan; Deshpande, Devyani; Meek, Claudia; Leff, Richard; van Oers, Nicolai S. C.; Gumbo, Tawanda

    2012-01-01

    We hypothesize that low-level efflux pump expression is the first step in the development of high-level drug resistance in mycobacteria. We performed 28-day azithromycin dose-effect and dose-scheduling studies in our hollow-fiber model of disseminated Mycobacterium avium-M. intracellulare complex. Both microbial kill and resistance emergence were most closely linked to the within-macrophage area under the concentration-time curve (AUC)/MIC ratio. Quantitative PCR revealed that subtherapeutic ...

  16. Phytosterols Differentially Influence ABC transporter Expression, Cholesterol Efflux and Inflammatory Cytokine Secretion in Macrophage Foam Cells

    Science.gov (United States)

    Sabeva, Nadezhda S; McPhaul, Christopher M; Li, Xiangan; Cory, Theodore J.; Feola, David J.; Graf, Gregory A

    2010-01-01

    Phytosterol supplements lower low density lipoprotein (LDL) cholesterol, but accumulate in vascular lesions of patients and limit the anti-atherosclerotic effects of LDL lowering in apolipoprotein E deficient mice, suggesting that the cholesterol lowering benefit of phytosterol supplementation may not be fully realized. Individual phytosterols have cell-type specific effects that may either be beneficial or deleterious with respect to atherosclerosis, but little is known concerning their effects on macrophage function. The effects of phytosterols on ABCA1 and ABCG1 abundance, cholesterol efflux, and inflammatory cytokine secretion were determined in cultured macrophage foam cells. Among the commonly consumed phytosterols, stigmasterol increased expression of ABCA1 and ABCG1 and increased efflux of cholesterol to apolipoprotein (Apo) AI and high density lipoprotein (HDL). Campesterol and sitosterol had no effect on ABCA1 or ABCG1 levels. Sitosterol had no effect of cholesterol efflux to Apo AI or HDL, whereas campesterol had a modest, but significant reduction in cholesterol efflux to HDL in THP-1 macrophages. Whereas stigmasterol blunted aggregated LDL-induced increases in tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β secretion, sitosterol exacerbated these effects. The presence of campesterol had no effect on agLDL-induced inflammatory cytokine secretion from THP-1 macrophages. In conclusion, the presence of stigmasterol in modified lipoproteins promoted cholesterol efflux and suppressed inflammatory cytokine secretion in response to lipid loading in macrophage foam cells. While campesterol was largely inert, the presence of sitosterol increased the proinflammatory cytokine secretion. PMID:21111593

  17. Distribution of different efflux pump genes in clinical isolates of multidrug-resistant Acinetobacter baumannii and their correlation with antimicrobial resistance.

    Science.gov (United States)

    Lin, Ming-Feng; Lin, Yun-You; Tu, Chi-Chao; Lan, Chung-Yu

    2017-04-01

    Efflux pumps are one of the major mechanisms of antimicrobial resistance in Acinetobacter baumannii. This study aimed to understand the distribution of different types of pump genes in clinical isolates of multidrug-resistant A. baumannii (MDRAB) and to reveal the relationship between their presence and expression with antimicrobial resistance. MDRAB isolates were collected from five hospitals in Taiwan. Different categories of pump genes, including adeB, adeJ, macB, abeM, abeS, emrA-like, emrB-like, and craA, were chosen, and their presence in the collected isolates was determined. Three induced resistant strains of A. baumannii ATCC 17978 to tigecycline, imipenem, and amikacin were also included. The expressions of the selected pump genes were determined using quantitative reverse transcription-polymerase chain reaction. Twenty-one MDRAB clinical isolates were obtained from five hospitals. All of the studied pump genes were present in the collected MDRAB isolates except one isolate that lacked the emrA-like gene. The gene expression of these efflux pumps was variable among the strains. The upregulation of the adeB, adeJ, and macB genes was responsible for tigecycline resistance, and the increased abeS expression was strongly related to amikacin resistance. Of all the antibiotics studied, tigecycline was the strongest inducer of gene expression for many efflux pumps in A. baumannii. Efflux pump genes are universally present in the collected clinical MDRAB isolates. The upregulation of the adeB, adeJ, macB and abeS genes is more related with antibiotic resistance. Copyright © 2015. Published by Elsevier B.V.

  18. The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis.

    Science.gov (United States)

    Kubeš, Martin; Yang, Haibing; Richter, Gregory L; Cheng, Yan; Młodzińska, Ewa; Wang, Xia; Blakeslee, Joshua J; Carraro, Nicola; Petrášek, Jan; Zažímalová, Eva; Hoyerová, Klára; Peer, Wendy Ann; Murphy, Angus S

    2012-02-01

    Arabidopsis ATP-binding cassette B4 (ABCB4) is a root-localised auxin efflux transporter with reported auxin uptake activity in low auxin concentrations. Results reported here demonstrate that ABCB4 is a substrate-activated regulator of cellular auxin levels. The contribution of ABCB4 to shootward auxin movement at the root apex increases with auxin concentration, but in root hair elongation assays ABCB4-mediated uptake is evident at low concentrations as well. Uptake kinetics of ABCB4 heterologously expressed in Schizosaccharomyces pombe differed from the saturation kinetics of AUX1 as uptake converted to efflux at threshold indole-3-acetic acid (IAA) concentrations. The concentration dependence of ABCB4 appears to be a direct effect on transporter activity, as ABCB4 expression and ABCB4 plasma membrane (PM) localisation at the root apex are relatively insensitive to changes in auxin concentration. However, PM localization of ABCB4 decreases with 1-naphthylphthalamic acid (NPA) treatment. Unlike other plant ABCBs studied to date, and consistent with decreased detergent solubility, ABCB4(pro) :ABCB4-GFP is partially internalised in all cell types by 0.05% DMSO, but not 0.1% ethanol. In trichoblasts, ABCB4(pro) :ABCB4-GFP PM signals are reduced by >200 nm IAA and 2,4-dichlorophenoxyacetic acid (2,4-D). In heterologous systems and in planta, ABCB4 transports benzoic acid with weak affinity, but not the oxidative catabolism products 2-oxindole-3-acetic-acid and 2-oxindole-3-acetyl-β-D-glucose. ABCB4 mediates uptake, but not efflux, of the synthetic auxin 2,4-D in cells lacking AUX1 activity. Results presented here suggest that 2,4-D is a non-competitive inhibitor of IAA transport by ABCB4 and indicate that ABCB4 is a target of 2,4-D herbicidal activity. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  19. Comment on "Effect of biofilm formation by clinical isolates of Helicobacter pylori on the efflux-mediated resistance to commonly used antibiotics".

    Science.gov (United States)

    Kazakos, Evangelos I; Dorrell, Nick; Polyzos, Stergios A; Deretzi, Georgia; Kountouras, Jannis

    2017-09-07

    Attaran et al [1] have recently shown that decreased susceptibility of established Helicobacter pylori (H. pylori) biofilms to specific antibiotics, was associated with the overtly enhanced transcription of two efflux pump genes, hp1165 and hefA , involved in specific resistance to tetracycline and multiple antibiotics, respectively. Apart from antibiotic exposure, secretion of multiple antimicrobial peptides, such as human β-defensins (hβDs), by the gastric epithelium upon Hp challenge, may act as early triggering events that positively impact biofilm formation and thus, antibiotic resistance. In this regard, we undertook genomic transcriptional studies using Hp 26695 strain following exposure to sublethal, similar to those present in the gastric niche, concentrations of hβDs in an attempt to provide preliminary data regarding possible mechanisms of immune evasion and selective sensitivity of Hp . Our preliminary results indicate that hβD exposure ignites a rapid response that is largely due to the activation of several, possibly interconnected transcriptional regulatory networks - origons - that ultimately coordinate cellular processes needed to maintain homeostasis and successful adaptation of the bacterium in the gastric environment. In addition, we have shown that both antibiotic and hβD resistance are mediated by dedicated periplasmic transporters, including the aforementioned efflux pump genes hp1165 and hefA , involved in active export of antibiotics from the cell membrane and/or, as recently suggested, substrate sensing and signalling. Furthermore, it appears that sublethal doses of hβDs may enhance biofilm formation by the sustained expression of, mainly, quorum sensing-related genes. In conclusion, we provide additional data regarding the role of specific innate immune molecules in antibiotic cross-resistance mechanisms that may deepen our understanding in the context of the development of novel eradication regimens.

  20. Oxidative stress induction of the MexXY multidrug efflux genes and promotion of aminoglycoside resistance development in Pseudomonas aeruginosa.

    Science.gov (United States)

    Fraud, Sebastien; Poole, Keith

    2011-03-01

    Exposure to reactive oxygen species (ROS) (e.g., peroxide) was shown to induce expression of the PA5471 gene, which was previously shown to be required for antimicrobial induction of the MexXY components of the MexXY-OprM multidrug efflux system and aminoglycoside resistance determinant in Pseudomonas aeruginosa. mexXY was also induced by peroxide exposure, and this too was PA5471 dependent. The prospect of ROS promoting mexXY expression and aminoglycoside resistance recalls P. aeruginosa infection of the chronically inflamed lungs of cystic fibrosis (CF) patients, where the organism is exposed to ROS and where MexXY-OprM predominates as the mechanism of aminoglycoside resistance. While ROS did not enhance aminoglycoside resistance in vitro, long-term (8-day) exposure of P. aeruginosa to peroxide (mimicking chronic in vivo ROS exposure) increased aminoglycoside resistance frequency, dependent upon PA5471 and mexXY. This enhanced resistance frequency was also seen in a mutant strain overexpressing PA5471, in the absence of peroxide, suggesting that induction of PA5471 by peroxide was key to peroxide enhancement of aminoglycoside resistance frequency. Resistant mutants selected following peroxide exposure were typically pan-aminoglycoside-resistant, with mexXY generally required for this resistance. Moreover, PA5471 was required for mexXY expression and aminoglycoside resistance in these as well as several CF isolates examined.

  1. Multi-Drug Resistance ABC Transporter Inhibition Enhances Murine Ventral Prostate Stem/Progenitor Cell Differentiation.

    Science.gov (United States)

    Samant, Mugdha D; Jackson, Courtney M; Felix, Carina L; Jones, Anthony J; Goodrich, David W; Foster, Barbara A; Huss, Wendy J

    2015-05-15

    Multi-drug resistance (MDR)-ATP binding cassette (ABC) transporters, ABCB1, ABCC1, and ABCG2 participate in the efflux of steroid hormones, estrogens, and androgens, which regulate prostate development and differentiation. The role of MDR-ABC efflux transporters in prostate epithelial proliferation and differentiation remains unclear. We hypothesized that MDR-ABC transporters regulate prostate differentiation and epithelium regeneration. Prostate epithelial differentiation was studied using histology, sphere formation assay, and prostate regeneration induced by cycles of repeated androgen withdrawal and replacement. Embryonic deletion of Abcg2 resulted in a decreased number of luminal cells in the prostate and increased sphere formation efficiency, indicating an imbalance in the prostate epithelial differentiation pattern. Decreased luminal cell number in the Abcg2 null prostate implies reduced differentiation. Enhanced sphere formation efficiency in Abcg2 null prostate cells implies activation of the stem/progenitor cells. Prostate regeneration was associated with profound activation of the stem/progenitor cells, indicating the role of Abcg2 in maintaining stem/progenitor cell pool. Since embryonic deletion of Abcg2 may result in compensation by other ABC transporters, pharmacological inhibition of MDR-ABC efflux was performed. Pharmacological inhibition of MDR-ABC efflux enhanced prostate epithelial differentiation in sphere culture and during prostate regeneration. In conclusion, Abcg2 deletion leads to activation of the stem/progenitor cells and enhances differentiating divisions; and pharmacological inhibition of MDR-ABC efflux leads to epithelial differentiation. Our study demonstrates for the first time that MDR-ABC efflux transporter inhibition results in enhanced prostate epithelial cell differentiation.

  2. Phenotypic and Genotypic Efflux Pumps in Resistance to Fluoroquinolones in E.coli Isolated from Inpatients in Kermanshah Hospitals in 2013

    Directory of Open Access Journals (Sweden)

    Maryam Doosti Mohajer

    2017-12-01

    Full Text Available Abstract Background: Antibiotic resistance rates in E. coli are rapidly rising, especially with regard to fluoroquinolones. One of the mechanisms that lead to antibiotic resistance is efflux pumps. The aim of this study was phonotypic and genotypic analysis of efflux pump role in fluoroquinolones resistance of E. coli strains isolated from hospitalized patients in Kermanshah 2013. Materials and Methods: In this cross-sectional study, 100 isolates of E. coli were collected from hospitalized patients from Kermanshah. All isolates were identified by standard biochemical tests. The antimicrobial susceptibility patterns were determined by disk diffusion method according to CLSI guidelines. The presence of Efflux pump genes was determined by a PCR method. Results: The rates of resistance to Ceftazidime, Nalidixic Acid, Ciprofloxacin, Norfloxacin, Ofloxacin, Gentamicin, and Tetracycline were 73%, 67%, 55%, 54%, 45%, 38%, and 24%, respectively. According to the results of PCR test, of 100 E. coli isolates, 99% of isolates were positive for acrA, 98% for acrB, 95% for acrE, 98% for acrF, 94% for mdfA, 96% for norE, and 96% for tolC. Conclusion: In Strains with positive gene acrA, acrB, acrA, acrB, tolC, mdfA, norE, the presence of efflux pump inhibitor reduced the amount of resistance to antibiotics. So, efflux pumps are important in antibiotic resistance.

  3. Vibrio cholerae RND family efflux systems are required for antimicrobial resistance, optimal virulence factor production, and colonization of the infant mouse small intestine.

    Science.gov (United States)

    Bina, Xiaowen R; Provenzano, Daniele; Nguyen, Nathalie; Bina, James E

    2008-08-01

    Vibrio cholerae is a gram-negative human intestinal pathogen that causes the diarrheal disease cholera. Humans acquire cholera by ingesting V. cholerae-contaminated food or water. Upon ingestion, V. cholerae encounters several barriers to colonization, including bile acid toxicity and antimicrobial products of the innate immune system. In many gram-negative bacteria, resistance to the antimicrobial effects of these products is mediated by RND (resistance-nodulation-division) family efflux systems. In this study we tested the hypothesis that the V. cholerae RND efflux systems are required for antimicrobial resistance and virulence. The six V. cholerae genes encoding RND efflux pumps were deleted from the genome of the O1 El Tor strain N16961, resulting in the generation of 14 independent RND deletion mutants, including one RND-null strain. Determination of the antimicrobial susceptibilities of the mutants revealed that the RND efflux systems were responsible for resistance to multiple antimicrobial compounds, including bile acids, antimicrobial peptides, and antibiotics. VexB (VC0164) was found to be the RND efflux pump primarily responsible for the resistance of V. cholerae to multiple antimicrobial compounds in vitro. In contrast, VexD (VC1757) and VexK (VC1673) encoded efflux pumps with detergent-specific substrate specificities that were redundant with VexB. A strain lacking VexB, VexD, and VexK was attenuated in the infant mouse model, and its virulence factor production was unaffected. In contrast, a V. cholerae RND-null strain produced significantly less cholera toxin and fewer toxin-coregulated pili than the wild type and was unable to colonize the infant mouse. The decreased virulence factor production in the RND-null strain was linked to reduced transcription of tcpP and toxT. Our findings show that the V. cholerae RND efflux systems are required for antimicrobial resistance, optimal virulence factor production, and colonization of the infant mouse.

  4. Role of the MexXY multidrug efflux pump in moderate aminoglycoside resistance in Pseudomonas aeruginosa isolates from Pseudomonas mastitis.

    Science.gov (United States)

    Chuanchuen, Rungtip; Wannaprasat, Wechsiri; Ajariyakhajorn, Kittisak; Schweizer, Herbert P

    2008-08-01

    The contribution of the MexXY multidrug efflux system to aminoglycoside resistance was investigated in 18 clinical isolates of Pseudomonas aeruginosa obtained from dairy cows with Pseudomonas mastitis. All of the isolates expressed MexXY as determined by reverse transcription-PCR. The loss of mexXY resulted in increased susceptibility (two- to 16-fold decline in MIC) to aminoglycosides, confirming the contribution of this system in aminoglycoside resistance in these strains. As the impact of DeltamexXY varied, overexpression of MexXY alone is not sufficient for aminoglycoside resistance. Expression of mexXY also varied and did not strictly correlate with aminoglycoside insusceptibility. Transcription levels of mexY were independent on mutations in mexZ, suggesting the existence of additional regulatory mechanisms other than mexZ.

  5. Reversal of resistance by GF120918 in cell lines expressing the ABC half-transporter, MXR

    DEFF Research Database (Denmark)

    de Bruin, M; Miyake, K; Litman, Thomas

    1999-01-01

    The emergence of several newly identified members of the ABC transporter family has necessitated the development of antagonists that are able to inhibit more than one transporter. We assessed the ability of the chemosensitizer GF120918 to function as a multispecific antagonist using cytotoxicity...... assays, rhodamine and calcein efflux assays, and confocal microscopy in cell lines expressing different multidrug resistance transporters. At a concentration of 1 microM in cytotoxicity assays, GF120918 was able to sensitize both S1-B1-20, a subline expressing P-glycoprotein (Pgp), and S1-M1......-80, a subline expressing a newly identified mitoxantrone transporter, MXR. GF120918 was ineffective in sensitizing MRP-overexpressing MCF-7 VP-16 cells to etoposide as determined by cytotoxicity studies. In flow cytometry experiments, rhodamine 123 efflux in S1-B1-20 cells was decreased at GF120918...

  6. Enhanced resistance to fluoroquinolones in laboratory-grown mutants & clinical isolates of Shigella due to synergism between efflux pump expression & mutations in quinolone resistance determining region.

    Science.gov (United States)

    Taneja, Neelam; Mishra, Arti; Kumar, Ajay; Verma, Garima; Sharma, Meera

    2015-01-01

    There is a worldwide emergence of fluoroquinolone resistance in Shigella species. To understand the molecular mechanisms associated with fluoroquinolone resistance, naturally occurring fluoroquinolone-resistant strains and laboratory-induced spontaneous mutants of Shigella spp. were used and the relative contributions of acrAB-tolC efflux pumps, gyrase and topoisomerase target gene mutations towards fluoroquinolone resistance were determined. Eight Shigella flexneri and six S. dysenteriae clinical isolates were studied. Three consecutive mutants resistant to ciprofloxacin for S. flexneri SFM1 (≥ 0.25 µg/ml), SFM2 (≥ 4 µg/ml) and SFM3 (≥ 32 µg/ml) were selected in 15 steps from susceptible isolates by serial exposure to increasing concentrations of nalidixic acid and ciprofloxacin. Similarly, two mutants for S. dysenteriae SDM1 (≥ 0.25 µg/ml) and SDM2 (≥ 4 µg/ml) were selected in eight steps. After PCR amplification sequence analyses of gyrase and topoisomerase target genes were performed. Expression of efflux genes acrA, acrB, acrR and tolC was measured using real-time PCR. Mutations were observed in gyrA Ser [83]→Leu, Asp [87]→Asn/Gly, Val [196]→Ala and in parC Phe [93]→Val, Ser [80]→Ile, Asp [101]→Glu and Asp [110]→Glu. Overall, acrA and acrB overexpression was associated with fluoroquinolone resistance ( p0 Shigella spp. is the end product of either a single or a combination of mutations in QRDRs and/ or efflux activity. Novel polymorphisms were observed at Val [196]→Ala in gyrA in clinical isolates and Phe [93]→Val, Asp [101]→Glu, Asp [110]→Glu and in parC in majority of laboratory-grown mutants.

  7. MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa: involvement in chlorhexidine resistance and induction by membrane-damaging agents dependent upon the AlgU stress response sigma factor.

    Science.gov (United States)

    Fraud, Sebastien; Campigotto, Aaron J; Chen, Zhilin; Poole, Keith

    2008-12-01

    The biocide chlorhexidine (CHX) as well as additional membrane-active agents were shown to induce expression of the mexCD-oprJ multidrug efflux operon, dependent upon the AlgU stress response sigma factor. Hyperexpression of this efflux system in nfxB mutants was also substantially AlgU dependent. CHX resistance correlated with efflux gene expression in various mutants, consistent with MexCD-OprJ being a determinant of CHX resistance.

  8. Role of H- and D- MATE-type transporters from multidrug resistant clinical isolates of Vibrio fluvialis in conferring fluoroquinolone resistance.

    Directory of Open Access Journals (Sweden)

    Priyabrata Mohanty

    Full Text Available BACKGROUND: The study seeks to understand the role of efflux pumps in multidrug resistance displayed by the clinical isolates of Vibrio fluvialis, a pathogen known to cause cholera-like diarrhoea. METHODOLOGY: Two putative MATE family efflux pumps (H- and D-type were PCR amplified from clinical isolates of V. fluvialis obtained from Kolkata, India, in 2006 and sequenced. Bioinformatic analysis of these proteins was done to predict protein structures. Subsequently, the genes were cloned and expressed in a drug hypersusceptible Escherichia coli strain KAM32 using the vector pBR322. The recombinant clones were tested for the functionality of the efflux pump proteins by MIC determination and drug transport assays using fluorimeter. RESULTS: The sequences of the genes were found to be around 99% identical to their counterparts in V. cholerae. Protein structure predicting servers TMHMM and I-TASSER depicted ten-twelve membrane helical structures for both type of pumps. Real time PCR showed that these genes were expressed in the native V. fluvialis isolates. In the drug transport assays, the V. fluvialis clinical isolates as well as recombinant E. coli harbouring the efflux pump genes showed the energy-dependent and sodium ion-dependent drug transport activity. KAM32 cells harbouring the recombinant plasmids showed elevated MIC to the fluoroquinolones, norfloxacin and ciprofloxacin but H-type pumps VCH and VFH from V. cholerae and V. fluvialis respectively, showed decreased MIC to aminoglycosides like gentamicin, kanamycin and streptomycin. Decrease in MIC was also observed for acriflavin, ethidium bromide, safranin and nalidixic acid. SIGNIFICANCE: Increased resistance towards fluoroquinolones exhibited due to these efflux pumps from multidrug resistant clinical isolates of V. fluvialis implies that treatment procedure may become more elaborate for this simple but highly infectious disease. To the best of our knowledge, this is the first report of

  9. Salicylate Functions as an Efflux Pump Inducer and Promotes the Emergence of Fluoroquinolone-Resistant Campylobacter jejuni Mutants▿

    Science.gov (United States)

    Shen, Zhangqi; Pu, Xiao-Ying; Zhang, Qijing

    2011-01-01

    Salicylate, a nonsteroidal anti-inflammatory compound, has been shown to increase the resistance of Campylobacter to antimicrobials. However, the molecular mechanism underlying salicylate-induced resistance has not yet been established. In this study, we determined how salicylate increases antibiotic resistance and evaluated its impact on the development of fluoroquinolone-resistant Campylobacter mutants. Transcriptional fusion assays, real-time quantitative reverse transcription-PCR (RT-PCR), and immunoblotting assays consistently demonstrated the induction of the CmeABC multidrug efflux pump by salicylate. Electrophoretic mobility shift assays further showed that salicylate inhibits the binding of CmeR (a transcriptional repressor of the TetR family) to the promoter DNA of cmeABC, suggesting that salicylate inhibits the function of CmeR. The presence of salicylate in the culture medium not only decreased the susceptibility of Campylobacter to ciprofloxacin but also resulted in an approximately 70-fold increase in the observed frequency of emergence of fluoroquinolone-resistant mutants under selection with ciprofloxacin. Together, these results indicate that in Campylobacter, salicylate inhibits the binding of CmeR to the promoter DNA and induces expression of cmeABC, resulting in decreased susceptibility to antibiotics and in increased emergence of fluoroquinolone-resistant mutants under selection pressure. PMID:21821741

  10. Inactivation of a putative efflux pump (LmrB) in Streptococcus mutans results in altered biofilm structure and increased exopolysaccharide synthesis: implications for biofilm resistance.

    Science.gov (United States)

    Liu, Jia; Zhang, Jianying; Guo, Lihong; Zhao, Wei; Hu, Xiaoli; Wei, Xi

    2017-07-01

    Efflux pumps are a mechanism associated with biofilm formation and resistance. There is limited information regarding efflux pumps in Streptococcus mutans, a major pathogen in dental caries. The aim of this study was to investigate potential roles of a putative efflux pump (LmrB) in S. mutans biofilm formation and susceptibility. Upon lmrB inactivation and antimicrobial exposure, the biofilm structure and expression of other efflux pumps were examined using confocal laser scanning microscopy (CLSM) and qRT-PCR. lmrB inactivation resulted in biofilm structural changes, increased EPS formation and EPS-related gene transcription (p < 0.05), but no improvement in susceptibility was observed. The expression of most efflux pump genes increased upon lmrB inactivation when exposed to antimicrobials (p < 0.05), suggesting a feedback mechanism that activated the transcription of other efflux pumps to compensate for the loss of lmrB. These observations imply that sole inactivation of lmrB is not an effective solution to control biofilms.

  11. Contribution of the AcrAB-TolC efflux pump to high-level fluoroquinolone resistance in Escherichia coli isolated from dogs and humans.

    Science.gov (United States)

    Sato, Toyotaka; Yokota, Shin-ichi; Okubo, Torahiko; Ishihara, Kanako; Ueno, Hiroshi; Muramatsu, Yasukazu; Fujii, Nobuhiro; Tamura, Yutaka

    2013-05-02

    Fluoroquinolone resistance is mainly caused by mutations in quinolone resistance-determining regions of DNA gyrase and topoisomerase IV in Escherichia coli. The AcrAB-TolC efflux pump contributes to resistance against fluoroquinolone and other antimicrobials. In this study, we investigated a high-level mechanism of fluoroquinolone resistance in E. coli that was isolated from human clinical samples and canine fecal samples. E. coli strains with high levels of fluoroquinolone resistance have been found to be frequently resistant to cephalosporins. Strains with high-level fluoroquinolone resistance exhibited lower intracellular enrofloxacin (ENR) concentrations, higher expression of AcrA, and a greater reduction in the fluoroquinolone minimum inhibitory concentration for treatment with an efflux pump inhibitor. The frequency of strains with enhanced ENR resistance selection and the survival rate of E. coli in the presence of ENR in vitro were correlated well with AcrA protein expression levels in the parental strains. These results suggest that AcrAB-TolC efflux pump over-expression is related to high-level fluoroquinolone resistance and the selection of strains with enhanced fluoroquinolone resistance.

  12. Bacterial Multidrug Efflux Pumps of the Major Facilitator Superfamily as Targets for Modulation.

    Science.gov (United States)

    Kumar, Sanath; He, Guixin; Kakarla, Prathusha; Shrestha, Ugina; Ranjana, K C; Ranaweera, Indrika; Willmon, T Mark; Barr, Sharla R; Hernandez, Alberto J; Varela, Manuel F

    2016-01-01

    Causative agents of infectious disease that are multidrug resistant bacterial pathogens represent a serious public health concern due to the increasingly difficult nature of achieving efficacious clinical treatments. Of the various acquired and intrinsic antimicrobial agent resistance determinants, integral-membrane multidrug efflux pumps of the major facilitator superfamily constitute a major mechanism of bacterial resistance. The major facilitator superfamily (MFS) encompasses thousands of known related secondary active and passive solute transporters, including multidrug efflux pumps, from bacteria to humans. This review article addresses recent developments involving the targeting by various modulators of bacterial multidrug efflux pumps from the major facilitator superfamily. It is currently of tremendous interest to modulate bacterial multidrug efflux pumps in order to eventually restore the clinical efficacy of therapeutic agents against recalcitrant bacterial infections. Such MFS multidrug efflux pumps are good targets for modulation.

  13. Coarse-grained Simulations of Substrate Export through Multidrug Efflux Transporter AcrB

    Science.gov (United States)

    Jewel, Yead; Dutta, Prashanta; Liu, Jin

    2017-11-01

    The treatment of bacterial infectious diseases hampered by the overexpression of multidrug resistance (MDR) systems. The MDR system actively pumps the antibiotic drugs as well as other toxic compounds out of the cells. During the pumping, AcrB (one of the key MDR components) undergoes a series of large-scale proton/substrate dependent conformational changes. In this work, we implement a hybrid coarse-grained PACE force field that couples the united-atom protein model with the coarse-grained MARTINI water/lipid, to investigate the conformational changes of AcrB. We first develop the substrate force field which is compatible with PACE, then we implement the force field to explore large scale structural changes of AcrB in microsecond simulations. The effects of the substrate and the protonation states of two key residues: Asp407 and Asp408, are investigated. Our results show that the drug export through AcrB is proton as well as substrate dependent. Our simulations explain molecular mechanisms of substrate transport through AcrB complex, as well as provide valuable insights for designing proper antibiotic drugs. Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM122081.

  14. The Prevalence of the OqxAB Multidrug Efflux Pump amongst Olaquindox-Resistant Escherichia coli in Pigs

    DEFF Research Database (Denmark)

    Hansen, Lars Hestbjerg; Sørensen, Søren Johannes; Jørgensen, Helle S.

    2005-01-01

    The quinoxaline olaquindox has been used extensively as a growth promoter for pigs. Recently, we isolated a plasmid (pOLA52) conferring resistance to olaquindox from swine manure. On this plasmid, the oqxA and oqxB genes encode an RND-family multidrug efflux pump, OqxAB. It facilitates resistance...... to olaquindox as well as resistance to other antimicrobials like chloramphenicol. In this study, 10 of the 556 (1.8%) previously isolated Escherichia coli strains were shown to have an MIC = 64 µg/ml olaquindox. In nine of the ten strains, the oqxA gene was detected. Sequencing of an internal fragment of oqx......A from the oqxA-positive strains showed no variation, indicating highly conserved oqxA genes. All of the oqxA-positive strains contain plasmids with replicons similar to that of pOLA52. It was verified by Southern hybridization that the oqxAB operon was situated on plasmids in most, if not all, resistant...

  15. The prevalence of the OqxAB amongst olaquindox-resistant multidrug efflux pump Escherichia coli in pigs

    DEFF Research Database (Denmark)

    Hansen, L.H.; Sørensen, S.J.; Jørgensen, H.S.

    2005-01-01

    The quinoxaline olaquindox has been used extensively as a growth promoter for pigs. Recently, we isolated a plasmid (pOLA52) conferring resistance to olaquindox from swine manure. On this plasmid, the oqxA and oqxB genes encode an RND-family multidrug efflux pump, OqxAB. It facilitates resistance...... to olaquindox as well as resistance to other antimicrobials like chloramphenicol. In this study, 10 of the 556 (1.8%) previously isolated Escherichia coli strains were shown to have an MIC >= 64 mu g/ml olaquindox. In nine of the ten strains, the oqxA gene was detected. Sequencing of an internal fragment of oqx......A from the oqxA-positive strains showed no variation, indicating highly conserved oqxA genes. All of the oqxA-positive strains contain plasmids with replicons similar to that of pOLA52. It was verified by Southern hybridization that the oqxAB operon was situated on plasmids in most, if not all, resistant...

  16. Effects of chlorophyll-derived efflux pump inhibitor pheophorbide a and pyropheophorbide a on erythromycin resistance of Staphylococcus aureus, Enterococcus faecalis, Salmonella Typhimurium and Escherichia coli

    Science.gov (United States)

    The purpose of this study was to validate the hypothesis that pheophorbide a and pyropheophorbide a reduce erythromycin resistance of reference strains of facultative anaerobic bacteria with multidrug or macrolide efflux pumps, as indicative of their effect on bacteria indigenous to anaerobic swine ...

  17. Multidrug efflux systems in Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Maria Aparecida Scatamburlo Moreira

    2004-06-01

    Full Text Available Multidrug efflux mechanisms in bacteria contribute significantly to intrinsic and acquired resistance to antimicrobial agents. Genome analysis have confirmed the broad distribution of these systems in Gram-negative as well as in Gram-positive bacteria. Among resistance mechanisms, the multidrug efflux system or pump deserves special attention, since a cell that has acquired it can simultaneously diminish or even suppress the susceptibility to a wide range of antimicrobials. The efflux system is mediated by transport proteins which confer resistance to toxic compounds. In Gram-negative bacteria, a tripartite efflux system is necessary to expel the drug to the outer medium: a protein localized in the cytoplasmic membrane; another in the periplasmatic space (membrane fusion protein - MFP; and a third in the outer membrane (outer membrane factor - OMF. The drug transport is active, and depends either on the energy provided by ATP hydrolysis or is directly driven by the proton motive force. The transport proteins are grouped in families, according to the homology of the amino acid sequences and to similarity of mechanisms. Among Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa have most of the hitherto identified and studied multidrug efflux systems.

  18. Natural lignans from Arctium lappa modulate P-glycoprotein efflux function in multidrug resistant cancer cells.

    Science.gov (United States)

    Su, Shan; Cheng, Xinlai; Wink, Michael

    2015-02-15

    Arctium lappa is a well-known traditional medicinal plant in China (TCM) and Europe that has been used for thousands of years to treat arthritis, baldness or cancer. The plant produces lignans as secondary metabolites which have a wide range of bioactivities. Yet, their ability to reverse multidrug resistance (MDR) in cancer cells has not been explored. In this study, we isolated six lignans from A. lappa seeds, namely arctigenin, matairesinol, arctiin, (iso)lappaol A, lappaol C, and lappaol F. The MDR reversal potential of the isolated lignans and the underlying mechanism of action were studied using two MDR cancer cell lines, CaCo2 and CEM/ADR 5000 which overexpress P-gp and other ABC transporters. In two-drug combinations of lignans with the cytotoxic doxorubicin, all lignans exhibited synergistic effects in CaCo2 cells and matairesinol, arctiin, lappaol C and lappaol F display synergistic activity in CEM/ADR 5000 cells. Additionally, in three-drug combinations of lignans with the saponin digitonin and doxorubicin MDR reversal activity was even stronger enhanced. The lignans can increase the retention of the P-gp substrate rhodamine 123 in CEM/ADR 5000 cells, indicating that lignans can inhibit the activity of P-gp. Our study provides a first insight into the potential chemosensitizing activity of a series of natural lignans, which might be candidates for developing novel adjuvant anticancer agents. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Role of the MexEF-OprN efflux system in low-level resistance of Pseudomonas aeruginosa to ciprofloxacin.

    Science.gov (United States)

    Llanes, Catherine; Köhler, Thilo; Patry, Isabelle; Dehecq, Barbara; van Delden, Christian; Plésiat, Patrick

    2011-12-01

    In this study, we investigated the resistance mechanisms to fluoroquinolones of 85 non-cystic fibrosis strains of Pseudomonas aeruginosa exhibiting a reduced susceptibility to ciprofloxacin (MICs from 0.25 to 2 μg/ml). In addition to MexAB-OprM (31 of 85 isolates) and MexXY/OprM (39 of 85), the MexEF-OprN efflux pump (10 of 85) was found to be commonly upregulated in this population that is considered susceptible or of intermediate susceptibility to ciprofloxacin, according to current breakpoints. Analysis of the 10 MexEF-OprN overproducers (nfxC mutants) revealed the presence of various mutations in the mexT (2 isolates), mexS (5 isolates), and/or mvaT (2 isolates) genes, the inactivation of which is known to increase the expression of the mexEF-oprN operon in reference strain PAO1-UW. However, these genes were intact in 3 of 10 of the clinical strains. Interestingly, ciprofloxacin at 2 μg/ml or 4 μg/ml preferentially selected nfxC mutants from wild-type clinical strains (n = 10 isolates) and from first-step mutants (n = 10) overexpressing Mex pumps, thus indicating that MexEF-OprN represents a major mechanism by which P. aeruginosa may acquire higher resistance levels to fluoroquinolones. These data support the notion that the nfxC mutants may be more prevalent in the clinical setting than anticipated and strongly suggest the involvement of still unknown genes in the regulation of this efflux system.

  20. Enhanced resistance to fluoroquinolones in laboratory-grown mutants & clinical isolates of Shigella due to synergism between efflux pump expression & mutations in quinolone resistance determining region

    Directory of Open Access Journals (Sweden)

    Neelam Taneja

    2015-01-01

    Full Text Available Background & objectives: There is a worldwide emergence of fluoroquinolone resistance in Shigella species. To understand the molecular mechanisms associated with fluoroquinolone resistance, naturally occurring fluoroquinolone-resistant strains and laboratory-induced spontaneous mutants of Shigella spp. were used and the relative contributions of acrAB-tolC efflux pumps, gyrase and topoisomerase target gene mutations towards fluoroquinolone resistance were determined. Methods: Eight Shigella flexneri and six S. dysenteriae clinical isolates were studied. Three consecutive mutants resistant to ciprofloxacin for S. flexneri SFM1 (≥0.25 µg/ml, SFM2 (≥4 µg/ml and SFM3 (≥32 µg/ml were selected in 15 steps from susceptible isolates by serial exposure to increasing concentrations of nalidixic acid and ciprofloxacin. Similarly, two mutants for S. dysenteriae SDM1 (≥0.25 µg/ml and SDM2 (≥4 µg/ml were selected in eight steps. After PCR amplification sequence analyses of gyrase and topoisomerase target genes were performed. Expression of efflux genes acrA, acrB, acrR and tolC was measured using real-time PCR. Results: Mutations were observed in gyrA Ser [83]→Leu, Asp [87]→Asn/Gly, Val [196]→Ala and in parC Phe [93]→Val, Ser [80]→Ile, Asp [101]→Glu and Asp [110]→Glu. Overall, acrA and acrB overexpression was associated with fluoroquinolone resistance ( p0 <0.05; while tolC and acrR expression levels did not. Interpretation & conclusions: Fluoroquinolone resistance in Shigella spp. is the end product of either a single or a combination of mutations in QRDRs and/ or efflux activity. Novel polymorphisms were observed at Val [196]→Ala in gyrA in clinical isolates and Phe [93]→Val, Asp [101]→Glu, Asp [110]→Glu and in parC in majority of laboratory-grown mutants.

  1. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies.

    Science.gov (United States)

    Li, Wen; Zhang, Han; Assaraf, Yehuda G; Zhao, Kun; Xu, Xiaojun; Xie, Jinbing; Yang, Dong-Hua; Chen, Zhe-Sheng

    2016-07-01

    Multidrug resistance is a key determinant of cancer chemotherapy failure. One of the major causes of multidrug resistance is the enhanced efflux of drugs by membrane ABC transporters. Targeting ABC transporters projects a promising approach to eliminating or suppressing drug resistance in cancer treatment. To reveal the functional mechanisms of ABC transporters in drug resistance, extensive studies have been conducted from identifying drug binding sites to elucidating structural dynamics. In this review article, we examined the recent crystal structures of ABC proteins to depict the functionally important structural elements, such as domains, conserved motifs, and critical amino acids that are involved in ATP-binding and drug efflux. We inspected the drug-binding sites on ABC proteins and the molecular mechanisms of various substrate interactions with the drug binding pocket. While our continuous battle against drug resistance is far from over, new approaches and technologies have emerged to push forward our frontier. Most recent developments in anti-MDR strategies include P-gp inhibitors, RNA-interference, nano-medicines, and delivering combination strategies. With the advent of the 'Omics' era - genomics, epigenomics, transcriptomics, proteomics, and metabolomics - these disciplines play an important role in fighting the battle against chemoresistance by further unraveling the molecular mechanisms of drug resistance and shed light on medical therapies that specifically target MDR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Transcriptional Analysis of MexAB-OprM Efflux Pumps System of Pseudomonas aeruginosa and Its Role in Carbapenem Resistance in a Tertiary Referral Hospital in India.

    Science.gov (United States)

    Choudhury, Debarati; Das Talukdar, Anupam; Dutta Choudhury, Manabendra; Maurya, Anand Prakash; Paul, Deepjyoti; Dhar Chanda, Debadatta; Chakravorty, Atanu; Bhattacharjee, Amitabha

    2015-01-01

    Carbapenem resistance presents severe threat to the treatment of multidrug resistant Pseudomonas aeruginosa infections. The study was undertaken to investigate the role of efflux pumps in conferring meropenem resistance and effect of single dose exposure of meropenem on transcription level of mexA gene in clinical isolates of P. aeruginosa from a tertiary referral hospital of India. Further, in this investigation an effort was made to assess whether different components of MexAB-OprM operon expresses in the same manner and the extent of contributions of those components in meropenem resistance in its natural host (P. aeruginosa) and in a heterologous host (E. coli). Out of 83 meropenem nonsusceptible isolates, 22 isolates were found to possess efflux pump activity phenotypically. Modified hodge test and multiplex PCR confirmed the absence of carbapenemase genes in those isolates. All of them were of multidrug resistant phenotype and were resistant to all the carbepenem drug tested. MexAB-OprM efflux pump was found to be overexpressed in all the study isolates. It could be observed that single dose exposure meropenem could give rise to trivial increase in transcription of mexA gene. Different constructs of MexAB-OprM (mexR-mexA-mexB-OprM; mexA-mexB-OprM; mexA-mexB) could be expressed in both its natural (P. aeruginosa PAO1) and heterologous host (E. coli JM107) but transcription level of mexA gene varied in both the hosts before and after single dose exposure of meropenem. Different components of the operon failed to enhance meropenem resistance in E. coli JM107 and P. aeruginosa PAO1. This study could prove that MexAB-OprM efflux pump can significantly contribute to meropenem resistance in hospital isolates of P. aeruginosa where an acquired resistant mechanism is absent. Thus, equal importance should be given for diagnosis of intrinsic resistance mechanism so as to minimize treatment failure. As meropenem could not enhance mexA transcriptions significantly, there

  3. Transcriptional Analysis of MexAB-OprM Efflux Pumps System of Pseudomonas aeruginosa and Its Role in Carbapenem Resistance in a Tertiary Referral Hospital in India.

    Directory of Open Access Journals (Sweden)

    Debarati Choudhury

    Full Text Available Carbapenem resistance presents severe threat to the treatment of multidrug resistant Pseudomonas aeruginosa infections. The study was undertaken to investigate the role of efflux pumps in conferring meropenem resistance and effect of single dose exposure of meropenem on transcription level of mexA gene in clinical isolates of P. aeruginosa from a tertiary referral hospital of India. Further, in this investigation an effort was made to assess whether different components of MexAB-OprM operon expresses in the same manner and the extent of contributions of those components in meropenem resistance in its natural host (P. aeruginosa and in a heterologous host (E. coli. Out of 83 meropenem nonsusceptible isolates, 22 isolates were found to possess efflux pump activity phenotypically. Modified hodge test and multiplex PCR confirmed the absence of carbapenemase genes in those isolates. All of them were of multidrug resistant phenotype and were resistant to all the carbepenem drug tested. MexAB-OprM efflux pump was found to be overexpressed in all the study isolates. It could be observed that single dose exposure meropenem could give rise to trivial increase in transcription of mexA gene. Different constructs of MexAB-OprM (mexR-mexA-mexB-OprM; mexA-mexB-OprM; mexA-mexB could be expressed in both its natural (P. aeruginosa PAO1 and heterologous host (E. coli JM107 but transcription level of mexA gene varied in both the hosts before and after single dose exposure of meropenem. Different components of the operon failed to enhance meropenem resistance in E. coli JM107 and P. aeruginosa PAO1. This study could prove that MexAB-OprM efflux pump can significantly contribute to meropenem resistance in hospital isolates of P. aeruginosa where an acquired resistant mechanism is absent. Thus, equal importance should be given for diagnosis of intrinsic resistance mechanism so as to minimize treatment failure. As meropenem could not enhance mexA transcriptions

  4. Involvement of the MexXY-OprM efflux system in emergence of cefepime resistance in clinical strains of Pseudomonas aeruginosa.

    Science.gov (United States)

    Hocquet, Didier; Nordmann, Patrice; El Garch, Farid; Cabanne, Ludovic; Plésiat, Patrick

    2006-04-01

    Cefepime (FEP) and ceftazidime (CAZ) are potent beta-lactam antibiotics with similar MICs (1 to 2 mug/ml) for wild-type strains of Pseudomonas aeruginosa. However, recent epidemiological studies have highlighted the occurrence of isolates more resistant to FEP than to CAZ (FEPr/CAZs profile). We thus investigated the mechanisms conferring such a phenotype in 38 clonally unrelated strains collected in two French teaching hospitals. Most of the bacteria (n=32; 84%) appeared to stably overexpress the mexY gene, which codes for the RND transporter of the multidrug efflux system MexXY-OprM. MexXY up-regulation was the sole FEP resistance mechanism identified (n=12) or was associated with increased levels of pump MexAB-OprM (n=5) or MexJK (n=2), synthesis of secondary beta-lactamase PSE-1 (n=10), derepression of cephalosporinase AmpC (n=1), coexpression of both OXA-35 and MexJK (n=1), or production of both PSE-1 and MexAB-OprM (n=1). Down-regulation of the mexXY operon in seven selected strains by the plasmid-borne repressor gene mexZ decreased FEP resistance from two- to eightfold, thereby demonstrating the significant contribution of MexXY-OprM to the FEPr/CAZs phenotype. The six isolates of this series that exhibited wild-type levels of the mexY gene were found to produce beta-lactamase PSE-1 (n=1), OXA-35 (n=4), or both PSE-1 and OXA-35 (n=1). Altogether, these data provide evidence that MexXY-OprM plays a major role in the development of FEP resistance among clinical strains of P. aeruginosa.

  5. The prevalence of OqxAB multidrug efflux pump amongst olaquindox resistant Escherichia coli in pigs

    DEFF Research Database (Denmark)

    Hansen, L. H.; Sørensen, S. J.; Jørgensen, H. S.

    2005-01-01

    to olaquindox as well as resistance to other antimicrobials like chloramphenicol. In this study, 10 of the 556 (1.8%) previously isolated Escherichia coli strains were shown to have an MIC >or= 64 microg/ml olaquindox. In nine of the ten strains, the oqxA gene was detected. Sequencing of an internal fragment......, resistant strains. Furthermore, horizontal transfer of olaquindox resistance from three olaquindox-resistant isolates was achieved using an olaquindox-sensitive E. coli as recipient....

  6. The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump

    NARCIS (Netherlands)

    Zaman, G. J.; Flens, M. J.; van Leusden, M. R.; de Haas, M.; Mülder, H. S.; Lankelma, J.; Pinedo, H. M.; Scheper, R. J.; Baas, F.; Broxterman, H. J.

    1994-01-01

    The multidrug-resistance associated protein MRP is a 180- to 195-kDa membrane protein associated with resistance of human tumor cells to cytotoxic drugs. We have investigated how MRP confers drug resistance in SW-1573 human lung carcinoma cells by generating a subline stably transfected with an

  7. Drug trafficking in mice: In vivo functions of OATP uptake and ABC efflux transporters

    NARCIS (Netherlands)

    Iusuf, D.

    2013-01-01

    In recent years, there has been increasing attention for drug uptake transporters of the Organic Anion-Transporting Polypeptide (human OATP, mouse Oatp, gene names SLCO, Slco) superfamily. Especially the OATP1A and OATP1B subfamilies turn out to have important physiological and pharmacological

  8. Role of EfrAB efflux pump in biocide tolerance and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from traditional fermented foods and the effect of EDTA as EfrAB inhibitor.

    Science.gov (United States)

    Lavilla Lerma, Leyre; Benomar, Nabil; Valenzuela, Antonio Sánchez; Casado Muñoz, María del Carmen; Gálvez, Antonio; Abriouel, Hikmate

    2014-12-01

    Enterococcus faecalis and Enterococcus faecium isolated from various traditional fermented foods of both animal and vegetable origins have shown multidrug resistance to several antibiotics and tolerance to biocides. Reduced susceptibility was intra and inter-species dependent and was due to specific and unspecific mechanisms such as efflux pumps. EfrAB, a heterodimeric ABC transporter efflux pump, was detected in 100% of multidrug resistant (MDR) E. faecalis strains and only in 12% of MDR E. faecium strains. EfrAB expression was induced by half of minimum inhibitory concentration (MIC) of gentamicin, streptomycin and chloramphenicol. However, expression of efrA and efrB genes was highly dependent on the strain tested and on the antimicrobial used. Our results indicated that 3 mM EDTA highly reduced the MICs of almost all drugs tested. Nevertheless, the higher reductions (>8 folds) were obtained with gentamicin, streptomycin, chlorhexidine and triclosan. Reductions of MICs were correlated with down-regulation of EfrAB expression (10-140 folds) in all three MDR enterococci strains. This is the first report describing the role of EfrAB in the efflux of antibiotics and biocides which reflect also the importance of EfrAB in multidrug resistance in enterococci. EDTA used at low concentration as food preservative could be one of the best choices to prevent spread of multidrug resistant enterococci throughout food chain by decreasing EfrAB expression. EfrAB could be an attractive target not only in enterococci present in food matrix but also those causing infections as well by using EDTA as therapeutic agent in combination with low doses of antibiotics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The Boron Efflux Transporter ROTTEN EAR Is Required for Maize Inflorescence Development and Fertility[C][W][OPEN

    Science.gov (United States)

    Chatterjee, Mithu; Tabi, Zara; Galli, Mary; Malcomber, Simon; Buck, Amy; Muszynski, Michael; Gallavotti, Andrea

    2014-01-01

    Although boron has a relatively low natural abundance, it is an essential plant micronutrient. Boron deficiencies cause major crop losses in several areas of the world, affecting reproduction and yield in diverse plant species. Despite the importance of boron in crop productivity, surprisingly little is known about its effects on developing reproductive organs. We isolated a maize (Zea mays) mutant, called rotten ear (rte), that shows distinct defects in vegetative and reproductive development, eventually causing widespread sterility in its inflorescences, the tassel and the ear. Positional cloning revealed that rte encodes a membrane-localized boron efflux transporter, co-orthologous to the Arabidopsis thaliana BOR1 protein. Depending on the availability of boron in the soil, rte plants show a wide range of phenotypic defects that can be fully rescued by supplementing the soil with exogenous boric acid, indicating that rte is crucial for boron transport into aerial tissues. rte is expressed in cells surrounding the xylem in both vegetative and reproductive tissues and is required for meristem activity and organ development. We show that low boron supply to the inflorescences results in widespread defects in cell and cell wall integrity, highlighting the structural importance of boron in the formation of fully fertile reproductive organs. PMID:25035400

  10. Association of overexpression of efflux pump genes with antibiotic resistance in Pseudomonas aeruginosa strains clinically isolated from urinary tract infection patients.

