WorldWideScience

Sample records for resin-modified glass-ionomer cement

  1. Comparison of the Amount of Fluoride Release from Nanofilled Resin Modified Glass Ionomer Conventional and Resin Modified Glass Ionomer Cements

    Directory of Open Access Journals (Sweden)

    Sumitha Upadhyay

    2013-01-01

    Full Text Available Objective: To investigate and compare the amount of fluoride release of conventional, resin modified and nanofilled resin modified glass ionomer cements.Materials and Methods: Tablets of glass-ionomer cements were immersed in deionized water and incubated at 37◦C. After 1, 2, 7, 15 and 30 days, fluoride ion was measured under normal atmospheric conditions by fluoride ion selective electrode. Buffer (TISAB II was used to decomplex the fluoride ion and to provide a constant background ionic strength and to maintain the pH of water between 5.0 and 5.5 as the fluoride electrode is sensitive to changes in pH. Statistical evaluation was carried out by one way ANOVA (Analysis of Variance using SPSS 11.0. The significance level was set at p< 0.05.Results: The release of fluoride was highest on day 1 and there was a sudden fall on day 2 in all three groups. Initially fluoride release from conven-tional glass-ionomer cement was highest compared to the other two glass-ionomer cements, but the amount drastically reduced over the period. Although the amount of fluoride release was less than both the resin modified and nanofilled resin modified glass-ionomer cement, the release was sustained consistently for 30 daysConclusion: The cumulative fluoride release of nanofilled resin modified glass ionomer cement was very less compared to the conventional and resin modified glass ionomer cements and Nanofilled resin modified glass ionomer cement released less but steady fluoride as compared to other resin modified glass ionomer cements.

  2. Resin-modified and conventional glass ionomer restorations in primary teeth: 8-year results

    DEFF Research Database (Denmark)

    Qvist, V.; Manscher, E.; Teglers, P.T.

    2004-01-01

    clinical trial, cariostatic effects, dental restorations, glass ionomer cement, long-term behaviour, pedodontics, resin-modified glass ionomer......clinical trial, cariostatic effects, dental restorations, glass ionomer cement, long-term behaviour, pedodontics, resin-modified glass ionomer...

  3. Histological assessment of pulpal responses to resin modified glass ionomer cements in human teeth

    Directory of Open Access Journals (Sweden)

    Ali Eskandarizadeh

    2015-01-01

    Full Text Available Background: The biocompatibility of resin-modified glass ionomers (RMGIs as a lining material is still under question. The present study evaluated the response of the pulp-dentin complex following application of resin-modified glass-ionomer cement, calcium hydroxide and conventional glass-ionomer in deep cavities prepared in human teeth. Materials and Methods: In this controlled clinical trial, 30 deep class V buccal cavities (3 mm × 2 mm × 2 mm were prepared in human premolars treatment planned to be extracted for orthodontic reasons and divided into 3 groups. Groups were lined by a RMGI (Vivaglass, conventional glass Ionomer (Ionocid and calcium hydroxide respectively. The cavities were subsequently filled with amalgam. Each group was then divided into two sub-groups according to time intervals 5 and 30 days. The patients were referred to Kerman Dental School and in accordance with orthodontic treatment plan; premolars were extracted and then prepared for histological assessment. The sections were stained with hematoxylin and eosin and periodic acid Schiff techniques. All of the samples were examined using a number of criteria including odontoblastic changes, inflammatory cells response, reactionary dentin formation and presence of microorganisms. The data were analyzed by Kruskal-Wallis and Mann-Whitney tests. P 0.05. Conclusion: Ionocid and Vivaglass resin-modified glass ionomers can be used as lining materials in human teeth.

  4. Effects of adding silica particles on certain properties of resin-modified glass-ionomer cement

    OpenAIRE

    Felemban, Nayef H.; Ebrahim, Mohamed I.

    2016-01-01

    Objective: This study was conducted to evaluate the effect of incorporation of silica particles with different concentrations on some properties of resin-modified glass ionomer cement (RMGIC): Microleakage, compressive strength, tensile strength, water sorption, and solubility. Materials and Methods: Silica particle was incorporated into RMGIC powder to study its effects, one type of RMGIC (Type II visible light-cured) and three concentrations of silica particles (0.06, 0.08, and 0.1% weight)...

  5. Post-irradiation hardness of resin-modified glass ionomer cements and a polyacid-modified composite resin

    International Nuclear Information System (INIS)

    Yap, A.U.J.

    1997-01-01

    This study examined the post-irradiation hardness of resin-modified glass ionomer cements and a polyacid-modified composite resin using a digital microhardness tester. Change in hardness of these materials over a period of 6 months was compared to that of conventional glass ionomer cements and a composite resin. With the exception of the composite resin, all materials showed a significant increase in hardness over 24 h after their initial set. Dual-cure resin-modified glass ionomer cements showed decreased hardness with increased storage time in saline at 37 o C. Results suggest that the addition of resins to glass ionomer cements does not improve initial hardness and does not negate the acid-base reaction of conventional cements. Resin addition may, however, lead to increased water sorption and decreased hardness. (author)

  6. Microleakage of conventional, resin-modified, and nano-ionomer glass ionomer cement as primary teeth filling material

    Directory of Open Access Journals (Sweden)

    Dita Madyarani

    2014-12-01

    Full Text Available Background: Glass ionomer cements are one of many dental materials that widely used in pediatric dentistry due to their advantage of fluoride release and chemical bond to tooth structure. Adherence of the filling material to the cavity walls is one of the most important characteristic that need to be examined its effect on microleakage. Purpose: This study was conducted to examine the microleakage of nano-ionomer glass ionomer cement compared with the conventional and resin-modified glass ionomer cements. Methods: Standard class V cavities sized 3 mm x 2 mm x 2 mm were made on a total of 21 extracted maxillary primary canine teeth and restored with the conventional, resin-modified, dan nano-ionomer glass ionomer cements. All the teeth were immersed in a 2% methylene blue dye for 4 hours. The depth of dye penetration was assessed using digital microscope after sectioning the teeth labio-palatally. The results were statistically analyzed using Kruskal-Wallis test. Results: All type of glass ionomer material showed microleakage. Conventional glass ionomer cement demonstrated the least microleakage with mean score 1.29. the resin-modified glass ionomer cements (mean score 1.57 and nano-ionomer glass ionomer cement (mean score 2.57. Conclusion: The conventional glassionomer, resin modified glassionomer, and nano-ionomer glassionomer showed micro leakage as filling material in primary teeth cavity. The micro leakage among three types was not significant difference. All three material were comparable in performance and can be used for filling material but still needs a coating material to fill the microleakage.Latar belakang: Semen ionomer kaca adalah salah satu dari banyak bahan gigi yang banyak digunakan dalam praktek kedokteran gigi anak karena bahan tersebut merilis fluoride dan berikatan kimia dengan struktur gigi. Perlekatan bahan tumpatan pada dinding kavitas adalah salah satu karakteristik paling penting yang perlu diteliti efeknya terhadap

  7. The effects of shelf life on the compressive strength of resin-modified glass ionomer cement

    Science.gov (United States)

    Wajong, K. H.; Damiyanti, M.; Irawan, B.

    2017-08-01

    Resin-modified glass ionomer cement (RMGIC) is a restoration material composed of powder and liquid whose stability is affected by its shelf life. This is an issue that has not been taken into consideration by customers or sellers. To observe the effects of shelf life on the compressive strength of RMGIC, 30 cylindrical (d = 4mm and t = 6mm) specimens of RMGIC (Fuji II LC, GC, Tokyo, Japan) were divided into three groups with different storage times and their compressive strength was tested with a universal testing machine. Results were statistically analyzed with the one-way ANOVA test. There were significant differences (p<0.05) between the three groups of RMGIC. There is a decrease in the compressive strength value along with the duration of storage time.

  8. Effects of enamel deproteinization on bracket bonding with conventional and resin-modified glass ionomer cements.

    Science.gov (United States)

    Pereira, Tatiana Bahia Junqueira; Jansen, Wellington Corrêa; Pithon, Matheus Melo; Souki, Bernardo Quiroga; Tanaka, Orlando Motohiro; Oliveira, Dauro Douglas

    2013-08-01

    The objective of this study was to test the effects of enamel deproteinization on bracket bonding with conventional and resin-modified glass ionomer cement (RMGIC). One hundred premolars, extracted for orthodontic reasons, were divided into five groups (n = 20). Group 1 (control): enamel was etched with 35 per cent phosphoric acid, a thin layer of adhesive was applied, and the brackets were bonded with Transbond XT. Group 2: enamel was etched with 10 per cent polyacrylic acid and the brackets were bonded with conventional glass ionomer cement (GIC). Group 3: enamel was treated with 5.25 per cent NaOCl, etched with 10 per cent polyacrylic acid, and the brackets were bonded with conventional GIC. Group 4: enamel was etched with 10 per cent polyacrylic acid and the brackets were bonded with RMGIC. Group 5: enamel was treated with 5.25 per cent NaOCl, etched with 10 per cent polyacrylic acid, and the brackets were bonded with RMGIC. The teeth were stored in distilled water for 24 hours before they were submitted to shear testing. The results demonstrated that bond strength values of group 1 (17.08 ± 6.39 MPa) were significantly higher in comparison with the other groups. Groups 2 (3.43 ± 1.94 MPa) and 3 (3.92 ± 1.57 MPa) presented values below the average recommended in the literature. With regard to adhesive remnant index, the groups in which the enamel was treated with NaOCl showed a behaviour similar to that of the resin composite. It is conclude with enamel treatment with NaOCl increased bonding strength of brackets bonded with GIC and RMGIC, but increased bond strength was not statistically significant when compared to the untreated groups.

  9. Push-out bond strength of fiber posts to root dentin using glass ionomer and resin modified glass ionomer cements

    Directory of Open Access Journals (Sweden)

    Jefferson Ricardo PEREIRA

    2014-10-01

    Full Text Available OBJECTIVE: The purpose of this study was to assess the push-out bond strength of glass fiber posts to root dentin after cementation with glass ionomer (GICs and resinmodified glass ionomer cements (RMGICs. MATERIAL AND METHODS: Fifty human maxillary canines were transversally sectioned at 15 mm from the apex. Canals were prepared with a step back technique until the application of a #55 K-file and filled. Post spaces were prepared and specimens were divided into five groups according to the cement used for post cementation: Luting & Lining Cement; Fuji II LC Improved; RelyX Luting; Ketac Cem; and Ionoseal. After cementation of the glass fiber posts, all roots were stored at 100% humidity until testing. For push-out test, 1-mm thick slices were produced. The push-out test was performed in a universal testing machine at a crosshead speed of 0.5 mm/minute and the values (MPa were analyzed by Kolmogorov-Smirnov and Levene's tests and by two-way ANOVA and Tukey's post hoc test at a significance level of 5%. RESULTS: Fiber posts cemented using Luting & Lining Cement, Fuji II LC Improved, and Ketac Cem presented the highest bond strength to root dentin, followed by RelyX Luting. Ionoseal presented the lowest bond strength values (P>0.05. The post level did not influence the bond strength of fiber posts to root dentin (P=0.148. The major cause of failure was cohesive at the cement for all GICs and RMGICs. CONCLUSIONS: Except for Ionoseal, all cements provided satisfactory bond strength values.

  10. The physics of water sorption by resin-modified glass-ionomer dental cements.

    Science.gov (United States)

    Nicholson, J W

    1997-11-01

    The water-sorption characteristics of two commercial resin-modified glass-ionomer dental cements (Baseline VLC, ex. Detrey Dentsply, and Vitremer lining cement, ex. 3M Dental Products) have been studied in more detail than previously. Water sorption in both cements proved to be rapid, reaching equilibrium at approximately 48 h for Baseline VLC and at approximately 10 d for Vitremer. Over the first 8 h or so, absorption was shown to follow Fick's law, with a diffusion coefficient of 1.56x10(-7) cm2 s(-1) for Baseline VLC (cured for 20 s) and 5.09x10(-7) cm2 s(-1) for Vitremer (also cured for 20 s). As expected, sorption of water was found to be faster in specimens cured for shorter cure times and slower for those cured for longer times. In the presence of sodium chloride, both at 0.9% and at 1 M, diffusion coefficients were significantly greater than in pure water, but did not vary significantly with sodium chloride concentration, being approximately 3.3x10(-7) cm2 s(-)1 for Baseline VLC and 8.0x10(-7) cm2 s(-1) for Vitremer. This is attributed to conformational changes in hydrophilic segments of the polymer on absorption of aqueous sodium chloride in which the molecules form more compact coils than in the presence of pure water. They thus create a microstructure that is more permeable to water. Sorption in salt solutions became non-Fickian much sooner than in pure water, i.e. at 3-4 h for both cements. This is probably due to concentration changes of salt within the cement, suggesting that these materials possess a degree of permselectivity. Finally, equilibrium water uptakes varied with salt concentration, being least in 1 M NaCl, which reflects the different chemical potentials of water in the various storage media.

  11. Effect of light curing unit on resin-modified glass-ionomer cements: a microhardness assessment.

    Science.gov (United States)

    Cefaly, Daniela Francisca Gigo; de Mello, Liliam Lucia Carrara Paes; Wang, Linda; Lauris, José Roberto Pereira; D'Alpino, Paulo Henrique Perlatti

    2009-01-01

    To evaluate the microhardness of resin-modified glass-ionomer cements (RMGICs) photoactivated with a blue light-emitting diode (LED) curing light. Thirty specimens were distributed in 3 groups: Fuji II LC Improved/GC (RM1), Vitremer/3M ESPE (RM2) and Filtek Z250/3M ESPE (RM3). Two commercial light-curing units were used to polymerize the materials: LED/Ultrablue IS and a halogen light/XL3000 (QTH). After 24 h, Knoop microhardness test was performed. Data were submitted to three-way ANOVA and Tukey's test at a pre-set alpha of 0.05. At the top surface, no statistically significant difference (p>0.05) in the microhardness was seen when the LED and QTH lights were used for all materials. At the bottom surface, microhardness mean value of RM2 was significantly higher when the QTH light was used (plight was used. No statistically significant difference (p>0.05) was seen at the bottom surface for RM3, irrespective of the light used. Top-to-bottom surface comparison showed no statistically significant difference (p>0.05) for both RMGICs, regardless of the light used. For RM3, microhardness mean value at the top was significantly higher (pcuring units were used. The microhardness values seen when a LED light was used varied depending on the restorative material tested.

  12. Effect of light curing unit on resin-modified glass-ionomer cements: a microhardness assessment

    Directory of Open Access Journals (Sweden)

    Daniela Francisca Gigo Cefaly

    2009-06-01

    Full Text Available OBJECTIVE: To evaluate the microhardness of resin-modified glass-ionomer cements (RMGICs photoactivated with a blue light-emitting diode (LED curing light. MATERIAL AND METHODS: Thirty specimens were distributed in 3 groups: Fuji II LC Improved/GC (RM1, Vitremer/3M ESPE (RM2 and Filtek Z250/ 3M ESPE (RM3. Two commercial light-curing units were used to polymerize the materials: LED/Ultrablue IS and a halogen light/XL3000 (QTH. After 24 h, Knoop microhardness test was performed. Data were submitted to three-way ANOVA and Tukey's test at a pre-set alpha of 0.05. RESULTS: At the top surface, no statistically significant difference (p>0.05 in the microhardness was seen when the LED and QTH lights were used for all materials. At the bottom surface, microhardness mean value of RM2 was significantly higher when the QTH light was used (p0.05 was seen at the bottom surface for RM3, irrespective of the light used. Top-to-bottom surface comparison showed no statistically significant difference (p>0.05 for both RMGICs, regardless of the light used. For RM3, microhardness mean value at the top was significantly higher (p<0.05 than bottom microhardness when both curing units were used. CONCLUSION: The microhardness values seen when a LED light was used varied depending on the restorative material tested.

  13. Effect of Resin-modified Glass Ionomer Cement Dispensing/Mixing Methods on Mechanical Properties.

    Science.gov (United States)

    Sulaiman, T A; Abdulmajeed, A A; Altitinchi, A; Ahmed, S N; Donovan, T E

    2018-03-23

    Resin-modified glass ionomer cements (RMGIs) are often used for luting indirect restorations. Hand-mixing traditional cements demands significant time and may be technique sensitive. Efforts have been made by manufacturers to introduce the same cement using different dispensing/mixing methods. It is not known what effects these changes may have on the mechanical properties of the dental cement. The purpose of this study was to evaluate the mechanical properties (diametral tensile strength [DTS], compressive strength [CS], and fracture toughness [FT]) of RMGIs with different dispensing/mixing systems. The RMGI specimens (n=14)-RelyX Luting (hand mix), RelyX Luting Plus (clicker-hand mix), RelyX Luting Plus (automix) (3M ESPE), GC Fuji PLUS (capsule-automix), and GC FujiCEM 2 (automix) (GC)-were prepared for each mechanical test and examined after thermocycling (n=7/subgroup) for 20,000 cycles to the following: DTS, CS (ISO 9917-1) and FT (ISO standard 6872; Single-edge V-notched beam method). Specimens were mounted and loaded with a universal testing machine until failure occurred. Two-/one-way analysis of variance followed by Tukey honestly significantly different post hoc test was used to analyze data for statistical significance ( p<0.05). The interaction effect of both dispensing/mixing method and thermocycling was significant only for the CS test of the GC group ( p<0.05). The different dispensing/mixing methods had no effect on the DTS of the tested cements. The CS of GC Fuji PLUS was significantly higher than that of the automix version ( p<0.05). The FT decreased significantly when switching from RelyX (hand mix) to RelyX Luting Plus (clicker-hand mix) and to RelyX Luting Plus (automix) ( p<0.05). Except in the case of the DTS of the GC group and the CS of GC Fuji PLUS, thermocycling had a significant effect reducing the mechanical properties of the RMGI cements ( p<0.05). Introducing alternative dispensing/mixing methods for mixing RMGIs to reduce time and

  14. Clinical evaluation of a new art material: Nanoparticulated resin-modified glass ionomer cement

    Science.gov (United States)

    Konde, S.; Raj, S.; Jaiswal, D.

    2012-01-01

    Context: The success of atraumatic restorative treatment (ART) technique depends on the restorative material; hence, clinical studies with various materials are necessary. Aim: The aim of the present study was to clinically evaluate and compare the nanoionomer and high-viscosity glass ionomer using United States Public Health Services (USPHS) Modified Cvar/Ryge Criteria with ART approach. Materials and Methods: Two primary molars in 50 healthy children aged between 5 and 8 years were selected for the study. The teeth were treated with ART and divided into two groups. The group 1 teeth were restored with nanoionomer (Ketac Nano 100 3M ESPE) and group 2 with high-viscosity glass ionomer cement (HVGIC), (Fuji IX GC). Each restoration was evaluated using the USPHS Modified Cvar/Ryge Criteria at baseline and 6 months’ and 12 months’ time interval. Statistical analysis used: Chi-squared (χ2) test. Results: Nanoionomer was significantly better than HVGIC with respect to color match at baseline, 6 months, and 12 months (P0.05), but at 12 months, nanoionomer was statistically better than HVGIC (P0.05). Conclusion: The results indicate that nanoionomer can be a successful alternative restorative material for use with ART technique. PMID:24478966

  15. Effect of various amounts of nanosilver incorporation on the mechanical properties of resin modified glass-ionomer cement

    Directory of Open Access Journals (Sweden)

    Roza Haghgoo

    2013-08-01

    Full Text Available   Background and Aims: Metallic nano-particles show exclusive biological, chemical and physical characteristic. The purpose of this research was to evaluate the effect of various amounts of nanosilver incorporation (0 (as control, 20, 40, 80, 120, 200 ppm on the mechanical Properties ( compressive and flexural strength of resin modified Glass ionomer Cement.   Materials and Methods: Based on ISO 4049 and ISO 9971 for polyalkenoid cements, 90 cases in each group were prepared for the flexural and compressive strength. Specimens in 6 groups with different amounts of nanosilver (20, 40, 80, 120 and 200 ppm and control (Fuji II LC improved, stored in distilled water at 37 ° C for 1 day and 30 days. Flexural strength, using a three-point bending method, Modulus of elasticity and the compressive strength were measured by universal testing machine (Zwick with crosshead speed of 0.5 mm/min. Data were analyzed using two-way ANOVA and Tukey post HOC test.   Results: The flexural strength and modulus of various amounts of nanosilver incorporation of resin modified glass-ionomer cement were not significantly different (P>0.05. The compressive strength of incorporating of20 ppm compared with control (P=0.01, 40 ppm (P=0.02 and 80 ppm compared with control (P<0.001 were increased. The flexural strength and compressive strength of Fuji II LC, containing nanosilver particles were increased after 1 day and 1 month significantly (P<0.001.   Conclusion: Incorporation of 20 to 80 ppm nanosilver into Fuji II LC had increased mechanical properties compared to the original cement.

  16. Biocompatibility of a restorative resin-modified glass ionomer cement applied in very deep cavities prepared in human teeth.

    Science.gov (United States)

    Soares, Diana Gabriela; Basso, Fernanda Gonçalves; Scheffel, Débora Lopes Sales; Giro, Elisa Maria Aparecida; de Souza Costa, Carlos Alberto; Hebling, Josimeri

    2016-01-01

    This study evaluated whether a restorative resin-modified glass ionomer cement, Vitremer (VM), would be biocompatible with pulp tissue when used as a liner in very deep cavities prepared in young human permanent teeth. Two dental cements in current use as liner materials, Vitrebond (VB) and Dycal (DY), were compared to VM. Class V cavities were prepared in 36 sound premolars that were scheduled for extraction, and the cavity floor was lined with the restorative cement (VM) or a liner/base control cement (VB or DY). For VM specimens, the cavity floor was pretreated with a primer (polyacrylic acid plus 2-hydroxyethyl methacrylate). Teeth were extracted after 7 or 30 days and processed for microscopic evaluation. In the VM group, inward diffusion of dental material components through dentinal tubules, associated with disruption of the odontoblastic layer, moderate to intense inflammatory response, and resorption of inner dentin, was observed in 2 teeth at 7 days. These histologic features were observed in 1 tooth at 30 days. In the VB group, mild inflammatory reactions and tissue disorganization observed at 7 days were resolved at 30 days. No pulpal damage occurred in the DY specimens. Of the materials tested, only Vitremer was not considered biocompatible, because it caused persistent pulpal damage when applied in very deep cavities (remaining dentin thickness less than 0.3 mm).

  17. Comparison of Elastic Modulus and Compressive Strength of Ariadent and Harvard Polycarboxylate Cement and Vitremer Resin Modified Glass Ionomer

    Directory of Open Access Journals (Sweden)

    Ahmadian Khoshemehr Leila

    2009-09-01

    Full Text Available Background: Luting agents are used to attach indirect restoration into or on the tooth. Poor mechanical properties of cement may be a cause of fracture of this layer and lead to caries and restoration removal. The purpose of this study was to compare the elastic modulus and compressive strength of Ariadent (A Poly and Harvard polycarboxylate (H Poly cements and Vitremer resin modified glass ionomer (RGl.Materials & Methods: In this experimental study 15 specimens were prepared form each experimental cement in Laboratory of Tehran Oil Refining Company. The cylindrical specimens were compressed in Instron machine after 24 hours. Elastic modulus and compressive strength were calculated from stress/strain curve of each specimen. One way ANOVA and Tukey tests were used for statistical analysis and P values<0.05 were considered to be statistically significant.Results: The mean elastic modulus and mean compressive strength were 2.2 GPa and 87.8MPa in H poly, 2.4 GPa and 56.5 MPa in A Poly, and 0.8GPa and 105.6 MPa in RGI, respectively. Statistical analysis showed that compressive strength and elastic modulus of both polycarboxylate cements were significantly different from hybrid ionomer (P<0.05, but the difference between elastic modulus of two types of polycarboxilate cements was not statistically significant. Compressive strength of two polycarboxilate cements were significantly different (P<0.05. Conclusion: An ideal lutting agent must have the best mechanical properties. Between the tested luttins RGl cement had the lowest elastic modulus and the highest compressive strength, but the A poly cement had the highest elastic modulus and the lowest compressive strength. Therefore none of them was the best.

  18. Shear bond strength evaluation of resin composite to resin-modified glass-ionomer cement using three different resin adhesives vs. glass-ionomer based adhesive

    Directory of Open Access Journals (Sweden)

    Mostafa Sadeghi

    2015-12-01

    Full Text Available Background: The clinical success of sandwich technique depends on the strength of resin-modified glass ionomer cement (RMGIC bonding to both dentin and resin composite. Therefore, the shear bond strength (SBS of resin composite bonded to RMGIC utilizing different resin adhesives versus a GIC-based adhesive was compared. Materials and methods: In this in vitro study, 84 holes (5×2 mm were prepared in acrylic blocks, randomly divided into seven groups (n=12 and filled with RMGIC (Light-Cured Universal Restorative, GC. In the Group I; no adhesive was applied on the RMGIC. In the Group II, non-etched and Group III was etched with phosphoric acid. In groups II and III, after rinsing, etch-and-rinse adhesive (OptiBond Solo Plus; in the Group IV; a two-step self-etch adhesive (OptiBond XTR and in Group V; a one-step self-etch (OptiBond All-in-One were applied on the cement surfaces. Group VI; a GIC-based adhesive (Fuji Bond LC was painted over the cement surface and cured. Group VII; the GIC-based adhesive was brushed over RMGIC followed by the placement of resin composite and co-cured. Afterward; resin composite (Point 4 cylinders were placed on the treated cement surfaces. The specimens were placed in 100% humidity at 37 ± 1°C and thermo cycled. The shear bond test was performed at a cross-head speed of 1 mm/min and calculated in MPa; the specimens were examined to determine mode of failure. The results were analyzed using one-way ANOVA and Tukey test. Results: The maximum (24.62±3.70 MPa and minimum (18.15±3.38 MPa SBS mean values were recorded for OptiBond XTR adhesive and the control group, respectively. The pairwise comparisons showed no significant differences between the groups that bonded with different adhesives. The adhesive failure was the most common failure mode observed. Conclusion: This study suggests that GIC-based adhesive could be applied over RMGIC as co-cure technique for sandwich restorations in lieu of employing the resin

  19. Consequences of enamel preparation with sodium hypochlorite, polyacrylic and phosphoric acids for the bonding of brackets with resin-modified glass ionomer cements

    OpenAIRE

    Trindade, Alessandra Marques; Pereira, Tatiana Bahia Junqueira; Smith Neto, Perrin; Horta, Martinho Campolina Rebello; Pithon, Matheus Melo; Akaki, Emílio; Oliveira, Dauro Douglas

    2013-01-01

    The aim of this study was to evaluate the effects of deproteinization with 5.25% sodium hypochlorite (NaOCl) prior to enamel conditioning with 10% polyacrylic acid (PAA) and 35% phosphoric acid (PA) on the bond strength (BS) of brackets bonded with resin-modified glass ionomer cement (RMGIC). One hundred human premolars extracted for orthodontic reasons were divided into 5 groups (n = 20 in each group): G1 (control), enamel conditioning with PA, application of adhesive and bonding of brackets...

  20. Water dynamics in glass ionomer cements

    Science.gov (United States)

    Berg, M. C.; Jacobsen, J.; Momsen, N. C. R.; Benetti, A. R.; Telling, M. T. F.; Seydel, T.; Bordallo, H. N.

    2016-07-01

    Glass ionomer cements (GIC) are an alternative for preventive dentistry. However, these dental cements are complex systems where important motions related to the different states of the hydrogen atoms evolve in a confined porous structure. In this paper, we studied the water dynamics of two different liquids used to prepare either conventional or resin-modified glass ionomer cement. By combining thermal analysis with neutron scattering data we were able to relate the water structure in the liquids to the materials properties.

  1. Physical Properties, Film Thickness, and Bond Strengths of Resin-Modified Glass Ionomer Cements According to Their Delivery Method.

    Science.gov (United States)

    Sulaiman, Taiseer A; Abdulmajeed, Awab A; Altitinchi, Ali; Ahmed, Sumitha N; Donovan, Terence E

    2018-03-05

    To determine the effect of changing the dispensing or mixing method of resin-modified glass ionomer (RMGI) cements on their water sorption, solubility, film thickness, and shear bond strength. Disc-shaped specimens of RMGI cements (RelyX: Luting [handmix], Luting Plus [clicker-handmix], Luting Plus [automix], GC: Fuji PLUS [capsule-automix], FujiCEM 2 [automix], [n = 10]) were prepared according to ISO standard 4049 for water sorption and solubility tests. Furthermore, the percentage of mass change, percentage of solubility, and percentage of water absorbed was also determined. Film thickness was measured according to ISO standard 9917-2; the mean of 5 measurements for each cement was calculated. Shear bond strength for each cement was determined according to ISO standard 29022 before and after thermocycling at 20,000 cycles, temperatures 5 to 55°C with a 15-second dwell time (n = 10/subgroup). Two- and one-way ANOVA were used to analyze data for statistical significance (p 0.05). RelyX Luting Plus (clicker-handmix) displayed lower solubility than its handmix and automix counterparts (p < 0.05). Film thickness of RelyX cements was significantly different (p < 0.05). RelyX Luting Plus (automix) had the lowest film thickness (19 μm) compared to its handmix (48 μm) and clicker-handmix (117 μm) counterparts (p < 0.05). GC Fuji PLUS (capsule-automix, 22 μm) was significantly lower than the automix version (GC FujiCEM 2, 127 μm) (p < 0.05). Shear bond strength of RelyX Luting Plus (automix) was significantly lower than its handmix and clicker-handmix versions (p < 0.05). GC Fuji PLUS (capsule-automix) was significantly higher than GC FujiCEM 2 (automix) (p < 0.05). The binary interaction of the two independent variables (dispensing/mixing method and thermocycling) was significant for the shear bond strengths of the GC cements only (p < 0.05). Change in the dispensing/mixing method of RMGI cement from the same brand may have an effect on its physical properties

  2. Characterization of the Mineral Trioxide Aggregate–Resin Modified Glass Ionomer Cement Interface in Different Setting Conditions

    Science.gov (United States)

    Eid, Ashraf A.; Komabayashi, Takashi; Watanabe, Etsuko; Shiraishi, Takanobu; Watanabe, Ikuya

    2012-01-01

    Introduction Mineral trioxide aggregate (MTA) has been used successfully for perforation repair, vital pulpotomies, and direct pulp capping. However, little is known about the interactions between MTA and glass ionomer cement (GIC) in final restorations. In this study, 2 null hypotheses were tested: (1) GIC placement time does not affect the MTA-GIC structural interface and hardness and (2) moisture does not affect the MTA-GIC structural interface and hardness. Methods Fifty cylinders were half filled with MTA and divided into 5 groups. The other half was filled with resin-modified GIC either immediately after MTA placement or after 1 or 7 days of temporization in the presence or absence of a wet cotton pellet. The specimens were then sectioned, carbon coated, and examined using a scanning electron microscope and an electron probe micro-analyzer (SEM-EPMA) for interfacial adaptation, gap formation, and elemental analysis. The Vickers hardness numbers of the interfacial MTA were recorded 24 hours after GIC placement and 8 days after MTA placement and analyzed using the analysis of variance test. Results Hardness testing 24 hours after GIC placement revealed a significant increase in hardness with an increase of temporization time but not with a change of moisture conditions (P MTA placement indicated no significant differences among groups. SEM-EPMA showed interfacial adaptation to improve with temporization time and moisture. Observed changes were limited to the outermost layer of MTA. The 2 null hypotheses were not rejected. Conclusions GIC can be applied over freshly mixed MTA with minimal effects on the MTA, which seemed to decrease with time. PMID:22794220

  3. Bond strength of resin modified glass ionomer cement to primary dentin after cutting with different bur types and dentin conditioning

    Directory of Open Access Journals (Sweden)

    Rebeca Di Nicoló

    2007-10-01

    Full Text Available The aim of this in vitro study was to evaluate the effect of different bur types and acid etching protocols on the shear bond strength (SBS of a resin modified glass ionomer cement (RM-GIC to primary dentin. Forty-eight clinically sound human primary molars were selected and randomly assigned to four groups (n=12. In G1, the lingual surface of the teeth was cut with a carbide bur until a 2.0-mm-diameter dentin area was exposed, followed by the application of RM-GIC (Vitremer - 3M/ESPE prepared according to the manufacturer's instructions. The specimens of G2, received the same treatment of G1, however the dentin was conditioned with phosphoric acid. In groups G3 and G4 the same procedures of G1 and G2 were conducted respectively, nevertheless dentin cutting was made with a diamond bur. The specimens were stored in distilled water at 37ºC for 24h, and then tested in a universal testing machine. SBS. data were submitted to 2-way ANOVA (= 5% and indicated that SBS values of RM-GIC bonded to primary dentin cut with different burs were not statistically different, but the specimens that were conditioned with phosphoric acid presented SBS values significantly higher that those without conditioning. To observe micromorphologic characteristics of the effects of dentin surface cut by diamond or carbide rotary instruments and conditioners treatment, some specimens were examined by scanning electron microscopy. Smear layer was present in all specimens regardless of the type of rotary instrument used for dentin cutting, and specimens etched with phosphoric acid presented more effective removal of smear layer. It was concluded that SBS of a RM-GIC to primary dentin was affected by the acid conditioning but the bur type had no influence.

  4. Transmission of composite polymerization contraction force through a flowable composite and a resin-modified glass ionomer cement

    Directory of Open Access Journals (Sweden)

    Juan Carlos Castañeda-Espinosa

    2007-12-01

    Full Text Available The purpose of this study was to evaluate the individual contraction force during polymerization of a composite resin (Z-250, a flowable composite (Filtek Flow, FF and a resin-modified glass ionomer cement (Vitrebond, VB, and the transmission of Z-250 composite resin polymerization contraction force through different thicknesses of FF and VB. The experiment setup consisted of two identical parallel steel plates connected to a universal testing machine. One was fixed to a transversal base and the other to the equipment's cross head. The evaluated materials were inserted into a 1-mm space between the steel plates or between the inferior steel plate and a previously polymerized layer of an intermediate material (either FF or VB adhered to the upper steel plate. The composite resin was light-cured with a halogen lamp with light intensity of 500 mW/cm² for 60 s. A force/time graph was obtained for each sample for up to 120 s. Seven groups of 10 specimens each were evaluated: G1: Z-250; G2: FF; G3: VB; G4: Z-250 through a 0.5-mm layer of FF; G5: Z-250 through a 1-mm layer of FF; G6: Z-250 through a 0.5-mm of VB; G7: Z-250 through a 1-mm layer of VB. They were averaged and compared using one-way ANOVA and Tukey test at a = 0.05. The obtained contraction forces were: G1: 6.3N + 0.2N; G2: 9.8 + 0.2N; G3: 1.8 + 0.2N; G4: 6.8N + 0.2N; G5: 6.9N + 0.3N; G6: 4.0N + 0.4N and G7: 2.8N + 0.4N. The use of VB as an intermediate layer promoted a significant decrease in polymerization contraction force values of the restorative system, regardless of material thickness. The use of FF as an intermediate layer promoted an increase in polymerization contraction force values with both material thicknesses.

  5. TRANSMISSION OF COMPOSITE POLYMERIZATION CONTRACTION FORCE THROUGH A FLOWABLE COMPOSITE AND A RESIN-MODIFIED GLASS IONOMER CEMENT

    Science.gov (United States)

    Castañeda-Espinosa, Juan Carlos; Pereira, Rosana Aparecida; Cavalcanti, Ana Paula; Mondelli, Rafael Francisco Lia

    2007-01-01

    The purpose of this study was to evaluate the individual contraction force during polymerization of a composite resin (Z-250), a flowable composite (Filtek Flow, FF) and a resin-modified glass ionomer cement (Vitrebond, VB), and the transmission of Z-250 composite resin polymerization contraction force through different thicknesses of FF and VB. The experiment setup consisted of two identical parallel steel plates connected to a universal testing machine. One was fixed to a transversal base and the other to the equipment's cross head. The evaluated materials were inserted into a 1-mm space between the steel plates or between the inferior steel plate and a previously polymerized layer of an intermediate material (either FF or VB) adhered to the upper steel plate. The composite resin was light-cured with a halogen lamp with light intensity of 500 mW/cm2 for 60 s. A force/time graph was obtained for each sample for up to 120 s. Seven groups of 10 specimens each were evaluated: G1: Z-250; G2: FF; G3: VB; G4: Z-250 through a 0.5-mm layer of FF; G5: Z-250 through a 1-mm layer of FF; G6: Z-250 through a 0.5-mm of VB; G7: Z-250 through a 1-mm layer of VB. They were averaged and compared using one-way ANOVA and Tukey test at a = 0.05. The obtained contraction forces were: G1: 6.3N ± 0.2N; G2: 9.8 ± 0.2N; G3: 1.8 ± 0.2N; G4: 6.8N ± 0.2N; G5: 6.9N ± 0.3N; G6: 4.0N ± 0.4N and G7: 2.8N ± 0.4N. The use of VB as an intermediate layer promoted a significant decrease in polymerization contraction force values of the restorative system, regardless of material thickness. The use of FF as an intermediate layer promoted an increase in polymerization contraction force values with both material thicknesses. PMID:19089187

  6. Shear bond strength evaluation of resin composite bonded to three different liners: TheraCal LC, Biodentine, and resin-modified glass ionomer cement using universal adhesive: An in vitro study

    OpenAIRE

    Deepa, Velagala L; Dhamaraju, Bhargavi; Bollu, Indira Priyadharsini; Balaji, Tandri S

    2016-01-01

    Aims: To compare and evaluate the bonding ability of resin composite (RC) to three different liners: TheraCal LC TM (TLC), a novel resin-modified (RM) calcium silicate cement, Biodentine TM (BD), and resin-modified glass ionomer cement (RMGIC) using an universal silane-containing adhesive and characterizing their failure modes. Materials and Methods: Thirty extracted intact human molars with occlusal cavity (6-mm diameter and 2-mm height) were mounted in acrylic blocks and divided into th...

  7. Adhesion of resin-modified glass-ionomer cements may affect the integrity of tooth structure in the open sandwich technique.

    Science.gov (United States)

    Czarnecka, Beata; Kruszelnicki, Anna; Kao, Anthony; Strykowska, Marta; Nicholson, John W

    2014-12-01

    To study the interfaces between model cavities prepared in teeth and four glass ionomer cements (two conventional and two resin-modified). Ten non-cavitated molars and premolars were used and, in each, two 3mm deep slot preparations were created on opposing sides of the tooth. The teeth were conditioned as appropriate, then restored using the open sandwich technique, using a conventional glass ionomer (Fuji IX, Ketac Molar) or resin modified glass ionomer (Fuji II LC or N100), followed by completion with composite resin. The teeth were then embedded in a transparent acrylic resin and cut parallel to the long axis through both restorations, using a low speed diamond wheel saw. Samples were evaluated using a metallographic light microscope (100×). Three areas were assessed: the axial wall, the axial gingival line angle and the cavo-surface line angle. Bonding was categorized as inadequate or adequate based on the appearance and inadequate bonding was further studied and classified. Data were analysed statistically using the McNamara analysis. The majority of materials failed to make adequate contact with the axial wall, and there were also flaws at the axial/gingival line angle in several samples. By contrast, the cavo-surface line angle was generally soundly filled and the materials showed intimate contact with the tooth surface in this region. The most serious inadequacy, though, was not lack of intimate contact and/or adhesive bond, but the presence of perpendicular cracks in 30% of the Fuji II LC samples which extended into the underlying dentin. The problems of placement and dentin cracking experienced with these materials demonstrate that adhesive bond strength alone cannot be used as the criterion of success for restorative materials. In fact good adhesion can, in certain cases, promote cracking of the dentin due to stresses within the material, an outcome which is undesirable. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All

  8. Fracture frequency and longevity of fractured resin composite, polyacid-modified resin composite, and resin-modified glass ionomer cement class IV restorations: an up to 14 years of follow-up

    DEFF Research Database (Denmark)

    van Dijken, Jan W V; Pallesen, Ulla

    2010-01-01

    The aim of this study was to evaluate the fracture frequency and longevity of fractured class IV resin composite (RC), polyacid-modified resin composite (compomer; PMRC), and resin-modified glass ionomer cement (RMGIC) restorations in a longitudinal long-term follow-up. Eighty-five class IV RC (43...

  9. A Retrospective Study of the 3-Year Survival Rate of Resin-Modified Glass-Ionomer Cement Class II Restorations in Primary Molars.

    Science.gov (United States)

    Webman, Mark; Mulki, Ezat; Roldan, Rosie; Arevalo, Oscar; Roberts, John F; Garcia-Godoy, Franklin

    2016-01-01

    To determine the three-year survival rate of Class II resin-modified glass-ionomer cement (RMGIC), Vitremer, restorations in primary molars and to compare these results with measurements of survival of Class II restorations of standard restorative materials. Data on Class II restorations placed in primary molars during a six-year period were collected through a chart review and radiographic evaluation in the office of a board-certified pediatric dentist. A radiograph showing that the restoration was intact was required at least 3 years after placement to qualify as successful. If no radiograph existed, the restoration was excluded. If the restoration was not found to be intact radiographically or was charted as having been replaced before three years it was recorded as a failure. The results of this study were then compared to other standard restorative materials using normalized annual failure rates. Of the 1,231 Class II resinmodified glass-ionomer cement restorations placed over six years 427 met the inclusion criteria. There was a 97.42% survival rate for a 3-year period equivalent to an annual failure rate of 0.86%. A novel approach comparing materials showed that in this study Vitremer compared very favorably to previously published success rates of other standard restorative materials (amalgam, composite, stainless steel crown, compomer) and other RMGIC studies.

  10. The effect of salivary pH on diametral tensile strength of resin modified glass ionomer cement coated with coating agent

    Science.gov (United States)

    Ismayanti, D.; Triaminingsih, S.; Eriwati, Y. K.

    2017-08-01

    The aim of this study was to evaluate the effect of artificial saliva with different acidities on the diametral tensile strength of Resin Modified Glass Ionomer Cement (RMGIC) coated with varnish and nanofilled coating agent. The specimens coated with coating agents were immersed in artificial saliva with pH of 4.5, 5.5, and 7 for 24 hours in an incubatorat 37°C. The diametral tensile strength of the specimens was tested with Universal Testing Machine. There were no significant differences on the diametral tensile strength of all specimens that were put into groups based on the acidity of the saliva and the type of coating agent (p>0.05). Both varnish and nanofilled coating agent stayed on the RMGIC in the acidic condition that simulated the true condition of oral cavity in people with high caries risk for the 24 hours of maturation.

  11. Investigation into the Depth of Cure of Resin-Modified Glass-Ionomer Restorative Materials

    Science.gov (United States)

    2006-08-01

    glass - ionomer restorative dental materials. Samples of different thicknesses using...attempt at delineating the depth of cure of resin-modified glass - ionomer restorative dental materials. Samples of different thicknesses using Vitremer... glass ionomers liners. Dent Mater 1993:9:198-203. 16. Culbertson BM. Glass - ionomer dental restoratives . Prog Polym Sci 2001 ;26:577-604. 17. Fuji II

  12. Residual HEMA and TEGDMA Release and Cytotoxicity Evaluation of Resin-Modified Glass Ionomer Cement and Compomers Cured with Different Light Sources

    Directory of Open Access Journals (Sweden)

    Murat Selim Botsali

    2014-01-01

    Full Text Available The purpose of this study was first to evaluate the elution of 2-hydroxyethyl methacrylate (HEMA and triethylene glycol dimethacrylate (TEGDMA monomers from resin-modified glass ionomer cement (RMGIC and compomers cured with halogen and light-emitting diode (LED light-curing units (LCUs. The effect of cured materials on the viability of L929 fibroblast cells was also evaluated. One RMGIC (Ketac N100 and two compomers (Dyract Extra and Twinkystar were tested. Materials were prepared in teflon disks and light-cured with LED or halogen LCUs. The residual monomers of resin materials in solution were identified using high-performance liquid chromatography. The fibroblast cells’ viability was analyzed using MTT assay. The type of LCU did not have a significant effect on the elution of HEMA and TEGDMA. A greater amount of HEMA than TEGMDA was eluted. The amount of TEGDMA eluted from Twinkystar was greater than Dyract Extra (P0.05. Curing with the LED LCU decreased the cells’ viability more than curing with the halogen LCU for compomers. For Ketac N100, the halogen LCU decreased the cells’ viability more than the LED LCU.

  13. Comparative study of resin sealant and resin modified glass ionomer as pit and fissure sealant

    Directory of Open Access Journals (Sweden)

    Shirin Malek

    2017-02-01

    Full Text Available The purpose of the present study was to compare the marginal integrity of resin modified glass ionomer cement with that of resin sealant, in vitro. Forty artificial pit and fissure cavities were prepared in occlusal surface of extracted premolar teeth by using ¼ round carbide bur. Cavities were condensed with artificial organic debris followed by cleaning with prophylaxis pumice brush and paste and then separated into two treatment groups. In Group A, 15 fissure cavities were sealed by resin sealant and in Group B, 15 fissure cavities were sealed by resin modified glass ionomer sealant. These specimens were subjected to thermo-cycling followed by dye penetration test. The remaining 5 cavities from each group were analyzed for debris score by the SEM. The results of the microleakage test showed that the efficacy of preventing microleakage of samples sealed by resin modified glass ionomer sealant was higher than the samples sealed by resin sealant. However, no significant differences were found. It can be concluded that use of resin modified glass ionomer sealant is a good alternative for sealing pits and fissures.

  14. A comparative evaluation of the retention of metallic brackets bonded with resin-modified glass ionomer cement under different enamel preparations: A pilot study

    Science.gov (United States)

    Sharma, Padmaja; Valiathan, Ashima; Arora, Ankit; Agarwal, Sachin

    2013-01-01

    Introduction: For orthodontists, the ideal bonding material should be less moisture-sensitive and should release fluoride, thereby reducing unfavorable iatrogenic decalcification. Resin-Modified Glass Ionomer Cements (RMGICs), due to their ability to bond in the presence of saliva and blood can be a very good bonding agent for orthodontic attachments especially in the areas of mouth, which are difficult to access. Moreover, their fluoride releasing property makes them an ideal bonding agent for patients with poor oral hygiene. However, their immediate bond strength is said to be too low to immediately ligate the initial wire, which could increase the total number of appointments. The effect of sandblasting and the use of sodium hypochlorite (NaOCL) on the immediate bond failure of RMGIC clinically have not been reported in the literature until the date. This investigation intended to assess the effect of sandblasting (of the bracket base and enamel) and NaOCL on the rate of bond failure (with immediate ligation at 30 min) of Fuji Ortho LC and its comparison with that of conventional light cured composite resin over a period of 1 year. Materials and Methods: 400 sample teeth were further divided into 4 groups of 100 each and bonded as follows: (1) Group 1: Normal metallic brackets bonded with Fuji Ortho LC. (2) Group 2: Sandblasted bracket base and enamel surface, brackets bonded with Fuji Ortho LC. (3) Group 3: Deproteinized enamel surface using sodium hypochlorite and brackets bonded with Fuji Ortho LC. (4) Group 4: Normal metallic bracket bonded with Transbond XT after etching enamel with 37% phosphoric acid. This group served as control group. Results and Conclusion: Results showed that sandblasting the bracket base and enamel, can significantly reduce the bond failure rate of RMGIC. PMID:24014999

  15. Effect of resin-modified glass-ionomer cement lining and composite layering technique on the adhesive interface of lateral wall

    Directory of Open Access Journals (Sweden)

    Larissa Marinho AZEVEDO

    2015-06-01

    Full Text Available Interface integrity can be maintained by setting the composite in a layering technique and using liners. Objective The aim of this in vitro study was to verify the effect of resin-modified glass-ionomer cement (RMGIC lining and composite layering technique on the bond strength of the dentin/resin adhesive interface of lateral walls of occlusal restorations. Material and Methods Occlusal cavities were prepared in 52 extracted sound human molars, randomly assigned into 4 groups: Group 2H (control – no lining + two horizontal layers; Group 4O: no lining + four oblique layers; Group V-2H: RMGIC lining (Vitrebond + two horizontal layers; and Group V-4O: RMGIC lining (Vitrebond + four oblique layers. Resin composite (Filtek Z250, 3M ESPE was placed after application of an adhesive system (Adper™ Single Bond 2, 3M ESPE dyed with a fluorescent reagent (Rhodamine B to allow confocal microscopy analysis. The teeth were stored in deionized water at 37oC for 24 hours before being sectioned into 0.8 mm slices. One slice of each tooth was randomly selected for Confocal Laser Scanning Microscopy (CLSM analysis. The other slices were sectioned into 0.8 mm x 0.8 mm sticks to microtensile bond strength test (MPa. Data were analyzed by two-way ANOVA and Fisher's test. Results There was no statistical difference on bond strength among groups (p>0.05. CLSM analysis showed no significant statistical difference regarding the presence of gap at the interface dentin/resin among groups. Conclusions RMGIC lining and composite layering techniques showed no effect on the microtensile bond strength and gap formation at the adhesive interface of lateral walls of high C-factor occlusal restorations.

  16. A Review of Glass-Ionomer Cements for Clinical Dentistry

    Directory of Open Access Journals (Sweden)

    Sharanbir K. Sidhu

    2016-06-01

    Full Text Available This article is an updated review of the published literature on glass-ionomer cements and covers their structure, properties and clinical uses within dentistry, with an emphasis on findings from the last five years or so. Glass-ionomers are shown to set by an acid-base reaction within 2–3 min and to form hard, reasonably strong materials with acceptable appearance. They release fluoride and are bioactive, so that they gradually develop a strong, durable interfacial ion-exchange layer at the interface with the tooth, which is responsible for their adhesion. Modified forms of glass-ionomers, namely resin-modified glass-ionomers and glass carbomer, are also described and their properties and applications covered. Physical properties of the resin-modified glass-ionomers are shown to be good, and comparable with those of conventional glass-ionomers, but biocompatibility is somewhat compromised by the presence of the resin component, 2 hydroxyethyl methacrylate. Properties of glass carbomer appear to be slightly inferior to those of the best modern conventional glass-ionomers, and there is not yet sufficient information to determine how their bioactivity compares, although they have been formulated to enhance this particular feature.

  17. Comparison of Mechanical Properties of Resin Composites with Resin Modified Glass Ionomers

    Directory of Open Access Journals (Sweden)

    Taha NA

    2015-06-01

    Full Text Available Statement of Problem: There are controversial reports regarding physical and mechanical properties of resin composites and glass ionomer cements. Some revealed higher strength and hardness for resin composites while others showed a comparable value for glass ionomer cements. Evaluation of mechanical properties of different types of resin composites in comparison with resin modified glass ionomers is not widely studied. Objectives: To measure and compare the flexural strength and Vickers hardness of three resin composites and two resins modified glass ionomer cements before and after ageing. Materials and Methods: Three resin composites, i.e. Filtek Supreme XTE (3M ESPE, Ice (SDI, Gradia (GC, and two resins modified glass ionomers, i.e. Fuji II LC (GC and Riva Light Cure (SDI, were selected. Ten barshaped specimens were prepared for each material and cured using LED curing light. After 24 hours storage in distilled water at 37oC, the specimens were randomly divided into two equal groups (n=5. The first group was tested as a baseline and the second group was restored at 37oC for another 29 days. Flexural strength was performed by four-point bending test using universal testing machine at crosshead speed of 0.5mm/min, and the maximum load at failure was recorded. The specimen’s halves were used for evaluating Vickers hardness, using a Digital Hardness Tester (300 g/15 sec and the Vickers hardness number (VHN was recorded. Data were analyzed using one-way analysis of variance (ANOVA, Tukey’s and student’s t-test. Results: After 24 hours of immersion, the highest hardness number was found for Filtek Supreme and Ice and the highest flexural strength was obtained for Gradia. After 30 days of storage, hardness of Fuji II LC and Gradia showed a significant decrease; flexural strength of Ice and Fuji II LC revealed a significant increase while Gradia and Filtek Supreme showed a significant decrease. Conclusions: Resin modified glass ionomers showed

  18. Resin-modified glass-ionomer cements versus resin-based materials as fissure sealants: a meta-analysis of clinical trials.

    Science.gov (United States)

    Yengopal, V; Mickenautsch, S

    2010-02-01

    To appraise quantitatively current evidence regarding the caries-preventing effect of resin-modified glass-ionomer cement (RM-GIC) fissure sealants in comparison to that of resin-based fissure sealants. Systematic review with meta-analysis. 8 Anglophone databases and 2 Lusophone databases were searched until 15 April 2009, using a pre-determined search strategy. Clinical trials were considered for inclusion if their titles/abstracts were relevant to the topic, published in English, Portuguese or Spanish and had a two-arm longitudinal study design. The outcome measure of the caries-preventive effect was caries absence on sealed teeth. Two reviewers independently extracted data from the accepted articles in order to complete a 2x2 table for meta-analysis. The unit of interest was the tooth, and the number of caries-free teeth (n) at the end of each time interval (6, 12 and 24 months) was compared against the total number of evaluated teeth (N). Datasets were assessed for their clinical and methodological heterogeneity, following Cochrane guidelines, and only homogeneous datasets were combined for meta-analysis, using a random effects model (RevMan 4.2). Differences in the caries-preventive effect were computed on the basis of the combined Relative Risk (RR) with 95% confidence interval (CI). Of the 212 articles identified, only 6 trials were included. From these, 19 separate datasets were extracted. For the pooled data, equivalent caries-preventive effects were observed at 6 months (RR= 0.98, 95% CI 0.95- 1.00; p = 0.08); 12 months (RR=1.00, 95% CI 0.96-1.04, p = 0.99) and 24 months (RR=1.01, 95% CI 0.84-1.21, p = 0.91). The 36-month data (not pooled) favoured resin-based sealants (RR 0.93, 95% CI 0.88-0.97, p = 0.002). This meta-analysis found no conclusive evidence that either material was superior to the other in preventing dental caries.

  19. Effect of light-emitting diode and halogen light curing on the micro-hardness of dental composite and resin-modified glass ionomer cement: an in vitro study.

    Science.gov (United States)

    Bhalla, M; Patel, D; Shashikiran, N D; Mallikarjuna, R M; Nalawade, T M; Reddy, H K

    2012-01-01

    This in vitro study was conducted to evaluate and compare the micro-hardness of composite resin and resin-modified glass ionomer cement using light-emitting diode (LED) and halogen curing and also to inter-compare the effect of LED and halogen curing. The study sample comprised of 4 stainless steel plates with a thickness of 2 mm. For these stainless steel plates, holes were made to a diameter of 3 mm. The samples were divided into 4 groups of 8 each and labeled as group I, group II, group III, group IV, thus making provision for the two different modes of light exposure. In each group, the hole was restored with its respective restorative material and cured with light-curing unit according to manufacturer instructions. The results were statistically analyzed using Mann-Whitney test. It was concluded that the curing efficacy of the LED lamp was comparable to that of conventional halogen lamp, even with a 50% reduction in cure time, and resin composite (Filtek Z-250) presented the highest hardness values, whereas complete hardening of resin-modified glass ionomer cement (RMGIC) (Vitremer) was observed because of its self-curing system even after the removal of light source.

  20. Effect of light-emitting diode and halogen light curing on the micro-hardness of dental composite and resin-modified glass ionomer cement: An in vitro study

    Directory of Open Access Journals (Sweden)

    M Bhalla

    2012-01-01

    Full Text Available Aims : This in vitro study was conducted to evaluate and compare the micro-hardness of composite resin and resin-modified glass ionomer cement using light-emitting diode (LED and halogen curing and also to inter-compare the effect of LED and halogen curing. Materials and Methods : The study sample comprised of 4 stainless steel plates with a thickness of 2 mm. For these stainless steel plates, holes were made to a diameter of 3 mm. The samples were divided into 4 groups of 8 each and labeled as group I, group II, group III, group IV, thus making provision for the two different modes of light exposure. In each group, the hole was restored with its respective restorative material and cured with light-curing unit according to manufacturer instructions. The results were statistically analyzed using Mann-Whitney test. Results and conclusion: It was concluded that the curing efficacy of the LED lamp was comparable to that of conventional halogen lamp, even with a 50% reduction in cure time, and resin composite (Filtek Z-250 presented the highest hardness values, whereas complete hardening of resin-modified glass ionomer cement (RMGIC (Vitremer was observed because of its self-curing system even after the removal of light source.

  1. Dental repair material: a resin-modified glass-ionomer bioactive ionic resin-based composite.

    Science.gov (United States)

    Croll, Theodore P; Berg, Joel H; Donly, Kevin J

    2015-01-01

    This report documents treatment and repair of three carious teeth that were restored with a new dental repair material that features the characteristics of both resin-modified glass-ionomer restorative cement (RMGI) and resin-based composite (RBC). The restorative products presented are reported by the manufacturer to be the first bioactive dental materials with an ionic resin matrix, a shock-absorbing resin component, and bioactive fillers that mimic the physical and chemical properties of natural teeth. The restorative material and base/liner, which feature three hardening mechanisms, could prove to be a notable advancement in the adhesive dentistry restorative materials continuum.

  2. Effect of Rebonding on the Bond Strength of Orthodontic Tubes: A Comparison of Light Cure Adhesive and Resin-Modified Glass Ionomer Cement In Vitro

    Directory of Open Access Journals (Sweden)

    Monika Aleksiejunaite

    2017-01-01

    Full Text Available The purpose of this study was to determine the impact of different enamel preparation procedures and compare light cure composite (LCC and resin-modified glass ionomer (RMGI on the bond strength of orthodontic metal tubes rebonded to the enamel. Twenty human molars were divided into two groups (n=10. Tubes were bonded using LCC (Transbond XT in group 1 and RMGI (Fuji Ortho LC in group 2. The tubes in each group were bonded following manufacturers’ instructions (experiment I and then debonded using testing machine. Then, the same brackets were sandblasted and rebonded twice. Before the first rebonding, the enamel was cleaned using carbide bur (experiment II and before second rebonding, it was cleaned using carbide bur and soda blasted (experiment III. Mann–Whitney and Wilcoxon signed-rank tests showed no significant difference between RMGI and LCC bond strengths in case of normal bonding and rebonding, when enamel was cleaned using carbide bur before rebonding. Enamel soda blasting before rebonding significantly increased RMGI tensile bond strength value compared to LLC (p<0.05. LCC and RMGI (especially RMGI provide sufficient bond strengths for rebonding of molar tubes, when residual adhesive from previous bonding is removed and enamel soda blasted.

  3. Retention of oral microorganisms on conventional and resin-modified glass-ionomer cements Retenção de microrganismos bucais em cimentos de ionômero de vidro convencionais e modificados por resina

    Directory of Open Access Journals (Sweden)

    Denise PEDRINI

    2001-09-01

    Full Text Available Secondary caries are a worldwide public and socioeconomic problem. The placement of restorations can lead to the development of environmental conditions favorable to microbial colonization, especially on the tooth/restoration interface, which is a predisposing factor for secondary caries. The aim of this study was to evaluate microbial retention on conventional (Chelon-Fil and Vidrion R and resin-modified (Vitremer and Fuji II LC glass-ionomer cements, in situ, using a hybrid composite resin (Z100 as a control. Twelve volunteers wore Hawley appliances with specimens made of all tested filling materials for 7 days. The specimens were then removed from the appliances and transferred to tubes containing 2.0 ml of Ringer-PRAS. Microorganisms from the samples were inoculated onto blood agar and Mitis Salivarius Bacitracin agar and incubated under anaerobiosis (90% N2, 10% CO2, at 37°C, for 10 and 2 days, respectively. The resin-modified glass-ionomer cements and the composite resin retained the same levels of microorganisms on their surfaces. The resin-modified glass-ionomers retained less mutans streptococci than the composite resin and conventional glass-ionomer cements. The conventional glass-ionomer cements retained less mutans streptococci than the composite resin, but that difference was not statistically significant.A cárie secundária representa problema de saúde pública e socioeconômico no mundo. A restauração de dentes acometidos por cárie pode criar condições favoráveis à proliferação microbiana na superfície do material restaurador ou na interface dente/restauração, criando ambiente propício para o estabelecimento de cárie secundária. O objetivo deste estudo foi avaliar a capacidade de retenção de placa bacteriana em cimentos de ionômero de vidro convencionais (Chelon-Fil e Vidrion R e modificados por resina (Vitremer e Fuji II LC e de resina composta híbrida (Z100, utilizada como controle. Nos testes de reten

  4. THE GLASS IONOMER CEMENT IN DENTISTRY

    Directory of Open Access Journals (Sweden)

    Ian Matos Vieira

    2006-08-01

    Full Text Available The glass ionomer cement was developed in the past century 70s, after continuous researches about silicate cement. Over the years, glass ionomers have been playing an important role on restorative dentistry. Initially, the material was used for restoration of small cavities, however, its usage has been increased. The main indications at present are: as core buildup restorative, luting cement, liner and base and as a sealant. Recently, glass ionomer cement has been used for ART restorations and in some medicine fields because of the positive biointeraction with bone cells. Although glass ionomer cements exhibit an initial critical solubility and poor aesthetics, great biological properties like fluoride release to oral environment, chemical bonding to tooth tissues and biocompatibility leads this material elective for many purposes. Finally, their inherent antimicrobial properties contributes to the treatment of many situations in dentistry.

  5. Shear bond strength evaluation of resin composite bonded to three different liners: TheraCal LC, Biodentine, and resin-modified glass ionomer cement using universal adhesive: An in vitro study.

    Science.gov (United States)

    Deepa, Velagala L; Dhamaraju, Bhargavi; Bollu, Indira Priyadharsini; Balaji, Tandri S

    2016-01-01

    To compare and evaluate the bonding ability of resin composite (RC) to three different liners: TheraCal LC™ (TLC), a novel resin-modified (RM) calcium silicate cement, Biodentine™ (BD), and resin-modified glass ionomer cement (RMGIC) using an universal silane-containing adhesive and characterizing their failure modes. Thirty extracted intact human molars with occlusal cavity (6-mm diameter and 2-mm height) were mounted in acrylic blocks and divided into three groups of 10 samples each based on the liner used as Group A (TLC), Group B (BD), and Group C (RMGIC). Composite post of 3 mm diameter and 3 mm height was then bonded to each sample using universal adhesive. Shear bond strength (SBS) analysis was performed at a cross-head speed of 1 mm/min. Statistical analysis was performed with one-way analysis of variance (ANOVA) and post hoc test using Statistical Package for the Social Sciences (SPSS) version 20. No significant difference was observed between group A and group C (P = 0.573) while group B showed the least bond strength values with a highly significant difference (P = 0.000). The modes of failure were predominantly cohesive in Groups A and B (TLC and BD) while RMGIC showed mixed and adhesive failures. Hence, this present study concludes that the bond strength of composite resin to TLC and RMGIC was similar and significantly higher than that of BD following application of universal adhesive.

  6. Streptococcus mutans counts in plaque adjacent to orthodontic brackets bonded with resin-modified glass ionomer cement or resin-based composite

    Directory of Open Access Journals (Sweden)

    Solange Machado Mota

    2008-03-01

    Full Text Available This study investigated the number of Streptococcus mutans CFU (colony forming units in the saliva and plaque adjacent to orthodontic brackets bonded with a glass ionomer cement - GIC (Fuji Ortho or a resin-based composite - RC (Concise. Twenty male and female patients, aged 12 to 20 years, participated in the study. Saliva was collected before and after placement of appliances. Plaque was collected from areas adjacent to brackets and saliva was again collected on the 15th, 30th, and 45th day after placement. On the 30th day, 0.4% stannous fluoride gel was applied for 4 minutes. No significant modification in the number of Streptococcus mutans CFU in saliva was observed after placement of the fixed orthodontic appliances. On the 15th day, the percentage of Streptococcus mutans CFU in plaque was statistically lower in sites adjacent to GIC-bonded brackets (mean = 0.365 than in those adjacent to RC-bonded brackets (mean = 0.935. No evidence was found of a contribution of GIC to the reduction of CFU in plaque after the 15th day. Topical application of stannous fluoride gel on the 30th day reduced the number of CFU in saliva, but not in plaque. This study suggests that the antimicrobial activity of GIC occurs only in the initial phase and is not responsible for a long-term anticariogenic property.

  7. INFILTRAÇÃO MARGINAL DE CIMENTOS IONOMÉRICOS MODIFICADOS POR RESINA MICROLEAKAGE OF RESIN-MODIFIED GLASS IONOMER CEMENT

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo CARRARA

    1997-04-01

    Full Text Available Comparou-se a infiltração marginal de dois cimentos restauradores que liberam flúor, o Vitremer/3M e o Variglass/Caulk Dentsply. Cavidades classe II foram confeccionadas nas faces mesiais e distais de pré-molares extraídos. Cada dente recebeu uma restauração de cada material. Procedeu-se, então, a termociclagem em solução de fucsina básica a 0,5%. Nenhum material foi capaz de evitar a infiltração marginal, porém, esta foi menor nas restaurações de Vitremer/3M (pThe microleakage behavior of two hybrid glass ionomer cements used as restorative materials (Variglass/Caulk Dentsply and Vitremer/3M was compared. Separate class II cavities were prepared on the mesial and distal aspects of thirteen extracted premolars. One restoration of each material was placed on every tooth. The cervical margins of the restorations were left one millimeter below the cementoenamel junction. Thermocycling was conduced in a 0.5% basic fuchsin solution. The teeth were washed and sectioned for microleakage analysis under a dissecting microscope. None of the materials tested were able to inhibit dye penetration at the cervical margin. Vitremer/3M was more effective than Variglass/Caulk Dentsply in reducing microleakage.

  8. 5-year clinical performance of resin composite versus resin modified glass ionomer restorative system in non-carious cervical lesions

    DEFF Research Database (Denmark)

    Franco, Eduardo Batista; Benetti, Ana Raquel; Ishikiriama, Sérgio Kiyoshi

    2006-01-01

    To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions.......To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions....

