WorldWideScience

Sample records for resin-to-carbon process atomistically

  1. Atomistic simulations of dislocation processes in copper

    DEFF Research Database (Denmark)

    Vegge, T.; Jacobsen, K.W.

    2002-01-01

    We discuss atomistic simulations of dislocation processes in copper based on effective medium theory interatomic potentials. Results on screw dislocation structures and processes are reviewed with particular focus on point defect mobilities and processes involving cross slip. For example, the sta......We discuss atomistic simulations of dislocation processes in copper based on effective medium theory interatomic potentials. Results on screw dislocation structures and processes are reviewed with particular focus on point defect mobilities and processes involving cross slip. For example...

  2. Cascade Defect Evolution Processes: Comparison of Atomistic Methods

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Haixuan [ORNL; Stoller, Roger E [ORNL; Osetskiy, Yury N [ORNL

    2013-11-01

    Determining the defect evolution beyond the molecular dynamics (MD) time scale is critical in bridging the gap between atomistic simulations and experiments. The recently developed self-evolving atomistic kinetic Monte Carlo (SEAKMC) method provides new opportunities to simulate long-term defect evolution with MD-like fidelity. In this study, SEAKMC is applied to investigate the cascade defect evolution in bcc iron. First, the evolution of a vacancy rich region is simulated and compared with results obtained using autonomous basin climbing (ABC) +KMC and kinetic activation-relaxation technique (kART) simulations. Previously, it is found the results from kART are orders of magnitude faster than ABC+KMC. The results obtained from SEAKMC are similar to kART but the time predicted is about one order of magnitude faster than kART. The fidelity of SEAKMC is confirmed by statistically relevant MD simulations at multiple higher temperatures, which proves that the saddle point sampling is close to complete in SEAKMC. The second is the irradiation-induced formation of C15 Laves phase nano-size defect clusters. In contrast to previous studies, which claim the defects can grow by capturing self-interstitials, we found these highly stable clusters can transform to <111> glissile configuration on a much longer time scale. Finally, cascade-annealing simulations using SEAKMC is compared with traditional object KMC (OKMC) method. SEAKMC predicts substantially fewer surviving defects compared with OKMC. The possible origin of this difference is discussed and a possible way to improve the accuracy of OKMC based on SEAKMC results is outlined. These studies demonstrate the atomistic fidelity of SEAKMC in comparison with other on-the-fly KMC methods and provide new information on long-term defect evolution in iron.

  3. Interfacial Phenomena: Linking Atomistic and Molecular Level Processes

    Energy Technology Data Exchange (ETDEWEB)

    Jay A Brandes

    2009-09-23

    This was a grant to support travel for scientists to present data and interact with others in their field. Specifically, speakers presented their data in a session entitled “Interfacial Phenomena: Linking Atomistic and Macroscopic Properties: Theoretical and Experimental Studies of the Structure and Reactivity of Mineral Surfaces”. The session ran across three ½ day periods, March 30-31 2004. The session’s organizers were David J. Wesolowski andGordon E. Brown Jr. There were a total of 30 talks presented.

  4. Ion beam processing of surfaces and interfaces. Modeling and atomistic simulations

    International Nuclear Information System (INIS)

    Liedke, Bartosz

    2011-01-01

    Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund's sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially. A novel program package for 3D atomistic simulations called TRIDER (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach. The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as 'cleanest' possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In general

  5. Ion beam processing of surfaces and interfaces. Modeling and atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liedke, Bartosz

    2011-03-24

    Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund's sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially. A novel program package for 3D atomistic simulations called TRIDER (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach. The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as 'cleanest' possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In

  6. Atomistic simulations in Si processing: Bridging the gap between atoms and experiments

    International Nuclear Information System (INIS)

    Marques, Luis A.; Pelaz, Lourdes; Lopez, Pedro; Aboy, Maria; Santos, Ivan; Barbolla, Juan

    2005-01-01

    With devices shrinking to nanometric scale, process simulation tools have to shift from continuum models to an atomistic description of the material. However, the limited sizes and time scales accessible for detailed atomistic techniques usually lead to the difficult task of relating the information obtained from simulations to experimental data. The solution consists of the use of a hierarchical simulation scheme: more fundamental techniques are employed to extract parameters and models that are then feed into less detailed simulators which allow direct comparison with experiments. This scheme will be illustrated with the modeling of the amorphization and recrystallization of Si, which has been defined as a key challenge in the last edition of the International Technology Roadmap for Semiconductors. The model is based on the bond defect or IV pair, which is used as the building block of the amorphous phase. The properties of this defect have been studied using ab initio methods and classical molecular dynamics techniques. It is shown that the recombination of this defect depends on the surrounding bond defects, which accounts for the cooperative nature of the amorphization and recrystallization processes. The implementation of this model in a kinetic Monte Carlo code allows extracting data directly comparable with experiments. This approach provides physical insight on the amorphization and recrystallization mechanisms and a tool for the optimization of solid-phase epitaxial-related processes

  7. Atomistic Kinetic Monte Carlo studies of microchemical evolutions driven by diffusion processes under irradiation

    Science.gov (United States)

    Soisson, F.; Becquart, C. S.; Castin, N.; Domain, C.; Malerba, L.; Vincent, E.

    2010-11-01

    Atomistic Kinetic Monte Carlo (AKMC) simulations are a powerful tool to study the microstructural and microchemical evolution of alloys controlled by diffusion processes, under irradiation and during thermal ageing. In the framework of the FP6 Perfect program, two main approaches have been applied to binary and multicomponent iron based alloys. The first one is based on a diffusion model which takes into account vacancy and self-interstitial jumps, using simple rigid lattice approximation and broken-bond models to compute the point-defect jump frequencies. The corresponding parameters are fitted on ab initio calculations of a few typical configurations and migration barriers. The second method uses empirical potentials to compute a much larger number of migration barriers, including atomic relaxations, and Artificial Intelligence regression methods to predict the other ones. It is somewhat less rapid than the first one, but significantly more than simulations using "on-the-fly" calculations of all the barriers. We review here the recent advances and perspectives concerning these techniques.

  8. Atomistic Kinetic Monte Carlo studies of microchemical evolutions driven by diffusion processes under irradiation

    International Nuclear Information System (INIS)

    Soisson, F.; Becquart, C.S.; Castin, N.; Domain, C.; Malerba, L.; Vincent, E.

    2010-01-01

    Atomistic Kinetic Monte Carlo (AKMC) simulations are a powerful tool to study the microstructural and microchemical evolution of alloys controlled by diffusion processes, under irradiation and during thermal ageing. In the framework of the FP6 Perfect program, two main approaches have been applied to binary and multicomponent iron based alloys. The first one is based on a diffusion model which takes into account vacancy and self-interstitial jumps, using simple rigid lattice approximation and broken-bond models to compute the point-defect jump frequencies. The corresponding parameters are fitted on ab initio calculations of a few typical configurations and migration barriers. The second method uses empirical potentials to compute a much larger number of migration barriers, including atomic relaxations, and Artificial Intelligence regression methods to predict the other ones. It is somewhat less rapid than the first one, but significantly more than simulations using 'on-the-fly' calculations of all the barriers. We review here the recent advances and perspectives concerning these techniques.

  9. Shape evolution of nanostructures by thermal and ion beam processing. Modeling and atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Roentzsch, L.

    2007-07-01

    Single-crystalline nanostructures often exhibit gradients of surface (and/or interface) curvature that emerge from fabrication and growth processes or from thermal fluctuations. Thus, the system-inherent capillary force can initiate morphological transformations during further processing steps or during operation at elevated temperature. Therefore and because of the ongoing miniaturization of functional structures which causes a general rise in surface-to-volume ratios, solid-state capillary phenomena will become increasingly important: On the one hand diffusion-mediated capillary processes can be of practical use in view of non-conventional nanostructure fabrication methods based on self-organization mechanisms, on the other hand they can destroy the integrity of nanostructures which can go along with the failure of functionality. Additionally, capillarity-induced shape transformations are effected and can thereby be controlled by applied fields and forces (guided or driven evolution). With these prospects and challenges at hand, formation and shape transformation of single-crystalline nanostructures due to the system-inherent capillary force in combination with external fields or forces are investigated in the frame of this dissertation by means of atomistic computer simulations. For the exploration (search, description, and prediction) of reaction pathways of nanostructure shape transformations, kinetic Monte Carlo (KMC) simulations are the method of choice. Since the employed KMC code is founded on a cellular automaton principle, the spatio-temporal development of lattice-based N-particle systems (N up to several million) can be followed for time spans of several orders of magnitude, while considering local phenomena due to atomic-scale effects like diffusion, nucleation, dissociation, or ballistic displacements. In this work, the main emphasis is put on nanostructures which have a cylindrical geometry, for example, nanowires (NWs), nanorods, nanotubes etc

  10. Shape evolution of nanostructures by thermal and ion beam processing. Modeling and atomistic simulations

    International Nuclear Information System (INIS)

    Roentzsch, L.

    2007-01-01

    Single-crystalline nanostructures often exhibit gradients of surface (and/or interface) curvature that emerge from fabrication and growth processes or from thermal fluctuations. Thus, the system-inherent capillary force can initiate morphological transformations during further processing steps or during operation at elevated temperature. Therefore and because of the ongoing miniaturization of functional structures which causes a general rise in surface-to-volume ratios, solid-state capillary phenomena will become increasingly important: On the one hand diffusion-mediated capillary processes can be of practical use in view of non-conventional nanostructure fabrication methods based on self-organization mechanisms, on the other hand they can destroy the integrity of nanostructures which can go along with the failure of functionality. Additionally, capillarity-induced shape transformations are effected and can thereby be controlled by applied fields and forces (guided or driven evolution). With these prospects and challenges at hand, formation and shape transformation of single-crystalline nanostructures due to the system-inherent capillary force in combination with external fields or forces are investigated in the frame of this dissertation by means of atomistic computer simulations. For the exploration (search, description, and prediction) of reaction pathways of nanostructure shape transformations, kinetic Monte Carlo (KMC) simulations are the method of choice. Since the employed KMC code is founded on a cellular automaton principle, the spatio-temporal development of lattice-based N-particle systems (N up to several million) can be followed for time spans of several orders of magnitude, while considering local phenomena due to atomic-scale effects like diffusion, nucleation, dissociation, or ballistic displacements. In this work, the main emphasis is put on nanostructures which have a cylindrical geometry, for example, nanowires (NWs), nanorods, nanotubes etc

  11. Investigation of the removing process of cathode material in micro-EDM using an atomistic-continuum model

    International Nuclear Information System (INIS)

    Guo, Jianwen; Zhang, Guojun; Huang, Yu; Ming, Wuyi; Liu, Min; Huang, Hao

    2014-01-01

    Highlights: • An atomistic-continuum computational simulation model for single-discharge micro-EDM process of Cu cathode is constructed. • Cathode material is removed mainly in the form of single atoms or small clusters in micro-EDM. • Electric action leads to the formation of peaks on the surface of crater. • Removing process of cathode material under the hybrid action combining the thermal action and the electric action is studied, and the strength of either action needed for material to remove is much reduced. - Abstract: In micro-electrical discharge machining (micro-EDM), the discharge duration is ultra-short, and both the electric action and the thermal action by the discharge channel play important roles in the removing process of cathode material. However, in most researches on the machining mechanism of micro-EDM, only the thermal action is concerned. In this article, a combined atomistic-continuum modeling method in which the two-temperature model and the molecular dynamics simulation model are integrated is used to construct the simulation model for cathode in single-discharge micro-EDM process. With this simulation model, removing processes of Cu cathode material in micro-EDM under pure thermal action, pure electric action and the combination of them are investigated in a simulative way. By analyzing evolutions of temperature, stress and micro-structure of material as well as the dynamical behaviors of material in the removing process, mechanisms of the cathode material removal and crater formation are revealed. In addition, the removing process of cathode material under the combination of pure thermal action and pure electric action is compared with those under the two pure actions respectively to analyze the interactive effect between the thermal action and the electric action

  12. Molecular dynamics study on nano-sized wiredrawing: possible atomistic process and application to pearlitic steel wire

    Science.gov (United States)

    Saitoh, K.; Yoshida, K.; Oda, K.; Sato, T.; Takuma, M.; Takahashi, Y.

    2018-02-01

    The process of nano-sized wiredrawing is investigated by using molecular dynamics (MD) simulation in this study. The authors have constructed novel computation models of wiredrawing, in which a single wire of just a several nanometers in diameter is smoothly drawn through a perfectly rigid die together with lubrication mechanism and is forced to be shaped into thinner one. Interatomic potentials used in MD simulation is a conventional pairwise type useable for iron-carbon binary system (for pearlitic steel). For MD model of pearlite steel wire, it is recognized that ferrite-cementite interface effectively offers high-speed diffusion path for carbon atoms from cementite side to ferrite side (elementary mechanism of cementite decomposition). As conclusion, we showed by using atomistic simulation that nano-sized wiredrawing process is theoretically quite possible.

  13. Atomistic simulation of processes in Ni-base alloys with account for local relaxations

    International Nuclear Information System (INIS)

    Bursik, Jiri

    2007-01-01

    Ordering in Ni-base superalloys is the crucial process controlling the development of the characteristic two-phase microstructure and subsequently the mechanical properties. Systems containing up to six alloying elements typical of advanced Ni-based superalloys are modelled in this work using a Monte Carlo approach with phenomenological Lennard-Jones pair potentials and interactions up to the third coordination sphere. Three-dimensional crystal block is used with over 10 5 atoms. Molecular dynamics approach is used to relax local atomic positions in course of ordering processes under applied stress. The importance of taking into account both relaxation of modelled block dimensions and relaxation of local atomic positions is discussed

  14. Atomistic scale nanoscratching behavior of monocrystalline Cu influenced by water film in CMP process

    Science.gov (United States)

    Shi, Junqin; Chen, Juan; Fang, Liang; Sun, Kun; Sun, Jiapeng; Han, Jing

    2018-03-01

    The effect of water film on the nanoscratching behavior of monocrystalline Cu was studied by molecular dynamics (MD) simulation. The results indicate that the friction force acting on abrasive particle increases due to the resistance of water film accumulating ahead of particle, but the water film with lubrication decreases friction force acting on Cu surface. The accumulation of water molecules around particle causes the anisotropy of ridge and the surface damage around the groove, and the water molecules remaining in the groove lead to the non-regular groove structure. The dislocation evolution displays the re-organization of the dislocation network in the nanoscratching process. The evaluation of removal efficiency shows the number of removed Cu atoms decreases with water film thickness. It is considered that an appropriate rather than a high removal efficiency should be adopted to evaluate the polishing process in real (chemical mechanical polishing) CMP. These results are helpful to reveal the polishing mechanism under the effect of water film from physical perspective, which benefits the development of ultra-precision manufacture and miniaturized components, as well as the innovation of CMP technology.

  15. A transformation theory of stochastic evolution in Red Moon methodology to time evolution of chemical reaction process in the full atomistic system.

    Science.gov (United States)

    Suzuki, Yuichi; Nagaoka, Masataka

    2017-05-28

    Atomistic information of a whole chemical reaction system, e.g., instantaneous microscopic molecular structures and orientations, offers important and deeper insight into clearly understanding unknown chemical phenomena. In accordance with the progress of a number of simultaneous chemical reactions, the Red Moon method (a hybrid Monte Carlo/molecular dynamics reaction method) is capable of simulating atomistically the chemical reaction process from an initial state to the final one of complex chemical reaction systems. In the present study, we have proposed a transformation theory to interpret the chemical reaction process of the Red Moon methodology as the time evolution process in harmony with the chemical kinetics. For the demonstration of the theory, we have chosen the gas reaction system in which the reversible second-order reaction H 2 + I 2  ⇌ 2HI occurs. First, the chemical reaction process was simulated from the initial configurational arrangement containing a number of H 2 and I 2 molecules, each at 300 K, 500 K, and 700 K. To reproduce the chemical equilibrium for the system, the collision frequencies for the reactions were taken into consideration in the theoretical treatment. As a result, the calculated equilibrium concentrations [H 2 ] eq and equilibrium constants K eq at all the temperatures were in good agreement with their corresponding experimental values. Further, we applied the theoretical treatment for the time transformation to the system and have shown that the calculated half-life τ's of [H 2 ] reproduce very well the analytical ones at all the temperatures. It is, therefore, concluded that the application of the present theoretical treatment with the Red Moon method makes it possible to analyze reasonably the time evolution of complex chemical reaction systems to chemical equilibrium at the atomistic level.

  16. A kinetic Monte Carlo simulation method of van der Waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides.

    Science.gov (United States)

    Nie, Yifan; Liang, Chaoping; Cha, Pil-Ryung; Colombo, Luigi; Wallace, Robert M; Cho, Kyeongjae

    2017-06-07

    Controlled growth of crystalline solids is critical for device applications, and atomistic modeling methods have been developed for bulk crystalline solids. Kinetic Monte Carlo (KMC) simulation method provides detailed atomic scale processes during a solid growth over realistic time scales, but its application to the growth modeling of van der Waals (vdW) heterostructures has not yet been developed. Specifically, the growth of single-layered transition metal dichalcogenides (TMDs) is currently facing tremendous challenges, and a detailed understanding based on KMC simulations would provide critical guidance to enable controlled growth of vdW heterostructures. In this work, a KMC simulation method is developed for the growth modeling on the vdW epitaxy of TMDs. The KMC method has introduced full material parameters for TMDs in bottom-up synthesis: metal and chalcogen adsorption/desorption/diffusion on substrate and grown TMD surface, TMD stacking sequence, chalcogen/metal ratio, flake edge diffusion and vacancy diffusion. The KMC processes result in multiple kinetic behaviors associated with various growth behaviors observed in experiments. Different phenomena observed during vdW epitaxy process are analysed in terms of complex competitions among multiple kinetic processes. The KMC method is used in the investigation and prediction of growth mechanisms, which provide qualitative suggestions to guide experimental study.

  17. Parallel Atomistic Simulations

    Energy Technology Data Exchange (ETDEWEB)

    HEFFELFINGER,GRANT S.

    2000-01-18

    Algorithms developed to enable the use of atomistic molecular simulation methods with parallel computers are reviewed. Methods appropriate for bonded as well as non-bonded (and charged) interactions are included. While strategies for obtaining parallel molecular simulations have been developed for the full variety of atomistic simulation methods, molecular dynamics and Monte Carlo have received the most attention. Three main types of parallel molecular dynamics simulations have been developed, the replicated data decomposition, the spatial decomposition, and the force decomposition. For Monte Carlo simulations, parallel algorithms have been developed which can be divided into two categories, those which require a modified Markov chain and those which do not. Parallel algorithms developed for other simulation methods such as Gibbs ensemble Monte Carlo, grand canonical molecular dynamics, and Monte Carlo methods for protein structure determination are also reviewed and issues such as how to measure parallel efficiency, especially in the case of parallel Monte Carlo algorithms with modified Markov chains are discussed.

  18. Atomistic and orthoatomistic effect algebras

    Science.gov (United States)

    Tkadlec, Josef

    2008-05-01

    We characterize atomistic effect algebras, prove that a weakly orthocomplete Archimedean atomic effect algebra is orthoatomistic and present an example of an orthoatomistic orthomodular poset that is not weakly orthocomplete.

  19. From atomistic interfaces to dendritic patterns

    Science.gov (United States)

    Galenko, P. K.; Alexandrov, D. V.

    2018-01-01

    Transport processes around phase interfaces, together with thermodynamic properties and kinetic phenomena, control the formation of dendritic patterns. Using the thermodynamic and kinetic data of phase interfaces obtained on the atomic scale, one can analyse the formation of a single dendrite and the growth of a dendritic ensemble. This is the result of recent progress in theoretical methods and computational algorithms calculated using powerful computer clusters. Great benefits can be attained from the development of micro-, meso- and macro-levels of analysis when investigating the dynamics of interfaces, interpreting experimental data and designing the macrostructure of samples. The review and research articles in this theme issue cover the spectrum of scales (from nano- to macro-length scales) in order to exhibit recently developing trends in the theoretical analysis and computational modelling of dendrite pattern formation. Atomistic modelling, the flow effect on interface dynamics, the transition from diffusion-limited to thermally controlled growth existing at a considerable driving force, two-phase (mushy) layer formation, the growth of eutectic dendrites, the formation of a secondary dendritic network due to coalescence, computational methods, including boundary integral and phase-field methods, and experimental tests for theoretical models-all these themes are highlighted in the present issue. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.

  20. Passing waves from atomistic to continuum

    Science.gov (United States)

    Chen, Xiang; Diaz, Adrian; Xiong, Liming; McDowell, David L.; Chen, Youping

    2018-02-01

    Progress in the development of coupled atomistic-continuum methods for simulations of critical dynamic material behavior has been hampered by a spurious wave reflection problem at the atomistic-continuum interface. This problem is mainly caused by the difference in material descriptions between the atomistic and continuum models, which results in a mismatch in phonon dispersion relations. In this work, we introduce a new method based on atomistic dynamics of lattice coupled with a concurrent atomistic-continuum method to enable a full phonon representation in the continuum description. This permits the passage of short-wavelength, high-frequency phonon waves from the atomistic to continuum regions. The benchmark examples presented in this work demonstrate that the new scheme enables the passage of all allowable phonons through the atomistic-continuum interface; it also preserves the wave coherency and energy conservation after phonons transport across multiple atomistic-continuum interfaces. This work is the first step towards developing a concurrent atomistic-continuum simulation tool for non-equilibrium phonon-mediated thermal transport in materials with microstructural complexity.

  1. Analysis of surface leaching processes in vitrified high-level nuclear wastes using in-situ raman imaging and atomistic modeling. 1998 annual progress report

    International Nuclear Information System (INIS)

    Clark, D.E.; Simmons, J.H.

    1998-01-01

    'The research objective was to test and develop optical methods for real-time, remote and in-situ testing of corrosion processes on the surface of vitrified nuclear wastes. This report summarizes the research conducted in the first 1.5 years of a 3 year grant. At this point, the authors have identified the conditions for optimal tests and demonstrated that both IR reflection and Raman spectroscopies can be used to determine the dealkalization process in the surface of simple glasses in real time.'

  2. Atomistic study on the interaction of nitrogen and Mg lattice and the nitride formation in nanocrystalline Mg alloys synthesized using cryomilling process

    International Nuclear Information System (INIS)

    Nezafati, Marjan; Giri, Anit; Hofmeister, Clara; Cho, Kyu; Schneider, Matthew M.; Zhou, Le; Sohn, Yongho; Kim, Chang-Soo

    2016-01-01

    Cryomilling is a broadly applied technique to synthesize nanostructured alloys and composites through powder metallurgy (PM) processing. Understanding the interactions between liquid nitrogen and the nanostructured metal powder is important as it can potentially impact the mechanical performance of these materials. In this study, we performed a series of ab initio density functional theory (DFT) computations to examine the interactions of liquid nitrogen and Mg-based matrices and the formation of Mg-nitrides. The diffusion energy barriers of nitrogen in the Mg and/or Mg-Al alloys were systematically quantified by calculating the transition state (TS) for the displacement of nitrogen between two neighboring equivalent positions. The TS calculation results indicate that diffusion of N atoms is much easier than that of N 2  molecule in the Mg matrix. It is predicted that at least ∼0.4 eV is required to overcome the diffusion energy barrier in the Mg matrix. We also quantified the formation energy of Mg nitride in the matrix. The presence of Mg nitride was demonstrated experimentally using transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). In conjunction with the DFT computations and TEM/EELS analysis, we performed analytical calculations for the strain energy introduced during cryomilling to examine the impacts of processing parameters.

  3. Atomistic Monte Carlo simulation of lipid membranes

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Sklenar, Heinz

    2014-01-01

    Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches...

  4. Atomistic computer simulations a practical guide

    CERN Document Server

    Brazdova, Veronika

    2013-01-01

    Many books explain the theory of atomistic computer simulations; this book teaches you how to run them This introductory ""how to"" title enables readers to understand, plan, run, and analyze their own independent atomistic simulations, and decide which method to use and which questions to ask in their research project. It is written in a clear and precise language, focusing on a thorough understanding of the concepts behind the equations and how these are used in the simulations. As a result, readers will learn how to design the computational model and which parameters o

  5. Atomistic Monte Carlo simulation of lipid membranes

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Sklenar, Heinz

    2014-01-01

    Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol....

  6. Ionic diffusion in quartz studied by transport measurements, SIMS and atomistic simulations

    International Nuclear Information System (INIS)

    Sartbaeva, Asel; Wells, Stephen A; Redfern, Simon A T; Hinton, Richard W; Reed, Stephen J B

    2005-01-01

    Ionic diffusion in the quartz-β-eucryptite system is studied by DC transport measurements, SIMS and atomistic simulations. Transport data show a large transient increase in ionic current at the α-β phase transition of quartz (the Hedvall effect). The SIMS data indicate two diffusion processes, one involving rapid Li + motion and the other involving penetration of Al and Li atoms into quartz at the phase transition. Atomistic simulations explain why the fine microstructure of twin domain walls in quartz near the transition does not hinder Li + diffusion

  7. Addressing uncertainty in atomistic machine learning

    DEFF Research Database (Denmark)

    Peterson, Andrew A.; Christensen, Rune; Khorshidi, Alireza

    2017-01-01

    of the predictions. In this perspective, we address the types of errors that might arise in atomistic machine learning, the unique aspects of atomistic simulations that make machine-learning challenging, and highlight how uncertainty analysis can be used to assess the validity of machine-learning predictions. We......Machine-learning regression has been demonstrated to precisely emulate the potential energy and forces that are output from more expensive electronic-structure calculations. However, to predict new regions of the potential energy surface, an assessment must be made of the credibility...... suggest this will allow researchers to more fully use machine learning for the routine acceleration of large, high-accuracy, or extended-time simulations. In our demonstrations, we use a bootstrap ensemble of neural network-based calculators, and show that the width of the ensemble can provide an estimate...

  8. Atomistic simulations of surfactant adsorption kinetics at interfaces

    Science.gov (United States)

    Iskrenova, Eugeniya; Patnaik, Soumya

    2014-03-01

    Heat transfer control and enhancement is an important and challenging problem in a variety of industrial and technological applications including aircraft thermal management. The role of additives in nucleate boiling and phase change in general has long been recognized and studied experimentally and modeled theoretically but in-depth description and atomistic understanding of the multiscale processes involved are still needed for better prediction and control of the heat transfer efficiency. Surfactant additives have been experimentally observed to either enhance or inhibit the boiling heat transfer depending on the surfactant concentration and chemistry and, on a molecular level, their addition leads to dynamic surface tension and changes in interfacial and transfer properties, thus contributing to the complexity of the problem. We present our atomistic modeling study of the interfacial adsorption kinetics of aqueous surfactant (sodium dodecyl sulfate) systems at a range of concentrations at room and boiling temperatures. Classical molecular dynamics and Umbrella Sampling simulations were used to study the surfactant transport properties and estimate the adsorption and desorption rates at liquid-vacuum and liquid-solid interfaces. The authors gratefully acknowledge funding from AFOSR Thermal Science Program and the Air Force Research Laboratory DoD Supercomputing Resource Center for computing time and resources.

  9. Self-evolving atomistic kinetic Monte Carlo: fundamentals and applications

    International Nuclear Information System (INIS)

    Xu Haixuan; Osetsky, Yuri N; Stoller, Roger E

    2012-01-01

    The fundamentals of the framework and the details of each component of the self-evolving atomistic kinetic Monte Carlo (SEAKMC) are presented. The strength of this new technique is the ability to simulate dynamic processes with atomistic fidelity that is comparable to molecular dynamics (MD) but on a much longer time scale. The observation that the dimer method preferentially finds the saddle point (SP) with the lowest energy is investigated and found to be true only for defects with high symmetry. In order to estimate the fidelity of dynamics and accuracy of the simulation time, a general criterion is proposed and applied to two representative problems. Applications of SEAKMC for investigating the diffusion of interstitials and vacancies in bcc iron are presented and compared directly with MD simulations, demonstrating that SEAKMC provides results that formerly could be obtained only through MD. The correlation factor for interstitial diffusion in the dumbbell configuration, which is extremely difficult to obtain using MD, is predicted using SEAKMC. The limitations of SEAKMC are also discussed. The paper presents a comprehensive picture of the SEAKMC method in both its unique predictive capabilities and technically important details.

  10. Parallel algorithm for multiscale atomistic/continuum simulations using LAMMPS

    Science.gov (United States)

    Pavia, F.; Curtin, W. A.

    2015-07-01

    Deformation and fracture processes in engineering materials often require simultaneous descriptions over a range of length and time scales, with each scale using a different computational technique. Here we present a high-performance parallel 3D computing framework for executing large multiscale studies that couple an atomic domain, modeled using molecular dynamics and a continuum domain, modeled using explicit finite elements. We use the robust Coupled Atomistic/Discrete-Dislocation (CADD) displacement-coupling method, but without the transfer of dislocations between atoms and continuum. The main purpose of the work is to provide a multiscale implementation within an existing large-scale parallel molecular dynamics code (LAMMPS) that enables use of all the tools associated with this popular open-source code, while extending CADD-type coupling to 3D. Validation of the implementation includes the demonstration of (i) stability in finite-temperature dynamics using Langevin dynamics, (ii) elimination of wave reflections due to large dynamic events occurring in the MD region and (iii) the absence of spurious forces acting on dislocations due to the MD/FE coupling, for dislocations further than 10 Å from the coupling boundary. A first non-trivial example application of dislocation glide and bowing around obstacles is shown, for dislocation lengths of ∼50 nm using fewer than 1 000 000 atoms but reproducing results of extremely large atomistic simulations at much lower computational cost.

  11. Atomistic Galois insertions for flow sensitive integrity

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis

    2017-01-01

    Several program verification techniques assist in showing that software adheres to the required security policies. Such policies may be sensitive to the flow of execution and the verification may be supported by combinations of type systems and Hoare logics. However, this requires user assistance...... and to obtain full automation we shall explore the over-approximating nature of static analysis. We demonstrate that the use of atomistic Galois insertions constitutes a stable framework in which to obtain sound and fully automatic enforcement of flow sensitive integrity. The framework is illustrated...... on a concurrent language with local storage and polyadic synchronous communication....

  12. Atomistic Determination of Cross-Slip Pathway and Energetics

    DEFF Research Database (Denmark)

    Rasmussen, Torben; Jacobsen, Karsten Wedel; Leffers, Torben

    1997-01-01

    The mechanism for cross slip of a screw dislocation in Cu is determined by atomistic simulations that only presume the initial and final states of the process. The dissociated dislocation constricts in the primary plane and redissociates into the cross-slip plane while still partly in the primary...... plane. The transition state and activation energy for cross slip as well as the energies of the involved dislocation constrictions are determined. One constriction has a negative energy compared to parallel partials. The energy vs splitting width for recombination of parallel partials into a perfect...... dislocation is determined. The breakdown of linear elasticity theory for small splitting widths is studied. [S0031-9007(97)04444-X]....

  13. Addressing uncertainty in atomistic machine learning

    DEFF Research Database (Denmark)

    Peterson, Andrew A.; Christensen, Rune; Khorshidi, Alireza

    2017-01-01

    Machine-learning regression has been demonstrated to precisely emulate the potential energy and forces that are output from more expensive electronic-structure calculations. However, to predict new regions of the potential energy surface, an assessment must be made of the credibility of the predi......Machine-learning regression has been demonstrated to precisely emulate the potential energy and forces that are output from more expensive electronic-structure calculations. However, to predict new regions of the potential energy surface, an assessment must be made of the credibility...... of the predictions. In this perspective, we address the types of errors that might arise in atomistic machine learning, the unique aspects of atomistic simulations that make machine-learning challenging, and highlight how uncertainty analysis can be used to assess the validity of machine-learning predictions. We...... suggest this will allow researchers to more fully use machine learning for the routine acceleration of large, high-accuracy, or extended-time simulations. In our demonstrations, we use a bootstrap ensemble of neural network-based calculators, and show that the width of the ensemble can provide an estimate...

  14. Atomistic Modeling of Gas Adsorption in Nanocarbons

    Directory of Open Access Journals (Sweden)

    G. Zollo

    2012-01-01

    Full Text Available Carbon nanostructures are currently under investigation as possible ideal media for gas storage and mesoporous materials for gas sensors. The recent scientific literature concerning gas adsorption in nanocarbons, however, is affected by a significant variation in the experimental data, mainly due to the different characteristics of the investigated samples arising from the variety of the synthesis techniques used and their reproducibility. Atomistic simulations have turned out to be sometimes crucial to study the properties of these systems in order to support the experiments, to indicate the physical limits inherent in the investigated structures, and to suggest possible new routes for application purposes. In consideration of the extent of the theme, we have chosen to treat in this paper the results obtained within some of the most popular atomistic theoretical frameworks without any purpose of completeness. A significant part of this paper is dedicated to the hydrogen adsorption on C-based nanostructures for its obvious importance and the exceptional efforts devoted to it by the scientific community.

  15. Atomistic Monte Carlo Simulation of Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Daniel Wüstner

    2014-01-01

    Full Text Available Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC simulation of lipid membranes. We provide an introduction into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches. We use our recently devised chain breakage/closure (CBC local move set in the bond-/torsion angle space with the constant-bond-length approximation (CBLA for the phospholipid dipalmitoylphosphatidylcholine (DPPC. We demonstrate rapid conformational equilibration for a single DPPC molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol.

  16. Inter-ribbon tunneling in graphene: An atomistic Bardeen approach

    Energy Technology Data Exchange (ETDEWEB)

    Van de Put, Maarten L., E-mail: maarten.vandeput@uantwerpen.be; Magnus, Wim [Department of Physics, Universiteit Antwerpen, B-2020 Antwerpen (Belgium); imec, B-3001 Heverlee (Belgium); Vandenberghe, William G.; Fischetti, Massimo V. [Department of Material Science, University of Texas at Dallas, Texas 75080 (United States); Sorée, Bart [Department of Physics, Universiteit Antwerpen, B-2020 Antwerpen (Belgium); imec, B-3001 Heverlee (Belgium); Department of Electrical Engineering, KU Leuven, B-3001 Leuven (Belgium)

    2016-06-07

    A weakly coupled system of two crossed graphene nanoribbons exhibits direct tunneling due to the overlap of the wavefunctions of both ribbons. We apply the Bardeen transfer Hamiltonian formalism, using atomistic band structure calculations to account for the effect of the atomic structure on the tunneling process. The strong quantum-size confinement of the nanoribbons is mirrored by the one-dimensional character of the electronic structure, resulting in properties that differ significantly from the case of inter-layer tunneling, where tunneling occurs between bulk two-dimensional graphene sheets. The current-voltage characteristics of the inter-ribbon tunneling structures exhibit resonance, as well as stepwise increases in current. Both features are caused by the energetic alignment of one-dimensional peaks in the density-of-states of the ribbons. Resonant tunneling occurs if the sign of the curvature of the coupled energy bands is equal, whereas a step-like increase in the current occurs if the signs are opposite. Changing the doping modulates the onset-voltage of the effects as well as their magnitude. Doping through electrostatic gating makes these structures promising for application towards steep slope switching devices. Using the atomistic empirical pseudopotentials based Bardeen transfer Hamiltonian method, inter-ribbon tunneling can be studied for the whole range of two-dimensional materials, such as transition metal dichalcogenides. The effects of resonance and of step-like increases in the current we observe in graphene ribbons are also expected in ribbons made from these alternative two-dimensional materials, because these effects are manifestations of the one-dimensional character of the density-of-states.

  17. Development of Continuum-Atomistic Approach for Modeling Metal Irradiation by Heavy Ions

    Science.gov (United States)

    Batgerel, Balt; Dimova, Stefka; Puzynin, Igor; Puzynina, Taisia; Hristov, Ivan; Hristova, Radoslava; Tukhliev, Zafar; Sharipov, Zarif

    2018-02-01

    Over the last several decades active research in the field of materials irradiation by high-energy heavy ions has been worked out. The experiments in this area are labor-consuming and expensive. Therefore the improvement of the existing mathematical models and the development of new ones based on the experimental data of interaction of high-energy heavy ions with materials are of interest. Presently, two approaches are used for studying these processes: a thermal spike model and molecular dynamics methods. The combination of these two approaches - the continuous-atomistic model - will give the opportunity to investigate more thoroughly the processes of irradiation of materials by high-energy heavy ions. To solve the equations of the continuous-atomistic model, a software package was developed and the block of molecular dynamics software was tested on the heterogeneous cluster HybriLIT.

  18. Markov-chain model of classified atomistic transition states for discrete kinetic Monte Carlo simulations.

    Science.gov (United States)

    Numazawa, Satoshi; Smith, Roger

    2011-10-01

    Classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The scheme is then used to determine transitions that can be applied in a lattice-based kinetic Monte Carlo (KMC) atomistic simulation model. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements are considered as local transition events constrained in potential energy wells over certain local time periods. These processes are represented by Markov chains of multidimensional Boolean valued functions in three-dimensional lattice space. The events inhibited by the barriers under a certain level are regarded as thermal fluctuations of the canonical ensemble and accepted freely. Consequently, the fluctuating system evolution process is implemented as a Markov chain of equivalence class objects. It is shown that the process can be characterized by the acceptance of metastable local transitions. The method is applied to a problem of Au and Ag cluster growth on a rippled surface. The simulation predicts the existence of a morphology-dependent transition time limit from a local metastable to stable state for subsequent cluster growth by accretion. Excellent agreement with observed experimental results is obtained.

  19. Scalable Atomistic Simulation Algorithms for Materials Research

    Directory of Open Access Journals (Sweden)

    Aiichiro Nakano

    2002-01-01

    Full Text Available A suite of scalable atomistic simulation programs has been developed for materials research based on space-time multiresolution algorithms. Design and analysis of parallel algorithms are presented for molecular dynamics (MD simulations and quantum-mechanical (QM calculations based on the density functional theory. Performance tests have been carried out on 1,088-processor Cray T3E and 1,280-processor IBM SP3 computers. The linear-scaling algorithms have enabled 6.44-billion-atom MD and 111,000-atom QM calculations on 1,024 SP3 processors with parallel efficiency well over 90%. production-quality programs also feature wavelet-based computational-space decomposition for adaptive load balancing, spacefilling-curve-based adaptive data compression with user-defined error bound for scalable I/O, and octree-based fast visibility culling for immersive and interactive visualization of massive simulation data.

  20. Dynamic coarse-graining fills the gap between atomistic simulations and experimental investigations of mechanical unfolding

    Science.gov (United States)

    Knoch, Fabian; Schäfer, Ken; Diezemann, Gregor; Speck, Thomas

    2018-01-01

    We present a dynamic coarse-graining technique that allows one to simulate the mechanical unfolding of biomolecules or molecular complexes on experimentally relevant time scales. It is based on Markov state models (MSMs), which we construct from molecular dynamics simulations using the pulling coordinate as an order parameter. We obtain a sequence of MSMs as a function of the discretized pulling coordinate, and the pulling process is modeled by switching among the MSMs according to the protocol applied to unfold the complex. This way we cover seven orders of magnitude in pulling speed. In the region of rapid pulling, we additionally perform steered molecular dynamics simulations and find excellent agreement between the results of the fully atomistic and the dynamically coarse-grained simulations. Our technique allows the determination of the rates of mechanical unfolding in a dynamical range from approximately 10-8/ns to 1/ns thus reaching experimentally accessible time regimes without abandoning atomistic resolution.

  1. Fluorinated Phosphorene: Electrochemical Synthesis, Atomistic Fluorination, and Enhanced Stability.

    Science.gov (United States)

    Tang, Xian; Liang, Weiyuan; Zhao, Jinlai; Li, Zhongjun; Qiu, Meng; Fan, Taojian; Luo, Crystal Shaojuan; Zhou, Ye; Li, Yu; Guo, Zhinan; Fan, Dianyuan; Zhang, Han

    2017-12-01

    Phosphorene has attracted great interest due to its unique electronic and optoelectronic properties owing to its tunable direct and moderate band-gap in association with high carrier mobility. However, its intrinsic instability in air seriously hinders its practical applications, and problems of technical complexity and in-process degradation exist in currently proposed stabilization strategies. A facile pathway in obtaining and stabilizing phosphorene through a one-step, ionic liquid-assisted electrochemical exfoliation and synchronous fluorination process is reported in this study. This strategy enables fluorinated phosphorene (FP) to be discovered and large-scale, highly selective few-layer FP (3-6 atomic layers) to be obtained. The synthesized FP is found to exhibit unique morphological and optical characteristics. Possible atomistic fluorination configurations of FP are revealed by core-level binding energy shift calculations in combination with spectroscopic measurements, and the results indicate that electrolyte concentration significantly modulates the fluorination configurations. Furthermore, FP is found to exhibit enhanced air stability thanks to the antioxidation and antihydration effects of the introduced fluorine adatoms, and demonstrate excellent photothermal stability during a week of air exposure. These findings pave the way toward real applications of phosphorene-based nanophotonics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Atomistic Simulation of Initiation in Hexanitrostilbene

    Science.gov (United States)

    Shan, Tzu-Ray; Wixom, Ryan; Yarrington, Cole; Thompson, Aidan

    2015-06-01

    We report on the effect of cylindrical voids on hot spot formation, growth and chemical reaction initiation in hexanitrostilbene (HNS) crystals subjected to shock. Large-scale, reactive molecular dynamics simulations are performed using the reactive force field (ReaxFF) as implemented in the LAMMPS software. The ReaxFF force field description for HNS has been validated previously by comparing the isothermal equation of state to available diamond anvil cell (DAC) measurements and density function theory (DFT) calculations and by comparing the primary dissociation pathway to ab initio calculations. Micron-scale molecular dynamics simulations of a supported shockwave propagating through the HNS crystal along the [010] orientation are performed with an impact velocity (or particle velocity) of 1.25 km/s, resulting in shockwave propagation at 4.0 km/s in the bulk material and a bulk shock pressure of ~ 11GPa. The effect of cylindrical void sizes varying from 0.02 to 0.1 μm on hot spot formation and growth rate has been studied. Interaction between multiple voids in the HNS crystal and its effect on hot spot formation will also be addressed. Results from the micron-scale atomistic simulations are compared with hydrodynamics simulations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  3. Atomistic simulations of dilute polyelectrolyte solutions.

    Science.gov (United States)

    Park, Soohyung; Zhu, Xiao; Yethiraj, Arun

    2012-04-12

    The properties of short chains of poly-(styrene)-co-(styrene sulfonate) are studied using atomistic molecular dynamics simulations with explicit solvent. We study single 8-mers and 16-mers with two species of counterions, Na(+) and Mg(2+), and for various degrees of sulfonation, f. We find that single trajectories do not efficiently sample configurational space, even for fairly long 100-ns simulations, because of rotational barriers caused by nonbonded interactions. Hamiltonian replica exchange molecular dynamics (HREMD) simulations or averages over multiple trajectories are required in order to obtain equilibrium properties. A polystyrene sulfonate chain adopts collapsed conformations at low f, in which the sulfonate groups are located outside the globule and benzene rings form the inner region, and adopts extended conformations as f is increased. Interestingly, the pair correlation functions between side groups of polystyrene chains are not sensitive to f and species of counterion, i.e., the balance of electrostatic repulsion between charged groups and hydrophobic attraction between benzene rings is achieved by conformational change in a way preserving pair correlations between side groups in a polymer chain. For Na(+) counterions, no localization is observed in the simulations. For Mg(2+) counterions, there is a large free energy barrier to contact pair formation between the sulfonate groups and the Mg(2+) counterions. As a consequence we do not observe the formation or breaking of contact pairs during the course of a simulation. The simulations provide insight into the important interactions and correlations in polyelectrolyte solutions.

  4. An object oriented Python interface for atomistic simulations

    Science.gov (United States)

    Hynninen, T.; Himanen, L.; Parkkinen, V.; Musso, T.; Corander, J.; Foster, A. S.

    2016-01-01

    Programmable simulation environments allow one to monitor and control calculations efficiently and automatically before, during, and after runtime. Environments directly accessible in a programming environment can be interfaced with powerful external analysis tools and extensions to enhance the functionality of the core program, and by incorporating a flexible object based structure, the environments make building and analysing computational setups intuitive. In this work, we present a classical atomistic force field with an interface written in Python language. The program is an extension for an existing object based atomistic simulation environment.

  5. A damping boundary condition for atomistic-continuum coupling

    International Nuclear Information System (INIS)

    Zhang Jie; Tieu, Kiet; Michal, Guillaume; Zhu Hongtao; Zhang Liang; Su Lihong; Deng Guanyu; Wang Hui

    2017-01-01

    The minimization of spurious wave reflection is a challenge in multiscale coupling due to the difference of spatial resolution between atomistic and continuum regions. In this study, a new damping condition is presented for eliminating spurious wave reflection at the interface between atomistic and continuum regions. This damping method starts by a coarse–fine decomposition of the atomic velocity based on the bridging scale method. The fine scale velocity of the atoms in the damping region is reduced by applying nonlinear damping coefficients. The effectiveness of this damping method is verified by one- and two- dimensional simulations. (paper)

  6. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool

    International Nuclear Information System (INIS)

    Stukowski, Alexander

    2010-01-01

    The Open Visualization Tool (OVITO) is a new 3D visualization software designed for post-processing atomistic data obtained from molecular dynamics or Monte Carlo simulations. Unique analysis, editing and animations functions are integrated into its easy-to-use graphical user interface. The software is written in object-oriented C++, controllable via Python scripts and easily extendable through a plug-in interface. It is distributed as open-source software and can be downloaded from the website http://ovito.sourceforge.net/

  7. Using a scalar parameter to trace dislocation evolution in atomistic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jinbo [ORNL; Zhang, Z F [Shenyang National Laboratory for Materials Science; Osetskiy, Yury N [ORNL; Stoller, Roger E [ORNL

    2015-01-01

    A scalar gamma-parameter is proposed from the Nye tensor. Its maximum value occurs along a dislocation line, either straight or curved, when the coordinate system is purposely chosen. This parameter can be easily obtained from the Nye tensor calculated at each atom in atomistic modeling. Using the gamma-parameter, a fully automated approach is developed to determine core atoms and the Burgers vectors of dislocations simultaneously. The approach is validated by revealing the smallest dislocation loop and by tracing the whole formation process of complicated dislocation networks on the fly.

  8. Atomistic simulations of graphite etching at realistic time scales

    NARCIS (Netherlands)

    Aussems, D.; Bal, K. M.; Morgan, T. W.; van de Sanden, M. C. M.; Neyts, E.

    2017-01-01

    Hydrogen-graphite interactions are relevant to a wide variety of applications, ranging from astrophysics to fusion devices and nano-electronics. In order to shed light on these interactions, atomistic simulation by Molecular Dynamics (MD) has been shown to be an invaluable tool. It suffers, however,

  9. Definition and detection of contact in atomistic simulations

    NARCIS (Netherlands)

    Solhjoo, Soheil; Vakis, Antonis I.

    2015-01-01

    In atomistic simulations, contact depends on the accurate detection of contacting atoms as well as their contact area. While it is common to define contact between atoms based on the so-called ‘contact distance’ where the interatomic potential energy reaches its minimum, this discounts, for example,

  10. Comparison of coarse-grained (MARTINI) and atomistic molecular ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 7. Comparison of coarse-grained (MARTINI) and atomistic molecular dynamics simulations of α and β toxin nanopores in lipid membranes. RAJAT DESIKAN SWARNA M PATRA KUMAR SARTHAK PRABAL K MAITI K G AYAPPA. REGULAR ARTICLE ...

  11. Atomistic simulation of the coupled adsorption and unfolding of protein GB1 on the polystyrenes nanoparticle surface

    Science.gov (United States)

    Xiao, HuiFang; Huang, Bin; Yao, Ge; Kang, WenBin; Gong, Sheng; Pan, Hai; Cao, Yi; Wang, Jun; Zhang, Jian; Wang, Wei

    2018-03-01

    Understanding the processes of protein adsorption/desorption on nanoparticles' surfaces is important for the development of new nanotechnology involving biomaterials; however, an atomistic resolution picture for these processes and for the simultaneous protein conformational change is missing. Here, we report the adsorption of protein GB1 on a polystyrene nanoparticle surface using atomistic molecular dynamic simulations. Enabled by metadynamics, we explored the relevant phase space and identified three protein states, each involving both the adsorbed and desorbed modes. We also studied the change of the secondary and tertiary structures of GB1 during adsorption and the dominant interactions between the protein and surface in different adsorption stages. The results we obtained from simulation were found to be more adequate and complete than the previous one. We believe the model presented in this paper, in comparison with the previous ones, is a better theoretical model to understand and explain the experimental results.

  12. Multi-scale modelling of ions in solution: from atomistic descriptions to chemical engineering

    International Nuclear Information System (INIS)

    Molina, J.J.

    2011-01-01

    Ions in solution play a fundamental role in many physical, chemical, and biological processes. The PUREX process used in the nuclear industry to the treatment of spent nuclear fuels is considered as an example. For industrial applications these systems are usually described using simple analytical models which are fitted to reproduce the available experimental data. In this work, we propose a multi-scale coarse graining procedure to derive such models from atomistic descriptions. First, parameters for classical force-fields of ions in solution are extracted from ab-initio calculations. Effective (McMillan-Mayer) ion-ion potentials are then derived from radial distribution functions measured in classical molecular dynamics simulations, allowing us to define an implicit solvent model of electrolytes. Finally, perturbation calculations are performed to define the best possible representation for these systems, in terms of charged hard-sphere models. Our final model is analytical and contains no free 'fitting' parameters. It shows good agreement with the exact results obtained from Monte-Carlo simulations for the thermodynamic and structural properties. Development of a similar model for the electrolyte viscosity, from information derived from atomistic descriptions, is also introduced. (author)

  13. Voltage equilibration for reactive atomistic simulations of electrochemical processes

    International Nuclear Information System (INIS)

    Onofrio, Nicolas; Strachan, Alejandro

    2015-01-01

    We introduce electrochemical dynamics with implicit degrees of freedom (EChemDID), a model to describe electrochemical driving force in reactive molecular dynamics simulations. The method describes the equilibration of external electrochemical potentials (voltage) within metallic structures and their effect on the self-consistent partial atomic charges used in reactive molecular dynamics. An additional variable assigned to each atom denotes the local potential in its vicinity and we use fictitious, but computationally convenient, dynamics to describe its equilibration within connected metallic structures on-the-fly during the molecular dynamics simulation. This local electrostatic potential is used to dynamically modify the atomic electronegativities used to compute partial atomic changes via charge equilibration. Validation tests show that the method provides an accurate description of the electric fields generated by the applied voltage and the driving force for electrochemical reactions. We demonstrate EChemDID via simulations of the operation of electrochemical metallization cells. The simulations predict the switching of the device between a high-resistance to a low-resistance state as a conductive metallic bridge is formed and resistive currents that can be compared with experimental measurements. In addition to applications in nanoelectronics, EChemDID could be useful to model electrochemical energy conversion devices

  14. Elastic dipoles of point defects from atomistic simulations

    Science.gov (United States)

    Varvenne, Céline; Clouet, Emmanuel

    2017-12-01

    The interaction of point defects with an external stress field or with other structural defects is usually well described within continuum elasticity by the elastic dipole approximation. Extraction of the elastic dipoles from atomistic simulations is therefore a fundamental step to connect an atomistic description of the defect with continuum models. This can be done either by a fitting of the point-defect displacement field, by a summation of the Kanzaki forces, or by a linking equation to the residual stress. We perform here a detailed comparison of these different available methods to extract elastic dipoles, and show that they all lead to the same values when the supercell of the atomistic simulations is large enough and when the anharmonic region around the point defect is correctly handled. But, for small simulation cells compatible with ab initio calculations, only the definition through the residual stress appears tractable. The approach is illustrated by considering various point defects (vacancy, self-interstitial, and hydrogen solute atom) in zirconium, using both empirical potentials and ab initio calculations.

  15. Atomistic simulations of jog migration on extended screw dislocations

    DEFF Research Database (Denmark)

    Vegge, T.; Leffers, T.; Pedersen, O.B.

    2001-01-01

    on the Effective Medium Theory, The minimum energy path through configuration space and the corresponding transition state energy are obtained using the Nudged Elastic Band path technique. We find very similar migration properties for elementary jogs on the (110){110} octahedral slip systems and the (110){110} non......We have performed large-scale atomistic simulations of the migration of elementary jogs on dissociated screw dislocations in Cu. The local crystalline configurations, transition paths. effective masses. and migration barriers for the jogs are determined using an interatomic potential based...

  16. Atomistic simulations of Mg-Cu metallic glasses: Mechanical properties

    DEFF Research Database (Denmark)

    Bailey, Nicholas; Schiøtz, Jakob; Jacobsen, Karsten Wedel

    2004-01-01

    The atomistic mechanisms of plastic deformation in amorphous metals are far from being understood. We have derived potential parameters for molecular dynamics simulations of Mg-Cu amorphous alloys using the Effective Medium Theory. We have simulated the formation of alloys by cooling from the melt......, and have used these glassy configurations to carry out simulations of plastic deformation. These involved different compositions, temperatures (including zero), and types of deformation (uniaxial strain/pure shear), and yielded stress-strain curves and values of flow stress. Separate simulations were...

  17. Atomistic computer simulations of FePt nanoparticles. Thermodynamic and kinetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, M.

    2007-12-20

    In the present dissertation, a hierarchical multiscale approach for modeling FePt nanoparticles by atomistic computer simulations is developed. By describing the interatomic interactions on different levels of sophistication, various time and length scales can be accessed. Methods range from static quantum-mechanic total-energy calculations of small periodic systems to simulations of whole particles over an extended time by using simple lattice Hamiltonians. By employing these methods, the energetic and thermodynamic stability of non-crystalline multiply twinned FePt nanoparticles is investigated. Subsequently, the thermodynamics of the order-disorder transition in FePt nanoparticles is analyzed, including the influence of particle size, composition and modified surface energies by different chemical surroundings. In order to identify processes that reduce or enhance the rate of transformation from the disordered to the ordered state, the kinetics of the ordering transition in FePt nanoparticles is finally investigated by assessing the contributions of surface and volume diffusion. (orig.)

  18. Atomistic modeling of defect evolution in Si for amorphizing and subamorphizing implants

    International Nuclear Information System (INIS)

    Lopez, Pedro; Pelaz, Lourdes; Marques, Luis A.; Santos, Ivan; Aboy, Maria; Barbolla, Juan

    2004-01-01

    Solid phase epitaxial regrowth of pre-amorphizing implants has received significant attention as a method to achieve high dopant activation with minimal diffusion at low implant temperatures and suppress channelling. Therefore, a good understanding of the amorphization and regrowth mechanisms is required in process simulators. We present an atomistic amorphization and recrystallization model that uses the interstitial-vacancy (I-V) pair as a building block to describe the amorphous phase. I-V pairs are locally characterized by the number of neighbouring I-V pairs. This feature captures the damage generation and the dynamical annealing during ion implantation, and also explains the annealing behaviour of amorphous layers and amorphous pockets

  19. Finite element analysis of an atomistically derived cohesive model for brittle fracture

    International Nuclear Information System (INIS)

    Lloyd, J T; McDowell, D L; Zimmerman, J A; Jones, R E; Zhou, X W

    2011-01-01

    In order to apply information from molecular dynamics (MD) simulations in problems governed by engineering length and time scales, a coarse graining methodology must be used. In previous work by Zhou et al (2009 Acta Mater. 57 4671–86), a traction-separation cohesive model was developed using results from MD simulations with atomistic-to-continuum measures of stress and displacement. Here, we implement this cohesive model within a combined finite element/cohesive surface element framework (referred to as a finite element approach or FEA), and examine the ability for the atomistically informed FEA to directly reproduce results from MD. We find that FEA shows close agreement of both stress and crack opening displacement profiles at the cohesive interface, although some differences do exist that can be attributed to the stochastic nature of finite temperature MD. The FEA methodology is then used to study slower loading rates that are computationally expensive for MD. We find that the crack growth process initially exhibits a rate-independent relationship between crack length and boundary displacement, followed by a rate-dependent regime where, at a given amount of boundary displacement, a lower applied strain rate produces a longer crack length. Our method is also extended to larger length scales by simulating a compact tension fracture-mechanics specimen with sub-micrometer dimensions. Such a simulation shows a computational speedup of approximately four orders of magnitude over conventional atomistic simulation, while exhibiting the expected fracture-mechanics response. Finally, differences between FEA and MD are explored with respect to ensemble and temperature effects in MD, and their impact on the cohesive model and crack growth behavior. These results enable us to make several recommendations to improve the methodology used to derive cohesive laws from MD simulations. In light of this work, which has critical implications for efforts to derive continuum laws

  20. Atomistic simulations of graphite etching at realistic time scales.

    Science.gov (United States)

    Aussems, D U B; Bal, K M; Morgan, T W; van de Sanden, M C M; Neyts, E C

    2017-10-01

    Hydrogen-graphite interactions are relevant to a wide variety of applications, ranging from astrophysics to fusion devices and nano-electronics. In order to shed light on these interactions, atomistic simulation using Molecular Dynamics (MD) has been shown to be an invaluable tool. It suffers, however, from severe time-scale limitations. In this work we apply the recently developed Collective Variable-Driven Hyperdynamics (CVHD) method to hydrogen etching of graphite for varying inter-impact times up to a realistic value of 1 ms, which corresponds to a flux of ∼10 20 m -2 s -1 . The results show that the erosion yield, hydrogen surface coverage and species distribution are significantly affected by the time between impacts. This can be explained by the higher probability of C-C bond breaking due to the prolonged exposure to thermal stress and the subsequent transition from ion- to thermal-induced etching. This latter regime of thermal-induced etching - chemical erosion - is here accessed for the first time using atomistic simulations. In conclusion, this study demonstrates that accounting for long time-scales significantly affects ion bombardment simulations and should not be neglected in a wide range of conditions, in contrast to what is typically assumed.

  1. 3d visualization of atomistic simulations on every desktop

    International Nuclear Information System (INIS)

    Peled, Dan; Silverman, Amihai; Adler, Joan

    2013-01-01

    Once upon a time, after making simulations, one had to go to a visualization center with fancy SGI machines to run a GL visualization and make a movie. More recently, OpenGL and its mesa clone have let us create 3D on simple desktops (or laptops), whether or not a Z-buffer card is present. Today, 3D a la Avatar is a commodity technique, presented in cinemas and sold for home TV. However, only a few special research centers have systems large enough for entire classes to view 3D, or special immersive facilities like visualization CAVEs or walls, and not everyone finds 3D immersion easy to view. For maximum physics with minimum effort a 3D system must come to each researcher and student. So how do we create 3D visualization cheaply on every desktop for atomistic simulations? After several months of attempts to select commodity equipment for a whole room system, we selected an approach that goes back a long time, even predating GL. The old concept of anaglyphic stereo relies on two images, slightly displaced, and viewed through colored glasses, or two squares of cellophane from a regular screen/projector or poster. We have added this capability to our AViz atomistic visualization code in its new, 6.1 version, which is RedHat, CentOS and Ubuntu compatible. Examples using data from our own research and that of other groups will be given

  2. Amp: A modular approach to machine learning in atomistic simulations

    Science.gov (United States)

    Khorshidi, Alireza; Peterson, Andrew A.

    2016-10-01

    Electronic structure calculations, such as those employing Kohn-Sham density functional theory or ab initio wavefunction theories, have allowed for atomistic-level understandings of a wide variety of phenomena and properties of matter at small scales. However, the computational cost of electronic structure methods drastically increases with length and time scales, which makes these methods difficult for long time-scale molecular dynamics simulations or large-sized systems. Machine-learning techniques can provide accurate potentials that can match the quality of electronic structure calculations, provided sufficient training data. These potentials can then be used to rapidly simulate large and long time-scale phenomena at similar quality to the parent electronic structure approach. Machine-learning potentials usually take a bias-free mathematical form and can be readily developed for a wide variety of systems. Electronic structure calculations have favorable properties-namely that they are noiseless and targeted training data can be produced on-demand-that make them particularly well-suited for machine learning. This paper discusses our modular approach to atomistic machine learning through the development of the open-source Atomistic Machine-learning Package (Amp), which allows for representations of both the total and atom-centered potential energy surface, in both periodic and non-periodic systems. Potentials developed through the atom-centered approach are simultaneously applicable for systems with various sizes. Interpolation can be enhanced by introducing custom descriptors of the local environment. We demonstrate this in the current work for Gaussian-type, bispectrum, and Zernike-type descriptors. Amp has an intuitive and modular structure with an interface through the python scripting language yet has parallelizable fortran components for demanding tasks; it is designed to integrate closely with the widely used Atomic Simulation Environment (ASE), which

  3. Calculation of Elastic Bond Constants in Atomistic Strain Analysis.

    Science.gov (United States)

    Chen, Haiyuan; Wang, Juanjuan; Ashalley, Eric; Li, Handong; Niu, Xiaobin

    2015-12-01

    Strain analysis has significance both for tailoring material properties and designing nanoscale devices. In particular, strain plays a vital role in engineering the growth thermodynamics and kinetics and is applicable for designing optoelectronic devices. In this paper, we present a methodology for establishing the relationship between elastic bond constants and measurable parameters, i.e., Poisson's ratio ν and systematic elastic constant K. At the atomistic level, this approach is within the framework of linear elastic theory and encompasses the neighbor interactions when an atom is introduced to stress. Departing from the force equilibrium equations, the relationships between ν, K, and spring constants are successfully established. Both the two-dimensional (2D) square lattice and common three-dimensional (3D) structures are taken into account in the procedure for facilitating, bridging the gap between structural complexity and numerical experiments. A new direction for understanding the physical phenomena in strain engineering is established.

  4. Atomistic simulation of graphene-based polymer nanocomposites

    International Nuclear Information System (INIS)

    Rissanou, Anastassia N.; Bačová, Petra; Harmandaris, Vagelis

    2016-01-01

    Polymer/graphene nanostructured systems are hybrid materials which have attracted great attention the last years both for scientific and technological reasons. In the present work atomistic Molecular Dynamics simulations are performed for the study of graphene-based polymer nanocomposites composed of pristine, hydrogenated and carboxylated graphene sheets dispersed in polar (PEO) and nonpolar (PE) short polymer matrices (i.e., matrices containing chains of low molecular weight). Our focus is twofold; the one is the study of the structural and dynamical properties of short polymer chains and the way that they are affected by functionalized graphene sheets while the other is the effect of the polymer matrices on the behavior of graphene sheets.

  5. Diffusion in energy materials: Governing dynamics from atomistic modelling

    Science.gov (United States)

    Parfitt, D.; Kordatos, A.; Filippatos, P. P.; Chroneos, A.

    2017-09-01

    Understanding diffusion in energy materials is critical to optimising the performance of solid oxide fuel cells (SOFCs) and batteries both of which are of great technological interest as they offer high efficiency for cleaner energy conversion and storage. In the present review, we highlight the insights offered by atomistic modelling of the ionic diffusion mechanisms in SOFCs and batteries and how the growing predictive capability of high-throughput modelling, together with our new ability to control compositions and microstructures, will produce advanced materials that are designed rather than chosen for a given application. The first part of the review focuses on the oxygen diffusion mechanisms in cathode and electrolyte materials for SOFCs and in particular, doped ceria and perovskite-related phases with anisotropic structures. The second part focuses on disordered oxides and two-dimensional materials as these are very promising systems for battery applications.