    Science.gov (United States)

    Shigemura, Katsumi; Osawa, Kayo; Kato, Ayaka; Tokimatsu, Issei; Arakawa, Soichi; Shirakawa, Toshiro; Fujisawa, Masato

    2015-09-01

    There are several mechanisms for antibiotic-resistant Pseudomonas aeruginosa. The purpose of this study is to investigate the association between the expression of efflux pump-coding genes and antibiotic resistance in P. aeruginosa causing urinary tract infections (UTIs). We extracted the RNA from 105 clinical strains of P. aeruginosa isolated from UTI patients with full data on antibiotic MICs and assayed real-time quantitative reverse-transcription PCR. We investigated the gene expressions of four resistance nodulation cell division-type multi-drug efflux pump systems (MexAB-OprM, MexCD-OprJ, MexEF-OprN and MexXY(-OprA)) and the correlation of the MICs of nine antibiotics, risk factors and antibiotic resistance-related genes with expressions of mexB, mexC, mexE and mexY. Multivariate statistical data demonstrated a significant relationship between increased expression of mexB or mexC and complicated UTI (Odds ratio=8.03, Presistance to levofloxacin (LVFX) (Odds ratio=4.48, P=0.035). In conclusion, increased expression of mexC leads to LVFX resistance in P. aeruginosa causing UTI. These results contribute to our knowledge of the efflux pump system and antibiotic resistance.

  11. Placental Drug Transport-on-a-Chip: A Microengineered In Vitro Model of Transporter-Mediated Drug Efflux in the Human Placental Barrier.

    Science.gov (United States)

    Blundell, Cassidy; Yi, Yoon-Suk; Ma, Lin; Tess, Emily R; Farrell, Megan J; Georgescu, Andrei; Aleksunes, Lauren M; Huh, Dongeun

    2018-01-01

    The current lack of knowledge about the effect of maternally administered drugs on the developing fetus is a major public health concern worldwide. The first critical step toward predicting the safety of medications in pregnancy is to screen drug compounds for their ability to cross the placenta. However, this type of preclinical study has been hampered by the limited capacity of existing in vitro and ex vivo models to mimic physiological drug transport across the maternal-fetal interface in the human placenta. Here the proof-of-principle for utilizing a microengineered model of the human placental barrier to simulate and investigate drug transfer from the maternal to the fetal circulation is demonstrated. Using the gestational diabetes drug glyburide as a model compound, it is shown that the microphysiological system is capable of reconstituting efflux transporter-mediated active transport function of the human placental barrier to limit fetal exposure to maternally administered drugs. The data provide evidence that the placenta-on-a-chip may serve as a new screening platform to enable more accurate prediction of drug transport in the human placenta. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Novel conditionally immortalized human proximal tubule cell line expressing functional influx and efflux transporters.

    NARCIS (Netherlands)

    Wilmer, M.J.G.; Saleem, M.A.; Masereeuw, R.; Ni, L.; Velden, T.J.A.M. van der; Russel, F.G.M.; Mathieson, P.W.; Monnens, L.A.H.; Heuvel, L.P.W.J. van den; Levtchenko, E.N.

    2010-01-01

    Reabsorption of filtered solutes from the glomerular filtrate and excretion of waste products and xenobiotics are the main functions of the renal proximal tubular (PT) epithelium. A human PT cell line expressing a range of functional transporters would help to augment current knowledge in renal

  13. Syntaxin 1A interaction with the dopamine transporter promotes amphetamine-induced dopamine efflux

    DEFF Research Database (Denmark)

    Binda, Francesca; Dipace, Concetta; Bowton, Erica

    2008-01-01

    of the dopamine (DA) transporter (DAT) as the site of direct interaction with SYN1A. Amphetamine (AMPH) increases the association of SYN1A with human DAT (hDAT) in a heterologous expression system (hDAT cells) and with native DAT in murine striatal synaptosomes. Immunoprecipitation of DAT from the biotinylated...

  14. Opioid analgesics and P-glycoprotein efflux transporters: a potential systems-level contribution to analgesic tolerance.

    Science.gov (United States)

    Mercer, Susan L; Coop, Andrew

    2011-01-01

    Chronic clinical pain remains poorly treated. Despite attempts to develop novel analgesic agents, opioids remain the standard analgesics of choice in the clinical management of chronic and severe pain. However, mu opioid analgesics have undesired side effects including, but not limited to, respiratory depression, physical dependence and tolerance. A growing body of evidence suggests that P-glycoprotein (P-gp), an efflux transporter, may contribute a systems-level approach to the development of opioid tolerance. Herein, we describe current in vitro and in vivo methodology available to analyze interactions between opioids and P-gp and critically analyze P-gp data associated with six commonly used mu opioids to include morphine, methadone, loperamide, meperidine, oxycodone, and fentanyl. Recent studies focused on the development of opioids lacking P-gp substrate activity are explored, concentrating on structure-activity relationships to develop an optimal opioid analgesic lacking this systems-level contribution to tolerance development. Continued work in this area will potentially allow for delineation of the mechanism responsible for opioid-related P-gp up-regulation and provide further support for evidence based medicine supporting clinical opioid rotation.

  15. The MexJK efflux pump of Pseudomonas aeruginosa requires OprM for antibiotic efflux but not for efflux of triclosan.

    Science.gov (United States)

    Chuanchuen, Rungtip; Narasaki, Craig T; Schweizer, Herbert P

    2002-09-01

    Using the biocide triclosan as a selective agent, several triclosan-resistant mutants of a susceptible Pseudomonas aeruginosa strain were isolated. Cloning and characterization of a DNA fragment conferring triclosan resistance from one of these mutants revealed a hitherto uncharacterized efflux system of the resistance nodulation cell division (RND) family, which was named MexJK and which is encoded by the mexJK operon. Expression of this operon is negatively regulated by the product of mexL, a gene located upstream of and transcribed divergently from mexJK. The triclosan-resistant mutant contained a single nucleotide change in mexL, which caused an amino acid change in the putative helix-turn-helix domain of MexL. The MexL protein belongs to the TetR family of repressor proteins. The MexJK system effluxed tetracycline and erythromycin but only in the presence of the outer membrane protein channel OprM; OprJ and OprN did not function with MexJK. Triclosan efflux required neither of the outer membrane protein channels tested but necessitated the MexJ membrane fusion protein and the MexK inner membrane RND transporter. The results presented in this study suggest that MexJK may function as a two-component RND pump for triclosan efflux but must associate with OprM to form a tripartite antibiotic efflux system. Furthermore, the results confirm that triclosan is an excellent tool for the study of RND multidrug efflux systems and that this popular biocide therefore readily selects mutants which are cross-resistant with antibiotics.

  16. Current Advances in Developing Inhibitors of Bacterial Multidrug 
Efflux Pumps

    Science.gov (United States)

    Mahmood, Hannah Y.; Jamshidi, Shirin; Sutton, J. Mark; Rahman, Khondaker M.

    2016-01-01

    Antimicrobial resistance represents a significant challenge to future healthcare provision. An acronym ESKAPEE has been derived from the names of the organisms recognised as the major threats although there are a number of other organisms, notably Neisseria gonorrhoeae, that have become equally challenging to treat in the clinic. These pathogens are characterised by the ability to rapidly develop and/or acquire resistance mechanisms in response to exposure to different antimicrobial agents. A key part of the armoury of these pathogens is a series of efflux pumps, which effectively exclude or reduce the intracellular concentration of a large number of antibiotics, making the pathogens significantly more resistant. These efflux pumps are the topic of considerable interest, both from the perspective of basic understanding of efflux pump function, and its role in drug resistance but also as targets for the development of novel adjunct therapies. The necessity to overcome antimicrobial resistance has encouraged investigations into the characterisation of resistance-modifying efflux pump inhibitors to block the mechanisms of drug extrusion, thereby restoring antibacterial susceptibility and returning existing antibiotics into the clinic. A greater understanding of drug recognition and transport by multidrug efflux pumps is needed to develop clinically useful inhibitors, given the breadth of molecules that can be effluxed by these systems. This review discusses different bacterial EPIs originating from both natural source and chemical synthesis and examines the challenges to designing successful EPIs that can be useful against multidrug resistant bacteria. PMID:26947776

  17. The exocyst complex contributes to PIN auxin efflux carrier recycling and polar auxin transport in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Drdová, Edita; Synek, Lukáš; Pečenková, Tamara; Hála, Michal; Kulich, I.; Fowler, J.E.; Murphy, A.S.; Žárský, Viktor

    2013-01-01

    Roč. 73, č. 5 (2013), s. 709-719 ISSN 0960-7412 R&D Projects: GA ČR GPP501/11/P853; GA ČR(CZ) GAP305/11/1629; GA MŠk(CZ) LC06034; GA AV ČR KJB600380802 Grant - others:GA MŠk(CZ) ME10033 Institutional research plan: CEZ:AV0Z50380511 Keywords : exocyst * polar auxin transport * PIN recycling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.815, year: 2013

  18. Enhanced Efflux Pump Activity in Old Candida glabrata Cells.

    Science.gov (United States)

    Bhattacharya, Somanon; Fries, Bettina C

    2018-03-01

    We investigated the effect of replicative aging on antifungal resistance in Candida glabrata Our studies demonstrate significantly increased transcription of ABC transporters and efflux pump activity in old versus young C. glabrata cells of a fluconazole-sensitive and -resistant strain. In addition, higher tolerance to killing by micafungin and amphotericin B was noted and is associated with higher transcription of glucan synthase gene FKS1 and lower ergosterol content in older cells. Copyright © 2018 American Society for Microbiology.

  19. Critical biophysical properties in the Pseudomonas aeruginosa efflux gene regulator MexR are targeted by mutations conferring multidrug resistance.

    Science.gov (United States)

    Andrésen, Cecilia; Jalal, Shah; Aili, Daniel; Wang, Yi; Islam, Sohidul; Jarl, Anngelica; Liedberg, Bo; Wretlind, Bengt; Mårtensson, Lars-Göran; Sunnerhagen, Maria

    2010-04-01

    The self-assembling MexA-MexB-OprM efflux pump system, encoded by the mexO operon, contributes to facile resistance of Pseudomonas aeruginosa by actively extruding multiple antimicrobials. MexR negatively regulates the mexO operon, comprising two adjacent MexR binding sites, and is as such highly targeted by mutations that confer multidrug resistance (MDR). To understand how MDR mutations impair MexR function, we studied MexR-wt as well as a selected set of MDR single mutants distant from the proposed DNA-binding helix. Although DNA affinity and MexA-MexB-OprM repression were both drastically impaired in the selected MexR-MDR mutants, MexR-wt bound its two binding sites in the mexO with high affinity as a dimer. In the MexR-MDR mutants, secondary structure content and oligomerization properties were very similar to MexR-wt despite their lack of DNA binding. Despite this, the MexR-MDR mutants showed highly varying stabilities compared with MexR-wt, suggesting disturbed critical interdomain contacts, because mutations in the DNA-binding domains affected the stability of the dimer region and vice versa. Furthermore, significant ANS binding to MexR-wt in both free and DNA-bound states, together with increased ANS binding in all studied mutants, suggest that a hydrophobic cavity in the dimer region already shown to be involved in regulatory binding is enlarged by MDR mutations. Taken together, we propose that the biophysical MexR properties that are targeted by MDR mutations-stability, domain interactions, and internal hydrophobic surfaces-are also critical for the regulation of MexR DNA binding.

  20. Correlation Between qacE and qacE∆1 Efflux Pump Genes, Antibiotic and Disinfectant Resistant Among Clinical Isolates of E.coli.

    Science.gov (United States)

    Shafaati, Maryam; Boroumand, Mohammadali; Nowroozi, Jamileh; Amiri, Pouya; Kazemian, Hossein

    2016-01-01

    Antiseptics and disinfectants have been used widely in hospitals and other health care settings to control the growth of microorganisms. However, some disinfectant resistant strains were reported. The objectives of our study were to evaluate correlation between the efflux pump genes, drugs and disinfectant resistant among clinical isolates of E.coli. A total of 102 of E. coli strains were isolated from urine sample of hospitalized patients. The antibiotic susceptibility was carried out by disc diffusion method. Didecyl di-methyl ammonium chloride (DDDMAC) was used as Quaternary ammonium compound (QAC) disinfectant which was used in Heart Center Hospital. PCR reaction was carried out for detection of qacE and qac∆E efflux pump genes. Almost all the strains had higher resistance to ampicillin, ciproflaxacin, cotrimaxazole and cephalothin. Totally 49% (n: 50) of strains were produced ESBL. Almost all the strains have MIC value between 0.00195 to 0.0078 mg/l for DDDMAC. Correlation between presence of qacE and qac∆E genes and antibiotic resistance was perceived. Presence of qacE and qac∆E genes among strains that have high disinfectant MIC value were 96.9% and 93.7% respectively. In addition, 98% of ESBL producing strains harbored qacE gene and 94% of ESBL producing strains harbored qac∆E gene. Our study indicated that there was a strong correlation between presence of qacE and qac∆E genes with resistance to some antibiotics and growth in media which contain high concentration of disinfectant. In conclusion, other mechanisms also play important role in resistant to antimicrobial agents but the role of efflux pumps in resistant to antimicrobial agents should not be neglected. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. [Efflux systems in Serratia marcescens].

    Science.gov (United States)

    Mardanova, A M; Bogomol'naia, L M; Romanova, Iu D; Sharipova, M R

    2014-01-01

    A widespread bacterium Serratia marcescens (family Enterobacteriaceae) is an opportunistic and exhibits multiple drug resistance. Active removal of antibiotics and other antimicrobials from pathogen and exhibits multiple drug resistance. Active removal of antibiotics and other antimicrobials from the cells by efflux systems is one of the mechanisms responsible for microbial resistance to these compounds. Among enterobacteria, efflux systems of Escherichia coli and Salmonella enterica var. Typhimurium have been studied most extensively. Few efflux systems that belong to different families have been reported for S. marcescens. In this review, we analyzed available literature about S. marcescens efflux systems and carried out the comparative analysis of the genes encoding the RND type systems in different Serratia species and in other enterobacteria. Bioinformatical analysis of the S. marcescens genome allowed us to identify the previously unknown efflux systems based on their homology with the relevant E. coli genes. Identification of additional efflux systems in S. marcescens genome will promote our understanding of physiology of these bacteria, will detect new molecular mechanisms of resistance and will reveal their resistance potential.

  2. Purification of a Multidrug Resistance Transporter for Crystallization Studies

    Directory of Open Access Journals (Sweden)

    Kamela O. Alegre

    2015-03-01

    Full Text Available Crystallization of integral membrane proteins is a challenging field and much effort has been invested in optimizing the overexpression and purification steps needed to obtain milligram amounts of pure, stable, monodisperse protein sample for crystallography studies. Our current work involves the structural and functional characterization of the Escherichia coli multidrug resistance transporter MdtM, a member of the major facilitator superfamily (MFS. Here we present a protocol for isolation of MdtM to increase yields of recombinant protein to the milligram quantities necessary for pursuit of structural studies using X-ray crystallography. Purification of MdtM was enhanced by introduction of an elongated His-tag, followed by identification and subsequent removal of chaperonin contamination. For crystallization trials of MdtM, detergent screening using size exclusion chromatography determined that decylmaltoside (DM was the shortest-chain detergent that maintained the protein in a stable, monodispersed state. Crystallization trials of MdtM performed using the hanging-drop diffusion method with commercially available crystallization screens yielded 3D protein crystals under several different conditions. We contend that the purification protocol described here may be employed for production of high-quality protein of other multidrug efflux members of the MFS, a ubiquitous, physiologically and clinically important class of membrane transporters.

  3. bba, a synthetic derivative of 23-hydroxybutulinic acid, reverses multidrug resistance by inhibiting the efflux activity of MRP7 (ABCC10.

    Directory of Open Access Journals (Sweden)

    Jun-Jiang Chen

    Full Text Available Natural products are frequently used for adjuvant chemotherapy in cancer treatment. 23-O-(1,4'-bipiperidine-1-carbonyl betulinic acid (BBA is a synthetic derivative of 23-hydroxybutulinic acid (23-HBA, which is a natural pentacyclic triterpene and the major active constituent of the root of Pulsatillachinensis. We previously reported that BBA could reverse P-glycoprotein (P-gp/ABCB1-mediated multidrug resistance (MDR. In the present study, we investigated whether BBA has the potential to reverse multidrug resistance protein 7 (MRP7/ABCC10-mediated MDR. We found that BBA concentration-dependently enhanced the sensitivity of MRP7-transfected HEK293 cells to paclitaxel, docetaxel and vinblastine. Accumulation and efflux experiments demonstrated that BBA increased the intracellular accumulation of [(3H]-paclitaxel by inhibiting the efflux of [(3H]-paclitaxel from HEK293/MRP7 cells. In addition, immunoblotting and immunofluorescence analyses indicated no significant alteration of MRP7 protein expression and localization in plasma membranes after treatment with BBA. These results demonstrate that BBA reverses MRP7-mediated MDR through blocking the drug efflux function of MRP7 without affecting the intracellular ATP levels. Our findings suggest that BBA has the potential to be used in combination with conventional chemotherapeutic agents to augment the response to chemotherapy.

  4. Resistance to β-Lactam Antibiotics in Pseudomonas aeruginosa Due to Interplay between the MexAB-OprM Efflux Pump and β-Lactamase

    OpenAIRE

    Nakae, Taiji; Nakajima, Akira; Ono, Toshihisa; Saito, Kohjiro; Yoneyama, Hiroshi

    1999-01-01

    We evaluated the roles of the MexAB-OprM efflux pump and β-lactamase in β-lactam resistance in Pseudomonas aeruginosa by constructing OprM-deficient, OprM basal level, and OprM fully expressed mutants from β-lactamase-negative, -inducible, and -overexpressed strains. We conclude that, with the notable exception of imipenem, the MexAB-OprM pump contributes significantly to β-lactam resistance in both β-lactamase-negative and β-lactamase-inducible strains, while the contribution of the MexAB-Op...

  5. Role of type II topoisomerase mutations and AcrAB efflux pump in fluoroquinolone-resistant clinical isolates of Proteus mirabilis.

    Science.gov (United States)

    Saito, Ryoichi; Sato, Kenya; Kumita, Wakako; Inami, Natsuko; Nishiyama, Hiroyuki; Okamura, Noboru; Moriya, Kyoji; Koike, Kazuhiko

    2006-09-01

    We conducted a study to determine the role played by amino acid mutations in DNA gyrase and topoisomerase IV, and the AcrAB efflux pump in resistance to fluoroquinolones in clinical isolates of Proteus mirabilis. Nine clinical isolates of P. mirabilis containing eight fluoroquinolone-resistant isolates and one fluoroquinolone-susceptible isolate as the causative pathogen were collected from different patients with urinary tract infections. Fluoroquinolone resistance was characterized by PCR and DNA sequencing. The role of the AcrAB efflux pump was investigated by semi-quantifying the transcriptional expression of the acrB gene. Double mutations were found in GyrA, at S83I and E87K, and single mutations in GyrB (S464F) and ParC (S80I) in four isolates with ciprofloxacin MICs of 16 to >128 mg/L. In three isolates (ciprofloxacin MICs of >128 mg/L), the level of acrB expression was 2.1- to 3.2-fold higher than that in the wild-type control strain (ciprofloxacin MIC of 64 versus 8-16 mg/L) and chloramphenicol (>256 versus 4-8 mg/L) compared with the five other fluoroquinolone-resistant isolates. Our findings demonstrate that two mechanisms--mutations in GyrA (at S83I and E87K), GyrB and ParC, and overproduction of the AcrAB efflux pump--might synergistically contribute to a highest level of resistance to fluoroquinolones in clinical isolates of P. mirabilis.

  6. MDM2 Antagonist Nutlin-3a Reverses Mitoxantrone Resistance by Inhibiting Breast Cancer Resistance Protein Mediated Drug Transport

    Science.gov (United States)

    Zhang, Fan; Throm, Stacy L.; Murley, Laura L.; Miller, Laura A.; Zatechka, D. Steven; Guy, R. Kiplin; Kennedy, Rachel; Stewart, Clinton F.

    2011-01-01

    Breast cancer resistance protein (BCRP; ABCG2), a clinical marker for identifying the side population (SP) cancer stem cell subgroup, affects intestinal absorption, brain penetration, hepatobiliary excretion, and multidrug resistance of many anti-cancer drugs. Nutlin-3a is currently under pre-clinical investigation in a variety of solid tumor and leukemia models as a p53 reactivation agent, and has been recently demonstrated to also have p53 independent actions in cancer cells. In the present study, we first report that nutlin-3a can inhibit the efflux function of BCRP. We observed that although the nutlin-3a IC50 did not differ between BCRP over-expressing and vector control cells, nutlin-3a treatment significantly potentiated the cells to treatment with the BCRP substrate mitoxantrone. Combination index calculations suggested synergism between nutlin-3a and mitoxantrone in cell lines over-expressing BCRP. Upon further investigation, it was confirmed that nutlin-3a increased the intracellular accumulation of BCRP substrates such as mitoxantrone and Hoechst 33342 in cells expressing functional BCRP without altering the expression level or localization of BCRP. Interestingly, nutlin-3b, considered virtually “inactive” in disrupting the MDM2/p53 interaction, reversed Hoechst 33342 efflux with the same potency as nutlin-3a. Intracellular accumulation and bi-directional transport studies using MDCKII cells suggested that nutlin-3a is not a substrate of BCRP. Additionally, an ATPase assay using Sf9 insect cell membranes over-expressing wild-type BCRP indicated that nutlin-3a inhibits BCRP ATPase activity in a dose-dependent fashion. In conclusion, our studies demonstrate that nutlin-3a inhibits BCRP efflux function, which consequently reverses BCRP-related drug resistance. PMID:21459080

  7. Phenotype microarray analysis of the drug efflux systems in Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Yamasaki, Seiji; Fujioka, Takuma; Hayashi, Katsuhiko; Yamasaki, Suguru; Hayashi-Nishino, Mitsuko; Nishino, Kunihiko

    2016-11-01

    A large number of drug efflux transporters have been identified in Salmonella enterica serovar Typhimurium, and increased expression of these transporters confers drug resistance in this organism. Here we compared the respiration activities of the wild-type strain and a mutant with nine deleted transporters by phenotype microarray analysis. The mutant was susceptible to 66 structurally unrelated compounds including many antibiotics, dyes, detergents, antihistamine agents, plant alkaloids, antidepressants, antipsychotic drugs, and antiprotozoal drugs. To investigate the effect of each transporter on the susceptibilities to these drugs, we used the single transporter mutants, several multiple deletion mutants, and the transporter overexpressor strains to determine minimum inhibitory concentrations of ampicillin, erythromycin, minocycline, ciprofloxacin, orphenadrine, amitriptyline, thioridazine, and chlorpromazine. The data indicate that the increased susceptibilities of the mutant lacking nine transporter genes are mainly dependent on the absence of the acrAB efflux genes as well as the tolC gene. In addition to the AcrAB-TolC efflux system, the results from the overexpressor strains show that AcrEF confers resistance to these compounds as well as AcrAB of Escherichia coli, MexAB-OprM and MexXY-OprM of Pseudomonas aeruginosa. The results highlight the importance of the efflux systems not only for resistance to antibiotics but also for resistance to antihistamine agents, plant alkaloids, antidepressants, antipsychotic drugs, and antiprotozoal drugs. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. IMB2026791, a Xanthone, Stimulates Cholesterol Efflux by Increasing the Binding of Apolipoprotein A-I to ATP-Binding Cassette Transporter A1

    Directory of Open Access Journals (Sweden)

    Zijian Xie

    2012-03-01

    Full Text Available It is known that the ATP-binding cassette transporter A1 (ABCA1 plays a major role in cholesterol homeostasis and high density lipoprotein (HDL metabolism. Several laboratories have demonstrated that ABCA1 binding to lipid-poor apolipoprotein A-I (apoA-I will mediate the assembly of nascent HDL and cellular cholesterol efflux, which suggests a possible receptor-ligand interaction between ABCA1 and apoA-I. In this study, a cell-based-ELISA-like high-throughput screening (HTS method was developed to identify the synthetic and natural compounds that can regulate binding activity of ABCA1 to apoA-I. The cell-based-ELISA-like high-throughput screen was conducted in a 96-well format using Chinese hamster ovary (CHO cells stably transfected with ABCA1 pIRE2-EGFP (Enhanced Green Fluorecence Protein expression vector and the known ABCA1 inhibitor glibenclamide as the antagonist control. From 2,600 compounds, a xanthone compound (IMB 2026791 was selected using this HTS assay, and it was proved as an apoA-I binding agonist to ABCA1 by a flow cytometry assay and western blot analysis. The [3H] cholesterol efflux assay of IMB2026791 treated ABCA1-CHO cells and PMA induced THP-1 macrophages (human acute monocytic leukemia cell further confirmed the compound as an accelerator of cholesterol efflux in a dose-dependent manner with an EC50 of 25.23 μM.

  9. MicroRNA-20a/b regulates cholesterol efflux through post-transcriptional repression of ATP-binding cassette transporter A1.

    Science.gov (United States)

    Liang, Bin; Wang, Xin; Song, Xiaosu; Bai, Rui; Yang, Huiyu; Yang, Zhiming; Xiao, Chuanshi; Bian, Yunfei

    2017-09-01

    ATP-binding cassette transporter A1 (ABCA1) plays a crucial role in reverse cholesterol transport and exhibits anti-atherosclerosis effects. Some microRNAs (miRs) regulate ABCA1 expression, and recent studies have shown that miR-20a/b might play a critical role in atherosclerotic diseases. Here, we attempted to clarify the potential contribution of miR-20a/b in post-transcriptional regulation of ABCA1, cholesterol efflux, and atherosclerosis. We performed bioinformatics analysis and found that miR-20a/b was highly conserved and directly bound to ABCA1 mRNA with low binding free energy. Luciferase-reporter assay also confirmed that miR-20a/b significantly reduced luciferase activity associated with the ABCA1 3' untranslated region reporter construct. Additionally, miR-20a/b decreased ABCA1 expression, which, in turn, decreased cholesterol efflux and increased cholesterol content in THP-1 and RAW 264.7 macrophage-derived foam cells. In contrast, miR-20a/b inhibitors increased ABCA1 expression and cholesterol efflux, decreased cholesterol content, and inhibited foam-cell formation. Consistent with our in vitro results, miR-20a/b-treated ApoE -/- mice showed decreased ABCA1expression in the liver and reductions of reverse cholesterol transport in vivo. Furthermore, miR-20a/b regulated the formation of nascent high-density lipoprotein and promoted atherosclerotic development, whereas miR-20a/b knockdown attenuated atherosclerotic formation. miR-20 is a new miRNA capable of targeting ABCA1 and regulating ABCA1 expression. Therefore, miR-20 inhibition constitutes a new strategy for ABCA1-based treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Towards quantitation of the effects of renal impairment and probenecid inhibition on kidney uptake and efflux transporters, using physiologically based pharmacokinetic modelling and simulations.

    Science.gov (United States)

    Hsu, Vicky; de L T Vieira, Manuela; Zhao, Ping; Zhang, Lei; Zheng, Jenny Huimin; Nordmark, Anna; Berglund, Eva Gil; Giacomini, Kathleen M; Huang, Shiew-Mei

    2014-03-01

    The kidney is a major drug-eliminating organ. Renal impairment or concomitant use of transporter inhibitors may decrease active secretion and increase exposure to a drug that is a substrate of kidney secretory transporters. However, prediction of the effects of patient factors on kidney transporters remains challenging because of the multiplicity of transporters and the lack of understanding of their abundance and specificity. The objective of this study was to use physiologically based pharmacokinetic (PBPK) modelling to evaluate the effects of patient factors on kidney transporters. Models for three renally cleared drugs (oseltamivir carboxylate, cidofovir and cefuroxime) were developed using a general PBPK platform, with the contributions of net basolateral uptake transport (T up,b) and apical efflux transport (T eff,a) being specifically defined. We demonstrated the practical use of PBPK models to: (1) define transporter-mediated renal secretion, using plasma and urine data; (2) inform a change in the system-dependent parameter (≥10-fold reduction in the functional 'proximal tubule cells per gram kidney') in severe renal impairment that is responsible for the decreased secretory transport activities of test drugs; (3) derive an in vivo, plasma unbound inhibition constant of T up,b by probenecid (≤1 μM), based on observed drug interaction data; and (4) suggest a plausible mechanism of probenecid preferentially inhibiting T up,b in order to alleviate cidofovir-induced nephrotoxicity.

  11. Resistive drift wave turbulence and transport

    International Nuclear Information System (INIS)

    Wakatani, M.

    1986-01-01

    Our efforts for studying the properties of resistive drift wave turbulence by using model mode-coupling equations are shown. It may be related to the edge turbulence and the associated anomalous transport in tokamaks or in stellarator/heliotron. (author)

  12. 2,4-D resistance in wild radish: reduced herbicide translocation via inhibition of cellular transport

    Science.gov (United States)

    Goggin, Danica E.; Cawthray, Gregory R.; Powles, Stephen B.

    2016-01-01

    Resistance to auxinic herbicides is increasing in a range of dicotyledonous weed species, but in most cases the biochemical mechanism of resistance is unknown. Using 14C-labelled herbicide, the mechanism of resistance to 2,4-dichlorophenoxyacetic acid (2,4-D) in two wild radish (Raphanus raphanistrum L.) populations was identified as an inability to translocate 2,4-D out of the treated leaf. Although 2,4-D was metabolized in wild radish, and in a different manner to the well-characterized crop species wheat and bean, there was no difference in metabolism between the susceptible and resistant populations. Reduced translocation of 2,4-D in the latter was also not due to sequestration of the herbicide, or to reduced uptake by the leaf epidermis or mesophyll cells. Application of auxin efflux or ABCB transporter inhibitors to 2,4-D-susceptible plants caused a mimicking of the reduced-translocation resistance phenotype, suggesting that 2,4-D resistance in the populations under investigation could be due to an alteration in the activity of a plasma membrane ABCB-type auxin transporter responsible for facilitating long-distance transport of 2,4-D. PMID:26994475

  13. The efflux pump MlcE from the Penicillium solitum compactin biosynthetic gene cluster increases Saccharomyces cerevisiae resistance to natural statins

    DEFF Research Database (Denmark)

    Ley, Ana; Frandsen, Rasmus John Normand

    these natural producers difficult to culture in bioreactors. The production limitations associated with the use of natural producers can be overcome by heterologous expression of the biosynthetic pathway in Saccharomyces cerevisiae (1), however, it is crucial to establish a nondestructive resistance mechanism...... efflux pump, capable of exporting natural and semi-natural statins from yeast, and overexpression of MlcE in a statinproducing yeast could therefore greatly improve the commercial production of natural and semi-natural statins. Reference: (1) Xu W. et al., (2013), “LovG: The Thioesterase Required...

  14. Efflux in fungi: la pièce de résistance.

    Directory of Open Access Journals (Sweden)

    Jeffrey J Coleman

    2009-06-01

    Full Text Available Pathogens must be able to overcome both host defenses and antimicrobial treatment in order to successfully infect and maintain colonization of the host. One way fungi accomplish this feat and overcome intercellular toxin accumulation is efflux pumps, in particular ATP-binding cassette transporters and transporters of the major facilitator superfamily. Members of these two superfamilies remove many toxic compounds by coupling transport with ATP hydrolysis or a proton gradient, respectively. Fungal genomes encode a plethora of members of these families of transporters compared to other organisms. In this review we discuss the role these two fungal superfamilies of transporters play in virulence and resistance to antifungal agents. These efflux transporters are responsible not only for export of compounds involved in pathogenesis such as secondary metabolites, but also export of host-derived antimicrobial compounds. In addition, we examine the current knowledge of these transporters in resistance of pathogens to clinically relevant antifungal agents.

  15. Expression of the las and rhl quorum-sensing systems in clinical isolates of Pseudomonas aeruginosa does not correlate with efflux pump expression or antimicrobial resistance.

    Science.gov (United States)

    Bratu, Simona; Gupta, Jyoti; Quale, John

    2006-12-01

    Quorum-sensing systems regulate expression of several virulence factors and may affect the MexAB-OprM efflux system in Pseudomonas aeruginosa. This study investigated the relationship between two quorum-sensing systems, efflux pump MexAB-OprM expression and antimicrobial resistance in 33 clinical isolates of P. aeruginosa. Expression of the quorum-sensing regulatory genes lasR and rhlR was assessed by real time RT-PCR. The autoinducer synthetase genes lasI and rhlI and the regulatory genes mexT and mexS were characterized by DNA sequencing. Production of pyocyanin and elastase in each of the isolates was also determined. While there was a significant correlation between expression of the quorum-sensing regulatory genes and production of pyocyanin and elastase, there was no correlation with expression of mexA or with antimicrobial resistance. There were no mutations in lasI, rhlI, mexT or mexS that correlated with quorum-sensing expression. Increased activity of two quorum-sensing systems in P. aeruginosa does not contribute to increased mexA expression or antimicrobial resistance.

  16. Role of the multidrug efflux system MexXY in the emergence of moderate resistance to aminoglycosides among Pseudomonas aeruginosa isolates from patients with cystic fibrosis.

    Science.gov (United States)

    Vogne, Christelle; Aires, Julio Ramos; Bailly, Christiane; Hocquet, Didier; Plésiat, Patrick

    2004-05-01

    This study investigates the role of active efflux system MexXY in the emergence of aminoglycoside (AG) resistance among cystic fibrosis (CF) isolates of Pseudomonas aeruginosa. Three genotypically related susceptible and resistant (S/R) bacterial pairs and three other AG-resistant CF strains were compared to four non-CF strains moderately resistant to AGs. As demonstrated by immunoblot experiments, pump MexY was strongly overproduced in all of the resistant bacteria. This MexXY upregulation was associated with a 2- to 16-fold increase in the MICs of AGs in the S/R pairs and lower intracellular accumulation of dihydrostreptomycin. Alterations in mexZ, the repressor gene of operon mexXY, were found in all of the AG-resistant CF isolates and in one non-CF strain. Complementation of these bacteria with a plasmid-borne mexZ gene dramatically reduced the MICs of AGs, thus highlighting the role played by MexXY in the development of moderate resistance in CF patients. In contrast, complementation of the three non-CF strains showing wild-type mexZ genes left residual levels of resistance to AGs. These data indicate that a locus different from mexZ may be involved in overproduction of MexXY and that other nonenzymatic mechanisms contribute to AG resistance in P. aeruginosa.

  17. Killing them with kindness? In-hive medications may inhibit xenobiotic efflux transporters and endanger honey bees.

    Directory of Open Access Journals (Sweden)

    David J Hawthorne

    Full Text Available BACKGROUND: Honey bees (Apis mellifera have recently experienced higher than normal overwintering colony losses. Many factors have been evoked to explain the losses, among which are the presence of residues of pesticides and veterinary products in hives. Multiple residues are present at the same time, though most often in low concentrations so that no single product has yet been associated with losses. Involvement of a combination of residues to losses may however not be excluded. To understand the impact of an exposure to combined residues on honey bees, we propose a mechanism-based strategy, focusing here on Multi-Drug Resistance (MDR transporters as mediators of those interactions. METHODOLOGY/PRINCIPAL FINDINGS: Using whole-animal bioassays, we demonstrate through inhibition by verapamil that the widely used organophosphate and pyrethroid acaricides coumaphos and τ-fluvalinate, and three neonicotinoid insecticides: imidacloprid, acetamiprid and thiacloprid are substrates of one or more MDR transporters. Among the candidate inhibitors of honey bee MDR transporters is the in-hive antibiotic oxytetracycline. Bees prefed oxytetracycline were significantly sensitized to the acaricides coumaphos and τ-fluvalinate, suggesting that the antibiotic may interfere with the normal excretion or metabolism of these pesticides. CONCLUSIONS/SIGNIFICANCE: Many bee hives receive regular treatments of oxytetracycline and acaricides for prevention and treatment of disease and parasites. Our results suggest that seasonal co-application of these medicines to bee hives could increase the adverse effects of these and perhaps other pesticides. Our results also demonstrate the utility of a mechanism-based strategy. By identifying pesticides and apicultural medicines that are substrates and inhibitors of xenobiotic transporters we prioritize the testing of those chemical combinations most likely to result in adverse interactions.

  18. Killing them with kindness? In-hive medications may inhibit xenobiotic efflux transporters and endanger honey bees.

    Science.gov (United States)

    Hawthorne, David J; Dively, Galen P

    2011-01-01

    Honey bees (Apis mellifera) have recently experienced higher than normal overwintering colony losses. Many factors have been evoked to explain the losses, among which are the presence of residues of pesticides and veterinary products in hives. Multiple residues are present at the same time, though most often in low concentrations so that no single product has yet been associated with losses. Involvement of a combination of residues to losses may however not be excluded. To understand the impact of an exposure to combined residues on honey bees, we propose a mechanism-based strategy, focusing here on Multi-Drug Resistance (MDR) transporters as mediators of those interactions. Using whole-animal bioassays, we demonstrate through inhibition by verapamil that the widely used organophosphate and pyrethroid acaricides coumaphos and τ-fluvalinate, and three neonicotinoid insecticides: imidacloprid, acetamiprid and thiacloprid are substrates of one or more MDR transporters. Among the candidate inhibitors of honey bee MDR transporters is the in-hive antibiotic oxytetracycline. Bees prefed oxytetracycline were significantly sensitized to the acaricides coumaphos and τ-fluvalinate, suggesting that the antibiotic may interfere with the normal excretion or metabolism of these pesticides. Many bee hives receive regular treatments of oxytetracycline and acaricides for prevention and treatment of disease and parasites. Our results suggest that seasonal co-application of these medicines to bee hives could increase the adverse effects of these and perhaps other pesticides. Our results also demonstrate the utility of a mechanism-based strategy. By identifying pesticides and apicultural medicines that are substrates and inhibitors of xenobiotic transporters we prioritize the testing of those chemical combinations most likely to result in adverse interactions.

  19. Characterization of multidrug resistance P-glycoprotein transport function with an organotechnetium cation

    Energy Technology Data Exchange (ETDEWEB)

    Piwnica-Worms, D.; Vallabhaneni, V.R. [Washington Univ. Medical School, St. Louis, MO (United States); Kronauge, J.F. [Harvard Medical School, Boston, MA (United States)] [and others

    1995-09-26

    Multidrug resistance (MDR) in mammalian cells and tumors is associated with overexpression of an {approximately}170 integral membrane efflux transporter, the MDR1 P-glycoprotein. Hexakis(2-methoxyisobutyl isonitrile) technetium(I) (Tc-SESTAMIBI), a {gamma}-emitting lipophilic cationic metallopharmaceutical, has recently been shown to be a P-glycoprotein transport substrate. Exploiting the negligible lipid membrane adsorption properties of this organometallic substrate, we studied the transport kinetics, pharmacology, drug binding, and modulation of P-glycoprotein in cell preparations derived from a variety of species and selection strategies, including SW-1573, V79, Alex, and CHO drug-sensitive cells and in 77A, LZ-8, and Alex/A.5 MDR cells. Rapid cell accumulation (T{sub 1/2} {approx} 6 min) of the agent to a steady state was observed which was inversely proportional to immunodetectable levels of P-glycoprotein. Many MDR cytotoxic agents inhibited P-glycoprotein-mediated Tc-SESTAMIBI efflux, thereby enhancing organometallic cation accumulation. 70 refs., 7 figs., 2 tabs.

  20. Aminoguanidine hydrazones (AGH's) as modulators of norfloxacin resistance in Staphylococcus aureus that overexpress NorA efflux pump.

    Science.gov (United States)

    Dantas, Natalina; de Aquino, Thiago Mendonça; de Araújo-Júnior, João Xavier; da Silva-Júnior, Edeildo; Gomes, Ednaldo Almeida; Gomes, Antoniel Augusto Severo; Siqueira-Júnior, José Pinto; Mendonça Junior, Francisco Jaime Bezerra

    2018-01-25

    One of the promising fields for improving the effectiveness of antimicrobial agents is their combination with efflux pump inhibitors (EPIs), which besides expanding the use of existing antibiotics. The goal of this research was to evaluate a series of aminoguanidine hydrazones (AGH's, 1-19) as antibacterial agents and NorA efflux pump inhibitors in Staphylococcus aureus strain SA-1199B. Molecular modeling and docking studies were also performed in order to explain at the molecular level the interactions of the compounds with the generated NorA efflux pump model. The MICs of the antibiotic and ethidium bromide were determined by microdilution assay in absence or presence of a subinhibitory concentration of aminoguanidine hydrazones and macrophages viability was determined through MTT assay. Bioinformatic software Swiss-Model and AutoDock 4.2 were used to perform modeling and docking studies, respectively. As results, all AGH's were able to potentiate the action for the antibiotic norfloxacin, causing MIC's reduction of 16-fold and 32-fold to ethidium bromide. In the cell viability test, the concentration of 10 μg/mL showed better results than 90% and the concentration of 1000 μg/mL showed the lowest viability, reaching a maximum of 50% for the analyzed aminoguanidine hydrazones. Molecular docking studies showed that both norfloxacin and derivative 13 were recognized by the same binding site of NorA pump, suggesting a competitive mechanism. The present work demonstrated for the first time that AGH derivatives have potential to be putative inhibitors of NorA efflux pump, showing a promising activity as an antibacterial drug development. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Overexpression of the ATP-binding cassette half-transporter, ABCG2 (Mxr/BCrp/ABCP1), in flavopiridol-resistant human breast cancer cells

    DEFF Research Database (Denmark)

    Robey, R W; Medina-Pérez, W Y; Nishiyama, K

    2001-01-01

    We sought to characterize the interactions of flavopiridol with members of the ATP-binding cassette (ABC) transporter family. Cells overexpressing multidrug resistance-1 (MDR-1) and multidrug resistance-associated protein (MRP) did not exhibit appreciable flavopiridol resistance, whereas cell lines...... overexpressing the ABC half-transporter, ABCG2 (MXR/BCRP/ABCP1), were found to be resistant to flavopiridol. Flavopiridol at a concentration of 10 microM was able to prevent MRP-mediated calcein efflux, whereas Pgp-mediated transport of rhodamine 123 was unaffected at flavopiridol concentrations of up to 100...... resistant to flavopiridol, as well as highly cross-resistant to mitoxantrone (675-fold), topotecan (423-fold), and SN-38 (950-fold), the active metabolite of irinotecan. Because this cross-resistance pattern is consistent with that reported for ABCG2-overexpressing cells, cytotoxicity studies were repeated...

  2. Quinine dimers are potent inhibitors of the Plasmodium falciparum chloroquine resistance transporter and are active against quinoline-resistant P. falciparum.

    Science.gov (United States)

    Hrycyna, Christine A; Summers, Robert L; Lehane, Adele M; Pires, Marcos M; Namanja, Hilda; Bohn, Kelsey; Kuriakose, Jerrin; Ferdig, Michael; Henrich, Philipp P; Fidock, David A; Kirk, Kiaran; Chmielewski, Jean; Martin, Rowena E

    2014-03-21

    Chloroquine (CQ) resistance in the human malaria parasite Plasmodium falciparum is primarily conferred by mutations in the "chloroquine resistance transporter" (PfCRT). The resistance-conferring form of PfCRT (PfCRT(CQR)) mediates CQ resistance by effluxing the drug from the parasite's digestive vacuole, the acidic compartment in which CQ exerts its antiplasmodial effect. PfCRT(CQR) can also decrease the parasite's susceptibility to other quinoline drugs, including the current antimalarials quinine and amodiaquine. Here we describe interactions between PfCRT(CQR) and a series of dimeric quinine molecules using a Xenopus laevis oocyte system for the heterologous expression of PfCRT and using an assay that detects the drug-associated efflux of H(+) ions from the digestive vacuole in parasites that harbor different forms of PfCRT. The antiplasmodial activities of dimers 1 and 6 were also examined in vitro (against drug-sensitive and drug-resistant strains of P. falciparum) and in vivo (against drug-sensitive P. berghei). Our data reveal that the quinine dimers are the most potent inhibitors of PfCRT(CQR) reported to date. Furthermore, the lead compounds (1 and 6) were not effluxed by PfCRT(CQR) from the digestive vacuole but instead accumulated to very high levels within this organelle. Both 1 and 6 exhibited in vitro antiplasmodial activities that were inversely correlated with CQ. Moreover, the additional parasiticidal effect exerted by 1 and 6 in the drug-resistant parasites was attributable, at least in part, to their ability to inhibit PfCRT(CQR). This highlights the potential for devising new antimalarial therapies that exploit inherent weaknesses in a key resistance mechanism of P. falciparum.

  3. Multidrug resistance mediated by ABC transporters in osteosarcoma cell lines: mRNA analysis and functional radiotracer studies

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Celia Maria Freitas [Department of Pathology, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Faculty of Medicine, Institute of Biophysics/Biomathematics, IBILI, 3000-354 Coimbra (Portugal)]. E-mail: cgomes@ibili.uc.pt; van Paassen, Heidi [Department of Pathology, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Romeo, Salvatore [Department of Pathology, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Welling, Mick M. [Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Feitsma, R.I.J. [Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Abrunhosa, Antero J. [Faculty of Medicine, Institute of Biophysics/Biomathematics, IBILI, 3000-354 Coimbra (Portugal); Botelho, M. Filomena [Faculty of Medicine, Institute of Biophysics/Biomathematics, IBILI, 3000-354 Coimbra (Portugal); Hogendoorn, Pancras C.W. [Department of Pathology, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Pauwels, Ernest [Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Cleton-Jansen, Anne Marie [Department of Pathology, Leiden University Medical Center, 2300 RC Leiden (Netherlands)

    2006-10-15

    Drug resistance remains a significant impediment to successful chemotherapy and constitutes a major prognostic factor in osteosarcoma (OS) patients. This study was designed to identify the role and prognostic significance of multidrug-resistance (MDR)-related transporters, such as multidrug resistance protein 1 (MDR1), multidrug-resistance-associated protein (MRP1) and breast-cancer-related protein (BCRP), in OS using cationic lipophilic radiotracers. We evaluated the chemosensitivity of four OS cell lines (Saos-2, 143B, MNNG/HOS and U-2OS) to doxorubicin (DOX), cisplatin (CIS) and methotrexate. The expression of MDR-related transporters was analyzed at mRNA level by quantitative polymerase chain reaction and at functional level by {sup 99m}Tc sestamibi and {sup 99m}Tc tetrofosmin. The effectiveness of MDR modulators [cyclosporin A (CsA) and imatinib] on transporter inhibition and on the reversal of resistance was also assessed. MNNG/HOS and U-2OS cells expressing high levels of MDR1 were highly resistant to DOX and showed reduced accumulation and higher efflux for radiotracers. Although MRP1 was uniformly expressed in all cells, only U-2OS was resistant to CIS. CsA restored sensitivity to DOX and CIS, and enhanced the accumulation and efflux half-life of radiotracers in MDR1-expressing cell lines. The chemosensitivity of OS cells to DOX was strongly dependent on mRNA MDR1 expression and could be circumvented by adding CsA. The kinetic parameters of radiotracers correlated with MDR1 expression levels, hence predicting DOX resistance. We concluded that sensitivity to chemotherapy is strongly dependent on the expression of MDR1 transporter and that radiotracer studies could prove clinically useful in predicting chemotherapy response and in evaluating the efficacy of MDR-reversing agents.