  9. Evaluating the effect of different conditioning agents on the shear bond strength of resin-modified glass ionomers

    Directory of Open Access Journals (Sweden)

    Namith Rai

    2017-01-01

    Full Text Available Aim of the Study: This study aims to evaluate the effects three different conditioning agents on the shear bond strength of resin-modified glass ionomers to human dentin. Materials and Methods: One hundred and twenty recently extracted, caries-free premolars and molars will be cleaned of debris and disinfected in a 0.5% solution of sodium hypochlorite and sterile water for 30 min. The occlusal surface of each tooth will be reduced using conventional model trimmer with water to produce the dentin surface. Then, three different resin-modified glass ionomer cements (GICs were triturated and mixed according to the manufacturer's instructions, 10 specimens will be made of each group. The excess restorative material will be removed from matrix band dentin interface with a sharp number 25 bard parker blade. Samples were shear tested with Instron universal testing machine with a crosshead speed of 0.5 mm/min. A shearing bar beveled to a 1 mm thick contact surface area will be placed at the junction of dentin and plastic band matrix. The load required for the failure will be recorded in pounds and converted to megapascals. Results: Statistical analysis was done with analysis of variance and Tukey's test. Ketac primer as conditioning agent along with Fuji II LC as restorative material had the highest shear bond value whereas intact smear layer which was unmodified dentin had the least value. Conclusion: Within the limitations of the present study, it can be concluded that surface conditioning of dentin resulted significantly higher bond strength than unconditioned dentin surfaces. Clinical Significance: Resin-modified glass ionomers have several advantages compared to chemically cured GICs. The advantages include command cure, ease of handling, improved physical properties, and esthetics. Resin-modified glass ionomers have been marketed as direct restorative materials for Class V lesions as well as liners, bases, and luting agents. Several conditioning

  10. Antibacterial activity of selected glass ionomer cements

    Directory of Open Access Journals (Sweden)

    Elżbieta Łuczaj-Cepowicz

    2014-01-01

    Full Text Available Introduction: The aim of the paper was to determine the antibacterial activity of four glass ionomer cements against bacteria of the genera Streptococcus and Lactobacillus. Material and methods: Four capsulated glass ionomer cements were applied in the study: Fuji Triage (GC, Fuji IX (GC, Ketac Molar (3M Espe and Ketac Silver (3M Espe. Four standard bacterial strains were used to assess the antibacterial activity of the studied cements: Streptococcus mutans, S. sanguis, S. salivarius and Lactobacillus casei. The antibacterial activity was determined by the agar diffusion method. The bacterial suspension was spread with a cotton swab on TSA plates. For each material six wells (7 mm diameter, 5 mm deep were made with a cork borer. Each well was then filled with freshly prepared cements. The results were obtained by measuring the bacterial growth inhibition zone after 1, 2, 3 and 7 days. Results: Fuji Triage cement inhibited the growth of all bacterial strains. Fuji IX cement demonstrated the most potent antibacterial activity against S. sanguis. Ketac Molar showed antibacterial activity against S. sanguis and S. salivarius, whereas Ketac Silver was efficient against S. mutans as well. Neither of the Ketac cements inhibited growth of the standard L. casei strain. Discussion: Antibacterial activity of glass ionomer cements has attracted the interest of scientists in recent years. Most authors, including us, carried out experiments using the agar diffusion method and demonstrated antibacterial activity of glass ionomer cements. Different antibacterial activity of glass ionomer cements, observed in our study and studies of other authors, depended on the evaluated cement, bacterial strain and period of evaluation.

  11. Antibacterial activity of selected glass ionomer cements

    Directory of Open Access Journals (Sweden)

    Elżbieta Łuczaj-Cepowicz

    2014-01-01

    Full Text Available Introduction: The aim of the paper was to determine the antibacterial activity of four glass ionomer cements against bacteria of the genera Streptococcus and Lactobacillus.Material and methods: Four capsulated glass ionomer cements were applied in the study: Fuji Triage (GC, Fuji IX (GC, Ketac Molar (3M Espe and Ketac Silver (3M Espe. Four standard bacterial strains were used to assess the antibacterial activity of the studied cements: Streptococcus mutans, S. sanguis, S. salivarius and Lactobacillus casei. The antibacterial activity was determined by the agar diffusion method. The bacterial suspension was spread with a cotton swab on TSA plates. For each material six wells (7 mm diameter, 5 mm deep were made with a cork borer. Each well was then filled with freshly prepared cements. The results were obtained by measuring the bacterial growth inhibition zone after 1, 2, 3 and 7 days. Results: Fuji Triage cement inhibited the growth of all bacterial strains. Fuji IX cement demonstrated the most potent antibacterial activity against S. sanguis. Ketac Molar showed antibacterial activity against S. sanguis and S. salivarius, whereas Ketac Silver was efficient against S. mutans as well. Neither of the Ketac cements inhibited growth of the standard L. casei strain. Discussion: Antibacterial activity of glass ionomer cements has attracted the interest of scientists in recent years. Most authors, including us, carried out experiments using the agar diffusion method and demonstrated antibacterial activity of glass ionomer cements. Different antibacterial activity of glass ionomer cements, observed in our study and studies of other authors, depended on the evaluated cement, bacterial strain and period of evaluation.

  12. Effect of Ascorbic Acid on Shear Bond Strength of Orthodontic Brackets Bonded with Resin-modified Glass-ionomer Cement to Bleached Teeth

    Directory of Open Access Journals (Sweden)

    Behnam Khosravanifard

    2012-04-01

    Full Text Available Background and aims. Bleaching can considerably reduce shear bond strength (SBS of orthodontic brackets bonded with composite adhesives. Application of antioxidants is a method to reverse the negative effect of bleaching on compositeto-enamel bond. However, the efficacy of antioxidants in increasing the SBS of brackets bonded using resin-modified glassionomer cement (RMGIC has not been studied, which was the aim of this study. Materials and methods. Fifty freshly extracted human maxillary first premolars were bleached with 35% hydrogen peroxide (Pola Office Bleaching, SDI. Sodium ascorbate 10% was applied to the experimental specimens (n=25. All the specimens were etched with 37% phosphoric acid (Ivoclar/Vivadent and bonded using RMGIC (Fuji Ortho LC, GC. The specimens were subjected to incubation (37°C, 24h and thermocycling (1000 cycles, 5-55°C, dwell time = 1 min. The SBS was measured at 0.5 mm/min debonding crosshead speed. The adhesive remnant index (ARI was scored under ×10 magnification. Data were analyzed using Mann-Whitney U test, one- and independent-samples t-test, and Fisher’s exact test (α=0.05. Results. The mean SBS of experimental and control groups were 11.97 ± 4.49 and 7.7 ± 3.19 MPa, respectively. The difference was statistically significant (P=0.000 by t-test. SBS of both control (P=0.014 and experimental (P=0.000 groups were significantly higher than the minimum acceptable SBS of 6 MPa, according to one-sample t-test. Conclusion. Application of ascorbic acid can guarantee a strong bond when RMGIC is to be used. However, RMGIC might tolerate the negative effect of bleaching with minimum SA treatments (or perhaps without treatments, which deserves further studies.

  13. Comparative efficacy of nanofilled and microfilled resin-modified glass ionomer as pits and fissure sealant in permanent molar teeth

    Directory of Open Access Journals (Sweden)

    Manzuma Akhter Zakaria

    2017-05-01

    Full Text Available The purpose of the present study was to compare the efficacy of nanofilled and microfilled resin- modified glass ionomer as pits and fissure sealants in permanent molar teeth. Ninety six teeth having fissure at the occlusal surface were randomly divided into two groups: Group I: Treated by nanofilled resin-modified glass ionomer sealant and Group II: Treated by microfilled resin- modified glass ionomer sealants. Clinical assessment was performed by modified Ryge´s criteria by means of retention, color match, marginal adaptation at 3, 6, and 12 months follow-up visit. Chi-square test was used for testing differences between the two groups; a value of p<0.05 was considered as statistically significant. The results revealed that at 12 months observation period, nanofilled resin-modified glass ionomer sealant showed better retention, color stability and marginal adaptation than that of microfilled resin-modified glass ionomer sealants. Furthermore, the differences between two groups in respect to marginal adaptation and color match were statistically significant (p<0.05. It can be concluded that nanofilled resin-modified glass ionomer sealant could be a better alternative to microfilled resin- modified glass ionomer sealant.

  14. Radiopacity Of Glass-ionomer/composite Resin Hybrid Materials.

    OpenAIRE

    Hara A.T.; Serra M.C.; Rodrigues Junior A.L.

    2001-01-01

    This study visually compared the radiopacity of seven restorative materials (3 resin-modified glass-ionomer cements, 3 polyacid-modified composite resins, and 1 conventional glass-ionomer cement) to a sound tooth structure sample, and an aluminium stepwedge. All hybrid materials were more radiopaque, except for one resin-modified glass-ionomer cement, than both the tooth structure and conventional glass-ionomer cement.

  15. Bond Strength of Composite to Dentin using Resin-Modified Glass Ionomers as Bonding Agents

    Science.gov (United States)

    2016-03-02

    Vandewalle, Kraig Civ 59 DTS/ 59 DG/ SGDTG WHASC f. 9 h. I I 1 CERTIFY ANY HUMAN OR ANIMAL RESEARCH RELATED STUDIES WERE APPROVED AND PERFORMED IN STRICT...strength of composite to dentin using resin-modified glass ionomers (RMGI) as bonding agents. Methods: Sixty extracted human third molars were...59 MDW/SGVU SUBJECT: Professional Presentation Approval 2 MAR 20 16 l. Your paper, entitl ed Bond Strength of Composite to Dentin using Resin

  16. Reducing composite restoration polymerization shrinkage stress through resin modified glass-ionomer based adhesives.

    Science.gov (United States)

    Naoum, S J; Mutzelburg, P R; Shumack, T G; Thode, Djg; Martin, F E; Ellakwa, A E

    2015-12-01

    The aim of this study was to determine whether employing resin modified glass-ionomer based adhesives can reduce polymerization contraction stress generated at the interface of restorative composite adhesive systems. Five resin based adhesives (G Bond, Optibond-All-in-One, Optibond-Solo, Optibond-XTR and Scotchbond-Universal) and two resin modified glass-ionomer based adhesives (Riva Bond-LC, Fuji Bond-LC) were analysed. Each adhesive was applied to bond restorative composite Filtek-Z250 to opposing acrylic rods secured within a universal testing machine. Stress developed at the interface of each adhesive-restorative composite system (n = 5) was calculated at 5-minute intervals over 6 hours. The resin based adhesive-restorative composite systems (RBA-RCS) demonstrated similar interface stress profiles over 6 hours; initial rapid contraction stress development (0-300 seconds) followed by continued contraction stress development ≤0.02MPa/s (300 seconds - 6 hours). The interface stress profile of the resin modified glass-ionomer based adhesive-restorative composite systems (RMGIBA-RCS) differed substantially to the RBA-RCS in several ways. Firstly, during 0-300 seconds the rate of contraction stress development at the interface of the RMGIBA-RCS was significantly (p glass-ionomer based adhesives can significantly reduce the magnitude and rate of polymerization contraction stress developed at the interface of adhesive-restorative composite systems. © 2015 Australian Dental Association.

  17. Efficiency of protective sealants for glass ionomer cements.

    Science.gov (United States)

    Haddad, D; Mount, G J; Makinson, O F

    1992-10-01

    This study compared the efficiency of protective sealants for glass ionomer cements. Scotchbond 2, Visar Seal, an experimental light activated silicone and Ketac Glaze were evaluated using liquid scintillation spectrometry. The results showed that Ketac Glaze was a very effective sealant for the newly placed glass ionomer cement and the resin component of Scotchbond 2 is in the same range.

  18. The effect of powder/liquid ratio on microleakage of resin-modified glass-ionomer

    Directory of Open Access Journals (Sweden)

    Sepide Ostadi Joybari

    2017-03-01

    Full Text Available Introduction: Resin modified glass-ionomer cement (RMGI is prepared by  manual mixing of powder and liquid. Different mixing ratios influence on the RMGI properties. The aim was to compare the effect of different mixing ratios on the microleakage of RMGI. Materials &Methods: In this in vitro study, 60 Class V cavities (3×2×1.5 mm with the gingival margin of 1 mm apical to the cement-enamel junction were prepared on the buccal and lingual surfaces of 30 sound premolars. The teeth were randomly divided into 6 groups. Group 1: The manufacturer’s recommended ratio, without conditioning; Group2: The manufacturer’s recommended ratio with conditioning; Group 3: 20% lower than the manufacturer’s ratio without conditioning; Group4: 20% lower than the manufacturer’s ratio with conditioning; Group 5: 20% higher than the manufacturer’s ratio without conditioning; Group6: 20% higher than the manufacturer’s ratio with conditioning. After thermocycling, the microleakage was evaluated using silver nitrate staining. The teeth were cut into two mesial and distal halves, and the microleakage at occlusal and gingival margins was recorded based on a 0‒3 scoring system under a stereomicroscope. Data were analyzed using Kruskal-Wallis and Mann-Whitney tests with significance level at P<0.05. Results: The maximum microleakage at gingival margins was recorded for group 4, which was significantly higher than that of group 2 and 6 (P=0.043 and P=0.043, respectively. No significant differences were observed in the microleakage between occlusal and gingival margins. Conclusion: A 20% reduction in P/L ratio of RMGI increases the gingival microleakage when surface conditioning was appli.

  19. Bond Strength of Silorane- and Methacrylate-Based Composites to Resin-Modified Glass Ionomers

    Science.gov (United States)

    2012-01-13

    valid data for all variables in the model. Syntax UNIANOVA mpa BY agent comp surface /METHOD = SSTYPE(3) /INTERCEPT = INCLUDE /POSTHOC...strength and morphological study. Dent Mater 2001;17:373-380. Forsten L. Fluoride release from a glass ionomer cement. Scand J Dent Res 1977 Sep;85

  20. Fluoride release by glass ionomer cements, compomer and giomer

    Directory of Open Access Journals (Sweden)

    Sayed Mostafa Mousavinasab

    2009-01-01

    Conclusion:Fuji IX, Fuji VII, Fuji IX Extra, and Fuji II LC released higher amounts of fluoride compared to Beautifil and Dyract Extra in this study. It seems that the extent of the glass ionomer matrix plays an important role in determining the fluoride releasing ability of glass ionomer cement materials.

  1. Effect of incorporation of zinc oxide nanoparticles on mechanical properties of conventional glass ionomer cements.

    Science.gov (United States)

    Panahandeh, Narges; Torabzadeh, Hassan; Aghaee, Mohammadamin; Hasani, Elham; Safa, Saeed

    2018-01-01

    The aim of this study is to investigate the physical properties of conventional and resin-modified glass ionomer cements (GICs) compared to GICs supplemented with zinc oxide (ZnO) nanofiller particles at 5% (w/w). In this in vitro study, ZnO nanoparticles of different morphologies (nanospherical, nanorod, and nanoflower) were incorporated to glass ionomer powder. The samples were subjected to the flexural strength ( n = 20) and surface hardness test ( n = 12) using a universal testing machine and a Vickers hardness machine, respectively. Surface analysis and crystal structure of samples were performed with scanning electron microscope and X-radiation diffraction, respectively. The data were analyzed using one-way ANOVA, Shapiro-Wilk, and Tukey's tests ( P glass ionomer containing nanoparticles was not significantly different from the control group ( P > 0.05). The surface hardness of the glass ionomer containing nanospherical or nanoflower ZnO was significantly lower than the control group ( P glass ionomer containing nanorod ZnO was not significantly different from the control group ( P = 0.868). Incorporation of nanospherical and nanoflower ZnO to glass ionomer decreased their surface hardness, without any changes on their flexural strength. Incorporation of nanorod ZnO particles caused no effect on the mechanical properties.

  2. Initial Sliding Wear Kinetics of Two Types of Glass Ionomer Cement: A Tribological Study

    Directory of Open Access Journals (Sweden)

    Cyril Villat

    2014-01-01

    Full Text Available The aim of this work was to characterize the initial wear kinetics of two different types of glass ionomer cement used in dentistry (the conventional glass ionomer cement and the resin-modified glass ionomer cement under sliding friction after 28-day storing in distilled water or Ringer’s solution. Sliding friction was applied through a pin-on-disk tribometer, in sphere-on-plane contact conditions, under 5 N normal load and 120 rotations per minute. The test lasted 7500 cycles and replicas were performed at 2500, 5000 and 7500 cycles. A profilometer was used to evaluate the wear volume. Data were analysed using Student’s t-test at a significant level of 5%. There is no statistical significant difference between the results obtained for a given material with the maturation media (P>0.05. However, for a given maturation medium, there are significant statistical differences between the data obtained for the two materials at each measurement (P<0.0001. The wear rates of both materials decrease continuously during the running-in period between 0 and 2500 cycles. After 2500 cycles, the wear rate becomes constant and equal for both materials. The resin matrix contained in the resin-modified glass ionomer cement weakens the tribological behaviour of this material.

  3. Application of glass ionomer cements in restorative dentistry.

    OpenAIRE

    Rajesh P; Kamath M

    1999-01-01

    Dentistry was marked with radical changes in clinical restorative procedures. If the inherent characteristic of the ionomer cement was examined, it becomes very clear to the researcher as well as the dentist, that no other material has had an impact as comparable to glass ionomer cements on restorative dentistry. This scientific paper highlights the clinical applications of the cement in restorative dentistry. Glass ionomer cements are bioactive, by forming permanent adhesive bonds to dentin ...

  4. Effect of various dentin disinfection protocols on the bond strength of resin modified glass ionomer restorative material.

    Science.gov (United States)

    Sekhar, Anand; Anil, Akansha; Thomas, Manuel S; Ginjupalli, Kishore

    2017-07-01

    Disinfection of dentin surface prior to any restorative therapy is important for the longevity of the treatment rendered. However, these dentin disinfection methods should itself not interfere with the adhesion of the restorative material. Therefore the aim of this study was to determine the effect of various dentin disinfection protocols on the shear bond strength (SBS) of resin modified glass ionomer cement (RMGIC). The occlusal surface of 40 extracted premolars were trimmed to obtain a flat dentinal surface and was randomly divided into four groups. CTRL was the control group; NaOCl was 1% sodium hypochlorite disinfection group; CHX was 2% chlorhexidine disinfection group; and PAD was the photo-activated disinfection group. Then a predetermined dimension of RMGIC was bonded to the pre-treated dentin surfaces. Following this, each sample was tested for SBS using universal testing machine at a crosshead speed of 0.5mm/min. Among the test groups, CHX showed the least reduction in SBS and NaOCl the highest reduction in SBS as compared to the control group. PAD on the other hand showed significantly lower SBS than CTRL and CHX groups, but the values were higher than the NaOCl group. Thus, it could be concluded from the present study that use of chlorhexidine based dentin disinfection does interfere with the adhesion of RMGIC. However, photo-activated disinfection should be done with caution. Moreover, sodium hypochlorite based disinfectants should be avoided prior to the use of RMGIC. Key words: Chlorhexidine, Dentin disinfection, Photo-activated disinfection, Resin modified glass ionomer cement, Shear bond strength, Sodium hypochlorite.

  5. Effect of Zirconia and Alumina Fillers on the Microstructure and Mechanical Strength of Dental Glass Ionomer Cements.

    Science.gov (United States)

    Souza, Júlio C M; Silva, Joel B; Aladim, Andrea; Carvalho, Oscar; Nascimento, Rubens M; Silva, Filipe S; Martinelli, Antonio E; Henriques, Bruno

    2016-01-01

    Glass-ionomer cements perform a protective effect on the dentin-pulp complex considering the F ions release and chemical bonding to the dental structures. On the other hand, those materials have poor physic-mechanical properties in comparison with the restorative resin composite. The main aim of this work was to evaluate the influence of zirconia and/or alumina fillers on the microstructure and strength of a resin modified glass-ionomer cement after thermal cycling. An in vitro experimental study was carried out on 9 groups (n = 10) of cylindrical samples (6 x 4 mm) made from resin modified glass-ionomer (Vitremer, 3M, USA) with different contents of alumina and/or zirconia fillers. A nano-hybrid resin composite was tested as a control group. Samples were mechanically characterized by axial compressive tests and electron scanning microscopy (SEM) coupled to energy dispersive X-ray spectrophotometry (EDS), before and after thermal cycling. Thermal cycling procedures were performed at 3000, 6000 and 10000 cycles in Fusayama´s artificial saliva at 5 and 60 (o)C. An improvement of compressive strength was noticed on glass-ionomer reinforced with alumina fillers in comparison with the commercial glass ionomer. SEM images revealed the morphology and distribution of alumina or zirconia in the microstructure of glass-ionomers. Also, defects such as cracks and pores were detected on the glass-ionomer cements. The materials tested were not affected by thermal cycling in artificial saliva. Addition of inorganic particles at nano-scale such as alumina can increase the mechanical properties of glass-ionomer cements. However, the presence of cracks and pores present in glass-ionomer can negatively affect the mechanical properties of the material because they are areas of stress concentration.

  6. Water sorption of resin-modified glass-ionomer cements photoactivated with LED Sorção de água de cimentos de ionômero de vidro modificados por resina fotoativados com LED

    Directory of Open Access Journals (Sweden)

    Daniela Francisca Gigo Cefaly

    2006-12-01

    Full Text Available The Light Emitting Diodes (LED technology has been used to photoactivate composite resins and there is a great number of published studies in this area. However, there are no studies regarding resin-modified glass-ionomer cements (RMGIC, which also need photoactivation. Therefore, the aim of this study was to evaluate water sorption of two RMGIC photoactivated with LED and to compare this property to that obtained with a halogen light curing unit. A resin composite was used as control. Five specimens of 15.0 mm in diameter x 1.0 mm in height were prepared for each combination of material (Fuji II LC Improved, Vitremer, and Filtek Z250 and curing unit (Radii and Optilight Plus and transferred to desiccators until a constant mass was obtained. Then the specimens were immersed into deionized water for 7 days, weighed and reconditioned to a constant mass in desiccators. Water sorption was calculated based on weight and volume of specimens. The data were analyzed by two-way ANOVA and Tukey test (p A tecnologia baseada em Diodos emissores de luz (LED tem sido utilizada para a fotoativação de resinas compostas e existe um grande número de estudos publicados a este respeito. Entretanto, não existem estudos envolvendo cimentos de ionômero de vidro modificados por resina (CIVMR, que também necessitam fotoativação. Assim, o objetivo deste estudo foi o de avaliar a sorção de água de dois CIVMR fotoativados com LED e comparar essa propriedade com aquela obtida com unidade com lâmpada halógena. Uma resina composta foi utilizada como controle. Cinco espécimes com 15,0 mm diâmetro x 1,0 mm de altura foram preparados para cada combinação de material (Fuji II LC Improved, Vitremer e Filtek Z250 e fonte de luz (Radii e Optilight Plus e transferidos a dessecadores até a obtenção de massa constante. Em seguida, os espécimes foram imersos em água deionizada por 7 dias, pesados e recondicionados a uma massa constante em dessecadores. A sor

  7. Substitution of strontium for calcium in glass ionomer cements (Part ...

    African Journals Online (AJOL)

    ) (PAA) and aqueous tartaric acid to form glass ionomer cements, whose properties were investigated at different time points: the compressive and bi-axial flexure strengths were tested; and, the ion release profile was studied by fluoride Ion ...

  8. Substitution of strontium for calcium in glass ionomer cements (Part ...

    African Journals Online (AJOL)

    ) (PAA) and aqueous tartaric acid to form glass ionomer cements, whose properties were investigated at different time points: working and setting times were determined by rheometry; and, the setting reaction was studied by Fourier transform ...

  9. Genotoxicity and cytotoxicity induced by eluates from orthodontic glass ionomer cements in vitro

    Directory of Open Access Journals (Sweden)

    Fernanda Angelieri

    2018-01-01

    Full Text Available The aim of this study was to investigate genotoxicity and cytotoxicity of some orthodontic glass ionomer cements commercially available by means of the single cell gel (comet assay. For this purpose, five commercial orthodontic glass ionomer cements (Vidrion C®, Meron®, Optiband®, Multicure® and Ultra Band Lok® were tested in murine fibroblasts in vitro. For this purpose, eluates from each cement were prepared according manufactures instructions at 0, 2, 4, 8, 18, 32 and 64 days of immersion in artificial saliva at 37 °C. All orthodontic glass ionomer cements failed to induce cytotoxicity to murine fibroblasts for all periods evaluated in this study. However, Vidrion C® was able to induce genotoxicity after 64 days of exposure to eluates. Meron® also demonstrated genotoxicity as depicted by increasing DNA damage on 2nd day. Multicure® demonstrated genotoxicity on 32nd day and Ultra band Lok on 18th, 32nd days of exposure. Taken together, our results demonstrated that orthodontic cements derived from resin-modified glass ionomer composite (Multicure® and compomer (Ultra Band Lok® cause genetic damage in mammalian cells in vitro.

  10. Initial sliding wear kinetics of two types of glass ionomer cement: a tribological study.

    Science.gov (United States)

    Villat, Cyril; Ponthiaux, Pierre; Pradelle-Plasse, Nelly; Grosgogeat, Brigitte; Colon, Pierre

    2014-01-01

    The aim of this work was to characterize the initial wear kinetics of two different types of glass ionomer cement used in dentistry (the conventional glass ionomer cement and the resin-modified glass ionomer cement) under sliding friction after 28-day storing in distilled water or Ringer's solution. Sliding friction was applied through a pin-on-disk tribometer, in sphere-on-plane contact conditions, under 5 N normal load and 120 rotations per minute. The test lasted 7500 cycles and replicas were performed at 2500, 5000 and 7500 cycles. A profilometer was used to evaluate the wear volume. Data were analysed using Student's t-test at a significant level of 5%. There is no statistical significant difference between the results obtained for a given material with the maturation media (P > 0.05). However, for a given maturation medium, there are significant statistical differences between the data obtained for the two materials at each measurement (P glass ionomer cement weakens the tribological behaviour of this material.

  11. Effects of Different Percentages of Microhydroxyapatite on Microhardness of Resin-modified Glass-ionomer and Zirconomer.

    Science.gov (United States)

    Sharafeddin, Farahnaz; Shoale, Soodabe; Kowkabi, Mahsa

    2017-06-01

    Hydroxyapatite (HA) is the main mineral component of the tooth structure, which exhibits considerable biological behavior and its incorporation might improve microhardness of dental materials. Microhardness of restorative materials, like glass-ionomer, is critical for the clinical longevity of restorations. The aim of this study was to evaluate the microhardness of two glass-ionomers types by incorporating different percentages of microhydroxyapatite. In this study, 80 disc-shaped experimental specimens (6 mm in diameter, 2 mm in height) were prepared in 8 groups, including resin-modified glass-ionomer (RMGI, GC, Gold Label, Japan), zirconia-reinforced glass-ionomer (Zirconomer, Shofu, Kyoto, Japan), and their mixture with 0, 5, 15 and 25 wt% of microhydroxyapatite (Sigma-Aldrich, Germany). All the specimens were stored in deionized water at 37ºC for 24 hours. Then Vickers microhardness test was carried out on the both sides of specimens and data were analyzed using two-way ANOVA and paired t-test ( P glass-ionomer, Zirconia-reinforced glass ionomer, Microhydroxyapatite.

  12. Influence of caries risk on the retention of a resin-modified glass ionomer used as occlusal sealant: a clinical trial

    Directory of Open Access Journals (Sweden)

    Elaine Pereira da Silva TAGLIAFERRO

    2017-08-01

    Full Text Available Abstract Introduction Little is known whether caries risk influence occlusal sealants retention. Objective To determine the retention rates (RR of the resin-modified glass ionomer cement used as occlusal sealant in permanent first molars of 6-8-year old schoolchildren and to analyze the influence of caries risk at baseline on the RR of the sealant, over a 24-month period. Material and method The sealant application was performed in a dental office at the beginning of the study, after children being allocated into high caries risk group (HR and low caries risk group (LR. The examinations were performed by the same calibrated dentist at 0, 6, 12, 18 and 24 months. Retention rates were estimated, the Kaplan-Meier method was used to estimate the survival probabilities; and the comparison between HR and LR groups was evaluated by Wilcoxon and log-rank test. Result The results showed that 14% of sealed teeth showed total loss (16% for HR and 12% for LR and 46% showed partial loss during the study (51% for HR and 41% for LR, in relation to the baseline sample. No difference could be demonstrated by the survival analysis between HR and LR groups (p>0.05. Conclusion Caries risk did not influence the retention rates of a resin-modified glass ionomer cement used as occlusal sealant in 6-8-year old schoolchildren.

  13. Streptococcus Mutans Biofilm Influences on the Antimicrobial Properties of Glass Ionomer Cements.

    Science.gov (United States)

    Fúcio, Suzana B P; Paula, Andréia B de; Sardi, Janaina C O; Duque, Cristiane; Correr-Sobrinho, Lourenço; Puppin-Rontani, Regina M

    2016-01-01

    The aim of this study was to evaluate the in vitro antibacterial and biofilm inhibition properties of glass ionomer restorative cements. Ketac Nano, Vitremer, Ketac Molar Easymix and Fuji IX were analyzed using the following tests: a) agar plate diffusion test to evaluate the inhibitory activity of cements against S. mutans (n=8); b) S. mutans adherence test by counting colony-forming units after 2 h of material/bacteria exposure (n=10); c) biofilm wet weight after seven days of bacterial accumulation on material disks, with growth medium renewed every 48 h (n=10); d) pH and fluoride measurements from the medium aspired at 48 h intervals during the 7-day biofilm development (n=10). Data from the a, b and c tests were submitted to Kruskal-Wallis and Mann-Whitney tests and the fluoride-release and pH data were submitted to two-way ANOVA and Tukey tests (a=5%). Vitremer followed by Ketac Nano showed the greatest inhibitory zone against S. mutans than the conventional ionomers. Vitremer also showed higher pH values than Ketac Nano and Fuji IX in the first 48 h and released higher fluoride amount than Ketac Nano e Ketac Molar Easymix throughout the experimental period. The chemical composition of restorative glass ionomer materials influenced the antibacterial properties. The resin modified glass ionomer (Vitremer) was more effective for inhibition of S. mutans and allowed greater neutralization of the pH in the first 48 h. However, the type of glass ionomer (resin modified or conventional) did not influence the weight and adherence of the biofilm and fluoride release.

  14. NANO-GLASS-IONOMER CEMENTS IN MODERN RESTORATIVE DENTISTRY

    Directory of Open Access Journals (Sweden)

    Maya G. Lyapina

    2016-06-01

    Full Text Available The incorporation of nanoparticles into glass powder of glass ionomers led to wider particle size distribution, which resulted in higher mechanical values. Consequently they can occupy the empty spaces between the Glass ionomer particles and act as reinforcing material in the composition of the glass ionomer cements. The nanofiller components of nano ionomers also enhance some physical properties of the hardened restorative. Its bonding mechanism should be attributed to micro-mechanical interlocking provided by the surface roughness, most likely combined with chemical interaction through its acrylic/itaconic acid copolymers. The paper reviews their secondary caries prevention – fluoride release properties, mechanical and physical propreties, biocompatibility aspects, and antimicrobial activity.

  15. Color and Gloss of Nano-Filled Resin-Modified Glass Ionomers and Resin Composites.

    Science.gov (United States)

    Vance, Marc; Lawson, Nathaniel C; Rupal, Manpreet; Beck, Preston; Burgess, John O

    2015-01-01

    The study aims to compare in vitro stain resistance, color stability, gloss, and gloss retention of a nano-filled resin-modified glass ionomers (RMGIs) to a traditional RMGI and resin-based composites (RBCs). Specimens (N = 20) were fabricated from a nano-filled RBC (Filtek Supreme Plus, 3M ESPE, St. Paul, MN, USA), a nanohybrid RBC (Clearfil Majesty Esthetic, Kuraray; Tokyo, Japan), a nano-filled RMGI (Ketac Nano, 3M ESPE), and traditional RMGI (Fuji II LC, GC America, Chicago, IL, USA). L*a*b* values were recorded with a spectrophotometer, and gloss was measured with a glossmeter. For each material, 10 specimens were stored in distilled water in darkness for 1 week and 10 specimens were placed in a staining solution for 1 week. After storage, specimens were cleaned and L*a*b* and gloss measurements were remeasured. Data were analyzed by analysis of variance (ANOVA) and Tukey analyses. Regarding color change, materials ranked: Ketac = Fuji > Filtek > Clearfil in water, and Ketac > Fuji > Filtek > Clearfil in staining solution. Prior to storage, the initial gloss of the materials ranked: Filtek ≥ Clearfil ≥ Ketac > Fuji. After storage, the materials ranked: Filtek = Clearfil > Ketac > Fuji in water, and Filtek > Clearfil > Ketac > Fuji in staining solution. Gloss retention was similar for all materials in water and gloss retention ranked: Filtek = Clearfil > Ketac = Fuji in staining solution. The nano-RMGI showed less stain resistance but higher gloss than the traditional RMGI. Both RMGIs had more color change, less stain resistance, lower gloss and less gloss retention than the RBCs. The clinician should be aware that the use of a nano-RMGI may improve the gloss of an RMGI restoration; however, color change will likely occur, particularly if the patient consumes a staining diet. © 2014 Wiley Periodicals, Inc.

  16. Assessment of the mechanical properties of glass ionomer cements for orthodontic cementation

    Directory of Open Access Journals (Sweden)

    Marcel M. Farret

    2012-12-01

    Full Text Available OBJECTIVE: To evaluate the mechanical properties of three glass ionomers cements (GICs used for band cementation in Orthodontics. METHODS: Two conventional glass ionomers (Ketac Cem Easy mix/3M-ESPE and Meron/Voco and one resin modified glass ionomer (Multi-cure Glass ionomer/3M-Unitek were selected. For the compressive strength and diametral tensile strength tests, 12 specimens were made of each material. For the microhardness test 15 specimens were made of each material and for the shear bond strength tests 45 bovine permanent incisors were used mounted in a self-cure acrylic resin. Then, band segments with a welded bracket were cemented on the buccal surface of the crowns. For the mechanical tests of compressive and diametral tensile strength and shear bond strength a universal testing machine was used with a crosshead speed of 1,0 mm/min and for the Vickers microhardness analysis tests a Microdurometer was used with 200 g of load during 15 seconds. The results were submitted to statistical analysis through ANOVA complemented by Tukey's test at a significance level of 5%. RESULTS: The results shown that the Multi-Cure Glass Ionomer presented higher diametral tensile strength (p OBJETIVO: avaliar as propriedades mecânicas de três cimentos de ionômero de vidro (CIVs utilizados para cimentação de anéis ortodônticos. MÉTODOS: foram utilizados dois CIVs convencionais (Ketac Cem Easy mix/3M-ESPE e Meron/Voco e um CIV modificado por resina (Multi-Cure Glass ionomer/3M-Unitek. Para os testes de resistência à compressão e tração diametral, foram confeccionados 12 corpos de prova de cada material. Para os testes de microdureza, foram confeccionados 15 corpos de prova de cada material; para os testes de resistência de união ao cisalhamento, foram utilizados 45 dentes bovinos incluídos em resina acrílica, sobre os quais foi cimentada uma lâmina de anel ortodôntico com braquete soldado a ela para a realização dos ensaios. Para os

  17. Microleakage of nano-particle-filled resin-modified glass ionomer using atraumatic restorative technique in primary molars.

    Science.gov (United States)

    Wadenya, Rose; Smith, Jennifer; Mante, Francis

    2010-01-01

    This study compared the marginal leakage of nano-particle-filled resin-modified glass ionomer (RMGIC) restorations made using atraumatic restorative technique (ART) and conventional technique. Twenty primary molars with carious dentin on the buccal surfaces were restored with RMGIC using ART. The teeth were thermally cycled, sectioned and stained with methylene blue. Micro-leakage was compared to a second set of teeth restored conventionally. No significant difference (p > 0.05) in leakage was noted between the conventional and ART groups. The authors concluded that ART with RMGIC provides margins that show comparable leakage to conventionally restored primary teeth.

  18. Effect of sandblasting and enamel deproteinization on shear bond strength of resin-modified glass ionomer.

    Science.gov (United States)

    Hamdane, Nadine; Kmeid, Roland; Khoury, Elie; Ghoubril, Joseph

    2017-12-01

    The purpose of this study was to compare, in vitro, the shear bond strength of resin-modified glass ionomer (RMGI) bonded to an enamel surface prepared by either sandblasting with 50μm of aluminium oxide particles, deproteinization with 5.25% NaOCl, or by combining both techniques. One hundred and fifty human premolars were cleaned and randomly divided into five groups. In group 1, the teeth were etched using 37% phosphoric acid and bonded with Transbond XT. In group 2, the teeth were etched using 37% phosphoric acid and bonded with Fuji Ortho LC. In group 3, the teeth were deproteinized with 5.25% NaOCl for one minute then etched with 37% phosphoric acid and bonded with Fuji Ortho LC. In group 4, the enamel was sandblasted with 50μm of aluminium oxide particles for 5seconds prior to etching and bonding with Fuji Ortho LC. In group 5, the teeth were both sandblasted with 50μm of aluminium oxide particles for 5seconds and deproteinized with 5.25% NaOCl for one minute prior to etching using 37% phosphoric acid and bonding with Fuji Ortho LC. The shear bond strength was tested using a universal testing machine with a crosshead speed of 1.0mm/min. The adhesive remnant index (ARI) index was also determined for each group. The mean shear bond strengths were as follows: group 1: 11.33±2.60MPa, group 2: 8.14±2.09, group 3: 9.57±3.25MPa, group 4: 9.49±1.99MPa and group 5: 9.76±2.29MPa (P=0.0001). The results show that pre-treating the enamel with either sandblasting, NaOCl, or both, could give a significantly higher shear bond strength than using RMGI with acid etch alone. Copyright © 2017 CEO. Published by Elsevier Masson SAS. All rights reserved.

  19. Randomized clinical trial of two resin-modified glass ionomer materials: 1-year results.

    Science.gov (United States)

    Perdigão, J; Dutra-Corrêa, M; Saraceni, S H C; Ciaramicoli, M T; Kiyan, V H

    2012-01-01

    With institutional review board approval, 33 patients who needed restoration of noncarious cervical lesions (NCCL) were enrolled in this study. A total of 92 NCCL were selected and randomly assigned to three groups: (1) Ambar (FGM), a two-step etch-and-rinse adhesive (control), combined with the nanofilled composite resin Filtek Supreme Plus (FSP; 3M ESPE); (2) Fuji II LC (GC America), a traditional resin-modified glass ionomer (RMGIC) restorative material; (3) Ketac Nano (3M ESPE), a nanofilled RMGIC restorative material. Restorations were evaluated at six months and one year using modified United States Public Health Service parameters. At six months after initial placement, 84 restorations (a 91.3% recall rate) were evaluated. At one year, 78 restorations (a 84.8% recall rate) were available for evaluation. The six month and one year overall retention rates were 93.1% and 92.6%, respectively, for Ambar/FSP; 100% and 100%, respectively, for Fuji II LC; and 100% and 100%, respectively, for Ketac Nano with no statistical difference between any pair of groups at each recall. Sensitivity to air decreased for all three adhesive materials from the preoperative to the postoperative stage, but the difference was not statistically significant. For Ambar/FSP, there were no statistical differences for any of the parameters from baseline to six months and from baseline to one year. For Fuji II LC, surface texture worsened significantly from baseline to six months and from baseline to one year. For Ketac Nano, enamel marginal staining increased significantly from baseline to one year and from six months to one year. Marginal adaptation was statistically worse at one year compared with baseline only for Ketac Nano. When parameters were compared for materials at each recall, Ketac Nano resulted in significantly worse color match than any of the other two materials at any evaluation period. At one year, Ketac Nano resulted in significantly worse marginal adaptation than the

  20. THERMO-CURED GLASS IONOMER CEMENTS IN RESTORATIVE DENTISTRY

    OpenAIRE

    Kristina GORSETA; Domagoj GLAVINA

    2017-01-01

    Numerous positive properties of glass ionomer cements including biocompatibility, bioactivity, releasing of fluoride and good adhesion to hard dental tissue even under wet conditions and easy of handling are reasons for their wide use in paediatric and restorative dentistry. Their biggest drawbacks are the weaker mechanical properties. An important step forward in improving GIC’s features is thermo-curing with the dental polymerization unit during setting of the material. Due to their slow se...

  1. Properties of a proline-containing glass ionomer dental cement.

    Science.gov (United States)

    Ansari, Sahar; Moshaverinia, Maryam; Roohpour, Nima; Chee, Winston W L; Schricker, Scott R; Moshaverinia, Alireza

    2013-11-01

    Proline-containing glass ionomers are promising fast-set dental restorative materials with superior mechanical properties; however, little information is available on other physical properties of this type of glass ionomer. The objectives of this study were to synthesize and characterize a polyacrylic acid terpolymer containing proline derivative (PD) and to investigate the physical properties of this glass ionomer cement (GIC) and its cytotoxicity in vitro. A terpolymer of AA (acrylic acid), IA (itaconic acid), and proline derivative (MP) with an 8:1:1 molar ratio was synthesized and characterized. Experimental GIC specimens were made from the synthetized terpolymer with Fuji IX (GC America, Alsip, Ill) commercial glass ionomer powder as recommended by the manufacturer. Specimens were mixed and fabricated at room temperature and were conditioned in distilled water at 37°C for 1 day and 1 week. Vickers hardness was determined with a microhardness tester. The water sorption characteristics and fluoride releasing properties of the specimens were investigated. The in vitro cytotoxicity of the experimental glass ionomer was assessed by evaluating the C2C12 cell metabolism with methyltetrazolium (MTT) assay. Commercial Fuji IX was used as a control for comparison. The data obtained for the experimental GIC (PD) were compared with the control group by using 1- and 2-way ANOVA and the Tukey multiple range test at α=.05. Proline-modified GIC (PD) exhibited significantly higher surface hardness values (Vickers hardness number [VHN] 58 ±6.1) in comparison to Fuji IX GIC (VHN 47 ±5.3) after 1 week of maturation. Statistical analysis of data showed that the water sorption properties of the experimental cement (PD) were significantly greater than those of the control group (P.05). An amino acid-containing GIC had better surface hardness properties than commercial Fuji IX GIC. This formulation of fast-set glass ionomer showed increased water sorption without adversely

  2. Enhanced bioactivity of glass ionomer cement by incorporating calcium silicates.

    Science.gov (United States)

    Chen, Song; Cai, Yixiao; Engqvist, Håkan; Xia, Wei

    2016-01-01

    Glass ionomer cements (GIC) are known as a non-bioactive dental cement. During setting the GIC have an acidic pH, driven by the acrylic acid component. It is a challenge to make GIC alkaline without disturbing its mechanical properties. One strategy was to add slowly reacting systems with an alkaline pH. The aim of the present study is to investigate the possibility of forming a bioactive dental material based on the combination of glass ionomer cement and calcium silicates. Two types of GIC were used as control. Wollastonite (CS also denoted β-CaSiO3) or Mineral Trioxide Aggregate (MTA) was incorporated into the 2 types of GIC. The material formulations' setting time, compressive strength, pH and bioactivity were compared between modified GIC and GIC control. Apatite crystals were found on the surfaces of the modified cements but not on the control GIC. The compressive strength of the cement remained with the addition of 20% calcium silicate or 20% MTA after one day immersion. In addition, the compressive strength of GIC modified with 20% MTA had been increased during the 14 d immersion (p < 0 .05).

  3. Enhanced bioactivity of glass ionomer cement by incorporating calcium silicates

    Science.gov (United States)

    Chen, Song; Cai, Yixiao; Engqvist, Håkan; Xia, Wei

    2016-01-01

    Abstract Glass ionomer cements (GIC) are known as a non-bioactive dental cement. During setting the GIC have an acidic pH, driven by the acrylic acid component. It is a challenge to make GIC alkaline without disturbing its mechanical properties. One strategy was to add slowly reacting systems with an alkaline pH. The aim of the present study is to investigate the possibility of forming a bioactive dental material based on the combination of glass ionomer cement and calcium silicates. Two types of GIC were used as control. Wollastonite (CS also denoted β-CaSiO3) or Mineral Trioxide Aggregate (MTA) was incorporated into the 2 types of GIC. The material formulations’ setting time, compressive strength, pH and bioactivity were compared between modified GIC and GIC control. Apatite crystals were found on the surfaces of the modified cements but not on the control GIC. The compressive strength of the cement remained with the addition of 20% calcium silicate or 20% MTA after one day immersion. In addition, the compressive strength of GIC modified with 20% MTA had been increased during the 14 d immersion (p < 0 .05). PMID:26787304

  4. Evaluation of the effect of home bleaching agents on surface microhardness of different glass-ionomer cements containing hydroxyapatite.

    Science.gov (United States)

    Sharafeddin, Farahnaz; Kowkabi, Mahsa; Shoale, Soodabe

    2017-09-01

    Home bleaching agents may exert some negative effects on surface hardness of restorative materials such as glass-ionomer cements (GICs). Since some studies have shown that some components such as hydroxyapatite (HA), as a bioactive glass, can improve the mechanical properties of dental materials, the effect of bleaching agents on surface hardness of GICs containing hydroxyapatite is questionable. This study was designed to evaluate the effect of home bleaching agents on the surface hardness of two different commercially available GICs containing hydroxyapatite. 80 disk-shaped specimens were made from two different GICs, including resin modified glass-ionomer and Zirconomer. Each material was divided into four groups (n=10): 1. control, 2. 20 %wt. hydroxyapatite-containing, 3. bleached and 4. bleached 20 %wt. hydroxyapatite-containing. Group 1 and 2 specimens were stored in distilled water for 2 weeks while group 3 and 4 specimens were treated with 15% carbamide peroxide in that period. Surface hardness was tested with Vickers surface hardness tester. Data were analyzed with 3-way ANOVA and mean comparison done by post hoc Tukey tests ( p Glass-ionomer cement, surface hardness, Zirconia-reinforced glass ionomer, hydroxyapatite.

  5. The effects of Exposure Times and Light Curing Sources on Surface Micro-Hardness of a Resin Modified Glass Ionomer

    Directory of Open Access Journals (Sweden)

    Iman Parisay

    2014-06-01

    Full Text Available Introduction: The aim of this study was to evaluate the influenceof different light curing systems and curing times on the micro-hardness of aresin modified glass ionomer. Methods: Forty two samples of ResinModified Glass Ionomer (RMGI were prepared using stainless steel cylindrical mold(8 × 2 mm and randomly divided into six groups of seven. Three groups werecured with a Quartz Tungsten Halogen (QTH light cure unit and the other threegroups were polymerized with LED unit for 20, 30 and 40 seconds. All sampleswere stored in distilled water for 24 hours. The micro-hardness was measured onthe top and bottom surfaces of the samples by Vickers hardness tester. Datawere analyzed by two–way ANOVA and Tukey’s post-hoc tests. Results: Two-wayANOVA showed that QTH light-cure unit had higher percentage in depth of curethan LED light-curing unit in both surfaces; whereas, the application time hasno significant effect on it. There was no interaction between two variables. Inboth light-curing groups, the values of top and bottom surfaces micro-hardnesswere increased as the application time increased, but there was not anystatistically significant difference among these groups except for 40-second groupof LED light-curing unit which was significantly higher than 20-second and30-second groups (P

  6. Glass-ionomer cements as restorative and preventive materials.

    Science.gov (United States)

    Ngo, Hien

    2010-07-01

    This article focuses on glass-ionomer cement (GIC) and its role in the clinical management of caries. It begins with a brief description of GIC, the mechanism of fluoride release and ion exchange, the interaction between GIC and the external environment, and finally the ion exchange between GIC and the tooth at the internal interface. The importance of GIC, as a tool, in caries management, in minimal intervention dentistry (MI), and Caries Management by Risk Assessment (CAMBRA) also will be highlighted. Copyright 2010. Published by Elsevier Inc.

  7. Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics

    Science.gov (United States)

    Najeeb, Shariq; Khurshid, Zohaib; Zafar, Muhammad Sohail; Khan, Abdul Samad; Zohaib, Sana; Martí, Juan Manuel Nuñez; Sauro, Salvatore; Matinlinna, Jukka Pekka; Rehman, Ihtesham Ur

    2016-01-01

    Glass ionomer cements (GICs) are being used for a wide range of applications in dentistry. In order to overcome the poor mechanical properties of glass ionomers, several modifications have been introduced to the conventional GICs. Nanotechnology involves the use of systems, modifications or materials the size of which is in the range of 1–100 nm. Nano-modification of conventional GICs and resin modified GICs (RMGICs) can be achieved by incorporation of nano-sized fillers to RMGICs, reducing the size of the glass particles, and introducing nano-sized bioceramics to the glass powder. Studies suggest that the commercially available nano-filled RMGIC does not hold any significant advantage over conventional RMGICs as far as the mechanical and bonding properties are concerned. Conversely, incorporation of nano-sized apatite crystals not only increases the mechanical properties of conventional GICs, but also can enhance fluoride release and bioactivity. By increasing the crystallinity of the set matrix, apatites can make the set cement chemically more stable, insoluble, and improve the bond strength with tooth structure. Increased fluoride release can also reduce and arrest secondary caries. However, due to a lack of long-term clinical studies, the use of nano-modified glass ionomers is still limited in daily clinical dentistry. In addition to the in vitro and in vivo studies, more randomized clinical trials are required to justify the use of these promising materials. The aim of this paper is to review the modification performed in GIC-based materials to improve their physicochemical properties. PMID:27428956

  8. Comparative Evaluation of the Antimicrobial Properties of Glass Ionomer Cements with and without Chlorhexidine Gluconate.

    Science.gov (United States)

    Yadiki, Josna Vinutha; Jampanapalli, Sharada Reddy; Konda, Suhasini; Inguva, Hema Chandrika; Chimata, Vamsi Krishna

    2016-01-01

    Chlorhexidine gluconate is a widely used antimicrobial agent. Adding chlorhexidine and quaternary ammonium compounds to filling materials, such as composite resins, acrylic resins, and glass ionomer cements increases the antibacterial property of restorative materials. This study includes antibacterial property of glass ionomer restorative cements with chlorhexidine gluconate. The primary objective of our study was to compare the antimicrobial properties of two commercially available glass ionomer cements with and without chlorhexidine gluconate on strains of mutans streptococci. Two glass ionomers (Fuji II Conventional and Fuji IX) were used. Chlorhexidine gluconate was mixed with glass ionomer cements, and antimicrobial properties against mutans streptococci were assessed by agar diffusion. The tested bacterial strain was inhibited and the antimicrobial properties decreased with time. The highest amount of antimicrobial activity with mean inhibitory zone was found in Fuji II with chlorhexidine gluconate followed by Fuji IX with chlorhexidine gluconate, Fuji II without chlorhexidine gluconate, and Fuji IX without chlorhexidine gluconate. The results of the study confirmed that the addition of 5% chlorhexidine gluconate to Fuji II and Fuji IX glass ionomer cements resulted in a restorative material that had increased antimicrobial properties over the conventional glass ionomer cements alone for Streptococcus mutans. How to cite this article: Yadiki JV, Jampanapalli SR , Konda S, Inguva HC, Chimata VK. Comparative Evaluation of the Antimicrobial Properties of Glass Ionomer Cements with and without Chlorhexidine Gluconate. Int J Clin Pediatr Dent 2016;9(2):99-103.

  9. Indirect pulp capping in primary molar using glass ionomer cements

    Directory of Open Access Journals (Sweden)

    Murtia Metalita

    2014-12-01

    Full Text Available Background: Indirect pulp capping in primary teeth, however, is more rarely conducted than permanent teeth, since it thought to have low impact and most suggestion is for taking caries lesion aggressively on primary teeth. Purpose: The study was aimed to evaluate the subjective complaint, clinical symptom, and radiographic appearance of indirect pulp capping treatment using glass ionomers cements in primary molar. Methods: Sixteen children in range of age 6 to 8 years old, who visited Clinic of Pediatric Dentistry Universitas Airlangga Dental Hospital, Surabaya Indonesia, were the subject of study. They had one occlusal dental caries on one side of maxillary or mandibular primary molar with the diagnose of pulpitis reversible. The experimental group, had indirect pulp capping treatment with glass ionomer cements (GC Fuji VII®, while the control group, had indirect pulp capping treatment with calcium hydroxide (Metapaste. Each group was filled with GC Fuji IX® as permanent restoration. After one week, one month, and three months later, the observations were made on subjective complaint, clinical symptom, and radiographic appearance. Results: The results showed no subjective complaint such as pain or problem on mastication; no negative clinical symptoms such as pain on palpation, gingivitis or periodontitis, and abnormal tooth mobility; no negative radiographic appearance such as pathological apical radioluscency, internal or external resorbtion, and change of ligament periodontal widthafter the treatment. Conclusion: The study suggested that indirect pulp capping treatment using glass ionomer cement materials on primary teeth might be considered to be the treatment choice.Latar belakang: Indirect pulp capping pada gigi sulung lebih jarang dilakukan dibandingkan gigi permanen, karena dianggap memiliki dampak yang rendah dan sebagian besar menyarankan untuk mengambil lesi karies secara agresif pada gigi sulung. Tujuan: Penelitian ini bertujuan

  10. Strengthening of glass-ionomer cement by compounding short fibres with CaO-P2O5-SiO2-Al2O3 glass.

    Science.gov (United States)

    Kobayashi, M; Kon, M; Miyai, K; Asaoka, K

    2000-10-01

    The purpose of this study was to determine if short fibres of CaO-P2O5-SiO2-Al2O3 (CPSA) glass possessing a particular aspect ratio (length/diameter) could be used as a reinforcing agent for glass-ionomer cement. The powder of a commercial glass-ionomer cement (not resin modified) was mixed with variously sized CPSA glass short fibres before mixing with the liquid of the glass-ionomer cement. The mixed powders containing 60 mass% CPSA glass short fibres (diameter, 9.7 +/- 2.1 microm, aspect ratio, 5.0 +/- 0.9) obtained maximum values of 18 and 35 MPa for the diametral tensile strength (DTS) and flexural strength (FS) of set cements, respectively, after 24 h. These DTS and FS values were 1.8 and 4.5 times larger, respectively, than those of the set glass-ionomer cement not containing short fibres. Moreover, it was found that the addition of CPSA glass short fibres was remarkably more effective in the strengthening than electric glass (a typical glass fibre) short fibres. The results suggested that the CPSA glass short fibres acted as a reinforcing agent for strengthening the glass-ionomer cement, because of the shape of short fibres and reactivity between the mixing liquid and short fibres.

  11. THERMO-CURED GLASS IONOMER CEMENTS IN RESTORATIVE DENTISTRY

    Directory of Open Access Journals (Sweden)

    Kristina GORSETA

    2017-12-01

    Full Text Available Numerous positive properties of glass ionomer cements including biocompatibility, bioactivity, releasing of fluoride and good adhesion to hard dental tissue even under wet conditions and easy of handling are reasons for their wide use in paediatric and restorative dentistry. Their biggest drawbacks are the weaker mechanical properties. An important step forward in improving GIC’s features is thermo-curing with the dental polymerization unit during setting of the material. Due to their slow setting characteristics the GIC is vulnerable to early exposure to moisture. After thermo curing, cements retain all the benefits of GIC with developed better mechanical properties, improved marginal adaptation, increased microhardness and shear bond strength. Adding external energy through thermocuring or ultrasound during the setting of conventional GIC is crucial to achieve faster and better initial mechanical properties. Further clinical studies are needed to confirm these findings.

  12. Thermo-cured glass ionomer cements in restorative dentistry.

    Science.gov (United States)

    Gorseta, Kristina; Glavina, Domagoj

    2017-01-01

    Numerous positive properties of glass ionomer cements including biocompatibility, bioactivity, releasing of fluoride and good adhesion to hard dental tissue even under wet conditions and easy of handling are reasons for their wide use in paediatric and restorative dentistry. Their biggest drawbacks are the weaker mechanical properties. An important step forward in improving GIC's features is thermo-curing with the dental polymerization unit during setting of the material. Due to their slow setting characteristics the GIC is vulnerable to early exposure to moisture. After thermo curing, cements retain all the benefits of GIC with developed better mechanical properties, improved marginal adaptation, increased microhardness and shear bond strength. Adding external energy through thermocuring or ultrasound during the setting of conventional GIC is crucial to achieve faster and better initial mechanical properties. Further clinical studies are needed to confirm these findings.

  13. Microstructural and mechanical development and characterization of glass ionomer cements

    International Nuclear Information System (INIS)

    Freire, W.P.; Barbosa, R.C.; Castanha, E.M.M.; Barbosa, E. F.; Fook, M.V.L.

    2013-01-01

    Glass Ionomer Cements (GICs) are widely used in dentistry, indicated as a restorative material, cement for orthopedic and dental prostheses. However, there is need for development of new bone cements as alternative or replacement to current polymethylmethacrylate cements. Thus the aim of this research was develop of an experimental GIC and the mechanical and microstructural characterization of this composite; as a control group it was used a commercial GIC called Vidrion R (SS WHITE). These composites were characterized by X-ray diffraction, Infrared Spectroscopy Fourier Transform and Scanning Electron Microscopy. The mechanical properties of the composites were measured by Vickers microhardness testing, flexural strength and compression. These cements were characterized as a semicrystalline; in FTIR spectra observed characteristic bands of these materials and microstructural studies of experimental GIC revealed that there was no proper interaction of the inorganic particles in the polymer matrix, whereas in the control group this interaction was effective resulting in greater homogeneity among its constituent phases. Experimental cement showed a higher value of microhardness in the control group, however, flexural strength of cement experimental cement was lower than the control group, and this behavior can possibly be attributed to inadequate interaction particle / matrix. In tests of compressive strength, experimental GIC showed resistance similar to that shown for control group after variation in the processing conditions of the material. (author)

  14. Glass-ionomer Cements in Restorative Dentistry: A Critical Appraisal.

    Science.gov (United States)

    Almuhaiza, Mohammed

    2016-04-01

    Glass-ionomer cements (GICs) are mainstream restorative materials that are bioactive and have a wide range of uses, such as lining, bonding, sealing, luting or restoring a tooth. Although the major characteristics of GICs for the wider applications in dentistry are adhesion to tooth structure, fluoride releasing capacity and tooth-colored restorations, the sensitivity to moisture, inherent opacity, long-term wear and strength are not as adequate as desired. They have undergone remarkable changes in their composition, such as the addition of metallic ions or resin components to their composition, which contributed to improve their physical properties and diversified their use as a restorative material of great clinical applicability. The light-cured polymer reinforced materials appear to have substantial benefits, while retaining the advantages of fluoride release and adhesion. Further research should be directed towards improving the properties, such as strength and esthetics without altering its inherent qualities, such as adhesion and fluoride releasing capabilities.

  15. Setting Reaction of Dental Resin-Modified Glass Ionomer Restoratives as a Function of Curing Depth and Postirradiation Time

    Directory of Open Access Journals (Sweden)

    Young Kyung Kim

    2015-01-01

    Full Text Available Specular reflectance Fourier transform infrared (SR-FTIR spectroscopy was used to study the setting reaction of dental resin-modified glass ionomer (RMGI restoratives as a function of curing depth and postirradiation time. Two light-cure and one tri-cure RMGI materials were selected and used according to the manufacturers’ instructions. Samples were prepared by filling the mixed materials into custom-made molds and then light-irradiating using a dental curing light. The degree of conversion and the extent of acid-base reaction of the materials at different depths (0, 1, 2, and 4 mm and postirradiation times (10 min, 1 day, and 7 days were determined using SR-FTIR spectroscopy in conjunction with the Kramers-Kronig (K-K transformation. The setting reaction was also investigated using microhardness measurements. The results showed that the depth of cure increased over time by the continuous acid-base reaction rather than photopolymerization or chemical polymerization. Microhardness tests seemed less suitable for studying the setting reaction as a function of postirradiation time, probably due to softening from the humidity. Analysis using specular reflectance in conjunction with the K-K algorithm was an easy and effective method for monitoring the setting reaction of dental RMGI materials.

  16. Mechanical properties of glass ionomer cements affected by curing methods.

    Science.gov (United States)

    Kleverlaan, Cornelis J; van Duinen, Raimond N B; Feilzer, Albert J

    2004-01-01

    The primary objective of the study was to assess the influence of externally applied 'command' set applications on the mechanical properties of several commercially available conventional glass ionomer cement (GIC). Four different restorative GICs cements (Fuji IX FAST, Fuji IX, Ketac Molar Quick, Ketac Molar) were cured using three different methods, e.g. standard curing conditions (SC), ultrasonic excitation (UC) and by an external heat source (HC). The compressive strength of these samples was measured and the groups were compared using one-way ANOVA. A standard thermocouple (K-type) measured the temperature in GIC during curing. In general all experiments showed an increase in strength going from SC, UC to HC. Especially, the compressive strength of Fuji IX FAST and Ketac Molar increased by UC and HC compared to the SC values. The compressive strength of Fuji IX FAST as a function of time showed an increase in strength during 28d. There was a clear relationship between the temperature in the sample (SC

  17. Cytotoxicity of modified glass ionomer cement on odontoblast cells.

    Science.gov (United States)

    Chen, Song; Mestres, Gemma; Lan, Weihua; Xia, Wei; Engqvist, Håkan

    2016-07-01

    Recently a modified glass ionomer cement (GIC) with enhanced bioactivity due to the incorporation of wollastonite or mineral trioxide aggregate (MTA) has been reported. The aim of this study was to evaluate the cytotoxic effect of the modified GIC on odontoblast-like cells. The cytotoxicity of a conventional GIC, wollastonite modified GIC (W-mGIC), MTA modified GIC (M-mGIC) and MTA cement has been evaluated using cement extracts, a culture media modified by the cement. Ion concentration and pH of each material in the culture media were measured and correlated to the results of the cytotoxicity study. Among the four groups, conventional GIC showed the most cytotoxicity effect, followed by W-mGIC and M-mGIC. MTA showed the least toxic effect. GIC showed the lowest pH (6.36) while MTA showed the highest (8.62). In terms of ion concentration, MTA showed the largest Ca(2+) concentration (467.3 mg/L) while GIC showed the highest concentration of Si(4+) (19.9 mg/L), Al(3+) (7.2 mg/L) and Sr(2+) (100.3 mg/L). Concentration of F(-) was under the detection limit (0.02 mg/L) for all samples. However the concentrations of these ions are considered too low to be toxic. Our study showed that the cytotoxicity of conventional GIC can be moderated by incorporating calcium silicate based ceramics. The modified GIC might be promising as novel dental restorative cements.

  18. Effect of artificial saliva on the surface roughness of glass-ionomer cements

    OpenAIRE

    Gabriela Beresescu; Ligia Cristina Brezeanu

    2011-01-01

    The glass ionomer cements are used clinically in different areas of restorative dentistry. The life span of dental restorations depends on the properties of the material such as durability, wear resistance and type of damage to the tooth. The purpose of this study is to evaluate the effect of arficial saliva with different pH on the surface roughness of three types of glass ionomer

  19. Does Addition of Propolis to Glass Ionomer Cement Alter its Physicomechanical Properties? An In Vitro Study.

    Science.gov (United States)

    Subramaniam, P; Girish Babu, K L; Neeraja, G; Pillai, S

    Propolis is a natural resinous substance produced by honey bees. The antimicrobial effects of glass ionomer cement have been shown to improve with the addition of propolis; however its effect on the physicomechanical properties of the cement is not known. The purpose of this study was to evaluate the compressive strength and solubility of conventional restorative glass ionomer cement following the addition of propolis. Twenty half cylindrical samples were prepared with conventional restorative glass ionomer cement formed the control group. Another twenty samples were prepared with propolis added to conventional restorative glass ionomer cement formed the experimental group. The compressive strength was assessed using universal testing machine. To assess solubility, the samples were immersed in deionised water at room temperature, for 7 days. The solubility was measured as a difference in the weight of the sample; prior to immersion and following immersion at the end of each day. The control group had a significantly higher mean compressive strength of 146.26 Mpa as compared to the experimental group (135.06 Mpa). The solubility between the groups was significant. In comparison to the control group, incorporation of propolis to conventional restorative glass ionomer cement decreased the compressive strength significantly. The solubility of the cement in the experimental group increased significantly over 7day period as compared to the control group.

  20. Inhibition of early biofilm formation by glass-ionomer incorporated with chlorhexidine in vivo: a pilot study.

    NARCIS (Netherlands)

    Du, X.; Huang, X.; Huang, C.; Frencken, J.E.F.M.; Yang, T.

    2012-01-01

    BACKGROUND: This pilot study investigated the antibiofilm effects of glass-ionomer cements (GICs) and resin-modified glass-ionomer cements (RMGICs) incorporated with chlorhexidine (CHX) in vivo. METHODS: Experimental GICs and RMGICs containing 2% CHX were obtained by mixing CHX with the powder of

  1. Effect of dentin sealers on postoperative sensitivity of complete cast crowns cemented with glass ionomer cement.

    Science.gov (United States)

    Maghrabi, Abdulhamaid A

    2011-07-01

    The purpose of this study was to clinically evaluate the effects of pretreatments with copal/ether varnish and dentin bonding system on postoperative sensitivity of complete cast crowns cemented with glass ionomer cement. Three posterior teeth with no pain symptoms were selected from each of 17 patients, totaling 51 teeth, for which a crown was indicated. Rexillium III complete cast crowns were prepared using conventional laboratory techniques. For each patient, the first tooth, which served as the control, received only glass ionomer cement (Ketac-Cem). Copal/ether varnish (Bosworth Copaliner) was applied to the second tooth preparation prior to cementation. Dentin bonding agent (OptiBond Solo Plus) was used on the third tooth before cementation. Sensitivity to different stimuli (cold, heat) was assessed at 7 days, 1 month, and 6 months following restorative procedures by questionnaire. There were no statistically significant differences between the three groups regarding applied stimulus and day of the study (p > 0.05). No statistically significant differences were found between the postoperative sensitivity responses from 7 days to 1 month, and from 1 month to 6 months (p > 0.05). Postoperative sensitivity resulting from glass ionomer cement with complete cast crowns cannot be completely eliminated with the prior use of a cavity varnish or bonding agent. © 2011 by the American College of Prosthodontists.

  2. Effect of configuration factor on gap formation in hybrid composite resin, low-shrinkage composite resin and resin-modified glass ionomer.

    Science.gov (United States)

    Boroujeni, Parvin M; Mousavinasab, Sayyed M; Hasanli, Elham

    2015-05-01

    Polymerization shrinkage is one of the important factors in creation of gap between dental structure and composite resin restorations. The aim of this study was to evaluate the effect of configuration factor (C-factor) on gap formation in a hybrid composite resin, a low shrinkage composite resin and a resin modified glass ionomer restorative material. Cylindrical dentin cavities with 5.0 mm diameter and three different depths (1.0, 2.0 and 3.0 mm) were prepared on the occlusal surface of 99 human molars and the cavities assigned into three groups (each of 33). Each group contained three subgroups depend on the different depths and then cavities restored using resin modified glass ionomer (Fuji II LC Improved) and two type composite resins (Filtek P90 and Filtek Z250). Then the restorations were cut into two sections in a mesiodistal direction in the middle of restorations. Gaps were measured on mesial, distal and pulpal floor of the cavities, using a stereomicroscope. Data analyses using Kruskal-Wallist and Mann-Whitney tests. Increasing C-factor from 1.8 to 3.4 had no effect on the gap formation in two type composite resins, but Fuji II LC Improved showed significant effect of increasing C-factor on gap formation. Taken together, when C-factor increased from 1.8 up to 3.4 had no significant effect on gap formation in two tested resin composites. Although, Filtek P90 restorations showed smaller gap formation in cavities walls compared to Filtek Z250 restorations. High C-factor values generated the largest gap formation. Silorane-based composite was more efficient for cavity sealing than methacrylate-based composites and resin modified glass ionomer. © 2014 Wiley Publishing Asia Pty Ltd.