  6. Quantum-based Atomistic Simulation of Transition Metals

    International Nuclear Information System (INIS)

    Moriarty, J A; Benedict, L X; Glosli, J N; Hood, R Q; Orlikowski, D A; Patel, M V; Soderlind, P; Streitz, F H; Tang, M; Yang, L H

    2005-01-01

    First-principles generalized pseudopotential theory (GPT) provides a fundamental basis for transferable multi-ion interatomic potentials in d-electron transition metals within density-functional quantum mechanics. In mid-period bcc metals, where multi-ion angular forces are important to structural properties, simplified model GPT or MGPT potentials have been developed based on canonical d bands to allow analytic forms and large-scale atomistic simulations. Robust, advanced-generation MGPT potentials have now been obtained for Ta and Mo and successfully applied to a wide range of structural, thermodynamic, defect and mechanical properties at both ambient and extreme conditions of pressure and temperature. Recent algorithm improvements have also led to a more general matrix representation of MGPT beyond canonical bands allowing increased accuracy and extension to f-electron actinide metals, an order of magnitude increase in computational speed, and the current development of temperature-dependent potentials

  7. Atomistic modeling of ion beam induced amorphization in silicon

    International Nuclear Information System (INIS)

    Pelaz, Lourdes; Marques, Luis A.; Lopez, Pedro; Santos, Ivan; Aboy, Maria; Barbolla, Juan

    2005-01-01

    Ion beam induced amorphization in Si has attracted significant interest since the beginning of the use of ion implantation for the fabrication of Si devices. Nowadays, a renewed interest in the modeling of amorphization mechanisms at atomic level has arisen due to the use of preamorphizing implants and high dopant implantation doses for the fabrication of nanometric-scale Si devices. In this work, we briefly describe the existing phenomenological and defect-based amorphization models. We focus on the atomistic model we have developed to describe ion beam induced amorphization in Si. In our model, the building block for the amorphous phase is the bond defect or IV pair, whose stability increases with the number of surrounding IV pairs. This feature explains the regrowth behavior of different damage topologies and the kinetics of the crystalline to amorphous transition. The model provides excellent quantitative agreement with experimental results

  8. Experimentally driven atomistic model of 1,2 polybutadiene

    Energy Technology Data Exchange (ETDEWEB)

    Gkourmpis, Thomas, E-mail: thomas.gkourmpis@borealisgroup.com [Polymer Science Centre, J. J. Thomson Physical Laboratory, Department of Physics, University of Reading, Reading RG6 6AF (United Kingdom); Mitchell, Geoffrey R. [Polymer Science Centre, J. J. Thomson Physical Laboratory, Department of Physics, University of Reading, Reading RG6 6AF (United Kingdom); Centre for Rapid and Sustainable Product Development, Institute Polytechnic Leiria, Marinha Grande (Portugal)

    2014-02-07

    We present an efficient method of combining wide angle neutron scattering data with detailed atomistic models, allowing us to perform a quantitative and qualitative mapping of the organisation of the chain conformation in both glass and liquid phases. The structural refinement method presented in this work is based on the exploitation of the intrachain features of the diffraction pattern and its intimate linkage with atomistic models by the use of internal coordinates for bond lengths, valence angles, and torsion rotations. Atomic connectivity is defined through these coordinates that are in turn assigned by pre-defined probability distributions, thus allowing for the models in question to be built stochastically. Incremental variation of these coordinates allows for the construction of models that minimise the differences between the observed and calculated structure factors. We present a series of neutron scattering data of 1,2 polybutadiene at the region 120–400 K. Analysis of the experimental data yields bond lengths for Cî—¸C and C î—» C of 1.54 Å and 1.35 Å, respectively. Valence angles of the backbone were found to be at 112° and the torsion distributions are characterised by five rotational states, a three-fold trans-skew± for the backbone and gauche± for the vinyl group. Rotational states of the vinyl group were found to be equally populated, indicating a largely atactic chan. The two backbone torsion angles exhibit different behaviour with respect to temperature of their trans population, with one of them adopting an almost all trans sequence. Consequently, the resulting configuration leads to a rather persistent chain, something indicated by the value of the characteristic ratio extrapolated from the model. We compare our results with theoretical predictions, computer simulations, RIS models and previously reported experimental results.

  9. A new REBO potential based atomistic structural model for graphene sheets

    International Nuclear Information System (INIS)

    Shakouri, A; Ng, T Y; Lin, R M

    2011-01-01

    A new atomistic structural model is developed here for graphene sheets based on the stiffnesses from the REBO potential. Using this model, the flexural vibration natural frequencies and buckling loads of rectangular single-layer graphene sheets of different sizes, chiralities and boundary conditions are calculated. The newly developed atomistic structural model is verified by comparing the calculated fundamental natural frequencies for small-sized graphene sheets with those obtained from ab initio density functional theory (DFT) frequency analysis. The vibration and buckling analysis results are also compared with those of an earlier atomistic structural model based on the AMBER potential as well as the equivalent continuum model for graphene sheets. Through this study, it is observed that graphene sheets display very slight anisotropic characteristics in flexural vibration and buckling. Also, it is shown that the atomistic structural model cannot be replaced by a classical equivalent continuum model such as a plate model. Most significantly, we verify that the new atomistic structural model based on the REBO potential predicts more accurate natural frequencies and buckling loads for graphene sheets, which are considerably lower than those predicted by the earlier atomistic structural model based on the AMBER potential.

  10. The atomistic mechanism for Sb segregation and As displacement of Sb in InSb(001) surfaces

    Science.gov (United States)

    Anderson, Evan M.; Millunchick, Joanna M.

    2018-01-01

    Interfacial broadening occurs in mixed-anion alloy heterostructures such as InAs/InAsSb due to both Sb-segregation and As-for-Sb exchange. In order to determine the atomistic mechanisms for these processes, we conduct ab initio calculations coupled with a cluster expansion formalism to determine the surface reconstructions of the pure and As-exposed InSb(001) surfaces. This approach provides a predicted phase diagram for pure InSb that is in better agreement with experiments. Namely, the α2(2 × 4) and α3c(4 × 4) structures are ultimately stable at 0K, but the α(4 × 3) and α2c(2 × 6) are within 1 meV/Å2. Exposure of the InSb(001) surface to As results in the As atoms infiltrating into the crystal and displacing subsurface Sb, thus providing the atomistic mechanisms for experimental observations of the As-for-Sb exchange reaction and Sb segregation. Experiments show that the widely reported A-(1 × 3) reconstruction is actually comprised of multiple reconstructions, which is consistent with the prediction of several nearly stable possible reconstructions.

  11. Evaluation of Alternative Atomistic Models for the Incipient Growth of ZnO by Atomic Layer Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Manh-Hung; Tian, Liang; Chaker, Ahmad; Skopin, Evgenii; Cantelli, Valentina; Ouled, Toufik; Boichot, Raphaël; Crisci, Alexandre; Lay, Sabine; Richard, Marie-Ingrid; Thomas, Olivier; Deschanvres, Jean-Luc; Renevier, Hubert; Fong, Dillon; Ciatto, Gianluca

    2017-03-20

    ZnO thin films are interesting for applications in several technological fields, including optoelectronics and renewable energies. Nanodevice applications require controlled synthesis of ZnO structures at nanometer scale, which can be achieved via atomic layer deposition (ALD). However, the mechanisms governing the initial stages of ALD had not been addressed until very recently. Investigations into the initial nucleation and growth as well as the atomic structure of the heterointerface are crucial to optimize the ALD process and understand the structure-property relationships for ZnO. We have used a complementary suite of in situ synchrotron x-ray techniques to investigate both the structural and chemical evolution during ZnO growth by ALD on two different substrates, i.e., SiO2 and Al2O3, which led us to formulate an atomistic model of the incipient growth of ZnO. The model relies on the formation of nanoscale islands of different size and aspect ratio and consequent disorder induced in the Zn neighbors' distribution. However, endorsement of our model requires testing and discussion of possible alternative models which could account for the experimental results. In this work, we review, test, and rule out several alternative models; the results confirm our view of the atomistic mechanisms at play, which influence the overall microstructure and resulting properties of the final thin film.

  12. Critical assessment of Pt surface energy - An atomistic study

    Science.gov (United States)

    Kim, Jin-Soo; Seol, Donghyuk; Lee, Byeong-Joo

    2018-04-01

    Despite the fact that surface energy is a fundamental quantity in understanding surface structure of nanoparticle, the results of experimental measurements and theoretical calculations for the surface energy of pure Pt show a wide range of scattering. It is necessary to further ensure the surface energy of Pt to find the equilibrium shape and atomic configuration in Pt bimetallic nanoparticles accurately. In this article, we critically assess and optimize the Pt surface energy using a semi-empirical atomistic approach based on the second nearest-neighbor modified embedded-atom method interatomic potential. That is, the interatomic potential of pure Pt was adjusted in a way that the surface segregation tendency in a wide range of Pt binary alloys is reproduced in accordance with experimental information. The final optimized Pt surface energy (mJ/m2) is 2036 for (100) surface, 2106 for (110) surface, and 1502 for (111) surface. The potential can be utilized to find the equilibrium shape and atomic configuration of Pt bimetallic nanoparticles more accurately.

  13. Detonation initiation in atomistic and mesoscopic simulation of porous explosives

    Science.gov (United States)

    Murzov, Semen; Zhakhovsky, Vasily

    2017-06-01

    Atomistic simulation of chemical reactions activated by shock compression is feasible at sub-nanosecond timescale, and molecular dynamics simulation indicates that the most energetic reactions accomplish within several tens of picosecond. This is too short time in comparison with microseconds required for experimental shock-to-detonation transition in real solid explosives with pores. Different types of hotspots were found in MD simulation of porous explosive described by AB model. Those types are categorized according to ratios between a characteristic time of reactions, a material motion time and a time of hotspot formation. The characteristic time of reaction is determined in MD simulation of isochoric thermal decomposition at different densities. To transfer such information into macroscopic spatial-time scale a simple model of material decomposition using a local thermodynamic and chemical equilibrium was developed. Consistent MD simulation and hydrodynamics modeling of AB samples by our smoothed particle hydrodynamic code are agreed well. The developed model was utilized in mesoscale modeling of shock-to-detonation transition in real porous explosives.

  14. Thermodynamics of grain boundary premelting in alloys. II. Atomistic simulation

    International Nuclear Information System (INIS)

    Williams, P.L.; Mishin, Y.

    2009-01-01

    We apply the semi-grand-canonical Monte Carlo method with an embedded-atom potential to study grain boundary (GB) premelting in Cu-rich Cu-Ag alloys. The Σ5 GB chosen for this study becomes increasingly disordered near the solidus line while its local chemical composition approaches the liquidus composition at the same temperature. This behavior indicates the formation of a thin layer of the liquid phase in the GB when the grain composition approaches the solidus. The thickness of the liquid layer remains finite and the GB can be overheated/oversaturated to metastable states slightly above the solidus. The premelting behavior found by the simulations is qualitatively consistent with the phase-field model of the same binary system presented in Part I of this work [Mishin Y, Boettinger WJ, Warren JA, McFadden GB. Acta Mater, in press]. Although this agreement is encouraging, we discuss several problems arising when atomistic simulations are compared with phase-field modeling.

  15. Atomistic study of heavy doping in Si nanowires

    Science.gov (United States)

    Neupane, Mahesh; Rahman, Rajib; Lake, Roger

    2012-02-01

    Dopant atoms are becoming increasingly important in the nanoscaled field-effect transistors (FET) because of their tendency to influence device parameters such as sub-threshold current-voltage characteristics and gate-to-channel electrostatic coupling. Achieving high doping concentrations is essential for the realization of Si nanowire FET where low resistance contacts or tunnel junctions and narrow depletion widths are needed. In an effort to understand the dopants effect on these devices as a function of scaling parameters, we use self-consistent field (SCF) tight-binding (TB) method as implemented in NEMO3D to obtain an accurate quantitative description of the band structure, confinement geometries and valley-orbit interaction from a full band-structure technique as a function of dopant location, concentration and applied electrical field. Our method solves the Poisson equation iteratively coupled with the atomistic TB Hamiltonian for charge self-consistency to provide an accurate description of the electrostatics. Our simulations show how the band structure of the nanowire is affected by the presence of few impurities.

  16. Pressure control in interfacial systems: Atomistic simulations of vapor nucleation

    Science.gov (United States)

    Marchio, S.; Meloni, S.; Giacomello, A.; Valeriani, C.; Casciola, C. M.

    2018-02-01

    A large number of phenomena of scientific and technological interest involve multiple phases and occur at constant pressure of one of the two phases, e.g., the liquid phase in vapor nucleation. It is therefore of great interest to be able to reproduce such conditions in atomistic simulations. Here we study how popular barostats, originally devised for homogeneous systems, behave when applied straightforwardly to heterogeneous systems. We focus on vapor nucleation from a super-heated Lennard-Jones liquid, studied via hybrid restrained Monte Carlo simulations. The results show a departure from the trends predicted for the case of constant liquid pressure, i.e., from the conditions of classical nucleation theory. Artifacts deriving from standard (global) barostats are shown to depend on the size of the simulation box. In particular, for Lennard-Jones liquid systems of 7000 and 13 500 atoms, at conditions typically found in the literature, we have estimated an error of 10-15 kBT on the free-energy barrier, corresponding to an error of 104-106 s-1σ-3 on the nucleation rate. A mechanical (local) barostat is proposed which heals the artifacts for the considered case of vapor nucleation.

  17. Atomistic modeling of nanowires, small-scale fatigue damage in cast magnesium, and materials for MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Martin L. [Univ. of Colorado, Boulder, CO (United States); Talmage, Mellisa J. [Univ. of Colorado, Boulder, CO (United States); McDowell, David L. [Georgia Inst. of Technology, Atlanta, GA (United States); West, Neil [Univ. of Colorado, Boulder, CO (United States); Gullett, Philip Michael [Mississippi State Univ., Mississippi State, MS (United States); Miller, David C. [Univ. of Colorado, Boulder, CO (United States); Spark, Kevin [Univ. of Colorado, Boulder, CO (United States); Diao, Jiankuai [Univ. of Colorado, Boulder, CO (United States); Horstemeyer, Mark F. [Mississippi State Univ., Mississippi State, MS (United States); Zimmerman, Jonathan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gall, K. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2006-10-01

    Lightweight and miniaturized weapon systems are driving the use of new materials in design such as microscale materials and ultra low-density metallic materials. Reliable design of future weapon components and systems demands a thorough understanding of the deformation modes in these materials that comprise the components and a robust methodology to predict their performance during service or storage. Traditional continuum models of material deformation and failure are not easily extended to these new materials unless microstructural characteristics are included in the formulation. For example, in LIGA Ni and Al-Si thin films, the physical size is on the order of microns, a scale approaching key microstructural features. For a new potential structural material, cast Mg offers a high stiffness-to-weight ratio, but the microstructural heterogeneity at various scales requires a structure-property continuum model. Processes occurring at the nanoscale and microscale develop certain structures that drive material behavior. The objective of the work presented in this report was to understand material characteristics in relation to mechanical properties at the nanoscale and microscale in these promising new material systems. Research was conducted primarily at the University of Colorado at Boulder to employ tightly coupled experimentation and simulation to study damage at various material size scales under monotonic and cyclic loading conditions. Experimental characterization of nano/micro damage will be accomplished by novel techniques such as in-situ environmental scanning electron microscopy (ESEM), 1 MeV transmission electron microscopy (TEM), and atomic force microscopy (AFM). New simulations to support experimental efforts will include modified embedded atom method (MEAM) atomistic simulations at the nanoscale and single crystal micromechanical finite element simulations. This report summarizes the major research and development accomplishments for the LDRD project

  18. Peridynamics as a rigorous coarse-graining of atomistics for multiscale materials design

    International Nuclear Information System (INIS)

    Lehoucq, Richard B.; Aidun, John Bahram; Silling, Stewart Andrew; Sears, Mark P.; Kamm, James R.; Parks, Michael L.

    2010-01-01

    This report summarizes activities undertaken during FY08-FY10 for the LDRD Peridynamics as a Rigorous Coarse-Graining of Atomistics for Multiscale Materials Design. The goal of our project was to develop a coarse-graining of finite temperature molecular dynamics (MD) that successfully transitions from statistical mechanics to continuum mechanics. The goal of our project is to develop a coarse-graining of finite temperature molecular dynamics (MD) that successfully transitions from statistical mechanics to continuum mechanics. Our coarse-graining overcomes the intrinsic limitation of coupling atomistics with classical continuum mechanics via the FEM (finite element method), SPH (smoothed particle hydrodynamics), or MPM (material point method); namely, that classical continuum mechanics assumes a local force interaction that is incompatible with the nonlocal force model of atomistic methods. Therefore FEM, SPH, and MPM inherit this limitation. This seemingly innocuous dichotomy has far reaching consequences; for example, classical continuum mechanics cannot resolve the short wavelength behavior associated with atomistics. Other consequences include spurious forces, invalid phonon dispersion relationships, and irreconcilable descriptions/treatments of temperature. We propose a statistically based coarse-graining of atomistics via peridynamics and so develop a first of a kind mesoscopic capability to enable consistent, thermodynamically sound, atomistic-to-continuum (AtC) multiscale material simulation. Peridynamics (PD) is a microcontinuum theory that assumes nonlocal forces for describing long-range material interaction. The force interactions occurring at finite distances are naturally accounted for in PD. Moreover, PDs nonlocal force model is entirely consistent with those used by atomistics methods, in stark contrast to classical continuum mechanics. Hence, PD can be employed for mesoscopic phenomena that are beyond the realms of classical continuum mechanics and

  19. Atomistic Model for the Polyamide Formation from β-Lactam Catalyzed by Candida Antarctica Lipase B

    Energy Technology Data Exchange (ETDEWEB)

    Baum, Iris; Elsasser, Brigitta M.; Schwab, Leendert; Loos, Katja; Fels, Gregor

    2011-04-01

    Candida antarctica lipase B (CALB) is an established biocatalyst for a variety of transesterification, amidation, and polymerization reactions. In contrast to polyesters, polyamides are not yet generally accessible via enzymatic polymerization. In this regard, an enzyme-catalyzed ring-opening polymerization of {beta}-lactam (2-azetidinone) using CALB is the first example of an enzymatic polyamide formation yielding unbranched poly({beta}-alanine), nylon 3. The performance of this polymerization, however, is poor, considering the maximum chain length of 18 monomer units with an average length of 8, and the molecular basis of the reaction so far is not understood. We have employed molecular modeling techniques using docking tools, molecular dynamics, and QM/MM procedures to gain insight into the mechanistic details of the various reaction steps involved. As a result, we propose a catalytic cycle for the oligomerization of {beta}-lactam that rationalizes the activation of the monomer, the chain elongation by additional {beta}-lactam molecules, and the termination of the polymer chain. In addition, the processes leading to a premature chain termination are studied. Particularly, the QM/MM calculation enables an atomistic description of all eight steps involved in the catalytic cycle, which features an in situ-generated {beta}-alanine as the elongating monomer and which is compatible with the experimental findings.

  20. Atomistic study of the hardening of ferritic iron by Ni-Cr decorated dislocation loops

    Science.gov (United States)

    Bonny, G.; Bakaev, A.; Terentyev, D.; Zhurkin, E.; Posselt, M.

    2018-01-01

    The exact nature of the radiation defects causing hardening in reactor structural steels consists of several components that are not yet clearly determined. While generally, the hardening is attributed to dislocation loops, voids and secondary phases (radiation-induced precipitates), recent advanced experimental and computational studies point to the importance of solute-rich clusters (SRCs). Depending on the exact composition of the steel, SRCs may contain Mn, Ni and Cu (e.g. in reactor pressure vessel steels) or Ni, Cr, Si, Mn (e.g. in high-chromium steels for generation IV and fusion applications). One of the hypotheses currently implied to explain their formation is the process of radiation-induced diffusion and segregation of these elements to small dislocation loops (heterogeneous nucleation), so that the distinction between SRCs and loops becomes somewhat blurred. In this work, we perform an atomistic study to investigate the enrichment of loops by Ni and Cr solutes and their interaction with an edge dislocation. The dislocation loops decorated with Ni and Cr solutes are obtained by Monte Carlo simulations, while the effect of solute segregation on the loop's strength and interaction mechanism is then addressed by large scale molecular dynamics simulations. The synergy of the Cr-Ni interaction and their competition to occupy positions in the dislocation loop core are specifically clarified.

  1. Development and assessment of atomistic models for predicting static friction coefficients

    Science.gov (United States)

    Jahangiri, Soran; Heverly-Coulson, Gavin S.; Mosey, Nicholas J.

    2016-08-01

    The friction coefficient relates friction forces to normal loads and plays a key role in fundamental and applied areas of science and technology. Despite its importance, the relationship between the friction coefficient and the properties of the materials forming a sliding contact is poorly understood. We illustrate how simple relationships regarding the changes in energy that occur during slip can be used to develop a quantitative model relating the friction coefficient to atomic-level features of the contact. The slip event is considered as an activated process and the load dependence of the slip energy barrier is approximated with a Taylor series expansion of the corresponding energies with respect to load. The resulting expression for the load-dependent slip energy barrier is incorporated in the Prandtl-Tomlinson (PT) model and a shear-based model to obtain expressions for friction coefficient. The results indicate that the shear-based model reproduces the static friction coefficients μs obtained from first-principles molecular dynamics simulations more accurately than the PT model. The ability of the model to provide atomistic explanations for differences in μs amongst different contacts is also illustrated. As a whole, the model is able to account for fundamental atomic-level features of μs, explain the differences in μs for different materials based on their properties, and might be also used in guiding the development of contacts with desired values of μs.

  2. Radiation damage in Fe-Cr alloys: Atomistic studies

    International Nuclear Information System (INIS)

    Terentyev, Dmitry; Malerba, Lorenzo; Bonny, Giovanni; Castin, Nicolas

    2009-01-01

    High-Cr ferritic-martensitic steels are the most promising candidate structural materials for future advanced fission reactors, as well as for fusion systems, due to their better thermomechanical properties and higher radiation resistance as compared to austenitic steels. The performance of these steels, especially under irradiation, appears to be largely determined by the Cr content. For instance, the current choice of steel compositions around ∼9 wt% Cr is mainly based on the observation of a local minimum in the ductile-brittle transition temperature shift at this composition. On the other hand, reduced void swelling is observed between 3 and 12 wt% Cr. The origin of these and other Cr-dependent effects remained unexplained for a long time, thereby calling for a physical modelling effort addressing these questions. In this presentation, an overview is given on the effort made in recent years to construct a whole modelling framework, from ab initio to dislocations, to provide explanations to the above-mentioned issues. Ab initio calculations combined to the development of the interatomic potentials capable of grasping key features of Cr atoms embedded in perfect and defected Fe matrix, were required. Primary damage, defect migration, Cr mass transport, phase separation, Cr-defect segregation and dislocation-defect interactions could then be studied using fully atomistic approaches. Our research shows that many of the effects of Cr content on the behaviour of these alloys under irradiation can be attributed to the only recently highlighted high solubility of Cr in Fe (∼10 wt%), below which, in addition, Cr atoms tend to order. The presentation will clarify how this aspect, combined with the high affinity between Cr atoms and self-interstitials defects, influences and partly explain both microstructure evolution and mechanical behaviour of high-Cr steels under irradiation. (author)

  3. Atomistic simulation of fatigue in face centred cubic metals

    International Nuclear Information System (INIS)

    Fan, Zhengxuan

    2016-01-01

    Fatigue is one of the major damage mechanisms of metals. It is characterized by strong environmental effects and wide lifetime dispersions which must be better understood. Different face centred cubic metals, al, Cu, Ni, and Ag are analyzed. The mechanical behaviour of surface steps naturally created by the glide of dislocations subjected to cyclic loading is examined using molecular dynamics simulations in vacuum and in air for Cu and Ni. an atomistic reconstruction phenomenon is observed at these surface steps which can induce strong irreversibility. Three different mechanisms of reconstruction are defined. Surface slip irreversibility under cyclic loading is analyzed. all surface steps are intrinsically irreversible under usual fatigue laboratory loading amplitude without the arrival of opposite sign dislocations on direct neighbor plane.With opposite sign dislocations on non direct neighbour planes, irreversibility cumulates cycle by cycle and a micro-notch is produced whose depth gradually increases.Oxygen environment affects the surface (first stage of oxidation) but does not lead to higher irreversibility as it has no major influence on the different mechanisms linked to surface relief evolution.a rough estimation of surface irreversibility is carried out for pure edge dislocations in persistent slip bands in so-called wavy materials. It gives an irreversibility fraction between 0.5 and 0.75 in copper in vacuum and in air, in agreement with recent atomic force microscopy measurements.Crack propagation mechanisms are simulated in inert environment. Cracks can propagate owing to the irreversibility of generated dislocations because of their mutual interactions up to the formation of dislocation junctions. (author) [fr

  4. Atomistic models of amorphous polybutadienes; 3 -- Static free volume

    Energy Technology Data Exchange (ETDEWEB)

    Misra, S.; Mattice, W.L. [Univ. of Akron, OH (United States). Inst. of Polymer Science

    1993-12-20

    Atomistic models of polybutadiene have been generated using molecular mechanics and molecular dynamics at a bulk density of 0.89 g cm{sup {minus}3}. Four microstructures formed by cis-1,4-polybutadiene, trans-1,4-polybutadiene, 1,2-polybutadiene, and a random copolymer of the three (55% trans, 35% cis, and 10% vinyl) are analyzed for static free volume. The free volume is determined by hard spherical probes that see the atoms as hard spheres of radii which equal 89% of their van der Waals radii. The total free volume, the free volume distribution, and the shape of the voids are analyzed for all four microstructures. The accessible free volume as a function of the probe size is found to be characteristic of voids in disordered packings of hard spheres. The free volume distributions have some common features across the microstructures. In particular, the free volume distributions as probed by a 1-{angstrom} radius probe show void size concentrations around {approximately}7.5 and 15 {angstrom}{sup 3} (with the exception of trans-polybutadiene, which does not display the latter). The shape factors for all four structures decay to the same asymptotic value of 0.67 {+-} 0.1 over the size range of 0--5 {angstrom}{sup 3}. There is a marked difference in the asphericity and the acylindricity of voids in the four microstructures. Analysis of randomly generated shapes suggests that the voids in the polymer microstructures are mostly elongated in comparison with randomly ``grown`` cavities, probably due to the connectivity of the polymer chains.

  5. Control of density fluctuations in atomistic-continuum simulations of dense liquids

    DEFF Research Database (Denmark)

    Kotsalis, E.M.; Walther, Jens Honore; Koumoutsakos, P.

    2007-01-01

    We present a control algorithm to eliminate spurious density fluctuations associated with the coupling of atomistic and continuum descriptions for dense liquids. A Schwartz domain decomposition algorithm is employed to couple molecular dynamics for the simulation of the atomistic system...... with a continuum solver for the simulation of the Navier-Stokes equations. The lack of periodic boundary conditions in the molecular dynamics simulations hinders the proper accounting for the virial pressure leading to spurious density fluctuations at the continuum-atomistic interface. An ad hoc boundary force...... is usually employed to remedy this situation.We propose the calculation of this boundary force using a control algorithm that explicitly cancels the density fluctuations. The results demonstrate that the present approach outperforms state-of-the-art algorithms. The conceptual and algorithmic simplicity...

  6. Anisotropic solid-liquid interface kinetics in silicon: an atomistically informed phase-field model

    Science.gov (United States)

    Bergmann, S.; Albe, K.; Flegel, E.; Barragan-Yani, D. A.; Wagner, B.

    2017-09-01

    We present an atomistically informed parametrization of a phase-field model for describing the anisotropic mobility of liquid-solid interfaces in silicon. The model is derived from a consistent set of atomistic data and thus allows to directly link molecular dynamics and phase field simulations. Expressions for the free energy density, the interfacial energy and the temperature and orientation dependent interface mobility are systematically fitted to data from molecular dynamics simulations based on the Stillinger-Weber interatomic potential. The temperature-dependent interface velocity follows a Vogel-Fulcher type behavior and allows to properly account for the dynamics in the undercooled melt.

  7. Hypercrosslinked polystyrene networks: An atomistic molecular dynamics simulation combined with a mapping/reverse mapping procedure

    Science.gov (United States)

    Lazutin, A. A.; Glagolev, M. K.; Vasilevskaya, V. V.; Khokhlov, A. R.

    2014-04-01

    An algorithm involving classical molecular dynamics simulations with mapping and reverse mapping procedure is here suggested to simulate the crosslinking of the polystyrene dissolved in dichloroethane by monochlorodimethyl ether. The algorithm comprises consecutive stages: molecular dynamics atomistic simulation of a polystyrene solution, the mapping of atomistic structure onto coarse-grained model, the crosslink formation, the reverse mapping, and finally relaxation of the structure dissolved in dichloroethane and in dry state. The calculated values of the specific volume and the elastic modulus are in reasonable quantitative correspondence with experimental data.

  8. Analysis of Twisting of Cellulose Nanofibrils in Atomistic Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Paavilainen, S.; Rog, T.; Vattulainen, I.

    2011-01-01

    We use atomistic molecular dynamics simulations to study the crystal structure of cellulose nanofibrils, whose sizes are comparable with the crystalline parts in commercial nanocellulose. The simulations show twisting, whose rate of relaxation is strongly temperature dependent. Meanwhile, no sign......We use atomistic molecular dynamics simulations to study the crystal structure of cellulose nanofibrils, whose sizes are comparable with the crystalline parts in commercial nanocellulose. The simulations show twisting, whose rate of relaxation is strongly temperature dependent. Meanwhile......, no significant bending or stretching of nanocellulose is discovered. Considerations of atomic-scale interaction patterns bring about that the twisting arises from hydrogen bonding within and between the chains in a fibril....

  9. Atomistic Simulation of Non-Equilibrium Phenomena in Hypersonic Flows

    Science.gov (United States)

    Norman, Paul Erik

    The goal of this work is to model the heterogeneous recombination of atomic oxygen on silica surfaces, which is of interest for accurately predicting the heating on vehicles traveling at hypersonic speeds. This is accomplished by creating a finite rate catalytic model, which describes recombination with a set of elementary gas-surface reactions. Fundamental to a description of surface catalytic reactions are the in situ chemical structures on the surface where recombination can occur. Using molecular dynamics simulations with the Reax GSISiO potential, we find that the chemical sites active in direct gas-phase reactions on silica surfaces consist of a small number of specific structures (or defects). The existence of these defects on real silica surfaces is supported by experimental results and the structure and energetics of these defects have been verified with quantum chemical calculations. The reactions in the finite rate catalytic model are based on the interaction of molecular and atomic oxygen with these defects. Trajectory calculations are used to find the parameters in the forward rate equations, while a combination of detailed balance and transition state theory are used to find the parameters in the reverse rate equations. The rate model predicts that the oxygen recombination coefficient is relatively constant at T (300-1000 K), in agreement with experimental results. At T > 1000 K the rate model predicts a drop off in the oxygen recombination coefficient, in disagreement with experimental results, which predict that the oxygen recombination coefficient increases with temperature. A discussion of the possible reasons for this disagreement, including non-adiabatic collision dynamics, variable surface site concentrations, and additional recombination mechanisms is presented. This thesis also describes atomistic simulations with Classical Trajectory Calculation Direction Simulation Monte Carlo (CTC-DSMC), a particle based method for modeling non

  10. the paradox of migration and the interests of the atomistic nation ...

    African Journals Online (AJOL)

    uvt

    1981-06-27

    Jun 27, 1981 ... atomistic nation-states do not augur well for migrants, because the state is more interested in protecting .... migrants are marginalised in reaction to what are perceived to be national interests. This fact manifests ... them to exploitative working conditions and abuse, including low income. The work permit is ...

  11. Robust mode space approach for atomistic modeling of realistically large nanowire transistors

    Science.gov (United States)

    Huang, Jun Z.; Ilatikhameneh, Hesameddin; Povolotskyi, Michael; Klimeck, Gerhard

    2018-01-01

    Nanoelectronic transistors have reached 3D length scales in which the number of atoms is countable. Truly atomistic device representations are needed to capture the essential functionalities of the devices. Atomistic quantum transport simulations of realistically extended devices are, however, computationally very demanding. The widely used mode space (MS) approach can significantly reduce the numerical cost, but a good MS basis is usually very hard to obtain for atomistic full-band models. In this work, a robust and parallel algorithm is developed to optimize the MS basis for atomistic nanowires. This enables engineering-level, reliable tight binding non-equilibrium Green's function simulation of nanowire metal-oxide-semiconductor field-effect transistor (MOSFET) with a realistic cross section of 10 nm × 10 nm using a small computer cluster. This approach is applied to compare the performance of InGaAs and Si nanowire n-type MOSFETs (nMOSFETs) with various channel lengths and cross sections. Simulation results with full-band accuracy indicate that InGaAs nanowire nMOSFETs have no drive current advantage over their Si counterparts for cross sections up to about 10 nm × 10 nm.

  12. Atomistic details of the molecular recognition of DNA-RNA hybrid ...

    Indian Academy of Sciences (India)

    127, No. 10, October 2015, pp. 1701–1713. c Indian Academy of Sciences. DOI 10.1007/s12039-015-0942-7. Atomistic details of the molecular recognition of DNA-RNA hybrid duplex by ribonuclease H enzyme. GORLE SURESH and U DEVA PRIYAKUMAR∗. Center for Computational Natural Sciences and Bioinformatics, ...

  13. Green function study of quantum transport in ultra-small devices with embedded atomistic clusters

    International Nuclear Information System (INIS)

    Barker, J R; Martinez, A; Svizhenko, A; Anantram, A; Asenov, A

    2006-01-01

    Transport in limiting scale MOSFET transistors will be strongly influenced by quantum effects and the presence of atomistic scattering centres either intentionally or un-intentionally present in the channel and the device environs. The scattering in such systems is non-asymptotic and the selfaveraging conditions of the Kohn-Luttinger theorem fail so that a self-energy for impurity scattering does not exist. Atomistic scattering must therefore be treated non-perturbatively. Previously it has been shown that quantized micro-vortices may occur at definite energies in the current flow contributing to both the blocking effect and to effective mobility. The present study uses the Glasgow and NASA NEGF simulators to study vortex formation and tunnelling through small clusters of atomistic impurities arranged with various configurations within the 5 nm wide by 12 nm long channel of a Double Gate MOSFET. The I-V characteristics and the threshold voltage are severely affected by the distribution of the charges in the channel. A variety of different geometry atomistic clusters have been studied. Examination of the energy dependent current density allows an evaluation of the admixture of strong quantum flows such as micro-vortices to the net current. It is found that the threshold voltage and conductance are strongly dependent on the impurity configuration. The I-V characteristics are monotonic in most cases due to the strong thermal smoothing that prevents resolution of the mode structure

  14. Literature review report on atomistic modeling tools for FeCrAl alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Martinez, Enrique [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-12-01

    This reports summarizes the literature review results on atomistic tools, particularly interatomic potentials used in molecular dynamics simulations, for FeCrAl ternary alloys. FeCrAl has recently been identified as a possible cladding concept for accident tolerant fuels for its superior corrosion resistance. Along with several other concepts, an initial evaluation and recommendation are desired for FeCrAl before it’s used in realistic fuels. For this purpose, sufficient understanding on the in-reactor behavior of FeCrAl needs to be grained in a relatively short timeframe, and multiscale modeling and simulations have been selected as an efficient measure to supplement experiments and in-reactor testing for better understanding on FeCrAl. For the limited knowledge on FeCrAl alloys, the multiscale modeling approach relies on atomistic simulations to obtain the missing material parameters and properties. As a first step, atomistic tools have to be identified and this is the purpose of the present report. It was noticed during the literature survey that no interatomic potentials currently available for FeCrAl. Here, we summarize the interatomic potentials available for FeCr alloys for possible molecular dynamics studies using FeCr as surrogate materials. Other atomistic methods such as lattice kinetic Monte Carlo are also included in this report. A couple of research topics at the atomic scale are suggested based on the literature survey.

  15. A Mathematical Analysis of Atomistic-to-Continuum (AtC) Multiscale Coupling Methods

    Energy Technology Data Exchange (ETDEWEB)

    Gunzburger, Max

    2013-11-13

    We have worked on several projects aimed at improving the efficiency and understanding of multiscale methods, especially those applicable to problems involving atomistic-to-continuum coupling. Activities include blending methods for AtC coupling and efficient quasi-continuum methods for problems with long-range interactions.

  16. Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation

    Science.gov (United States)

    Xiawa Wu; Robert J. Moon; Ashlie Martini

    2013-01-01

    The elastic modulus of cellulose Iß in the axial and transverse directions was obtained from atomistic simulations using both the standard uniform deformation approach and a complementary approach based on nanoscale indentation. This allowed comparisons between the methods and closer connectivity to experimental measurement techniques. A reactive...

  17. The Paradox of Migration and the Interests of the Atomistic Nation ...

    African Journals Online (AJOL)

    The "paradox of migration and the interests of the atomistic nation-states" interrogates the phenomenon of migration in general and in the Southern African Development Community in particular. The point of departure of the paper is the African Union and the Southern African Development Community's legal framework on ...

  18. How anacetrapib inhibits the activity of the cholesteryl ester transfer protein? Perspective through atomistic simulations.

    Directory of Open Access Journals (Sweden)

    Tarja Äijänen

    2014-11-01

    Full Text Available Cholesteryl ester transfer protein (CETP mediates the reciprocal transfer of neutral lipids (cholesteryl esters, triglycerides and phospholipids between different lipoprotein fractions in human blood plasma. A novel molecular agent known as anacetrapib has been shown to inhibit CETP activity and thereby raise high density lipoprotein (HDL-cholesterol and decrease low density lipoprotein (LDL-cholesterol, thus rendering CETP inhibition an attractive target to prevent and treat the development of various cardiovascular diseases. Our objective in this work is to use atomistic molecular dynamics simulations to shed light on the inhibitory mechanism of anacetrapib and unlock the interactions between the drug and CETP. The results show an evident affinity of anacetrapib towards the concave surface of CETP, and especially towards the region of the N-terminal tunnel opening. The primary binding site of anacetrapib turns out to reside in the tunnel inside CETP, near the residues surrounding the N-terminal opening. Free energy calculations show that when anacetrapib resides in this area, it hinders the ability of cholesteryl ester to diffuse out from CETP. The simulations further bring out the ability of anacetrapib to regulate the structure-function relationships of phospholipids and helix X, the latter representing the structural region of CETP important to the process of neutral lipid exchange with lipoproteins. Altogether, the simulations propose CETP inhibition to be realized when anacetrapib is transferred into the lipid binding pocket. The novel insight gained in this study has potential use in the development of new molecular agents capable of preventing the progression of cardiovascular diseases.

  19. How Anacetrapib Inhibits the Activity of the Cholesteryl Ester Transfer Protein? Perspective through Atomistic Simulations

    Science.gov (United States)

    Äijänen, Tarja; Koivuniemi, Artturi; Javanainen, Matti; Rissanen, Sami; Rog, Tomasz; Vattulainen, Ilpo

    2014-01-01

    Cholesteryl ester transfer protein (CETP) mediates the reciprocal transfer of neutral lipids (cholesteryl esters, triglycerides) and phospholipids between different lipoprotein fractions in human blood plasma. A novel molecular agent known as anacetrapib has been shown to inhibit CETP activity and thereby raise high density lipoprotein (HDL)-cholesterol and decrease low density lipoprotein (LDL)-cholesterol, thus rendering CETP inhibition an attractive target to prevent and treat the development of various cardiovascular diseases. Our objective in this work is to use atomistic molecular dynamics simulations to shed light on the inhibitory mechanism of anacetrapib and unlock the interactions between the drug and CETP. The results show an evident affinity of anacetrapib towards the concave surface of CETP, and especially towards the region of the N-terminal tunnel opening. The primary binding site of anacetrapib turns out to reside in the tunnel inside CETP, near the residues surrounding the N-terminal opening. Free energy calculations show that when anacetrapib resides in this area, it hinders the ability of cholesteryl ester to diffuse out from CETP. The simulations further bring out the ability of anacetrapib to regulate the structure-function relationships of phospholipids and helix X, the latter representing the structural region of CETP important to the process of neutral lipid exchange with lipoproteins. Altogether, the simulations propose CETP inhibition to be realized when anacetrapib is transferred into the lipid binding pocket. The novel insight gained in this study has potential use in the development of new molecular agents capable of preventing the progression of cardiovascular diseases. PMID:25412509

  20. Atomistic structure of cobalt-phosphate nanoparticles for catalytic water oxidation.

    Science.gov (United States)

    Hu, Xiao Liang; Piccinin, Simone; Laio, Alessandro; Fabris, Stefano

    2012-12-21

    Solar-driven water splitting is a key photochemical reaction that underpins the feasible and sustainable production of solar fuels. An amorphous cobalt-phosphate catalyst (Co-Pi) based on earth-abundant elements has been recently reported to efficiently promote water oxidation to protons and dioxygen, a main bottleneck for the overall process. The structure of this material remains largely unknown. We here exploit ab initio and classical atomistic simulations combined with metadynamics to build a realistic and statistically meaningful model of Co-Pi nanoparticles. We demonstrate the emergence and stability of molecular-size ordered crystallites in nanoparticles initially formed by a disordered Co-O network and phosphate groups. The stable crystallites consist of bis-oxo-bridged Co centers that assemble into layered structures (edge-sharing CoO(6) octahedra) as well as in corner- and face-sharing cubane units. These layered and cubane motifs coexist in the crystallites, which always incorporate disordered phosphate groups at the edges. Our computational nanoparticles, although limited in size to ~1 nm, can contain more than one crystallite and incorporate up to 18 Co centers in the cubane/layered structures. The crystallites are structurally stable up to high temperatures. We simulate the extended X-ray absorption fine structure (EXAFS) of our nanoparticles. Those containing several complete and incomplete cubane motifs-which are believed to be essential for the catalytic activity-display a very good agreement with the experimental EXAFS spectra of Co-Pi grains. We propose that the crystallites in our nanoparticles are reliable structural models of the Co-Pi catalyst surface. They will be useful to reveal the origin of the catalytic efficiency of these novel water-oxidation catalysts.

  1. Molecular cooperativity and compatibility via full atomistic simulation

    Science.gov (United States)

    Kwan Yang, Kenny

    Civil engineering has customarily focused on problems from a large-scale perspective, encompassing structures such as bridges, dams, and infrastructure. However, present day challenges in conjunction with advances in nanotechnology have forced a re-focusing of expertise. The use of atomistic and molecular approaches to study material systems opens the door to significantly improve material properties. The understanding that material systems themselves are structures, where their assemblies can dictate design capacities and failure modes makes this problem well suited for those who possess expertise in structural engineering. At the same time, a focus has been given to the performance metrics of materials at the nanoscale, including strength, toughness, and transport properties (e.g., electrical, thermal). Little effort has been made in the systematic characterization of system compatibility -- e.g., how to make disparate material building blocks behave in unison. This research attempts to develop bottom-up molecular scale understanding of material behavior, with the global objective being the application of this understanding into material design/characterization at an ultimate functional scale. In particular, it addresses the subject of cooperativity at the nano-scale. This research aims to define the conditions which dictate when discrete molecules may behave as a single, functional unit, thereby facilitating homogenization and up-scaling approaches, setting bounds for assembly, and providing a transferable assessment tool across molecular systems. Following a macro-scale pattern where the compatibility of deformation plays a vital role in the structural design, novel geometrical cooperativity metrics based on the gyration tensor are derived with the intention to define nano-cooperativity in a generalized way. The metrics objectively describe the general size, shape and orientation of the structure. To validate the derived measures, a pair of ideal macromolecules

  2. Atomistic mechanism of graphene growth on a SiC substrate: Large-scale molecular dynamics simulations based on a new charge-transfer bond-order type potential

    Science.gov (United States)

    Takamoto, So; Yamasaki, Takahiro; Nara, Jun; Ohno, Takahisa; Kaneta, Chioko; Hatano, Asuka; Izumi, Satoshi

    2018-03-01

    Thermal decomposition of silicon carbide is a promising approach for the fabrication of graphene. However, the atomistic growth mechanism of graphene remains unclear. This paper describes the development of a new charge-transfer interatomic potential. Carbon bonds with a wide variety of characteristics can be reproduced by the proposed vectorized bond-order term. A large-scale thermal decomposition simulation enables us to observe the continuous growth process of the multiring carbon structure. The annealing simulation reveals the atomistic process by which the multiring carbon structure is transformed to flat graphene involving only six-membered rings. Also, it is found that the surface atoms of the silicon carbide substrate enhance the homogeneous graphene formation.

  3. Identifying Conformational-Selection and Induced-Fit Aspects in the Binding-Induced Folding of PMI from Markov State Modeling of Atomistic Simulations.

    Science.gov (United States)

    Paul, Fabian; Noé, Frank; Weikl, Thomas R

    2018-03-27

    Unstructured proteins and peptides typically fold during binding to ligand proteins. A challenging problem is to identify the mechanism and kinetics of these binding-induced folding processes in experiments and atomistic simulations. In this Article, we present a detailed picture for the folding of the inhibitor peptide PMI into a helix during binding to the oncoprotein fragment 25-109 Mdm2 obtained from atomistic, explicit-water simulations and Markov state modeling. We find that binding-induced folding of PMI is highly parallel and can occur along a multitude of pathways. Some pathways are induced-fit-like with binding occurring prior to PMI helix formation, while other pathways are conformational-selection-like with binding after helix formation. On the majority of pathways, however, binding is intricately coupled to folding, without clear temporal ordering. A central feature of these pathways is PMI motion on the Mdm2 surface, along the binding groove of Mdm2 or over the rim of this groove. The native binding groove of Mdm2 thus appears as an asymmetric funnel for PMI binding. Overall, binding-induced folding of PMI does not fit into the classical picture of induced fit or conformational selection that implies a clear temporal ordering of binding and folding events. We argue that this holds in general for binding-induced folding processes because binding and folding events in these processes likely occur on similar time scales and do exhibit the time-scale separation required for temporal ordering.

  4. DoGlycans-Tools for Preparing Carbohydrate Structures for Atomistic Simulations of Glycoproteins, Glycolipids, and Carbohydrate Polymers for GROMACS

    DEFF Research Database (Denmark)

    Danne, Reinis; Poojari, Chetan; Martinez-Seara, Hector

    2017-01-01

    Carbohydrates constitute a structurally and functionally diverse group of biological molecules and macromolecules. In cells they are involved in, e.g., energy storage, signaling, and cell-cell recognition. All of these phenomena take place in atomistic scales, thus atomistic simulation would be t...... discussed in this paper are particularly useful include, among others, the preparation of structures for glycolipids, nanocellulose, and glycans linked to glycoproteins. The molecular structures and simulation files generated by the tools are compatible with GROMACS....

  5. Relaxation of a steep density gradient in a simple fluid: Comparison between atomistic and continuum modeling

    Energy Technology Data Exchange (ETDEWEB)

    Pourali, Meisam; Maghari, Ali [Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Meloni, Simone, E-mail: simone.meloni@epfl.ch [Laboratory of Computational Chemistry and Biochemistry, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Magaletti, Francesco; Casciola, Carlo Massimo [Dipartimento di Ingegneria Meccanica e Aerospaziale, Università La Sapienza, Via Eudossiana 18, 00184 Rome (Italy); Ciccotti, Giovanni [Dipartimento di Fisica and CNISM, Università La Sapienza, P.le A. Moro 5, 00185 Rome (Italy)

    2014-10-21

    We compare dynamical nonequilibrium molecular dynamics and continuum simulations of the dynamics of relaxation of a fluid system characterized by a non-uniform density profile. Results match quite well as long as the lengthscale of density nonuniformities are greater than the molecular scale (∼10 times the molecular size). In presence of molecular scale features some of the continuum fields (e.g., density and momentum) are in good agreement with atomistic counterparts, but are smoother. On the contrary, other fields, such as the temperature field, present very large difference with respect to reference (atomistic) ones. This is due to the limited accuracy of some of the empirical relations used in continuum models, the equation of state of the fluid in the present example.

  6. Relaxation of a steep density gradient in a simple fluid: Comparison between atomistic and continuum modeling

    International Nuclear Information System (INIS)

    Pourali, Meisam; Maghari, Ali; Meloni, Simone; Magaletti, Francesco; Casciola, Carlo Massimo; Ciccotti, Giovanni

    2014-01-01

    We compare dynamical nonequilibrium molecular dynamics and continuum simulations of the dynamics of relaxation of a fluid system characterized by a non-uniform density profile. Results match quite well as long as the lengthscale of density nonuniformities are greater than the molecular scale (∼10 times the molecular size). In presence of molecular scale features some of the continuum fields (e.g., density and momentum) are in good agreement with atomistic counterparts, but are smoother. On the contrary, other fields, such as the temperature field, present very large difference with respect to reference (atomistic) ones. This is due to the limited accuracy of some of the empirical relations used in continuum models, the equation of state of the fluid in the present example

  7. A continuum-atomistic simulation of heat transfer in micro- and nano-flows

    International Nuclear Information System (INIS)

    Liu Jin; Chen Shiyi; Nie Xiaobo; Robbins, Mark O.

    2007-01-01

    We develop a hybrid atomistic-continuum scheme for simulating micro- and nano-flows with heat transfer. The approach is based on spatial 'domain decomposition' in which molecular dynamics (MD) is used in regions where atomistic details are important, while classical continuum fluid dynamics is used in the remaining regions. The two descriptions are matched in a coupling region where we ensure continuity of mass, momentum, energy and their fluxes. The scheme for including the energy equation is implemented in 1-D and 2-D, and used to study steady and unsteady heat transfer in channel flows with and without nano roughness. Good agreement between hybrid results and analytical or pure MD results is found, demonstrating the accuracy of this multiscale method and its potential applications in thermal engineering

  8. Multiscale Modeling of Carbon/Phenolic Composite Thermal Protection Materials: Atomistic to Effective Properties

    Science.gov (United States)

    Arnold, Steven M.; Murthy, Pappu L.; Bednarcyk, Brett A.; Lawson, John W.; Monk, Joshua D.; Bauschlicher, Charles W., Jr.

    2016-01-01

    Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis.

  9. Atomistic characterization of pseudoelasticity and shape memory in NiTi nanopillars

    International Nuclear Information System (INIS)

    Zhong Yuan; Gall, Ken; Zhu Ting

    2012-01-01

    Molecular dynamics simulations are performed to study the atomistic mechanisms governing the pseudoelasticity and shape memory in nickel–titanium (NiTi) nanostructures. For a 〈1 1 0〉 – oriented nanopillar subjected to compressive loading–unloading, we observe either a pseudoelastic or shape memory response, depending on the applied strain and temperature that control the reversibility of phase transformation and deformation twinning. We show that irreversible twinning arises owing to the dislocation pinning of twin boundaries, while hierarchically twinned microstructures facilitate the reversible twinning. The nanoscale size effects are manifested as the load serration, stress plateau and large hysteresis loop in stress–strain curves that result from the high stresses required to drive the nucleation-controlled phase transformation and deformation twinning in nanosized volumes. Our results underscore the importance of atomistically resolved modeling for understanding the phase and deformation reversibilities that dictate the pseudoelasticity and shape memory behavior in nanostructured shape memory alloys.

  10. Atomistic simulations on intergranular fracture toughness of copper bicrystals with symmetric tilt grain boundaries

    Science.gov (United States)

    Cui, Cheng Bin; Beom, Hyeon Gyu

    2018-01-01

    The intergranular fracture toughness of Cu bicrystals with symmetric tilt grain boundaries was investigated using atomistic simulations. Mode I fracture of Cu bicrystals with an intergranular crack was considered. The boundary conditions were specified by the near-tip displacement fields obtained based on linear elastic fracture mechanics (LEFM). Based on the energy interpretation of the energy release rate, a two-specimen method was adopted to determine the fracture toughness. The simulation results of the fracture toughness matched well with those determined using LEFM. In contrast to the toughness obtained using the Griffith energy criterion, the atomistic simulation results for the same bicrystal were not constants, but dependent on the crack-tip circumstances. This behavior was mainly associated with the different local stress conditions and fracture patterns observed for the different models.

  11. Multiscale methods coupling atomistic and continuum mechanics: analysis of a simple case

    OpenAIRE

    Blanc , Xavier; Le Bris , Claude; Legoll , Frédéric

    2007-01-01

    International audience; The description and computation of fine scale localized phenomena arising in a material (during nanoindentation, for instance) is a challenging problem that has given birth to many multiscale methods. In this work, we propose an analysis of a simple one-dimensional method that couples two scales, the atomistic one and the continuum mechanics one. The method includes an adaptive criterion in order to split the computational domain into two subdomains, that are described...

  12. Idealized vs. Realistic Microstructures: An Atomistic Simulation Case Study on γ/γ′ Microstructures

    Directory of Open Access Journals (Sweden)

    Aruna Prakash

    2017-01-01

    Full Text Available Single-crystal Ni-base superalloys, consisting of a two-phase γ/ γ ′ microstructure, retain high strengths at elevated temperatures and are key materials for high temperature applications, like, e.g., turbine blades of aircraft engines. The lattice misfit between the γ and γ ′ phases results in internal stresses, which significantly influence the deformation and creep behavior of the material. Large-scale atomistic simulations that are often used to enhance our understanding of the deformation mechanisms in such materials must accurately account for such misfit stresses. In this work, we compare the internal stresses in both idealized and experimentally-informed, i.e., more realistic, γ/ γ ′ microstructures. The idealized samples are generated by assuming, as is frequently done, a periodic arrangement of cube-shaped γ ′ particles with planar γ/ γ ′ interfaces. The experimentally-informed samples are generated from two different sources to produce three different samples—the scanning electron microscopy micrograph-informed quasi-2D atomistic sample and atom probe tomography-informed stoichiometric and non-stoichiometric atomistic samples. Additionally, we compare the stress state of an idealized embedded cube microstructure with finite element simulations incorporating 3D periodic boundary conditions. Subsequently, we study the influence of the resulting stress state on the evolution of dislocation loops in the different samples. The results show that the stresses in the atomistic and finite element simulations are almost identical. Furthermore, quasi-2D boundary conditions lead to a significantly different stress state and, consequently, different evolution of the dislocation loop, when compared to samples with fully 3D boundary conditions.

  13. Charge Transport and Phase Behavior of Imidazolium-Based Ionic Liquid Crystals from Fully Atomistic Simulations.

    Science.gov (United States)

    Quevillon, Michael J; Whitmer, Jonathan K

    2018-01-02

    Ionic liquid crystals occupy an intriguing middle ground between room-temperature ionic liquids and mesostructured liquid crystals. Here, we examine a non-polarizable, fully atomistic model of the 1-alkyl-3-methylimidazolium nitrate family using molecular dynamics in the constant pressure-constant temperature ensemble. These materials exhibit a distinct "smectic" liquid phase, characterized by layers formed by the molecules, which separate the ionic and aliphatic moieties. In particular, we discuss the implications this layering may have for electrolyte applications.

  14. Adaptive spacetime method using Riemann jump conditions for coupled atomistic-continuum dynamics

    Science.gov (United States)

    Kraczek, B.; Miller, S. T.; Haber, R. B.; Johnson, D. D.

    2010-03-01

    We combine the Spacetime Discontinuous Galerkin (SDG) method for elastodynamics with the mathematically consistent Atomistic Discontinuous Galerkin (ADG) method in a new scheme that concurrently couples continuum and atomistic models of dynamic response in solids. The formulation couples non-overlapping continuum and atomistic models across sharp interfaces by weakly enforcing jump conditions, for both momentum balance and kinematic compatibility, using Riemann values to preserve the characteristic structure of the underlying hyperbolic system. Momentum balances to within machine-precision accuracy over every element, on each atom, and over the coupled system, with small, controllable energy dissipation in the continuum region that ensures numerical stability. When implemented on suitable unstructured spacetime grids, the continuum SDG model offers linear computational complexity in the number of elements and powerful adaptive analysis capabilities that readily bridge between atomic and continuum scales in both space and time. A special trace operator for the atomic velocities and an associated atomistic traction field enter the jump conditions at the coupling interface. The trace operator depends on parameters that specify, at the scale of the atomic spacing, the position of the coupling interface relative to the atoms. In a key finding, we demonstrate that optimizing these parameters suppresses spurious reflections at the coupling interface without the use of non-physical damping or special boundary conditions. We formulate the implicit SDG-ADG coupling scheme in up to three spatial dimensions, and describe an efficient iterative solution scheme that outperforms common explicit schemes, such as the Velocity Verlet integrator. Numerical examples, in 1d×time and employing both linear and nonlinear potentials, demonstrate the performance of the SDG-ADG method and show how adaptive spacetime meshing reconciles disparate time steps and resolves atomic-scale signals

  15. H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations.

    Science.gov (United States)

    Anandakrishnan, Ramu; Aguilar, Boris; Onufriev, Alexey V

    2012-07-01

    The accuracy of atomistic biomolecular modeling and simulation studies depend on the accuracy of the input structures. Preparing these structures for an atomistic modeling task, such as molecular dynamics (MD) simulation, can involve the use of a variety of different tools for: correcting errors, adding missing atoms, filling valences with hydrogens, predicting pK values for titratable amino acids, assigning predefined partial charges and radii to all atoms, and generating force field parameter/topology files for MD. Identifying, installing and effectively using the appropriate tools for each of these tasks can be difficult for novice and time-consuming for experienced users. H++ (http://biophysics.cs.vt.edu/) is a free open-source web server that automates the above key steps in the preparation of biomolecular structures for molecular modeling and simulations. H++ also performs extensive error and consistency checking, providing error/warning messages together with the suggested corrections. In addition to numerous minor improvements, the latest version of H++ includes several new capabilities and options: fix erroneous (flipped) side chain conformations for HIS, GLN and ASN, include a ligand in the input structure, process nucleic acid structures and generate a solvent box with specified number of common ions for explicit solvent MD.

  16. Structural and functional analysis of glycoprotein butyrylcholinesterase using atomistic molecular dynamics

    Science.gov (United States)

    Bernardi, Austen; Faller, Roland

    Atomistic molecular dynamics (MD) has proven to be a powerful tool for studying the structure and dynamics of biological systems on nanosecond to microsecond time scales and nanometer length scales. In this work we study the effects of modifying the glycan distribution on the structure and function of full length monomeric butyrylcholinesterase (BChE). BChE exists as a monomer, dimer, or tetramer, and is a therapeutic glycoprotein with nine asparagine glycosylation sites per monomer. Each monomer acts as a stoichiometric scavenger for organophosphorus (OP) nerve agents (e.g. sarin, soman). Glycan distributions are highly heterogeneous and have been shown experimentally to affect certain glycoproteins' stability and reactivity. We performed structural analysis of various biologically relevant glycoforms of BChE using classical atomistic MD. Functional analysis was performed through binding energy simulations using umbrella sampling with BChE and OP cofactors. Additionally, we assess the quality of the glycans' conformational sampling. We found that the glycan distribution has a significant effect on the structure and function of BChE on timescales available to atomistic MD. This project is funded by the DTRA Grant HDTRA1-15-1-0054.

  17. The Chemistry of Shocked High-energy Materials: Connecting Atomistic Simulations to Experiments

    Science.gov (United States)

    Islam, Md Mahbubul; Strachan, Alejandro

    2017-06-01

    A comprehensive atomistic-level understanding of the physics and chemistry of shocked high energy (HE) materials is crucial for designing safe and efficient explosives. Advances in the ultrafast spectroscopy and laser shocks enabled the study of shock-induced chemistry at extreme conditions occurring at picosecond timescales. Despite this progress experiments are not without limitations and do not enable a direct characterization of chemical reactions. At the same time, large-scale reactive molecular dynamics (MD) simulations are capable of providing description of the shocked-induced chemistry but the uncertainties resulting from the use of approximate descriptions of atomistic interactions remain poorly quantified. We use ReaxFF MD simulations to investigate the shock and temperature induced chemical decomposition mechanisms of polyvinyl nitrate, RDX, and nitromethane. The effect of various shock pressures on reaction initiation mechanisms is investigated for all three materials. We performed spectral analysis from atomistic velocities at different shock pressures to enable direct comparison with experiments. The simulations predict volume-increasing reactions at the shock-to-detonation transitions and the shock vs. particle velocity data are in good agreement with available experimental data. The ReaxFF MD simulations validated against experiments enabled prediction of reaction kinetics of shocked materials, and interpretation of experimental spectroscopy data via assignment of the spectral peaks to dictate various reaction pathways at extreme conditions.

  18. Characterization of Plastic Deformation Evolution in Single Crystal and Nanocrystalline Cu During Shock by Atomistic Simulations

    Science.gov (United States)

    Mirzaei Sichani, Mehrdad

    The objective of this dissertation is to characterize the evolution of plastic deformation mechanisms in single crystal and nanocrystalline Cu models during shock by atomistic simulations. Molecular dynamics (MD) simulations are performed for a range of particle velocities from 0.5 to 1.7 km/s and initial temperatures of 5, 300 and 600 K for single crystal models as well as particle velocities from 1.5 to 3.4 km/s for nanocrystalline models with grain diameters of 6, 11, 16 and 26 nm. For single crystal models, four different shock directions are selected, , , and , and dislocation density behind the shock wave front generally increases with increasing particle velocity for all shock orientations. Plastic relaxation for shock in the , and directions is primarily due to a reduction in the Shockley partial dislocation density. In contrast, plastic relaxation is limited for shock in the orientation. This is partially due to the emergence of sessile stair-rod dislocations with Burgers vectors of 1/3 and 1/6 due to the reaction of Shockley partial dislocations with twin boundaries and stacking fault intersections. For shock, FCC Cu is uniaxially compressed towards the BCC structure behind the shock wave front; this process is more favorable at higher shock pressures and temperatures. For particle velocities above 0.9 km/s, regions of HCP crystal structure nucleate from uniaxially compressed Cu. Free energy calculations proves that the nucleation and growth of these HCP clusters are an artifact of the embedded-atom interatomic potential. In addition, simulated x-ray diffraction line profiles are created for shock models of single crystal Cu at the Hugoniot state. Generally, peak broadening in the x-ray diffraction line profiles increases with increasing particle velocity. For nanocrystalline models, the compression of the FCC lattice towards the BCC structure is more apparent at particle velocity of 2.4 km/s, and at this particle velocity, the atomic percentage of BCC

  19. Elucidating the atomistic mechanisms underpinning plasticity in Li-Si nanostructures

    Science.gov (United States)

    Yan, Xin; Gouissem, Afif; Guduru, Pradeep R.; Sharma, Pradeep

    2017-10-01

    Amorphous lithium-silicon (a-Li-Si), especially in nanostructure form, is an attractive high-capacity anode material for next-generation Li-ion batteries. During cycles of charging and discharging, a-Li-Si undergoes substantive inelastic deformation and exhibits microcracking. The mechanical response to repeated lithiation-delithiation eventually results in the loss of electrical contact and consequent decrease of capacity, thus underscoring the importance of studying the plasticity of a-Li-Si nanostructures. In recent years, a variety of phenomenological continuum theories have been introduced that purport to model plasticity and the electro-chemo-mechanical behavior of a-Li-Si. Unfortunately, the micromechanisms and atomistic considerations underlying plasticity in Li-Si material are not yet fully understood and this impedes the development of physics-based constitutive models. Conventional molecular dynamics, although extensively used to study this material, is grossly inadequate to resolve this matter. As is well known, conventional molecular dynamics simulations can only address phenomena with characteristic time scales of (at most) a microsecond. Accordingly, in such simulations, the mechanical behavior is deduced under conditions of very high strain rates (usually, 108s-1 or even higher). This limitation severely impacts a realistic assessment of rate-dependent effects. In this work, we attempt to circumvent the time-scale bottleneck of conventional molecular dynamics and provide novel insights into the mechanisms underpinning plastic deformation of Li-Si nanostructures. We utilize an approach that allows imposition of slow strain rates and involves the employment of a new and recently developed potential energy surface sampling method—the so-called autonomous basin climbing—to identify the local minima in the potential energy surface. Combined with other techniques, such as nudged elastic band, kinetic Monte Carlo and transition state theory, we assess

  20. Modelling of P3HT:PCBM interface using coarse-grained forcefield derived from accurate atomistic forcefield.

    Science.gov (United States)

    To, T T; Adams, S

    2014-03-14

    To understand the morphological evolution of P3HT:PCBM bulk heterojunction during thermal treatment process, we employed coarse-grained Molecular Dynamics (MD) simulations with a forcefield derived from atomistic model and experimental data such as crystal structure and melting temperature. The current study focuses on the differences between interfaces that PCBM forms with various P3HT orientations. Crystallinity analysis suggests that more ordered P3HT is observed near the interface for face-on and amorphous case, while no such trend is observed for edge-on and end-on configurations due to weaker interactions at the interface as evident from the considerably less negative interfacial energy. An analysis of pathways for C60 diffusion into P3HT using both an energy-based and solvent surface approach for amorphous P3HT reveals continuous chain motion-assisted pathways while for crystalline P3HT diffusion pathways remain restricted to grain boundaries. Based on these calculations, we propose a morphological evolution process for P3HT:PCBM bulk-heterojunction, which starts with nucleation crystallisation at the P3HT:PCBM interface, followed by PCBM diffusion along the grain boundaries and amorphous P3HT regions towards PCBM-rich domains.