  4. Multidrug Resistance-associated Protein-1 (MRP-1)-dependent Glutathione Disulfide (GSSG) Efflux as a Critical Survival Factor for Oxidant-enriched Tumorigenic Endothelial Cells.

    Science.gov (United States)

    Gordillo, Gayle M; Biswas, Ayan; Khanna, Savita; Spieldenner, James M; Pan, Xueliang; Sen, Chandan K

    2016-05-06

    Endothelial cell tumors are the most common soft tissue tumors in infants. Tumor-forming endothelial (EOMA) cells are able to escape cell death fate despite excessive nuclear oxidant burden. Our previous work recognized perinuclear Nox-4 as a key contributor to EOMA growth. The objective of this work was to characterize the mechanisms by which EOMA cells evade oxidant toxicity and thrive. In EOMA cells, compared with in the cytosol, the nuclear GSSG/GSH ratio was 5-fold higher. Compared to the ratio observed in healthy murine aortic endothelial (MAE) cells, GSSG/GSH was over twice as high in EOMA cells. Multidrug resistance-associated protein-1 (MRP-1), an active GSSG efflux mechanism, showed 2-fold increased activity in EOMA compared with MAE cells. Hyperactive YB-1 and Ape/Ref-1 were responsible for high MRP-1 expression in EOMA. Proximity ligand assay demonstrated MRP-1 and YB-1 binding. Such binding enabled the nuclear targeting of MRP-1 in EOMA in a leptomycin-B-sensitive manner. MRP-1 inhibition as well as knockdown trapped nuclear GSSG, causing cell death of EOMA. Disulfide loading of cells by inhibition of GSSG reductase (bischoloronitrosourea) or thioredoxin reductase (auranofin) was effective in causing EOMA death as well. In sum, EOMA cells survive a heavy oxidant burden by rapid efflux of GSSG, which is lethal if trapped within the cell. A hyperactive MRP-1 system for GSSG efflux acts as a critical survival factor for these cells, making it a potential target for EOMA therapeutics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Multidrug Resistance-associated Protein-1 (MRP-1)-dependent Glutathione Disulfide (GSSG) Efflux as a Critical Survival Factor for Oxidant-enriched Tumorigenic Endothelial Cells*

    Science.gov (United States)

    Gordillo, Gayle M.; Biswas, Ayan; Khanna, Savita; Spieldenner, James M.; Pan, Xueliang; Sen, Chandan K.

    2016-01-01

    Endothelial cell tumors are the most common soft tissue tumors in infants. Tumor-forming endothelial (EOMA) cells are able to escape cell death fate despite excessive nuclear oxidant burden. Our previous work recognized perinuclear Nox-4 as a key contributor to EOMA growth. The objective of this work was to characterize the mechanisms by which EOMA cells evade oxidant toxicity and thrive. In EOMA cells, compared with in the cytosol, the nuclear GSSG/GSH ratio was 5-fold higher. Compared to the ratio observed in healthy murine aortic endothelial (MAE) cells, GSSG/GSH was over twice as high in EOMA cells. Multidrug resistance-associated protein-1 (MRP-1), an active GSSG efflux mechanism, showed 2-fold increased activity in EOMA compared with MAE cells. Hyperactive YB-1 and Ape/Ref-1 were responsible for high MRP-1 expression in EOMA. Proximity ligand assay demonstrated MRP-1 and YB-1 binding. Such binding enabled the nuclear targeting of MRP-1 in EOMA in a leptomycin-B-sensitive manner. MRP-1 inhibition as well as knockdown trapped nuclear GSSG, causing cell death of EOMA. Disulfide loading of cells by inhibition of GSSG reductase (bischoloronitrosourea) or thioredoxin reductase (auranofin) was effective in causing EOMA death as well. In sum, EOMA cells survive a heavy oxidant burden by rapid efflux of GSSG, which is lethal if trapped within the cell. A hyperactive MRP-1 system for GSSG efflux acts as a critical survival factor for these cells, making it a potential target for EOMA therapeutics. PMID:26961872

  6. Overexpression of the ATP-binding cassette half-transporter, ABCG2 (Mxr/BCrp/ABCP1), in flavopiridol-resistant human breast cancer cells

    DEFF Research Database (Denmark)

    Robey, R W; Medina-Pérez, W Y; Nishiyama, K

    2001-01-01

    We sought to characterize the interactions of flavopiridol with members of the ATP-binding cassette (ABC) transporter family. Cells overexpressing multidrug resistance-1 (MDR-1) and multidrug resistance-associated protein (MRP) did not exhibit appreciable flavopiridol resistance, whereas cell lines...... overexpressing the ABC half-transporter, ABCG2 (MXR/BCRP/ABCP1), were found to be resistant to flavopiridol. Flavopiridol at a concentration of 10 microM was able to prevent MRP-mediated calcein efflux, whereas Pgp-mediated transport of rhodamine 123 was unaffected at flavopiridol concentrations of up to 100...... microM. To determine putative mechanisms of resistance to flavopiridol, we exposed the human breast cancer cell line MCF-7 to incrementally increasing concentrations of flavopiridol. The resulting resistant subline, MCF-7 FLV1000, is maintained in 1,000 nM flavopiridol and was found to be 24-fold...

  7. Tolerance to biodegraded crude oil in marine invertebrate embryos and larvae is associated with expression of a multixenobiotic resistance transporter.

    Science.gov (United States)

    Hamdoun, Amro M; Griffin, Fred J; Cherr, Gary N

    2002-11-13

    The toxicity of water-soluble fractions of biodegraded crude oil (BWSF) to embryos and larvae of two marine invertebrates, the white sea urchin (Lytechinus anamesus) and the fat innkeeper (Urechis caupo), was studied. Santa Barbara Channel crude oil was artificially weathered and subjected to biodegradation using a mixed microbe culture obtained from natural oil seep sites. The degradation culture inoculated with seep sediment microbes accumulated 43.7 microg/l water-soluble hydrocarbons. In contrast water-soluble fractions from the non-degraded cultures (NWSF) only accumulated 3.05 microg/l. BWSF proved deleterious to Lytechinus embryo development at low concentrations (EC50 = 0.33 mg/l) but was essentially non-toxic to Urechis embryos/larvae up to 3.0 mg/l. An established mechanism for handling of a wide array of xenobiotics in Urechis embryos is the multixenobiotoic resistance transporter multixenobiotic response (MXR, also known as multidrug resistance, MDR). This mechanism is primarily mediated by ATP-dependent, efflux pumps that extrude a wide array of xenobiotic compounds. In this study, we show that Lytechinus larvae do not appear to express MXR efflux protein nor MXR mediated dye efflux capacity. In contrast, BWSF acts as a competitive inhibitor of MXR transport-mediated dye efflux in Urechis larvae. These results suggest that MXR may be an important mechanism for extrusion of the by-products of crude oil degradation by microbes, and that the level of its expression may determine the susceptibility of organisms to degraded oil hydrocarbons. Copyright 2002 Elsevier Science B.V.

  8. The resistance-nodulation-division efflux pump EmhABC influences the production of 2,4-diacetylphloroglucinol in Pseudomonas fluorescens 2P24.

    Science.gov (United States)

    Tian, Tao; Wu, Xiao-Gang; Duan, Hui-Mei; Zhang, Li-Qun

    2010-01-01

    The polyketide metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) plays a major role in the biological control of soil-borne plant diseases by Pseudomonas fluorescens 2P24. Two mutants (PM810 and PM820) with increased extracellular accumulation of 2,4-DAPG were isolated using transposon mutagenesis. The disrupted genes in these two mutants shared >80 % identity with the genes of the EmhR-EmhABC resistance-nodulation-division (RND) efflux system of P. fluorescens cLP6a. The deletion of emhA (PM802), emhB (PM803) or emhC (PM804) genes in strain 2P24 increased the extracellular accumulation of 2,4-DAPG, whereas the deletion of the emhR (PM801) gene decreased the biosynthesis of 2,4-DAPG. The promoter assay confirmed the elevated transcription of emhABC in the EmhR disrupted strain (PM801) and an indirect negative regulation of 2,4-DAPG biosynthetic locus transcription by the EmhABC efflux pump. Induction by exogenous 2,4-DAPG led to remarkable differences in transcription of chromosome-borne phlA : : lacZ fusion in PM901 and PM811 (emhA(-)) strains. Additionally, the EmhABC system in strain 2P24 was involved in the resistance to a group of toxic compounds, including ampicillin, chloramphenicol, tetracycline, ethidium bromide and crystal violet. In conclusion, our results suggest that the EmhABC system is an important element that influences the production of antibiotic 2,4-DAPG and enhances resistance to toxic compounds in P. fluorescens 2P24.

  9. Global regulator SoxR is a negative regulator of efflux pump gene expression and affects antibiotic resistance and fitness in Acinetobacter baumannii.

    Science.gov (United States)

    Li, Henan; Wang, Qi; Wang, Ruobing; Zhang, Yawei; Wang, Xiaojuan; Wang, Hui

    2017-06-01

    SoxR is a global regulator contributing to multidrug resistance in Enterobacteriaceae. However, the contribution of SoxR to antibiotic resistance and fitness in Acinetobacter baumannii has not yet been studied. Comparisons of molecular characteristics were performed between 32 multidrug-resistant A. baumannii isolates and 11 susceptible isolates. A soxR overexpression mutant was constructed, and its resistance phenotype was analyzed. The impact of SoxR on efflux pump gene expression was measured at the transcription level. The effect of SoxR on the growth and fitness of A. baumannii was analyzed using a growth rate assay and an in vitro competition assay. The frequency of the Gly39Ser mutation in soxR was higher in multidrug-resistant A. baumannii, whereas the soxS gene was absent in all strains analyzed. SoxR overexpression led to increased susceptibility to chloramphenicol (4-fold), tetracycline (2-fold), tigecycline (2-fold), ciprofloxacin (2-fold), amikacin (2-fold), and trimethoprim (2-fold), but it did not influence imipenem susceptibility. Decreased expression of abeS (3.8-fold), abeM (1.3-fold), adeJ (2.4-fold), and adeG (2.5-fold) were correlated with soxR overexpression (P baumannii.

  10. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Juerg eDreier

    2015-07-01

    Full Text Available Pseudomonas aeruginosa infections are becoming increasingly difficult to treat due to intrinsic antibiotic resistance and the propensity of this pathogen to accumulate diverse resistance mechanisms. Hyperexpression of efflux pumps of the Resistance-Nodulation-Division-type multidrug efflux pumps (e.g. MexAB-OprM, chromosomally encoded by mexAB-oprM, mexCD-oprJ, mexEF-oprN, and mexXY (-oprA is often detected in clinical isolates and contributes to worrying multi-drug resistance phenotypes.Not all antibiotics are affected to the same extent by the aforementioned RND efflux pumps. The impact of efflux on antibiotic activity varies not only between different classes of antibiotics but also between members of the same family of antibiotics. Subtle differences in physicochemical features of compound-pump and compound-solvent interactions largely determine how compounds are affected by efflux activity.The combination of different high-resolution techniques helps to gain insight into the functioning of these molecular machineries. This review discusses substrate recognition patterns based on experimental evidence and computer simulations with a focus on MexB, the pump subunit of the main RND transporter in P. aeruginosa.

  11. Transport of free 211At and 125I- in thyroid epithelial cells: effects of anion channel blocker 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid on apical efflux and cellular retention

    International Nuclear Information System (INIS)

    Lindencrona, Ulrika; Forssell-Aronsson, Eva; Nilsson, Mikael

    2007-01-01

    Introduction: Astatine ( 211 At; α-emitter; t 1/2 =7.21 h) shares several features with its halogen neighbour iodine. In the present study, we investigated whether 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) can be used to increase the cellular retention time of 211 At and radioiodide in thyroid epithelial cells. Methods: The transepithelial transport and cellular uptake of 211 At and 125 I - were studied simultaneously in porcine thyrocytes cultured in bicameral chambers. The cells were prestimulated with thyroid-stimulating hormone (TSH) or epidermal growth factor (EGF) for 48 h. In addition, the acute effects of DIDS and forskolin were investigated. Results: The transepithelial transport of both radionuclides was stimulated by TSH and down-regulated by EGF. DIDS rapidly reduced the efflux and increased the cellular content of 125 I - in control and TSH-stimulated cells, whereas DIDS had no effect on 125 I - transport in EGF-treated cells. DIDS blocked the 211 At efflux only in TSH-stimulated cells. Unexpectedly, DIDS caused an accelerated efflux of 211 At in both control and EGF-stimulated cells and, furthermore, reduced the cellular content of 211 At in the EGF-stimulated cultures. DIDS had no effect on the forskolin-induced efflux of the two radionuclides. Conclusions: The magnitude of thyroidal 211 At uptake and efflux is similar to that of 125 I - , strongly dependent on the functional activity of the cells. However, 211 At efflux likely involves several permeating mechanisms with different sensitivity to DIDS, which are at least partly not shared by 125 I - . The results suggest that anion channel blockage is potentially useful to increase the absorbed dose from both 211 At and radioiodine in NIS-expressing tumours

  12. Functional linkage between genes that regulate osmotic stress responses and multidrug resistance transporters: challenges and opportunities for antibiotic discovery.

    Science.gov (United States)

    Cohen, B Eleazar

    2014-01-01

    All cells need to protect themselves against the osmotic challenges of their environment by maintaining low permeability to ions across their cell membranes. This is a basic principle of cellular function, which is reflected in the interactions among ion transport and drug efflux genes that have arisen during cellular evolution. Thus, upon exposure to pore-forming antibiotics such as amphotericin B (AmB) or daptomycin (Dap), sensitive cells overexpress common resistance genes to protect themselves from added osmotic challenges. These genes share pathway interactions with the various types of multidrug resistance (MDR) transporter genes, which both preserve the native lipid membrane composition and at the same time eliminate disruptive hydrophobic molecules that partition excessively within the lipid bilayer. An increased understanding of the relationships between the genes (and their products) that regulate osmotic stress responses and MDR transporters will help to identify novel strategies and targets to overcome the current stalemate in drug discovery.

  13. Effect of ABCG2/BCRP Expression on Efflux and Uptake of Gefitinib in NSCLC Cell Lines.

    Directory of Open Access Journals (Sweden)

    Maricla Galetti

    Full Text Available BCRP/ABCG2 emerged as an important multidrug resistance protein, because it confers resistance to several classes of cancer chemotherapeutic agents and to a number of novel molecularly-targeted therapeutics such as tyrosine kinase inhibitors. Gefitinib is an orally active, selective EGFR tyrosine kinase inhibitor used in the treatment of patients with advanced non small cell lung cancer (NSCLC carrying activating EGFR mutations. Membrane transporters may affect the distribution and accumulation of gefitinib in tumour cells; in particular a reduced intracellular level of the drug may result from poor uptake, enhanced efflux or increased metabolism.The present study, performed in a panel of NSCLC cell lines expressing different ABCG2 plasma membrane levels, was designed to investigate the effect of the efflux transporter ABCG2 on intracellular gefitinib accumulation, by dissecting the contribution of uptake and efflux processes.Our findings indicate that gefitinib, in lung cancer cells, inhibits ABCG2 activity, as previously reported. In addition, we suggest that ABCG2 silencing or overexpression affects intracellular gefitinib content by modulating the uptake rather than the efflux. Similarly, overexpression of ABCG2 affected the expression of a number of drug transporters, altering the functional activities of nutrient and drug transport systems, in particular inhibiting MPP, glucose and glutamine uptake.Therefore, we conclude that gefitinib is an inhibitor but not a substrate for ABCG2 and that ABCG2 overexpression may modulate the expression and activity of other transporters involved in the uptake of different substrates into the cells.

  14. Role of the MexEF-OprN Efflux System in Low-Level Resistance of Pseudomonas aeruginosa to Ciprofloxacin ▿

    Science.gov (United States)

    Llanes, Catherine; Köhler, Thilo; Patry, Isabelle; Dehecq, Barbara; van Delden, Christian; Plésiat, Patrick

    2011-01-01

    In this study, we investigated the resistance mechanisms to fluoroquinolones of 85 non-cystic fibrosis strains of Pseudomonas aeruginosa exhibiting a reduced susceptibility to ciprofloxacin (MICs from 0.25 to 2 μg/ml). In addition to MexAB-OprM (31 of 85 isolates) and MexXY/OprM (39 of 85), the MexEF-OprN efflux pump (10 of 85) was found to be commonly upregulated in this population that is considered susceptible or of intermediate susceptibility to ciprofloxacin, according to current breakpoints. Analysis of the 10 MexEF-OprN overproducers (nfxC mutants) revealed the presence of various mutations in the mexT (2 isolates), mexS (5 isolates), and/or mvaT (2 isolates) genes, the inactivation of which is known to increase the expression of the mexEF-oprN operon in reference strain PAO1-UW. However, these genes were intact in 3 of 10 of the clinical strains. Interestingly, ciprofloxacin at 2 μg/ml or 4 μg/ml preferentially selected nfxC mutants from wild-type clinical strains (n = 10 isolates) and from first-step mutants (n = 10) overexpressing Mex pumps, thus indicating that MexEF-OprN represents a major mechanism by which P. aeruginosa may acquire higher resistance levels to fluoroquinolones. These data support the notion that the nfxC mutants may be more prevalent in the clinical setting than anticipated and strongly suggest the involvement of still unknown genes in the regulation of this efflux system. PMID:21911574

  15. Oct-3/4 modulates the drug-resistant phenotype of glioblastoma cells through expression of ATP binding cassette transporter G2.

    Science.gov (United States)

    Hosokawa, Yuki; Takahashi, Hisaaki; Inoue, Akihiro; Kawabe, Yuya; Funahashi, Yu; Kameda, Kenji; Sugimoto, Kana; Yano, Hajime; Harada, Hironobu; Kohno, Shohei; Ohue, Shiro; Ohnishi, Takanori; Tanaka, Junya

    2015-06-01

    Drug resistance is a major obstacle for the efficacy of chemotherapeutic treatment of tumors. Oct-3/4, a self-renewal regulator in stem cells, is expressed in various kinds of solid tumors including glioblastoma. Although Oct-3/4 expression has been implicated in the malignancy and prognosis of glioblastomas, little is known of its involvement in drug resistances of glioblastoma. The involvement of Oct-3/4 in drug resistance of glioblastoma cells was assessed by lactate dehydrogenase assay, efflux assay of an anticancer drug, poly ADP-ribose polymerase cleavage, and in vivo xenograft experiments. Involvement of a drug efflux pump ATP binding cassette transporter G2 in Oct-3/4-induced drug resistance was evaluated by quantitative PCR analysis and knockdown by shRNA. Oct-3/4 decreased the susceptibility to chemotherapeutic drugs by enhancing excretion of drugs through a drug efflux pump gene, ATP binding cassette transporter G2. Moreover, the expression of Oct-3/4 was well correlated to ATP binding cassette transporter G2 expression in clinical GB tissues. Oct-3/4 elevated the ATP binding cassette transporter G2 expression, leading to acquisition of a drug-resistant phenotype by glioblastoma cells. If the drug-resistance of glioblastoma cells could be suppressed, it should be a highly ameliorative treatment for glioblastoma patients. Therefore, signaling pathways from Oct-3/4 to ATP binding cassette transporter G2 should be intensively elucidated to develop new therapeutic interventions for better efficacy of anti-cancer drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Lignans and norlignans inhibit multidrug resistance protein 1 (MRP1/ABCC1)-mediated transport.

    Science.gov (United States)

    Wróbel, Anna; Eklund, Patrik; Bobrowska-Hägerstrand, Malgorzata; Hägerstrand, Henry

    2010-11-01

    Multidrug resistance protein 1 (MRP1/ABCC1) is one of the drug efflux pumps mediating multidrug resistance in several cancer types. Efficient nontoxic inhibitors of MRP1-mediated transport are sought to potentially sensitise cancer cells to anticancer drugs. This study examined the potency of a series of plant lignans and norlignans of various structures to inhibit MRP1-mediated transport from human erythrocytes. The occurrence of MRP1 in the human erythrocyte membrane makes this cell a useful model in searching for efficient MRP1inhibitors. The inhibition of 2',7'-bis-(carboxypropyl)-5(6)-carboxyfluorescein (BCPCF) transport from human erythrocytes was measured fluorymetrically. In order to study possible membrane-perturbing effects of lignans and norlignans, the potency of these compounds to induce haemolysis, erythrocyte shape change, and phosphatidylserine (PS) exposure in the external layer of the erythrocyte membrane was examined. Nine compounds (six norlignans and three lignans) of the fourteen that were tested inhibited BCPCF transport from human erythrocytes. The most efficient inhibitor, the norlignan coded L1, had IC(50)=50 μM. Structure-activity relationship analysis showed that the strongest inhibitors were found among lignans and norlignans bearing a carbonyl function at position C-9. The highly oxidised structures and the presence of an ionisable group such as the carboxylic acid function enhance activity. All compounds that significantly decreased BCPCF transport were non-haemolytic, did not cause PS exposure and did not have any effect on erythrocyte shapes up to 200 μM. Lignans and norlignans can inhibit MRP1-mediated transport from human erythrocytes and should be further investigated as possible agents reversing multidrug resistance.

  17. CHX14 is a plasma membrane K-efflux transporter that regulates K+ redistribution in "Arabidopsis thaliana"

    Science.gov (United States)

    Potassium (K(+)) is essential for plant growth and development, yet the molecular identity of many K(+) transporters remains elusive. Here we characterized cation/H(+) exchanger (CHX) 14 as a plasma membrane K(+) transporter. "CHX14" expression was induced by elevated K(+) and histochemical analysis...

  18. Rosuvastatin activates ATP-binding cassette transporter A1-dependent efflux ex vivo and promotes reverse cholesterol transport in macrophage cells in mice fed a high-fat diet.

    Science.gov (United States)

    Shimizu, Tomohiko; Miura, Shin-ichiro; Tanigawa, Hiroyuki; Kuwano, Takashi; Zhang, Bo; Uehara, Yoshinari; Saku, Keijiro

    2014-10-01

    It is controversial whether statins improve high-density lipoprotein (HDL) function, which plays an important role in reverse cholesterol transport in vivo. The aim of the present study was to clarify the effects of rosuvastatin and atorvastatin on reverse cholesterol transport in macrophage cells in vivo and their underlying mechanisms. Male C57BL mice were divided into 3 groups (rosuvastatin, atorvastatin, and control groups) and orally administered rosuvastatin, atorvastatin, or placebo for 6 weeks under feeding with a 0.5% cholesterol+10% coconut oil diet. After administration, although there were no changes in plasma HDL cholesterol levels among the groups, plasma from the rosuvastatin group showed an increased ability to promote ATP-binding cassette transporter A1-mediated cholesterol efflux ex vivo. In addition, capillary electrophoresis revealed a shift in HDL toward the pre-β HDL fraction only in the rosuvastatin group. Mice in all 3 groups were intraperitoneally injected with (3)H-cholesterol-labeled and cholesterol-loaded macrophages and then were monitored for the appearance of (3)H-tracer in plasma and feces. The amount of (3)H-tracer excreted into feces during 48 hours in the rosuvastatin group was greater than that in the control group. Finally, (3)H-cholesteryl oleate-HDL was intravenously injected into all groups, blood samples were taken, and the count of (3)H-cholesterol was analyzed. Plasma (3)H-cholesteryl oleate-HDL changed similarly, and no differences in fractional catabolic rates were observed. Rosuvastatin enhanced the ATP-binding cassette transporter A1-dependent HDL efflux function of reverse cholesterol transport, and this finding highlights the potential of rosuvastatin for the regression of atherosclerosis. © 2014 American Heart Association, Inc.

  19. The prevalence of the OqxAB amongst olaquindox-resistant multidrug efflux pump Escherichia coli in pigs

    DEFF Research Database (Denmark)

    Hansen, L.H.; Sørensen, S.J.; Jørgensen, H.S.

    2005-01-01

    to olaquindox as well as resistance to other antimicrobials like chloramphenicol. In this study, 10 of the 556 (1.8%) previously isolated Escherichia coli strains were shown to have an MIC >= 64 mu g/ml olaquindox. In nine of the ten strains, the oqxA gene was detected. Sequencing of an internal fragment of oqx...... strains. Furthermore, horizontal transfer of olaquindox resistance from three olaquindox-resistant isolates was achieved using an olaquindox-sensitive E. coli as recipient....

  20. Comparison of kinetics of active tetracycline uptake and active tetracycline efflux in sensitive and plasmid RP4-containing Pseudomonas putida.

    OpenAIRE

    Hedstrom, R C; Crider, B P; Eagon, R G

    1982-01-01

    Membrane vesicles prepared from tetracycline-sensitive cells of Pseudomonas putida took up tetracycline by an active transport system with an apparent Km of 2.5 mM and a Vmax of 50 nmol min-1 mg protein-1. In contrast, resistance determinant RP4-containing P. putida had an active high-affinity efflux system for tetracycline with a Km of 2.0 to 3.54 microM and a Vmax of 0.15 nmol min-1 mg protein-1. Thus, the efflux system of tetracycline-resistant P. putida(RP4) had an average of 1,000-fold g...

  1. Multidrug Efflux Systems in Microaerobic and Anaerobic Bacteria

    OpenAIRE

    Xu, Zeling; Yan, Aixin

    2015-01-01

    Active drug efflux constitutes an important mechanism of antibiotic and multidrug resistance in bacteria. Understanding the distribution, expression, and physiological functions of multidrug efflux pumps, especially under physiologically and clinically relevant conditions of the pathogens, is the key to combat drug resistance. In animal hosts, most wounded, infected and inflamed tissues display low oxygen tensions. In this article, we summarize research development on multidrug efflux pumps i...

  2. Amphiphilic Cargo-Loaded Nanocarrier Enhances Antibiotic Uptake and Perturbs Efflux: Effective Synergy for Mitigation of Methicillin-Resistant Staphylococcus aureus.

    Science.gov (United States)

    Thiyagarajan, Durairaj; Das, Gopal; Ramesh, Aiyagari

    2017-07-20

    A pyridinium-amphiphile-loaded poly(lactic-co-glycolic acid) (PLGA) nanocarrier (C1-PNC) was developed as an adjuvant in order to break the resistance and restore the susceptibility of methicillin-resistant Staphylococcus aureus (MRSA) cells to therapeutic antibiotics. Notably, against a clinical MRSA strain, C1-PNC was found to render 8- and 6-fold decreases in the minimum biofilm eradication concentration (MBEC 90 ) of gentamicin and ciprofloxacin, respectively. Mechanistic studies on MRSA planktonic cells revealed that in the case of gentamicin, C1-PNC promotes enhanced cellular uptake of the antibiotic, whereas the propensity of C1-PNC to inhibit efflux pump activity could be leveraged to enhance cellular accumulation of ciprofloxacin, leading to effective killing of MRSA cells. Interestingly, the combinatorial dosing regimen of C1-PNC and the antibiotics was nontoxic to cultured HEK293 cells. This nontoxic amphiphile-loaded nanomaterial holds considerable promise as an adjuvant for antibiotic-mediated alleviation of MRSA biofilms. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The binding of triclosan to SmeT, the repressor of the multidrug efflux pump SmeDEF, induces antibiotic resistance in Stenotrophomonas maltophilia.

    Directory of Open Access Journals (Sweden)

    Alvaro Hernández

    2011-06-01

    Full Text Available The wide utilization of biocides poses a concern on the impact of these compounds on natural bacterial populations. Furthermore, it has been demonstrated that biocides can select, at least in laboratory experiments, antibiotic resistant bacteria. This situation has raised concerns, not just on scientists and clinicians, but also on regulatory agencies, which are demanding studies on the impact that the utilization of biocides may have on the development on resistance and consequently on the treatment of infectious diseases and on human health. In the present article, we explored the possibility that the widely used biocide triclosan might induce antibiotic resistance using as a model the opportunistic pathogen Stenotrophomonas maltophilia. Biochemical, functional and structural studies were performed, focusing on SmeDEF, the most relevant antibiotic- and triclosan-removing multidrug efflux pump of S. maltophilia. Expression of smeDEF is regulated by the repressor SmeT. Triclosan released SmeT from its operator and induces the expression of smeDEF, thus reducing the susceptibility of S. maltophilia to antibiotics in the presence of the biocide. The structure of SmeT bound to triclosan is described. Two molecules of triclosan were found to bind to one subunit of the SmeT homodimer. The binding of the biocide stabilizes the N terminal domain of both subunits in a conformation unable to bind DNA. To our knowledge this is the first crystal structure obtained for a transcriptional regulator bound to triclosan. This work provides the molecular basis for understanding the mechanisms allowing the induction of phenotypic resistance to antibiotics by triclosan.

  4. The Binding of Triclosan to SmeT, the Repressor of the Multidrug Efflux Pump SmeDEF, Induces Antibiotic Resistance in Stenotrophomonas maltophilia

    Science.gov (United States)

    Romero, Antonio; Martínez, José L.

    2011-01-01

    The wide utilization of biocides poses a concern on the impact of these compounds on natural bacterial populations. Furthermore, it has been demonstrated that biocides can select, at least in laboratory experiments, antibiotic resistant bacteria. This situation has raised concerns, not just on scientists and clinicians, but also on regulatory agencies, which are demanding studies on the impact that the utilization of biocides may have on the development on resistance and consequently on the treatment of infectious diseases and on human health. In the present article, we explored the possibility that the widely used biocide triclosan might induce antibiotic resistance using as a model the opportunistic pathogen Stenotrophomonas maltophilia. Biochemical, functional and structural studies were performed, focusing on SmeDEF, the most relevant antibiotic- and triclosan-removing multidrug efflux pump of S. maltophilia. Expression of smeDEF is regulated by the repressor SmeT. Triclosan released SmeT from its operator and induces the expression of smeDEF, thus reducing the susceptibility of S. maltophilia to antibiotics in the presence of the biocide. The structure of SmeT bound to triclosan is described. Two molecules of triclosan were found to bind to one subunit of the SmeT homodimer. The binding of the biocide stabilizes the N terminal domain of both subunits in a conformation unable to bind DNA. To our knowledge this is the first crystal structure obtained for a transcriptional regulator bound to triclosan. This work provides the molecular basis for understanding the mechanisms allowing the induction of phenotypic resistance to antibiotics by triclosan. PMID:21738470

  5. Tripartite assembly of RND multidrug efflux pumps.

    Science.gov (United States)

    Daury, Laetitia; Orange, François; Taveau, Jean-Christophe; Verchère, Alice; Monlezun, Laura; Gounou, Céline; Marreddy, Ravi K R; Picard, Martin; Broutin, Isabelle; Pos, Klaas M; Lambert, Olivier

    2016-02-12

    Tripartite multidrug efflux systems of Gram-negative bacteria are composed of an inner membrane transporter, an outer membrane channel and a periplasmic adaptor protein. They are assumed to form ducts inside the periplasm facilitating drug exit across the outer membrane. Here we present the reconstitution of native Pseudomonas aeruginosa MexAB-OprM and Escherichia coli AcrAB-TolC tripartite Resistance Nodulation and cell Division (RND) efflux systems in a lipid nanodisc system. Single-particle analysis by electron microscopy reveals the inner and outer membrane protein components linked together via the periplasmic adaptor protein. This intrinsic ability of the native components to self-assemble also leads to the formation of a stable interspecies AcrA-MexB-TolC complex suggesting a common mechanism of tripartite assembly. Projection structures of all three complexes emphasize the role of the periplasmic adaptor protein as part of the exit duct with no physical interaction between the inner and outer membrane components.

  6. Tripartite assembly of RND multidrug efflux pumps

    Science.gov (United States)

    Daury, Laetitia; Orange, François; Taveau, Jean-Christophe; Verchère, Alice; Monlezun, Laura; Gounou, Céline; Marreddy, Ravi K. R.; Picard, Martin; Broutin, Isabelle; Pos, Klaas M.; Lambert, Olivier

    2016-02-01

    Tripartite multidrug efflux systems of Gram-negative bacteria are composed of an inner membrane transporter, an outer membrane channel and a periplasmic adaptor protein. They are assumed to form ducts inside the periplasm facilitating drug exit across the outer membrane. Here we present the reconstitution of native Pseudomonas aeruginosa MexAB-OprM and Escherichia coli AcrAB-TolC tripartite Resistance Nodulation and cell Division (RND) efflux systems in a lipid nanodisc system. Single-particle analysis by electron microscopy reveals the inner and outer membrane protein components linked together via the periplasmic adaptor protein. This intrinsic ability of the native components to self-assemble also leads to the formation of a stable interspecies AcrA-MexB-TolC complex suggesting a common mechanism of tripartite assembly. Projection structures of all three complexes emphasize the role of the periplasmic adaptor protein as part of the exit duct with no physical interaction between the inner and outer membrane components.

  7. Exploiting nanotechnology to overcome tumor drug resistance: Challenges and opportunities.

    Science.gov (United States)

    Kirtane, Ameya R; Kalscheuer, Stephen M; Panyam, Jayanth

    2013-11-01

    Tumor cells develop resistance to chemotherapeutic drugs through multiple mechanisms. Overexpression of efflux transporters is an important source of drug resistance. Efflux transporters such as P-glycoprotein reduce intracellular drug accumulation and compromise drug efficacy. Various nanoparticle-based approaches have been investigated to overcome efflux-mediated resistance. These include the use of formulation excipients that inhibit transporter activity and co-delivery of the anticancer drug with a specific inhibitor of transporter function or expression. However, the effectiveness of nanoparticles can be diminished by poor transport in the tumor tissue. Hence, adjunct therapies that improve the intratumoral distribution of nanoparticles may be vital to the successful application of nanotechnology to overcome tumor drug resistance. This review discusses the mechanisms of tumor drug resistance and highlights the opportunities and challenges in the use of nanoparticles to improve the efficacy of anticancer drugs against resistant tumors. © 2013.

  8. Transcriptional expression analysis of ABC efflux transporters and xenobiotic-metabolizing enzymes in the Chinese rare minnow.

    Science.gov (United States)

    Yuan, Lilai; Lv, Biping; Zha, Jinmiao; Wang, Zijian

    2014-05-01

    In the present study, the cDNA fragments of five ABC transporter genes (ABCB1, ABCB11, ABCC1, ABCC2, and ABCG2) in the rare minnow were cloned, and their tissue-specific expression patterns were evaluated across eight rare minnow tissues (liver, gill, intestine, kidney, spleen, brain, skin, and muscle). Furthermore, the transcriptional effects on these ABC transporter genes and five xenobiotic-metabolizing enzyme genes (CYP1A, GSTm, GSTp1, GCLC, and UGT1a) were determined in the rare minnow liver after 12 days of pyrene exposure. Basal expression analysis showed that the tissues with high expression of the ABC transporters included the liver, kidney, and intestine. Moreover, the most highly expressed of the ABC genes were ABCB1 and ABCC2 in all eight of the tissues tested. The ABCB11 gene was almost exclusively expressed in the liver of the rare minnow, whereas ABCC1 and ABCG2 showed weak expression in all eight tissues compared to ABCB1 and ABCC2. Our results provide the first thorough examination of the expression patterns of toxicologically relevant ABC transporters in the rare minnow and serve as a necessary basis for further studies of these ABC transporters in fish. Furthermore, synergistic up-regulation of CYP1A, GSTp1, GCLC, UGT1a, and ABCC2 was observed in the rare minnow liver following pyrene exposure, while GSTm, ABCB1, ABCB11, ABCC1, and ABCG2 were not significantly affected (p ABC transporters by pyrene suggests a possible involvement and cooperation of these genes in the detoxification process in rare minnows. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Structural mechanisms of heavy-metal extrusion by the Cus efflux system.

    Science.gov (United States)

    Delmar, Jared A; Su, Chih-Chia; Yu, Edward W

    2013-08-01

    Resistance-nodulation-cell division (RND) superfamily efflux systems are responsible for the active transport of toxic compounds from the Gram-negative bacterial cell. These pumps typically assemble as tripartite complexes, spanning the inner and outer membranes of the cell envelope. In Escherichia coli, the CusC(F)BA complex, which exports copper(I) and silver(I) and mediates resistance to these two metal ions, is the only known RND transporter with a specificity for heavy metals. We have determined the crystal structures of both the inner membrane pump CusA and membrane fusion protein CusB, as well as the adaptor-transporter CusBA complex formed by these two efflux proteins. In addition, the crystal structures of the outer membrane channel CusC and the periplasmic metallochaperone CusF have been resolved. Based on these structures, the entire assembled model of the tripartite efflux system has been developed, and this efflux complex should be in the form of CusC3-CusB6-CusA3. It has been shown that CusA utilizes methionine clusters to bind and export Cu(I) and Ag(I). This pump is likely to undergo a conformational change, and utilize a relay network of methionine clusters as well as conserved charged residues to extrude the metal ions from the bacterial cell.

  10. Human and Rat ABC Transporter Efflux of Bisphenol A and Bisphenol A Glucuronide: Interspecies Comparison and Implications for Pharmacokinetic Assessment

    Science.gov (United States)

    Significant interspecies differences exist between human and rodent with respect to absorption, distribution, and excretion of bisphenol A (BPA) and its primary metabolite, BPA-glucuronide (BPA-G). ATP-Binding Cassette (ABC) transporter enzymes play important roles in these physi...

  11. Impaired N-linked glycosylation of uptake and efflux transporters in human non-alcoholic fatty liver disease

    Czech Academy of Sciences Publication Activity Database

    Clarke, J.D.; Novák, Petr; Lake, A.D.; Hardwick, R.N.; Cherrington, N.J.

    2017-01-01

    Roč. 37, č. 7 (2017), s. 1074-1081 ISSN 1478-3223 Institutional support: RVO:60077344 Keywords : progressive stages * expression * glycans * drug transporters Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Gastroenterology and hepatology Impact factor: 4.116, year: 2016

  12. Tuning the drug efflux activity of an ABC transporter in vivo by in vitro selected DARPin binders.

    Directory of Open Access Journals (Sweden)

    Markus A Seeger

    Full Text Available ABC transporters use the energy from binding and hydrolysis of ATP to import or extrude substrates across the membrane. Using ribosome display, we raised designed ankyrin repeat proteins (DARPins against detergent solubilized LmrCD, a heterodimeric multidrug ABC exporter from Lactococcus lactis. Several target-specific DARPin binders were identified that bind to at least three distinct, partially overlapping epitopes on LmrD in detergent solution as well as in native membranes. Remarkably, functional screening of the LmrCD-specific DARPin pools in L. lactis revealed three homologous DARPins which, when generated in LmrCD-expressing cells, strongly activated LmrCD-mediated drug transport. As LmrCD expression in the cell membrane was unaltered upon the co-expression of activator DARPins, the activation is suggested to occur at the level of LmrCD activity. Consistent with this, purified activator DARPins were found to stimulate the ATPase activity of LmrCD in vitro when reconstituted in proteoliposomes. This study suggests that membrane transporters are tunable in vivo by in vitro selected binding proteins. Our approach could be of biopharmaceutical importance and might facilitate studies on molecular mechanisms of ABC transporters.

  13. Convective transport resistance in the vitreous humor

    Science.gov (United States)

    Penkova, Anita; Sadhal, Satwindar; Ratanakijsuntorn, Komsan; Moats, Rex; Tang, Yang; Hughes, Patrick; Robinson, Michael; Lee, Susan

    2012-11-01

    It has been established by MRI visualization experiments that the convection of nanoparticles and large molecules with high rate of water flow in the vitreous humor will experience resistance, depending on the respective permeabilities of the injected solute. A set of experiments conducted with Gd-DTPA (Magnevist, Bayer AG, Leverkusen, Germany) and 30 nm gadolinium-based particles (Gado CELLTrackTM, Biopal, Worcester, MA) as MRI contrast agents showed that the degree of convective transport in this Darcy-type porous medium varies between the two solutes. These experiments consisted of injecting a mixture of the two (a 30 μl solution of 2% Magnevist and 1% nanoparticles) at the middle of the vitreous of an ex vivo whole bovine eye and subjecting the vitreous to water flow rate of 100 μl/min. The water (0.9% saline solution) was injected at the top of the eye, and was allowed to drain through small slits cut at the bottom of the eyeball. After 50 minutes of pumping, MRI images showed that the water flow carried the Gd-DTPA farther than the nanoparticles, even though the two solutes, being mixed, were subjected to the same convective flow conditions. We find that the convected solute lags the water flow, depending on the solute permeability. The usual convection term needs to be adjusted to allow for the filtration effect on the larger particles in the form (1- σ) u . ∇ c with important implications for the modeling of such systems.

  14. The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis

    Czech Academy of Sciences Publication Activity Database

    Kubeš, Martin; Yang, H.; Richter, G.L.; Cheng, Y.; Młodzińska, E.; Wang, X.; Blakeslee, J.J.; Carraro, N.; Petrášek, Jan; Zažímalová, Eva; Hoyerová, Klára; Ann Peer, W.; Murphy, A. S.

    2012-01-01

    Roč. 69, č. 4 (2012), s. 640-654 ISSN 0960-7412 R&D Projects: GA MŠk(CZ) LC06034; GA ČR(CZ) GAP305/11/0797 Institutional research plan: CEZ:AV0Z50380511 Keywords : auxin * auxin transporters * ATP-binding cassette B4 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.582, year: 2012

  15. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs.

    Science.gov (United States)

    Dahan, Arik; Amidon, Gordon L

    2009-01-01

    The purpose of this study was to investigate the role of P-gp efflux in the in vivo intestinal absorption process of BCS class III P-gp substrates, i.e. high-solubility low-permeability drugs. The in vivo permeability of two H (2)-antagonists, cimetidine and famotidine, was determined by the single-pass intestinal perfusion model in different regions of the rat small intestine, in the presence or absence of the P-gp inhibitor verapamil. The apical to basolateral (AP-BL) and the BL-AP transport of the compounds in the presence or absence of various efflux transporters inhibitors (verapamil, erythromycin, quinidine, MK-571 and fumitremorgin C) was investigated across Caco-2 cell monolayers. P-gp expression levels in the different intestinal segments were confirmed by immunoblotting. Cimetidine and famotidine exhibited segmental dependent permeability through the gut wall, with decreased P(eff) in the distal ileum in comparison to the proximal regions of the intestine. Coperfusion of verapamil with the drugs significantly increased the permeability in the ileum, while no significant change in the jejunal permeability was observed. Both drugs exhibited significantly greater BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. Concentration dependent decrease of this secretion was obtained by the P-gp inhibitors verapamil, erythromycin and quinidine, while no effect was evident by the MRP2 inhibitor MK-571 and the BCRP inhibitor FTC, indicating that P-gp is the transporter mediates the intestinal efflux of cimetidine and famotidine. P-gp levels throughout the intestine were inversely related to the in vivo permeability of the drugs from the different segments. The data demonstrate that for these high-solubility low-permeability P-gp substrates, P-gp limits in vivo intestinal absorption in the distal segments of the small intestine; however P-gp plays a minimal role in the proximal intestinal segments due to significant lower P-gp expression levels

  16. The role of half-transporters in multidrug resistance

    DEFF Research Database (Denmark)

    Bates, S E; Robey, R; Miyake, K

    2001-01-01

    in the role of drug transporters in clinical drug resistance. These newly identified transporters include additional members of the MRP family, ABC2, and a new half-transporter, MXR/BCRP/ABCP1. This half-transporter confers high levels of resistance to mitoxantrone, anthracyclines, and the camptothecins SN-38...... and topotecan. At 72 kDa, MXR localizes to the plasma membrane in cells which highly overexpress the protein either through gene amplification or though gene rearrangement. Future studies will be aimed at identifying an inhibitor, and attempting to translate recognition of this new transporter into a target...

  17. The role of half-transporters in multidrug resistance

    DEFF Research Database (Denmark)

    Bates, S E; Robey, R; Miyake, K

    2001-01-01

    in the role of drug transporters in clinical drug resistance. These newly identified transporters include additional members of the MRP family, ABC2, and a new half-transporter, MXR/BCRP/ABCP1. This half-transporter confers high levels of resistance to mitoxantrone, anthracyclines, and the camptothecins SN-38......ATP-binding cassette proteins comprise a superfamily of transporter proteins, a subset of which have been implicated in multidrug resistance. Although P-glycoprotein was described over 15 years ago, the recent expansion in the number of transporters identified has prompted renewed interest...... and topotecan. At 72 kDa, MXR localizes to the plasma membrane in cells which highly overexpress the protein either through gene amplification or though gene rearrangement. Future studies will be aimed at identifying an inhibitor, and attempting to translate recognition of this new transporter into a target...

  18. Role of MexAB-OprM and MexXY-OprM efflux pumps and class 1 integrons in resistance to antibiotics in burn and Intensive Care Unit isolates of Pseudomonas aeruginosa.

    Science.gov (United States)

    Goli, Hamid Reza; Nahaei, Mohammad Reza; Ahangarzadeh Rezaee, Mohammad; Hasani, Alka; Samadi Kafil, Hossein; Aghazadeh, Mohammad; Nikbakht, Mojtaba; Khalili, Younes

    2017-10-06

    The overexpression of efflux pumps and existence of class 1 integrons are the most important mechanisms that contribute to antimicrobial resistance in Pseudomonas aeruginosa especially in burn and Intensive Care Units (ICUs). The present study evaluated the role of MexAB-OprM and MexXY-OprM efflux pumps and class 1 integrons in resistance to antibiotics in burn and ICU isolates of P. aeruginosa. Fifteen burn and forty-two ICU isolates were obtained from four hospitals in Northwest Iran. The isolates were identified and evaluated by the disk diffusion and agar dilution methods for determining antibiotic resistances. The presence of class 1 integrons and associated resistance gene cassettes were detected by PCR and sequencing of the products. The expression levels of efflux pumps were evaluated by phenotypic and genotypic (Quantitative Real-time PCR) methods. The isolates were genotyped by Random Amplified Polymorphic DNA Typing (RAPD-PCR). All burn isolates were integron positive and Multi-drug resistant (MDR), while 78.5% and 69% of ICU isolates were found as MDR and integron positive, respectively. The aadB gene was the most prevalent gene cassette (63.6%) followed by aacA4 (47.7%). Thirty-nine (68.4%) and 43 (75.4%) isolates exhibited an overexpression of MexAB-OprM and MexXY-OprM. Among burn isolates, 80% and 86.6% of them were mexB and mexY overexpressed, while 64.2% and 71.4% of ICU isolates exhibited mexB and mexY overexpression, correspondingly. The isolates were genotyped as 24 different RAPD profiles and were grouped into 15 clusters. The data suggested that class 1 integron had a more significant role than efflux pumps in resistance to beta-lactams and aminoglycosides in burn and ICUs except for gentamicin in burn isolates. Based on our data, it is possible that efflux pumps were not the main cause of high-level resistance to antibiotics. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Biocide Selective TolC-Independent Efflux Pumps in Enterobacteriaceae.

    Science.gov (United States)

    Slipski, Carmine J; Zhanel, George G; Bay, Denice C

    2018-02-01

    Bacterial resistance to biocides used as antiseptics, dyes, and disinfectants is a growing concern in food preparation, agricultural, consumer manufacturing, and health care industries, particularly among Gram-negative Enterobacteriaceae, some of the most common community and healthcare-acquired bacterial pathogens. Biocide resistance is frequently associated with antimicrobial cross-resistance leading to reduced activity and efficacy of both antimicrobials and antiseptics. Multidrug resistant efflux pumps represent an important biocide resistance mechanism in Enterobacteriaceae. An assortment of structurally diverse efflux pumps frequently co-exist in these species and confer both unique and overlapping biocide and antimicrobial selectivity. TolC-dependent multicomponent systems that span both the plasma and outer membranes have been shown to confer clinically significant resistance to most antimicrobials including many biocides, however, a growing number of single component TolC-independent multidrug resistant efflux pumps are specifically associated with biocide resistance: small multidrug resistance (SMR), major facilitator superfamily (MFS), multidrug and toxin extruder (MATE), cation diffusion facilitator (CDF), and proteobacterial antimicrobial compound efflux (PACE) families. These efflux systems are a growing concern as they are rapidly spread between members of Enterobacteriaceae on conjugative plasmids and mobile genetic elements, emphasizing their importance to antimicrobial resistance. In this review, we will summarize the known biocide substrates of these efflux pumps, compare their structural relatedness, Enterobacteriaceae distribution, and significance. Knowledge gaps will be highlighted in an effort to unravel the role that these apparent "lone wolves" of the efflux-mediated resistome may offer.