  3. A Histopathologic Study on Pulp Response to Glass Ionomer Cements in Human Teeth

    Directory of Open Access Journals (Sweden)

    M. Ghavamnasiri

    2005-12-01

    Full Text Available Statement of Problem: Despite the wide range of new dental materials, there is still a need for biomaterials demonstrating high biocompatibility, antimicrobial effects and ideal mechanical properties.Purpose: The aim of this study was to histologically evaluate the pulpal response to a conventional glass ionomer, a resin modified glass ionomer and a calcium hydroxide in human teeth.Materials and Methods: Fifty five deep class V cavities were prepared in premolars of 31 patients and were divided into 3 groups based on application of the following liners:resin modified glass ionomer (Vivaglass Liner, conventional glass ionomer (ChembondSuperior and calcium hydroxide (Dycal. After applying varnish, teeth were filled with amalgam. Each group was further divided into three subgroups according to time intervals of 7, 30 and 60 days. Teeth were then extracted and their crowns were fixed in formalin. Each sample was assessed microscopically for odontoblastic changes,inflammatory cell infiltration, reactionary dentin formation, remaining dentinal thickness and presence of microorganisms. Statistical analysis including Kruskal Wallis and Mann Whitney was carried out for comparison of mean ranks. (P=0.05.Results: In the Vivaglass Liner group, pulpal response was significantly higher on day 7 as compared to days 30 and 60 (P0.05. There was no correlation between pulpal responses with micro-organisms and remaining dentin thickness (P>0.05.Conclusion: According to the results of this study, light-cured glass ionomer as well as the other tested lining materials were determined to be biologically compatible with vital pulps in deep cavities of sound human teeth.

  4. Influence of resin-modified glass ionomer and topical fluoride on levels of Streptococcus mutans in saliva and biofilm adjacent to metallic brackets

    Directory of Open Access Journals (Sweden)

    Marcela Cristina Damião ANDRUCIOLI

    Full Text Available Abstract Decalcification of enamel during fixed orthodontic appliance treatment remains a problem. White spot lesions are observed in nearly 50% of patients undergoing orthodontic treatment. The use of fluoride-containing orthodontic materials has shown inconclusive results on their ability to reduce decalcification. The aims of this investigation were to compare the levels of Streptococcus mutans (SM in saliva and biofilm adjacent to orthodontic brackets retained with a resin-modified glass ionomer cement (RMGIC (Fuji ORTHO LC and a light cured composite resin (Transbond XT, and to analyze the influence of topical application of the 1.23% acidulated phosphate fluoride (APF on SM counts. In a parallel study design, two groups (n=14/15 were used with random allocation and high salivary SM counts before treatment. Biofilm was collected from areas adjacent to the brackets on teeth 13, 22, 33, and 41. Both saliva and biofilm were collected on the 7th, 21st, 35th, and 49th days after appliance placement. Topical fluoride application was carried out on the 35th day. Bonding with RMGIC did not alter SM counts in saliva or biofilm adjacent to the brackets. On the other hand, the biofilm adjacent to brackets retained with composite resin showed a significant increase in SM counts along the trial period. Topical application of 1.23% APF did not reduce salivary or biofilm SM counts regardless of the bonding material. In conclusion, fluoride topical application did not show efficacy in reducing SM. The use of RMGIC as bonding materials allowed a better control of SM cfu counts in dental biofilm hindering the significant increase of these microorganisms along the trial period, which was observed in the biofilm adjacent to the composite material.

  5. Bond strength of a composite resin to glass ionomer cements using different adhesive systems

    Directory of Open Access Journals (Sweden)

    Ana Carolina de Oliveira BECCI

    2017-08-01

    Full Text Available Abstract Introduction Glass ionomer cements are often used as a base or cavity lining prior to restorative material. Objective To evaluate the bond strength of a composite resin to different glass ionomer cements, when using a two-step conventional and self-etching adhesive systems. Material and method Three glass ionomer cements (Ketac Molar Easymix, Vitremer and Vitrebond, the composite resin Filtek Z350 XT and the adhesive systems Adper Single Bond 2, Clearfil SE Bond and Adper Easy One were used. As negative control, resin was bonded to cement without using an adhesive system. Holes (4 mm diameter, 2 mm deep prepared in acrilic bloks were filled with the glass ionomer cements (n=12/group. On the surface, an area of 1mm in diameter was delimited, the adhesive system was applied, and a specimen of composite resin with 1 mm height was made. After 24 hours storage (37 °C and 100% humidity, the microshear test was performed. Data were analyzed using two-way ANOVA and Tukey test for comparison between groups (α=0.05. Result The adhesive systems significantly improved the bond strenght of composite resin to glass ionomer cements (p≤0.001. There was no significant difference in bond strength when self-etching adhesive systems were compared with the simplified etch-and-rinse adhesive, except for Vitrebond where Clearfil SE Bond determined higher bond strength when compared to Adper Single Bond 2 (p=0.003. Conclusion Self-etching adhesive systems are a good option for establishing the bond between the composite resin and the glass ionomer cement.

  6. Effect of glass and polyacid preparations on the strength of glass ionomer cements for dental applications

    Directory of Open Access Journals (Sweden)

    Naruporn Monmaturapoj

    2009-08-01

    Full Text Available Glass ionomer cements (GICs, widely used as restorative materials in dentistry, are principally composed of fluoroaluminosilicateglass powder combined with a water-soluble polyacid. The investigation of new glass compositions and polyacid components are very important to improve the mechanical properties of these cements. The objective of this work was to prepare glass ionomers and polyacids for the use as GICs. The effects of spherical bodies, Al2O3:SiO2 ratios, replacing CaO by SrO, and ZrO2 adding in glass powder in combination with the variation of acidic copolymer concentration on the compressive strength were investigated and discussed.

  7. Particle size variations in the glass component of glass-ionomer dental cements.

    Science.gov (United States)

    Iqbal, Kefi

    2012-01-01

    Glass polyalkenoate cements (glass ionomer cements) are widely used in restorative dentistry and now a day the material of choice for bone cements. The aim of the study is to examine the variations produced by exposure to acid for dental Glass Ionomer Cement (GIC) glass particles of different composition. It also involves the study of the effect of replacing Ca by Sr in glass ionomer glasses on the particle size distribution. This study was carried out in a Malvern Mastersizer/E. This uses LASER-diffraction and was in reverse-Fourier mode (0.1-80 microm). Ultrasound was used to break up any agglomerates. Also, some samples were treated as above but instead of particle size analyser, the slurries were centrifuged and the glass washed and dried to constant weight to determine mass loss. The mass loss for LG26Sr in acid washing was comparatively greater whereas LG26 showed less mass loss. When statistically evaluated LG series and AH2 were found to differ significantly p = 0.008. There was, however, no significant difference between other combinations of glasses in acid was treatment. The pseudo-cement formation in all the glasses suffered significant mass loss p = < 0.008. By changing the different chemical composition of glass ionomer glasses the mass loss was substantially greater during the cement formation process as compare to acid washing.

  8. Effect of insertion method on knoop hardness of high viscous glass ionomer cements

    NARCIS (Netherlands)

    Raggio, D.P.; Bonifácio, C.C.; Bönecker, M.; Imparato, J.C.P.; de Gee, A.J.; van Amerongen, W.E.

    2010-01-01

    The aim of this study was to assess the Knoop hardness of three high viscous glass ionomer cements: G1 - Ketac Molar; G2 - Ketac Molar Easymix (3M ESPE) and G3 - Magic Glass ART (Vigodent). As a parallel goal, three different methods for insertion of Ketac Molar Easymix were tested: G4 -

  9. Influence of Salvadora persica (miswak) extract on physical and antimicrobial properties of glass ionomer cement

    NARCIS (Netherlands)

    El-Tatari, A.; de Soet, J.J.; de Gee, A.J.; Abou Shelib, M.; van Amerongen, W.E.

    2011-01-01

    AIM: To investigate physical and antimicrobial properties of Glass Ionomer Cement (GIC) combined with Salvadora Persica Extract (SPE). METHODS: SPE was added to GIC (Fuji IX) in concentrations of 1%, 2% and 4% w/w. The compressive strength and diametral tensile strength were measured at 1 h, 24 h

  10. Physical-mechanical properties of glass ionomer cements indicated for atraumatic restorative treatment

    NARCIS (Netherlands)

    Bonifacio, C.C.; Kleverlaan, C.J.; Raggio, D.P.; Werner, A.; de Carvalho, R.C.R.; van Amerongen, W.E.

    2009-01-01

    Background:  This study evaluated mechanical properties of glass ionomer cements (GICs) used for atraumatic restorative treatment. Wear resistance, Knoop hardness (Kh), flexural (Fs) and compressive strength (Cs) were evaluated. The GICs used were Riva Self Cure (RVA), Fuji IX (FIX), Hi Dense (HD),

  11. How mobile are protons in the structure of dental glass ionomer cements?

    Science.gov (United States)

    Benetti, Ana R.; Jacobsen, Johan; Lehnhoff, Benedict; Momsen, Niels C. R.; Okhrimenko, Denis V.; Telling, Mark T. F.; Kardjilov, Nikolay; Strobl, Markus; Seydel, Tilo; Manke, Ingo; Bordallo, Heloisa N.

    2015-03-01

    The development of dental materials with improved properties and increased longevity can save costs and minimize discomfort for patients. Due to their good biocompatibility, glass ionomer cements are an interesting restorative option. However, these cements have limited mechanical strength to survive in the challenging oral environment. Therefore, a better understanding of the structure and hydration process of these cements can bring the necessary understanding to further developments. Neutrons and X-rays have been used to investigate the highly complex pore structure, as well as to assess the hydrogen mobility within these cements. Our findings suggest that the lower mechanical strength in glass ionomer cements results not only from the presence of pores, but also from the increased hydrogen mobility within the material. The relationship between microstructure, hydrogen mobility and strength brings insights into the material's durability, also demonstrating the need and opening the possibility for further research in these dental cements.

  12. How mobile are protons in the structure of dental glass ionomer cements?

    Science.gov (United States)

    Benetti, Ana R.; Jacobsen, Johan; Lehnhoff, Benedict; Momsen, Niels C. R.; Okhrimenko, Denis V.; Telling, Mark T. F.; Kardjilov, Nikolay; Strobl, Markus; Seydel, Tilo; Manke, Ingo; Bordallo, Heloisa N.

    2015-01-01

    The development of dental materials with improved properties and increased longevity can save costs and minimize discomfort for patients. Due to their good biocompatibility, glass ionomer cements are an interesting restorative option. However, these cements have limited mechanical strength to survive in the challenging oral environment. Therefore, a better understanding of the structure and hydration process of these cements can bring the necessary understanding to further developments. Neutrons and X-rays have been used to investigate the highly complex pore structure, as well as to assess the hydrogen mobility within these cements. Our findings suggest that the lower mechanical strength in glass ionomer cements results not only from the presence of pores, but also from the increased hydrogen mobility within the material. The relationship between microstructure, hydrogen mobility and strength brings insights into the material's durability, also demonstrating the need and opening the possibility for further research in these dental cements. PMID:25754555

  13. In vitro studies on the potential for pulpal cytotoxicity of glass-ionomer cements.

    Science.gov (United States)

    Hume, W R; Mount, G J

    1988-06-01

    Elution samples of glass-ionomer cement were prepared in sterile tissue culture medium either by direct contact between the fluid and standard cement samples or through a layer of human dentin, and then tested for toxicity to cultured mouse fibroblasts (L929). The directly-prepared eluates of the cements were highly cytotoxic, but those prepared through dentin were of either limited or no cytotoxicity. The degree of toxicity of some directly-prepared eluates was reduced by adjustment of the pH to neutrality. It was apparent that dentin reduced the potential for cytotoxicity of glass-ionomer cements to a large degree. Proposed mechanisms for the reduction were limited availability of water at the dentin-cement interface and thus limited dissolution of components, buffering of acid components of the cements by dentin, or other chemical interactions with dentin.

  14. Kekuatan perlekatan geser semen ionomer kaca terhadap dentin dan NiCr alloy (Shear bond strenght of glass ionomer cement in dentin and NiCr alloy

    Directory of Open Access Journals (Sweden)

    Mira Leonita

    2006-03-01

    Full Text Available Glass ionomer cements were used broadly in restorative dentistry. That’s why researchers always try to invent new form of glass ionomer cement. The newest invention was the paste-paste formulation. Shear bond strenght of powder-liquid glass ionomer cement and paste-paste glass ionomer cement in dentin and NiCr alloy was tested to 4 groups of samples. Each group consisted contain 6 samples that were shaped into cylinder with 4 mm of diameter and 5 mm of height. Group A was dentin with powder-liquid glass ionomer cement, group B was dentin with paste-paste glass ionomer cement, group C was alloy with powder-liquid glass ionomer cement, and group D was alloy with paste-paste glass ionomer cement. Each sample in each group was tested with Autograph. The datas were analyzed statistically using T-test with level of signficance 0.05. The result showed that powder-liquid glass ionomer cement shear bond strenght was 211 N and paste-paste glass ionomer cement was 166.92 N. That showed that powder-liquid glass ionomer cement had a better shear bond strenght.

  15. How mobile are protons in the structure of dental glass ionomer cements?

    OpenAIRE

    Benetti, Ana R.; Jacobsen, Johan; Lehnhoff, Benedict; Momsen, Niels C. R.; Okhrimenko, Denis V.; Telling, Mark T. F.; Kardjilov, Nikolay; Strobl, Markus; Seydel, Tilo; Manke, Ingo; Bordallo, Heloisa N.

    2015-01-01

    The development of dental materials with improved properties and increased longevity can save costs and minimize discomfort for patients. Due to their good biocompatibility, glass ionomer cements are an interesting restorative option. However, these cements have limited mechanical strength to survive in the challenging oral environment. Therefore, a better understanding of the structure and hydration process of these cements can bring the necessary understanding to further developments. Neutr...

  16. How mobile are protons in the structure of dental glass ionomer cements?

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Jacobsen, Johan; Lehnhoff, Benedict

    2015-01-01

    The development of dental materials with improved properties and increased longevity can save costs and minimize discomfort for patients. Due to their good biocompatibility, glass ionomer cements are an interesting restorative option. However, these cements have limited mechanical strength...... to survive in the challenging oral environment. Therefore, a better understanding of the structure and hydration process of these cements can bring the necessary understanding to further developments. Neutrons and X-rays have been used to investigate the highly complex pore structure, as well as to assess...... the hydrogen mobility within these cements. Our findings suggest that the lower mechanical strength in glass ionomer cements results not only from the presence of pores, but also from the increased hydrogen mobility within the material. The relationship between microstructure, hydrogen mobility and strength...

  17. Joggle lap shear testing of deep occlusal composite restorations lined with Dycal, Dycal LC, conventional or resin-modified glass ionomer

    Directory of Open Access Journals (Sweden)

    Stojanovska Vera

    2017-01-01

    Full Text Available Background/Aim. The longevity of a dental restoration may be predicted to some degree by its adhesive ability, and this, in turn, can be measured by bond strength testing between restorative materials and tooth structure. The aim of this study was to test an innovative joggle lap shearing jig that integrates the tooth and the entire biomechanical unit into testing, to compare the shear bond strengths of Class I occlusal composite restorations in deep cavity preparations lined with Dycal, Dycal LC, conventional glass ionomer or resin-modified glass ionomer. The mode of failure (adhesive, cohesive, mixed after debonding was determined by stereomicroscopy. Methods. A total of 150 standardized occlusal cavities were prepared and divided into five groups. The group I cavities (n = 30 were coated with adhesive (ExciTE®F and filled directly with composite (TetricEvoCeram. The group II and III cavities were lined with Dycal (n = 30 or Dycal LC (n = 30 before placing composite. The groups IV and V specimens were based with Fuji IX (n = 30 or Fuji II LC (n = 30. Shear bond strengths were determined with a universal testing machine and fractured bonding sites were analyzed under stereomicroscope. The mean bond strengths were analyzed using one-way ANOVA test (p Fuji IX > Dycal LC > Dycal.

  18. Marginal microleakage of resin-modified glass-ionomer and composite resin restorations: Effect of using etch-and-rinse and self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2012-01-01

    Full Text Available Objectives: Previous studies have shown that dental adhesives increase the bond strength of resin-modified glass-ionomer (RMGI restorative materials to dentin. This in vitro study has evaluated the effect of etch-and-rinse and self-etch bonding systems v/s cavity conditioner, and in comparison to similar composite resin restorations on maintaining the marginal sealing of RMGI restorations. Materials and Methods: 98 rectangular cavities (2.5×3×1.5 mm were prepared on buccal and palatal aspects of 49 human maxillary premolars, randomly divided into 7 groups (N=14. The cavities in groups 1, 2 and 3 were restored using a composite resin (APX. The cavities in groups 4, 5, 6 and 7 were restored using a resin-modified glass-ionomer (Fuji II LC. Before restoring, adhesive systems (Optibond FL = OFL, three-step etch-and-rinse; One Step Plus = OSP, two-step etch-and-rinse; Clearfil Protect Bond = CPB, two-step self-etch were used as bonding agents in groups 1-6 as follow: OFL in groups 1 and 4, OSP in groups 2 and 5, and CPB in groups 3 and 6, respectively. The specimens in group 7 were restored with GC cavity conditioner and Fuji II LC. All the specimens were thermo-cycled for 1000 cycles. Microleakage scores were determined using dye penetration method. Statistical analyzes were carried out with Kruskal-Wallis and Mann-Whitney U tests (α=0.05. Results: There were significant differences in microleakage scores at both enamel and dentinal margins between the study groups (P<0.05. The lowest microleakage scores at enamel and dentin margins of RMGI restorations were observed in group 6. Conclusion: Use of two-step self-etch adhesive, prior to restoring cervical cavities with RMGIC, seems to be more efficacious than the conventional cavity conditioner in decreasing marginal microleakage.

  19. Clinical evaluation of glass-ionomer cement restorations Avaliação clínica de restaurações de cimento de ionômero de vidro

    Directory of Open Access Journals (Sweden)

    Martin John Tyas

    2006-01-01

    Full Text Available This article mentions the general structure, properties and clinical performance of conventional and resin-modified glass-ionomer cements, focusing on adhesion, caries inhibition effect and recommendations of their use.Este artigo menciona a estrutura geral, propriedades e performance clínica de cimentos de ionômero de vidro convencionais e modificados por resina, enfocando propriedades como adesão, efeito anti-cariogênico e recomendações de uso.

  20. Dental Glass Ionomer Cements as Permanent Filling Materials? – Properties, Limitations and Future Trends

    Directory of Open Access Journals (Sweden)

    Ulrich Lohbauer

    2009-12-01

    Full Text Available Glass ionomer cements (GICs are clinically attractive dental materials that have certain unique properties that make them useful as restorative and luting materials. This includes adhesion to moist tooth structures and base metals, anticariogenic properties due to release of fluoride, thermal compatibility with tooth enamel, biocompatibility and low toxicity. The use of GICs in a mechanically loaded situation, however, has been hampered by their low mechanical performance. Poor mechanical properties, such as low fracture strength, toughness and wear, limit their extensive use in dentistry as a filling material in stress-bearing applications. In the posterior dental region, glass ionomer cements are mostly used as a temporary filling material. The requirement to strengthen those cements has lead to an ever increasing research effort into reinforcement or strengthening concepts.

  1. A 3-year clinical evaluation of glass-ionomer cements used as fissure sealants.

    Science.gov (United States)

    Pereira, Antonio Carlos; Pardi, Vanessa; Mialhe, Fábio Luiz; Meneghim, Marcelo de Castro; Ambrosano, Gláucia Maria Bovi

    2003-02-01

    To evaluate the retention and caries-preventive effectiveness of two ionomeric materials (conventional and resin-modified), used as fissure sealants. 100 children (6-8 years old) with a total of 400 permanent first molars received 200 conventional glass-ionomer (Ketac Bond) and 200 resin-modified glass-ionomer (Vitremer) sealants. Additionally, 108 children constituted the control group (432 teeth). Two dentists assisted by dental hygienists performed the sealant application. Clinical evaluations were carried out 6, 12, 24, and 36 months after the sealant application by two other dentists, not carrying out clinical procedures, previously calibrated (Kappa > 0.75). Total retention rates of 26%, 12%, 3%, and 4% for Ketac Bond and 61%, 31%, 14%, and 13% for Vitremer, being 6, 12, 24, and 36 months after clinical evaluation, respectively. The differences between the two materials were statistically significant. The experimental groups showed a caries incidence of 93%, 78%, 49%, and 56% lower than the control group (Pionomeric materials were low. Nevertheless, these materials showed a cariostatic effect, supported by statistically lower caries incidence in experimental groups compared to control group. Presence of active incipient caries was statistically associated with caries incidence in the first molars after 36 months, in relation to either experimental or control group.

  2. Heat transfer properties and thermal cure of glass-ionomer dental cements.

    Science.gov (United States)

    Gavic, Lidia; Gorseta, Kristina; Glavina, Domagoj; Czarnecka, Beata; Nicholson, John W

    2015-10-01

    Under clinical conditions, conventional glass-ionomer dental cements can be cured by application of heat from dental cure lamps, which causes acceleration in the setting. In order for this to be successful, such heat must be able to spread sufficiently through the cement to enhance cure, but not transmit heat so effectively that the underlying dental pulp of the tooth is damaged. The current study was aimed at measuring heat transfer properties of modern restorative glass-ionomers to determine the extent to which they meet these twin requirements. Three commercial glass ionomer cements (Ionofil Molar, Ketac Molar and Equia™ Fill) were used in association with three different light emitting diode cure lamps designed for clinical use. In addition, for each cement, one set of specimens was allowed to cure without application of a lamp. Temperature changes were measured at three different depths (2, 3 and 4 mm) after cure times of 20, 40 and 60 s. The difference among the tested groups was evaluated by ANOVA (P heat irradiation, but much greater temperature increases when exposed to the cure lamp. However, temperature rises did not exceed 12.9 °C. Application of the cure lamp led to the establishment of a temperature gradient throughout each specimen. Differences were typically significant (P heating effect. Because the thermal conductivity of glass-ionomers is low, temperature rises at 4 mm depths were much lower than at 2 mm. At no time did the temperature rise sufficiently to cause concern about potential damage to the pulp.

  3. Dental Glass Ionomer Cements as Permanent Filling Materials? ?Properties, Limitations Future Trends

    OpenAIRE

    Lohbauer, Ulrich

    2009-01-01

    Glass ionomer cements (GICs) are clinically attractive dental materials that have certain unique properties that make them useful as restorative and luting materials. This includes adhesion to moist tooth structures and base metals, anticariogenic properties due to release of fluoride, thermal compatibility with tooth enamel, biocompatibility and low toxicity. The use of GICs in a mechanically loaded situation, however, has been hampered by their low mechanical performance. Poor mechanical pr...

  4. Antibacterial force of the luting-type of glass ionomer cement toward Lactobacillus species and Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Dwi Warna Aju Fatmawati

    2007-09-01

    Full Text Available Rigid restoration is attached within oral cavity using adhesive cement layer. The hardening adhesive cement fills and tights the rough tooth surface with reciprocal opposing restorations. The luting type of glass ionomer cement was mostly used in the clinic for crown cementation as well as poured restoration. We can be taken a problem how strong is antibacterial effect of the luting type of glass ionomer cement to Lactobacillus species and Streptococcus Mutans. The purpose of the research was to know the antibacterial force of the luting-type of glass ionomer cement toward Lactobacillus species and Streptococcus mutans. This research was a laboratory experiment. The samples of the research were divided into two groups, treated-group (Fuji and Shofu and controlled-group. The numbers of samples in each group consisted of 7 pieces. Taking 0,5 ml of artificial saliva in which the sample of the luting-type of glass ionomer cement (5 mm in diameter and 2 mm thick had been immersed and storing it into Petri dish containing warm MRSA and 0,1 ml Lactobacillus sp. using poured technique. The mixture was subsequently incubated, and the colony was counted on the observation of 1st day, 7th day, and 14th day. The data were analyzed using ANOVA and LSD. The result of the research showed that the greatest mean value of the bacterial colony presented in the controlled-group and the smallest was in the group of Shofu. Statistical analysis showed a significant difference (p < 0.05. The released fluoride from glass ionomer cement occurred in the damaging phase caused by polyacrylate that released H+ ion from carboxyl group (COOH. The fluoride influenced the growth of bacteria by decelerating the activity of gycolytic enolase enzyme. The luting-type of glass ionomer cement had antibacterial force toward Streptococcus mutans and Lactobacillus sp. The luting-type of glass ionomer cement of Shofu possessed greater antibacterial force than Fuji and controlledgroup.

  5. A study of the interactions between glass-ionomer cement and S. sanguis biofilms

    Science.gov (United States)

    Hengtrakool, Chanotai

    Glass-ionomer cements (GIC) have been used for dental procedures for many years and more recently in other medical applications such as bone cements, for bone reconstruction and also as drug release agents. The postulated caries-preventive activities of GIC are thought to result from their sealing ability, remineralization potential and antibacterial effects. Extensive 'in vitro' investigations have attempted to quantify these effects. In this study, an artificial mouth model, simulating 'in vivo' conditions at the tooth surface, was used to achieve a better understanding of the interaction of oral bacteria with the cements. This study investigated the interaction of Streptococcus sanguis, a common mouth commensal, with two glass-ionomer formulations (one containing fluoride and the other without fluoride ion) with particular reference to bacterial growth, changes in surface roughness and hardness of the glass-ionomer cement with respect to time. Restorative materials with rough surfaces will promote bacterial accumulation 'in vivo' and plaque formation is one factor in surface degradation. The constant depth film fermenter (CDFF) permits the examination of these phenomena and was used to investigate glass-ionomer/S. sanguis biofilm interaction over periods up to 14 days. In conjunction with these studies, surface roughness was measured using a 3-dimension laser profilometer and the surface hardness evaluated using a micro-indenter. Fluoride release from the cement was measured over 84 days. The results showed that autoclaving the CDFF prior to bacterial innoculate did not appear to affect the long-term fluoride release of the GIC. Laser profilometry revealed that the initial roughness and surface area of the GICs was significantly greater than the hydroxyapatite control. S. sanguis viable counts were significantly reduced for both glass-ionomer formulations in the shortterm, the greater reduction being with fluoride-GIC. S. sanguis biofilms produced similar

  6. Evaluation of the sealing ability of amalgam, Cavit, and glass ionomer cement in the repair of furcation perforations.

    Science.gov (United States)

    Alhadainy, H A; Himel, V T

    1993-03-01

    Perforations created in the pulpal floors of 30 extracted molars were repaired with amalgam, Cavit, and light cured glass ionomer cement. After the pulp chambers and access openings were filled with composite resin, the teeth were then immersed in 2% Erythrocin B solution for 1 week. After longitudinal sectioning of the teeth, dye penetration was measured. The results indicated significant differences between the three materials. Light cured glass ionomer exhibited the least dye penetration followed by Cavit and amalgam.

  7. Comparison of the Shear Bond Strength of Resin Modified Glass Ionomer to Enamel in Bur-Prepared or Lased Teeth (Er:YAG

    Directory of Open Access Journals (Sweden)

    Ahmad Jafari

    2013-01-01

    Full Text Available Objective: The purpose of this study was to evaluate the effect of Er:YAG laser on the shear bond strength of resin modified glass ionomer (RMGI to enamel.Materials and Methods: Twenty extracted caries-free human premolars were selected. The teeth were embedded in acrylic resin. The buccal surfaces of each sample were ground to plane enamel with carbonated disc. The teeth were randomly divided in two groups. In the first group, the surfaces were treated by Er:YAG laser (350mJ/10Hz. The second group was prepared by carbide bur. Fuji IX RMGI was adhered to surfaces of the samples in both groups in rod shape. The shear bond strength of samples was measured by a universal testing machine. The results of the two groups were analyzed by T- test.Results: The means and standard deviations of shear bond strength of the laser-treated group and the bur-treated group were 6.75 ± 1.99 and 4.41 ± 1.62 Mpa, respectively. There is significant difference in the shear bond strength of RMGI between the two groups (P-value=0.01.Conclusion: The laser group showed better results. Er:YAG laser can be an alternative technology in restorative dentistry

  8. Microleakage of Glass Ionomer-based Provisional Cement in CAD/CAM-Fabricated Interim Crowns: An in vitro Study.

    Science.gov (United States)

    Farah, Ra'fat I; Al-Harethi, Naji

    2016-10-01

    The aim of this study was to compare in vitro the marginal microleakage of glass ionomer-based provisional cement with resin-based provisional cement and zinc oxide non-eugenol (ZONE) provisional cement in computer-aided design and computer-aided manufacturing (CAD/CAM)-fabricated interim restorations. Fifteen intact human premolars were prepared in a standardized manner for complete coverage of crown restorations. Interim crowns for the prepared teeth were then fabricated using CAD/CAM, and the specimens were randomized into three groups of provisional cementing agents (n = 5 each): Glass ionomer-based provisional cement (GC Fuji TEMP LT™), bisphenol-A-glycidyldimethacrylate (Bis-GMA)/ triethylene glycol dimethacrylate (TEGDMA) resin-based cement (UltraTemp® REZ), and ZONE cement (TempBond NE). After 24 hours of storage in distilled water at 37°C, the specimens were thermocycled and then stored again for 24 hours in distilled water at room temperature. Next, the specimens were placed in freshly prepared 2% aqueous methylene blue dye for 24 hours and then embedded in autopolymerizing acrylic resin blocks and sectioned in buccolingual and mesiodistal directions to assess dye penetration using a stereomicroscope. The results were statistically analyzed using a nonparametric Kruskal-Wallis test. Dunn's post hoc test with a Bonferroni correction test was used to compute multiple pairwise comparisons that identified differences among groups; the level of significance was set at p provisional cement demonstrated the lowest microleakage scores, which were statistically different from those of the glass ionomer-based provisional cement and the ZONE cement. The provisional cementing agents exhibited different sealing abilities. The Bis-GMA/TEGDMA resin-based provisional cement exhibited the most effective favorable sealing properties against dye penetration compared with the glass ionomer-based provisional cement and conventional ZONE cement. Newly introduced glass

  9. Benefits and drawbacks of zinc in glass ionomer bone cements

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, Delia S; Hill, Robert G [Unit of Dental Physical Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Gentleman, Eileen; Stevens, Molly M [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Farrar, David F, E-mail: d.brauer@qmul.ac.uk [Smith and Nephew Research Centre, York Science Park, Heslington YO10 5DF (United Kingdom)

    2011-08-15

    Glass polyalkenoate (ionomer) cements (GPCs) based on poly(acrylic acid) and fluoro-alumino-silicate glasses are successfully used in a variety of orthopaedic and dental applications; however, they release small amounts of aluminium, which is a neurotoxin and inhibits bone mineralization in vivo. Therefore there has been significant interest in developing aluminium-free glasses containing zinc for forming GPCs because zinc can play a similar structural role in the glass, allowing for glass degradation and subsequent cement setting, and is reported to have beneficial effects on bone formation. We created zinc-containing GPCs and characterized their mechanical properties and biocompatibility. Zinc-containing cements showed adhesion to bone close to 1 MPa, which was significantly greater than that of zinc-free cements (<0.05 MPa) and other currently approved biological adhesives. However, zinc-containing cements produced significantly lower metabolic activity in mouse osteoblasts exposed to cell culture medium conditioned with the cements than controls. Results show that although low levels of zinc may be beneficial to cells, zinc concentrations of 400 {mu}M Zn{sup 2+} or more resulted in cell death. In summary, we demonstrate that while zinc-containing GPCs possess excellent mechanical properties, they fail basic biocompatibility tests, produce an acute cytotoxic response in vitro, which may preclude their use in vivo.

  10. Enhancement effect of pre-reacted glass on strength of glass-ionomer cement.

    Science.gov (United States)

    Monmaturapoj, Naruporn; Soodsawang, Wiwaporn; Tanodekaew, Siriporn

    2012-02-03

    In this paper, we report on the enhanced strength of glass ionomer cement (GIC) by using the process of pre acid-base reaction and spray drying in glass preparation. The pre acid-base reaction was induced by prior mixing of the glass powder with poly(alkenoic acid). The weight ratios of glass powder to poly(alkenoic acid) were varied to investigate the extent of the pre acid-base reaction of the glass. The effect of the spray drying process which produced spherical glass particles on cement strength was also studied and discussed. The results show that adding 2%-wt of poly(alkenoic acid) liquid in the pre-reacted step improved cement strength. GICs prepared using a mixture of pre-reacted glass with both spherical and irregular powders at 60:40 by weight exhibited the highest compressive strength at 138.64±7.73 MPa. It was concluded that glass ionomer cements containing pre-reacted glass with mixed glass morphology using both spherical and irregular forms are promising as restorative dental materials with improved mechanical properties and handling characteristics.

  11. Benefits and drawbacks of zinc in glass ionomer bone cements

    International Nuclear Information System (INIS)

    Brauer, Delia S; Hill, Robert G; Gentleman, Eileen; Stevens, Molly M; Farrar, David F

    2011-01-01

    Glass polyalkenoate (ionomer) cements (GPCs) based on poly(acrylic acid) and fluoro-alumino-silicate glasses are successfully used in a variety of orthopaedic and dental applications; however, they release small amounts of aluminium, which is a neurotoxin and inhibits bone mineralization in vivo. Therefore there has been significant interest in developing aluminium-free glasses containing zinc for forming GPCs because zinc can play a similar structural role in the glass, allowing for glass degradation and subsequent cement setting, and is reported to have beneficial effects on bone formation. We created zinc-containing GPCs and characterized their mechanical properties and biocompatibility. Zinc-containing cements showed adhesion to bone close to 1 MPa, which was significantly greater than that of zinc-free cements ( 2+ or more resulted in cell death. In summary, we demonstrate that while zinc-containing GPCs possess excellent mechanical properties, they fail basic biocompatibility tests, produce an acute cytotoxic response in vitro, which may preclude their use in vivo.

  12. THE EFFECT OF THE APPLICATION OF 20% CARBAMIDE PEROXIDE ON THE GLASS IONOMER CEMENT TYPE II SURFACE HARDNESS

    Directory of Open Access Journals (Sweden)

    Ali Noerdin

    2015-06-01

    Full Text Available In dental bleaching, carbamide peroxide is usually used at concentration of 10%, 15%, to 20%. The result of our previous study showed that the application of 10% and 15% carbamide peroxide bleaching agent has increased the surface hardness of glass ionomer cement. The purpose of this study was to observe the effect of 20% carbamide peroxide bleaching to glass ionomer surface hardness. Twenty specimens of glass ionomer type II after exposed to 20% carbamide peroxide were divided into two application time groups: 4 and 8 hours per day. Glass ionomer cement surface hardness was measured by Vickers Microhardness Tester series HMV-2 with a weight of 0,025 Hv for 20 seconds. The measurement was conducted at before/no application, after a week, and after 2 weeks of application in both groups. It can be concluded that the application of 20% carbamide peroxide bleaching agent could increase the surface hardness of glass ionomer cement after 1 week and 2 weeks application period.

  13. Characterization of antibacterial and adhesion properties of chitosan-modified glass ionomer cement.

    Science.gov (United States)

    Ibrahim, Marrwa A; Neo, Jennifer; Esguerra, Roxanna J; Fawzy, Amr S

    2015-10-01

    The aim is to investigate the effect of modifying the liquid phase of a conventional glass ionomer restorative material with different chitosan volume contents on the antibacterial properties and adhesion to dentin. The liquids of commercially available restorative glass ionomer cements (GIC) were modified with chitosan (CH) solutions at different volume contents (5%, 10%, 25%, and 50%). The GIC powders were mixed with the unmodified and the CH-modified liquids at the desired powder/liquid (P/L) ratio. For the characterization of the antibacterial properties, Streptococcus mutans biofilms were formed on GIC discs and characterized by scanning electron microscope (SEM), confocal microscopy, colony forming unit (CFU) count, and cell viability assay (MTS). The unmodified and CH-modified GICs were bonded to dentin surfaces and the micro-tensile bond strength (µTBs) was evaluated and the interface was investigated by SEM. Modification with CH solutions enhanced the antibacterial properties against S. mutans in terms of resistance to biofilm formation, CFU count, and MTS assay. Generally, significant improvement in the antibacterial properties was found with the increase in the CH volume content. Modification with 25% and 50% CH adversely affected the µTBs with predominant cohesive failure in the GIC. However, no difference was found between the control and the 5% and 10% CH-modified specimens. Incorporation of acidic solutions of chitosan in the polyacrylic acid liquid of GIC at v/v ratios of 5-10% improved the antibacterial properties of conventional glass ionomer cement against S. mutans without adversely affecting its bonding to dentin surface. © The Author(s) 2015.

  14. Comparative Evaluation of Voids Present in Conventional and Capsulated Glass Ionomer Cements Using Two Different Conditioners: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Mamta Kaushik

    2014-01-01

    Full Text Available This in vitro study evaluated the presence of voids in powder-liquid and capsulated glass ionomer cement. 40 cavities were prepared on root surfaces of maxillary incisors and divided into four groups. Cavities were conditioned with glass ionomer cement liquid (GC Corporation, Tokyo, Japan in Groups 1 and 3 and with dentin conditioner (GC Corporation, Tokyo, Japan in Groups 2 and 4. Conventional powder-liquid glass ionomer cement (GC Fuji II, GC Corporation, Tokyo, Japan was used as a restorative material in Groups 1 and 2. Capsulated glass ionomer cement (GC Fuji II, GC Corporation, Tokyo, Japan was used in Groups 3 and 4. Samples were sectioned and viewed under stereomicroscope to check for the presence of voids within the cement and at the cement-tooth junction. Data was analyzed using one-way ANOVA and Tukey’s post hoc tests. Group 4 showed statistically significant results (P<0.05 when compared to Groups 1 and 2 for voids within the cement. However, for voids at the margins, the results were statistically insignificant.

  15. Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability

    International Nuclear Information System (INIS)

    Gomes, Filipa O.; Pires, Ricardo A.; Reis, Rui L.

    2013-01-01

    Al-free glasses of general composition 0.340SiO 2 :0.300ZnO:(0.250-a-b)CaO:aSrO:bMgO:0.050Na 2 O:0.060P 2 O 5 (a, b = 0.000 or 0.125) were synthesized by melt quenching and their ability to form glass-ionomer cements was evaluated using poly(acrylic acid) and water. We evaluated the influence of the poly(acrylic acid) molecular weight and glass particle size in the cement mechanical performance. Higher compressive strength (25 ± 5 MPa) and higher compressive elastic modulus (492 ± 17 MPa) were achieved with a poly(acrylic acid) of 50 kDa and glass particle sizes between 63 and 125 μm. Cements prepared with glass formulation a = 0.125 and b = 0.000 were analyzed after immersion in simulated body fluid; they presented a surface morphology consistent with a calcium phosphate coating and a Ca/P ratio of 1.55 (similar to calcium-deficient hydroxyapatite). Addition of starch to the cement formulation induced partial degradability after 8 weeks of immersion in phosphate buffer saline containing α-amylase. Micro-computed tomography analysis revealed that the inclusion of starch increased the cement porosity from 35% to 42%. We were able to produce partially degradable Al-free glass-ionomer bone cements with mechanical performance, bioactivity and biodegradability suitable to be applied on non-load bearing sites and with the appropriate physical characteristics for osteointegration upon partial degradation. Zn release studies (concentrations between 413 μM and 887 μM) evidenced the necessity to tune the cement formulations to reduce the Zn concentration in the surrounding environment. Highlights: ► We developed partially degradable, bioactive, Al-free glass-ionomer cements (GICs). ► Enhanced mechanical behavior was achieved using 63–125 μm glass particle size range. ► The highest mechanical resistance was obtained using poly(acrylic acid) of 50 kDa. ► Biodegradation was successfully tuned to start 8 weeks after GIC preparation. ► Zn release should be

  16. Chemical and structural characterization of glass ionomer cements indicated for atraumatic restorative treatment.

    Science.gov (United States)

    Guedes, Orlando Aguirre; Borges, Álvaro Henrique; Bandeca, Matheus Coelho; Nakatani, Mariana Kyosen; de Araújo Estrela, Cyntia Rodrigues; de Alencar, Ana Helena Gonçalves; Estrela, Carlos

    2015-01-01

    Glass ionomer cements (GICs) are restorative materials, which clinical use has increased significantly during the last decade. The aim of the present study was to analyze the chemical constitution and surface morphology of four glass ionomer cements: Maxxion R, VitroFill, Vidrion R and Vitremer. Twelve polyethylene tubes with an internal diameter of 3 and 3 mm in length were prepared, filled and then transferred to a chamber with 95% relative humidity and a temperature of 37°C. The surface morphology of the tested materials was examined by scanning electron microscopy (SEM) and main components were investigated by energy-dispersive X-ray microanalysis (EDX). Scanning electron microscopy revealed irregular and rough external surface. Cracking was not observed. The main constituents were found to be aluminum, silicon, calcium, sodium and fluoride. Phosphorus, sulfur and barium were only observed in Vidrion R, while chlorine were only observed in Maxxion R. Elemental mapping of the outer surface revealed high concentration of aluminum and silicon. Significant irregularities on the surface of the tested materials were observed. The chemical constitution of all GIC was similar.

  17. In vitro wear of Ionofil Molar AC quick glass-ionomer cement

    Directory of Open Access Journals (Sweden)

    Farida Abesi

    2011-01-01

    Full Text Available Aim: The aim of this study was to evaluate the three-body wear-resistance of one type of restorative glass-ionomer cement (GIC. Materials and Methods: Specimen including conventional GIC (Ionofil Molar AC Quick: IMACQ, hybrid ionomer (Fuji II LC, and composite resin (Heliomolar were tested in a wearing machine. In this machine, a 6 kg load was applied via pressable chromium-cobalt bar at 5,000, 10,000, 20,000, 40,000, 80,000, 120,000 cycles. Specimen weight was measured by an electronical weight balance before and after each cycle. Data were analyzed using one-way analysis of variance (ANOVA followed by a t-test, and a paired t-test at P≤0.05. Results: The highest weight loss has been found in Fuji II LC, then in GIC IMACQ and the least wear rate has been reported in heliomolar composite in all cycles except 120,000 cycles. In 120,000 cycles, the highest weight loss was seen in GIC IMACQ, then Fuji II LC, and finally heliomolar composite. There was a statistically significant difference in weight loss between GIC IMACQ and heliomolar composite (P=0/001. Conclusion: The wear rate of GIC IMACQ was between those of heliomolar composite and Fuji II LC glass ionomer in all cycles except 120,000 cycles. The most important advantage of this new-generation glass ionomer is its good manipulability and also high wear-resistance compared to the hybrid ionomer. Therefore, it is suggested that it can be used as restorative material in class I restorations in primary teeth.

  18. Effects of Topical Fluoride on the Marginal Microleakage of Composite Resin and Resin-Modified Glass Ionomer Restorations in Primary Molars: An In-vitro Study

    Directory of Open Access Journals (Sweden)

    Fatemeh Mir

    2017-12-01

    Full Text Available Introduction: Topical fluoride may deteriorate dental restorations. The present study aimed to evaluate the effects of topical fluoride on the marginal microleakage of composite resin and resin-modified glass ionomer (RMGI restorations in primary molars. Materials and Methods: In this experimental study, 60 primary molars were randomly divided into six groups of 10 based on the type of the restoration materials and before/after the application of fluoride gel, including FC (fluoride + composite, CF (composite + fluoride, C (composite, FG (fluoride + RMGI, GF (RMGI + fluoride, and G (RMGI. Class V cavities were prepared on the buccal surface, so that the gingival margins were located in cementum. After storing, thermocycling, and immersing the specimens in basic fuchsin, they were sectioned buccolingually and evaluated in terms of dye penetration. Data analysis was performed in SPSS version 18 using Kruskal-Wallis and Mann-Whitney U test at the significance level of 0.05. Results: No significant difference was observed between the three composite groups in terms of microleakage (P>0.05. In the RMGI groups, GF showed a significantly higher microleakage compared to G (P=0.029. However, no significant difference was observed between the other groups in this regard (P>0.05. Moreover, comparison of composite and RMGI groups (matched in terms of fluoride application indicated that microleakage was significantly higher in FG than FC (P=0.024, as well as in GF than CF (P=0.002. However, no significant difference was observed between groups C and G in this regard (P=0.268. Conclusion: According to the results, the marginal seal of composite restorations in the primary molars were not affected by the acidic fluoride gel. On the other hand, applying the acidic fluoride gel was associated with a higher microleakage in the cavities restored with RMGI.

  19. A review of glass-ionomers: From conventional glass-ionomer to bioactive glass-ionomer

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2013-01-01

    Full Text Available Materials used in the body, especially the materials used in various oral cavity regions should be stable and passive without any interactions with the body tissues or fluids. Dental amalgam, composite resins and dental cements are the materials of choice with such properties. The first attempts to produce active materials, which could interact with the human body tissues and fluids were prompted by the concept that fluoride-releasing materials exert useful effects in the body. The concept of using the "smart" materials in dentistry has attracted a lot of attention in recent years. Conventional glass-ionomer (GI cements have a large number of applications in dentistry. They are biocompatible with the dental pulp to some extent. GI is predominantly used as cements in dentistry; however, they have some disadvantages, the most important of which is lack of adequate strength and toughness. In an attempt to improve the mechanical properties of the conventional GI, resin-modified glass-ionomers have been marketed, with hydrophilic monomers, such as hydroxyethyl methacrylated (HEMA. Some recent studies have evaluated GI with bioactive glass in its structure to validate the claims that such a combination will improve tooth bioactivity, regeneration capacity and restoration. There is ever-increasing interest in the application of bioactive materials in the dental field in an attempt to remineralize affected dentin. The aim of this review article is to evaluate these materials and their characteristics and applications.

  20. Influence of an alloy addition on the physical and clinical behaviour of glass ionomer cement

    Science.gov (United States)

    Abour, Mohamed Abour Bashir

    These in vitro studies compared the various properties of an experimental high powder liquid content glass ionomer cement (EXPT) with those of a metal addition GIC (Hi-Dense) and disperse phase amalgam (Dispersalloy). Bi-axial, four point flexural and compressive tests were used to evaluate strength. Six groups of ten specimens were constructed for each test for each material and allowed to set in an oven at 37°C for 60 minutes. Specimens were stored in distilled water at 37°C until testing at one day, one week, one, three, six months and year. It was found that the strength of Hi-Dense increased and then maintained over extended time, whereas the strength of EXPT showed a declined at 3 months. The bond strengths of the materials to both enamel and dentine were also evaluated. Ten groups of ten teeth, five for each surface for each glass ionomer materials, were prepared. Teeth were aligned leaving the enamel and dentine surfaces exposed. The mixed material was condensed into a cylinder placed on the appropriate surface. These specimens were also stored in distilled water at 37°C. It was found that Hi-Dense had a higher bond strength to enamel that increased with time. The bond strength to dentine was maintained over the test period. The erosion rate of the materials was evaluated using the lactic acid erosion test. Three groups of six specimens for each material were constructed and tested after one hour, one day and at six months. Each specimen was subjected to an impinging jet of lactic acid solution. The erosion rate was determined by weight loss and dimensional change. It was found that Hi-Dense had a high erosion resistance which was slightly better than the experimental material. The microleakage, around restorations prepared, using the glass ionomer materials, was evaluated after cyclical loading the restoration-tooth complex. It was found that there was less leakage around Hi-Dense than EXPT at both the cervical and occlusal margins. In a clinical

  1. INTERACTION OF FLUORIDE COMPLEXES DERIVED FROM GLASS-IONOMER CEMENTS WITH HYDROXYAPATITE

    Directory of Open Access Journals (Sweden)

    Lewis S. M.

    2013-09-01

    Full Text Available A study has been undertaken of the interaction of complexed fluoride extracted from glass-ionomer dental cements with synthetic hydroxyapatite powder. Extracts were prepared from two commercial glass-ionomers (Fuji IX and ChemFlex under both neutral and acidic conditions. They were analysed by ICP-OES and by fluoride-ion selective electrode with and without added TISAB to decomplex the fluoride. The pH of the acid extracts was 4, conditions under which fluoride complexes with protons as HF or HF2-, it also complexes with aluminium, which was found to be present in higher amounts in the acid extracts. Fluoride was found to be almost completely complexed in acid extracts, but not in neutral extracts, which contained free fluoride ions. Exposure of these extracts to synthetic hydroxyapatite powder showed that fluoride was taken up rapidly (within 5 minutes, whether or not it was complexed. SEM (EDAX study of recovered hydroxyapatite showed only minute traces of aluminium taken up under all conditions. This showed that aluminium interacts hardly at all with hydroxyapatite, and hence is probably not involved in the remineralisation process.

  2. The Microleakage of Polycarboxylate, Glass Ionomer and Zinc Phosphate Cements for Stainless Steel Crowns of Pulpotomized Primary Molars

    Directory of Open Access Journals (Sweden)

    Mahkameh Mirkarimi

    2013-01-01

    Full Text Available Background: Microleakage in Stainless Steel Crowns (SSC margins leads to seepage of oral fluids and bacteria and it is one of the reasons for treatments failures. The aim of this study was to assess the effect of zinc phosphate, glass Ionomer and polycarboxylate cements on microleakage of stainless steel crowns for primary pulpotomized molar teeth. Materials and Methods: In this experimental in vitro study, 60 extracted primary molar teeth were randomly divided in to three groups (n=20. Stainless steel crowns were fitted for each tooth after pulpotomy procedures. Crowns were luted with a zinc phosphate, glass ionomer or polycarboxylate cement. All specimens were stored in 100% humidity at 37o C for 1 hour and termocycled 500 times (5ºC to 55ºC with a 30 seconds dwell time and then immersed in 0.5% basic fuschin solution for 24 hours. The specimens were sectioned buccolingually and each section was evaluated for microleakage under a stereomicroscope.Results: In zinc phosphate group 45% of spicemens and in glass ionomer group there was 5% of spicemens showed leakage extending on to occlusal aspect and in polycarboxylate group none of the spicemens had this situation. According to the kruskal wallis test in all groups there were significant differences in microleakage (p< 0.001.Conclusion: The use of zinc phosphate cement resulted in the highest percentage of microleakage. The microleakage of SSCs cemented with polycarboxylate and glass ionomer were similar.

  3. Comparative evaluation of shear bond strength of nano-hydroxyapatite incorporated glass ionomer cement and conventional glass ionomer cement on dense synthetic hydroxyapatite disk: An in vitro study.

    Science.gov (United States)

    Choudhary, Kanupriya; Nandlal, Bhojraj

    2015-01-01

    The aim was to evaluate and compare the shear bond strength of nano-hydroxyapatite (Nano-HAp) incorporated and conventional glass ionomer cement (GIC). Nano-HAp GIC was prepared by replacing 8 wt% of GIC powder with nano-HAp powder. Twenty-six HAp disks were used as substrate for bonding and divided into two equal groups. Before bonding the HAp disk was prepared by silicon carbide (no. 2500) followed by 10% polyacrylic acid conditioning. The standardized samples were prepared using split teflon mold on customized bonding jig so as to adhere testing materials to pretreated HAp disk. These samples were stored in distilled water for 24 h at 37°C before bond strength testing. The descriptive statistical analysis and independent samples t-test were used. The nano-HAp incorporated and conventional GIC had the mean shear bond strength of 3.28 ± 0.89 MPa and 5.25 ± 0.88 MPa, respectively. Nano-HAp incorporated GIC had lower shear bond strength with very high level of significance (P particles on the micro-size particles of GIC for the bonding mechanism and the ratio and proportions of nano-HAp to the GIC needs further elucidation.

  4. Microtensile bond strengths of glass ionomer (polyalkenoate) cements to dentine using four conditioners.

    Science.gov (United States)

    Tanumiharja, M; Burrow, M F; Tyas, M J

    2000-07-01

    The purpose of this study was to measure the microtensile bond strengths of three glass ionomer cements to dentine (Photac-Fil Quick; Fuji II LC; Fuji IX GP) using four different conditioners (Ketac Conditioner; Dentin Conditioner; Cavity Conditioner; and an experimental conditioner, K-930). Superficial occlusal dentine of extracted human third molars was exposed, finished with wet 600-grit silicon carbide paper, and each of the above glass ionomer cements bonded using the four conditioners according to the manufacturers' instructions. After 24h in tap water at 37 degrees C, the teeth were sectioned to obtain 3-4 bar-shaped specimens. Ten specimens were prepared for each group and shaped to an hour-glass form of (1.2+/-0.02)mm diameter. The specimens were mounted in a jig and stressed in tension at a crosshead speed of 1mm/min until failure. The mean bond strengths were calculated and compared using one-way ANOVA and LSD tests, and the fracture modes were examined by scanning electron microscopy. Mean microtensile bond strengths for Photac-Fil Quick were not significantly different from Fuji II LC for each of the conditioners used. However, the bond strengths for Photac-Fil Quick were significantly greater than Fuji II LC when no conditioner was applied. Mean microtensile bond strengths of conditioned specimens of Fuji II LC were significantly greater than non-conditioned specimens. Mean microtensile bond strengths of non-conditioned specimens of Fuji IX GP were not significantly different from conditioned specimens. The fracture mode of all specimens demonstrated mostly cohesive failure within the cement. The use of surface conditioners resulted in improvement in bond strength of Fuji II LC, while Photac-Fil Quick and Fuji IX GP showed no difference.

  5. Surface pH of resin-modified glass polyalkenoate (ionomer) cements.

    Science.gov (United States)

    Woolford, M J; Chadwick, R G

    1992-12-01

    The recently developed group of materials known as light-activated, or resin-modified, glass polyalkenoate (ionomer) cements have been produced in response to clinical demands for a command set cavity base material. This study monitored the surface pH of three commercially available resin-modified glass ionomer cements over a 60-min period following either mixing alone or mixing followed by a 30-s exposure to a curing lamp. The results indicate that each material behaves in a unique manner. For all materials and conditions the pH reached after a 60-min period was significantly (P pH of two of the materials (Baseline VLC and Vitrebond) as compared to the same materials in the uncured state. In the case of XR-Ionomer, however, no significant (P > 0.05) effect of light curing upon the surface pH was apparent. The precise clinical consequences of a low surface pH are unclear but may be an aetiological factor in postoperative pulpal sensitivity. It is therefore recommended that a sublining of a proprietary calcium hydroxide lining material should be placed routinely beneath these materials and every effort made to ensure effective light curing.

  6. The incorporation of nanoparticles into conventional glass-ionomer dental restorative cements.

    Science.gov (United States)

    Gjorgievska, Elizabeta; Van Tendeloo, Gustaaf; Nicholson, John W; Coleman, Nichola J; Slipper, Ian J; Booth, Samantha

    2015-04-01

    Conventional glass-ionomer cements (GICs) are popular restorative materials, but their use is limited by their relatively low mechanical strength. This paper reports an attempt to improve these materials by incorporation of 10 wt% of three different types of nanoparticles, aluminum oxide, zirconium oxide, and titanium dioxide, into two commercial GICs (ChemFil® Rock and EQUIA™ Fil). The results indicate that the nanoparticles readily dispersed into the cement matrix by hand mixing and reduced the porosity of set cements by filling the empty spaces between the glass particles. Both cements showed no significant difference in compressive strength with added alumina, and ChemFil® Rock also showed no significant difference with zirconia. By contrast, ChemFil® Rock showed significantly higher compressive strength with added titania, and EQUIA™ Fil showed significantly higher compressive strength with both zirconia and titania. Fewer air voids were observed in all nanoparticle-containing cements and this, in turn, reduced the development of cracks within the matrix of the cements. These changes in microstructure provide a likely reason for the observed increases in compressive strength, and overall the addition of nanoparticles appears to be a promising strategy for improving the physical properties of GICs.

  7. Applying glass ionomer cement to MTA flow™ and biodentine™ and its effects on the interface layer

    Science.gov (United States)

    Savitri, D.; Suprastiwi, E.; Margono, A.

    2017-08-01

    This study compared the interface layer formation between Glass Ionomer Cement (GIC) with Biodentine™ and between GIC with MTA Flow™. There were 10 samples in each group. Biodentine™ and MTA Flow™ were filled with GIC in plastic molds then incubated at a temperature of 37 °C with 100% humidity for 24 hours. Samples were sectioned vertically with diamond discs and examined using a scanning electron microscope. The statistical analysis was performed using the Mann-Whitney Test. In group 1, 80% of the samples showed a score of 1 and 20% of the samples showed a score of 2. In group 2, 30% of the samples showed a score of 2 and 70% of the samples showed a score of 3. This clinical trial showed that the formation of interface layers in Biodentine™ and MTA Flow™ were significantly different.

  8. Dental glass ionomer cement reinforced by cellulose microfibers and cellulose nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rafael M. [Departamento de Odontologia, Universidade Federal do Vale do Jequitinhonha e Mucuri, UFVJM, Diamantina CEP: 39100-000, MG (Brazil); Centro Avançado de Avaliação e Desenvolvimento de Biomateriais, BioMat, Universidade Federal do Vale do Jequitinhonha e Mucuri, UFVJM, Diamantina CEP: 39100-000, MG (Brazil); Pereira, Fabiano V., E-mail: fabianovp@ufmg.br [Departamento de Química, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte CEP: 31270-901, MG (Brazil); Mota, Felipe A.P. [Centro Avançado de Avaliação e Desenvolvimento de Biomateriais, BioMat, Universidade Federal do Vale do Jequitinhonha e Mucuri, UFVJM, Diamantina CEP: 39100-000, MG (Brazil); Watanabe, Evandro [Departamento de Odontologia Restauradora, Faculdade de Odontologia de Ribeirão Preto, USP, Ribeirão Preto CEP: 14040-904, SP (Brazil); Soares, Suelleng M.C.S. [Departamento de Odontologia, Universidade Federal do Vale do Jequitinhonha e Mucuri, UFVJM, Diamantina CEP: 39100-000, MG (Brazil); Santos, Maria Helena [Departamento de Odontologia, Universidade Federal do Vale do Jequitinhonha e Mucuri, UFVJM, Diamantina CEP: 39100-000, MG (Brazil); Centro Avançado de Avaliação e Desenvolvimento de Biomateriais, BioMat, Universidade Federal do Vale do Jequitinhonha e Mucuri, UFVJM, Diamantina CEP: 39100-000, MG (Brazil)

    2016-01-01

    The aim of this work was to evaluate if the addition of cellulose microfibers (CmF) or cellulose nanocrystals (CNC) would improve the mechanical properties of a commercial dental glass ionomer cement (GIC). Different amounts of CmF and CNC were previously prepared and then added to reinforce the GIC matrix while it was being manipulated. Test specimens with various concentrations of CmF or CNC in their total masses were fabricated and submitted to mechanical tests (to evaluate their compressive and diametral tensile strength, modulus, surface microhardness and wear resistance) and characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The incorporation of CmF in the GIC matrix did not greatly improve the mechanical properties of GIC. However, the addition of a small amount of CNC in the GIC led to significant improvements in all of the mechanical properties evaluated: compressive strength (increased up to 110% compared with the control group), elastic modulus increased by 161%, diametral tensile strength increased by 53%, and the mass loss decreased from 10.95 to 3.87%. Because the composites presented a considerable increase in mechanical properties, the modification of the conventional GIC with CNC can represent a new and promising dental restorative material. - Highlights: • Cellulose microfibers (CmF) and cellulose nanocrystals (CNC) were prepared. • The CmF and CNC were incorporated in commercial dental glass ionomer cement (GIC). • Small amount of CNC improved significantly all the mechanical properties evaluated. • Modified GIC with CNC can represent a new and promising dental restorative material.

  9. Antibacterial and physical properties of EGCG-containing glass ionomer cements.

    Science.gov (United States)

    Hu, Jieqiong; Du, Xijin; Huang, Cui; Fu, Dongjie; Ouyang, Xiaobai; Wang, Yake

    2013-10-01

    To evaluate the effect of the addition of epigallocatechin-3-gallate (EGCG) on the antibacterial and physical properties of glass ionomer cement (GIC). A conventional GIC, Fuji IX, was used as a control. EGCG was incorporated into GIC at 0.1% (w/w) and used as the experimental group. Chlorhexidine (CHX) was added into GIC at 1% (w/w) as a positive control. The anti-biofilm effect of the materials was assessed by a colorimetric technique (MTT assay) and scanning electron microscopy (SEM). The leaching antibacterial activity of the materials on Streptococcus mutans was evaluated by an agar-diffusion test. The flexural strength of the materials was evaluated using a universal testing machine and the surface microhardness was measured using a microhardness tester. The fluoride-releasing property of the materials was tested by ion chromatography. The optical density (OD) values of the GIC-EGCG group were significantly decreased at 4h compared with the GIC group, but only a slightly decreased tendency was observed at 24h (P>0.05). No inhibition zones were detected in the GIC group during the study period. Significant differences were found between each group (P0.05). These findings suggested that GIC-containing 0.1% (w/w) EGCG is a promising restorative material with improved mechanical properties and a tendency towards preferable antibacterial properties. Modification of the glass ionomer cements with EGCG to improve the antibacterial and physical properties showed some encouraging results. This suggested that the modification of GIC with EGCG might be an effective strategy to be used in the dental clinic. However, this was only an in vitro study and clinical trials would need to verify true outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Effect of Nanoclay Dispersion on the Properties of a Commercial Glass Ionomer Cement

    Science.gov (United States)

    Fareed, Muhammad A.; Stamboulis, Artemis

    2014-01-01

    Objective. The reinforcement effect of polymer-grade montmorillonite (PGV and PGN nanoclay) on Fuji-IX glass ionomer cement was investigated. Materials and Method. PGV and PGV nanoclays (2.0 wt%) were dispersed in the liquid portion of Fuji-IX. Fourier-transform infrared (FTIR) spectroscopy and gel permeation chromatography (GPC) were used to quantify acid-base reaction and the liquid portion of GIC. The mechanical properties (CS, DTS, FS, and E f) of cements (n = 20) were measured at 1 hour, 1 day, and 1 month. The microstructure was examined by cryo-SEM and TEM. Results. FTIR shows that the setting reaction involves the neutralisation of PAA by the glass powder which was linked with the formation of calcium and aluminium salt-complexes. The experimental GICs (C-V and C-N) exhibited mechanical properties in compliance to ISO standard requirement have higher values than Fuji-IX cement. There was no significant correlation of mechanical properties was found between C-V and C-N. The average Mw of Fuji-IX was 15,700 and the refractive index chromatogram peak area was 33,800. TEM observation confirmed that nanoclays were mostly exfoliated and dispersed in the matrix of GIC. Conclusion. The reinforcement of nanoclays in GICs may potentially produce cements with better mechanical properties without compromising the nature of polyacid neutralisation. PMID:25210518

  11. Effect of Nanoclay Dispersion on the Properties of a Commercial Glass Ionomer Cement

    Directory of Open Access Journals (Sweden)

    Muhammad A. Fareed

    2014-01-01

    Full Text Available Objective. The reinforcement effect of polymer-grade montmorillonite (PGV and PGN nanoclay on Fuji-IX glass ionomer cement was investigated. Materials and Method. PGV and PGV nanoclays (2.0 wt% were dispersed in the liquid portion of Fuji-IX. Fourier-transform infrared (FTIR spectroscopy and gel permeation chromatography (GPC were used to quantify acid-base reaction and the liquid portion of GIC. The mechanical properties (CS, DTS, FS, and Ef of cements (n = 20 were measured at 1 hour, 1 day, and 1 month. The microstructure was examined by cryo-SEM and TEM. Results. FTIR shows that the setting reaction involves the neutralisation of PAA by the glass powder which was linked with the formation of calcium and aluminium salt-complexes. The experimental GICs (C-V and C-N exhibited mechanical properties in compliance to ISO standard requirement have higher values than Fuji-IX cement. There was no significant correlation of mechanical properties was found between C-V and C-N. The average Mw of Fuji-IX was 15,700 and the refractive index chromatogram peak area was 33,800. TEM observation confirmed that nanoclays were mostly exfoliated and dispersed in the matrix of GIC. Conclusion. The reinforcement of nanoclays in GICs may potentially produce cements with better mechanical properties without compromising the nature of polyacid neutralisation.

  12. Therapeutic ion-releasing bioactive glass ionomer cements with improved mechanical strength and radiopacity

    Directory of Open Access Journals (Sweden)

    Maximilian eFuchs

    2015-10-01

    Full Text Available Bioactive glasses (BG are used to regenerate bone, as they degrade and release therapeutic ions. Glass ionomer cements (GIC are used in dentistry, can be delivered by injection and set in situ by a reaction between an acid-degradable glass and a polymeric acid. Our aim was to combine the advantages of BG and GIC, and we investigated the use of alkali-free BG (SiO2-CaO-CaF2-MgO with 0 to 50% of calcium replaced by strontium, as the beneficial effects of strontium on bone formation are well documented. When mixing BG and poly(vinyl phosphonic-co-acrylic acid, ions were released fast (up to 90% within 15 minutes at pH 1, which resulted in GIC setting, as followed by infrared spectroscopy. GIC mixed well and set to hard cements (compressive strength up to 35 MPa, staying hard when in contact with aqueous solution. This is in contrast to GIC prepared with poly(acrylic acid, which were shown previously to become soft in contact with water. Strontium release from GIC increased linearly with strontium for calcium substitution, allowing for tailoring of strontium release depending on clinical requirements. Furthermore, strontium substitution increased GIC radiopacity. GIC passed ISO10993 cytotoxicity test, making them promising candidates for use as injectable bone cements.

  13. Retentive Strength of Orthodontic Bands Cemented with Amorphous Calcium Phosphate-Modified Glass Ionomer Cement: An In-Vitro Study

    Directory of Open Access Journals (Sweden)

    Farzin Heravi

    2017-02-01

    Full Text Available Objectives: The aim of this study was to evaluate and compare the retentive strength of orthodontic bands cemented with amorphous calcium phosphate (ACP-containing and conventional glass ionomer cements (GICs. Materials and Methods: One-hundred-and-twenty mandibular third molars were embedded in acrylic resin blocks with the buccal surface of crowns perpendicular to the base of the mold. The teeth were randomly divided into four groups containing 30 teeth each. Groups 1 and 3 were cemented using conventional GIC and groups 2 and 4 were cemented using ACP-containing orthodontic cement. Groups 1 and 2 without thermocycling, and groups 3 and 4 after thermocycling (5000 cycles, 5° to 55°C were tested for retentive strength using a universal testing machine (crosshead speed of 1mm/minute. Two-way ANOVA was performed to compare the retentive strength of the groups.Results: The highest retentive strength belonged to group 1, and it was significantly higher than that of group 2 (P<0.001 and group 3 (P=0.02. The mean strength for group 2 was significantly lower than that of group 1 (P<0.001 and group 4 (P=0.04. Conclusions: Although retentive strength decreased when ACP was added to GIC, the retentive strength of the samples cemented by ACP-containing GIC was remarkably high after thermocycling. It seems that in the oral cavity, ACP-containing GIC provides sufficient strength to endure forces applied on posterior teeth.Keywords: Glass Ionomer Cements; Amorphous Calcium Phosphate; Retention

  14. Mechanical Properties of High-Viscosity Glass Ionomer Cement and Nanoparticle Glass Carbomer

    Directory of Open Access Journals (Sweden)

    Isabel Cristina Olegário

    2015-01-01

    Full Text Available Introduction. The lack of evidence regarding the best available material for restoring occlusal-proximal cavities in primary teeth leads to the development of new restorative material, with nanoparticles, in order to enhance mechanical properties, resulting in increased restoration longevity. Aim. To evaluate the Knoop hardness and bond strength of nanoparticles material glass carbomer cement (CAR and high-viscosity glass ionomer cement (GIC in sound and caries-affected dentin. Methods. Forty bovine incisors were selected and assigned into four groups (n=10: SGIC, sound dentin and GIC; SCAR, sound dentin and CAR; CGIC, caries-affected dentin and GIC; and CCAR, caries-affected dentin and CAR. All groups were submitted to microshear bond strength (MPa. Knoop hardness was also performed. Bond strength values were subjected to two-way ANOVA and Tukey test. Knoop hardness data were subjected to one-way ANOVA. Results. GIC presented higher Knoop hardness (P<0.001 and bond strength (P=0.027 than CAR. Also, both materials showed better performance in sound than in caries-affected substrates (P=0.001. The interaction between factors was not statistically different (P=0.494. Conclusion. Despite nanoparticles, CAR shows inferior performance as compared to GIC for the two properties tested in vitro. Moreover, sound dentin results in better bonding performance of both restorative materials evaluated.