  1. A Long-Range Electric Field Solver for Molecular Dynamics Based on Atomistic-to-Continuum Modeling.

    Science.gov (United States)

    Templeton, Jeremy A; Jones, Reese E; Lee, Jonathan W; Zimmerman, Jonathan A; Wong, Bryan M

    2011-06-14

    Understanding charge transport processes at a molecular level is currently hindered by a lack of appropriate models for incorporating nonperiodic, anisotropic electric fields in molecular dynamics (MD) simulations. In this work, we develop a model for including electric fields in MD using an atomistic-to-continuum framework. This framework provides the mathematical and the algorithmic infrastructure to couple finite element (FE) representations of continuous data with atomic data. Our model represents the electric potential on a FE mesh satisfying a Poisson equation with source terms determined by the distribution of the atomic charges. Boundary conditions can be imposed naturally using the FE description of the potential, which then propagate to each atom through modified forces. The method is verified using simulations where analytical solutions are known or comparisons can be made to existing techniques. In addition, a calculation of a salt water solution in a silicon nanochannel is performed to demonstrate the method in a target scientific application in which ions are attracted to charged surfaces in the presence of electric fields and interfering media.

  2. Free-energy landscape of protein oligomerization from atomistic simulations

    Science.gov (United States)

    Barducci, Alessandro; Bonomi, Massimiliano; Prakash, Meher K.; Parrinello, Michele

    2013-01-01

    In the realm of protein–protein interactions, the assembly process of homooligomers plays a fundamental role because the majority of proteins fall into this category. A comprehensive understanding of this multistep process requires the characterization of the driving molecular interactions and the transient intermediate species. The latter are often short-lived and thus remain elusive to most experimental investigations. Molecular simulations provide a unique tool to shed light onto these complex processes complementing experimental data. Here we combine advanced sampling techniques, such as metadynamics and parallel tempering, to characterize the oligomerization landscape of fibritin foldon domain. This system is an evolutionarily optimized trimerization motif that represents an ideal model for experimental and computational mechanistic studies. Our results are fully consistent with previous experimental nuclear magnetic resonance and kinetic data, but they provide a unique insight into fibritin foldon assembly. In particular, our simulations unveil the role of nonspecific interactions and suggest that an interplay between thermodynamic bias toward native structure and residual conformational disorder may provide a kinetic advantage. PMID:24248370

  3. Synthesis of gold nanoparticles with different atomistic structural characteristics

    International Nuclear Information System (INIS)

    Esparza, R.; Rosas, G.; Lopez Fuentes, M.; Sanchez Ramirez, J.F.; Pal, U.; Ascencio, J.A.; Perez, R.

    2007-01-01

    A chemical reduction method was used to produce nanometric gold particles. Depending on the concentration of the main reactant compound different nanometric sizes and consequently different atomic structural configurations of the particles are obtained. Insights on the structural nature of the gold nanoparticles are obtained through a comparison between digitally-processed experimental high-resolution electron microscopy images and theoretically-simulated images obtained with a multislice approach of the dynamical theory of electron diffraction. Quantum molecular mechanical calculations, based on density functional theory, are carried out to explain the relationships between the stability of the gold nanoparticles, the atomic structural configurations and the size of nanoparticles

  4. SCT: a suite of programs for comparing atomistic models with small-angle scattering data.

    Science.gov (United States)

    Wright, David W; Perkins, Stephen J

    2015-06-01

    Small-angle X-ray and neutron scattering techniques characterize proteins in solution and complement high-resolution structural studies. They are of particular utility when large proteins cannot be crystallized or when the structure is altered by solution conditions. Atomistic models of the averaged structure can be generated through constrained modelling, a technique in which known domain or subunit structures are combined with linker models to produce candidate global conformations. By randomizing the configuration adopted by the different elements of the model, thousands of candidate structures are produced. Next, theoretical scattering curves are generated for each model for trial-and-error fits to the experimental data. From these, a small family of best-fit models is identified. In order to facilitate both the computation of theoretical scattering curves from atomistic models and their comparison with experiment, the SCT suite of tools was developed. SCT also includes programs that provide sequence-based estimates of protein volume (either incorporating hydration or not) and add a hydration layer to models for X-ray scattering modelling. The original SCT software, written in Fortran, resulted in the first atomistic scattering structures to be deposited in the Protein Data Bank, and 77 structures for antibodies, complement proteins and anionic oligosaccharides were determined between 1998 and 2014. For the first time, this software is publicly available, alongside an easier-to-use reimplementation of the same algorithms in Python. Both versions of SCT have been released as open-source software under the Apache 2 license and are available for download from https://github.com/dww100/sct.

  5. Atomistic simulations of dislocation-precipitate interactions emphasize importance of cross-slip

    International Nuclear Information System (INIS)

    Singh, C.V.; Mateos, A.J.; Warner, D.H.

    2011-01-01

    This work examines the interaction of screw dislocations with Guinier-Preston (GP) zones using atomistic simulations. Both Orowan looping and cross-slip mechanisms are found to control the interactions. Cross-slip, occurring both at zero and finite temperatures, is found to either significantly reduce or enhance precipitate strengthening, depending upon the orientation of the dislocation-GP zone interaction. The orientation dependence, and its dependence on temperature, provides a micromechanical explanation for the experiments of Muraishi et al. (Philos. Mag. A 82 (2002) 2755).

  6. Atomistic Simulation of Intrinsic Defects and Trivalent and Tetravalent Ion Doping in Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Ricardo D. S. Santos

    2014-01-01

    Full Text Available Atomistic simulation techniques have been employed in order to investigate key issues related to intrinsic defects and a variety of dopants from trivalent and tetravalent ions. The most favorable intrinsic defect is determined to be a scheme involving calcium and hydroxyl vacancies. It is found that trivalent ions have an energetic preference for the Ca site, while tetravalent ions can enter P sites. Charge compensation is predicted to occur basically via three schemes. In general, the charge compensation via the formation of calcium vacancies is more favorable. Trivalent dopant ions are more stable than tetravalent dopants.

  7. Atomistic spin dynamics simulations of the MnAl τ -phase and its antiphase boundary

    Science.gov (United States)

    Nieves, P.; Arapan, S.; Schrelf, T.; Cuesta-Lopez, S.

    2017-12-01

    In this work we develop an atomistic spin dynamics model for the ideal Mn50Al50τ -phase by means of first-principles calculations. The model is applied to study the domain wall and antiphase boundary phenomenology. In particular, it allows us to obtain the dependence on the interfacial exchange coupling of the nucleation and depinning fields, as well as the macroscopic magnetization profile across the antiphase boundary. We find that microscopic antiferromagnetic exchange coupling stronger than 10 meV could unavoidably lead to the formation of a domain wall at the antiphase boundary.

  8. Atomistic switch of giant magnetoresistance and spin thermopower in graphene-like nanoribbons

    Science.gov (United States)

    Zhai, Ming-Xing; Wang, Xue-Feng

    2016-01-01

    We demonstrate that the giant magnetoresistance can be switched off (on) in even- (odd-) width zigzag graphene-like nanoribbons by an atomistic gate potential or edge disorder inside the domain wall in the antiparallel (ap) magnetic configuration. A strong magneto-thermopower effect is also predicted that the spin thermopower can be greatly enhanced in the ap configuration while the charge thermopower remains low. The results extracted from the tight-binding model agree well with those obtained by first-principles simulations for edge doped graphene nanoribbons. Analytical expressions in the simplest case are obtained to facilitate qualitative analyses in general contexts. PMID:27857156

  9. FROM ATOMISTIC TO SYSTEMATIC COARSE-GRAINED MODELS FOR MOLECULAR SYSTEMS

    KAUST Repository

    Harmandaris, Vagelis

    2017-10-03

    The development of systematic (rigorous) coarse-grained mesoscopic models for complex molecular systems is an intense research area. Here we first give an overview of methods for obtaining optimal parametrized coarse-grained models, starting from detailed atomistic representation for high dimensional molecular systems. Different methods are described based on (a) structural properties (inverse Boltzmann approaches), (b) forces (force matching), and (c) path-space information (relative entropy). Next, we present a detailed investigation concerning the application of these methods in systems under equilibrium and non-equilibrium conditions. Finally, we present results from the application of these methods to model molecular systems.

  10. Atomistic modelling of magnetic nano-granular thin films

    Science.gov (United States)

    Agudelo-Giraldo, J. D.; Arbeláez-Echeverry, O. D.; Restrepo-Parra, E.

    2018-03-01

    In this work, a complete model for studying the magnetic behaviour of polycrystalline thin films at nanoscale was processed. This model includes terms as exchange interaction, dipolar interaction and various types of anisotropies. For the first term, exchange interaction dependence of the distance n was used with purpose of quantify the interaction, mainly in grain boundaries. The third term includes crystalline, surface and boundary anisotropies. Special attention was paid to the disorder vector that determines the loss of cubic symmetry in the crystalline structure. For the case of the dipolar interaction, a similar implementation of the fast multiple method (FMM) was performed. Using these tools, modelling and simulations were developed varying the number of grains, and the results obtained presented a great dependence of the magnetic properties on this parameter. Comparisons between critical temperature and magnetization of saturation depending on the number of grains were performed for samples with and without factors as the surface and boundary anisotropies, and the dipolar interaction. It was observed that the inclusion of these parameters produced a decrease in the critical temperature and the magnetization of saturation; furthermore, in both cases, including and not including the disorder parameters, not only the critical temperature, but also the magnetization of saturation exhibited a range of values that also depend on the number of grains. This presence of a critical interval is due to each grain can transit toward the ferromagnetic state at different values of critical temperature. The processes of Zero field cooling (ZFC), Field cooling (FCC) and field cooling in warming mode (FCW) were necessary for understanding the mono-domain regime around of transition temperature, due to the high probabilities of a Super-paramagnetic (SPM) state.

  11. Cationic Au Nanoparticle Binding with Plasma Membrane-like Lipid Bilayers: Potential Mechanism for Spontaneous Permeation to Cells Revealed by Atomistic Simulations

    DEFF Research Database (Denmark)

    Heikkila, E.; Martinez-Seara, H.; Gurtovenko, A. A.

    2014-01-01

    Au nanoparticles interacting with realistic membranes and explicit solvent using a model system that comprises two cellular compartments, extracellular and cytosolic, divided by two asymmetric lipid bilayers. The membrane-AuNP+ binding and membrane reorganization processes are discovered...... to be governed by cooperative effects where AuNP+, counterions, water, and the two membrane leaflets all contribute. On the extracellular side, we find that the nanoparticle has to cross a free energy barrier of about 5 k(B)T prior forming a stable contact with the membrane. This results in a rearrangement......Despite being chemically inert as a bulk material, nanoscale gold can pose harmful side effects to living organisms. In particular, cationic Au nanoparticles (AuNP+) of 2 nm diameter or less permeate readily through plasma membranes and induce cell death. We report atomistic simulations of cationic...

  12. Formation of complex wedding-cake morphologies during homoepitaxial film growth of Ag on Ag(111): atomistic, step-dynamics, and continuum modeling

    Science.gov (United States)

    Li, Maozhi; Han, Yong; Thiel, P. A.; Evans, J. W.

    2009-02-01

    An atomistic lattice-gas model is developed which successfully describes all key features of the complex mounded morphologies which develop during deposition of Ag films on Ag(111) surfaces. We focus on this homoepitaxial thin film growth process below 200 K. The unstable multilayer growth mode derives from the presence of a large Ehrlich-Schwoebel step-edge barrier, for which we characterize both the step-orientation dependence and the magnitude. Step-dynamics modeling is applied to further characterize and elucidate the evolution of the vertical profiles of these wedding-cake-like mounds. Suitable coarse-graining of these step-dynamics equations leads to instructive continuum formulations for mound evolution.

  13. Formation of complex wedding-cake morphologies during homoepitaxial film growth of Ag on Ag(111): atomistic, step-dynamics, and continuum modeling

    Energy Technology Data Exchange (ETDEWEB)

    Li Maozhi [Department of Physics, Renmin University of China, Beijing 100872 (China); Han, Yong [Institute of Physical Research and Technology, Iowa State University, Ames, IA 50011 (United States); Thiel, P A [Departments of Chemistry and Materials Science and Engineering and Ames Laboratory-USDOE, Iowa State University, Ames, IA 50011 (United States); Evans, J W [Department of Mathematics and Ames Laboratory-USDOE, Iowa State University, Ames, IA 50010 (United States)

    2009-02-25

    An atomistic lattice-gas model is developed which successfully describes all key features of the complex mounded morphologies which develop during deposition of Ag films on Ag(111) surfaces. We focus on this homoepitaxial thin film growth process below 200 K. The unstable multilayer growth mode derives from the presence of a large Ehrlich-Schwoebel step-edge barrier, for which we characterize both the step-orientation dependence and the magnitude. Step-dynamics modeling is applied to further characterize and elucidate the evolution of the vertical profiles of these wedding-cake-like mounds. Suitable coarse-graining of these step-dynamics equations leads to instructive continuum formulations for mound evolution.

  14. Formation of complex wedding-cake morphologies during homoepitaxial film growth of Ag on Ag(111): atomistic, step-dynamics, and continuum modeling

    International Nuclear Information System (INIS)

    Li Maozhi; Han, Yong; Thiel, P A; Evans, J W

    2009-01-01

    An atomistic lattice-gas model is developed which successfully describes all key features of the complex mounded morphologies which develop during deposition of Ag films on Ag(111) surfaces. We focus on this homoepitaxial thin film growth process below 200 K. The unstable multilayer growth mode derives from the presence of a large Ehrlich-Schwoebel step-edge barrier, for which we characterize both the step-orientation dependence and the magnitude. Step-dynamics modeling is applied to further characterize and elucidate the evolution of the vertical profiles of these wedding-cake-like mounds. Suitable coarse-graining of these step-dynamics equations leads to instructive continuum formulations for mound evolution.

  15. Ignition in an Atomistic Model of Hydrogen Oxidation.

    Science.gov (United States)

    Alaghemandi, Mohammad; Newcomb, Lucas B; Green, Jason R

    2017-03-02

    Hydrogen is a potential substitute for fossil fuels that would reduce the combustive emission of carbon dioxide. However, the low ignition energy needed to initiate oxidation imposes constraints on the efficiency and safety of hydrogen-based technologies. Microscopic details of the combustion processes, ephemeral transient species, and complex reaction networks are necessary to control and optimize the use of hydrogen as a commercial fuel. Here, we report estimates of the ignition time of hydrogen-oxygen mixtures over a wide range of equivalence ratios from extensive reactive molecular dynamics simulations. These data show that the shortest ignition time corresponds to a fuel-lean mixture with an equivalence ratio of 0.5, where the number of hydrogen and oxygen molecules in the initial mixture are identical, in good agreement with a recent chemical kinetic model. We find two signatures in the simulation data precede ignition at pressures above 200 MPa. First, there is a peak in hydrogen peroxide that signals ignition is imminent in about 100 ps. Second, we find a strong anticorrelation between the ignition time and the rate of energy dissipation, suggesting the role of thermal feedback in stimulating ignition.

  16. Nanometric mechanical cutting of metallic glass investigated using atomistic simulation

    International Nuclear Information System (INIS)

    Wu, Cheng-Da; Fang, Te-Hua; Su, Jih-Kai

    2017-01-01

    Highlights: • A nanoscale chip with a shear plane of 135° is extruded by the tool. • Tangential force and normal force increase with increasing tool nose radius. • Resistance factor increases with increasing cutting depth and temperature. - Abstract: The effects of cutting depth, tool nose radius, and temperature on the cutting mechanism and mechanics of amorphous NiAl workpieces are studied using molecular dynamics simulations based on the second-moment approximation of the many-body tight-binding potential. These effects are investigated in terms of atomic trajectories and flow field, shear strain, cutting force, resistance factor, cutting ratio, and pile-up characteristics. The simulation results show that a nanoscale chip with a shear plane of 135° is extruded by the tool from a workpiece surface during the cutting process. The workpiece atoms underneath the tool flow upward due to the adhesion force and elastic recovery. The required tangential force and normal force increase with increasing cutting depth and tool nose radius; both forces also increase with decreasing temperature. The resistance factor increases with increasing cutting depth and temperature, and decreases with increasing tool nose radius.

  17. Catalyst design for carbon nanotube growth using atomistic modeling

    International Nuclear Information System (INIS)

    Pint, Cary L; Bozzolo, Guillermo; Hauge, Robert

    2008-01-01

    The formation and stability of bimetallic catalyst particles, in the framework of carbon nanotube growth, is studied using the Bozzolo-Ferrante-Smith (BFS) method for alloys. Monte Carlo-Metropolis simulations with the BFS method are utilized in order to predict and study equilibrium configurations for nanoscale catalyst particles which are directly relevant to the catalyst state prior to growth of carbon nanotubes. At the forefront of possible catalyst combinations is the popular Fe-Mo bimetallic catalyst, which we have recently studied experimentally. We explain our experimental results, which indicate that the growth observed is dependent on the order of co-catalyst deposition, in the straightforward interpretation of BFS strain and chemical energy contributions toward the formation of Fe-Mo catalyst prior to growth. We find that the competition between the formation of metastable inner Mo cores and clusters of surface-segregated Mo atoms in Fe-Mo catalyst particles influences catalyst formation, and we investigate the role of Mo concentration and catalyst particle size in this process. Finally, we apply the same modeling approach to other prominent bimetallic catalysts and suggest that this technique can be a powerful tool to understand and manipulate catalyst design for highly efficient carbon nanotube growth

  18. Anisotropic toughness and strength in graphene and its atomistic origin

    Science.gov (United States)

    Hossain, M. Zubaer; Ahmed, Tousif; Silverman, Benjamin; Khawaja, M. Shehroz; Calderon, Justice; Rutten, Andrew; Tse, Stanley

    2018-01-01

    This paper presents the implication of crystallographic orientation on toughness and ideal strength in graphene under lattice symmetry-preserving and symmetry-breaking deformations. In symmetry-preserving deformation, both toughness and strength are isotropic, regardless of the chirality of the lattice; whereas, in symmetry-breaking deformation they are strongly anisotropic, even in the presence of vacancy defects. The maximum and minimum of toughness or strength occur for loading along the zigzag direction and the armchair direction, respectively. The anisotropic behavior is governed by a complex interplay among bond-stretching deformation, bond-bending deformation, and the chirality of the lattice. Nevertheless, the condition for crack-nucleation is dictated by the maximum bond-force required for bond rupture, and it is independent of the chiral angle of the lattice or loading direction. At the onset of crack-nucleation a localized nucleation zone is formed, wherein the bonds rupture locally satisfying the maximum bond-force criterion. The nucleation zone acts as the physical origin in triggering the fracture nucleation process, but its presence is undetectable from the macroscopic stress-strain data.

  19. Atomistic simulation of helium bubble nucleation in palladium

    Energy Technology Data Exchange (ETDEWEB)

    Wang Liang [Department of Applied Physics, Hunan University, Changsha 410082 (China); Hu, Wangyu [Department of Applied Physics, Hunan University, Changsha 410082 (China)], E-mail: wangyuhu2001cn@yahoo.com.cn; Xiao Shifang [Department of Applied Physics, Hunan University, Changsha 410082 (China)], E-mail: sfxiao@yahoo.com.cn; Yang Jianyu [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Deng Huiqiu [Department of Applied Physics, Hunan University, Changsha 410082 (China)

    2009-09-15

    A palladium crystal has been constructed with 11808 atoms. 55 helium atoms occupied the octahedral position of palladium crystal are introduced and retained in a spherical region. Molecular dynamic simulations are performed in a constant temperature and constant volume ensemble (NVT) with temperature controlled by Nose-Hoover thermostat. The interactions between palladium atoms are described with modified analytic embedded atom method (MAEAM), the interactions between palladium atom and helium atom are in the form of Morse potential, and the interactions between helium atoms are in the form of L-J potential function. With the analysis of the radial distribution function (RDF) and microstructure, it reveals that some of helium atoms form a series of clusters with different size, and the nucleation core is random at low temperature, and which is the embryo of helium bubble. Increasing temperature can accelerate the process of bubble nucleation, and the clusters will aggregate and coalesce into a bigger one in which there are no palladium atoms, and it is considered as a helium bubble.

  20. Controlling atomistic processes on Pb films via quantum size effects and lattice rotation

    Energy Technology Data Exchange (ETDEWEB)

    Binz, Steven [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    The two main techniques used to record the data in this dissertation were Spot Profile Analysis - Low Energy Electron Diffraction (SPA-LEED) and Scanning Tunneling Microscopy (STM). A specific data analysis technique for LEED data called G(S) curves is described in depth. G(S) curves can provide a great deal of structural information about the surface; including step heights, island size, and island separation. The effects of quantum size effects (QSE) on the diffusion and critical island sizes of Pb and In on Pb films are reported. Pb depositions on the 2D In phases {radical}3 and {radical}31 to see how the phases affect the Pb growth and its strong QSE are reported.

  1. Fully atomistic molecular-mechanical model of liquid alkane oils: Computational validation.

    Science.gov (United States)

    Zahariev, Tsvetan K; Slavchov, Radomir I; Tadjer, Alia V; Ivanova, Anela N

    2014-04-15

    Fully atomistic molecular dynamics simulations were performed on liquid n-pentane, n-hexane, and n-heptane to derive an atomistic model for middle-chain-length alkanes. All simulations were based on existing molecular-mechanical parameters for alkanes. The computational protocol was optimized, for example, in terms of thermo- and barostat, to reproduce properly the properties of the liquids. The model was validated by comparison of thermal, structural, and dynamic properties of the normal alkane liquids to experimental data. Two different combinations of temperature and pressure coupling algorithms were tested. A simple differential approach was applied to evaluate fluctuation-related properties with sufficient accuracy. Analysis of the data reveals a satisfactory representation of the hydrophobic systems behavior. Thermodynamic parameters are close to the experimental values and exhibit correct temperature dependence. The observed intramolecular geometry corresponds to extended conformations domination, whereas the intermolecular structure demonstrates all characteristics of liquid systems. Cavity size distribution function was calculated from coordinates analysis and was applied to study the solubility of gases in hexane and heptane oils. This study provides a platform for further in-depth research on hydrophobic solutions and multicomponent systems. Copyright © 2014 Wiley Periodicals, Inc.

  2. Prediction of Material Properties of Nanostructured Polymer Composites Using Atomistic Simulations

    Science.gov (United States)

    Hinkley, J.A.; Clancy, T.C.; Frankland, S.J.V.

    2009-01-01

    Atomistic models of epoxy polymers were built in order to assess the effect of structure at the nanometer scale on the resulting bulk properties such as elastic modulus and thermal conductivity. Atomistic models of both bulk polymer and carbon nanotube polymer composites were built. For the bulk models, the effect of moisture content and temperature on the resulting elastic constants was calculated. A relatively consistent decrease in modulus was seen with increasing temperature. The dependence of modulus on moisture content was less consistent. This behavior was seen for two different epoxy systems, one containing a difunctional epoxy molecule and the other a tetrafunctional epoxy molecule. Both epoxy structures were crosslinked with diamine curing agents. Multifunctional properties were calculated with the nanocomposite models. Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between the carbon nanotube and the surrounding epoxy matrix. These estimated values were used in a multiscale model in order to predict the thermal conductivity of a nanocomposite as a function of the nanometer scaled molecular structure.

  3. NanoPSE: Nanoscience Problem Solving Environment for atomistic electronic structure of semiconductor nanostructures

    Science.gov (United States)

    Jones, Wesley B.; Bester, Gabriel; Canning, Andrew; Franceschetti, Alberto; Graf, Peter A.; Kim, Kwiseon; Langou, Julien; Wang, Lin-Wang; Dongarra, Jack; Zunger, Alex

    2005-01-01

    Researchers at the National Renewable Energy Laboratory and their collaborators have developed over the past ~10 years a set of algorithms for an atomistic description of the electronic structure of nanostructures, based on plane-wave pseudopotentials and configurationinteraction. The present contribution describes the first step in assembling these various codes into a single, portable, integrated set of software packages. This package is part of an ongoing research project in the development stage. Components of NanoPSE include codes for atomistic nanostructure generation and passivation, valence force field model for atomic relaxation, code for potential field generation, empirical pseudopotential method solver, strained linear combination of bulk bands method solver, configuration interaction solver for excited states, selection of linear algebra methods, and several inverse band structure solvers. Although not available for general distribution at this time as it is being developed and tested, the design goal of the NanoPSE software is to provide a software context for collaboration. The software package is enabled by fcdev, an integrated collection of best practice GNU software for open source development and distribution augmented to better support FORTRAN.

  4. NanoPSE: Nanoscience Problem Solving Environment for atomistic electronic structure of semiconductor nanostructures

    International Nuclear Information System (INIS)

    Jones, Wesley B; Bester, Gabriel; Canning, Andrew; Franceschetti, Alberto; Graf, Peter A; Kim, Kwiseon; Langou, Julien; Wang Linwang; Dongarra, Jack; Zunger, Alex

    2005-01-01

    Researchers at the National Renewable Energy Laboratory and their collaborators have developed over the past ∼10 years a set of algorithms for an atomistic description of the electronic structure of nanostructures, based on plane-wave pseudopotentials and configurationinteraction. The present contribution describes the first step in assembling these various codes into a single, portable, integrated set of software packages. This package is part of an ongoing research project in the development stage. Components of NanoPSE include codes for atomistic nanostructure generation and passivation, valence force field model for atomic relaxation, code for potential field generation, empirical pseudopotential method solver, strained linear combination of bulk bands method solver, configuration interaction solver for excited states, selection of linear algebra methods, and several inverse band structure solvers. Although not available for general distribution at this time as it is being developed and tested, the design goal of the NanoPSE software is to provide a software context for collaboration. The software package is enabled by fcdev, an integrated collection of best practice GNU software for open source development and distribution augmented to better support FORTRAN

  5. An atomistic fingerprint algorithm for learning ab initio molecular force fields

    Science.gov (United States)

    Tang, Yu-Hang; Zhang, Dongkun; Karniadakis, George Em

    2018-01-01

    Molecular fingerprints, i.e., feature vectors describing atomistic neighborhood configurations, is an important abstraction and a key ingredient for data-driven modeling of potential energy surface and interatomic force. In this paper, we present the density-encoded canonically aligned fingerprint algorithm, which is robust and efficient, for fitting per-atom scalar and vector quantities. The fingerprint is essentially a continuous density field formed through the superimposition of smoothing kernels centered on the atoms. Rotational invariance of the fingerprint is achieved by aligning, for each fingerprint instance, the neighboring atoms onto a local canonical coordinate frame computed from a kernel minisum optimization procedure. We show that this approach is superior over principal components analysis-based methods especially when the atomistic neighborhood is sparse and/or contains symmetry. We propose that the "distance" between the density fields be measured using a volume integral of their pointwise difference. This can be efficiently computed using optimal quadrature rules, which only require discrete sampling at a small number of grid points. We also experiment on the choice of weight functions for constructing the density fields and characterize their performance for fitting interatomic potentials. The applicability of the fingerprint is demonstrated through a set of benchmark problems.

  6. An Atomistic Carbide-Derived Carbon Model Generated Using ReaxFF-Based Quenched Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Matthew W. Thompson

    2017-10-01

    Full Text Available We report a novel atomistic model of carbide-derived carbons (CDCs, which are nanoporous carbons with high specific surface areas, synthesis-dependent degrees of graphitization, and well-ordered, tunable porosities. These properties make CDCs viable substrates in several energy-relevant applications, such as gas storage media, electrochemical capacitors, and catalytic supports. These materials are heterogenous, non-ideal structures and include several important parameters that govern their performance. Therefore, a realistic model of the CDC structure is needed in order to study these systems and their nanoscale and macroscale properties with molecular simulation. We report the use of the ReaxFF reactive force field in a quenched molecular dynamics routine to generate atomistic CDC models. The pair distribution function, pore size distribution, and adsorptive properties of this model are reported and corroborated with experimental data. Simulations demonstrate that compressing the system after quenching changes the pore size distribution to better match the experimental target. Ring size distributions of this model demonstrate the prevalence of non-hexagonal carbon rings in CDCs. These effects may contrast the properties of CDCs against those of activated carbons with similar pore size distributions and explain higher energy densities of CDC-based supercapacitors.

  7. Temperature specification in atomistic molecular dynamics and its impact on simulation efficacy

    Science.gov (United States)

    Ocaya, R. O.; Terblans, J. J.

    2017-10-01

    Temperature is a vital thermodynamical function for physical systems. Knowledge of system temperature permits assessment of system ergodicity, entropy, system state and stability. Rapid theoretical and computational developments in the fields of condensed matter physics, chemistry, material science, molecular biology, nanotechnology and others necessitate clarity in the temperature specification. Temperature-based materials simulations, both standalone and distributed computing, are projected to grow in prominence over diverse research fields. In this article we discuss the apparent variability of temperature modeling formalisms used currently in atomistic molecular dynamics simulations, with respect to system energetics,dynamics and structural evolution. Commercial simulation programs, which by nature are heuristic, do not openly discuss this fundamental question. We address temperature specification in the context of atomistic molecular dynamics. We define a thermostat at 400K relative to a heat bath at 300K firstly using a modified ab-initio Newtonian method, and secondly using a Monte-Carlo method. The thermostatic vacancy formation and cohesion energies, equilibrium lattice constant for FCC copper is then calculated. Finally we compare and contrast the results.

  8. Intergranular fracture in UO2: derivation of traction-separation law from atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yongfeng Zhang; Paul C Millett; Michael R Tonks; Xian-Ming Bai; S Bulent Biner

    2013-10-01

    In this study, the intergranular fracture behavior of UO2 was studied by molecular dynamics simulations using the Basak potential. In addition, the constitutive traction-separation law was derived from atomistic data using the cohesive-zone model. In the simulations a bicrystal model with the (100) symmetric tilt E5 grain boundaries was utilized. Uniaxial tension along the grain boundary normal was applied to simulate Mode-I fracture. The fracture was observed to propagate along the grain boundary by micro-pore nucleation and coalescence, giving an overall intergranular fracture behavior. Phase transformations from the Fluorite to the Rutile and Scrutinyite phases were identified at the propagating crack tips. These new phases are metastable and they transformed back to the Fluorite phase at the wake of crack tips as the local stress concentration was relieved by complete cracking. Such transient behavior observed at atomistic scale was found to substantially increase the energy release rate for fracture. Insertion of Xe gas into the initial notch showed minor effect on the overall fracture behavior.

  9. General atomistic approach for modeling metal-semiconductor interfaces using density functional theory and nonequilibrium Green's function

    DEFF Research Database (Denmark)

    Stradi, Daniele; Martinez, Umberto; Blom, Anders

    2016-01-01

    an atomistic approach based on density functional theory and nonequilibrium Green's function, which includes all the relevant ingredients required to model realistic metal-semiconductor interfaces and allows for a direct comparison between theory and experiments via I-Vbias curve simulations. We apply...

  10. Efficient 3D 'Atomistic' Simulation Technique for Studying of Random Dopant Induced Threshold Voltage Lowering and Fluctuations in Decanano MOSFETs

    Science.gov (United States)

    Asenov, Asen

    1998-01-01

    A 3D 'atomistic' simulation technique to study random dopant induced threshold voltage lowering and fluctuations in sub 0.1 micron MOSFETs is presented. It allows statistical analysis of random impurity effects down to the individual impurity level. Efficient algorithms based on a single solution of Poisson's equation, followed by the solution of a simplified current continuity equation are used in the simulations.

  11. Impact of amphiphilic molecules on the structure and stability of homogeneous sphingomyelin bilayer: Insights from atomistic simulations

    Science.gov (United States)

    Kumari, Pratibha; Kaur, Supreet; Sharma, Shobha; Kashyap, Hemant K.

    2018-04-01

    Modulation of lipid membrane properties due to the permeation of amphiphiles is an important biological process pertaining to many applications in the field of pharmaceutics, toxicology, and biotechnology. Sphingolipids are both structural and functional lipids that constitute an important component of mechanically stable and chemically resistant outer leaflets of plasma membranes. Here, we present an atomistic molecular dynamics simulation study to appreciate the concentration-dependent effects of small amphiphilic molecules, such as ethanol, acetone, and dimethyl sulfoxide (DMSO), on the structure and stability of a fully hydrated homogeneous N-palmitoyl-sphingomyelin (PSM) bilayer. The study reveals an increase in the lateral expansion of the bilayer along with disordering of the hydrophobic lipid tails on increasing the concentration of ethanol. At higher concentrations of ethanol, rupturing of the bilayer is quite evident through the analysis of partial electron density profiles and lipid tail order parameters. For ethanol containing systems, permeation of water molecules in the hydrophobic part of the bilayer is allowed through local defects made due to the entry of ethanol molecules via ethanol-ethanol and ethanol-PSM hydrogen bonds. Moreover, the extent of PSM-PSM hydrogen bonding decreases with increasing ethanol concentration. On the other hand, acetone and DMSO exhibit minimal effects on the stability of the PSM bilayer at their lower concentrations, but at higher concentrations they tend to enhance the stability of the bilayer. The simulated potential of mean force (PMF) profiles for the translocation of the three solutes studied reveal that the free-energy of transfer of an ethanol molecule across the PSM lipid head region is lower than that for acetone and DMSO molecules. However, highest free-energy rise in the core hydrophobic part of the bilayer is observed for the DMSO molecule, whereas the ethanol and acetone PMF profiles show a lower barrier in

  12. Shedding light on the different behavior of ionic and nonionic surfactants in emulsion polymerization: from atomistic simulations to experimental observations.

    Science.gov (United States)

    Magi Meconi, Giulia; Ballard, Nicholas; Asua, José M; Zangi, Ronen

    2017-12-06

    Although surfactants are known to play a vital role in polymerization reactions carried out in dispersed media, many aspects of their use are poorly understood, perhaps none more so than the vastly different action of ionic and nonionic surfactants in emulsion polymerization. In this work, we combine experimental measurements of emulsion polymerization of styrene with atomistic molecular dynamics simulations to better understand the behavior of surfactants at monomer/polymer-water interfaces. In a batch emulsion polymerization of styrene, the nonionic surfactant Disponil AFX 1080 leads to two nucleation periods, in contrast to the behavior observed for the ionic surfactant SDS. This can be explained by the absorption of the nonionic surfactant into the organic phase at the early stages of the polymerization reaction which is then released as the reaction progresses. Indeed, we find that the partition coefficient of the surfactant between the organic phase and water increases with the amount of monomer in the former, and preferential partitioning is detected to organic phases containing at least 55% styrene. Results from molecular dynamics simulations confirm that spontaneous dissolution of the non-ionic surfactant into a styrene-rich organic phase occurs above a critical concentration of the surfactant adsorbed at the interface. Above this critical concentration, a linear correlation between the amount of surfactant adsorbed at the interface and that absorbed inside the organic phase is observed. To facilitate this absorption into a completely hydrophobic medium, water molecules accompany the intruding surfactants. Similar simulations but with the ionic surfactant instead did not result in any absorption of the surfactant into a neat styrene phase, likely because of its strongly hydrophilic head group. The unusual partitioning behavior of nonionic surfactants explains a number of observable features of emulsion polymerization reactions which use nonionic

  13. Grain-Boundary Resistance in Copper Interconnects: From an Atomistic Model to a Neural Network

    Science.gov (United States)

    Valencia, Daniel; Wilson, Evan; Jiang, Zhengping; Valencia-Zapata, Gustavo A.; Wang, Kuang-Chung; Klimeck, Gerhard; Povolotskyi, Michael

    2018-04-01

    Orientation effects on the specific resistance of copper grain boundaries are studied systematically with two different atomistic tight-binding methods. A methodology is developed to model the specific resistance of grain boundaries in the ballistic limit using the embedded atom model, tight- binding methods, and nonequilibrium Green's functions. The methodology is validated against first-principles calculations for thin films with a single coincident grain boundary, with 6.4% deviation in the specific resistance. A statistical ensemble of 600 large, random structures with grains is studied. For structures with three grains, it is found that the distribution of specific resistances is close to normal. Finally, a compact model for grain-boundary-specific resistance is constructed based on a neural network.

  14. Atomistic simulations of anionic Au-144(SR)(60) nanoparticles interacting with asymmetric model lipid membranes

    DEFF Research Database (Denmark)

    Heikkila, E.; Martinez-Seara, H.; Gurtovenko, A. A.

    2014-01-01

    Experimental observations indicate that the interaction between nanoparticles and lipid membranes varies according to the nanoparticle charge and the chemical nature of their protecting side groups. We report atomistic simulations of an anionic Au nanoparticle (AuNP-) interacting with membranes...... whose lipid composition and transmembrane distribution are to a large extent consistent with real plasma membranes of eukaryotic cells. To this end, we use a model system which comprises two cellular compartments, extracellular and cytosolic, divided by two asymmetric lipid bilayers. The simulations...... clearly show that AuNP- attaches to the extracellular membrane surface within a few tens of nanoseconds, while it avoids contact with the membrane on the cytosolic side. This behavior stems from several factors. In essence, when the nanoparticle interacts with lipids in the extracellular compartment...

  15. Theoretical modeling of zircon's crystal morphology according to data of atomistic calculations

    Science.gov (United States)

    Gromalova, Natalia; Nikishaeva, Nadezhda; Eremin, Nikolay

    2017-04-01

    Zircon is an essential mineral that is used in the U-Pb dating. Moreover, zircon is highly resistant to radioactive exposure. It is of great interest in solving both fundamental and applied problems associated with the isolation of high-level radioactive waste. There is significant progress in forecasting of the most energetically favorable crystal structures at the present time. Unfortunately, the theoretical forecast of crystal morphology at high technological level is under-explored nowadays, though the estimation of crystal equilibrium habit is extremely important in studying the physical and chemical properties of new materials. For the first time, the thesis about relation of the equilibrium shape of a crystal with its crystal structure was put forward in the works by O.Brave. According to it, the idealized habit is determined in the simplest case by a correspondence with the reticular densities Rhkl of individual faces. This approach, along with all subsequent corrections, does not take into account the nature of atoms and the specific features of the chemical bond in crystals. The atomistic calculations of crystal surfaces are commonly performed using the energetic characteristics of faces, namely, the surface energy (Esurf), which is a measure of the thermodynamic stability of the crystal face. The stable crystal faces are characterized by small positive values of Esurf. As we know from our previous research (Gromalova et al.,2015) one of the constitutive factors affecting the value of the surface energy in calculations is a choice of potentials model. In this regard, we studied several sets of parameters of atomistic interatomic potentials optimized previously. As the first test model («Zircon 1») were used sets of interatomic potentials of interaction Zr-O, Si-O and O-O in the form of Buckingham potentials. To improve playback properties of zircon additionally used Morse potential for a couple of Zr-Si, as well as the three-particle angular harmonic

  16. Study of the embedded atom method of atomistic calculations for metals and alloys

    International Nuclear Information System (INIS)

    Johnson, R.A.

    1990-10-01

    Two projects were completed in the past year. The stability of a series of binary alloys was calculated using the embedded-atom method (EAM) with an analytic form for two-body potentials derived previously. Both disordered alloys and intermetallic compounds with the L1 0 and L1 2 structures were studied. The calculated heats of solution of alloys of Cu, Ag, Au, Ni, and Pt were satisfactory, while results for alloys containing Pd were too high. Atomistic calculations using the EAM were also carried out for point defects in hcp metals. By comparison with results in the literature, it was found that many body effects from the EAM significantly alter predicted physical properties of hcp metals. For example, the EAM calculations yield anisotropic vacancy diffusion with greater vacancy mobility in the basal plane, and imply that diffusion will start at a lower fraction of the melting temperature

  17. Thermodynamics of coherent interfaces under mechanical stresses. II. Application to atomistic simulation of grain boundaries

    Science.gov (United States)

    Frolov, T.; Mishin, Y.

    2012-06-01

    The thermodynamic theory of coherent interfaces developed in Part I of this work is applied to grain boundaries (GBs) subject to nonhydrostatic elastic deformations. We derive expressions for the GB free energy as the reversible work of GB formation under stress. We also present a generalized adsorption equation whose differential coefficients define the GB segregation, GB stress tensor, GB excess volume, and GB excess shear. The generalized adsorption equation generates a set of Maxwell relations describing cross effects between different GB properties. The theory is applied to atomistic simulations of a symmetrical tilt GB in Cu and Cu-Ag alloys. Using a combination of molecular dynamics and Monte Carlo methods, we compute a number of GB excess quantities and their dependencies on the applied stresses, temperature and chemical composition in the grains. We also test several Maxwell relations and obtain excellent agreement between the theory and simulations.

  18. Simulating Cellulose Structure, Properties, Thermodynamics, Synthesis, and Deconstruction with Atomistic and Coarse-Grain Models

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, M. F.; Matthews, J.; Beckham, G.; Bomble, Y.; Hynninen, A. P.; Ciesielski, P. F.

    2012-01-01

    Cellulose is still a mysterious polymer in many ways: structure of microfibrils, thermodynamics of synthesis and degradation, and interactions with other plant cell wall components. Our aim is to uncover the details and mechanisms of cellulose digestion and synthesis. We report the details of the structure of cellulose 1-beta under several temperature conditions and report here the results of these studies and connections to experimental measurements and the measurement in-silico the free energy of decrystallization of several morphologies of cellulose. In spatially large modeling, we show the most recent work of mapping atomistic and coarse-grain models into tomographic images of cellulose and extreme coarse-grain modeling of interactions of large cellulase complexes with microfibrils. We discuss the difficulties of modeling cellulose and suggest future work both experimental and theoretical to increase our understanding of cellulose and our ability to use it as a raw material for fuels and materials.

  19. Difference in aggregation between functional and toxic amyloids studied by atomistic simulations

    Science.gov (United States)

    Carballo Pacheco, Martin; Ismail, Ahmed E.; Strodel, Birgit

    Amyloids are highly structured protein aggregates, normally associated with neurodegenerative diseases such as Alzheimer's disease. In recent years, a number of nontoxic amyloids with physiologically normal functions, called functional amyloids, have been found. It is known that soluble small oligomers are more toxic than large fibrils. Thus, we study with atomistic explicit-solvent molecular dynamics simulations the oligomer formation of the amyloid- β peptide Aβ25 - 35, associated with Alzheimer's disease, and two functional amyloid-forming tachykinin peptides: kassinin and neuromedin K. Our simulations show that monomeric peptides in extended conformations aggregate faster than those in collapsed hairpin-like conformations. In addition, we observe faster aggregation by functional amyloids than toxic amyloids, which could explain their lack of toxicity.

  20. Atomistic modeling of the structural components of the blood-brain barrier

    Science.gov (United States)

    Glukhova, O. E.; Grishina, O. A.; Slepchenkov, M. M.

    2015-03-01

    Blood-brain barrier, which is a barrage system between the brain and blood vessels, plays a key role in the "isolation" of the brain of unnecessary information, and reduce the "noise" in the interneuron communication. It is known that the barrier function of the BBB strictly depends on the initial state of the organism and changes significantly with age and, especially in developing the "vascular accidents". Disclosure mechanisms of regulation of the barrier function will develop new ways to deliver neurotrophic drugs to the brain in the newborn. The aim of this work is the construction of atomistic models of structural components of the blood-brain barrier to reveal the mechanisms of regulation of the barrier function.

  1. Atomistic simulation for coil-to-globule transition of poly(2-dimethylaminoethyl methacrylate).

    Science.gov (United States)

    Min, Sa Hoon; Kwak, Sang Kyu; Kim, Byeong-Su

    2015-03-28

    The coil-to-globule transition of poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) in aqueous solution was investigated by all-atomistic molecular dynamics simulations. The polymer consistent force field (PCFF) was applied to the PDMAEMA model with a proper protonation state. The structural analysis indicates a distinct difference in the hydration state of particular functional groups of PDMAEMA as well as in the conformational state of PDMAEMA below and above the lower critical solution temperature (LCST). In particular, by monitoring the motion of water molecules, we observe that water molecules in the vicinity of the carbonyl group are relatively restricted to the motion in the globule state due to the extended relaxation time of hydrogen bonds among water molecules. The degree of protonation was also adjusted to study the effect of protonation on the conformational state of PDMAEMA.

  2. Permutation invariant potential energy surfaces for polyatomic reactions using atomistic neural networks

    International Nuclear Information System (INIS)

    Kolb, Brian; Zhao, Bin; Guo, Hua; Li, Jun; Jiang, Bin

    2016-01-01

    The applicability and accuracy of the Behler-Parrinello atomistic neural network method for fitting reactive potential energy surfaces is critically examined in three systems, H + H 2 → H 2 + H, H + H 2 O → H 2 + OH, and H + CH 4 → H 2 + CH 3 . A pragmatic Monte Carlo method is proposed to make efficient choice of the atom-centered mapping functions. The accuracy of the potential energy surfaces is not only tested by fitting errors but also validated by direct comparison in dynamically important regions and by quantum scattering calculations. Our results suggest this method is both accurate and efficient in representing multidimensional potential energy surfaces even when dissociation continua are involved.

  3. Hybrid Methods and Atomistic Models to Explore Free Energies, Rates and Pathways of Protein Shape Changes

    DEFF Research Database (Denmark)

    Wang, Yong

    energy well, e.g. the drug residence time. In Chapter 6, we developed an atomistic hybrid model by integration of physics-based and structure-based potentials in the context of Monte Carlo software packages. We showed the ability of our models to distinguish the folding mechanisms of four topologically...... of simulations. By testing in a simple model system and applying in a case of T4L binding/unbinding with two dierent ligands, we showed that the pace adaptive scheme can improve the reliability and accuracy of kinetics estimation, importantly without the need of extra computational resources. So this strategy...... was tested again in the calculation of the unbinding time of T4L-benzene. The results suggest this hybrid method can obtain similar results as infrequent metadynamics but with less computational resources. Thus it is promising to apply this hybrid method to calculate kinetics of escaping from a deep free...

  4. Atomistic studies of nucleation of He clusters and bubbles in bcc iron

    International Nuclear Information System (INIS)

    Yang, L.; Deng, H.Q.; Gao, F.; Heinisch, H.L.; Kurtz, R.J.; Hu, S.Y.; Li, Y.L.; Zu, X.T.

    2013-01-01

    Atomistic simulations of the nucleation of He clusters and bubbles in bcc iron at 800 K have been carried out using the newly developed Fe–Fe interatomic potential, along with Ackland potential for the Fe–Fe interactions. Microstructure changes were analyzed in detail. We found that a He cluster with four He atoms is able to push out an iron interstitial from the cluster, creating a Frenkel pair. Small He clusters and self-interstitial atom (SIA) can migrate in the matrix, but He-vacancy (He-V) clusters are immobile. Most SIAs form clusters, and only the dislocation loops with a Burgers vector of b = 1/2 appear in the simulations. SIA clusters (or loops) are attached to He-V clusters for He implantation up to 1372 appm, while the He-V cluster–loop complexes with more than one He-V cluster are formed at the He concentration of 2057 appm and larger

  5. Computer code for the atomistic simulation of lattice defects and dynamics. [COMENT code

    Energy Technology Data Exchange (ETDEWEB)

    Schiffgens, J.O.; Graves, N.J.; Oster, C.A.

    1980-04-01

    This document has been prepared to satisfy the need for a detailed, up-to-date description of a computer code that can be used to simulate phenomena on an atomistic level. COMENT was written in FORTRAN IV and COMPASS (CDC assembly language) to solve the classical equations of motion for a large number of atoms interacting according to a given force law, and to perform the desired ancillary analysis of the resulting data. COMENT is a dual-purpose intended to describe static defect configurations as well as the detailed motion of atoms in a crystal lattice. It can be used to simulate the effect of temperature, impurities, and pre-existing defects on radiation-induced defect production mechanisms, defect migration, and defect stability.

  6. Magnetic cycloid of BiFeO3 from atomistic simulations.

    Science.gov (United States)

    Rahmedov, D; Wang, Dawei; Iñiguez, Jorge; Bellaiche, L

    2012-07-20

    An effective Hamiltonian is developed to investigate the magnetic cycloid of the BiFeO3 (BFO) multiferroic. This approach reproduces many complex features of this cycloid, such as its plane of rotation containing the polarization and the newly discovered spin density waves resulting from the canting of magnetic dipoles out of this cycloidal plane. It also suggests that the energetic origin of the cycloid can be thought of in terms of the converse spin-current model, and reveals the mechanisms responsible for the spin density waves. Finally, this atomistic scheme resolves an ongoing controversy about the cycloid anharmonicity, and revisits a recent misconception about the relationship between out-of-plane spin-density waves and the weak magnetization associated with the spin-canted structure of BFO.

  7. Atomistic studies of cation transport in tetragonal ZrO2 during zirconium corrosion

    International Nuclear Information System (INIS)

    Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.

    2015-01-01

    Zirconium alloys are the major fuel cladding materials in current reactors. The water-side corrosion is a significant degradation mechanism of these alloys. During corrosion, the transport of oxidizing species in zirconium dioxide (ZrO 2 ) determines the corrosion kinetics. Previously, it has been argued that the outward diffusion of cations is important for forming protective oxides. In this work, the migration of Zr defects in tetragonal ZrO 2 is studied with temperature accelerated dynamics and molecular dynamics simulations. The results show that Zr interstitials have anisotropic diffusion and migrate preferentially along the [001] or c direction in tetragonal ZrO 2 . The compressive stresses can increase the Zr interstitial migration barrier significantly. The migration of Zr interstitials at a grain boundary is much slower than in a bulk oxide. The implications of these atomistic simulation results in the Zr corrosion are discussed. (authors)

  8. Atomic force microscope adhesion measurements and atomistic molecular dynamics simulations at different humidities

    International Nuclear Information System (INIS)

    Seppä, Jeremias; Sairanen, Hannu; Korpelainen, Virpi; Husu, Hannu; Heinonen, Martti; Lassila, Antti; Reischl, Bernhard; Raiteri, Paolo; Rohl, Andrew L; Nordlund, Kai

    2017-01-01

    Due to their operation principle atomic force microscopes (AFMs) are sensitive to all factors affecting the detected force between the probe and the sample. Relative humidity is an important and often neglected—both in experiments and simulations—factor in the interaction force between AFM probe and sample in air. This paper describes the humidity control system designed and built for the interferometrically traceable metrology AFM (IT-MAFM) at VTT MIKES. The humidity control is based on circulating the air of the AFM enclosure via dryer and humidifier paths with adjustable flow and mixing ratio of dry and humid air. The design humidity range of the system is 20–60 %rh. Force–distance adhesion studies at humidity levels between 25 %rh and 53 %rh are presented and compared to an atomistic molecular dynamics (MD) simulation. The uncertainty level of the thermal noise method implementation used for force constant calibration of the AFM cantilevers is 10 %, being the dominant component of the interaction force measurement uncertainty. Comparing the simulation and the experiment, the primary uncertainties are related to the nominally 7 nm radius and shape of measurement probe apex, possible wear and contamination, and the atomistic simulation technique details. The interaction forces are of the same order of magnitude in simulation and measurement (5 nN). An elongation of a few nanometres of the water meniscus between probe tip and sample, before its rupture, is seen in simulation upon retraction of the tip in higher humidity. This behaviour is also supported by the presented experimental measurement data but the data is insufficient to conclusively verify the quantitative meniscus elongation. (paper)

  9. An atomistic methodology of energy release rate for graphene at nanoscale

    International Nuclear Information System (INIS)

    Zhang, Zhen; Lee, James D.; Wang, Xianqiao

    2014-01-01

    Graphene is a single layer of carbon atoms packed into a honeycomb architecture, serving as a fundamental building block for electric devices. Understanding the fracture mechanism of graphene under various conditions is crucial for tailoring the electrical and mechanical properties of graphene-based devices at atomic scale. Although most of the fracture mechanics concepts, such as stress intensity factors, are not applicable in molecular dynamics simulation, energy release rate still remains to be a feasible and crucial physical quantity to characterize the fracture mechanical property of materials at nanoscale. This work introduces an atomistic simulation methodology, based on the energy release rate, as a tool to unveil the fracture mechanism of graphene at nanoscale. This methodology can be easily extended to any atomistic material system. We have investigated both opening mode and mixed mode at different temperatures. Simulation results show that the critical energy release rate of graphene is independent of initial crack length at low temperature. Graphene with inclined pre-crack possesses higher fracture strength and fracture deformation but smaller critical energy release rate compared with the graphene with vertical pre-crack. Owing to its anisotropy, graphene with armchair chirality always has greater critical energy release rate than graphene with zigzag chirality. The increase of temperature leads to the reduction of fracture strength, fracture deformation, and the critical energy release rate of graphene. Also, higher temperature brings higher randomness of energy release rate of graphene under a variety of predefined crack lengths. The energy release rate is independent of the strain rate as long as the strain rate is small enough

  10. Filler reinforcement in cross-linked elastomer nanocomposites: insights from fully atomistic molecular dynamics simulation.

    Science.gov (United States)

    Pavlov, Alexander S; Khalatur, Pavel G

    2016-06-28

    Using a fully atomistic model, we perform large-scale molecular dynamics simulations of sulfur-cured polybutadiene (PB) and nanosilica-filled PB composites. A well-integrated network without sol fraction is built dynamically by cross-linking the coarse-grained precursor chains in the presence of embedded silica nanoparticles. Initial configurations for subsequent atomistic simulations are obtained by reverse mapping of the well-equilibrated coarse-grained systems. Based on the concept of "maximally inflated knot" introduced by Grosberg et al., we show that the networks simulated in this study behave as mechanically isotropic systems. Analysis of the network topology in terms of graph theory reveals that mechanically inactive tree-like structures are the dominant structural components of the weakly cross-linked elastomer, while cycles are mainly responsible for the transmission of mechanical forces through the network. We demonstrate that quantities such as the system density, thermal expansion coefficient, glass transition temperature and initial Young's modulus can be predicted in qualitative and sometimes even in quantitative agreement with experiments. The nano-filled system demonstrates a notable increase in the glass transition temperature and an approximately two-fold increase in the nearly equilibrium value of elastic modulus relative to the unfilled elastomer even at relatively small amounts of filler particles. We also examine the structural rearrangement of the nanocomposite subjected to tensile deformation. Under high strain-rate loading, the formation of structural defects (microcavities) within the polymer bulk is observed. The nucleation and growth of cavities in the post-yielding strain hardening regime mainly take place at the elastomer/nanoparticle interfaces. As a result, the cavities are concentrated just near the embedded nanoparticles. Therefore, while the silica nanofiller increases the elastic modulus of the elastomer, it also creates a more

  11. Modelling of radiation induced segregation in austenitic Fe alloys at the atomistic level

    International Nuclear Information System (INIS)

    Piochaud, Jean-Baptiste

    2013-01-01

    In pressurized water reactors, under irradiation internal structures are subject of irradiation assisted stress corrosion cracking which is influenced by radiation induced segregation (RIS). In this work RIS of 316 stainless steels is modelled considering a model ternary Fe-10Ni-20Cr alloy. For this purpose we have built an Fe-Ni-Cr pair interaction model to simulate RIS at the atomistic level using an atomistic kinetic Monte Carlo approach. The pair interactions have been deduced from density functional theory (DFT) data available in the pure fcc systems but also from DFT calculations we have performed in the Fe-10Ni-20Cr target alloy. Point defect formation energies were calculated and found to depend strongly on the local environment of the defect. As a consequence, a rather good estimation of these energies can be obtained from the knowledge of the number and respective positions of the Ni and Cr atoms in the vicinity of the defect. This work shows that a model based only on interaction parameters between elements positioned in perfect lattice sites (solute atoms and vacancy) cannot capture alone both the thermodynamic and the kinetic aspect of RIS. A more accurate of estimating the barriers encountered by the diffusing species is required than the one used in our model, which has to depend on the saddle point environment. This study therefore shows thus the need to estimate point defect migration energies using the DFT approach to calibrate a model that can be used in the framework of atomic kinetic Monte Carlo simulations. We also found that the reproduction by our pair interaction model of DFT data for the self-interstitial atoms was found to be incompatible with the modelling of RIS under electron irradiation. (author)

  12. Atomistic Modeling of the Negative Thermal Expansion in δ- Plutonium Based on the Two-State Description.

    Science.gov (United States)

    Lee, Tongsik; Baskes, Michael I; Lawson, A C; Chen, Shao Ping; Valone, Steven M

    2012-06-07

    The δ phase of plutonium with the fcc structure exhibits an unusual negative thermal expansion (NTE) over its narrow temperature range of stability, 593-736 K. An accurate description of the anomalous high-temperature volume effect of plutonium goes beyond the current capability of electronic-structure calculations. We propose an atomistic scheme to model the thermodynamic properties of δ-Pu based on the two-state model of Weiss for the Invar alloys, inspired by the simple free-energy analysis previously conducted by Lawson et al. The two-state mechanism is incorporated into the atomistic description of a many-body interacting system. Two modified embedded atom method potentials are employed to represent the binding energies of two competing electronic states in δ-Pu. We demonstrate how the NTE takes place in δ-Pu by means of Monte Carlo simulations implemented with the two-state mechanism.

  13. Composition manipulation of near infrared InAsxSb1-x nanocrystals: Atomistic tight-binding theory

    Science.gov (United States)

    Sukkabot, Worasak

    2017-05-01

    Based on a successful atomistic tight-binding model in the conjunction with an empirical bowing parameter and the widely used virtual crystal approximation, the theoretical investigations of near infrared InAsxSb1-x nanocrystals with the experimentally synthesized sizes and As compositions (x) are reported. Under various experimental As compositions (x), the single-particle spectra, charge densities, density of states (DOS), overlaps of ground electron and hole wave functions, optical spectra, atomistic electron-hole interactions and stokes shift are numerically computed. I report the correlation of the structural and optical properties of InAsxSb1-x nanocrystals with different alloy compositions (x). With the increasing compositions (x), the single-electron energies are increased, while the single-hole energies are reduced, thus introducing the wider optical band gaps. The atomistic tight-binding model reproduces very well the change in the band gap values with the compositions observed in the experimental reports. The As compositions (x) of alloy InAsxSb1-x nanocrystals are used to propel photonic and optoelectronic device performance in a broad range of the near infrared spectrum with the wave length from 825 to 990 nm. With the increasing content (x), the optical intensities are reduced, whereas atomistic electron-hole interactions and stokes shift are progressively increased. Finally, the present systematic study of alloy InAsxSb1-x nanocrystals is one of the most important milestones on the road to provide the understanding of the composition-dependent structural and optical properties and a complete tactic to design a facile band gap modulation method of preparing the interesting near infrared emitting devices and detectors.

  14. Lattice Thermal Conductivity of Ultra High Temperature Ceramics ZrB2 and HfB2 from Atomistic Simulations

    Science.gov (United States)

    Lawson, John W.; Murray, Daw S.; Bauschlicher, Charles W., Jr.

    2011-01-01

    Atomistic Green-Kubo simulations are performed to evaluate the lattice thermal conductivity for single crystals of the ultra high temperature ceramics ZrB2 and HfB2 for a range of temperatures. Recently developed interatomic potentials are used for these simulations. Heat current correlation functions show rapid oscillations which can be identified with mixed metal-Boron optical phonon modes. Agreement with available experimental data is good.

  15. PF2fit: Polar Fast Fourier Matched Alignment of Atomistic Structures with 3D Electron Microscopy Maps.

    Directory of Open Access Journals (Sweden)

    Radhakrishna Bettadapura

    2015-10-01

    Full Text Available There continue to be increasing occurrences of both atomistic structure models in the PDB (possibly reconstructed from X-ray diffraction or NMR data, and 3D reconstructed cryo-electron microscopy (3D EM maps (albeit at coarser resolution of the same or homologous molecule or molecular assembly, deposited in the EMDB. To obtain the best possible structural model of the molecule at the best achievable resolution, and without any missing gaps, one typically aligns (match and fits the atomistic structure model with the 3D EM map. We discuss a new algorithm and generalized framework, named PF(2 fit (Polar Fast Fourier Fitting for the best possible structural alignment of atomistic structures with 3D EM. While PF(2 fit enables only a rigid, six dimensional (6D alignment method, it augments prior work on 6D X-ray structure and 3D EM alignment in multiple ways: Scoring. PF(2 fit includes a new scoring scheme that, in addition to rewarding overlaps between the volumes occupied by the atomistic structure and 3D EM map, rewards overlaps between the volumes complementary to them. We quantitatively demonstrate how this new complementary scoring scheme improves upon existing approaches. PF(2 fit also includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary structure score, and implements the scattering potential score as an alternative to traditional Gaussian blurring. Search. PF(2 fit utilizes a fast polar Fourier search scheme, whose main advantage is the ability to search over uniformly and adaptively sampled subsets of the space of rigid-body motions. PF(2 fit also implements a new reranking search and scoring methodology that considerably improves alignment metrics in results obtained from the initial search.