  20. The Tomato 14-3-3 Protein TFT4 Modulates H+ Efflux, Basipetal Auxin Transport, and the PKS5-J3 Pathway in the Root Growth Response to Alkaline Stress1[C][W

    Science.gov (United States)

    Xu, Weifeng; Jia, Liguo; Shi, Weiming; Baluška, František; Kronzucker, Herbert J.; Liang, Jiansheng; Zhang, Jianhua

    2013-01-01

    Alkaline stress is a common environmental stress, in particular in salinized soils. Plant roots respond to a variety of soil stresses by regulating their growth, but the nature of the regulatory pathways engaged in the alkaline stress response (ASR) is not yet understood. Previous studies show that PIN-FORMED2, an auxin (indole-3-acetic acid [IAA]) efflux transporter, PKS5, a protein kinase, and DNAJ HOMOLOG3 (J3), a chaperone, play key roles in root H+ secretion by regulating plasma membrane (PM) H+-ATPases directly or by targeting 14-3-3 proteins. Here, we investigated the expression of all 14-3-3 gene family members (TOMATO 14-3-3 PROTEIN1 [TFT1]–TFT12) in tomato (Solanum lycopersicum) under ASR, showing the involvement of four of them, TFT1, TFT4, TFT6, and TFT7. When these genes were separately introduced into Arabidopsis (Arabidopsis thaliana) and overexpressed, only the growth of TFT4 overexpressors was significantly enhanced when compared with the wild type under stress. H+ efflux and the activity of PM H+-ATPase were significantly enhanced in the root tips of TFT4 overexpressors. Microarray analysis and pharmacological examination of the overexpressor and mutant plants revealed that overexpression of TFT4 maintains primary root elongation by modulating PM H+-ATPase-mediated H+ efflux and basipetal IAA transport in root tips under alkaline stress. TFT4 further plays important roles in the PKS5-J3 signaling pathway. Our study demonstrates that TFT4 acts as a regulator in the integration of H+ efflux, basipetal IAA transport, and the PKS5-J3 pathway in the ASR of roots and coordinates root apex responses to alkaline stress for the maintenance of primary root elongation. PMID:24134886

  1. Upregulation of the PatAB Transporter Confers Fluoroquinolone Resistance to Streptococcus pseudopneumoniae

    Directory of Open Access Journals (Sweden)

    María Alvarado

    2017-10-01

    Full Text Available We characterized the mechanism of fluoroquinolone-resistance in two isolates of Streptococcus pseudopneumoniae having fluoroquinolone-efflux as unique mechanism of resistance. Whole genome sequencing and genetic transformation experiments were performed together with phenotypic determinations of the efflux mechanism. The PatAB pump was identified as responsible for efflux of ciprofloxacin (MIC of 4 μg/ml, ethidium bromide (MICs of 8–16 μg/ml and acriflavine (MICs of 4–8 μg/ml in both isolates. These MICs were at least 8-fold lower in the presence of the efflux inhibitor reserpine. Complete genome sequencing indicated that the sequence located between the promoter of the patAB operon and the initiation codon of patA, which putatively forms an RNA stem-loop structure, may be responsible for the efflux phenotype. RT-qPCR determinations performed on RNAs of cultures treated or not treated with subinhibitory ciprofloxacin concentrations were performed. While no significant changes were observed in wild-type Streptococcus pneumoniae R6 strain, increases in transcription were detected in the ciprofloxacin-efflux transformants obtained with DNA from efflux-positive isolates, in the ranges of 1.4 to 3.4-fold (patA and 2.1 to 2.9-fold (patB. Ciprofloxacin-induction was related with a lower predicted free energy for the stem-loop structure in the RNA of S. pseudopneumoniae isolates (−13.81 and −8.58 than for R6 (−15.32 kcal/mol, which may ease transcription. The presence of these regulatory variations in commensal S. pseudopneumoniae isolates, and the possibility of its transfer to Streptococcus pneumoniae by genetic transformation, could increase fluoroquinolone resistance in this important pathogen.

  2. Transcriptional attenuation controls macrolide inducible efflux and resistance in Streptococcus pneumoniae and in other Gram-positive bacteria containing mef/mel(msr(D elements.

    Directory of Open Access Journals (Sweden)

    Scott T Chancey

    Full Text Available Macrolide resistance, emerging in Streptococcus pneumoniae and other Gram-positive bacteria, is increasingly due to efflux pumps encoded by mef/mel(msr operons found on discrete mobile genetic elements. The regulation of mef/mel(msr in these elements is not well understood. We identified the mef(E/mel transcriptional start, localized the mef(E/mel promoter, and demonstrated attenuation of transcription as a mechanism of regulation of macrolide-inducible mef-mediated macrolide resistance in S. pneumoniae. The mef(E/mel transcriptional start site was a guanine 327 bp upstream of mef(E. Consensus pneumococcal promoter -10 (5'-TATACT-3' and -35 (5'-TTGAAC-3' boxes separated by 17 bp were identified 7 bp upstream of the start site. Analysis of the predicted secondary structure of the 327 5' region identified four pairs of inverted repeats R1-R8 predicted to fold into stem-loops, a small leader peptide [MTASMRLR, (Mef(EL] required for macrolide induction and a Rho-independent transcription terminator. RNA-seq analyses provided confirmation of transcriptional attenuation. In addition, expression of mef(EL was also influenced by mef(EL-dependent mRNA stability. The regulatory region 5' of mef(E was highly conserved in other mef/mel(msr-containing elements including Tn1207.1 and the 5612IQ complex in pneumococci and Tn1207.3 in Group A streptococci, indicating a regulatory mechanism common to a wide variety of Gram-positive bacteria containing mef/mel(msr elements.

  3. Resistência a antimicrobianos dependente do sistema de efluxo multidrogas em Escherichia coli isoladas de leite mastítico Antimicrobial resistance dependent on multidrugs efflux in Escherichia coli isolated from the mastitic milk

    Directory of Open Access Journals (Sweden)

    M.A.S. Moreira

    2008-12-01

    Full Text Available Identificaram-se e caracterizaram-se a resistência e a multirresistência aos principais antimicrobianos usados no tratamento de mastite bovina causada por Escherichia coli. A concentração inibitória mínima (MIC e o sistema de efluxo foram detectados pelas curvas de crescimento, com base na densidade óptica, em diferentes concentrações da droga e na presença e na ausência do desacoplador da força próton-motora (PMF. E. coli 1 foi resistente à neomicina e à gentamicina; E. coli 3 e 4, à tetraciclina e à estreptomicina; e E. coli 2 e 6 à gentamicina. E. coli 5 apresentou modelo de sensibilidade. Observou-se que MICs de todos os antimicrobianos dos multirresistentes (E. coli 1, 3 e 4 diminuíram na presença do desacoplador, o que sugere sistema de efluxo multidrogas. Após cura, apenas E. coli 1 apresentou modelo de sensibilidade, porém não houve alterações das MICs, antes e após adição do desacoplador. Os resultados indicam possível presença de mecanismo de resistência dependente da PMF codificado, ou parte dele, em plasmídeo.Resistance and multiresistance to main antimicrobials used for treating bovine mastitis caused by Escherichia coli were identified and characterized. The minimal inhibitory concentration (MIC and efflux systems were detected by the use of growth curves based on optical density at different drug concentrations and both presence and absence of uncoupler of the proton-motive force (PMF. E. coli 1 was resistant to neomycin and gentamycin, E. coli 3 and 4 were resistant to tetracycline and streptomycin, whereas E. coli 2 and 6 were resistant to gentamycin. E. coli 5 showed sensibility model. MICs of all antimicrobials of the multiresistant samples (E. coli 1, 3, and 4 were decreased in presence of the uncoupler, therefore suggesting the presence of the multidrug efflux system. After healing, only E. coli 1 showed sensibility model, however no alteration occurred in MIC(s before and after adding the

  4. Characterization of a resistance-nodulation-cell division transporter system associated with the syr-syp genomic island of Pseudomonas syringae pv. syringae.

    Science.gov (United States)

    Kang, Hyojeung; Gross, Dennis C

    2005-09-01

    A tripartite resistance-nodulation-cell division (RND) transporter system, called the PseABC efflux system, was identified at the left border of the syr-syp genomic island of Pseudomonas syringae pv. syringae strain B301D. The PseABC efflux system was located within a 5.7-kb operon that encodes an outer membrane protein (PseA), a periplasmic membrane fusion protein (PseB), and an RND-type cytoplasmic membrane protein (PseC). The PseABC efflux system exhibited amino acid homology to a putative RND efflux system of Ralstonia solanacearum, with identities of 48% for PseA, 51% for PseB, and 61% for PseC. A nonpolar mutation within the pseC gene was generated by nptII insertional mutagenesis. The resultant mutant strain showed a larger reduction in syringopeptin secretion (67%) than in syringomycin secretion (41%) compared to parental strain B301D (P system controls expression of the pseA gene. Quantitative real-time reverse transcription-PCR was used to determine transcript levels of the syringomycin (syrB1) and syringopeptin (sypA) synthetase genes in strain B301D-HK4 (a pseC mutant). The expression of the sypA gene by mutant strain B301D-HK4 corresponded to approximately 13% of that by parental strain B301D, whereas the syrB1 gene expression by mutant strain B301D-HK4 was nearly 61% (P resistance of mutant strain B301D-HK4 to any antibiotic used in this study was not reduced compared to parental strain B301D, a drug-supersensitive acrB mutant of Escherichia coli showed two- to fourfold-increased resistance to acriflavine, erythromycin, and tetracycline upon heterologous expression of the pseA, pseB, and pseC genes (pseABC efflux genes). The PseABC efflux system is the first RND transporter system described for P. syringae, and it has an important role in secretion of syringomycin and syringopeptin.

  5. Overcoming Multidrug Resistance in Human Cancer Cells by Natural Compounds

    Directory of Open Access Journals (Sweden)

    Tomohiro Nabekura

    2010-05-01

    Full Text Available Multidrug resistance is a phenomenon whereby tumors become resistant to structurally unrelated anticancer drugs. P-glycoprotein belongs to the large ATP-binding cassette (ABC transporter superfamily of membrane transport proteins. P-glycoprotein mediates resistance to various classes of anticancer drugs including vinblastine, daunorubicin, and paclitaxel, by actively extruding the drugs from the cells. The quest for inhibitors of anticancer drug efflux transporters has uncovered natural compounds, including (--epigallocatechin gallate, curcumin, capsaicin, and guggulsterone, as promising candidates. In this review, studies on the effects of natural compounds on P-glycoprotein and anticancer drug efflux transporters are summarized.

  6. Functional evidence of multidrug resistance transporters (MDR in rodent olfactory epithelium.

    Directory of Open Access Journals (Sweden)

    Adrien Molinas

    Full Text Available P-glycoprotein (Pgp and multidrug resistance-associated protein (MRP1 are membrane transporter proteins which function as efflux pumps at cell membranes and are considered to exert a protective function against the entry of xenobiotics. While evidence for Pgp and MRP transporter activity is reported for olfactory tissue, their possible interaction and participation in the olfactory response has not been investigated.Functional activity of putative MDR transporters was assessed by means of the fluorometric calcein acetoxymethyl ester (calcein-AM accumulation assay on acute rat and mouse olfactory tissue slices. Calcein-AM uptake was measured as fluorescence intensity changes in the presence of Pgp or MRP specific inhibitors. Epifluorescence microscopy measured time course analysis in the olfactory epithelium revealed significant inhibitor-dependent calcein uptake in the presence of each of the selected inhibitors. Furthermore, intracellular calcein accumulation in olfactory receptor neurons was also significantly increased in the presence of either one of the Pgp or MRP inhibitors. The presence of Pgp or MRP1 encoding genes in the olfactory mucosa of rat and mouse was confirmed by RT-PCR with appropriate pairs of species-specific primers. Both transporters were expressed in both newborn and adult olfactory mucosa of both species. To assess a possible involvement of MDR transporters in the olfactory response, we examined the electrophysiological response to odorants in the presence of the selected MDR inhibitors by recording electroolfactograms (EOG. In both animal species, MRPs inhibitors induced a marked reduction of the EOG magnitude, while Pgp inhibitors had only a minor or no measurable effect.The findings suggest that both Pgp and MRP transporters are functional in the olfactory mucosa and in olfactory receptor neurons. Pgp and MRPs may be cellular constituents of olfactory receptor neurons and represent potential mechanisms for modulation

  7. Plasmid borne Carbapenem-Hydrolyzing Class D β-Lactamases (CHDLs) and AdeABC efflux pump conferring carbapenem-tigecycline resistance among Acinetobacter baumannii isolates harboring TnAbaRs.

    Science.gov (United States)

    Savari, Mohammad; Ekrami, Alireza; Shoja, Saeed; Bahador, Abbas

    2017-03-01

    Here we studied the prevalence and mechanisms of simultaneous resistance to carbapenem and tigecycline and accumulation of resistance determinants reservoirs in genome of Acinetobacter baumannii (A. baumannii) clinical isolates. Susceptibility of the isolates were measured to 18 antimicrobial agents. Genetic diversity of the microbial population was determined using the International Clonal lineage typing (IC typing), multiple locus VNTR analysis (MLVA) and plasmid profiling methods. To detect the AbaRs, Carbapenem-Hydrolyzing Class D β-Lactamases (CHDLs) genes, AdeABC efflux pump genes and resistance determinants, PCR was used. Filter mating experiments were used to prove that if carbapenem resistance genes are located on conjugative plasmids or not. Among the A. baumannii clinical isolates, 40.8% were carbapenem-tigecycline resistant and in this population, 46.9% were belonging to IC I, IC II or IC III and 53.1% were IC variants. These isolates had fallen in 40 MLVA types and were harboring plasmids in multiple numbers and sizes. In this study, bla OXA-23-like was the most prevalent CHDL and conjugation analysis proved that the carbapenem resistance genes are located on conjugative plasmids. All efflux pump genes, except for adeC, were detected in all carbapenem-tigecycline resistant A. baumannii (CTRAb) isolates. Resistance determinants were distributed in both TnAbaRs and R plasmids with a shift toward the R plasmids. Emerging of carbapenem resistant A. baumannii (CRAB) with simultaneous resistance to the last line therapy including tigecycline represent emerging of extensively drug resistance (XDR) and pandrug resistance (PDR) phenotypes that would be a great threat to our public health system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Correction: Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Staphylococcus aureus

    LENUS (Irish Health Repository)

    Costa, Sofia S

    2013-06-06

    AbstractAfter the publication of our study [1], we became aware that the mutations in the quinolone resistance-determining region (QRDR) of the gene grlA were incorrectly described for some of the Staphylococcus aureus clinical isolates studied in this work. In particular, isolates SM1, SM10, SM14, SM17, SM25, SM27, SM43, SM46, SM47 and SM48 carry the GrlA double mutation S80Y\\/E84G; isolate SM52 carries the GrlA mutation S80Y; isolates SM3 and SM5 carry the GrlA double mutation S80F\\/E84G. The correct data can be found in Table 1.

  9. A Study of Transport Airplane Crash-Resistant Fuel Systems

    National Research Council Canada - National Science Library

    Robertson, S

    2002-01-01

    ...), of transport airplane crash-resistant fuel system (CRFS). The report covers the historical studies related to aircraft crash fires and fuel containment concepts undertaken by the FAA, NASA, and the U.S...

  10. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations.

    Science.gov (United States)

    Sun, Jingjing; Deng, Ziqing; Yan, Aixin

    2014-10-17

    Multidrug resistance (MDR) refers to the capability of bacterial pathogens to withstand lethal doses of structurally diverse drugs which are capable of eradicating non-resistant strains. MDR has been identified as a major threat to the public health of human being by the World Health Organization (WHO). Among the four general mechanisms that cause antibiotic resistance including target alteration, drug inactivation, decreased permeability and increased efflux, drug extrusion by the multidrug efflux pumps serves as an important mechanism of MDR. Efflux pumps not only can expel a broad range of antibiotics owing to their poly-substrate specificity, but also drive the acquisition of additional resistance mechanisms by lowering intracellular antibiotic concentration and promoting mutation accumulation. Over-expression of multidrug efflux pumps have been increasingly found to be associated with clinically relevant drug resistance. On the other hand, accumulating evidence has suggested that efflux pumps also have physiological functions in bacteria and their expression is subject tight regulation in response to various of environmental and physiological signals. A comprehensive understanding of the mechanisms of drug extrusion, and regulation and physiological functions of efflux pumps is essential for the development of anti-resistance interventions. In this review, we summarize the development of these research areas in the recent decades and present the pharmacological exploitation of efflux pump inhibitors as a promising anti-drug resistance intervention. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Lack of AcrB Efflux Function Confers Loss of Virulence on Salmonella enterica Serovar Typhimurium

    Directory of Open Access Journals (Sweden)

    Xuan Wang-Kan

    2017-07-01

    Full Text Available AcrAB-TolC is the paradigm resistance-nodulation-division (RND multidrug resistance efflux system in Gram-negative bacteria, with AcrB being the pump protein in this complex. We constructed a nonfunctional AcrB mutant by replacing D408, a highly conserved residue essential for proton translocation. Western blotting confirmed that the AcrB D408A mutant had the same native level of expression of AcrB as the parental strain. The mutant had no growth deficiencies in rich or minimal medium. However, compared with wild-type SL1344, the mutant had increased accumulation of Hoechst 33342 dye and decreased efflux of ethidium bromide and was multidrug hypersusceptible. The D408A mutant was attenuated in vivo in mouse and Galleria mellonella models and showed significantly reduced invasion into intestinal epithelial cells and macrophages in vitro. A dose-dependent inhibition of invasion was also observed when two different efflux pump inhibitors were added to the wild-type strain during infection of epithelial cells. RNA sequencing (RNA-seq revealed downregulation of bacterial factors necessary for infection, including those in the Salmonella pathogenicity islands 1, 2, and 4; quorum sensing genes; and phoPQ. Several general stress response genes were upregulated, probably due to retention of noxious molecules inside the bacterium. Unlike loss of AcrB protein, loss of efflux function did not induce overexpression of other RND efflux pumps. Our data suggest that gene deletion mutants are unsuitable for studying membrane transporters and, importantly, that inhibitors of AcrB efflux function will not induce expression of other RND pumps.

  12. Ion channels and transporters in the development of drug resistance in cancer cells

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay; Lambert, Ian Henry

    2014-01-01

    Multi-drug resistance (MDR) to chemotherapy is the major challenge in the treatment of cancer. MDR can develop by numerous mechanisms including decreased drug uptake, increased drug efflux and the failure to undergo drug-induced apoptosis. Evasion of drug-induced apoptosis through modulation of ion...

  13. Investigating the Role of the Host Multidrug Resistance Associated Protein Transporter Family in Burkholderia cepacia Complex Pathogenicity Using a Caenorhabditis elegans Infection Model.

    Science.gov (United States)

    Tedesco, Pietro; Visone, Marco; Parrilli, Ermenegilda; Tutino, Maria Luisa; Perrin, Elena; Maida, Isabel; Fani, Renato; Ballestriero, Francesco; Santos, Radleigh; Pinilla, Clemencia; Di Schiavi, Elia; Tegos, George; de Pascale, Donatella

    2015-01-01

    This study investigated the relationship between host efflux system of the non-vertebrate nematode Caenorhabditis elegans and Burkholderia cepacia complex (Bcc) strain virulence. This is the first comprehensive effort to profile host-transporters within the context of Bcc infection. With this aim, two different toxicity tests were performed: a slow killing assay that monitors mortality of the host by intestinal colonization and a fast killing assay that assesses production of toxins. A Virulence Ranking scheme was defined, that expressed the toxicity of the Bcc panel members, based on the percentage of surviving worms. According to this ranking the 18 Bcc strains were divided in 4 distinct groups. Only the Cystic Fibrosis isolated strains possessed profound nematode killing ability to accumulate in worms' intestines. For the transporter analysis a complete set of isogenic nematode single Multidrug Resistance associated Protein (MRP) efflux mutants and a number of efflux inhibitors were interrogated in the host toxicity assays. The Bcc pathogenicity profile of the 7 isogenic C. elegans MRP knock-out strains functionality was classified in two distinct groups. Disabling host transporters enhanced nematode mortality more than 50% in 5 out of 7 mutants when compared to wild type. In particular mrp-2 was the most susceptible phenotype with increased mortality for 13 out 18 Bcc strains, whereas mrp-3 and mrp-4 knock-outs had lower mortality rates, suggesting a different role in toxin-substrate recognition. The use of MRP efflux inhibitors in the assays resulted in substantially increased (>40% on average) mortality of wild-type worms.

  14. The AcrB multidrug transporter plays a major role in high-level fluoroquinolone resistance in Salmonella enterica serovar typhimurium phage type DT204.

    Science.gov (United States)

    Baucheron, Sylvie; Imberechts, Hein; Chaslus-Dancla, Elisabeth; Cloeckaert, Axel

    2002-01-01

    Salmonella enterica serovar Typhimurium phage type DT204 strains isolated from cattle and animal feed in Belgium were characterized for high-level fluoroquinolone resistance mechanisms [MICs to enrofloxacin (Enr) and ciprofloxacin (Cip), 64 and 32 microg/ml, respectively]. These strains isolated during the periods 1991-1994, and in 2000 were clonally related as shown by pulsed-field gel electrophoresis (PFGE). Selected strains studied carried several mutations in the quinolone target genes, i.e., a double mutation in the quinolone resistance-determining region (QRDR) of gyrA leading to amino acid changes Ser83Ala and Asp87Asn, a single mutation in the QRDR of gyrB leading to amino acid change Ser464Phe, and a single mutation in the QRDR of parC leading to amino acid change Ser80Ile. Moreover, Western blot analysis showed overproduction of the AcrA periplasmic protein belonging to the AcrAB-ToIC efflux system. This suggested active efflux as additional resistance mechanism resulting in a multiple antibiotic resistance (MAR) phenotype, which was measurable by an increased level of resistance to the structurally unrelated antibiotic florfenicol in the absence of the specific floR resistance gene. The importance of the AcrAB-TolC efflux system in high-level fluoroquinolone resistance was further confirmed by inactivating the acrB gene coding for the multidrug transporter. This resulted in a 32-fold reduction of resistance level to Enr (MIC = 2 microg/ml) and actually in a susceptible phenotype according to clinical breakpoints. Thus, AcrB plays a major role in high-level fluoroquinolone resistance, even when multiple target gene mutations are present. The same effect was obtained using the recently identified efflux pump inhibitor (EPI) Phe-Arg-naphthylamide also termed MC207,110. Among several fluoroquinolones tested in combination with EPI, the MIC of Enr was reduced most significantly. Thus, using EPI together with fluoroquinolones such as Enr may be promising in

  15. Inactivation of Efflux Pumps Abolishes Bacterial Biofilm Formation

    DEFF Research Database (Denmark)

    Kvist, Malin; Hancock, Viktoria; Klemm, Per

    2008-01-01

    Bacterial biofilms cause numerous problems in health care and industry; notably, biofilms are associated with a large number of infections. Biofilm-dwelling bacteria are particularly resistant to antibiotics, making it hard to eradicate biofilm-associated infections. Bacteria rely on efflux pumps...... to get rid of toxic substances. We discovered that efflux pumps are highly active in bacterial biofilms, thus making efflux pumps attractive targets for antibiofilm measures. A number of efflux pump inhibitors (EPIs) are known. EPIs were shown to reduce biofilm formation, and in combination they could...

  16. Corrosion resistance of candidate transportation container materials

    International Nuclear Information System (INIS)

    Maestas, L.M.; Sorensen, N.R.; McAllaster, M.E.

    1995-01-01

    The Department of Energy is currently remediating several sites that have been contaminated over the years with hazardous, mixed waste and radioactive materials. Regulatory guidelines require strict compliance demonstrating public safety during remediation and the transport of these hazardous, mixed waste and radioactive materials. The compatibility of the metallic transportation containers with the contents they are designed to transport is an ultimate concern that must be satisfied to ensure public safety. The transportation issue is inherently complicated due to the complex, varied, and unknown composition of the hazardous, mixed and radioactive waste that is being, considered for transport by the DOE facilities. Never before have the interactions between the waste being transported and the materials that comprise the transportation packages been more important. Therefore, evaluation of material performance when subjected to a simulated waste will ensure that all regulatory issues and requirements for transportation of hazardous, mixed, and radioactive wastes are satisfied. The tasks encompassed by this study include defining criteria for candidate material selection, defining a test matrix that will provide pertinent information on the material compatibility with the waste stimulant, and evaluation of material performance when subjected to a stimulant waste. Our goal is to provide package design engineers with a choice of materials which exhibit enhanced performance upon exposure to hazardous, mixed, and radioactive waste that is similar in composition to the waste stimulant used in this study. Due to the fact that there are many other possible waste compositions, additional work needs to be done to broaden our materials compatibility/waste stream data base

  17. Reversal of resistance by GF120918 in cell lines expressing the ABC half-transporter, MXR

    DEFF Research Database (Denmark)

    de Bruin, M; Miyake, K; Litman, Thomas

    1999-01-01

    -80, a subline expressing a newly identified mitoxantrone transporter, MXR. GF120918 was ineffective in sensitizing MRP-overexpressing MCF-7 VP-16 cells to etoposide as determined by cytotoxicity studies. In flow cytometry experiments, rhodamine 123 efflux in S1-B1-20 cells was decreased at GF120918...

  18. Detection of efflux pump activity among clinical isolates of ...

    African Journals Online (AJOL)

    Purpose: To detect efflux pump activity (EPA) and screening a suspected efflux pump inhibitor (EPI) [1- (3-(trifluoromethyl)benzyl]-piperazine (TFMBP)], which could help in reducing multi-drug resistance (MDR). Methods: Eighteen isolates, viz, 14 S. aureus, 2 S. lentus, 1 S. xylosus and 1 Micrococcus species from various ...

  19. Transcriptomic and biochemical analyses identify a family of chlorhexidine efflux proteins

    Science.gov (United States)

    Hassan, Karl A.; Jackson, Scott M.; Penesyan, Anahit; Patching, Simon G.; Tetu, Sasha G.; Eijkelkamp, Bart A.; Brown, Melissa H.; Henderson, Peter J. F.; Paulsen, Ian. T.

    2013-01-01

    Chlorhexidine is widely used as an antiseptic or disinfectant in both hospital and community settings. A number of bacterial species display resistance to this membrane-active biocide. We examined the transcriptomic response of a representative nosocomial human pathogen, Acinetobacter baumannii, to chlorhexidine to identify the primary chlorhexidine resistance elements. The most highly up-regulated genes encoded components of a major multidrug efflux system, AdeAB. The next most highly overexpressed gene under chlorhexidine stress was annotated as encoding a hypothetical protein, named here as AceI. Orthologs of the aceI gene are conserved within the genomes of a broad range of proteobacterial species. Expression of aceI or its orthologs from several other γ- or β-proteobacterial species in Escherichia coli resulted in significant increases in resistance to chlorhexidine. Additionally, disruption of the aceI ortholog in Acinetobacter baylyi rendered it more susceptible to chlorhexidine. The AceI protein was localized to the membrane after overexpression in E. coli. This protein was purified, and binding assays demonstrated direct and specific interactions between AceI and chlorhexidine. Transport assays using [14C]-chlorhexidine determined that AceI was able to mediate the energy-dependent efflux of chlorhexidine. An E15Q AceI mutant with a mutation in a conserved acidic residue, although unable to mediate chlorhexidine resistance and transport, was still able to bind chlorhexidine. Taken together, these data are consistent with AceI being an active chlorhexidine efflux protein and the founding member of a family of bacterial drug efflux transporters. PMID:24277845

  20. Puncture resistance of Type B transport systems

    International Nuclear Information System (INIS)

    Rack, H.J.; Cheresh, M.C.

    1980-01-01

    This report describes a recent attempt to develop a test method for use in screening materials and for evaluating the effects of certain parameters, for example section stiffness, on container penetration resistance. In addition, it illustrates the application of this procedure to the selection of a sheet steel for a transuranic waste (TRUPACT) container. The test consists of penetrating a specimen, normally 0.6 m square, with a punch (tup) attached to a falling weight and recording and analyzing the force-time history to determine the energy absorption during the impact event. The test as developed simulates certain aspects of the 10CFR71 drop test in order to provide a means of comparing, for example, the penetrating resistance of various steels, this resistance being defined as the energy required to initiate fracture in the specimen. In summary, this examination suggests that it should be possible to develop a laboratory test to rank and select materials for maximum puncture resistance. Although the initial results appear promising, more effort will be required before this procedure can be routinely applied to examining the various factors which control the puncture resistance of these materials. These results do, nonetheless, show that high-strength, low-alloy steels do offer significant advantages over mild steel for container penetration protection. Indeed, one of these steels, NAX-80, is presently considered as a prime candidate for the TRUPACT container being developed at Sandia National Laboratories

  1. [Effect of ferulic acid on cholesterol efflux in macrophage foam cell formation and potential mechanism].

    Science.gov (United States)

    Chen, Fu-xin; Wang, Lian-kai

    2015-02-01

    The formation of macrophage-derived foam cells is a typical feature of atherosclerosis (AS). Reverse cholesterol efflux (RCT) is one of important factors for the formation of macrophage foam cells. In this study, macrophage form cells were induced by oxidized low density lipoprotein (ox-LDL) and then treated with different concentrations of ferulic acid, so as to observe the effect of ferulic acid on the intracellular lipid metabolism in the ox-LDL-induced macrophage foam cell formation, the cholesterol efflux and the mRNA expression and protein levels of ATP binding cassette transporter A1 (ABCA1) and ATP binding cassette transporter G1 (ABCG1) that mediate cholesterol efflux, and discuss the potential mechanism of ferulic acid in resisting AS. According to the findings, compared with the control group, the ox-LDL-treated group showed significant increase in intracellular lipid content, especially for the cholesterol content; whereas the intracellular lipid accumulation markedly decreased, after the treatment with ferulic acid. The data also demonstrated that the mRNA and protein expressions of ABCA1 and ABCG1 significantly increased after macrophage foam cells were treated with different concentrations of ferulic acid. In summary, ferulic acid may show the anti-atherosclerosis effect by increasing the surface ABCA1 and ABCG1 expressions of macrophage form cells and promoting cholesterol efflux.

  2. Effect of ABCG2/BCRP Expression on Efflux and Uptake of Gefitinib in NSCLC Cell Lines

    Science.gov (United States)

    Galetti, Maricla; Petronini, Pier Giorgio; Fumarola, Claudia; Cretella, Daniele; La Monica, Silvia; Bonelli, Mara; Cavazzoni, Andrea; Saccani, Francesca; Caffarra, Cristina; Andreoli, Roberta; Mutti, Antonio; Tiseo, Marcello; Ardizzoni, Andrea; Alfieri, Roberta R.

    2015-01-01

    Background BCRP/ABCG2 emerged as an important multidrug resistance protein, because it confers resistance to several classes of cancer chemotherapeutic agents and to a number of novel molecularly-targeted therapeutics such as tyrosine kinase inhibitors. Gefitinib is an orally active, selective EGFR tyrosine kinase inhibitor used in the treatment of patients with advanced non small cell lung cancer (NSCLC) carrying activating EGFR mutations. Membrane transporters may affect the distribution and accumulation of gefitinib in tumour cells; in particular a reduced intracellular level of the drug may result from poor uptake, enhanced efflux or increased metabolism. Aim The present study, performed in a panel of NSCLC cell lines expressing different ABCG2 plasma membrane levels, was designed to investigate the effect of the efflux transporter ABCG2 on intracellular gefitinib accumulation, by dissecting the contribution of uptake and efflux processes. Methods and Results Our findings indicate that gefitinib, in lung cancer cells, inhibits ABCG2 activity, as previously reported. In addition, we suggest that ABCG2 silencing or overexpression affects intracellular gefitinib content by modulating the uptake rather than the efflux. Similarly, overexpression of ABCG2 affected the expression of a number of drug transporters, altering the functional activities of nutrient and drug transport systems, in particular inhibiting MPP, glucose and glutamine uptake. Conclusions Therefore, we conclude that gefitinib is an inhibitor but not a substrate for ABCG2 and that ABCG2 overexpression may modulate the expression and activity of other transporters involved in the uptake of different substrates into the cells. PMID:26536031

  3. Alpha-Mangostin Reverses Multidrug Resistance by Attenuating the Function of the Multidrug Resistance-Linked ABCG2 Transporter.

    Science.gov (United States)

    Wu, Chung-Pu; Hsiao, Sung-Han; Murakami, Megumi; Lu, Yu-Jen; Li, Yan-Qing; Huang, Yang-Hui; Hung, Tai-Ho; Ambudkar, Suresh V; Wu, Yu-Shan

    2017-08-07

    The ATP-binding cassette (ABC) drug transporter ABCG2 can actively efflux a wide variety of chemotherapeutic agents out of cancer cells and subsequently reduce the intracellular accumulation of these drugs. Therefore, the overexpression of ABCG2 often contributes to the development of multidrug resistance (MDR) in cancer cells, which is one of the major obstacles to successful cancer chemotherapy. Moreover, ABCG2 is highly expressed in various tissues including the intestine and blood-brain barrier (BBB), limiting the absorption and bioavailability of many therapeutic agents. For decades, the task of developing a highly effective synthetic inhibitor of ABCG2 has been hindered mostly by the intrinsic toxicity, the lack of specificity, and complex pharmacokinetics. Alternatively, considering the wide range of diversity and relatively nontoxic nature of natural products, developing potential modulators of ABCG2 from natural sources is particularly valuable. α-Mangostin is a natural xanthone derived from the pericarps of mangosteen (Garcinia mangostana L.) with various pharmacological purposes, including suppressing angiogenesis and inducing cancer cell growth arrest. In this study, we demonstrated that at nontoxic concentrations, α-mangostin effectively and selectively inhibits ABCG2-mediated drug transport and reverses MDR in ABCG2-overexpressing MDR cancer cells. Direct interactions between α-mangostin and the ABCG2 drug-binding site(s) were confirmed by stimulation of ATPase activity and by inhibition of photolabeling of the substrate-binding site(s) of ABCG2 with [ 125 I]iodoarylazidoprazosin. In summary, our findings show that α-mangostin has great potential to be further developed into a promising modulator of ABCG2 for reversing MDR and for its use in combination therapy for patients with MDR tumors.

  4. Accident-resistant container: safety for warhead transport. Executive summary

    International Nuclear Information System (INIS)

    Berry, R.E.

    1975-11-01

    Development testing of model and full-scale hardware to the abnormal environments created during a cargo aircraft crash has demonstrated that the accident-resistant container (ARC) can protect an enclosed warhead from these abnormal environments. This protection reduces the probability of initiation of the warhead HE. Transfer of the plutonium limit to the ARC may permit transporting increased numbers of warheads on a single transport vehicle. Testing of one warhead configuration has been completed. Production can be initiated for transporting that system in the ARC. Other systems need test evaluation and certification before being transported in the ARC

  5. Oral and inhaled corticosteroids: Differences in P-glycoprotein (ABCB1) mediated efflux

    International Nuclear Information System (INIS)

    Crowe, Andrew; Tan, Ai May

    2012-01-01

    There is concern that P-glycoprotein mediated efflux contributes to steroid resistance. Therefore, this study examined bidirectional corticosteroid transport and induction capabilities for P-glycoprotein (P-gp) to understand which of the systemic and inhaled corticosteroids interacted with P-gp to the greatest extent. Hydrocortisone, prednisolone, prednisone, methylprednisolone, and dexamethasone represented systemically active drugs, while fluticasone propionate, beclomethasone dipropionate, ciclesonide and budesonide represented inhaled corticosteroids. Aldosterone and fludrocortisone represented mineralocorticoids. All drugs were detected using individually optimised HPLC protocols. Transport studies were conducted through Caco-2 monolayers. Hydrocortisone and aldosterone had efflux ratios below 1.5, while prednisone showed a P-gp mediated efflux ratio of only 1.8 compared to its active drug, prednisolone, with an efflux ratio of 4.5. Dexamethasone and beclomethasone had efflux ratios of 2.1 and 3.3 respectively, while this increased to 5.1 for methylprednisolone. Fluticasone showed an efflux ratio of 2.3. Protein expression studies suggested that all of the inhaled corticosteroids were able to induce P-gp expression, from 1.6 to 2 times control levels. Most of the systemic corticosteroids had higher passive permeability (> 20 × 10 −6 cm/s) compared to the inhaled corticosteroids (> 5 × 10 −6 cm/s), except for budesonide, with permeability similar to the systemic corticosteroids. Inhaled corticosteroids are not transported by P-gp to the same extent as systemic corticosteroids. However, they are able to induce P-gp production. Thus, inhaled corticosteroids may have greater interactions with other P-gp substrates, but P-gp itself is less likely to influence resistance to the drugs. -- Highlights: ► Inhaled corticosteroids are only weak substrates for P-gp, including budesonide. ► Inhaled corticosteroid potent P-gp inducers especially fluticasone and

  6. Oral and inhaled corticosteroids: Differences in P-glycoprotein (ABCB1) mediated efflux

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, Andrew, E-mail: a.p.crowe@curtin.edu.au; Tan, Ai May

    2012-05-01

    There is concern that P-glycoprotein mediated efflux contributes to steroid resistance. Therefore, this study examined bidirectional corticosteroid transport and induction capabilities for P-glycoprotein (P-gp) to understand which of the systemic and inhaled corticosteroids interacted with P-gp to the greatest extent. Hydrocortisone, prednisolone, prednisone, methylprednisolone, and dexamethasone represented systemically active drugs, while fluticasone propionate, beclomethasone dipropionate, ciclesonide and budesonide represented inhaled corticosteroids. Aldosterone and fludrocortisone represented mineralocorticoids. All drugs were detected using individually optimised HPLC protocols. Transport studies were conducted through Caco-2 monolayers. Hydrocortisone and aldosterone had efflux ratios below 1.5, while prednisone showed a P-gp mediated efflux ratio of only 1.8 compared to its active drug, prednisolone, with an efflux ratio of 4.5. Dexamethasone and beclomethasone had efflux ratios of 2.1 and 3.3 respectively, while this increased to 5.1 for methylprednisolone. Fluticasone showed an efflux ratio of 2.3. Protein expression studies suggested that all of the inhaled corticosteroids were able to induce P-gp expression, from 1.6 to 2 times control levels. Most of the systemic corticosteroids had higher passive permeability (> 20 × 10{sup −6} cm/s) compared to the inhaled corticosteroids (> 5 × 10{sup −6} cm/s), except for budesonide, with permeability similar to the systemic corticosteroids. Inhaled corticosteroids are not transported by P-gp to the same extent as systemic corticosteroids. However, they are able to induce P-gp production. Thus, inhaled corticosteroids may have greater interactions with other P-gp substrates, but P-gp itself is less likely to influence resistance to the drugs. -- Highlights: ► Inhaled corticosteroids are only weak substrates for P-gp, including budesonide. ► Inhaled corticosteroid potent P-gp inducers especially

  7. Nose-to-Brain Delivery of Antiviral Drugs: A Way to Overcome Their Active Efflux?

    Directory of Open Access Journals (Sweden)

    Alessandro Dalpiaz

    2018-03-01

    Full Text Available Although several viruses can easily infect the central nervous system (CNS, antiviral drugs often show dramatic difficulties in penetrating the brain from the bloodstream since they are substrates of active efflux transporters (AETs. These transporters, located in the physiological barriers between blood and the CNS and in macrophage membranes, are able to recognize their substrates and actively efflux them into the bloodstream. The active transporters currently known to efflux antiviral drugs are P-glycoprotein (ABCB1 or P-gp or MDR1, multidrug resistance-associated proteins (ABCC1 or MRP1, ABCC4 or MRP4, ABCC5 or MRP5, and breast cancer resistance protein (ABCG2 or BCRP. Inhibitors of AETs may be considered, but their co-administration causes serious unwanted effects. Nasal administration of antiviral drugs is therefore proposed in order to overcome the aforementioned problems, but innovative devices, formulations (thermoreversible gels, polymeric micro- and nano-particles, solid lipid microparticles, nanoemulsions, absorption enhancers (chitosan, papaverine, and mucoadhesive agents (chitosan, polyvinilpyrrolidone are required in order to selectively target the antiviral drugs and, possibly, the AET inhibitors in the CNS. Moreover, several prodrugs of antiretroviral agents can inhibit or elude the AET systems, appearing as interesting substrates for innovative nasal formulations able to target anti-Human Immunodeficiency Virus (HIV agents into macrophages of the CNS, which are one of the most important HIV Sanctuaries of the body.

  8. Molecular response to imatinib & its correlation with mRNA expression levels of imatinib influx & efflux transporters in patients with chronic myeloid leukaemia in chronic phase

    Directory of Open Access Journals (Sweden)

    Hemant Malhotra

    2015-01-01

    Full Text Available Background & objectives: Imatinib is the standard first-line treatment for chronic myeloid leukaemia (CML patients. About 20 to 30 per cent patients develop resistance to imatinib and fail imatinib treatment. One of the mechanisms proposed is varying expression levels of the drug transporters. This study was aimed to determine the expression levels of imatinib transporter genes (OCT1, ABCB1, ABCG2 in CML patients and to correlate these levels with molecular response. Methods: Sixty three CML chronic phase patients who were on 400 mg/day imatinib for more than two years were considered for gene expression analysis study for OCT1, ABCB1 and ABCG2 genes. These were divided into responders and non-responders. The relative transcript expression levels of the three genes were compared between these two categories. The association between the expression values of these three genes was also determined. Results: No significant difference in the expression levels of OCT1, ABCB1 and ABCG2 was found between the two categories. The median transcript expression levels of OCT1, ABCB1 and ABCG2 genes in responders were 26.54, 10.78 and 0.64 versus 33.48, 7.09 and 0.53 in non-responders, respectively. A positive association was observed between the expression of the ABCB1 and ABCG2 transporter genes (r=0.407, P<0.05 while no association was observed between the expression of either of the ABC transporter genes with the OCT1 gene. Interpretation & conclusions: Our findings demonstrated that the mRNA expression levels of imatinib transporter genes were not correlated with molecular response in CML patients. Further studies need to be done on a large sample of CML patients to confirm these findings.

  9. Hypoxia-induced tumor cell resistance is overcome by synergistic GAPDH-siRNA and chemotherapy co-delivered by long-circulating and cationic-interior liposomes

    NARCIS (Netherlands)

    Guan, J.; Sun, J.; Sun, F.|info:eu-repo/dai/nl/370549775; Lou, B.|info:eu-repo/dai/nl/37052537X; Zhang, D.; Mashayekhi, V.|info:eu-repo/dai/nl/413278360; Sadeghi, N.; Storm, G.|info:eu-repo/dai/nl/073356328; Mastrobattista, E.|info:eu-repo/dai/nl/228061105; He, Z.

    2017-01-01

    Chemotherapeutic drug resistance of tumor cells under hypoxic conditions is caused by the inhibition of apoptosis by autophagy and drug efflux via adenosine triphosphate (ATP)-dependent transporter activation, among other factors. Here, we demonstrate that disrupting glyceraldehyde-3-phosphate

  10. Development of a model for functional studies of ABCG2 (breast cancer resistance protein) efflux employing a standard BeWo clone (B24).

    Science.gov (United States)

    Crowe, Andrew; Keelan, Jeffrey A

    2012-10-01

    Human choriocarcinoma-derived BeWo cells express high levels of breast cancer resistance protein (BCRP/ABCG2) with no functional P-glycoprotein (P-gp) (ABCB1) activity, making them a potential model to study bidirectional ABCG2-mediated drug transport. However, the original BeWo clone (B24) available to researchers does not form confluent monolayers with tight junctions required by the model. Our aim was to adapt culture conditions to attempt to generate confluent BeWo monolayers for drug transport studies using the standard B24 clone. BeWo cells (B24; American Type Culture collection [ATCC]) were cultured in six-well plates or polycarbonate millicell inserts in a number of media formulations, growth supplements, and basement membrane substitutes. Cells were examined for confluence by microscopy, and transepithelial electrical resistance (TEER) was measured daily; monolayer permeability was assessed when TEER had stabilized. Optimal growth rates were achieved in culture conditions consisting of Medium 199 (M199) supplemented with epidermal growth factor (EGF; 20 ng/mL), vitamin supplements, and 10% fetal calf serum (FCS) with collagen coating. A TEER of 170 Ω in 0.6 cm(2) inserts was achieved 2 weeks after seeding under optimal conditions. The cell-impermeable diffusion marker 5(6) carboxy-2,7dichlorodihydrofluorescein (C-DCDHF) had a permeability coefficient of 3.5×10(-6) cm/s, indicative of minimal paracellular permeability. ABCG2 expression, as determined by immunoblotting, remained unaffected by confluency. In conclusion, we describe culture conditions for the B24 BeWo clone that facilitate the formation of monolayers with tighter junctions and reduced paracellular transport compared to previously published models. These growth conditions provide a good model of ABCG2-mediated drug transport in a human placental cell line.

  11. Induction of multixenobiotic defense mechanisms in resistant Daphnia magna clones as a general cellular response to stress

    OpenAIRE

    Jordão, Rita; Campos, B.; Lemos, Marco F L; Soares, Amadeu Mortágua Velho Maia; Tauler, Romà; Barata, Carlos

    2016-01-01

    Multixenobiotic resistance mechanisms (MXR) were recently identified in Daphnia magna. Previous results characterized gene transcripts of genes encoding and efflux activities of four putative ABCB1 and ABCC transporters that were chemically induced but showed low specificity against model transporter substrates and inhibitors, thus preventing us from distinguishing between activities of different efflux transporter types. In this study we report on the specificity of induction of ABC transpor...

  12. Ochratoxin A transport by the human breast cancer resistance protein (BCRP), multidrug resistance protein 2 (MRP2), and organic anion-transporting polypeptides 1A2, 1B1 and 2B1.

    Science.gov (United States)

    Qi, Xiaozhe; Wagenaar, Els; Xu, Wentao; Huang, Kunlun; Schinkel, Alfred H

    2017-08-15

    Ochratoxin A (OTA) is a fungal secondary metabolite that can contaminate various foods. OTA has several toxic effects like nephrotoxicity, hepatotoxicity, and neurotoxicity in different animal species, but its mechanisms of toxicity are still unclear. How OTA accumulates in kidney, liver, and brain is as yet unknown, but transmembrane transport proteins are likely involved. We studied transport of OTA in vitro, using polarized MDCKII cells transduced with cDNAs of the efflux transporters mouse (m)Bcrp, human (h)BCRP, mMrp2, or hMRP2, and HEK293 cells overexpressing cDNAs of the human uptake transporters OATP1A2, OATP1B1, OATP1B3, or OATP2B1 at pH7.4 and 6.4. MDCKII-mBcrp cells were more resistant to OTA toxicity than MDCKII parental and hBCRP-transduced cells. Transepithelial transport experiments showed some apically directed transport by MDCKII-mBcrp cells at pH7.4, whereas both mBcrp and hBCRP clearly transported OTA at pH6.4. There was modest transport of OTA by mMrp2 and hMRP2 only at pH6.4. OATP1A2 and OATP2B1 mediated uptake of OTA both at pH7.4 and 6.4, but OATP1B1 only at pH7.4. There was no detectable transport of OTA by OATP1B3. Our data indicate that human BCRP and MRP2 can mediate elimination of OTA from cells, thus reducing OTA toxicity. On the other hand, human OATP1A2, OATP1B1, and OATP2B1 can mediate cellular uptake of OTA, which could aggravate OTA toxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Efflux unbalance in Pseudomonas aeruginosa isolates from cystic fibrosis patients.

    Science.gov (United States)

    Vettoretti, Lucie; Plésiat, Patrick; Muller, Cédric; El Garch, Farid; Phan, Gilles; Attrée, Inna; Ducruix, Arnaud; Llanes, Catherine

    2009-05-01

    Retrospective analysis of 189 nonredundant strains of Pseudomonas aeruginosa sequentially recovered from the sputum samples of 46 cystic fibrosis (CF) patients over a 10-year period (1998 to 2007) revealed that 53 out of 189 (28%) samples were hypersusceptible to the beta-lactam antibiotic ticarcillin (MIC efflux system MexXY was responsible for various degrees of resistance to aminoglycosides in a selection of 11 genotypically distinct strains (gentamicin MICs from 2 to 64 microg/ml). By demonstrating for the first time that the MexXY pump may evolve in CF strains, we found that a mutation leading to an F1018L change in the resistance-nodulation-cell division (RND) transporter MexY was able to increase pump-promoted resistance to aminoglycosides, cefepime, and fluoroquinolones twofold. The inactivation of the mexB gene (which codes for the RND transporter MexB) in the 11 selected strains showed that the Tic(hs) phenotype was due to a mutational or functional loss of function of MexAB-OprM, the multidrug efflux system known to contribute to the natural resistance of P. aeruginosa to beta-lactams (e.g., ticarcillin and aztreonam), fluoroquinolones, tetracycline, and novobiocin. Two of the selected strains synthesized abnormally low amounts of the MexB protein, and 3 of 11 strains expressed truncated MexB (n = 2) or MexA (n = 1) polypeptide as a result of mutations in the corresponding genes, while 7 of 11 strains produced wild-type though nonfunctional MexAB-OprM pumps at levels similar to or even higher than that of reference strain PAO1. Overall, our data indicate that while MexXY is necessary for P. aeruginosa to adapt to the hostile environment of the CF lung, the MexAB-OprM pump is dispensable and tends to be lost or inactivated in subpopulations of P. aeruginosa.