  15. Influence of HEMA content on the mechanical and bonding properties of experimental HEMA-added glass ionomer cements

    Directory of Open Access Journals (Sweden)

    Ho-Nam Lim

    2009-08-01

    Full Text Available The purpose of this study was to determine the influence of incrementally added uncured HEMA in experimental HEMA-added glass ionomer cement (HAGICs on the mechanical and shear bond strength (SBS of these materials. Increasing contents of uncured HEMA (10-50 wt.% were added to a commercial glass ionomer cement liquid (Fuji II, GC, Japan, and the compressive and diametral tensile strengths of the resulting HAGICs were measured. The SBS to non-precious alloy, precious alloy, enamel and dentin was also determined after these surfaces were subjected to either airborne-particle abrasion (Aa or SiC abrasive paper grinding (Sp. Both strength properties of the HAGICs first increased and then decreased as the HEMA content increased, with a maximum value obtained when the HEMA content was 20% for the compressive strength and 40% for the tensile strength. The SBS was influenced by the HEMA content, the surface treatment, and the type of bonding surface (p<0.05. These results suggest that addition of an appropriate amount of HEMA to glass ionomer cement would increase diametral tensile strength as well as bond strength to alloys and teeth. These results also confirm that the optimal HEMA content ranged from 20 to 40% within the limitations of this experimental condition.

  16. Antibacterial effects and physical properties of glass-ionomer cements containing chlorhexidine for the ART approach.

    NARCIS (Netherlands)

    Takahashi, Y.; Imazato, S.; Kaneshiro, A.V.; Ebisu, S.; Frencken, J.E.F.M.; Tay, F.R.

    2006-01-01

    OBJECTIVES: Since atraumatic restorative treatment (ART) involves removal of carious lesions with manual instruments, improvement of filling materials to guarantee greater success should be considered. This study aimed to evaluate antibacterial, physical, and bonding properties of glass-ionomer

  17. Marginal Gaps between 2 Calcium Silicate and Glass Ionomer Cements and Apical Root Dentin.

    Science.gov (United States)

    Biočanin, Vladimir; Antonijević, Đorđe; Poštić, Srđan; Ilić, Dragan; Vuković, Zorica; Milić, Marija; Fan, Yifang; Li, Zhiyu; Brković, Božidar; Đurić, Marija

    2018-01-12

    The outcome of periapical surgery has been directly improved with the introduction of novel material formulations. The aim of the study was to compare the retrograde obturation quality of the following materials: calcium silicate (Biodentine; Septodont, Saint-Maur-des-Fosses, France), mineral trioxide aggregate (MTA+; Cerkamed Company, Stalowa Wola, Poland), and glass ionomer cement (Fuji IX; GC Corporation, Tokyo, Japan). Materials' wettability was calculated concerning the contact angles of the cements measured using a glycerol drop. Cements' porosity was determined using mercury intrusion porosimetry and micro-computed tomographic (μCT) imaging. Extracted upper human incisors were retrofilled, and μCT analysis was applied to calculate the volume of the gap between the retrograde filling material and root canal dentin. Experiments were performed before and after soaking the materials in simulated body fluid (SBF). No statistically significant differences were found among the contact angles of the studied materials after being soaked in SBF. The material with the lowest nanoporosity (Fuji IX: 2.99% and 4.17% before and after SBF, respectively) showed the highest values of microporosity (4.2% and 3.1% before and after SBF, respectively). Biodentine had the lowest value of microporosity (1.2% and 0.8% before and after SBF, respectively) and the lowest value of microgap to the root canal wall ([10 ± 30] × 10 -3  mm 3 ). Biodentine and MTA possess certain advantages over Fuji IX for hermetic obturation of retrograde root canals. Biodentine shows a tendency toward the lowest marginal gap at the cement-to-dentin interface. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Development of a novel aluminum-free glass ionomer cement based on magnesium/strontium-silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Ae [Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714 (Korea, Republic of); Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan 330-714 (Korea, Republic of); Abo-Mosallam, Hany A. [Glass Research Department, National Research Centre, Dokki, Cairo (Egypt); Lee, Hye-Young [Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan 330-714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Kim, Gyu-Ri [Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714 (Korea, Republic of); Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan 330-714 (Korea, Republic of); Kim, Hae-Won [Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714 (Korea, Republic of); Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan 330-714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Lee, Hae-Hyoung, E-mail: haelee@dku.edu [Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of)

    2014-09-01

    The effects of strontium substitution for magnesium in a novel aluminum-free multicomponent glass composition for glass ionomer cements (GICs) were investigated. A series of glass compositions were prepared based on SiO{sub 2}-P{sub 2}O{sub 5}-CaO-ZnO-MgO{sub (1-X)}-SrO{sub X}-CaF{sub 2} (X = 0, 0.25, 0.5 and 0.75). The mechanical properties of GICs prepared were characterized by compressive strength, flexural strength, flexural modules, and microhardness. Cell proliferation was evaluated indirectly by CCK-8 assay using various dilutions of the cement and rat mesenchyme stem cells. Incorporation of strontium instead of magnesium in the glasses has a significant influence on setting time of the cements and the properties. All mechanical properties of the GICs with SrO substitution at X = 0.25 were significantly increased, then gradually decreased with further increase of the amount of strontium substitution in the glass. The GIC at X = 0.25, also, showed an improved cell viability at low doses of the cement extracts in comparison with other groups or control without extracts. The results of this study demonstrate that the glass compositions with strontium substitution at low levels can be successfully used to prepare aluminum-free glass ionomer cements for repair and regeneration of hard tissues. - Highlights: • We developed multicomponent glass compositions for a novel aluminum-free glass ionomer cement (GIC). • The effects of MgO replacement with SrO in the glasses on the mechanical properties and cell proliferation were evaluated. • Substitution of MgO with SrO at low levels led to improvement of mechanical properties and cell viability of the cements. • Microstructural degradations in the cement matrix of the GICs with strontium at high levels were observed after aging.

  19. Novel approach of retension of maxillary molars with grade III furcation involvement with the use of glass ionomer cement

    Directory of Open Access Journals (Sweden)

    Tejaswini Patil

    2015-01-01

    Full Text Available Introduction: Treatment of advanced furcation invasion has always been questionable. The present case report used a GIC as an occlusive barrier in the treatment of maxillary Class III furcation defects. This procedure helps in saving a tooth which otherwise would have been deemed for extraction. Method: In this case report, glass ionomer cement is used as an occlusive barrier in the treatment of maxillary Class III furcation defects. One year follow-up of clinical and radiographic photo series results showed a reduction of gingival inflammation, tooth mobility and gain in attachment level with the use of glass ionomer. Conclusion: As GIC has many advantages over other restorative materials like low cost, antibacterial property, ease in use, biocompatibility with periodontal tissues, it is a good option in management of class III furcation cases.

  20. Clinical Performance of Viscous Glass Ionomer Cement in Posterior Cavities over Two Years

    Directory of Open Access Journals (Sweden)

    Roland Frankenberger

    2009-01-01

    Full Text Available In this controlled prospective clinical study the highly viscous glass ionomer cement Ketac Molar was clinically assessed in Class I and Class II cavities. Forty-nine subjects (mean age 32.3 years received 108 restorations placed by six operators in conventional Black I and II type cavities with undercuts after excavating primary lesions or after removing insufficient restorations. At baseline, and after 6, 12, and 24 months, restorations were assessed by two independent investigators according to modified USPHS codes and criteria. Impressions of the restorations were taken and epoxy replicas were made. Between the baseline and the 24-month recall, 51 representative samples were analyzed at 130 × magnification by use of a stereo light microscope (SLM. Recall rates were 83% after 6 months, 50% after 12 months, and 24% after 24 months. Failure rates after 24 months were 8% for Class I and 40% for Class II fillings, mainly due to bulk fracture at occlusally loaded areas (Kaplan Meier survival analysis. Significant changes over time were found for the criteria “surface roughness”, “marginal integrity”, “restoration integrity”, and “overall judgement” (P.05, Friedman 2-way ANOVA.

  1. Low-cost glass ionomer cement as ART sealant in permanent molars: a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Daniela HESSE

    2015-01-01

    Full Text Available Clinical trials are normally performed with well-known brands of glass ionomer cement (GIC, but the cost of these materials is high for public healthcare in less-affluent communities. Given the need to research cheaper materials, it seems pertinent to investigate the retention rate of a low-cost GIC applied as atraumatic restorative treatment (ART sealants in two centers in Brazil. Four hundred and thirty-seven 6-to-8-year-old schoolchildren were selected in two cities in Brazil. The children were randomly divided into two groups, according to the tested GIC applied in the first permanent molars. The retention rate was evaluated after 3, 6 and 12 months. Kaplan-Meier survival analysis and the log-rank test were performed. The variables were tested for association with sealant longevity, using logistic regression analyses (α = 5%. The retention rate of sealants after 12 months was 19.1%. The high-cost GIC brand presented a 2-fold-more-likely-to-survive rate than the low-cost brand (p < 0.001. Significant difference was also found between the cities where the treatments were performed, in that Barueri presented a higher sealant survival rate than Recife (p < 0.001. The retention rate of a low-cost GIC sealant brand was markedly lower than that of a well-known GIC sealant brand.

  2. Dental glass ionomer cement reinforced by cellulose microfibers and cellulose nanocrystals.

    Science.gov (United States)

    Silva, Rafael M; Pereira, Fabiano V; Mota, Felipe A P; Watanabe, Evandro; Soares, Suelleng M C S; Santos, Maria Helena

    2016-01-01

    The aim of this work was to evaluate if the addition of cellulose microfibers (CmF) or cellulose nanocrystals (CNC) would improve the mechanical properties of a commercial dental glass ionomer cement (GIC). Different amounts of CmF and CNC were previously prepared and then added to reinforce the GIC matrix while it was being manipulated. Test specimens with various concentrations of CmF or CNC in their total masses were fabricated and submitted to mechanical tests (to evaluate their compressive and diametral tensile strength,modulus, surface microhardness and wear resistance) and characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The incorporation of CmF in the GIC matrix did not greatly improve the mechanical properties of GIC. However, the addition of a small amount of CNC in the GIC led to significant improvements in all of the mechanical properties evaluated: compressive strength (increased up to 110% compared with the control group), elastic modulus increased by 161%, diametral tensile strength increased by 53%, and the mass loss decreased from 10.95 to 3.87%. Because the composites presented a considerable increase in mechanical properties, the modification of the conventional GIC with CNC can represent a new and promising dental restorative material.

  3. Surface antibacterial properties of glass ionomer cements used in atraumatic restorative treatment.

    Science.gov (United States)

    Davidovich, Esti; Weiss, Ervin; Fuks, Anna B; Beyth, Nurit

    2007-10-01

    Atraumatic restorative treatment (ART) is recommended for use worldwide, not only in developing countries where resources are not readily available, but also in more industrialized countries. The antibacterial properties of restorative dental materials may improve the restorative treatment outcome. Glass ionomer cement (GIC) has been advocated as the preferred restoration material for ART. The authors evaluated the antibacterial properties of restorative materials-three GICs and a zinc oxide eugenol (ZOE)-in vitro. Streptococcus mutans, Actinomyces viscosus and Enterococcus faecalis were the test microorganisms. The authors used a quantitative microtiter spectrophotometric assay to evaluate the antibacterial effect of the restorative materials using the direct contact test (DCT) of freshly prepared and one-week-aged materials. The freshly prepared GICs and ZOE showed no bacterial growth in all tested bacteria compared with a control. This effect lasted for at least one week for S. mutans and A. viscosus but not for E. faecalis. Conventional GICs used in ART showed antibacterial surface properties against cariogenic bacteria for at least one week. Further study on the long-term antimicrobial effects of GICs is needed. The antimicrobial properties of freshly prepared restorative materials and aged restorative materials used in ART have a potent effect against cariogenic bacteria. These properties have crucial importance in preventing secondary caries.

  4. SEALING ABILITY OF MINERAL TRIOXIDE AGGREGATE, CALCIUM PHOSPHATE CEMENT, AND GLASS IONOMER CEMENT IN THE REPAIR OF FURCATION PERFORATIONS

    Directory of Open Access Journals (Sweden)

    Prabath Singh

    2013-01-01

    Full Text Available Objectives: The purpose of this study was to evaluate the in vitro sealing ability of three repair materials. Mineral trioxide aggregate (MTA; Group A, calcium phosphate cement (CPC; Group B, and light cured glass ionomer cement (GIC; Group C when used to repair the perforation created in the pulpal floor of fifty extracted human permanent molars. Materials and methods: Preparation of access openings and furcation perforations were done, and the teeth divided into five experimental groups (A, B, C including two controls (D, E with ten samples in each group randomly. Following the repair procedure, the pulp chambers and access openings were filled with composite resin and immersed in 2% methylene blue solution for 48 hours. The teeth were sectioned longitudinally and the linear dye penetration measured under a stereo­microscope. Results: The comparison of the linear length of micro-leakage (mm among the experimental groups revealed no significant difference (p = 0.332. On calculating the percentage of depth of leakage to the total length of the perforation, it was observed that the mean leakage was 35.5% in Group A, 53.6% in Group B and the highest, 87.5% in Group C. The mean of leakage percentage was statistically significant by Kruskal-Wallis test (p = 0.003. The results indicated that the dye penetration used as furcation perforation repair material was least with mineral trioxide aggregate. Comparing the depth of penetration of dye, 50% of the Group A samples showed less than 25% of depth penetration. While 40% of Group B cases had more than 50% dye penetration. In our study, all Group C teeth had ≥ 50% dye penetration. Conclusions: The present study indicated that GIC had the greatest dye penetration followed by CPC and MTA. Mineral trioxide aggregate and calcium phosphate cement had comparatively better sealing ability than glass ionomer cement.

  5. Modified Glass Ionomer Cement with “Remove on Demand” Properties: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Shaza Bishti

    2017-01-01

    Full Text Available Objectives: To investigate the influence of different temperatures on the compressive strength of glass ionomer cement (GIC modified by the addition of silica-coated wax capsules; Material and Methods: Commercially-available GIC was modified by adding 10% silica-coated wax capsules. Test blocks were fabricated from pure cement (control and modified cement (test, and stored in distilled water (37 °C/23 h. The compressive strength was determined using a universal testing machine under different temperatures (37 °C, 50 °C, and 60 °C. The maximum load to failure was recorded for each group. Fractured surfaces of selected test blocks were observed by scanning electron microscopy (SEM; Results: For the control group, the average compressive strength was 96.8 ± 11.8, 94.3 ± 5.7 and 72.5 ± 5.7 MPa for the temperatures 37 °C, 50 °C and 60 °C respectively. The test group reported compressive strength of 64.8 ± 5.4, 47.1 ± 5.4 and 33.4 ± 3.6 MPa at 37 °C, 50 °C and 60 °C, respectively. This represented a decrease of 28% in compressive strength with the increase in temperature from 37 °C to 50 °C and 45% from the 37 °C to the 60 °C group; Conclusion: GIC modified with 10% silica-coated wax capsules and temperature application show a distinct effect on the compressive strength of GIC. Considerable compressive strength reduction was detected if the temperature was above the melting temperature of the wax core.

  6. Antibacterial effect and physical properties of chitosan and chlorhexidine-cetrimide-modified glass ionomer cements.

    Science.gov (United States)

    Mishra, Apurva; Pandey, Ramesh Kumar; Manickam, Natesan

    2017-01-01

    To compare antibacterial effect and physical properties of chitosan (CH) modified glass ionomer cement (GIC) (10% v/v), chlorhexidine-cetrimide (CHX-CT) modified GIC (2.5/2.5% w/w) and conventional GIC. A total of fifty healthy children of age 7-12 years were selected and randomly assigned to class A and B for in vivo analysis. Slabs of CH modified GIC (Group II) along with slabs of conventional GIC (Group I, control) were cemented on buccal surfaces of maxillary molars (split-mouth technique) for class A children. Similarly, slabs of CHX-CT modified GIC (Group III) were cemented against control (Group I, control) in class B children. Slabs were assessed after 48 h for microbial load of Streptococcus mutans and Lactobacillus (LB) on mitis salivarius-bacitracin and Man Rogosa Sharpe agar media, respectively. Agar diffusion test was done to access the antibacterial effect of each group against Streptococcus muatns and LB. Slabs and cylinders of GICs were made for in vitro evaluation of compressive and flexure strength in each group. Comparison was done by nonparametric Kruskal-Wallis analysis followed by Dunn's multiple comparison test. Categorical groups were compared by Chi-square test. The increase in antibacterial activity (Group II > III > I) (P I > III) were observed. In the view of findings, it is concluded that CH modified GIC would be effective in inhibiting the bacteria associated with dental caries along with improved physical properties when compared with CHX-CT modified GIC and conventional GIC.

  7. Antibacterial effect and physical properties of chitosan and chlorhexidine-cetrimide-modified glass ionomer cements

    Directory of Open Access Journals (Sweden)

    Apurva Mishra

    2017-01-01

    Full Text Available Aims: To compare antibacterial effect and physical properties of chitosan (CH modified glass ionomer cement (GIC (10% v/v, chlorhexidine-cetrimide (CHX-CT modified GIC (2.5/2.5% w/w and conventional GIC. Materials and Methods: A total of fifty healthy children of age 7–12 years were selected and randomly assigned to class A and B for in vivo analysis. Slabs of CH modified GIC (Group II along with slabs of conventional GIC (Group I, control were cemented on buccal surfaces of maxillary molars (split-mouth technique for class A children. Similarly, slabs of CHX-CT modified GIC (Group III were cemented against control (Group I, control in class B children. Slabs were assessed after 48 h for microbial load of Streptococcus mutans and Lactobacillus (LB on mitis salivarius-bacitracin and Man Rogosa Sharpe agar media, respectively. Agar diffusion test was done to access the antibacterial effect of each group against Streptococcus muatns and LB. Slabs and cylinders of GICs were made for in vitro evaluation of compressive and flexure strength in each group. Results: Comparison was done by nonparametric Kruskal–Wallis analysis followed by Dunn's multiple comparison test. Categorical groups were compared by Chi-square test. The increase in antibacterial activity (Group II > III > I (P I > III were observed. Conclusions: In the view of findings, it is concluded that CH modified GIC would be effective in inhibiting the bacteria associated with dental caries along with improved physical properties when compared with CHX-CT modified GIC and conventional GIC.

  8. Comparison of invitro cytotoxic and genotoxic potential of glass ionomer cement type IX on human lymphocytes before and after electron beam irradiation

    International Nuclear Information System (INIS)

    Hegde, Mithra N.; Brijesh; Shetty, Shilpa S.; Hegde, Nidarsh D.; Suchetha Kumari; Sanjeev, Ganesh

    2013-01-01

    Glass ionomer cements are widely used in dentistry as an adhesive restorative materials. However, the results of cytotoxicity and genotoxicity studies using these materials are inconclusive in literature. The aim of this study was to examine the cytotoxic and genotoxic potential of glass ionomer cement type IX available commercially before and after irradiation. Glass ionomer cement type IX was obtained commercially. Samples were prepared as per the ISO standard size of 25x2x2 mm using polytetrafluoroethylene teflon mould and divided into two groups - non irradiated and irradiated groups. The samples in radiated category were exposed to 10 KGy of electron beam irradiation at Microtron Centre, Mangalore University, Mangalore, India. For hemolysis assay, the samples were immersed in phosphate buffer saline and incubated at 370℃ for 24 hrs, 7 days and 14 days. 200 μL of 24 hr material extract was mixed with human peripheral blood lymphocyte tested for comet assay by single cell DNA comet assay and apoptosis by DNA diffusion assay. Hemolytic activity of non irradiated Glass ionomer cement type IX after 24 hrs, 7 days and 14 days was 78.18±10.13, 32.57±12.28, 38.56±4.68 respectively whereas hemolytic activity of irradiated Glass ionomer cement type IX after 24 hrs, 7 days and 14 days was 58.90±2.28, 35.04±1.09 and 34.26±7.71 respectively. The irradiation of Glass ionomer cement type IX with 10 KGy dose of electron beam irradiation did not show significant increase in the frequency of DNA damage when compared to that of the nonirradiated group. Apoptotic index did not show much difference between non-irradiated and irradiated groups. Taken together, we conclude that some components of glass ionomer cements show both genotoxic and cytotoxic effects. (author)

  9. Evaluation in vivo of biocompatibility of differents resin-modified cements for bonding orthodontic bands

    Directory of Open Access Journals (Sweden)

    JANAINA A. MESQUITA

    2017-10-01

    Full Text Available ABSTRACT The focus of this study was to test the hypothesis that there would be no difference between the biocompatibility of resin-modified glass ionomer cements. Sixty male Wistar rats were selected and divided into four groups: Control Group; Crosslink Group; RMO Group and Transbond Group. The materials were inserted into rat subcutaneous tissue. After time intervals of 7, 15 and 30 days morphological analyses were performed. The histological parameters assessed were: inflammatory infiltrate intensity; reaction of multinucleated giant cells; edema; necrosis; granulation reaction; young fibroblasts and collagenization. The results obtained were statistically analyzed by the Kruskal-Wallis and Dunn test (P<0.05. After 7 days, Groups RMO and Transbond showed intense inflammatory infiltrate (P=0.004, only Group RMO presented greater expression of multinucleated giant cell reaction (P=0.003 compared with the control group. After the time intervals of 15 and 30 days, there was evidence of light/moderate inflammatory infiltrate, lower level of multinucleated giant cell reaction and thicker areas of young fibroblasts in all the groups. The hypothesis was rejected. The Crosslink cement provided good tissue response, since it demonstrated a lower level of inflammatory infiltrate and higher degree of collagenization, while RMO demonstrated the lowest level of biocompatibility.

  10. Advances in glass-ionomer cements Avanços em cimentos de ionômero de vidro

    Directory of Open Access Journals (Sweden)

    Carel Leon Davidson

    2006-01-01

    Full Text Available This article describes the properties, advances and shortcomings of glass-ionomer cement as a restorative material. The adhesion of glass-ionomer to tooth structure is less technique sensitive than composite resins and its quality increases with time. Therefore glass-ionomer might turn out to the more reliable restorative material in minimal invasive dentistry based on adhesive techniques.Este artigo descreve as propriedades, avanços tecnológicos e limitações dos cimentos de ionômero de vidro como material restaurador. A adesão dos cimentos ionoméricos à estrutura dental é menos sensível às variações técnicas do que o mecanismo de adesão das resinas compostas e a qualidade do cimento se aprimora com o uso clínico. Portanto o cimento de ionômero de vidro torna-se o material restaurador mais confiável em procedimentos restauradores minimamente invasivos baseados em técnicas adesivas.

  11. Effect of antibacterial agents on the surface hardness of a conventional glass-ionomer cement

    Science.gov (United States)

    TÜZÜNER, Tamer; ULUSU, Tezer

    2012-01-01

    In atraumatic restorative treatment (ART), caries removal with hand excavation instruments is not as efficient as that with rotary burs in eliminating bacteria under the glass ionomer cements (GICs). Thus, different antibacterial agents have been used in recent studies to enhance the antibacterial properties of the GICs, without jeopardizing their basic physical properties. Objective The objective of this study was to evaluate the effect of antibacterial agents on the surface hardness of a conventional GIC (Fuji IX) using Vickers microhardness [Vickers hardness number (VHN)] test. Material and Methods Cetrimide (CT), cetylpyridinium chloride (CPC) and chlorhexidine (CHX) were added to the powder and benzalkonium chloride (BC) was added to the liquid of Fuji IX in concentrations of 1% and 2%, and served as the experimental groups. A control group containing no additive was also prepared. After the completion of setting reaction, VHN measurements were recorded at 1, 7, 15, 30, 60, and 90 days after storage in 37ºC distilled water. A one-way ANOVA was performed followed by a Dunnett t test and Tamhane T2 tests and also repeated measurements ANOVA was used for multiple comparisons in 95% confidence interval. Results VHN results showed significant differences between the control and the experimental groups at all time periods (phardness of set cements. Conclusions Despite the decreased microhardness values in all experimental groups compared to the controls after 7 up to 90 days, incorporating certain antibacterial agents into Fuji IX GIC showed tolerable microhardness alterations within the limitations of this in vitro study. PMID:22437677

  12. Mechanical, antibacterial and bond strength properties of nano-titanium-enriched glass ionomer cement

    Directory of Open Access Journals (Sweden)

    Rene GARCIA-CONTRERAS

    2015-06-01

    Full Text Available The use of nanoparticles (NPs has become a significant area of research in Dentistry. Objective The aim of this study was to investigate the physical, antibacterial activity and bond strength properties of conventional base, core build and restorative of glass ionomer cement (GIC compared to GIC supplemented with titanium dioxide (TiO2 nanopowder at 3% and 5% (w/w. Material and Methods Vickers microhardness was estimated with diamond indenter. Compressive and flexural strengths were analyzed in a universal testing machine. Specimens were bonded to enamel and dentine, and tested for shear bond strength in a universal testing machine. Specimens were incubated with S. mutans suspension for evaluating antibacterial activity. Surface analysis of restorative conventional and modified GIC was performed with SEM and EDS. The analyses were carried out with Kolmogorov-Smirnov, ANOVA (post-hoc, Tukey test, Kruskal-Wallis, and Mann Whitney. Results Conventional GIC and GIC modified with TiO2 nanopowder for the base/liner cement and core build showed no differences for mechanical, antibacterial, and shear bond properties (p>0.05. In contrast, the supplementation of TiO2 NPs to restorative GIC significantly improved Vickers microhardness (p<0.05, flexural and compressive strength (p<0.05, and antibacterial activity (p<0.001, without interfering with adhesion to enamel and dentin. Conclusion GIC supplemented with TiO2 NPs (FX-II is a promising material for restoration because of its potential antibacterial activity and durable restoration to withstand the mastication force.

  13. Evaluation of the cytotoxicity of selected conventional glass ionomer cements on human gingival fibroblasts.

    Science.gov (United States)

    Marczuk-Kolada, Grażyna; Łuczaj-Cepowicz, Elżbieta; Pawińska, Małgorzata; Hołownia, Adam

    2017-10-01

    Dentistry materials are the most frequently used substitutes of human tissues. Therefore, an assessment of dental filling materials should cover not only their chemical, physical, and mechanical characteristics, but also their cytotoxicity. To compare the cytotoxic effects of 13 conventional glass ionomer cements on human gingival fibroblasts. The assessment was conducted using the MTT test. Six samples were prepared for each material. Culture plates with cells and inserts with the materials were incubated at 37°C, 5% CO2, and 95% humidity for 24 h. Then the inserts were removed, 1 mL of MTT was added in the amount of 0.5 mg/1 mL of the medium, and the samples were incubated in the described conditions without light for 2 h. The optical density was measured with an absorption spectrophotometer at a wavelength of 560 nm. The cytotoxic effects of the Argion Molar was significantly stronger than the Fuji Triage (p = 0.007), Chemfil Molar (p Quick (p IX GP and Fuji IX Extra had a significantly stronger adverse effect than the Chemfil Molar (p = 0.014, p = 0.029, respectively) and Ionofil Molar AC Quick (p = 0.017, p = 0.034, respectively). The cements from the low cytotoxicity group were significantly more toxic vs materials whose presence resulted in fibroblast growth (p < 0.001). The research conducted indicates that, although the materials studied may belong to the same group, they are characterized by low, yet not uniform, cytotoxicity on human gingival fibroblasts. The toxic effects should not be assigned to a relevant group of materials, but each dentistry product should be evaluated individually.

  14. Preparation and evaluation of a high-strength biocompatible glass-ionomer cement for improved dental restoratives

    International Nuclear Information System (INIS)

    Xie, D; Zhao, J; Park, J; Chu, T M; Yang, Y; Zhang, J T

    2008-01-01

    We have developed a high-strength light-cured glass-ionomer cement (LCGIC). The polymer in the cement was composed of the 6-arm star-shape poly(acrylic acid) (PAA), which was synthesized using atom-transfer radical polymerization. The polymer was used to formulate with water and Fuji II LC filler to form LCGIC. Compressive strength (CS) was used as a screening tool for evaluation. Commercial glass-ionomer cement Fuji II LC was used as control. The results show that the 6-arm PAA polymer exhibited a lower viscosity in water as compared to its linear counterpart that was synthesized via conventional free-radical polymerization. This new LCGIC system was 48% in CS, 77% in diametral tensile strength, 95% in flexural strength and 59% in fracture toughness higher but 93.6% in shrinkage lower than Fuji II LC. An increasing polymer content significantly increased CS, whereas an increasing glass filler content increased neither yield strength nor ultimate CS except for modulus. During aging, the experimental cement showed a significant and continuous increase in yield strength, modulus and ultimate CS, but Fuji II LC only showed a significant increase in strength within 24 h. The experimental cement was very biocompatible in vivo to bone and showed little in vitro cytotoxicity. It appears that this novel LCGIC cement will be a better dental restorative because it demonstrated significantly improved mechanical strengths and better in vitro and in vivo biocompatibilities as compared to the current commercial LCGIC system

  15. Preparation and evaluation of a high-strength biocompatible glass-ionomer cement for improved dental restoratives

    Energy Technology Data Exchange (ETDEWEB)

    Xie, D; Zhao, J; Park, J; Chu, T M [Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University at Indianapolis, Indianapolis, IN 46202 (United States); Yang, Y; Zhang, J T [Department of Phamacology, School of Medicine, Indiana University, Indianapolis, IN 46202 (United States)], E-mail: dxie@iupui.edu

    2008-06-01

    We have developed a high-strength light-cured glass-ionomer cement (LCGIC). The polymer in the cement was composed of the 6-arm star-shape poly(acrylic acid) (PAA), which was synthesized using atom-transfer radical polymerization. The polymer was used to formulate with water and Fuji II LC filler to form LCGIC. Compressive strength (CS) was used as a screening tool for evaluation. Commercial glass-ionomer cement Fuji II LC was used as control. The results show that the 6-arm PAA polymer exhibited a lower viscosity in water as compared to its linear counterpart that was synthesized via conventional free-radical polymerization. This new LCGIC system was 48% in CS, 77% in diametral tensile strength, 95% in flexural strength and 59% in fracture toughness higher but 93.6% in shrinkage lower than Fuji II LC. An increasing polymer content significantly increased CS, whereas an increasing glass filler content increased neither yield strength nor ultimate CS except for modulus. During aging, the experimental cement showed a significant and continuous increase in yield strength, modulus and ultimate CS, but Fuji II LC only showed a significant increase in strength within 24 h. The experimental cement was very biocompatible in vivo to bone and showed little in vitro cytotoxicity. It appears that this novel LCGIC cement will be a better dental restorative because it demonstrated significantly improved mechanical strengths and better in vitro and in vivo biocompatibilities as compared to the current commercial LCGIC system.

  16. Mechanical performance of encapsulated restorative glass-ionomer cements for use with Atraumatic Restorative Treatment (ART

    Directory of Open Access Journals (Sweden)

    Gustavo Fabian MOLINA

    2013-06-01

    Full Text Available The Atraumatic Restorative Treatment (ART approach was suggested to be a suitable method to treat enamel and dentine carious lesions in patients with disabilities. The use of a restorative glass-ionomer with optimal mechanical properties is, therefore, very important. Objective To test the null-hypotheses that no difference in diametral tensile, compressive and flexural strengths exists between: (1 The EQUIA system and (2 The Chemfil Rock (encapsulated glass-ionomers; test materials and the Fuji 9 Gold Label and the Ketac Molar Easymix (hand-mixed conventional glass-ionomers; control materials; (3 The EQUIA system and Chemfil Rock. Material and Methods Specimens for testing flexural (n = 240 and diametral tensile (n=80 strengths were prepared according to standardized specifications; the compressive strength (n=80 was measured using a tooth-model of a class II ART restoration. ANOVA and Tukey B tests were used to test for significant differences between dependent and independent variables. Results The EQUIA system and Chemfil Rock had significantly higher mean scores for all the three strength variables than the Fuji 9 Gold Label and Ketac Molar Easymix (α=0.05. The EQUIA system had significant higher mean scores for diametral tensile and flexural strengths than the Chemfil Rock (α=0.05. Conclusion The two encapsulated high-viscosity glass-ionomers had significantly higher test values for diametral tensile, flexural and compressive strengths than the commonly used hand-mixed high-viscosity glass-ionomers.

  17. Mechanical performance of encapsulated restorative glass-ionomer cements for use with Atraumatic Restorative Treatment (ART).

    Science.gov (United States)

    Molina, Gustavo Fabián; Cabral, Ricardo Juan; Mazzola, Ignacio; Lascano, Laura Brain; Frencken, Jo E

    2013-01-01

    The Atraumatic Restorative Treatment (ART) approach was suggested to be a suitable method to treat enamel and dentine carious lesions in patients with disabilities. The use of a restorative glass-ionomer with optimal mechanical properties is, therefore, very important. To test the null-hypotheses that no difference in diametral tensile, compressive and flexural strengths exists between: (1) The EQUIA system and (2) The Chemfil Rock (encapsulated glass-ionomers; test materials) and the Fuji 9 Gold Label and the Ketac Molar Easymix (hand-mixed conventional glass-ionomers; control materials); (3) The EQUIA system and Chemfil Rock. Specimens for testing flexural (n = 240) and diametral tensile (n=80) strengths were prepared according to standardized specifications; the compressive strength (n=80) was measured using a tooth-model of a class II ART restoration. ANOVA and Tukey B tests were used to test for significant differences between dependent and independent variables. The EQUIA system and Chemfil Rock had significantly higher mean scores for all the three strength variables than the Fuji 9 Gold Label and Ketac Molar Easymix (α=0.05). The EQUIA system had significant higher mean scores for diametral tensile and flexural strengths than the Chemfil Rock (α=0.05). The two encapsulated high-viscosity glass-ionomers had significantly higher test values for diametral tensile, flexural and compressive strengths than the commonly used hand-mixed high-viscosity glass-ionomers.

  18. A Comparative Evaluation of Sorption, Solubility, and Compressive Strength of Three Different Glass Ionomer Cements in Artificial Saliva: Anin vitroStudy.

    Science.gov (United States)

    Bhatia, Hind P; Singh, Shivani; Sood, Shveta; Sharma, Naresh

    2017-01-01

    To evaluate and compare the sorption, solubility, and compressive strength of three different glass ionomer cements in artificial saliva - type IX glass ionomer cement, silver-reinforced glass ionomer cement, and zirconia-reinforced glass ionomer cement, so as to determine the material of choice for stress-bearing areas. A total of 90 cylindrical specimens (4 mm diameter and 6 mm height) were prepared for each material following the manufacturer's instructions. After subjecting the specimens to thermocycling, 45 specimens were immersed in artificial saliva for 24 hours for compressive strength testing under a universal testing machine, and the other 45 were evaluated for sorption and solubility, by first weighing them by a precision weighing scale (W1), then immersing them in artificial saliva for 28 days and weighing them (W2), and finally dehydrating in an oven for 24 hours and weighing them (W3). Group III (zirconomer) shows the highest compressive strength followed by group II (Miracle Mix) and least compressive strength is seen in group I (glass ionomer cement type IX-Extra) with statistically significant differences between the groups. The sorption and solubility values in artificial saliva were highest for glass ionomer cement type IX - Extra-GC (group I) followed by zirconomer-Shofu (group III), and the least value was seen for Miracle Mix-GC (group II). Zirconia-reinforced glass ionomer cement is a promising dental material and can be used as a restoration in stress-bearing areas due to its high strength and low solubility and sorption rate. It may be a substitute for silver-reinforced glass ionomer cement due to the added advantage of esthetics. This study provides vital information to pediatric dental surgeons on relatively new restorative materials as physical and mechanical properties of the new material are compared with conventional materials to determine the best suited material in terms of durability, strength and dimensional stability. This study

  19. Fluoride release and surface roughness of a new glass ionomer cement: glass carbomer

    Directory of Open Access Journals (Sweden)

    Célia Maria Condeixa de França LOPES

    2018-02-01

    Full Text Available Abstract Objective This study analyzed the fluoride release/recharge and surface roughness of glass carbomer compared to other encapsulated glass ionomer cements (GICs. Material and method The GICs tested were Glass Fill® (GC-GCP Dental, Riva Self Cure® (RS-SDI, Riva Light Cure® (RL-SDI, Equia Fil® (EF-GC Europe. The composite resin Luna® (LU-SDI was used as control. Five samples of each material were prepared and kept in a humidifier for 24 hours (37 °C, 100% relative humidity. Fluoride release was measured in two times: before (T1: days 1, 2, 7, 14 and after topical application of fluoride (T2: days 15, 16, 21 and 28. The surface roughness was also measured in both times (T1: days 1 and 14; T2: days 15 and 28. All samples were submitted to a single topical application of acidulated fluoride phosphate (Fluor Care - FGM. Two-way ANOVA with repeated measures and Tukey's post-test (p <0.05 were used in the statistical analysis. Result Equia Fil presented the highest fluoride release in both evaluation periods, with a higher release in T1 (p <0.05. The other materials tested, including glass carbomer presented similar release in both periods (T1 and T2. Regarding surface roughness, no significant differences were observed in the interaction between the material × time factors (T1 and T2 (p=0.966. Conclusion The GICs tested presented fluoride release and recharge ability and showed no surface roughness increase by topical application of fluoride.

  20. Effects of TiO2 nano glass ionomer cements against normal and cancer oral cells.

    Science.gov (United States)

    Garcia-Contreras, Rene; Scougall-Vilchis, Rogelio J; Contreras-Bulnes, Rosalia; Kanda, Yumiko; Nakajima, Hiroshi; Sakagami, Hiroshi

    2014-01-01

    Incorporation of nanoparticles (NPs) into the glass ionomer cements (GICs) is known to improve their mechanical and antibacterial properties. The present study aimed to investigate the possible cytotoxicity and pro-inflammation effect of three different powdered GICs (base, core build and restorative) prepared with and without titanium dioxide (TiO2) nanoparticles. Each GIC was blended with TiO2 nanopowder, anatase phase, particle size powder, and then subjected to the sterilization by autoclaving. Human oral squamous cell carcinoma cell lines (HCS-2, HSC-3, HSC-4, Ca9-22) and human normal oral cells [gingival fibroblast (HGF), pulp (HPC) and periodontal ligament fibroblast (HPLF)] were incubated with different concentrations of GICs in the presence or absence of TiO2 nanoparticles, and the viable cell number was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. Prostaglandin E2 was quantified by enzyme-linked immunosorbent assay (ELISA). Changes in fine cell structure were assessed by transmission electron microscopy. Cancer cells exhibited moderate cytotoxicity after 48 h of incubation, regardless of the type of GIC and the presence or absence of TiO2 NPs. GICs induced much lower cytotoxicity against normal cells, but induced prostaglandin E2 production, in a synergistic wanner with interleukin-1β. The present study shows acceptable to moderate biocompatibility of GICs impregnated with TiO2 nanoparticles, as well as its pro-inflammatory effects at higher concentrations. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. Release profile of synthesized coumarin derivatives as a novel antibacterial agent from glass ionomer cement (GIC)

    Science.gov (United States)

    Rahman, Fatimah Suhaily Abdul; Osman, Hasnah; Mohamad, Dasmawati

    2017-12-01

    Glass ionomer cements (GIC) are widely used as dental restorative materials due to their aesthetics features and fluoride content. However, a capability of fluoride content in GIC to inhibit bacteria growth in an oral environment was insufficient for a long term which may lead to secondary caries. Therefore, two types of synthesized coumarin derivatives were incorporated with GIC to act as new antibacterial agent. However prior to the antibacterial evaluation, this study investigated the release profile of GIC incorporated with 3-Acetylcoumarin (GIC-1) and hydrazinyl thiosemicarbazide of coumarin derivatives (GIC-2) at three different concentrations of 0.5, 1.0 and 1.5 wt% up to 30 days. At early incubation period, GIC-1 revealed a higher release profile at 0.5 % fabrication that reached almost 45 % of cumulative release for 8 hours observational. Meanwhile, a slightly different output was obtained for GIC-2 in which 1.0 % fabrication of coumarin gave a better release in the initial hour. However, the pattern was replaced by 0.5 % substitution after 4 hours incubation time. A substitution of 1.5 % coumarin seems to be low in releasing activity for all materials. Conversely, in a longer period 1.0 % fabrication was discovered to be the highest coumarin release among others fabrications for both materials. Filler particle size and porosity of the materials were considered to be the main factor that may affect the coumarin release. Nonetheless, both synthesized coumarin derivatives can be incorporated with GIC as their release profile look very promising. Ultimately, the coumarin derivatives could improve the properties of GIC.

  2. Improvement of the mechanical, tribological and antibacterial properties of glass ionomer cements by fluorinated graphene.

    Science.gov (United States)

    Sun, Li; Yan, Zhuanjun; Duan, Youxin; Zhang, Junyan; Liu, Bin

    2018-03-19

    The aim of this study was to improve the mechanical properties, wear resistance and antibacterial properties of conventional glass ionomer cements (GICs) by fluorinated graphene (FG), under the premise of not influencing their solubility and fluoride ion releasing property. FG with bright white color was prepared using graphene oxide by a hydrothermal reaction. Experimental modified GICs was prepared by adding FG to the traditional GICs powder with four different weight ratios (0.5wt%, 1wt%, 2wt% and 4wt%) using mechanical blending. Compressive and flexural strength of each experimental and control group materials were investigated using a universal testing machine. The Vickers microhardness of all the specimens was measured by a Vicker microhardness tester. For tribological properties of the composites, specimens of each group were investigated by high-speed reciprocating friction tester. Fluoride ion releasing was measured by fluoride ion selective electrode methods. The antibacterial effect of GICs/FG composites on selected bacteria (Staphylococci aureus and Streptococcus mutans) was tested with pellicle sticking method. The prepared GICs/FG composites with white color were successfully fabricated. Increase of Vickers microhardness and compressive strength and decrease of friction coefficient of the GICs/FG composites were achieved compared to unreinforced materials. The colony count against S. aureus and S. mutans decreased with the increase of the content of FG. And the antibacterial rate of S. mutans can be up to 85.27% when the FG content was 4wt%. Additionally, fluoride ion releasing property and solubility did not show significant differences between unreinforced and FG reinforced GICs. Adding FG to traditional GICs could not only improve mechanical and tribological properties of the composites, but also improve their antibacterial properties. In addition, the GICs/FG composites had no negative effect on the color, solubility and fluoride ion releasing

  3. Relationship between fluoride release rate and anti-cariogenic biofilm activity of glass ionomer cements.

    Science.gov (United States)

    Chau, Ngoc Phuong Thanh; Pandit, Santosh; Cai, Jian-Na; Lee, Min-Ho; Jeon, Jae-Gyu

    2015-04-01

    The aim of this study was to evaluate acidogenicity and composition of Streptococcus mutans biofilms on glass ionomer cements (GICs) and then to determine the relationship between the anti-S. mutans biofilm activity and fluoride release rate of the GICs. S. mutans biofilms were formed on discs prepared using five commercial GICs. Acid production and fluoride release rates of the biofilms on the GIC discs during biofilm formation (0-94 h) were determined. Next, 94-h-old S. mutans biofilms on GIC discs were analyzed to evaluate the biofilm composition (dry weight, bacterial cell number, and extra-cellular polysaccharide (EPS) amount) using microbiological, biochemical, and confocal laser scanning microscopy (CLSM) methods. Lastly, relationships between the fluoride release rate and changes in acidogenicity and composition of the biofilms were determined using a linear-fitting procedure. All of the tested GICs released fluoride ions. Of the GICs, the two that showed the highest fluoride release rates strongly affected acidogenicity, dry weight, and EPS formation of the biofilms. Furthermore, they reduced the bacterial and EPS bio-volumes and EPS thickness. However, the number of colony forming units (CFUs) of the biofilms was higher than that of the control. Generally, changes in the acidogenicity and composition (except for CFU count) of the biofilms on the GICs followed a negative linear-pattern of fluoride release rate-dependence (R=-0.850 to -0.995, R(2)=0.723-0.990). These results suggest that the anti-cariogenic biofilm activity of GICs is closely correlated with their fluoride release rate during biofilm formation. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. The effect of resin coating on the shear punch strength of restorative glass ionomer cements.

    Science.gov (United States)

    Pilo, Raphael; Ben-Amar, Ariel; Barnea, Anna; Blasbalg, Yaron; Levartovsky, Shifra

    2017-05-01

    The aim of the current study was to examine the shear punch strength (SPS) of high-strength glass ionomer cements (HSGICs) in relation to coating applications and duration of coating. I-Ninety specimens each of Fuji IX GP Fast (FIX Fast), Ionofil Molar AC (IM), Riva Self Cure (R) and Ketac Molar (KM) were prepared and divided into uncoated and coated groups, sub-divided into three sub-groups and incubated for 24 h, 1 week or 8 weeks (distilled water, 37 °C) before SPS. II-Ninety specimens each of uncoated and coated Fuji IX GP Extra were similarly prepared, divided into six sub-groups and incubated for 2 h, 24 h, 1 week, 1 month, 2 months or 3 months (artificial saliva, 37 °C) before SPS. Another 90 specimens were coated for 2 h, 24 h, 1 week, 1 month or 2 months, after which the coating was removed. Specimens were re-incubated in artificial saliva until the end of the 3-month period and then subjected to SPS. None of the materials gained extra strength when coated. Uncoated KM, IM (at all times) and FIX Fast (at 24 h) were stronger. Fuji IX GP Extra achieved 11.5 MPa after 2 h, which increased to 56.7 MPa after 24 h. The highest strength after 3 months was achieved when the coating was retained for 2 h (71.7 MPa). A resin coating will not positively affect the SPS of HSGICs. There is no need to protect HSGICs from water to gain extra strength unless the coating is retained for 2 h.

  5. The hardness and chemical changes in demineralized primary dentin treated by fluoride and glass ionomer cement

    Directory of Open Access Journals (Sweden)

    Gisele Fernandes DIAS

    Full Text Available Abstract Background Fluoride plays an important role in the control of dental caries. Aim To evaluate the chemical exchange between restoration of glass ionomer cement of high viscosity (GIC and primary dentin with application of sodium fluoride (NaF 2% through changes in hardness from uptake of calcium, phosphate and fluoride. Material and method Class I cavities were prepared in 40 sound primary molars, and the sample was divided into two groups (n=20 according to dentin condition: sound (1 and demineralized (2. Sub-groups (n=10 were formed to investigate the isolated action of the GIC or the association with NaF (F. This in vitro study examined the chemical exchange under two conditions, sound and demineralized dentin (pH cycling, to simulate the occurrence of mineral loss for the caries lesion. G1 and G2 received GIC restoration only; groups G1F and G2F received NaF before GIC restoration. The specimens were prepared for Knoop hardness test and micro-Raman spectroscopy. A two-way ANOVA test (α = 0.05 was used for statistical analysis. Micro-Raman data were qualitatively described. Result Increased hardness was observed in all the sites of direct contact with GIC in sound and demineralized dentin for all groups (p0.05. In the evaluation of micro-Raman, direct contact between GIC and dentin for sound and demineralized dentin resulted in increased peaks of phosphate. Conclusion The exchange between GIC and demineralized dentin may induce changes of mechanical properties of the substrate, and uptake of mineral ions (phosphate occurs without the influence of NaF.

  6. Marginal gap, cement thickness, and microleakage of 2 zirconia crown systems luted with glass ionomer and MDP-based cements.

    Science.gov (United States)

    Sener, Isil; Turker, Begum; Valandro, Luiz Felipe; Ozcan, Mutlu

    2014-01-01

    This in vitro study evaluated the marginal gap, cement thickness, and microleakage of glass-ionomer cement (GIC) and phosphate monomer-containing resin cement (MDP-RC) under 2 zirconia crown systems (Cercon and DC-Zirkon). Forty human premolars were prepared for all-ceramic zirconia crowns with a 1 mm circumferential finish line and a 1.5 mm occlusal reduction. The crowns (n = 10 per group) from each zirconia system were randomly divided into 2 groups and cemented either with GIC (Vivaglass CEM) or MDP-RC (Panavia F 2.0) cement. The cemented crowns were thermocycled 5000 times (5°-55°C). The crowns were immersed in 0.5% basic fuchsine dye solution for 24 hours and sectioned buccolingually and mesiodistally. Specimens were examined under optical microscope (100X). Data were analyzed using Student t-test and chi-square tests (α = 0.05). Mean marginal gap values for Cercon (85 ± 11.4 μm) were significantly higher than for DC-Zircon (75.3 ± 13.2 μm) (P = 0.018). The mean cement thickness values of GIC (81.7 ± 13.9 μm) and MDP-RC (78.5 ± 12.5 μm) were not significantly different (P = 0.447). Microleakage scores did not demonstrate significant difference between GIC (P = 0.385) and MDP-RC (P = 0.631) under Cercon or DC-Zircon. Considering the cement thickness values and microleakage scores obtained, both zirconia crown systems could be cemented in combination with either GIC or MDP-RC.

  7. Evaluation of Marginal Microgaps of Two Glass-ionomer Cements (GIC in Dogs and Sheep in vivo

    Directory of Open Access Journals (Sweden)

    M. Figurová

    2006-01-01

    Full Text Available The aim of the experiment was to evaluate the marginal microgaps of two ionomer cements: Kavitan Plus (Spofa Dental and Vitremer (3M ESPE in dog and sheep dentition in vivo. Dentitions of sheep and dogs were restored in vivo with a conventional, glass polyalkenoic, chemically activated cement Kavitan Plus with hydrophilic properties capable and with a resinmodified glass-ionomer cement Vitremer with light-induced polymerization and autopolymerization reaction of methyl metacrylate group. The parameters of glass-ionomers were evaluated in 6 groups of animals, 2 animals in each, at various time intervals (after 1, 4 and 6 months in dogs and 3, 6 and 9 months in sheep, starting from the beginning of the experiment. The restorative materials were placed to buccal surfaces of permanent teeth. At the intervals specified, under general injection anaesthesia, throughout the experiment we extracted 24 teeth from sheep and 30 from dogs. When processing the samples of dog's teeth two samples were damaged. One month after the placement, Kavitan plus restorations became loose only in one case in dogs (80% successfulness. In sheep two Kavitan Plus restorations became loose after 9 months (50% successfulness. During the experiment we observed neither cracks nor marginal discoloration in both Kavitan Plus and Vitremer restorations. Statistically significant (P = 0.04 differences were observed in the dentin of dogs receiving glass-ionomer Vitremer restorations which exhibited lower marginal microgaps. The remaining results were non- significant (ANOVA test. Fluoride ions released from GIC support the treatment of dental hard tissues. These materials could be used as definitive restorations of class A - D cavities in dogs and dental cervical caries in sheep as well as underlying layers ofcomposite and amalgam materials.

  8. Effect of chlorhexidine disinfectant on bond strength of glass ionomer cement to dentin using atraumatic restorative treatment.

    Science.gov (United States)

    Wadenya, Rose; Menon, Sandhya; Mante, Francis

    2011-01-01

    This study investigated the effect of 2% chlorhexidine gluconate (CHX) disinfectant on bond strength (BS) of high-density glass ionomer cement (HDGIC) to dentin following atraumatic restorative treatment (ART) and conventional preparations. Specimens were divided into four groups: Group 1--ART (control); Group 2--ART with CHX disinfection; Group 3--Conventional (control); Group 4--Conventional with CHX disinfection. HDGIC was packed in cylindrical molds placed over flat dentin surfaces; BS was measured after seven days. ART-prepared dentin surfaces disinfected with CHX provided bonding to HDGIC that was comparable to untreated dentin and to conventionally prepared dentin.

  9. The effect of CPP-ACP paste on the surface hardness of glass ionomer cement when immersed in orange juice

    Science.gov (United States)

    Nadia, A. A.; Eriwati, Y. K.; Damiyanti, M.

    2017-08-01

    This study aims to identify the effect of CPP-ACP paste on the surface hardness of glass ionomer cement (GIC) when immersed in orange juice. Eighteen specimens of Fuji IX GIC were divided into three groups: no CPP-ACP added (group A); CPP-ACP applied for three minutes (group B); and CPP-ACP applied for 30 minutes (group C). Specimens were immersed in orange juice and tested for surface hardness using a Vickers hardness tester. Data were analyzed using the one-way ANOVA (p = orange juice consumption.

  10. Comparative evaluation for microleakage between Fuji-VII glass ionomer cement and light-cured unfilled resin: A combined in vivo in vitro study

    Directory of Open Access Journals (Sweden)

    Ashwin R

    2007-06-01

    Full Text Available Glass ionomer cement, besides being used as restorative material, can also be used as pit and fissure sealant. The use of glass ionomer cement as pit and fissure sealant has added benefit by its fluoride-releasing property that results in increased resistance of the fissures to demineralize. The capacity of a sealant to prevent microleakage into the fissure is important, since microleakage may initiate and support a carious lesion beneath the sealant. The study was carried out to compare marginal microleakage between Fuji-VII glass ionomer cement (G C Corporation, Tokyo, Japan and the conventional light-cured unfilled resin as pit and fissure sealants (3M Concise, 3M Dental Products, St. Paul, USA. The dye used was 2% methylene blue (Qualigens Fine Chemicals, Mumbai, India. The teeth were sectioned and studied under the stereomicroscope. The result revealed that there was no difference in microleakage ( P > 0.05 between the two materials.

  11. [Clinical evaluation of fluor protector and glass-ionomer cement used as pit and fissure sealant for preventing pit and fissure caries in children].

    Science.gov (United States)

    Ji, Pei-hong; Xu, Quan-lin; Ba, Yong

    2007-08-01

    To study the clinical effect of the fluor protector and glass-ionomer cement used as pit and fissure sealant for preventing pit and fissure caries in children. 622 health permanent teeth in 6-8 years old children were divided into three groups. Children in the experimental group A (n=207,335 teeth) underwent fluor protector every six months, experimental group B(n=205, 327 teeth) with glass-ionomer cement used as pit and fissure sealant and children in the control group(n=210, 354 teeth) underwent no treatment. The incidence of caries were compared among the three groups using SPSS10.0 software package after 3 years. After 3 years, the incidence of caries in A and B experimental groups were lower than in the control group, the difference was significant (P0.05). Fluor protector and glass-ionomer cement used as pit and fissure sealant also have good clinical effect in preventing caries.

  12. Comparison of antibacterial activity of glass-ionomer cement and amalgam in class two restorations by Streptococcus mutans count analysis at fixed intervals: an in vivo study.

    Science.gov (United States)

    Tegginmani, Veeresh S; Goel, Beenarani; Uppin, Virendra; Horatti, Priya; Kumar, L S Vijay; Nainani, Abhinav

    2013-05-01

    The purpose of the present study was to determine the influence of glass ionomer cement and amalgam restoration on the level of Streptococcus mutans in the interproximal plaque at periodic intervals and also to compare these values. Seventeen adult patients having two proximal carious lesions on any quadrant of the jaw (either opposing or contralateral) were selected for this study. Carious lesions were diagnosed clinically and from bitewing radiographs. Of the two carious lesions, one was restored with glass ionomer cermet cement and another with amalgam. Plaque samples were collected from interproximal areas before and at 1 month and 3 months post-treatment in a test tube containing 5 ml of modified Stuart's liquid transport fluid. Identification of organisms in the colony was done after Gram staining. Comparison of values before restoration and after restoration at 1 month interval showed a statistically significant decrease (ppp>0.05). Glass ionomer restorations have definite advantage over the amalgam, as the tunnel preparation is more conservative and fluoride release from the glass ionomer inhibits the growth of S. mutans in the plaque. Glass ionomer cement should be preferred over amalgam in conservatively prepared restorations as it reduces the microbial activities due to fluoride release.

  13. Effect of one-bottle adhesive systems on the fluoride release of a resin-modified glass ionomer Efeito dos sistemas adesivos de frasco único na liberação de flúor de um cimento de ionômero de vidro modificado por resina

    Directory of Open Access Journals (Sweden)

    Linda Wang

    2004-03-01

    Full Text Available A dhesive systems associated to resin-modified glass ionomer cements are employed for the achievement of a higher bond strength to dentin. Despite this benefit, other properties should not be damaged. This study aimed at evaluating the short-time fluoride release of a resin-modified glass ionomer cement coated with two one-bottle adhesive systems in a pH cycling system. Four combinations were investigated: G1: Vitremer (V; G2: Vitremer + Primer (VP; G3: Vitremer + Single Bond (VSB and G4: Vitremer + Prime & Bond 2.1 (VPB. SB is a fluoride-free and PB is a fluoride-containing system. After preparation of the Vitremer specimens, two coats of the selected adhesive system were carefully applied and light-cured. Specimens were immersed in demineralizing solution for 6 hours followed by immersion in remineralizing solution for 18 hours, totalizing the 15-day cycle. All groups released fluoride in a similar pattern, with a greater release in the beginning and decreasing with time. VP showed the greatest fluoride release, followed by V, with no statistical difference. VSB and VPB released less fluoride compared to V and VP, with statistical difference. Regardless the one-bottle adhesive system, application of coating decreased the fluoride release from the resin-modified glass ionomer cements. This suggests that this combination would reduce the beneficial effect of the restorative material to the walls around the restoration.Sistemas adesivos são associados aos cimentos de ionômero de vidro modificados por resina para a obtenção de maior resistência adesiva à dentina. Apesar deste benefício, outras propriedades não devem ser prejudicadas. Este estudo se propôs a avaliar a liberação de flúor a curto prazo de um cimento de ionômero de vidro modificado por resina coberto com dois diferentes sistemas adesivos em um modelo de ciclagem de pH. Quatro associações foram testadas: G1: Vitremer (V; G2: Vitremer + Primer (VP; G3: Vitremer + Single

  14. Comparison of Cytotoxicity of New Nanohybrid Composite, Giomer, Glass Ionomer and Silver Reinforced Glass Ionomer using Human Gingival Fibroblast Cell Line.

    Science.gov (United States)

    Koohpeima, Fatemeh; Mokhtari, Mohammad Javad; Doozandeh, Maryam; Jowkar, Zahra; Yazdanshenas, Fatemeh

    The objective of this study was to investigate the cytotoxic effects of new nanohybrid composite, giomer, conventional and resin modified and silver reinforced glass ionomer cements and compare the biocompatibility of these dental materials in cell culture. Five cylindrical specimens were made of each material, using a mold (2mm. thick and 5 mm in diameter). For HGF, cells were cultured in RPMI-1640 medium. After attaining 80% confluence, cells were treated with different doses of five tested materials for 24h. Then cell cytotoxicity was assessed using MTT assay. The data were analyzed using Kruskal-Wallis and Dunn test. The materials evaluated on HGF cells, showed significantly more cytotoxicity in silver reinforced glass ionomer but nanohybrid composite shows mild cytotoxic effect. However, giomer shows no significant cytotoxicity and conventional and resin modified glass ionomer enhance cell proliferation. Silver reinforced glass ionomer induced a significant high cytotoxic effect over a wide range of concentration. Therefore, higher attention should be focused on this restorative dental material, which should be chosen for further investigations.

  15. Biaxial Flexural Strength of High-Viscosity Glass-Ionomer Cements Heat-Cured with an LED Lamp during Setting

    Directory of Open Access Journals (Sweden)

    Gustavo Fabián Molina

    2013-01-01

    Full Text Available Adding heat to glass ionomers during setting might improve mechanical properties. The aim was to compare the biaxial flexural strength (BFS between and within four glass ionomers, by time of exposure to a high-intensity LED light-curing unit. Materials and methods. Samples of Fuji 9 Gold Label, Ketac Molar Easymix, ChemFil Rock, and the EQUIA system were divided into three treatment groups (n=30: without heating (Group 1, heated with LED lamp of 1400 mW/cm2 for 30 s while setting (Group 2, and heated with LED lamp of 1400 mW/cm2 for 60 s while setting (Group 3. Samples were stored for 48 hours in distilled water at 37°C until tested. BFS was tested, using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed, using ANOVA test with the Bonferroni correction (α=0.05. Heating the glass-ionomer cements with an LED curing light of 1400 mW/cm2 during setting for 30 s increased the BFS value of all GICs. No statistically significant difference in mean BFS scores was found between the EQUIA system and ChemFil Rock at 30 s and 60 s. The mean BFS value was statistically significantly higher for the EQUIA system and ChemFil Rock than for Fuji 9 Gold Label and Ketac Molar Easymix at all exposure times.

  16. Kinetics of fluoride ion release from dental restorative glass ionomer cements: the influence of ultrasound, radiant heat and glass composition.

    Science.gov (United States)

    Thanjal, N K; Billington, R W; Shahid, S; Luo, J; Hill, R G; Pearson, G J

    2010-02-01

    To compare the effect of ultrasonic setting with self curing on fluoride release from conventional and experimental dental glass ionomer cements. To compare hand mixed and capsule mixing and the effect of replacing some of the reactive glass with zirconia. In a novel material which advocated using radiant heat to cure it, to compare the effect of this with ultrasound. To evaluate the effect of ultrasound on a glass ionomer with fluoride in the water but not in the glass. 10 samples of each cement were ultrasonically set for 55 s; 10 controls self cured for 6 min. Each was placed in 10 ml of deionised water which was changed at 1, 3, 7, 14, 21, 28 days. The solution fluoride content was measured using a selective ion electrode. All ultrasound samples released more fluoride than the controls. Release patterns were similar; after a few days, cumulative fluoride was linear with respect to t(1/2). Slope and intercept of linear regression plots increased with ultrasound. With radiant heat the cement released less fluoride than controls. The effect of ultrasound on cement with F in water increased only slope not intercept. Zirconia addition enhances fluoride release although the cement fluorine content is reduced. Comparison of capsule and hand mixing showed no consistent effect on fluoride release. Ultrasound enhances fluoride release from GICs. As heat has an opposite effect the heat from ultrasound is not its only action. The lesser effect on cement with fluoride only in the water indicates that of ultrasound enhances fluoride release from glass.

  17. A preliminary clinical trial using flowable glass-ionomer cement as a liner in proximal-ART restorations: the operator effect

    NARCIS (Netherlands)

    Bonifácio, C.C.; Hesse, D.; Bönecker, M.; van Loveren, C.; van Amerongen, W.E.; Raggio, D.P.

    2013-01-01

    .Objectives: This in vivo study was carried out to assess the influence of the operator experience on the survival rate of proximal-ART restorations using a two-layer technique to insert the glass-ionomer cement (GIC). Study Design: Forty five proximal cavities in primary molars were restored in a

  18. Two-year survival rates of proximal atraumatic restorative treatment restorations in relation to glass ionomer cements and postrestoration meals consumed

    NARCIS (Netherlands)

    Kemoli, A.M.; Opinya, G.N.; van Amerongen, W.E.; Mwalili, S.M.

    2011-01-01

    Purpose: The purpose of this study was to investigate the influence of 3 glass ionomer cement (GIC) brands and the postrestoration meal consumed on the survival rate of proximal atraumatic restorative treatment (ART) restorations. Methods: A total of 804 proximal restorations were placed in primary

  19. The influence of particle size and fluorine content of aluminosilicate glass on the glass ionomer cement properties.

    Science.gov (United States)

    De Caluwé, T; Vercruysse, C W J; Fraeyman, S; Verbeeck, R M H

    2014-09-01

    Glass ionomer cements (GIC) are clinically accepted dental restorative materials mainly due to their direct chemical adhesion to both enamel and dentin and their ability to release fluoride. However, their mechanical properties are inferior compared to those of amalgam and composite. The aim of this study is to investigate if combinations of nano- and macrogranular glass with different compositions in a glass ionomer cement can improve the mechanical and physical properties. Glasses with the composition 4.5 SiO2-3 Al2O3-1.5 P2O5-(5-x) CaO-x CaF2 (x=0 and x=2) were prepared. Of each type of glass, particles with a median size of about 0.73 μm and 6.02 μm were made. The results show that the setting time of GIC decreases when macrogranular glass particles are replaced by nanogranular glass particles, whereas the compressive strength and Young's modulus, measured after 24 h setting, increase. The effects are more pronounced when the nanogranular glass particles contain fluoride. After thermocycling, compressive strength decreases for nearly all formulations, the effect being most pronounced for cements containing nanogranular glass particles. Hence, the strength of the GIC seems mainly determined by the macrogranular glass particles. Cumulative F--release decreases when the macrogranular glass particles with fluoride are replaced by nanogranular glass particles with(out) fluoride. The present study thus shows that replacing macro- by nanogranular glass particles with different compositions can lead to cements with approximately the same physical properties (e.g. setting time, consistency), but with different physicochemical (e.g. F--release, water-uptake) and initial mechanical properties. On the long term, the mechanical properties are mainly determined by the macrogranular glass particles. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. A comparative survey on the increased fracture resistance of amalgam restored teeth using three types of Glass Ionomer as adhesive liners

    Directory of Open Access Journals (Sweden)

    Shafiee F.

    2004-08-01

    Full Text Available Statement of Problem: Because dental amalgam does not adhere to tooth structure, using adhesive cements in amalgam-bonded restorations have been increased. Purpose: The goal of this in-vitro study was to compare the effects of three types of glass ionomer as adhesive liners as well as varnish liner in increasing fracture resistance of teeth restored with amalgam. Materials and Methods: Seventy extracted human maxillary premolars were selected and MOD cavities were prepared on them excluding ten intact teeth as positive control group and ten cavity prepared teeth without restoration as negative control group. All the prepared teeth were then restored with spherical amalgam (gs.80 with one of the following liners silver alloy glass ionomer liner, conventional glass ionomer liner, varnish liner, resin-modified glass ionomer and resin-modified glass ionomer with delayed light curing. The teeth were stored in 37C distilled water for 7 days and were then loaded under compressive strength using an Instron testing machine. The force required to fracture teeth were recorded and the data were analyzed statistically using ANOVA and Tukey HSD tests. Results: Statistically significant differences were observed in fracture resistance between restored and non-restored samples. Comparisons between groups attributed significant effects to resin-modified glass ionomer in increasing fracture resistance of amalgam restored teeth (P<0.05. In most specimens, one cusp was separated from tooth structure whereas amalgam remained bonded to the intact cusp. Conclusion: According to these findings, resin-modified glass ionomer put a statistically significant effect in fracture resistance of amalgam-restored teeth.

  1. Comparative evaluation of tensile bond strength and microleakage of conventional glass ionomer cement, resin modified glass ionomer cement and compomer: An in vitro study.