  16. Atomistic full-quantum transport model for zigzag graphene nanoribbon-based structures: Complex energy-band method

    Science.gov (United States)

    Chen, Chun-Nan; Luo, Win-Jet; Shyu, Feng-Lin; Chung, Hsien-Ching; Lin, Chiun-Yan; Wu, Jhao-Ying

    2018-01-01

    Using a non-equilibrium Green’s function framework in combination with the complex energy-band method, an atomistic full-quantum model for solving quantum transport problems for a zigzag-edge graphene nanoribbon (zGNR) structure is proposed. For transport calculations, the mathematical expressions from the theory for zGNR-based device structures are derived in detail. The transport properties of zGNR-based devices are calculated and studied in detail using the proposed method.

  17. Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study

    Science.gov (United States)

    Choi, Won-Mi; Jo, Yong Hee; Sohn, Seok Su; Lee, Sunghak; Lee, Byeong-Joo

    2018-01-01

    Although high-entropy alloys (HEAs) are attracting interest, the physical metallurgical mechanisms related to their properties have mostly not been clarified, and this limits wider industrial applications, in addition to the high alloy costs. We clarify the physical metallurgical reasons for the materials phenomena (sluggish diffusion and micro-twining at cryogenic temperatures) and investigate the effect of individual elements on solid solution hardening for the equiatomic CoCrFeMnNi HEA based on atomistic simulations (Monte Carlo, molecular dynamics and molecular statics). A significant number of stable vacant lattice sites with high migration energy barriers exists and is thought to cause the sluggish diffusion. We predict that the hexagonal close-packed (hcp) structure is more stable than the face-centered cubic (fcc) structure at 0 K, which we propose as the fundamental reason for the micro-twinning at cryogenic temperatures. The alloying effect on the critical resolved shear stress (CRSS) is well predicted by the atomistic simulation, used for a design of non-equiatomic fcc HEAs with improved strength, and is experimentally verified. This study demonstrates the applicability of the proposed atomistic approach combined with a thermodynamic calculation technique to a computational design of advanced HEAs.

  18. Atomistic simulation and XAS investigation of Mn induced defects in Bi{sub 12}TiO{sub 20}

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, Marcos V dos S. [Functional Nanomaterials Group, Physics Department, Federal University of Sergipe, Campus Universitário Professor Alberto Carvalho, 49500-000 Itabaiana-SE (Brazil); Santos, Denise J. [Physics Department, Federal University of Sergipe, São Cristovão, 49000-000 SE (Brazil); Jackson, Robert A. [School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Valerio, Mário E.G.; Macedo, Zélia S. [Physics Department, Federal University of Sergipe, São Cristovão, 49000-000 SE (Brazil)

    2016-06-15

    This work reports an investigation of the valence and site occupancy of Mn dopants in Bi{sub 12}TiO{sub 20} (BTO: Mn) host using X-ray Absorption (XAS) and atomistic simulation techniques based on energy minimisation. X-ray Absorption Near Edge Structure (XANES) at the Mn K-edges gave typical results for Mn ions with mixed valences of 3+ and 4+. Extended X-ray Absorption Fine Structure (EXAFS) results indicated that Mn ions are probably substituted at Ti sites. Atomistic simulation was performed assuming the incorporation of Mn{sup 2+}, Mn{sup 3+} and Mn{sup 4+} ions at either Bi{sup 3+} or Ti{sup 4+} sites, and the results were compared to XANES and EXAFS measurements. Electrical conductivity for pure and doped samples was used to evaluate the consistency of the proposed model. - Graphical abstract: The structure of Bi{sub 12}TiO{sub 20} (BTO). Display Omitted - Highlights: • Pure and Mn-doped Bi{sub 12}TiO{sub 20} samples were studied by experimental techniques combined with atomistic simulation. • Good agreement between experimental and simulation results was obtained. • XANES results suggest a mixture of 3+ and 4+ valences for Mn, occupying the Ti4+ site in both cases. • Charge compensation by holes is most energetically favoured, explaining the enhancement observed in AC dark conductivity.

  19. Assessing the fracture strength of geological and related materials via an atomistically based J-integral

    Science.gov (United States)

    Jones, R. E.; Criscenti, L. J.; Rimsza, J.

    2016-12-01

    Predicting fracture initiation and propagation in low-permeability geomaterials is a critical yet un- solved problem crucial to assessing shale caprocks at carbon dioxide sequestration sites, and controlling fracturing for gas and oil extraction. Experiments indicate that chemical reactions at fluid-geomaterial interfaces play a major role in subcritical crack growth by weakening the material and altering crack nu- cleation and growth rates. Engineering the subsurface fracture environment, however, has been hindered by a lack of understanding of the mechanisms relating chemical environment to mechanical outcome, and a lack of capability directly linking atomistic insight to macroscale observables. We have developed a fundamental atomic-level understanding of the chemical-mechanical mecha- nisms that control subcritical cracks through coarse-graining data from reactive molecular simulations. Previous studies of fracture at the atomic level have typically been limited to producing stress-strain curves, quantifying either the system-level stress or energy at which fracture propagation occurs. As such, these curves are neither characteristic of nor insightful regarding fracture features local to the crack tip. In contrast, configurational forces, such as the J-integral, are specific to the crack in that they measure the energy available to move the crack and truly quantify fracture resistance. By development and use of field estimators consistent with the continuum conservation properties we are able to connect the data produced by atomistic simulation to the continuum-level theory of fracture mechanics and thus inform engineering decisions. In order to trust this connection we have performed theoretical consistency tests and validation with experimental data. Although we have targeted geomaterials, this capability can have direct impact on other unsolved technological problems such as predicting the corrosion and embrittlement of metals and ceramics. Sandia National

  20. Atomistic methodologies for material properties of 2D materials at the nanoscale

    Science.gov (United States)

    Zhang, Zhen

    Research on two dimensional (2D) materials, such as graphene and MoS2, now involves thousands of researchers worldwide cutting across physics, chemistry, engineering and biology. Due to the extraordinary properties of 2D materials, research extends from fundamental science to novel applications of 2D materials. From an engineering point of view, understanding the material properties of 2D materials under various conditions is crucial for tailoring the electrical and mechanical properties of 2D-material-based devices at the nanoscale. Even at the nanoscale, molecular systems typically consist of a vast number of atoms. Molecular dynamics (MD) simulations enable us to understand the properties of assemblies of molecules in terms of their structure and the microscopic interactions between them. From a continuum approach, mechanical properties and thermal properties, such as strain, stress, and heat capacity, are well defined and experimentally measurable. In MD simulations, material systems are considered to be discrete, and only interatomic potential, interatomic forces, and atom positions are directly obtainable. Besides, most of the fracture mechanics concepts, such as stress intensity factors, are not applicable since there is no singularity in MD simulations. However, energy release rate still remains to be a feasible and crucial physical quantity to characterize the fracture mechanical property of materials at the nanoscale. Therefore, equivalent definition of a physical quantity both in atomic scale and macroscopic scale is necessary in order to understand molecular and continuum scale phenomena concurrently. This work introduces atomistic simulation methodologies, based on interatomic potential and interatomic forces, as a tool to unveil the mechanical properties, thermal properties and fracture mechanical properties of 2D materials at the nanoscale. Among many 2D materials, graphene and MoS2 have attracted intense interest. Therefore, we applied our

  1. Activated states for cross-slip at screw dislocation intersections in face-centered cubic nickel and copper via atomistic simulation

    International Nuclear Information System (INIS)

    Rao, S.I.; Dimiduk, D.M.; El-Awady, J.A.; Parthasarathy, T.A.; Uchic, M.D.; Woodward, C.

    2010-01-01

    We extend our recent simulation studies where a screw dislocation in face-centered cubic (fcc) Ni was found to spontaneously attain a low energy partially cross-slipped configuration upon intersecting a forest dislocation. Using atomistic (molecular statics) simulations with embedded atom potentials, we evaluated the activation barrier for a dislocation to transform from fully residing on the glide plane to fully residing on a cross-slip plane intersecting a forest dislocation in both Ni and Cu. The activation energies were obtained by determining equilibrium configurations (energies) when variable pure tensile or compressive stresses were applied along the [1 1 1] direction on the partially cross-slipped state. We show that the activation energy is a factor of 2-5 lower than that for cross-slip in isolation via the Escaig process. The cross-slip activation energies obtained at the intersection in Cu were in reasonable accord with the experimentally determined cross-slip activation energy for Cu. Further, the activation barrier for cross-slip at these intersections was shown to be linearly proportional to (d/b)[ln(√(3)d/b)] 1/2 , as in the Escaig process, where d is the Shockley partial dislocation spacing and b is the Burgers vector of the screw dislocation. These results suggest that cross-slip should be preferentially observed at selected screw dislocation intersections in fcc materials.

  2. Dynamics of Surfactant Clustering at Interfaces and Its Influence on the Interfacial Tension: Atomistic Simulation of a Sodium Hexadecane-Benzene Sulfonate-Tetradecane-Water System.

    Science.gov (United States)

    Paredes, Ricardo; Fariñas-Sánchez, Ana Isabel; Medina-Rodrı Guez, Bryan; Samaniego, Samantha; Aray, Yosslen; Álvarez, Luis Javier

    2018-03-06

    The process of equilibration of the tetradecane-water interface in the presence of sodium hexadecane-benzene sulfonate is studied using intensive atomistic molecular dynamics simulations. Starting as an initial point with all of the surfactants at the interface, it is obtained that the equilibration time of the interface (several microseconds) is orders of magnitude higher than previously reported simulated times. There is strong evidence that this slow equilibration process is due to the aggregation of surfactants molecules on the interface. To determine this fact, temporal evolution of interfacial tension and interfacial formation energy are studied and their temporal variations are correlated with cluster formation. To study cluster evolution, the mean cluster size and the probability that a molecule of surfactant chosen at random is free are obtained as a function of time. Cluster size distribution is estimated, and it is observed that some of the molecules remain free, whereas the rest agglomerate. Additionally, the temporal evolution of the interfacial thickness and the structure of the surfactant molecules on the interface are studied. It is observed how this structure depends on whether the molecules agglomerate or not.

  3. Atomistic boron-doped graphene field-effect transistors: a route toward unipolar characteristics.

    Science.gov (United States)

    Marconcini, Paolo; Cresti, Alessandro; Triozon, François; Fiori, Gianluca; Biel, Blanca; Niquet, Yann-Michel; Macucci, Massimo; Roche, Stephan

    2012-09-25

    We report fully quantum simulations of realistic models of boron-doped graphene-based field-effect transistors, including atomistic details based on DFT calculations. We show that the self-consistent solution of the three-dimensional (3D) Poisson and Schrödinger equations with a representation in terms of a tight-binding Hamiltonian manages to accurately reproduce the DFT results for an isolated boron-doped graphene nanoribbon. Using a 3D Poisson/Schrödinger solver within the non-equilibrium Green's function (NEGF) formalism, self-consistent calculations of the gate-screened scattering potentials induced by the boron impurities have been performed, allowing the theoretical exploration of the tunability of transistor characteristics. The boron-doped graphene transistors are found to approach unipolar behavior as the boron concentration is increased and, by tuning the density of chemical dopants, the electron-hole transport asymmetry can be finely adjusted. Correspondingly, the onset of a mobility gap in the device is observed. Although the computed asymmetries are not sufficient to warrant proper device operation, our results represent an initial step in the direction of improved transfer characteristics and, in particular, the developed simulation strategy is a powerful new tool for modeling doped graphene nanostructures.

  4. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data

    International Nuclear Information System (INIS)

    Stukowski, Alexander; Albe, Karsten

    2010-01-01

    We describe a novel method for extracting dislocation lines from atomistic simulation data in a fully automated way. The dislocation extraction algorithm (DXA) generates a geometric description of dislocation lines contained in an arbitrary crystalline model structure. Burgers vectors are determined reliably, and the extracted dislocation network fulfills the Burgers vector conservation rule at each node. All remaining crystal defects (grain boundaries, surfaces, etc), which cannot be represented by one-dimensional dislocation lines, are output as triangulated surfaces. This geometric representation is ideal for visualization of complex defect structures, even if they are not related to dislocation activity. In contrast to the recently proposed on-the-fly dislocation detection algorithm (ODDA) Stukowski (2010 Modelling Simul. Mater. Sci. Eng. 18 015012) the new method is extremely robust. While the ODDA was designed for a computationally efficient on-the-fly analysis, the DXA method enables a detailed analysis of dislocation lines even in highly distorted crystal regions, as they occur, for instance, close to grain boundaries or in dense dislocation networks

  5. Atomistic Simulations of Small-scale Materials Tests of Nuclear Materials

    International Nuclear Information System (INIS)

    Shin, Chan Sun; Jin, Hyung Ha; Kwon, Jun Hyun

    2012-01-01

    Degradation of materials properties under neutron irradiation is one of the key issues affecting the lifetime of nuclear reactors. Evaluating the property changes of materials due to irradiations and understanding the role of microstructural changes on mechanical properties are required for ensuring reliable and safe operation of a nuclear reactor. However, high dose of neuron irradiation capabilities are rather limited and it is difficult to discriminate various factors affecting the property changes of materials. Ion beam irradiation can be used to investigate radiation damage to materials in a controlled way, but has the main limitation of small penetration depth in the length scale of micro meters. Over the past decade, the interest in the investigations of size-dependent mechanical properties has promoted the development of various small-scale materials tests, e.g. nanoindentation and micro/nano-pillar compression tests. Small-scale materials tests can address the issue of the limitation of small penetration depth of ion irradiation. In this paper, we present small-scale materials tests (experiments and simulation) which are applied to study the size and irradiation effects on mechanical properties. We have performed molecular dynamics simulations of nanoindentation and nanopillar compression tests. These atomistic simulations are expected to significantly contribute to the investigation of the fundamental deformation mechanism of small scale irradiated materials

  6. Artificial intelligence applied to atomistic kinetic Monte Carlo simulations in Fe-Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Djurabekova, F.G. [Reactor Materials Research Unit, SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Domingos, R. [Reactor Materials Research Unit, SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Cerchiara, G. [Department of Nuclear and Production Engineering, University of Pisa (Italy); Castin, N. [Catholic University of Louvain-la-Neuve (Belgium); Vincent, E. [LMPGM UMR-8517, University of Lille I, Villeneuve d' Ascq (France); Malerba, L. [Reactor Materials Research Unit, SCK-CEN, Boeretang 200, B-2400 Mol (Belgium)]. E-mail: lmalerba@sckcen.be

    2007-02-15

    Vacancy migration energies as functions of the local atomic configuration (LAC) in Fe-Cu alloys have been systematically tabulated using an appropriate interatomic potential for the alloy of interest. Subsets of these tabulations have been used to train an artificial neural network (ANN) to predict all vacancy migration energies depending on the LAC. The error in the prediction of the ANN has been evaluated by a fuzzy logic system (FLS), allowing a feedback to be introduced for further training, to improve the ANN prediction. This artificial intelligence (AI) system is used to develop a novel approach to atomistic kinetic Monte Carlo (AKMC) simulations, aimed at providing a better description of the kinetic path followed by the system through diffusion of solute atoms in the alloy via vacancy mechanism. Fe-Cu has been chosen because of the importance of Cu precipitation in Fe in connection with the embrittlement of reactor pressure vessels of existing nuclear power plants. In this paper the method is described in some detail and the first results of its application are presented and briefly discussed.

  7. Prediction of TF target sites based on atomistic models of protein-DNA complexes

    Directory of Open Access Journals (Sweden)

    Collado-Vides Julio

    2008-10-01

    Full Text Available Abstract Background The specific recognition of genomic cis-regulatory elements by transcription factors (TFs plays an essential role in the regulation of coordinated gene expression. Studying the mechanisms determining binding specificity in protein-DNA interactions is thus an important goal. Most current approaches for modeling TF specific recognition rely on the knowledge of large sets of cognate target sites and consider only the information contained in their primary sequence. Results Here we describe a structure-based methodology for predicting sequence motifs starting from the coordinates of a TF-DNA complex. Our algorithm combines information regarding the direct and indirect readout of DNA into an atomistic statistical model, which is used to estimate the interaction potential. We first measure the ability of our method to correctly estimate the binding specificities of eight prokaryotic and eukaryotic TFs that belong to different structural superfamilies. Secondly, the method is applied to two homology models, finding that sampling of interface side-chain rotamers remarkably improves the results. Thirdly, the algorithm is compared with a reference structural method based on contact counts, obtaining comparable predictions for the experimental complexes and more accurate sequence motifs for the homology models. Conclusion Our results demonstrate that atomic-detail structural information can be feasibly used to predict TF binding sites. The computational method presented here is universal and might be applied to other systems involving protein-DNA recognition.

  8. Coupled structural and magnetic properties of ferric fluoride nanostructures part I: A Metropolis atomistic study

    International Nuclear Information System (INIS)

    Fongang, B.; Labaye, Y.; Calvayrac, F.; Greneche, J.M.; Zekeng, S.

    2010-01-01

    A modified Metropolis atomistic simulation is proposed to model the structure of grain boundaries (GBs) and interfaces in ionic nanostructured systems and is applied to the magnetically interesting case of iron trifluoride (FeF 3 ). We chose long-range interatomic potentials adjusted on experimental results and adapted a previously established Monte Carlo scheme consisting of various modifications of the simulated annealing/Metropolis algorithm. Atomic structures of twisted and tilted GBs as a function of the relative disorientation of the grains have been achieved yielding close to experimentally measured properties. This approach takes into account the structure of the grains far from the interface in order to constrain the relative orientation of the grains, without any periodic boundary conditions. One concludes that a long-range Coulombic fall off of the interatomic potentials is necessary to obtain GB structures presenting a correct local topology but with a smooth transition from crystalline to amorphous states. The structural features are finally discussed in terms of topological aspects and local magnetic structure.

  9. Atomistic simulation of CO 2 solubility in poly(ethylene oxide) oligomers

    KAUST Repository

    Hong, Bingbing

    2013-10-02

    We have performed atomistic molecular dynamics simulations coupled with thermodynamic integration to obtain the excess chemical potential and pressure-composition phase diagrams for CO2 in poly(ethylene oxide) oligomers. Poly(ethylene oxide) dimethyl ether, CH3O(CH 2CH2O)nCH3 (PEO for short) is a widely applied physical solvent that forms the major organic constituent of a class of novel nanoparticle-based absorbents. Good predictions were obtained for pressure-composition-density relations for CO2 + PEO oligomers (2 ≤ n ≤ 12), using the Potoff force field for PEO [J. Chem. Phys. 136, 044514 (2012)] together with the TraPPE model for CO2 [AIChE J. 47, 1676 (2001)]. Water effects on Henrys constant of CO2 in PEO have also been investigated. Addition of modest amounts of water in PEO produces a relatively small increase in Henrys constant. Dependence of the calculated Henrys constant on the weight percentage of water falls on a temperature-dependent master curve, irrespective of PEO chain length. © 2013 Taylor & Francis.

  10. Atomistic description of large nanostructures based on III-nitride semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Sanchez, Alejandro; Garcia-Cristobal, Alberto; Cantarero, Andres [Instituto de Ciencia de Materiales de la Universidad de Valencia (Spain); Terentjevs, Aleksandrs; Cicero, Giancarlo [Physics and Materials Science and Chemical Engineering Departments, Politecnico di Torino (Italy)

    2010-07-01

    Semiconductor nanocolumns exhibiting a growth without dislocations and high crystalline quality are of great interest in nanotechnology applications. Specifically, InN-based nanocolumns are good candidates to develop multi-junction solar cells due to their small gap, 0.67 eV, and the possibility of alloying with other nitrides (as GaN and AlN) to cover the entire solar spectrum. A proper description of optical properties of the nanostructures described above can start with an atomistic treatment of the electronic structure in order to keep the essential geometry and symmetry of the objects. Unfortunately, the best description realized with ab initio electronic structure software is strongly limited by the nanocolumn diameter to a few nanometers. By using a combination of ab initio and empirical tight-binding methods, we can connect the quality of the first principles calculations (performed with the Espresso code), with the versatility of an empirical approach. Once we have an ab initio quality parameter set for the empirical tight-binding code, we can study larger nanostructures with this approach, reducing the computation time in orders of magnitude.

  11. Nanodisc-targeted STD NMR reveals atomistic details of ligand binding to lipid environments.

    Science.gov (United States)

    Watts, Anthony

    2018-03-14

    Saturation transfer difference (STD) NMR constitutes one of the most popular ligand-based NMR techniques for the study of protein-ligand interactions. This is due to its robustness and the fact that it is focused on the signals of the ligand, without any need for NMR information of the macromolecular target. This technique is most commonly applied to systems involving different types of ligands (e.g. small organic molecules, carbohydrates, or lipids) and a protein as the target, where the latter is selectively saturated. However, only a few examples have been reported where membrane mimetics are the macromolecular binding partners. Here, we have employed STD-NMR to investigate the interactions of the neurotransmitter dopamine to mimetics of lipid bilayers, such as nanodiscs, by saturation of the latter. In particular, the interactions between dopamine and model lipid nanodiscs formed from charged and zwitterionic lipids have been resolved at the atomic level. The results, in agreement with previous isothermal titration calorimetry (ITC) studies, show that dopamine preferential binds to negatively charged model membranes, but also provides detailed atomistic insights into the mode of interaction of dopamine to membrane mimetics. Our findings provide relevant structural information for the design of lipid-based drug carriers of dopamine, structural analogues, and are of generic applicability to other systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Stapled BH3 peptides against MCL-1: mechanism and design using atomistic simulations.

    Directory of Open Access Journals (Sweden)

    Thomas L Joseph

    Full Text Available Atomistic simulations of a set of stapled alpha helical peptides derived from the BH3 helix of MCL-1 (Stewart et al. (2010 Nat Chem Biol 6: 595-601 complexed to a fragment (residues 172-320 of MCL-1 revealed that the highest affinity is achieved when the staples engage the surface of MCL-1 as has also been demonstrated for p53-MDM2 (Joseph et al. (2010 Cell Cycle 9: 4560-4568; Baek et al. (2012 J Am Chem Soc 134: 103-106. Affinity is also modulated by the ability of the staples to pre-organize the peptides as helices. Molecular dynamics simulations of these stapled BH3 peptides were carried out followed by determination of the energies of interactions using MM/GBSA methods. These show that the location of the staple is a key determinant of a good binding stapled peptide from a bad binder. The good binder derives binding affinity from interactions between the hydrophobic staple and a hydrophobic patch on MCL-1. The position of the staple was varied, guiding the design of new stapled peptides with higher affinities.

  13. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    Energy Technology Data Exchange (ETDEWEB)

    Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D., E-mail: alejandro.rey@mcgill.ca [Department of Chemical Engineering, McGill University, Montreal H3A 0C5 (Canada)

    2016-08-15

    This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

  14. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    Directory of Open Access Journals (Sweden)

    Thomas M. Vlasic

    2016-08-01

    Full Text Available This work uses density functional theory (DFT to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane, at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

  15. Atomistic Simulations of High-intensity XFEL Pulses on Diffractive Imaging of Nano-sized Systems

    Science.gov (United States)

    Ho, Phay; Knight, Christopher; Young, Linda; Tegze, Miklos; Faigel, Gyula

    We have developed a large-scale atomistic computational method based on a combined Monte Carlo and Molecular Dynamics (MC/MD) method to simulate XFEL-induced radiation damage dynamics of complex materials. The MD algorithm is used to propagate the trajectories of electrons, ions and atoms forward in time and the quantum nature of interactions with an XFEL pulse is accounted for by a MC method to calculate probabilities of electronic transitions. Our code has good scalability with MPI/OpenMP parallelization, and it has been run on Mira, a petascale system at the Argonne Leardership Computing Facility, with particle number >50 million. Using this code, we have examined the impact of high-intensity 8-keV XFEL pulses on the x-ray diffraction patterns of argon clusters. The obtained patterns show strong pulse parameter dependence, providing evidence of significant lattice rearrangement and diffuse scattering. Real-space electronic reconstruction was performed using phase retrieval methods. We found that the structure of the argon cluster can be recovered with atomic resolution even in the presence of considerable radiation damage. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division under Contract No. DE-AC02-06CH11357.

  16. Atomistic simulations of surface segregation of defects in solid oxide electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hark B., E-mail: hblee@stanford.edu [Department of Mechanical Engineering, Stanford University, CA 94305-4040 (United States); Prinz, Friedrich B., E-mail: fprinz@stanford.edu [Department of Mechanical Engineering, Stanford University, CA 94305-4040 (United States); Cai, Wei, E-mail: caiwei@stanford.edu [Department of Mechanical Engineering, Stanford University, CA 94305-4040 (United States)

    2010-04-15

    We performed atomistic simulations of yttria-stabilized zirconia (YSZ) and gadolinia-doped ceria (GDC) to study the segregation of point defects near (1 0 0) surfaces. A hybrid Monte Carlo-molecular dynamics algorithm was developed to sample the equilibrium distributions of dopant cations and oxygen vacancies. The simulations predict an increase of dopant concentration near the surface, which is consistent with experimental observations. Oxygen vacancies are also found to segregate in the first anion layer beneath the surface and to be depleted in the subsequent anion layers. While the ionic size mismatch between dopant and host cations has been considered as a driving force for dopant segregation to the surface, our simulations show that the correlation between individual point defects plays a dominant role in determining their equilibrium distributions. This correlation effect leads to more pronounced dopant segregation in GDC than in YSZ, even though the size mismatch between dopant and host cations is much greater in YSZ than in GDC.

  17. The Gibbs free energy of homogeneous nucleation: From atomistic nuclei to the planar limit.

    Science.gov (United States)

    Cheng, Bingqing; Tribello, Gareth A; Ceriotti, Michele

    2017-09-14

    In this paper we discuss how the information contained in atomistic simulations of homogeneous nucleation should be used when fitting the parameters in macroscopic nucleation models. We show how the number of solid and liquid atoms in such simulations can be determined unambiguously by using a Gibbs dividing surface and how the free energy as a function of the number of solid atoms in the nucleus can thus be extracted. We then show that the parameters (the chemical potential, the interfacial free energy, and a Tolman correction) of a model based on classical nucleation theory can be fitted using the information contained in these free-energy profiles but that the parameters in such models are highly correlated. This correlation is unfortunate as it ensures that small errors in the computed free energy surface can give rise to large errors in the extrapolated properties of the fitted model. To resolve this problem we thus propose a method for fitting macroscopic nucleation models that uses simulations of planar interfaces and simulations of three-dimensional nuclei in tandem. We show that when the chemical potentials and the interface energy are pinned to their planar-interface values, more precise estimates for the Tolman length are obtained. Extrapolating the free energy profile obtained from small simulation boxes to larger nuclei is thus more reliable.

  18. Atomistic Modeling of Semiconductors: Si, C, and 3C-SiC

    Science.gov (United States)

    Bozzolo, Guillermo; Garces, Jorge E.; Abel, Phillip B.

    2002-01-01

    An ongoing task of the Computational Materials Group (CMG) at the NASA Glenn Research Center is to enhance the role of atomistic simulations based on quantum-approximate methods in the study of new materials and their properties. One of the main goals of the activity continues to be breaching limitations that arise from the natural balance between accuracy, range of application, and computational simplicity. Whether that balance can be maintained while breaking new ground depends on the methods available with a minimum of constraints and limitations for the study of the energetics of arbitrary systems. The main tool used in CMG research, the Bozzolo- Ferrante-Smith (BFS) method for alloys, has no inherent constraint in its formulation, a feature that has allowed for successful research on various topics. In this article, we report on the latest development of the CMG program, namely, the extension and application of the BFS method to compound semiconductors, a departure from our previous research based primarily on metallic alloys.

  19. Molecular Simulations of Cyclic Loading Behavior of Carbon Nanotubes Using the Atomistic Finite Element Method

    Directory of Open Access Journals (Sweden)

    Jianfeng Wang

    2009-01-01

    Full Text Available The potential applications of carbon nanotubes (CNT in many engineered bionanomaterials and electromechanical devices have imposed an urgent need on the understanding of the fatigue behavior and mechanism of CNT under cyclic loading conditions. To date, however, very little work has been done in this field. This paper presents the results of a theoretical study on the behavior of CNT subject to cyclic tensile and compressive loads using quasi-static molecular simulations. The Atomistic Finite Element Method (AFEM has been applied in the study. It is shown that CNT exhibited extreme cyclic loading resistance with yielding strain and strength becoming constant within limited number of loading cycles. Viscoelastic behavior including nonlinear elasticity, hysteresis, preconditioning (stress softening, and large strain have been observed. Chiral symmetry was found to have appreciable effects on the cyclic loading behavior of CNT. Mechanisms of the observed behavior have been revealed by close examination of the intrinsic geometric and mechanical features of tube structure. It was shown that the accumulated residual defect-free morphological deformation was the primary mechanism responsible for the cyclic failure of CNT, while the bond rotating and stretching experienced during loading/unloading played a dominant role on the strength, strain and modulus behavior of CNT.

  20. Spontaneous Formation of A Nanotube From A Square Ag Nanowire: An Atomistic View

    Science.gov (United States)

    Konuk Onat, Mine; Durukanoglu, Sondan

    2012-02-01

    We have performed molecular static calculations to investigate the recently observed phenomenon of the spontaneous formation of a nanotube from a regular, square Ag nanowire[1]. In the simulations, atoms are allowed to interact via the model potential obtained from the modified embedded atom method. Our simulations predict that this particular type of structural phase transformation is controlled by the nature of applied strain, length of the wire and initial cross-sectional shape. For such a perfect structural transformation, the axially oriented fcc nanowire needs (1) to be formed by stacking A and B layers of an fcc crystal, both possessing the geometry of two interpenetrating one-lattice-parameter-wide squares, containing four atoms each, (2) to have an optimum length of eight layers, and (3) to be exposed to a combination of low and high stress along the length direction. The results further offer insights into atomistic nature of this specific structural transformation into a nanotube with the smallest possible cross-section. [1] M.J. Lagos et al., Nature Nanotech. 4, 149 (2009).

  1. Lattice Thermal Conductivity from Atomistic Simulations: ZrB2 and HfB2

    Science.gov (United States)

    Lawson, John W.; Daw, Murray S.; Bauschlicher, Charles W.

    2012-01-01

    Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 have a number of properties that make them attractive for applications in extreme environments. One such property is their high thermal conductivity. Computational modeling of these materials will facilitate understanding of fundamental mechanisms, elucidate structure-property relationships, and ultimately accelerate the materials design cycle. Progress in computational modeling of UHTCs however has been limited in part due to the absence of suitable interatomic potentials. Recently, we developed Tersoff style parameterizations of such potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current, in contrast to the more typical monotonic decay seen in monoatomic materials such as Silicon, for example. Results at room temperature and at elevated temperatures will be reported.

  2. Phonon-eigenspectrum-based formulation of the atomistic Green's function method

    Science.gov (United States)

    Sadasivam, Sridhar; Waghmare, Umesh V.; Fisher, Timothy S.

    2017-11-01

    While the atomistic Green's function (AGF) method has the potential to compute spectrally resolved phonon transport across interfaces, most prior formulations of the AGF method provide only the total phonon transmission function that includes contributions from all phonon branches or channels. In this work, we present a formulation of the conventional AGF technique in terms of phonon eigenspectra that provides a natural decomposition of the total transmission function into contributions from various phonon modes. The method involves the use of Dyson and Lippmann-Schwinger equations to determine surface Green's functions from the phonon eigenspectrum of the bulk, and establishes a direct connection between the transmission function and the bulk phonon spectra of the materials forming the interface. We elucidate our formulation of the AGF technique through its application to a microscopic picture of phonon mode conversion at Si-Ge interfaces with atomic intermixing. Intermixing of atoms near the interface is shown to increase the phase space available for phonon mode conversion and to enhance thermal interface conductance at moderate levels of atomic mixing. The eigenspectrum-based AGF method should be useful in determination of microscopic mechanisms of phonon scattering and identification of the specific modes that dominate thermal transport across an interface.

  3. Proton generation and transport in the fuel cell environment: atomistic computer simulations

    Science.gov (United States)

    Spohr, Eckhard

    2007-12-01

    Hydrogen atoms in direct methanol fuel cells are produced ’in situ’ by dissociation of methanol on precious metal catalysts (Pt, Pt/Ru) in an aqueous environment. The abstraction of the first hydrogen atom via C H bond cleavage is generally considered to be the rate-limiting step of dissociative methanol adsorption on the catalyst surface. This oxidation reaction on platinum particles in a fuel cell is investigated by means of a combined approach of classical molecular dynamics (MD) simulations and ab initio calculations in order to obtain an understanding of the role of the solvent for the stabilization of intermediates and for the enhancement of proton desorption from the catalyst surface and subsequent transfer into the nearby polymer electrolyte membrane (PEM). The anodically generated protons need to migrate efficiently through the membrane to the cathode were they are consumed. At the same time water and methanol (in a direct methanol fuel cell) transport should be slow. Humidified PEMs are considered to consist of a nanometer-scale phase-separated bicontinuous network of polymer regions providing structural integrity, and of aqueous regions providing the pathways for proton conduction. MD simulations provide a powerful theoretical tool for the investigation and clarification of the relationship between molecular structure and these transport phenomena. In order to atomistically model larger fractions of a humidified PEM, a coarse-grained model of humidified polymer electrolyte membranes has been developed.

  4. Atomistic simulations of highly conductive molecular transport junctions under realistic conditions

    KAUST Repository

    French, William R.

    2013-01-01

    We report state-of-the-art atomistic simulations combined with high-fidelity conductance calculations to probe structure-conductance relationships in Au-benzenedithiolate (BDT)-Au junctions under elongation. Our results demonstrate that large increases in conductance are associated with the formation of monatomic chains (MACs) of Au atoms directly connected to BDT. An analysis of the electronic structure of the simulated junctions reveals that enhancement in the s-like states in Au MACs causes the increases in conductance. Other structures also result in increased conductance but are too short-lived to be detected in experiment, while MACs remain stable for long simulation times. Examinations of thermally evolved junctions with and without MACs show negligible overlap between conductance histograms, indicating that the increase in conductance is related to this unique structural change and not thermal fluctuation. These results, which provide an excellent explanation for a recently observed anomalous experimental result [Bruot et al., Nat. Nanotechnol., 2012, 7, 35-40], should aid in the development of mechanically responsive molecular electronic devices. © 2013 The Royal Society of Chemistry.

  5. Atomistic study of energy funneling in the light-harvesting complex of green sulfur bacteria.

    Science.gov (United States)

    Huh, Joonsuk; Saikin, Semion K; Brookes, Jennifer C; Valleau, Stéphanie; Fujita, Takatoshi; Aspuru-Guzik, Alán

    2014-02-05

    Phototrophic organisms such as plants, photosynthetic bacteria, and algae use microscopic complexes of pigment molecules to absorb sunlight. Within the light-harvesting complexes, which frequently have several functional and structural subunits, the energy is transferred in the form of molecular excitations with very high efficiency. Green sulfur bacteria are considered to be among the most efficient light-harvesting organisms. Despite multiple experimental and theoretical studies of these bacteria, the physical origin of the efficient and robust energy transfer in their light-harvesting complexes is not well understood. To study excitation dynamics at the systems level, we introduce an atomistic model that mimics a complete light-harvesting apparatus of green sulfur bacteria. The model contains approximately 4000 pigment molecules and comprises a double wall roll for the chlorosome, a baseplate, and six Fenna-Matthews-Olson trimer complexes. We show that the fast relaxation within functional subunits combined with the transfer between collective excited states of pigments can result in robust energy funneling to the initial excitation conditions and temperature changes. Moreover, the same mechanism describes the coexistence of multiple time scales of excitation dynamics frequently observed in ultrafast optical experiments. While our findings support the hypothesis of supertransfer, the model reveals energy transport through multiple channels on different length scales.

  6. Atomistic modeling of zirconium hydride precipitation: methodology for deriving a tight-binding potential

    International Nuclear Information System (INIS)

    Dufresne, Alice

    2014-01-01

    The zirconium-hydrogen system is of nuclear safety interest, as the hydride precipitation leads to the cladding embrittlement, which is made of zirconium-based alloys. The cladding is the first safety barrier confining the radioactive products: its integrity shall be kept during the entire fuel-assemblies life, in reactor, including accidental situation, and post-operation (transport and storage). Many uncertainties remain regarding the hydrides precipitation kinetics and the local stress impact on their precipitation. The atomic scale modeling of this system would bring clarifications on the relevant mechanisms. The usual atomistic modeling methods are based on thermo-statistic approaches, whose precision and reliability depend on the interatomic potential used. However, there was no potential allowing a rigorous study of the Zr-H system. The present work has indeed addressed this issue: a new tight-binding potential for zirconium hydrides modeling is now available. Moreover, this thesis provides a detailed manual for deriving such potentials accounting for spd hybridization, and fitted here on DFT results. This guidebook has be written in light of modeling a pure transition metal followed by a metal-covalent coupling (metallic carbides, nitrides and silicides). (author)

  7. Atomistic modeling of thermodynamic properties of Pu-Ga alloys based on the Invar mechanism

    Science.gov (United States)

    Lee, Tongsik; Taylor, Christopher D.; Lawson, A. C.; Conradson, Steven D.; Chen, Shao Ping; Caro, A.; Valone, Steven M.; Baskes, Michael I.

    2014-05-01

    We present an atomistic model that accounts for a range of anomalous thermodynamic properties of the fcc δ phase of Pu-Ga alloys in terms of the Invar mechanism. Two modified embedded atom method potentials are employed to represent competing electronic states in δ-Pu, each of which has an individual configuration dependence as well as distinct interactions with gallium. Using classical Monte Carlo simulations, we compute the temperature dependence of various thermodynamic properties for different dilute gallium concentrations. The model reproduces the observed effects of excessive volume reduction along with a rapid shift in thermal expansion from negative to positive values with increasing gallium concentration. It also predicts progressive stiffening upon dilute-gallium alloying, while the calculated thermal softening is nearly independent of the gallium concentration in agreement with resonant ultrasound spectroscopy measurements in the literature. Analysis of the local structure predicted by the model indicates that the distribution of the gallium atoms is not completely random in the δ phase due to the presence of short-range order associated with the Invar mechanism. This effect is consistent with the nanoscale heterogeneity in local gallium concentration which is observed in recent extended x-ray absorption fine structure spectroscopy experiments. Implications of the Invar effect for phase stability and physical interpretations of the two states are also discussed.

  8. Ash'arite's atomistic conception of the physical world: A restatement

    Energy Technology Data Exchange (ETDEWEB)

    Pozi, Firdaus; Othman, Mohd Yusof [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia and Institute of Islam Hadhari, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan (Malaysia); Mohamed, Faizal [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    Atomism plays an important role in the history of human thought. It can be traced back from Democritus atomos in the 500 BC to particle physics and quantum theory in the 21{sup st} century. However, as it being rejected and developed in the course of history of science, it still brings the fundamental question that perplexes physicists. It gives the views that the world is eternal; that the laws of nature is immutable and eternal therefore all phenomena can be determined through the laws and that there is no reality behind the quantum world. In this paper, we shall briefly describe all these three views on the nature of the physical world or universe and this include on the nature of matter. Then, we shall explain our stand on those conceptions based on the Ash'arites atomistic conception of the physical world. We hope this paper can shed a light on several fundamental issues in the conception of the universe and gives the proper response to them.

  9. Ash'arite's atomistic conception of the physical world: A restatement

    International Nuclear Information System (INIS)

    Pozi, Firdaus; Othman, Mohd Yusof; Mohamed, Faizal

    2013-01-01

    Atomism plays an important role in the history of human thought. It can be traced back from Democritus atomos in the 500 BC to particle physics and quantum theory in the 21 st century. However, as it being rejected and developed in the course of history of science, it still brings the fundamental question that perplexes physicists. It gives the views that the world is eternal; that the laws of nature is immutable and eternal therefore all phenomena can be determined through the laws and that there is no reality behind the quantum world. In this paper, we shall briefly describe all these three views on the nature of the physical world or universe and this include on the nature of matter. Then, we shall explain our stand on those conceptions based on the Ash'arites atomistic conception of the physical world. We hope this paper can shed a light on several fundamental issues in the conception of the universe and gives the proper response to them

  10. Tunable thermodynamic stability of Au-CuPt core-shell trimetallic nanoparticles by controlling the alloy composition: insights from atomistic simulations.

    Science.gov (United States)

    Huang, Rao; Shao, Gui-Fang; Wen, Yu-Hua; Sun, Shi-Gang

    2014-11-07

    A microscopic understanding of the thermal stability of metallic core-shell nanoparticles is of importance for their synthesis and ultimately application in catalysis. In this article, molecular dynamics simulations have been employed to investigate the thermodynamic evolution of Au-CuPt core-shell trimetallic nanoparticles with various Cu/Pt ratios during heating processes. Our results show that the thermodynamic stability of these nanoparticles is remarkably enhanced upon rising Pt compositions in the CuPt shell. The melting of all the nanoparticles initiates at surface and gradually spreads into the core. Due to the lattice mismatch among Au, Cu and Pt, stacking faults have been observed in the shell and their numbers are associated with the Cu/Pt ratios. With the increasing temperature, they have reduced continuously for the Cu-dominated shell while more stacking faults have been produced for the Pt-dominated shell because of the significantly different thermal expansion coefficients of the three metals. Beyond the overall melting, all nanoparticles transform into a trimetallic mixing alloy coated by an Au-dominated surface. This work provides a fundamental perspective on the thermodynamic behaviors of trimetallic, even multimetallic, nanoparticles at the atomistic level, indicating that controlling the alloy composition is an effective strategy to realize tunable thermal stability of metallic nanocatalysts.

  11. From beta-relaxation to alpha-decay: Atomistic picture from molecular dynamics simulations for glass-forming Ni0.5Zr0.5 melt

    Energy Technology Data Exchange (ETDEWEB)

    Teichler, Helmar [Inst. Materialphysik, Univ Goettingen (Germany)

    2013-07-01

    In glass-forming melts the decay of structural fluctuation shows the well known transition from beta-relaxation (von-Schweidler law with exponent b) to alpha-decay (KWW law with exponent beta). Here we present results from molecular dynamics simulations for a metallic glass forming Ni0.5Zr0.5 model aimed at giving an understanding of this transition on the atomistic scale. At the considered temperature below mode coupling Tc, the dynamics of the system can be interpreted by residence of the particles in their neighbour cages and escape from the cages as rare processes. Our analysis yields that the fraction of residing particles is characterized by a hierarchical law in time, with von-Schweidler b explicitly related to the exponent of this law. In the alpha-decay regime the stretching exponent reflects, in addition, floating of the cages due to strain effects of escaped particles. Accordingly, the change from beta-relaxation to alpha-decay indicates the transition from low to large fraction of escaped particles.

  12. Atomistic simulation of cubic and tetragonal phases of U-Mo alloy: Structure and thermodynamic properties

    Science.gov (United States)

    Starikov, S. V.; Kolotova, L. N.; Kuksin, A. Yu.; Smirnova, D. E.; Tseplyaev, V. I.

    2018-02-01

    We studied structure and thermodynamic properties of cubic and tetragonal phases of pure uranium and U-Mo alloys using atomistic simulations: molecular dynamics and density functional theory. The main attention was paid to the metastable γ0 -phase that is formed in U-Mo alloys at low temperature. Structure of γ0 -phase is similar to body-centered tetragonal (bct) lattice with displacement of a central atom in the basic cell along [ 001 ] direction. Such displacements have opposite orientations for part of the neighbouring basic cells. In this case, such ordering of the displacements can be designated as antiferro-displacement. Formation of such complex structure may be interpreted through forming of short U-U bonds. At heating, the tetragonal structure transforms into cubic γs -phase, still showing ordering of central atom displacements. With rise in temperature, γs -phase transforms to γ-phase with a quasi body-centered cubic (q-bcc) lattice. The local positions of uranium atoms in γ-phase correspond to γs -phase, however, orientations of the central atom displacements become disordered. Transition from γ0 to γ can be considered as antiferro-to paraelastic transition of order-disorder type. This approach to the structure description of uranium alloy allows to explain a number of unusual features found in the experiments: anisotropy of lattice at low temperature; remarkably high self-diffusion mobility in γ-phase; decreasing of electrical resistivity at heating for some alloys. In addition, important part of this work is the development of new interatomic potential for U-Mo system made with taking into account details of studied structures.

  13. Atomistic modeling and HRTEM analysis of misfit dislocations in InN/GaN heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kioseoglou, J., E-mail: sifisl@auth.gr [Department of Physics, Aristotle University of Thessaloniki, GR-54124, Thessaloniki (Greece); Kalesaki, E.; Dimitrakopulos, G.P.; Kehagias, Th.; Komninou, Ph.; Karakostas, Th. [Department of Physics, Aristotle University of Thessaloniki, GR-54124, Thessaloniki (Greece)

    2012-11-01

    Highlights: Black-Right-Pointing-Pointer Identification of misfit dislocations (MD) in-plane configuration in InN/GaN interfaces. Black-Right-Pointing-Pointer Energetic mapping designates that MD arrays adopt Left-Pointing-Angle-Bracket 1 1 -2 0 Right-Pointing-Angle-Bracket line directions with b = 1/3 Left-Pointing-Angle-Bracket 2 -1 -1 0 Right-Pointing-Angle-Bracket . Black-Right-Pointing-Pointer Local arrangement of the Moire fringes depends strongly on the thickness of the TEM foil as revealed by HRTEM image simulations. Black-Right-Pointing-Pointer Geometric Phase Analysis on simulated images justifies results obtained by energetic mapping. - Abstract: The enhanced structural mismatch of InN and GaN binary alloys leads in almost spontaneous formation of misfit dislocations (MDs) at the corresponding interfaces, thereby accommodating plastic relaxation. The open issue of the MD array in-plane configuration is addressed through a combination of high resolution transmission electron microscopy (HRTEM) observations with energetic mapping and HRTEM image simulation of InN/GaN interfaces extracted by atomistic modeling. Energetic mapping on the interfacial area of InN/GaN supercells relaxed by the Tersoff interatomic potential, designates that the MD arrays adopt Left-Pointing-Angle-Bracket 112{sup Macron }0 Right-Pointing-Angle-Bracket line directions and their Burgers vectors are b=1/3 Left-Pointing-Angle-Bracket 21{sup Macron }1{sup Macron }0 Right-Pointing-Angle-Bracket . HRTEM image simulations further reveal that the local arrangement of Moire fringes observed in these interfaces depends strongly on the thickness of the TEM foil, thus resolving contradictory experimental reports. Geometric Phase Analysis on the simulated images justifies the results obtained by energetic mapping.

  14. A method for computing association rate constants of atomistically represented proteins under macromolecular crowding

    Science.gov (United States)

    Qin, Sanbo; Cai, Lu; Zhou, Huan-Xiang

    2012-12-01

    In cellular environments, two protein molecules on their way to form a specific complex encounter many bystander macromolecules. The latter molecules, or crowders, affect both the energetics of the interaction between the test molecules and the dynamics of their relative motion. In earlier work (Zhou and Szabo 1991 J. Chem. Phys. 95 5948-52), it has been shown that, in modeling the association kinetics of the test molecules, the presence of crowders can be accounted for by their energetic and dynamic effects. The recent development of the transient-complex theory for protein association in dilute solutions makes it possible to easily incorporate the energetic and dynamic effects of crowders. The transient complex refers to a late on-pathway intermediate, in which the two protein molecules have near-native relative separation and orientation, but have yet to form the many short-range specific interactions of the native complex. The transient-complex theory predicts the association rate constant as ka = ka0exp( - ΔG*el/kBT), where ka0 is the ‘basal’ rate constant for reaching the transient complex by unbiased diffusion, and the Boltzmann factors captures the influence of long-range electrostatic interactions between the protein molecules. Crowders slow down the diffusion, therefore reducing the basal rate constant (to kac0), and induce an effective interaction energy ΔGc. We show that the latter interaction energy for atomistic proteins in the presence of spherical crowders is ‘long’-ranged, allowing the association rate constant under crowding to be computed as kac = kac0exp[ - (ΔG*el + ΔG*c)/kBT]. Applications demonstrate that this computational method allows for realistic modeling of protein association kinetics under crowding.

  15. Thermodynamics of low-temperature phyllosilicates: from a macroscopic perspective towards achieving atomistic simulation

    International Nuclear Information System (INIS)

    Dubacq, B.

    2008-12-01

    suggest several improvements to these methods. We used atomistic simulation to calculate the mixing enthalpy along two solid solutions binaries of interest in low-temperature petrology. Results are in agreement with observations in natural systems and confirm the importance of hydration in clay minerals stability. (author)

  16. Atomistic quantum transport simulation of multilayer phosphorene nanoribbon field effect transistors

    Science.gov (United States)

    Sarvari, Hojjatollah; Liu, Chaoyuan; Ghayour, Amir Hossein; Shenavar, Parham; Chen, Zhi; Ghayour, Rahim

    2017-07-01

    Few-layer black phosphorus is a semiconductor material, where its allotrope is called phosphorene; a new two-dimensional material which is discovered in 2014. In this paper, first we use the tight-binding method to implement a matrix representation for single-layer and multilayer structures of phosphorene nanoribbon (PNR) to define the Hamiltonian of the system. Second, we investigate the band structure and the band gap of multilayer PNRs. The band gap of armchair PNRs with 16 atoms across the width of PNR for single-layer, bilayer, and three-layer structures are obtained as 1.899, 1.224, and 0.937 eV, respectively. Third, we use the atomistic description of structure to simulate the performance characteristics of single and multilayer PNR field effect transistors (PNRFETs) by employing the non-equilibrium Green's function (NEGF) formalism. Based on the properties of the material and device structures, Id-Vgs, Id-Vds characteristics, energy band diagram in the channel, and ION/IOFF are analyzed. The ON to OFF current ratio for single-layer, bilayer, and three-layer PNRFETs are increasing when the channel length increases from 5 nm to 15 nm. The current ratio for single-layer increases from 1277 for Lch=5 nm to 216.7×106 for Lch=15 nm. The ION/IOFF in single-layer PNRFET is higher in comparison with those values in bilayer and three-layer PNRFETs due to very small off-current in the single-layer PNRFET which in turn resulted from its larger band gap. The results show that the performance of PNRFET changes significantly depending on the number of phosphorene layers and the length of the channel of device.

  17. Why do arginine and lysine organize lipids differently? Insights from coarse-grained and atomistic simulations.

    Science.gov (United States)

    Wu, Zhe; Cui, Qiang; Yethiraj, Arun

    2013-10-10

    An important puzzle in membrane biophysics is the difference in the behaviors of lysine (Lys) and arginine (Arg) based peptides at the membrane. For example, the translocation of poly-Arg is orders of magnitude faster than that of poly-Lys. Recent experimental work suggests that much of the difference can be inferred from the phase behavior of peptide/lipid mixtures. At similar concentrations, mixtures of phosphatidylethanolamine (PE) and phosphatidylserine (PS) lipids display different phases in the presence of these polypeptides, with a bicontinuous phase observed with poly-Arg peptides and an inverted hexagonal phase observed with poly-Lys peptides. Here we show that simulations with the coarse-grained (CG) BMW-MARTINI model reproduce the experimental results. An analysis using atomistic and CG models reveals that electrostatic and glycerol-peptide interactions play a crucial role in determining the phase behavior of peptide-lipid mixtures, with the difference between Arg and Lys arising from the stronger interactions of the former with lipid glycerols. In other words, the multivalent nature of the guanidinium group allows Arg to simultaneously interact with both phosphate and glycerol groups, while Lys engages solely with phosphate; this feature of amino acid/lipid interactions has not been emphasized in previous studies. The Arg peptides colocalize with PS in regions of high negative Gaussian curvature and stabilize the bicontinuous phase. Decreasing the strength of either the electrostatic interactions or the peptide-glycerol interactions causes the inverted hexagonal phase to become more stable. The results highlight the utility of CG models for the investigation of phase behavior but also emphasize the subtlety of the phenomena, with small changes in specific interactions leading to qualitatively different phases.

  18. Are current atomistic force fields accurate enough to study proteins in crowded environments?

    Directory of Open Access Journals (Sweden)

    Drazen Petrov

    2014-05-01

    Full Text Available The high concentration of macromolecules in the crowded cellular interior influences different thermodynamic and kinetic properties of proteins, including their structural stabilities, intermolecular binding affinities and enzymatic rates. Moreover, various structural biology methods, such as NMR or different spectroscopies, typically involve samples with relatively high protein concentration. Due to large sampling requirements, however, the accuracy of classical molecular dynamics (MD simulations in capturing protein behavior at high concentration still remains largely untested. Here, we use explicit-solvent MD simulations and a total of 6.4 µs of simulated time to study wild-type (folded and oxidatively damaged (unfolded forms of villin headpiece at 6 mM and 9.2 mM protein concentration. We first perform an exhaustive set of simulations with multiple protein molecules in the simulation box using GROMOS 45a3 and 54a7 force fields together with different types of electrostatics treatment and solution ionic strengths. Surprisingly, the two villin headpiece variants exhibit similar aggregation behavior, despite the fact that their estimated aggregation propensities markedly differ. Importantly, regardless of the simulation protocol applied, wild-type villin headpiece consistently aggregates even under conditions at which it is experimentally known to be soluble. We demonstrate that aggregation is accompanied by a large decrease in the total potential energy, with not only hydrophobic, but also polar residues and backbone contributing substantially. The same effect is directly observed for two other major atomistic force fields (AMBER99SB-ILDN and CHARMM22-CMAP as well as indirectly shown for additional two (AMBER94, OPLS-AAL, and is possibly due to a general overestimation of the potential energy of protein-protein interactions at the expense of water-water and water-protein interactions. Overall, our results suggest that current MD force fields

  19. Atomistic and continuum scale modeling of functionalized graphyne membranes for water desalination.

    Science.gov (United States)

    Raju, Muralikrishna; Govindaraju, Pavan B; van Duin, Adri C T; Ihme, Matthias

    2018-02-22

    Recent theoretical and experimental studies reported ultra-high water permeability and salt rejection in nanoporous single-layer graphene. However, creating and controlling the size and distribution of nanometer-scale pores pose significant challenges to application of these membranes for water desalination. Graphyne and hydrogenated graphyne have tremendous potential as ultra-permeable membranes for desalination and wastewater reclamation due to their uniform pore-distribution, atomic thickness and mechano-chemical stability. Using molecular dynamics (MD) simulations and upscale continuum analysis, the desalination performance of bare and hydrogenated α-graphyne and γ-{2,3,4}-graphyne membranes is evaluated as a function of pore size, pore geometry, chemical functionalization and applied pressure. MD simulations show that pores ranging from 20 to 50 Å 2 reject in excess of 90% of the ions for pressures up to 1 GPa. Water permeability is found to range up to 85 L cm -2 day -1 MPa -1 , which is up to three orders of magnitude larger than commercial seawater reverse osmosis (RO) membranes and up to ten times that of nanoporous graphene. Pore chemistry, functionalization and geometry are shown to play a critical role in modulating the water flux, and these observations are explained by water velocity, density, and energy barriers in the pores. The atomistic scale investigations are complemented by upscale continuum analysis to examine the performance of these membranes in application to cross-flow RO systems. This upscale analysis, however, shows that the significant increase in permeability, observed from MD simulations, does not fully translate to current RO systems due to transport limitations. Nevertheless, upscale calculations predict that the higher permeability of graphyne membranes would allow up to six times higher permeate recovery or up to 6% less energy consumption as compared to thin-film composite membranes at currently accessible operating conditions

  20. Atomistic modelling of scattering data in the Collaborative Computational Project for Small Angle Scattering (CCP-SAS).

    Science.gov (United States)

    Perkins, Stephen J; Wright, David W; Zhang, Hailiang; Brookes, Emre H; Chen, Jianhan; Irving, Thomas C; Krueger, Susan; Barlow, David J; Edler, Karen J; Scott, David J; Terrill, Nicholas J; King, Stephen M; Butler, Paul D; Curtis, Joseph E

    2016-12-01

    The capabilities of current computer simulations provide a unique opportunity to model small-angle scattering (SAS) data at the atomistic level, and to include other structural constraints ranging from molecular and atomistic energetics to crystallography, electron microscopy and NMR. This extends the capabilities of solution scattering and provides deeper insights into the physics and chemistry of the systems studied. Realizing this potential, however, requires integrating the experimental data with a new generation of modelling software. To achieve this, the CCP-SAS collaboration (http://www.ccpsas.org/) is developing open-source, high-throughput and user-friendly software for the atomistic and coarse-grained molecular modelling of scattering data. Robust state-of-the-art molecular simulation engines and molecular dynamics and Monte Carlo force fields provide constraints to the solution structure inferred from the small-angle scattering data, which incorporates the known physical chemistry of the system. The implementation of this software suite involves a tiered approach in which GenApp provides the deployment infrastructure for running applications on both standard and high-performance computing hardware, and SASSIE provides a workflow framework into which modules can be plugged to prepare structures, carry out simulations, calculate theoretical scattering data and compare results with experimental data. GenApp produces the accessible web-based front end termed SASSIE-web , and GenApp and SASSIE also make community SAS codes available. Applications are illustrated by case studies: (i) inter-domain flexibility in two- to six-domain proteins as exemplified by HIV-1 Gag, MASP and ubiquitin; (ii) the hinge conformation in human IgG2 and IgA1 antibodies; (iii) the complex formed between a hexameric protein Hfq and mRNA; and (iv) synthetic 'bottlebrush' polymers.

  1. Fully Atomistic Understanding of the Electronic and Optical Properties of a Prototypical Doped Charge-Transfer Interface

    DEFF Research Database (Denmark)

    Brivio, Gian Paolo; Baby, Anu; Gruenewald, Marco

    2017-01-01

    . To arrive at a conclusive, unambiguous, and fully atomistic understanding of the interface properties, we combine state-of-the-art density-functional theory calculations with optical differential reflectance data, photoelectron spectra, and X-ray standing wave measurements. In combination with the full...... structural characterization of the KxPTCDA/Ag(111) interface by low-energy electron diffraction and scanning tunneling microscopy experiments (ACS Nano 2016, 10, 2365-2374), the present comprehensive study provides access to a fully characterized reference system for a well-defined metal-organic interface...

  2. Atomistic Calculations of the Effect of Minor Actinides on Thermodynamic and Kinetic Properties of UO{sub 2{+-}x}

    Energy Technology Data Exchange (ETDEWEB)

    Deo, Chaitanya; Adnersson, Davis; Battaile, Corbett; uberuaga, Blas

    2012-10-30

    The team will examine how the incorporation of actinide species important for mixed oxide (MOX) and other advanced fuel designs impacts thermodynamic quantities of the host UO{sub 2} nuclear fuel and how Pu, Np, Cm and Am influence oxygen mobility. In many cases, the experimental data is either insufficient or missing. For example, in the case of pure NpO2, there is essentially no experimental data on the hyperstoichiometric form it is not even known if hyperstoichiometry NpO{sub 2{+-}x} is stable. The team will employ atomistic modeling tools to calculate these quantities

  3. Automated Algorithms for Quantum-Level Accuracy in Atomistic Simulations: LDRD Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Aidan Patrick; Schultz, Peter Andrew; Crozier, Paul; Moore, Stan Gerald; Swiler, Laura Painton; Stephens, John Adam; Trott, Christian Robert; Foiles, Stephen Martin; Tucker, Garritt J. (Drexel University)

    2014-09-01

    This report summarizes the result of LDRD project 12-0395, titled "Automated Algorithms for Quantum-level Accuracy in Atomistic Simulations." During the course of this LDRD, we have developed an interatomic potential for solids and liquids called Spectral Neighbor Analysis Poten- tial (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected on to a basis of hyperspherical harmonics in four dimensions. The SNAP coef- ficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. Global optimization methods in the DAKOTA software package are used to seek out good choices of hyperparameters that define the overall structure of the SNAP potential. FitSnap.py, a Python-based software pack- age interfacing to both LAMMPS and DAKOTA is used to formulate the linear regression problem, solve it, and analyze the accuracy of the resultant SNAP potential. We describe a SNAP potential for tantalum that accurately reproduces a variety of solid and liquid properties. Most significantly, in contrast to existing tantalum potentials, SNAP correctly predicts the Peierls barrier for screw dislocation motion. We also present results from SNAP potentials generated for indium phosphide (InP) and silica (SiO 2 ). We describe efficient algorithms for calculating SNAP forces and energies in molecular dynamics simulations using massively parallel computers

  4. Adhesion of single- and multi-walled carbon nanotubes to silicon substrate: atomistic simulations and continuum analysis

    Science.gov (United States)

    Yuan, Xuebo; Wang, Youshan

    2017-10-01

    The radial deformation of carbon nanotubes (CNTs) adhering to a substrate may prominently affect their mechanical and physical properties. In this study, both classical atomistic simulations and continuum analysis are carried out, to investigate the lateral adhesion of single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) to a silicon substrate. A linear elastic model for analyzing the adhesion of 2D shells to a rigid semi-infinite substrate is constructed in the framework of continuum mechanics. Good agreement is achieved between the cross-section profiles of adhesive CNTs obtained by the continuum model and by the atomistic simulation approach. It is found that the adhesion of a CNT to the silicon substrate is significantly influenced by its initial diameter and the number of walls. CNTs with radius larger than a certain critical radius are deformed radially on the silicon substrate with flat contact regions. With increasing number of walls, the extent of radial deformation of a MWCNT on the substrate decreases dramatically, and the flat contact area reduces—and eventually vanishes—due to increasing equivalent bending stiffness. It is analytically predicted that large-diameter MWCNTs with a large number of walls are likely to ‘stand’ on the silicon substrate. The present work can be useful for understanding the radial deformation of CNTs adhering to a solid planar substrate.

  5. Atomistic Modeling of the Negative Thermal Expansion in δ- Plutonium  Based on the Two-State Description

    Directory of Open Access Journals (Sweden)

    Steven M. Valone

    2012-06-01

    Full Text Available The δ phase  of plutonium with the fcc structure exhibits an unusual negative thermal expansion (NTE over its narrow  temperature range of stability, 593–736 K. An accurate description  of the anomalous high-temperature volume effect of plutonium  goes beyond the current capability  of electronic-structure  calculations.  We propose an atomistic scheme to model the thermodynamic properties of δ-Pu based on the two-state model of Weiss for the Invar alloys, inspired by the simple free-energy analysis previously conducted by Lawson et al. The two-state mechanism is incorporated into the atomistic description of a many-body  interacting  system.  Two modified  embedded atom method potentials are employed to represent the binding energies of two competing  electronic  states in δ-Pu. We demonstrate how the NTE takes place in δ-Pu by means of Monte Carlo simulations implemented with the two-state mechanism.

  6. Atomistic approach to predict the glass-forming ability in Zr–Cu–Al ternary metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C.Y. [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Liu, X.J. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Zheng, G.P. [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Niu, X.R. [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Liu, C.T., E-mail: chainliu@cityu.edu.hk [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2015-04-05

    Highlights: • An atomistic approach has been developed to predict the glass forming ability (GFA) in Zr–Cu–Al ternary alloy system. • Both of the thermodynamic and structure-dependent kinetic effects to glass formation have been taken into account. • The first-principles calculation and molecular dynamics simulation have been performed. • The approach predicts the best glass former in the model Zr–Cu–Al alloy system. • The predicted GFA is consistent with various experimental results. - Abstract: Prediction of composition-dependent glass-forming ability (GFA) remains to be a key scientific challenge in the metallic-glass community, especially in multi-component alloy systems. In the present study, we apply an atomistic approach to predict the trend of GFA effectively in the Zr–Cu–Al ternary alloy system from alloy compositions alone. This approach is derived from the first-principles calculations based on the density-functional theory and molecular dynamic (MD) simulations. By considering of both the thermodynamic and atomic-structure induced kinetic effects, the predicted GFA trend from this approach shows an excellent agreement with experimental data available in this alloy system, manifesting its capability of seeking metallic glasses with superior GFA in ternary alloy systems.