  14. Role of bacterial efflux pumps in biofilm formation.

    Science.gov (United States)

    Alav, Ilyas; Sutton, J Mark; Rahman, Khondaker Miraz

    2018-02-28

    Efflux pumps are widely implicated in antibiotic resistance because they can extrude the majority of clinically relevant antibiotics from within cells to the extracellular environment. However, there is increasing evidence from many studies to suggest that the pumps also play a role in biofilm formation. These studies have involved investigating the effects of efflux pump gene mutagenesis and efflux pump inhibitors on biofilm formation, and measuring the levels of efflux pump gene expression in biofilms. In particular, several key pathogenic species associated with increasing multidrug resistance, such as Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, have been investigated, whilst other studies have focused on Salmonella enterica serovar Typhimurium as a model organism and problematic pathogen. Studies have shown that efflux pumps, including AcrAB-TolC of E. coli, MexAB-OprM of P. aeruginosa, AdeFGH of A. baumannii and AcrD of S. enterica, play important roles in biofilm formation. The substrates for such pumps, and whether changes in their efflux activity affect biofilm formation directly or indirectly, remain to be determined. By understanding the roles that efflux pumps play in biofilm formation, novel therapeutic strategies can be developed to inhibit their function, to help disrupt biofilms and improve the treatment of infections. This review will discuss and evaluate the evidence for the roles of efflux pumps in biofilm formation and the potential approaches to overcome the increasing problem of biofilm-based infections.

  15. The 79,370-bp conjugative plasmid pB4 consists of an IncP-1beta backbone loaded with a chromate resistance transposon, the strA-strB streptomycin resistance gene pair, the oxacillinase gene bla(NPS-1), and a tripartite antibiotic efflux system of the resistance-nodulation-division family.

    Science.gov (United States)

    Tauch, A; Schlüter, A; Bischoff, N; Goesmann, A; Meyer, F; Pühler, A

    2003-02-01

    Plasmid pB4 is a conjugative antibiotic resistance plasmid, originally isolated from a microbial community growing in activated sludge, by means of an exogenous isolation method with Pseudomonas sp. B13 as recipient. We have determined the complete nucleotide sequence of pB4. The plasmid is 79,370 bp long and contains at least 81 complete coding regions. A suite of coding regions predicted to be involved in plasmid replication, plasmid maintenance, and conjugative transfer revealed significant similarity to the IncP-1beta backbone of R751. Four resistance gene regions comprising mobile genetic elements are inserted in the IncP-1beta backbone of pB4. The modular 'gene load' of pB4 includes (1) the novel transposon Tn 5719 containing genes characteristic of chromate resistance determinants, (2) the transposon Tn 5393c carrying the widespread streptomycin resistance gene pair strA-strB, (3) the beta-lactam antibiotic resistance gene bla(NPS-1) flanked by highly conserved sequences characteristic of integrons, and (4) a tripartite antibiotic resistance determinant comprising an efflux protein of the resistance-nodulation-division (RND) family, a periplasmic membrane fusion protein (MFP), and an outer membrane factor (OMF). The components of the RND-MFP-OMF efflux system showed the highest similarity to the products of the mexCD-oprJ determinant from the Pseudomonas aeruginosa chromosome. Functional analysis of the cloned resistance region from pB4 in Pseudomonas sp. B13 indicated that the RND-MFP-OMF efflux system conferred high-level resistance to erythromycin and roxithromycin resistance on the host strain. This is the first example of an RND-MFP-OMF-type antibiotic resistance determinant to be found in a plasmid genome. The global genetic organization of pB4 implies that its gene load might be disseminated between bacteria in different habitats by the combined action of the conjugation apparatus and the mobility of its component elements.

  16. Public transport as a reservoir of methicillin-resistant staphylococci.

    Science.gov (United States)

    Stepanović, S; Cirković, I; Djukić, S; Vuković, D; Svabić-Vlahović, M

    2008-10-01

    The aim of this study was to explore the occurrence of methicillin-resistant staphylococci in a large urban public transport system. Samples were taken from hand rails, which passengers hold onto when they are standing. In total, 1400 swabs taken from 55 vehicles (trolleybuses, trams and buses) were examined. As many as 30.1% samples were positive for the presence of methicillin-resistant coagulase-negative staphylococci (MRCoNS), but none for methicillin-resistant Staphylococcus aureus (MRSA). MRCoNS were isolated from all 55 vehicles. Nearly 50% of MRCoNS isolates displayed resistance not only to beta-lactams, but at least to two or more other classes of antimicrobials as well. This study demonstrated widespread occurrence of MRCoNS on hand rails in public transport vehicles. MRSA was not detected. The recovery of methicillin-resistant staphylococci from public transport system implies a potential risk for transmission of these bacteria in an out-hospital environment.

  17. Anti-Campylobacter activity of resveratrol and an extract from waste Pinot noir grape skins and seeds, and resistance of Camp. jejuni planktonic and biofilm cells, mediated via the CmeABC efflux pump.

    Science.gov (United States)

    Klančnik, A; Šikić Pogačar, M; Trošt, K; Tušek Žnidarič, M; Mozetič Vodopivec, B; Smole Možina, S

    2017-01-01

    To define anti-Campylobacter jejuni activity of an extract from waste skins and seeds of Pinot noir grapes (GSS), resveratrol and possible resistance mechanisms, and the influence of these on Camp. jejuni morphology. Using gene-specific knock-out Camp. jejuni mutants and an efflux pump inhibitor, we showed CmeABC as the most active efflux pump for extrusion across the outer membrane of GSS extract and resveratrol. Using polystyrene surface and pig small intestine epithelial (PSI) and human foetal small intestine (H4) cell lines, GSS extract shows an efficient inhibition of adhesion of Camp. jejuni to these abiotic and biotic surfaces. Low doses of GSS extract can inhibit Camp. jejuni adhesion to polystyrene surfaces and to PSI and H4 cells, and can thus modulate Camp. jejuni invasion and intracellular survival. An understanding of the activities of GSS extract and resveratrol as bacterial growth inhibitors and the specific mechanisms of cell accumulation is crucial for our understanding of Camp. jejuni resistance. GSS extract inhibition of Camp. jejuni adhesion to abiotic and biotic surfaces provides a further step towards the application of new innovative strategies to control Campylobacter contamination and infection via the food chain. © 2016 The Society for Applied Microbiology.

  18. Development, Maintenance, and Reversal of Multiple Drug Resistance: At the Crossroads of TFPI1, ABC Transporters, and HIF1

    Directory of Open Access Journals (Sweden)

    Terra Arnason

    2015-10-01

    Full Text Available Early detection and improved therapies for many cancers are enhancing survival rates. Although many cytotoxic therapies are approved for aggressive or metastatic cancer; response rates are low and acquisition of de novo resistance is virtually universal. For decades; chemotherapeutic treatments for cancer have included anthracyclines such as Doxorubicin (DOX; and its use in aggressive tumors appears to remain a viable option; but drug resistance arises against DOX; as for all other classes of compounds. Our recent work suggests the anticoagulant protein Tissue Factor Pathway Inhibitor 1α (TFPI1α plays a role in driving the development of multiple drug resistance (MDR; but not maintenance; of the MDR state. Other factors; such as the ABC transporter drug efflux pumps MDR-1/P-gp (ABCB1 and BCRP (ABCG2; are required for MDR maintenance; as well as development. The patient population struggling with therapeutic resistance specifically requires novel treatment options to resensitize these tumor cells to therapy. In this review we discuss the development, maintenance, and reversal of MDR as three distinct phases of cancer biology. Possible means to exploit these stages to reverse MDR will be explored. Early molecular detection of MDRcancers before clinical failure has the potential to offer new approaches to fighting MDRcancer.

  19. Carnosic acid is an efflux pumps modulator by dissipation of the membrane potential in Enterococcus faecalis and Staphylococcus aureus.

    Science.gov (United States)

    Ojeda-Sana, Adriana M; Repetto, Victoria; Moreno, Silvia

    2013-01-01

    Bacterial resistance to antibiotics has become a serious problem of public health. Along with the controlled permeability by the cell-wall, active efflux systems can provide resistance by extruding antibiotics. Carnosic acid is capable to potentiate the antimicrobial activity of several antibiotics. However, the underlying molecular mechanism governing this effect remains unclear. The present study aims to investigate the effect of carnosic acid on the transport of ethidium bromide, on the permeability or the membrane potential in Enterococcus faecalis and Staphylococcus aureus. By using fluorimetric assays it was demonstrated that in E. faecalis, carnosic acid is a modulator of the uptake and efflux of ethidium bromide which does not induce cell membrane permeabilization phenomena. Such effect was sensitive to the inhibition caused by both the proton-motive force carbonyl cyanide m-chlorophenylhydrazone and the calcium antagonist verapamil, but not to vanadate, an ATPase inhibitor. In this work it was demonstrated, for the first time, that the activity of carnosic acid on the uptake/efflux of ethidium bromide is correlated with its capacity to change the membrane potential gradient in S. aureus and E. faecalis. In conclusion, carnosic acid is a natural compound, structurally unrelated to known antibiotics, which can function as an efflux pump modulator by dissipation of the membrane potential. Therefore, carnosic acid would be a good candidate to be employed as a novel therapeutic agent to be used in combination therapies against drug-resistant enterococci and S. aureus infections.

  20. Overcoming the heterologous bias: An in vivo functional analysis of multidrug efflux transporter, CgCdr1p in matched pair clinical isolates of Candida glabrata

    Energy Technology Data Exchange (ETDEWEB)

    Puri, Nidhi; Manoharlal, Raman; Sharma, Monika [Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067 (India); Sanglard, Dominique [Institut de Microbiologie, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne (Switzerland); Prasad, Rajendra, E-mail: rp47jnu@gmail.com [Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067 (India)

    2011-01-07

    Research highlights: {yields} First report to demonstrate an in vivo expression system of an ABC multidrug transporter CgCdr1p of C. glabrata. {yields} First report on the structure and functional characterization of CgCdr1p. {yields} Functional conservation of divergent but typical residues of CgCdr1p. {yields} CgCdr1p elicits promiscuity towards substrates and has a large drug binding pocket with overlapping specificities. -- Abstract: We have taken advantage of the natural milieu of matched pair of azole sensitive (AS) and azole resistant (AR) clinical isolates of Candida glabrata for expressing its major ABC multidrug transporter, CgCdr1p for structure and functional analysis. This was accomplished by tagging a green fluorescent protein (GFP) downstream of ORF of CgCDR1 and integrating the resultant fusion protein at its native chromosomal locus in AS and AR backgrounds. The characterization confirmed that in comparison to AS isolate, CgCdr1p-GFP was over-expressed in AR isolates due to its hyperactive native promoter and the GFP tag did not affect its functionality in either construct. We observed that in addition to Rhodamine 6 G (R6G) and Fluconazole (FLC), a recently identified fluorescent substrate of multidrug transporters Nile Red (NR) could also be expelled by CgCdr1p. Competition assays with these substrates revealed the presence of overlapping multiple drug binding sites in CgCdr1p. Point mutations employing site directed mutagenesis confirmed that the role played by unique amino acid residues critical to ATP catalysis and localization of ABC drug transporter proteins are well conserved in C. glabrata as in other yeasts. This study demonstrates a first in vivo novel system where over-expression of GFP tagged MDR transporter protein can be driven by its own hyperactive promoter of AR isolates. Taken together, this in vivo system can be exploited for the structure and functional analysis of CgCdr1p and similar proteins wherein the arte-factual concerns

  1. Efflux systems in bacteria and their metabolic engineering applications.

    Science.gov (United States)

    Jones, Christopher M; Hernández Lozada, Néstor J; Pfleger, Brian F

    2015-11-01

    The production of valuable chemicals from metabolically engineered microbes can be limited by excretion from the cell. Efflux is often overlooked as a bottleneck in metabolic pathways, despite its impact on alleviating feedback inhibition and product toxicity. In the past, it has been assumed that endogenous efflux pumps and membrane porins can accommodate product efflux rates; however, there are an increasing number of examples wherein overexpressing efflux systems is required to improve metabolite production. In this review, we highlight specific examples from the literature where metabolite export has been studied to identify unknown transporters, increase tolerance to metabolites, and improve the production capabilities of engineered bacteria. The review focuses on the export of a broad spectrum of valuable chemicals including amino acids, sugars, flavins, biofuels, and solvents. The combined set of examples supports the hypothesis that efflux systems can be identified and engineered to confer export capabilities on industrially relevant microbes.

  2. Efflux pumps of Mycobacterium tuberculosis play a significant role in antituberculosis activity of potential drug candidates.

    Science.gov (United States)

    Balganesh, Meenakshi; Dinesh, Neela; Sharma, Sreevalli; Kuruppath, Sanjana; Nair, Anju V; Sharma, Umender

    2012-05-01

    Active efflux of drugs mediated by efflux pumps that confer drug resistance is one of the mechanisms developed by bacteria to counter the adverse effects of antibiotics and chemicals. To understand these efflux mechanisms in Mycobacterium tuberculosis, we generated knockout (KO) mutants of four efflux pumps of the pathogen belonging to different classes. We measured the MICs and kill values of two different compound classes on the wild type (WT) and the efflux pump (EP) KO mutants in the presence and absence of the efflux inhibitors verapamil and l-phenylalanyl-l-arginyl-β-naphthylamide (PAβN). Among the pumps studied, the efflux pumps belonging to the ABC (ATP-binding cassette) class, encoded by Rv1218c, and the SMR (small multidrug resistance) class, encoded by Rv3065, appear to play important roles in mediating the efflux of different chemical classes and antibiotics. Efflux pumps encoded by Rv0849 and Rv1258c also mediate the efflux of these compounds, but to a lesser extent. Increased killing is observed in WT M. tuberculosis cells by these compounds in the presence of either verapamil or PAβN. The efflux pump KO mutants were more susceptible to these compounds in the presence of efflux inhibitors. We have shown that these four efflux pumps of M. tuberculosis play a vital role in mediating efflux of different chemical scaffolds. Inhibitors of one or several of these efflux pumps could have a significant impact in the treatment of tuberculosis. The identification and characterization of Rv0849, a new efflux pump belonging to the MFS (major facilitator superfamily) class, are reported.

  3. Secondary metabolites inhibiting ABC transporters and reversing resistance of cancer cells and fungi to cytotoxic and antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Michael eWink

    2012-04-01

    Full Text Available Fungal, bacterial and cancer cells can develop resistance against antifungal, antibacterial or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: 1. Activation of ABC transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, 2. Activation of cytochrome p450 oxidases which can oxidise lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulphate or amino acids, and 3. Activation of glutathione transferase, which can conjugate xenobiotics. This review summarises the evidence that secondary metabolites of plants, such as alkaloids, phenolics and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria and fungi. Among the active natural products several lipophilic terpenoids ( monoterpenes, diterpenes, triterpenes (including saponins, steroids (including cardiac glycosides and tetraterpenes but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids function probably as competitive inhibitors of P-gp, MRP1 and BCRP in cancer cells, or efflux pumps in bacteria (NorA and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse MDR, at least partially, of adapted and resistant cells. If these secondary metabolites are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion.

  4. In vitro evidence for the brain glutamate efflux hypothesis: brain endothelial cells cocultured with astrocytes display a polarized brain-to-blood transport of glutamate.

    Science.gov (United States)

    Helms, Hans Christian; Madelung, Rasmus; Waagepetersen, Helle Sønderby; Nielsen, Carsten Uhd; Brodin, Birger

    2012-05-01

    The concentration of the excitotoxic amino acid, L-glutamate, in brain interstitial fluid is tightly regulated by uptake transporters and metabolism in astrocytes and neurons. The aim of this study was to investigate the possible role of the blood-brain barrier endothelium in brain L-glutamate homeostasis. Transendothelial transport- and accumulation studies of (3) H-L-glutamate, (3) H-L-aspartate, and (3) H-D-aspartate in an electrically tight bovine endothelial/rat astrocyte blood-brain barrier coculture model were performed. After 6 days in culture, the endothelium displayed transendothelial resistance values of 1014 ± 70 Ω cm(2) , and (14) C-D-mannitol permeability values of 0.88 ± 0.13 × 10(-6) cm s(-1) . Unidirectional flux studies showed that L-aspartate and L-glutamate, but not D-aspartate, displayed polarized transport in the brain-to-blood direction, however, all three amino acids accumulated in the cocultures when applied from the abluminal side. The transcellular transport kinetics were characterized with a K(m) of 69 ± 15 μM and a J(max) of 44 ± 3.1 pmol min(-1) cm(-2) for L-aspartate and a K(m) of 138 ± 49 μM and J(max) of 28 ± 3.1 pmol min(-1) cm(-2) for L-glutamate. The EAAT inhibitor, DL-threo-ß-Benzyloxyaspartate, inhibited transendothelial brain-to-blood fluxes of L-glutamate and L-aspartate. Expression of EAAT-1 (Slc1a3), -2 (Slc1a2), and -3 (Slc1a1) mRNA in the endothelial cells was confirmed by conventional PCR and localization of EAAT-1 and -3 in endothelial cells was shown with immunofluorescence. Overall, the findings suggest that the blood-brain barrier itself may participate in regulating brain L-glutamate concentrations. Copyright © 2012 Wiley Periodicals, Inc.

  5. 13-hydroxy linoleic acid increases expression of the cholesterol transporters ABCA1, ABCG1 and SR-BI and stimulates apoA-I-dependent cholesterol efflux in RAW264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Kämmerer Ines

    2011-11-01

    Full Text Available Abstract Background Synthetic activators of peroxisome proliferator-activated receptors (PPARs stimulate cholesterol removal from macrophages through PPAR-dependent up-regulation of liver × receptor α (LXRα and subsequent induction of cholesterol exporters such as ATP-binding cassette transporter A1 (ABCA1 and scavenger receptor class B type 1 (SR-BI. The present study aimed to test the hypothesis that the hydroxylated derivative of linoleic acid (LA, 13-HODE, which is a natural PPAR agonist, has similar effects in RAW264.7 macrophages. Methods RAW264.7 macrophages were treated without (control or with LA or 13-HODE in the presence and absence of PPARα or PPARγ antagonists and determined protein levels of LXRα, ABCA1, ABCG1, SR-BI, PPARα and PPARγ and apolipoprotein A-I mediated lipid efflux. Results Treatment of RAW264.7 cells with 13-HODE increased PPAR-transactivation activity and protein concentrations of LXRα, ABCA1, ABCG1 and SR-BI when compared to control treatment (P Conclusion 13-HODE induces cholesterol efflux from macrophages via the PPAR-LXRα-ABCA1/SR-BI-pathway.

  6. Bipolar resistive switching and charge transport in silicon oxide memristor

    Energy Technology Data Exchange (ETDEWEB)

    Mikhaylov, Alexey N., E-mail: mian@nifti.unn.ru [Lobachevsky State University of Nizhni Novgorod, 23/3 Gagarin Prospect, Nizhni Novgorod 603950 (Russian Federation); Belov, Alexey I.; Guseinov, Davud V.; Korolev, Dmitry S.; Antonov, Ivan N.; Efimovykh, Denis V.; Tikhov, Stanislav V.; Kasatkin, Alexander P.; Gorshkov, Oleg N.; Tetelbaum, David I.; Bobrov, Alexander I.; Malekhonova, Natalia V.; Pavlov, Dmitry A. [Lobachevsky State University of Nizhni Novgorod, 23/3 Gagarin Prospect, Nizhni Novgorod 603950 (Russian Federation); Gryaznov, Evgeny G. [Lobachevsky State University of Nizhni Novgorod, 23/3 Gagarin Prospect, Nizhni Novgorod 603950 (Russian Federation); Sedakov Scientific-Research Institute, GSP-486, Nizhny Novgorod 603950 (Russian Federation); Yatmanov, Alexander P. [Sedakov Scientific-Research Institute, GSP-486, Nizhny Novgorod 603950 (Russian Federation)

    2015-04-15

    Graphical abstract: - Highlights: • Si-based thin-film memristor structure was fabricated by magnetron sputtering. • We study bipolar resistive switching and charge transport mechanisms. • Resistive switching parameters are determined by a balance between redox reactions. - Abstract: Reproducible bipolar resistive switching has been studied in SiO{sub x}-based thin-film memristor structures deposited by magnetron sputtering technique on the TiN/Ti metalized SiO{sub 2}/Si substrates. It is established that, after electroforming, the structure can be switched between the quasi-ohmic low-resistance state related to silicon chains (conducting filaments) and the high-resistance state with semiconductor-like hopping mechanism of charge transport through the defects in silicon oxide. The switching parameters are determined by a balance between the reduction and oxidation processes that, in turn, are driven by the value and polarity of voltage bias, current, temperature and device environment. The results can be used for the development of silicon-based nonvolatile memory and memristive systems as a key component of future electronics.

  7. Membrane transporters and drought resistance – a complex issue

    Directory of Open Access Journals (Sweden)

    Karolina Maria Jarzyniak

    2014-12-01

    Full Text Available Land plants have evolved complex adaptation strategies to survive changes in water status in the environment. Understanding the molecular nature of such adaptive changes allows the development of rapid innovations to improve crop performance. Plant membrane transport systems play a significant role when adjusting to water scarcity. Here we put proteins participating in transmembrane allocations of various molecules in the context of stomatal, cuticular and root responses, representing a part of the drought resistance strategy. Their role in the transport of signaling molecules, ions or osmolytes is summarized and the challenge of the forthcoming research, resulting from the recent discoveries, is highlighted.

  8. The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs

    NARCIS (Netherlands)

    Reid, Glen; Wielinga, Peter; Zelcer, Noam; van der Heijden, Ingrid; Kuil, Annemieke; de Haas, Marcel; Wijnholds, Jan; Borst, Piet

    2003-01-01

    Prostaglandins are involved in a wide variety of physiological and pathophysiological processes, but the mechanism of prostaglandin release from cells is not completely understood. Although poorly membrane permeable, prostaglandins are believed to exit cells by passive diffusion. We have

  9. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes

    DEFF Research Database (Denmark)

    Venkatesan, Meera; Gadalla, Nahla B; Stepniewska, Kasia

    2014-01-01

    Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated...... with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized...

  10. Contributions of IMP-10 metallo-beta-lactamase, the outer membrane barrier and the MexAB-OprM efflux system to high-level carbapenem resistance in Pseudomonas aeruginosa.

    Science.gov (United States)

    Zhao, Wei-Hua; Hu, Zhuting; Chen, Gelin; Ito, Ribu; Hu, Zhi-Qing

    2009-01-01

    The emergence of carbapenem-hydrolyzing metallo-beta-lactamases (MBLs) is a serious threat to clinical medication of carbapenems. We evaluated the contributions of IMP-10 MBL, the outer membrane barrier and the MexAB-OprM efflux system to high-level carbapenem resistance in Pseudomonas aeruginosa clinical isolates. MBL-producing strains were screened by ceftazidime and mercaptoacetic acid double-disk synergy testing. Genes were determined by PCR analysis and DNA sequencing. IMP-10 MBL activity was assayed using nitrocefin as a substrate. The bla(IMP-10)+ strains showed high-level resistance to carbapenems, with minimum inhibitory concentrations of 512 to >4,096 microg/ml. The minimum inhibitory concentrations were decreased by the inhibitors of MBLs, sodium mercaptoacetate (SMA) and ethylenediaminetetraacetic acid (EDTA), 16 and 64 fold, respectively. However, against the activity of the prepared IMP-10 MBL, the 50% inhibitory concentrations of SMA and EDTA were 5.5 and 211.6 microM, respectively, indicating that SMA was much more effective than EDTA in blocking the enzyme activity. The contradictory results may be explained by the additional effect of EDTA as an outer membrane permeabilizer because the susceptibility of the bla(IMP)- strains to carbapenems was increased 2 fold by EDTA, but not by SMA. In the presence of carbonyl cyanide M-chlorophenylhydrazone, a proton motive force inhibitor, the susceptibility of the P. aeruginosa isolates to carbapenems was increased 1-4 fold. The acquired IMP-10 MBL is a crucial factor in the high-level resistance to carbapenems in P. aeruginosa clinical isolates, while the outer membrane barrier and the MexAB-OprM efflux system play a basic and minor role, respectively. Copyright 2009 S. Karger AG, Basel.

  11. Prevalence and characteristics of quinolone resistance in Escherichia coli in veal calves

    NARCIS (Netherlands)

    Hordijk, J.; Veldman, K.T.; Dierikx, C.M.; Essen-Zandbergen, van A.; Wagenaar, J.A.; Mevius, D.J.

    2012-01-01

    Quinolone resistance is studied and reported increasingly in isolates from humans, food-producing animals and companion animals. Resistance can be caused by chromosomal mutations in topoisomerase genes, plasmid-mediated resistance genes, and active transport through efflux pumps. Cross sectional

  12. Efflux system overexpression and decreased OprD contribute to the carbapenem resistance among extended-spectrum beta-lactamase-producing Pseudomonas aeruginosa isolates from a Chinese university hospital.

    Science.gov (United States)

    Liu, Yang; Li, Xiang-Yang; Wan, La-Gen; Jiang, Wei-Yan; Li, Fang-Qu; Yang, Jing-Hong

    2013-12-01

    The aim of this study was to investigate, for the first time, the combinations of carbapenem resistance mechanisms in clinical isolates of extended-spectrum beta-lactamase (ESBL)-producing Pseudomonas aeruginosa in a Chinese hospital. Pulsed-field gel electrophoresis revealed the presence of eight clonal types among the 15 ESBL producers. Multilocus sequence typing of two isolates harboured blaIMP-1 identified the clonal strain as ST325. All these genes were found either alone or simultaneously in the strains in the following five different arrangements:; ; ; ; . Regarding mutation-driven resistance, all, but four of the isolates had a relevant decrease of oprD expression. In addition, 73.3% of the isolates overexpressed mexB, 40% mexD, and 33.3% mexY. A specific combination of overexpressed mexB or mexY and alteration in loop L710 of OprD were significantly associated with meropenem resistance. In conclusion, combination of several mutation-driven mechanisms leading to OprD inactivation and overexpression of efflux systems was the main carbapenem resistance mechanism among the ESBL-producing P. aeruginosa isolates, but acquisition of a transferable resistance determinant such as metallo-β-lactamase could be problematic in clinical settings in China.

  13. Distribution of the multidrug efflux pump genes, adeABC, adeDE and adeIJK, and class 1 integron genes in multiple-antimicrobial-resistant clinical isolates of Acinetobacter baumannii-Acinetobacter calcoaceticus complex.

    Science.gov (United States)

    Lin, Li; Ling, Bao-Dong; Li, Xian-Zhi

    2009-01-01

    Of 112 non-repetitive clinical isolates of Acinetobacter baumannii-Acinetobacter calcoaceticus complex, 80% were resistant to a variety of structurally unrelated antimicrobials although all isolates were susceptible to minocycline and polymyxin. Resistance to carbapenems occurred in 8% of the isolates. The presence of adeSR-adeABC, adeDE and adeIJK drug efflux system genes and class 1 integron genes (integrase gene int1) was assessed by polymerase chain reaction (PCR) in relation to the susceptibility of the isolates to 20 antimicrobials. The majority of isolates (75%) with high levels of multidrug resistance were positive for adeSR-adeABC and adeIJK as well as int1 and thus belong to A. baumannii (i.e. genomospecies 2). Positive adeE was only observed in adeSR-adeABC/adeIJK/int1-negative isolates (8%; likely belonging to Acinetobacter genomospecies 3) that were relatively susceptible to several agents, and adeE expression was undetectable. The results reveal a possible association between adeABC/adeIJK and int1 in multidrug-resistant isolates of A. baumannii. In addition, differential distribution of the resistance-nodulation-cell division (RND) genes can likely be used as indicators for differentiating Acinetobacter species.

  14. Studies on 32P transport and yellow rust resistance in barley

    International Nuclear Information System (INIS)

    Schubert, J.

    1982-01-01

    Several cultivars of barley (Hordeum vulgare L.) differing in their resistance to yellow rust were used to study the influence of the infection with Puccinia striiformis West. (strain 24) on 32 P transport in intact plants and isolated leaves. Close correlations exist between transport processes and resistance. For example, resistant plants seem to have a more intensive matter transport than susceptible ones. The importance of the rate of transport to the effectiveness of hypothetic inducers of resistance reactions and defence substances is discussed

  15. Camptothecin resistance

    DEFF Research Database (Denmark)

    Brangi, M; Litman, Thomas; Ciotti, M

    1999-01-01

    The mitoxantrone resistance (MXR) gene encodes a recently characterized ATP-binding cassette half-transporter that confers multidrug resistance. We studied resistance to the camptothecins in two sublines expressing high levels of MXR: S1-M1-80 cells derived from parental S1 colon cancer cells...... and MCF-7 AdVp3,000 isolated from parental MCF-7 breast cancer cells. Both cell lines were 400- to 1,000-fold more resistant to topotecan, 9-amino-20(S)-camptothecin, and the active metabolite of irinotecan, 7-ethyl-10-hydroxycamptothecin (SN-38), than their parental cell lines. The cell lines...... demonstrated much less resistance to camptothecin and to several camptothecin analogues. Reduced accumulation and energy-dependent efflux of topotecan was demonstrated by confocal microscopy. A significant reduction in cleavable complexes in the resistant cells could be observed after SN-38 treatment...

  16. Statistical theory of resistive drift-wave turbulence and transport

    International Nuclear Information System (INIS)

    Hu, G.; Krommes, J.A.; Bowman, J.C.

    1997-01-01

    Resistive drift-wave turbulence in a slab geometry is studied by statistical closure methods and direct numerical simulations. The two-field Hasegawa endash Wakatani (HW) fluid model, which evolves the electrostatic potential and plasma density self-consistently, is a paradigm for understanding the generic nonlinear behavior of multiple-field plasma turbulence. A gyrokinetic derivation of the HW model is sketched. The recently developed Realizable Markovian Closure (RMC) is applied to the HW model; spectral properties, nonlinear energy transfers, and turbulent transport calculations are discussed. The closure results are also compared to direct numerical simulation results; excellent agreement is found. The transport scaling with the adiabaticity parameter, which measures the strength of the parallel electron resistivity, is analytically derived and understood through weak- and strong-turbulence analyses. No evidence is found to support previous suggestions that coherent structures cause a large depression of saturated transport from its quasilinear value in the hydrodynamic regime of the HW model. Instead, the depression of transport is well explained by the spectral balance equation of the (second-order) statistical closure when account is taken of incoherent noise. copyright 1997 American Institute of Physics

  17. Modulation of microRNA Expression in Subjects with Metabolic Syndrome and Decrease of Cholesterol Efflux from Macrophages via microRNA-33-Mediated Attenuation of ATP-Binding Cassette Transporter A1 Expression by Statins.

    Science.gov (United States)

    Chen, Wei-Ming; Sheu, Wayne H-H; Tseng, Pei-Chi; Lee, Tzong-Shyuan; Lee, Wen-Jane; Chang, Pey-Jium; Chiang, An-Na

    2016-01-01

    Metabolic syndrome (MetS) is a complicated health problem that encompasses a variety of metabolic disorders. In this study, we analyzed the relationship between the major biochemical parameters associated with MetS and circulating levels of microRNA (miR)-33, miR-103, and miR-155. We found that miRNA-33 levels were positively correlated with levels of fasting blood glucose, glycosylated hemoglobin A1c, total cholesterol, LDL-cholesterol, and triacylglycerol, but negatively correlated with HDL-cholesterol levels. In the cellular study, miR-33 levels were increased in macrophages treated with high glucose and cholesterol-lowering drugs atorvastatin and pitavastatin. miR-33 has been reported to play an essential role in cholesterol homeostasis through ATP-binding cassette transporter A1 (ABCA1) regulation and reverse cholesterol transport. However, the molecular mechanism underlying the linkage between miR-33 and statin treatment remains unclear. In the present study, we investigated whether atorvastatin and pitavastatin exert their functions through the modulation of miR-33 and ABCA1-mediated cholesterol efflux from macrophages. The results showed that treatment of the statins up-regulated miR-33 expression, but down-regulated ABCA1 mRNA levels in RAW264.7 cells and bone marrow-derived macrophages. Statin-mediated ABCA1 regulation occurs at the post-transcriptional level through targeting of the 3'-UTR of the ABCA1 transcript by miR-33. Additionally, we found significant down-regulation of ABCA1 protein expression in macrophages treated with statins. Finally, we showed that high glucose and statin treatment significantly suppressed cholesterol efflux from macrophages. These findings have highlighted the complexity of statins, which may exert detrimental effects on metabolic abnormalities through regulation of miR-33 target genes.

  18. Modulation of microRNA Expression in Subjects with Metabolic Syndrome and Decrease of Cholesterol Efflux from Macrophages via microRNA-33-Mediated Attenuation of ATP-Binding Cassette Transporter A1 Expression by Statins.

    Directory of Open Access Journals (Sweden)

    Wei-Ming Chen

    Full Text Available Metabolic syndrome (MetS is a complicated health problem that encompasses a variety of metabolic disorders. In this study, we analyzed the relationship between the major biochemical parameters associated with MetS and circulating levels of microRNA (miR-33, miR-103, and miR-155. We found that miRNA-33 levels were positively correlated with levels of fasting blood glucose, glycosylated hemoglobin A1c, total cholesterol, LDL-cholesterol, and triacylglycerol, but negatively correlated with HDL-cholesterol levels. In the cellular study, miR-33 levels were increased in macrophages treated with high glucose and cholesterol-lowering drugs atorvastatin and pitavastatin. miR-33 has been reported to play an essential role in cholesterol homeostasis through ATP-binding cassette transporter A1 (ABCA1 regulation and reverse cholesterol transport. However, the molecular mechanism underlying the linkage between miR-33 and statin treatment remains unclear. In the present study, we investigated whether atorvastatin and pitavastatin exert their functions through the modulation of miR-33 and ABCA1-mediated cholesterol efflux from macrophages. The results showed that treatment of the statins up-regulated miR-33 expression, but down-regulated ABCA1 mRNA levels in RAW264.7 cells and bone marrow-derived macrophages. Statin-mediated ABCA1 regulation occurs at the post-transcriptional level through targeting of the 3'-UTR of the ABCA1 transcript by miR-33. Additionally, we found significant down-regulation of ABCA1 protein expression in macrophages treated with statins. Finally, we showed that high glucose and statin treatment significantly suppressed cholesterol efflux from macrophages. These findings have highlighted the complexity of statins, which may exert detrimental effects on metabolic abnormalities through regulation of miR-33 target genes.

  19. Multidrug Efflux Pumps in Staphylococcus aureus: an Update

    Science.gov (United States)

    Costa, Sofia Santos; Viveiros, Miguel; Amaral, Leonard; Couto, Isabel

    2013-01-01

    The emergence of infections caused by multi- or pan-resistant bacteria in the hospital or in the community settings is an increasing health concern. Albeit there is no single resistance mechanism behind multiresistance, multidrug efflux pumps, proteins that cells use to detoxify from noxious compounds, seem to play a key role in the emergence of these multidrug resistant (MDR) bacteria. During the last decades, experimental data has established their contribution to low level resistance to antimicrobials in bacteria and their potential role in the appearance of MDR phenotypes, by the extrusion of multiple, unrelated compounds. Recent studies suggest that efflux pumps may be used by the cell as a first-line defense mechanism, avoiding the drug to reach lethal concentrations, until a stable, more efficient alteration occurs, that allows survival in the presence of that agent. In this paper we review the current knowledge on MDR efflux pumps and their intricate regulatory network in Staphylococcus aureus, a major pathogen, responsible from mild to life-threatening infections. Particular emphasis will be given to the potential role that S. aureus MDR efflux pumps, either chromosomal or plasmid-encoded, have on resistance towards different antimicrobial agents and on the selection of drug - resistant strains. We will also discuss the many questions that still remain on the role of each specific efflux pump and the need to establish appropriate methodological approaches to address all these questions. PMID:23569469

  20. Fate and transport of antibiotic resistant bacteria and resistance genes in artificially drained agricultural fields receiving swine manure application

    Science.gov (United States)

    While previous studies have examined the occurrence of antibiotic resistant bacteria and antibiotic resistant genes around confined swine feeding operations, little information is known about their release and transport from artificially drained fields receiving swine manure application. Much of the...

  1. Olomoucine II, but not purvalanol A, is transported by breast cancer resistance protein (ABCG2) and P-glycoprotein (ABCB1).

    NARCIS (Netherlands)

    Hofman, J.; Kucera, R.; Cihalova, D.; Klimes, J.; Ceckova, M.; Staud, F.

    2013-01-01

    Purine cyclin-dependent kinase inhibitors have been recognized as promising candidates for the treatment of various cancers; nevertheless, data regarding interaction of these substances with drug efflux transporters is still lacking. Recently, we have demonstrated inhibition of breast cancer

  2. The Ferroportin Metal Efflux Proteins Function in Iron and Cobalt Homeostasis in Arabidopsis

    Science.gov (United States)

    Relatively little is known about how metals such as iron are effluxed from cells, a necessary step for transport from the root to the shoot. Ferroportin is the sole iron efflux transporter in animals, and there are two closely related orthologs in Arabidopsis, FPN1 and FPN2. FPN1 localizes to the pl...

  3. High resistance of Isaria fumosorosea to carbendazim arises from the overexpression of an ATP-binding cassette transporter (ifT1) rather than tubulin mutation.

    Science.gov (United States)

    Song, T-T; Ying, S-H; Feng, M-G

    2012-01-01

    Probing possible mechanisms involved in the resistance of entomopathogenic fungus Isaria fumosorosea to carbendazim fungicide. A carbendazim-sensitive strain (If116) selected from 15 wild-type strains was subjected to NaNO(2) -induced mutagenesis, yielding nine mutants with carbendazim resistance increased by 82- to 830-fold and thermotolerance decreased by 15-51%. Comparing the protein sequences deduced from the α- and β-tubulin genes of If116 and its mutants revealed no traceable site mutation relating to the enhanced resistance although the transcripts levels of β-tubulin gene in all mutants were 0·87- to 7·16-fold of that in If116. Three examined mutants showed multidrug resistance because they were significantly more resistant to glufosinate, imidacloprid and other six fungicides than If116 during growth. Further examination of rhodamine-stained blastospores revealed existence of drug efflux pump protein(s) in all carbendazim-resistant mutants. Thus, the sequences of an ATP-binding cassette (ABC) transporter gene (ifT1) and its promoter region cloned from the wild-type and mutant strains were analysed. Three common point mutations were located, respectively, at the binding sites of Gal4, Abf1 and Raf, which are crucial transcription factors in the regulative network of numerous protein loci. Such point mutations elevated the ifT1 expression by 17 to 137-fold in all the mutants. The overexpression of the ABC transporter caused by the point mutations at the binding sites was responsible for the fungal resistance to various pesticides including carbendazim. The transporter-mediated multidrug resistance found for the first time in entomopathogenic fungi is potential for use in improving mycoinsecticide compatibility with chemical pesticides. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  4. Contribution of AcrAB-ToIC to multidrug resistance in an Escherichia coli sequence type 131 isolate

    NARCIS (Netherlands)

    Schuster, Sabine; Vavra, Martina; Schweigger, Tobias M.; Rossen, John W. A.; Matsumura, Yasufumi; Kern, Winfried V.

    Drug efflux by resistance-nodulation-cell division (RND)-type transporters, such as AcrAB-ToIC of Escherichia can, is an important resistance mechanism in Gram-negative bacteria; however, its contribution to multidrug resistance (MDR) in clinical isolates is poorly defined. We inactivated acrB of a

  5. Yeast ABC proteins involved in multidrug resistance.

    Science.gov (United States)

    Piecuch, Agata; Obłąk, Ewa

    2014-03-01

    Pleiotropic drug resistance is a complex phenomenon that involves many proteins that together create a network. One of the common mechanisms of multidrug resistance in eukaryotic cells is the active efflux of a broad range of xenobiotics through ATP-binding cassette (ABC) transporters. Saccharomyces cerevisiae is often used as a model to study such activity because of the functional and structural similarities of its ABC transporters to mammalian ones. Numerous ABC transporters are found in humans and some are associated with the resistance of tumors to chemotherapeutics. Efflux pump modulators that change the activity of ABC proteins are the most promising candidate drugs to overcome such resistance. These modulators can be chemically synthesized or isolated from natural sources (e.g., plant alkaloids) and might also be used in the treatment of fungal infections. There are several generations of synthetic modulators that differ in specificity, toxicity and effectiveness, and are often used for other clinical effects.

  6. The yeast ABC transporter Pdr18 (ORF YNR070w) controls plasma membrane sterol composition, playing a role in multidrug resistance

    Science.gov (United States)

    Cabrito, Tânia R.; Teixeira, Miguel C.; Singh, Ashutosh; Prasad, Rajendra; Sá-Correia, Isabel

    2011-01-01

    The action of multidrug efflux pumps in MDR (multidrug resistance) acquisition has been proposed to partially depend on the transport of physiological substrates which may indirectly affect drug partition and transport across cell membranes. In the present study, the PDR18 gene [ORF (open reading frame) YNR070w], encoding a putative PDR (pleiotropic drug resistance) transporter of the ATP-binding cassette superfamily, was found to mediate plasma membrane sterol incorporation in yeast. The physiological role of Pdr18 is demonstrated to affect plasma membrane potential and is proposed to underlie its action as a MDR determinant, conferring resistance to the herbicide 2,4-D (2,4-dichlorophenoxyacetic acid). The action of Pdr18 in yeast tolerance to 2,4-D, which was found to contribute to reduce [14C]2,4-D intracellular accumulation, may be indirect, given the observation that 2,4-D exposure deeply affects the sterol plasma membrane composition, this effect being much stronger in a Δpdr18 background. PDR18 activation under 2,4-D stress is regulated by the transcription factors Nrg1, controlling carbon source availability and the stress response, and, less significantly, Yap1, involved in oxidative stress and MDR, and Pdr3, a key regulator of the yeast PDR network, consistent with a broad role in stress defence. Taken together, the results of the present study suggest that Pdr18 plays a role in plasma membrane sterol incorporation, this physiological trait contributing to an MDR phenotype. PMID:21831043

  7. Regulation of the Cobalt/Nickel Efflux Operon dmeRF in Agrobacterium tumefaciens and a Link between the Iron-Sensing Regulator RirA and Cobalt/Nickel Resistance.

    Science.gov (United States)

    Dokpikul, Thanittra; Chaoprasid, Paweena; Saninjuk, Kritsakorn; Sirirakphaisarn, Sirin; Johnrod, Jaruwan; Nookabkaew, Sumontha; Sukchawalit, Rojana; Mongkolsuk, Skorn

    2016-08-01

    The Agrobacterium tumefaciens C58 genome harbors an operon containing the dmeR (Atu0890) and dmeF (Atu0891) genes, which encode a transcriptional regulatory protein belonging to the RcnR/CsoR family and a metal efflux protein belonging to the cation diffusion facilitator (CDF) family, respectively. The dmeRF operon is specifically induced by cobalt and nickel, with cobalt being the more potent inducer. Promoter-lacZ transcriptional fusion, an electrophoretic mobility shift assay, and DNase I footprinting assays revealed that DmeR represses dmeRF transcription through direct binding to the promoter region upstream of dmeR A strain lacking dmeF showed increased accumulation of intracellular cobalt and nickel and exhibited hypersensitivity to these metals; however, this strain displayed full virulence, comparable to that of the wild-type strain, when infecting a Nicotiana benthamiana plant model under the tested conditions. Cobalt, but not nickel, increased the expression of many iron-responsive genes and reduced the induction of the SoxR-regulated gene sodBII Furthermore, control of iron homeostasis via RirA is important for the ability of A. tumefaciens to cope with cobalt and nickel toxicity. The molecular mechanism of the regulation of dmeRF transcription by DmeR was demonstrated. This work provides evidence of a direct interaction of apo-DmeR with the corresponding DNA operator site in vitro The recognition site for apo-DmeR consists of 10-bp AT-rich inverted repeats separated by six C bases (5'-ATATAGTATACCCCCCTATAGTATAT-3'). Cobalt and nickel cause DmeR to dissociate from the dmeRF promoter, which leads to expression of the metal efflux gene dmeF This work also revealed a connection between iron homeostasis and cobalt/nickel resistance in A. tumefaciens. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Transport of tylosin and tylosin-resistance genes in subsurface drainage water from manured fields

    Science.gov (United States)

    Animal agriculture appears to contribute to the spread of antibiotic resistance genes, but few studies have quantified gene transport in agricultural fields. The transport of tylosin, tylosin-resistance genes (erm B, F, A) and tylosin-resistant Enterococcus were measured in tile drainage water from ...

  9. RND multidrug efflux pumps: what are they good for?

    Science.gov (United States)

    Alvarez-Ortega, Carolina; Olivares, Jorge; Martínez, José L.

    2013-01-01

    Multidrug efflux pumps are chromosomally encoded genetic elements capable of mediating resistance to toxic compounds in several life forms. In bacteria, these elements are involved in intrinsic and acquired resistance to antibiotics. Unlike other well-known horizontally acquired antibiotic resistance determinants, genes encoding for multidrug efflux pumps belong to the core of bacterial genomes and thus have evolved over millions of years. The selective pressure stemming from the use of antibiotics to treat bacterial infections is relatively recent in evolutionary terms. Therefore, it is unlikely that these elements have evolved in response to antibiotics. In the last years, several studies have identified numerous functions for efflux pumps that go beyond antibiotic extrusion. In this review we present some examples of these functions that range from bacterial interactions with plant or animal hosts, to the detoxification of metabolic intermediates or the maintenance of cellular homeostasis. PMID:23386844

  10. pH-Responsive therapeutic solid lipid nanoparticles for reducing P-glycoprotein-mediated drug efflux of multidrug resistant cancer cells

    Directory of Open Access Journals (Sweden)

    Chen HH

    2015-08-01

    Full Text Available Hsin-Hung Chen,1 Wen-Chia Huang,2 Wen-Hsuan Chiang,2 Te-I Liu,2 Ming-Yin Shen,2,3 Yuan-Hung Hsu,4 Sung-Chyr Lin,1 Hsin-Cheng Chiu2 1Department of Chemical Engineering, National Chung Hsing University, Taichung, 2Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 3Department of Surgery, National Taiwan University Hospital-Hsinchu Branch, 4Pharmaceutical Optimization Technology Division, Biomedical Technology and Device Research Laboratory, Industrial Technology Research Institute, Hsinchu, Taiwan Abstract: In this study, a novel pH-responsive cholesterol-PEG adduct-coated solid lipid nanoparticles (C-PEG-SLNs carrying doxorubicin (DOX capable of overcoming multidrug resistance (MDR breast cancer cells is presented. The DOX-loaded SLNs have a mean hydrodynamic diameter of ~100 nm and a low polydispersity index (under 0.20 with a high drug-loading efficiency ranging from 80.8% to 90.6%. The in vitro drug release profiles show that the DOX-loaded SLNs exhibit a pH-controlled drug release behavior with the maximum and minimum unloading percentages of 63.4% at pH 4.7 and 25.2% at pH 7.4, respectively. The DOX-loaded C-PEG-SLNs displayed a superior ability in inhibiting the proliferation of MCF-7/MDR cells. At a DOX concentration of 80 µM, the cell viabilities treated with C-PEG-SLNs were approximately one-third of the group treated with free DOX. The inhibition activity of C-PEG-SLNs could be attributed to the transport of C-PEG to cell membrane, leading to the change of the composition of the cell membrane and thus the inhibition of permeability glycoprotein activity. This hypothesis is supported by the confocal images showing the accumulation of DOX in the nuclei of cancer cells and the localization of C-PEG on the cell membranes. The results of in vivo study further demonstrated that the DOX delivered by the SLNs accumulates predominantly in tumor via enhanced permeability and retention effect, the

  11. pH-Responsive therapeutic solid lipid nanoparticles for reducing P-glycoprotein-mediated drug efflux of multidrug resistant cancer cells.