    Science.gov (United States)

    Rekha, C Vishnu; Varma, Balagopal; Jayanthi

    2012-07-01

    The purpose of this study was to evaluate and compare the tensile bond strength and microleakage of Fuji IX GP, Fuji II LC, and compoglass and to compare bond strength with degree of microleakage exhibited by the same materials. Occlusal surfaces of 96 noncarious primary teeth were ground perpendicular to long axis of the tooth. Preparations were distributed into three groups consisting of Fuji IX GP, Fuji II LC and Compoglass. Specimens were tested for tensile bond strength by mounting them on Instron Universal Testing Machine. Ninety-six primary molars were treated with Fuji IX GP, Fuji II LC, and compoglass on box-only prepared proximal surface. Samples were thermocycled, stained with dye, sectioned, and scored for microleakage under stereomicroscope. ANOVA and Bonferrani correction test were done for comparisons. Pearson Chi-square test and regression analysis were done to assess the association between the parameters. Compoglass showed highest tensile strength and Fuji II LC showed least microleakage. There was a significant difference between the three groups in tensile strength and microleakage levels. The correlation between tensile strength and microleakage level in each group showed that there was a significant negative correlation only in Group 3. Fuji II LC and compoglass can be advocated in primary teeth because of their superior physical properties when compared with Fuji IX GP.

  2. Variations in powder/liquid ratio of a restorative and luting glass ionomer cement in dental clinics.

    Science.gov (United States)

    Iqbal, Kefi; Islam, Sana Adeba; Ahmad, Iqbal; Asmat, Maria; Aminuddin, Mohammad

    2009-07-01

    A survey was conducted to ascertain the variations practiced in powder/liquid (P/L) ratio of Glass Ionomer Cement (GIC) used as restorative and luting material in dental clinics of Karachi. It has been observed that in the use of GIC brands, 33% (Fuji 2) and 36% (Gold Label 2) of the dentists, did not follow the recommended P/L ratios for restorative purposes. Similarly, 67% (Fuji 1) and 29% (Gold Label 1) did not follow the recommended ratios for luting purposes. The wide variations practiced in P/L mixing ratios against the recommended ratio for restorative purpose (approximately 1:2) and that for luting purpose (~1:1 to 2:1) may affect the performance characteristics of the material.

  3. Effect of salivary pH on diametral tensile strength of glass ionomer cement coated with coating agent

    Science.gov (United States)

    Farahdillah; Triaminingsih, S.; Eriwati, Y. K.

    2017-08-01

    The aim of this study was to analyze the effect of salivary pH to diametral tensile strength of glass ionomer cement (GIC) coated with a coating agent. GIC specimens coated with varnish and nano-filled coating agent were stored in artificial saliva at pH values of 4.5, 5.5, and 7 for 24 h at 37°C, then the diametral tensile strength was tested by universal testing machine. Results showed that there was no significant difference in the diametral tensile strength of the GIC coated with varnish and nano-filled coating agent with decreasing of salivary pH (p tensile strength of GIC coated by varnish or nano-filled coating agent

  4. A comparative study of retentive strengths of zinc phosphate, polycarboxylate and glass ionomer cements with stainless steel crowns - An in vitro study

    Directory of Open Access Journals (Sweden)

    Raghunath Reddy M

    2010-01-01

    Full Text Available An in vitro study was conducted to compare the retentive strengths of zinc phosphate, polycarboxylate and glass ionomer cements using Instron universal testing machine. Thirty preformed and pretrimmed stainless steel crowns were used for cementation on 30 extracted human primary molars which were divided into three groups of 10 teeth in each group. Then the teeth were stored in artificial saliva and incubated at 37°C for 24 h. A load was applied on to the crown and was gradually increased till the crown showed dislodgement, and then the readings were recorded using Instron recorder and analyzed for statistical significance. The surface area of crown was measured by graphical method. The retentive strength was expressed in terms of kg/cm 2 , which was calculated by the equation load divided by area. Retentive strengths of zinc phosphate (ranged from a minimum of 16.93 to amaximum of 28.13 kg/cm 2 with mean of 21.28 kg/cm 2 and glass ionomer cement (minimum of 13.69 - 28.15 kg/cm 2 with mean of 20.69 kg/cm 2 were greater than that of polycarboxylate cement (minimum of 13.26 - 22.69 kg/cm 2 with mean of 16.79 kg/cm 2 . Negligible difference (0.59 kg/cm 2 of retentive strength was observed between zinc phosphate (21.28 kg/cm 2 and glass ionomer cements (20.69 kg/cm 2 . Glass ionomer cements can be recommended for cementation of stainless steel crowns because of its advantages and the retentive strength was almost similar to that of zinc phosphate cement.

  5. Evaluation of coronal microleakage of four different glass-ionomer cements in endodontically treated teeth.

    Science.gov (United States)

    Görgül, G; Dolar, K; Uçtaşli, M; Tinaz, C; Cankaya, F; Kinoğlu, T

    1996-09-01

    Four different glass-ionomer materials were evaluated for coronal microleakage in permanent lingual access restorations of endodontically treated anterior teeth. Forty extracted human anterior teeth were randomly divided into four groups following chemomechanical preparations and obturations with gutta-percha and sealer. Logobond, Aqua Ionobond, Ionoseal and Ketac-Cem were placed in 2 mm thickness over the gutta-percha obturation from cemento-enamel junction. Eight teeth were used as negative and positive controls. The teeth were thermocycled, coated with nail varnish and paraffin except around the access preparation. Next they were placed in dye and cleared to allow visualization of dye penetration. There was a tendency for the Ketac-Cem group to lack least but there were no statistically differences among the groups.

  6. Is high-viscosity glass-ionomer-cement a successor to amalgam for treating primary molars?

    Science.gov (United States)

    Hilgert, Leandro A; de Amorim, Rodrigo G; Leal, Soraya C; Mulder, Jan; Creugers, Nico H J; Frencken, Jo E

    2014-10-01

    To assess and compare the cumulative survival rate of amalgam and atraumatic restorative treatment (ART) restorations in primary molars over 3 years. 280 children aged 6-7 years old were enrolled in a cluster randomized controlled clinical trial using a parallel group design covering two treatment groups: conventional restorative treatment with amalgam (CRT) and atraumatic restorative treatment (ART) using a high-viscosity glass-ionomer (HVGIC) Ketac Molar Easymix. Three pedodontists placed 750 restorations (364 amalgam and 386 ART in 126 and 154 children, respectively) which were evaluated at 0.5, 1, 2 and 3 years. The proportional hazard rate regression model with frailty correction, ANOVA and Wald tests, and the Jackknife procedure were applied in analysing the data. The cumulative survival rates over 3 years for all, single- and multiple-surface CRT/amalgam restorations (72.6%, 93.4%, 64.7%, respectively) were no different from those of comparable ART/HVGIC restorations (66.8%; 90.1% and 56.4%, respectively) (p=0.10). Single-surface restorations had higher survival rates than multiple-surface restorations for the both treatment procedures (prestorations failed because of mechanical reasons (94.8%) than of secondary caries (5.2%). No difference in reasons for restoration failures between all types of amalgam and ART/HVGIC restorations were observed (p=0.24). The high-viscosity glass-ionomer used in this study in conjunction with the ART is a viable option for restoring carious dentin lesions in single surfaces in vital primary molars. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Biaxial flexural strength of high-viscosity glass-ionomer cements heat-cured with an LED lamp during setting

    NARCIS (Netherlands)

    Molina, G. Fabian; Cabral, R.J.; Mazzola, I.; Lascano, L. Brain; Frencken, J.E.F.M.

    2013-01-01

    Adding heat to glass ionomers during setting might improve mechanical properties. The aim was to compare the biaxial flexural strength (BFS) between and within four glass ionomers, by time of exposure to a high-intensity LED light-curing unit. Materials and methods. Samples of Fuji 9 Gold Label,

  8. Methotrexate-loaded glass ionomer cements for drug release in the skeleton: An examination of composition-property relationships.

    Science.gov (United States)

    Kiri, Lauren; Filiaggi, Mark; Boyd, Daniel

    2016-01-01

    Chemotherapeutic-loaded bone cement may be an effective method of drug delivery for the management of cancer-related vertebral fractures that require cement injection for pain relief. Recent advancements in the development of aluminum-free glass ionomer cements (GICs) have rendered this class of biomaterials clinically viable for such applications. To expand the therapeutic benefits of these materials, this study examined, for the first time, their drug delivery potential. Through incrementally loading the GIC with methotrexate (MTX) by up to 10-wt%, composition-property relationships were established, correlating MTX loading with working time and setting time, as well as compressive strength, drug release, and cytotoxic effect over 31 days. The most significant finding of this study was that MTX was readily released from the GIC, while maintaining cytotoxic activity. Release correlated linearly with initial loading and appeared to be diffusion mediated, delivering a total of 1-2% of the incorporated drug. MTX loading in this range exerted minimal effects to handling and strength, indicating the clinical utility of the material was not compromised by MTX loading. The MTX-GIC systems examined herein are promising materials for combined structural delivery applications. © The Author(s) 2015.

  9. Bond Strength of Resin Cement and Glass Ionomer to Nd:YAG Laser-Treated Zirconia Ceramics.

    Science.gov (United States)

    Asadzadeh, Nafiseh; Ghorbanian, Foojan; Ahrary, Farzaneh; Rajati Haghi, Hamidreza; Karamad, Reza; Yari, Amir; Javan, Abdollah

    2017-09-05

    To investigate the effect of neodymium-doped yttrium aluminum garnet (Nd:YAG) laser irradiation on the surface properties and bond strength of zirconia ceramics. Forty-eight zirconia ceramic pieces (4 × 4 × 1 mm 3 ) were divided into four groups according to surface treatment as follows: two control groups (no treatment) for resin bonding (CRC) and glass ionomer (GI) bonding (CGC); two laser treatment groups (Nd:YAG irradiation, 3 W, 200 MJ, 10 Hz, 180 μs) for resin bonding (LRC) and GI bonding (LGC). The ceramics in the control groups and the laser groups were distinguished by the application of different cements (resin cement and GI). Following surface treatments, the specimens were cemented to human dentin with resin cement and GI. After bonding, the shear bond strength (SBS) of the ceramic to dentin was measured, and the failure mode of each specimen was analyzed using a stereomicroscope. A one-way ANOVA compared the average bond strength of the four groups. Pairwise comparisons among the groups were performed using the Games-Howell test. The level of significance was set at 0.05. The means (± standard deviation) of SBS values in the CRC, CGC, LRC, and LGC groups were 3.98 ± 1.10, 1.66 ± 0.59, 10.24 ± 2.46, and 2.21 ± 0.38 MPa, respectively. Data showed that the application of the Nd:YAG laser resulted in a significantly greater SBS of the resin cement to the zirconia ceramics (p ceramic via Nd:YAG laser improves the bond strength of the resin cement to the zirconia ceramic. GI cement does not provide sufficient bond strength of zirconia ceramics to dentin. © 2017 by the American College of Prosthodontists.

  10. Comparative evaluation of effect of polymerizable and non-polymerizable desensitizing agents on crown-retentive-strength of zinc-phosphate, glass-ionomer and compomer cements.

    Science.gov (United States)

    Patil, P G; Parkhedkar, R D; Patil, S P; Bhowmik, H S

    2012-09-01

    The Purpose of this study was to evaluate the effect of polymerizable and non-polymerizable dentine desensitizers on retention of complete cast crowns cemented with three different types of cements. Freshly extracted human molars (n = 90) were prepared for standardized crown preparation (6-degree taper 4-mm height). The axial surface area of each preparation was determined and specimens were distributed equally among groups (n = 10). Dentine desensitizers, cementing agents, glass ionomer cement and compomer cement. Teeth were prepared and individual castings were made using high noble porcelain-metal alloy. Castings were cemented, thermo-cycled and removed along the path of insertion using a universal testing machine. Tooth surface as well as inner surface of the casting was examined and nature of cement failure was determined. Compomer cement exhibited the highest retentive strength and all dentine treatments resulted in significantly different retentive values. Zinc phosphate was the least retentive. Crown retentive values of Compomer cement were improved with Prime & Bond NT and Gluma Desensitizer Retentive values of zinc phosphate cement with Prime & Bond NT were decreased and not affected with Gluma Desensitizer Retentive values of Glass ionomer cement were not affected by any of the desensitizers used in the study.

  11. Influence of Porous Spherical-Shaped Hydroxyapatite on Mechanical Strength and Bioactive Function of Conventional Glass Ionomer Cement

    Directory of Open Access Journals (Sweden)

    Szu-Yu Chiu

    2017-01-01

    Full Text Available Glass-ionomer-cement (GIC is helpful in Minimal Intervention Dentistry because it releases fluoride ions and is highly biocompatible. The aim of this study is to investigate the mechanisms by which hydroxyapatite (HAp improves the mechanical strength and bioactive functioning of GIC when these materials are combined to make apatite ionomer cement (AIC. A conventional GIC powder was mixed with porous, spherical-HAp particles (HApS, crystalline HAp (HAp200 or one of two types of cellulose. The micro-compressive strengths of the additive particles were measured, and various specimens were evaluated with regard to their compressive strengths (CS, fluoride release concentrations (fluoride electrode and multi-element release concentrations. The AIC was found to release higher concentrations of fluoride (1.2 times and strontium ions (1.5 times compared to the control GIC. It was detected the more release of calcium originated from HApS than HAp200 in AIC. The CS of the AIC incorporating an optimum level of HAp was also significantly higher than that of the GIC. These results suggest that adding HAp can increase the release concentration of ions required for remineralization while maintaining the CS of the GIC. This effect does not result from a physical phenomenon, but rather from chemical reactions between the HAp and polyacrylic acid of GIC.

  12. Characterization of Chitosan/TiO2Nano-Powder Modified Glass-Ionomer Cement for Restorative Dental Applications.

    Science.gov (United States)

    Ibrahim, Marrwa A; Meera Priyadarshini, Balasankar; Neo, Jennifer; Fawzy, Amr S

    2017-04-01

    We are introducing novel glass-ionomer cement (GIC) dually-modified with chitosan (CH) in the liquid phase and titanium-dioxide nano-powder (TiO 2 /NP) in the powder phase. The aim was to investigate the effect of this dual-modification on the antibacterial properties against S. mutans biofilms and on the bulk and surface mechanical properties. Commercially available powder/liquid restorative GIC was used in this study. The GIC specimens were modified with 3% (w/w) TiO 2 /NP, 10% (v/v) CH solution, or dually-modified with TiO 2 /CH. The non-modified GIC was used as a control. The biofilms formations were characterized by SEM, live/dead assay using confocal-microscopy, colony-forming unit counts, and MTS assay. The bulk and surface mechanical properties were characterized in terms of flexural and compressive strengths and surface hardness, respectively. With the dual-modification, a significant improvement in the antibacterial properties was found both qualitatively and quantitatively. The synergetic effect of the dual-modification was also reflected on the enhancement of the flexural and compressive strengths. However, no difference was found in surface hardness. The modification of GIC powder with TiO 2 /NP showed to be more effective in enhancing the mechanical properties. However, the enhancement in the antibacterial properties was more evident with CH incorporation in GIC liquid. This study introduced novel glass ionomer cement dually-modified with TiO2 NP and chitosan with superior mechanical and antibacterial properties for potential applications in restorative and preventive dentistry. The modification of GIC powder with TiO2 NP showed to be more effective in enhancing the mechanical properties. However, the enhancement in the antibacterial properties was more evident with CH incorporation in GIC liquid. Although of the promising synergetic effect of the dual-modification of GIC with TiO2 NP/CH, further clinically-related studies are recommended. (J Esthet

  13. Compressive strength of resin-modified glass ionomer restorative material: effect of P/L ratio and storage time Resistência à compressão de ionômeros de vidro modificados por resina: efeito da relação P/L e tempos de armazenagem

    Directory of Open Access Journals (Sweden)

    Mônica Aratani

    2005-12-01

    Full Text Available The aim of this study was to evaluate the compressive strength of resin-modified glass ionomer cement Fuji II LC and Vitremer, in powder/liquid ratios of 1:1, 1:2 and 1:3, at three periods (24 hours, 7 and 28 days of storage in distilled water at 37ºC. For each material, P/L ratio and storage time, 5 cylindrical specimens were prepared, with 4mm diameter and 6mm height, in silicon moulds. Specimens were light-cured for 40 seconds at each extremity, removed from the moulds and laterally light-cured (perpendicular to long axis for 40 seconds, protected as recommended by the manufacturers and immersed for the time tested. The specimens were submitted to compressive strength testing in an Instron machine at a crosshead speed of 1.0mm/min until failure. Data were submitted to ANOVA and Tukey's test (5%, and showed that the compressive strength of resin-modified glass ionomer cement was reduced when P/L ratio was reduced and that the storage in water had little influence on compressive strength.O objetivo deste estudo foi avaliar a resistência à compressão dos cimentos de ionômero de vidro modificados por resina Vitremer e Fuji II LC, nas relações pó/líquido 1:1, 1:2 e 1:3, por três períodos de armazenagem (24 horas, 7 e 28 dias em água destilada a 37 ºC. Para cada material, relação pó/líquido e tempo de armazenagem, cinco corpos-de-prova cilíndricos foram preparados com 4 mm de diâmetro por 6 mm de altura, em moldes de silicone. Os corpos-de-prova foram fotoativados por 40 segundos, em cada extremidade, removidos dos moldes, fotoativado lateralmente (perpendicular ao longo eixo por 40 segundos, protegidos conforme as instruções dos fabricantes e imersos pelo tempo de teste. Os corpos-de-prova foram submetidos à compressão em uma Instron, à velocidade de 1,0 mm/min até a falha. Os dados foram submetidos à análise de variância e ao teste de Tukey (5%, e mostraram que a resistência à compressão do cimento de ionômero de

  14. Novel Nanotechnology of TiO2 Improves Physical-Chemical and Biological Properties of Glass Ionomer Cement

    Directory of Open Access Journals (Sweden)

    Daniela Dellosso Cibim

    2017-01-01

    Full Text Available The aim of this study was to assess the performance of glass ionomer cement (GIC added with TiO2 nanotubes. TiO2 nanotubes [3%, 5%, and 7% (w/w] were incorporated into GIC’s (Ketac Molar EasyMix™ powder component, whereas unblended powder was used as control. Physical-chemical-biological analysis included energy dispersive spectroscopy (EDS, surface roughness (SR, Knoop hardness (SH, fluoride-releasing analysis, cytotoxicity, cell morphology, and extracellular matrix (ECM composition. Parametric or nonparametric ANOVA were used for statistical comparisons (α≤0.05. Data analysis revealed that EDS only detected Ti at the 5% and 7% groups and that GIC’s physical-chemical properties were significantly improved by the addition of 5% TiO2 as compared to 3% and GIC alone. Furthermore, regardless of TiO2 concentration, no significant effect was found on SR, whereas GIC-containing 7% TiO2 presented decreased SH values. Fluoride release lasted longer for the 5% and 7% TiO2 groups, and cell morphology/spreading and ECM composition were found to be positively affected by TiO2 at 5%. In conclusion, in the current study, nanotechnology incorporated in GIC affected ECM composition and was important for the superior microhardness and fluoride release, suggesting its potential for higher stress-bearing site restorations.

  15. Streptococcus mutans-induced secondary caries adjacent to glass ionomer cement, composite resin and amalgam restorations in vitro.

    Science.gov (United States)

    Gama-Teixeira, Adriana; Simionato, Maria Regina Lorenzeti; Elian, Silvia Nagib; Sobral, Maria Angela Pita; Luz, Maria Aparecida Alves de Cerqueira

    2007-01-01

    The aim of this study was to define, in vitro, the potential to inhibit secondary caries of restorative materials currently used in dental practice. Standard cavities were prepared on the buccal and lingual surfaces of fifty extracted human third molars. The teeth were randomly divided into five groups, each one restored with one of the following materials: glass ionomer cement (GIC); amalgam; light-cured composite resin; ion-releasing composite; and light-cured, fluoride-containing composite resin. The teeth were thermocycled, sterilized with gamma irradiation, exposed to a cariogenic challenge using a bacterial system using Streptococcus mutans, and then prepared for microscopic observation. The following parameters were measured in each lesion formed: extension, depth, and caries inhibition area. The outer lesions developed showed an intact surface layer and had a rectangular shape. Wall lesions were not observed inside the cavities. After Analysis of Variance and Component of Variance Models Analysis, it was observed that the GIC group had the smallest lesions and the greatest number of caries inhibition areas. The lesions developed around Amalgam and Ariston pHc restorations had an intermediate size and the largest lesions were observed around Z-100 and Heliomolar restorations. It may be concluded that the restorative materials GIC, amalgam and ion-releasing composites may reduce secondary caries formation.

  16. Shear bond strength of Biodentine, ProRoot MTA, glass ionomer cement and composite resin on human dentine ex vivo.

    Science.gov (United States)

    Kaup, Markus; Dammann, Christoph Heinrich; Schäfer, Edgar; Dammaschke, Till

    2015-04-19

    The aim of this study was to compare the shear bond strength of Biodentine, ProRoot MTA (MTA), glass ionomer cement (GIC) and composite resin (CR) on dentine. 120 extracted human third molars were embedded in cold-cured-resin and grinned down to the dentine. For each material 30 specimens were produced in standardised height and width and the materials were applied according to manufacturers´ instructions on the dentine samples. Only in the CR group a self-etching dentine-adhesive was used. In all other groups the dentine was not pre-treated. All specimens were stored at 37.5 °C and 100% humidity for 2d, 7d and 14d. With a testing device the shear bond strength was determined (separation of the specimens from the dentine surface). The statistical evaluation was performed using ANOVA and Tukey-test (p Biodentine increased significantly compared to the 2d investigation period (p Biodentine showed a significantly higher shear bond strength than MTA (p Biodentine and GIC was not significant (p > 0.05). After 7d Biodentine showed comparable shear bond values than GIC, whereas the shear bond values for MTA were significantly lower even after 14d. The adhesion of Biodentine to dentine surface seams to be superior compared to that of MTA.

  17. Retentive strength of luting cements for stainless steel crowns: an in vitro study.

    Science.gov (United States)

    Subramaniam, Priya; Kondae, Sapna; Gupta, Kamal Kishore

    2010-01-01

    The present study evaluated and compared the retentive strength of three luting cements. A total of forty five freshly extracted human primary molars were used in this study. The teeth were prepared to receive stainless steel crowns. They were then randomly divided into three groups, of fifteen teeth each, so as to receive the three different luting cements: conventional glass ionomer resin modified glass ionomer and adhesive resin. The teeth were then stored in artificial saliva for twenty four hours. The retentive strength of the crowns was determined by using a specially designed Instron Universal Testing Machine (Model 1011). The data was statistically analyzed using ANOVA to evaluate retentive strength for each cement and Tukey test for pair wise comparison. It was concluded that retentive strength of adhesive resin cement and resin modified glass ionomer cement was significantly higher than that of the conventional glass ionomer cement.

  18. Characterization of the calcium-fluoroaluminosilicate glass prepared by a non-hydrolytic sol-gel route for future dental application as glass ionomer cement

    Directory of Open Access Journals (Sweden)

    Alexandre Cestari

    2009-06-01

    Full Text Available Glass ionomer cements are widely employed in dentistry due to their physical, biological and mainly anti-caries properties. Glass ionomers consist of an aluminosilicate glass matrix modified with other elements, and they contain large quantities of fluorine. In this study, we report on the preparation of calcium-fluoroaluminosilicate glasses by a nonhydrolytic sol-gel route as an alternative approach to obtaining alumina-silica matrices. The glass powders were prepared via the non-hydrolytic sol-gel method, by mixing AlCl3, SiCl4, CaF2, AlF3, NaF, and AlPO4. The powders were studied by thermal analysis (TG/DTA/DSC, photoluminescence (PL, nuclear magnetic resonance (NMR27Al-29Si, and X ray diffraction (XRD. TG/DTA/DSC analyses revealed a constant mass loss due to structural changes during the heating process, which was confirmed by NMR and PL. A stable aluminosilicate matrix with potential future application as a glass ionomer base was obtained.

  19. In-vitro Study on Temperature Changes in the Pulp Chamber Due to Thermo-Cure Glass Ionomer Cements.

    Science.gov (United States)

    van Duinen, Raimond Nb; Shahid, Saroash; Hill, Robert; Glavina, Domagoj

    2016-12-01

    The application of the Glass Ionomer Cements in clinical dentistry is recommended due to properties such as fluoride release, chemical adhesion to tooth, negligible setting shrinkage, and coefficient of thermal expansion close to tooth, low creep, and good color stability. However, the cement is vulnerable to early exposure to moisture due to slow setting characteristics. The uses of external energy such as ultrasound and radiant heat (Thermo-curing) have been reported to provide acceleration of the setting chemistry and enhance physical properties. Aim: The aim of this in vitro study was to analyze temperature changes in the pulpal chamber when using radiant heat to accelerate the setting of GICs. Material and Methods: The encapsulated GIC Equia Forte was used for this study. The temperature changes in the pulp were measured using thermocouple in the cavities which were 2,6 and 4,7mm deep with and without filling. Results :The results showed that a temperature rise (ΔT) in the pulp chamber was 3,7°C. ΔT for the 2.6mm and 4.7mm deep cavity and without placing any restoration the temperature was 4,2°C and 2,6°C respectively. After the restoration has been placed, the ΔT range in the pulp chamber was lower ranging from 1.9°C to 2.4°C. Conclusion : It could be concluded that Thermo-curing of the GIC during the setting is safe for the pulp and can be recommended in clinical practice.

  20. Effect of immersion time of restorative glass ionomer cements and immersion duration in calcium chloride solution on surface hardness.

    Science.gov (United States)

    Shiozawa, Maho; Takahashi, Hidekazu; Iwasaki, Naohiko; Wada, Takahiro; Uo, Motohiro

    2014-12-01

    The objective of this study was to evaluate the effect of immersion time of restorative glass ionomer cements (GICs) and immersion duration in calcium chloride (CaCl2) solution on the surface hardness. Two high-viscosity GICs, Fuji IX GP and GlasIonomer FX-II, were selected. Forty-eight specimens were randomly divided into two groups. Sixty minutes after being mixed, half of them were immersed in a 42.7wt% CaCl2 solution for 10, 30, or 60min (Group 1); the remaining specimens were immersed after an additional 1-week of storage (Group 2). The surface hardness of the specimens was measured and analyzed with two-way ANOVA and the Tukey HSD test (α=0.05). The surface compositions were examined using energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The surface hardness of Group 1 significantly increased as the immersion duration in CaCl2 increased; that of Group 2 significantly increased only after 60-minute CaCl2 immersion. After CaCl2 immersion, the amounts of Ca increased as the immersion duration increased. The surface hardness after CaCl2 immersion significantly correlated with the amount of Ca in Group 1, but not in Group 2. The binding energy of the Ca2p peak was similar to that of calcium polyalkenoate. These findings indicated that the Ca ions from the CaCl2 solution created chemical bonds with the carboxylic acid groups in the cement matrix. Immersion of GICs in CaCl2 solution at the early stage of setting was considered to enhance the formation of the polyacid salt matrix; as a result, the surface hardness increased. Copyright © 2014. Published by Elsevier Ltd.

  1. Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: biophotonics-based interfacial analyses in health and disease.

    Science.gov (United States)

    Watson, Timothy F; Atmeh, Amre R; Sajini, Shara; Cook, Richard J; Festy, Frederic

    2014-01-01

    Since their introduction, calcium silicate cements have primarily found use as endodontic sealers, due to long setting times. While similar in chemistry, recent variations such as constituent proportions, purities and manufacturing processes mandate a critical understanding of service behavior differences of the new coronal restorative material variants. Of particular relevance to minimally invasive philosophies is the potential for ion supply, from initial hydration to mature set in dental cements. They may be capable of supporting repair and remineralization of dentin left after decay and cavity preparation, following the concepts of ion exchange from glass ionomers. This paper reviews the underlying chemistry and interactions of glass ionomer and calcium silicate cements, with dental tissues, concentrating on dentin-restoration interface reactions. We additionally demonstrate a new optical technique, based around high resolution deep tissue, two-photon fluorescence and lifetime imaging, which allows monitoring of undisturbed cement-dentin interface samples behavior over time. The local bioactivity of the calcium-silicate based materials has been shown to produce mineralization within the subjacent dentin substrate, extending deep within the tissues. This suggests that the local ion-rich alkaline environment may be more favorable to mineral repair and re-construction, compared with the acidic environs of comparable glass ionomer based materials. The advantages of this potential re-mineralization phenomenon for minimally invasive management of carious dentin are self-evident. There is a clear need to improve the bioactivity of restorative dental materials and these calcium silicate cement systems offer exciting possibilities in realizing this goal. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Biological and mechanical properties of an experimental glass-ionomer cement modified by partial replacement of CaO with MgO or ZnO

    Science.gov (United States)

    Dong-Ae, KIM; Hany, ABO-MOSALLAM; Hye-Young, LEE; Jung-Hwan, LEE; Hae-Won, KIM; Hae-Hyoung, LEE

    2015-01-01

    Some weaknesses of conventional glass ionomer cement (GIC) as dental materials, for instance the lack of bioactive potential and poor mechanical properties, remain unsolved. Objective The purpose of this study was to investigate the effects of the partial replacement of CaO with MgO or ZnO on the mechanical and biological properties of the experimental glass ionomer cements. Material and Methods Calcium fluoro-alumino-silicate glass was prepared for an experimental glass ionomer cement by melt quenching technique. The glass composition was modified by partial replacement (10 mol%) of CaO with MgO or ZnO. Net setting time, compressive and flexural properties, and in vitro rat dental pulp stem cells (rDPSCs) viability were examined for the prepared GICs and compared to a commercial GIC. Results The experimental GICs set more slowly than the commercial product, but their extended setting times are still within the maximum limit (8 min) specified in ISO 9917-1. Compressive strength of the experimental GIC was not increased by the partial substitution of CaO with either MgO or ZnO, but was comparable to the commercial control. For flexural properties, although there was no significance between the base and the modified glass, all prepared GICs marked a statistically higher flexural strength (p<0.05) and comparable modulus to control. The modified cements showed increased cell viability for rDPSCs. Conclusions The experimental GICs modified with MgO or ZnO can be considered bioactive dental materials. PMID:26398508

  3. Biological and mechanical properties of an experimental glass-ionomer cement modified by partial replacement of CaO with MgO or ZnO

    Directory of Open Access Journals (Sweden)

    Dong-Ae KIM

    2015-08-01

    Full Text Available AbstractSome weaknesses of conventional glass ionomer cement (GIC as dental materials, for instance the lack of bioactive potential and poor mechanical properties, remain unsolved.Objective The purpose of this study was to investigate the effects of the partial replacement of CaO with MgO or ZnO on the mechanical and biological properties of the experimental glass ionomer cements.Material and Methods Calcium fluoro-alumino-silicate glass was prepared for an experimental glass ionomer cement by melt quenching technique. The glass composition was modified by partial replacement (10 mol% of CaO with MgO or ZnO. Net setting time, compressive and flexural properties, and in vitrorat dental pulp stem cells (rDPSCs viability were examined for the prepared GICs and compared to a commercial GIC.Results The experimental GICs set more slowly than the commercial product, but their extended setting times are still within the maximum limit (8 min specified in ISO 9917-1. Compressive strength of the experimental GIC was not increased by the partial substitution of CaO with either MgO or ZnO, but was comparable to the commercial control. For flexural properties, although there was no significance between the base and the modified glass, all prepared GICs marked a statistically higher flexural strength (p<0.05 and comparable modulus to control. The modified cements showed increased cell viability for rDPSCs.Conclusions The experimental GICs modified with MgO or ZnO can be considered bioactive dental materials.

  4. Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: Biophotonics-based interfacial analyses in health and disease

    Science.gov (United States)

    Watson, Timothy F.; Atmeh, Amre R.; Sajini, Shara; Cook, Richard J.; Festy, Frederic

    2014-01-01

    Objective Since their introduction, calcium silicate cements have primarily found use as endodontic sealers, due to long setting times. While similar in chemistry, recent variations such as constituent proportions, purities and manufacturing processes mandate a critical understanding of service behavior differences of the new coronal restorative material variants. Of particular relevance to minimally invasive philosophies is the potential for ion supply, from initial hydration to mature set in dental cements. They may be capable of supporting repair and remineralization of dentin left after decay and cavity preparation, following the concepts of ion exchange from glass ionomers. Methods This paper reviews the underlying chemistry and interactions of glass ionomer and calcium silicate cements, with dental tissues, concentrating on dentin–restoration interface reactions. We additionally demonstrate a new optical technique, based around high resolution deep tissue, two-photon fluorescence and lifetime imaging, which allows monitoring of undisturbed cement–dentin interface samples behavior over time. Results The local bioactivity of the calcium-silicate based materials has been shown to produce mineralization within the subjacent dentin substrate, extending deep within the tissues. This suggests that the local ion-rich alkaline environment may be more favorable to mineral repair and re-construction, compared with the acidic environs of comparable glass ionomer based materials. Significance The advantages of this potential re-mineralization phenomenon for minimally invasive management of carious dentin are self-evident. There is a clear need to improve the bioactivity of restorative dental materials and these calcium silicate cement systems offer exciting possibilities in realizing this goal. PMID:24113131

  5. Misfit and microleakage of implant-supported crown copings obtained by laser sintering and casting techniques, luted with glass-ionomer, resin cements and acrylic/urethane-based agents.

    Science.gov (United States)

    Castillo-Oyagüe, Raquel; Lynch, Christopher D; Turrión, Andrés S; López-Lozano, José F; Torres-Lagares, Daniel; Suárez-García, María-Jesús

    2013-01-01

    This study evaluated the marginal misfit and microleakage of cement-retained implant-supported crown copings. Single crown structures were constructed with: (1) laser-sintered Co-Cr (LS); (2) vacuum-cast Co-Cr (CC) and (3) vacuum-cast Ni-Cr-Ti (CN). Samples of each alloy group were randomly luted in standard fashion onto machined titanium abutments using: (1) GC Fuji PLUS (FP); (2) Clearfil Esthetic Cement (CEC); (3) RelyX Unicem 2 Automix (RXU) and (4) DentoTemp (DT) (n=15 each). After 60 days of water ageing, vertical discrepancy was SEM-measured and cement microleakage was scored using a digital microscope. Misfit data were subjected to two-way ANOVA and Student-Newman-Keuls multiple comparisons tests. Kruskal-Wallis and Dunn's tests were run for microleakage analysis (α=0.05). Regardless of the cement type, LS samples exhibited the best fit, whilst CC and CN performed equally well. Despite the framework alloy and manufacturing technique, FP and DT provide comparably better fit and greater microleakage scores than did CEC and RXU, which showed no differences. DMLS of Co-Cr may be a reliable alternative to the casting of base metal alloys to obtain well-fitted implant-supported crowns, although all the groups tested were within the clinically acceptable range of vertical discrepancy. No strong correlations were found between misfit and microleakage. Notwithstanding the framework alloy, definitive resin-modified glass-ionomer (FP) and temporary acrylic/urethane-based (DT) cements demonstrated comparably better marginal fit and greater microleakage scores than did 10-methacryloxydecyl-dihydrogen phosphate-based (CEC) and self-adhesive (RXU) dual-cure resin agents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Addition of bioactive glass to glass ionomer cements: Effect on the physico-chemical properties and biocompatibility.

    Science.gov (United States)

    De Caluwé, T; Vercruysse, C W J; Ladik, I; Convents, R; Declercq, H; Martens, L C; Verbeeck, R M H

    2017-04-01

    Glass ionomer cements (GICs) are a subject of research because of their inferior mechanical properties, despite their advantages such as fluoride release and direct bonding to bone and teeth. Recent research aims to improve the bioactivity of the GICs and thereby improve mechanical properties on the long term. In this study, two types of bioactive glasses (BAG) (45S5F and CF9) are combined with GICs to evaluate the physico-chemical properties and biocompatibility of the BAG-GIC combinations. The effect of the addition of Al 3+ to the BAG composition and the use of smaller BAG particles on the BAG-GIC properties was also investigated. Conventional aluminosilicate glass (ASG) and (modified) BAG were synthesized by the melt method. BAG-GIC were investigated on setting time, compressive strength and bioactivity. Surface changes were evaluated by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), EDS and PO 4 3- -and Ca 2+ uptake in SBF. Biocompatibility of selected BAG-GICs was determined by a direct toxicity assay. The addition of BAG improves the bioactivity of the GIC, which can be observed by the formation of an apatite (Ap) layer, especially in CF9-containing GICs. More BAG leads to more bioactivity but decreases strength. The addition of Al 3+ to the BAG composition improves strength, but decreases bioactivity. BAGs with smaller particle sizes have no effect on bioactivity and decrease strength. The formation of an Ap layer seems beneficial to the biocompatibility of the BAG-GICs. Bioactive GICs may have several advantages over conventional GICs, such as remineralization of demineralized tissue, adhesion and proliferation of bone- and dental cells, allowing integration in surrounding tissue. CF9 BAG-GIC combinations containing maximum 10mol% Al 3+ are most promising, when added in ≤20wt% to a GIC. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Casein Phosphopeptide-Amorphous Calcium Phosphate Reduces Streptococcus mutans Biofilm Development on Glass Ionomer Cement and Disrupts Established Biofilms.

    Directory of Open Access Journals (Sweden)

    Stuart G Dashper

    Full Text Available Glass ionomer cements (GIC are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge.

  8. Energy dispersive X-ray microanalysis, fluoride release, and antimicrobial properties of glass ionomer cements indicated for atraumatic restorative treatment.

    Science.gov (United States)

    Saxena, Sudhanshu; Tiwari, Sonia

    2016-01-01

    The aim of this study was to compare constituents of glass powder, fluoride release, and antimicrobial properties of new atraumatic restorative treatment material with zirconia fillers and conventional glass ionomer cement (GIC) type IX. Thisin vitro study comparing Zirconomer and Fuji IX was executed in three parts: (1) energy dispersive X-ray microanalysis of glass powders (2) analysis of fluoride release at 1(st), 3(rd), 7(th), 15(th), and 30(th) day, and (3) antimicrobial activity against Streptococcus mutans, Lactobacillus casei, and Candida albicans at 48 hours. Data was analyzed using unpaired t-test and two way analysis of variance followed by least significant difference post hoc test. A P value of glass powders, mean atomic percentage of oxygen was more than 50%. According to the weight percentage, zirconium in Zirconomer and silica in Fuji IX were the second main elements. Calcium, zinc, and zirconium were observed only in Zirconomer. At all the time intervals, statistically significant higher amount of fluoride release was observed with Zirconomer than Fuji IX. At 48 hours, mean ± standard deviation (SD) of zone of inhibition against Streptococcus mutans was 11.14 ± 0.77 mm and 8.51 ± 0.43 mm for Zirconomer and Fuji IX, respectively. Against Lactobacillus casei, it was 14.06 ± 0.71 mm for Zirconomer and 11.70 ± 0.39 mm for Fuji IX. No antifungal activity was observed against Candida albicans by Zirconomer and Fuji IX. Zirconomer had higher antibacterial activity against Streptococcus mutans and Lactobacillus casei, which may be attributed to its composition and higher fluoride release. However, it failed to show antifungal effect againstCandida albicans.

  9. Casein Phosphopeptide-Amorphous Calcium Phosphate Reduces Streptococcus mutans Biofilm Development on Glass Ionomer Cement and Disrupts Established Biofilms.

    Science.gov (United States)

    Dashper, Stuart G; Catmull, Deanne V; Liu, Sze-Wei; Myroforidis, Helen; Zalizniak, Ilya; Palamara, Joseph E A; Huq, N Laila; Reynolds, Eric C

    2016-01-01

    Glass ionomer cements (GIC) are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm) formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge.

  10. Absence of carious lesions at margins of glass-ionomer cement and amalgam restorations: An update of systematic review evidence

    Directory of Open Access Journals (Sweden)

    Yengopal Veerasamy

    2011-03-01

    Full Text Available Abstract Background This article aims to update the existing systematic review evidence elicited by Mickenautsch et al. up to 18 January 2008 (published in the European Journal of Paediatric Dentistry in 2009 and addressing the review question of whether, in the same dentition and same cavity class, glass-ionomer cement (GIC restored cavities show less recurrent carious lesions on cavity margins than cavities restored with amalgam. Methods The systematic literature search was extended beyond the original search date and a further hand-search and reference check was done. The quality of accepted trials was assessed, using updated quality criteria, and the risk of bias was investigated in more depth than previously reported. In addition, the focus of quantitative synthesis was shifted to single datasets extracted from the accepted trials. Results The database search (up to 10 August 2010 identified 1 new trial, in addition to the 9 included in the original systematic review, and 11 further trials were included after a hand-search and reference check. Of these 21 trials, 11 were excluded and 10 were accepted for data extraction and quality assessment. Thirteen dichotomous datasets of primary outcomes and 4 datasets with secondary outcomes were extracted. Meta-analysis and cumulative meta-analysis were used in combining clinically homogenous datasets. The overall results of the computed datasets suggest that GIC has a higher caries-preventive effect than amalgam for restorations in permanent teeth. No difference was found for restorations in the primary dentition. Conclusion This outcome is in agreement with the conclusions of the original systematic review. Although the findings of the trials identified in this update may be considered to be less affected by attrition- and publication bias, their risk of selection- and detection/performance bias is high. Thus, verification of the currently available results requires further high-quality randomised

  11. The sealing of second mandibular temporary molar pits and fissure with the laser of Nd: YAG, phosphoric acid and the glass ionomer cement

    International Nuclear Information System (INIS)

    Toda, Maria Aparecida

    2003-01-01

    The main of our study was to check the sealing of second mandibular temporary molar pits and fissure, in vitro, with the laser of Nd: YAG, phosphoric acid at 37% and the glass ionomer cement (CIV, Fuji IX GC).The proposal was to check the structural morphologic changes in the laser irradiation upon the enamel surface to watch the pits and fissure sealing with the glass ionomer cement use after the laser irradiation and to verify the efficiency of the 'double conditioning' (phosphoric acid + Nd: YAG). At the same time we watch the evolution of the temperature in the pulp chamber's inside. Our desire was to achieve a therapeutic alternative technic to prevent the dental caries. The Nd: YAG laser parameters were the same: 79 mJ of energy per pulse; frequency of 5 Hz; mean power of 0,4 W; optical fiber on contact of 320 μm diameter; fluency of 99,52 J/ cm 2 , assuming that the only differential was the time of the laser application on the enamel surface. The samples were prepared with this way: Laser Nd: YAG (53 second) + acid + CIV (Fuji IX); Laser Nd: YAG (53 s); Laser Nd: YAG (20 s + 20 s) + acid + CIV; Laser Nd: YAG (20 s + 20 s); Acid + CIV; Control. Through the scanning electron microscopy (MEV) we noticed fusion and resolidification regions due to the laser irradiation and a better adaptation of the glass ionomer cement when we did the 'double conditioning'. Concerning the temperature increase we can conclude that the echeloned period was the best recommended because the temperature was found in a pattern that would not cause any damage to the dental pulp. For future studies we suggest a longer relaxing time between the laser irradiation, a comparative study of this method with other lasers, the use of other sealing materials and the study with the permanent teeth. (author)

  12. In vitro abrasion of resin-coated highly viscous glass ionomer cements: a confocal laser scanning microscopy study.

    Science.gov (United States)

    Kanik, Özgur; Turkun, L Sebnem; Dasch, Walter

    2017-04-01

    The aim of this study was to evaluate the effect of resin coating on the wear depth of highly viscous glass ionomer cements (HVGICs) after 40,000 cycles, corresponding to over 8 years of tooth brushing. A resin composite (Gradia Direct Posterior), two HVGICs (EQUIA Fil and Riva Self Cure), a resin coating (EQUIA Coat) and a conventional varnish (Fuji Varnish) were used in the study. The control groups were the resin composite group and the non-coated HVGICs groups. Samples (n = 8) were produced in flat plastic moulds at 23 ± 1 °C and stored in artificial saliva sodium acetate-acetic acid-glycerine formalin (SAGF medium) for 7 days at 37 ± 1 °C. The abrasion test was carried out in a toothbrush simulator (Willytec) with a load of 1 N using abrasive toothpaste slurry. Vertical loss was measured at different cycles under confocal laser scanning microscopy (CLSM). Data were analysed using one-way ANOVA, Tukey's HSD test, repeated measures ANOVA and Bonferroni tests (p resin composite group showed significantly lower vertical wear loss than the non-coated groups and the varnished groups of HVGICs (p resin coating had better wear resistance than the varnished and non-coated groups (p material-based wear, HVGICs with resin coatings abraded less than the resin composite group tested (Gradia Direct Posterior 5.06 ± 0.54 μm, EQUIA Fil 4.06 ± 1.68 μm, Riva Self Cure 4.73 ± 2.44 μm), but statistically, there were no significant differences between them after 40,000 cycles (p > 0.05). After 40,000 cycles, when the total wear loss of the materials including both coatings wear was compared, there were no differences between the non-coated and the resin-coated groups. The results of this study indicate that the resin coating protects the glass ionomer materials from excessive wear until 20,000 cycles making both HVGICs to abrade in a similar manner as the resin composite. If we include the wear of the coating to the general material wear loss at

  13. Compressive strength of glass ionomer cements using different specimen dimensions Resistência à compressão de cimentos de ionômero de vidro utilizando-se diferentes tamanhos de corpos-de-prova

    Directory of Open Access Journals (Sweden)

    André Mallmann

    2007-09-01

    Full Text Available The purpose of this study was to evaluate the compressive strength of two glass ionomer cements, a conventional one (Vitro Fil® - DFL and a resin-modified material (Vitro Fil LC® - DFL, using two test specimen dimensions: One with 6 mm in height and 4 mm in diameter and the other with 12 mm in height and 6 mm in diameter, according to the ISO 7489:1986 specification and the ANSI/ADA Specification No. 66 for Dental Glass Ionomer Cement, respectively. Ten specimens were fabricated with each material and for each size, in a total of 40 specimens. They were stored in distilled water for 24 hours and then subjected to a compressive strength test in a universal testing machine (EMIC, at a crosshead speed of 0.5 mm/min. The data were statistically analyzed using the Kruskal-Wallis test (5%. Mean compressive strength values (MPa were: 54.00 ± 6.6 and 105.10 ± 17.3 for the 12 mm x 6 mm sample using Vitro Fil and Vitro Fil LC, respectively, and 46.00 ± 3.8 and 91.10 ± 8.2 for the 6 mm x 4 mm sample using Vitro Fil and Vitro Fil LC, respectively. The resin-modified glass ionomer cement obtained the best results, irrespective of specimen dimensions. For both glass ionomer materials, the 12 mm x 6 mm matrix led to higher compressive strength results than the 6 mm x 4 mm matrix. A higher variability in results was observed when the glass ionomer cements were used in the larger matrices.Este estudo teve como objetivo avaliar a resistência à compressão de dois cimentos de ionômero de vidro, um convencional (Vitro Fil® - DFL e outro modificado por resina (Vitro Fil LC® - DFL, utilizando-se dois tamanhos de amostras: uma com 6 mm de altura e 4 mm de diâmetro e outra com 12 mm de altura e 6 mm de diâmetro, seguindo-se a especificação 7489:1986 da ISO e a especificação n. 66 da ANSI/ADA para Cimento Dental de Ionômero de Vidro, respectivamente. Foram confeccionados 10 corpos-de-prova (CP de cada material para cada tamanho de amostra, totalizando

  14. Comparative evaluation of shear bond strength and microleakage of tricalcium silicate-based restorative material and radioopaque posterior glass ionomer restorative cement in primary and permanent teeth: an in vitro study.

    Science.gov (United States)

    Raju, Vignesh Guptha; Venumbaka, Nilaya Reddy; Mungara, Jayanthi; Vijayakumar, Poornima; Rajendran, Sakthivel; Elangovan, Arun

    2014-01-01

    Restoration of carious primary molars is still a major concern while treating the young children that too in deep carious lesion which extends below the cemento-enamel junction (CEJ) where pulp protection and achieving adequate marginal seal are very important to prevent secondary caries. The needs were met with the development of new materials. One such of new bioactive material is tricalcium silicate-based restorative material (Biodentine), recommended for restoring deep lesions. To evaluate and compare shear bond strength and microleakage of tricalcium silicate-based restorative material (Biodentine) and glass ionomer cement (Fuji IX GP) in primary and permanent teeth. Occlusal surface of crowns were ground flat. PVC molds were stabilized over flat dentin surface and filled with tricalcium silicate-based restorative material (Biodentine)/glass ionomer cement (Fuji IX GP) according to group ascertained. Shear bond strength was evaluated using universal testing machine (INSTRON). Standardized Class II cavities were prepared on both primary and permanent teeth, and then restored with tricalcium silicate-based restorative material (Biodentine)/glass ionomer cement (Fuji IX GP) according to group ascertained, over which composite resin material was restored using an open sandwich technique. Microleakage was assessed using dye penetration. Microleakage was examined using a stereomicroscope. RESULTS showed that glass ionomer cement (Fuji IX GP) exhibited better shear bond strength than tricalcium silicate-based restorative material (Biodentine). Mean microleakage score for glass ionomer cement (Fuji IX GP) in permanent teeth was 1.52 and for primary teeth was 1.56. The mean microleakage for tricalcium silicate-based restorative material (Biodentine) in permanent teeth was 0.76 and for primary teeth was 0.60. Glass ionomer cement (Fuji IX GP) exhibited more microleakage than tricalcium silicate-based restorative material (Biodentine), which was statistically significant

  15. Comparative evaluation of shear bond strength and microleakage of tricalcium silicate-based restorative material and radioopaque posterior glass ionomer restorative cement in primary and permanent teeth: An in vitro study

    Directory of Open Access Journals (Sweden)

    Vignesh Guptha Raju

    2014-01-01

    Full Text Available Background: Restoration of carious primary molars is still a major concern while treating the young children that too in deep carious lesion which extends below the cemento-enamel junction (CEJ where pulp protection and achieving adequate marginal seal are very important to prevent secondary caries. The needs were met with the development of new materials. One such of new bioactive material is tricalcium silicate-based restorative material (Biodentine, recommended for restoring deep lesions. Aim: To evaluate and compare shear bond strength and microleakage of tricalcium silicate-based restorative material (Biodentine and glass ionomer cement (Fuji IX GP in primary and permanent teeth. Materials and Methods: Occlusal surface of crowns were ground flat. PVC molds were stabilized over flat dentin surface and filled with tricalcium silicate-based restorative material (Biodentine/glass ionomer cement (Fuji IX GP according to group ascertained. Shear bond strength was evaluated using universal testing machine (INSTRON. Standardized Class II cavities were prepared on both primary and permanent teeth, and then restored with tricalcium silicate-based restorative material (Biodentine/glass ionomer cement (Fuji IX GP according to group ascertained, over which composite resin material was restored using an open sandwich technique. Microleakage was assessed using dye penetration. Microleakage was examined using a stereomicroscope. Results: Results showed that glass ionomer cement (Fuji IX GP exhibited better shear bond strength than tricalcium silicate-based restorative material (Biodentine. Mean microleakage score for glass ionomer cement (Fuji IX GP in permanent teeth was 1.52 and for primary teeth was 1.56. The mean microleakage for tricalcium silicate-based restorative material (Biodentine in permanent teeth was 0.76 and for primary teeth was 0.60. Glass ionomer cement (Fuji IX GP exhibited more microleakage than tricalcium silicate-based restorative

  16. EFEKTIFITAS PENCEGAHAN KARIES DENGAN A TRAUMATIC RESTORATIVE TREATMENT DAN TUMPATAN GLASS IONOMER CEMENT DALAM PENGENDALIAN KARIES DI BEBERAPA NEGARA

    Directory of Open Access Journals (Sweden)

    Magdarina Destri Agtini

    2012-12-01

    Full Text Available Worldwide caries is still mainly problem in oral and dental diseases. In developing countries 30%-90% of 12-years old children do not get oral and dental treatment. In Indonesia, several programs have been implemented to improve oral and dental health status for all age groups. How over, a few reports/National dental health profile showed that mean DMF-T tend to increase, year 1970 DMF-T=0,70, 1980 DMF-T= 2,30, 1990 DMF-T=2,70, and National Health Research (Riskesdas 2007 DMFT=4,8. In National Health Research 2007, it was revealed 29,8% of active caries found in 12-years old children. If the active caries are not managed further complication will occure that may cause teeth extraction. An early teeth extraction can influence mastication and general health. Atraumatic Restorative Treatment (ART is a preventive and restorative approach for managing carious lesions ofthe teeth. It constitutes of hand instruments only (no electric drills used for widening cavity openings and for excavating soft decayed tissue from within the cavity, followed by the application of an adhesive dental material, usually a high-viscosity glass-ionomer (GIC filling material, into the cavity and over the adjacent pits and fissures. ART-GIC consepts are minimally invasive, inhibit further progression ofdental caries., preventive, as well as curative. Effectiveness of ART-GIC can be determined by successrate of ART-GIC fillings (F and effect of ART-GIC on both Decayed (D and Performance Treatment Index (PTI. Several studies showed that success rate ART-GIC are varies, around 71%-85%. There is no significant difference of success rate ART-GIC between dentis and dental nurses. The highest rate of Fluor release occurred on the first day after ART-GIC filling. Further more ART-GIC also inhibit new caries, as well as inhibit increased DMF-T. The increasing of F, may influence improvement of PTI (PTI around 50%-52%. Additional can improve dental health services. It is suggested

  17. Resistance to fracture of endodontically treated premolars restored with glass ionomer cement or acid etch composite resin: An in vitro study

    Directory of Open Access Journals (Sweden)

    B Ranga

    2010-01-01

    Full Text Available Aim: Due to the weakness of endodontically treated posterior teeth requires more strengthened restoration to withstand occlusal forces. The purpose of the present study was to determine and compare the resistance to fracture of endodontically treated maxillary 1 st premolars restored with different materials in mesio-occluso-distal (MOD cavity preparations. Materials and Methods: MOD cavity preparations in 80 endodontically treated maxillary 1 st premolars were restored using four different methods. Fiber rings were filled with stone plaster and the teeth were placed into the plaster up to the level of cemento-enamel junction. The teeth were grouped according to restorative method, mounted in an Instrom T.T. machine, and the buccal walls subjected to a slowly increasing compressive force until fracture occurred. Result: The force of fracture of the walls of each tooth was recorded and the results in the various groups compared. All teeth fractured in a similar manner irrespective of the restorative method used. Conclusion: The resistance to the fracture of the teeth was the same when they were stored with glass ionomer cement as a base over which composite resin was placed. When the entire cavities were filled with glass ionomer cement, the resistance to fracture of the teeth decreased significantly compared with the acid etch resin technique.

  18. Restoration of permanent teeth in young rural children in Cambodia using the atraumatic restorative treatment (ART) technique and Fuji II glass ionomer cement.

    Science.gov (United States)

    Mallow, P K; Durward, C S; Klaipo, M

    1998-03-01

    Several recent studies have demonstrated the success of the ART (atraumatic restorative treatment) technique under field conditions in developing countries. The ART technique involves removal of caries using only hand instruments, and placing a glass ionomer cement (GIC) restoration. To estimate the longevity of Fuji II GIC ART restorations placed in permanent teeth by dental nurse students under field conditions in rural Cambodia. Clinical field trial. One high school in rural Cambodia. 53 subjects between the ages of 12 and 17 who had dental caries were selected to participate. Subjects were randomly assigned to a dental nurse student for cavity preparation and placement of ART restorations (without cavity conditioning). 92.1% of the carious lesions required class I or class V restorations, and 85.4% were in the lower molars. 89 teeth were filled. At 1 and 3 years 86.4% and 79.5% of restorations were still present. Restorations were assessed by one dentist according to standard criteria. 76.3% of the restorations were judged to be successful at 1 year, and 57.9% at 3 years. Factors which may have affected the success rates included: the material used, technical factors, failure to condition the cavity prior to restoration, and inexperience of the operators. The results suggest that ART restorations in permanent teeth using Fuji II GIC are only moderately successful after 3 years. Better results could be expected by using a dentine conditioner in conjunction with one of the newer stronger glass ionomer cements.

  19. Microstructural and mechanical development and characterization of glass ionomer cements; Desenvolvimento e caracterizacao microestrutural e mecanica de cimentos de ionomero de vidro

    Energy Technology Data Exchange (ETDEWEB)

    Freire, W.P.; Barbosa, R.C.; Castanha, E.M.M.; Barbosa, E. F.; Fook, M.V.L., E-mail: waldeniafreire@hotmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Ciencias e Engenharia de Materiais

    2013-07-01

    Glass Ionomer Cements (GICs) are widely used in dentistry, indicated as a restorative material, cement for orthopedic and dental prostheses. However, there is need for development of new bone cements as alternative or replacement to current polymethylmethacrylate cements. Thus the aim of this research was develop of an experimental GIC and the mechanical and microstructural characterization of this composite; as a control group it was used a commercial GIC called Vidrion R (SS WHITE). These composites were characterized by X-ray diffraction, Infrared Spectroscopy Fourier Transform and Scanning Electron Microscopy. The mechanical properties of the composites were measured by Vickers microhardness testing, flexural strength and compression. These cements were characterized as a semicrystalline; in FTIR spectra observed characteristic bands of these materials and microstructural studies of experimental GIC revealed that there was no proper interaction of the inorganic particles in the polymer matrix, whereas in the control group this interaction was effective resulting in greater homogeneity among its constituent phases. Experimental cement showed a higher value of microhardness in the control group, however, flexural strength of cement experimental cement was lower than the control group, and this behavior can possibly be attributed to inadequate interaction particle / matrix. In tests of compressive strength, experimental GIC showed resistance similar to that shown for control group after variation in the processing conditions of the material. (author)

  20. The effect of CO2 laser irradiation plus fluoride dentifrice on the inhibition of secondary caries on root surfaces adjacent to glass ionomer cement or composite resin restorations

    Science.gov (United States)

    Rodrigues, S. R.; Moraes, M.; Hanashiro, F. S.; Youssef, M. N.; Brugnera Junior, A.; Nobre-dos-Santos, M.; de Souza-Zaroni, W. C.

    2016-02-01

    Although the cariostatic effects of CO2 laser on the root surface have been shown, there is scarce information regarding its effects on root secondary caries. The objective of this research was to investigate the effect of the association of CO2 laser and a fluoride dentifrice on the inhibition of secondary caries on root surfaces adjacent to composite-resin or glass-ionomer-cement restorations. Dental blocks of human roots were divided into two groups: composite resin (CR) or glass ionomer cement (GIC). Subsequently, the blocks were divided into four subgroups (n  =  10): C, non-fluoride dentifrice; FD, fluoride dentifrice; L, CO2 laser with an energy density of 6.0 J cm-2  +  non-fluoride dentifrice; and L  +  FD, CO2 laser  +  fluoride dentifrice. The blocks were subjected to pH cycling to simulate a high cariogenic challenge. Dental demineralization around the restorations was quantified by microhardness analysis. The results were subjected to analysis of variance (ANOVA) and the Tukey-Kramer test (p  ⩽  0.05). As for mineral loss, it can be observed that all the groups that were treated with a fluoride dentifrice and laser, used alone or not, were statistically similar and superior to the RC-C group. It was concluded that CO2 laser irradiation and a fluoride dentifrice used alone or combined with each other are efficient surface treatments for preventing secondary root caries, regardless of the restorative material used.

  1. The effect of a nano-filled resin coating on the 3-year clinical performance of a conventional high-viscosity glass-ionomer cement.

    Science.gov (United States)

    Diem, Vu Thi Kieu; Tyas, Martin J; Ngo, Hien C; Phuong, Lam Hoai; Khanh, Ngo Dong

    2014-04-01

    The main aim of the study was to compare the clinical performance of the conventional high-powder/liquid ratio glass-ionomer cement (GIC) Fuji IX GP Extra (F IX), Fuji IX GP Extra with a low-viscosity nano-filled resin coating, G-Coat Plus (F IX+GCP), and a resin composite, Solare (S), as a comparison material. Moderate-depth occlusal cavities in the first permanent molars of 91 11-12-year-old children (1-4 restorations per child) were restored with either F IX (87 restorations), F IX+GCP (84 restorations) or S (83 restorations). Direct clinical assessment, photographic assessment and assessment of stone casts of the restorations were carried out at 6 months, 1 year, 2 years and 3 years. The colour match with the tooth of the GIC restorations improved over the 3 years of the study. Marginal staining and marginal adaptation were minimal for all restorations; three restorations exhibited secondary caries at 3 years. From the assessment of the casts, at 2 years, there was significantly less wear of the F IX GP Extra+GCP restorations than the F IX GP Extra restorations (P < 0.005). At 3 years, approximately 37 % of F IX GP Extra restorations showed wear slightly more than the adjacent enamel, compared to 28 % of F IX GP Extra+GCP restorations and 21 % of Solare restorations. Although this was not statistically significant, there was a trend that GCP can protect F IX GP Extra against wear. Although both Fuji IX GP Extra and Fuji IX GP Extra with G-Coat Plus showed acceptable clinical performance in occlusal cavities in children, the application of G-Coat Plus gave some protection against wear. The application of G-Coat Plus to Fuji IX GP Extra glass-ionomer cement may be beneficial in reducing wear in occlusal cavities.

  2. The effect of CO2 laser irradiation plus fluoride dentifrice on the inhibition of secondary caries on root surfaces adjacent to glass ionomer cement or composite resin restorations

    International Nuclear Information System (INIS)

    Rodrigues, S R; Moraes, M; Youssef, M N; De Souza-Zaroni, W C; Hanashiro, F S; Brugnera Junior, A; Nobre-dos-Santos, M

    2016-01-01

    Although the cariostatic effects of CO 2 laser on the root surface have been shown, there is scarce information regarding its effects on root secondary caries. The objective of this research was to investigate the effect of the association of CO 2 laser and a fluoride dentifrice on the inhibition of secondary caries on root surfaces adjacent to composite-resin or glass-ionomer-cement restorations. Dental blocks of human roots were divided into two groups: composite resin (CR) or glass ionomer cement (GIC). Subsequently, the blocks were divided into four subgroups (n  =  10): C, non-fluoride dentifrice; FD, fluoride dentifrice; L, CO 2 laser with an energy density of 6.0 J cm −2   +  non-fluoride dentifrice; and L  +  FD, CO 2 laser  +  fluoride dentifrice. The blocks were subjected to pH cycling to simulate a high cariogenic challenge. Dental demineralization around the restorations was quantified by microhardness analysis. The results were subjected to analysis of variance (ANOVA) and the Tukey–Kramer test (p  ⩽  0.05). As for mineral loss, it can be observed that all the groups that were treated with a fluoride dentifrice and laser, used alone or not, were statistically similar and superior to the RC–C group. It was concluded that CO 2 laser irradiation and a fluoride dentifrice used alone or combined with each other are efficient surface treatments for preventing secondary root caries, regardless of the restorative material used. (paper)

  3. Evaluation of shear bond strength of two resin-based composites and glass ionomer cement to pure tricalcium silicate-based cement (Biodentine®).

    Science.gov (United States)

    Cantekin, Kenan; Avci, Serap

    2014-01-01

    Tricalcium silicate is the major constituent phase in mineral trioxide aggregate (MTA). It is thus postulated that pure tricalcium silicate can replace the Portland cement component of MTA. The aim of this study was to evaluate bond strength of methacrylate-based (MB) composites, silorane-based (SB) composites, and glass ionomer cement (GIC) to Biodentine® and mineral trioxide aggregate (MTA). Acrylic blocks (n=90, 2 mm high, 5 mm diameter central hole) were prepared. In 45 of the samples, the holes were fully filled with Biodentine® and in the other 45 samples, the holes were fully filled with MTA. The Biodentine® and the MTA samples were randomly divided into 3 subgroups of 15 specimens each: Group-1: MB composite; Group-2: SB composite; and Group-3: GIC. For the shear bond strength (SBS) test, each block was secured in a universal testing machine. The highest (17.7 ± 6.2 MPa) and the lowest (5.8 ± 3.2 MPa) bond strength values were recorded for the MB composite-Biodentine® and the GIC-MTA, respectively. Although the MB composite showed significantly higher bond strength to Biodentine (17.7 ± 6.2) than it did to MTA (8.9 ± 5.7) (p Biodentine® = 8.0 ± 3,6) and GIC (GIC and MTA = 5.8 ± 3.2; GIC and Biodentine = 6.7 ± 2.6) showed similar bond strength performance with MTA compared with Biodentine (p = 0.73 and p = 0.38, respectively). The new pure tricalcium-based pulp capping, repair, and endodontic material showed higher shear bond scores compared to MTA when used with the MB composite.

  4. Evaluation of shear bond strength of two resin-based composites and glass ionomer cement to pure tricalcium silicate-based cement (Biodentine®

    Directory of Open Access Journals (Sweden)

    Kenan CANTEK?N

    2014-07-01

    Full Text Available Objectives: Tricalcium silicate is the major constituent phase in mineral trioxide aggregate (MTA. It is thus postulated that pure tricalcium silicate can replace the Portland cement component of MTA. The aim of this study was to evaluate bond strength of methacrylate-based (MB composites, silorane-based (SB composites, and glass ionomer cement (GIC to Biodentine® and mineral trioxide aggregate (MTA. Material and Methods: Acrylic blocks (n=90, 2 mm high, 5 mm diameter central hole were prepared. In 45 of the samples, the holes were fully filled with Biodentine® and in the other 45 samples, the holes were fully filled with MTA. The Biodentine® and the MTA samples were randomly divided into 3 subgroups of 15 specimens each: Group-1: MB composite; Group-2: SB composite; and Group-3: GIC. For the shear bond strength (SBS test, each block was secured in a universal testing machine. Results: The highest (17.7±6.2 MPa and the lowest (5.8±3.2 MPa bond strength values were recorded for the MB composite-Biodentine® and the GIC-MTA, respectively. Although the MB composite showed significantly higher bond strength to Biodentine (17.7±6.2 than it did to MTA (8.9±5.7 (p<0.001, the SB composite (SB and MTA=7.4±3.3; SB and Biodentine®=8.0±3,6 and GIC (GIC and MTA=5.8±3.2; GIC and Biodentine=6.7±2.6 showed similar bond strength performance with MTA compared with Biodentine (p=0.73 and p=0.38, respectively. Conclusions: The new pure tricalcium-based pulp capping, repair, and endodontic material showed higher shear bond scores compared to MTA when used with the MB composite.

  5. Glass ionomer cements functionalised with a concentrated paste of chlorhexidine hexametaphosphate provides dose-dependent chlorhexidine release over at least 14 months.