  7. Atomistic- and Meso-Scale Computational Simulations for Developing Multi-Timescale Theory for Radiation Degradation in Electronic and Optoelectronic Devices

    Science.gov (United States)

    2017-02-13

    recoil, Tmax the maximum energy that can be transferred to a recoil nucleus by an incident particle and Ed the threshold displacement energy which is...interstitials and mono -vacancies, and only a small proportion of the interstitials are found in clusters. Fig. 4 Atomistic configurations of a typical 10

  8. Conformational preludes to the latency transition in PAI-1 as determined by atomistic computer simulations and hydrogen/deuterium-exchange mass spectrometry

    DEFF Research Database (Denmark)

    Petersen, Michael; Madsen, Jeppe B; Jørgensen, Thomas J D

    2017-01-01

    activator inhibitor 1 (PAI-1). We report the first multi-microsecond atomistic molecular dynamics simulations of PAI-1 and compare the data with experimental hydrogen/deuterium-exchange data (HDXMS). The simulations reveal notable conformational flexibility of helices D, E and F and major fluctuations...

  9. Insights into the charge carrier terahertz mobility in polyfluorenes from large-scale atomistic simulations and time-resolved terahertz spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Vukmirović, N.; Ponseca, C.S.; Němec, Hynek; Yartsev, A.; Sundström, V.

    2012-01-01

    Roč. 116, č. 37 (2012), s. 19665-1972 ISSN 1932-7447 Institutional research plan: CEZ:AV0Z10100520 Keywords : charge carrier mobility * time-resolved terahertz spectroscopy * multiscale atomistic calculations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.814, year: 2012

  10. 3D atomistic studies of fatigue behaviour of edge crack (0 0 1) in bcc iron loaded in mode i and II

    Czech Academy of Sciences Publication Activity Database

    Machová, Anna; Pokluda, J.; Uhnáková, Alena; Hora, Petr

    2014-01-01

    Roč. 66, September (2014), s. 11-19 ISSN 0142-1123 R&D Projects: GA ČR(CZ) GAP108/10/0698 Institutional support: RVO:61388998 Keywords : fatigue crack growth * bcc iron * 3D atomistic simulations * molecular dynamics Subject RIV: JQ - Machines ; Tools Impact factor: 2.275, year: 2014 www.elsevier.com/locate/ijfatigue

  11. Atomistic simulations of cation hydration in sodium and calcium montmorillonite nanopores

    Science.gov (United States)

    Yang, Guomin; Neretnieks, Ivars; Holmboe, Michael

    2017-08-01

    During the last four decades, numerous studies have been directed to the swelling smectite-rich clays in the context of high-level radioactive waste applications and waste-liners for contaminated sites. The swelling properties of clay mineral particles arise due to hydration of the interlayer cations and the diffuse double layers formed near the negatively charged montmorillonite (MMT) surfaces. To accurately study the cation hydration in the interlayer nanopores of MMT, solvent-solute and solvent-clay surface interactions (i.e., the solvation effects and the shape effects) on the atomic level should be taken into account, in contrast to many recent electric double layer based methodologies using continuum models. Therefore, in this research we employed fully atomistic simulations using classical molecular dynamics (MD) simulations, the software package GROMACS along with the CLAYFF forcefield and the SPC/E water model. We present the ion distributions and the deformation of the hydrated coordination structures, i.e., the hydration shells of Na+ and Ca2+ in the interlayer, respectively, for MMT in the first-layer, the second-layer, the third-layer, the fourth-layer, and the fifth-layer (1W, 2W, 3W, 4W, and 5W) hydrate states. Our MD simulations show that Na+ in Na-MMT nanopores have an affinity to the ditrigonal cavities of the clay layers and form transient inner-sphere complexes at about 3.8 Å from clay midplane at water contents less than the 5W hydration state. However, these phenomena are not observed in Ca-MMT regardless of swelling states. For Na-MMT, each Na+ is coordinated to four water molecules and one oxygen atom of the clay basal-plane in the first hydration shell at the 1W hydration state, and with five to six water molecules in the first hydration shell within a radius of 3.1 Å at all higher water contents. In Ca-MMT, however each Ca2+ is coordinated to approximately seven water molecules in the first hydration shell at the 1W hydration state and

  12. Prediction of point-defect migration energy barriers in alloys using artificial intelligence for atomistic kinetic Monte Carlo applications

    Energy Technology Data Exchange (ETDEWEB)

    Castin, N. [Structural Materials Group, Nuclear Materials Science Institute, Studiecentrum voor Kerneenergie Centre d' etude de l' energie nucleaire (SCK CEN), Boeretang 200, B-2400 Mol (Belgium); Universite Libre de Bruxelles (ULB), Physique des Solides Irradies et Nanostructures (PSIN), CP234 Boulevard du triomphe, Brussels (Belgium); Malerba, L. [Structural Materials Group, Nuclear Materials Science Institute, Studiecentrum voor Kerneenergie Centre d' etude de l' energie nucleaire (SCK CEN), Boeretang 200, B-2400 Mol (Belgium)], E-mail: lmalerba@sckcen.be

    2009-09-15

    We significantly improved a previously proposed method to take into account chemical and also relaxation effects on point-defect migration energy barriers, as predicted by an interatomic potential, in a rigid lattice atomistic kinetic Monte Carlo simulation. Examples of energy barriers are rigorously calculated, including chemical and relaxation effects, as functions of the local atomic configuration, using a nudged elastic bands technique. These examples are then used to train an artificial neural network that provides the barriers on-demand during the simulation for each configuration encountered by the migrating defect. Thanks to a newly developed training method, the configuration can include a large number of neighbour shells, thereby properly including also strain effects. Satisfactory results have been obtained when the configuration includes different chemical species only. The problems encountered in the extension of the method to configurations including any number of point-defects are stated and solutions to tackle them are sketched.

  13. Multiscale atomistic simulation of metal-oxygen surface interactions: Methodological development, theoretical investigation, and correlation with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Judith C. [Univ. of Pittsburgh, Pittsburgh, PA (United States)

    2015-01-09

    The purpose of this grant is to develop the multi-scale theoretical methods to describe the nanoscale oxidation of metal thin films, as the PI (Yang) extensive previous experience in the experimental elucidation of the initial stages of Cu oxidation by primarily in situ transmission electron microscopy methods. Through the use and development of computational tools at varying length (and time) scales, from atomistic quantum mechanical calculation, force field mesoscale simulations, to large scale Kinetic Monte Carlo (KMC) modeling, the fundamental underpinings of the initial stages of Cu oxidation have been elucidated. The development of computational modeling tools allows for accelerated materials discovery. The theoretical tools developed from this program impact a wide range of technologies that depend on surface reactions, including corrosion, catalysis, and nanomaterials fabrication.

  14. Atomistics of carbon nanotube-polyacrylonitrile interfaces for next-generation carbon fibers: A multiscale computational study

    Science.gov (United States)

    Lee, Juho; Choi, Ji Il; Jang, Seung Soon; Kumar, Satish; Cho, Art E.; Kim, Yong-Hoon

    Atomic-scale understanding of the carbon nanotube (CNT) - polyacrylonitrile (PAN) interfaces is a critical missing element for the development of next-generation carbon fibers. In this presentation, we provide the systematic atomistic analyses of the CNT-PAN interfaces based on a multiscale computational approach combining density-functional theory (DFT) and force-fields molecular dynamics (FFMD) simulations. Based on DFT calculations, we identify the preferable CNT-PAN configurations and furthermore elucidate the electronic origin of the CNT-PAN binding. Next, via FFMD simulations, we extract more realistic large-scale interfacial CNT-PAN atomic configurations and confirm that they faithfully reflect the geometric motives identified in DFT calculations. Implications of our findings in the context of development of advanced carbon fibers will be discussed. corresponding author.

  15. Atomistic modeling of metal surfaces under electric fields: direct coupling of electric fields to a molecular dynamics algorithm

    CERN Document Server

    Djurabekova, Flyura; Pohjonen, Aarne; Nordlund, Kai

    2011-01-01

    The effect of electric fields on metal surfaces is fairly well studied, resulting in numerous analytical models developed to understand the mechanisms of ionization of surface atoms observed at very high electric fields, as well as the general behavior of a metal surface in this condition. However, the derivation of analytical models does not include explicitly the structural properties of metals, missing the link between the instantaneous effects owing to the applied field and the consequent response observed in the metal surface as a result of an extended application of an electric field. In the present work, we have developed a concurrent electrodynamic–molecular dynamic model for the dynamical simulation of an electric-field effect and subsequent modification of a metal surface in the framework of an atomistic molecular dynamics (MD) approach. The partial charge induced on the surface atoms by the electric field is assessed by applying the classical Gauss law. The electric forces acting on the partially...

  16. Can pyrene probes be used to measure lateral pressure profiles of lipid membranes? Perspective through atomistic simulations

    DEFF Research Database (Denmark)

    Franova, M. D.; Vattulainen, I.; Ollila, O. H. S.

    2014-01-01

    simulations, since established methods to measure the lateral pressure profile experimentally have not been available. The only experiments that have attempted to gauge the lateral pressure profile have been done by using di-pyrenyl-phosphatidylcholine (di-pyr-PC) probes. In these experiments, the excimer......The lateral pressure profile of lipid bilayers has gained a lot of attention, since changes in the pressure profile have been suggested to shift the membrane protein conformational equilibrium. This relation has been mostly studied with theoretical methods, especially with molecular dynamics....../monomer fluorescence ratio has been assumed to represent the lateral pressure in the location of the pyrene moieties. Here, we consider the validity of this assumption through atomistic molecular dynamics simulations in a DOPC (dioleoylphosphatidylcholine) membrane, which hosts di-pyr-PC probes with different acyl...

  17. Revised Atomistic Models of the Crystal Structure of C-S-H with high C/S Ratio

    Science.gov (United States)

    Kovačević, Goran; Nicoleau, Luc; Nonat, André; Veryazov, Valera

    2016-09-01

    The atomic structure of calcium-silicate-hydrate (C1.67-S-Hx) has been studied. Atomistic C-S-H models suggested in our previous study have been revised in order to perform a direct comparison of energetic stability of the different structures. An extensive set of periodic structures of C-S-H with variation of water content was created, and then optimized using molecular dynamics with reactive force field ReaxFF and quantum chemical semiempirical method PM6. All models show organization of water molecules inside the structure of C-S-H. The new geometries of C-S-H, reported in this paper, show lower relative energy with respect to the geometries from the original definition of C-S-H models. Model that corresponds to calcium enriched tobermorite structure has the lowest relative energy and the density closest to the experimental values.

  18. Atomistic study of drag, surface and inertial effects on edge dislocations in face-centered cubic metals

    International Nuclear Information System (INIS)

    Bitzek, Erik; Gumbsch, Peter

    2004-01-01

    Atomistic simulations of an accelerating edge dislocation were carried out to study the effects of drag and inertia. Using an embedded atom potential for nickel, the Peierls stress, the effective mass and the drag coefficient of an edge dislocation were determined for different temperatures and stresses in a simple slab geometry. The effect of {1 1 1} surfaces on an intersecting edge dislocation were studied by appropriately cutting the slab. A dislocation intersecting a surface step was used as a model system to demonstrate the importance of inertial effects for dynamically overcoming short range obstacles. Significant effects were found even at room temperature. A simple model based on the dislocation-obstacle interaction energies was used to describe the findings

  19. Atomistic insight into the catalytic mechanism of glycosyltransferases by combined quantum mechanics/molecular mechanics (QM/MM) methods.

    Science.gov (United States)

    Tvaroška, Igor

    2015-02-11

    Glycosyltransferases catalyze the formation of glycosidic bonds by assisting the transfer of a sugar residue from donors to specific acceptor molecules. Although structural and kinetic data have provided insight into mechanistic strategies employed by these enzymes, molecular modeling studies are essential for the understanding of glycosyltransferase catalyzed reactions at the atomistic level. For such modeling, combined quantum mechanics/molecular mechanics (QM/MM) methods have emerged as crucial. These methods allow the modeling of enzymatic reactions by using quantum mechanical methods for the calculation of the electronic structure of the active site models and treating the remaining enzyme environment by faster molecular mechanics methods. Herein, the application of QM/MM methods to glycosyltransferase catalyzed reactions is reviewed, and the insight from modeling of glycosyl transfer into the mechanisms and transition states structures of both inverting and retaining glycosyltransferases are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Steepest-entropy-ascent nonequilibrium quantum thermodynamic framework to model chemical reaction rates at an atomistic level.

    Science.gov (United States)

    Beretta, G P; Al-Abbasi, Omar; von Spakovsky, M R

    2017-04-01

    The steepest entropy ascent (SEA) dynamical principle provides a general framework for modeling the dynamics of nonequilibrium (NE) phenomena at any level of description, including the atomistic one. It has recently been shown to provide a precise implementation and meaning to the maximum entropy production principle and to encompass many well-established theories of nonequilibrium thermodynamics into a single unifying geometrical framework. Its original formulation in the framework of quantum thermodynamics (QT) assumes the simplest and most natural Fisher-Rao metric to geometrize from a dynamical standpoint the manifold of density operators, which represent the thermodynamic NE states of the system. This simplest SEAQT formulation is used here to develop a general mathematical framework for modeling the NE time evolution of the quantum state of a chemically reactive mixture at an atomistic level. The method is illustrated for a simple two-reaction kinetic scheme of the overall reaction F+H_{2}⇔HF+F in an isolated tank of fixed volume. However, the general formalism is developed for a reactive system subject to multiple reaction mechanisms. To explicitly implement the SEAQT nonlinear law of evolution for the density operator, both the energy and the particle number eigenvalue problems are set up and solved analytically under the dilute gas approximation. The system-level energy and particle number eigenvalues and eigenstates are used in the SEAQT equation of motion to determine the time evolution of the density operator, thus effectively describing the overall kinetics of the reacting system as it relaxes toward stable chemical equilibrium. The predicted time evolution in the near-equilibrium limit is compared to the reaction rates given by a standard detailed kinetic model so as to extract the single time constant needed by the present SEA model.

  1. Insight into the influence of liquid paraffin for methanol synthesis on Cu(110) surface using continuum and atomistic models

    International Nuclear Information System (INIS)

    Jiao, Wei-Hong; Liu, Shi-Zhong; Zuo, Zhi-Jun; Ren, Rui-Peng; Gao, Zhi-Hua; Huang, Wei

    2016-01-01

    Highlights: • The influence of liquid paraffin is studied using continuum and atomistic models. • Liquid paraffin does not alter the reaction pathways of CO hydrogenation and WGS. • Liquid paraffin alters the reaction pathways of CO 2 hydrogenation. - Abstract: Methanol synthesis from CO/CO 2 hydrogenation and water-gas shift (WGS) reaction on Cu(110) in liquid paraffin and vacuum have been systematically researched with density functional theory calculation (DFT). For methanol synthesis from CO hydrogenation, the reaction pathways in liquid paraffin and vacuum are CO + H → HCO → H 2 CO → H 3 CO → H 3 COH; in the case of WGS, the reaction pathways in liquid paraffin and vacuum are CO + 2H 2 O → CO + 2OH + 2H → CO + H 2 O + O + H 2 → CO 2 + H 2 O + H 2 ; the reaction pathways of methanol synthesis from CO 2 hydrogenation in liquid paraffin and vacuum are CO 2 + H → HCOO → H 2 COO → H 2 CO → H 3 CO → H 3 COH and CO 2 + H → HCOO → HCOOH → H 2 COOH → H 3 CO → H 3 COH, respectively. The result shows that liquid paraffin does not affect the reaction mechanisms of methanol synthesis from CO and WGS, but it changes the reaction mechanisms of methanol synthesis from CO 2 hydrogenation. Hirshfeld charge and the d-band centers indicate that the catalytic activity of Cu(110) in liquid paraffin is smaller than that in vacuum. Our results also show that it is necessary to consider both continuum and atomistic models in the slurry bed.

  2. Insight into the influence of liquid paraffin for methanol synthesis on Cu(110) surface using continuum and atomistic models

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Wei-Hong [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Liu, Shi-Zhong [Department of Chemistry, Stony Brook University, Stony Brook, NY 11794 (United States); Zuo, Zhi-Jun, E-mail: zuozhijun@tyut.edu.cn [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Ren, Rui-Peng; Gao, Zhi-Hua [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Huang, Wei, E-mail: huangwei@tyut.edu.cn [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China)

    2016-11-30

    Highlights: • The influence of liquid paraffin is studied using continuum and atomistic models. • Liquid paraffin does not alter the reaction pathways of CO hydrogenation and WGS. • Liquid paraffin alters the reaction pathways of CO{sub 2} hydrogenation. - Abstract: Methanol synthesis from CO/CO{sub 2} hydrogenation and water-gas shift (WGS) reaction on Cu(110) in liquid paraffin and vacuum have been systematically researched with density functional theory calculation (DFT). For methanol synthesis from CO hydrogenation, the reaction pathways in liquid paraffin and vacuum are CO + H → HCO → H{sub 2}CO → H{sub 3}CO → H{sub 3}COH; in the case of WGS, the reaction pathways in liquid paraffin and vacuum are CO + 2H{sub 2}O → CO + 2OH + 2H → CO + H{sub 2}O + O + H{sub 2} → CO{sub 2} + H{sub 2}O + H{sub 2}; the reaction pathways of methanol synthesis from CO{sub 2} hydrogenation in liquid paraffin and vacuum are CO{sub 2} + H → HCOO → H{sub 2}COO → H{sub 2}CO → H{sub 3}CO → H{sub 3}COH and CO{sub 2} + H → HCOO → HCOOH → H{sub 2}COOH → H{sub 3}CO → H{sub 3}COH, respectively. The result shows that liquid paraffin does not affect the reaction mechanisms of methanol synthesis from CO and WGS, but it changes the reaction mechanisms of methanol synthesis from CO{sub 2} hydrogenation. Hirshfeld charge and the d-band centers indicate that the catalytic activity of Cu(110) in liquid paraffin is smaller than that in vacuum. Our results also show that it is necessary to consider both continuum and atomistic models in the slurry bed.

  3. Advanced diffusion processes and phenomena

    CERN Document Server

    Öchsner, Andreas; Belova, Irina

    2014-01-01

    This topical volume on Advanced Diffusion Processes and Phenomena addresses diffusion in a wider sense of not only mass diffusion but also heat diffusion in fluids and solids. Both diffusion phenomena play an important role in the characterization of engineering materials and corresponding structures. Understanding these different transport phenomena at many levels, from atomistic to macro, has therefore long attracted the attention of many researchers in materials science and engineering and related disciplines. The present topical volume captures a representative cross-section of some of the

  4. John Dalton and the London atomists: William and Bryan Higgins, William Austin, and new Daltonian doubts about the origin of the atomic theory

    Science.gov (United States)

    Grossman, Mark I.

    2014-01-01

    Most historians have ruled out the possibility that John Dalton was influenced by the theories of atomists William and Bryan Higgins, as well as William Austin, in developing his first table of atomic weights on 6 September 1803. I review and evaluate the case to be made for the influence of each scientist on Dalton. Contrary to prevailing views, I raise new Daltonian doubts, especially for Bryan Higgins.

  5. Multiscale modeling of plastic deformation of molybdenum and tungsten: I. Atomistic studies of the core structure and glide of 1/2<111> screw dislocations at 0 K

    OpenAIRE

    Gröger, R.; Bailey, A. G.; Vitek, V.

    2008-01-01

    Owing to their non-planar cores 1/2 screw dislocations govern the plastic deformation of BCC metals. Atomistic studies of the glide of these dislocations at 0 K have been performed using Bond Order Potentials for molybdenum and tungsten that account for the mixed metallic and covalent bonding in transition metals. When applying pure shear stress in the slip direction it displays significant twinning-antitwinning asymmetry for molybdenum but not for tungsten. However, for tensile/compressive l...

  6. Crack growth and fracture toughness of amorphous Li-Si anodes: Mechanisms and role of charging/discharging studied by atomistic simulations

    Science.gov (United States)

    Khosrownejad, S. M.; Curtin, W. A.

    2017-10-01

    Fracture is the main cause of degradation and capacity fading in lithiated silicon during cycling. Experiments on the fracture of lithiated silicon show conflicting results, and so mechanistic models can help interpret experiments and guide component design. Here, large-scale K-controlled atomistic simulations of crack propagation (R-curve KI vs. Δa) are performed at LixSi compositions x = 0.5 , 1.0 , 1.5 for as-quenched/relaxed samples and at x = 0.5 , 1.0 for samples created by discharging from higher Li compositions. In all cases, the fracture mechanism is void nucleation, growth, and coalescence. In as-quenched materials, with increasing Li content the plastic flow stress and elastic moduli decrease but void nucleation and growth happen at smaller stress, so that the initial fracture toughness KIc ≈ 1.0 MPa√{ m} decreases slightly but the initial fracture energy JIc ≈ 10.5J/m2 is similar. After 10 nm of crack growth, the fracture toughnesses increase and become similar at KIc ≈ 1.9 MPa√{ m} across all compositions. Plane-strain equi-biaxial expansion simulations of uncracked samples provide complementary information on void nucleation and growth. The simulations are interpreted within the framework of Gurson model for ductile fracture, which predicts JIc = ασy D where α ≃ 1 and D is the void spacing, and good agreement is found. In spite of flowing plastically, the fracture toughness of LixSi is low because voids nucleate within nano-sized distances ahead of the crack (D ≈ 1nm). Scaling simulation results to experimental conditions, reasonable agreement with experimentally-estimated fracture toughnesses is obtained. The discharging process facilitates void nucleation but decreases the flow stress (as shown previously), leading to enhanced fracture toughness at all levels of crack growth. Therefore, the fracture behavior of lithiated silicon at a given composition is not a material property but instead depends on the history of charging

  7. Potential of mean force analysis of the self-association of leucine-rich transmembrane α-helices: Difference between atomistic and coarse-grained simulations

    International Nuclear Information System (INIS)

    Nishizawa, Manami; Nishizawa, Kazuhisa

    2014-01-01

    Interaction of transmembrane (TM) proteins is important in many biological processes. Large-scale computational studies using coarse-grained (CG) simulations are becoming popular. However, most CG model parameters have not fully been calibrated with respect to lateral interactions of TM peptide segments. Here, we compare the potential of mean forces (PMFs) of dimerization of TM helices obtained using a MARTINI CG model and an atomistic (AT) Berger lipids-OPLS/AA model (AT OPLS ). For helical, tryptophan-flanked, leucine-rich peptides (WL15 and WALP15) embedded in a parallel configuration in an octane slab, the AT OPLS PMF profiles showed a shallow minimum (with a depth of approximately 3 kJ/mol; i.e., a weak tendency to dimerize). A similar analysis using the CHARMM36 all-atom model (AT CHARMM ) showed comparable results. In contrast, the CG analysis generally showed steep PMF curves with depths of approximately 16–22 kJ/mol, suggesting a stronger tendency to dimerize compared to the AT model. This CG > AT discrepancy in the propensity for dimerization was also seen for dilauroylphosphatidylcholine (DLPC)-embedded peptides. For a WL15 (and WALP15)/DLPC bilayer system, AT OPLS PMF showed a repulsive mean force for a wide range of interhelical distances, in contrast to the attractive forces observed in the octane system. The change from the octane slab to the DLPC bilayer also mitigated the dimerization propensity in the CG system. The dimerization energies of CG (AALALAA) 3 peptides in DLPC and dioleoylphosphatidylcholine bilayers were in good agreement with previous experimental data. The lipid headgroup, but not the length of the lipid tails, was a key causative factor contributing to the differences between octane and DLPC. Furthermore, the CG model, but not the AT model, showed high sensitivity to changes in amino acid residues located near the lipid-water interface and hydrophobic mismatch between the peptides and membrane. These findings may help interpret

  8. Atomistic Origin of Brittle Failure of Boron Carbide from Large-Scale Reactive Dynamics Simulations: Suggestions toward Improved Ductility.

    Science.gov (United States)

    An, Qi; Goddard, William A

    2015-09-04

    Ceramics are strong, but their low fracture toughness prevents extended engineering applications. In particular, boron carbide (B(4)C), the third hardest material in nature, has not been incorporated into many commercial applications because it exhibits anomalous failure when subjected to hypervelocity impact. To determine the atomistic origin of this brittle failure, we performed large-scale (∼200,000  atoms/cell) reactive-molecular-dynamics simulations of shear deformations of B(4)C, using the quantum-mechanics-derived reactive force field simulation. We examined the (0001)/⟨101̅0⟩ slip system related to deformation twinning and the (011̅1̅)/⟨1̅101⟩ slip system related to amorphous band formation. We find that brittle failure in B(4)C arises from formation of higher density amorphous bands due to fracture of the icosahedra, a unique feature of these boron based materials. This leads to negative pressure and cavitation resulting in crack opening. Thus, to design ductile materials based on B(4)C we propose alloying aimed at promoting shear relaxation through intericosahedral slip that avoids icosahedral fracture.

  9. In pursuit of an accurate spatial and temporal model of biomolecules at the atomistic level: a perspective on computer simulation

    International Nuclear Information System (INIS)

    Gray, Alan; Harlen, Oliver G.; Harris, Sarah A.; Khalid, Syma; Leung, Yuk Ming; Lonsdale, Richard; Mulholland, Adrian J.; Pearson, Arwen R.; Read, Daniel J.; Richardson, Robin A.

    2015-01-01

    The current computational techniques available for biomolecular simulation are described, and the successes and limitations of each with reference to the experimental biophysical methods that they complement are presented. Despite huge advances in the computational techniques available for simulating biomolecules at the quantum-mechanical, atomistic and coarse-grained levels, there is still a widespread perception amongst the experimental community that these calculations are highly specialist and are not generally applicable by researchers outside the theoretical community. In this article, the successes and limitations of biomolecular simulation and the further developments that are likely in the near future are discussed. A brief overview is also provided of the experimental biophysical methods that are commonly used to probe biomolecular structure and dynamics, and the accuracy of the information that can be obtained from each is compared with that from modelling. It is concluded that progress towards an accurate spatial and temporal model of biomacromolecules requires a combination of all of these biophysical techniques, both experimental and computational

  10. In pursuit of an accurate spatial and temporal model of biomolecules at the atomistic level: a perspective on computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Alan [The University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom); Harlen, Oliver G. [University of Leeds, Leeds LS2 9JT (United Kingdom); Harris, Sarah A., E-mail: s.a.harris@leeds.ac.uk [University of Leeds, Leeds LS2 9JT (United Kingdom); University of Leeds, Leeds LS2 9JT (United Kingdom); Khalid, Syma; Leung, Yuk Ming [University of Southampton, Southampton SO17 1BJ (United Kingdom); Lonsdale, Richard [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany); Philipps-Universität Marburg, Hans-Meerwein Strasse, 35032 Marburg (Germany); Mulholland, Adrian J. [University of Bristol, Bristol BS8 1TS (United Kingdom); Pearson, Arwen R. [University of Leeds, Leeds LS2 9JT (United Kingdom); University of Hamburg, Hamburg (Germany); Read, Daniel J.; Richardson, Robin A. [University of Leeds, Leeds LS2 9JT (United Kingdom); The University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom)

    2015-01-01

    The current computational techniques available for biomolecular simulation are described, and the successes and limitations of each with reference to the experimental biophysical methods that they complement are presented. Despite huge advances in the computational techniques available for simulating biomolecules at the quantum-mechanical, atomistic and coarse-grained levels, there is still a widespread perception amongst the experimental community that these calculations are highly specialist and are not generally applicable by researchers outside the theoretical community. In this article, the successes and limitations of biomolecular simulation and the further developments that are likely in the near future are discussed. A brief overview is also provided of the experimental biophysical methods that are commonly used to probe biomolecular structure and dynamics, and the accuracy of the information that can be obtained from each is compared with that from modelling. It is concluded that progress towards an accurate spatial and temporal model of biomacromolecules requires a combination of all of these biophysical techniques, both experimental and computational.

  11. Atomistic Origins of High Capacity and High Structural Stability of Polymer-Derived SiOC Anode Materials.

    Science.gov (United States)

    Sun, Hong; Zhao, Kejie

    2017-10-11

    Capacity and structural stability are often mutually exclusive properties of electrodes in Li-ion batteries (LIBs): a gain in capacity is usually accompanied by the undesired large volumetric change of the host material upon lithiation. Polymer-derived ceramics, such as silicon oxycarbide (SiOC) of hybrid Si-O-C bonds, show an exceptional combination of high capacity and superior structural stability. We investigate the atomistic origins of the unique chemomechanical performance of carbon-rich SiOC using the first-principles theoretical approach. The atomic model of SiOC is composed of continuous Si-O-C units caged by a graphene-like cellular network and percolated nanovoids. The segregated sp 2 carbon network serves as the backbone to maintain the structural stability of the lattice. Li insertion is first absorbed at the nanovoid sites, and then it is accommodated by the SiOC tetrahedral units, excess C atoms, and topological defects at the edge of or within the segregated carbon network. SiOC expands up to 22% in volumetric strain at the fully lithiated capacity of 1230 mA h/g. We examine in great detail the evolution of the microscopic features of the SiOC molecule in the course of Li reactions. The first-principles modeling provides a fundamental understanding of the physicochemical properties of Si-based glass ceramics for their application in LIBs.

  12. Insight of DFT and ab initio atomistic thermodynamics on the surface stability and morphology of In2O3

    Science.gov (United States)

    Zhang, Minhua; Wang, Wenyi; Chen, Yifei

    2018-03-01

    In2O3 catalysts show remarkable activity and selectivity in methanol synthesis from CO2 hydrogenation. In order to get insight into the surface stability of this catalyst, density functional theory and ab initio atomistic thermodynamics method were used to investigate the surface free energies of various facets as a function of oxygen chemical potential, as well as the influences of temperature, pressure and gas compositions. The results show that the (111) facet presents lowest surface free energy under oxygen-rich condition, while the indium-terminated (100) facet is the most stable one under oxygen-lean condition. Moreover, we applied Wulff construction to determine the equilibrium shape of In2O3 with different oxygen chemical potentials. The equilibrium shape under oxygen-lean condition is cubic, which only expose (100) facet, while, the equilibrium shape under oxygen-rich condition is octahedron, which only expose (111) facet. Meanwhile, the results agree well with what is observed experimentally. It is further predicted that Wulff shape of In2O3 exists in a truncated octahedron morphology in which the (100) surface becomes predominant plane under CO2 hydrogenation reaction conditions.

  13. Atomistic structural ensemble refinement reveals non-native structure stabilizes a sub-millisecond folding intermediate of CheY

    International Nuclear Information System (INIS)

    Shi, Jade; Schwantes, Christian; Bilsel, Osman

    2017-01-01

    The dynamics of globular proteins can be described in terms of transitions between a folded native state and less-populated intermediates, or excited states, which can play critical roles in both protein folding and function. Excited states are by definition transient species, and therefore are difficult to characterize using current experimental techniques. We report an atomistic model of the excited state ensemble of a stabilized mutant of an extensively studied flavodoxin fold protein CheY. We employed a hybrid simulation and experimental approach in which an aggregate 42 milliseconds of all-atom molecular dynamics were used as an informative prior for the structure of the excited state ensemble. The resulting prior was then refined against small-angle X-ray scattering (SAXS) data employing an established method (EROS). The most striking feature of the resulting excited state ensemble was an unstructured N-terminus stabilized by non-native contacts in a conformation that is topologically simpler than the native state. We then predict incisive single molecule FRET experiments, using these results, as a means of model validation. Our study demonstrates the paradigm of uniting simulation and experiment in a statistical model to study the structure of protein excited states and rationally design validating experiments.

  14. A stochastic approximation approach to improve the convergence behavior of hierarchical atomistic-to-continuum multiscale models

    Science.gov (United States)

    Wurm, Patrick; Ulz, Manfred H.

    2016-10-01

    The aim of this work is to provide an improved information exchange in hierarchical atomistic-to-continuum settings by applying stochastic approximation methods. For this purpose a typical model belonging to this class is chosen and enhanced. On the macroscale of this particular two-scale model, the balance equations of continuum mechanics are solved using a nonlinear finite element formulation. The microscale, on which a canonical ensemble of statistical mechanics is simulated using molecular dynamics, replaces a classic material formulation. The constitutive behavior is computed on the microscale by computing time averages. However, these time averages are thermal noise-corrupted as the microscale may practically not be tracked for a sufficiently long period of time due to limited computational resources. This noise prevents the model from a classical convergence behavior and creates a setting that shows remarkable resemblance to iteration schemes known from stochastic approximation. This resemblance justifies the use of two averaging strategies known to improve the convergence behavior in stochastic approximation schemes under certain, fairly general, conditions. To demonstrate the effectiveness of the proposed strategies, three numerical examples are studied.

  15. The glass transition in cured epoxy thermosets: A comparative molecular dynamics study in coarse-grained and atomistic resolution

    Energy Technology Data Exchange (ETDEWEB)

    Langeloth, Michael; Böhm, Michael C.; Müller-Plathe, Florian [Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces, Technische Universität Darmstadt, Alarich Weiss Straße 4, D-64287 Darmstadt (Germany); Sugii, Taisuke, E-mail: taisuke.sugii.zs@hitachi.com [Center for Technology Innovation – Mechanical Engineering, Research & Development Group, Hitachi, Ltd., 832-2, Horiguchi, Hitachinaka, Ibaraki 312-0034 (Japan)

    2015-12-28

    We investigate the volumetric glass transition temperature T{sub g} in epoxy thermosets by means of molecular dynamics simulations. The epoxy thermosets consist of the resin bisphenol A diglycidyl ether and the hardener diethylenetriamine. A structure based coarse-grained (CG) force field has been derived using iterative Boltzmann inversion in order to facilitate simulations of larger length scales. We observe that T{sub g} increases clearly with the degree of cross-linking for all-atomistic (AA) and CG simulations. The transition T{sub g} in CG simulations of uncured mixtures is much lower than in AA-simulations due to the soft nature of the CG potentials, but increases all the more with the formation of rigid cross-links. Additional simulations of the CG mixtures in contact with a surface show the existence of an interphase region of about 3 nm thickness in which the network properties deviate significantly from the bulk. In accordance to experimental studies, we observe that T{sub g} is reduced in this interphase region and gradually increases to its bulk value with distance from the surface. The present study shows that the glass transition is a local phenomenon that depends on the network structure in the immediate environment.

  16. Atomistic Simulations of High-intensity XFEL Pulses on Diffractive Imaging of Nano-sized System Dynamics

    Science.gov (United States)

    Ho, Phay; Knight, Christopher; Bostedt, Christoph; Young, Linda; Tegze, Miklos; Faigel, Gyula

    2016-05-01

    We have developed a large-scale atomistic computational method based on a combined Monte Carlo and Molecular Dynamics (MC/MD) method to simulate XFEL-induced radiation damage dynamics of complex materials. The MD algorithm is used to propagate the trajectories of electrons, ions and atoms forward in time and the quantum nature of interactions with an XFEL pulse is accounted for by a MC method to calculate probabilities of electronic transitions. Our code has good scalability with MPI/OpenMP parallelization, and it has been run on Mira, a petascale system at the Argonne Leardership Computing Facility, with particle number >50 million. Using this code, we have examined the impact of high-intensity 8-keV XFEL pulses on the x-ray diffraction patterns of argon clusters. The obtained patterns show strong pulse parameter dependence, providing evidence of significant lattice rearrangement and diffuse scattering. Real-space electronic reconstruction was performed using phase retrieval methods. We found that the structure of the argon cluster can be recovered with atomic resolution even in the presence of considerable radiation damage. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division.

  17. Atomistic structural ensemble refinement reveals non-native structure stabilizes a sub-millisecond folding intermediate of CheY

    Science.gov (United States)

    Shi, Jade; Nobrega, R. Paul; Schwantes, Christian; Kathuria, Sagar V.; Bilsel, Osman; Matthews, C. Robert; Lane, T. J.; Pande, Vijay S.

    2017-03-01

    The dynamics of globular proteins can be described in terms of transitions between a folded native state and less-populated intermediates, or excited states, which can play critical roles in both protein folding and function. Excited states are by definition transient species, and therefore are difficult to characterize using current experimental techniques. Here, we report an atomistic model of the excited state ensemble of a stabilized mutant of an extensively studied flavodoxin fold protein CheY. We employed a hybrid simulation and experimental approach in which an aggregate 42 milliseconds of all-atom molecular dynamics were used as an informative prior for the structure of the excited state ensemble. This prior was then refined against small-angle X-ray scattering (SAXS) data employing an established method (EROS). The most striking feature of the resulting excited state ensemble was an unstructured N-terminus stabilized by non-native contacts in a conformation that is topologically simpler than the native state. Using these results, we then predict incisive single molecule FRET experiments as a means of model validation. This study demonstrates the paradigm of uniting simulation and experiment in a statistical model to study the structure of protein excited states and rationally design validating experiments.

  18. Incorporation of local structure into kriging models for the prediction of atomistic properties in the water decamer.

    Science.gov (United States)

    Davie, Stuart J; Di Pasquale, Nicodemo; Popelier, Paul L A

    2016-10-15

    Machine learning algorithms have been demonstrated to predict atomistic properties approaching the accuracy of quantum chemical calculations at significantly less computational cost. Difficulties arise, however, when attempting to apply these techniques to large systems, or systems possessing excessive conformational freedom. In this article, the machine learning method kriging is applied to predict both the intra-atomic and interatomic energies, as well as the electrostatic multipole moments, of the atoms of a water molecule at the center of a 10 water molecule (decamer) cluster. Unlike previous work, where the properties of small water clusters were predicted using a molecular local frame, and where training set inputs (features) were based on atomic index, a variety of feature definitions and coordinate frames are considered here to increase prediction accuracy. It is shown that, for a water molecule at the center of a decamer, no single method of defining features or coordinate schemes is optimal for every property. However, explicitly accounting for the structure of the first solvation shell in the definition of the features of the kriging training set, and centring the coordinate frame on the atom-of-interest will, in general, return better predictions than models that apply the standard methods of feature definition, or a molecular coordinate frame. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  19. Thermally activated magnetization reversal in monatomic magnetic chains on surfaces studied by classical atomistic spin-dynamics simulations

    International Nuclear Information System (INIS)

    Bauer, David S G; Mavropoulos, Phivos; Bluegel, Stefan; Lounis, Samir

    2011-01-01

    We analyse the spontaneous magnetization reversal of supported monatomic chains of finite length due to thermal fluctuations via atomistic spin-dynamics simulations. Our approach is based on the integration of the Landau-Lifshitz equation of motion of a classical spin Hamiltonian in the presence of stochastic forces. The associated magnetization lifetime is found to obey an Arrhenius law with an activation barrier equal to the domain wall energy in the chain. For chains longer than one domain wall width, the reversal is initiated by nucleation of a reversed magnetization domain primarily at the chain edge followed by a subsequent propagation of the domain wall to the other edge in a random-walk fashion. This results in a linear dependence of the lifetime on the chain length, if the magnetization correlation length is not exceeded. We studied chains of uniaxial and triaxial anisotropy and found that a triaxial anisotropy leads to a reduction of the magnetization lifetime due to a higher reversal attempt rate, even though the activation barrier is not changed.

  20. On the use of atomistic simulations to aid bulk metallic glasses structural elucidation with solid-state NMR.

    Science.gov (United States)

    Ferreira, Ary R; Rino, José P

    2017-08-24

    Solid-state nuclear magnetic resonance (ssNMR) experimental 27 Al metallic shifts reported in the literature for bulk metallic glasses (BMGs) were revisited in the light of state-of-the-art atomistic simulations. In a consistent way, the Gauge-Including Projector Augmented-Wave (GIPAW) method was applied in conjunction with classical molecular dynamics (CMD). A series of Zr-Cu-Al alloys with low Al concentrations were selected as case study systems, for which realistic CMD derived structural models were used for a short- and medium-range order mining. That initial procedure allowed the detection of trends describing changes on the microstructure of the material upon Al alloying, which in turn were used to guide GIPAW calculations with a set of abstract systems in the context of ssNMR. With essential precision and accuracy, the ab initio simulations also yielded valuable trends from the electronic structure point of view, which enabled an overview of the bonding nature of Al-centered clusters as well as its influence on the experimental ssNMR outcomes. The approach described in this work might promote the use of ssNMR spectroscopy in research on glassy metals. Moreover, the results presented demonstrate the possibility to expand the applications of this technique, with deeper insight into nuclear interactions and less speculative assignments.

  1. Atomistic simulation study of the interaction of organic adsorbates with fluorapatite surfaces

    CSIR Research Space (South Africa)

    Mkhonto, D

    2006-04-01

    Full Text Available Apatite coexist in mineral ore deposits with other calcium-bearing minerals such as calcium phosphate, calcium carbonate, calcium fluorite. Apatite need to be separated from these by flotation process. Surfactant molecules with long hydrophobic...

  2. An Overview of the State of the Art in Atomistic and Multiscale Simulation of Fracture

    Science.gov (United States)

    Saether, Erik; Yamakov, Vesselin; Phillips, Dawn R.; Glaessgen, Edward H.

    2009-01-01

    The emerging field of nanomechanics is providing a new focus in the study of the mechanics of materials, particularly in simulating fundamental atomic mechanisms involved in the initiation and evolution of damage. Simulating fundamental material processes using first principles in physics strongly motivates the formulation of computational multiscale methods to link macroscopic failure to the underlying atomic processes from which all material behavior originates. This report gives an overview of the state of the art in applying concurrent and sequential multiscale methods to analyze damage and failure mechanisms across length scales.

  3. Structure of spheroidal HDL particles revealed by combined atomistic and coarse-grained simulations

    NARCIS (Netherlands)

    Catte, Andrea; Patterson, James C.; Bashtovyy, Denys; Jones, Martin K.; Gu, Feifei; Li, Ling; Rampioni, Aldo; Sengupta, Durba; Vuorela, Timo; Niemela, Perttu; Karttunen, Mikko; Marrink, Siewert Jan; Vattulainen, Ilpo; Segrest, Jere P.

    2008-01-01

    Spheroidal high-density lipoprotein (HDL) particles circulating in the blood are formed through an enzymatic process activated by apoA-1, leading to the esterification of cholesterol, which creates a hydrophobic core of cholesteryl ester molecules in the middle of the discoidal phospholipid bilayer.

  4. Atomistic Modeling in Study of Polymer Electrolyte Fuel Cells - A Review

    Science.gov (United States)

    Zhou, Xiangyang; Zhou, Juanjuan; Yin, Yijin

    Polymer electrolyte fuel cell (PEFC) is considered as one of the most promising power sources for futurist's hydrogen economy. As shown in Fig. 1, operation of a Nafion-based PEFC is dictated by transport processes and electrochemical reactions at catalyst/polymer electrolyte interfaces and transport processes in the polymer electrolyte membrane (PEM), in the catalyst layers consisting of precious metal (Pt or Ru) catalysts on porous carbon support and polymer electrolyte clusters, in gas diffusion layers (GDLs), and in flow channels. Specifically, oxidants, fuel, and reaction products flow in channels of millimeter scale and diffuse in GDL with a structure of micrometer scale. Nafion, a sulfonic acid tetrafluorethylene copolymer and the most commonly used polymer electrolyte, consists of nanoscale hydrophobic domains and proton conducting hydrophilic domains with a scale of 2-5 nm. The diffusivities of the reactants (O2, H2, and methanol) and reaction products (water and CO2) in Nafion and proton conductivity of Nafion strongly depend on the nanostructures and their responses to the presence of water. Polymer electrolyte clusters in the catalyst layers also play a critical role in the catalysis of the nano-sized Pt catalysts. Electrochemical reactions occur at the interfaces between catalysts (Pt or Pt/Ru) and Nafion. The catalytic activity of the Pt catalysts is believed to be dictated by transport processes, adsorption/desorption, and charge transfer in the interfacial area. While transport processes may occur in an area of a few nanometers, adsorption/desorption and charge transfer occur within a region of a few angstroms from the surface of a nano-particulate catalyst. Thus, modeling or simulation of PEFC is a multiscale problem.

  5. Atomistic computer simulations on multi-loaded PAMAM dendrimers: a comparison of amine- and hydroxyl-terminated dendrimers

    Science.gov (United States)

    Badalkhani-Khamseh, Farideh; Ebrahim-Habibi, Azadeh; Hadipour, Nasser L.

    2017-12-01

    Poly(amidoamine) (PAMAM) dendrimers have been extensively studied as delivery vectors in biomedical applications. A limited number of molecular dynamics (MD) simulation studies have investigated the effect of surface chemistry on therapeutic molecules loading, with the aim of providing insights for biocompatibility improvement and increase in drug loading capacity of PAMAM dendrimers. In this work, fully atomistic MD simulations were employed to study the association of 5-Fluorouracil (5-FU) with amine (NH2)- and hydroxyl (OH)-terminated PAMAM dendrimers of generations 3 and 4 (G3 and G4). MD results show a 1:12, 1:1, 1:27, and 1:4 stoichiometry, respectively, for G3NH2-FU, G3OH-FU, G4NH2-FU, and G4OH-FU complexes, which is in good agreement with the isothermal titration calorimetry results. The results obtained showed that NH2-terminated dendrimers assume segmented open structures with large cavities and more drug molecules can encapsulate inside the dendritic cavities of amine terminated dendrimers. However, OH-terminated have a densely packed structure and therefore, 5-FU drug molecules are more stable to locate close to the surface of the dendrimers. Intermolecular hydrogen bonding analysis showed that 5-FU drug molecules have more tendency to form hydrogen bonds with terminal monomers of OH-terminated dendrimers, while in NH2-terminated these occur both in the inner region and the surface. Furthermore, MM-PBSA analysis revealed that van der Waals and electrostatic energies are both important to stabilize the complexes. We found that drug molecules are distributed uniformly inside the amine and hydroxyl terminated dendrimers and therefore, both dendrimers are promising candidates as drug delivery systems for 5-FU drug molecules.

  6. Solid-liquid interface free energy in binary systems: theory and atomistic calculations for the (110) Cu-Ag interface.

    Science.gov (United States)

    Frolov, T; Mishin, Y

    2009-08-07

    We analyze thermodynamics of solid-liquid interfaces in binary systems when the solid is in a nonhydrostatic state of stress. The difficulty lies in the fact that chemical potential of at least one of the chemical components in a nonhydrostatic solid is an undefined quantity. We show, nevertheless, that the interface free energy gamma can be defined as excess of an appropriate thermodynamic potential that depends on the chemical potentials in the liquid phase. We derive different forms of the adsorption equation for solid-liquid interfaces, with differential coefficients representing excesses of extensive properties. This leads, in particular, to the formulation of interface stress tau(ij) as an appropriate excess over nonhydrostatic bulk stresses. The interface stress is not unique unless the solid is in a hydrostatic state of stress. We also derive Gibbs-Helmholtz type equations that can be applied for thermodynamic integration of gamma. All thermodynamic relations derived here are presented in forms suitable for atomistic simulations. In particular, the excess quantities can be computed without constructing interface profiles. As an application, we perform semigrand canonical Monte Carlo simulations of the (110) solid-liquid interface in the Cu-Ag system. We show that gamma computed by thermodynamic integration along a coexistence path decreases with increasing composition difference between the phases. At the same time, tau(ij) remains negative (i.e., the interface is in a state of compression), drastically increases in magnitude, and becomes highly anisotropic. Some of the interface excess properties are computed by different methods and demonstrate accurate agreement with each other, confirming the correctness of our analysis.

  7. THE PARADOX OF MIGRATION AND THE INTERESTS OF THE ATOMISTIC NATION-STATES: THE SOUTHERN AFRICAN PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    Phazha Jimmy Ngandwe

    2013-04-01

    Full Text Available The "paradox of migration and the interests of the atomistic nation-states" interrogates the phenomenon of migration in general and in the Southern African Development Community in particular. The point of departure of the paper is the African Union and the Southern African Development Community’s legal framework on migration, as read with the national legal instruments of the different member states. Its focal point is the raison d’être of this phenomenon of migration and the corresponding approaches and attitudes of the nation-states within which migration takes place inter se. This includes the psycho-social impact of migration. Internationally as well as regionally, States are concerned with issues of sovereignty, the preservation of the welfare of the citizenry, ensuring social cohesion social, cultural and economic development including job creation, and fighting against transnational organised crime, including terrorism. The theme of the paper is that whereas migration should form the bedrock of regionalism and globalisation, the negative attitudes of the nation-states to migration are more often than not at variance with the objectives of regionalism and globalisation. The central question of the research is how states can discharge their duties and obligations vis-à-vis their nationals without perpetuating the bottlenecks to and the stigma that attaches to migration and thereby upsetting the international as well as regional integration objectives of the free movement of people. This is the issue that the paper is intended to explore. The main areas of concern are that the negative attitudes of the nation-states are manifested in the hostile treatment of migrants at all ports of entry, including illegal or ungazetted points of entry, within the nation-states in general, and in their labour markets in particular. This research therefore explores the paradoxical nature of the duties and responsibilities of states within the

  8. Atomistic modeling of oil shale kerogens and asphaltenes along with their interactions with the inorganic mineral matrix

    Energy Technology Data Exchange (ETDEWEB)

    Facelli, Julio [Univ. of Utah, Salt Lake City, UT (United States); Pugmire, Ronald [Univ. of Utah, Salt Lake City, UT (United States); Pimienta, Ian [Univ. of Utah, Salt Lake City, UT (United States)

    2011-03-31

    The goal of this project is to obtain and validate three dimensional atomistic models for the organic matter in both oil shales and oil sands. In the case of oil shales the modeling was completed for kerogen, the insoluble portion of the organic matter; for oil sands it was for asphaltenes, a class of molecules found in crude oil. The three dimensional models discussed in this report were developed starting from existing literature two dimensional models. The models developed included one kerogen, based on experimental data on a kerogen isolated from a Green River oil shale, and a set of six representative asphaltenes. Subsequently, the interactions between these organic models and an inorganic matrix was explored in order to gain insight into the chemical nature of this interaction, which could provide vital information in developing efficient methods to remove the organic material from inorganic mineral substrate. The inorganic substrate used to model the interaction was illite, an aluminum silicate oxide clay. In order to obtain the feedback necessary to validate the models, it is necessary to be able to calculate different observable quantities and to show that these observables both reproduce the results of experimental measurements on actual samples as well as that the observables are sensitive to structural differences between models. The observables that were calculated using the models include 13C NMR spectra, the IR vibrational spectra, and the atomic pair wise distribution function; these were chosen as they are among the methods for which both experimental and calculated values can be readily obtained. Where available, comparison was made to experiment results. Finally, molecular dynamic simulations of pyrolysis were completed on the models to gain an understanding into the nature of the decomposition of these materials when heated.

  9. Insights into the binding of GABA to the insect RDL receptor from atomistic simulations: a comparison of models

    Science.gov (United States)

    Comitani, Federico; Cohen, Netta; Ashby, Jamie; Botten, Dominic; Lummis, Sarah C. R.; Molteni, Carla

    2014-01-01

    The resistance to dieldrin (RDL) receptor is an insect pentameric ligand-gated ion channel (pLGIC). It is activated by the neurotransmitter γ-aminobutyric acid (GABA) binding to its extracellular domain; hence elucidating the atomistic details of this interaction is important for understanding how the RDL receptor functions. As no high resolution structures are currently available, we built homology models of the extracellular domain of the RDL receptor using different templates, including the widely used acetylcholine binding protein and two pLGICs, the Erwinia Chrysanthemi ligand-gated ion channel (ELIC) and the more recently resolved GluCl. We then docked GABA into the selected three dimensional structures, which we used as starting points for classical molecular dynamics simulations. This allowed us to analyze in detail the behavior of GABA in the binding sites, including the hydrogen bond and cation-π interaction networks it formed, the conformers it visited and the possible role of water molecules in mediating the interactions; we also estimated the binding free energies. The models were all stable and showed common features, including interactions consistent with experimental data and similar to other pLGICs; differences could be attributed to the quality of the models, which increases with increasing sequence identity, and the use of a pLGIC template. We supplemented the molecular dynamics information with metadynamics, a rare event method, by exploring the free energy landscape of GABA binding to the RDL receptor. Overall, we show that the GluCl template provided the best models. GABA forming direct salt-bridges with Arg211 and Glu204, and cation-π interactions with an aromatic cage including Tyr109, Phe206 and Tyr254, represents a favorable binding arrangement, and the interaction with Glu204 can also be mediated by a water molecule.

  10. Quantum Drude oscillator model of atoms and molecules: Many-body polarization and dispersion interactions for atomistic simulation

    Science.gov (United States)

    Jones, Andrew P.; Crain, Jason; Sokhan, Vlad P.; Whitfield, Troy W.; Martyna, Glenn J.

    2013-04-01

    Treating both many-body polarization and dispersion interactions is now recognized as a key element in achieving the level of atomistic modeling required to reveal novel physics in complex systems. The quantum Drude oscillator (QDO), a Gaussian-based, coarse grained electronic structure model, captures both many-body polarization and dispersion and has linear scale computational complexity with system size, hence it is a leading candidate next-generation simulation method. Here, we investigate the extent to which the QDO treatment reproduces the desired long-range atomic and molecular properties. We present closed form expressions for leading order polarizabilities and dispersion coefficients and derive invariant (parameter-free) scaling relationships among multipole polarizability and many-body dispersion coefficients that arise due to the Gaussian nature of the model. We show that these “combining rules” hold to within a few percent for noble gas atoms, alkali metals, and simple (first-row hydride) molecules such as water; this is consistent with the surprising success that models with underlying Gaussian statistics often exhibit in physics. We present a diagrammatic Jastrow-type perturbation theory tailored to the QDO model that serves to illustrate the rich types of responses that the QDO approach engenders. QDO models for neon, argon, krypton, and xenon, designed to reproduce gas phase properties, are constructed and their condensed phase properties explored via linear scale diffusion Monte Carlo (DMC) and path integral molecular dynamics (PIMD) simulations. Good agreement with experimental data for structure, cohesive energy, and bulk modulus is found, demonstrating a degree of transferability that cannot be achieved using current empirical models or fully ab initio descriptions.

  11. Atomistic simulations of cross-slip of jogged screw dislocations in copper

    DEFF Research Database (Denmark)

    Vegge, T.; Rasmussen, T.; Leffers, T.

    2001-01-01

    We have performed atomic-scare simulations of cross-slip processes of screw dislocations in copper, simulating jog-free dislocations as well as different types of jogged screw dislocations. Minimum-energy paths and corresponding transition state energies are obtained using the nudged......-elastic-band path technique. We find low barriers and effective masses for the conservative motion along the dislocations of elementary jogs on both ordinary {111}[110] and non-octahedral {110}[110] slip systems. The jogs are found to be constricted and therefore effectively act as pre-existing constrictions...

  12. How anacetrapib inhibits the activity of the cholesteryl ester transfer protein? Perspective through atomistic simulations

    DEFF Research Database (Denmark)

    Aijanen, T.; Koivuniemi, A.; Javanainen, M.

    2014-01-01

    simulations to shed light on the inhibitory mechanism of anacetrapib and unlock the interactions between the drug and CETP. The results show an evident affinity of anacetrapib towards the concave surface of CETP, and especially towards the region of the N-terminal tunnel opening. The primary binding site...... of anacetrapib to regulate the structure-function relationships of phospholipids and helix X, the latter representing the structural region of CETP important to the process of neutral lipid exchange with lipoproteins. Altogether, the simulations propose CETP inhibition to be realized when anacetrapib...

  13. Improving the Functional Control of Aged Ferroelectrics Using Insights from Atomistic Modeling

    Science.gov (United States)

    Chapman, J. B. J.; Cohen, R. E.; Kimmel, A. V.; Duffy, D. M.

    2017-10-01

    We provide a fundamental insight into the microscopic mechanisms of the aging processes. Using large-scale molecular dynamics simulations of the prototypical ferroelectric material PbTiO3 , we demonstrate that the experimentally observed aging phenomena can be reproduced from intrinsic interactions of defect dipoles related to dopant-vacancy associates, even in the absence of extrinsic effects. We show that variation of the dopant concentration modifies the material's hysteretic response. We identify a universal method to reduce loss and tune the electromechanical properties of inexpensive ceramics for efficient technologies.

  14. Exploration of Structural Changes in Lactose Permease on Sugar Binding and Proton Transport through Atomistic Simulations

    Science.gov (United States)

    Liu, Jin; Jewel, Yead; Dutta, Prashanta

    2017-11-01

    Escherichia coli lactose permease (LacY) actively transports lactose and other galactosides across cell membranes through lactose/H+ symport process. Lactose/H+ symport is a highly complex process that involves large-scale protein conformational changes. The complete picture of lactose/H+ symport is largely unclear. In this work, we develop the force field for sugar molecules compatible with PACE, a hybrid and coarse-grained force field that couples the united-atom protein models with the coarse-grained MARTINI water/lipid. After validation, we implement the new force field to investigate the binding of a β-D-galactopyranosyl-1-thio- β-D-galactopyranoside (TDG) molecule to a wild-type LacY. Transitions from inward-facing to outward-facing conformations upon TDG binding and protonation of Glu269 have been achieved from microsecond simulations. Both the opening of the periplasmic side and closure of the cytoplasmic side of LacY are consistent with experiments. Our analysis suggest that the conformational changes of LacY are a cumulative consequence of inter-domain H-bonds breaking at the periplasmic side, inter-domain salt-bridge formation at the cytoplasmic side, as well as the TDG orientational changes during the transition. This work is supported by US National Science Foundation under Grant No. CBET-1604211.

  15. A Continuum-Atomistic Analysis of Transgranular Crack Propagation in Aluminum

    Science.gov (United States)

    Yamakov, V.; Saether, E.; Glaessgen, E.

    2009-01-01

    A concurrent multiscale modeling methodology that embeds a molecular dynamics (MD) region within a finite element (FEM) domain is used to study plastic processes at a crack tip in a single crystal of aluminum. The case of mode I loading is studied. A transition from deformation twinning to full dislocation emission from the crack tip is found when the crack plane is rotated around the [111] crystallographic axis. When the crack plane normal coincides with the [112] twinning direction, the crack propagates through a twinning mechanism. When the crack plane normal coincides with the [011] slip direction, the crack propagates through the emission of full dislocations. In intermediate orientations, a transition from full dislocation emission to twinning is found to occur with an increase in the stress intensity at the crack tip. This finding confirms the suggestion that the very high strain rates, inherently present in MD simulations, which produce higher stress intensities at the crack tip, over-predict the tendency for deformation twinning compared to experiments. The present study, therefore, aims to develop a more realistic and accurate predictive modeling of fracture processes.

  16. Atomistic to Continuum Multiscale and Multiphysics Simulation of NiTi Shape Memory Alloy

    Science.gov (United States)

    Gur, Sourav

    Shape memory alloys (SMAs) are materials that show reversible, thermo-elastic, diffusionless, displacive (solid to solid) phase transformation, due to the application of temperature and/ or stress (/strain). Among different SMAs, NiTi is a popular one. NiTi shows reversible phase transformation, the shape memory effect (SME), where irreversible deformations are recovered upon heating, and superelasticity (SE), where large strains imposed at high enough temperatures are fully recovered. Phase transformation process in NiTi SMA is a very complex process that involves the competition between developed internal strain and phonon dispersion instability. In NiTi SMA, phase transformation occurs over a wide range of temperature and/ or stress (strain) which involves, evolution of different crystalline phases (cubic austenite i.e. B2, different monoclinic variant of martensite i.e. B19', and orthorhombic B19 or BCO structures). Further, it is observed from experimental and computational studies that the evolution kinetics and growth rate of different phases in NiTi SMA vary significantly over a wide spectrum of spatio-temporal scales, especially with length scales. At nano-meter length scale, phase transformation temperatures, critical transformation stress (or strain) and phase fraction evolution change significantly with sample or simulation cell size and grain size. Even, below a critical length scale, the phase transformation process stops. All these aspects make NiTi SMA very interesting to the science and engineering research community and in this context, the present focuses on the following aspects. At first this study address the stability, evolution and growth kinetics of different phases (B2 and variants of B19'), at different length scales, starting from the atomic level and ending at the continuum macroscopic level. The effects of simulation cell size, grain size, and presence of free surface and grain boundary on the phase transformation process

  17. Atomistic determinants of co-enzyme Q reduction at the Qi-site of the cytochrome bc1 complex

    DEFF Research Database (Denmark)

    Postila, Pekka A.; Kaszuba, Karol; Kuleta, Patryk

    2016-01-01

    has been studied vigorously. Here, this vast amount of data is reassessed after probing the substrate reduction steps at the Q i-site of the cyt bc 1 complex of Rhodobacter capsulatus using atomistic molecular dynamics simulations. The simulations suggest that the Lys251 side chain could rotate...... into the Q i-site to facilitate binding of half-protonated semiquinone-a reaction intermediate that is potentially formed during substrate reduction. At this bent pose, the Lys251 forms a salt bridge with the Asp252, thus making direct proton transfer possible. In the neutral state, the lysine side chain...

  18. Matching conditions in the quasicontinuum method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic region

    DEFF Research Database (Denmark)

    Shimokawa, T.; Mortensen, Jens Jørgen; Schiøtz, Jakob

    2004-01-01

    The quasicontinuum method is a way of reducing the number of degrees of freedom in an atomistic simulation by removing the majority of the atoms in regions of slowly varying strain fields. Due to the different ways the energy of the atoms is calculated in the coarse-grained regions and the region...... the quasicontinuum method without these problems by introducing a buffer layer between the two regions of space. The method is applicable to short-ranged potentials in the face-centered cubic, body-centered cubic, and hexagonal close-packed crystal structures....

  19. Atomistic modelling of the interdiffusion of Al in the UMo based fuel

    International Nuclear Information System (INIS)

    Garces, Jorge E.; Marino, Armando C.; Bozzolo, Guillermo

    2002-01-01

    The analysis of the initial stages and trends in the process of interdiffusion of Al in the UMo solid solution as a function of Mo concentration is made using the BFS method for alloys. The approach presented in this work helps to understand the exchange mechanism between adatoms and substrate atoms in the binary systems, leading to the behavior observed in the ternary Al-U-Mo system. While in Al/U Al atoms show a noticeable tendency to interdiffusion in the bulk, in Al/Mo the same atoms show a tendency to layer-by-layer growth and the formation of structures in the overlayer. In the case of Al/U-Mo, the two competing behaviors observed for Al/Mo and Al/U, translate into the role of regions rich in Mo acting as interdiffusion barriers, in excellent agreement with experimental evidence. (author)

  20. Enhancing Entropy and Enthalpy Fluctuations to Drive Crystallization in Atomistic Simulations.

    Science.gov (United States)

    Piaggi, Pablo M; Valsson, Omar; Parrinello, Michele

    2017-07-07

    Crystallization is a process of great practical relevance in which rare but crucial fluctuations lead to the formation of a solid phase starting from the liquid. As in all first order first transitions, there is an interplay between enthalpy and entropy. Based on this idea, in order to drive crystallization in molecular simulations, we introduce two collective variables, one enthalpic and the other entropic. Defined in this way, these collective variables do not prejudge the structure into which the system is going to crystallize. We show the usefulness of this approach by studying the cases of sodium and aluminum that crystallize in the bcc and fcc crystalline structures, respectively. Using these two generic collective variables, we perform variationally enhanced sampling and well tempered metadynamics simulations and find that the systems transform spontaneously and reversibly between the liquid and the solid phases.