    Science.gov (United States)

    Chen, Hsin-Hung; Huang, Wen-Chia; Chiang, Wen-Hsuan; Liu, Te-I; Shen, Ming-Yin; Hsu, Yuan-Hung; Lin, Sung-Chyr; Chiu, Hsin-Cheng

    2015-01-01

    In this study, a novel pH-responsive cholesterol-PEG adduct-coated solid lipid nanoparticles (C-PEG-SLNs) carrying doxorubicin (DOX) capable of overcoming multidrug resistance (MDR) breast cancer cells is presented. The DOX-loaded SLNs have a mean hydrodynamic diameter of ~100 nm and a low polydispersity index (under 0.20) with a high drug-loading efficiency ranging from 80.8% to 90.6%. The in vitro drug release profiles show that the DOX-loaded SLNs exhibit a pH-controlled drug release behavior with the maximum and minimum unloading percentages of 63.4% at pH 4.7 and 25.2% at pH 7.4, respectively. The DOX-loaded C-PEG-SLNs displayed a superior ability in inhibiting the proliferation of MCF-7/MDR cells. At a DOX concentration of 80 μM, the cell viabilities treated with C-PEG-SLNs were approximately one-third of the group treated with free DOX. The inhibition activity of C-PEG-SLNs could be attributed to the transport of C-PEG to cell membrane, leading to the change of the composition of the cell membrane and thus the inhibition of permeability glycoprotein activity. This hypothesis is supported by the confocal images showing the accumulation of DOX in the nuclei of cancer cells and the localization of C-PEG on the cell membranes. The results of in vivo study further demonstrated that the DOX delivered by the SLNs accumulates predominantly in tumor via enhanced permeability and retention effect, the enhanced passive tumor accumulation due to the loose intercellular junctions of endothelial cells lining inside blood vessels at tumor site, and the lack of lymphatic drainage. The growth of MCF-7/MDR xenografted tumor on Balb/c nude mice was inhibited to ~400 mm(3) in volume as compared with the free DOX treatment group, 1,140 mm(3), and the group treated with 1,2 distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)] solid lipid nanoparticles, 820 mm(3). Analysis of the body weight of nude mice and the histology of organs and tumor after the

  12. Effect of swine manure application timing on the persistence and transport of antibiotic-resistant Enterococcus and resistance genes

    Science.gov (United States)

    Swine manure applied to agricultural fields may lead to the transport of antibiotic resistant bacteria and antibiotic resistance genes to freshwater systems. Enterococci were studied because they are fecal indicator bacteria associated with manure. Resistance genes include genes from live cells, dea...

  13. The Plasma Membrane-Localized Sucrose Transporter IbSWEET10 Contributes to the Resistance of Sweet Potato to Fusarium oxysporum.

    Science.gov (United States)

    Li, Yan; Wang, Yannan; Zhang, Huan; Zhang, Qian; Zhai, Hong; Liu, Qingchang; He, Shaozhen

    2017-01-01

    SWEET (Sugars Will Eventually be Exported Transporter) proteins, a novel family of sugar transporters, mediate the diffusion of sugars across cell membranes and acts as key players in sucrose phloem loading. Manipulation of SWEET genes in plants leads to various effects on resistance to biotic and abiotic stresses due to disruption of sugar efflux and changes in sugar distribution. In this study, a member of the SWEET gene family, IbSWEET10 , was cloned from the sweet potato line ND98. mRNA expression analysis in sweet potato and promoter β-Glucuronidase analysis in Arabidopsis showed that IbSWEET10 is highly expressed in leaves, especially in vascular tissue. Transient expression in tobacco epidermal cells revealed plasma membrane localization of IbSWEET10, and heterologous expression assays in yeast indicated that IbSWEET10 encodes a sucrose transporter. The expression level of IbSWEET10 was significantly up-regulated in sweet potato infected with Fusarium oxysporum Schlecht. f. sp. batatas. Further characterization revealed IbSWEET10 -overexpressing sweet potato lines to be more resistant to F. oxysporum , exhibiting better growth after infection compared with the control; conversely, RNA interference (RNAi) lines showed the opposite results. Additionally, the sugar content of IbSWEET10 -overexpression sweet potato was significantly reduced, whereas that in RNAi plants was significantly increased compared with the control. Therefore, we suggest that the reduction in sugar content caused by IbSWEET10 overexpression is the major reason for the enhanced F. oxysporum resistance of the transgenic plants. This is the first report that the IbSWEET10 transporter contributes to the resistance of sweet potato to F. oxysporum . The IbSWEET10 gene has the great potential to be used for improving the resistance to F. oxysporum in sweet potato and other plants.

  14. Divide and conquer: processive transport enables multidrug transporters to tackle challenging drugs

    Directory of Open Access Journals (Sweden)

    Nir Fluman

    2014-09-01

    Full Text Available Multidrug transporters are membrane proteins that catalyze efflux of antibiotics and other toxic compounds from cells, thereby conferring drug resistance on various organisms. Unlike most solute transporters that transport a single type of compound or similar analogues, multidrug transporters are extremely promiscuous. They transport a broad spectrum of dissimilar drugs and represent a serious obstacle to antimicrobial or anticancer chemotherapy. Many challenging aspects of multidrug transporters, which are unique, have been studied in detail, including their ability to interact with chemically unrelated drugs, and how they utilize energy to drive efflux of compounds that are not only structurally but electrically different. A new and surprising dimension of the promiscuous nature of multidrug transporters has been described recently: they can move long molecules through the membrane in a processive manner.

  15. An ace up their sleeve: a transcriptomic approach exposes the AceI efflux protein of Acinetobacter baumannii and reveals the drug efflux potential hidden in many microbial pathogens

    Directory of Open Access Journals (Sweden)

    Karl A Hassan

    2015-04-01

    Full Text Available The era of antibiotics as a cure-all for bacterial infections appears to be coming to an end. The emergence of multidrug resistance in many hospital-associated pathogens has resulted in superbugs that are effectively untreatable. Multidrug efflux pumps are well known mediators of bacterial drug resistance. Genome sequencing efforts have highlighted an abundance of putative efflux pump genes in bacteria. However, it is not clear how many of these pumps play a role in antimicrobial resistance. Several studies have demonstrated that efflux pump genes that participate in drug resistance are typically under tight regulatory control and expressed only in response to their substrates. Consequently, changes in gene expression following antimicrobial shock treatments may be used to identify efflux pumps that mediate antimicrobial resistance, informing targeted functional analyses of these proteins. Using this approach we have characterised novel efflux pumps in both Gram-negative and Gram-positive bacteria. Notably, we recently applied this strategy to characterise the AceI efflux pump from Acinetobacter. AceI is a prototype for a new family of multidrug efflux proteins that is conserved across many proteobacterial lineages. Different efflux pumps in this family have been shown to confer resistance to biocides including chlorhexidine, dequalinium, benzalkonium, proflavine and/or acriflavine. The discovery of this novel family of multidrug efflux proteins raises the possibility that additional undiscovered intrinsic resistance proteins may be encoded in the core genomes of pathogenic bacteria.

  16. Contribution of AcrAB-TolC to multidrug resistance in an Escherichia coli sequence type 131 isolate.

    Science.gov (United States)

    Schuster, Sabine; Vavra, Martina; Schweigger, Tobias M; Rossen, John W A; Matsumura, Yasufumi; Kern, Winfried V

    2017-09-01

    Drug efflux by resistance-nodulation-cell division (RND)-type transporters, such as AcrAB-TolC of Escherichia coli, is an important resistance mechanism in Gram-negative bacteria; however, its contribution to multidrug resistance (MDR) in clinical isolates is poorly defined. We inactivated acrB of a sequence type 131 E. coli human isolate that showed high-level MDR, but had no mutations within the known efflux-associated local or global regulators. The resistance profile of the acrB deletion mutant revealed significantly increased susceptibility to drugs from seven antibiotic classes, including agents usually inactive against Gram-negative bacteria, notably the new oxazolidinone, tedizolid (512-fold enhanced susceptibility). AcrB deficiency reduced, but did not abolish, the efflux of dyes, which indicates the activity of at least one more efflux transporter. The findings demonstrate the efficacy of AcrAB-TolC-mediated broad-spectrum drug efflux, including agents primarily developed for Gram-positive pathogens, in a clinical isolate representative of a globally-emerging lineage. The results illustrate the need to develop molecules modified to impede their transport by AcrAB-TolC and its homologues and new efflux inhibitors. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  17. Studies on /sup 32/P transport and yellow rust resistance in barley

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, J. (Akademie der Landwirtschaftswissenschaften der DDR, Aschersleben. Inst. fuer Phytopathologie)

    1982-01-01

    Several cultivars of barley (Hordeum vulgare L.) differing in their resistance to yellow rust were used to study the influence of the infection with Puccinia striiformis West. (strain 24) on /sup 32/P transport in intact plants and isolated leaves. Close correlations exist between transport processes and resistance. For example, resistant plants seem to have a more intensive matter transport than susceptible ones. The importance of the rate of transport to the effectiveness of hypothetic inducers of resistance reactions and defence substances is discussed.

  18. Drug efflux transporters, MRP1 and BCRP, affect the outcome of hypericin-mediated photodynamic therapy in HT-29 adenocarcinoma cells

    Czech Academy of Sciences Publication Activity Database

    Jendželovský, R.; Mikeš, J.; Koval, J.; Souček, Karel; Procházková, Jiřina; Kello, M.; Sačková, V.; Hofmanová, Jiřina; Kozubík, Alois; Fedoročko, P.

    2009-01-01

    Roč. 8, č. 12 (2009), s. 1716-1723 ISSN 1474-905X Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : hypericin * photodynamic therapy * ABC transporters Subject RIV: BO - Biophysics Impact factor: 2.708, year: 2009

  19. [The roles of active efflux system overexpression and outer membrane protein OprD deficiency or loss in carbapenem resistance of Pseudomonas aeruginosa].

    Science.gov (United States)

    Yi, Mei-ying; Wang, Peng-yuan; Huang, Han-ju; Liu, Yu-cun

    2006-02-21

    To investigate the mechanisms of carbapenem resistance in Pseudomonas aeruginosa (PA). Forty-nine strains of PA were isolated from surgical intensive care unit during a period of 3 years. The levels of outer membrane protein OprD and OprN were measured by Western blotting. RT-PCR was used to measure the transcription levels of mexA gene. The metallo-beta-lactamase genes IMP and VIM and the negative regulator gene mexR for mexAB-OprM operon were amplified. The DNA fragments were sequenced by automated ABI PRISM 3700 sequencer. 42 of the 49 strains were resistant to carbapenem. 23 of the 42 strains showed loss of OprD and were all resistant to imipenem, but only one strain was resistant to meropenem. 18 of the 42 strains had a decreased OprD expression, 17 of which were resistant to Imipenem, and 3 were resistant to meropenem as well. 7 strains expressed OprD, all of which were sensitive to carbapenem. 27 strains overexpressed the mexAB-OprM. The resistant rate to imipenem of the mexAB-OprM overexpression group was 86.4%, not significantly different from that of the mexAB-OprM low expression group (81.5%, chi(2) = 0.005, P = 0.943). But the resistant rate to meropenem of the mexAB-OprM overexpression group was 44.4%, statistically higher than that of mexAB-OprM low expression group (13.6%, chi(2) = 5.417, P = 0.020). Nucleotide sequences and deduced amino acid sequences analysis revealed that eight strains overexpressed mexAB-OprM carried mutations in mexR gene, 7 of which had amino acid substitutions in MexR protein, and one of which had terminal code at the position of amino acid 32. 14 strains were found expressing OprN. Neither IMP gene nor VIM gene was found in the isolates. In the clinical strains from SICU, the imipenem resistance is mainly mediated by OprD deficiency or loss. Overexpression of MexAB-OprM is the primary mechanism of meropenem resistance, which is upregulated by mutations in mexR gene. Metallo-beta-lactamases IMP and VIM are rarely seen.

  20. High efflux pump activity and gene expression at baseline linked to ...

    African Journals Online (AJOL)

    Phenotypic TB drug resistance, also known as drug tolerance, has been previously attributed to slowed bacterial growth in vivo. The increased activity and expression of efflux systems can lower the intracellular concentration of many antibiotics thus reducing their efficacy. We hypothesized that efflux pump activation and ...

  1. Sodium efflux in plant roots: what do we really know?

    Science.gov (United States)

    Britto, D T; Kronzucker, H J

    2015-08-15

    The efflux of sodium (Na(+)) ions across the plasma membrane of plant root cells into the external medium is surprisingly poorly understood. Nevertheless, Na(+) efflux is widely regarded as a major mechanism by which plants restrain the rise of Na(+) concentrations in the cytosolic compartments of root cells and, thus, achieve a degree of tolerance to saline environments. In this review, several key ideas and bodies of evidence concerning root Na(+) efflux are summarized with a critical eye. Findings from decades past are brought to bear on current thinking, and pivotal studies are discussed, both "purely physiological", and also with regard to the SOS1 protein, the only major Na(+) efflux transporter that has, to date, been genetically characterized. We find that the current model of rapid transmembrane sodium cycling (RTSC), across the plasma membrane of root cells, is not adequately supported by evidence from the majority of efflux studies. An alternative hypothesis cannot be ruled out, that most Na(+) tracer efflux from the root in the salinity range does not proceed across the plasma membrane, but through the apoplast. Support for this idea comes from studies showing that Na(+) efflux, when measured with tracers, is rarely affected by the presence of inhibitors or the ionic composition in saline rooting media. We conclude that the actual efflux of Na(+) across the plasma membrane of root cells may be much more modest than what is often reported in studies using tracers, and may predominantly occur in the root tips, where SOS1 expression has been localized. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Effect of the efflux pump QepA2 combined with chromosomally mediated mechanisms on quinolone resistance and bacterial fitness in Escherichia coli.

    Science.gov (United States)

    Machuca, Jesús; Briales, Alejandra; Díaz-de-Alba, Paula; Martínez-Martínez, Luis; Pascual, Álvaro; Rodríguez-Martínez, José-Manuel

    2015-09-01

    The aim of the study was to determine the interplay between the plasmid-mediated qepA2 gene and multiple chromosomally mediated fluoroquinolone resistance determinants in the development of fluoroquinolone resistance in Escherichia coli and its influence on bacterial fitness. E. coli ATCC 25922 and derived isogenic strains harbouring different chromosomally mediated fluoroquinolone resistance determinants were electroporated with pBK-CMV vector encoding QepA2. The MICs of fluoroquinolones were determined by standardized microdilution. The mutant prevention concentration (MPC) was evaluated. Bacterial fitness was analysed using ΔlacZ system competition assays. The ciprofloxacin MIC for strains harbouring the qepA2 gene was 4- to 8-fold higher compared with strains without the qepA2 gene. The qepA2 gene also increased the MPC of ciprofloxacin 4- to 16-fold. Combination of the qepA2 gene plus two to three additional mechanisms conferred a clinically relevant resistance level. The presence of the qepA2 gene was associated with fitness costs in strains with mutations in the gyrA and/or parC genes, although the presence of an additional deletion of the marR gene compensated for this fitness cost by increasing bacterial fitness by 5%-23%. The additive effect of chromosomally mediated fluoroquinolone resistance mechanisms and the qepA2 gene led to clinical levels of fluoroquinolone resistance. Under competitive conditions, the qepA2 gene had a biological cost in E. coli that was compensated for by the presence of an additional deletion in the marR gene. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Generation of a High Resistance in vitro Blood-Brain-Barrier Model and Investigations of Brain-to-Blood Glutamate Efflux

    DEFF Research Database (Denmark)

    Helms, Hans Christian

    Blod-hjernebarrieren (blood-brain barrier, BBB) opretholder den generelle homeostase i hjernens væsker. BBB kan også spille en rolle i homeostasen for den eksitatoriske aminosyre, L-glutamat. In vitro modeller kan være effektive værktøjer til at få mekanistiske informationer om transcellulær......-proteiner bliver påvirkede af dyrkningsmedier med høj bufferkoncentration; karakteriser den transcellulære transport af L-glutamat og involveringen af excitatoriske aminosyre transportører (excitatory amino acid transporter, EAAT) og evaluer om BBB kan spille en rolle i hjernens L-glutamat-homeostase. In vitro...

  4. A new in vivo method to study P-glycoprotein transport in tumors and the blood-brain barrier

    NARCIS (Netherlands)

    Hendrikse, NH; de Vries, EGE; Eriks-Fluks, L; van der Graaf, WTA; Hospers, GAP; Willemsen, ATM; Vaalburg, W; Franssen, EJF

    1999-01-01

    Drug resistance is a major cause of chemotherapy failure in cancer treatment, One reason is the overexpression of the drug efflux pump P-glycoprotein (P-gp), involved in multidrug resistance (MDR), In vivo pharmacokinetic analysis of P-gp transport might identify the capacity of modulation by P-gp

  5. Nongenomic mechanisms of physiological estrogen-mediated dopamine efflux

    Directory of Open Access Journals (Sweden)

    Watson Cheryl S

    2009-06-01

    Full Text Available Abstract Background Neurological diseases and neuropsychiatric disorders that vary depending on female life stages suggest that sex hormones may influence the function of neurotransmitter regulatory machinery such as the dopamine transporter (DAT. Results In this study we tested the rapid nongenomic effects of several physiological estrogens [estradiol (E2, estrone (E1, and estriol (E3] on dopamine efflux via the DAT in a non-transfected, NGF-differentiated, rat pheochromocytoma (PC12 cell model that expresses membrane estrogen receptors (ERs α, β, and GPR30. We examined kinase, ionic, and physical interaction mechanisms involved in estrogenic regulation of the DAT function. E2-mediated dopamine efflux is DAT-specific and not dependent on extracellular Ca2+-mediated exocytotic release from vesicular monoamine transporter vesicles (VMATs. Using kinase inhibitors we also showed that E2-mediated dopamine efflux is dependent on protein kinase C and MEK activation, but not on PI3K or protein kinase A. In plasma membrane there are ligand-independent associations of ERα and ERβ (but not GPR30 with DAT. Conditions which cause efflux (a 9 min 10-9 M E2 treatment cause trafficking of ERα (stimulatory to the plasma membrane and trafficking of ERβ (inhibitory away from the plasma membrane. In contrast, E1 and E3 can inhibit efflux with a nonmonotonic dose pattern, and cause DAT to leave the plasma membrane. Conclusion Such mechanisms explain how gender biases in some DAT-dependent diseases can occur.

  6. Quinine Dimers Are Potent Inhibitors of the Plasmodium falciparum Chloroquine Resistance Transporter and Are Active against Quinoline-Resistant P. falciparum

    Science.gov (United States)

    Hrycyna, Christine A.; Summers, Robert L.; Lehane, Adele M.; Pires, Marcos M.; Namanja, Hilda; Bohn, Kelsey; Kuriakose, Jerrin; Ferdig, Michael; Henrich, Philipp P.; Fidock, David A.; Kirk, Kiaran; Chmielewski, Jean; Martin, Rowena E.

    2014-01-01

    Chloroquine (CQ) resistance in the human malaria parasite Plasmodium falciparum is primarily conferred by mutations in the “chloroquine resistance transporter” (PfCRT). The resistance-conferring form of PfCRT (PfCRTCQR) mediates CQ resistance by effluxing the drug from the parasite’s digestive vacuole, the acidic compartment in which CQ exerts its antiplasmodial effect. PfCRTCQR can also decrease the parasite’s susceptibility to other quinoline drugs, including the current antimalarials quinine and amodiaquine. Here we describe interactions between PfCRTCQR and a series of dimeric quinine molecules using a Xenopus laevis oocyte system for the heterologous expression of PfCRT and using an assay that detects the drug-associated efflux of H+ ions from the digestive vacuole in parasites that harbor different forms of PfCRT. The antiplasmodial activities of dimers 1 and 6 were also examined in vitro (against drug-sensitive and drug-resistant strains of P. falciparum) and in vivo (against drug-sensitive P. berghei). Our data reveal that the quinine dimers are the most potent inhibitors of PfCRTCQR reported to date. Furthermore, the lead compounds (1 and 6) were not effluxed by PfCRTCQR from the digestive vacuole but instead accumulated to very high levels within this organelle. Both 1 and 6 exhibited in vitro antiplasmodial activities that were inversely correlated with CQ. Moreover, the additional parasiticidal effect exerted by 1 and 6 in the drug-resistant parasites was attributable, at least in part, to their ability to inhibit PfCRTCQR. This highlights the potential for devising new antimalarial therapies that exploit inherent weaknesses in a key resistance mechanism of P. falciparum. PMID:24369685

  7. P-glycoprotein increases the efflux of the androgen dihydrotestosterone and reduces androgen responsive gene activity in prostate tumor cells.

    Science.gov (United States)

    Fedoruk, Matthew N; Giménez-Bonafé, Pepita; Guns, Emma S; Mayer, Lawrence D; Nelson, Colleen C

    2004-04-01

    P-glycoprotein (P-gp) is commonly associated with multi-drug resistance (MDR) in cancer cells and the efflux of a broad spectrum of chemicals from the cell, including many chemotherapeutics and certain steroid hormones. The impact of P-gp and mechanisms involved in androgen transport and cellular accumulation within normal and malignant prostate cells remains unclear. Following incubation of LNCaP, PC-3, HeLa, and HeLa FLAG-androgen receptor (AR) cells with (3)H-dihydrotestosterone (DHT) alone and in combination with P-gp inhibitors, PSC-833 and verapamil, we examined the cellular accumulation and efflux of androgens, as well as gene transcriptional response. Our data reveal that the cellular transport and accumulation of DHT is dependent on the expression of functional AR and modulated by P-gp. P-gp over-expression by both transient transfection and aspirin treatment in LNCaP cells showed decreased intracellular DHT accumulation, further suggesting DHT efflux is P-gp regulated. Androgen responsiveness may be modulated by P-gp in prostate cancer cells. The biological consequences of increased P-gp expression are decreased androgen accumulation and a corresponding decrease in androgen-regulated transcriptional activity and PSA gene expression. Copyright 2004 Wiley-Liss, Inc.

  8. N-linked glycans do not affect plasma membrane localization of multidrug resistance protein 4 (MRP4) but selectively alter its prostaglandin E2 transport activity.

    Science.gov (United States)

    Miah, M Fahad; Conseil, Gwenaëlle; Cole, Susan P C

    2016-01-22

    Multidrug resistance protein 4 (MRP4) is a member of subfamily C of the ATP-binding cassette superfamily of membrane transport proteins. MRP4 mediates the ATP-dependent efflux of many endogenous and exogenous solutes across the plasma membrane, and in polarized cells, it localizes to the apical or basolateral plasma membrane depending on the tissue type. MRP4 is a 170 kDa glycoprotein and here we show that MRP4 is simultaneously N-glycosylated at Asn746 and Asn754. Furthermore, confocal immunofluorescence studies showed that N-glycans do not affect MRP4's apical membrane localization in polarized LLC-PK1 cells or basolateral membrane localization in polarized MDCKI cells. However, vesicular transport assays showed that N-glycans differentially affect MRP4's ability to transport prostaglandin E2, but not estradiol glucuronide. Together these data indicate that N-glycosylation at Asn746 and Asn754 is not essential for plasma membrane localization of MRP4 but cause substrate-selective effects on its transport activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Multi-Drug Resistance 1 Genetic Polymorphisms Gene Expression ...

    African Journals Online (AJOL)

    Although anthracycline-based chemotherapy is a crucial treatment for breast cancer, its outcome is limited by the multidrug resistance MDR. Overexpression of P-glycoprotein (Pgp), a transmembrane active efflux transporter of various drugs and carcinogenic substrate, may result in MDR. The impact of MDR1 ...

  10. Survey of Plasmodium falciparum multidrug resistance-1 and chloroquine resistance transporter alleles in Haiti.

    Science.gov (United States)

    Elbadry, Maha A; Existe, Alexandre; Victor, Yves S; Memnon, Gladys; Fukuda, Mark; Dame, John B; Yowell, Charles A; Okech, Bernard A

    2013-11-19

    In Haiti where chloroquine (CQ) is widely used for malaria treatment, reports of resistance are scarce. However, recent identification of CQ resistance genotypes in one site is suggestive of an emerging problem. Additional studies are needed to evaluate genetic mutations associated with CQ resistance, especially in the Plasmodium falciparum multi-drug resistance-1 gene (pfmdr1) while expanding the already available information on P. falciparum CQ transporter gene (pfcrt) in Haiti. Blood samples were collected on Whatman filter cards (FTA) from eight clinics spread across Haiti. Following the confirmation of P. falciparum in the samples, PCR protocols were used to amplify regions of pfmdr1and pfcrt codons of interest, (86, 184, 1034, 1042, and 1246) and (72-76), respectively. Sequencing and site-specific restriction enzyme digestions were used to analyse these DNA fragments for the presence of single nucleotide polymorphisms (SNPs) known to confer resistance to anti-malarial drugs. P. falciparum infection was confirmed in160 samples by amplifying a segment of the P. falciparum 18S small subunit ribosomal RNA gene (pfssurrna). The sequence of pfmdr1 in 54 of these samples was determined between codons 86,184 codons 1034, 1042 and 1246. No sequence differences from that of the NF54 clone 3D7 were found among the 54 samples except at codon 184, where a non-silent mutation was found in all samples predicted to alter the amino acid sequence replacing tyrosine with phenylalanine (Y184F). This altered sequence was also confirmed by restriction enzyme digestion. The sequence of pfmdr1 at codons 86, 184, 1034 and 1042 encoded the NFSN haplotype. The sequence of pfcrt codons 72-76 from 79 samples was determined and found to encode CVMNK, consistent with a CQ sensitive genotype. The presence of the Y184F mutation in pfmdr1 of P. falciparum parasites in Haiti may have implications for resistance to antimalarial drugs. The absence of mutation in pfcrt at codon 76 among 79

  11. Reconstitution of the activity of RND efflux pumps: a "bottom-up" approach.

    Science.gov (United States)

    Puvanendran, Dhenesh; Cece, Quentin; Picard, Martin

    2017-12-05

    Efflux pumps are systems devoted to the extrusion of noxious compounds. In this review, we discuss the various strategies that have thus far been undertaken for the investigation of efflux pumps after reconstitution into liposomes. It is challenging to uncover mechanisms and dynamics of efflux pumps due to a number of characteristics: their function depends on the correct assembly of three components and they span two adjacent membranes whose lipid compositions are very different. In addition, efflux pumps are active transporters that need energy to work. We present possible lines of improvement for the study of such systems and provide insights into future goals and challenges of efflux pump reconstitution and transport. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  12. Nanoparticles as Efflux Pump and Biofilm Inhibitor to Rejuvenate Bactericidal Effect of Conventional Antibiotics

    Science.gov (United States)

    Gupta, Divya; Singh, Ajeet; Khan, Asad U.

    2017-07-01

    The universal problem of bacterial resistance to antibiotic reflects a serious threat for physicians to control infections. Evolution in bacteria results in the development of various complex resistance mechanisms to neutralize the bactericidal effect of antibiotics, like drug amelioration, target modification, membrane permeability reduction, and drug extrusion through efflux pumps. Efflux pumps acquire a wide range of substrate specificity and also the tremendous efficacy for drug molecule extrusion outside bacterial cells. Hindrance in the functioning of efflux pumps may rejuvenate the bactericidal effect of conventional antibiotics. Efflux pumps also play an important role in the exclusion or inclusion of quorum-sensing biomolecules responsible for biofilm formation in bacterial cells. This transit movement of quorum-sensing biomolecules inside or outside the bacterial cells may get interrupted by impeding the functioning of efflux pumps. Metallic nanoparticles represent a potential candidate to block efflux pumps of bacterial cells. The application of nanoparticles as efflux pump inhibitors will not only help to revive the bactericidal effect of conventional antibiotics but will also assist to reduce biofilm-forming capacity of microbes. This review focuses on a novel and fascinating application of metallic nanoparticles in synergy with conventional antibiotics for efflux pump inhibition.

  13. Soybean NADP-Malic Enzyme Functions in Malate and Citrate Metabolism and Contributes to Their Efflux under Al Stress.

    Science.gov (United States)

    Zhou, Ying; Yang, Zhenming; Xu, Yuezi; Sun, Haoran; Sun, Zhitao; Lin, Bao; Sun, Wenjing; You, Jiangfeng

    2017-01-01

    Malate accumulation has been suggested to balance Al-induced citrate synthesis and efflux in soybean roots. To test this hypothesis, characteristics of Al-induced accumulation and efflux of citrate and malate were compared between two soybean genotypes combining a functional analysis of GmME1 putatively encode a cytosolic NADP-malic enzyme. Similar amounts of citrate were released, and root elongation was equally inhibited before 8 h of Al treatment of Jiyu 70 and Jiyu 62 cultivars. Jiyu 70 began to secrete more citrate and exhibited higher Al resistance than did Jiyu 62 at 12 h. A sustained increase in internal malate and citrate concentrations was observed in Jiyu 70 at 24 h of Al treatment. However, Jiyu 62 decreased its malate concentration at 12 h and its citrate concentration at 24 h of Al treatment. GmME1 localized to the cytoplast and clustered closely with cytosolic malic enzymes AtME2 and SgME1 and was constitutively expressed in the roots. Al treatment induced higher NADP-malic enzyme activities and GmME1 expression levels in Jiyu 70 than in Jiyu 62 within 24 h. Compared with wild-type hairy roots, over-expressing GmME1 in hairy roots ( GmME1 -OE) produced higher expression levels of GmME1 but did not change the expression patterns of either of the putative citrate transporter genes GmAACT1 and GmFRDL or the malate transporter gene GmALMT1 , with or without Al treatment. GmME1 -OE showed a higher internal concentration and external efflux of both citrate and malate at 4 h of Al stress. Lighter hematoxylin staining and lower Al contents in root apices of GmME1 -OE hairy roots indicated greater Al resistance. Comprehensive experimental results suggest that sustaining Al-induced citrate efflux depends on the malate pool in soybean root apices. GmME1 encodes a cytosolic malic enzyme that contributes to increased internal malate and citrate concentrations and their external efflux to confer higher Al resistance.

  14. Soybean NADP-Malic Enzyme Functions in Malate and Citrate Metabolism and Contributes to Their Efflux under Al Stress

    Directory of Open Access Journals (Sweden)

    Ying Zhou

    2018-01-01

    Full Text Available Malate accumulation has been suggested to balance Al-induced citrate synthesis and efflux in soybean roots. To test this hypothesis, characteristics of Al-induced accumulation and efflux of citrate and malate were compared between two soybean genotypes combining a functional analysis of GmME1 putatively encode a cytosolic NADP-malic enzyme. Similar amounts of citrate were released, and root elongation was equally inhibited before 8 h of Al treatment of Jiyu 70 and Jiyu 62 cultivars. Jiyu 70 began to secrete more citrate and exhibited higher Al resistance than did Jiyu 62 at 12 h. A sustained increase in internal malate and citrate concentrations was observed in Jiyu 70 at 24 h of Al treatment. However, Jiyu 62 decreased its malate concentration at 12 h and its citrate concentration at 24 h of Al treatment. GmME1 localized to the cytoplast and clustered closely with cytosolic malic enzymes AtME2 and SgME1 and was constitutively expressed in the roots. Al treatment induced higher NADP-malic enzyme activities and GmME1 expression levels in Jiyu 70 than in Jiyu 62 within 24 h. Compared with wild-type hairy roots, over-expressing GmME1 in hairy roots (GmME1-OE produced higher expression levels of GmME1 but did not change the expression patterns of either of the putative citrate transporter genes GmAACT1 and GmFRDL or the malate transporter gene GmALMT1, with or without Al treatment. GmME1-OE showed a higher internal concentration and external efflux of both citrate and malate at 4 h of Al stress. Lighter hematoxylin staining and lower Al contents in root apices of GmME1-OE hairy roots indicated greater Al resistance. Comprehensive experimental results suggest that sustaining Al-induced citrate efflux depends on the malate pool in soybean root apices. GmME1 encodes a cytosolic malic enzyme that contributes to increased internal malate and citrate concentrations and their external efflux to confer higher Al resistance.

  15. MexXY multidrug efflux system of Pseudomonas aeruginosa

    OpenAIRE

    Morita, Yuji; Tomida, Junko; Kawamura, Yoshiaki

    2012-01-01

    Anti-pseudomonas aminoglycosides, such as amikacin and tobramycin, are used in the treatment of Pseudomonas aeruginosa infections. However, their use is linked to the development of resistance. During the last decade, the MexXY multidrug efflux system has been comprehensively studied, and numerous reports of laboratory and clinical isolates have been published. This system has been increasingly recognized as one of the primary determinants of aminoglycoside resistance in P. aeruginosa. In P. ...

  16. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal

    Directory of Open Access Journals (Sweden)

    Choi Cheol-Hee

    2005-10-01

    Full Text Available Abstract One of the major problems related with anticancer chemotherapy is resistance against anticancer drugs. The ATP-binding cassette (ABC transporters are a family of transporter proteins that are responsible for drug resistance and a low bioavailability of drugs by pumping a variety of drugs out cells at the expense of ATP hydrolysis. One strategy for reversal of the resistance of tumor cells expressing ABC transporters is combined use of anticancer drugs with chemosensitizers. In this review, the physiological functions and structures of ABC transporters, and the development of chemosensitizers are described focusing on well-known proteins including P-glycoprotein, multidrug resistance associated protein, and breast cancer resistance protein.

  17. In vitro selection of Phytomonas serpens cells resistant to the calpain inhibitor MDL28170: alterations in fitness and expression of the major peptidases and efflux pumps.

    Science.gov (United States)

    Oliveira, Simone S C; Gonçalves, Inês C; Ennes-Vidal, Vitor; Lopes, Angela H C S; Menna-Barreto, Rubem F S; D'Ávila-Levy, Claudia M; Santos, André L S; Branquinha, Marta H

    2018-03-01

    The species Phytomonas serpens is known to express some molecules displaying similarity to those described in trypanosomatids pathogenic to humans, such as peptidases from Trypanosoma cruzi (cruzipain) and Leishmania spp. (gp63). In this work, a population of P. serpens resistant to the calpain inhibitor MDL28170 at 70 µ m (MDLR population) was selected by culturing promastigotes in increasing concentrations of the drug. The only relevant ultrastructural difference between wild-type (WT) and MDLR promastigotes was the presence of microvesicles within the flagellar pocket of the latter. MDLR population also showed an increased reactivity to anti-cruzipain antibody as well as a higher papain-like proteolytic activity, while the expression of calpain-like molecules cross-reactive to anti-Dm-calpain (from Drosophila melanogaster) antibody and calcium-dependent cysteine peptidase activity were decreased. Gp63-like molecules also presented a diminished expression in MDLR population, which is probably correlated to the reduction in the parasite adhesion to the salivary glands of the insect vector Oncopeltus fasciatus. A lower accumulation of Rhodamine 123 was detected in MDLR cells when compared with the WT population, a phenotype that was reversed when MDLR cells were treated with cyclosporin A and verapamil. Collectively, our results may help in the understanding of the roles of calpain inhibitors in trypanosomatids.

  18. Coupling of UDP-glucuronosyltransferases and multidrug resistance-associated proteins is responsible for the intestinal disposition and poor bioavailability of emodin

    International Nuclear Information System (INIS)

    Liu, Wei; Feng, Qian; Li, Ye; Ye, Ling; Hu, Ming; Liu, Zhongqiu

    2012-01-01

    Emodin is a poorly bioavailable but promising plant-derived anticancer drug candidate. The low oral bioavailability of emodin is due to its extensive glucuronidation in the intestine and liver. Caco-2 cell culture model was used to investigate the interplay between UDP-glucuronosyltransferases (UGTs) and efflux transporters in the intestinal disposition of emodin. Bidirectional transport assays of emodin at different concentrations were performed in the Caco-2 monolayers with or without multidrug resistance-associated protein (MRP) and breast cancer resistance protein (BCRP) efflux transporter chemical inhibitors. The bidirectional permeability of emodin and its glucuronide in the Caco-2 monolayers was determined. Emodin was rapidly metabolized to emodin glucuronide in Caco-2 cells. LTC4, a potent inhibitor of MRP2, decreased the efflux of emodin glucuronide and also substantially increased the intracellular glucuronide level in the basolateral-to-apical (B–A) direction. MK-571, chemical inhibitor of MRP2, MRP3, and MRP4, significantly reduced the efflux of glucuronide in the apical-to-basolateral (A–B) and B–A directions in a dose-dependent manner. However, dipyridamole, a BCRP chemical inhibitor demonstrated no effect on formation and efflux of emodin glucuronide in Caco-2 cells. In conclusion, UGT is a main metabolic pathway for emodin in the intestine, and the MRP family is composed of major efflux transporters responsible for the excretion of emodin glucuronide in the intestine. The coupling of UGTs and MRP efflux transporters causes the extensive metabolism, excretion, and low bioavailability of emodin. -- Highlights: ► Glucuronidation is the main reason for the poor oral bioavailability of emodin. ► Efflux transporters are involved in the excretion of emodin glucuronide. ► The intestine is the main organ for metabolism of emodin.

  19. Coupling of UDP-glucuronosyltransferases and multidrug resistance-associated proteins is responsible for the intestinal disposition and poor bioavailability of emodin

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Feng, Qian; Li, Ye; Ye, Ling [Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong (China); Hu, Ming, E-mail: mhu@uh.edu [Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong (China); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, TX 77030 (United States); Liu, Zhongqiu, E-mail: liuzq@smu.edu.cn [Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong (China)

    2012-12-15

    Emodin is a poorly bioavailable but promising plant-derived anticancer drug candidate. The low oral bioavailability of emodin is due to its extensive glucuronidation in the intestine and liver. Caco-2 cell culture model was used to investigate the interplay between UDP-glucuronosyltransferases (UGTs) and efflux transporters in the intestinal disposition of emodin. Bidirectional transport assays of emodin at different concentrations were performed in the Caco-2 monolayers with or without multidrug resistance-associated protein (MRP) and breast cancer resistance protein (BCRP) efflux transporter chemical inhibitors. The bidirectional permeability of emodin and its glucuronide in the Caco-2 monolayers was determined. Emodin was rapidly metabolized to emodin glucuronide in Caco-2 cells. LTC4, a potent inhibitor of MRP2, decreased the efflux of emodin glucuronide and also substantially increased the intracellular glucuronide level in the basolateral-to-apical (B–A) direction. MK-571, chemical inhibitor of MRP2, MRP3, and MRP4, significantly reduced the efflux of glucuronide in the apical-to-basolateral (A–B) and B–A directions in a dose-dependent manner. However, dipyridamole, a BCRP chemical inhibitor demonstrated no effect on formation and efflux of emodin glucuronide in Caco-2 cells. In conclusion, UGT is a main metabolic pathway for emodin in the intestine, and the MRP family is composed of major efflux transporters responsible for the excretion of emodin glucuronide in the intestine. The coupling of UGTs and MRP efflux transporters causes the extensive metabolism, excretion, and low bioavailability of emodin. -- Highlights: ► Glucuronidation is the main reason for the poor oral bioavailability of emodin. ► Efflux transporters are involved in the excretion of emodin glucuronide. ► The intestine is the main organ for metabolism of emodin.

  20. Crystal structure of the Neisseria gonorrhoeae MtrD inner membrane multidrug efflux pump.

    Directory of Open Access Journals (Sweden)

    Jani Reddy Bolla

    Full Text Available Neisseria gonorrhoeae is an obligate human pathogen and the causative agent of the sexually-transmitted disease gonorrhea. The control of this disease has been compromised by the increasing proportion of infections due to antibiotic-resistant strains, which are growing at an alarming rate. The MtrCDE tripartite multidrug efflux pump, belonging to the hydrophobic and amphiphilic efflux resistance-nodulation-cell division (HAE-RND family, spans both the inner and outer membranes of N. gonorrhoeae and confers resistance to a variety of antibiotics and toxic compounds. We here report the crystal structure of the inner membrane MtrD multidrug efflux pump, which reveals a novel structural feature that is not found in other RND efflux pumps.

  1. In silico screening for antibiotic escort molecules to overcome efflux.

    Science.gov (United States)

    Rahman, Sheikh S; Simovic, Ivana; Gibbons, Simon; Zloh, Mire

    2011-11-01

    Resistance to antibiotics is a growing problem worldwide and occurs in part due to the overexpression of efflux pumps responsible for the removal of antibiotics from bacterial cells. The current study examines complex formation between efflux pump substrates and escort molecules as a criterion for an in silico screening method for molecules that are able to potentiate antibiotic activities. Initially, the SUPERDRUG database was queried to select molecules that were similar to known multidrug resistance (MDR) modulators. Molecular interaction fields generated by GRID and the docking module GLUE were used to calculate the interaction energies between the selected molecules and the antibiotic norfloxacin. Ten compounds forming the most stable complexes with favourable changes to the norfloxacin molecular properties were tested for their potentiation ability by efflux pump modulation assays. Encouragingly, two molecules were proven to act as efflux pump modulators, and hence provide evidence that complex formation between a substrate and a drug can be used for in silico screening for novel escort molecules.

  2. Depolarization-stimulated 42K+ efflux in rat aorta is calcium- and cellular volume-dependent

    International Nuclear Information System (INIS)

    Magliola, L.; Jones, A.W.

    1987-01-01

    The purpose of this study was to investigate the factors controlling membrane permeability to potassium of smooth muscle cells from rat aorta stimulated by depolarization. The increase 42 K+ efflux (change in the rate constant) induced by depolarization (application of high concentrations of potassium chloride) was inhibited significantly by the calcium antagonists diltiazem and nisoldipine. Parallel inhibitory effects on contraction were observed. Diltiazem also inhibited potassium-stimulated 36 Cl- efflux. The addition of 25-150 mM KCl to normal physiologic solution stimulated 42 K+ efflux in a concentration-dependent manner. Diltiazem suppressed potassium-stimulated 42 K+ efflux approximately 90% at 25 mM KCl and approximately 40% at 150 mM KCl. The ability of nisoldipine to inhibit 42 K+ efflux also diminished as the potassium chloride concentration was elevated. The component of efflux that was resistant to calcium antagonists probably resulted from a decrease in the electrochemical gradient for potassium. Cellular water did not change during potassium addition. Substitution of 80 and 150 mM KCl for sodium chloride produced cellular swelling and enhanced potassium-stimulated 42 K+ efflux compared with potassium chloride addition. The addition of sucrose to prevent cellular swelling reduced efflux response to potassium substitution toward that of potassium addition. A hypoosmolar physiologic solution produced an increase in the 42 K+ efflux and a contracture that were both prevented by the addition of sucrose. We concluded that the depolarization-mediated 42 K+ efflux has three components: one is calcium dependent; a second is dependent on cellular volume; and a third is resistant to inhibition by calcium antagonists

  3. Resistance of human glioma to adriamycin in vitro: the role of membrane transport and its circumvention with verapamil.

    Science.gov (United States)

    Merry, S; Fetherston, C A; Kaye, S B; Freshney, R I; Plumb, J A

    1986-01-01

    We have investigated the mechanism of resistance to adriamycin (ADR) of 3 human glioma cell lines in culture. The cell lines had different inherent sensitivities to ADR. Verapamil increased the ADR sensitivities of the 2 most resistant cell lines (G-UVW and G-CCM) by up to 5-fold. This effect was not seen in a sensitive cell line (G-MCF). Although the accumulation of ADR in the 3 cell lines was not related to inherent sensitivity, energy deprivation or the addition of verapamil produced an increase (up to 46%) in net uptake for both G-UVW and G-CCM, but not for G-MCF. For G-UVW the ADR efflux data were consistent with an energy-dependent ADR efflux mechanism which could be inhibited by verapamil. A similar mechanism was not found for G-CCM. In this cell line verapamil may act by increasing intracellular ADR binding. These data indicate that, while inherent resistance to ADR may be multifactorial, one possible mechanism of resistance in human glioma may involve changes in drug accumulation and/or binding as has been seen in animals models. A potential clinical role for verapamil in overcoming drug resistance in human solid tumours is also indicated.

  4. Paraquat Resistant1, a Golgi-localized putative transporter protein, is involved in intracellular transport of paraquat.

    Science.gov (United States)

    Li, Jianyong; Mu, Jinye; Bai, Jiaoteng; Fu, Fuyou; Zou, Tingting; An, Fengying; Zhang, Jian; Jing, Hongwei; Wang, Qing; Li, Zhen; Yang, Shuhua; Zuo, Jianru

    2013-05-01

    Paraquat is one of the most widely used herbicides worldwide. In green plants, paraquat targets the chloroplast by transferring electrons from photosystem I to molecular oxygen to generate toxic reactive oxygen species, which efficiently induce membrane damage and cell death. A number of paraquat-resistant biotypes of weeds and Arabidopsis (Arabidopsis thaliana) mutants have been identified. The herbicide resistance in Arabidopsis is partly attributed to a reduced uptake of paraquat through plasma membrane-localized transporters. However, the biochemical mechanism of paraquat resistance remains poorly understood. Here, we report the identification and characterization of an Arabidopsis paraquat resistant1 (par1) mutant that shows strong resistance to the herbicide without detectable developmental abnormalities. PAR1 encodes a putative l-type amino acid transporter protein localized to the Golgi apparatus. Compared with the wild-type plants, the par1 mutant plants show similar efficiency of paraquat uptake, suggesting that PAR1 is not directly responsible for the intercellular uptake of paraquat. However, the par1 mutation caused a reduction in the accumulation of paraquat in the chloroplast, suggesting that PAR1 is involved in the intracellular transport of paraquat into the chloroplast. We identified a PAR1-like gene, OsPAR1, in rice (Oryza sativa). Whereas the overexpression of OsPAR1 resulted in hypersensitivity to paraquat, the knockdown of its expression using RNA interference conferred paraquat resistance on the transgenic rice plants. These findings reveal a unique mechanism by which paraquat is actively transported into the chloroplast and also provide a practical approach for genetic manipulations of paraquat resistance in crops.

  5. Structure and Function of Neisseria gonorrhoeae MtrF Illuminates a Class of Antimetabolite Efflux Pumps

    Directory of Open Access Journals (Sweden)

    Chih-Chia Su

    2015-04-01

    Full Text Available Neisseria gonorrhoeae is an obligate human pathogen and the causative agent of the sexually transmitted disease gonorrhea. The control of this disease has been compromised by the increasing proportion of infections due to antibiotic-resistant strains, which are growing at an alarming rate. N. gonorrhoeae MtrF is an integral membrane protein that belongs to the AbgT family of transporters for which no structural information is available. Here, we describe the crystal structure of MtrF, revealing a dimeric molecule with architecture distinct from all other families of transporters. MtrF is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm to halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins, posing a plausible pathway for substrate transport. A combination of the crystal structure and biochemical functional assays suggests that MtrF is an antibiotic efflux pump mediating bacterial resistance to sulfonamide antimetabolite drugs.

  6. The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance.

    Science.gov (United States)

    Dermauw, Wannes; Van Leeuwen, Thomas

    2014-02-01

    About a 100 years ago, the Drosophila white mutant marked the birth of Drosophila genetics. The white gene turned out to encode the first well studied ABC transporter in arthropods. The ABC gene family is now recognized as one of the largest transporter families in all kingdoms of life. The majority of ABC proteins function as primary-active transporters that bind and hydrolyze ATP while transporting a large diversity of substrates across lipid membranes. Although extremely well studied in vertebrates for their role in drug resistance, less is known about the role of this family in the transport of endogenous and exogenous substances in arthropods. The ABC families of five insect species, a crustacean and a chelicerate have been annotated in some detail. We conducted a thorough phylogenetic analysis of the seven arthropod and human ABC protein subfamilies, to infer orthologous relationships that might suggest conserved function. Most orthologous relationships were found in the ABCB half transporter, ABCD, ABCE and ABCF subfamilies, but specific expansions within species and lineages are frequently observed and discussed. We next surveyed the role of ABC transporters in the transport of xenobiotics/plant allelochemicals and their involvement in insecticide resistance. The involvement of ABC transporters in xenobiotic resistance in arthropods is historically not well documented, but an increasing number of studies using unbiased differential gene expression analysis now points to their importance. We give an overview of methods that can be used to link ABC transporters to resistance. ABC proteins have also recently been implicated in the mode of action and resistance to Bt toxins in Lepidoptera. Given the enormous interest in Bt toxicology in transgenic crops, such findings will provide an impetus to further reveal the role of ABC transporters in arthropods. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Bacterial multidrug resistance mediated by a homologue of the human multidrug transporter P-glycoprotein

    NARCIS (Netherlands)

    Konings, WN; Poelarends, GJ

    2002-01-01

    Most ATP-binding cassette (ABC) multidrug transporters known to date are of eukaryotic origin, such as the P-glycoproteins (Pgps) and multidrug resistance-associated proteins (MRPs). Only one well-characterized ABC multidrug transporter, LmrA, is of bacterial origin. On the basis of its structural

  8. Central serotonin and dopamine transporters in overeating, obesity and insulin resistance

    NARCIS (Netherlands)

    Koopman, K.E.M.

    2014-01-01

    The objectives of this thesis were to study cerebral serotonin transporters (SERT) in the diencephalon and striatal dopamine transporters (DAT) in humans in different metabolic conditions (i.e. lean, obese and insulin resistant state) in relation to feeding behavior and to investigate the early

  9. Characterization of putative multidrug resistance transporters of the major facilitator-superfamily expressed in Salmonella Typhi

    DEFF Research Database (Denmark)

    Shaheen, Aqsa; Ismat, Fouzia; Iqbal, Mazhar

    2015-01-01

    -hypersensitive Escherichia coli strain KAM42, and tested for transport of 25 antibacterial compounds, including representative antibiotics of various classes, antiseptics, dyes and detergents. Of the 15 tested putative transporters, STY0901, STY2458 and STY4874 exhibited a drug-resistance phenotype. Among these, STY4874...

  10. Colorectal cancer cell lines made resistant to SN38-and Oxaliplatin: Roles of altered ion transporter function in resistance?