    Science.gov (United States)

    Bellis, Candice A; Nobbs, Angela H; O'Sullivan, Dominic J; Holder, James A; Barbour, Michele E

    2016-02-01

    The aim of this study was to create prototype glass ionomer cements (GICs) incorporating a concentrated paste of chlorhexidine-hexametaphosphate (CHX-HMP), and to investigate the long-term release of soluble chlorhexidine and the mechanical properties of the cements. The purpose is the design of a glass ionomer with sustained anticaries efficacy. CHX-HMP paste was prepared by mixing equimolar solutions of chlorhexidine digluconate and sodium hexametaphosphate, adjusting ionic strength, decanting and centrifuging. CHX-HMP paste was incorporated into a commercial GIC in substitution for glass powder at 0.00, 0.17, 0.34, 0.85 and 1.70% by mass CHX-HMP. Soluble chlorhexidine release into artificial saliva was observed over 436 days using absorbance at 255nm. Diametral tensile and compressive strength were measured after 7 days' setting (37°C, 100% humidity) and tensile strength after 436 days' aging in artificial saliva. 0.34% CHX-HMP GICs were tested for their ability to inhibit growth of Streptococcus mutans in vitro. GICs supplemented with CHX-HMP exhibited a sustained dose-dependent release of soluble chlorhexidine. Diametral tensile strength of new specimens was unaffected up to and including 0.85% CHX-HMP, and individual values of tensile strength were unaffected by aging, but the proportion of CHX-HMP required to adversely affect tensile strength was lower after aging, at 0.34%. Compressive strength was adversely affected by CHX-HMP at substitutions of 0.85% CHX-HMP and above. Supplementing a GIC with CHX-HMP paste resulted in a cement which released soluble chlorhexidine for over 14 months in a dose dependent manner. 0.17% and 0.34% CHX-HMP did not adversely affect strength at baseline, and 0.17% CHX-HMP did not affect strength after aging. 0.34% CHX-HMP GICs inhibited growth of S. mutans at a mean distance of 2.34mm from the specimen, whereas control (0%) GICs did not inhibit bacterial growth. Although GICs release fluoride in vivo, there is inconclusive

  6. Clinical Evaluation and Early Finishing of Glass Ionomer Restorative Materials

    Science.gov (United States)

    1988-01-01

    succcs.; of adhesively bonding rf,*efrh a Ki r .;, professor or dental restorative materials to dentin has been reported materials with the glass ...the tooth and m.trix for rapid In 1981, a glass - ionomer restorative material, and accurate future replacement of the matrix. Ketac-Fil, was introduced...three minutes, the condenser was twisted least24 hours) of the glass - ionomer cement. The from the matrix and the restoration allowed to following six

  7. Retention of a resin-based sealant and a glass ionomer used as a fissure sealant in children with special needs.

    Science.gov (United States)

    Morales-Chávez, Mariana C; Nualart-Grollmus, Zacy-Carola

    2014-12-01

    The aim of this research is to evaluate the retention of sealants of resin and resin-modified ionomeric glass pits and fissures, on first permanent molars of special patients. The sample was comprised by 32 children. The ages were between 7 and 18 years. The sealing procedure was made with the relative isolation of the molars to be sealed, through the use of cotton rolls. Two molars were sealed with Clinpro Sealant 3M Dental and the others with Vitremer. Checking of the sealants was made after 3 and 6 months of their placement, evaluating with 3 values: TR: Totally Restrained; PR: Partially Restrained; and CL: Completely Lost. 67.18% of the resinous sealants, and 70.31% of the glass ionomer sealants were successful after three months. After six months, 57.81% of the resin-based sealants and 51.56% of the glass ionomer sealants were successful. When performing the Chi-square statistical analysis (Psealant was similar to that of the glass ionomer cement at the end of six months and the retention of sealants on maxillary teeth was higher than on mandibular teeth. Key words:Sealant, glass ionomer, retention, caries, special needs.

  8. Surface characterization of the cement for retention of implant supported dental prostheses: In vitro evaluation of cement roughness and surface free energy

    International Nuclear Information System (INIS)

    Brajkovic, Denis; Antonijevic, Djordje; Milovanovic, Petar; Kisic, Danilo; Zelic, Ksenija; Djuric, Marija; Rakocevic, Zlatko

    2014-01-01

    Graphical abstract: - Highlights: • Surface free energy and surface roughness influence bacterial adhesion. • Bacterial colonization causes periimplantitis and implant loss. • Zinc-based, glass-ionomers and resin-cements were investigated. • Glass-ionomers-cements present the lowest values of surface free energy and roughness. • Glass-ionomer-cements surface properties result with reduced bacterial adhesion. - Abstract: Background: Material surface free energy and surface roughness strongly influence the bacterial adhesion in oral cavity. The aim of this study was to analyze these two parameters in various commercial luting agents used for cementation of implant restorations. Materials and methods: Zinc-based, glass-ionomers, resin modified glass-ionomer and resin-cements were investigated. Contact angle and surface free energy were measured by contact angle analyzer using Image J software program. Materials’ average roughness and fractal dimension were calculated based on Atomic Force Microscope topography images. Results: Zinc phosphate cements presented significantly higher total surface free energy and significantly lower dispersive component of surface free energy compared to other groups, while resin-cements showed significantly lower polar component than other groups. The surface roughness and fractal dimension values were statistically the highest in the zinc phosphate cements and the lowest for the glass-ionomers cements. Conclusion: Glass-ionomers-cements presented lower values of surface free energy and surface roughness than zinc phosphate and resin cements, indicating that their surfaces are less prone to biofilm adhesion. Practical implications: Within limitations of an in vitro trial, our results indicate that glass-ionomers-cements could be the cements of choice for fixation of cement retained implant restorations due to superior surface properties compared to zinc phosphate and resin cements, which may result in reduced plaque formation

  9. Surface characterization of the cement for retention of implant supported dental prostheses: In vitro evaluation of cement roughness and surface free energy

    Energy Technology Data Exchange (ETDEWEB)

    Brajkovic, Denis [Clinic for Dentistry, Department of Maxillofacial Surgery, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac (Serbia); Antonijevic, Djordje; Milovanovic, Petar [Laboratory for Anthropology, Institute of Anatomy, School of Medicine, University of Belgrade, Dr. Subotica 4/2, 11000 Belgrade (Serbia); Kisic, Danilo [Laboratory for Atomic Physics, Institute of Nuclear Sciences “Vinca”, University of Belgrade, Belgrade (Serbia); Zelic, Ksenija; Djuric, Marija [Laboratory for Anthropology, Institute of Anatomy, School of Medicine, University of Belgrade, Dr. Subotica 4/2, 11000 Belgrade (Serbia); Rakocevic, Zlatko, E-mail: zlatkora@vinca.rs [Laboratory for Atomic Physics, Institute of Nuclear Sciences “Vinca”, University of Belgrade, Belgrade (Serbia)

    2014-08-30

    Graphical abstract: - Highlights: • Surface free energy and surface roughness influence bacterial adhesion. • Bacterial colonization causes periimplantitis and implant loss. • Zinc-based, glass-ionomers and resin-cements were investigated. • Glass-ionomers-cements present the lowest values of surface free energy and roughness. • Glass-ionomer-cements surface properties result with reduced bacterial adhesion. - Abstract: Background: Material surface free energy and surface roughness strongly influence the bacterial adhesion in oral cavity. The aim of this study was to analyze these two parameters in various commercial luting agents used for cementation of implant restorations. Materials and methods: Zinc-based, glass-ionomers, resin modified glass-ionomer and resin-cements were investigated. Contact angle and surface free energy were measured by contact angle analyzer using Image J software program. Materials’ average roughness and fractal dimension were calculated based on Atomic Force Microscope topography images. Results: Zinc phosphate cements presented significantly higher total surface free energy and significantly lower dispersive component of surface free energy compared to other groups, while resin-cements showed significantly lower polar component than other groups. The surface roughness and fractal dimension values were statistically the highest in the zinc phosphate cements and the lowest for the glass-ionomers cements. Conclusion: Glass-ionomers-cements presented lower values of surface free energy and surface roughness than zinc phosphate and resin cements, indicating that their surfaces are less prone to biofilm adhesion. Practical implications: Within limitations of an in vitro trial, our results indicate that glass-ionomers-cements could be the cements of choice for fixation of cement retained implant restorations due to superior surface properties compared to zinc phosphate and resin cements, which may result in reduced plaque formation

  10. Effect of radiant heat on conventional glass ionomer cements during setting by using a blue light diode laser system (445 nm).

    Science.gov (United States)

    Dionysopoulos, Dimitrios; Tolidis, Kosmas; Strakas, Dimitrios; Gerasimou, Paris; Sfeikos, Thrasyvoulos; Gutknecht, Norbert

    2017-04-01

    The aim of this in vitro study was to evaluate the effect of radiant heat on surface hardness of three conventional glass ionomer cements (GICs) by using a blue diode laser system (445 nm) and a light-emitting diode (LED) unit. Additionally, the safety of the laser treatment was evaluated. Thirty disk-shaped specimens were prepared of each tested GIC (Equia Fil, Ketac Universal Aplicap and Riva Self Cure). The experimental groups (n = 10) of the study were as follows: group 1 was the control group of the study; in group 2, the specimens were irradiated for 60 s at the top surface using a LED light-curing unit; and in group 3, the specimens were irradiated for 60 s at the top surface using a blue light diode laser system (445 nm). Statistical analysis was performed using one-way ANOVA and Tukey post-hoc tests at a level of significance of a = 0.05. Radiant heat treatments, with both laser and LED devices, increased surface hardness (p diode laser treatment was seemed to be more effective compared to LED treatment. There were no alterations in surface morphology or chemical composition after laser treatment. The tested radiant heat treatment with a blue diode laser may be advantageous for the longevity of GIC restorations. The safety of the use of blue diode laser for this application was confirmed.

  11. Effect of a CO2 Laser on the Inhibition of Root Surface Caries Adjacent to Restorations of Glass Ionomer Cement or Composite Resin: An In Vitro Study.

    Science.gov (United States)

    Daniel, L C; Araújo, F C; Zancopé, B R; Hanashiro, F S; Nobre-dos-Santos, M; Youssef, M N; Souza-Zaroni, W C

    2015-01-01

    This study investigated the effect of CO2 laser irradiation on the inhibition of secondary caries on root surfaces adjacent to glass ionomer cement (GIC) or composite resin (CR) restorations. 40 dental blocks were divided into 4 groups: G1 (negative control): cavity preparation + adhesive restoration with CR; G2: (positive control) cavity preparation + GIC restoration; G3: equal to group 1 + CO2 laser with 6 J/cm(2); G4: equal to group 2 + CO2 laser. The blocks were submitted to thermal and pH cycling. Dental demineralization around restorations was quantified using microhardness analyses and Light-Induced Fluorescence (QLF). The groups showed no significant differences in mineral loss at depths between 20 μm and 40 μm. At 60 μm, G2 and G3 ≠ G1, but G4 = G1, G2 and G3. At 80 μm, G4 ≠ G1, and at 100 μm, G4 = G2 = G1. At 140 and 220 μm, G2, G3, and G4 = G1. The averages obtained using QFL in groups 1, 2, 3, and 4 were 0.637, 0.162, 0.095, and 0.048, respectively. QLF and microhardness analyses showed that CO2 laser irradiation reduced mineral loss around the CR restorations but that it did not increase the anticariogenic effect of GIC restorations.

  12. Effects of the addition of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on mechanical properties of luting and lining glass ionomer cement

    Science.gov (United States)

    Heravi, Farzin; Bagheri, Hossein; Rangrazi, Abdolrasoul; Mojtaba Zebarjad, Seyed

    2016-07-01

    Recently, the addition of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into glass ionomer cements (GICs) has attracted interest due to its remineralization of teeth and its antibacterial effects. However, it should be investigated to ensure that the incorporation of CPP-ACP does not have significant adverse effects on its mechanical properties. The purpose of this study was to evaluate the effects of the addition of CPP-ACP on the mechanical properties of luting and lining GIC. The first step was to synthesize the CPP-ACP. Then the CPP-ACP at concentrations of 1%, 1.56% and 2% of CPP-ACP was added into a luting and lining GIC. GIC without CPP-ACP was used as a control group. The results revealed that the incorporation of CPP-ACP up to 1.56%(w/w) increased the flexural strength (29%), diametral tensile strength (36%) and microhardness (18%), followed by a reduction in these mechanical properties at 2%(w/w) CPP-ACP. The wear rate was significantly decreased (23%) in 1.56%(w/w) concentration of CPP-ACP and it was increased in 2%(w/w). Accordingly, the addition of 1.56%(w/w) CPP-ACP into luting and lining GIC had no adverse effect on the mechanical properties of luting and lining GIC and could be used in clinical practice.

  13. A clinical evaluation of two glass ionomer cements in primary molars using atraumatic restorative treatment technique in India: 1 year follow up.

    Science.gov (United States)

    Deepa, Gurunathan; Shobha, Tandon

    2010-11-01

    To compare the clinical performance of two glass ionomer cements, Amalgomer CR and Fuji IX in small and medium cavities prepared using Atraumatic restorative treatment approach in India. One hundred school children in the age group of 4-9 years who had bilateral matched pair of carious lesions in primary posterior teeth were included. A split mouth design was used in which two materials were randomly placed in contralateral sides. The performance of the restorations was assessed after 1 year using Frenken's criteria (1996). Survival analysis of restoration was done using chi-square test. The survival rate of Amalgomer CR and Fuji IX class I restorations were 97.4% and 94.9%, respectively. In class II cavities 95.1% and 88.5% of Amalgomer CR and Fuji IX restorations were successful. Amalgomer CR and Fuji IX showed a success of 94.2% and 92.3% in small sized class II cavities. Amalgomer CR showed a 100% success for medium sized class I and II restorations. Whereas Fuji IX showed a 100% and 66.7% success in medium sized class I and II cavities. The clinical performances of both materials were satisfactory at the end of 1 year and ART is suitable procedure to be done in a dental clinic for children. © 2010 The Authors. International Journal of Paediatric Dentistry © 2010 BSPD, IAPD and Blackwell Publishing Ltd.

  14. Effect of a CO2 Laser on the Inhibition of Root Surface Caries Adjacent to Restorations of Glass Ionomer Cement or Composite Resin: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    L. C. Daniel

    2015-01-01

    Full Text Available This study investigated the effect of CO2 laser irradiation on the inhibition of secondary caries on root surfaces adjacent to glass ionomer cement (GIC or composite resin (CR restorations. 40 dental blocks were divided into 4 groups: G1 (negative control: cavity preparation + adhesive restoration with CR; G2: (positive control cavity preparation + GIC restoration; G3: equal to group 1 + CO2 laser with 6 J/cm2; G4: equal to group 2 + CO2 laser. The blocks were submitted to thermal and pH cycling. Dental demineralization around restorations was quantified using microhardness analyses and Light-Induced Fluorescence (QLF. The groups showed no significant differences in mineral loss at depths between 20 μm and 40 μm. At 60 μm, G2 and G3 ≠ G1, but G4 = G1, G2 and G3. At 80 μm, G4 ≠ G1, and at 100 μm, G4 = G2 = G1. At 140 and 220 μm, G2, G3, and G4 = G1. The averages obtained using QFL in groups 1, 2, 3, and 4 were 0.637, 0.162, 0.095, and 0.048, respectively. QLF and microhardness analyses showed that CO2 laser irradiation reduced mineral loss around the CR restorations but that it did not increase the anticariogenic effect of GIC restorations.

  15. In vitro quantitative evaluation of marginal microleakage in class II restorations confected with a glass ionomer cement and two composite resins

    Directory of Open Access Journals (Sweden)

    BIJELLA Maria Fernanda Borro

    2001-01-01

    Full Text Available This study evaluated, in vitro, marginal microleakage in class II restorations confected with the glass ionomer cement Vitremer and with the composite resins Ariston pHc and P-60. The aims of the study were to assess the effect of thermocycling on those materials and to evaluate two methods utilized in the analysis of dye penetration. Sixty premolars divided in three groups were utilized; the teeth had proximal cavities whose cervical walls were located 1 mm below the cementoenamel junction. Half of the test specimens from each group underwent thermocycling; the other half remained in deionized water, at 37ºC. The specimens were immersed, for 24 hours, in a basic 0.5% fuchsin solution at 37ºC. For the analysis of microleakage, the specimens were sectioned in a mesio-distal direction, and the observation was carried out with the software Imagetools. The results were evaluated through the 2-way ANOVA and through the Tukey?s test. All groups presented marginal microleakage. The smallest values were obtained with Vitremer, followed by those obtained with the composite resins P-60 and Ariston pHc. There was no statistically significant difference caused by thermocycling, and the method of maximum infiltration was the best for detecting the extension of microleakage.

  16. Shear bond strength evaluation of resin composite bonded to glass-ionomer cement using self-etching bonding agents with different pH: In vitro study

    Science.gov (United States)

    Kandaswamy, Deivanayagam; Rajan, Karunamoorthy Jeyavel; Venkateshbabu, Nagendrababu; Porkodi, Ilango

    2012-01-01

    Aim: To evaluate the bonding ability of composite to unset glass-ionomer cement (GIC) using different self-etching bonding systems. Materials and Methods: One hundred samples of composite bonded to unset GIC were prepared and were divided into four groups. In Group A, composite was bonded to unset GIC employing a strong (pH 1) self-etch primer was used. In Group B, intermediary strong (pH 1.4) self-etch primer was employed. In Group C and D, mild (pH 2) and (pH 2.2) self-etch primer was employed. Shear bond strength analysis was performed at a cross-head speed of 0.5 mm/min. Results: Statistical analysis performed with one way analysis of variance and Tukey's test showed that the bond strength of composite to unset GIC was significantly higher for the mild self-etch primer group. In addition, energy dispersive x-ray (EDX) analysis was used to determine the composition of various structural phases identified by FE-SEM along the GIC-bonding agent interfaces. Conclusion: Hence this present study concludes that clinically the use of mild self-etching bonding agent over unset GIC has improved bond strength compared to the use of strong and intermediate self-etching bonding agent. PMID:22368331

  17. Tensile bond strength between different glass ionomer cement and composite resin using three adhesive systems Avaliação da resistência de união interfacial entre diferentes cimentos de ionômero de vidro e resina composta, usando três sistemas adesivos

    Directory of Open Access Journals (Sweden)

    Patrícia Dias

    2005-10-01

    Full Text Available The purpose of this study was to evaluate the tensile bond strength (TBS among a Composite Resin (Filtek Z250 and six conventional Glass Ionomer Cements, three used for lining (Bioglass F, Vidrion F and Glass Ionomer L.C. and three for restorations (Ketac Fil, Vidrion R and Glass Ionomer type II etched and non etched, using three adhesive systems (Single Bond, Bond 1 and Stae. Thirty-six groups were made, ten samples for each group, totalizing 360 specimens. There were significant differences on TBS among groups. Group 31 (Glass Ionomer Cement type II showed the highest TBS (9.65 MPa in comparison to other tested groups. Group 16 (Glass Ionomer L.C presented the lowest TBS (2.72 MPa in comparison to all the other groups. Therefore, it can be concluded that the acid etching of the Glass Ionomer Cement is not necessary. Foi avaliada, ">in vitro, a resistência de união, por tração, entre uma Resina Composta micro-híbrida (Filtek Z-250 e seis Cimentos de Ionômero de Vidro (CIV convencionais: três utilizados para base/forramento (Bioglass F, Vidrion F e Glass Ionomer Lining Cement e três para restauração (Ketac Fil, Vidrion R e Glass Ionomer Cement type II, sem e com condicionamento ácido ortofosfórico a 37%, usando três sistemas adesivos (Single Bond, Bond 1 e Stae. Foram confeccionados 36 grupos de 10 corpos-de-prova cada, totalizando 360 espécimes. Para análise estatística, foi utilizado o teste de Tukey-Kramer. Dentre os três CIV de base/forramento, os grupos 2 e 5 (Bioglass F apresentaram valores mais altos de adesividade à resina (7,24 e 6,03 MPa respectivamente. Quanto aos três CIV de restauração, todos apresentaram maior resistência de união, superior aos de base/forramento, sendo que o Glass Ionomer Cement type II (Grupo 31 e Vidrion R apresentaram maior força de adesão (9,65 e 7,47 MPa à resina composta. O grupo 16 (Glass Ionomer L.C. mostrou menor adesividade à resina (2,72 MPa. Houve diferenças significantes

  18. Sol-gel-derived bioactive glass nanoparticle-incorporated glass ionomer cement with or without chitosan for enhanced mechanical and biomineralization properties.

    Science.gov (United States)

    Kim, Dong-Ae; Lee, Jung-Hwan; Jun, Soo-Kyung; Kim, Hae-Won; Eltohamy, Mohamed; Lee, Hae-Hyoung

    2017-07-01

    This study investigated the mechanical and in vitro biological properties (in immortalized human dental pulp stem cells (ihDPSCs)) of bioactive glass nanoparticle (BGN)-incorporated glass ionomer cement (GIC) with or without chitosan as a binder. After the BGNs were synthesized and characterized, three experimental GICs and a control (conventional GIC) that differed in the additive incorporated into a commercial GIC liquid (Hy-bond, Shofu, Japan) were produced: BG5 (5wt% of BGNs), CL0.5 (0.5wt% of chitosan), and BG5+CL0.5 (5wt% of BGNs and 0.5wt% of chitosan). After the net setting time was determined, weight change and bioactivity were analyzed in simulated body fluid (SBF) at 37°C. Mechanical properties (compressive strength, diametral tensile strength, flexural strength and modulus) were measured according to the incubation time (up to 28 days) in SBF. Cytotoxicity (1day) and biomineralization (14 days), assessed by alizarin red staining, were investigated using an extract from GIC and ihDPSCs. Data were analyzed using one-way analysis of variance (ANOVA) followed by Tukey's post hoc test; pproperties were increased in the BGN-incorporated GICs compared to those in the control (pproperties such as compressive, diametral tensile and flexural strength as well as in vitro biomineralization properties in ihDPSCs without cytotoxicity. Therefore, the developed BGN-incorporated GIC is a promising restorative dental material, although further in vivo investigation is needed before clinical application. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Systematic review on highly viscous glass-ionomer cement/resin coating restorations (Part II): 
Do they merge Minamata Convention and minimum intervention dentistry?

    Science.gov (United States)

    Kielbassa, Andrej M; Glockner, Georg; Wolgin, Michael; Glockner, Karl

    2017-01-01

    With the Minamata Convention the use of mercury will be phased down, and this undoubtedly will have an effect on dental treatment regimens and economic resources. Composite resin restorations are considered viable alternatives to amalgam fillings; however, these will not be covered completely by health insurance systems in many countries. Recently, a high-viscosity glass-ionomer cement (hvGIC) processed with a resinous coating (RC) has been introduced, and has been marketed as a restorative material in load-bearing Class I cavities (and in Class II cavities with limited size), thus serving as a possible alternative to amalgam fillings. To discuss the outcome based on the evaluation presented in Part I of this paper, and to critically appraise the methodologies of the various studies. Two of the included studies were industry-funded, and status of the other clinical trials remained unclear. Quality of study reporting was considered perfectible. The use of a light-cured nanofilled resin coating material would seem advantageous, at least when regarding short- and medium term outcomes. Within the respective indications and cavity geometries, the hvGIC/RC approach would seem promising, could merge the phase-down of mercury and the objectives of minimally invasive treatment to some extent, and might be a restorative alternative for patients suffering from allergies or not willing to afford other sophisticated or expensive techniques. These recommendations are based on studies evaluating EQUIA Fil (GC), but are not transferable to clinical perspectives of the glass hybrid successor product (EQUIA Forte; GC).

  20. Do glass ionomer cements prevent caries lesions in margins of restorations in primary teeth?: A systematic review and meta-analysis.

    Science.gov (United States)

    Raggio, Daniela Prócida; Tedesco, Tamara Kerber; Calvo, Ana Flávia Bissoto; Braga, Mariana Minatel

    2016-03-01

    Fluoride released from glass ionomer cements (GICs) is capable of preventing caries lesions. However, the preventive effect in margins of occlusal and occlusoproximal restorations have not been proved. The aim of this study was to evaluate the ability of GIC to prevent caries lesions in margins of occlusal and occlusoproximal restorations in primary teeth compared with that of other restorative materials. The authors conducted a literature search in PubMed and MEDLINE to verify the clinical trials available on the outcome of caries lesions. The inclusion criteria were that the subject related to the scope of this systematic review, the study had a follow-up, and the study was not performed in specific groups. The authors performed all meta-analyses by considering the secondary caries rates for the restorations in clinical trials. The search strategy identified 450 potentially relevant studies, and the authors included 8 of them in the review. The main reasons for exclusion were that the studies were not related to the scope of this review or were not longitudinal trials. The secondary caries rate of the occlusal restorations was not different among the restorative materials (odds ratio, 1.2; 95% confidence interval, 0.5-3.1). For occlusoproximal analysis, GIC was associated significantly with better ability to prevent caries lesions (odds ratio, 1.7; 95% confidence interval, 1.2-2.5). Because new caries lesions in the margins of restorations are the main reason for failure and replacement of restorations in primary teeth, it is important to know whether there is a benefit in using GICs in both occlusal and occlusoproximal cavities. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  1. The effects of ambient temperature and mixing time of glass ionomer cement material on the survival rate of proximal ART restorations in primary molars

    Directory of Open Access Journals (Sweden)

    Arthur M Kemoli

    2014-01-01

    Full Text Available Objective: Temperature fluctuations and material mixing times are likely to affect the consistency and integrity of the material mixture, and hence the restoration made out of it. The purpose of the present study was to determine the influence of the ambient temperature and the mixing time of glass ionomer cement (GIC restorative material on the survival rate of proximal atraumatic restorative treatment (ART restorations placed in primary molars. Materials and Methods: A total of 804 restorations were placed in the primary molars of 6-8-year-olds using the ART approach. The restorations were then followed for a period of 2 years and evaluated at given intervals. The data collected were analyzed using SPSS computer statistical program, and the results tested and compared using the Chi-square, Kaplan Meier survival analysis and Cox Proportional hazard statistical tests. Results: The cumulative survival rate of the restorations dropped from the initial 94.4% to 30.8% at the end of 2 years. The higher survival rate of the restorations was associated with the experienced operators and assistants when using the rubber dam isolation method. However, there was no statistically significant difference in the survival rate of the restorations when related to the room temperature and the mixing time of the GIC materials used in spite of the variations in the temperature recoded and the methods used in mixing the materials. Conclusion: The ambient temperature and mixing time of GIC did not have a significant effect on the survival of the proximal ART restorations.

  2. Comparison of effect of desensitizing agents on the retention of crowns cemented with luting agents: an in vitro study.

    Science.gov (United States)

    Jalandar, Sonune Shital; Pandharinath, Dange Shankar; Arun, Khalikar; Smita, Vaidya

    2012-08-01

    Many dentists use desensitizing agents to prevent hypersensitivity. This study compared and evaluated the effect of two desensitizing agents on the retention of cast crowns when cemented with various luting agents. Ninety freshly extracted human molars were prepared with flat occlusal surface, 6 degree taper and approximately 4 mm axial length. The prepared specimens were divided into 3 groups and each group is further divided into 3 subgroups. Desensitizing agents used were GC Tooth Mousse and GLUMA® desensitizer. Cementing agents used were zinc phosphate, glass ionomer and resin modified glass ionomer cement. Individual crowns with loop were made from base metal alloy. Desensitizing agents were applied before cementation of crowns except for control group. Under tensional force the crowns were removed using an automated universal testing machine. Statistical analysis included one-way ANOVA followed by Turkey-Kramer post hoc test at a preset alpha of 0.05. Resin modified glass ionomer cement exhibited the highest retentive strength and all dentin treatments resulted in significantly different retentive values (In Kg.): GLUMA (49.02 ± 3.32) > Control (48.61 ± 3.54) > Tooth mousse (48.34 ± 2.94). Retentive strength for glass ionomer cement were GLUMA (41.14 ± 2.42) > Tooth mousse (40.32 ± 3.89) > Control (39.09 ± 2.80). For zinc phosphate cement the retentive strength were lowest GLUMA (27.92 ± 3.20) > Control (27.69 ± 3.39) > Tooth mousse (25.27 ± 4.60). The use of GLUMA® desensitizer has no effect on crown retention. GC Tooth Mousse does not affect the retentive ability of glass ionomer and resin modified glass ionomer cement, but it decreases the retentive ability of zinc phosphate cement.

  3. Setting shrinkage strains of chemical-cured glass ionomer-based ...

    African Journals Online (AJOL)

    Shrinkage strains are exhibited by the current formulations of chemical-cured dental restorative systems. In resin-modified glass ionomer systems, these have been linked to filler contents, types and quantity of monomer. Post-gelation rigid contraction that follows onset of cure leading to marginal defects is a clinically ...

  4. Modified glass ionomer and orthodontic band: An interim alternative for the treatment of molar incisor hypomineralization. A case report.

    Directory of Open Access Journals (Sweden)

    Carla Orellana

    2017-03-01

    Full Text Available Introduction: Molar incisor hypomineralization (MIH is a developmental condition resulting in defects in the enamel characterized by demarcated opacities mainly affecting first permanent molars and occasionally permanent incisors in 1 of every 6 children worldwide. Affected molars have greater susceptibility to post eruptive breakdown, extensive caries and, in severe cases, are difficult to restore. When the MIH-affected molar presents severe crown destruction, it is necessary to perform an intermediate restoration to preserve the remaining dental structure in order to maintain occlusion, proper hygiene and periodontal health. The case of an 11-year-old patient with severe MIH is reported. The patient had extensive crown destruction by caries in tooth 1.6 without clinical or radiographic signs of pulp pathology. After an initial preventive intervention, enamel without dentin support and carious dentin were removed from tooth 1.6. Subsequently, crown restoration was performed with resin-modified glass ionomer, followed by the cementation of an orthodontic band. After 18 months of follow-up, the patient reported no pain or discomfort. The restoration was preserved intact, maintaining occlusal functionality, pulp and gingival health. Conclusion: The interim treatment, cementing an orthodontic band over a tooth restored with glass ionomer seems to favor retention and compressive strength, keeping the MIH-affected molar asymptomatic for at least 18 months. Further studies evaluating this treatment option in similar clinical situations are recommended.

  5. [A comparative study of marginal microleakage using different cements in porcelain-fused-to-metal crown].

    Science.gov (United States)

    Jiang, Ming-Xin; Huang, Ke-Qiang; Li, Zhi-Gang; Gao, Xiu-Qiu; Li, Chun-Shan

    2011-04-01

    To evaluate the marginal microleakage of porcelain-fused-to-metal crown using four different cements. Sixteen porcelain-fused-to-metal crowns were built and randomly divided into 4 group, luted onto standard prepared human forward molars using four different cements (glass ionomer cement, resin-modified glass ionomer cement, PanaviaF, Super-Bond C&B adhesive luting system). After temperature cycling test, all the crowns were then submerged in 2% fuchsin for 24 h. The marginal microleakage at tooth cement interfaces was observed using light stereomicroscopy and evaluated in classification index. The marginal microleakage grade of 4 groups were analyzed by SPSS 13.0. The PanaviaF demonstrated the least marginal microleakage, Super-Bond C&B adhesive luting system, resin-modified glass ionomer cement showed an intermediate level of marginal microleakage, glass ionomer cement was associated with severe marginal microleakage (total, Chi2 = 157.60, P cement and is good at porcelain-fused-to-metal crown.

  6. The surface pH of glass ionomer cavity lining agents.

    Science.gov (United States)

    Woolford, M J

    1989-12-01

    It is considered that acid release from the surface of glass ionomer (polyalkenoate) cements may be associated with early pulpal sensitivity following the use of these materials. This study was carried out to examine the surface pH of different types of glass ionomer lining cements using a flat-ended pH electrode. It was found that the surface pH remains low for this group of materials during the first hour of setting. Different types of glass ionomer lining cement were also shown to behave differently when considering acid release from the surface. Conclusions regarding the behaviour of glass ionomers should only be made with reference to the specific material tested.

  7. Fracture Resistance of Endodontically Treated Teeth Restored with Biodentine, Resin Modified GIC and Hybrid Composite Resin as a Core Material.

    Science.gov (United States)

    Subash, Dayalan; Shoba, Krishnamma; Aman, Shibu; Bharkavi, Srinivasan Kumar Indu; Nimmi, Vijayan; Abhilash, Radhakrishnan

    2017-09-01

    The restoration of a severely damaged tooth usually needs a post and core as a part of treatment procedure to provide a corono - radicular stabilization. Biodentine is a class of dental material which possess high mechanical properties with excellent biocompatibility and bioactive behaviour. The sealing ability coupled with optimum physical properties could make Biodentine an excellent option as a core material. The aim of the study was to determine the fracture resistance of Biodentine as a core material in comparison with resin modified glass ionomer and composite resin. Freshly extracted 30 human permanent maxillary central incisors were selected. After endodontic treatment followed by post space preparation and luting of Glass fibre post (Reforpost, Angelus), the samples were divided in to three groups based on the type of core material. The core build-up used in Group I was Biodentine (Septodont, France), Group II was Resin-Modified Glass Ionomer Cement (GC, Japan) and Group III was Hybrid Composite Resin (TeEconom plus, Ivoclar vivadent). The specimens were subjected to fracture toughness using Universal testing machine (1474, Zwick/Roell, Germany) and results were compared using One-way analysis of variance with Tukey's Post hoc test. The results showed that there was significant difference between groups in terms of fracture load. Also, composite resin exhibited highest mean fracture load (1039.9 N), whereas teeth restored with Biodentine demonstrated the lowest mean fracture load (176.66 N). Resin modified glass ionomer exhibited intermediate fracture load (612.07 N). The primary mode of failure in Group I and Group II was favourable (100%) while unfavourable fracture was seen in Group III (30%). Biodentine, does not satisfy the requirements to be used as an ideal core material. The uses of RMGIC's as a core build-up material should be limited to non-stress bearing areas. Composite resin is still the best core build-up material owing to its high fracture

  8. The Effect of Temporary Cement Cleaning Methods on the Retention of Crowns.

    Science.gov (United States)

    Song, Mi-Young; An, Hongseok; Park, Eun-Jin

    2017-06-09

    To evaluate the effect of temporary cement cleaning methods on the retention of cemented crowns using zinc phosphate cement and resin-modified glass ionomer cement. Forty titanium specimens were fabricated to simulate prepared molars with minimally retentive taper. The Ni-Cr cast crowns were fabricated, temporarily cemented, and separated. The specimens were divided into four groups according to the temporary cement cleaning method (n = 10) as follows: control group (no temporary cementation), orange solvent group, ultrasonic cleaning group, and air-abrasion group. After the cleaning procedures, the specimens were cemented with definitive cements (zinc phosphate cement and resin-modified glass ionomer, RMGI, cement) and subjected to thermocycling (5000 cycles, 5-55°C, dwell time, 10 seconds). The tensile bond strength of each specimen was measured using a universal testing machine, and the results were analyzed using the Kruskal-Wallis and Mann-Whitney U test (α = 0.05). When cemented with zinc phosphate cement, the statistical analysis showed that the value of the air-abrasion group was significantly higher than those of the other groups (p crowns when zinc phosphate cement was used for permanent cementation. Airborne-particle abrasion after provisional cementation improved retention of crowns cemented with zinc phosphate cement; however, the use of temporary cement significantly decreased retention of permanently cemented crowns when RMGI cement was used regardless of the temporary cement cleaning method. © 2017 by the American College of Prosthodontists.

  9. Microleakage of adhesive and nonadhesive luting cements for stainless steel crowns.

    Science.gov (United States)

    Memarpour, Mahtab; Mesbahi, Maryam; Rezvani, Gita; Rahimi, Mehran

    2011-01-01

    This study's purpose was to compare the ability of 5 luting cements to reduce microleakage at stainless steel crown (SSC) margins on primary molar teeth. Standard preparations were performed on 100 extracted primary molar teeth for SSC restoration. After fitting SSCs, samples were randomly divided into 5 groups of 20 teeth each, which were cemented with nonadhesive cement consisting of polycarboxylate (PC) or zinc phosphate (ZP), or with adhesive cement consisting of glass ionomer (GIC), resin-modified glass ionomer cement (RMGIC), or RMGIC with a bonding agent (RMGIC+DBA). After aging and thermocycling, the specimens were placed in 1% methylene blue, sectioned, and evaluated under a digital microscope. The data were compared between groups with the t test, analysis of variance, and the least significant difference test. Microleakage with adhesive cements was significantly lower than with nonadhesive cements (Pcements were statistically significant at Pcement showed the greatest microleakage. Adhesive cements were more effective in reducing microleakage in stainless steel crowns than nonadhesive cements. Use of a bonding agent with a resin-modified glass ionomer cement yielded better results than using the latter alone.

  10. Role of pH Changes on Transforming Growth Factor-β1 Release and on the Fibrin Architecture of Platelet-rich Fibrin When Layered with Biodentine, Glass Ionomer Cement, and Intermediate Restorative Material.

    Science.gov (United States)

    Mullaguri, Harish; Suresh, Nandini; Surendran, Smitha; Velmurugan, Natanasabapathy; Chitra, Selvarajan

    2016-05-01

    The purpose of this study was to evaluate the influence of pH that is due to setting reaction of Biodentine, glass ionomer cement (GIC), and intermediate restorative material (IRM) on transforming growth factor-β1 (TGF-β1) release and on the fibrin architecture of platelet-rich fibrin (PRF). PRF was obtained from 8 volunteers and layered over the freshly prepared GIC, IRM, and Biodentine mixtures. TGF-β1 release was estimated by using enzyme-linked immunosorbent assay (ELISA), and fibrin structure of PRF was analyzed by using scanning electron microscope at 1 and 5 hours. Biodentine, GIC, and IRM increased the TGF-β1 release in comparison with that of control group (PRF alone) at both 1 and 5 hours. Biodentine released significantly more TGF-β1 than GIC and IRM at 1 hour. At 5 hours both GIC and Biodentine released significantly more TGF-β1 than IRM. The fibrin architecture of the Biodentine group was similar to that of control group at both 1 and 5 hours. In GIC and IRM groups the fibrillar structure of fibrin was collapsed, ill-defined, and cloudy with very thick fibers and irregularly reduced porosities. Biodentine induces larger amount of TGF-β1 release and also maintains the integrity of fibrin structure when compared with GIC and IRM when layered over PRF. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Influence of type of cement on the color and translucency of monolithic zirconia.

    Science.gov (United States)

    Malkondu, Ozlem; Tinastepe, Neslihan; Kazazoglu, Ender

    2016-12-01

    With the development of translucent zirconia, questions regarding the influence of cements on the final color of monolithic zirconia restorations have arisen. The purpose of this in vitro study was to evaluate color changes in terms of the perceptibility and acceptability of monolithic zirconia-and-cement combinations with 2 monolithic zirconia thicknesses and 3 types of cement. The translucency parameters of these combinations were also compared. Sixty monolithic zirconia ceramic disks were milled with 2 different thicknesses (0.6 mm and 1 mm). A conventional glass ionomer cement, a resin-modified glass ionomer cement, and a resin cement from the same manufacturer were applied to the ceramic surfaces of both thickness disks (n=10). Translucencies and color changes of the monolithic zirconia specimens after cement application were examined by using a spectrophotometer, and translucency parameters (TPs) and color changes (ΔEs) were calculated and statistically analyzed. Colors and TPs of the zirconia disks changed significantly after being cemented to 0.6- and 1-mm-thick disks (Pzirconia-resin modified glass ionomer combination, whereas the highest ΔE values (5.64 for the 0.6-mm and 5.06 for the 1-mm thick disks) were observed for the zirconia-resin cement combination. The glass ionomer cement most strongly affected the TP values of both of the thicknesses. Cement types and zirconia thickness affected the colors and translucencies of the monolithic zirconia specimens. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. Do Dental Resin Composites Accumulate More Oral Biofilms and Plaque than Amalgam and Glass Ionomer Materials?

    Science.gov (United States)

    Zhang, Ning; Melo, Mary A.S.; Weir, Michael D.; Reynolds, Mark A.; Bai, Yuxing; Xu, Hockin H.K.

    2016-01-01

    A long-time drawback of dental composites is that they accumulate more biofilms and plaques than amalgam and glass ionomer restorative materials. It would be highly desirable to develop a new composite with reduced biofilm growth, while avoiding the non-esthetics of amalgam and low strength of glass ionomer. The objectives of this study were to: (1) develop a protein-repellent composite with reduced biofilms matching amalgam and glass ionomer for the first time; and (2) investigate their protein adsorption, biofilms, and mechanical properties. Five materials were tested: A new composite containing 3% of protein-repellent 2-methacryloyloxyethyl phosphorylcholine (MPC); the composite with 0% MPC as control; commercial composite control; dental amalgam; resin-modified glass ionomer (RMGI). A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate metabolic activity, colony-forming units (CFU), and lactic acid production. Composite with 3% MPC had flexural strength similar to those with 0% MPC and commercial composite control (p > 0.1), and much greater than RMGI (p control composites (p control composites (p 0.1). In conclusion, a new protein-repellent dental resin composite reduced oral biofilm growth and acid production to the low levels of non-esthetic amalgam and RMGI for the first time. The long-held conclusion that dental composites accumulate more biofilms than amalgam and glass ionomer is no longer true. The novel composite is promising to finally overcome the major biofilm-accumulation drawback of dental composites in order to reduce biofilm acids and secondary caries. PMID:28774007

  13. Do Dental Resin Composites Accumulate More Oral Biofilms and Plaque than Amalgam and Glass Ionomer Materials?

    Science.gov (United States)

    Zhang, Ning; Melo, Mary A S; Weir, Michael D; Reynolds, Mark A; Bai, Yuxing; Xu, Hockin H K

    2016-11-01

    A long-time drawback of dental composites is that they accumulate more biofilms and plaques than amalgam and glass ionomer restorative materials. It would be highly desirable to develop a new composite with reduced biofilm growth, while avoiding the non-esthetics of amalgam and low strength of glass ionomer. The objectives of this study were to: (1) develop a protein-repellent composite with reduced biofilms matching amalgam and glass ionomer for the first time; and (2) investigate their protein adsorption, biofilms, and mechanical properties. Five materials were tested: A new composite containing 3% of protein-repellent 2-methacryloyloxyethyl phosphorylcholine (MPC); the composite with 0% MPC as control; commercial composite control; dental amalgam; resin-modified glass ionomer (RMGI). A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate metabolic activity, colony-forming units (CFU), and lactic acid production. Composite with 3% MPC had flexural strength similar to those with 0% MPC and commercial composite control ( p > 0.1), and much greater than RMGI ( p biofilm CFU and lactic acid much lower than control composites ( p Biofilm growth, metabolic activity and lactic acid on the new composite with 3% MPC were reduced to the low level of amalgam and RMGI ( p > 0.1). In conclusion, a new protein-repellent dental resin composite reduced oral biofilm growth and acid production to the low levels of non-esthetic amalgam and RMGI for the first time. The long-held conclusion that dental composites accumulate more biofilms than amalgam and glass ionomer is no longer true. The novel composite is promising to finally overcome the major biofilm-accumulation drawback of dental composites in order to reduce biofilm acids and secondary caries.

  14. Do Dental Resin Composites Accumulate More Oral Biofilms and Plaque than Amalgam and Glass Ionomer Materials?

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2016-11-01

    Full Text Available A long-time drawback of dental composites is that they accumulate more biofilms and plaques than amalgam and glass ionomer restorative materials. It would be highly desirable to develop a new composite with reduced biofilm growth, while avoiding the non-esthetics of amalgam and low strength of glass ionomer. The objectives of this study were to: (1 develop a protein-repellent composite with reduced biofilms matching amalgam and glass ionomer for the first time; and (2 investigate their protein adsorption, biofilms, and mechanical properties. Five materials were tested: A new composite containing 3% of protein-repellent 2-methacryloyloxyethyl phosphorylcholine (MPC; the composite with 0% MPC as control; commercial composite control; dental amalgam; resin-modified glass ionomer (RMGI. A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate metabolic activity, colony-forming units (CFU, and lactic acid production. Composite with 3% MPC had flexural strength similar to those with 0% MPC and commercial composite control (p > 0.1, and much greater than RMGI (p < 0.05. Composite with 3% MPC had protein adsorption that was only 1/10 that of control composites (p < 0.05. Composite with 3% MPC had biofilm CFU and lactic acid much lower than control composites (p < 0.05. Biofilm growth, metabolic activity and lactic acid on the new composite with 3% MPC were reduced to the low level of amalgam and RMGI (p > 0.1. In conclusion, a new protein-repellent dental resin composite reduced oral biofilm growth and acid production to the low levels of non-esthetic amalgam and RMGI for the first time. The long-held conclusion that dental composites accumulate more biofilms than amalgam and glass ionomer is no longer true. The novel composite is promising to finally overcome the major biofilm-accumulation drawback of dental composites in order to reduce biofilm acids and secondary caries.

  15. Assessment of the Shear Bond Strength between Nanofilled Composite Bonded to Glass-ionomer Cement Using Self-etch Adhesive with Different pHs and Total-Etch Adhesive.

    Science.gov (United States)

    Sharafeddin, Farahnaz; Choobineh, Mohammad Mehdi

    2016-03-01

    In the sandwich technique, the undesirable bond between the composite resin and glass-ionomer cement (GIc) is one of the most important factors which lead to the failure of restoration. Total-etch and self-etch adhesives may improve the bond strength based on their pH. The purpose of this study was to evaluate the shear bond strength between the nanofilled composite resin and GIc using different adhesives. In this experimental study, 40 specimens (6×6mm) in 4 groups (n=10) were prepared in acrylic mold. Each specimen contained conventional GI ChemFil Superior with a height of 3mm, bonded to Z350 composite resin with a height measured 3mm. In order to bond the composite to the GI, the following adhesives were used, respectively: A: mild Clearfil SE Bond self-etch (pH=2), B: intermediate OptiBond self-etch (pH=1.4), C: strong Adper Prompt L-Pop (pH=1), and D: Adper Single Bond 2 total-etch (pH=7.2). The shear bond strength was measured by using universal testing machine with a crosshead speed of 1mm/min. One-way ANOVA and Tukey's test were used to analyze the data (pself-etch) was significantly different from group D (total-etch) (pself-etch) with D (p= 0.024). The results of this study showed that applying the mild self-etch adhesive between the composite and the GIc results in stronger shear bond strength compared to intermediate and strong self-etch adhesives. Moreover, the self-etch adhesive increased the shear bond strength between composite resin and GIc more significantly than total-etch adhesive.

  16. Development of antimicrobial optimum glass ionomer

    International Nuclear Information System (INIS)

    Angioletto, E.; Tezza, V.B.; Santos, M.J.; Montedo, O.R.K.; Pich, C.T.; Fiori, M.A.; Angioletto, Ev.

    2010-01-01

    The use of glass ionomer for restorations in dentistry for lower income population is a well established practice in public clinics of Brazil. However the average price of this kind of material and its low durability still have a negative impact on public health for being imported and frequently replaced it becomes expensive for the manufacturers and for public agencies. In glass ionomer the main antimicrobial agent is fluoride, which is released gradually. The material used for filling provides an average life of five years and its durability can be increased if the ionomer contains other oligodynamic elements. It was formulated, merged a new optimized glass ionomer which was characterized by X-ray diffraction, ion measurement and antimicrobial activity. This new product showed promising results, that pointed structural stability an increase of antimicrobial efficiency. (author)

  17. The sealing of second mandibular temporary molar pits and fissure with the laser of Nd: YAG, phosphoric acid and the glass ionomer cement; Selamento de fossulas e fissura de segundo molar deciduo inferior com laser de Nd: YAG, acido fosforico e cimento de ionomero de vidro

    Energy Technology Data Exchange (ETDEWEB)

    Toda, Maria Aparecida

    2003-07-01

    The main of our study was to check the sealing of second mandibular temporary molar pits and fissure, in vitro, with the laser of Nd: YAG, phosphoric acid at 37% and the glass ionomer cement (CIV, Fuji IX GC).The proposal was to check the structural morphologic changes in the laser irradiation upon the enamel surface to watch the pits and fissure sealing with the glass ionomer cement use after the laser irradiation and to verify the efficiency of the 'double conditioning' (phosphoric acid + Nd: YAG). At the same time we watch the evolution of the temperature in the pulp chamber's inside. Our desire was to achieve a therapeutic alternative technic to prevent the dental caries. The Nd: YAG laser parameters were the same: 79 mJ of energy per pulse; frequency of 5 Hz; mean power of 0,4 W; optical fiber on contact of 320 {mu}m diameter; fluency of 99,52 J/ cm{sup 2}, assuming that the only differential was the time of the laser application on the enamel surface. The samples were prepared with this way: Laser Nd: YAG (53 second) + acid + CIV (Fuji IX); Laser Nd: YAG (53 s); Laser Nd: YAG (20 s + 20 s) + acid + CIV; Laser Nd: YAG (20 s + 20 s); Acid + CIV; Control. Through the scanning electron microscopy (MEV) we noticed fusion and resolidification regions due to the laser irradiation and a better adaptation of the glass ionomer cement when we did the 'double conditioning'. Concerning the temperature increase we can conclude that the echeloned period was the best recommended because the temperature was found in a pattern that would not cause any damage to the dental pulp. For future studies we suggest a longer relaxing time between the laser irradiation, a comparative study of this method with other lasers, the use of other sealing materials and the study with the permanent teeth. (author)

  18. Wear and superficial roughness of glass ionomer cements used as sealants, after simulated toothbrushing Desgaste e rugosidade superficial de cimentos de ionômero de vidro utilizados como selantes, após escovação simulada

    Directory of Open Access Journals (Sweden)

    Daniela Rios

    2002-12-01

    Full Text Available The purpose of this study was to evaluate, in vitro, the properties (wear and roughness of glass ionomer cements that could influence their indication as pit and fissure sealants. The utilized materials were Fuji Plus, Ketac-Molar and Vitremer (in two different proportions: 1:1 and ¼:1. The resin-based sealant Delton was used as control. By means of an electronic balance (precision of 10-4 g, wear was measured in function of weight loss after simulated toothbrushing. Superficial roughness was determined by means of a surface roughness-measuring apparatus. The results revealed that diluted Vitremer and Fuji Plus were less resistant to toothbrushing abrasion and had the greatest increase in superficial roughness.Although in clinical situations luting or diluted ionomer cements are often utilized as alternatives to resin-based sealants, the resultsof this study revealed that the properties of those cements are worse than those of restorative ionomers, whichpresented results similar to those of the evaluated resin sealant.O presente estudo foi conduzido in vitro com o intuito de constatar as propriedades (desgaste e rugosidade dos CIV, as quais influenciam na sua indicação como material selador de fossas e fissuras. Os materiais empregados foram Fuji Plus, Ketac-Molar e Vitremer (duas proporções: 1:1 e ¼:1. O selante Delton foi controle. A determinação do desgaste foi obtida através da quantidade de massa perdida após a escovação e a rugosidade através da análise quantitativa da superfície. Os resultados mostraram que o Vitremer diluído e o Fuji Plus apresentaram maior grau de desgaste e maior aumento de rugosidade. Apesar de clinicamente se encontrar um maior uso dos ionômeros de vidro cimentantes ou diluídos como forma alternativa para material selador; este trabalho permitiu concluir que estes possuem propriedades bastante inferiores quando comparados aos ionômeros restauradores que, por sua vez, possuem resultados semelhantes

  19. Acid-base surface properties of glass-ionomers determined by IGC

    Energy Technology Data Exchange (ETDEWEB)

    Voelkel, A. [Faculty of Chemical Technology, Poznan University of Technology, Pl. M. SkIodowskiej-Curie 2, 60-965 Poznan (Poland)]. E-mail: Adam.Voelkel@put.poznan.pl; Andrzejewska, E. [Faculty of Chemical Technology, Poznan University of Technology, Pl. M. SkIodowskiej-Curie 2, 60-965 Poznan (Poland); Limanowska-Shaw, H. [Department of Biomaterials and Experimental Dentistry, Karol Marcinkowski University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan (Poland); Andrzejewski, M. [Faculty of Chemical Technology, Poznan University of Technology, Pl. M. SkIodowskiej-Curie 2, 60-965 Poznan (Poland)

    2005-05-30

    Summary: The surface properties of several glass-ionomer restorative dental materials (GC Fuji, Chemadent G-J, Ketac Fil and Ketac Molar) were investigated by means of inverse gas chromatography. The capacity of the surface of glass-ionomers to undergo specific interactions was expressed using the specific component of free energy {delta}G {sup s} as well as the parameters K {sub A} and K {sub D} to describe the ability of the cement to act both as an electron acceptor and an electron donor, respectively. The character of the examined surface was expressed with the use of the S {sub C} parameter. All these parameters were determined with a high degree of precision. It was found that the surface of glass-ionomer cements had a well-marked acidic character. The ability of the cement surface to take part in specific interactions differed with the various types of commercial products. The surface activity of the glass-ionomers investigated changed with the storage time (up to 6 months) indicating an on-going setting reaction.

  20. Acid base surface properties of glass-ionomers determined by IGC

    Science.gov (United States)

    Voelkel, A.; Andrzejewska, E.; Limanowska-Shaw, H.; Andrzejewski, M.

    2005-05-01

    SummaryThe surface properties of several glass-ionomer restorative dental materials (GC Fuji, Chemadent G-J, Ketac Fil and Ketac Molar) were investigated by means of inverse gas chromatography. The capacity of the surface of glass-ionomers to undergo specific interactions was expressed using the specific component of free energy Δ Gs as well as the parameters KA and KD to describe the ability of the cement to act both as an electron acceptor and an electron donor, respectively. The character of the examined surface was expressed with the use of the SC parameter. All these parameters were determined with a high degree of precision. It was found that the surface of glass-ionomer cements had a well-marked acidic character. The ability of the cement surface to take part in specific interactions differed with the various types of commercial products. The surface activity of the glass-ionomers investigated changed with the storage time (up to 6 months) indicating an on-going setting reaction.

  1. Acid-base surface properties of glass-ionomers determined by IGC

    International Nuclear Information System (INIS)

    Voelkel, A.; Andrzejewska, E.; Limanowska-Shaw, H.; Andrzejewski, M.

    2005-01-01

    Summary: The surface properties of several glass-ionomer restorative dental materials (GC Fuji, Chemadent G-J, Ketac Fil and Ketac Molar) were investigated by means of inverse gas chromatography. The capacity of the surface of glass-ionomers to undergo specific interactions was expressed using the specific component of free energy ΔG s as well as the parameters K A and K D to describe the ability of the cement to act both as an electron acceptor and an electron donor, respectively. The character of the examined surface was expressed with the use of the S C parameter. All these parameters were determined with a high degree of precision. It was found that the surface of glass-ionomer cements had a well-marked acidic character. The ability of the cement surface to take part in specific interactions differed with the various types of commercial products. The surface activity of the glass-ionomers investigated changed with the storage time (up to 6 months) indicating an on-going setting reaction

  2. Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: Biophotonics-based interfacial analyses in health and disease

    OpenAIRE

    Watson, Timothy F.; Atmeh, Amre R.; Sajini, Shara; Cook, Richard J.; Festy, Frederic

    2014-01-01

    Objective Since their introduction, calcium silicate cements have primarily found use as endodontic sealers, due to long setting times. While similar in chemistry, recent variations such as constituent proportions, purities and manufacturing processes mandate a critical understanding of service behavior differences of the new coronal restorative material variants. Of particular relevance to minimally invasive philosophies is the potential for ion supply, from initial hydration to mature set i...

  3. Survival rate of Atraumatic Restorative Treatment (ART) restorations using a glass ionomer bilayer technique with a nanofilled coating: a bi-center randomized clinical trial

    NARCIS (Netherlands)

    Hesse, D.; Bonifácio, C.C.; Bönecker, M.; A.B. Guglielmi, C. de; da Franca, C.; van Amerongen, W.E.; Colares, V.; Raggio, D.P.

    2016-01-01

    Purpose: The high-viscosity consistency of glass ionomer cement (GIC) contributes to its inappropriate adaptation, while the material's premature exposure to humidity decreases its mechanical properties. This study's purposes were to: (1) investigate approximal atraumatic restorative treatment (ART)

  4. Avaliação clínica de um cimento de ionômero de vidro utilizado como selante oclusal: a clinical evaluation Use of a glass ionomer cement as an occlusal sealant

    Directory of Open Access Journals (Sweden)

    Pedro Cheque BERNARDO

    2000-03-01

    Full Text Available Sabendo-se do papel do flúor na Odontologia Preventiva, cada vez mais procuram-se materiais restauradores com propriedades de liberação deste íon. Dentre os selantes oclusais, grande expectativa existe em relação aos cimentos de ionômero de vidro, particularmente os fotopolimerizáveis, por possuírem melhores propriedades. O objetivo deste trabalho foi testar um destes cimentos, Vitremer (3M, aplicado em: combinação ou não com um adesivo. A avaliação foi realizada em 159 dentes, 6 e 12 meses após a aplicação do selante, observando-se sua retenção e a presença ou ausência de lesão de cárie. Concluiu-se que a técnica modificada, com adesivo, propiciou significativamente melhor retenção após 6 e 12 meses que a técnica convencional, não havendo diferença entre molares e pré-molares. Apenas um dente do grupo sem adesivo desenvolveu lesão de cárie após a perda do material.Since fluoride’s properties are widely known in the field of Preventive Dentistry, fluoride-releasing materials have been extensively investigated. Among the occlusal sealants, there is great expectation regarding the results that can be achieved with light-curing glass-ionomer cements due to their excellent properties. The aim of this study was to assess the use of one of these cements, Vitremer (3M as an occlusal sealant. The material was applied using two different techniques; either associated or not with an adhesive system. After 6 and 12 months of observation, an evaluation was performed in 159 teeth to verify its retention as well as the presence of caries lesions. The technique that included the adhesive system showed better retention than the conventional one. Total retention was 84.9% for the experimental technique and 37.2% for the conventional technique after 12 months. There was no difference between bicuspids and molars regarding retention. Caries lesion was observed in a single tooth, for which a total loss of material was observed

  5. Effect of cement types on the tensile strength of metallic crowns submitted to thermocycling

    Directory of Open Access Journals (Sweden)

    Consani Simonides

    2003-01-01

    Full Text Available The relationship between metallic cast crowns and tensile strength according to cement types submitted to thermocycling was studied. Seventy-two metallic crowns were cast with Verabond II Ni-Cr alloy and cemented in standardized preparations with 10º tapering. Three types of finishing line (45-degree chamfered, 20-degree bevel shoulder and right shoulder were made with diamond burs on bovine teeth. Twenty-four metallic crowns in each group were randomly subdivided into three subgroups of 8 samples each according to the cement used: SS White zinc phosphate cement, Vitremer resin-modified glass ionomer cement, and Rely X resin cement and were submitted to thermocycling. Retention was evaluated according to tensile load required to displace the metallic cast crowns from tooth preparations with an Instron testing machine. ANOVA and Tukey's test showed a statistically significant difference among luting materials, with greater results for Rely X resin cement (24.9 kgf followed by SS White zinc phosphate cement (13.3 kgf and Vitremer resin-modified glass ionomer cement (10.1 kgf. The finishing line types did not influence the tensile resistance of the crowns fixed with the three cements. Increased tensile resistance of metallic crowns fixed on bovine teeth was obtained with resin cement, independent of the finishing line types.

  6. COMPARATIVE STUDY OF SHEAR BOND STRENGTH OF GLASS IONOMER TO HYPOPLASTIC ENAMEL AND NORMAL ENAMEL

    Directory of Open Access Journals (Sweden)

    S.H MORTAZAVI

    2000-09-01

    Full Text Available Introduction. Glass ionomer materials have been, used for years as liners, bases and temporary restoration for children. Their bonding properties allow temporization, which would be difficult with conventional cements of restorative materials. The desirable properties include easy and rapid application, fluoride release, biocompatibility and adhesion to dentin and enamel tend to be used in children specially for precooperative or handicapped children and preclude the need for treatment using general anesthesia of sedation in this research, shear bond strength of glass ionomer in two groups, including normal group and hypoplastic enamel group is tested. Methods. For this purpose, 2 groups each including 12 samples of normal anterior deciduous teeth and hypoplastic anterior deciduous teeth (with attention to hypoplastic indices were chosen. The labial surface of teeth were prepared with medium and fine size discs, chem fil glass ionomer cement was bonded to prepared surfaces of teeth, and then samples were fixed in special site of self curing acrylic. The specimens were tested with a model 4031 instron machine. A shear load was applied to the base of the bonded glass ionomer cylinder with a knife edge rod (width, 0.5 mm at a cross head speed of 0.5 mm/mm. Results. The mean of obtained sbs for 2 groups was 16.35 and 11.63 KGF/mm2. Conclusions. Statistical analysis of the results showed significant defferences between studied groups. But with attention to desirable properties, application of glass ionomer cement in hypoplastic defects of enamel in children is recommended.

  7. [The effects of topical fluoridation of Ketac Molar Aplicap glass-ionomer material on the growth of cariogenic bacteria contained in the dental plaque].

    Science.gov (United States)

    Płuciennik-Stronias, Małgorzata; Zarzycka, Beata; Bołtacz-Rzepkowska, Elzbieta

    2013-01-01

    Dental caries is a bacterial disease. The most important element used in caries prevention is fluoride, which is derived from the air, diet or fluoride-containing preparations and materials, e.g. glass-ionomer restorations. Modern fluoride-containing restorative materials are capable of releasing fluoride to the environment. Fluoride can be also accumulated in glass-ionomer cements, thus an attempt was made to saturate these materials with fluoride. The aim of the study was to evaluate the effect of topical fluoridation of Ketac Molar Aplicap glass-ionomer cement on the growth of Lactobacillus spp. in the dental plaque. The study was carried out in 15 patients with good oral hygiene, in whom 35 fillings with conventional glass-ionomer material, Ketac Molar Aplicap, were performed. After 6 months, three-day dental plaque from these fillings was examined. Next, fluoride was rubbed on the glass-ionomer surface and the examination of three-day dental plaque was repeated. No statistically significant differences (p = 0.143) in the amounts of Lactobacillus spp. in the plaque collected prior to and after topical fluoridation were revealed. Fluoride rubbed in the conventional glass-ionomer cement, Ketac Molar Aplicap, did not affect the amount of Lactobacillus spp. in the dental plaque growing on this material.

  8. Shear bond strength of glass-ionomer cements to dentin: Effects of dentin depth and type of material activation Resistência ao cisalhamento da união de cimentos de ionômero de vidro à dentina: Efeitos da profundidade do substrato e do tipo de ativação do material

    Directory of Open Access Journals (Sweden)

    Elda PISANESCHI

    1997-01-01

    Full Text Available The purpose of this study was to determine, through the shear bond strength of in vitro tests, that the type of glass-ionomer cements (conventional or hybrid and dentin depth (superficial or deep are factors that may influence the adhesion of these materials to the dentin structure. Specimens of two conventional glass-ionomer cements (Vidrion R® - SS White and Chelon Fil®- Espe and a hybrid-glass ionomer cement (Vitremer® - 3M were separated in groups and prepared for the shear bond strength test. The results submitted to statistical analysis were (all values are in MPa: Group I - Vidrion R - superficial dentin 1.97 (± 0.56; deep dentin 3.15 (± 1.51; Group II - Chelon Fil - superficial dentin 2.43 (± 1.43; deep dentin 3.21 (± 0.89; and Group III - Vitremer - superficial dentin 7.04 (± 2.04; deep dentin 10.30 (± 1.99. There were significant differences between dentin depth and type of materialsA proposta deste trabalho foi determinar, através da resistência ao cisalhamento em testes in vitro, se o tipo de cimento de ionômero de vidro, convencional ou híbrido, e a profundidade de dentina, superficial ou profunda, são fatores que influenciam a adesão desses materiais na estrutura dentinária. Espécimes de dois cimentos convencionais (Vidrion R® - SSWhite e Chelon Fil®- Espe e um cimento de ionômero de vidro híbrido (Vitremer®- 3M foram divididos em grupos. Os resultados (todos os valores em MPa submetidos à análise estatística foram: Grupo I - Vidrion R - dentina superficial, 1,97 (± 0,56; dentina profunda, 3,15 (± 1,51; Grupo II - Chelon Fil - dentina superficial, 2,43 (± 1,43; dentina profunda, 3,21 (± 0,89; e Grupo III - Vitremer - dentina superficial, 7,04 (± 2,04; dentina profunda, 10,30(± 1,99. Houve diferenças significantes entre a profundidade de dentina e o tipo de ativação do material

  9. Long-term dentin retention of etch-and-rinse and self-etch adhesives and a resin-modified glass ionomer cement in non-carious cervical lesions

    DEFF Research Database (Denmark)

    Dijken, J.W.V. van; Pallesen, U.

    2008-01-01

    The aim of this study was to evaluate the clinical long-term retention to dentin of seven adhesive systems.......The aim of this study was to evaluate the clinical long-term retention to dentin of seven adhesive systems....

  10. Retention of Implant Supported Metal Crowns Cemented with Different Luting Agents: A Comparative Invitro Study.

    Science.gov (United States)

    Kapoor, Roohi; Singh, Kavipal; Kaur, Simrat; Arora, Aman

    2016-04-01

    To overcome limitations of screw-retained prostheses, cement-retained prostheses have become the restoration of choice now a days. Selection of the cement hence becomes very critical to maintain retrievability of the prostheses. The purpose of this study was to assess and compare the retention of base metal crowns cemented to implant abutments with five different luting cements. Ten implant analogs were secured in five epoxy resin casts perpendicular to the plane of cast in right first molar and left first molar region and implant abutments were screwed. Total of 100 metal copings were fabricated and cemented. The cements used were zinc phosphate, resin modified glass ionomer cement, resin cement, non-eugenol acrylic based temporary implant cement & non-eugenol temporary resin cement implant cement. Samples were subjected to a pull-out test using an Instron universal testing machine at a crosshead speed of 0.5mm/min. The load required to de-cement each coping was recorded and mean values for each group calculated and put to statistical analysis. The results showed that resin cement has the highest retention value 581.075N followed by zinc phosphate luting cement 529.48N, resin modified glass ionomer cement 338.095 N, non-eugenol acrylic based temporary implant cement 249.045 N and non-eugenol temporary resin implant cement 140.49N. Within the limitations of study, it was concluded that non-eugenol acrylic based temporary implant cement and non-eugenol temporary resin implant cement allow for easy retrievability of the prosthesis in case of any failure in future. These are suitable for cement retained implant restorations. The results provide a possible preliminary ranking of luting agents based on their ability to retain an implant-supported prosthesis and facilitate easy retrieval.