  1. Enhancing Entropy and Enthalpy Fluctuations to Drive Crystallization in Atomistic Simulations

    Science.gov (United States)

    Piaggi, Pablo M.; Valsson, Omar; Parrinello, Michele

    2017-07-01

    Crystallization is a process of great practical relevance in which rare but crucial fluctuations lead to the formation of a solid phase starting from the liquid. As in all first order first transitions, there is an interplay between enthalpy and entropy. Based on this idea, in order to drive crystallization in molecular simulations, we introduce two collective variables, one enthalpic and the other entropic. Defined in this way, these collective variables do not prejudge the structure into which the system is going to crystallize. We show the usefulness of this approach by studying the cases of sodium and aluminum that crystallize in the bcc and fcc crystalline structures, respectively. Using these two generic collective variables, we perform variationally enhanced sampling and well tempered metadynamics simulations and find that the systems transform spontaneously and reversibly between the liquid and the solid phases.

  2. Atomistic self-sputtering mechanisms of rf breakdown in high-gradient linacs

    International Nuclear Information System (INIS)

    Insepov, Z.; Norem, J.; Veitzer, S.

    2010-01-01

    Molecular dynamics (MD) models of sputtering solid and liquid surfaces - including the surfaces charged by interaction with plasma, Coulomb explosion, and Taylor cone formation - were developed. MD simulations of self-sputtering of a crystalline (1 0 0) copper surface by Cu + ions in a wide range of ion energies (50 eV-50 keV) were performed. In order to accommodate energetic ion impacts on a target, a computational model was developed that utilizes MD to simulate rapid atomic collisions in the central impact zone, and a finite-difference method to absorb the energy and shock wave for the collisional processes occurring at a longer time scales. The sputtering yield increases if the surface temperature rises and the surface melts as a result of heat from plasma. Electrostatic charging of the surface under bombardment with plasma ions is another mechanism that can dramatically increase the sputtering yield because it reduces the surface binding energy and the surface tension. An MD model of Taylor cone formation at a sharp tip placed in a high electric field was developed, and the model was used to simulate Taylor cone formation for the first time. Good agreement was obtained between the calculated Taylor cone angle (104.3 deg.) and the experimental one (98.6 deg.). A Coulomb explosion (CE) was proposed as the main surface failure mechanism triggering breakdown, and the dynamics of CE was studied by MD.

  3. Non-equilibrium responses of PFPE lubricants with various atomistic/molecular architecture at elevated temperature

    Directory of Open Access Journals (Sweden)

    Pil Seung Chung

    2017-05-01

    Full Text Available During the operation of hard disk drive (HDD, the perfluoropolyether (PFPE lubricant experiences elastic or viscous shear/elongation deformations, which affect the performance and reliability of the HDD. Therefore, the viscoelastic responses of PFPE could provide a finger print analysis in designing optimal molecular architecture of lubricants to control the tribological phenomena. In this paper, we examine the rheological responses of PFPEs including storage (elastic and loss (viscous moduli (G′ and G″ by monitoring the time-dependent-stress-strain relationship via non-equilibrium molecular dynamics simulations. We analyzed the rheological responses by using Cox-Merz rule, and investigated the molecular structural and thermal effects on the solid-like and liquid-like behaviors of PFPEs. The temperature dependence of the endgroup agglomeration phenomena was examined, where the functional endgroups are decoupled as the temperature increases. By analyzing the relaxation processes, the molecular rheological studies will provide the optimal lubricant selection criteria to enhance the HDD performance and reliability for the heat-assisted magnetic recording applications.

  4. Non-equilibrium responses of PFPE lubricants with various atomistic/molecular architecture at elevated temperature

    Science.gov (United States)

    Chung, Pil Seung; Song, Wonyup; Biegler, Lorenz T.; Jhon, Myung S.

    2017-05-01

    During the operation of hard disk drive (HDD), the perfluoropolyether (PFPE) lubricant experiences elastic or viscous shear/elongation deformations, which affect the performance and reliability of the HDD. Therefore, the viscoelastic responses of PFPE could provide a finger print analysis in designing optimal molecular architecture of lubricants to control the tribological phenomena. In this paper, we examine the rheological responses of PFPEs including storage (elastic) and loss (viscous) moduli (G' and G″) by monitoring the time-dependent-stress-strain relationship via non-equilibrium molecular dynamics simulations. We analyzed the rheological responses by using Cox-Merz rule, and investigated the molecular structural and thermal effects on the solid-like and liquid-like behaviors of PFPEs. The temperature dependence of the endgroup agglomeration phenomena was examined, where the functional endgroups are decoupled as the temperature increases. By analyzing the relaxation processes, the molecular rheological studies will provide the optimal lubricant selection criteria to enhance the HDD performance and reliability for the heat-assisted magnetic recording applications.

  5. Atomistic interactions of clusters on surfaces using molecular dynamics and hyper molecular dynamics

    International Nuclear Information System (INIS)

    Sanz-Navarro, Carlos F.

    2002-01-01

    The work presented in this thesis describes the results of Molecular Dynamics (MD) simulations applied to the interaction of silver clusters with graphite surfaces and some numerical and theoretical methods concerning the extension of MD simulations to longer time scales (hyper-MD). The first part of this thesis studies the implantation of clusters at normal incidence onto a graphite surface in order to determine the scaling of the penetration depth (PD) against the impact energy. A comparison with experimental results is made with good agreement. The main physical observations of the impact process are described and analysed. It is shown that there is a threshold impact velocity above which the linear dependence on PD on impact energy changes to a linear dependence on velocity. Implantation of silver clusters at oblique incidence is also considered. The second part of this work analyses the validity and feasibility of the three minimisation methods for the hyper-MD simulation method whereby time scales of an MD simulation can be extended. A correct mathematical basis for the iterative method is derived. It is found that one of the iterative methods, upon which hyper-lD is based, is very likely to fail in high-dimensional situations because it requires a too expensive convergence. Two new approximations to the hyper-MD approach are proposed, which reduce the computational effort considerably. Both approaches, although not exact, can help to search for some of the most likely transitions in the system. Some examples are given to illustrate this. (author)

  6. Continuum Description of Atomistics for Nanomechanics of Grain Boundary Embrittlement in FCC Metals

    Science.gov (United States)

    Kim, K.-S.; Wang, C.-K.; Cha, M.-H.; Chew, H. B.

    2012-02-01

    A nonlinear field projection method has been developed to study nanometer scale mechanical properties of grain boundaries in nanocrystalline FCC metals [1]. The nonlinear field projection is based on the principle of virtual work, for virtual variations of atomic positions in equilibrium through nonlocal interatomic interactions such as EAM potential interaction, to get field-projected subatomic-resolution traction distributions on various grain boundaries. The analyses show that the field projected traction produces periodic concentrated compression sites on the grain boundary, which act as crack trapping or dislocation nucleation sites. The field projection was also used to assess the nanometer scale failure processes of Cu σ5 and σ9 grain boundaries doped with Pb. It was revealed that the most significant atomic rearrangement is dislocation emission which requires local GB slip, and some Pb locks the local GB slip and in turn, embrittles the GB. Reference: [1] C.-K. Wang, et al., 2011, MRS Proceedings, Vol. 1297, DOI: 10.1557/opl.2011.678.

  7. Exploring the Dynamics of Propeller Loops in Human Telomeric DNA Quadruplexes Using Atomistic Simulations

    Science.gov (United States)

    2017-01-01

    We have carried out a series of extended unbiased molecular dynamics (MD) simulations (up to 10 μs long, ∼162 μs in total) complemented by replica-exchange with the collective variable tempering (RECT) approach for several human telomeric DNA G-quadruplex (GQ) topologies with TTA propeller loops. We used different AMBER DNA force-field variants and also processed simulations by Markov State Model (MSM) analysis. The slow conformational transitions in the propeller loops took place on a scale of a few μs, emphasizing the need for long simulations in studies of GQ dynamics. The propeller loops sampled similar ensembles for all GQ topologies and for all force-field dihedral-potential variants. The outcomes of standard and RECT simulations were consistent and captured similar spectrum of loop conformations. However, the most common crystallographic loop conformation was very unstable with all force-field versions. Although the loss of canonical γ-trans state of the first propeller loop nucleotide could be related to the indispensable bsc0 α/γ dihedral potential, even supporting this particular dihedral by a bias was insufficient to populate the experimentally dominant loop conformation. In conclusion, while our simulations were capable of providing a reasonable albeit not converged sampling of the TTA propeller loop conformational space, the force-field description still remained far from satisfactory. PMID:28475322

  8. Surfactant-nanotube interactions in water and nanotube separation by diameter: atomistic simulations

    Science.gov (United States)

    Carvalho, E. J. F.; Dos Santos, M. C.

    2010-05-01

    A non-destructive sorting method to separate single-walled carbon nanotubes (SWNTs) by diameter was recently proposed. By this method, SWNTs are suspended in water by surfactant encapsulation and the separation is carried out by ultracentrifugation in a density gradient. SWNTs of different diameters are distributed according to their densities along the centrifuge tube. A mixture of two anionic surfactants, namely sodium dodecylsulfate (SDS) and sodium cholate (SC), presented the best performance in discriminating nanotubes by diameter. Unexpectedly, small diameter nanotubes are found at the low density part of the centrifuge tube. We present molecular dynamics studies of the water-surfactant-SWNT system to investigate the role of surfactants in the sorting process. We found that surfactants can actually be attracted towards the interior of the nanotube cage, depending on the relationship between the surfactant radius of gyration and the nanotube diameter. The dynamics at room temperature showed that, as the amphiphile moves to the hollow cage, water molecules are dragged together, thereby promoting the nanotube filling. The resulting densities of filled SWNT are in agreement with measured densities.

  9. A structural mechanics study of single-walled carbon nanotubes generalized from atomistic simulation.

    Science.gov (United States)

    Chen, Xi; Cao, Guoxin

    2006-02-28

    A new structural mechanics model is developed to closely duplicate the atomic configuration and behaviours of single-walled carbon nanotubes (SWCNTs). The SWCNTs are effectively represented by a space frame, where primary and secondary beams are used to bridge the nearest and next-nearest carbon atoms, to mimic energies associated with bond stretching and angle variation, respectively. The elastic properties of the frame components are generalized from molecular dynamics (MD) simulation based on an accurate ab initio force field, and numerical analyses of tension, bending, and torsion are carried out on nine different SWCNTs. The space-frame model also closely duplicates the buckling behaviours of SWCNTs in torsion and bending. In addition, by repeating the same process with continuum shell and beam models, new elastic and section parameters are fitted from the MD benchmark experiments. As an application, all three models are employed to study the thermal vibration behaviours of SWCNTs, and excellent agreements with MD analyses are found. The present analysis is a systematic structural mechanics attempt to fit SWCNT properties for several basic deformation modes and applicable to a variety of SWCNTs. The continuum models and fitted parameters may be used to effectively simulate the overall deformation behaviours of SWCNTs at much larger length- and timescales than pure MD analysis.

  10. PELE web server: atomistic study of biomolecular systems at your fingertips.

    Science.gov (United States)

    Madadkar-Sobhani, Armin; Guallar, Victor

    2013-07-01

    PELE, Protein Energy Landscape Exploration, our novel technology based on protein structure prediction algorithms and a Monte Carlo sampling, is capable of modelling the all-atom protein-ligand dynamical interactions in an efficient and fast manner, with two orders of magnitude reduced computational cost when compared with traditional molecular dynamics techniques. PELE's heuristic approach generates trial moves based on protein and ligand perturbations followed by side chain sampling and global/local minimization. The collection of accepted steps forms a stochastic trajectory. Furthermore, several processors may be run in parallel towards a collective goal or defining several independent trajectories; the whole procedure has been parallelized using the Message Passing Interface. Here, we introduce the PELE web server, designed to make the whole process of running simulations easier and more practical by minimizing input file demand, providing user-friendly interface and producing abstract outputs (e.g. interactive graphs and tables). The web server has been implemented in C++ using Wt (http://www.webtoolkit.eu) and MySQL (http://www.mysql.com). The PELE web server, accessible at http://pele.bsc.es, is free and open to all users with no login requirement.

  11. Atomistic simulations of void migration under thermal gradient in UO2

    International Nuclear Information System (INIS)

    Desai, Tapan G.; Millett, Paul; Tonks, Michael; Wolf, Dieter

    2010-01-01

    It is well known that within a few hours after startup of a nuclear reactor, the temperature gradient within a fuel element causes migration of voids/bubbles radially inwards to form a central hole. To understand the atomic processes that control this migration of voids, we performed molecular dynamics (MD) simulations on single crystal UO 2 with voids of diameter 2.2 nm. An external temperature gradient was applied across the simulation cell. At the end of the simulation run, it was observed that the voids had moved towards the hot end of the simulation cell. The void migration velocity obtained from the simulations was compared with the available phenomenological equations for void migration due to different transport mechanisms. Surface diffusion of the slowest moving specie, i.e. uranium, was found to be the dominant mechanism for void migration. The contribution from lattice diffusion and the thermal stress gradient to the void migration was analyzed and found to be negligible. By extrapolation, a crossover from the surface-diffusion-controlled mechanism to the lattice-diffusion-controlled mechanism was found to occur for voids with sizes in the μm range.

  12. Zinc adsorption on clays inferred from atomistic simulations and EXAFS spectroscopy

    International Nuclear Information System (INIS)

    Churakov, S.V.; Daehn, R.

    2012-01-01

    Document available in extended abstract form only. Clay minerals such as illite and montmorillonite are ubiquitous in the environment. Because of their large specific area and high structural charge, they control the migration of heavy metals in the geosphere via different uptake mechanisms. The main processes for the sequestration of trace concentrations of heavy metals are sorption to clay edge sites and incorporation into clay structures. Whereas, sorption is a fast process occurring nearly instantaneously, the incorporation of metal ions into clay minerals occurs over geological time scales. Zn is a divalent transition metal, which shows similar chemical behavior to Ni and Co and can thus also be considered as a natural analogue for radioactive Ni and Co arising from nuclear fuel and radioactive waste from the decommissioning of nuclear power plants. The release of radionuclides from a repository can be considerably retarded due to interactions with clay minerals. For example, bentonite containing >70 wt% di-octahedral alumino-silicate clays is foreseen as a backfill material in the Swiss concept for a high level radioactive waste repository (NAGRA, 2002). Knowing the uptake mechanism of these elements on clays can help to protect the natural environment. In this study ab initio molecular dynamics (MD) calculations were applied to simulate the molecular mechanism of Zn uptake on the edge surfaces of montmorillonite, a di-octahedral clay, and to explain the measured K-edge extended X-ray absorption fine structure (EXAFS) spectra of Zn adsorbed on montmorillonite at different loadings. Two different montmorillonites were chosen for the experimental part of this study: Milos (Island of Milos, Greece) and STx-1 (Gonzales County, Texas, USA) (VANTELON et al., 2003). As a reference for Zn substituted for Al in the clay octahedral sheet a MILOS sample was prepared without adding any Zn. Milos was chosen because it contains 1.8 [mmol/kg] Zn incorporated into the

  13. Ab initio and DFT derived potential energy functions in simulations of selected polyesters based on atomistic models

    Science.gov (United States)

    Blomqvist, Johanna Marjaana

    This study focuses on atomistic simulations of polyesters, the main interest being in the performance of classical models. The Polymer Consistent Force Field (PCFF), developed for synthetic polymers, forms the basis for the simulations. The calculated properties of synthetic polymers depend strongly on the conformational statistics of the polymer chains, and the force field is, therefore, of crucial importance for the reliability of the simulations. Thus, the PCFF has been tested by comparing its results for model molecules of the polyesters studied with those of quantum mechanical ab initio and density functional theory (DFT) calculations regarding the rotational behaviour of typical bonds in these polyesters. The calculations showed that there were severe disagreements between the quantum mechanical and the PCFF studies, leading thus to re-optimisation of the particular torsion potentials of the PCFF. The quantum mechanical methods used were also compared, and though they gave mostly similar results, the DFT methods were found to underestimate some of the torsional barriers. The modified PCFF was shown to yield results in good agreement with experimental data for single chain properties of the selected polyesters. The dependence of the RIS Metropolis Monte Carlo (RMMC) method, used for these property calculations, on different run parameters, was discussed in more detail. The RMMC method, using the original and modified PCFFs, was also used in studies on the flexibility of some polyesters, which are known to be biodegradable, i.e. of polylactic (PLA) and polyglycolic (PGA) acids and some of their copolymers. The original PCFF was found to reproduce the flexibilities of these polyesters in contradiction with the results obtained with the modified PCFF. Finally, the modified PCFF was applied to molecular dynamics simulations on the constructed amorphous models for PLA and PGA and some of their copolymers to study the probability for hydrolysis as the first stage of

  14. Toward Automated Benchmarking of Atomistic Force Fields: Neat Liquid Densities and Static Dielectric Constants from the ThermoML Data Archive.

    Science.gov (United States)

    Beauchamp, Kyle A; Behr, Julie M; Rustenburg, Ariën S; Bayly, Christopher I; Kroenlein, Kenneth; Chodera, John D

    2015-10-08

    Atomistic molecular simulations are a powerful way to make quantitative predictions, but the accuracy of these predictions depends entirely on the quality of the force field employed. Although experimental measurements of fundamental physical properties offer a straightforward approach for evaluating force field quality, the bulk of this information has been tied up in formats that are not machine-readable. Compiling benchmark data sets of physical properties from non-machine-readable sources requires substantial human effort and is prone to the accumulation of human errors, hindering the development of reproducible benchmarks of force-field accuracy. Here, we examine the feasibility of benchmarking atomistic force fields against the NIST ThermoML data archive of physicochemical measurements, which aggregates thousands of experimental measurements in a portable, machine-readable, self-annotating IUPAC-standard format. As a proof of concept, we present a detailed benchmark of the generalized Amber small-molecule force field (GAFF) using the AM1-BCC charge model against experimental measurements (specifically, bulk liquid densities and static dielectric constants at ambient pressure) automatically extracted from the archive and discuss the extent of data available for use in larger scale (or continuously performed) benchmarks. The results of even this limited initial benchmark highlight a general problem with fixed-charge force fields in the representation low-dielectric environments, such as those seen in binding cavities or biological membranes.

  15. Prediction and validation of diffusion coefficients in a model drug delivery system using microsecond atomistic molecular dynamics simulation and vapour sorption analysis.

    Science.gov (United States)

    Forrey, Christopher; Saylor, David M; Silverstein, Joshua S; Douglas, Jack F; Davis, Eric M; Elabd, Yossef A

    2014-10-14

    Diffusion of small to medium sized molecules in polymeric medical device materials underlies a broad range of public health concerns related to unintended leaching from or uptake into implantable medical devices. However, obtaining accurate diffusion coefficients for such systems at physiological temperature represents a formidable challenge, both experimentally and computationally. While molecular dynamics simulation has been used to accurately predict the diffusion coefficients, D, of a handful of gases in various polymers, this success has not been extended to molecules larger than gases, e.g., condensable vapours, liquids, and drugs. We present atomistic molecular dynamics simulation predictions of diffusion in a model drug eluting system that represent a dramatic improvement in accuracy compared to previous simulation predictions for comparable systems. We find that, for simulations of insufficient duration, sub-diffusive dynamics can lead to dramatic over-prediction of D. We present useful metrics for monitoring the extent of sub-diffusive dynamics and explore how these metrics correlate to error in D. We also identify a relationship between diffusion and fast dynamics in our system, which may serve as a means to more rapidly predict diffusion in slowly diffusing systems. Our work provides important precedent and essential insights for utilizing atomistic molecular dynamics simulations to predict diffusion coefficients of small to medium sized molecules in condensed soft matter systems.

  16. An Atomistic Modeling Study of Alloying Element Impurity Element, and Transmutation Products on the cohesion of A Nickel E5 {001} Twist Grain Boundary

    International Nuclear Information System (INIS)

    Young, G.A. Jr.; Najafabadi, R.; Strohmayer, W.; Baldrey, D.G.; Hamm, B.; Harris, J.; Sticht, J.; Wimmer, E.

    2003-01-01

    Atomistic modeling methods were employed to investigate the effects of impurity elements on the metallurgy, irradiation embrittlement, and environmentally assisted cracking of nickel-base alloys exposed to nuclear environments. Calculations were performed via ab initio atomistic modeling methods to ensure the accuracy and reliability of the results. A Griffith-type fracture criterion was used to quantitatively assess the effect of elements or element pairs on the grain boundary cohesive strength. In order of most embrittling to most strengthening, the elements are ranked as: He, Li, S, H, C, Zr, P, Fe, Mn, Nb, Cr, and B. Helium is strongly embrittling (-2.04 eV/atom lowering of the Griffith energy), phosphorus has little effect on the grain boundary (0.1 eV/atom), and boron offers appreciable strengthening (1.03 eV/atom increase in the Griffith energy). Calculations for pairs of elements (H-Li, H-B, H-C, H-P, and H-S) show little interaction on the grain boundary cohesive energy, so that for the conditions studied, linear superposition of elemental effects is a good approximation. These calculations help explain metallurgical effects (e.g. why boron can strengthen grain boundaries), irradiation embrittlement (e.g. how boron transmutation results in grain boundary embrittlement), as well as how grain boundary impurity elements can affect environmentally assisted cracking (i.e. low temperature crack propagation and stress corrosion cracking) of nickel-base alloys

  17. Atomistics of crack propagation

    International Nuclear Information System (INIS)

    Sieradzki, K.; Dienes, G.J.; Paskin, A.; Massoumzadeh, B.

    1988-01-01

    The molecular dynamic technique is used to investigate static and dynamic aspects of crack extension. The material chosen for this study was the 2D triangular solid with atoms interacting via the Johnson potential. The 2D Johnson solid was chosen for this study since a sharp crack in this material remains stable against dislocation emission up to the critical Griffith load. This behavior allows for a meaningful comparison between the simulation results and continuum energy theorems for crack extension by appropriately defining an effective modulus which accounts for sample size effects and the non-linear elastic behavior of the Johnson solid. Simulation results are presented for the stress fields of moving cracks and these dynamic results are discussed in terms of the dynamic crack propagation theories, of Mott, Eshelby, and Freund

  18. Computer simulation of nonequilibrium processes

    International Nuclear Information System (INIS)

    Hoover, W.G.; Moran, B.; Holian, B.L.; Posch, H.A.; Bestiale, S.

    1987-01-01

    Recent atomistic simulations of irreversible macroscopic hydrodynamic flows are illustrated. An extension of Nose's reversible atomistic mechanics makes it possible to simulate such non-equilibrium systems with completely reversible equations of motion. The new techniques show that macroscopic irreversibility is a natural inevitable consequence of time-reversible Lyapunov-unstable microscopic equations of motion

  19. High temperature properties and processes in ceramics: thermomigration

    International Nuclear Information System (INIS)

    1978-01-01

    The focus of this program is on the effects of large temperature gradients on the transport processes, the defect structure and resulting physical properties of ceramics. In particular, the transport of ions due to thermal gradients is one of the least understood phenomenon in materials science and is presumably based on fundamental understanding of thermodynamics, atomistic kinetic processes, and structure-property relationships. The purpose of this research is to systematically consider each of the elements of atomic transport due to driving forces other than composition gradients in a model ceramic system

  20. Scalability of a Low-Cost Multi-Teraflop Linux Cluster for High-End Classical Atomistic and Quantum Mechanical Simulations

    Science.gov (United States)

    Kikuchi, Hideaki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Shimojo, Fuyuki; Saini, Subhash

    2003-01-01

    Scalability of a low-cost, Intel Xeon-based, multi-Teraflop Linux cluster is tested for two high-end scientific applications: Classical atomistic simulation based on the molecular dynamics method and quantum mechanical calculation based on the density functional theory. These scalable parallel applications use space-time multiresolution algorithms and feature computational-space decomposition, wavelet-based adaptive load balancing, and spacefilling-curve-based data compression for scalable I/O. Comparative performance tests are performed on a 1,024-processor Linux cluster and a conventional higher-end parallel supercomputer, 1,184-processor IBM SP4. The results show that the performance of the Linux cluster is comparable to that of the SP4. We also study various effects, such as the sharing of memory and L2 cache among processors, on the performance.

  1. Study of the embedded atom method of atomistic calculations for metals and alloys: Progress report, March 1, 1987-February 28, 1988

    International Nuclear Information System (INIS)

    Johnson, R.A.

    1987-11-01

    The relationships between the physical input and output of the Embedded Atom Method (EAM) used in atomistic calculations for metals and alloys and the model functions and parameters are being investigated. An analytic fcc EAM model has been derived based on short range approximations to the input functions in EAM and has been studied both analytically and numerically for the fcc lattice. This model has been extended to longer ranges and applied to both fcc and hcp metals. The correspondence between models based on density functional theory (EAM), tight binding methods, and effective medium theory has been reported. The reasons for difficulty in applying EAM to bcc metals is under study and a new form of alloy potential which retains general properties of pure metal potentials has been developed. 8 refs

  2. Insight of DFT and atomistic thermodynamics on the adsorption and insertion of halides onto the hydroxylated NiO(1 1 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Bouzoubaa, A. [Laboratoire de Physico-Chimie des surfaces, CNRS-ENSCP (UMR 7045), Ecole Nationale Superieure de Chimie de Paris, Chimie-ParisTech, 11 rue Pierre et Marie Curie, 75005 Paris (France); Costa, D., E-mail: dominique-costa@chimie-paristech.f [Laboratoire de Physico-Chimie des surfaces, CNRS-ENSCP (UMR 7045), Ecole Nationale Superieure de Chimie de Paris, Chimie-ParisTech, 11 rue Pierre et Marie Curie, 75005 Paris (France); Diawara, B., E-mail: boubakar-diawara@chimie-paristech.f [Laboratoire de Physico-Chimie des surfaces, CNRS-ENSCP (UMR 7045), Ecole Nationale Superieure de Chimie de Paris, Chimie-ParisTech, 11 rue Pierre et Marie Curie, 75005 Paris (France); Audiffren, N. [CINES, Centre Informatique National de l' Enseignement Superieur, 950 rue de Saint Priest, 34097 Montpellier Cedex 5 (France); Marcus, P. [Laboratoire de Physico-Chimie des surfaces, CNRS-ENSCP (UMR 7045), Ecole Nationale Superieure de Chimie de Paris, Chimie-ParisTech, 11 rue Pierre et Marie Curie, 75005 Paris (France)

    2010-08-15

    Spin polarized, DFT + U periodic calculations have been used to study the interaction of halides (X) with a (1 x 1)-hydroxylated NiO(1 1 1) surface, a model of passivated nickel. The exchange of surface OH groups by the X ions and the insertion of the halides in the anionic sub-surface layer have been investigated. The substitution of OH by halides is favored by a smaller size of the halide ions and by a lower substitution proportion. An atomistic thermodynamic approach including solvent effects allows us to construct phase diagrams of the surface terminations as a function of the Cl and F concentrations in the aqueous solution. The higher proportion of OH substitution by F, and the lower insertion energy, as compared to Cl, may be related to stronger corrosion caused by F as compared to Cl.

  3. Effective mass approximation versus full atomistic model to calculate the output characteristics of a gate-all-around germanium nanowire field effect transistor (GAA-GeNW-FET)

    Science.gov (United States)

    Bayani, Amir Hossein; Voves, Jan; Dideban, Daryoosh

    2018-01-01

    Here, we compare the output characteristics of a gate-all-around germanium nanowire field effect transistor (GAA-GeNW-FET) with 2.36 nm2 square cross-section area using tight-binding (TB) sp3d5s∗ model (full atomistic model (FAM)) and effective mass approximation (EMA). Synopsys/QuantumWise Atomistix ToolKit (ATK) and Silvaco Atlas3D are used to consider the TB model and EMA, respectively. Results show that EMA predicted only one quantum state (QS) for quantum transport, whereas FAM predicted three QSs. A cosine function behavior is obtained by both methods for the first quantum state. The calculated bandgap value by EMA is almost twice smaller than that of the FAM. Also, a fluctuating current is predicted by both methods but in different oscillation values.

  4. Application of X-ray absorption spectroscopy and molecular dynamics simulation to study the atomistic solvation structure of tetraglyme:KSCN electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Chaodamrongsakul, Jittima [Faculty of Engineering, Vongchavalitkul University, Nakhon Ratchasima (Thailand); Klysubun, Wantana [Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima (Thailand); Vao-soongnern, Visit, E-mail: visit@sut.ac.th [School of Chemistry, Institute of Science, Suranaree University of Technology (Thailand)

    2014-02-14

    The atomistic solvation structure of tetraglyme:KSCN (TET:KSCN) electrolytes with various K{sup +}:ether oxygen (M:O) ratio were studied by a combination of molecular dynamic (MD) simulation and Extended X-Ray Absorption Fine Structure (EXAFS) called “MD-EXAFS” method. This method gives useful information at the atomistic scale including the average distance between atom pair around the probed ion (R{sub 0}) and Coordination Number (N). MD simulation results suggest that K{sup +} ions are mostly coordinated to ether oxygen and the conformation around C–C bond prefer the gauche state and TET becomes more compact shape. K{sup +} ions are also coordinated to thiocyanate (SCN{sup −}) anion at both nitrogen and sulfur atoms due to strong electron delocalization over three atoms in SCN{sup −} (S, C and N). A comparison between MD-EXAFS with the experimental spectra gives an overall good agreement for both frequency and amplitude of the oscillations. - Graphical abstract: A snapshot from MD simulation of TET:KSCN complex that represent the solvation structure of K{sup +} ion by TET oxygens and SCN{sup −} anion. The most probable case is the solvation by 1 TET chain with 3 oxygen atoms and 2 SCN{sup −} anion. - Highlights: • This work combines MD simulation and XAS to study polymer electrolytes. • Doping KSCN can slightly induce the conformational change of TET chain. • Both polymer and anions are included in first solvation shell of cation.

  5. A Review of Expertise and Judgment Processes for Risk Estimation

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Boring

    2007-06-01

    A major challenge of risk and reliability analysis for human errors or hardware failures is the need to enlist expert opinion in areas for which adequate operational data are not available. Experts enlisted in this capacity provide probabilistic estimates of reliability, typically comprised of a measure of central tendency and uncertainty bounds. While formal guidelines for expert elicitation are readily available, they largely fail to provide a theoretical basis for expertise and judgment. This paper reviews expertise and judgment in the context of risk analysis; overviews judgment biases, the role of training, and multivariate judgments; and provides guidance on the appropriate use of atomistic and holistic judgment processes.

  6. Analysis of Surface Leaching Processes in Vitrified High-Level Nuclear Wastes Using In-Situ Raman Imaging and Atomistic Modeling - Final Report

    International Nuclear Information System (INIS)

    Simmons, Joseph H.

    2001-01-01

    The in situ analysis of surface conditions of vitrified nuclear wastes can provide an important check of the burial status of radioactive objects without risk of radiation exposure. Raman spectroscopy was initially chosen as the most promising method for testing the surface conditions of glasses undergoing chemical corrosion, and was used extensively during the first year. However, it was determined that infrared reflection spectroscopy was better suited to this particular need and was used for the remaining two years to investigate the surface corrosion behavior of model silicate glasses for extension to nuclear waste glasses. The developed methodology is consistent with the known theory of optical propagation of dielectric media and uses the Kramers-Kronig formalism. The results show that it is possible to study the corrosion of glass by analyzing the glass surface using reflection fast Fourier infrared measurements and the newly developed ''dispersion analysis method.'' The data show how this analysis can be used to monitor the corrosion behavior of vitrified waste glasses over extended periods of storage

  7. Analysis of Surface Leaching Processes in Vitrified High-Level Nuclear Wastes Using In-Situ Raman Imaging and Atomistic Modeling - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Joseph H.

    2001-04-24

    The in situ analysis of surface conditions of vitrified nuclear wastes can provide an important check of the burial status of radioactive objects without risk of radiation exposure. Raman spectroscopy was initially chosen as the most promising method for testing the surface conditions of glasses undergoing chemical corrosion, and was used extensively during the first year. However, it was determined that infrared reflection spectroscopy was better suited to this particular need and was used for the remaining two years to investigate the surface corrosion behavior of model silicate glasses for extension to nuclear waste glasses. The developed methodology is consistent with the known theory of optical propagation of dielectric media and uses the Kramers-Kronig formalism. The results show that it is possible to study the corrosion of glass by analyzing the glass surface using reflection fast Fourier infrared measurements and the newly developed ''dispersion analysis method.'' The data show how this analysis can be used to monitor the corrosion behavior of vitrified waste glasses over extended periods of storage.

  8. Study of the embedded atom method of atomistic calculations for metals and alloys. Final report, March 1, 1986--February 29, 1992

    International Nuclear Information System (INIS)

    Johnson, R.A.

    1992-04-01

    Solids have been studied by atomistic modeling since the earliest availability of computers for scientific research. By the mid sixties, it was understood that models for metals based on reasonably short ranged two-body forces coupled with a global volume dependent contribution to the crystal energy yielded surprisingly good results for bulk calculations, but were unsatisfactory at surfaces. Little progress was made until the early eighties, when Daw and Baskes developed the Embedded-Atom Method (EAM) based on density functional theory and intended primarily for tight-packed transitional metals, and Finnis and Sinclair developed a model based on tight binding theory and intended primarily for bcc transition metals. The underlying mathematical format of both approaches is the same, and provides an extension of the earlier models through a function which in practice provides a measure of local volume dependence. The primary purpose of this research project was to investigate the implications of this mathematical format and to use the resulting insight to correlate the known physical input data with computed results of properties that are difficult to access experimentally. Embedded-Atom Method terminology is used, but this research is applicable as well to the Finnis-Sinclair model

  9. Multiscale modeling for ferroelectric materials: identification of the phase-field model’s free energy for PZT from atomistic simulations

    International Nuclear Information System (INIS)

    Völker, Benjamin; Landis, Chad M; Kamlah, Marc

    2012-01-01

    Within a knowledge-based multiscale simulation approach for ferroelectric materials, the atomic level can be linked to the mesoscale by transferring results from first-principles calculations into a phase-field model. A recently presented routine (Völker et al 2011 Contin. Mech. Thermodyn. 23 435–51) for adjusting the Helmholtz free energy coefficients to intrinsic and extrinsic ferroelectric material properties obtained by DFT calculations and atomistic simulations was subject to certain limitations: caused by too small available degrees of freedom, an independent adjustment of the spontaneous strains and piezoelectric coefficients was not possible, and the elastic properties could only be considered in cubic instead of tetragonal symmetry. In this work we overcome such restrictions by expanding the formulation of the free energy function, i.e. by motivating and introducing new higher-order terms that have not appeared in the literature before. Subsequently we present an improved version of the adjustment procedure for the free energy coefficients that is solely based on input parameters from first-principles calculations performed by Marton and Elsässer, as documented in Völker et al (2011 Contin. Mech. Thermodyn. 23 435–51). Full sets of adjusted free energy coefficients for PbTiO 3 and tetragonal Pb(Zr,Ti)O 3 are presented, and the benefits of the newly introduced higher-order free energy terms are discussed. (paper)

  10. Lattice Thermal Conductivity of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2 from Atomistic Simulations

    Science.gov (United States)

    Lawson, John W.; Daw, Murray S.; Bauschlicher, Charles W.

    2012-01-01

    Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 have a number of properties that make them attractive for applications in extreme environments. One such property is their high thermal conductivity. Computational modeling of these materials will facilitate understanding of fundamental mechanisms, elucidate structure-property relationships, and ultimately accelerate the materials design cycle. Progress in computational modeling of UHTCs however has been limited in part due to the absence of suitable interatomic potentials. Recently, we developed Tersoff style parameterizations of such potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current, in contrast to the more typical monotonic decay seen in monoatomic materials such as Silicon, for example. Results at room temperature and at elevated temperatures will be reported.

  11. Colloidal interactions: bridging the gap from atomistic-scale descriptions to the mesoscale Primitive Model and introducing the Explicit Solvent Primitive Model approach

    Science.gov (United States)

    Pellenq, Roland; Carrier, Benoit; Vandamme, Matthieu; van Damme, Henri; Cnrs/Mit, 2 Team; Laboratoire Navier Team

    We investigated the interactions responsible for the cohesion of colloidal materials such as clays, cement... The swelling/cohesive properties of these (lamellar) materials depend both on the nature of the (interlayer) cations and on the surface charge of the layers. The overall goal of this work is determining the right level of modelling complexity required to capture the cohesive behaviour of charged materials immersed in an electrolyte. In addition to the analytical mean-field DLVO theory, we used various numerical modelling approaches of increasing complexity from the so-called Primitive Model to full-atomistic description. In particular, we introduced the Explicit Solvent Primitive Model (ESPM), in which ions are modelled as charged hard spheres and solvent molecules as soft spheres with embedded point dipoles. We showed that taking explicitly into account the solvent in such a Primitive Model description, significantly impacts the cohesion. Ionic correlation interactions are always present between charged objects immersed in an electrolyte and always play an important role, even in the case of system carrying a low surface charge balanced by monovalent counter-ions.

  12. Fully atomistic molecular dynamics simulations of the behavior of a simple model of crude oil confined between graphene planes.

    Science.gov (United States)

    Maldonado, E; Roth, M W; Gray, Paul A

    2009-06-01

    We present and discuss the results of molecular dynamics computer simulations of crude oil confined between graphene planes. The crude oil is represented as a mixture of alkanes having 6 method of separating alkane mixtures at temperatures significantly different from those of conventional refining processes.

  13. Atomistic mechanisms of copper filament formation and composition in Al2O3-based conductive bridge random access memory

    Science.gov (United States)

    Nail, C.; Blaise, P.; Molas, G.; Bernard, M.; Roule, A.; Toffoli, A.; Perniola, L.; Vallée, C.

    2017-07-01

    Conductive filament formation and composition in Oxide-based Conductive Bridge Random Access Memory (CBRAM) are investigated. To this end, Al2O3/Cu-based CBRAM is electrically characterized and studied. Current-voltage characteristics exhibit different forming behaviors depending on device polarization exposing the charged species involved during the forming process. In order to get more insights at the microscopic level, ion diffusion is investigated in depth by first-principles calculations. We study different point defects in Al2O3 which can come either from the post-process of the material itself or after top electrode deposition or during device operation. Since the role of Oxygen Vacancies (VO) and Copper (Cu) ions is core to the switching mechanism, ab initio calculations focus on their displacements. For different charge states in Al2O3, we extract the thermodynamic and activation energies of Cu, Te, Al, and O related point defects. The results reveal that Cu is not the only ion diffusing in the Al2O3-based CBRAM switching mechanism while Te ions appear unfavorable. A Cu/VO based hybrid filament model is proposed, and the impact of Aluminum Vacancies (VAl) on the forming process is demonstrated.

  14. Atomistic simulation of radiation-induced amorphization of the B2 ordered intermetallic compound NiTi

    International Nuclear Information System (INIS)

    Sabochick, M.J.

    1990-12-01

    Amorphization of the B2 intermetallic compound NiTi under electron irradiation has been investigated using molecular dynamics. The effect of irradiation was simulated using two processes: (1) Ni and Ti atoms were exchanged, resulting in chemical disorder, and (2) Frenkel pairs were introduced, leading to the formation of stable point defects and also chemical disorder upon mutual recombination of interstitials and vacancies. After ∼0.4 exchanges per atom, the first process resulted in an energy increase of approximately 0.11 eV/atom and a volume increase of 1.91%. On the other hand, after introducing ∼0.5 Frenkel pairs per atom, the second process led to smaller increases of 0.092 eV/atom in energy and 1.43% in volume. The calculated radial distribution functions (RDFs) were essentially identical to each other and to the calculated RDF of a quenched liquid. The structure factor, however, showed that long-range order was still present after atom exchanges, while the introduction of Frenkel pairs resulted in the loss of long-range order. It was concluded that point defects are necessary for amorphization to occur in NiTi, although chemical disorder alone is capable of storing enough energy to make the transition possible. 18 refs., 3 figs

  15. Stokes shift and fine structure splitting in composition-tunable Zn{sub x}Cd{sub 1−x}Se nanocrystals: Atomistic tight-binding theory

    Energy Technology Data Exchange (ETDEWEB)

    Sukkabot, Worasak, E-mail: w.sukkabot@gmail.com

    2017-02-01

    I report on the atomistic correlation of the structural properties and excitonic splitting of ternary alloy Zn{sub x}Cd{sub 1−x}Se wurtzite nanocrystals using the sp{sup 3}s* empirical tight-binding method with the description of the first nearest neighbouring interaction and bowing effect. Based on a successful model, the computations are presented under various Zn compositions (x) and diameters of alloy Zn{sub x}Cd{sub 1−x}Se nanocrystals with the experimentally synthesized compositions and sizes. With increasing Zn contents (x), the optical band gaps and electron-hole coulomb energies are improved, while ground electron-hole wave function overlaps, electron-hole exchange energies, stokes shift and fine structure splitting are reduced. A composition-tunable emission from blue to yellow wavelength is obviously demonstrated. The optical band gaps, ground electron-hole wave function overlaps, electron-hole interactions, stokes shift and fine structure splitting are progressively decreased with the increasing diameters. Alloy Zn{sub x}Cd{sub 1−x}Se nanocrystal with Zn rich and large diameter is the best candidate to optimistically be used as a source of entangled photon pairs. The agreement with the experimental data is remarkable. Finally, the present systematic study on the structural properties and excitonic splitting predominantly opens a new perspective to understand the size- and composition-dependent properties of Zn{sub x}Cd{sub 1−x}Se nanocrystals with a comprehensive strategy to design the optoelectronic devices.

  16. Atomistic modeling of an impurity element and a metal-impurity system: pure P and Fe-P system

    International Nuclear Information System (INIS)

    Ko, Won-Seok; Lee, Byeong-Joo; Kim, Nack J

    2012-01-01

    An interatomic potential for pure phosphorus, an element that has van der Waals, covalent and metallic bonding character, simultaneously, has been developed for the purpose of application to metal-phosphorus systems. As a simplification, the van der Waals interaction, which is less important in metal-phosphorus systems, was omitted in the parameterization process and potential formulation. On the basis of the second-nearest-neighbor modified embedded-atom method (2NN MEAM) interatomic potential formalism applicable to both covalent and metallic materials, a potential that can describe various fundamental physical properties of a wide range of allotropic or transformed crystalline structures of pure phosphorus could be developed. The potential was then extended to the Fe-P binary system describing various physical properties of intermetallic compounds, bcc and liquid alloys, and also the segregation tendency of phosphorus on grain boundaries of bcc iron, in good agreement with experimental information. The suitability of the present potential and the parameterization process for atomic scale investigations about the effects of various non-metallic impurity elements on metal properties is demonstrated. (paper)

  17. Data including GROMACS input files for atomistic molecular dynamics simulations of mixed, asymmetric bilayers including molecular topologies, equilibrated structures, and force field for lipids compatible with OPLS-AA parameters

    DEFF Research Database (Denmark)

    Róg, Tomasz; Orłowski, Adam; Llorente, Alicia

    2016-01-01

    In this Data in Brief article we provide a data package of GROMACS input files for atomistic molecular dynamics simulations of multicomponent, asymmetric lipid bilayers using the OPLS-AA force field. These data include 14 model bilayers composed of 8 different lipid molecules. The lipids present......, and cholesterol, while the extracellular leaflet is composed of SM, PC and cholesterol discussed in Van Meer et al. (2008) [2]. The provided data include lipids' topologies, equilibrated structures of asymmetric bilayers, all force field parameters, and input files with parameters describing simulation conditions...

  18. Atomistic model of ultra-smooth amorphous thin film growth by low-energy ion-assisted physical vapour deposition

    International Nuclear Information System (INIS)

    Alvarez, R; Cotrino, J; Palmero, A; Vazquez, L; Gago, R; Redondo-Cubero, A

    2013-01-01

    The growth of ultra-smooth amorphous thin films induced by low-energy (below 1 keV) ion-assistance processes is studied. The relative contribution of ion-induced smoothening effects is analysed by means of a Monte Carlo model and experimental data. In general, highly rough granular or ultra-smooth (with roughness below one monolayer) films are produced depending on the competition between surface shadowing and ion-induced adatom mobility and sputtering. The ultra-smooth growth regime is experimentally and theoretically consistent with the Edwards–Wilkinson growth mode, which is related to the ion-induced enhancement of surface mobility. Overall, the framework and the fundamentals to analyse this type of growth are developed and discussed. (paper)

  19. The atomistic origin of the extraordinary oxygen reduction activity of Pt3Ni7 fuel cell catalysts.

    Science.gov (United States)

    Fortunelli, Alessandro; Goddard Iii, William A; Sementa, Luca; Barcaro, Giovanni; Negreiros, Fabio R; Jaramillo-Botero, Andrés

    2015-07-01

    Recently Debe et al. reported that Pt 3 Ni 7 leads to extraordinary Oxygen Reduction Reaction (ORR) activity. However, several reports show that hardly any Ni remains in the layers of the catalysts close to the surface ("Pt-skin effect"). This paradox that Ni is essential to the high catalytic activity with the peak ORR activity at Pt 3 Ni 7 while little or no Ni remains close to the surface is explained here using large-scale first-principles-based simulations. We make the radical assumption that processing Pt-Ni catalysts under ORR conditions would leach out all Ni accessible to the solvent. To simulate this process we use the ReaxFF reactive force field, starting with random alloy particles ranging from 50% Ni to 90% Ni and containing up to ∼300 000 atoms, deleting the Ni atoms, and equilibrating the resulting structures. We find that the Pt 3 Ni 7 case and a final particle radius around 7.5 nm lead to internal voids in communication with the exterior, doubling the external surface footprint, in fair agreement with experiment. Then we examine the surface character of these nanoporous systems and find that a prominent feature in the surface of the de-alloyed particles is a rhombic structure involving 4 surface atoms which is crystalline-like but under-coordinated. Using density-functional theory, we calculate the energy barriers of ORR steps on Pt nanoporous catalysts, focusing on the O ad -hydration reaction (O ad + H 2 O ad → OH ad + OH ad ) but including the barriers of O 2 dissociation (O 2ad → O ad + O ad ) and water formation (OH ad + H ad → H 2 O ad ). We find that the reaction barrier for the O ad -hydration rate-determining-step is reduced significantly on the de-alloyed surface sites compared to Pt(111). Moreover we find that these active sites are prevalent on the surface of particles de-alloyed from a Pt-Ni 30 : 70 initial composition. These simulations explain the peak in surface reactivity at Pt 3 Ni 7 , and provide a rational guide to

  20. Atomistic simulations on the axial nanowelding configuration and contact behavior between Ag nanowire and single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jianlei, E-mail: cjlxjtu@mail.xjtu.edu.cn; Zhang, Jianwei [Xi’an Jiaotong University, State Key Laboratory for Manufacturing Systems Engineering (China); He, Xiaoqiao, E-mail: bcxqhe@cityu.edu.hk [City University of Hong Kong, Department of Architecture and Civil Engineering (Hong Kong); Yang, Xinjun [Fudan University, State Key Laboratory of Surface Physics and Department of Physics (China); Mei, Xuesong; Wang, Wenjun; Jiang, Gedong; Wang, Kedian [Xi’an Jiaotong University, State Key Laboratory for Manufacturing Systems Engineering (China); Yang, Lijun; Xie, Hui [Harbin Institute of Technology, State Key Laboratory of Robotics and Systems (China)

    2017-03-15

    As for the interesting new building blocks, the Ag nanowires (AgNWs) and single-walled carbon nanotubes (SWNTs) as the interesting new building blocks are viewed as the promising candidates for the next-generation interconnects due to their most remarkable electrical, thermal, optical, mechanical, and other properties. The axial nanowelding of head-to-head style and side-to-side style is relatively simulated with the molecular dynamics method. As for the head-to-head structural style, SWNTs will move toward the AgNWs and contact with the head of AgNWs. And, the part of the Ag nanowire may be subsequently encapsulated in SWNT with the core-filling Ag atom chain as the final atomic contact configuration during nanowelding, which is related to the nanowelding temperature. When the SWNTs and AgNWs are arranged by the side-to-side contact style, the SWNTs will move along the SWNT surface and may eventually catch up with the AgNW being neck and neck. Aiming at the final axial atomic configurations and the contact behavior during nanowelding process, the related dominant mechanism is revealed in this paper.

  1. Atomistic simulations on the axial nanowelding configuration and contact behavior between Ag nanowire and single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Cui, Jianlei; Zhang, Jianwei; He, Xiaoqiao; Yang, Xinjun; Mei, Xuesong; Wang, Wenjun; Jiang, Gedong; Wang, Kedian; Yang, Lijun; Xie, Hui

    2017-01-01

    As for the interesting new building blocks, the Ag nanowires (AgNWs) and single-walled carbon nanotubes (SWNTs) as the interesting new building blocks are viewed as the promising candidates for the next-generation interconnects due to their most remarkable electrical, thermal, optical, mechanical, and other properties. The axial nanowelding of head-to-head style and side-to-side style is relatively simulated with the molecular dynamics method. As for the head-to-head structural style, SWNTs will move toward the AgNWs and contact with the head of AgNWs. And, the part of the Ag nanowire may be subsequently encapsulated in SWNT with the core-filling Ag atom chain as the final atomic contact configuration during nanowelding, which is related to the nanowelding temperature. When the SWNTs and AgNWs are arranged by the side-to-side contact style, the SWNTs will move along the SWNT surface and may eventually catch up with the AgNW being neck and neck. Aiming at the final axial atomic configurations and the contact behavior during nanowelding process, the related dominant mechanism is revealed in this paper.

  2. Recent developments of diffusion processes and their applications fluid, heat and mass

    CERN Document Server

    Öchsner, Andreas; Murch, Graeme

    2015-01-01

    This topical volume on ""Recent Developments of Diffusion Processes and their Applications: Fluid, Heat and Mass"" addresses diffusion in a wider sense with a special focus on technical applications. Diffusion phenomena play an important role in the development of modern engineering materials and related fields. Understanding these different transport phenomena at many levels, from atomistic to macro, has therefore long attracted the attention of many researchers in materials science and engineering and related disciplines. The present topical volume captures a representative cross-section of

  3. Automatic and Systematic Atomistic Simulations in the MedeA® Software Environment: Application to EU-REACH

    Directory of Open Access Journals (Sweden)

    Rozanska Xavier

    2015-03-01

    Full Text Available This work demonstrates the systematic prediction of thermodynamic properties for batches of thousands of molecules using automated procedures. This is accomplished with newly developed tools and functions within the Material Exploration and Design Analysis (MedeA® software environment, which handle the automatic execution of sequences of tasks for large numbers of molecules including the creation of 3D molecular models from 1D representations, systematic exploration of possible conformers for each molecule, the creation and submission of computational tasks for property calculations on parallel computers, and the post-processing for comparison with available experimental properties. After the description of the different MedeA® functionalities and methods that make it easy to perform such large number of computations, we illustrate the strength and power of the approach with selected examples from molecular mechanics and quantum chemical simulations. Specifically, comparisons of thermochemical data with quantum-based heat capacities and standard energies of formation have been obtained for more than 2 000 compounds, yielding average deviations with experiments of less than 4% with the Design Institute for Physical PRoperties (DIPPR database. The automatic calculation of the density of molecular fluids is demonstrated for 192 systems. The relaxation to minimum-energy structures and the calculation of vibrational frequencies of 5 869 molecules are evaluated automatically using a semi-empirical quantum mechanical approach with a success rate of 99.9%. The present approach is scalable to large number of molecules, thus opening exciting possibilities with the advent of exascale computing.

  4. New epistemological foundations for cultural psychology: from an atomistic to a self-organizing view of living systems

    Directory of Open Access Journals (Sweden)

    Adele De Pascale

    2014-09-01

    Full Text Available An epistemological foundation for cultural psychology is essential to neuro- and behavioural sciences for the challenge psychological sciences must currently face: searching for an explanation of how a brain can become a mind and how individuals assign a sense to the world and their life. Biological systems are very likely determined by physical and chemical laws of spontaneous self-organization and endogenous constraints but, even if the major result of the Darwinian revolution is "the discovery that living species are their story", the modern synthesis of the evolution theory adopted only continuist and gradualist hypotheses. This nourished the analogy between the theory of natural selection and the theory of operant conditioning, thereby supporting empiricist associationism and the methodological positivism of behavioural and "classical" cognitive psychologists. Current scientific contributions provide evidence to the need for psychotherapy and psychopathology of a new epistemological approach in order to connect research stemming from animal models, up to the most abstract levels of personal meaning. The complex system oriented approach, here described, called "post-rationalism", shaped by a change initiated by evolutionary epistemology. The regulation of emotions initially develops within interpersonal relationships and evolves during both phylogeny and ontogeny, according to complex self-organization processes, leading to the acquisition of Self-organizing abilities and the construction of personal meaning. Endorsing the epistemological similarities of neo-Darwinism and behaviourism, and differentiating from this, the above mentioned approach, emphasises the fact that clinical and psycho-therapeutical practice must be founded on the laws of biological organisation: the ongoing activity of neurobiological systems, including the more abstract domains of thought and language.

  5. New epistemological foundations for cultural psychology: from an atomistic to a self-organizing view of living systems.

    Science.gov (United States)

    De Pascale, Adele

    2014-01-01

    An epistemological foundation for cultural psychology is essential to neuro- and behavioural sciences for the challenge psychological sciences must currently face: searching for an explanation of how a brain can become a mind and how individuals assign a sense to the world and their life. Biological systems are very likely determined by physical and chemical laws of spontaneous self-organization and endogenous constraints but, even if the major result of the Darwinian revolution is "the discovery that living species are their story", the modern synthesis of the evolution theory adopted only continuist and gradualist hypotheses. This nourished the analogy between the theory of natural selection and the theory of operant conditioning, thereby supporting empiricist associationism and the methodological positivism of behavioural and "classical" cognitive psychologists. Current scientific contributions provide evidence to the need for psychotherapy and psychopathology of a new epistemological approach in order to connect research stemming from animal models, up to the most abstract levels of personal meaning. The complex system oriented approach, here described, called "post-rationalism", shaped by a change initiated by evolutionary epistemology. The regulation of emotions initially develops within interpersonal relationships and evolves during both phylogeny and ontogeny, according to complex self-organization processes, leading to the acquisition of Self-organizing abilities and the construction of personal meaning. Endorsing the epistemological similarities of neo-Darwinism and behaviourism, and differentiating from this, the above mentioned approach, emphasises the fact that clinical and psycho-therapeutical practice must be founded on the laws of biological organisation: the ongoing activity of neurobiological systems, including the more abstract domains of thought and language.

  6. The Dynamics of Chemical Reactions: Atomistic Visualizations of Organic Reactions, and Homage to van 't Hoff.

    Science.gov (United States)

    Yang, Zhongyue; Houk, K N

    2018-03-15

    Jacobus Henricus van 't Hoff was the first Nobel Laureate in Chemistry. He pioneered in the study of chemical dynamics, which referred at that time to chemical kinetics and thermodynamics. The term has evolved in modern times to refer to the exploration of chemical transformations in a time-resolved fashion. Chemical dynamics has been driven by the development of molecular dynamics trajectory simulations, which provide atomic visualization of chemical processes and illuminate how dynamic effects influence chemical reactivity and selectivity. In homage to the legend of van 't Hoff, we review the development of the chemical dynamics of organic reactions, our area of research. We then discuss our trajectory simulations of pericyclic reactions, and our development of dynamic criteria for concerted and stepwise reaction mechanisms. We also describe a method that we call environment-perturbed transition state sampling, which enables trajectory simulations in condensed-media using quantum mechanics and molecular mechanics (QM/MM). We apply the method to reactions in solvent and in enzyme. Jacobus Henricus van 't Hoff (1852, Rotterdam-1911, Berlin) received the Nobel Prize for Chemistry in 1901 "in recognition of the extraordinary services he has rendered by the discovery of the laws of chemical dynamics and osmotic pressure in solutions". van 't Hoff was born the Netherlands, and earned his doctorate in Utrecht in 1874. In 1896 he moved to Berlin, where he was offered a position with more research and less teaching. van 't Hoff is considered one of the founders of physical chemistry. A key step in establishing this new field was the start of Zeitschrift für Physikalische Chemie in 1887. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Conformational changes and slow dynamics through microsecond polarized atomistic molecular simulation of an integral Kv1.2 ion channel.

    Directory of Open Access Journals (Sweden)

    Pär Bjelkmar

    2009-02-01

    Full Text Available Structure and dynamics of voltage-gated ion channels, in particular the motion of the S4 helix, is a highly interesting and hotly debated topic in current membrane protein research. It has critical implications for insertion and stabilization of membrane proteins as well as for finding how transitions occur in membrane proteins-not to mention numerous applications in drug design. Here, we present a full 1 micros atomic-detail molecular dynamics simulation of an integral Kv1.2 ion channel, comprising 120,000 atoms. By applying 0.052 V/nm of hyperpolarization, we observe structural rearrangements, including up to 120 degrees rotation of the S4 segment, changes in hydrogen-bonding patterns, but only low amounts of translation. A smaller rotation ( approximately 35 degrees of the extracellular end of all S4 segments is present also in a reference 0.5 micros simulation without applied field, which indicates that the crystal structure might be slightly different from the natural state of the voltage sensor. The conformation change upon hyperpolarization is closely coupled to an increase in 3(10 helix contents in S4, starting from the intracellular side. This could support a model for transition from the crystal structure where the hyperpolarization destabilizes S4-lipid hydrogen bonds, which leads to the helix rotating to keep the arginine side chains away from the hydrophobic phase, and the driving force for final relaxation by downward translation is partly entropic, which would explain the slow process. The coordinates of the transmembrane part of the simulated channel actually stay closer to the recently determined higher-resolution Kv1.2 chimera channel than the starting structure for the entire second half of the simulation (0.5-1 micros. Together with lipids binding in matching positions and significant thinning of the membrane also observed in experiments, this provides additional support for the predictive power of microsecond-scale membrane

  8. Electrostatic Properties of PE and PTFE Subjected to Atmospheric Pressure Plasma Treatment; Correlation of Experimental Results with Atomistic Modeling

    Science.gov (United States)

    Trigwell, Steve; Boucher, Derrick; Calle, Carlos

    2006-01-01

    The use of an atmospheric pressure glow discharge (APGD) plasma was used at KSC to increase the hydrophilicity of spaceport materials to enhance their surface charge dissipation and prevent possible ESD in spaceport operations. Significant decreases in charge decay times were observed after tribocharging the materials using the standard KSC tribocharging test. The polarity and amount of charge transferred was dependent upon the effective work function differences between the respective materials. In this study, polyethylene (PE) and polytetrafluoroethylene (PTFE) were exposed to a He+O2 APGD. The pre and post treatment surface chemistry was analyzed by X-ray photoelectron spectroscopy and contact angle measurements. Semi-empirical and ab initio calculations were performed to correlate the experimental results with some plausible molecular and electronic structure features of the oxidation process. For the PE, significant surface oxidation was observed, as indicated by XPS showing C-O, C=O, and O-C=O bonding, and a decrease in the surface contact angle from 98.9 deg to 61.2 deg. For the PTFE, no C-O bonding appeared and the surface contact angle increased indicating the APGD only succeeded in cleaning the PTFE surface without affecting the surface structure. The calculations using the PM3 and DFT methods were performed on single and multiple oligomers to simulate a wide variety of oxidation scenarios. Calculated work function results suggest that regardless of oxidation mechanism, e.g. -OH, =0 or a combination thereof, the experimentally observed levels of surface oxidation are unlikely to lead to a significant change in the electronic structure of PE and that its increased hydrophilic properties are the primary reason for the observed changes in its electrostatic behavior. The calculations for PTFE argue strongly against significant oxidation of that material, as confirmed by the XPS results.

  9. Modelling radiation-induced phase changes in binary FeCu and ternary FeCuNi alloys using an artificial intelligence-based atomistic kinetic Monte Carlo approach

    Science.gov (United States)

    Castin, N.; Malerba, L.; Bonny, G.; Pascuet, M. I.; Hou, M.

    2009-09-01

    We apply a novel atomistic kinetic Monte Carlo model, which includes local chemistry and relaxation effects when assessing the migration energy barriers of point defects, to the study of the microchemical evolution driven by vacancy diffusion in FeCu and FeCuNi alloys. These alloys are of importance for nuclear applications because Cu precipitation, enhanced by the presence of Ni, is one of the main causes of hardening and embrittlement in reactor pressure vessel steels used in existing nuclear power plants. Local chemistry and relaxation effects are introduced using artificial intelligence techniques, namely a conveniently trained artificial neural network, to calculate the migration energy barriers of vacancies as functions of the local atomic configuration. We prove, through a number of results, that the use of the neural network is fully equivalent to calculating the migration energy barriers on-the-fly, using computationally expensive methods such as nudged elastic bands with an interatomic potential. The use of the neural network makes the computational cost affordable, so that simulations of the same type as those hitherto carried out using heuristic formulas for the assessment of the energy barriers can now be performed, at the same computational cost, using more rigorously calculated barriers. This method opens the way to properly treating more complex problems, such as the case of self-interstitial cluster formation, in an atomistic kinetic Monte Carlo framework.

  10. Modelling radiation-induced phase changes in binary FeCu and ternary FeCuNi alloys using an artificial intelligence-based atomistic kinetic Monte Carlo approach

    International Nuclear Information System (INIS)

    Castin, N.; Malerba, L.; Bonny, G.; Pascuet, M.I.; Hou, M.

    2009-01-01

    We apply a novel atomistic kinetic Monte Carlo model, which includes local chemistry and relaxation effects when assessing the migration energy barriers of point defects, to the study of the microchemical evolution driven by vacancy diffusion in FeCu and FeCuNi alloys. These alloys are of importance for nuclear applications because Cu precipitation, enhanced by the presence of Ni, is one of the main causes of hardening and embrittlement in reactor pressure vessel steels used in existing nuclear power plants. Local chemistry and relaxation effects are introduced using artificial intelligence techniques, namely a conveniently trained artificial neural network, to calculate the migration energy barriers of vacancies as functions of the local atomic configuration. We prove, through a number of results, that the use of the neural network is fully equivalent to calculating the migration energy barriers on-the-fly, using computationally expensive methods such as nudged elastic bands with an interatomic potential. The use of the neural network makes the computational cost affordable, so that simulations of the same type as those hitherto carried out using heuristic formulas for the assessment of the energy barriers can now be performed, at the same computational cost, using more rigorously calculated barriers. This method opens the way to properly treating more complex problems, such as the case of self-interstitial cluster formation, in an atomistic kinetic Monte Carlo framework.