    DEFF Research Database (Denmark)

    Sandra, Christensen; Jensen, Niels Frank; Stoeckel, Johanne Danmark

    2013-01-01

    Colorectal cancer (CRC) is the 3rd most common cancer globally, with 5year survival rates of ~50%. Response rates to standard treatments (irinotecan (SN38) or Oxaliplatin (Oxp)) are 31–56% and drug resistance is a major problem. Thus, we established in vitro CRC models to investigate SN38 and Oxp...... resistance in HCT-116, HT-29 and LoVo cells. Microarray analysis and qPCR validation showed that mRNA expression of glutamate transporters SLC1A1 and SLC1A3 were markedly altered in resistant cells. Remarkably, mRNA levels of SLC1A3 were increased by ~40-and ~2500-fold in SN38-and Oxp-resistant HT29 cells......, respectively. Studies are ongoing to assess glutamate uptake in parental and resistant CRC cells and the effect of inhibition/knockdown of SLC1A1 and -3 on SN38- and Oxp resistance. In conclusion, SN38-and Oxp-resistance in CRC cells is associated with SLC1A1 and -3 dysregulation. As these transporters have...

  11. The multidrug-resistant phenotype associated with overexpression of the new ABC half-transporter, MXR (ABCG2)

    DEFF Research Database (Denmark)

    Litman, Thomas; Brangi, M; Hudson, E

    2000-01-01

    Mechanisms of drug resistance other than P-glycoprotein are of increasing interest as the list of newly identified members of the ABC transport family has grown. We sought to characterize the phenotype of the newly discovered ABC transporter encoded by the mitoxantrone resistance gene, MXR, also...... that the ABC half-transporter, MXR, is a potent, new mechanism for conferring multiple drug resistance. Definition of its mechanism of transport and its role in clinical oncology is required....

  12. Contribution of vesicular and cytosolic dopamine to the increased striatal dopamine efflux elicited by intrastriatal injection of SKF38393.

    NARCIS (Netherlands)

    Saigusa, T.; Aono, Y.; Sekino, R.; Uchida, T.; Takada, K.; Oi, Y.; Koshikawa, N.; Cools, A.R.

    2009-01-01

    Like dexamphetamine, SKF38393 induces an increase in striatal dopamine efflux which is insensitive for tetrodotoxin, Ca(2+) independent and prevented by a dopamine transporter inhibitor. The dexamphetamine-induced striatal dopamine efflux originates from both the reserpine-sensitive vesicular

  13. Phosphate transport and arsenate resistance in the cyanobacterium Anabaena variabilis.

    OpenAIRE

    Thiel, T

    1988-01-01

    Cells of the cyanobacterium Anabaena variabilis starved for phosphate for 3 days took up phosphate at about 100 times the rate of unstarved cells. Kinetic data suggested that a new transport system had been induced by starvation for phosphate. The inducible phosphate transport system was quickly repressed by addition of Pi. Phosphate-starved cells were more sensitive to the toxic effects of arsenate than were unstarved cells, but phosphate could alleviate some of the toxicity. Arsenate was a ...

  14. A Transcriptomic Approach to Identify Novel Drug Efflux Pumps in Bacteria.

    Science.gov (United States)

    Li, Liping; Tetu, Sasha G; Paulsen, Ian T; Hassan, Karl A

    2018-01-01

    The core genomes of most bacterial species include a large number of genes encoding putative efflux pumps. The functional roles of most of these pumps are unknown, however, they are often under tight regulatory control and expressed in response to their substrates. Therefore, one way to identify pumps that function in antimicrobial resistance is to examine the transcriptional responses of efflux pump genes to antimicrobial shock. By conducting complete transcriptomic experiments following antimicrobial shock treatments, it may be possible to identify novel drug efflux pumps encoded in bacterial genomes. In this chapter we describe a complete workflow for conducting transcriptomic analyses by RNA sequencing, to determine transcriptional changes in bacteria responding to antimicrobials.

  15. Application of column tests and electrical resistivity methods for leachate transport monitoring

    Directory of Open Access Journals (Sweden)

    Wychowaniak Dorota

    2015-09-01

    Full Text Available Development of the human civilization leads to the pollution of environment. One of the contamination which are a real threat to soil and groundwater are leachates from landfills. In this paper the solute transport through soil was considered. For this purpose, the laboratory column tests of chlorides tracer and leachates transport on two soil samples have been carried out. Furthermore, the electrical resistivity method was applied as auxiliary tool to follow the movements of solute through the soil column what allowed to compare between the results obtained with column test method and electrical resistivity measurements. Breakthrough curves obtained by conductivity and resistivity methods represents similar trends which leads to the conclusion about the suitability of electrical resistivity methods for contamination transport monitoring in soil-water systems.

  16. Substrate-bound structure of the E. coli multidrug resistance transporter MdfA.

    Science.gov (United States)

    Heng, Jie; Zhao, Yan; Liu, Ming; Liu, Yue; Fan, Junping; Wang, Xianping; Zhao, Yongfang; Zhang, Xuejun C

    2015-09-01

    Multidrug resistance is a serious threat to public health. Proton motive force-driven antiporters from the major facilitator superfamily (MFS) constitute a major group of multidrug-resistance transporters. Currently, no reports on crystal structures of MFS antiporters in complex with their substrates exist. The E. coli MdfA transporter is a well-studied model system for biochemical analyses of multidrug-resistance MFS antiporters. Here, we report three crystal structures of MdfA-ligand complexes at resolutions up to 2.0 Å, all in the inward-facing conformation. The substrate-binding site sits proximal to the conserved acidic residue, D34. Our mutagenesis studies support the structural observations of the substrate-binding mode and the notion that D34 responds to substrate binding by adjusting its protonation status. Taken together, our data unveil the substrate-binding mode of MFS antiporters and suggest a mechanism of transport via this group of transporters.

  17. Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance

    International Nuclear Information System (INIS)

    Hembruff, Stacey L; Laberge, Monique L; Villeneuve, David J; Guo, Baoqing; Veitch, Zachary; Cecchetto, Melanie; Parissenti, Amadeo M

    2008-01-01

    Anthracyclines and taxanes are commonly used in the treatment of breast cancer. However, tumor resistance to these drugs often develops, possibly due to overexpression of drug transporters. It remains unclear whether drug resistance in vitro occurs at clinically relevant doses of chemotherapy drugs and whether both the onset and magnitude of drug resistance can be temporally and causally correlated with the enhanced expression and activity of specific drug transporters. To address these issues, MCF-7 cells were selected for survival in increasing concentrations of doxorubicin (MCF-7 DOX-2 ), epirubicin (MCF-7 EPI ), paclitaxel (MCF-7 TAX-2 ), or docetaxel (MCF-7 TXT ). During selection cells were assessed for drug sensitivity, drug uptake, and the expression of various drug transporters. In all cases, resistance was only achieved when selection reached a specific threshold dose, which was well within the clinical range. A reduction in drug uptake was temporally correlated with the acquisition of drug resistance for all cell lines, but further increases in drug resistance at doses above threshold were unrelated to changes in cellular drug uptake. Elevated expression of one or more drug transporters was seen at or above the threshold dose, but the identity, number, and temporal pattern of drug transporter induction varied with the drug used as selection agent. The pan drug transporter inhibitor cyclosporin A was able to partially or completely restore drug accumulation in the drug-resistant cell lines, but had only partial to no effect on drug sensitivity. The inability of cyclosporin A to restore drug sensitivity suggests the presence of additional mechanisms of drug resistance. This study indicates that drug resistance is achieved in breast tumour cells only upon exposure to concentrations of drug at or above a specific selection dose. While changes in drug accumulation and the expression of drug transporters does occur at the threshold dose, the magnitude of

  18. Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance

    Directory of Open Access Journals (Sweden)

    Veitch Zachary

    2008-11-01

    Full Text Available Abstract Background Anthracyclines and taxanes are commonly used in the treatment of breast cancer. However, tumor resistance to these drugs often develops, possibly due to overexpression of drug transporters. It remains unclear whether drug resistance in vitro occurs at clinically relevant doses of chemotherapy drugs and whether both the onset and magnitude of drug resistance can be temporally and causally correlated with the enhanced expression and activity of specific drug transporters. To address these issues, MCF-7 cells were selected for survival in increasing concentrations of doxorubicin (MCF-7DOX-2, epirubicin (MCF-7EPI, paclitaxel (MCF-7TAX-2, or docetaxel (MCF-7TXT. During selection cells were assessed for drug sensitivity, drug uptake, and the expression of various drug transporters. Results In all cases, resistance was only achieved when selection reached a specific threshold dose, which was well within the clinical range. A reduction in drug uptake was temporally correlated with the acquisition of drug resistance for all cell lines, but further increases in drug resistance at doses above threshold were unrelated to changes in cellular drug uptake. Elevated expression of one or more drug transporters was seen at or above the threshold dose, but the identity, number, and temporal pattern of drug transporter induction varied with the drug used as selection agent. The pan drug transporter inhibitor cyclosporin A was able to partially or completely restore drug accumulation in the drug-resistant cell lines, but had only partial to no effect on drug sensitivity. The inability of cyclosporin A to restore drug sensitivity suggests the presence of additional mechanisms of drug resistance. Conclusion This study indicates that drug resistance is achieved in breast tumour cells only upon exposure to concentrations of drug at or above a specific selection dose. While changes in drug accumulation and the expression of drug transporters does

  19. Peptide mediators of cholesterol efflux

    Energy Technology Data Exchange (ETDEWEB)

    Bielicki, John K.; Johansson, Jan

    2013-04-09

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  20. Computer simulations of the activity of RND efflux pumps.

    Science.gov (United States)

    Vargiu, Attilio Vittorio; Ramaswamy, Venkata Krishnan; Malloci, Giuliano; Malvacio, Ivana; Atzori, Alessio; Ruggerone, Paolo

    2018-01-31

    The putative mechanism by which bacterial RND-type multidrug efflux pumps recognize and transport their substrates is a complex and fascinating enigma of structural biology. How a single protein can recognize a huge number of unrelated compounds and transport them through one or just a few mechanisms is an amazing feature not yet completely unveiled. The appearance of cooperativity further complicates the understanding of structure-dynamics-activity relationships in these complex machineries. Experimental techniques may have limited access to the molecular determinants and to the energetics of key processes regulating the activity of these pumps. Computer simulations are a complementary approach that can help unveil these features and inspire new experiments. Here we review recent computational studies that addressed the various molecular processes regulating the activity of RND efflux pumps. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  1. Transport and transformation of genetic information in the critical zone: The case of antibiotic resistance genes

    Science.gov (United States)

    Zhu, Y. G.

    2015-12-01

    In addition to material and energy flows, the dynamics and functions of the Earth's critical zone are intensively mediated by biological actions performed by diverse organisms. These biological actions are modulated by the expression of functional genes and their translation into enzymes that catalyze geochemical reactions, such as nutrient turnover and pollutant biodegradation. Although geobiology, as an interdisciplinary research area, is playing and vital role in linking biological and geochemical processes at different temporal and spatial scales, the distribution and transport of functional genes have rarely been investigated from the Earth's critical zone perspectives. To illustrate the framework of studies on the transport and transformation of genetic information in the critical zone, antibiotic resistance is taken as an example. Antibiotic resistance genes are considered as a group of emerging contaminants, and their emergence and spread within the critical zone on one hand are induced by anthropogenic activities, and on other hand are threatening human health worldwide. The transport and transformation of antibiotic resistance genes are controlled by both horizontal gene transfer between bacterial cells and the movement of bacteria harboring antibiotic resistance genes. In this paper, the fate and behavior of antibiotic resistance genes will be discussed in the following aspects: 1) general overview of environmental antibiotic resistance; 2) high through quantification of the resistome in various environmental media; 3) pathways of resistance gene flow within the critical zone; and 4) potential strategies in mitigating antibiotic resistance, particularly from the critical zone perspectives.

  2. The Role of Eukaryotic and Prokaryotic ABC Transporter Family in Failure of Chemotherapy.

    Science.gov (United States)

    El-Awady, Raafat; Saleh, Ekram; Hashim, Amna; Soliman, Nehal; Dallah, Alaa; Elrasheed, Azza; Elakraa, Ghada

    2016-01-01

    Over the years chemotherapy failure has been a vital research topic as researchers have been striving to discover reasons behind it. The extensive studies carried out on chemotherapeutic agents confirm that resistance to chemotherapy is a major reason for treatment failure. "Resistance to chemotherapy," however, is a comprehensive phrase that refers to a variety of different mechanisms in which ATP-binding cassette (ABC) mediated efflux dominates. The ABC is one of the largest gene superfamily of transporters among both eukaryotes and prokaryotes; it represents a variety of genes that code for proteins, which perform countless functions, including drug efflux - a natural process that protects cells from foreign chemicals. Up to date, chemotherapy failure due to ABC drug efflux is an active research topic that continuously provides further evidence on multiple drug resistance (MDR), aiding scientists in tackling and overcoming this issue. This review focuses on drug resistance by ABC efflux transporters in human, viral, parasitic, fungal and bacterial cells and highlights the importance of the MDR permeability glycoprotein being the mutual ABC transporter among all studied organisms. Current developments and future directions to overcome this problem are also discussed.

  3. The function of the ATP-binding cassette (ABC) transporter ABCB1 is not susceptible to actin disruption

    NARCIS (Netherlands)

    Meszaros, Peter; Hummel, Ina; Klappe, Karin; Draghiciu, Oana; Hoekstra, Dick; Kok, Jan W.

    Previously we have shown that the activity of the multidrug transporter ABCC1 (multidrug resistance protein 1), and its localization in lipid rafts, depends on cortical actin (Hummel I, Klappe K, Ercan C, Kok JW. Mol. Pharm. 2011 79, 229-40). Here we show that the efflux activity of the ATP-binding

  4. The resistance to impact of spent Magnox fuel transport flasks

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    This book completes the papers of the four-year programme of research and demonstrations embarked upon by the CEGB in 1981, culminating in the spectacular train crash at Old Dalby in July 1984. It explains the CEGB's operations in relation to the transportation of spent Magnox fuel. The public tests described in this book are more effective in improving public understanding and confidence than any amount of explanations could have been, raising the wider question of how best the scientific community can respond to the legitimate concerns of the man and woman in the street about the generating of electricity from nuclear power. The contents are: Taking care; irradiated fuel transport in the UK; programming for flask safety; the use of scale models in impact testing; flask analytical studies; drop test facilities; demonstration drop test; a study of flask transport impact hazards; impact of Magnox irradiated fuel transport flasks into rock and concrete; rail crash demonstration scenarios; horizontal impact testing of quarter scale flasks using masonry targets; horizontal crash testing and analysis of model flatrols; flatrol test; analysis of full scale impact into an abutment; analysis of primary impact forces in the train crash demonstration; horizontal impact tests of quarter scale Magnox flasks and stylised model locomotives; predictive estimates for behaviour in the train crash demonstration; design and organization of the crash; execution of the crash demonstration by British Rail; instrumentation for the train crash demonstration; photography for the crash demonstration; a summary of the CEGB's flask accident impact studies

  5. Slower phloem transport in gymnosperm trees can be attributed to higher sieve element resistance.

    Science.gov (United States)

    Liesche, Johannes; Windt, Carel; Bohr, Tomas; Schulz, Alexander; Jensen, Kaare H

    2015-04-01

    In trees, carbohydrates produced in photosynthesizing leaves are transported to roots and other sink organs over distances of up to 100 m inside a specialized transport tissue, the phloem. Angiosperm and gymnosperm trees have a fundamentally different phloem anatomy with respect to cell size, shape and connectivity. Whether these differences have an effect on the physiology of carbohydrate transport, however, is not clear. A meta-analysis of the experimental data on phloem transport speed in trees yielded average speeds of 56 cm h(-1) for angiosperm trees and 22 cm h(-1) for gymnosperm trees. Similar values resulted from theoretical modeling using a simple transport resistance model. Analysis of the model parameters clearly identified sieve element (SE) anatomy as the main factor for the significantly slower carbohydrate transport speed inside the phloem in gymnosperm compared with angiosperm trees. In order to investigate the influence of SE anatomy on the hydraulic resistance, anatomical data on SEs and sieve pores were collected by transmission electron microscopy analysis and from the literature for 18 tree species. Calculations showed that the hydraulic resistance is significantly higher in the gymnosperm than in angiosperm trees. The higher resistance is only partially offset by the considerably longer SEs of gymnosperms. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. A platinum-based hybrid drug design approach to circumvent acquired resistance to molecular targeted tyrosine kinase inhibitors

    Science.gov (United States)

    Wei, Yuming; Poon, Daniel C.; Fei, Rong; Lam, Amy S. M.; Au-Yeung, Steve C. F.; To, Kenneth K. W.

    2016-05-01

    Three molecular targeted tyrosine kinase inhibitors (TKI) were conjugated to classical platinum-based drugs with an aim to circumvent TKI resistance, predominately mediated by the emergence of secondary mutations on oncogenic kinases. The hybrids were found to maintain specificity towards the same oncogenic kinases as the original TKI. Importantly, they are remarkably less affected by TKI resistance, presumably due to their unique structure and the observed dual mechanism of anticancer activity (kinase inhibition and DNA damage). The study is also the first to report the application of a hybrid drug approach to switch TKIs from being efflux transporter substrates into non-substrates. TKIs cannot penetrate into the brain for treating metastases because of efflux transporters at the blood brain barrier. The hybrids were found to escape drug efflux and they accumulate more than the original TKI in the brain in BALB/c mice. Further development of the hybrid compounds is warranted.

  7. AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity.

    Science.gov (United States)

    Blair, Jessica M A; Bavro, Vassiliy N; Ricci, Vito; Modi, Niraj; Cacciotto, Pierpaolo; Kleinekathӧfer, Ulrich; Ruggerone, Paolo; Vargiu, Attilio V; Baylay, Alison J; Smith, Helen E; Brandon, Yvonne; Galloway, David; Piddock, Laura J V

    2015-03-17

    The incidence of multidrug-resistant bacterial infections is increasing globally and the need to understand the underlying mechanisms is paramount to discover new therapeutics. The efflux pumps of Gram-negative bacteria have a broad substrate range and transport antibiotics out of the bacterium, conferring intrinsic multidrug resistance (MDR). The genomes of pre- and posttherapy MDR clinical isolates of Salmonella Typhimurium from a patient that failed antibacterial therapy and died were sequenced. In the posttherapy isolate we identified a novel G288D substitution in AcrB, the resistance-nodulation division transporter in the AcrAB-TolC tripartite MDR efflux pump system. Computational structural analysis suggested that G288D in AcrB heavily affects the structure, dynamics, and hydration properties of the distal binding pocket altering specificity for antibacterial drugs. Consistent with this hypothesis, recreation of the mutation in standard Escherichia coli and Salmonella strains showed that G288D AcrB altered substrate specificity, conferring decreased susceptibility to the fluoroquinolone antibiotic ciprofloxacin by increased efflux. At the same time, the substitution increased susceptibility to other drugs by decreased efflux. Information about drug transport is vital for the discovery of new antibacterials; the finding that one amino acid change can cause resistance to some drugs, while conferring increased susceptibility to others, could provide a basis for new drug development and treatment strategies.

  8. ABC transporters in Arthropods: genomic comparison and role in insecticide transport and resistance

    NARCIS (Netherlands)

    Dermauw, W.; Van Leeuwen, T.

    2014-01-01

    About a 100 years ago, the Drosophila white mutant marked the birth of Drosophila genetics. The white gene turned out to encode the first well studied ABC transporter in arthropods. The ABC gene family is now recognized as one of the largest transporter families in all kingdoms of life. The majority

  9. Scanning tunneling potentiometry, charge transport, and Landauer's resistivity dipole from the quantum to the classical transport regime

    Science.gov (United States)

    Morr, Dirk K.

    2017-05-01

    Using the nonequilibrium Keldysh formalism, we investigate the spatial relation between the electrochemical potential measured in scanning tunneling potentiometry, and local current patterns over the entire range from the quantum to the classical transport regime. These quantities show similar spatial patterns near the quantum limit but are related by Ohm's law only in the classical regime. We demonstrate that defects induce a Landauer residual resistivity dipole in the electrochemical potential with the concomitant spatial current pattern representing the field lines of the dipole.

  10. Small Molecule Efflux Pump Inhibitors in Mycobacterium tuberculosis: A Rational Drug Design Perspective.

    Science.gov (United States)

    Kapp, Erika; Malan, Sarel F; Joubert, Jacques; Sampson, Samantha L

    2018-01-01

    Drug resistance in Mycobacterium tuberculosis (M. tuberculosis) complicates management of tuberculosis. Efflux pumps contribute to low level resistance and acquisition of additional high level resistance mutations through sub-therapeutic concentrations of intracellular antimycobacterials. Various efflux pump inhibitors (EPIs) have been described for M. tuberculosis but little is known regarding the mechanism of efflux inhibition. As knowledge relating to the mechanism of action and drug target is central to the rational drug design of safe and sufficiently selective EPIs, this review aims to examine recent developments in the study of EPIs in M. tuberculosis from a rational drug development perspective and to provide an overview to facilitate systematic development of therapeutically effective EPIs. Review of literature points to a reduction in cellular energy or direct binding to the efflux pump as likely mechanisms for most EPIs described for M. tuberculosis. This review demonstrates that, where a direct interaction with efflux pumps is expected, both molecular structure and general physicochemical properties should be considered to accurately predict efflux pump substrates and inhibitors. Non-competitive EPIs do not necessarily demonstrate the same requirements as competitive inhibitors and it is therefore essential to differentiate between competitive and non-competitive inhibition to accurately determine structure activity relationships for efflux pump inhibition. It is also evident that there are various similarities between inhibitors of prokaryotic and eukaryotic efflux pumps but, depending on the specific chemical scaffolds under investigation, it may be possible to design EPIs that are less prone to inhibition of human P-glycoprotein, thereby reducing side effects and drug-drug interactions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Induction of multixenobiotic defense mechanisms in resistant Daphnia magna clones as a general cellular response to stress.

    Science.gov (United States)

    Jordão, Rita; Campos, Bruno; Lemos, Marco F L; Soares, Amadeu M V M; Tauler, Romà; Barata, Carlos

    2016-06-01

    Multixenobiotic resistance mechanisms (MXR) were recently identified in Daphnia magna. Previous results characterized gene transcripts of genes encoding and efflux activities of four putative ABCB1 and ABCC transporters that were chemically induced but showed low specificity against model transporter substrates and inhibitors, thus preventing us from distinguishing between activities of different efflux transporter types. In this study we report on the specificity of induction of ABC transporters and of the stress protein hsp70 in clones selected to be genetically resistant to ABCB1 chemical substrates. Clones resistant to mitoxantrone, ivermectin and pentachlorophenol showed distinctive transcriptional responses of transporter protein coding genes and of putative transporter dye activities. Expression of hsp70 proteins also varied across resistant clones. Clones resistant to mitoxantrone and pentachlorophenol showed high constitutive levels of hsp70. Transcriptional levels of the abcb1 gene transporter and of putative dye transporter activity were also induced to a greater extent in the pentachlorophenol resistant clone. Observed higher dye transporter activities in individuals from clones resistant to mitoxantrone and ivermectin were unrelated with transcriptional levels of the studied four abcc and abcb1 transporter genes. These findings suggest that Abcb1 induction in D. magna may be a part of a general cellular stress response. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Microbial Resistance Mechanisms to the Antibiotic and Phytotoxin Fusaric Acid.

    Science.gov (United States)

    Crutcher, Frankie K; Puckhaber, Lorraine S; Stipanovic, Robert D; Bell, Alois A; Nichols, Robert L; Lawrence, Katheryn S; Liu, Jinggao

    2017-10-01

    Fusaric acid (FA) produced by Fusarium oxysporum plays an important role in disease development in plants, including cotton. This non-specific toxin also has antibiotic effects on microorganisms. Thus, one expects a potential pool of diverse detoxification mechanisms of FA in nature. Bacteria and fungi from soils infested with Fusarium and from laboratory sources were evaluated for their ability to grow in the presence of FA and to alter the structure of FA into less toxic compounds. None of the bacterial strains were able to chemically modify FA. Highly FA-resistant strains were found only in Gram-negative bacteria, mainly in the genus of Pseudomonas. The FA resistance of the Gram-negative bacteria was positively correlated with the number of predicted genes for FA efflux pumps present in the genome. Phylogenetic analysis of predicted FA resistance proteins (FUSC, an inner membrane transporter component of the efflux pump) revealed that FUSC proteins having high sequence identities with the functionally characterized FA resistance protein FusC or Fdt might be the major contributors of FA resistance. In contrast, most fungi converted FA to less toxic compounds regardless of the level of FA resistance they exhibited. Five derivatives were detected, and the detoxification of FA involved either oxidative reactions on the butyl side chain or reductive reactions on the carboxylic acid group. The production of these metabolites from widely different phyla indicates that resistance to FA by altering its structure is highly conserved. A few FA resistant saprophytic or biocontrol strains of fungi were incapable of altering FA, indicating a possible involvement of efflux transporters. Deployment of both efflux and derivatization mechanisms may be a common feature of fungal FA resistance.

  13. Effects of extracellular pH on UV-induced K+ efflux from cultured rose cells

    International Nuclear Information System (INIS)

    Huerta, A.J.; Murphy, T.M.

    1989-01-01

    Ultraviolet (UV) light causes a specific leakage of K + from cultured rose cells (Rosa damascena). During K + efflux, there is also an increase in extracellular HCO 3 - and acidification of the cell interior. We hypothesized that the HCO 3 - originated from intracellular hydration of respiratory CO 2 and served as a charge balancing mechanism during K + efflux, the K + and HCO 3 - being co transported out of the cell through specific channels. An alternative hypothesis which would yield similar results would be the counter transport of K + and H + . To test these hypotheses, we studied the effect of a range of external pH values (pH 5-9), regulated by various methods (pH-stat, 100 millimolar Tris-Mes buffer, or CO 2 partial pressure), on the UV-induced K + efflux. Both UV-C (less than 290 nanometers) and UV-B (290-310 nanometers) induced K + efflux with a minimum at about pH 6 to 7, and greater efflux at pH values of 5, 8, and 9. Since pH values of 8 and 9 increased instead of reduced the efflux of K + , these data are not consistent with notion that the efflux of K + is dependent on an influx of H + , a process that would be sensitive to external H + concentration. We suggest that the effect of pH on K + efflux may be mediated through the titration of specific K + -transporting proteins or channels in the plasma membrane. Since we could not detect the presence of carbonic anhydrase activity in cell extracts, we could not use the location of this enzyme to aid in our interpretation regarding the site of hydration of CO 2 . (author)

  14. The ins and outs of RND efflux pumps in Escherichia coli.

    Science.gov (United States)

    Anes, João; McCusker, Matthew P; Fanning, Séamus; Martins, Marta

    2015-01-01

    Infectious diseases remain one of the principal causes of morbidity and mortality in the world. Relevant authorities including the WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. They have also reaffirmed the urgent need for investment in the discovery and development of new antibiotics and therapeutic approaches to treat multidrug resistant (MDR) bacteria. The extensive use of antimicrobial compounds in diverse environments, including farming and healthcare, has been identified as one of the main causes for the emergence of MDR bacteria. Induced selective pressure has led bacteria to develop new strategies of defense against these chemicals. Bacteria can accomplish this by several mechanisms, including enzymatic inactivation of the target compound; decreased cell permeability; target protection and/or overproduction; altered target site/enzyme and increased efflux due to over-expression of efflux pumps. Efflux pumps can be specific for a single substrate or can confer resistance to multiple antimicrobials by facilitating the extrusion of a broad range of compounds including antibiotics, heavy metals, biocides and others, from the bacterial cell. To overcome antimicrobial resistance caused by active efflux, efforts are required to better understand the fundamentals of drug efflux mechanisms. There is also a need to elucidate how these mechanisms are regulated and how they respond upon exposure to antimicrobials. Understanding these will allow the development of combined therapies using efflux inhibitors together with antibiotics to act on Gram-negative bacteria, such as the emerging globally disseminated MDR pathogen Escherichia coli ST131 (O25:H4). This review will summarize the current knowledge on resistance-nodulation-cell division efflux mechanisms in E. coli, a bacteria responsible for community and hospital-acquired infections, as well as foodborne outbreaks worldwide.

  15. The Ins and Outs of RND Efflux Pumps in Escherichia coli

    Directory of Open Access Journals (Sweden)

    João eAnes

    2015-06-01

    Full Text Available Infectious diseases remain one of the principal causes of morbidity and mortality in the world. Relevant authorities including the WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. They have also reaffirmed the urgent need for investment in the discovery and development of new antibiotics and therapeutic approaches to treat multidrug resistant (MDR bacteria.The extensive use of antimicrobial compounds in diverse environments, including farming and healthcare, has been identified as one of the main causes for the emergence of MDR bacteria. Induced selective pressure has led bacteria to develop new strategies of defence against these chemicals. Bacteria can accomplish this by several mechanisms, including enzymatic inactivation of the target compound; decreased cell permeability; target protection and/or overproduction; altered target site/enzyme and increased efflux due to over-expression of efflux pumps.Efflux pumps can be specific for a single substrate or can confer resistance to multiple antimicrobials by facilitating the extrusion of a broad range of compounds including antibiotics, heavy metals, biocides and others, from the bacterial cell. To overcome antimicrobial resistance caused by active efflux, efforts are required to better understand the fundamentals of drug efflux mechanisms. There is also a need to elucidate how these mechanisms are regulated and how they respond upon exposure to antimicrobials. Understanding these will allow the development of combined therapies using efflux inhibitors together with antibiotics to act on Gram-negative bacteria, such as the emerging globally disseminated MDR pathogen Escherichia coli ST131 (O25:H4. This review will summarise the current knowledge on resistance-nodulation-cell division efflux mechanisms in E. coli, a bacteria responsible for community and hospital-acquired infections, as well as foodborne

  16. The ins and outs of RND efflux pumps in Escherichia coli

    Science.gov (United States)

    Anes, João; McCusker, Matthew P.; Fanning, Séamus; Martins, Marta

    2015-01-01

    Infectious diseases remain one of the principal causes of morbidity and mortality in the world. Relevant authorities including the WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. They have also reaffirmed the urgent need for investment in the discovery and development of new antibiotics and therapeutic approaches to treat multidrug resistant (MDR) bacteria. The extensive use of antimicrobial compounds in diverse environments, including farming and healthcare, has been identified as one of the main causes for the emergence of MDR bacteria. Induced selective pressure has led bacteria to develop new strategies of defense against these chemicals. Bacteria can accomplish this by several mechanisms, including enzymatic inactivation of the target compound; decreased cell permeability; target protection and/or overproduction; altered target site/enzyme and increased efflux due to over-expression of efflux pumps. Efflux pumps can be specific for a single substrate or can confer resistance to multiple antimicrobials by facilitating the extrusion of a broad range of compounds including antibiotics, heavy metals, biocides and others, from the bacterial cell. To overcome antimicrobial resistance caused by active efflux, efforts are required to better understand the fundamentals of drug efflux mechanisms. There is also a need to elucidate how these mechanisms are regulated and how they respond upon exposure to antimicrobials. Understanding these will allow the development of combined therapies using efflux inhibitors together with antibiotics to act on Gram-negative bacteria, such as the emerging globally disseminated MDR pathogen Escherichia coli ST131 (O25:H4). This review will summarize the current knowledge on resistance-nodulation-cell division efflux mechanisms in E. coli, a bacteria responsible for community and hospital-acquired infections, as well as foodborne outbreaks worldwide

  17. Slower phloem transport in gymnosperm trees can be attributed to higher sieve element resistance

    DEFF Research Database (Denmark)

    Liesche, Johannes; Windt, Carel; Bohr, Tomas

    2015-01-01

    In trees, carbohydrates produced in photosynthesizing leaves are transported to roots and other sink organs over distances of up to 100 m inside a specialized transport tissue, the phloem. Angiosperm and gymnosperm trees have a fundamentally different phloem anatomy with respect to cell size, shape...... and connectivity. Whether these differences have an effect on the physiology of carbohydrate transport, however, is not clear. A meta-analysis of the experimental data on phloem transport speed in trees yielded average speeds of 56 cm h−1 for angiosperm trees and 22 cm h−1 for gymnosperm trees. Similar values...... resulted from theoretical modeling using a simple transport resistance model. Analysis of the model parameters clearly identified sieve element (SE) anatomy as the main factor for the significantly slower carbohydrate transport speed inside the phloem in gymnosperm compared with angiosperm trees. In order...

  18. CO2 efflux from soils with seasonal water repellency

    Science.gov (United States)

    Urbanek, Emilia; Doerr, Stefan H.

    2017-10-01

    Soil carbon dioxide (CO2) emissions are strongly dependent on pore water distribution, which in turn can be modified by reduced wettability. Many soils around the world are affected by soil water repellency (SWR), which reduces infiltration and results in diverse moisture distribution. SWR is temporally variable and soils can change from wettable to water-repellent and vice versa throughout the year. Effects of SWR on soil carbon (C) dynamics, and specifically on CO2 efflux, have only been studied in a few laboratory experiments and hence remain poorly understood. Existing studies suggest soil respiration is reduced with increasing severity of SWR, but the responses of soil CO2 efflux to varying water distribution created by SWR are not yet known.Here we report on the first field-based study that tests whether SWR indeed reduces soil CO2 efflux, based on in situ measurements carried out over three consecutive years at a grassland and pine forest sites under the humid temperate climate of the UK.Soil CO2 efflux was indeed very low on occasions when soil exhibited consistently high SWR and low soil moisture following long dry spells. Low CO2 efflux was also observed when SWR was absent, in spring and late autumn when soil temperatures were low, but also in summer when SWR was reduced by frequent rainfall events. The highest CO2 efflux occurred not when soil was wettable, but when SWR, and thus soil moisture, was spatially patchy, a pattern observed for the majority of the measurement period. Patchiness of SWR is likely to have created zones with two different characteristics related to CO2 production and transport. Zones with wettable soil or low persistence of SWR with higher proportion of water-filled pores are expected to provide water with high nutrient concentration resulting in higher microbial activity and CO2 production. Soil zones with high SWR persistence, on the other hand, are dominated by air-filled pores with low microbial activity, but facilitating O2

  19. CO2 efflux from soils with seasonal water repellency

    Directory of Open Access Journals (Sweden)

    E. Urbanek

    2017-10-01

    Full Text Available Soil carbon dioxide (CO2 emissions are strongly dependent on pore water distribution, which in turn can be modified by reduced wettability. Many soils around the world are affected by soil water repellency (SWR, which reduces infiltration and results in diverse moisture distribution. SWR is temporally variable and soils can change from wettable to water-repellent and vice versa throughout the year. Effects of SWR on soil carbon (C dynamics, and specifically on CO2 efflux, have only been studied in a few laboratory experiments and hence remain poorly understood. Existing studies suggest soil respiration is reduced with increasing severity of SWR, but the responses of soil CO2 efflux to varying water distribution created by SWR are not yet known.Here we report on the first field-based study that tests whether SWR indeed reduces soil CO2 efflux, based on in situ measurements carried out over three consecutive years at a grassland and pine forest sites under the humid temperate climate of the UK.Soil CO2 efflux was indeed very low on occasions when soil exhibited consistently high SWR and low soil moisture following long dry spells. Low CO2 efflux was also observed when SWR was absent, in spring and late autumn when soil temperatures were low, but also in summer when SWR was reduced by frequent rainfall events. The highest CO2 efflux occurred not when soil was wettable, but when SWR, and thus soil moisture, was spatially patchy, a pattern observed for the majority of the measurement period. Patchiness of SWR is likely to have created zones with two different characteristics related to CO2 production and transport. Zones with wettable soil or low persistence of SWR with higher proportion of water-filled pores are expected to provide water with high nutrient concentration resulting in higher microbial activity and CO2 production. Soil zones with high SWR persistence, on the other hand, are dominated by air-filled pores with low microbial activity

  20. Expression of the CDR1 efflux pump in clinical Candida albicans isolates is controlled by a negative regulatory element

    International Nuclear Information System (INIS)

    Gaur, Naseem Akhtar; Manoharlal, Raman; Saini, Preeti; Prasad, Tulika; Mukhopadhyay, Gauranga; Hoefer, Milan; Morschhaeuser, Joachim; Prasad, Rajendra

    2005-01-01

    Resistance to azole antifungal drugs in clinical isolates of the human fungal pathogen Candida albicans is often caused by constitutive overexpression of the CDR1 gene, which encodes a multidrug efflux pump of the ABC transporter superfamily. To understand the relevance of a recently identified negative regulatory element (NRE) in the CDR1 promoter for the control of CDR1 expression in the clinical scenario, we investigated the effect of mutation or deletion of the NRE on CDR1 expression in two matched pairs of azole-sensitive and resistant clinical isolates of C. albicans. Expression of GFP or lacZ reporter genes from the wild type CDR1 promoter was much higher in the azole-resistant C. albicans isolates than in the azole-susceptible isolates, reflecting the known differences in CDR1 expression in these strains. Deletion or mutation of the NRE resulted in enhanced reporter gene expression in azole-sensitive strains, but did not further increase the already high CDR1 promoter activity in the azole-resistant strains. In agreement with these findings, electrophoretic mobility shift assays showed a reduced binding to the NRE of nuclear extracts from the resistant C. albicans isolates as compared with extracts from the sensitive isolates. These results demonstrate that the NRE is involved in maintaining CDR1 expression at basal levels and that this repression is overcome in azole-resistant clinical C. albicans isolates, resulting in constitutive CDR1 overexpression and concomitant drug resistance

  1. The PseEF efflux system is a virulence factor of Pseudomonas syringae pv. syringae.

    Science.gov (United States)

    Cho, Hyosun; Kang, Hyojeung

    2012-02-01

    An ATP-binding cassette (ABC) transporter, called the PseEF efflux system, was identified at the left border of the syr-syp genomic island of Pseudomonas syringae pv. syringae strain B301D. The PseEF efflux system was located within a 3.3-kb operon that encodes a periplasmic membrane fusion protein (PseE), and an ABC-type cytoplasmic membrane protein (PseF). The PseEF efflux system exhibited amino acid homology to a putative ABC efflux system (MacAB) of E. coli W3104 with identities of 47.2% (i.e., PseE to MacA) and 57.6% (i.e., PseF to MacB). A nonpolar mutation within the pseF gene was generated by nptII insertional mutagenesis. The resultant mutant strain showed significant reduction in secretion of syringomycin (74%) and syringopeptin (71%), as compared to parental strain B301D. Quantitative real-time RT-PCR was used to determine transcript levels of the syringomycin (syrB1) and syringopeptin (sypA) synthetase genes in strain B301D-HK7 (a pseF mutant). Expression of the sypA gene by mutant strain B301D-HK7 was approximately 6.9% as compared to that of parental strain B301D, while the syrB1 gene expression by mutant strain B301D-HK7 was nearly 14.6%. In addition, mutant strain B301D-HK7 was less virulent by approximately 67% than parental strain B301D in immature cherry fruits. Mutant strain B301D-HK7 was not reduced in resistance to any antibiotics used in this study as compared to parental strain B301D. Expression (transcript levels) of the pseF gene was induced approximately six times by strain B301D grown on syringomycin minimum medium (SRM) supplemented with the plant signal molecules arbutin and D-fructose (SRMAF), as compared to that of strain B301D grown on SRM (in the absence of plant signal molecules). In addition, during infection of bean plants by P. syringae pv. syringae strain B728a, expression of the pseF gene increased at 3 days after inoculation (dai). More than 180-fold induction was observed in transcript levels of the pseF gene by parental

  2. Mathematical model for the transport of fluoroquinolone and its resistant bacteria in aquatic environment.

    Science.gov (United States)

    Gothwal, Ritu; Thatikonda, Shashidhar

    2017-08-05

    Development of antibiotic resistance in environmental bacteria is a direct threat to public health. Therefore, it becomes necessary to understand the fate and transport of antibiotic and its resistant bacteria. This paper presents a mathematical model for spatial and temporal transport of fluoroquinolone and its resistant bacteria in the aquatic environment of the river. The model includes state variables for organic matter, fluoroquinolone, heavy metals, and susceptible and resistant bacteria in the water column and sediment bed. Resistant gene is the factor which makes bacteria resistant to a particular antibiotic and is majorly carried on plasmids. Plasmid-mediated resistance genes are transferable between different bacterial species through conjugation (horizontal resistance transfer). This model includes plasmid dynamics between susceptible and resistant bacteria by considering the rate of horizontal resistance gene transfer among bacteria and the rate of losing resistance (segregation). The model describes processes which comprise of advection, dispersion, degradation, adsorption, diffusion, settling, resuspension, microbial growth, segregation, and transfer of resistance genes. The mathematical equations were solved by using numerical methods (implicit-explicit scheme) with appropriate boundary conditions. The development of the present model was motivated by the fact that the Musi River is heavily impacted by antibiotic pollution which led to the development of antibiotic resistance in its aquatic environment. The model was simulated for hypothetical pollution scenarios to predict the future conditions under various pollution management alternatives. The simulation results of the model for different cases show that the concentration of antibiotic, the concentration of organic matter, segregation rate, and horizontal transfer rate are the governing factors in the variation of population density of resistant bacteria. The treatment of effluents for

  3. [18F]FDG is not transported by P-glycoprotein and breast cancer resistance protein at the rodent blood–brain barrier

    International Nuclear Information System (INIS)

    Wanek, Thomas; Traxl, Alexander; Bankstahl, Jens P.; Bankstahl, Marion; Sauberer, Michael; Langer, Oliver; Kuntner, Claudia

    2015-01-01

    Introduction: Transport of 2-[ 18 F]fluoro-2-deoxy-D-glucose ([ 18 F]FDG) by the multidrug efflux transporters P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) at the blood–brain barrier (BBB) may confound the interpretation of [ 18 F]FDG brain PET data. Aim of this study was to assess the influence of ABCB1 and ABCG2 at the BBB on brain distribution of [ 18 F]FDG in vivo by performing [ 18 F]FDG PET scans in wild-type and transporter knockout mice and by evaluating changes in [ 18 F]FDG brain distribution after transporter inhibition. Methods: Dynamic small-animal PET experiments (60 min) were performed with [ 18 F]FDG in groups of wild-type and transporter knockout mice (Abcb1a/b (−/−) , Abcg2 (−/−) and Abcb1a/b (−/−) Abcg2 (−/−) ) and in wild-type rats without and with i.v. pretreatment with the known ABCB1 inhibitor tariquidar (15 mg/kg, given at 2 h before PET). Blood was sampled from animals from the orbital sinus vein at the end of the PET scans and measured in a gamma counter. Brain uptake of [ 18 F]FDG was expressed as the brain-to-blood radioactivity concentration ratio in the last PET time frame (K b,brain ). Results: K b,brain values of [ 18 F]FDG were not significantly different between different mouse types both without and with tariquidar pretreatment. The blood-to-brain transfer rate constant of [ 18 F]FDG was significantly lower in tariquidar-treated as compared with vehicle-treated rats (0.350 ± 0.025 mL/min/g versus 0.416 ± 0.024 mL/min/g, p = 0.026, paired t-test) but K b,brain values were not significantly different between both rat groups. Conclusion: Our results show that [ 18 F]FDG is not transported by Abcb1 at the mouse and rat BBB in vivo. In addition we found no evidence for Abcg2 transport of [ 18 F]FDG at the mouse BBB. Advances in knowledge and implications for patient care: Our findings imply that functional activity of ABCB1 and ABCG2 at the BBB does not need to be taken into account when

  4. In vitro drug response and efflux transporters associated with drug resistance in pediatric high grade glioma and diffuse intrinsic pontine glioma

    NARCIS (Netherlands)

    Veringa, S.J.; Biesmans, D.; Vuurden, D.G. van; Jansen, M.H.; Wedekind, L.E.; Horsman, I.; Wesseling, P.; Vandertop, W.P.; Noske, D.P.; Kaspers, G.J.L.; Hulleman, E.

    2013-01-01

    Pediatric high-grade gliomas (pHGG), including diffuse intrinsic pontine gliomas (DIPG), are the leading cause of cancer-related death in children. While it is clear that surgery (if possible), and radiotherapy are beneficial for treatment, the role of chemotherapy for these tumors is still unclear.

  5. Thermodynamic secrets of multidrug resistance: A new take on transport mechanisms of secondary active antiporters.

    Science.gov (United States)

    Zhang, Xuejun C; Liu, Min; Lu, Guangyuan; Heng, Jie

    2018-03-01

    Multidrug resistance (MDR) presents a growing challenge to global public health. Drug extrusion transporters play a critical part in MDR; thus, their mechanisms of substrate recognition are being studied in great detail. In this work, we review common structural features of key transporters involved in MDR. Based on our membrane potential-driving hypothesis, we propose a general energy-coupling mechanism for secondary-active antiporters. This putative mechanism provides a common framework for understanding poly-specificity of most-if not all-MDR transporters. © 2017 The Protein Society.

  6. The transport of antibiotic resistance genes and residues in groundwater near swine production facilities

    Science.gov (United States)

    Lin, Y. F.; Yannarell, A. C.; Mackie, R. I.; Krapac, I. G.; Chee-Sanford, J. S.; Koike, S.

    2008-12-01

    The use of antibiotics at concentrated animal feeding operations (CAFOs) for disease prevention, disease treatment, and growth promotion can contribute to the spread of antibiotic compounds, their breakdown products, and antibiotic resistant bacteria and/or the genes that confer resistance. In addition, constitutive use of antibiotics at sub-therapeutic levels can select for antibiotic resistance among the bacteria that inhabit animal intestinal tracts, onsite manure treatment facilities, and any environments receiving significant inputs of manure (e.g. through waste lagoon leakage or fertilizer amendments to farm soils). If the antibiotic resistant organisms persist in these new environments, or if they participate in genetic exchanges with the native microflora, then CAFOs may constitute a significant reservoir for the spread of antibiotic resistance to the environment at large. Our results have demonstrated that leakage from waste treatment lagoons can influence the presence and persistence of tetracycline resistance genes in the shallow aquifer adjacent to swine CAFOs, and molecular phylogeny allowed us to distinguish "native" tetracycline resistance genes in control groundwater wells from manure-associated genes introduced from the lagoon. We have also been able to detect the presence of erythromycin resistance genes in CAFO surface and groundwater even though erythromycin is strictly reserved for use in humans and thus is not utilized at any of these sites. Ongoing research, including modeling of particle transport in groundwater, will help to determine the potential spatial and temporal extent of CAFO-derived antibiotic resistance.

  7. MexXY multidrug efflux system of Pseudomonas aeruginosa.

    Science.gov (United States)

    Morita, Yuji; Tomida, Junko; Kawamura, Yoshiaki

    2012-01-01

    Anti-pseudomonas aminoglycosides, such as amikacin and tobramycin, are used in the treatment of Pseudomonas aeruginosa infections. However, their use is linked to the development of resistance. During the last decade, the MexXY multidrug efflux system has been comprehensively studied, and numerous reports of laboratory and clinical isolates have been published. This system has been increasingly recognized as one of the primary determinants of aminoglycoside resistance in P. aeruginosa. In P. aeruginosa cystic fibrosis isolates, upregulation of the pump is considered the most common mechanism of aminoglycoside resistance. Non-fermentative Gram-negative pathogens possessing very close MexXY orthologs such as Achromobacter xylosoxidans and various Burkholderia species (e.g., Burkholderia pseudomallei and B. cepacia complexes), but not B. gladioli, are intrinsically resistant to aminoglycosides. Here, we summarize the properties (e.g., discovery, mechanism, gene expression, clinical significance) of the P. aeruginosa MexXY pump and other aminoglycoside efflux pumps such as AcrD of Escherichia coli, AmrAB-OprA of B. pseudomallei, and AdeABC of Acinetobacter baumannii. MexXY inducibility of the PA5471 gene product, which is dependent on ribosome inhibition or oxidative stress, is noteworthy. Moreover, the discovery of the cognate outer membrane component (OprA) of MexXY in the multidrug-resistant clinical isolate PA7, serotype O12 deserves special attention.

  8. MexXY multidrug efflux system of Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Yuji eMorita

    2012-11-01

    Full Text Available Anti-pseudomonas aminoglycosides, such as amikacin and tobramycin, are used in the treatment of Pseudomonas aeruginosa infections. However, their use is linked to the development of resistance. During the last decade, the MexXY multidrug efflux system has been comprehensively studied, and numerous reports of laboratory and clinical isolates have been published. This system has been increasingly recognized as one of the primary determinants of aminoglycoside resistance in P. aeruginosa. In P. aeruginosa cystic fibrosis isolates, upregulation of the pump is considered the most common mechanism of aminoglycoside resistance. Non-fermentative Gram-negative pathogens possessing very close MexXY orthologues such as Achromobacter xylosoxidans and various Burkholderia species [e.g., B. pseudomallei and B. cepacia complexes], but not B. gladioli, are intrinsically resistant to aminoglycosides. Here, we summarize the properties (e.g., discovery, mechanism, gene expression, clinical significance of the P. aeruginosa MexXY pump and other aminoglycoside efflux pumps such as AcrD of Escherichia coli, AmrAB-OprA of B. pseudomallei, and AdeABC of Acinetobacter baumannii. MexXY inducibility of the PA5471 gene product, which is dependent on ribosome inhibition or oxidative stress, is noteworthy. Moreover, the discovery of the cognate outer membrane component (OprA of MexXY in the multidrug-resistant clinical isolate PA7, serotype O12 deserves special attention.