  11. Retention of Implant Supported Metal Crowns Cemented with Different Luting Agents: A Comparative Invitro Study

    Science.gov (United States)

    Singh, Kavipal; Kaur, Simrat; Arora, Aman

    2016-01-01

    Introduction To overcome limitations of screw-retained prostheses, cement-retained prostheses have become the restoration of choice now a days. Selection of the cement hence becomes very critical to maintain retrievability of the prostheses. Aim The purpose of this study was to assess and compare the retention of base metal crowns cemented to implant abutments with five different luting cements. Materials and Methods Ten implant analogs were secured in five epoxy resin casts perpendicular to the plane of cast in right first molar and left first molar region and implant abutments were screwed. Total of 100 metal copings were fabricated and cemented. The cements used were zinc phosphate, resin modified glass ionomer cement, resin cement, non-eugenol acrylic based temporary implant cement & non-eugenol temporary resin cement implant cement. Samples were subjected to a pull-out test using an Instron universal testing machine at a crosshead speed of 0.5mm/min. The load required to de-cement each coping was recorded and mean values for each group calculated and put to statistical analysis. Results The results showed that resin cement has the highest retention value 581.075N followed by zinc phosphate luting cement 529.48N, resin modified glass ionomer cement 338.095 N, non-eugenol acrylic based temporary implant cement 249.045 N and non-eugenol temporary resin implant cement 140.49N. Conclusion Within the limitations of study, it was concluded that non-eugenol acrylic based temporary implant cement and non-eugenol temporary resin implant cement allow for easy retrievability of the prosthesis in case of any failure in future. These are suitable for cement retained implant restorations. The results provide a possible preliminary ranking of luting agents based on their ability to retain an implant-supported prosthesis and facilitate easy retrieval. PMID:27190954

  12. Distribusi Streptococcus mutans pada Tepi Tumpatan Glass Ionomer

    Directory of Open Access Journals (Sweden)

    Abdul Muthalib

    2015-10-01

    Full Text Available Secondary caries always occurs as a result of the filling not being hermetically. Purposes of this research is to prove whether there is a leak on the border of the tooth enamel and border between the Glass-ionomer filling with the Streptococcus mutans infection with parameter of SMAAPPI (Simplified S. mutans Approximal Plaque Index by Keeni et al, 1981. The subject of the research were 20 patients who came to the Dental Clinic at University of Indonesia with criteria possessing Glass-ionomer filling at the lower jaws. Collection of the samples were dental plaque gathered using a 1.5 mm excavator to scrape one way direction from the enamel, along the border between the enamel and Glass-ionomer filling and Glass-ionomer filling's surface. Isolation with medium transport sem-synthetic Cariostat and TSY20B and identification by using biochemical test. isolated colony strain local Streptococcus mutans from enamel, the border enamel and Glass-ionomer and the surface of the Glass-ionomer. The results were Streptococcus mutans were found from enamel 3006 colonies, on the border between the enamel and Glass-ionomer 143 colonies and on the surface of the Glss-ionomer 7291 colonies. Amoung of Streptococcus mutans colony obtained on the border of the enamel and Glass-ionomer were smaller compared to the surface of the Glass-ionomer and tooth enamel. Concluded that the leak of the filling was not caused by the number of distributed Streptooccus mutans colonies on the side, because the fluoroapatite fastener occurred due to the Glass-ionomer releasing in fluor along the border of the filling.

  13. The effect of temperature on compressive and tensile strengths of commonly used luting cements: an in vitro study.

    Science.gov (United States)

    Patil, Suneel G; Sajjan, Mc Suresh; Patil, Rekha

    2015-02-01

    The luting cements must withstand masticatory and parafunctional stresses in the warm and wet oral environment. Mouth temperature and the temperature of the ingested foods may induce thermal variation and plastic deformation within the cements and might affect the strength properties. The objectives of this study were to evaluate the effect of temperature on the compressive and diametral tensile strengths of two polycarboxylate, a conventional glass ionomer and a resin modified glass ionomer luting cements and, to compare the compressive strength and the diametral tensile strength of the selected luting cements at varying temperatures. In this study, standardized specimens were prepared. The temperature of the specimens was regulated prior to testing them using a universal testing machine at a crosshead speed of 1 mm/min. Six specimens each were tested at 23°C, 37°C and 50°C for both the compressive and diametral tensile strengths, for all the luting cements. All the luting cements showed a marginal reduction in their compressive and diametral tensile strengths at raised temperatures. Fuji Plus was strongest in compression, followed by Fuji I > Poly F > Liv Carbo. Fuji Plus had the highest diametral tensile strength values, followed by Poly F = Fuji I = Liv Carbo, at all temperatures. An increase in the temperature caused no significant reduction in the compressive and diametral tensile strengths of the cements evaluated. The compressive strength of the luting cements differed significantly from one another at all temperatures. The diametral tensile strength of resin modified glass ionomers differed considerably from the other cements, whereas there was no significant difference between the other cements, at all the temperatures.

  14. Compressive and diametral tensile strength of glass ionomer cements Resistência à compressão e à tração diametral de cimentos de ionômero de vidro

    Directory of Open Access Journals (Sweden)

    Eduardo Bresciani

    2004-12-01

    Full Text Available The aim of this study was to compare, in different periods of time, the compressive and diametral tensile strength of a traditional high viscous glass ionomer cement: Fuji IX (GC Corporation, with two new Brazilian GIC's: Vitro-Molar (DFL and Bioglass R (Biodinamica, all indicated for the Atraumatic Restorative Treatment (ART technique. Fifteen disk specimens (6.0mm diameter x 3.0mm height for the diametral tensile strength (DTS test and fifteen cylindrical specimens (6.0mm diameter x 12.0mm height for the compressive strength (CS test were made of each GIC. Specimens were stored in deionized water at 37º C and 100% of humidity in a stove until testing. Five specimens of each GIC were submitted to CS and DTS test in each period, namely 1 hour, 24 hours and 7 days. The specimens were tested in a testing machine (Emic at a crosshead speed of 1.0mm/min for CS and 0.5mm/min for the DTS test until failure occurred. The data were submitted to two-way ANOVA and Tukey tests (alpha=0.05. The mean CS values ranged from 42.03 to 155.47MPa and means DTS from 5.54 to 13.72 MPa, with test periods from 1h to 7 days. The CS and DTS tests showed no statistically significant difference between Fuji IX and Vitro Molar, except for CS test at 1-hour period. Bioglass R had lowest mean value for CS of the cements tested. In DTS test Bioglass R presented no statistically significant differences when compared with all others tested GICs at 1-hour period and Bioglass R presented no difference at 24-hour and 7-day periods when compared to Vitro-Molar. Further studies to investigate other physical properties such as fracture toughness and wear resistance, as well as chemical composition and biocompatibility, are now needed to better understand the properties of these new Brazilian GIC's.Comparou-se a Resistência à Compressão (RC e à Tração Diametral (TD de um cimento de ionômero de vidro de alta viscosidade [Fuji IX (GC Corporation] e de dois novos cimentos

  15. Two-year clinical study on postoperative pulpal complications arising from the absence of a glass-ionomer lining in deep occlusal resin-composite restorations.

    Science.gov (United States)

    Banomyong, Danuchit; Messer, Harold

    2013-11-01

    To observe the effects of glass-ionomer cement (GIC) lining on the risk of pulpal complications in deep occlusal cavities with resin-based restorations. Fifty-three patients, aged 18-30 years, who had one or two deep occlusal carious lesions (≥3 mm in depth) in molars, were recruited. Dental caries were removed, and the prepared cavity was restored with resin composite using one of two restorative procedures: (a) without GIC lining; and (b) with (resin-modified) GIC lining. Restored teeth were evaluated for any pulpal complications (subjective symptoms, objective signs or loss of tooth vitality) at 1 month (baseline), 1 year, and 2 years after restoration. After excluding shallow cavities, 31 restorations without GIC lining, and 31 restorations with GIC lining, were placed and recalled at baseline without any pulpal complications. At the 1- and 2-year recalls, six patients who had restorations in group 1, and 13 in group 2, had dropped out. None of the remaining teeth in the two groups exhibited pulpal complications at either recall period, regardless of GIC lining placement. The absence of GIC lining does not increase the risk of pulpal complications in deep occlusal cavities restored with resin-based restorations in either the short or long term. © 2013 Wiley Publishing Asia Pty Ltd.

  16. Effect of fluoride-containing desensitizing agents on the bond strength of resin-based cements to dentin

    Directory of Open Access Journals (Sweden)

    Duygu Saraç

    2009-10-01

    Full Text Available OBJECTIVE: The objective of this study was to evaluate the effect of desensitizing agents containing different amounts of fluoride on the shear bond strength of a dual polymerized resin cement and a resin-modified glass ionomer cement (RMGIC to dentin. MATERIAL AND METHODS: One hundred human molars were mounted in acrylic resin blocks and prepared until the dentin surface was exposed. The specimens were treated with one of four desensitizing agents: Bifluorid 12, Fluoridin, Thermoline and PrepEze. The remaining 20 specimens served as untreated controls. All groups were further divided into 2 subgroups in which a dual polymerized resin cement (Bifix QM or a resin-modified glass ionomer cement (AVANTO was used. The shear bond strength (MPa was measured using a universal testing machine at a 0.5 mm/min crosshead speed. The data were analyzed statistically with a 2-way ANOVA, Tukey HSD test and regression analysis (α=0.05. The effect of the desensitizing agents on the dentin surface was examined by scanning electron microscopy. RESULTS: The fluoride-containing desensitizing agents affected the bond strength of the resin-based cements to dentin (p<0.001. PrepEze showed the highest bond strength values in all groups (p<0.001. CONCLUSION: Regression analysis showed a reverse relation between bond strength values of resin cements to dentin and the amount of fluoride in the desensitizing agent (p<0.05.

  17. Comparative evaluation of microleakage in conventional glass ionomer cements and triclosan incorporated glass ionomer cements

    Directory of Open Access Journals (Sweden)

    Rani Somani

    2014-01-01

    Full Text Available Aim and Objective: The aim of the following study is to comparatively evaluate the microleakage of triclosan incorporated GIC with conventional restorative GIC. Materials and Methods: Triclosan in powder form was added to conventional GIC to formulate a concentration of 2.5%. Class five cavities were prepared in non-carious extracted molars and were respectively restored with conventional restorative GIC and triclosan incorporated GIC. Samples were kept in 10% methylene blue dye. Ground sections were obtained and were observed under a binocular microscope for dye penetration. Result: No significant difference was found in the microleakage of two groups. Conclusion: Triclosan incorporated GIC can be considered as an alternative to GIC with enhanced antibacterial property.

  18. Physical Property Investigation of Contemporary Glass lonomer and Resin Modified Glass lonomer Restorative Materials

    Science.gov (United States)

    2016-05-24

    Innovation in Direct Restorative Materials. Adv Dent Res 2013;25:8-17. 4. Wilson AD, Kent BE. The glass-ionomer cement , a new translucent dental filling...material. J Appl Chem 1971;21:313. 5. Wilson AD, Batchelor RF. Dental silicate cements I. The chemistry of erosion. J Dent Res 1967;46:1078-85. 6...modlfied glass-ionomer dental cements . Biomater 2002;23: 3289-3295. 42. Young A, Sherpa G, Pearson B, Schottlander, Waters DN. Use of Raman Spectroscopy

  19. Microleakage and marginal gap of adhesive cements for noble alloy full cast crowns.

    Science.gov (United States)

    Hooshmand, T; Mohajerfar, M; Keshvad, A; Motahhary, P

    2011-01-01

    Very limited comparative information about the microleakage in noble alloy full cast crowns luted with different types of adhesive resin cements is available. The purpose of this study was to evaluate the microleakage and marginal gap of two self-adhesive resin cements with that of other types of adhesive luting cements for noble alloy full cast crowns. Fifty noncarious human premolars and molars were prepared in a standardized manner for full cast crown restorations. Crowns were made from a noble alloy using a standardized technique and randomly cemented with five cementing agents as follows: 1) GC Fuji Plus resin-modified glass ionomer cement, 2) Panavia F 2.0 resin cement, 3) Multilink Sprint self-adhesive resin cement, 4), Rely X Unicem self-adhesive resin cement with pretreatment, and 5) Rely X Unicem with no pretreatment. The specimens were stored in distilled water at 37°C for two weeks and then subjected to thermocycling. They were then placed in a silver nitrate solution, vertically cut in a mesiodistal direction and evaluated for microleakage and marginal gap using a stereomicroscope. Data were analyzed using a nonparametric Kruskal-Wallis test followed by Dunn multiple range test at a pcement and cement-crown interfaces. The greatest amount of microleakage was found for Panavia F 2.0 resin cement followed by GC Fuji Plus at both interfaces. No statistically significant difference in the marginal gap values was found between the cementing agents evaluated (p>0.05). The self-adhesive resin cements provided a much better marginal seal for the noble alloy full cast crowns compared with the resin-modified glass ionomer or dual-cured resin-based cements.

  20. The effects of crown venting or pre-cementing of CAD/CAM-constructed all-ceramic crowns luted on YTZ implants on marginal cement excess.

    Science.gov (United States)

    Zaugg, Lucia K; Zehnder, Isabella; Rohr, Nadja; Fischer, Jens; Zitzmann, Nicola U

    2018-01-01

    The purpose of this study was to analyze the cement excess produced when cementing CAD/CAM-fabricated lithium disilicate (L) or zirconium dioxide (Z) crowns using adhesive cement (A) or resin-modified glass ionomer cement (B). Three different cementation techniques were applied: palatal venting (PV), pre-cementation with custom analogs (CA), and conventional standard procedure (SP). Seventy-two crowns (36 each material) were assigned to 12 experimental groups depending on the restoration material (L, Z), type of cement (A, B), and cementation technique (PV, CA, SP). Weight measurements were taken during cementation, and the amounts of excess cement, cement retained in crown, and relative excess cement were calculated and statistically analyzed. A significant direct relation between the amounts of cement applied and excess cement was observed in groups CA and SP. Vented crowns showed least amounts of marginal excess cement (0.8 ± 0.3 μl) followed by CA (4.2 ± 1.1 μl) and SP (8.8 ± 2.5 μl; p cement (95%CI: 28.4, 35.7) was produced than in the SP group (p cement (A) than of glass ionomer cement (B) were retained in crowns. Using crown venting was the most effective measure to reduce the amount of marginal excess cement, followed using a pre-cementation device. To keep the marginal excess cement of one-piece zirconia implants to a minimum, both techniques should be considered for clinical application. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Cytotoxicity of resin-based luting cements to pulp cells.

    Science.gov (United States)

    Pontes, Elaine Cristina Voltolini; Soares, Diana Gabriela; Hebling, Josimeri; Costa, Carlos Alberto De Souza

    2014-10-01

    To evaluate the cytotoxicity of components released from different types of luting cements to two cell lines obtained from pulp tissue. Three types of luting cements were evaluated, distributed into the following groups: G1--negative control (no treatment); G2--resin-modified glass-ionomer cement (Rely X Luting 2); G3--self-adhesive resin cement (Rely X U200); and G4--conventional resin cement (Rely X ARC). Standardized cylindrical specimens (14 mm diameter and 1 mm thick) prepared with the dental materials were immersed in culture medium (DMEM) for 24 hours to obtain the extracts (DMEM + components released from the cements). Then, the extracts were applied to cultured odontoblast-like MDPC-23 cells or human dental pulp cells (HDPCs). Finally, cell viability (MTT assay), cell death (Annexin/PI) (Kruskal-Wallis/Mann-Whitney; α = 5%) and cell morphology (SEM) were assessed. Cements' components in contact with cells (SEM/EDS) and pH of the extracts were also evaluated. The resin-modified glass-ionomer cement (G2) caused the most intense toxic effect to the two cell lines; the cell viability reduction was around 95.8% and 89.4% for MDPC-23 cells and HDPCs, respectively, which was statistically significantly different compared with that of the negative control group (G1). Also, a high quantity of particles leached from this ionomeric cement was found on the cells, which showed intense morphological alterations. In the G2 group, 100% necrosis was observed for both cell lines, and an acidic pH was detected on the extract. Conversely, Rely X U200 (G3) and Rely X ARC (G4), which presented low solubility and no alteration in pH, caused only slight cytotoxicity to the cultured cells.

  2. Candida albicans adherence to glass ionomer restorative dental material

    Directory of Open Access Journals (Sweden)

    Shirin Lawaf

    2009-06-01

    Full Text Available Background and aims. It is believed that adherence of Candida albicans to oral surfaces is a critical event in the colonization and development of oral diseases such as candida-associated denture stomatitis. Although there is considerable information about the adherence of Candida albicans to buccal epithelial cells and prosthetic materials, there is very little information available about the adherence of Candida albicans to glass ionomer materials. The purpose of this study was to investigate the degree of Candida albicans adherence to glass ionomer restorative material. Materials and methods. In this experimental study adherence of Candida albicans strains was studied with and without human whole saliva. First, glass ionomer fragments were prepared; then yeast cells were inoculated and incubated with different incubation times. After incubation, the fragments were removed from the wells and stained with 0.1% calcofluor white. Adhesion was quantified by counting the total number of cells at 40, 80 and 120 minutes. The analysis of variance and Student's test were used to assess the significance of differences between the means. Results. In the absence of saliva, the adherence of Candida albicans showed an increase, reaching a maximum at the end of the experiment (120 minutes. However, in the presence of saliva, the adherence of Candida albicans to glass ionomer significantly decreased. Conclusion. The presence of human whole saliva is an important factor in the adherence of Candida albicans to glass ionomer restorative material.

  3. SUSTENTAÇÃO DE ESMALTE COM IONÔMEROS DE VIDRO E RESINA COMPOSTA: EFEITO NA RESISTÊNCIA À FRATURA DAS CÚSPIDES DE DENTES RESTAURADOS SUPPORTING ENAMEL WITH GLASS IONOMER CEMENT AND COMPOSITE RESIN: EFFECT ON FRACTURE RESISTANCE OF CUSPS OF RESTORED TEETH

    Directory of Open Access Journals (Sweden)

    Angelo Stefano SECCO

    1997-10-01

    Full Text Available Este estudo determinou a resistência e o tipo de fratura do esmalte suportado pelos materiais restauradores ionômeros de vidro convencional e modificado por resina e resina composta, bem como a influência dessa técnica restauradora na resistência das cúspides dos dentes. A remoção da estrutura dental para o preparo de cavidades tipo classe II e a presença de esmalte socavado diminuiram significativamente a resistência das cúspides dos dentes em relação ao dente hígido (p This study determined the resistance to fracture and its pattern for enamel supported with conventional and modified glass ionomer cements, and composite resin restorative materials, as well as the influence of these restorative techniques on cuspal strength of teeth. Removal of dental structure by class II cavity preparations and unsupported enamel had decreased significantly the cuspal strength in relation to healthy teeth (p < 0.01. Restorative materials used to support enamel reduced the fracture rate of restored cusps, but did not increase the fracture resistance values statistically. All tested groups presented alterations in the fracture pattern

  4. Methods and preliminary findings of a cost-effectiveness study of glass-ionomer-based and composite resin sealant materials after 2 yr

    NARCIS (Netherlands)

    Goldman, A.S.; Chen, X.; Fan, M.; Frencken, J.E.F.M.

    2014-01-01

    The cost-effectiveness of glass-carbomer, conventional high-viscosity glass-ionomer cement (HVGIC) [without or with heat (light-emitting diode (LED) thermocuring) application], and composite resin sealants were compared after 2 yr in function. Estimated net costs per sealant were obtained from data

  5. Clinical failure of class-II restorations of a highly viscous glass-ionomer material over a 6-year period : A retrospective study

    NARCIS (Netherlands)

    Scholtanus, Johannes D.; Huysmans, Marie-Charlotte D. N. J. M.

    Objectives: The aim of this retrospective clinical study was to evaluate the performance of high-viscosity glass-ionomer cement (GIC) class-II restorations over 6 years of clinical service. Methods: All class-II GIC restorations made in 1996 and 1997, in regular attending adult patients of a general

  6. Evaluation of Surface Microhardness of Silver and Zirconia Reinforced Glass-ionomers with and without Microhydroxyapatite

    OpenAIRE

    Sharafeddin F; Azar MR; Feizi N; Salehi R

    2017-01-01

    Statement of problem: Hardness of restorative materials like glass-ionomer is an important factor in the longevity of restoration. Objectives: The aim of this study was to evaluate the microhardness of glass-ionomer modified with different materials. Materials and Methods: Sixty disk-shaped specimens were examined in six groups in this study, including conventional glass-ionomer (Shofu, Japan), zirconia-reinforced glass-ionomer (Zirconomer, Shofu, Kyoto, Japan), silver-reinforced glass-...

  7. Comparing the reinforcing effects of a resin modified glassionomer cement, Flowable compomer, and Flowable composite in the restoration of calcium hydroxide-treated immature roots in vitro

    Directory of Open Access Journals (Sweden)

    S Prathibha Rani

    2011-01-01

    Full Text Available One hundred and sixty human permanent central incisors were enlarged to a 120 file size after crown removal procedure to simulate immature teeth. The root canals were filled with calcium hydroxide and stored for 15 days (phase I, 30 days (phase II, 90 days (phase III, and 180 days (Phase IV. At the end of these selected time periods, calcium hydroxide was cleaned off the root canals of forty teeth that were randomly selected and obturated with gutta-percha points in the apical 2 mm of the root canals with a sealer. The specimens were further equally divided into four groups. Unrestored Group I served as control and the root canals of teeth in the other three group specimens were reinforced with resin modified glassionomer cement (RMGIC (Group II, Flowable Compomer (Group III, and Flowable Composite (Group IV, respectively, using a translucent curing post. All specimens were subjected to compressive force using an Instron Testing machine, until fracture occurred. All the materials evaluated substantially reinforced the root specimens compared to the control. At the end of 180 days, Flowable composites showed maximum reinforcement compared to the other groups; however, no significant differences were found between the reinforcement capabilities of Flowable Compomer and RMGIC.

  8. Effect of Caries Removal Methods on the Shear Bond Strength of Resin and Glass IonomerAdhesives to Primary Dentin

    Directory of Open Access Journals (Sweden)

    Mohammadi N

    2015-12-01

    Full Text Available Statement of Problem: There is no enough published data about the shear bond strength of resin modified glass ionomer adhesives on caries-affected primary tooth dentin excavated using minimally invasive systems. Objectives: To evaluate the shear bond strength of 2 different adhesives (one resin modified glass ionomer and one resin using two caries removal tech- niques on healthy and caries-affected primary dentin. Materials and Methods: Two caries removal methods including mechanical (handpiece and chemomechanical (Carisolv techniques and two types of ad- hesives including one resin adhesive (Clearfil SE Bond; CSEB, Kuraray and one resin-modified glass ionomer adhesive (Riva Bond LC; RBLC, SDI were used in this study. Ten extracted healthy primary teeth were used for the control group. The teeth were sectioned bucco-lingually and mesio-distally in order to obtain four specimens from each tooth. Thirty suitable specimens were selected as the “control” and randomly divided into two groups of “sound dentin” based on the type of the adhesive used. Sixty extracted caries affected teeth were used for the carious group; sectioned as mentioned above and sixty suitable specimens were selected as the “treatment”. Then the specimens were arbitrarily divided into four groups based on caries removal techniques and the type of ad- hesive used (n = 15. After bonding with either CSEB or RBLC, the specimens were restored with a resin composite by means of PVC tubes and subjected to the shear bond strength test. The data was analyzed using ANOVA and Tukey’s test. Results: The specimens in Carisolv group bonded with CSEB (11.68 ± 3.1 showed a statistically significant higher mean bond strength followed by those in handpiece group bonded with CSEB (9.4 ± 2.7, which exhibited higher mean values than those groups with RBLC (p < 0.05. Shear bond strength values for Clearfil SE Bond was not significantly higher than Riva Bond LC when used in sound

  9. The effect of Coca-Cola and fruit juices on the surface hardness of glass-ionomers and 'compomers'.

    Science.gov (United States)

    Aliping-McKenzie, M; Linden, R W A; Nicholson, J W

    2004-11-01

    The interaction of tooth-coloured dental restorative materials (a conventional glass-ionomer, two resin-modified glass-ionomers and two compomers) with acidic beverages has been studied with the aim of investigating how long-term contact affects solution pH and specimen surface hardness. For each material (ChemFil Superior, ChemFlex, Vitremer Core Build-Up/Restorative, Fuji II LC, Dyract AP and F2000) disc-shaped specimens were prepared and stored in sets of six in the following storage media: 0.9% NaCl (control), Coca-Cola, apple juice and orange juice. After time intervals of 1 day, 1 week, 1 month, 3 months, 4 months, 6 months and 1 year, solution pH and Vickers Hardness Number were determined for each individual specimen. Differences were analysed by anova followed by Student-Newman-Keuls post hoc analysis. All materials were found to reduce the pH of the 0.9% NaCl, but to increase the pH of the acidic beverages. The conventional glass-ionomers dissolved completely in apple juice and orange juice, but survived in Coca-Cola, albeit with a significantly reduced hardness after 1 year. The other materials survived in apple juice and orange juice, but showed greater reductions in surface hardness in these beverages than in Coca-Cola. Fruit juices were thus shown to pose a greater erosive threat to tooth coloured materials than Coca-Cola, a finding which is similar to those concerning dentine and enamel towards these drinks.

  10. Candida albicans Adherence to Glass Ionomer Restorative Dental Material.

    Science.gov (United States)

    Lawaf, Shirin; Azizi, Arash

    2009-01-01

    It is believed that adherence of Candida albicans to oral surfaces is a critical event in the coloni-zation and development of oral diseases such as candida-associated denture stomatitis. Although there is considerable infor-mation about the adherence of Candida albicans to buccal epithelial cells and prosthetic materials, there is very little infor-mation available about the adherence of Candida albicans to glass ionomer materials. The purpose of this study was to investigate the degree of Candida albicans adherence to glass ionomer restorative material. In this experimental study adherence of Candida albicans strains was studied with and without human whole saliva. First, glass ionomer fragments were prepared; then yeast cells were inoculated and incubated with differ-ent incubation times. After incubation, the fragments were removed from the wells and stained with 0.1% calcofluor white. Adhesion was quantified by counting the total number of cells at 40, 80 and 120 minutes. The analysis of variance and Stu-dent's test were used to assess the significance of differences between the means. In the absence of saliva, the adherence of Candida albicans showed an increase, reaching a maximum at the end of the experiment (120 minutes). However, in the presence of saliva, the adherence of Candida albicans to glass ionomer significantly decreased. The presence of human whole saliva is an important factor in the adherence of Candida albicans to glass ion-omer restorative material.

  11. Effects of a glass-ionomer cement on the remineralization of occlusal caries: an in situ study Efeito de um cimento de ionômero de vidro sobre a remineralização de cárie na superfície oclusal: estudo in situ

    Directory of Open Access Journals (Sweden)

    Mônica Tostes Amaral

    2006-04-01

    Full Text Available This work evaluated the remineralization of demineralized enamel of pits and fissures of human third molars sealed with a glass ionomer cement (Fuji IX, GC Corporation - Japan or with a Bis-GMA sealant (Delton - Dentsply. Ten volunteers participated in this in situ study that consisted of two thirty-day periods using intra-oral devices, with a week’s interval in between. Four experimental treatment procedures and one control were randomly assigned to the volunteers’ specimens: Group I, no treatment, control; Group II, artificial caries process; Group III, same treatment as Group II, but sealed with Delton (Dentsply; Group IV, same treatment as Group II, but sealed with Fuji IX (GC Corporation - Japan; Group V, same treatment as Group II and no sealing. Groups I and II were not submitted to the oral environment and served as controls. After a period of 30 days in the oral environment, the specimens were removed from the devices, embedded in acrylic resin, ground flat and polished. Then, Knoop hardness tests were performed, with a 25 g static load applied for 15 seconds. The measurements were made from the base of the fissure up to an opening of 600 µm, pre-established between the inclines of the cusps. Three indentations were then made, located at 25, 75, and 125 µm in depth from the outer enamel margin and 100 µm apart from each other (Micromet 2003. The Brieger F and Bonferroni’s tests were applied to the measurements. It was concluded that sealing with the glass ionomer cement Fuji IX was capable of making the enamel of pits and fissures more resistant by increasing the value of Knoop hardness.Esta pesquisa avaliou a remineralização do esmalte de fóssulas e fissuras de terceiros molares humanos previamente desmineralizados e selados com um cimento de ionômero de vidro (Fuji IX, GC Corporation - Japão ou com um selante de Bis-GMA (Delton-Dentsply. Dez voluntários participaram deste estudo in situ que consistiu de dois per

  12. Physicomechanical properties of a zinc-reinforced glass ionomer restorative material.

    Science.gov (United States)

    Al-Angari, Sarah S; Hara, Anderson T; Chu, Tien-Min; Platt, Jeffrey; Eckert, George; Cook, N Blaine

    2014-03-01

    We compared a zinc-reinforced glass ionomer restorative material (ChemFil Rock) with three commercially available glass ionomer cements (GICs), namely, Fuji IX GP Extra, Ketac Molar Quick Aplicap, and EQUIA Fil, with respect to fracture toughness, microhardness, roughness, and abrasive wear. Fracture toughness (KIC) was tested according to ISO 13586 (n = 10). Hardness, roughness, and abrasive wear were also tested (n = 9). Data were analyzed using the Wilcoxon rank-sum test with adjustment for multiple comparisons (α = 0.05). As compared with the other GICs ChemFil Rock exhibited a greater increase in surface roughness (P 0.05). ChemFil Rock had significantly lower fracture toughness as compared with EQUIA Fil (P = 0.01) and significantly higher fracture toughness as compared with the other GICs (P < 0.02). In conclusion, as compared with the three other commercially available GICs, ChemFil Rock had intermediate fracture toughness, the lowest microhardness, and the greatest change in surface roughness.

  13. Bacterial microleakage of temporary filling materials used for endodontic access cavity sealing

    Directory of Open Access Journals (Sweden)

    Igor Križnar

    2016-12-01

    Conclusion: None of the tested materials were able to completely prevent bacterial microleakage. Adhesively bonded composites and Cavit offer better sealing compared with glass ionomer cements, resin modified glass ionomer cements, and composites without the use of an adhesive system.

  14. Antibacterial properties of copper iodide-doped glass ionomer-based materials and effect of copper iodide nanoparticles on collagen degradation.

    Science.gov (United States)

    Renné, Walter G; Lindner, Amanda; Mennito, Anthony S; Agee, Kelli A; Pashley, David H; Willett, Daniel; Sentelle, David; Defee, Michael; Schmidt, Michael; Sabatini, Camila

    2017-01-01

    This study investigated the antibacterial properties and micro-hardness of polyacrylic acid (PAA)-coated copper iodide (CuI) nanoparticles incorporated into glass ionomer-based materials, and the effect of PAA-CuI on collagen degradation. PAA-CuI nanoparticles were incorporated into glass ionomer (GI), Ionofil Molar AC, and resin-modified glass ionomer (RMGI), Vitrebond, at 0.263 wt%. The antibacterial properties against Streptococcus mutans (n = 6/group) and surface micro-hardness (n = 5/group) were evaluated. Twenty dentin beams were completely demineralized in 10 wt% phosphoric acid and equally divided in two groups (n = 10/group) for incubation in simulated body fluid (SBF) or SBF containing 1 mg/ml PAA-CuI. The amount of dry mass loss and hydroxyproline (HYP) released were quantified. Kruskal-Wallis, Student's t test, two-way ANOVA, and Mann-Whitney were used to analyze the antibacterial, micro-hardness, dry mass, and HYP release data, respectively (p glass ionomer matrix yielded significant reduction (99.999 %) in the concentration of bacteria relative to the control groups. While micro-hardness values of PAA-CuI-doped GI were no different from its control, PAA-CuI-doped RMGI demonstrated significantly higher values than its control. A significant decrease in dry mass weight was shown only for the control beams (10.53 %, p = 0.04). Significantly less HYP was released from beams incubated in PAA-CuI relative to the control beams (p glass ionomer-based materials as they greatly enhance their antibacterial properties and reduce collagen degradation without an adverse effect on their mechanical properties. The use of copper-doped glass ionomer-based materials under composite restorations may contribute to an increased longevity of adhesive restorations, because of their enhanced antibacterial properties and reduced collagen degradation.

  15. Effect of Sandblasting and Type of Cement on the Bond Strength of Molar Bands on Stainless Steel Crowns.

    Science.gov (United States)

    Bawazir, Omar A; Elaraby, Alaa; Alshamrani, Hamed; Salama, Fouad S

    2015-01-01

    The purposes of this study were to: (1) compare the bond strength of molar bands cemented to stainless steel crowns (SSCs) using glass ionomer cement (GIC), resin-modified glass ionomer cement (RMGIC), or polycarboxylate cement (PXC); and (2) assess the influence of sandblasting molar bands on the mean bond strength between the band and the SSC. Sixty SSCs and 60 molar bands were used. The inner surfaces of 30 molar bands were roughened by sandblasting prior to cementation. The bond strength was measured after dislodging the SSC using a push-out test. In the nonsandblasted group, a significant difference was observed between PXC and RMGIC (P >.04). In the sandblasted group, a significant difference was observed between PXC and RMGIC (P >.02), while there was only a marginal difference between GIC and RMGIC (P >.05). The sandblasted group exhibited superior bond strength overall. However, the only significant improvement was observed for GIC (P >.03). PXC showed the highest bond strength of molar bands to SSCs, while RMGIC showed the lowest. Sandblasting the inner surface of bands enhanced the bond strength of different cements.

  16. Evaluation of Surface Microhardness of Silver and Zirconia Reinforced Glass-ionomers with and without Microhydroxyapatite

    Directory of Open Access Journals (Sweden)

    Sharafeddin F

    2017-12-01

    Full Text Available Statement of problem: Hardness of restorative materials like glass-ionomer is an important factor in the longevity of restoration. Objectives: The aim of this study was to evaluate the microhardness of glass-ionomer modified with different materials. Materials and Methods: Sixty disk-shaped specimens were examined in six groups in this study, including conventional glass-ionomer (Shofu, Japan, zirconia-reinforced glass-ionomer (Zirconomer, Shofu, Kyoto, Japan, silver-reinforced glass-ionomer (HI-DENSE XP, Shofu, Kyoto, Japan and mixture of these three types of glass-ionomer with 20 wt% of microhydroxyapatite (Sigma-Aldrich, St. Louis, USA. All the specimens were stored in deionized water for 24 hours. Then Vickers microhardness test was carried out and the results were analyzed by using two-way ANOVA test and paired t-test (P<0.05. Results: Zirconia-reinforced glass-ionomer with microhydroxyapatite exhibited significantly higher microhardness in comparison with other groups (P<0.001. Conventional glass-ionomer with microhydroxyapatite showed the lowest microhardness (P<0.001. After incorporation of microhydroxyapatite in both conventional and silver-reinforced glass-ionomer groups, microhardness decreased significantly (P<0.001.The microhardness of top and bottom of all groups was significantly different. (P<0.001. Conclusions: Incorporation of 20% microhydroxyapatite to zirconia-reinforced glass-ionomer can improve microhardness.

  17. A study on provisional cements, cementation techniques, and their effects on bonding of porcelain laminate veneers.

    Science.gov (United States)

    Vinod Kumar, G; Soorya Poduval, T; Bipin Reddy; Shesha Reddy, P

    2014-03-01

    Minimal tooth preparation is required for porcelain laminate veneers, but interim restorations are a must to protect their teeth against thermal insult, chemical irritation, and to provide aesthetics. Cement remaining after the removal of the provisional restoration can impair the etching quality of the tooth surface and fit and final bonding of the porcelain laminate veneer. This in vitro study examined the tooth surface for remaining debris of cement after removal of a provisional restoration. Determine the presence of cement debris on prepared tooth surface subsequent to the removal of provisional restoration. Determine the cement with the least residue following the cleansing procedures. Determine the effect of smear layer on the amount of residual luting cement. Eighty-four extracted natural anterior teeth were prepared for porcelain laminate veneers. For half of the teeth, the smear layer was removed before luting provisional restorations. Veneer provisional restorations were fabricated and luted to teeth with six bonding methods: varnish combined with glass ionomer cement (GIC), varnish combined with resin modified GIC, varnish, spot etching combined with dual-cure luting cement, adhesive combined with GIC, adhesive combined with resin modified GIC, and adhesive, spot etching combined with dual-cure luting cement. After removal of provisional restorations 1 week later, the tooth surface was examined for residual luting material with SEM. Traces of cement debris were found on all the prepared teeth surfaces for all six groups which were cemented with different methods. Cement debris was seen on teeth subsequent to the removal of provisional's. Dual-cure cement had the least residue following the cleansing procedures. Presence of smear layer had no statistical significance in comparison with cement residue. With the use of adhesive the cement debris was always found to be more than with the use of varnish. GIC showed maximum residual cement followed by dual-cure.

  18. Candida albicans Adherence to Glass Ionomer Restorative Dental Material

    OpenAIRE

    Lawaf, Shirin; Azizi, Arash

    2009-01-01

    Background and aims. It is believed that adherence of Candida albicans to oral surfaces is a critical event in the colonization and development of oral diseases such as candida-associated denture stomatitis. Although there is considerable information about the adherence of Candida albicans to buccal epithelial cells and prosthetic materials, there is very little information available about the adherence of Candida albicans to glass ionomer materials. The purpose of this study was to investiga...

  19. Retention of metal-ceramic crowns with contemporary dental cements.

    Science.gov (United States)

    Johnson, Glen H; Lepe, Xavier; Zhang, Hai; Wataha, John C

    2009-09-01

    New types of crown and bridge cement are in use by practitioners, and independent studies are needed to assess their effectiveness. The authors conducted a study in three parts (study A, study B, and study C) and to determine how well these new cements retain metal-ceramic crowns. The authors prepared teeth with a 20-degree taper and a 4-millimeter length. They cast high-noble metal-ceramic copings, then fitted and cemented them with a force of 196 newtons. The types of cements they used were zinc phosphate, resin-modified glass ionomer, conventional resin and self-adhesive modified resin. They thermally cycled the cemented copings, then removed them. They recorded the removal force and calculated the stress of dislodgment by using the surface area of each preparation. They used a single-factor analysis of variance to analyze the data (alpha = .05). The mean stresses necessary to remove crowns, in megapascals, were 8.0 for RelyX Luting (3M ESPE, St. Paul, Minn.), 7.3 for RelyX Unicem (3M ESPE), 5.7 for Panavia F (Kuraray America, New York) and 4.0 for Fuji Plus (GC America, Alsip, Ill.) in study A; 8.1 for RelyX Luting, 2.6 for RelyX Luting Plus (3M ESPE) and 2.8 for Fuji CEM (GC America) in study B; and 4.9 for Maxcem (Kerr, Orange, Calif.), 4.0 for BisCem (Bisco, Schaumburg, Ill.), 3.7 for RelyX Unicem Clicker (3M ESPE), 2.9 for iCEM (Heraeus Kulzer, Armonk, N.Y.) and 2.3 for Fleck's Zinc Cement (Keystone Industries, Cherry Hill, N.J.) in study C. Powder-liquid versions of new cements were significantly more retentive than were paste-paste versions of the same cements. The mean value of crown removal stress for the new self-adhesive modified-resin cements varied appreciably among the four cements tested. All cements retained castings as well as or better than did zinc phosphate cement. Powder-liquid versions of cements, although less convenient to mix, may be a better clinical choice when crown retention is an issue. All cements tested will retain castings

  20. Comparison of the Effect of Three Cements on Prevention of Enamel Demineralization Adjacent to Orthodontic Bands

    Directory of Open Access Journals (Sweden)

    Mehdi Kashani

    2012-06-01

    Full Text Available Background and aims. This in vitro study was designed to compare enamel demineralization depths adjacent to bands cemented with zinc polycarboxylate, glass ionomer (GI and resin-modified glass ionomer (RMGI, in order to achieve minimal enamel demineralization during orthodontic treatment. Materials and methods. Sixty fully developed extracted third molars were randomly divided into three test groups each containing 20 samples, used to cement orthodontic bands with zinc polycarboxylate, GI and RMGI. All samples were demineralized using White method using hydroxyapatite, latic acid and Carbapol for in vitro caries simulation, and then, immersed in 10% solution of methylene blue. The mean depth of dye penetration was assessed up to 0.1 millimeter, reflecting the depth of enamel demineralization. One way ANOVA and LSD statistical tests were employed to evaluate significant differences among groups. Results. The highest dye penetration depth was seen in zinc polycarboxylate group, followed by GI, and RMGI groups, respectively, with significant differences among each two groups (P < 0.05. Conclusion. The use of RMGI cement seems to present significantly better prevention of enamel demineralization adjacent to orthodontics bands.

  1. Caries-preventive effect of sealants produced with altered glass-ionomer materials, after 2 years.

    NARCIS (Netherlands)

    Chen, X.; Du, M.Q.; Fan, M.W.; Mulder, J.; Huysmans, M.C.D.N.J.M.; Frencken, J.E.F.M.

    2012-01-01

    OBJECTIVES: The aim of the present study was to investigate the caries-preventive effect of sealants produced with a high-viscosity glass-ionomer with an elevated powder-liquid ratio (ART), of having energy added to this glass-ionomer, and that of glass-carbomer, in comparison to that of resin

  2. Evaluation of the Effects of Different Mouthrinses on the Color Stability of One Type of Glass Ionomer, Compomer and Giomer

    Directory of Open Access Journals (Sweden)

    Shaghayegh Razavi

    2016-03-01

    Full Text Available Objectives: The aim of this study was to evaluate the effect of four commercially available mouthrinses on the color stability of one type of glass ionomer, giomer and compomer. Method: 60 disc-shaped specimens, 180 in total (7*2mm, fabricated from each of the following materials: A resin modified glass ionomer Fuji II LC (GC International Corp, a giomer Beautifil II (SHOFU INC and a compomer Ionosit (DMG. All specimens were stored in artificial saliva at 37˚C for 24 hours in an incubator. The initial colour value (L*,a*,b* were recorded with spectrophotometer according to CIELAB scale. After baseline evaluation, the specimens were divided into five subgroups, according to the testing and control storage solutions (n=12. Randomly selected specimens from each material were immersed in 20 ml of the treatment solutions (Oral-B Pro Expert, Listerine, Colgate Plax, Irasha at 37˚c for 24 hours. Each specimen was then subjected to second color measurement. The collected data was statistically analyzed using two-way analysis of variance (ANOVA and Tukey’s HSD at a significance level of 0.05. Results: All samples displayed color changes after immersion in the mouthrinses. The observed color difference showed that mouthrinses have a significant effect on the color shift of tested materials. A significant interaction was found between the materials and the mouthrinses. Overall, discoloration with all mouthrinses was significant when compared to the control specimens stored in artificial saliva. Oral-B induced the highest level of discoloration (ΔE*= 11.62 in Compomer and the least discoloration was found with Irsha (ΔE*= 1.47 in RMGI. Conclusions: All tested restorative materials showed a color shift after immersion in mouthrinses, amongst which compomer displayed the highest change. Discolorations were clinically perceptible in most of the cases. Thus it can be concluded that daily use of mouthrinses increases the stainability of tested materials.

  3. Evaluation of the Effects of Different Mouthrinses on the Color Stability of One Type of Glass Ionomer, Compomer and Giomer

    Directory of Open Access Journals (Sweden)

    Shaghayegh Razavi

    2015-12-01

    Full Text Available Objectives: The aim of this study was to evaluate the effect of four commercially available mouthrinses on the color stability of one type of glass ionomer, giomer and compomer. Method: 60 disc-shaped specimens, 180 in total (7*2mm, fabricated from each of the following materials: A resin modified glass ionomer Fuji II LC (GC International Corp, a giomer Beautifil II (SHOFU INC and a compomer Ionosit (DMG. All specimens were stored in artificial saliva at 37˚C for 24 hours in an incubator. The initial colour value (L*,a*,b* were recorded with spectrophotometer according to CIELAB scale. After baseline evaluation, the specimens were divided into five subgroups, according to the testing and control storage solutions (n=12. Randomly selected specimens from each material were immersed in 20 ml of the treatment solutions (Oral-B Pro Expert, Listerine, Colgate Plax, Irasha at 37˚c for 24 hours. Each specimen was then subjected to second color measurement. The collected data was statistically analyzed using two-way analysis of variance (ANOVA and Tukey’s HSD at a significance level of 0.05. Results: All samples displayed color changes after immersion in the mouthrinses. The observed color difference showed that mouthrinses have a significant effect on the color shift of tested materials. A significant interaction was found between the materials and the mouthrinses. Overall, discoloration with all mouthrinses was significant when compared to the control specimens stored in artificial saliva. Oral-B induced the highest level of discoloration (ΔE*= 11.62 in Compomer and the least discoloration was found with Irsha (ΔE*= 1.47 in RMGI. Conclusions: All tested restorative materials showed a color shift after immersion in mouthrinses, amongst which compomer displayed the highest change. Discolorations were clinically perceptible in most of the cases. Thus it can be concluded that daily use of mouthrinses increases the stainability of tested materials.

  4. Effects of surface treatments of conventional glass-ionomer on shear bond strength to giomer

    Science.gov (United States)

    Kimyai, Soodabeh; Mohammadi, Narmin; Oskoee, Parnian Alizadeh; Chaharom, Mohammad Esmaeel Ebrahimi; Bahari, Mahmood; Sadr, Alireza; Ahmadizenouz, Ghazaleh

    2012-01-01

    Background: An appropriate bond between glass-ionomer and the superficial resin materials is very important for the success of sandwich technique. The aim of the present in vitro study was to evaluate the effect of three surface treatments of conventional glass-ionomer on its shear bond strength to giomer. Materials and Methods: Sixty cylindrical specimens of a conventional glass-ionomer (GC Fuji II) were prepared and randomly divided into three groups (n = 20). The specimens in groups 1 and 2 were treated with total-etch adhesive resin (Single Bond) along with acid etching, and self-etch adhesive resin (FL-Bond II) on the set glass-ionomer, respectively. Specimens in group 3 were treated with self-etch adhesive resin (FL-Bond II) before initial setting of the glass-ionomer was complete. Then a giomer restorative (Beautifil II) was added to the specimens. Subsequent to thermocycling, the specimens were subjected to shear bond strength test. Failure modes were evaluated under a stereomicroscope. Data were analyzed by one-way analysis of variance and a post hoc Tukey test at a significance level of P glass-ionomer yielded the highest bond strength in the glass-ionomer/giomer sandwich technique. PMID:23559944

  5. Streptococcus mutans-induced secondary caries adjacent to glass ionomer cement, composite resin and amalgam restorations in vitro Cárie secundária adjacente a restaurações de cimento de ionômero de vidro, resina composta e amálgama induzida por Streptococcus mutans in vitro

    Directory of Open Access Journals (Sweden)

    Adriana Gama-Teixeira

    2007-12-01

    Full Text Available The aim of this study was to define, in vitro, the potential to inhibit secondary caries of restorative materials currently used in dental practice. Standard cavities were prepared on the buccal and lingual surfaces of fifty extracted human third molars. The teeth were randomly divided into five groups, each one restored with one of the following materials: glass ionomer cement (GIC; amalgam; light-cured composite resin; ion-releasing composite; and light-cured, fluoride-containing composite resin. The teeth were thermocycled, sterilized with gamma irradiation, exposed to a cariogenic challenge using a bacterial system using Streptococcus mutans, and then prepared for microscopic observation. The following parameters were measured in each lesion formed: extension, depth, and caries inhibition area. The outer lesions developed showed an intact surface layer and had a rectangular shape. Wall lesions were not observed inside the cavities. After Analysis of Variance and Component of Variance Models Analysis, it was observed that the GIC group had the smallest lesions and the greatest number of caries inhibition areas. The lesions developed around Amalgam and Ariston pHc restorations had an intermediate size and the largest lesions were observed around Z-100 and Heliomolar restorations. It may be concluded that the restorative materials GIC, amalgam and ion-releasing composites may reduce secondary caries formation.O objetivo deste estudo foi definir, in vitro, o potencial de materiais restauradores, usados rotineiramente na prática clínica, na inibição da cárie secundária. Cavidades padronizadas foram preparadas nas faces vestibulares e linguais de 50 terceiros molares humanos extraídos. Os dentes foram divididos aleatoriamente em 5 grupos, cada um restaurado com um dos seguintes materiais: cimento de ionômero de vidro (CIV; amálgama; resina composta fotopolimerizável; compósito que libera íons, e resina composta fotopolimeriz

  6. In vitro evaluation of marginal microleakage of class II bonded amalgam restorations using a dentin adhesive and a glass ionomer cement Avaliação in vitro da microinfiltração marginal em restaurações de amálgama tipo classe II usando adesivo dentinário e cimento de ionômero de vidro

    Directory of Open Access Journals (Sweden)

    Edmêr Silvestre PEREIRA JÚNIOR

    1999-04-01

    Full Text Available The purpose of this study was to evaluate in vitro the effectiveness of the dentin bonding system All Bond 2 associated with Resinomer (Bisco, and of Vitrebond (3M glass ionomer cement fresh-mixed, both used in the bonded amalgam technique, to prevent short-term microleakage in class II cavities restored with Dispersalloy (Dentsply, an admixed alloy. The control group utilized the Copalite (Cooley & Cooley varnish. Forty five sound human extracted premolars were used. Class II cavity preparations were made on the mesial and distal surfaces of non-carious teeth, with the gingival margins wall established 1mm under the cementum enamel junction. The specimens were divided randomly into three groups with thirty cavities in each group. The teeth were stored in distilled water for 24 hours and were thermocyled through 500 cycles in distilled water between 5°C and 55°C with a dwell time of 15 seconds. The apices and roots of the teeth were sealed. They were placed in a 37°C bath of 0.5% basic fuchsin dye for 24 hours. The teeth were washed in tap water for 24 hours and cut. The microleakage scores per restoration were averaged and three values of various test groups were subjected to the Kruskal-Wallis and Dunn test at a significance level of p O objetivo deste estudo foi avaliar in vitro a efetividade na prevenção da microinfiltração do sistema adesivo All Bond 2 associado ao Resinomer (Bisco, e do cimento de ionômero de vidro Vitrebond (3M, sem polimerização, em amálgama adesivo classe II, restauradas com Dispersalloy (Dentsply. No grupo controle utilizou-se o verniz cavitário Copalite (Cooley & Cooley. Para tanto, 45 pré-molares humanos íntegros e extraídos, com finalidade ortodôntica, receberam cavidades classe II, sendo uma na face mesial e outra na face distal de cada dente, com a parede cervical localizada a 1mm além da junção cemento-esmalte, sendo 30 cavidades em cada grupo. Após as restaurações os dentes foram estocados

  7. Clinical Performance of Heat-Cured High-Viscosity Glass Ionomer Class II Restorations in Primary Molars: A Preliminary Study.

    Science.gov (United States)

    Tal, Eliyahu; Kupietzky, Ari; Fuks, Anna B; Tickotsky, Nili; Moskovitz, Moti

    The present preliminary study evaluated the clinical and radiographic performances of heat-cured high viscosity glass ionomer (HCHVGI) in class II restorations of primary molars. A retrospective study on a cohort of patients who had dental caries restored at a private practice was conducted. Restorations were evaluated radiographically and photographically by two separate examiners. Ninety-three Class II restorations in 44 patients (average age: 108 months ± 25.3, 24 males, 20 females) were examined. Average recall time was 22.2 months ± 4.2. All but three restorations (96.8%) were present and intact, with no incidents of secondary caries. Three additional restorations had occlusal defects that required retreatment, resulting in an overall success rate of 93.5%. Ninety-seven percent of the restorations were rated optimal for marginal integrity with no staining of the restoration surfaces. No patients complained of post-operative sensitivity. The most common flaw found was a concavity on the proximal wall of the cavity box (27%, mean age 16 months ± 3.9). The findings in this preliminary study suggest that heat cured high viscosity glass ionomer cement may be an effective restorative material for Class II restorations in primary molars that are a year or two from shedding.

  8. Bond strength between composite resin and resin modified glass ionomer using different adhesive systems and curing techniques

    OpenAIRE

    Boruziniat, Alireza; Gharaei, Samineh

    2014-01-01

    Aim: To evaluate bond strength between RMGI and composite using different adhesive systems and curing techniques. Materials and Methods: Sixty prepared samples of RMGI were randomly divided into six groups according to adhesive systems (total-etch, two-step self-etch and all-in-one) and curing techniques (co-curing and pre-curing). In co-curing technique, the adhesive systems were applied on uncured RMGI samples and co-cured together. In the pre-curing technique, before application of adh...

  9. Bond strength between composite resin and resin modified glass ionomer using different adhesive systems and curing techniques.

    Science.gov (United States)

    Boruziniat, Alireza; Gharaei, Samineh

    2014-03-01

    To evaluate bond strength between RMGI and composite using different adhesive systems and curing techniques. Sixty prepared samples of RMGI were randomly divided into six groups according to adhesive systems (total-etch, two-step self-etch and all-in-one) and curing techniques (co-curing and pre-curing). In co-curing technique, the adhesive systems were applied on uncured RMGI samples and co-cured together. In the pre-curing technique, before application of adhesive systems, the RMGI samples were cured. Composite layers were applied and shear bond strength was measured. Two samples of each group were evaluated by SEM. Failure mode was determined by streomicroscope. Both curing methods and adhesive systems had significant effect on bond strength (P-value adhesives had significantly higher shear bond strength than the total-etch adhesive (P-value technique improved the bond strength in self-etch adhesives, but decreased the bond strength in total-etch adhesive (P-valueadhesive systems and co-curing technique can improve the bond strength between the RMGI and composite.

  10. The Effect of Lucite Glass Reinforcement on the Properties of Conventional Glass-Ionomer Filling Materials.

    Science.gov (United States)

    Kazemi Yazdi, Haleh; Van Noort, Richard; Mansouri, Mona

    2016-12-01

    The usage of glass ionomer cements (GICs) restorative materials are very limited due to lack of flexural strength and toughness. The aim of this study was to investigate the effect of using a leucite glass on a range of mechanical and optical properties of commercially available conventional glass ionomer cement. Ball milled 45μm leucite glass particles were incorporated into commercial conventional GIC, Ketac-Molar Easymix (KMEm). The characteristics of the powder particles were observed under scanning electron microscopy. The samples were made for each experimental group; KMEm and lucite- modified Ketac-Molar easy Mix (LMKMEm) according to manufacturer's instruction then were collected in damp tissue and stored in incubator for 1 hour. The samples were divided into two groups, one stored in distilled water for 24 hours and the others for 1 week.10 samples were made for testing biaxial flexural strength after 1 day and 1 week, with a crosshead speed of 1mm/min, calculated in MPa. The hardness (Vickers hardness tester) of each experimental group was also tested. To evaluate optical properties, 3 samples were made for each experimental group and evaluated with a spectrophotometer. The setting time of modified GIC was measured with Gillmore machine. The setting time in LMKMEm was 8 minutes. The mean biaxial flexural strength was LMKMEm/ 1day: 24.13±4.14 MPa, LMKMEm/ 1 week: 24.22±4.87 MPa KMEm/1day:28.87±6.31 MPa and KMEm/1 week: 26.65±5.82 MPa which were not statistically different from each other. The mean Vickers hardness was LMKMEm: 403±66 Mpa and KMEm: 358±22 MPa; though not statistically different from each other. The mean total transmittance (Tt) was LMKMEm: 15.9±0.7, KMEm: 22.3±1.2, the mean diffuse transmittance (Td) was LMKMEm: 12.2±0.5, KMEm: 18.0±0.5 which were statistically different from each other. Leucite glass can be incorporated with a conventional GIC without interfering with setting time. Yet, it did not improve the mechanical and

  11. Comparison of Caries Prevention With Glass Ionomer and Composite Resin Fissure Sealants

    Directory of Open Access Journals (Sweden)

    Aylin Akbay Oba

    2009-11-01

    Conclusion: Under field conditions in which moisture control was not effective, a high-viscosity and less technique-sensitive glass ionomer material can be used as an effective sealant material, rather than resin.

  12. Resistance against bacterial leakage of four luting agents used for cementation of complete cast crowns.

    Science.gov (United States)

    Zmener, Osvaldo; Pameijer, Cornelis H; Hernández, Sandra

    2014-02-01

    To assess the sealing properties of four luting materials used for cementation of full cast crowns. 40 human premolars were prepared with a chamfer finish line. Stone dies were fabricated and copings were waxed, invested and cast in gold. Ten samples (n = 10) were randomly assigned to four groups. In two groups, resin modified glass-ionomer cements were used, ACTIVA BioACTIVE-CEMENT/BASE/LINER and FujiCem2; the third group received the self-adhesive resin cement Embrace WetBond, while the fourth group served as control with a zinc phosphate cement. After cementation, excess cement was removed followed by bench-set for 10 minutes. All samples were stored in water at 37 degrees C and subjected to thermal cycling (x2000 between 5 and 55 degrees C). Subsequently the occlusal surface was reduced exposing the dentin. After sterilization the specimens were subjected to bacterial microleakage with E. faecalis in a dual chamber apparatus for a period of 60 days. Bacterial leakage was checked daily. Data were analyzed using the Kaplan-Meyer survival test. Significant pairwise differences were analyzed using the Log Rank test and the Fishers' exact test at P CEMENT/BASE/LINER, FujiCem2 and Embrace WetBond showed the lowest microleakage scores and differed statistically significantly (P cement.

  13. Surface roughness of orthodontic band cements with different compositions

    Directory of Open Access Journals (Sweden)

    Françoise Hélène van de Sande

    2011-06-01

    Full Text Available OBJECTIVES: The present study evaluated comparatively the surface roughness of four orthodontic band cements after storage in various solutions. MATERIAL AND METHODS: Eight standardized cylinders were made from 4 materials: zinc phosphate cement (ZP, compomer (C, resin-modified glass ionomer cement (RMGIC and resin cement (RC. Specimens were stored for 24 h in deionized water and immersed in saline (pH 7.0 or 0.1 M lactic acid solution (pH 4.0 for 15 days. Surface roughness readings were taken with a profilometer (Surfcorder SE1200 before and after the storage period. Data were analyzed by two-way ANOVA and Tukey's test (comparison among cements and storage solutions or paired t-test (comparison before and after the storage period at 5% significance level. RESULTS: The values for average surface roughness were statistically different (pRMGIC>C>R (p0.05. Compared to the current threshold (0.2 µm related to biofilm accumulation, both RC and C remained below the threshold, even after acidic challenge by immersion in lactic acid solution. CONCLUSIONS: Storage time and immersion in lactic acid solution increased the surface roughness of the majority of the tested cements. RC presented the smoothest surface and it was not influenced by storage conditions.

  14. [Bonding interfaces of three kinds of cements and root canal dentin: a scanning electron microscope observation].

    Science.gov (United States)

    Chen, Lei; Lei, Hui-yun; Xu, Guo-fu; Liang, Xiao-peng; Li, Ji-jia

    2010-04-01

    To compare the bonding properties of three kinds of cements by observing the bonding inteffaces of cements and root canal dentin. 15 extracted mandibular premolars were divided into 3 groups, and were cemented by Rely X luting, Panavia F and Paracore 5 mL, respectively. Each tooth was sectioned into two parts and the dentin-cement interfaces at the coronal, middle and apical parts of the fiber post were oberved by scanning electron microscope (SEM). The length of hybrid layer was also recorded. Hybrid layer was not clearly found in group one, which could be seen on the dentin-cement interfaces of group two and three. Resin tags and lateral adhesives were also observed in group three. From the apical to the coronal part, microgaps seemed gradually smaller in group one, while the hybrid layer became thicker in both group two and three. The total-etch resin cement bounds tightly with dentin, and owns a more superior bonding property than self-etch resin cement and resin modified glass ionomer cement.

  15. The Retentive Strength of Cemented Zirconium Oxide Crowns after Dentin Pretreatment with Desensitizing Paste Containing 8% Arginine and Calcium Carbonate

    Directory of Open Access Journals (Sweden)

    Raphael Pilo

    2016-03-01

    Full Text Available The effect of dentin pretreatment with Desensitizing Paste containing 8% arginine and calcium carbonate on the retention of zirconium oxide (Y-TZP crowns was tested. Forty molar teeth were mounted and prepared using a standardized protocol. Y-TZP crowns were produced using computer-aided design and computer-aided manufacturing (CAD-CAM technology. The 40 prepared teeth were either pretreated with Desensitizing Paste or not pretreated. After two weeks, each group was subdivided into two groups, cemented with either Resin Modified Glass Ionomer Cement (RMGIC or Self Adhesive Resin Cement (SARC. Prior to cementation, the surface areas of the prepared teeth were measured. After aging, the cemented crown-tooth assemblies were tested for retentive strength using a universal testing machine. The debonded surfaces of the teeth and crowns were examined microscopically at 10× magnification. Pretreating the dentin surfaces with Desensitizing Paste prior to cementation did not affect the retention of the Y-TZP crowns. The retentive values for RMGIC (3.04 ± 0.77 MPa were significantly higher than those for SARC (2.28 ± 0.58 MPa. The predominant failure modes for the RMGIC and SARC were adhesive cement-dentin and adhesive cement-crown, respectively. An 8.0% arginine and calcium carbonate in-office desensitizing paste can be safely used to reduce post-cementation sensitivity without reducing the retentive strength of Y-TZP crowns.

  16. The Retentive Strength of Cemented Zirconium Oxide Crowns after Dentin Pretreatment with Desensitizing Paste Containing 8% Arginine and Calcium Carbonate.

    Science.gov (United States)

    Pilo, Raphael; Harel, Noga; Nissan, Joseph; Levartovsky, Shifra

    2016-03-25

    The effect of dentin pretreatment with Desensitizing Paste containing 8% arginine and calcium carbonate on the retention of zirconium oxide (Y-TZP) crowns was tested. Forty molar teeth were mounted and prepared using a standardized protocol. Y-TZP crowns were produced using computer-aided design and computer-aided manufacturing (CAD-CAM) technology. The 40 prepared teeth were either pretreated with Desensitizing Paste or not pretreated. After two weeks, each group was subdivided into two groups, cemented with either Resin Modified Glass Ionomer Cement (RMGIC) or Self Adhesive Resin Cement (SARC)). Prior to cementation, the surface areas of the prepared teeth were measured. After aging, the cemented crown-tooth assemblies were tested for retentive strength using a universal testing machine. The debonded surfaces of the teeth and crowns were examined microscopically at 10× magnification. Pretreating the dentin surfaces with Desensitizing Paste prior to cementation did not affect the retention of the Y-TZP crowns. The retentive values for RMGIC (3.04 ± 0.77 MPa) were significantly higher than those for SARC (2.28 ± 0.58 MPa). The predominant failure modes for the RMGIC and SARC were adhesive cement-dentin and adhesive cement-crown, respectively. An 8.0% arginine and calcium carbonate in-office desensitizing paste can be safely used to reduce post-cementation sensitivity without reducing the retentive strength of Y-TZP crowns.

  17. The effect of fluoride application on fluoride release and the antibacterial action of glass ionomers.

    Science.gov (United States)

    Seppä, L; Forss, H; Ogaard, B

    1993-09-01

    The aim of this study was to investigate whether the release of fluoride and the antimicrobial effect of freshly mixed glass ionomers could be prolonged by application of fluoride on aged material. Test slabs of freshly mixed and aged (14 d in water) conventional and silver glass ionomer (Ketac-Fil and Ketac-Silver, Espe, Seefeld, Germany) and composite (Silux Plus, 3M, St. Paul, MN) were fitted into the bottom of a test tube. A layer of S. mutans Ingbritt cells was centrifuged onto the test slabs, and the samples were incubated for 20 h in 1.7% sucrose solution. After the incubation, pH, F, and Ca contents of the fluid phase, and F, Mg, P, and K contents of the cells were determined. The aged glass-ionomer samples were then covered with toothpaste (0.1% F) or with fluoride gel (1.25% F), and the composite samples with fluoride gel. After being thoroughly rinsed, S. mutans cells were incubated on the samples as above. The pH fall was significantly inhibited by freshly mixed glass ionomers, and there were changes in cellular cation and phosphorus contents. Large amounts of fluoride were found in the fluid and cells. For old glass ionomers, no inhibitory effect on pH fall could be seen. Fluoride release had decreased to a low level.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Development of antimicrobial optimum glass ionomer; Desenvolvimento de ionomero de vidro antimicrobiano otimo

    Energy Technology Data Exchange (ETDEWEB)

    Angioletto, E.; Tezza, V.B.; Santos, M.J.; Montedo, O.R.K.; Pich, C.T.; Fiori, M.A. [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil); Angioletto, Ev. [Biorosam Biotecnologia Ltda., SC (Brazil)

    2010-07-01

    The use of glass ionomer for restorations in dentistry for lower income population is a well established practice in public clinics of Brazil. However the average price of this kind of material and its low durability still have a negative impact on public health for being imported and frequently replaced it becomes expensive for the manufacturers and for public agencies. In glass ionomer the main antimicrobial agent is fluoride, which is released gradually. The material used for filling provides an average life of five years and its durability can be increased if the ionomer contains other oligodynamic elements. It was formulated, merged a new optimized glass ionomer which was characterized by X-ray diffraction, ion measurement and antimicrobial activity. This new product showed promising results, that pointed structural stability an increase of antimicrobial efficiency. (author)

  19. Influence of citric acid on the surface texture of glass ionomer restorative materials.

    Science.gov (United States)

    Reddy, Dappili Swami Ranga; Kumar, Ramachandran Anil; Venkatesan, Sokkalingam Mothilal; Narayan, Gopal Shankar; Duraivel, Dasarathan; Indra, Rajamani

    2014-09-01

    This study determined the effectiveness of G-coat plus surface protective agent over petroleum jelly on the surface texture of conventional Glass ionomer restorative materials. Three chemically cured conventional glass ionomer restorative materials type II, type IX and ketac molar were evaluated in this study. Sixty specimens were made for each restorative material. They were divided into two groups of thirty specimens each. Of the sixty specimens, thirty were coated with G-coat plus (a nano-filler coating) and the rest with petroleum jelly. Thirty samples of both protective coating agents were randomly divided into six groups of five specimens and conditioned in citric acid solutions of differing pH (pH 2, 3, 4, 5, 6 & 7). Each specimen was kept in citric acid for three hours a day, and the rest of time stored in salivary substitute. This procedure was repeated for 8 days. After conditioning, the surface roughness (Ra, μm) of each specimen was measured using a surface profilometer (Taylor & Habson, UK). Data was analyzed using one-way analysis of variance (ANOVA) and Tukey's HSD test at a significance level of 0.05. The surface textures of all the tested glass ionomer restorative materials protected with G-coat plus were not significantly affected by acids at low pH. The surface textures of all the tested glass ionomer restorative materials protected with petroleum jelly coating were significantly affected by acids at low pH. The effects of pH on the surface texture of glass ionomer restoratives are material dependent. Among all the materials tested the surface texture of Type II GIC (Group I) revealed marked deterioration when conditioned in solutions of low pH and was statistically significant. Hence, a protective coating either with G-coat plus or with light polymerized low viscosity unfilled resin adhesives is mandatory for all the glass ionomer restorations to increase the wear resistance of the restorative materials.