  11. Modelling radiation-induced phase changes in binary FeCu and ternary FeCuNi alloys using an artificial intelligence-based atomistic kinetic Monte Carlo approach

    Energy Technology Data Exchange (ETDEWEB)

    Castin, N. [Structural Materials Group, Nuclear Materials Science Institute, Kernenergie Centre d' Etude de l' Energie Nucleaire (SCK CEN), Studiecentrum voor, Boeretang 200, 2400 Mol (Belgium); Physique des Solides Irradies et des Nanostructures (PSIN), Universite Libre de Bruxelles (ULB), Boulevard du Triomphe CP234, 1050 Brussels (Belgium); Malerba, L. [Structural Materials Group, Nuclear Materials Science Institute, Kernenergie Centre d' Etude de l' Energie Nucleaire (SCK CEN), Studiecentrum voor, Boeretang 200, 2400 Mol (Belgium)], E-mail: lmalerba@sckcen.be; Bonny, G. [Structural Materials Group, Nuclear Materials Science Institute, Kernenergie Centre d' Etude de l' Energie Nucleaire (SCK CEN), Studiecentrum voor, Boeretang 200, 2400 Mol (Belgium); Laboratory of Theoretical Physics, Universiteit Gent, Proeftuinstraat 86, B-9000 Gent (Belgium); Pascuet, M.I. [Structural Materials Group, Nuclear Materials Science Institute, Kernenergie Centre d' Etude de l' Energie Nucleaire (SCK CEN), Studiecentrum voor, Boeretang 200, 2400 Mol (Belgium); CAC-CNEA, Departamento de Materiales, Avda. Gral. Paz 1499, 1650 San Martin, Pcia. Buenos Aires (Argentina); CONICET, Avda. Rivadavia 1917, 1033 Buenos Aires (Argentina); Hou, M. [Physique des Solides Irradies et des Nanostructures (PSIN), Universite Libre de Bruxelles (ULB), Boulevard du Triomphe CP234, 1050 Brussels (Belgium)

    2009-09-15

    We apply a novel atomistic kinetic Monte Carlo model, which includes local chemistry and relaxation effects when assessing the migration energy barriers of point defects, to the study of the microchemical evolution driven by vacancy diffusion in FeCu and FeCuNi alloys. These alloys are of importance for nuclear applications because Cu precipitation, enhanced by the presence of Ni, is one of the main causes of hardening and embrittlement in reactor pressure vessel steels used in existing nuclear power plants. Local chemistry and relaxation effects are introduced using artificial intelligence techniques, namely a conveniently trained artificial neural network, to calculate the migration energy barriers of vacancies as functions of the local atomic configuration. We prove, through a number of results, that the use of the neural network is fully equivalent to calculating the migration energy barriers on-the-fly, using computationally expensive methods such as nudged elastic bands with an interatomic potential. The use of the neural network makes the computational cost affordable, so that simulations of the same type as those hitherto carried out using heuristic formulas for the assessment of the energy barriers can now be performed, at the same computational cost, using more rigorously calculated barriers. This method opens the way to properly treating more complex problems, such as the case of self-interstitial cluster formation, in an atomistic kinetic Monte Carlo framework.

  12. An Atomistic Modeling Study of Alloying Element Impurity Element, and Transmutation Products on the cohesion of A Nickel E5 {l_brace}001{r_brace} Twist Grain Boundary

    Energy Technology Data Exchange (ETDEWEB)

    G.A. Young Jr.; R. Najafabadi; W. Strohmayer; D.G. Baldrey; B. Hamm; J. Harris; J. Sticht; E. Wimmer

    2003-06-16

    Atomistic modeling methods were employed to investigate the effects of impurity elements on the metallurgy, irradiation embrittlement, and environmentally assisted cracking of nickel-base alloys exposed to nuclear environments. Calculations were performed via ab initio atomistic modeling methods to ensure the accuracy and reliability of the results. A Griffith-type fracture criterion was used to quantitatively assess the effect of elements or element pairs on the grain boundary cohesive strength. In order of most embrittling to most strengthening, the elements are ranked as: He, Li, S, H, C, Zr, P, Fe, Mn, Nb, Cr, and B. Helium is strongly embrittling (-2.04 eV/atom lowering of the Griffith energy), phosphorus has little effect on the grain boundary (0.1 eV/atom), and boron offers appreciable strengthening (1.03 eV/atom increase in the Griffith energy). Calculations for pairs of elements (H-Li, H-B, H-C, H-P, and H-S) show little interaction on the grain boundary cohesive energy, so that for the conditions studied, linear superposition of elemental effects is a good approximation. These calculations help explain metallurgical effects (e.g. why boron can strengthen grain boundaries), irradiation embrittlement (e.g. how boron transmutation results in grain boundary embrittlement), as well as how grain boundary impurity elements can affect environmentally assisted cracking (i.e. low temperature crack propagation and stress corrosion cracking) of nickel-base alloys.

  13. Melting processes of oligomeric α and β isotactic polypropylene crystals at ultrafast heating rates

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Xiaojing [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); He, Xuehao, E-mail: xhhe@tju.edu.cn, E-mail: scjiang@tju.edu.cn [Department of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Jiang, Shichun, E-mail: xhhe@tju.edu.cn, E-mail: scjiang@tju.edu.cn [School of Material, Tianjin University, Tianjin 300072 (China)

    2014-02-07

    The melting behaviors of α (stable) and β (metastable) isotactic polypropylene (iPP) crystals at ultrafast heating rates are simulated with atomistic molecular dynamics method. Quantitative information about the melting processes of α- and β-iPP crystals at atomistic level is achieved. The result shows that the melting process starts from the interfaces of lamellar crystal through random dislocation of iPP chains along the perpendicular direction of lamellar crystal structure. In the melting process, the lamellar crystal gradually expands but the corresponding thickness decreases. The analysis shows that the system expansion lags behind the crystallinity decreasing and the lagging extents for α- and β-iPP are significantly different. The apparent melting points of α- and β-iPP crystals rise with the increase of the heating rate and lamellar crystal thickness. The apparent melting point of α-iPP crystal is always higher than that of β-iPP at differently heating rates. Applying the Gibbs-Thomson rule and the scaling property of the melting kinetics, the equilibrium melting points of perfect α- and β-iPP crystals are finally predicted and it shows a good agreement with experimental result.

  14. Introduction: Atomistic Nature of Materials

    Science.gov (United States)

    Kaxiras, Efthimios; Yip, Sidney

    Materials are made of atoms. The atomic hypothesis was put forward by the Greek philosopher Demokritos about 25 centuries ago, but was only proven by quantitative arguments in the 19th and 20th centuries, beginning with the work of John Dalton (1766-1844) and through the development of quantum mechanics, the theory that provided a complete and accurate description of the properties of atoms. The very large number of atoms encountered in a typical material (of order ˜1024or more) precludes any meaningful description of its properties based on a complete account of the behavior of each and every atom that comprises it. Special cases, such as perfect crystals, are exceptions where symmetry reduces the number of independent atoms to very few; in such cases, the properties of the solid are indeed describable in terms of the behavior of the few independent atoms and this can be accomplished using quantum mechanical methods. However, this is only an idealized model of actual solids in which perfect order is broken either by thermal disorder or by the presence of defects that play a crucial role in determining the physical properties of the system.

  15. Atomistic Models of Amorphous Semiconductors

    NARCIS (Netherlands)

    Jarolimek, K.

    2011-01-01

    Crystalline silicon is probably the best studied material, widely used by the semiconductor industry. The subject of this thesis is an intriguing form of this element namely amorphous silicon. It can contain a varying amount of hydrogen and is denoted as a-Si:H. It completely lacks the neat long

  16. Atomistic simulations of nanotube fracture

    Science.gov (United States)

    Belytschko, T.; Xiao, S. P.; Schatz, G. C.; Ruoff, R. S.

    2002-06-01

    The fracture of carbon nanotubes is studied by molecular mechanics simulations. The fracture behavior is found to be almost independent of the separation energy and to depend primarily on the inflection point in the interatomic potential. The fracture strain of a zigzag nanotube is predicted to be between 10% and 15%, which compares reasonably well with experimental results. The predicted range of fracture stresses is 65-93 GPa and is markedly higher than observed. The computed fracture strengths of chiral and armchair nanotubes are above these values. Various plausible small-scale defects do not suffice to bring the failure stresses into agreement with available experimental results. As in the experiments, the fracture of carbon nanotubes is predicted to be brittle.

  17. Approaches to modelling irradiation-induced processes in transmission electron microscopy.

    Science.gov (United States)

    Skowron, Stephen T; Lebedeva, Irina V; Popov, Andrey M; Bichoutskaia, Elena

    2013-08-07

    The recent progress in high-resolution transmission electron microscopy (HRTEM) has given rise to the possibility of in situ observations of nanostructure transformations and chemical reactions induced by electron irradiation. In this article we briefly summarise experimental observations and discuss in detail atomistic modelling of irradiation-induced processes in HRTEM, as well as mechanisms of such processes recognised due to modelling. Accurate molecular dynamics (MD) techniques based on first principles or tight-binding models are employed in the analysis of single irradiation-induced events, and classical MD simulations are combined with a kinetic Monte Carlo algorithm to simulate continuous irradiation of nanomaterials. It has been shown that sulphur-terminated graphene nanoribbons are formed inside carbon nanotubes as a result of an irradiation-selective chemical reaction. The process of fullerene formation in HRTEM during continuous electron irradiation of a small graphene flake has been simulated, and mechanisms driving this transformation analysed.

  18. Dissolution Processes at Step Edges of Calcite in Water Investigated by High-Speed Frequency Modulation Atomic Force Microscopy and Simulation.

    Science.gov (United States)

    Miyata, Kazuki; Tracey, John; Miyazawa, Keisuke; Haapasilta, Ville; Spijker, Peter; Kawagoe, Yuta; Foster, Adam S; Tsukamoto, Katsuo; Fukuma, Takeshi

    2017-07-12

    The microscopic understanding of the crystal growth and dissolution processes have been greatly advanced by the direct imaging of nanoscale step flows by atomic force microscopy (AFM), optical interferometry, and X-ray microscopy. However, one of the most fundamental events that govern their kinetics, namely, atomistic events at the step edges, have not been well understood. In this study, we have developed high-speed frequency modulation AFM (FM-AFM) and enabled true atomic-resolution imaging in liquid at ∼1 s/frame, which is ∼50 times faster than the conventional FM-AFM. With the developed AFM, we have directly imaged subnanometer-scale surface structures around the moving step edges of calcite during its dissolution in water. The obtained images reveal that the transition region with typical width of a few nanometers is formed along the step edges. Building upon insight in previous studies, our simulations suggest that the transition region is most likely to be a Ca(OH) 2 monolayer formed as an intermediate state in the dissolution process. On the basis of this finding, we improve our understanding of the atomistic dissolution model of calcite in water. These results open up a wide range of future applications of the high-speed FM-AFM to the studies on various dynamic processes at solid-liquid interfaces with true atomic resolution.

  19. Multifunctional multiscale composites: Processing, modeling and characterization

    Science.gov (United States)

    Qiu, Jingjing

    Carbon nanotubes (CNTs) demonstrate extraordinary properties and show great promise in enhancing out-of-plane properties of traditional polymer/fiber composites and enabling functionality. However, current manufacturing challenges hinder the realization of their potential. In the dissertation research, both experimental and computational efforts have been conducted to investigate effective manufacturing techniques of CNT integrated multiscale composites. The fabricated composites demonstrated significant improvements in physical properties, such as tensile strength, tensile modulus, inter-laminar shear strength, thermal dimension stability and electrical conductivity. Such multiscale composites were truly multifunctional with the addition of CNTs. Furthermore, a novel hierarchical multiscale modeling method was developed in this research. Molecular dynamic (MD) simulation offered reasonable explanation of CNTs dispersion and their motion in polymer solution. Bi-mode finite-extensible-nonlinear-elastic (FENE) dumbbell simulation was used to analyze the influence of CNT length distribution on the stress tensor and shear-rate-dependent viscosity. Based on the simulated viscosity profile and empirical equations from experiments, a macroscale flow simulation model on the finite element method (FEM) method was developed and validated to predict resin flow behavior in the processing of CNT-enhanced multiscale composites. The proposed multiscale modeling method provided a comprehensive understanding of micro/nano flow in both atomistic details and mesoscale. The simulation model can be used to optimize process design and control of the mold-filling process in multiscale composite manufacturing. This research provided systematic investigations into the CNT-based multiscale composites. The results from this study may be used to leverage the benefits of CNTs and open up new application opportunities for high-performance multifunctional multiscale composites. Keywords. Carbon

  20. Role of defects in the process of graphene growth on hexagonal boron nitride from atomic carbon

    International Nuclear Information System (INIS)

    Dabrowski, J.; Lippert, G.; Schroeder, T.; Lupina, G.

    2014-01-01

    Hexagonal boron nitride (h-BN) is an attractive substrate for graphene, as the interaction between these materials is weak enough for high carrier mobility to be retained in graphene but strong enough to allow for some epitaxial relationship. We deposited graphene on exfoliated h-BN by molecular beam epitaxy (MBE), we analyzed the atomistic details of the process by ab initio density functional theory (DFT), and we linked the DFT and MBE results by random walk theory. Graphene appears to nucleate around defects in virgin h-BN. The DFT analysis reveals that sticking of carbon to perfect h-BN is strongly reduced by desorption, so that pre-existing seeds are needed for the nucleation. The dominant nucleation seeds are C N C B and O N C N pairs and B 2 O 3 inclusions in the virgin substrate

  1. Communication: Role of explicit water models in the helix folding/unfolding processes

    Science.gov (United States)

    Palazzesi, Ferruccio; Salvalaglio, Matteo; Barducci, Alessandro; Parrinello, Michele

    2016-09-01

    In the last years, it has become evident that computer simulations can assume a relevant role in modelling protein dynamical motions for their ability to provide a full atomistic image of the processes under investigation. The ability of the current protein force-fields in reproducing the correct thermodynamics and kinetics systems behaviour is thus an essential ingredient to improve our understanding of many relevant biological functionalities. In this work, employing the last developments of the metadynamics framework, we compare the ability of state-of-the-art all-atom empirical functions and water models to consistently reproduce the folding and unfolding of a helix turn motif in a model peptide. This theoretical study puts in evidence that the choice of the water models can influence the thermodynamic and the kinetics of the system under investigation, and for this reason cannot be considered trivial.

  2. Possibilités actuelles du calcul des constantes élastiques de polymères par des méthodes de simulation atomistique Current Possibilities of the Computation of Elastic Constants of Polymers Using Atomistic Simulations

    Directory of Open Access Journals (Sweden)

    Dal Maso F.

    2006-12-01

    Full Text Available Les propriétés élastiques des phases amorphe et cristalline pures de polymères semi-cristallins ne sont en général pas mesurables directement avec les moyens physiques habituels. Il est donc nécessaire de recourir à des méthodes de calcul numérique. Cet article décrit certaines de ces méthodes, fondées sur des modélisations atomistiques, ainsi qu'une évaluation des implémentations actuelles. Il est montré que la méthode proposée par Zehnder et al. (1996 fournit les meilleurs résultats, au prix d'un temps long de calcul, dû à la dynamique moléculaire. Néanmoins, aucune de ces méthodes n'est vraiment utilisable simplement au jour le jour, car elles requièrent des moyens importants de calcul. Elastic properties of pure crystalline and amorphous phases of a semicrystalline polymer are usually not directly measurable by usual physical means. It therefore is necessary to resort to numerical computing methods. This paper describes some of these methods, based on atomistic simulations, as well as an assessment of current implementations. It is shown that the method proposed by Zehnder et al. (1996 gives the best results, at the expense of long computing time, due to molecular dynamic simulation. Nevertheless none of these methods are really usable on a daily basis, since there are demanding important computing capabilities.

  3. On the junction physics of Schottky contact of (10, 10) MX{sub 2} (MoS{sub 2}, WS{sub 2}) nanotube and (10, 10) carbon nanotube (CNT): an atomistic study

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Amretashis [Hanse-Wissenschaftskolleg (HWK), Delmenhorst (Germany); Universitaet Bremen, Bremen Center for Computational Materials Science (BCCMS), Bremen (Germany)

    2017-04-15

    Armchair nanotubes of MoS{sub 2} and WS{sub 2} offer a sizeable band gap, with the advantage of a one dimensional (1D) electronic material, but free from edge roughness and thermodynamic instability of nanoribbons. Use of such semiconducting MX{sub 2} (MoS{sub 2}, WS{sub 2}) armchair nanotubes (NTs) in conjunction with metallic carbon nanotubes (CNT) can be useful for nanoelectronics and photonics applications. In this work, atomistic simulations of MoS{sub 2} NT-CNT and WS{sub 2} NT-CNT junctions are carried out to study the physics of such junctions. With density functional theory (DFT) we study the carrier density distribution, effective potential, electron difference density, electron localization function, electrostatic difference potential and projected local density of states of such MX{sub 2} NT-CNT 1D junctions. Thereafter the conductance of such a junction under moderate bias is studied with non-equilibrium Green's function (NEGF) method. From the forward bias characteristics simulated from NEGF, we extract diode parameters of the junction. The electrostatic simulations from DFT show the formation of an inhomogeneous Schottky barrier with a tendency towards charge transfer from metal and chalcogen atoms towards the C atoms. For low bias conditions, the ideality factor was calculated to be 1.1322 for MoS{sub 2} NT-CNT junction and 1.2526 for the WS{sub 2} NT-CNT junction. The Schottky barrier heights displayed significant bias dependent modulation and are calculated to be in the range 0.697-0.664 eV for MoS{sub 2} NT-CNT and 0.669-0.610 eV for the WS{sub 2} NT-CNT, respectively. (orig.)

  4. Data including GROMACS input files for atomistic molecular dynamics simulations of mixed, asymmetric bilayers including molecular topologies, equilibrated structures, and force field for lipids compatible with OPLS-AA parameters.

    Science.gov (United States)

    Róg, Tomasz; Orłowski, Adam; Llorente, Alicia; Skotland, Tore; Sylvänne, Tuulia; Kauhanen, Dimple; Ekroos, Kim; Sandvig, Kirsten; Vattulainen, Ilpo

    2016-06-01

    In this Data in Brief article we provide a data package of GROMACS input files for atomistic molecular dynamics simulations of multicomponent, asymmetric lipid bilayers using the OPLS-AA force field. These data include 14 model bilayers composed of 8 different lipid molecules. The lipids present in these models are: cholesterol (CHOL), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidyl-ethanolamine (SOPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (SOPS), N-palmitoyl-D-erythro-sphingosyl-phosphatidylcholine (SM16), and N-lignoceroyl-D-erythro-sphingosyl-phosphatidylcholine (SM24). The bilayers׳ compositions are based on lipidomic studies of PC-3 prostate cancer cells and exosomes discussed in Llorente et al. (2013) [1], showing an increase in the section of long-tail lipid species (SOPS, SOPE, and SM24) in the exosomes. Former knowledge about lipid asymmetry in cell membranes was accounted for in the models, meaning that the model of the inner leaflet is composed of a mixture of PC, PS, PE, and cholesterol, while the extracellular leaflet is composed of SM, PC and cholesterol discussed in Van Meer et al. (2008) [2]. The provided data include lipids׳ topologies, equilibrated structures of asymmetric bilayers, all force field parameters, and input files with parameters describing simulation conditions (md.mdp). The data is associated with the research article "Interdigitation of Long-Chain Sphingomyelin Induces Coupling of Membrane Leaflets in a Cholesterol Dependent Manner" (Róg et al., 2016) [3].

  5. Process Accounting

    OpenAIRE

    Gilbertson, Keith

    2002-01-01

    Standard utilities can help you collect and interpret your Linux system's process accounting data. Describes the uses of process accounting, standard process accounting commands, and example code that makes use of process accounting utilities.

  6. First Principles Based Reactive Atomistic Simulations to Understand the Effects of Molecular Hypervelocity Impact on Cassini's Ion and Neutral Mass Spectrometer

    Science.gov (United States)

    Jaramillo-Botero, A.; Cheng, M-J; Cvicek, V.; Beegle, Luther W.; Hodyss, R.; Goddard, W. A., III

    2011-01-01

    We report here on the predicted impact of species such as ice-water, CO2, CH4, and NH3, on oxidized titanium, as well as HC species on diamond surfaces. These simulations provide the dynamics of product distributions during and after a hypervelocity impact event, ionization fractions, and dissociation probabilities for the various species of interest as a function of impact velocity (energy). We are using these results to determine the relevance of the fragmentation process to Cassini INMS results, and to quantify its effects on the observed spectra.

  7. Electronic Processes at Organic−Organic Interfaces: Insight from Modeling and Implications for Opto-electronic Devices †

    KAUST Repository

    Beljonne, David

    2011-02-08

    We report on the recent progress achieved in modeling the electronic processes that take place at interfaces between π-conjugated materials in organic opto-electronic devices. First, we provide a critical overview of the current computational techniques used to assess the morphology of organic: organic heterojunctions; we highlight the compromises that are necessary to handle large systems and multiple time scales while preserving the atomistic details required for subsequent computations of the electronic and optical properties. We then review some recent theoretical advances in describing the ground-state electronic structure at heterojunctions between donor and acceptor materials and highlight the role played by charge-transfer and long-range polarization effects. Finally, we discuss the modeling of the excited-state electronic structure at organic:organic interfaces, which is a key aspect in the understanding of the dynamics of photoinduced electron-transfer processes. © 2010 American Chemical Society.

  8. Atomistic origins of CH{sub 3}NH{sub 3}PbI{sub 3} degradation to PbI{sub 2} in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Deretzis, I., E-mail: ioannis.deretzis@imm.cnr.it; Alberti, A.; Pellegrino, G.; Smecca, E.; Giannazzo, F.; La Magna, A. [CNR-IMM, Z.I. VIII strada 5, 95121 Catania (Italy); Sakai, N.; Miyasaka, T. [Graduate School of Engineering, Toin University of Yokohama, 1614 Kuroganecho, Aoba, Yokohama 225-8503 (Japan)

    2015-03-30

    We study the mechanisms of CH{sub 3}NH{sub 3}PbI{sub 3} degradation and its transformation to PbI{sub 2} by means of X-ray diffraction and the density functional theory. The experimental analysis shows that the material can degrade in both air and vacuum conditions, with humidity and temperature-annealing strongly accelerating such process. Based on ab initio calculations, we argue that even in the absence of humidity, a decomposition of the perovskite structure can take place through the statistical formation of molecular defects with a non-ionic character, whose volatility at surfaces should break the thermodynamic defect equilibria. We finally discuss the strategies that can limit such phenomenon and subsequently prolong the lifetime of the material.

  9. The influence of energetic bombardment on the structure formation of sputtered zinc oxide films. Development of an atomistic growth model and its application to tailor thin film properties

    Energy Technology Data Exchange (ETDEWEB)

    Koehl, Dominik

    2011-02-17

    The focus of this work is the investigation of the growth of zinc oxide (ZnO) thin films. It is demonstrated that with a modified, ion beam assisted sputtering (IBAS) process, zinc oxide films can be deposited which exhibit a markedly improved crystalline order. Furthermore, it is demonstrated that intense energetic oxygen ion bombardment can be utilized to change film texture from the typical (002)-self-texture to an a-axis texture where the (002)-planes are perpendicular to the substrate surface. An understanding of the underlying mechanisms is developed which also facilitates a more detailed understanding of the action of ion bombardment during zinc oxide film growth. It is shown that zinc oxide films are susceptible to the influence of ion bombardment particularly in the nucleation regime of growth and that this finding is generally true for all observed structural changes induced by ion bombardment with various species, energies and flux densities. It is demonstrated not only that the initial growth stage plays an important role in the formation of a preferred growth orientation but also that the action of texture forming mechanisms in subsequent growth stages is comparatively weak. (orig.)

  10. Simulation of ablation and plume dynamics under femtosecond double-pulse laser irradiation of aluminum: Comparison of atomistic and continual approaches

    Energy Technology Data Exchange (ETDEWEB)

    Fokin, Vladimir B.; Povarnitsyn, Mikhail E., E-mail: povar@ihed.ras; Levashov, Pavel R.

    2017-02-28

    Highlights: • We model double-pulse laser ablation of aluminum using microscopic and macroscopic approaches. • Both methods show decrease in depth of crater with increasing delay between pulses. • Both methods reveal the plume temperature growth with the increasing delay. • Good agreement between results is a step towards the development of combined model. - Abstract: We elaborated two numerical methods, two-temperature hydrodynamics and hybrid two-temperature molecular dynamics, which take into account basic mechanisms of a metal target response to ultrashort laser irradiation. The model used for the description of the electronic subsystem is identical for both approaches, while the ionic part is defined by an equation of state in hydrodynamics and by an interatomic potential in molecular dynamics. Since the phase diagram of the equation of state and corresponding potential match reasonably well, the dynamics of laser ablation obtained by both methods is quite similar. This correspondence can be considered as a first step towards the development of a self-consistent combined model. Two important processes are highlighted in simulations of double-pulse ablation: (1) the crater depth decrease as a result of recoil flux formation in the nascent plume when the delay between the pulses increases; (2) the plume reheating by the second pulse that gives rise to two- three-fold growth of the electron temperature with the delay varying from 0 to 200 ps.

  11. The influence of energetic bombardment on the structure formation of sputtered zinc oxide films. Development of an atomistic growth model and its application to tailor thin film properties

    International Nuclear Information System (INIS)

    Koehl, Dominik

    2011-01-01

    The focus of this work is the investigation of the growth of zinc oxide (ZnO) thin films. It is demonstrated that with a modified, ion beam assisted sputtering (IBAS) process, zinc oxide films can be deposited which exhibit a markedly improved crystalline order. Furthermore, it is demonstrated that intense energetic oxygen ion bombardment can be utilized to change film texture from the typical (002)-self-texture to an a-axis texture where the (002)-planes are perpendicular to the substrate surface. An understanding of the underlying mechanisms is developed which also facilitates a more detailed understanding of the action of ion bombardment during zinc oxide film growth. It is shown that zinc oxide films are susceptible to the influence of ion bombardment particularly in the nucleation regime of growth and that this finding is generally true for all observed structural changes induced by ion bombardment with various species, energies and flux densities. It is demonstrated not only that the initial growth stage plays an important role in the formation of a preferred growth orientation but also that the action of texture forming mechanisms in subsequent growth stages is comparatively weak. (orig.)

  12. Atomistic modelling study of lanthanide incorporation in the crystal lattice of an apatite; Etude par modelisation atomistique de l'incorporation de lanthanides dans le reseau cristallin d'une apatite phosphocalcique

    Energy Technology Data Exchange (ETDEWEB)

    Louis-Achille, V

    1999-07-01

    Studies of natural and synthetic apatites allow to propose such crystals as matrix for nuclear waste storage. The neodymium substituted britholite, Ca{sub 9}Nd(PO{sub 4}){sub 5}(SiO{sub 4})F{sub 2}. is a model for the trivalent actinide storage Neodymium can be substituted in two types of sites. The aim of this thesis is to compare the chemical nature of this two sites in fluoro-apatite Ca{sub 9}(PO{sub 4}){sub 6}F{sub 2} and then in britholite, using ab initio atomistic modeling. Two approaches are used: one considers the infinite crystals and the second considers clusters. The calculations of the electronic structure for both were performed using Kohn and Sham density functional theory in the local approximation. For solids, pseudopotentials were used, and wave functions are expanded in plane waves. For clusters, a frozen core approximation was used, and the wave functions are expanded in a linear combination of Slater type atomic orbitals. The pseudopotential is semi-relativistic for neodymium, and the Hamiltonian is scalar relativistic for the clusters. The validation of the solid approach is performed using two test cases: YPO{sub 4} and ScPO{sub 4}. Two numerical tools were developed to compute electronic deformation density map, and calculate partial density of stases. A full optimisation of the lattice parameters with a relaxation of the atomic coordinates leads to correct structural and thermodynamic properties for the fluoro-apatite, compared to experience. The electronic deformation density maps do not show any significant differences. between the two calcium sites. but Mulliken analysis on the solid and on the clusters point out the more ionic behavior of the calcium in site 2. A neodymium substituted britholite is then studied. Neodymium location only induces local modifications in; the crystalline structure and few changes in the formation enthalpy. The electronic study points out an increase of the covalent character the bonding involving neodymium

  13. Rigidity and soft percolation in the glass transition of an atomistic model of ionic liquid, 1-ethyl-3-methyl imidazolium nitrate, from molecular dynamics simulations—Existence of infinite overlapping networks in a fragile ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Habasaki, Junko, E-mail: habasaki.j.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Nagatsuta 4259, Yokohama 226-8502 (Japan); Ngai, K. L. [CNR-IPCF Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy)

    2015-04-28

    The typical ionic liquid, 1-ethyl-3-methyl imidazolium nitrate (EMIM-NO{sub 3}), was examined by molecular dynamics simulations of an all-atomistic model to show the characteristics of networks of cages and/or bonds in the course of vitrification of this fragile glass-former. The system shows changes of dynamics at two characteristic temperatures, T{sub B} (or T{sub c}) and the glass transition temperature T{sub g}, found in other fragile glass forming liquids [K. L. Ngai and J. Habasaki, J. Chem. Phys. 141, 114502 (2014)]. On decreasing temperature, the number of neighboring cation-anion pairs, N{sub B}, within the first minimum of the pair correlation function, g(r){sub min}, increases. On crossing T{sub B} (>T{sub g}), the system volume and diffusion coefficient both show changes in temperature dependence, and as usual at T{sub g}. The glass transition temperature, T{sub g}, is characterized by the saturation of the total number of “bonds,” N{sub B} and the corresponding decrease in degree of freedom, F = [(3N − 6) − N{sub B}], of the system consisting of N particles. Similar behavior holds for the other ion-ion pairs. Therefore, as an alternative, the dynamics of glass transition can be interpreted conceptually by rigidity percolation. Before saturation occurring at T{sub g}, the number of bonds shows a remarkable change at around T{sub B}. This temperature is associated with the disappearance of the loosely packed coordination polyhedra of anions around cation (or vice versa), related to the loss of geometrical freedom of the polyhedra, f{sub g}, of each coordination polyhedron, which can be defined by f{sub g} = [(3N{sub V} − 6) − N{sub b}]. Here, 3N{sub v} is the degree of freedom of N{sub V} vertices of the polyhedron, and N{sub b} is number of fictive bonds. The packing of polyhedra is characterized by the soft percolation of cages, which allows further changes with decreasing temperature. The power spectrum of displacement of the central ion

  14. The scientific and cultural role of atomistic

    International Nuclear Information System (INIS)

    Sosnowski, R.

    2005-01-01

    The development of the idea that atoms are the building blocks of matter is presented. This hypothesis began in the Ancient Greece and, independently, in the Ancient India. Arguments are presented that the fact that the atomic theory started in these two regions and not e.g. in Egypt, China or by the Mayas can be linked to their writing. In both Greece and India the alphabet contained letters and not pictograms as used in the three other cultures. The role of Islamic scholars in preserving the knowledge of the ancient atomic theories is presented. In the Middle Ages a significant part of the Greek philosophic treatises have been firstly learned via the Arab translations. It is shown that the atomic concept has not been developed in the Middle Ages. This was because the church found it to be in a disagreement with the Holy Scripture. The start of the modern scientific atomic theory is presented and the role of the established quantitative laws of chemical reactions is discussed. Arguments are presented that the atoms discovered in the nineteenth century did not have the qualities of the atoms proposed by the Ancient Greek philosophers. Contrary to the atoms proposed by the Greeks the former can be decomposed into more fundamental parts. The discussion of the possibility that quarks, leptons and quanta of interactions fields meet the above qualities is presented. (author)

  15. Atomistic understanding of hydrogen loading phenomenon into ...

    Indian Academy of Sciences (India)

    dered. By placing an additional H atom at the centre of the cube, a cubic-full nanocluster was also constructed. All present quantum chemical calculations were car- ried out at the lowest spin multiplicity29–31 through. Gaussian 09 suite of computer codes32 on a quad-core processor at 4 × 2.13 GHz clock speed.

  16. Computational Method for Atomistic-Continuum Homogenization

    National Research Council Canada - National Science Library

    Chung, Peter

    2002-01-01

    ...." Physical Review Letters. vol. 61, no. 25, pp. 2879-2882, 19 December 1988; Brenner, D. W. "Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films...

  17. Atomistic understanding of hydrogen loading phenomenon into ...

    Indian Academy of Sciences (India)

    It is concluded that hydrogen atoms enter the palladium subsurface through hollow and bridge sites by diffusing as proton-like species and get loaded predominantly in the octahedral ... energy shining upon the earth every day can be transformed to electricity using a photon-to-electron convertor or stored chemically as ...

  18. On Atomistic Models for Molecular Oxygen

    DEFF Research Database (Denmark)

    Javanainen, Matti; Vattulainen, Ilpo; Monticelli, Luca

    2017-01-01

    Molecular oxygen (O2) is key to all life on earth, as it is constantly cycled via photosynthesis and cellular respiration. Substantial scientific effort has been devoted to understanding every part of this cycle. Classical molecular dynamics (MD) simulations have been used to study some of the key...

  19. Generating Atomistic Slab Surfaces with Adsorbates

    Science.gov (United States)

    2017-12-01

    of spatial orientation on the possible adsorption sites. This framework was developed to coordinate the passing of structure information throughout...when making slabs. The list should be composed of strings that represent the name of the compound to skip. If no list is given for settings, then...8217_’+str(min_vac)) # Makes a slab directory except: pass iface_slab = Interface(structure, hkl

  20. Atomistic modeling of flexoelectricity in periclase

    Science.gov (United States)

    Chatzopoulos, Andreas; Beck, Philipp; Roth, Johannes; Trebin, Hans-Rainer

    2016-01-01

    Flexoelectricity is evolution of a macroscopic polarization due to a strain gradient. We present a molecular dynamics study of flexoelectricity in the cubic ionic MgO periclase phase. Using an effective interaction force field with polarizable oxygen atoms and applying it to an inhomogeneously strained periclase sample, we detect a collective flexoelectric response of the oxygen dipole moments in visualizations. This induced polarization depends linearly on the strength of the strain gradient as well as the primary polarization, which is caused by the displacement of the ion charges. By three different inhomogeneous deformation modes all three flexoelectric coefficients of periclase are determined.

  1. Data processing

    CERN Document Server

    Fry, T F

    2013-01-01

    Data Processing discusses the principles, practices, and associated tools in data processing. The book is comprised of 17 chapters that are organized into three parts. The first part covers the characteristics, systems, and methods of data processing. Part 2 deals with the data processing practice; this part discusses the data input, output, and storage. The last part discusses topics related to systems and software in data processing, which include checks and controls, computer language and programs, and program elements and structures. The text will be useful to practitioners of computer-rel

  2. Process mining

    DEFF Research Database (Denmark)

    van der Aalst, W.M.P.; Rubin, V.; Verbeek, H.M.W.

    2010-01-01

    Process mining includes the automated discovery of processes from event logs. Based on observed events (e.g., activities being executed or messages being exchanged) a process model is constructed. One of the essential problems in process mining is that one cannot assume to have seen all possible...... behavior. At best, one has seen a representative subset. Therefore, classical synthesis techniques are not suitable as they aim at finding a model that is able to exactly reproduce the log. Existing process mining techniques try to avoid such “overfitting” by generalizing the model to allow for more...

  3. Sewer Processes

    DEFF Research Database (Denmark)

    Hvitved-Jacobsen, Thorkild; Vollertsen, Jes; Nielsen, Asbjørn Haaning

    Since the first edition was published over a decade ago, advancements have been made in the design, operation, and maintenance of sewer systems, and new problems have emerged. For example, sewer processes are now integrated in computer models, and simultaneously, odor and corrosion problems caused...... and valuable information on the sewer as a chemical and biological reactor. It focuses on how to predict critical impacts and control adverse effects. It also provides an integrated description of sewer processes in modeling terms. This second edition is full of illustrative examples and figures, includes...... of odor formation and prediction • Details the WATS sewer process model • Highlights the importance of aerobic, anoxic, and anaerobic processes Sewer Processes: Microbial and Chemical Process Engineering of Sewer Networks, Second Edition, provides a basis for up-to-date understanding and modeling of sewer...

  4. Data processing

    International Nuclear Information System (INIS)

    Cousot, P.

    1988-01-01

    The 1988 progress report of the Data Processing laboratory (Polytechnic School, France), is presented. The laboratory research fields are: the semantics, the tests and the semantic analysis of the codes, the formal calculus, the software applications, the algorithms, the neuron networks and VLSI (Very Large Scale Integration). The investigations concerning the polynomial rings are performed by means of the standard basis approach. Among the research topics, the Pascal codes, the parallel processing, the combinatorial, statistical and asymptotic properties of the fundamental data processing tools, the signal processing and the pattern recognition. The published papers, the congress communications and the thesis are also included [fr

  5. Stochastic processes

    CERN Document Server

    Parzen, Emanuel

    1962-01-01

    Well-written and accessible, this classic introduction to stochastic processes and related mathematics is appropriate for advanced undergraduate students of mathematics with a knowledge of calculus and continuous probability theory. The treatment offers examples of the wide variety of empirical phenomena for which stochastic processes provide mathematical models, and it develops the methods of probability model-building.Chapter 1 presents precise definitions of the notions of a random variable and a stochastic process and introduces the Wiener and Poisson processes. Subsequent chapters examine

  6. Design Processes

    DEFF Research Database (Denmark)

    Ovesen, Nis

    2009-01-01

    Inspiration for most research and optimisations on design processes still seem to focus within the narrow field of the traditional design practise. The focus in this study turns to associated businesses of the design professions in order to learn from their development processes. Through interviews...... advantages and challenges of agile processes in mobile software and web businesses are identified. The applicability of these agile processes is discussed in re- gards to design educations and product development in the domain of Industrial Design and is briefly seen in relation to the concept of dromology...

  7. Magnetics Processing

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetics Processing Lab equipped to perform testing of magnetometers, integrate them into aircraft systems, and perform data analysis, including noise reduction...

  8. Image processing

    NARCIS (Netherlands)

    van der Heijden, Ferdinand; Spreeuwers, Lieuwe Jan; Blanken, Henk; Vries de, A.P.; Blok, H.E.; Feng, L; Feng, L.

    2007-01-01

    The field of image processing addresses handling and analysis of images for many purposes using a large number of techniques and methods. The applications of image processing range from enhancement of the visibility of cer- tain organs in medical images to object recognition for handling by

  9. Food processing

    NARCIS (Netherlands)

    Teodorowicz, Malgorzata; Neerven, Van Joost; Savelkoul, Huub

    2017-01-01

    The majority of foods that are consumed in our developed society have been processed. Processing promotes a non-enzymatic reaction between proteins and sugars, the Maillard reaction (MR). Maillard reaction products (MRPs) contribute to the taste, smell and color of many food products, and thus

  10. Sustainable processing

    DEFF Research Database (Denmark)

    Kristensen, Niels Heine

    2004-01-01

    Kristensen_NH and_Beck A: Sustainable processing. In Otto Schmid, Alexander Beck and Ursula Kretzschmar (Editors) (2004): Underlying Principles in Organic and "Low-Input Food" Processing - Literature Survey. Research Institute of Organic Agriculture FiBL, CH-5070 Frick, Switzerland. ISBN 3-906081-58-3...

  11. Membrane processes

    Science.gov (United States)

    Staszak, Katarzyna

    2017-11-01

    The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

  12. Process automation

    International Nuclear Information System (INIS)

    Moser, D.R.

    1986-01-01

    Process automation technology has been pursued in the chemical processing industries and to a very limited extent in nuclear fuel reprocessing. Its effective use has been restricted in the past by the lack of diverse and reliable process instrumentation and the unavailability of sophisticated software designed for process control. The Integrated Equipment Test (IET) facility was developed by the Consolidated Fuel Reprocessing Program (CFRP) in part to demonstrate new concepts for control of advanced nuclear fuel reprocessing plants. A demonstration of fuel reprocessing equipment automation using advanced instrumentation and a modern, microprocessor-based control system is nearing completion in the facility. This facility provides for the synergistic testing of all chemical process features of a prototypical fuel reprocessing plant that can be attained with unirradiated uranium-bearing feed materials. The unique equipment and mission of the IET facility make it an ideal test bed for automation studies. This effort will provide for the demonstration of the plant automation concept and for the development of techniques for similar applications in a full-scale plant. A set of preliminary recommendations for implementing process automation has been compiled. Some of these concepts are not generally recognized or accepted. The automation work now under way in the IET facility should be useful to others in helping avoid costly mistakes because of the underutilization or misapplication of process automation. 6 figs

  13. Organizing Process

    DEFF Research Database (Denmark)

    Hull Kristensen, Peer; Bojesen, Anders

    This paper invites to discuss the processes of individualization and organizing being carried out under what we might see as an emerging regime of change. The underlying argumentation is that in certain processes of change, competence becomes questionable at all times. The hazy characteristics...... of this regime of change are pursued through a discussion of competencies as opposed to qualifications illustrated by distinct cases from the Danish public sector in the search for repetitive mechanisms. The cases are put into a general perspective by drawing upon experiences from similar change processes...

  14. Dissolution processes

    International Nuclear Information System (INIS)

    Silver, G.L.

    1976-01-01

    This review contains more than 100 observations and 224 references on the dissolution phenomenon. The dissolution processes are grouped into three categories: methods of aqueous attack, fusion methods, and miscellaneous observations on phenomena related to dissolution problems

  15. Electrochemical Processes

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers

    1997-01-01

    The notes describe in detail primary and secondary galvanic cells, fuel cells, electrochemical synthesis and electroplating processes, corrosion: measurments, inhibitors, cathodic and anodic protection, details of metal dissolution reactions, Pourbaix diagrams and purification of waste water from...... galvanic industries....

  16. Renewal processes

    CERN Document Server

    Mitov, Kosto V

    2014-01-01

    This monograph serves as an introductory text to classical renewal theory and some of its applications for graduate students and researchers in mathematics and probability theory. Renewal processes play an important part in modeling many phenomena in insurance, finance, queuing systems, inventory control and other areas. In this book, an overview of univariate renewal theory is given and renewal processes in the non-lattice and lattice case are discussed. A pre-requisite is a basic knowledge of probability theory.

  17. Image processing

    OpenAIRE

    Rino, Franco

    2014-01-01

    An image segmentation method has a training phase, and a segmentation phase. In the training phase a frame of pixel lated data from a camera is processed using information on camera characteristics to render it camera-independent. The camera independent data are processed using a chosen value of illuminant spectral characteristics to derive reflectivity data of the items in the image. Pixels of high reflectivity are established. Then, using data from the high reflectivity pixels, the actual i...

  18. MOLOCH computer code for molecular-dynamics simulation of processes in condensed matter

    Directory of Open Access Journals (Sweden)

    Derbenev I.V.

    2011-01-01

    Full Text Available Theoretical and experimental investigation into properties of condensed matter is one of the mainstreams in RFNC-VNIITF scientific activity. The method of molecular dynamics (MD is an innovative method of theoretical materials science. Modern supercomputers allow the direct simulation of collective effects in multibillion atom sample, making it possible to model physical processes on the atomistic level, including material response to dynamic load, radiation damage, influence of defects and alloying additions upon material mechanical properties, or aging of actinides. During past ten years, the computer code MOLOCH has been developed at RFNC-VNIITF. It is a parallel code suitable for massive parallel computing. Modern programming techniques were used to make the code almost 100% efficient. Practically all instruments required for modelling were implemented in the code: a potential builder for different materials, simulation of physical processes in arbitrary 3D geometry, and calculated data processing. A set of tests was developed to analyse algorithms efficiency. It can be used to compare codes with different MD implementation between each other.

  19. Image processing

    International Nuclear Information System (INIS)

    Kindler, M.; Radtke, F.; Demel, G.

    1986-01-01

    The book is arranged in seven sections, describing various applications of volumetric analysis using image processing systems, and various methods of diagnostic evaluation of images obtained by gamma scintigraphy, cardic catheterisation, and echocardiography. A dynamic ventricular phantom is explained that has been developed for checking and calibration for safe examination of patient, the phantom allowing extensive simulation of volumetric and hemodynamic conditions of the human heart: One section discusses the program development for image processing, referring to a number of different computer systems. The equipment described includes a small non-expensive PC system, as well as a standardized nuclear medical diagnostic system, and a computer system especially suited to image processing. (orig.) [de

  20. Organizing Process

    DEFF Research Database (Denmark)

    Hull Kristensen, Peer; Bojesen, Anders

    This paper invites to discuss the processes of individualization and organizing being carried out under what we might see as an emerging regime of change. The underlying argumentation is that in certain processes of change, competence becomes questionable at all times. The hazy characteristics...... of this regime of change are pursued through a discussion of competencies as opposed to qualifications illustrated by distinct cases from the Danish public sector in the search for repetitive mechanisms. The cases are put into a general perspective by drawing upon experiences from similar change processes...... in MNCs. The paper concludes by asking whether we can escape from a regime of competence in a world defined by a rhetoric of change and create a more promising world in which doubt and search serve as a strategy for gaining knowledge and professionalism that improve on our capability for mutualism....

  1. Process simulation

    International Nuclear Information System (INIS)

    Cao, E.G.; Suarez, P.S.; Pantaleon, J.C.

    1984-01-01

    The search for an optimal design of a heavy water plant is done by means of a simulation model for the mass and enthalpy balances of the SH 2 -H 2 O exchange process. A symplified model for the simulation diagram where the entire plant is represented by a sole tray tower with recicles, and heat and mass feeds/extractions was used. The tower is simulated by the method developed by Tomich with the convergence part given by the algorithm of Broyden. The concluding part of the work is centered in setting the design parameters (flowrates, heat exchange rates, number of plates) wich give the desired process operating conditions. (author) [es

  2. Offshoring Process

    DEFF Research Database (Denmark)

    Slepniov, Dmitrij; Sørensen, Brian Vejrum; Katayama, Hiroshi

    2011-01-01

    The purpose of this chapter is to contribute to the knowledge on how production offshoring and international operations management vary across cultural contexts. The chapter attempts to shed light on how companies approach the process of offshoring in different cultural contexts. In order...... of globalisation. Yet there are clear differences in how offshoring is conducted in Denmark and Japan. The main differences are outlined in a framework and explained employing cultural variables. The findings lead to a number of propositions suggesting that the process of offshoring is not simply a uniform...

  3. Processing Branches

    DEFF Research Database (Denmark)

    Schindler, Christoph; Tamke, Martin; Tabatabai, Ali

    2014-01-01

    Angled and forked wood – a desired material until 19th century, was swept away by industrialization and its standardization of processes and materials. Contemporary information technology has the potential for the capturing and recognition of individual geometries through laser scanning and compu......Angled and forked wood – a desired material until 19th century, was swept away by industrialization and its standardization of processes and materials. Contemporary information technology has the potential for the capturing and recognition of individual geometries through laser scanning...

  4. Processing Branches

    DEFF Research Database (Denmark)

    Schindler, Christoph; Tamke, Martin; Tabatabai, Ali

    2014-01-01

    Angled and forked wood – a desired material until 19th century, was swept away by industrialization and its standardization of processes and materials. Contemporary information technology has the potential for the capturing and recognition of individual geometries through laser scanning...

  5. Radiation processing

    International Nuclear Information System (INIS)

    Noriah Mod Ali

    2005-01-01

    This chapter covers the basic principle and application of radiation technology. The topic titled specific application discussed briefly the following subtopics: 1) Polymer modification - crosslinking, polymerisation, degradation, grafting; 2) Medical sterilisation; 3) Food irradiation; 4) Environmental protection - waste processing, pollutants treatment

  6. Processing Proteases

    DEFF Research Database (Denmark)

    Ødum, Anders Sebastian Rosenkrans

    -terminal of the scissile bond, leaving C-terminal fusions to have non-native C-termini after processing. A solution yielding native C-termini would allow novel expression and purification systems for therapeutic proteins and peptides.The peptidyl-Lys metallopeptidase (LysN) of the fungus Armillaria mellea (Am) is one...

  7. Purex process

    International Nuclear Information System (INIS)

    Starks, J.B.

    1977-01-01

    The following aspects of the Purex Process are discussed: head end dissolution, first solvent extraction cycle, second plutonium solvent extraction cycle, second uranium solvent extraction cycle, solvent recovery systems, primary recovery column for high activity waste, low activity waste, laboratory waste evaporation, vessel vent system, airflow and filtration, acid recovery unit, fume recovery, and discharges to seepage basin

  8. BENTONITE PROCESSING

    Directory of Open Access Journals (Sweden)

    Anamarija Kutlić

    2012-07-01

    Full Text Available Bentonite has vide variety of uses. Special use of bentonite, where its absorbing properties are employed to provide water-tight sealing is for an underground repository in granites In this paper, bentonite processing and beneficiation are described.

  9. Innovation process

    DEFF Research Database (Denmark)

    Kolodovski, A.

    2006-01-01

    Purpose of this report: This report was prepared for RISO team involved in design of the innovation system Report provides innovation methodology to establish common understanding of the process concepts and related terminology The report does not includeRISO- or Denmark-specific cultural, econom...

  10. Leaching process

    International Nuclear Information System (INIS)

    Heinen, H.J.; McClelland, G.E.; Lindstrom, R.E.

    1982-01-01

    A gold and uranium ore is heap leached in accordance with the process comprising initial agglomeration of fines in the feed by means of a binding agent and cyanide solution. The lixiviant comprises a compatible mixture of sodium cyanide and sodium bicarbonate

  11. Signal Processing

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Signal processing techniques, extensively used nowadays to maximize the performance of audio and video equipment, have been a key part in the design of hardware and software for high energy physics detectors since pioneering applications in the UA1 experiment at CERN in 1979

  12. Arobin process

    Energy Technology Data Exchange (ETDEWEB)

    Welz, H.

    1943-10-22

    The Arobin (Aromatenbenzin = aromatic gasoline) process was developed to operate on highly aromatic residues from various other processes (especially the HF process) for production of aviation gasoline and similar fuels. Those residues generally had boiling points from about 165/sup 0/ to 325/sup 0/C, so they were not included in the gasoline mde by the other processes. The Arobin process was able to split these residues into lower-boiling-point compounds which made up a high-performance gasoline containing 70% to 75% aromatics by volume. In order to accomplish this, it was necessary to choose the proper catalyst, one in which the splitting effect was much more pronounced than the hydrogenating effect. The catalyst which seemed to be most effective was an alkali-free aluminum silicate with small amounts (1%) molybdic acid (MoO/sub 3/) added. (An aluminum oxide catalyst used at about 500/sup 0/C produced even higher percentages of aromatics, but it seemed best suited for production of single pure compounds such as toluene.) The Arobin process was carried out at about 200 atm pressure and 400/sup 0/C, with a ratio of 1:1 for fresh starting material to recycled material and a throughput of 1 kg per liter of catalyst per hour. The overall yield of gasoline distilled up to 165/sup 0/C was 85% to 87%, and the time-yield was 0.43 kg per liter of catalyst per hour; the process used 360 m/sup 3/ hydrogen and 200 Calories of heat per (metric) ton of product gasoline. The Arobin gasoline could be blended with a lower-octane aviation gasoline to produce a blend with 50% aromatics; in this way, one (metric) ton of HF residue could give rise to 1.2 tons of such blended gasoline. The oxide catalyst could generally be regenerated by a heated steam of nitrogen diluted with air, unless damaged by certain nitrogen or oxygen compounds. 1 diagram, 3 tables.

  13. Process validation for radiation processing

    International Nuclear Information System (INIS)

    Miller, A.

    1999-01-01

    Process validation concerns the establishment of the irradiation conditions that will lead to the desired changes of the irradiated product. Process validation therefore establishes the link between absorbed dose and the characteristics of the product, such as degree of crosslinking in a polyethylene tube, prolongation of shelf life of a food product, or degree of sterility of the medical device. Detailed international standards are written for the documentation of radiation sterilization, such as EN 552 and ISO 11137, and the steps of process validation that are described in these standards are discussed in this paper. They include material testing for the documentation of the correct functioning of the product, microbiological testing for selection of the minimum required dose and dose mapping for documentation of attainment of the required dose in all parts of the product. The process validation must be maintained by reviews and repeated measurements as necessary. This paper presents recommendations and guidance for the execution of these components of process validation. (author)

  14. Stochastic processes

    CERN Document Server

    Borodin, Andrei N

    2017-01-01

    This book provides a rigorous yet accessible introduction to the theory of stochastic processes. A significant part of the book is devoted to the classic theory of stochastic processes. In turn, it also presents proofs of well-known results, sometimes together with new approaches. Moreover, the book explores topics not previously covered elsewhere, such as distributions of functionals of diffusions stopped at different random times, the Brownian local time, diffusions with jumps, and an invariance principle for random walks and local times. Supported by carefully selected material, the book showcases a wealth of examples that demonstrate how to solve concrete problems by applying theoretical results. It addresses a broad range of applications, focusing on concrete computational techniques rather than on abstract theory. The content presented here is largely self-contained, making it suitable for researchers and graduate students alike.

  15. Restoration Process

    Science.gov (United States)

    1979-01-01

    In the accompanying photos, a laboratory technician is restoring the once-obliterated serial number of a revolver. The four-photo sequence shows the gradual progression from total invisibility to clear readability. The technician is using a new process developed in an applications engineering project conducted by NASA's Lewis Research Center in conjunction with Chicago State University. Serial numbers and other markings are frequently eliminated from metal objects to prevent tracing ownership of guns, motor vehicles, bicycles, cameras, appliances and jewelry. To restore obliterated numbers, crime laboratory investigators most often employ a chemical etching technique. It is effective, but it may cause metal corrosion and it requires extensive preparatory grinding and polishing. The NASA-Chicago State process is advantageous because it can be applied without variation to any kind of metal, it needs no preparatory work and number recovery can be accomplished without corrosive chemicals; the liquid used is water.

  16. Residue processing

    Energy Technology Data Exchange (ETDEWEB)

    Gieg, W.; Rank, V.

    1942-10-15

    In the first stage of coal hydrogenation, the liquid phase, light and heavy oils were produced; the latter containing the nonliquefied parts of the coal, the coal ash, and the catalyst substances. It was the problem of residue processing to extract from these so-called let-down oils that which could be used as pasting oils for the coal. The object was to obtain a maximum oil extraction and a complete removal of the solids, because of the latter were returned to the process they would needlessly burden the reaction space. Separation of solids in residue processing could be accomplished by filtration, centrifugation, extraction, distillation, or low-temperature carbonization (L.T.C.). Filtration or centrifugation was most suitable since a maximum oil yield could be expected from it, since only a small portion of the let-down oil contained in the filtration or centrifugation residue had to be thermally treated. The most satisfactory centrifuge at this time was the Laval, which delivered liquid centrifuge residue and centrifuge oil continuously. By comparison, the semi-continuous centrifuges delivered plastic residues which were difficult to handle. Various apparatus such as the spiral screw kiln and the ball kiln were used for low-temperature carbonization of centrifuge residues. Both were based on the idea of carbonization in thin layers. Efforts were also being made to produce electrode carbon and briquette binder as by-products of the liquid coal phase.

  17. Curing process

    International Nuclear Information System (INIS)

    Maruyama, Tsutomu; Watanabe, Tadashi.

    1969-01-01

    A process for the rapid curing of an electrophoretically applied coating with either compositions of aqueous dispersion or aqueous coating compositions thereof is provided by irradiating with ionizing radiations. The process comprises the steps of (a) neutralizing an aqueous alkyd resin with a base, in which the alkyd resin contains a conjugated unsaturated fatty acid or oil as one of its constituents, (b) dispersing the neutralized resin in water, (c) applying to an electroconductive material the varnishes of the dispersed composition or the dispersed coating composition, and (d) irradiating the coatings with ionizing radiations so as to harden them. The alkyd resins have an acid value of 30 to 100 and the bases are equivalent to 0.7 to 1.2. the process is suitable for coil coating. In examples, a semi-esterified product of acid value 54 was diluted with 440 parts of ethylene glycol monobutyl ether and 110 parts of butanol. Next, they were neutralized with 87 parts of dimethyl amino ethanol. Thereafter, they were mixed with 1,013 parts of water to produce an aqueous dispersion of alkyd resin varnish at a concentration of 40%. To 325 parts of the varnish were added 1.3 parts of cobalt naphthenate- 60% toluene solution and then 675 parts of water to produce water soluble varnish containing 13% of a nonvolatile substance. The varnish was applied by electrophoresis for 10 seconds. The time required for the irradiation was about 1 second. The total radiation dose was 3 Mrad of electron beams at an acceleration energy of 300 kV and 25 mA of current. (Iwakiri, K.)

  18. Markov processes

    CERN Document Server

    Kirkwood, James R

    2015-01-01

    Review of ProbabilityShort HistoryReview of Basic Probability DefinitionsSome Common Probability DistributionsProperties of a Probability DistributionProperties of the Expected ValueExpected Value of a Random Variable with Common DistributionsGenerating FunctionsMoment Generating FunctionsExercisesDiscrete-Time, Finite-State Markov ChainsIntroductionNotationTransition MatricesDirected Graphs: Examples of Markov ChainsRandom Walk with Reflecting BoundariesGambler’s RuinEhrenfest ModelCentral Problem of Markov ChainsCondition to Ensure a Unique Equilibrium StateFinding the Equilibrium StateTransient and Recurrent StatesIndicator FunctionsPerron-Frobenius TheoremAbsorbing Markov ChainsMean First Passage TimeMean Recurrence Time and the Equilibrium StateFundamental Matrix for Regular Markov ChainsDividing a Markov Chain into Equivalence ClassesPeriodic Markov ChainsReducible Markov ChainsSummaryExercisesDiscrete-Time, Infinite-State Markov ChainsRenewal ProcessesDelayed Renewal ProcessesEquilibrium State f...

  19. Shared processes

    Directory of Open Access Journals (Sweden)

    María Auxiliadora Gálvez Pérez

    2015-05-01

    Full Text Available AbstractThe comparison between the creative processes in dance and architecture constitute a panorama, which is able to fi gure out reality with different and intense perceptive connotations. It is about a reality where the important thing is the immersion into the spatial-temporal phenomena, the contact of the space of our body and the spatial essence that is outside our skin limits. Under an architectonical point of view, dance would be a key  discipline, a laboratory where it is possible to freely explore the concepts related to the body-space system, consequently it is also a good frame to seek the necessary tools to work with them. One of the most important examples of this laboratory consolidated in the intersection of choreographical, and architectonical processes is the collaboration betweenLawrence Halprin, landscape architect, and Anna Halprin, choreographer. Through the direct experience of the body in space, they will develop notations and creative cycles able to work with the material of this expanded perception of reality. The review of these creative cycles tested mainly in the sixties is nowadays specially appropriated, when diverse branches of philosophy rooted in phenomenology are interested precisely in dance and architecture as key territories. It seems that it is the opportune moment to expand the architectonical tools, which have been implemented till now, following phenomenological concerns.

  20. Lithospheric processes

    Energy Technology Data Exchange (ETDEWEB)

    Baldridge, W. [and others

    2000-12-01

    The authors used geophysical, geochemical, and numerical modeling to study selected problems related to Earth's lithosphere. We interpreted seismic waves to better characterize the thickness and properties of the crust and lithosphere. In the southwestern US and Tien Shari, crust of high elevation is dynamically supported above buoyant mantle. In California, mineral fabric in the mantle correlate with regional strain history. Although plumes of buoyant mantle may explain surface deformation and magmatism, our geochemical work does not support this mechanism for Iberia. Generation and ascent of magmas remains puzzling. Our work in Hawaii constrains the residence of magma beneath Hualalai to be a few hundred to about 1000 years. In the crust, heat drives fluid and mass transport. Numerical modeling yielded robust and accurate predictions of these processes. This work is important fundamental science, and applies to mitigation of volcanic and earthquake hazards, Test Ban Treaties, nuclear waste storage, environmental remediation, and hydrothermal energy.

  1. Oligomerization process

    Science.gov (United States)

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1991-03-26

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled. 2 figures.

  2. WELDING PROCESS

    Science.gov (United States)

    Zambrow, J.; Hausner, H.

    1957-09-24

    A method of joining metal parts for the preparation of relatively long, thin fuel element cores of uranium or alloys thereof for nuclear reactors is described. The process includes the steps of cleaning the surfaces to be jointed, placing the sunfaces together, and providing between and in contact with them, a layer of a compound in finely divided form that is decomposable to metal by heat. The fuel element members are then heated at the contact zone and maintained under pressure during the heating to decompose the compound to metal and sinter the members and reduced metal together producing a weld. The preferred class of decomposable compounds are the metal hydrides such as uranium hydride, which release hydrogen thus providing a reducing atmosphere in the vicinity of the welding operation.

  3. Lithospheric processes

    International Nuclear Information System (INIS)

    Baldridge, W.S.

    2000-01-01

    The authors used geophysical, geochemical, and numerical modeling to study selected problems related to Earth's lithosphere. We interpreted seismic waves to better characterize the thickness and properties of the crust and lithosphere. In the southwestern US and Tien Shari, crust of high elevation is dynamically supported above buoyant mantle. In California, mineral fabric in the mantle correlate with regional strain history. Although plumes of buoyant mantle may explain surface deformation and magmatism, our geochemical work does not support this mechanism for Iberia. Generation and ascent of magmas remains puzzling. Our work in Hawaii constrains the residence of magma beneath Hualalai to be a few hundred to about 1000 years. In the crust, heat drives fluid and mass transport. Numerical modeling yielded robust and accurate predictions of these processes. This work is important fundamental science, and applies to mitigation of volcanic and earthquake hazards, Test Ban Treaties, nuclear waste storage, environmental remediation, and hydrothermal energy

  4. Image Processing

    Science.gov (United States)

    1993-01-01

    Electronic Imagery, Inc.'s ImageScale Plus software, developed through a Small Business Innovation Research (SBIR) contract with Kennedy Space Flight Center for use on space shuttle Orbiter in 1991, enables astronauts to conduct image processing, prepare electronic still camera images in orbit, display them and downlink images to ground based scientists for evaluation. Electronic Imagery, Inc.'s ImageCount, a spin-off product of ImageScale Plus, is used to count trees in Florida orange groves. Other applications include x-ray and MRI imagery, textile designs and special effects for movies. As of 1/28/98, company could not be located, therefore contact/product information is no longer valid.

  5. Processing Disability.

    Science.gov (United States)

    Harris, Jasmine

    2015-01-01

    This Article argues that the practice of holding so many adjudicative proceedings related to disability in private settings (e.g., guardianship, special education due process, civil commitment, and social security) relative to our strong normative presumption of public access to adjudication may cultivate and perpetuate stigma in contravention of the goals of inclusion and enhanced agency set forth in antidiscrimination laws. Descriptively, the law has a complicated history with disability--initially rendering disability invisible; later, underwriting particular narratives of disability synonymous with incapacity; and, in recent history, promoting the full socio-economic visibility of people with disabilities. The Americans with Disabilities Act (ADA), the marquee civil rights legislation for people with disabilities (about to enter its twenty-fifth year), expresses a national approach to disability that recognizes the role of society in its construction, maintenance, and potential remedy. However, the ADA’s mission is incomplete. It has not generated the types of interactions between people with disabilities and nondisabled people empirically shown to deconstruct deeply entrenched social stigma. Prescriptively, procedural design can act as an "ntistigma agent"to resist and mitigate disability stigma. This Article focuses on one element of institutional design--public access to adjudication--as a potential tool to construct and disseminate counter-narratives of disability. The unique substantive focus in disability adjudication on questions of agency provides a potential public space for the negotiation of nuanced definitions of disability and capacity more reflective of the human condition.