  9. Laboratory evaluation of the ESwab transport system for the recovery of carbapenem-resistant Acinetobacter baumannii.

    Science.gov (United States)

    Moran-Gilad, J; Schwartz, D; Navon-Venezia, S; Carmeli, Y

    2012-07-01

    Microbiological surveillance for detection of carbapenem-resistant A. baumannii is important, but recovery of A. baumannii is inadequate. We studied A. baumannii recovery by a particular transport system that is possibly superior over standard swabs, using reference and clinical strains. First, the recovery rates relating to the various swabs were compared with regard to various combinations of transport times (0 h, 1 h, 24 h, 48 h), storage times (0 weeks, 1 week, 2 weeks, 4 weeks) and storage temperatures (4°c,-80°c) using live counts. Second, the recovery of different inocula of strains mixed with fecal microbiota was evaluated by plating on selective medium. The new transport system exhibited a decline of system performed well, even after prolonged transport or with a low inoculum, and its processing could be delayed by up to 2 weeks, especially if refrigerated. The new transport system may thus enhance A. baumannii surveillance.

  10. Characterization of drug transport by the human multidrug resistance protein 3 (ABCC3)

    NARCIS (Netherlands)

    Zelcer, N.; Saeki, T.; Reid, G.; Beijnen, J. H.; Borst, P.

    2001-01-01

    We have characterized the substrate specificity and mechanism of transport of the human multidrug resistance-associated protein 3 (MRP3). A murine fibroblast-like cell line generated from the kidneys of mice that lack Mdr1a/b and Mrp1 was retrovirally transduced with MRP3 cDNA. Stable clones

  11. What do proton motive force driven multidrug resistance transporters have in common?

    NARCIS (Netherlands)

    Mazurkiewicz, P.; Driessen, A.J.M.; Konings, W.N

    2005-01-01

    The extensive progress of genome sequencing projects in recent years has demonstrated that multidrug resistance (MDR) transporters are widely spread among all domains of life. This indicates that they play crucial roles in the survival of organisms. Moreover, antibiotic and chemotherapeutic

  12. Transmission of methicillin resistant Staphylococcus aureus among pigs during transportation from farm to abattoir

    NARCIS (Netherlands)

    Broens, E.M.; Graat, E.A.M.; Wolf, van der P.J.; Giessen, van de A.W.; Jong, de M.C.M.

    2011-01-01

    The prevalence of methicillin resistant Staphylococcus aureus (MRSA) in pigs at abattoirs is higher than in pigs sampled on farms. This study investigated whether MRSA negative pigs can become MRSA positive during transportation from the farm to the abattoir after exposure to other pigs and

  13. ABCB1 gene polymorphisms is not associated with drug-resistant epilepsy in Romanian children

    Directory of Open Access Journals (Sweden)

    Butila Anamaria Todoran

    2015-12-01

    Full Text Available Background: P-glycoprotein (P-gp, a drug efflux transporter, encoded by the gene MDR1 ABCB1 multidrug resistant, reduces the penetration through the brain by the AEDs. Overexpression of Pgp in blood-brain barrier in epileptic patients play an important rol in pharmacoresistance. The aim of this study was to evaluate a possible association between C1236T and G2677T ABCB1 gene polymorphisms and drug-resistant epilepsy in Romanian children.

  14. Anion-coupled Na efflux mediated by the human red blood cell Na/K pump

    International Nuclear Information System (INIS)

    Dissing, S.; Hoffman, J.F.

    1990-01-01

    The red cell Na/K pump is known to continue to extrude Na when both Na and K are removed from the external medium. Because this ouabain-sensitive flux occurs in the absence of an exchangeable cation, it is referred to as uncoupled Na efflux. This flux is also known to be inhibited by 5 mM Nao but to a lesser extent than that inhibitable by ouabain. Uncoupled Na efflux via the Na/K pump therefore can be divided into a Nao-sensitive and Nao-insensitive component. We used DIDS-treated, SO4-equilibrated human red blood cells suspended in HEPES-buffered (pHo 7.4) MgSO4 or (Tris)2SO4, in which we measured 22Na efflux, 35SO4 efflux, and changes in the membrane potential with the fluorescent dye, diS-C3 (5). A principal finding is that uncoupled Na efflux occurs electroneurally, in contrast to the pump's normal electrogenic operation when exchanging Nai for Ko. This electroneutral uncoupled efflux of Na was found to be balanced by an efflux of cellular anions. (We were unable to detect any ouabain-sensitive uptake of protons, measured in an unbuffered medium at pH 7.4 with a Radiometer pH-STAT.) The Nao-sensitive efflux of Nai was found to be 1.95 +/- 0.10 times the Nao-sensitive efflux of (SO4)i, indicating that the stoichiometry of this cotransport is two Na+ per SO4=, accounting for 60-80% of the electroneutral Na efflux. The remainder portion, that is, the ouabain-sensitive Nao-insensitive component, has been identified as PO4-coupled Na transport and is the subject of a separate paper. That uncoupled Na efflux occurs as a cotransport with anions is supported by the result, obtained with resealed ghosts, that when internal and external SO4 was substituted by the impermeant anion, tartrate i,o, the efflux of Na was inhibited 60-80%. This inhibition could be relieved by the inclusion, before DIDS treatment, of 5 mM Cli,o

  15. Regulation of ABC transporters blood-brain barrier: the good, the bad, and the ugly.

    Science.gov (United States)

    Miller, David S

    2015-01-01

    The brain capillary endothelial cells that constitute the blood-brain barrier express multiple ABC transport proteins on the luminal, blood-facing, plasma membrane. These transporters function as ATP-driven efflux pumps for xenobiotics and endogenous metabolites. High expression of these ABC transporters at the barrier is a major obstacle to the delivery of therapeutics, including chemotherapeutics, to the CNS. Here, I review the signals that alter ABC transporter expression and transport function with an emphasis on P-glycoprotein, Mrp2, and breast cancer resistance protein (BCRP), the efflux transporters for which we have the most detailed picture of regulation. Recent work shows that transporter protein expression can be upregulated in response to inflammatory and oxidative stress, therapeutic drugs, diet, and persistent environmental pollutants; as a consequence, drug delivery to the brain is reduced (potentially bad and ugly). In contrast, basal transport activity of P-glycoprotein and BCRP can be reduced through complex signaling pathways that involve events in and on the brain capillary endothelial cells. Targeting these signaling events provides opportunities to rapidly and reversibly increase brain accumulation of drugs that are substrates for the transporters (potentially good). The clinical usefulness of targeting signaling to reduce efflux transporter activity and improve drug delivery to the CNS remains to be established. © 2015 Elsevier Inc. All rights reserved.

  16. The MRD1 (P-glycoprotein) and MRP (P-190) transporters do not play a major role in the intrinsic multiple drug resistance of Jurkat T lymphocytes.

    Science.gov (United States)

    Martel, J; Payet, M D; Dupuis, G

    1997-08-01

    The response of T cells in relation to the cell cycle has not been extensively studied. We have attempted to address this question using Jurkat T cells treated with cytostatic drugs known to arrest cells at various transition points of their cycle. We tested various concentrations of drugs that act at G1/S (hydroxyurea, lovastatin, thymidine), early S [aphidicolin, cyclosporin A (CsA), rapamycin] or G2 + M (colchicine, nocodazole) in 24 h cultures. Cytofluorimetric analyses showed that cycling Jurkat cells were equally distributed between the G1 (44.9 +/- 6.5%) and S (42.3 +/- 8.0%) phases. Cell distribution in G2 + M was 12.7 +/- 2.8%. Hydroxyurea but not lovastatin increased the percentage of cells in S phase to ca 60-70% and both drugs decreased it to ca 30% in G1. Thymidine had no effects. Aphidicolin increased the distribution in S phase to ca 70% with a decrease in G1 to ca 30%. CsA and rapamycin increased the percentage of the cells in G1 to ca 70% and decreased it to ca 25% in S phase. Nocodazole increased cell distribution in G2 + M to ca 60% and induced a decrease in G1 to ca 10%. The effects of the drugs were not related to their toxicity and their limited efficiency raised the possibility that Jurkat cells possessed an intrinsic resistance to these xenobiotics. Time-course analysis showed (scanning electron microscopy) that the early morphological changes induced by colchicine were reversible. Drug efflux experiments (vinblastine) suggested that an ATP-dependent process could be involved. However, Northern blot analyses showed a weak signal for MDR1 (MDR, multiple drug resistance). In contrast, a probe for multidrug resistance-associated protein (P-190; MRP) showed a strong signal in Jurkat and peripheral lymphocytes. The presence of drugs (CsA, nocodazole, thymidine) (24 h) did not up-regulate its message and cell treatment with BSO only moderately affected the efficiency of the glutathione S-conjugate MRP transporter. Our data suggest that the

  17. Computer-Aided Recognition of ABC Transporters Substrates and Its Application to the Development of New Drugs for Refractory Epilepsy.

    Science.gov (United States)

    Couyoupetrou, Manuel; Gantner, Melisa E; Di Ianni, Mauricio E; Palestro, Pablo H; Enrique, Andrea V; Gavernet, Luciana; Ruiz, Maria E; Pesce, Guido; Bruno-Blanch, Luis E; Talevi, Alan

    2017-01-01

    Despite the introduction of more than 15 third generation antiepileptic drugs to the market from 1990 to the moment, about one third of the epileptic patients still suffer from refractory to intractable epilepsy. Several hypotheses seek to explain the failure of drug treatments to control epilepsy symptoms in such patients. The most studied one proposes that drug resistance might be related with regional overactivity of efflux transporters from the ATP-Binding Cassette (ABC) superfamily at the blood-brain barrier and/or the epileptic foci in the brain. Different strategies have been conceived to address the transporter hypothesis, among them inhibiting or down-regulating the efflux transporters or bypassing them through a diversity of artifices. Here, we review scientific evidence supporting the transporter hypothesis along with its limitations, as well as computer-assisted early recognition of ABC transporter substrates as an interesting strategy to develop novel antiepileptic drugs capable of treating refractory epilepsy linked to ABC transporters overactivity.

  18. Regorafenib is transported by the organic anion transporter 1B1 and the multidrug resistance protein 2.

    Science.gov (United States)

    Ohya, Hiroki; Shibayama, Yoshihiko; Ogura, Jiro; Narumi, Katsuya; Kobayashi, Masaki; Iseki, Ken

    2015-01-01

    Regorafenib is a small molecule inhibitor of tyrosine kinases, and has been shown to improve the outcomes of patients with advanced colorectal cancer and advanced gastrointestinal stromal tumors. The transport profiles of regorafenib by various transporters were evaluated. HEK293/organic anion transporting polypeptide 1B1 (OATP1B1) cells exhibited increased drug sensitivity to regorafenib. Regorafenib inhibited the uptake of 3H-estrone sulfate by HEK293/OATP1B1 cells in a dose-dependent manner, but did not affect its elimination by P-glycoproteins. The concentration of regorafenib was significantly lower in LLC-PK1/multidrug resistance protein 2 (MRP2) cells than in LLC-PK1 cells treated with the MRP2 inhibitor, MK571. MK571 abolished the inhibitory effects of regorafenib on intracellular accumulation in LLC-PK1/MRP2 cells. The uptake of regorafenib was significantly higher in HEK293/OATP1B1 cells than in OATP1B1-mock cells. Transport kinetics values were estimated to be Km=15.9 µM and Vmax=1.24 nmol/mg/min. No significant difference was observed in regorafenib concentrations between HEK293/OATP1B3 and OATP1B3-mock cells. These results indicated that regorafenib is a substrate for MRP2 and OATP1B1, and also suggest that the substrate preference of regorafenib may implicate the pharmacokinetic profiles of regorafenib.

  19. Transport proteins determine drug sensitivity and resistance in a protozoan parasite, Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Jane Claire Munday

    2015-03-01

    Full Text Available Drug resistance in pathogenic protozoa is very often caused by changes to the ‘transportome’ of the parasites. In Trypanosoma brucei, several transporters have been implicated in uptake of the main classes of drugs, diamidines and melaminophenyl arsenicals. The resistance mechanism had been thought to be due to loss of a transporter known to carry both types of agents: the aminopurine transporter P2, encoded by the gene TbAT1. However, although loss of P2 activity is well-documented as the cause of resistance to the veterinary diamidine diminazene aceturate (Berenil®, cross-resistance between the human-use arsenical melarsoprol and the diamidine pentamidine (MPXR is the result of loss of a separate High Affinity Pentamidine Transporter (HAPT1. A genome-wide RNAi library screen for resistance to pentamidine, published in 2012, gave the key to the genetic identity of HAPT1 by linking the phenomenon to a locus that contains the closely related T. brucei aquaglyceroporin genes TbAQP2 and TbAQP3. Further analysis determined that knockdown of only one pore, TbAQP2, produced the MPXR phenotype. TbAQP2 is an unconventional aquaglyceroporin with unique residues in the selectivity region of the pore, and it was found that in several MPXR lab strains the WT gene was either absent or replaced by a chimeric protein, recombined with parts of TbAQP3. Importantly, wild-type AQP2 was also absent in field isolates of T. b. gambiense, correlating with the outcome of melarsoprol treatment. Expression of a wild-type copy of TbAQP2 in even the most resistant strain completely reversed MPXR and re-introduced HAPT1 function and transport kinetics. Expression of TbAQP2 in Leishmania mexicana introduced a pentamidine transport activity indistinguishable from HAPT1. Although TbAQP2 has been shown to function as a classical aquaglyceroporin it is now clear that it is also a high affinity drug transporter, HAPT1. We discuss here a possible structural rationale for this

  20. Biophysics of Cell Membrane Lipids in Cancer Drug Resistance: Implications for Drug Transport and Drug Delivery with Nanoparticles

    Science.gov (United States)

    Peetla, Chiranjeevi; Vijayaraghavalu, Sivakumar; Labhasetwar, Vinod

    2013-01-01

    In this review, we focus on the biophysics of cell membrane lipids, particularly when cancers develop acquired drug resistance, and how biophysical changes in resistant cell membrane influence drug transport and nanoparticle-mediated drug delivery. Recent advances in membrane lipid research show the varied roles of lipids in regulating membrane P-glycoprotein function, membrane trafficking, apoptotic pathways, drug transport, and endocytic functions, particularly endocytosis, the primary mechanism of cellular uptake of nanoparticle-based drug delivery systems. Since acquired drug resistance alters lipid biosynthesis, understanding the role of lipids in cell membrane biophysics and its effect on drug transport is critical for developing effective therapeutic and drug delivery approaches to overcoming drug resistance. Here we discuss novel strategies for (a) modulating the biophysical properties of membrane lipids of resistant cells to facilitate drug transport and regain endocytic function and (b) developing effective nanoparticles based on their biophysical interactions with membrane lipids to enhance drug delivery and overcome drug resistance. PMID:24055719

  1. Structural and functional aspects of the multidrug efflux pump AcrB.

    Science.gov (United States)

    Eicher, Thomas; Brandstätter, Lorenz; Pos, Klaas M

    2009-08-01

    The tripartite efflux system AcrA/AcrB/TolC is the main pump in Escherichia coli for the efflux of multiple antibiotics, dyes, bile salts and detergents. The inner membrane component AcrB is central to substrate recognition and energy transduction and acts as a proton/drug antiporter. Recent structural studies show that homotrimeric AcrB can adopt different monomer conformations representing consecutive states in an allosteric functional rotation transport cycle. The conformational changes create an alternate access drug transport tunnel including a hydrophobic substrate binding pocket in one of the cycle intermediates.

  2. Overcoming Multidrug Resistance in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Karobi Moitra

    2015-01-01

    Full Text Available The principle mechanism of protection of stem cells is through the expression of ATP-binding cassette (ABC transporters. These transporters serve as the guardians of the stem cell population in the body. Unfortunately these very same ABC efflux pumps afford protection to cancer stem cells in tumors, shielding them from the adverse effects of chemotherapy. A number of strategies to circumvent the function of these transporters in cancer stem cells are currently under investigation. These strategies include the development of competitive and allosteric modulators, nanoparticle mediated delivery of inhibitors, targeted transcriptional regulation of ABC transporters, miRNA mediated inhibition, and targeting of signaling pathways that modulate ABC transporters. The role of ABC transporters in cancer stem cells will be explored in this paper and strategies aimed at overcoming drug resistance caused by these particular transporters will also be discussed.

  3. Epigenetic Modulation of the Biophysical Properties of Drug-Resistant Cell Lipids to Restore Drug Transport and Endocytic Functions

    OpenAIRE

    Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Lu, Shan; Labhasetwar, Vinod

    2012-01-01

    In our recent studies exploring the biophysical characteristics of resistant cell lipids, and the role they play in drug transport, we demonstrated the difference of drug-resistant breast cancer cells from drug-sensitive cells in lipid composition and biophysical properties, suggesting that cancer cells acquire a drug-resistant phenotype through the alteration of lipid synthesis to inhibit intracellular drug transport to protect from cytotoxic effect. In cancer cells, epigenetic changes (e.g....

  4. Mercury toxicokinetics of the healthy human term placenta involve amino acid transporters and ABC transporters

    International Nuclear Information System (INIS)

    Straka, Elisabeth; Ellinger, Isabella; Balthasar, Christina; Scheinast, Matthias; Schatz, Jasmin; Szattler, Tamara; Bleichert, Sonja; Saleh, Leila; Knöfler, Martin; Zeisler, Harald; Hengstschläger, Markus; Rosner, Margit; Salzer, Hans; Gundacker, Claudia

    2016-01-01

    Highlights: • It is known that MeHg is able to pass the placenta and to affect fetal brain development. • Uptake and efflux transporters were examined in human primary trophoblast cells and BeWo cells. • Involvement in mercury transfer was assessed by measurement of cellular mercury content upon siRNA mediated gene knockdown. • Localization of transporters was determined by immunofluorescence microscopy. • LAT1 and rBAT at the apical membrane of the syncytiotrophoblast (STB) are involved in MeHg uptake. • MRP1 located at basal membrane of STB mediates mercury efflux. - Abstract: Background: The capacity of the human placenta to handle exogenous stressors is poorly understood. The heavy metal mercury is well-known to pass the placenta and to affect brain development. An active transport across the placenta has been assumed. The underlying mechanisms however are virtually unknown. Objectives: Uptake and efflux transporters (17 candidate proteins) assumed to play a key role in placental mercury transfer were examined for expression, localization and function in human primary trophoblast cells and the trophoblast-derived choriocarcinoma cell line BeWo. Methods: To prove involvement of the transporters, we used small interfering RNA (siRNA) and exposed cells to methylmercury (MeHg). Total mercury contents of cells were analyzed by Cold vapor-atomic fluorescence spectrometry (CV-AFS). Localization of the proteins in human term placenta sections was determined via immunofluorescence microscopy. Results: We found the amino acid transporter subunits L-type amino acid transporter (LAT)1 and rBAT (related to b 0,+ type amino acid transporter) as well as the efflux transporter multidrug resistance associated protein (MRP)1 to be involved in mercury kinetics of trophoblast cells (t-test P < 0.05). Conclusion: The amino acid transporters located at the apical side of the syncytiotrophoblast (STB) manage uptake of MeHg. Mercury conjugated to glutathione (GSH) is

  5. Use of a combined effect model approach for discriminating between ABCB1- and ABCC1-type efflux activities in native bivalve gill tissue

    International Nuclear Information System (INIS)

    Faria, Melissa; Pavlichenko, Vasiliy; Burkhardt-Medicke, Kathleen; Soares, Amadeu M.V.M.; Altenburger, Rolf; Barata, Carlos; Luckenbach, Till

    2016-01-01

    Aquatic organisms, such as bivalves, employ ATP binding cassette (ABC) transporters for efflux of potentially toxic chemicals. Anthropogenic water contaminants can, as chemosensitizers, disrupt efflux transporter function enabling other, putatively toxic compounds to enter the organism. Applying rapid amplification of cDNA ends (RACE) PCR we identified complete cDNAs encoding ABCB1- and ABCC1-type transporter homologs from zebra mussel providing the molecular basis for expression of both transporter types in zebra mussel gills. Further, efflux activities of both transporter types in gills were indicated with dye accumulation assays where efflux of the dye calcein-am was sensitive to both ABCB1- (reversin 205, verapamil) and ABCC1- (MK571) type specific inhibitors. The assumption that different inhibitors targeted different efflux pump types was confirmed when comparing measured effects of binary inhibitor compound mixtures in dye accumulation assays with predictions from mixture effect models. Effects by the MK571/reversin 205 mixture corresponded better with independent action, whereas reversin 205/verapamil joint effects were better predicted by the concentration addition model indicating different and equal targets, respectively. The binary mixture approach was further applied to identify the efflux pump type targeted by environmentally relevant chemosensitizing compounds. Pentachlorophenol and musk ketone, which were selected after a pre-screen of twelve compounds that previously had been identified as chemosensitizers, showed mixture effects that corresponded better with concentration addition when combined with reversine 205 but with independent action predictions when combined with MK571 indicating targeting of an ABCB1-type efflux pump by these compounds. - Highlights: • Sequences and function of ABC efflux transporters in bivalve gills were explored. • Full length Dreissena polymorpha abcb1 and abcc1 cDNA sequences were identified. • A mixture effect

  6. Effects of α-adrenoceptor antagonists on ABCG2/BCRP-mediated resistance and transport.

    Science.gov (United States)

    Takara, Kohji; Yamamoto, Kazuhiro; Matsubara, Mika; Minegaki, Tetsuya; Takahashi, Minoru; Yokoyama, Teruyoshi; Okumura, Katsuhiko

    2012-01-01

    Acquired resistance of cancer cells to various chemotherapeutic agents is known as multidrug resistance, and remains a critical factor in the success of cancer treatment. It is necessary to develop the inhibitors for multidrug resistance. The aim of this study was to examine the effects of eight α-adrenoceptor antagonists on ABCG2/BCRP-mediated resistance and transport. Previously established HeLa/SN100 cells, which overexpress ABCG2/BCRP but not ABCB1/MDR1, were used. The effects of the antagonists on sensitivity to mitoxantrone and the transport activity of Hoehst33342, both substrates for ABCG2/BCRP, were evaluated using the WST-1 assay and cellular kinetics, respectively. ABCG2/BCRP mRNA expression and the cell cycle were also examined by real-time RT-PCR and flow cytometry, respectively. Sensitivity to mitoxantrone was reversed by the α-adrenoceptor antagonists in a concentration-dependent manner, although such effects were also found in the parental HeLa cells. Levels of ABCG2/BCRP mRNA expression were not influenced by the antagonists. The transport activity of Hoechst33342 was decreased by doxazosin and prazosin, but unaffected by the other antagonists. In addition, doxazosin and prazosin increased the proportion of S phase cells in the cultures treated with mitoxantrone, whereas the other α-adrenoceptor antagonists increased the percentage of cells in G(2)/M phase. These findings suggested that doxazosin and prazosin reversed resistance mainly by inhibiting ABCG2/BCRP-mediated transport, but the others affected sensitivity to mitoxantrone via a different mechanism.

  7. Effects of α-adrenoceptor antagonists on ABCG2/BCRP-mediated resistance and transport.

    Directory of Open Access Journals (Sweden)

    Kohji Takara

    Full Text Available Acquired resistance of cancer cells to various chemotherapeutic agents is known as multidrug resistance, and remains a critical factor in the success of cancer treatment. It is necessary to develop the inhibitors for multidrug resistance. The aim of this study was to examine the effects of eight α-adrenoceptor antagonists on ABCG2/BCRP-mediated resistance and transport. Previously established HeLa/SN100 cells, which overexpress ABCG2/BCRP but not ABCB1/MDR1, were used. The effects of the antagonists on sensitivity to mitoxantrone and the transport activity of Hoehst33342, both substrates for ABCG2/BCRP, were evaluated using the WST-1 assay and cellular kinetics, respectively. ABCG2/BCRP mRNA expression and the cell cycle were also examined by real-time RT-PCR and flow cytometry, respectively. Sensitivity to mitoxantrone was reversed by the α-adrenoceptor antagonists in a concentration-dependent manner, although such effects were also found in the parental HeLa cells. Levels of ABCG2/BCRP mRNA expression were not influenced by the antagonists. The transport activity of Hoechst33342 was decreased by doxazosin and prazosin, but unaffected by the other antagonists. In addition, doxazosin and prazosin increased the proportion of S phase cells in the cultures treated with mitoxantrone, whereas the other α-adrenoceptor antagonists increased the percentage of cells in G(2/M phase. These findings suggested that doxazosin and prazosin reversed resistance mainly by inhibiting ABCG2/BCRP-mediated transport, but the others affected sensitivity to mitoxantrone via a different mechanism.

  8. Load and resistance factor design calibration to determine a resistance factor for the modification of the Kansas Department of Transportation-Engineering News Record formula.

    Science.gov (United States)

    2014-02-01

    This report contains the results of a study describing the development of resistance factors for use : with the Kansas Department of Transportation (KDOT) Engineering News Record (ENR) formula for driven : piles. KDOT has verified driven pile resista...

  9. Paclitaxel-2'-Ethylcarbonate prodrug can circumvent P-glycoprotein-mediated cellular efflux to increase drug cytotoxicity.

    Science.gov (United States)

    Tanino, Tadatoshi; Nawa, Akihiro; Kondo, Eisaku; Kikkawa, Fumitaka; Daikoku, Tohru; Tsurumi, Tatsuya; Luo, Chenhong; Nishiyama, Yukihiro; Takayanagi, Yuki; Nishimori, Katuhiko; Ichida, Seiji; Wada, Tetsuyuki; Miki, Yasuyoshi; Iwaki, Masahiro

    2007-03-01

    The aim of the study was to investigate whether 2'-ethylcarbonate-linked paclitaxel (TAX-2'-Et) circumvents P-glycoprotein (P-gp)-mediated cellular efflux and cytotoxicity enhanced by TAX-2'-Et activation within human culture cells transfected with a rabbit liver carboxylesterase (Ra-CES) cDNA. TAX-2'-Et transport was characterized in a human colon carcinoma cell line (Caco-2) and paclitaxel (TAX)-resistant ovarian carcinoma cells (SKOV3/TAX60). Expression of P-gp, multidrug resistance protein (MRP) 2 and Ra-CES was detected by Western blotting. Cytotoxicity against Ra-CES-expressing cells and cellular amount of TAX produced were determined by MTT assay and using HPLC, respectively. Unlike rhodamine123 and TAX, TAX-2'-Et did not exhibit polarized transport in the Caco-2 cells in the absence or presence of verapamil. P-gp levels were expressed much higher in the SKOV3/ TAX60 cells than in the Caco-2 cells. MRP2 protein was not detectable in the SKOV3/TAX60 cells. Uptake by the SKOV3/TAX60 cells was similar in quantity to the amount internalized by P-gp-negative SKOV3 cells. In the SKOV3/TAX60 cells, cellular uptake of TAX-2'-Et was not altered regardless of the absence or presence of verapamil. The cytotoxicity to the untransfected SKOV3 cells induced by TAX-2'-Et was significantly lower than that induced by TAX. In the Ra-CES-expressing SKOV3 line, the EC50 value of TAX (10.6 nM) was approximately four-fold higher than that of TAX-2'-Et (2.5 nM). Transfection of Ra-CES into another TAX-resistant ovarian carcinoma cells (KOC-7c) conferred a high level of TAX-2'-Et cytotoxicity via prodrug activation. The intracellular levels of TAX produced from TAX-2'-Et in the Ra-CES-positive KOC-7c cells significantly increased compared with the levels seen in exposure of the untransfected KOC-7c cells to TAX. TAX-2'-Et can circumvent P-gp-associated cellular efflux of TAX. TAX-2'-Et is converted into TAX by the Ra-CES, supporting its potential use as a theoretical GDEPT strategy

  10. Putative ABC transporter responsible for acetic acid resistance in Acetobacter aceti.

    Science.gov (United States)

    Nakano, Shigeru; Fukaya, Masahiro; Horinouchi, Sueharu

    2006-01-01

    Two-dimensional gel electrophoretic analysis of the membrane fraction of Acetobacter aceti revealed the presence of several proteins that were produced in response to acetic acid. A 60-kDa protein, named AatA, which was mostly induced by acetic acid, was prepared; aatA was cloned on the basis of its NH2-terminal amino acid sequence. AatA, consisting of 591 amino acids and containing ATP-binding cassette (ABC) sequences and ABC signature sequences, belonged to the ABC transporter superfamily. The aatA mutation with an insertion of the neomycin resistance gene within the aatA coding region showed reduced resistance to acetic acid, formic acid, propionic acid, and lactic acid, whereas the aatA mutation exerted no effects on resistance to various drugs, growth at low pH (adjusted with HCl), assimilation of acetic acid, or resistance to citric acid. Introduction of plasmid pABC101 containing aatA under the control of the Escherichia coli lac promoter into the aatA mutant restored the defect in acetic acid resistance. In addition, pABC101 conferred acetic acid resistance on E. coli. These findings showed that AatA was a putative ABC transporter conferring acetic acid resistance on the host cell. Southern blot analysis and subsequent nucleotide sequencing predicted the presence of aatA orthologues in a variety of acetic acid bacteria belonging to the genera Acetobacter and Gluconacetobacter. The fermentation with A. aceti containing aatA on a multicopy plasmid resulted in an increase in the final yield of acetic acid.

  11. Action of cholecalciferol and alpha-tocopherol on Staphylococcus aureus efflux pumps.

    Science.gov (United States)

    Tintino, Saulo R; Morais-Tintino, Cícera D; Campina, Fábia F; Pereira, Raimundo L; Costa, Maria do S; Braga, Maria Flaviana B M; Limaverde, Paulo W; Andrade, Jacqueline C; Siqueira-Junior, José P; Coutinho, Henrique Douglas Melo; Balbino, Valdir Q; Leal-Balbino, Tereza C; Ribeiro-Filho, Jaime; Quintans-Júnior, Lucindo J

    2016-01-01

    Alpha-tocopherol is one the most abundant and biologically active isoforms of vitamin E. This compound is a potent antioxidant and one of most studied isoforms of vitamin E. Vitamin D3 (cholecalciferol) is an important nutrient for calcium homeostasis and bone health, that has also been recognized as a potent modulator of the immune response. Methicillin-resistant Staphylococcus aureus (MRSA) is the most important causative agent of both nosocomial and community-acquired infections. The aim of this study was to evaluate the inhibitory effect of alpha-tocopherol and cholecalciferol on both S. aureus and multidrug resistant S. aureus efflux pumps. The RN4220 strain has the plasmid pUL5054 that is the carrier of gene that encodes the macrolide resistance protein (an efflux pump) MsrA; the IS-58 strain possesses the TetK tetracycline efflux protein in its genome and the 1199B strain resists to hydrophilic fluoroquinolones via a NorA-mediated mechanism. The antibacterial activity was evaluated by determining the Minimal Inhibitory Concentration (MIC) and a possible inhibition of efflux pumps was associated to a reduction of the MIC. In this work we observed that in the presence of the treatments there was a decrease in the MIC for the RN4220 and IS-58 strains, suggesting that the substances presented an inhibitory effect on the efflux pumps of these strains. Significant efforts have been done to identify efflux pump inhibitors (EPIs) from natural sources and, therefore, the antibacterial properties of cholecalciferol and alpha-tocopherol might be attributed to a direct effect on the bacterial cell depending on their amphipathic structure.

  12. Glucose-induced insulin resistance of skeletal-muscle glucose transport and uptake

    DEFF Research Database (Denmark)

    Richter, Erik; Hansen, B F; Hansen, S A

    1988-01-01

    , impairment of insulin action on muscle glucose transport and uptake. Thus maximal insulin-stimulated glucose uptake at 12 mM-glucose decreased from 34.8 +/- 1.9 to 11.5 +/- 1.1 mumol/h per g (mean +/- S.E.M., n = 10) during 5 h perfusion. This decrease in glucose uptake was accompanied by a similar change...... in the presence of glucose and insulin. The data indicate that exposure to a moderately increased glucose concentration (12 mM) leads to rapidly developing resistance of skeletal-muscle glucose transport and uptake to maximal insulin stimulation. The effect of glucose is enhanced by simultaneous insulin exposure......, whereas exposure for 5 h to insulin itself does not cause measurable resistance to maximal insulin stimulation....

  13. Glucose-induced insulin resistance of skeletal-muscle glucose transport and uptake

    DEFF Research Database (Denmark)

    Richter, Erik; Hansen, B F; Hansen, S A

    1988-01-01

    in the presence of glucose and insulin. The data indicate that exposure to a moderately increased glucose concentration (12 mM) leads to rapidly developing resistance of skeletal-muscle glucose transport and uptake to maximal insulin stimulation. The effect of glucose is enhanced by simultaneous insulin exposure......, whereas exposure for 5 h to insulin itself does not cause measurable resistance to maximal insulin stimulation.......The ability of glucose and insulin to modify insulin-stimulated glucose transport and uptake was investigated in perfused skeletal muscle. Here we report that perfusion of isolated rat hindlimbs for 5 h with 12 mM-glucose and 20,000 microunits of insulin/ml leads to marked, rapidly developing...

  14. Energetics of sodium efflux from Escherichia coli

    International Nuclear Information System (INIS)

    Borbolla, M.G.; Rosen, B.P.

    1984-01-01

    When energy-starved cells of Escherichia coli were passively loaded with 22 Na+, efflux of sodium could be initiated by addition of a source of metabolic energy. Conditions were established where the source of energy was phosphate bond energy, an electrochemical proton gradient, or both. Only an electrochemical proton gradient was required for efflux from intact cells. These results are consistent with secondary exchange of Na+ for H+ catalyzed by a sodium/proton antiporter

  15. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance.

    Science.gov (United States)

    Jang, Cholsoon; Oh, Sungwhan F; Wada, Shogo; Rowe, Glenn C; Liu, Laura; Chan, Mun Chun; Rhee, James; Hoshino, Atsushi; Kim, Boa; Ibrahim, Ayon; Baca, Luisa G; Kim, Esl; Ghosh, Chandra C; Parikh, Samir M; Jiang, Aihua; Chu, Qingwei; Forman, Daniel E; Lecker, Stewart H; Krishnaiah, Saikumari; Rabinowitz, Joshua D; Weljie, Aalim M; Baur, Joseph A; Kasper, Dennis L; Arany, Zoltan

    2016-04-01

    Epidemiological and experimental data implicate branched-chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie this link remain unclear. Insulin resistance in skeletal muscle stems from the excess accumulation of lipid species, a process that requires blood-borne lipids to initially traverse the blood vessel wall. How this trans-endothelial transport occurs and how it is regulated are not well understood. Here we leveraged PPARGC1a (also known as PGC-1α; encoded by Ppargc1a), a transcriptional coactivator that regulates broad programs of fatty acid consumption, to identify 3-hydroxyisobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a new paracrine regulator of trans-endothelial fatty acid transport. We found that 3-HIB is secreted from muscle cells, activates endothelial fatty acid transport, stimulates muscle fatty acid uptake in vivo and promotes lipid accumulation in muscle, leading to insulin resistance in mice. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the ability of PGC-1α to promote endothelial fatty acid uptake. 3-HIB levels are elevated in muscle from db/db mice with diabetes and from human subjects with diabetes, as compared to those without diabetes. These data unveil a mechanism in which the metabolite 3-HIB, by regulating the trans-endothelial flux of fatty acids, links the regulation of fatty acid flux to BCAA catabolism, providing a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes.

  16. Functional resistance of enamel and the phenomenon of transtegumental fluid transport

    Directory of Open Access Journals (Sweden)

    Okushko V.R. Okushko R.V. Ursan R.V.

    2011-03-01

    Full Text Available Current data related to transport of fluid through the covering tissue formations (skin, nail plate, dental enamel, gum valley are being analyzed. A supposition is made of transtegumental fluid transport (TFT as a general biological regularity which is specifically manifested in tissues of different functional purposes. Depending on the peculiarity of the organ, the tooth performs the TFT providing functional resistance of the enamel, whose level is clinically detected in the «test of enamel resistance» (TER used in modern research. The article draws attention to the reasonability of an in-depth study of the tooth physiology, where the central element is TFT. This phenomenon is of interest both from fundamental and highly practical standpoints. Identification of seasonal periods in the functional resistance decline makes it possible to get a distinct effect by means of concentrating prevention efforts on this. The TER sample, as well as other transtegumental fluid transport patterns, is to find place in the system of personalized predictive approach to caries diseases

  17. Relevance of copper transporter 1 and organic cation transporters 1-3 for oxaliplatin uptake and drug resistance in colorectal cancer cells.

    Science.gov (United States)

    Buß, I; Hamacher, A; Sarin, N; Kassack, M U; Kalayda, G V

    2018-03-01

    Oxaliplatin is a routinely used drug in the treatment of colorectal cancer. However, development of resistance is a major hurdle of the chemotherapy success. Defects in cellular accumulation represent a frequently reported feature of cells with acquired resistance to platinum drugs. Nevertheless, the mechanisms of oxaliplatin uptake and their role in oxaliplatin resistance remain poorly elucidated. The aim of this study was to investigate the relevance of copper transporter 1 (CTR1) and organic cation transporters 1-3 (OCT1-3) for oxaliplatin uptake and resistance to the drug in sensitive and oxaliplatin-resistant ileocecal colorectal adenocarcinoma cells. Co-incubation with copper(ii) sulfate, a CTR1 substrate, significantly decreased oxaliplatin accumulation but not cytotoxicity in both cell lines. Pre- as well as co-incubation with the OCT1 inhibitor atropine led to a significant reduction in oxaliplatin accumulation in sensitive but not in resistant cells. However, oxaliplatin cytotoxicity was also decreased in the presence of atropine in both cell lines. Cimetidine, an inhibitor of OCT2, induced a significant reduction in the cellular accumulation and potency of oxaliplatin in sensitive and resistant cells. An inhibitor of OCT3, decynium-22, had no influence on oxaliplatin accumulation and cytotoxicity in either cell line. No differences in the transporter expressions were observed between the cell lines, drug-treated or not, either at the mRNA or protein levels. A fluorescent oxaliplatin derivative CFDA-oxPt co-localized with CTR1, OCT1 and OCT2 in sensitive cells, but only with CTR1 and OCT2 in the resistant cell line. Our results suggest that oxaliplatin is transported into the cell by CTR1 in both cell lines. However, contribution of CTR1-mediated uptake to resistance seems unlikely. Uptake of oxaliplatin via OCT1 appears to take place in the sensitive but not in the resistant cell line underscoring the transporter relevance for oxaliplatin resistance. OCT

  18. Interplay of metabolizing enzymes and transporter of xenobiotics.

    Science.gov (United States)

    Lim, Hwee Ying; Ho, Qin Shi; Wong, Kim Ping

    2016-01-01

    1. Xenobiotics are metabolized and eliminated through the coordinated interplay of their metabolizing enzymes and transporters. However, these two activities in vitro are measured separately, with the addition of ATP as a pre-requisite. 2. We propose a human renal cell-line model which integrates the sulfate and glutathione conjugation of xenobiotics with the efflux of their respective conjugates. Sulfation and glutathionylation represent two major Phase II detoxification of xenobiotics in man. The reactions are catalyzed, respectively, by phenolsulfotransferase and glutathione-S-transferase followed by extrusion of their respective conjugates. 3. Using Ko-143, a specific inhibitor of breast cancer resistance protein (BCRP), an ATP-binding cassette (ABC) transporter, we identified this transporter to be responsible for the efflux of p-cresol sulfate, harmol sulfate and the glutathione conjugate of 1-chloro-2,4-dinitrobenzene. 4. The conjugation-cum-efflux was inhibited by oligomycin and uncouplers, which highlights the role of cellular mitochondria in providing ATP for the biosynthesis of their conjugating agents, 3'-phosphoadenosine-5'-phosphosulfate (PAPS) and reduced glutathione as well as for the transport function of BCRP. 5. The human 786-O renal cell-line provides a "3-in-1" system linking ATP biosynthesis to metabolism of xenobiotics and their ultimate transport and elimination by BCRP; this integrated system was not apparent in other human cell-lines examined.

  19. Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells.

    Science.gov (United States)

    Leijtens, Tomas; Giovenzana, Tommaso; Habisreutinger, Severin N; Tinkham, Jonathan S; Noel, Nakita K; Kamino, Brett A; Sadoughi, Golnaz; Sellinger, Alan; Snaith, Henry J

    2016-03-09

    Solar cells based on organic-inorganic perovskite semiconductor materials have recently made rapid improvements in performance, with the best cells performing at over 20% efficiency. With such rapid progress, questions such as cost and solar cell stability are becoming increasingly important to address if this new technology is to reach commercial deployment. The moisture sensitivity of commonly used organic-inorganic metal halide perovskites has especially raised concerns. Here, we demonstrate that the hygroscopic lithium salt commonly used as a dopant for the hole transport material in perovskite solar cells makes the top layer of the devices hydrophilic and causes the solar cells to rapidly degrade in the presence of moisture. By using novel, low cost, and hydrophobic hole transporters in conjunction with a doping method incorporating a preoxidized salt of the respective hole transporters, we are able to prepare efficient perovskite solar cells with greatly enhanced water resistance.

  20. Resistance of Francisella novicida to Fosmidomycin Associated with Mutations in the Glycerol-3-Phosphate Transporter

    Directory of Open Access Journals (Sweden)

    Ryan S Mackie

    2012-08-01

    Full Text Available The methylerythritol phosphate (MEP pathway is essential in most prokaryotes and some lower eukaryotes but absent from human cells, and is a validated target for antimicrobial drug development. The formation of MEP is catalyzed by 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR. MEP pathway genes have been identified in many Category A and B biothreat agents, including Francisella tularensis, which causes the zoonosis tularemia. Fosmidomycin inhibits purified Francisella DXR. This compound also inhibits the growth of F. tularensis NIH B38, F. novicida and F. tularensis subsp. holarctica LVS bacteria. Related compounds such as FR900098 and lipophilic prodrugs of FR900098 have been developed to improve the bioavailability of these DXR inhibitors. In disc-inhibition assays with these compounds, we observed breakthrough colonies of F. novicida in the presence of fosmidomycin, suggesting spontaneous development of fosmidomycin resistance (FosR. FosR bacteria had decreased sensitivity to both fosmidomycin and FR900098. The two most likely targets for the development of mutants would be the DXR enzyme or the glycerol-3-phosphate transporter (GlpT that allows entry of fosmidomycin into the bacteria. Sensitivity of FosR F. novicida bacteria to compound 1 was not abated suggesting that spontaneous resistance is not due to mutation of DXR. We thus predicted that the glpT transporter may be mutated leading to this resistant phenotype. Supporting this, transposon insertion mutants at the glpT locus were also found to be resistant to fosmidomycin. DNA sequencing of four different spontaneous FosR colonies demonstrated a variety of deletions in the glpT coding region. The overall frequency of FosR mutations in F. novicida was determined to be 6.3 x 10-8. Thus we conclude that one mechanism of resistance of F. novicida to fosmidomycin is caused by mutations in GlpT. This is the first description of mutations in Francisella leading to fosmidomycin

  1. Glutamate Efflux at the Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Cederberg-Helms, Hans Christian; Uhd-Nielsen, Carsten; Brodin, Birger

    2014-01-01

    L-Glutamate is considered the most important excitatory amino acid in the mammalian brain. Strict control of its concentration in the brain interstitial fluid is important to maintain neurotransmission and avoid excitotoxicity. The role of astrocytes in handling L-glutamate transport and metabolism...... is well known, however endothelial cells may also play an important role through mediating brain-to-blood L-glutamate efflux. Expression of excitatory amino acid transporters has been demonstrated in brain endothelial cells of bovine, human, murine, rat and porcine origin. These can account for high...... affinity concentrative uptake of L-glutamate from the brain interstitial fluid into the capillary endothelial cells. The mechanisms in between L-glutamate uptake in the endothelial cells and L-glutamate appearing in the blood are still unclear and may involve a luminal transporter for L-glutamate...

  2. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin.

    Directory of Open Access Journals (Sweden)

    Linda J Gahan

    2010-12-01

    Full Text Available Transgenic crops producing insecticidal toxins from Bacillus thuringiensis (Bt are commercially successful in reducing pest damage, yet knowledge of resistance mechanisms that threaten their sustainability is incomplete. Insect resistance to the pore-forming Cry1Ac toxin is correlated with the loss of high-affinity, irreversible binding to the mid-gut membrane, but the genetic factors responsible for this change have been elusive. Mutations in a 12-cadherin-domain protein confer some Cry1Ac resistance but do not block this toxin binding in in vitro assays. We sought to identify mutations in other genes that might be responsible for the loss of binding. We employed a map-based cloning approach using a series of backcrosses with 1,060 progeny to identify a resistance gene in the cotton pest Heliothis virescens that segregated independently from the cadherin mutation. We found an inactivating mutation of the ABC transporter ABCC2 that is genetically linked to Cry1Ac resistance and is correlated with loss of Cry1Ac binding to membrane vesicles. ABC proteins are integral membrane proteins with many functions, including export of toxic molecules from the cell, but have not been implicated in the mode of action of Bt toxins before. The reduction in toxin binding due to the inactivating mutation suggests that ABCC2 is involved in membrane integration of the toxin pore. Our findings suggest that ABC proteins may play a key role in the mode of action of Bt toxins and that ABC protein mutations can confer high levels of resistance that could threaten the continued utilization of Bt-expressing crops. However, such mutations may impose a physiological cost on resistant insects, by reducing export of other toxins such as plant secondary compounds from the cell. This weakness could be exploited to manage this mechanism of Bt resistance in the field.

  3. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin.

    Science.gov (United States)

    Gahan, Linda J; Pauchet, Yannick; Vogel, Heiko; Heckel, David G

    2010-12-16

    Transgenic crops producing insecticidal toxins from Bacillus thuringiensis (Bt) are commercially successful in reducing pest damage, yet knowledge of resistance mechanisms that threaten their sustainability is incomplete. Insect resistance to the pore-forming Cry1Ac toxin is correlated with the loss of high-affinity, irreversible binding to the mid-gut membrane, but the genetic factors responsible for this change have been elusive. Mutations in a 12-cadherin-domain protein confer some Cry1Ac resistance but do not block this toxin binding in in vitro assays. We sought to identify mutations in other genes that might be responsible for the loss of binding. We employed a map-based cloning approach using a series of backcrosses with 1,060 progeny to identify a resistance gene in the cotton pest Heliothis virescens that segregated independently from the cadherin mutation. We found an inactivating mutation of the ABC transporter ABCC2 that is genetically linked to Cry1Ac resistance and is correlated with loss of Cry1Ac binding to membrane vesicles. ABC proteins are integral membrane proteins with many functions, including export of toxic molecules from the cell, but have not been implicated in the mode of action of Bt toxins before. The reduction in toxin binding due to the inactivating mutation suggests that ABCC2 is involved in membrane integration of the toxin pore. Our findings suggest that ABC proteins may play a key role in the mode of action of Bt toxins and that ABC protein mutations can confer high levels of resistance that could threaten the continued utilization of Bt-expressing crops. However, such mutations may impose a physiological cost on resistant insects, by reducing export of other toxins such as plant secondary compounds from the cell. This weakness could be exploited to manage this mechanism of Bt resistance in the field.

  4. Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting.

    Science.gov (United States)

    Dahan, Arik; Amidon, Gordon L

    2009-08-01

    Sulfasalazine is characterized by low intestinal absorption, which essentially enables its colonic targeting and therapeutic action. The mechanisms behind this low absorption have not yet been elucidated. The purpose of this study was to investigate the role of efflux transporters in the intestinal absorption of sulfasalazine as a potential mechanism for its low small-intestinal absorption and colonic targeting following oral administration. The effects of P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP) inhibitors on sulfasalazine bidirectional permeability were studied across Caco-2 cell monolayers, including dose-response analysis. Sulfasalazine in vivo permeability was then investigated in the rat jejunum by single-pass perfusion, in the presence vs. absence of inhibitors. Sulfasalazine exhibited 19-fold higher basolateral-to-apical (BL-AP) than apical-to-basolateral (AP-BL) Caco-2 permeability, indicative of net mucosal secretion. MRP2 inhibitors (MK-571 and indomethacin) and BCRP inhibitors [fumitremorgin C (FTC) and pantoprazole] significantly increased AP-BL and decreased BL-AP sulfasalazine Caco-2 transport in a concentration-dependent manner. No effect was observed with the P-gp inhibitors v