  6. Data Processing

    Science.gov (United States)

    Grangeat, P.

    A new area of biology has been opened up by nanoscale exploration of the living world. This has been made possible by technological progress, which has provided the tools needed to make devices that can measure things on such length and time scales. In a sense, this is a new window upon the living world, so rich and so diverse. Many of the investigative methods described in this book seek to obtain complementary physical, chemical, and biological data to understand the way it works and the way it is organised. At these length and time scales, only dedicated instrumentation could apprehend the relevant phenomena. There is no way for our senses to observe these things directly. One important field of application is molecular medicine, which aims to explain the mechanisms of life and disease by the presence and quantification of specific molecular entities. This involves combining information about genes, proteins, cells, and organs. This in turn requires the association of instruments for molecular diagnosis, either in vitro, e.g., the microarray or the lab-on-a-chip, or in vivo, e.g., probes for molecular biopsy, and tools for molecular imaging, used to localise molecular information in living organisms in a non-invasive way. These considerations concern both preclinical research for drug design and human medical applications. With the development of DNA and RNA chips [1], genomics has revolutionised investigative methods for cells and cell processes [2,3]. By sequencing the human genome, new ways have been found for understanding the fundamental mechanisms of life [4]. A revolution is currently under way with the analysis of the proteome [5-8], i.e., the complete set of proteins that can be found in some given biological medium, such as the blood plasma. The goal is to characterise certain diseases by recognisable signatures in the proteomic profile, as determined from a blood sample or a biopsy, for example [9-13]. What is at stake is the early detection of

  7. Molecular dynamics studies of fluid/oil interfaces for improved oil recovery processes.

    Science.gov (United States)

    de Lara, Lucas S; Michelon, Mateus F; Miranda, Caetano R

    2012-12-20

    In our paper, we study the interface wettability, diffusivity, and molecular orientation between crude oil and different fluids for applications in improved oil recovery (IOR) processes through atomistic molecular dynamics (MD). The salt concentration, temperature, and pressure effects on the physical chemistry properties of different interfaces between IOR agents [brine (H(2)O + % NaCl), CO(2), N(2), and CH(4)] and crude oil have been determined. From the interfacial density profiles, an accumulation of aromatic molecules near the interface has been observed. In the case of brine interfaced with crude oil, our calculations indicate an increase in the interfacial tension with increasing pressure and salt concentration, which favors oil displacement. On the other hand, with the other fluids studied (CO(2), N(2), and CH(4)), the interfacial tension decreases with increasing pressure and temperature. With interfacial tension reduction, an increase in fluid diffusivity in the oil phase is observed. We also studied the molecular orientation properties of the hydrocarbon and fluids molecules in the interface region. We perceived that the molecular orientation could be affected by changes in the interfacial tension and diffusivity of the molecules in the interface region with the increased pressure and temperature: pressure (increasing) → interfacial tension (decreasing) → diffusion (increasing) → molecular ordering. From a molecular point of view, the combination of low interfacial tension and high diffusion of molecules in the oil phase gives the CO(2) molecules unique properties as an IOR fluid compared with other fluids studied here.

  8. Hydrothermal Processes

    Science.gov (United States)

    German, C. R.; von Damm, K. L.

    2003-12-01

    What is Hydrothermal Circulation?Hydrothermal circulation occurs when seawater percolates downward through fractured ocean crust along the volcanic mid-ocean ridge (MOR) system. The seawater is first heated and then undergoes chemical modification through reaction with the host rock as it continues downward, reaching maximum temperatures that can exceed 400 °C. At these temperatures the fluids become extremely buoyant and rise rapidly back to the seafloor where they are expelled into the overlying water column. Seafloor hydrothermal circulation plays a significant role in the cycling of energy and mass between the solid earth and the oceans; the first identification of submarine hydrothermal venting and their accompanying chemosynthetically based communities in the late 1970s remains one of the most exciting discoveries in modern science. The existence of some form of hydrothermal circulation had been predicted almost as soon as the significance of ridges themselves was first recognized, with the emergence of plate tectonic theory. Magma wells up from the Earth's interior along "spreading centers" or "MORs" to produce fresh ocean crust at a rate of ˜20 km3 yr-1, forming new seafloor at a rate of ˜3.3 km2 yr-1 (Parsons, 1981; White et al., 1992). The young oceanic lithosphere formed in this way cools as it moves away from the ridge crest. Although much of this cooling occurs by upward conduction of heat through the lithosphere, early heat-flow studies quickly established that a significant proportion of the total heat flux must also occur via some additional convective process (Figure 1), i.e., through circulation of cold seawater within the upper ocean crust (Anderson and Silbeck, 1981). (2K)Figure 1. Oceanic heat flow versus age of ocean crust. Data from the Pacific, Atlantic, and Indian oceans, averaged over 2 Ma intervals (circles) depart from the theoretical cooling curve (solid line) indicating convective cooling of young ocean crust by circulating seawater

  9. PC image processing

    International Nuclear Information System (INIS)

    Hwa, Mok Jin Il; Am, Ha Jeng Ung

    1995-04-01

    This book starts summary of digital image processing and personal computer, and classification of personal computer image processing system, digital image processing, development of personal computer and image processing, image processing system, basic method of image processing such as color image processing and video processing, software and interface, computer graphics, video image and video processing application cases on image processing like satellite image processing, color transformation of image processing in high speed and portrait work system.

  10. Developing Materials Processing to Performance Modeling Capabilities and the Need for Exascale Computing Architectures (and Beyond)

    Energy Technology Data Exchange (ETDEWEB)

    Schraad, Mark William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Physics and Engineering Models; Luscher, Darby Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Advanced Simulation and Computing

    2016-09-06

    Additive Manufacturing techniques are presenting the Department of Energy and the NNSA Laboratories with new opportunities to consider novel component production and repair processes, and to manufacture materials with tailored response and optimized performance characteristics. Additive Manufacturing technologies already are being applied to primary NNSA mission areas, including Nuclear Weapons. These mission areas are adapting to these new manufacturing methods, because of potential advantages, such as smaller manufacturing footprints, reduced needs for specialized tooling, an ability to embed sensing, novel part repair options, an ability to accommodate complex geometries, and lighter weight materials. To realize the full potential of Additive Manufacturing as a game-changing technology for the NNSA’s national security missions; however, significant progress must be made in several key technical areas. In addition to advances in engineering design, process optimization and automation, and accelerated feedstock design and manufacture, significant progress must be made in modeling and simulation. First and foremost, a more mature understanding of the process-structure-property-performance relationships must be developed. Because Additive Manufacturing processes change the nature of a material’s structure below the engineering scale, new models are required to predict materials response across the spectrum of relevant length scales, from the atomistic to the continuum. New diagnostics will be required to characterize materials response across these scales. And not just models, but advanced algorithms, next-generation codes, and advanced computer architectures will be required to complement the associated modeling activities. Based on preliminary work in each of these areas, a strong argument for the need for Exascale computing architectures can be made, if a legitimate predictive capability is to be developed.

  11. Processing and Testing Re2Si207 Matrix Composites (Preprint)

    Science.gov (United States)

    2012-07-01

    determined. 1. Introduction The application of SiC/SiC ceramic matrix composites (CMCs) is limited by mechanical property degradation in oxidizing...using the Archimedes method. 2.3. Indentation and Characterization The hardnesses of the sintered pellets were measured by Vickers indentation at...J. Mechanical Properties and Atomistic Deformation Mechanism of g-Y2Si2O7 from First- Principles Investigations. Acta mat. 55, 6019-6026 (2007). 10

  12. Management of processes of electrochemical dimensional processing

    Science.gov (United States)

    Akhmetov, I. D.; Zakirova, A. R.; Sadykov, Z. B.

    2017-09-01

    In different industries a lot high-precision parts are produced from hard-processed scarce materials. Forming such details can only be acting during non-contact processing, or a minimum of effort, and doable by the use, for example, of electro-chemical processing. At the present stage of development of metal working processes are important management issues electrochemical machining and its automation. This article provides some indicators and factors of electrochemical machining process.

  13. Extensible packet processing architecture

    Science.gov (United States)

    Robertson, Perry J.; Hamlet, Jason R.; Pierson, Lyndon G.; Olsberg, Ronald R.; Chun, Guy D.

    2013-08-20

    A technique for distributed packet processing includes sequentially passing packets associated with packet flows between a plurality of processing engines along a flow through data bus linking the plurality of processing engines in series. At least one packet within a given packet flow is marked by a given processing engine to signify by the given processing engine to the other processing engines that the given processing engine has claimed the given packet flow for processing. A processing function is applied to each of the packet flows within the processing engines and the processed packets are output on a time-shared, arbitered data bus coupled to the plurality of processing engines.

  14. The Newest Laser Processing

    International Nuclear Information System (INIS)

    Lee, Baek Yeon

    2007-01-01

    This book mentions laser processing with laser principle, laser history, laser beam property, laser kinds, foundation of laser processing such as laser oscillation, characteristic of laser processing, laser for processing and its characteristic, processing of laser hole including conception of processing of laser hole and each material, and hole processing of metal material, cut of laser, reality of cut, laser welding, laser surface hardening, application case of special processing and safety measurement of laser.

  15. Thinning spatial point processes into Poisson processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Schoenberg, Frederic Paik

    This paper describes methods for randomly thinning certain classes of spatial point processes. In the case of a Markov point process, the proposed method involves a dependent thinning of a spatial birth-and-death process, where clans of ancestors associated with the original points are identified......, and where one simulates backwards and forwards in order to obtain the thinned process. In the case of a Cox process, a simple independent thinning technique is proposed. In both cases, the thinning results in a Poisson process if and only if the true Papangelou conditional intensity is used, and thus can...... be used as a diagnostic for assessing the goodness-of-fit of a spatial point process model. Several examples, including clustered and inhibitive point processes, are considered....

  16. Thinning spatial point processes into Poisson processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Schoenberg, Frederic Paik

    2010-01-01

    In this paper we describe methods for randomly thinning certain classes of spatial point processes. In the case of a Markov point process, the proposed method involves a dependent thinning of a spatial birth-and-death process, where clans of ancestors associated with the original points...... are identified, and where we simulate backwards and forwards in order to obtain the thinned process. In the case of a Cox process, a simple independent thinning technique is proposed. In both cases, the thinning results in a Poisson process if and only if the true Papangelou conditional intensity is used, and......, thus, can be used as a graphical exploratory tool for inspecting the goodness-of-fit of a spatial point process model. Several examples, including clustered and inhibitive point processes, are considered....

  17. The permanental process

    DEFF Research Database (Denmark)

    McCullagh, Peter; Møller, Jesper

    2006-01-01

    We extend the boson process first to a large class of Cox processes and second to an even larger class of infinitely divisible point processes. Density and moment results are studied in detail. These results are obtained in closed form as weighted permanents, so the extension i called a permanental...... process. Temporal extensions and a particularly tractable case of the permanental process are also studied. Extensions of the fermion process along similar lines, leading to so-called determinantal processes, are discussed....

  18. The permanent process

    DEFF Research Database (Denmark)

    Møller, Jesper; McCullagh, Peter

    We extend the boson process first to a large class of Cox processes and second an even larger class of infinitely divisible point processes. Density and moment results are studied in detail. These results are obtained in closed form as weighted permanents, so the extension is called a permanent...... process. Temporal extensions and a particularly tractable case of the permanent process are also studied. Extensions of the ferminon process along similar lines, leading to so-called determinant processes, are discussed at the end. While the permanent process is attractive, the determinant process...

  19. Estudio teórico de las propiedades elásticas de los minerales Cu3TMSe4 (TM = V, Nb, Ta por medio de cálculos atomísticos de primeros principios Theoretical study of the elastic properties of the minerals Cu3TMSe4 (TM = V, Nb, Ta by means of atomistic first-principles calculations

    Directory of Open Access Journals (Sweden)

    Carlos Mario Ruiz

    2011-06-01

    Full Text Available Las propiedades elásticas de la familia de los minerales isoestructurales Cu3VSe4, Cu3NbSe4 y Cu3TaSe4 han sido calculadas por primera vez usandoel estado del arte en cálculos atomísticos de primeros-principios, utilizandola Teoría de los Funcionales de la Densidad y la Aproximación del Gradiente Generalizado para el funcional de la energía de intercambio-correlación. Laspropiedades elásticas calculadas son el módulo volumétrico (B, las constantes elásticas (c11, c12 y c44, el factor de anisotropía de Zener (A, el módulo de cizalladura isotrópico (G, el módulo de Young (Y, y la razón de Poisson(ν. A través de estas cantidades también hemos calculado otras propiedades termodinámicas tales como la velocidad promedio del sonido transversal (st y longitudinal (sl y la temperatura de Debye (ΘD. Los valores calculados de B, c11, c12 y c44, G, Y , y ν nos llevan a la conclusión que estos compuestosson compresibles, frágiles y quebradizos.The elastic properties of the family of isostructural minerals Cu3VSe4, Cu3NbSe4 and Cu3TaSe4 have been calculated for the first time using the state of the art in first-principles atomistic calculations, using Density Functional Theory and the Generalized Gradient Approximation for the exchangecorrelation energy functional. The elastic properties calculated are bulk modulus (B, the elastic constants (c11, c12 and c44, the Zener anisotropy factor (A, the isotropic shear modulus (G, the Young modulus (Y , and the Poisson ratio (. By means of these quantities we also computed other thermodynamic properties such as the average transversal (st and longitudinal (sl sound velocities and the Debye temperature (D. The calculated values of B, c11, c12 and c44, G, Y and lead us to the conclusion that these compounds are compressible, fragile and brittle.

  20. Process Intensification: A Perspective on Process Synthesis

    DEFF Research Database (Denmark)

    Lutze, Philip; Gani, Rafiqul; Woodley, John

    2010-01-01

    In recent years, process intensification (PI) has attracted considerable academic interest as a potential means for process improvement, to meet the increasing demands for sustainable production. A variety of intensified operations developed in academia and industry creates a large number...... of options to potentially improve the process but to identify the set of feasible solutions for PI in which the optimal can be found takes considerable resources. Hence, a process synthesis tool to achieve PI would potentially assist in the generation and evaluation of PI options. Currently, several process...... design tools with a clear focus on specific PI tasks exist. Therefore, in this paper, the concept of a general systematic framework for synthesis and design of PI options in hierarchical steps through analyzing an existing process, generating PI options in a superstructure and evaluating intensified...

  1. SAR processing using SHARC signal processing systems

    Science.gov (United States)

    Huxtable, Barton D.; Jackson, Christopher R.; Skaron, Steve A.

    1998-09-01

    Synthetic aperture radar (SAR) is uniquely suited to help solve the Search and Rescue problem since it can be utilized either day or night and through both dense fog or thick cloud cover. Other papers in this session, and in this session in 1997, describe the various SAR image processing algorithms that are being developed and evaluated within the Search and Rescue Program. All of these approaches to using SAR data require substantial amounts of digital signal processing: for the SAR image formation, and possibly for the subsequent image processing. In recognition of the demanding processing that will be required for an operational Search and Rescue Data Processing System (SARDPS), NASA/Goddard Space Flight Center and NASA/Stennis Space Center are conducting a technology demonstration utilizing SHARC multi-chip modules from Boeing to perform SAR image formation processing.

  2. Drug Development Process

    Science.gov (United States)

    ... Approvals The Drug Development Process The Drug Development Process Share Tweet Linkedin Pin it More sharing options ... public. More Information More in The Drug Development Process Step 1: Discovery and Development Step 2: Preclinical ...

  3. Mining processes in dentistry

    NARCIS (Netherlands)

    Mans, R.S.; Reijers, H.A.; van Genuchten, M.; Wismeijer, D.

    2012-01-01

    Business processes in dentistry are quickly evolving towards "digital dentistry". This means that many steps in the dental process will increasingly deal with computerized information or computerized half products. A complicating factor in the improvement of process performance in dentistry,

  4. Morphology evolution and nanostructure of chemical looping transition metal oxide materials upon redox processes

    International Nuclear Information System (INIS)

    Qin, Lang; Cheng, Zhuo; Guo, Mengqing; Fan, Jonathan A.; Fan, Liang-Shih

    2017-01-01

    Transition metal are heavily used in chemical looping technologies because of their high oxygen carrying capacity and high thermal reactivity. These oxygen activities result in the oxide formation and oxygen vacancy formation that affect the nanoscale crystal phase and morphology within these materials and their subsequent bulk chemical behavior. In this study, two selected earlier transition metals manganese and cobalt as well as two selected later transition metals copper and nickel that are important to chemical looping reactions are investigated when they undergo cyclic redox reactions. We found Co microparticles exhibited increased CoO impurity presence when oxidized to Co 3 O 4 upon cyclic oxidation; CuO redox cycles prefer to be limited to a reduced form of Cu 2 O and an oxidized form of CuO; Mn microparticles were oxidized to a mixed phases of MnO and Mn 3 O 4 , which causes delamination during oxidation. For Ni microparticles, a dense surface were observed during the redox reaction. The atomistic thermodynamics methods and density functional theory (DFT) calculations are carried out to elucidate the effect of oxygen dissociation and migration on the morphological evolution of nanostructures during the redox processes. Our results indicate that the earlier transition metals (Mn and Co) tend to have stronger interaction with O 2 than the later transition metals (Ni and Cu). Also, our modified Brønsted−Evans−Polanyi (BEP) relationship for reaction energies and total reaction barriers reveals that reactions of earlier transition metals are more exergonic and have lower oxygen dissociation barriers than those of later transition metals. In addition, it was found that for these transition metal oxides the oxygen vacancy formation energies increase with the depth. The oxide in the higher oxidation state of transition metal has lower vacancy formation energy, which can facilitate forming the defective nanostructures. The fundamental understanding of these

  5. Realtime Color Stereovision Processing

    National Research Council Canada - National Science Library

    Formwalt, Bryon

    2000-01-01

    .... This research takes a step forward in real time machine vision processing. It investigates techniques for implementing a real time stereovision processing system using two miniature color cameras...

  6. Business Process Customization using Process Merging Techniques

    NARCIS (Netherlands)

    Bulanov, Pavel; Lazovik, Alexander; Aiello, Marco

    2012-01-01

    One of the important application of service composition techniques lies in the field of business process management. Essentially a business process can be considered as a composition of services, which is usually prepared by domain experts, and many tasks still have to be performed manually. These

  7. Idaho Chemical Processing Plant Process Efficiency improvements

    International Nuclear Information System (INIS)

    Griebenow, B.

    1996-03-01

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond

  8. Recursive Markov Process

    OpenAIRE

    Hidaka, Shohei

    2015-01-01

    A Markov process, which is constructed recursively, arises in stochastic games with Markov strategies. In this study, we defined a special class of random processes called the recursive Markov process, which has infinitely many states but can be expressed in a closed form. We derive the characteristic equation which the marginal stationary distribution of an arbitrary recursive Markov process needs to satisfy.

  9. Making process improvement 'stick'.

    Science.gov (United States)

    Studer, Quint

    2014-06-01

    To sustain gains from a process improvement initiative, healthcare organizations should: Explain to staff why a process improvement initiative is needed. Encourage leaders within the organization to champion the process improvement, and tie their evaluations to its outcomes. Ensure that both leaders and employees have the skills to help sustain the sought-after process improvements.

  10. A Campbell random process

    International Nuclear Information System (INIS)

    Reuss, J.D.; Misguich, J.H.

    1993-02-01

    The Campbell process is a stationary random process which can have various correlation functions, according to the choice of an elementary response function. The statistical properties of this process are presented. A numerical algorithm and a subroutine for generating such a process is built up and tested, for the physically interesting case of a Campbell process with Gaussian correlations. The (non-Gaussian) probability distribution appears to be similar to the Gamma distribution

  11. Thin film processes

    CERN Document Server

    Vossen, John L

    1978-01-01

    Remarkable advances have been made in recent years in the science and technology of thin film processes for deposition and etching. It is the purpose of this book to bring together tutorial reviews of selected filmdeposition and etching processes from a process viewpoint. Emphasis is placed on the practical use of the processes to provide working guidelines for their implementation, a guide to the literature, and an overview of each process.

  12. Business process transformation the process tangram framework

    CERN Document Server

    Sharma, Chitra

    2015-01-01

    This book presents a framework through transformation and explains  how business goals can be translated into realistic plans that are tangible and yield real results in terms of the top line and the bottom line. Process Transformation is like a tangram puzzle, which has multiple solutions yet is essentially composed of seven 'tans' that hold it together. Based on practical experience and intensive research into existing material, 'Process Tangram' is a simple yet powerful framework that proposes Process Transformation as a program. The seven 'tans' are: the transformation program itself, triggers, goals, tools and techniques, culture, communication and success factors. With its segregation into tans and division into core elements, this framework makes it possible to use 'pick and choose' to quickly and easily map an organization's specific requirements. Change management and process modeling are covered in detail. In addition, the book approaches managed services as a model of service delivery, which it ex...

  13. Comparison of coarse-grained (MARTINI) and atomistic molecular ...

    Indian Academy of Sciences (India)

    Rajat Desikan

    Abstract. Pore forming toxins (PFTs) are virulent proteins whose primary goal is to lyse target cells by unregulated pore formation. Molecular dynamics simulations can potentially provide molecular insights on the properties of the pore complex as well as the underlying pathways for pore formation. In this manuscript we.

  14. Modelling of gas-surface interactions using atomistic approaches

    NARCIS (Netherlands)

    Violanda, M.

    2010-01-01

    The oxidation of Si is one the basic steps in the manufacture of microchips in electronic devices. With integrated circuits increasingly getting smaller, the controlled deposition of the thin insulating SiO2 layers becomes critical. During rf reactive magnetron sputter deposition of silicon

  15. Atomistic Modeling of Nanostructures via the BFS Quantum Approximate Method

    Science.gov (United States)

    Bozzolo, Guillermo; Garces, Jorge E.; Noebe, Ronald D.; Farias, D.

    2003-01-01

    Ideally, computational modeling techniques for nanoscopic physics would be able to perform free of limitations on the type and number of elements, while providing comparable accuracy when dealing with bulk or surface problems. Computational efficiency is also desirable, if not mandatory, for properly dealing with the complexity of typical nano-strucured systems. A quantum approximate technique, the BFS method for alloys, which attempts to meet these demands, is introduced for the calculation of the energetics of nanostructures. The versatility of the technique is demonstrated through analysis of diverse systems, including multi-phase precipitation in a five element Ni-Al-Ti-Cr-Cu alloy and the formation of mixed composition Co-Cu islands on a metallic Cu(III) substrate.

  16. Voronoi Based Nanocrystalline Generation Algorithm for Atomistic Simulations

    Science.gov (United States)

    2016-12-22

    run script and can therefore be invoked through either a bash terminal or a Python interactive environment. Prior to invoking the script, the user...entering python nanocrystal_builder.py in terminal or import nanocrystal_builder.py in the Python interactive environment. Once invoked, the algorithm...import math as mt reference_mode = raw_input(’Do you want to generate from a single reference or a configuration file ’ \\ ’(respond single or config

  17. Atomistic simulation of the structural and elastic properties of ...

    Indian Academy of Sciences (India)

    to derive a satisfactory force field for the description of the polymorphs of magnesium carbonate. Of these, arguably the most accurate in terms of the description of the structure and physical properties of magnesite has been the potential of Rohl et al [18] and Austen et al [19] and the potential parameters are given in table 1.

  18. Atomistic fingerprint of hyaluronan-CD44 binding

    DEFF Research Database (Denmark)

    Vuorio, Joni; Vattulainen, Ilpo; Martinez-Seara, Hector

    2017-01-01

    that hyaluronan can bind CD44 with three topographically different binding modes that in unison define an interaction fingerprint, thus providing a plausible explanation for the disagreement between the earlier studies. Our results confirm that the known crystallographic mode is the strongest of the three binding...

  19. Atomistic study of two-level systems in amorphous silica

    Science.gov (United States)

    Damart, T.; Rodney, D.

    2018-01-01

    Internal friction is analyzed in an atomic-scale model of amorphous silica. The potential energy landscape of more than 100 glasses is explored to identify a sample of about 700 two-level systems (TLSs). We discuss the properties of TLSs, particularly their energy asymmetry and barrier as well as their deformation potential, computed as longitudinal and transverse averages of the full deformation potential tensors. The discrete sampling is used to predict dissipation in the classical regime. Comparison with experimental data shows a better agreement with poorly relaxed thin films than well relaxed vitreous silica, as expected from the large quench rates used to produce numerical glasses. The TLSs are categorized in three types that are shown to affect dissipation in different temperature ranges. The sampling is also used to discuss critically the usual approximations employed in the literature to represent the statistical properties of TLSs.

  20. Atomistic Simulation of Interfaces in Materials of Solid State Ionics

    Science.gov (United States)

    Ivanov-Schitz, A. K.; Mazo, G. N.

    2018-01-01

    The possibilities of describing correctly interfaces of different types in solids within a computer experiment using molecular statics simulation, molecular dynamics simulation, and quantum chemical calculations are discussed. Heterophase boundaries of various types, including grain boundaries and solid electrolyte‒solid electrolyte and ionic conductor‒electrode material interfaces, are considered. Specific microstructural features and mechanisms of the ion transport in real heterophase structures (cationic conductor‒metal anode and anionic conductor‒cathode) existing in solid state ionics devices (such as solid-state batteries and fuel cells) are discussed.

  1. A Bond-Order Potential for Atomistic Simulations in Iron

    National Research Council Canada - National Science Library

    Rice, Betsy

    2000-01-01

    .... With a total of 15 fitted parameters, the potential reproduces with only minor deviations to the elastic moduli, the volume-pressure equation of states in the BCC phase, the energies in face-centered cubic (FCC...

  2. Atomistic Molecular Dynamics Simulations of Mitochondrial DNA Polymerase γ

    DEFF Research Database (Denmark)

    Euro, Liliya; Haapanen, Outi; Róg, Tomasz

    2017-01-01

    DNA polymerase γ (Pol γ) is a key component of the mitochondrial DNA replisome and an important cause of neurological diseases. Despite the availability of its crystal structures, the molecular mechanism of DNA replication, the switch between polymerase and exonuclease activities, the site...

  3. Linking morphology to thermal conductivity in PEDOT: an atomistic investigation

    Science.gov (United States)

    Genovese, Claudio; Antidormi, Aleandro; Dettori, Riccardo; Caddeo, Claudia; Mattoni, Alessandro; Colombo, Luciano; Melis, Claudio

    2017-12-01

    Among different conducting polymers, poly(3,4-ethylenedioxythiophene) (PEDOT) and its doped mixtures are promising candidates for thermoelectric applications due to their intrinsically low thermal conductivity. An accurate estimate of the overall thermoelectric figure of merit requires a sharp thermal conductivity measurement. However, even for pristine PEDOT, the estimated thermal conductivity values show high fluctuations depending on the synthesis procedure employed, suggesting that morphology can be one of the key factors affecting PEDOT thermal conductivity. In this work, we elucidate this issue by demonstrating how morphology ultimately governs thermal transport properties. By means of the approach to equilibrium molecular dynamics method, we estimate thermal conductivity of PEDOT systems with a controlled degree of crystallinity. We show that by going from pure crystalline to nearly amorphous PEDOT samples, a thermal conductivity reduction of more than two orders of magnitude is obtained. Moreover a strong thermal conductivity increase with the PEDOT chain length is observed independently of the degree of crystallinity.

  4. Atomistic simulation of gas phase atoms with RADII through polysiloxane

    Science.gov (United States)

    Segooa, L. R.; Ngoepe, P. E.; Goldbeck-Wood, G.

    Molecular dynamics simulations have been carried out to examine mechanisms of small molecules' diffusion in amorphous polymer membranes. Polydimethylsiloxane (PDMS) structure consisting of three chains of 50 monomers each, were folded into periodic cells, generated by rotational isomeric state (RIS) method at a prescribed temperature and density. Transport properties of He and CH4 under different forcefields namely; Compass and Polymer Consistent Force Field (PCFF) were studied at different temperatures. System size effects on the calculated excess chemical potentials and solubility, using the Widom insertion method, of both gases in amorphous PDMS were studied. The agreement between the measured and simulated diffusion coefficient (D) solubility (S) was acceptable. Transport of small molecules occurs by jumps between individual sections of the free volume (holes) through temporarily open channels. The dependence of diffusion on temperature shows an Arrhenius behavior and the associated activation energy was predicted.

  5. Comparison of coarse-grained (MARTINI) and atomistic molecular ...

    Indian Academy of Sciences (India)

    Rajat Desikan

    pore forming toxins (PFTs) in lipid membranes - Cytolysin A (ClyA), which is an example of an α toxin, and α-hemolysin (AHL) ... out mesoscopic simulations which are required to understand protomer oligomerization, pore formation and leakage. Keywords. ... large heterogeneous systems can elucidate important molecular ...

  6. Atomistic simulation of track formation by energetic recoils in zircon.

    Science.gov (United States)

    Moreira, Pedro A F P; Devanathan, Ram; Weber, William J

    2010-10-06

    We have performed classical molecular dynamics simulations of fission track formation in zircon. We simulated the passage of a swift heavy ion through crystalline zircon using cylindrical thermal spikes with energy deposition (dE/dx) of 2.5-12.8 keV nm( - 1) and a radius of 3 nm. At a low dE/dx of 2.55 keV nm( - 1), the structural damage recovered almost completely and a damage track was not produced. At higher values of dE/dx, tracks were observed and the radius of the track increased with increasing dE/dx. Our structural analysis shows amorphization in the core of the track and phase separation into Si-rich regions near the center of the track and Zr-rich regions near the periphery. These simulations establish a threshold dE/dx for fission track formation in zircon that is relevant to thermochronology and nuclear waste immobilization.

  7. Ab Initio Atomistic Thermodynamics for Surfaces: A Primer

    National Research Council Canada - National Science Library

    Rogal, Jutta; Reuter, Karsten

    2006-01-01

    .... Modern electronic structure theory methods like density-functional theory (DFT) have matured, allowing a description that is often already accurate enough to allow for a modeling with predictive character...

  8. Atomistic mechanisms of ReRAM cell operation and reliability

    Science.gov (United States)

    Pandey, Sumeet C.

    2018-01-01

    We present results from first-principles-based modeling that captures functionally important physical phenomena critical to cell materials selection, operation, and reliability for resistance-switching memory technologies. An atomic-scale description of retention, the low- and high-resistance states (RS), and the sources of intrinsic cell-level variability in ReRAM is discussed. Through the results obtained from density functional theory, non-equilibrium Green’s function, molecular dynamics, and kinetic Monte Carlo simulations; the role of variable-charge vacancy defects and metal impurities in determining the RS, the LRS-stability, and electron-conduction in such RS is reported. Although, the statistical electrical characteristics of the oxygen-vacancy (Ox-ReRAM) and conductive-bridging RAM (M-ReRAM) are notably different, the underlying similar electrochemical phenomena describing retention and formation/dissolution of RS are being discussed.

  9. Recent progress in atomistic simulation of electrical current DNA sequencing.

    Science.gov (United States)

    Kim, Han Seul; Kim, Yong-Hoon

    2015-07-15

    We review recent advances in the DNA sequencing method based on measurements of transverse electrical currents. Device configurations proposed in the literature are classified according to whether the molecular fingerprints appear as the major (Mode I) or perturbing (Mode II) current signals. Scanning tunneling microscope and tunneling electrode gap configurations belong to the former category, while the nanochannels with or without an embedded nanopore belong to the latter. The molecular sensing mechanisms of Modes I and II roughly correspond to the electron tunneling and electrochemical gating, respectively. Special emphasis will be given on the computer simulation studies, which have been playing a critical role in the initiation and development of the field. We also highlight low-dimensional nanomaterials such as carbon nanotubes, graphene, and graphene nanoribbons that allow the novel Mode II approach. Finally, several issues in previous computational studies are discussed, which points to future research directions toward more reliable simulation of electrical current DNA sequencing devices. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Unraveling Mg2+-RNA binding with atomistic molecular dynamics.

    Science.gov (United States)

    Cunha, Richard A; Bussi, Giovanni

    2017-05-01

    Interaction with divalent cations is of paramount importance for RNA structural stability and function. We report here a detailed molecular dynamics study of all the possible binding sites for Mg 2+ on an RNA duplex, including both direct (inner sphere) and indirect (outer sphere) binding. In order to tackle sampling issues, we develop a modified version of bias-exchange metadynamics, which allows us to simultaneously compute affinities with previously unreported statistical accuracy. Results correctly reproduce trends observed in crystallographic databases. Based on this, we simulate a carefully chosen set of models that allows us to quantify the effects of competition with monovalent cations, RNA flexibility, and RNA hybridization. Our simulations reproduce the decrease and increase of Mg 2+ affinity due to ion competition and hybridization, respectively, and predict that RNA flexibility has a site-dependent effect. This suggests a nontrivial interplay between RNA conformational entropy and divalent cation binding. © 2017 Cunha and Bussi; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  11. Atomistic modeling of mechanical properties of polycrystalline graphene

    International Nuclear Information System (INIS)

    Mortazavi, Bohayra; Cuniberti, Gianaurelio

    2014-01-01

    We performed molecular dynamics (MD) simulations to investigate the mechanical properties of polycrystalline graphene. By constructing molecular models of ultra-fine-grained graphene structures, we studied the effect of different grain sizes of 1–10 nm on the mechanical response of graphene. We found that the elastic modulus and tensile strength of polycrystalline graphene decrease with decreasing grain size. The calculated mechanical proprieties for pristine and polycrystalline graphene sheets are found to be in agreement with experimental results in the literature. Our MD results suggest that the ultra-fine-grained graphene structures can show ultrahigh tensile strength and elastic modulus values that are very close to those of pristine graphene sheets. (papers)

  12. Density Functional Theory and Materials Modeling at Atomistic Length Scales

    Directory of Open Access Journals (Sweden)

    Swapan K. Ghosh

    2002-04-01

    Full Text Available Abstract: We discuss the basic concepts of density functional theory (DFT as applied to materials modeling in the microscopic, mesoscopic and macroscopic length scales. The picture that emerges is that of a single unified framework for the study of both quantum and classical systems. While for quantum DFT, the central equation is a one-particle Schrodinger-like Kohn-Sham equation, the classical DFT consists of Boltzmann type distributions, both corresponding to a system of noninteracting particles in the field of a density-dependent effective potential, the exact functional form of which is unknown. One therefore approximates the exchange-correlation potential for quantum systems and the excess free energy density functional or the direct correlation functions for classical systems. Illustrative applications of quantum DFT to microscopic modeling of molecular interaction and that of classical DFT to a mesoscopic modeling of soft condensed matter systems are highlighted.

  13. Atomistic Model of Fluorescence Intermittency of Colloidal Quantum Dots

    KAUST Repository

    Voznyy, O.

    2014-04-16

    Optoelectronic applications of colloidal quantum dots demand a high emission efficiency, stability in time, and narrow spectral bandwidth. Electronic trap states interfere with the above properties but understanding of their origin remains lacking, inhibiting the development of robust passivation techniques. Here we show that surface vacancies improve the fluorescence yield compared to vacancy-free surfaces, while dynamic vacancy aggregation can temporarily turn fluorescence off. We find that infilling with foreign cations can stabilize the vacancies, inhibiting intermittency and improving quantum yield, providing an explanation of recent experimental observations. © 2014 American Physical Society.

  14. Properties of oxidized phospholipid monolayers: An atomistic molecular dynamics study

    Czech Academy of Sciences Publication Activity Database

    Khabiri, Morteza; Roeselová, Martina; Cwiklik, Lukasz

    519-520, 5 Jan (2012), s. 93-99 ISSN 0009-2614 R&D Projects: GA MŠk ME09064; GA MŠk LC512 Grant - others:ESF EUROMEMBRANE(XE) MEM/09/E006 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z40400503 Keywords : dioleoylphosphatidylcholine (DOPC) * pulmonary surfactant * oxidative stress Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.145, year: 2012

  15. Atomistic Calculation of Elastic Moduli in Strained Silicon

    National Research Council Canada - National Science Library

    Zhu, Richard; Pan, Ernian; Chung, Peter W; Cai, Xinli; Liew, Kim M; Buldum, Alper

    2007-01-01

    .... Using our approach, the bulk modulus, effective elastic stiffnesses C11, C12, and C44 of the strained silicon, including also the effective Young's modulus and Poisson's ratio, are all calculated...

  16. Analyzing and Driving Cluster Formation in Atomistic Simulations.

    Science.gov (United States)

    Tribello, Gareth A; Giberti, Federico; Sosso, Gabriele C; Salvalaglio, Matteo; Parrinello, Michele

    2017-03-14

    In this paper a set of computational tools for identifying the phases contained in a system composed of atoms or molecules is introduced. The method is rooted in graph theory and combines atom centered symmetry functions, adjacency matrices, and clustering algorithms to identify regions of space where the properties of the system constituents can be considered uniform. We show how this method can be used to define collective variables and how these collective variables can be used to enhance the sampling of nucleation events. We then show how this method can be used to analyze simulations of crystal nucleation and growth by using it to analyze simulations of the nucleation of the molecular crystal urea and simulations of nucleation in a semiconducting alloy. The semiconducting alloy example we discuss is particular challenging as multiple nucleation centers are formed. We show, however, that our algorithm is able to detect the grain boundaries in the resulting polycrystal.

  17. Atomistic simulation of the structural and elastic properties of ...

    Indian Academy of Sciences (India)

    constants as a function of pressure up to 150 GPa are calculated. The results are in good agreement with the available experimental data and previous theoretical results, showing no phase transition over the pressure range of interest. We also found that magnesite exhibits a strong anisotropy throughout the lower mantle ...

  18. Atomistic simulation of transport phenomena in nanoelectronic devices.

    Science.gov (United States)

    Luisier, Mathieu

    2014-07-07

    Computational chemistry deals with the first-principles calculation of electronic and crystal structures, phase diagrams, charge distributions, vibrational frequencies, or ion diffusivity in complex molecules and solids. Typically, none of these numerical experiments allows for the calculation of electrical currents under the influence of externally applied voltages. To address this issue, there is an imperative need for an advanced simulation approach capable of treating all kind of transport phenomena (electron, energy, momentum) at a quantum mechanical level. The goal of this tutorial review is to give an overview of the "quantum transport" (QT) research activity, introduce specific techniques such as the Non-equilibrium Green's Function (NEGF) formalism, describe their basic features, and underline their strengths and weaknesses. Three examples from the nanoelectronics field have been selected to illustrate the insight provided by quantum transport simulations. Details are also given about the numerical algorithms to solve the NEGF equations and about strategies to parallelize the workload on supercomputers.

  19. Atomistic determination of flexoelectric properties of crystalline dielectrics

    Science.gov (United States)

    Maranganti, R.; Sharma, P.

    2009-08-01

    Upon application of a uniform strain, internal sublattice shifts within the unit cell of a noncentrosymmetric dielectric crystal result in the appearance of a net dipole moment: a phenomenon well known as piezoelectricity. A macroscopic strain gradient on the other hand can induce polarization in dielectrics of any crystal structure, even those which possess a centrosymmetric lattice. This phenomenon, called flexoelectricity, has both bulk and surface contributions: the strength of the bulk contribution can be characterized by means of a material property tensor called the bulk flexoelectric tensor. Several recent studies suggest that strain-gradient induced polarization may be responsible for a variety of interesting and anomalous electromechanical phenomena in materials including electromechanical coupling effects in nonuniformly strained nanostructures, “dead layer” effects in nanocapacitor systems, and “giant” piezoelectricity in perovskite nanostructures among others. In this work, adopting a lattice dynamics based microscopic approach we provide estimates of the flexoelectric tensor for certain cubic crystalline ionic salts, perovskite dielectrics, III-V and II-VI semiconductors. We compare our estimates with experimental/theoretical values wherever available and also revisit the validity of an existing empirical scaling relationship for the magnitude of flexoelectric coefficients in terms of material parameters. It is interesting to note that two independent groups report values of flexoelectric properties for perovskite dielectrics that are orders of magnitude apart: Cross and co-workers from Penn State have carried out experimental studies on a variety of materials including barium titanate while Catalan and co-workers from Cambridge used theoretical ab initio techniques as well as experimental techniques to study paraelectric strontium titanate as well as ferroelectric barium titanate and lead titanate. We find that, in the case of perovskite dielectrics, our estimates agree to an order of magnitude with the experimental and theoretical estimates for strontium titanate. For barium titanate however, while our estimates agree to an order of magnitude with existing ab initio calculations, there exists a large discrepancy with experimental estimates. The possible reasons for the observed deviations are discussed.

  20. Atomistic determination of flexoelectric properties of crystalline dielectrics

    OpenAIRE

    Maranganti, R.; Sharma, P.

    2009-01-01

    Upon application of a uniform strain, internal sub-lattice shifts within the unit cell of a non-centrosymmetric dielectric crystal result in the appearance of a net dipole moment: a phenomenon well known as piezoelectricity. A macroscopic strain gradient on the other hand can induce polarization in dielectrics of any crystal structure, even those which possess a centrosymmetric lattice. This phenomenon, called flexoelectricity, has both bulk and surface contributions: the strength of the bulk...

  1. Calculation of single chain cellulose elasticity using fully atomistic modeling

    Science.gov (United States)

    Xiawa Wu; Robert J. Moon; Ashlie Martini

    2011-01-01

    Cellulose nanocrystals, a potential base material for green nanocomposites, are ordered bundles of cellulose chains. The properties of these chains have been studied for many years using atomic-scale modeling. However, model predictions are difficult to interpret because of the significant dependence of predicted properties on model details. The goal of this study is...

  2. Atomistic Simulation of Frictional Sliding Between Cellulose Iß Nanocrystals

    Science.gov (United States)

    Xiawa Wu; Robert J. Moon; Ashlie Martini

    2013-01-01

    Sliding friction between cellulose Iß nanocrystals is studied using molecular dynamics simulation. The effects of sliding velocity, normal load, and relative angle between sliding surface are predicted, and the results analyzed in terms of the number of hydrogen bonds within and between the cellulose chains. We find that although the observed friction trends can be...

  3. Phonon Transport in Semiconductor interface: An atomistic approach

    Science.gov (United States)

    Chalopin, Yann

    2010-03-01

    Thermal dissipation and thermal insulation are among crucial issues encountered in high speed electronics devices and thermoelectrics systems. Both applications rely on controlling the transport properties of the heat carriers at semiconductor interfaces. From microscopic perspective, it is of fundamental interest to understand how the transport of phonons is impacted by an interface formed by two semiconductor layers. In a typical junction, the mechanism of reflection/transmission of vibrational energy causes strong modifications in the conductance regime. Thus, it is important to address the thermal transport at a contact junction in the framework of phonon wave propagation. Our approach is based on the fluctuation/dissipation theorem in order to calculate the thermal conductance of an interface. Using molecular dynamics simulations, we address the problems associated to using Si/Ge Si/SiGe junctions. We propose a methodology that enables the recovery of the transmission of the phonon modes by correlating the atomic motions of the phonon modes. Furthermore, we conclude that the phonon transmission function can be reconstructed such that it is integrated in the spectral expression of the conductance.

  4. Atomistic Molecular Dynamics Simulations of the Electrical Double

    Science.gov (United States)

    Li, Zifeng; Milner, Scott; Fichthorn, Kristen

    2015-03-01

    The electrical double layer (EDL) near the polymer/water interface plays a key role in the colloidal stability of latex paint. To elucidate the structure of the EDL at the molecular level, we conducted an all-atom molecular dynamics simulations. We studied two representative surface charge groups in latex, the ionic surfactant sodium dodecyl sulfate (SDS) and the grafted short polyelectrolyte charged by dissociated methyl methacrylic acid (MAA) monomers. Our results confirm that the Poisson-Boltzmann theory works well outside the Stern layer. Our calculated electrostatic potential at the Outer Helmholtz Plane (OHP) is close to the zeta potential measured experimentally, which suggests that the potential at the OHP is a good estimate of the zeta potential. We found that the position of the OHP for the MAA polyelectrolyte system extends much further into the aqueous phase than that in the SDS system, resulting in a Stern layer that is twice as thick. This model will allow for future investigations of the interactions of the surface with different surfactants and rheology modifiers, which may serve as a guide to tune the rheology of latex formulations. We thank Dow Chemical Company for financial support.

  5. Ab Initio Atomistic Thermodynamics for Surfaces: A Primer

    National Research Council Canada - National Science Library

    Rogal, Jutta; Reuter, Karsten

    2006-01-01

    .... These techniques are referred to as first-principles (or in latin: ab initio) to indicate that they do not rely on empirical or fitted parameters, which then makes them applicable for a wide range of realistic conditions...

  6. Exploration versus Exploitation in Global Atomistic Structure Optimization

    DEFF Research Database (Denmark)

    Jorgensen, Mathias S.; Larsen, Uffe F.; Jacobsen, Karsten Wedel

    2018-01-01

    The ability to navigate vast energy landscapes of molecules, clusters, and solids is a necessity for discovering novel compounds in computational chemistry and materials science. For high-dimensional systems, it is only computationally feasible to search a small portion of the landscape, and hence......, the search strategy is of critical importance. Introducing Bayesian optimization concepts in an evolutionary algorithm framework, we quantify the concepts of exploration and exploitation in global minimum searches. The method allows us to control the balance between probing unknown regions of the landscape...... reconstruction. In addition, global search behaviors are analyzed to provide reasonable grounds for an optimal balance for different problems....

  7. First Principles Atomistic Model for Carbon-Doped Boron Suboxide

    Science.gov (United States)

    2014-09-01

    Sutherland DG, Van Buuren T, Carlisle JA, Terminello LJ, Himpsel FJ. Photoemission and x - ray -absorption study of boron carbide and its surface thermal...along the C-C chain. If the interstitial dopant is either B or C, a local boron carbide (B4C)-like structure with either a C-B-C or C-C-C chain is...strength, high oxidation resistance (򒱰 °C), and chemical inertness.1–8 However, unlike other high-performance ceramics, boron carbide (B4C) and

  8. Atomistic fingerprint of hyaluronan-CD44 binding

    Czech Academy of Sciences Publication Activity Database

    Vuorio, J.; Vattulainen, I.; Martinez-Seara, Hector

    2017-01-01

    Roč. 13, č. 7 (2017), č. článku e1005663. ISSN 1553-734X R&D Projects: GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388963 Keywords : molecular simulations * protein interaction * N-glycosylation Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.542, year: 2016 http:// journals .plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005663

  9. Atomistic calculations of interface elastic properties in noncoherent metallic bilayers

    International Nuclear Information System (INIS)

    Mi Changwen; Jun, Sukky; Kouris, Demitris A.; Kim, Sung Youb

    2008-01-01

    The paper describes theoretical and computational studies associated with the interface elastic properties of noncoherent metallic bicrystals. Analytical forms of interface energy, interface stresses, and interface elastic constants are derived in terms of interatomic potential functions. Embedded-atom method potentials are then incorporated into the model to compute these excess thermodynamics variables, using energy minimization in a parallel computing environment. The proposed model is validated by calculating surface thermodynamic variables and comparing them with preexisting data. Next, the interface elastic properties of several fcc-fcc bicrystals are computed. The excess energies and stresses of interfaces are smaller than those on free surfaces of the same crystal orientations. In addition, no negative values of interface stresses are observed. Current results can be applied to various heterogeneous materials where interfaces assume a prominent role in the systems' mechanical behavior

  10. Coding considerations for standalone molecular dynamics simulations of atomistic structures

    Science.gov (United States)

    Ocaya, R. O.; Terblans, J. J.

    2017-10-01

    The laws of Newtonian mechanics allow ab-initio molecular dynamics to model and simulate particle trajectories in material science by defining a differentiable potential function. This paper discusses some considerations for the coding of ab-initio programs for simulation on a standalone computer and illustrates the approach by C language codes in the context of embedded metallic atoms in the face-centred cubic structure. The algorithms use velocity-time integration to determine particle parameter evolution for up to several thousands of particles in a thermodynamical ensemble. Such functions are reusable and can be placed in a redistributable header library file. While there are both commercial and free packages available, their heuristic nature prevents dissection. In addition, developing own codes has the obvious advantage of teaching techniques applicable to new problems.

  11. Atomistic Modeling-Based Design of Novel Materials

    Czech Academy of Sciences Publication Activity Database

    Holec, D.; Zhou, LC.; Riedl, H.; Koller, Christian M.; Mayrhofer, P. H.; Friák, Martin; Šob, Mojmír; Kormann, F.; Neugebauer, J.; Music, D.; Hartmann, M A.; Fischer, F D.

    2017-01-01

    Roč. 19, č. 4 (2017), č. článku 1600688. ISSN 1438-1656 R&D Projects: GA MŠk(CZ) LQ1601; GA ČR(CZ) GA16-24711S Institutional support: RVO:68081723 Keywords : AB-INITIO CALCULATIONS * ULTRA-LIGHTWEIGHT APPLICATIONS * DENSITY-FUNCTIONAL THEORY Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.319, year: 2016

  12. Dislocation motion in tungsten: Atomistic input to discrete dislocation simulations

    Czech Academy of Sciences Publication Activity Database

    Srivastava, K.; Gröger, Roman; Weygand, D.; Gumbsch, P.

    2013-01-01

    Roč. 47, AUG (2013), s. 126-142 ISSN 0749-6419 R&D Projects: GA ČR GAP204/10/0255; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : body -centered cubic * non-Schmid effects * anomalous slip * discrete dislocation dynamics Subject RIV: BM - Solid Matter Physics ; Magnetism; BM - Solid Matter Physics ; Magnetism (UFM-A) Impact factor: 5.971, year: 2013

  13. Atomistic simulation of NO dioxygenation in group I truncated hemoglobin.

    Science.gov (United States)

    Mishra, Sabyashachi; Meuwly, Markus

    2010-03-10

    NO dioxygenation, i.e., the oxidation of nitric oxide to nitrate by oxygen-bound truncated hemoglobin (trHbN) is studied using reactive molecular dynamics simulations. This reaction is an important step in a sequence of events in the overall NO detoxification reaction involving trHbN. The simulations ( approximately 160 ns in total) reveal that the reaction favors a pathway including (i) NO binding to oxy-trHbN, followed by (ii) rearrangement of peroxynitrite-trHbN to nitrato-trHbN, and finally (iii) nitrate dissociation from nitrato-trHbN. Overall, the reactions occur within tens of picoseconds and the crossing seam of the reactant and product are found to be broad. The more conventional pathway, where the peroxynitrite-trHbN complex undergoes peroxide cleavage to form free NO(2) and oxo-ferryl trHbN, is found to be too slow due to a considerable barrier involved in peroxide bond dissociation. The energetics of this step is consistent with earlier electronic structure calculations and make this pathway less likely. The role of Tyr33 and Gln58 in the NO dioxygenation has been investigated by studying the reaction in mutants of trHbN. The mutation study suggests that residues Tyr33 and Gln58 preorient the reactive ligands through a highly dynamical H-bonding network which facilitates the reaction. In particular, the Y33A mutation leads to a significant retardation in NO dioxygenation, in agreement with experiments which reveal a strong influence of the protein environment on the reaction rate.

  14. Defense waste processing facility precipitate hydrolysis process

    International Nuclear Information System (INIS)

    Doherty, J.P.; Eibling, R.E.; Marek, J.C.

    1986-03-01

    Sodium tetraphenylborate and sodium titanate are used to assist in the concentration of soluble radionuclide in the Savannah River Plant's high-level waste. In the Defense Waste Processing Facility, concentrated tetraphenylborate/sodium titanate slurry containing cesium-137, strontium-90 and traces of plutonium from the waste tank farm is hydrolyzed in the Salt Processing Cell forming organic and aqueous phases. The two phases are then separated and the organic phase is decontaminated for incineration outside the DWPF building. The aqueous phase, containing the radionuclides and less than 10% of the original organic, is blended with the insoluble radionuclides in the high-level waste sludge and is fed to the glass melter for vitrification into borosilicate glass. During the Savannah River Laboratory's development of this process, copper (II) was found to act as a catalyst during the hydrolysis reactions, which improved the organic removal and simplified the design of the reactor

  15. Process evaluation distributed system

    Science.gov (United States)

    Moffatt, Christopher L. (Inventor)

    2006-01-01

    The distributed system includes a database server, an administration module, a process evaluation module, and a data display module. The administration module is in communication with the database server for providing observation criteria information to the database server. The process evaluation module is in communication with the database server for obtaining the observation criteria information from the database server and collecting process data based on the observation criteria information. The process evaluation module utilizes a personal digital assistant (PDA). A data display module in communication with the database server, including a website for viewing collected process data in a desired metrics form, the data display module also for providing desired editing and modification of the collected process data. The connectivity established by the database server to the administration module, the process evaluation module, and the data display module, minimizes the requirement for manual input of the collected process data.

  16. Radiochemical Processing Laboratory (RPL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Radiochemical Processing Laboratory (RPL)�is a scientific facility funded by DOE to create and implement innovative processes for environmental clean-up and...

  17. Multimodal Processes Rescheduling

    DEFF Research Database (Denmark)

    Bocewicz, Grzegorz; Banaszak, Zbigniew A.; Nielsen, Peter

    2013-01-01

    Cyclic scheduling problems concerning multimodal processes are usually observed in FMSs producing multi-type parts where the Automated Guided Vehicles System (AGVS) plays a role of a material handling system. Schedulability analysis of concurrently flowing cyclic processes (SCCP) exe...

  18. Dairy processing, Improving quality

    NARCIS (Netherlands)

    Smit, G.

    2003-01-01

    This book discusses raw milk composition, production and quality, and reviews developments in processing from hygiene and HACCP systems to automation, high-pressure processing and modified atmosphere packaging.

  19. The Integrated Renovation Process

    DEFF Research Database (Denmark)

    Galiotto, Nicolas; Heiselberg, Per; Knudstrup, Mary-Ann

    The Integrated Renovation Process (IRP) is a user customized methodology based on judiciously selected constructivist and interactive multi-criteria decision making methods (Galiotto, Heiselberg, & Knudstrup, 2014 (expected)). When applied for home renovation, the Integrated Renovation Process...

  20. Towards better process understanding

    DEFF Research Database (Denmark)

    Matero, Sanni Elina; van der Berg, Franciscus Winfried J; Poutiainen, Sami

    2013-01-01

    The manufacturing of tablets involves many unit operations that possess multivariate and complex characteristics. The interactions between the material characteristics and process related variation are presently not comprehensively analyzed due to univariate detection methods. As a consequence......, current best practice to control a typical process is to not allow process-related factors to vary i.e. lock the production parameters. The problem related to the lack of sufficient process understanding is still there: the variation within process and material properties is an intrinsic feature...... and cannot be compensated for with constant process parameters. Instead, a more comprehensive approach based on the use of multivariate tools for investigating processes should be applied. In the pharmaceutical field these methods are referred to as Process Analytical Technology (PAT) tools that aim...

  1. Group Decision Process Support

    DEFF Research Database (Denmark)

    Gøtze, John; Hijikata, Masao

    1997-01-01

    Introducing the notion of Group Decision Process Support Systems (GDPSS) to traditional decision-support theorists.......Introducing the notion of Group Decision Process Support Systems (GDPSS) to traditional decision-support theorists....

  2. Cognitive processes in CBT

    NARCIS (Netherlands)

    Becker, E.S.; Vrijsen, J.N.; Hofmann, S.G.; Asmundson, G.J.G.

    2017-01-01

    Automatic cognitive processing helps us navigate the world. However, if the emotional and cognitive interplay becomes skewed, those cognitive processes can become maladaptive and result in psychopathology. Although biases are present in most mental disorders, different disorders are characterized by

  3. Waste processing air cleaning

    International Nuclear Information System (INIS)

    Kriskovich, J.R.

    1998-01-01

    Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases

  4. Business Process Inventory

    Data.gov (United States)

    Office of Personnel Management — Inventory of maps and descriptions of the business processes of the U.S. Office of Personnel Management (OPM), with an emphasis on the processes of the Office of the...

  5. Secure Processing Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Secure Processing Lab is the center of excellence for new and novel processing techniques for the formation, calibration and analysis of radar. In addition, this...

  6. Laser material processing

    CERN Document Server

    Steen, William

    2010-01-01

    This text moves from the basics of laser physics to detailed treatments of all major materials processing techniques for which lasers are now essential. New chapters cover laser physics, drilling, micro- and nanomanufacturing and biomedical laser processing.

  7. GREENSCOPE: Sustainable Process Modeling

    Science.gov (United States)

    EPA researchers are responding to environmental problems by incorporating sustainability into process design and evaluation. EPA researchers are also developing a tool that allows users to assess modifications to existing and new chemical processes to determine whether changes in...

  8. Wetland Groundwater Processes

    National Research Council Canada - National Science Library

    Williams, Greg

    1993-01-01

    This technical note summarizes hydrologic and hydraulic (H AND H) processes and the related terminology that will likely be encountered during an evaluation of the effect of ground-water processes on wetland function...

  9. Processer og procesledelse

    DEFF Research Database (Denmark)

    Madsen, Benedicte

    Bogen udfolder, nuancerer og konkretiserer procesledelse ift. mentale, relationelle og organisatoriske processer. Eksempler på kapitel-overskrifter: Procesbegrebet, Rammesætning, Kontraktredskabet, Mødeledelse, Samtaler, Reflekterende positioner og processer, Konflikthåndtering og teamudvikling, ...

  10. Business Process innovation

    DEFF Research Database (Denmark)

    Møller, Charles; Hansen, Poul Kyvsgaard

    2016-01-01

    Most organizations today are required not only to establish effective business processes but they are required to accommodate for changing business conditions at an increasing rate. Many business processes extend beyond the boundary of the enterprise into the supply chain and the information...... infrastructure therefore is critical. Today nearly every business relies on their Enterprise System (ES) for process integration and the future generations of Enterprise Systems will increasingly be driven by business process models. Consequently process modelling and improvement will become vital for business...... process innovation (BPI) in future organizations. This paper explores the applicability of one particular methodology for Business Process Innovation to deal with the challenge that the LEGO organization is facing with the alignment of their product development process and their supply chain. The paper...

  11. Process and device for processing radioactive wastes

    International Nuclear Information System (INIS)

    1974-01-01

    A method is described for processing liquid radioactive wastes. It includes the heating of the liquid wastes so that the contained liquids are evaporated and a practically anhydrous mass of solid particles inferior in volume to that of the wastes introduced is formed, then the transformation of the solid particles into a monolithic structure. This transformation includes the compressing of the particles and sintering or fusion. The solidifying agent is a mixture of polyethylene and paraffin wax or a styrene copolymer and a polyester resin. The device used for processing the radioactive liquid wastes is also described [fr

  12. The plasma hearth process: Process residuals characterization

    International Nuclear Information System (INIS)

    Leatherman, G.L.; Geimer, R.; Batdorf, J.; Hassel, G.; Wolfe, P.; Carney, K.P.

    1994-01-01

    The Plasma Hearth Process (PHP) is a high-temperature waste treatment process being developed by Science Applications International Corporation (SAIC) for the Department of Energy (DOE) that destroys hazardous organics while stabilizing radionuclides and hazardous metals in a vitreous slag waste form. The PHP has potential application for the treatment of a wide range of mixed waste types in both the low-level and transuranic (TRU) mixed waste categories. DOE, through the Office of Technology Development's Mixed Waste Integrated Program (MWIP) is conducting a three phase development project to ready the PHP for implementation in the DOE complex

  13. Dosimetry for radiation processing

    DEFF Research Database (Denmark)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both...... and sterilization dosimetry, optichromic dosimeters in the shape of small tubes for food processing, and ESR spectroscopy of alanine for reference dosimetry. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading...

  14. Software Process Improvement Defined

    DEFF Research Database (Denmark)

    Aaen, Ivan

    2002-01-01

    This paper argues in favor of the development of explanatory theory on software process improvement. The last one or two decades commitment to prescriptive approaches in software process improvement theory may contribute to the emergence of a gulf dividing theorists and practitioners....... It is proposed that this divide be met by the development of theory evaluating prescriptive approaches and informing practice with a focus on the software process policymaking and process control aspects of improvement efforts...

  15. Grind hardening process

    CERN Document Server

    Salonitis, Konstantinos

    2015-01-01

    This book presents the grind-hardening process and the main studies published since it was introduced in 1990s.  The modelling of the various aspects of the process, such as the process forces, temperature profile developed, hardness profiles, residual stresses etc. are described in detail. The book is of interest to the research community working with mathematical modeling and optimization of manufacturing processes.

  16. Multiphoton processes: conference proceedings

    International Nuclear Information System (INIS)

    Lambropoulos, P.; Smith, S.J.

    1984-01-01

    The chapters of this volume represent the invited papers delivered at the conference. They are arranged according to thermatic proximity beginning with atoms and continuing with molecules and surfaces. Section headings include multiphoton processes in atoms, field fluctuations and collisions in multiphoton process, and multiphoton processes in molecules and surfaces. Abstracts of individual items from the conference were prepared separately for the data base

  17. How yogurt is processed

    Science.gov (United States)

    This month’s Processing column on the theme of “How Is It Processed?” focuses on yogurt. Yogurt is known for its health-promoting properties. This column will provide a brief overview of the history of yogurt and the current market. It will also unveil both traditional and modern yogurt processing t...

  18. Semisolid Metal Processing Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Apelian,Diran

    2002-01-10

    Mathematical modeling and simulations of semisolid filling processes remains a critical issue in understanding and optimizing the process. Semisolid slurries are non-Newtonian materials that exhibit complex rheological behavior. There the way these slurries flow in cavities is very different from the way liquid in classical casting fills cavities. Actually filling in semisolid processing is often counter intuitive

  19. Advances in Solidification Processing

    Indian Academy of Sciences (India)

    Unknown

    FOREWORD. Solidification phenomena are the heart of most of the product manufacturing processes. ... casting etc. to the latest technologies like crystal growth, near-net shape processing, laser processing, and ... paper is on one of the recent technological innovations in the steel industry, the thin-slab casting machine, to ...

  20. Statistical Process Control for KSC Processing

    Science.gov (United States)

    Ford, Roger G.; Delgado, Hector; Tilley, Randy

    1996-01-01

    The 1996 Summer Faculty Fellowship Program and Kennedy Space Center (KSC) served as the basis for a research effort into statistical process control for KSC processing. The effort entailed several tasks and goals. The first was to develop a customized statistical process control (SPC) course for the Safety and Mission Assurance Trends Analysis Group. The actual teaching of this course took place over several weeks. In addition, an Internet version of the same course complete with animation and video excerpts from the course when it was taught at KSC was developed. The application of SPC to shuttle processing took up the rest of the summer research project. This effort entailed the evaluation of SPC use at KSC, both present and potential, due to the change in roles for NASA and the Single Flight Operations Contractor (SFOC). Individual consulting on SPC use was accomplished as well as an evaluation of SPC software for KSC use in the future. A final accomplishment of the orientation of the author to NASA changes, terminology, data format, and new NASA task definitions will allow future consultation when the needs arise.