  20. In vitro evaluation of the marginal microleakage of amalgam restorations associated with dentin adhesive, glass ionomer cement and cavity varnish by means of different evaluation methods Avaliação in vitro da microinfiltração marginal em restaurações de amálgama associadas a adesivo dentinário, cimento de ionômero de vidro e verniz cavitário, utilizando diferentes métodos de avaliação

    Directory of Open Access Journals (Sweden)

    Adriano Tomio Hoshi

    2005-03-01

    Full Text Available This in vitro study evaluated the marginal microleakage of amalgam restorations associated with the cavity varnish Copalite - Cooley & Cooley (GI-CP, dentin adhesive OptiBond Solo - Kerr (GII-OS and the glass ionomer cement Vitremer - 3M (GIII-VT. Forty-five premolars were employed, which were submitted to independent class II preparations at the mesial and distal aspects comprising the marginal ridges and were restored with Dispersalloy - Dentsply. Afterwards, the teeth were thermocycled and stored in 0.5% basic fuchsine for 24 hours. The evaluations were conducted on a light microscope with 150x magnification and on the Sigma Scan software with employment of a single line and segmented lines. Data analysis allowed to establish that none of the materials was able to eliminate the marginal microleakage, having the GI - CP presented greater and statistically significant values in relation to the other groups in all evaluation methods (pEste trabalho avaliou, in vitro, a microinfiltração marginal de restaurações de amálgama associadas ao verniz cavitário Copalite - Cooley & Cooley (GI - CP, ao adesivo dentinário OptiBond Solo - Kerr (GII - OS e ao CIV Vitremer - 3M (GIII - VT. Foram utilizados 45 pré-molares que receberam preparos cavitários independentes classe II nas faces mesial e distal, envolvendo as cristas marginais. Todas as cavidades foram restauradas com a liga Dispersalloy - Dentsply. Posteriormente, os dentes sofreram termociclagem e foram armazenados em solução de fucsina básica a 0,5% por 24 horas. As avaliações foram realizadas através de um microscópio óptico com aumento de 150 vezes e no software Sigma Scan, utilizando linha única e linhas segmentadas. A análise dos dados obtidos permitiu constatar que nenhum dos materiais foi capaz de eliminar a microinfiltração marginal, sendo que o GI - CP apresentou valores maiores e estatisticamente significantes (p<0,05 em relação aos demais grupos em todos os m

  1. A Comparative Evaluation of Microleakage in Class V Composite Restorations using a Fifth Generation Adhesive and a Glass Ionomer Bonding Agent - An In Vitro Dye Leakage Study

    Directory of Open Access Journals (Sweden)

    Dipali Shah

    2012-01-01

    Full Text Available Objectives: The dawn of minimally invasive dentistry has led to the development of materials which rely on the use of effective adhesion to remaining tooth tissue. Despite making important advances, dentin bonding has to overcome hurdles with respect to structural heterogencity of dentin and long term stability of the bond. The primary mode of failure for adhesive restorations has been described as the loss of marginal adaptation and loss of retention. Methods: This in vitro study was undertaken to assess marginal adaptation and microleakage of Class V lesions using two cavity designs, a fifth generation dentin adhesive and a glass ionomer bonding agent-liner in extracted human molars, restored with composite resin restorations. Extracted permanent molars were divided into four groups (n=10. Class V cavities on buccal surfaces with retentive or non retentive features were prepared. A comparative dye leakage study was done between Syntac single component and Fujibond LC bonding agent, when cavities were restored with Heliomolar composite resin. 2% methylene blue dye was used to assess microleakage under stereomicroscope. The scores obtained were subjected to the Kruskal Wallis one-way analysis and Mann Whiteney U test. Results: Results of this study showed that the glass ionomer bonding agent-liner groups in both retentive and non-retentive cavities exhibited statistically significant (P<0.05 less microleakage as compared to the non-retentive dentin bonding agent group on the dentinal/cemental cavosurface margins. Conclusion: Within the limits of the study, it was concluded that the glass ionomer bonding agent-liner may be effective in reducing gingival microleakage in Class V situations with gingival margins in cementum and dentin.

  2. Study of the effect of common infusions on glass ionomers using the PIXE and RBS techniques

    Science.gov (United States)

    Verón, María Gisela; Pérez, Pablo Daniel; Suárez, Sergio Gabriel; Prado, Miguel Oscar

    2017-12-01

    The effect of four commonly consumed beverages as mineral water, coffee, tea and mate tea on the elemental composition of a commercial glass ionomer was studied using Particle Induced X-ray Emission (PIXE) and Rutherford backscattering (RBS) techniques. We found that after immersion in acidic media, some elements as Al, Si and Na are lost from the glass-ionomer whereas others heavier, as K, Ca and La, increase their concentration at the surface. Although the concentration profiles of Al and Si are different in different media, in all of them the Al:Si ratio was close to unity and remained constant for different periods of immersion in all media. The incorporation of K, Mg and Fe to the surface is found for common infusions while for mineral water the glass-ionomer mainly loses F and Na.The RBS technique showed that immersion in different media produced a modification of the density of the glass ionomer surface layer due to the increment of the concentration of heavier elements at the surface. The thickness of the modified surface layer extends up to 3 μm when the immersion time is seven days and more than 6 μm after 33 days of immersion.

  3. Restorative service patterns in Australia: amalgam, composite resin and glass ionomer restorations.

    Science.gov (United States)

    Brennan, D S; Spencer, A J

    2003-12-01

    To examine the provision of amalgam, composite resin and glass ionomer restorations, and to assess whether these main restorative services varied by patient, visit and oral health characteristics. A cross-sectional survey incorporating a log of service items provided on a typical day. Australian private general practice. Data on services and patients were collected by a mailed survey from a random sample of dentists from each State/Territory in Australia in 1998-99 with a response rate of 71%. Rates per visit of amalgam, composite resin and glass ionomer restorations among dentate adults who had received a restoration. Analysis showed older patients had lower amalgam rates but higher glass ionomer rates, composite resin rates were lower at emergency visits, capital city patients had higher amalgam rates but lower composite resin rates, patients with decayed teeth had higher amalgam and composite resin rates, and use of restorative materials varied by clinical problem. Despite widespread use of alternative materials, amalgam rates remained high in circumstances such as replacement restorations and restorations involving more than one surface. Other restorative materials also had specific applications. Both amalgam and composite resins were provided at higher rates to patients with active caries but composite resins were also used at higher rates for aesthetic problems. Glass ionomer restorations were used at higher rates for initial and one-surface restorations, and for conditions such as root caries and dentinal sensitivity.

  4. The crushing truth about glass ionomer restoratives: exposing the standard of the standard.

    LENUS (Irish Health Repository)

    Fleming, Garry J P

    2012-03-01

    The compressive fracture strength (CFS) test is the only strength test for glass ionomers (GIs) in ISO 9917-1: 2003. The CFS test was the subject of much controversy in 1990 and has been challenged over its appropriateness and reproducibility and the study aimed to revisit the suitability of the CFS test for GIs.

  5. Assessment of micro-leakage for light-cure glass ionomer and pro-root mineral trioxide aggregate as coronal barriers in intracoronal bleaching of endodontically treated teeth

    Directory of Open Access Journals (Sweden)

    Maryam Zare Jahromi

    2017-03-01

    Full Text Available Introduction: Cervical root resorption is one of the most important complications of intra coronal bleaching. A way of preventing this type of resorption is using a coronal barrier under the bleaching materials. The aim of this study was to compare the sealing ability of glass ionomer cement and Pro Root Mineral Trioxide Aggregate (MTA as a coronal barrier in intra coronal bleaching. Materials &Methods: In this study, 40 single-root maxillary anterior teeth were endodontically prepared and divided into two experimental groups (n= 15 and two positive and negative control groups (n=5. In the experimental groups, gutta percha was removed up to 3 mm below the cemento enamel junction (CEJ.RMGI and MTA were placed over gutta percha up to the level of CEJ. After a 24-hour incubation period, the bleaching agent (a mixture of sodium perborate and 30% hydrogen peroxide was placed in the access cavities. The bleaching agents were replaced every 3 days over 9 days. Then, the access cavity was filled with 2% methylene blue for 48 hours. All samples were longitudinally sectioned and the dye penetration range was evaluated using a stereomicroscope. Data were statistically analyzed using Kruskal-Wallis and Mann–Whitney tests (α=0.05. Results: Leakage mean indicated that there was a significant difference between these two groups and leakage was less in ProRoot than glass ionomer. Conclusion: It seems that the MTA can provide a better coronal seal during the bleaching.

  6. Comparative Shear-Bond Strength of Six Dental Self-Adhesive Resin Cements to Zirconia

    Directory of Open Access Journals (Sweden)

    Si-Eun Lee

    2015-06-01

    Full Text Available This study compared shear bond strength (SBS of six self-adhesive resin cements (SARC and one resin-modified glass ionomer cement (RMGIC to zirconia before and after thermocycling. The cylinder shape (Φ 2.35 mm × 3 mm of six SARCs (G-CEM LinkAce (GLA, Maxcem Elite (MAX, Clearfil SA Luting (CSL, PermaCem 2.0 (PM2, Rely-X U200 (RXU, Smartcem 2 (SC2 were bonded to the top surface of the zirconia specimens with light-curing. RMGIC (Fujicem (FJC was bonded to the specimens with self-curing. The shear bond strength of all cemented specimens was measured with universal testing machine. Half of the specimens were thermocycled 5000 times before shear bonding strength testing. Fractured surfaces were examined with a field-emission SEM (10,000× and analyzed by energy dispersive x-ray analysis. MAX, PM2, SC2 group without thermocycling and GLA, MAX, PM2 group with thermocycling showed adhesive failure, but GLA, CSL, RXU, FJC group without thermocycling and SLC, RXU, SC2, FJC group with thermocycling indicated cohesive failure. Within the limitation of this study, All of SARCs except MAX demonstrated higher bond strength than that of RMGIC regardless of thermocycling. Also, SARC containing MDP monomers (CSL retained better bonds than other cements.

  7. Effect of thermocycling with or without 1 year of water storage on retentive strengths of luting cements for zirconia crowns.

    Science.gov (United States)

    Ehlers, Vicky; Kampf, Gabriel; Stender, Elmar; Willershausen, Brita; Ernst, Claus-Peter

    2015-06-01

    Bond stability between zirconia crowns and luting cement and between cement and dentin is a main concern; however, only limited evidence is available as to its longevity. The purpose of this in vitro study was to measure the retentive strengths of 7 self-adhesive cements (RelyX Unicem Aplicap, RelyX Unicem Clicker, RelyX Unicem 2 Automix, iCEM, Maxcem Elite, Bifix SE, SpeedCem), 2 adhesive cements with self-etch primers (Panavia 21, SEcure), 1 glass ionomer cement (Ketac Cem), 1 resin-modified glass ionomer cement (Meron Plus), and 1 zinc phosphate cement for luting zirconia crowns (LAVA) to extracted teeth after thermocycling with or without 1 year of water storage. Two-hundred-forty extracted human molars (2 treatments; n=10 per cement) were prepared in a standardized manner. All cements were used according to the manufacturers' recommendations. The intaglios of the crowns were treated with airborne-particle abrasion. After thermocycling (×5000, 5°C/55°C) with or without 1 year of water storage, the cemented ceramic crowns were removed by using a Zwick universal testing device. Statistical analyses were done with the Wilcoxon rank sum and the 2-independent-samples Kolmogorov-Smirnov test. Median retentive strengths [MPa] for specimens thermocycled only/thermocycled with 1 year of water storage were as follows: Panavia 21: 1.7/2.5, SEcure: 3.0/3.0, RelyX Unicem Aplicap: 3.1/3.4, RelyX Unicem Clicker: 4.1/4.2, RelyX Unicem 2 Automix: 3.8/3.1, iCEM: 2.3/2.7, Maxcem Elite: 3.0/3.2, Bifix SE: 1.7/1.7, SpeedCem: 1.3/1.6, Meron Plus: 3.1/2.7, Ketac Cem: 1.4/1.4, and zinc phosphate cement: 1.1/1.6. Statistically significant differences were found only among specimens thermocycled only or thermocycled with 1-year water storage (P<.001). Significant differences in retentive strengths were observed among cements after thermocycling only or thermocycling with 1 year of water storage, but not for the effect of the additional 1 year of water storage. Copyright © 2015

  8. Bond Strength of Glass Ionomers as Restorative Materials

    International Nuclear Information System (INIS)

    AlMunif, H.; Cooley, R.L.; Robbins, J. W.

    1989-01-01

    Ciass lonomer cement is considered to be a recent material used for restoring teeth. It was launched on the market since 1971. Studies show that 86.4% of dentists use this material and also 71 % of dentists use it only for cementing restorations and crowns for its chemicaly bonding properties. In this paper, the adhesive properties were tested in two kinds of extracted human teeth. First group, recently extracted teeth well preserved in saline and the second group, teeth extracted and preserved in formaline for many years. There was no significant difference in the adhesion between the two groups. The Japanese Fuji showed more adhesion to the recently extracted teeth. (author)

  9. Properties of New Glass Ionomer Restorative Materials Marketed for Stress Bearing Areas

    Science.gov (United States)

    2018-03-22

    REPORT TYPE 22/03/2018 Poster 4. TITLE AND SUBTITLE Prope1iies of New Glass-Ionomer Restorative Materials Marketed for Stress -Bearing Areas 6...0312212018-03/24/2018 Sa. CONTRACT NUMBER Sb. GRANT NUMBER Sc. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER Se. TASK NUMBER Sf. WORK UNIT NUMBER...Adobe Professional 7 .0 INTRODUCTION Equia Forte is a new GIC which is marketed for posterior stress bearing restorations due to its newer

  10. Cytotoxicity and biocompatibility of Zirconia (Y-TZP posts with various dental cements

    Directory of Open Access Journals (Sweden)

    Hyeongsoon Shin

    2016-08-01

    Full Text Available Objectives Endodontically treated teeth with insufficient tooth structure are often restored with esthetic restorations. This study evaluated the cytotoxicity and biological effects of yttria partially stabilized zirconia (Y-TZP blocks in combination with several dental cements. Materials and Methods Pairs of zirconia cylinders with medium alone or cemented with three types of dental cement including RelyX U200 (3M ESPE, FujiCEM 2 (GC, and Panavia F 2.0 (Kuraray were incubated in medium for 14 days. The cytotoxicity of each supernatant was determined using 3-(4,5-dimethylthiazole-2-yl-2,5-diphenyltetrazolium bromide (MTT assays on L929 fibroblasts and MC3T3-E1 osteoblasts. The levels of interleukin-6 (IL-6 mRNA were evaluated by reverse transcription polymerase chain reaction (RT-PCR, and IL-6 protein was evaluated by enzyme-linked immunosorbent assays (ELISA. The data were analyzed using one-way ANOVA and Tukey post-hoc tests. A p < 0.05 was considered statistically significant. Results The MTT assays showed that MC3T3-E1 osteoblasts were more susceptible to dental cements than L929 fibroblasts. The resin based dental cements increased IL-6 expression in L929 cells, but reduced IL-6 expression in MC3T3-E1 cells. Conclusions Zirconia alone or blocks cemented with dental cement showed acceptable biocompatibilities. The results showed resin-modified glass-ionomer based cement less produced inflammatory cytokines than other self-adhesive resin-based cements. Furthermore, osteoblasts were more susceptible than fibroblasts to the biological effects of dental cement.

  11. Microleakage of Four Dental Cements in Metal Ceramic Restorations With Open Margins

    Science.gov (United States)

    Eftekhar Ashtiani, Reza; Farzaneh, Babak; Azarsina, Mohadese; Aghdashi, Farzad; Dehghani, Nima; Afshari, Aisooda; Mahshid, Minu

    2015-01-01

    Background: Fixed prosthodontics is a routine dental treatment and microleakage is a major cause of its failure. Objectives: The aim of this study was to assess the marginal microleakage of four cements in metal ceramic restorations with adapted and open margins. Materials and Methods: Sixty sound human premolars were selected for this experimental study performed in Tehran, Iran and prepared for full-crown restorations. Wax patterns were formed leaving a 300 µm gap on one of the proximal margins. The crowns were cast and the samples were randomly divided into four groups based on the cement used. Copings were cemented using zinc phosphate cement (Fleck), Fuji Plus resin-modified glass ionomer, Panavia F2.0 resin cement, or G-Cem resin cement, according to the manufacturers’ instructions. Samples were immersed in 2% methylene blue solution. After 24 hours, dye penetration was assessed under a stereomicroscope and analyzed using the respective software. Data were analyzed using ANOVA, paired t-tests, and Kruskal-Wallis, Wilcoxon, and Mann-Whitney tests. Results: The least microleakage occurred in the Panavia F2.0 group (closed margin, 0.18 mm; open margin, 0.64 mm) and the maximum was observed in the Fleck group (closed margin, 1.92 mm; open margin, 3.32 mm). The Fleck group displayed significantly more microleakage compared to the Fuji Plus and Panavia F2.0 groups (P cement exhibited better sealing ability in closed and open margins compared to G-Cem and Fleck cements. When using G-Cem and Fleck cements for full metal ceramic restorations, clinicians should try to minimize marginal gaps in order to reduce restoration failure. In situations where there are doubts about perfect marginal adaptation, the use of Fuji Plus cement may be helpful. PMID:26730349

  12. Comparative evaluation of shear bond strength of nano-hydroxyapatite incorporated glass ionomer cement and conventional glass ionomer cement on dense synthetic hydroxyapatite disk: An in vitro study

    Directory of Open Access Journals (Sweden)

    Kanupriya Choudhary

    2015-01-01

    Conclusion: The lower shear bond strength of nano-HAp incorporate GIC revealed that the addition of nano-HAp interfered with the bonding ability of GIC to the substrate interface, but the mixed type of failure in nano-HAp incorporated GIC suggests that it increases the strength of the matrix. However, the role of nano-size particles on the micro-size particles of GIC for the bonding mechanism and the ratio and proportions of nano-HAp to the GIC needs further elucidation.

  13. Analysis of the interface zone between the glass ionomer and enamel and dentin of primary molars

    Directory of Open Access Journals (Sweden)

    Petrović Bojan B.

    2008-01-01

    Full Text Available Restoring carious teeth is one of the major dental treatment needs of young children. Conventional glassionomer materials are frequently used as filling materials in contemporary pediatric dentistry. The objective of this study was to evaluate the restorative and prophylactic efficacy of the newly marketed glass ionomer, Fuji Triage (GC, Tokyo, Japan, through morphological analysis of the interface zone between the material and the enamel and the dentin of primary molars and to determine the extent of the ion exchange at the interface zone. The sample consisted of 5 extracted intact first primary molars in which glassionomer had been used as filling material after standard class I cavity preparation. The material was placed according to the manufacturer's instructions and teeth were placed into dionised water prior to experiment. Six sections of each tooth had been examined using scanning electron microscopic and electron dispersive spectroscopic techniques (SEM/EDS. The parameters for evaluation included: morphological characteristics of the interface zone and the extent of the ion exchange between the material and the tooth structures Results were statistically analyzed using descriptive statistical methods. SEM/EDS analysis revealed the presence of the chemical bonding between the glass ionomer and the enamel and dentin, 5 and 15 μm in width, respectively. Ion exchange has not been detected in the enamel at the EDS sensitivity level. Strontium and fluor penetration has been detected in dentin. The ion exchange and chemical bonding formation justify the usage of the conventional glass ionomer materials for restorative procedures in primary molars.

  14. Replacing amalgam with a high-viscosity glass-ionomer in restoring primary teeth: A cost-effectiveness study in Brasilia, Brazil.

    Science.gov (United States)

    Goldman, A; Frencken, J E; De Amorim, R G; Leal, S C

    2018-03-01

    When planning primary oral health care services the cost implications of adopting new intervention practices are important, especially in resource-strapped countries. Although on a trajectory to be phased-out, amalgam remains the standard of care in many countries. Adopting a government perspective, this study compared the costs of performing amalgam and ART/high-viscosity glass-ionomer cement (HVGIC) restorations and the consequences of failed restorations over 3 years in suburban Brasilia, Brazil. Cost data were collected prospectively; cost estimates were developed for the study sample and a projection of 1000 single- and 1000 multiple-surface restorations per group. Probabilistic sensitivity analysis was conducted in TreeAge Pro. Results were mixed. For single-surface restorations, ART/HVGIC will cost US$51 per failure prevented, while for multiple-surface restorations, ART/HVGIC was cost-effective with a savings of US$11 compared to amalgam. Probabilistic sensitivity analysis (Monte Carlo simulation) predicted amalgam would be cost-effective 49.2% of the time compared to HVGIC at 50.6% of the time at a willingness to pay threshold of US$237 per failure prevented. Personnel accounted for more than half the cost burden for both methods; instruments and supplies accounted for about one third. The per restoration cost to replace amalgam with HVGIC ranges from US$1 to a savings of US$0.84. Replacing amalgam with a high-viscosity glass-ionomer as part of the ART method comes at a minimal increase in cost for governments. Increasing the number of restorations seems to diminish the cost burden. ART/HVGIC could be considered a viable alternative to amalgam in primary teeth. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Construction, testing and performance report : state study no. 137 : resin modified pavement demonstration project.

    Science.gov (United States)

    2007-09-01

    Resin Modified Pavement (RMP) is a composite paving material consisting of a thin layer (2 inches) : of open graded hot mix asphalt (HMA) whose internal air voids (approximately 30% voids) are : filled with a latex rubber-modified portland cement gro...

  16. Compressive strength of two newly developed glass-ionomer materials for use with the Atraumatic Restorative Treatment (ART) approach in class II cavities.

    NARCIS (Netherlands)

    Koenraads, H.; Kroon, G. Van der; Frencken, J.E.F.M.

    2009-01-01

    OBJECTIVES: The null-hypotheses tested were that no difference in compressive strength of ART class II cavities exists between those restored with (1) glass-carbomer and a commonly used glass-ionomer; (2) KMEM and the commonly used glass-ionomer and; (3) glass-carbomer and KMEM. METHODS: 100 molar

  17. Nanoionomer: Evaluation of microleakage

    Directory of Open Access Journals (Sweden)

    S Upadhyay

    2011-01-01

    Full Text Available Background: Glass ionomer cements are widely used in pediatric practice due to their advantage of fluoride release and chemical bond to tooth structure. Adherence of the restorative material to the cavity walls is one of the most important characteristic for it to be proven as an ideal material as it prevents microleakage. Aims and Objectives: This study was aimed at evaluating the microleakage of nanofilled resin-modified glass ionomer cement compared with the conventional and resin-modified glass ionomer cements. Materials and Methods: Standard class V cavities of size 3 mm x 2 mm x 2 mm were made on a total of 30 extracted teeth and restored with the conventional glass ionomer, resin-modified glass ionomer or nanoionomer. After thermocycling, teeth were immersed in 0.5% methylene blue dye for 24 h. They were then sectioned buccolingually. Microleakage was assessed for the occlusal and gingival walls using a compound microscope by two examiners independently. Results: Nanoionomer demonstrated the least microleakage, with a mean score of 1.3, compared with the resin-modified glass ionomer (score of 3.2 and conventional glass ionomer cement (score 2.6. Conclusion: Nanoionomer exhibited adequate resistance to microleakage and thus may prove better than conventional or resin-modified glass ionomers.

  18. Crowns cemented on crown preparations lacking geometric resistance form. Part II: effect of cement.

    Science.gov (United States)

    Proussaefs, Periklis

    2004-03-01

    This study evaluated the effect of different cements on resistance to dislodgment of crowns cemented on preparations lacking geometric resistance form. A preparation that offered no geometric resistance form, with 20 degrees total occlusal convergence (TOC), 0.9 mm wide shoulder finish line, and a 2.5 mm axial wall height was created on an ivorine tooth using a milling machine. Ten metal test specimen die replicas and 10 standardized metal crowns with recipient sites for the application of external forces through a universal testing machine were fabricated. The crowns were cemented on the dies under 5 and 10 kg external loads, the marginal openings measured, loaded to dislodgment, and cleaned of cement. The process was repeated using zinc oxide and eugenol (ZOE), zinc phosphate (ZPh), resin modified glass ionomer (RMGI), and composite resin (CR) cements. Marginal openings under 5 kg cementation loads were 74.63 (+/-15.04) for ZOE, 75.98 (+/-18.20) microm for ZPh, 98.58 (+/-22.62) microm for RMGI, and 105.82 (+/-20.07) microm for CR cements respectively; under 10 kg cementation loads they were 57.62 (+/-15.86) microm, 59.55 (+/-15.41) microm, 95.00 (+/-19.52) microm, 101.30 (+/-12.52) microm respectively. Oblique dislodgment forces, measured with a Universal testing machine, were 40.18 (+/- 6.76) N for ZOE, 215.65 (+/-45.79) N for ZPh, 165.43 (+/-19.53) N for RMGI, and 181.54 (+/-30.75) N for CR respectively when crowns were cemented under 5 kg loads. The corresponding values for 10 kg loads were 38.62 (+/-4.19), 274.86 (+/-54.22), 139.70 (+/-21.71), and 160.40 (+/-21.21) respectively. Only zinc phosphate cement produced statistically enhanced resistance when crowns were cemented under 10 kg force (p value = 0.035). Under the conditions of the present study only crowns cemented with zinc phosphate displayed increased resistance to dislodgment on preparations lacking resistance form.

  19. Randomized clinical trial of encapsulated and hand-mixed glass-ionomer ART restorations: one-year follow-up

    Directory of Open Access Journals (Sweden)

    Maria Cristina Carvalho de Almendra Freitas

    2018-01-01

    Full Text Available Abstract Objective This prospective, randomized, split-mouth clinical trial evaluated the clinical performance of conventional glass ionomer cement (GIC; Riva Self-Cure, SDI, supplied in capsules or in powder/liquid kits and placed in Class I cavities in permanent molars by the Atraumatic Restorative Treatment (ART approach. Material and Methods A total of 80 restorations were randomly placed in 40 patients aged 11-15 years. Each patient received one restoration with each type of GIC. The restorations were evaluated after periods of 15 days (baseline, 6 months, and 1 year, according to ART criteria. Wilcoxon matched pairs, multivariate logistic regression, and Gehan-Wilcoxon tests were used for statistical analysis. Results Patients were evaluated after 15 days (n=40, 6 months (n=34, and 1 year (n=29. Encapsulated GICs showed significantly superior clinical performance compared with hand-mixed GICs at baseline (p=0.017, 6 months (p=0.001, and 1 year (p=0.026. For hand-mixed GIC, a statistically significant difference was only observed over the period of baseline to 1 year (p=0.001. Encapsulated GIC presented statistically significant differences for the following periods: 6 months to 1 year (p=0.028 and baseline to 1 year (p=0.002. Encapsulated GIC presented superior cumulative survival rate than hand-mixed GIC over one year. Importantly, both GICs exhibited decreased survival over time. Conclusions Encapsulated GIC promoted better ART performance, with an annual failure rate of 24%; in contrast, hand-mixed GIC demonstrated a failure rate of 42%.

  20. Randomized clinical trial of encapsulated and hand-mixed glass-ionomer ART restorations: one-year follow-up.

    Science.gov (United States)

    Freitas, Maria Cristina Carvalho de Almendra; Fagundes, Ticiane Cestari; Modena, Karin Cristina da Silva; Cardia, Guilherme Saintive; Navarro, Maria Fidela de Lima

    2018-01-18

    This prospective, randomized, split-mouth clinical trial evaluated the clinical performance of conventional glass ionomer cement (GIC; Riva Self-Cure, SDI), supplied in capsules or in powder/liquid kits and placed in Class I cavities in permanent molars by the Atraumatic Restorative Treatment (ART) approach. A total of 80 restorations were randomly placed in 40 patients aged 11-15 years. Each patient received one restoration with each type of GIC. The restorations were evaluated after periods of 15 days (baseline), 6 months, and 1 year, according to ART criteria. Wilcoxon matched pairs, multivariate logistic regression, and Gehan-Wilcoxon tests were used for statistical analysis. Patients were evaluated after 15 days (n=40), 6 months (n=34), and 1 year (n=29). Encapsulated GICs showed significantly superior clinical performance compared with hand-mixed GICs at baseline (p=0.017), 6 months (p=0.001), and 1 year (p=0.026). For hand-mixed GIC, a statistically significant difference was only observed over the period of baseline to 1 year (p=0.001). Encapsulated GIC presented statistically significant differences for the following periods: 6 months to 1 year (p=0.028) and baseline to 1 year (p=0.002). Encapsulated GIC presented superior cumulative survival rate than hand-mixed GIC over one year. Importantly, both GICs exhibited decreased survival over time. Encapsulated GIC promoted better ART performance, with an annual failure rate of 24%; in contrast, hand-mixed GIC demonstrated a failure rate of 42%.

  1. The influence of long term water immersion on shear bond strength of amalgam repaired by resin composite and mediated by adhesives or resin modified glass ionomers.

    Science.gov (United States)

    Pilo, R; Nissan, J; Shafir, H; Shapira, G; Alter, E; Brosh, T

    2012-07-01

    To assess the shear bond strength between amalgam and resin composite mediated by either multipurpose adhesive systems or RMGI when subjected to long term immersion in saline. Part I: Cylindrical specimens (6 mm × 6 mm) composed of equal parts of sandblasted set amalgam (Oralloy) and composite (Z-100), with a thin layer of either Scotchbond Multipurpose, All Bond 2, Amalgam Bond Plus, High Q Bond Plus or Vitrebond in between were fabricated (n = 100 × 5). Each group was divided into 3 subgroups, immersed in saline at 37 °C for either 48 h, 3 or 6 months, followed by thermocycling (5000; 5/55 °C) and shear bond strength testing (SBS). Part II: Identical specimens were fabricated with intermediary of either Ketac Cem, Fuji Lining LC, Rely X Luting, Fuji Plus or Meron Plus (n = 100 × 5). Immersion periods, followed by thermocycling and SBS testing as in Part I. Two representative specimens from each subgroup were sectioned and inspected under SEM. The two classes of intermediary agents yielded SBS which differed mainly in the 6 months incubation period. While multipurpose adhesives provided SBS values of ~9-10 MPa RMGI provided higher SBS of ~16 MPa. All Bond 2 and Amalgam Bond Plus exhibited deterioration of SBS during the 6 month period as well as Rely X Luting. Gap sizes between 0.5 and 3 μm exist between all intermediaries and the amalgam; on the other hand all intermediaries exhibit gap-free interfaces between the adhesives/RMGI and the composite. Vitrebond in particular and RMGIs in general can serve as an excellent coupler of resin composite to amalgam, providing a durable bond. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Biological compatibility of some types of endodontic calcium hydroxide and glass ionomer cements Biocompatibilidade de alguns tipos de cimento endodôntico à base de hidróxido de cálcio e cimentos de ionômero de vidro

    Directory of Open Access Journals (Sweden)

    Marcia Carneiro Valera

    2004-12-01

    Full Text Available The purpose of this work was to evaluate the biological compatibility of the Sealapex, Apexit, Sealer 26 and Ketac Endo endodontic cements. Polyethylene tubes containing these cements were implanted in the subcutaneous tissue of 40 (forty rats. The animals were sacrificed after 14 and 90 days. A descriptive analysis of the reactions found in the connective tissue by contact with the cements was performed. The magnitude of inflammatory infiltrate, the presence and predominance of cell types and their distribution as to the filling material and reparative phenomena, such as fibroblastic and angioblastic proliferation and formation of fibrous capsules, were subjectively measured. After 90 days, all cements presented statistically significant reduction of the inflammatory reaction, presence of a fibrous tissue capsule in contact with the opening of the tubes containing the filling materials, and reduction of fibroblastic proliferation. Angioblastic proliferation decreased only for the Sealer 26 and Ketac Endo groups. All cements tested were either partially or totally phagocyted, and the mildest inflammatory response was found for the Sealer 26 group at both evaluation periods.O objetivo deste trabalho foi avaliar a biocompatibilidade dos cimentos endodônticos Sealapex, Apexit, Sealer 26 e Ketac Endo. Para isto, tubos de polietileno preenchidos com os quatros tipos de cimentos endodônticos foram implantados no tecido conjuntivo subcutâneo de 40 ratos. Os animais foram sacrificados após 14 e 90 dias. Primeiramente foi realizada a análise descritiva das reações encontradas no tecido conjuntivo em contato com os cimentos. A magnitude do infiltrado inflamatório, a presença e predominância de tipos celulares e sua distribuição com relação ao cimento empregado, os fenômenos reparativos, tais como proliferação angioblástica e fibroblástica e formação de cápsula fibrosa também foram subjetivamente quantificados. A análise dos

  3. Pulpotomy of human primary molars with MTA and Portland cement: a randomised controlled trial.

    Science.gov (United States)

    Sakai, Vivien Thiemy; Moretti, A B S; Oliveira, T M; Fornetti, A P C; Santos, C F; Machado, M A A M; Abdo, R C C

    2009-08-08

    This study compared the clinical and radiographic effectiveness of mineral trioxide aggregate (MTA) and Portland cement (PC) as pulp dressing agents in carious primary teeth. Thirty carious primary mandibular molars of children aged 5-9 years old were randomly assigned to MTA or PC groups, and treated by a conventional pulpotomy technique. The teeth were restored with resin modified glass ionomer cement. Clinical and radiographic successes and failures were recorded at 6, 12, 18 and 24-month follow-up. All pulpotomised teeth were clinically and radiographically successful at all follow-up appointments. Six out of 15 teeth in the PC group and five out of 14 teeth in the MTA group exfoliated throughout the follow-up period. No statistically significant difference regarding dentine bridge formation was found between both groups throughout the follow-up period. As far as pulp canal obliteration is concerned, a statistically significant difference was detected at 6-month follow-up (p <0.05), since the beginning of mineralised material deposition could be radiographically detected in 100% and 57.14% of the teeth treated with PC and MTA, respectively. PC may serve as an effective and less expensive MTA substitute in primary molar pulpotomies. Further studies and longer follow-up assessments are needed.

  4. Evaluation of effects of ionizing radiation on the glass ionomer used in dental restorations

    International Nuclear Information System (INIS)

    Maio, F.M.; Santos, A.; Fernandes, M.A.R.

    2009-01-01

    The purpose of this work consisted of quantitative studies of the effects caused by ionizing radiation on glass ionomer, a material used in dental restorations. Glass ionomer is used to mitigate the deleterious effects of radiotherapy when patients with tumors in head and neck, seen when the teeth are restored within in the field of radiation. Samples were submitted to X-radiation beams from 6 MV from a linear accelerator, VARIAN 2100C model. The samples were analyzed by X-ray fluorescence techniques to compare the chemical composition before and after the irradiation. Sample dose measurements were performed employing Geiger-Mueller detectors and the ionization chamber in order to verify any residual radiation in the samples. The samples were also analyzed by gamma spectrometry by a HPGe detector. These tests were performed to determine small changes in the composition in the samples due to the radiation interaction. The results of this study may encourage the development of new research for alternative materials in dental restorations that can contribute to improve the quality of life of those patients with tumors of the mouth. (author)

  5. Comparative evaluation of bond strength of all-metal crowns with different luting agents after undergoing various modes of surface treatments: An in-vitro study

    Directory of Open Access Journals (Sweden)

    Shivam Singh Tomar

    2015-01-01

    Conclusion: Among all types of surface treatments used in this study, maximum bond strength was yielded by sandblasting with 110 µm alumina + ultrasonic cleaning and the best luting agent was resin-modified glass ionomer cement.

  6. Improving the standard of the standard for glass ionomers: an alternative to the compressive fracture strength test for consideration?

    LENUS (Irish Health Repository)

    Dowling, Adam H

    2012-03-01

    Three strength tests (compressive, three point flexure and biaxial) were performed on three glass ionomer (GI) restoratives to assess the most appropriate methodology in terms of validity and reliability. The influence of mixing induced variability on the data sets generated were eliminated by using encapsulated GIs.

  7. Correlation between margin fit and microleakage in complete crowns cemented with three luting agents

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Orlato Rossetti

    2008-02-01

    Full Text Available Microleakage can be related to margin misfit. Also, traditional microleakage techniques are time-consuming. This study evaluated the existence of correlation between in vitro margin fit and a new microleakage technique for complete crowns cemented with 3 different luting agents. Thirty human premolars were prepared for full-coverage crowns with a convergence angle of 6 degrees, chamfer margin of 1.2 mm circumferentially, and occlusal reduction of 1.5 mm. Ni-Cr cast crowns were cemented with either zinc phosphate (ZP (S.S. White, resin-modified glass-ionomer (RMGI (Rely X Luting Cement or a resin-based luting agent (RC (Enforce. Margin fit (seating discrepancy and margin gap was evaluated according to criteria in the literature under microscope with 0.001 mm accuracy. After thermal cycling, crowns were longitudinally sectioned and microleakage scores at tooth-cement interface were obtained and recorded at ×100 magnification. Margin fit parameters were compared with the one-way ANOVA test and microleakage scores with Kruskal-Wallis and Dunn's tests (alpha=0.05. Correlation between margin fit and microleakage was analyzed with the Spearman's test (alpha=0.05. Seating discrepancy and marginal gap values ranged from 81.82 µm to 137.22 µm (p=0.117, and from 75.42 µm to 78.49 µm (p=0.940, respectively. Marginal microleakage scores were ZP=3.02, RMGI=0.35 and RC=0.12 (p0.05. Conclusion: Margin fit parameters and microleakage showed no strong correlations; cast crowns cemented with RMGI and RC had lower microleakage scores than ZP cement.

  8. Correlation between margin fit and microleakage in complete crowns cemented with three luting agents.

    Science.gov (United States)

    Rossetti, Paulo Henrique Orlato; do Valle, Accacio Lins; de Carvalho, Ricardo Marins; De Goes, Mario Fernando; Pegoraro, Luiz Fernando

    2008-01-01

    Microleakage can be related to margin misfit. Also, traditional microleakage techniques are time-consuming. This study evaluated the existence of correlation between in vitro margin fit and a new microleakage technique for complete crowns cemented with 3 different luting agents. Thirty human premolars were prepared for full-coverage crowns with a convergence angle of 6 degrees, chamfer margin of 1.2 mm circumferentially, and occlusal reduction of 1.5 mm. Ni-Cr cast crowns were cemented with either zinc phosphate (ZP) (S.S. White), resin-modified glass-ionomer (RMGI) (Rely X Luting Cement) or a resin-based luting agent (RC) (Enforce). Margin fit (seating discrepancy and margin gap) was evaluated according to criteria in the literature under microscope with 0.001 mm accuracy. After thermal cycling, crowns were longitudinally sectioned and microleakage scores at tooth-cement interface were obtained and recorded at x100 magnification. Margin fit parameters were compared with the one-way ANOVA test and microleakage scores with Kruskal-Wallis and Dunn's tests (alpha=0.05). Correlation between margin fit and microleakage was analyzed with the Spearman's test (alpha=0.05). Seating discrepancy and marginal gap values ranged from 81.82 microm to 137.22 microm (p=0.117), and from 75.42 microm to 78.49 microm (p=0.940), respectively. Marginal microleakage scores were ZP=3.02, RMGI=0.35 and RC=0.12 (p0.05). Margin fit parameters and microleakage showed no strong correlations; cast crowns cemented with RMGI and RC had lower microleakage scores than ZP cement.

  9. CORRELATION BETWEEN MARGIN FIT AND MICROLEAKAGE IN COMPLETE CROWNS CEMENTED WITH THREE LUTING AGENTS

    Science.gov (United States)

    Rossetti, Paulo Henrique Orlato; do Valle, Accacio Lins; de Carvalho, Ricardo Marins; Goes, Mario Fernando De; Pegoraro, Luiz Fernando

    2008-01-01

    Microleakage can be related to margin misfit. Also, traditional microleakage techniques are time-consuming. This study evaluated the existence of correlation between in vitro margin fit and a new microleakage technique for complete crowns cemented with 3 different luting agents. Thirty human premolars were prepared for full-coverage crowns with a convergence angle of 6 degrees, chamfer margin of 1.2 mm circumferentially, and occlusal reduction of 1.5 mm. Ni-Cr cast crowns were cemented with either zinc phosphate (ZP) (S.S. White), resin-modified glass-ionomer (RMGI) (Rely X Luting Cement) or a resin-based luting agent (RC) (Enforce). Margin fit (seating discrepancy and margin gap) was evaluated according to criteria in the literature under microscope with 0.001 mm accuracy. After thermal cycling, crowns were longitudinally sectioned and microleakage scores at tooth-cement interface were obtained and recorded at x100 magnification. Margin fit parameters were compared with the one-way ANOVA test and microleakage scores with Kruskal-Wallis and Dunn's tests (α=0.05). Correlation between margin fit and microleakage was analyzed with the Spearman's test (α=0.05). Seating discrepancy and marginal gap values ranged from 81.82 μm to 137.22 μm (p=0.117), and from 75.42 μm to 78.49 μm (p=0.940), respectively. Marginal microleakage scores were ZP=3.02, RMGI=0.35 and RC=0.12 (p0.05). Conclusion: Margin fit parameters and microleakage showed no strong correlations; cast crowns cemented with RMGI and RC had lower microleakage scores than ZP cement. PMID:19089292

  10. Pengaruh chitosan belangkas (Tachypleus gigas) nanopartikel terhadap celah antara berbagai jenis semen ionomer kaca dengan dentin

    OpenAIRE

    Henny Sutrisman; Trimurni Abidin; Harry Agusnar

    2014-01-01

    Background: The development of dental material restoration is regarded to be relevant to obtain a better bonding between dental structure and restorative materials. Glass ionomer cement (GIC) is a bioactive material. Resin-modified GIC (RMGIC) is an alternative to the conventional glass ionomer. Nowadays with nano technology, this material is available in nano particle glass ionomer form in order to enhance the bond strength between tooth structure and restoration. The use of the natural prod...

  11. Clinical failure of class-II restorations of a highly viscous glass-ionomer material over a 6-year period: a retrospective study.

    Science.gov (United States)

    Scholtanus, Johannes D; Huysmans, Marie-Charlotte D N J M

    2007-02-01

    The aim of this retrospective clinical study was to evaluate the performance of high-viscosity glass-ionomer cement (GIC) class-II restorations over 6 years of clinical service. All class-II GIC restorations made in 1996 and 1997, in regular attending adult patients of a general dental practice were selected. Restorations made for temporary function were excluded, as were those restorations not made using the main study material: Fuji IX GP (GC). Failures were recorded where replacement or repair had occurred. Radiographs were evaluated where available. The final study group consisted of 116 class-II restorations in 72 patients (33 males, 39 females). Distribution of restorations was: 30 MO, 40 DO, 46 MOD. Until 18 months no failures were observed. From 18 to 42 months survival dropped to 93%. After 42 months failure rate increased and at 72 months survival was only 60%. In all but one case the recorded reason for replacement or repair was gross loss of GIC in proximal areas. No restorations failed because of occlusal wear or isthmus-fractures. On radiographs, progressive loss of GIC material in proximal areas, just below contact areas, was commonly observed. In absence of adjacent teeth no loss of GIC material was observed at proximal surfaces. Rising failure rate of class-II high-viscosity GIC restorations, due to proximal breakdown was observed. We hypothesize that caries-like loss of material as seen on radiographs contributes to this phenomenon. Presence of proximal contacts seems to promote disintegration of cement.

  12. Grau de infiltração marginal de duas técnicas restauradoras com cimento de ionômero de vidro em molares decíduos: estudo comparativo " in vitro Microleakage between two filling restorative techniques using glass ionomer cement in primary molars: comparative "in vitro " study

    Directory of Open Access Journals (Sweden)

    Paulo Floriani Kramer

    2003-06-01

    Full Text Available A técnica do condicionamento ácido e o desenvolvimento e aprimoramento de novos materiais restauradores com características adesivas têm levado a mudanças importantes nas concepções e nos princípios da dentística operatória e restauradora. O objetivo deste estudo foi avaliar a microinfiltração marginal em cavidades proximais de molares decíduos restaurados com cimento de ionômero de vidro modificado por resina (Vitremer, 3M comparando duas diferentes técnicas: a técnica convencional (conforme recomendações do fabricante e a técnica de hibridização (ácido fosfórico-37% e sistema adesivo Scotchbond Multi-Uso, 3M . Foram utilizados 20 molares decíduos hígidos, onde foram preparadas cavidades proximais. A amostra foi dividida aleatoriamente em 2 grupos. No grupo 1 foi utilizado a técnica convencional e no grupo 2 a técnica com condicionamento ácido e aplicação de sistema adesivo. Os dentes foram submetidos ao processo de ciclagem térmica, impermeabilizados, mantendo uma área de 2mm² na margem cervical da restauração e imersos em solução de azul de metileno a 0,5%, por 72 horas. A seguir, foram seccionados e avaliados por um único examinador, que estabeleceu o grau de microinfiltração. Os dados obtidos revelaram que as duas técnicas utilizadas apresentaram microinfiltração marginal em diferentes graus, e que não houve diferença estatisticamente significante entre elas.This study evaluate the marginal microleakage in deciduous molars cavities restored with ionomer cement modified by resin (Vitremer, 3 M comparing two different techniques: the conventional (according to manufacturer instructions and with the hybridization technique (acid phosphoric 37% and adhesive system Scotchbond Multi Pourpose , 3M. Proximal cavities were prepared in 20 sound deciduous molars, right after extraction. The samples were randomly divided in two groups. Group 1 consisted in teeth prepared with the conventional technique and

  13. Characterization of dental cement obtained from a glass prepared by the polymeric precursor method

    International Nuclear Information System (INIS)

    Bertolini, Marcio Jose; Zaghete, Maria Aparecida; Gimenes, Rossano; Paiva-Santos, Carlos de Oliveira; Palma-Dibb, Regina Guenka

    2005-01-01

    Glass ionomer cements are glass and polymer composite materials. These materials currently find use in dentistry. The purpose of this work is to obtain glass powders based on the composition 4.5SiO 2 - 3Al 2 O 3 - 2CaO to be used in dentistry. The powders were prepared by a chemical route at 700 deg C. The properties of glass ionomer cements obtained from powders prepared at 700 deg C were studied. Diametral tensile strength and microhardness were evaluated for the experimental glass ionomer cements and a commercial material. It was concluded that the properties of experimental cements were similar to those of the commercial ones. (author)

  14. In Vitro Evaluation of Cell Compatibility of Dental Cements Used with Titanium Implant Components.

    Science.gov (United States)

    Marvin, Jason C; Gallegos, Silvia I; Parsaei, Shaida; Rodrigues, Danieli C

    2018-03-09

    To evaluate the biocompatibility of five dental cement compositions after directly exposing human gingival fibroblast (HGF) and MC3T3-E1 preosteoblast cells to cement alone and cement applied on commercially pure titanium (cpTi) specimens. Nanostructurally integrated bioceramic (NIB), resin (R), resin-modified glass ionomer (RMGIC), zinc oxide eugenol (ZOE), and zinc phosphate (ZP) compositions were prepared according to the respective manufacturer's instructions. Samples were prepared in cylindrical Teflon molds or applied over the entire surface of polished cpTi discs. All samples were cured for 0.5, 1, 12, or 24 hours post-mixing. Direct contact testing was conducted according to ISO 10993 by seeding 6-well plates at 350,000 cells/well. Plates were incubated at 37°C in a humidified atmosphere with 5% CO 2 for 24 hours before individually plating samples and cpTi control discs. Plates were then incubated for an additional 24 hours. Microtetrazolium (MTT) cell viability assays were used to measure sample cytotoxicity. For samples that cured for 24 hours prior to direct contact exposure, only NIB and ZP cements when cemented on cpTi demonstrated cell viability percentages above the minimum biocompatibility requirement (≥70%) for both the investigative cell lines. R, RMGIC, and ZOE cements exhibited moderate to severe cytotoxic effects on both cell lines in direct contact and when cemented on cpTi specimens. For HGF cells, ZOE cemented-cpTi specimens exhibited significantly decreased cytotoxicity, whereas RMGIC cemented-cpTi specimens exhibited significantly increased cytotoxicity. Despite previous studies that showed enhanced cpTi corrosion activity for fluoride-containing compositions (NIB and ZP), there was no significant difference in cytotoxicity between cement alone and cemented-cpTi. In general, the MC3T3-E1 preosteoblast cells were more sensitive than HGF cells to cement composition. Ultimately, cement composition played a significant role in maintaining

  15. In vitro tensile strength of luting cements on metallic substrate.

    Science.gov (United States)

    Orsi, Iara A; Varoli, Fernando K; Pieroni, Carlos H P; Ferreira, Marly C C G; Borie, Eduardo

    2014-01-01

    The aim of this study was to determine the tensile strength of crowns cemented on metallic substrate with four different types of luting agents. Twenty human maxillary molars with similar diameters were selected and prepared to receive metallic core castings (Cu-Al). After cementation and preparation the cores were measured and the area of crown's portion was calculated. The teeth were divided into four groups based on the luting agent used to cement the crowns: zinc phosphate cement; glass ionomer cement; resin cement Rely X; and resin cement Panavia F. The teeth with the crowns cemented were subjected to thermocycling and later to the tensile strength test using universal testing machine with a load cell of 200 kgf and a crosshead speed of 0.5 mm/min. The load required to dislodge the crowns was recorded and converted to MPa/mm(2). Data were subjected to Kruskal-Wallis analysis with a significance level of 1%. Panavia F showed significantly higher retention in core casts (3.067 MPa/mm(2)), when compared with the other cements. Rely X showed a mean retention value of 1.877 MPa/mm(2) and the zinc phosphate cement with 1.155 MPa/mm(2). Glass ionomer cement (0.884 MPa/mm(2)) exhibited the lowest tensile strength value. Crowns cemented with Panavia F on cast metallic posts and cores presented higher tensile strength. The glass ionomer cement showed the lowest tensile strength among all the cements studied.

  16. Is high-viscosity glass-ionomer-cement a successor to amalgam for treating primary molars?

    NARCIS (Netherlands)

    Hilgert, L.A.; Amorim, R.G. de; Leal, S.C.; Mulder, J.; Creugers, N.H.; Frencken, J.E.

    2014-01-01

    OBJECTIVES: To assess and compare the cumulative survival rate of amalgam and atraumatic restorative treatment (ART) restorations in primary molars over 3 years. METHODS: 280 children aged 6-7 years old were enrolled in a cluster randomized controlled clinical trial using a parallel group design

  17. Caries-Preventive Effect of High-Viscosity Glass Ionomer and Resin-Based Fissure Sealants on Permanent Teeth: A Systematic Review of Clinical Trials.

    Directory of Open Access Journals (Sweden)

    Steffen Mickenautsch

    Full Text Available Glass-ionomers are traditionally regarded to be inferior to resin as fissure sealants in protecting teeth from dental caries, due to their comparatively lower retention rate. Unlike low-viscosity glass-ionomers, high-viscosity glass-ionomer cements (HVGIC are placed as sealants by pressing the material into pits and fissures with a petroleum-jelly-coated index finger. Hence, HVGIC sealants are assumed to penetrate pits and fissures deeper, resulting in a higher material retention rate, which may increase its caries-preventive effect.The aim of this review was to answer the question as to whether, in patients with fully erupted permanent molar teeth, HVGIC based fissure sealants are less effective to protect against dental carious lesions in occlusal pits and fissures than resin-based fissure sealants? A systematic literature search in eight databases was conducted. Heterogeneity of accepted trials and imprecision of the established evidence were assessed. Extracted sufficiently homogenous datasets were pooled by use of a random-effects meta-analysis. Internal trial validity was evaluated. The protocol of this systematic review was registered with the International Prospective Register of Systematic Reviews (PROSPERO / Nr.: CRD42015016007.Seven clinical trials were provisionally included for further review. Of these, one was excluded. Seven trial reports reporting on six trials were accepted. From these, 11 datasets were extracted and pooled in four meta-analyses. The results suggest no statistically significant differences after up to 48 months and borderline significant differences in favour of HVGIC sealants after 60 months (RR 0.29; 95% CI: 0.09-0.95; p = 0.04 / RD -0.07; 95% CI: -0.14, -0.01. The point estimates and upper confidence levels after 24, 36, 48 and 60 months of RR 1.36; RR 0.90; RR 0.62; RR 0.29 and 2.78; 1.67; 1.21; 0.95, respectively, further suggest a chronological trend in favour of HVGIC above resin-based sealants. The

  18. Effects of blue diode laser (445 nm) and LED (430-480 nm) radiant heat treatments on dental glass ionomer restoratives

    Science.gov (United States)

    Dionysopoulos, Dimitrios; Tolidis, Kosmas; Strakas, Dimitrios; Gerasimou, Paris; Sfeikos, Thrasyvoulos; Gutknecht, Norbert

    2018-02-01

    The purpose of this in vitro study was to evaluate the effect of two radiant heat treatments on water sorption, solubility and surface roughness of three conventional glass ionomer cements by using a blue diode laser (445 nm) and a light emitting diode (LED) unit (430-480 nm). Thirty disk-shaped specimens were prepared for each tested GIC (Equia Fil, Ketac Universal Aplicap and Riva Self Cure). The experimental groups (n = 10) of the study were as follows: Group 1 was the control group, in Group 2 the specimens were irradiated for 60 s at the top surface using a LED light-curing unit and in Group 3 the specimens were irradiated for 60 s at the top surface using a blue light diode laser. Statistical analysis was performed using one-way ANOVA and Tukey post hoc tests at a level of significance of a = 0.05. Radiant heat treatments with both laser and LED devices significantly decreased water sorption and solubility (p tested GICs. Blue diode laser treatment was seemed to be more effective compared to LED treatment for some of the tested materials. There were no changes in surface roughness of the GICs after the treatments (p > 0.05). Among the tested materials there were differences in water sorption and solubility (p 0.05). The use of the blue diode laser for this radiant heat treatment was harmless for the surface of the tested GICs and may be advantageous for the longevity of their restorations.

  19. Restoration of endodontically treated anterior teeth: an evaluation of coronal microleakage of glass ionomer and composite resin materials.

    Science.gov (United States)

    Diaz-Arnold, A M; Wilcox, L R

    1990-12-01

    A glass ionomer material was evaluated for coronal microleakage in permanent lingual access restorations of endodontically treated anterior teeth. The material was tested as a restoration, placed over a zinc oxide-eugenol base, and as a base with an acid-etched composite resin veneer and a dentinal bonding agent. Restored teeth were thermocycled, immersed in silver nitrate, developed, and sectioned to assess microleakage. Significant coronal leakage was observed with all materials used.

  20. The Effect of Compressive Cyclic Loading on the Retention of Cast Single Crowns Cemented to Implant Abutments.

    Science.gov (United States)

    Alvarez-Arenal, Angel; Gonzalez-Gonzalez, Ignacio; Pinés-Hueso, Javier; deLlanos-Lanchares, Hector; del Rio Highsmith, Jaime

    2016-01-01

    The aim of this study was to evaluate and compare the retention strength of three cements commonly used in implant-supported prostheses before and after compressive cyclic loading. The working model consisted of five solid abutments, 7 mm in height and with a 6-degree taper, screw retained to five implant analogs secured in a rectangular block of self-curing acrylic. On the abutments, 30 metal Cr-Ni alloy copings were cemented using three luting agents: glass ionomer, resin urethane-based, and compomer cement (n = 10). Two tensile tests were conducted with a universal testing machine, before and after 100,000 cycles of 100 N and 0.72 Hz compressive cyclic loading in a humid environment. Before applying the compressive load, the retention strength of the resin urethane-based cement was slightly higher than that of the compomer cement and 75% greater than the glass-ionomer cement. After compressive loading, the resin urethane-based cement showed the highest percentage of loss of retention (64.45%, compared with 50% for glass-ionomer and compomer cement). However, the glass-ionomer cement showed the lowest mean retentive strength with 50.35 N as opposed to 75.12 N for the compomer cement and 71.25 N for the resin urethane-based. Compressive cyclic loading significantly influences the retention strength of the luting agents tested. All three cements may favor the retrievability of the crowns.

  1. An evaluation of microleakage of various glass ionomer based restorative materials in deciduous and permanent teeth: An in vitro study.

    Science.gov (United States)

    Singla, Teena; Pandit, I K; Srivastava, Nikhil; Gugnani, Neeraj; Gupta, Monika

    2012-01-01

    To evaluate the microleakage of recently available glass ionomer based restorative materials (GC Fuji IX GP, GC Fuji VII, and Dyract) and compare their microleakage with the previously existing glass ionomer restorative materials (GC Fuji II LC) in primary and permanent teeth. One hundred and fifty (75 + 75) non-carious deciduous and permanent teeth were restored with glass ionomer based restorative materials after making class I cavities. Samples were subjected to thermocycling after storing in distilled water for 24 h. Two coats of nail polish were applied 1 mm short of restorative margins and samples sectioned buccolingually after storing in methylene blue dye for 24 h. Microleakage was assessed using stereomicroscope. Significant differences (P  0.05) were observed. It was found that there was no statistically significant difference when the means of microleakage of primary teeth were compared with those of permanent teeth. GC Fuji IX GP showed maximum microleakage and GC Fuji VII showed least microleakage.

  2. The effect of retentive groove, sandblasting and cement type on the retentive strength of stainless steel crowns in primary second molars--an in vitro comparative study.

    Science.gov (United States)

    Veerabadhran, M M; Reddy, V; Nayak, U A; Rao, A P; Sundaram, M A

    2012-01-01

    sandblasted was 16.445 kg/cm 2 with a mean difference of 2.436 kg/cm 2 . These results were again statistically significant. It was found that the crowns luted with resin-modified glass ionomer cements (RMGIC's) offered better retentive strength of crowns than glass ionomer cements (GIC) and stainless steel crowns which were cemented without sandblasting showed higher mean retentive strength than with sandblasting of crowns. The presence of groove did not influence the retentive strength of stainless steel crowns.

  3. The effect of retentive groove, sandblasting and cement type on the retentive strength of stainless steel crowns in primary second molars - An in vitro comparative study

    Directory of Open Access Journals (Sweden)

    M M Veerabadhran

    2012-01-01

    crowns, which was not sandblasted, was 18.880 and which was sandblasted was 16.445 kg/cm 2 with a mean difference of 2.436 kg/cm 2 . These results were again statistically significant. Conclusion: It was found that the crowns luted with resin-modified glass ionomer cements (RMGIC′s offered better retentive strength of crowns than glass ionomer cements (GIC and stainless steel crowns which were cemented without sandblasting showed higher mean retentive strength than with sandblasting of crowns. The presence of groove did not influence the retentive strength of stainless steel crowns.

  4. Clinical performance of a glass ionomer restorative system: a 6-year evaluation.

    Science.gov (United States)

    Gurgan, Sevil; Kutuk, Zeynep Bilge; Ergin, Esra; Oztas, Sema Seval; Cakir, Filiz Yalcin

    2017-09-01

    The aim of this study is to evaluate the long-term clinical performance of a glass ionomer (GI) restorative system in the restoration of posterior teeth compared with a micro-filled hybrid posterior composite. A total of 140 (80 Cl1 and 60 Cl2) lesions in 59 patients were restored with a GI system (Equia) or a micro hybrid composite (Gradia Direct). Restorations were evaluated at baseline and yearly during 6 years according to the modified-USPHS criteria. Negative replicas at each recall were observed under SEM to evaluate surface characteristics. Data were analyzed with Cohcran's Q and McNemar's tests (p evaluated in 47 patients with a recall rate of 79.6% at 6 years. Significant differences were found in marginal adaptation and marginal discoloration for both restorative materials for Cl1 and Cl2 restorations (p  0.05). A significant decrease in color match was observed in Equia restorations (p performance after 6 years. SEM evaluations were in accordance with the clinical findings. Both materials showed a good clinical performance for the restoration of posterior teeth during the 6-year evaluation. The clinical effectiveness of Equia and Gradia Direct Posterior was acceptable in Cl1 and Cl2 cavities subsequent to 6-year evaluation.

  5. [Study on dental cements. 1. The cored structure of three luting cements obtained by using Cryo-SEM and image analyzer].

    Science.gov (United States)

    Hosoda, H; Yamada, T; Nakajima, M; Perinka, L

    1990-03-01

    The polished surfaces of three set dental cements for luting (zinc phosphate cement, polycarboxylate cement, and glass ionomer cement) were observed by cryo-SEM at a specimen temperature of -160 degrees C to prevent damage of the cement specimens and also the specimens were analyzed by EDX. Furthermore, the SEM composition images of the polished cement surface were transferred to an image analyzer to obtain the core/matrix area ratio of the set cements. 1. The polished surface of set dental cement could be clearly observed by cryo-SEM without damaging the cement specimens. 2. The image analyzer showed that the core/matrix area ratio of the zinc phosphate cement and the glass ionomer cement was approximately 2 to 8, whereas that of the polycarboxylate cement was approximately 3 to 7. 3. The elements detected in the zinc phosphate cement were Ca, Zn, Mg, Al, and P, in the polycarboxylate cement were Ca, Zn, Mg, Si, and Sr, and in the glass ionomer cement were Al and Si.

  6. Comparative study of digital radiopacity of dental cements

    Directory of Open Access Journals (Sweden)

    Abdolhamid Alhavaz

    2014-03-01

    Full Text Available Introduction: Radiopacity is a necessary property for luting cements . The aim of this study was to investigate the radiopacity of some luting dental cements used in prosthetic dentistry. Methods: Five disclike samples of each material (6 x 1 mm were prepared from panavia F2.0(Pa, Chioce2 (Ch.2, Glass ionomer GC (GI GC, zinc phosphate Hoffmann’s (ZP hof, zinc polycarboxylate Hoffmann’s (ZPC hof, Glass ionomer ariadent( GI ari, zinc phosphate ariadent(ZP ari and zinc polycarboxylate ariadent (ZPC ari. The radiopacity of each material along with aluminium step wedge were measured from radiographic images using a digital radiography. The average measured radiopacities from five areas were taken into account, which were measured by Digora for windows (DFW software using a PSP digital sensor. Results: There was a significant difference between radiopacity value of all luting materials (P≤0.001. ZP ari had the highest radiopacity with 7.7±0.55 mm aluminium. The Glass ionomer ariadent ari dent showed the lowest radiopacity value with 0.82±0.31 mm aluminium. Conclusion: All dental cements showed radiopacity values equivalent to or greater than the ISO 4049:2000(Estandard except ariadent Glass ionomer and this could be considered suitable for use in restoration cementation.

  7. Tensile bond strength of glass fiber posts luted with different cements Resistência à tração de pinos de fibra de vidro cimentados com diferentes materiais

    Directory of Open Access Journals (Sweden)

    Gerson Bonfante

    2007-06-01

    Full Text Available Proper selection of the luting agent is fundamental to avoid failure due to lack of retention in post-retained crowns. The objective of this study was to investigate the tensile bond strength and failure mode of glass fiber posts luted with different cements. Glass fiber posts were luted in 40 mandibular premolars, divided into 4 groups (n = 10: Group 1 - resin-modified glass ionomer RelyX Luting; Group 2 - resin-modified glass ionomer Fuji Plus; Group 3 - resin cement RelyX ARC; Group 4 - resin cement Enforce. Specimens were assessed by tensile strength testing and light microscopy analysis for observation of failure mode. The tensile bond strength values of each group were compared by ANOVA and Tukey test. The significance level was set at 5%. The failure modes were described as percentages. The following tensile strength values were obtained: Group 1 - 247.6 N; Group 2 - 256.7 N; Group 3 - 502.1 N; Group 4 - 477.3 N. There was no statistically significant difference between Groups 1 and 2 or between Groups 3 and 4, yet the resin cements presented significantly higher tensile bond strength values than those presented by the glass ionomer cements. Group 1 displayed 70% of cohesive failures, whereas Groups 2, 3 and 4 exhibited 70% to 80% of adhesive failures at the dentin-cement interface. We concluded that resin cements and glass ionomer cements are able to provide clinically sufficient retention of glass fiber posts, and that glass ionomer cements may be especially indicated when the application of adhesive techniques is difficult.A seleção adequada do agente cimentante é essencial para evitar falhas por perda de retenção em coroas retidas por núcleos. O objetivo deste estudo foi investigar a resistência à tração e o tipo de falha de pinos de fibra de vidro cimentados com diferentes materiais. Cimentaram-se pinos de fibra de vidro em 40 pré-molares inferiores, divididos em 4 grupos (n = 10: Grupo 1 - ionômero de vidro modificado

  8. Initial acidity of dental cements.

    Science.gov (United States)

    Brune, D; Evje, D M

    1984-04-01

    The acidity in aqueous solutions following release of acid components from glass ionomer, silicate, zinc phosphate and zinc polycarboxylate cements has been registered by pH measurements. One brand of each type was studied. Initial setting was accomplished at two different temperatures; 23 degrees C and in the interval from 23 degrees C to about 60 degrees C. In the latter case external heat was transferred to the samples by infrared radiation for a period of 2 min. The highest acidity was associated with the silicate specimen, while the lowest acidity was recorded for the zinc polycarboxylate specimen. Exposure to infrared radiation resulted in a reduced acidity for all types of cements. The effect of infrared exposure was most pronounced for the silicate specimens, resulting in a reduction of acid release by a factor of about 10 compared to the nontreated samples. The resistance to acid release was found to be improved by a factor of about 5 for the glass ionomer and about 3 for the zinc phosphate cement treated in a similar way. Clinically, it seems possible considerably to reduce the risk of pulpal injuries associated with the insertion of silicate restorations by using a moderate infrared radiation treatment. Furthermore, the susceptibility of glass ionomer cements to a high initial erosion should be reduced by the use of such a technique. After exposure of the glass ionomer and silicate specimens to infrared radiation at the temperature interval applied, the samples had a more glossy, tooth-like appearance compared to the nonexposed samples, improving the aesthetic properties.

  9. Live cell imaging reveals different modes of cytotoxic action of extracts derived from commonly used luting cements.

    Science.gov (United States)

    Trumpaitė-Vanagienė, Rita; Čebatariūnienė, Alina; Tunaitis, Virginijus; Pūrienė, Alina; Pivoriūnas, Augustas

    2018-02-01

    To compare cytotoxicity of extracts derived from commonly used luting cements: Hoffmann's Zinc Phosphate (ZPC), GC Fuji Plus Resin Modified Glass Ionomer (RMGIC) and 3M ESPE RelyX Unicem Resin Cement (RC) on primary human gingival fibroblasts (HGFs). HGFs were exposed to different concentrations of the ZPC, RMGIC and RC extracts. The cytotoxicity was assessed with the PrestoBlue Cell Viability Reagent and viable cells were counted by a haemocytometer using the trypan blue exclusion test. In order to determine the primary mechanism of the cell death induced by extracts from different luting cements, the real-time monitoring of caspase-3/-7 activity and membrane integrity of cells was employed. The extracts from the RMGIC and ZPC decreased the metabolic activity and numbers of viable cells. Unexpectedly, the extracts from the RC evoked only small effects on the metabolic activity of HGFs with a decreasing number of viable cells in a dose-and time-dependent manner. The live cell imaging revealed that the apoptosis was the primary mechanism of a cell death induced by the extracts derived from the RMGIC, whereas the extracts from the RC and ZPC induced a cell death through a necrotic and caspase-independent pathway. The apoptosis was the primary mechanism of the cell death induced by the extracts derived from the RMGIC, whereas the extracts from the RC and ZPC induced a cell death via a necrotic pathway. We suggest that metabolic assays commonly used to assess the cytotoxicity of luting cements should be validated by alternative methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Acidity of conventional luting cements and their diffusion through bovine dentine.

    Science.gov (United States)

    Hiraishi, N; Kitasako, Y; Nikaido, T; Foxton, R M; Tagami, J; Nomura, S

    2003-09-01

    To examine the changes in pH of luting cements and acid diffusion of luting cements through bovine dentine using a pH-imaging microscope (SCHEM-100; Horiba Ltd, Kyoto, Japan). The pH of the surface of three conventional luting cements, glass-ionomer, zinc phosphate and zinc polycarboxylate was measured with SCHEM-100 for 1 month. The acid diffusion from the three luting cements through bovine dentine was investigated by measuring pH changes during the application of each luting cement on the bovine dentine surface. Coronal bovine dentine disks were prepared to thicknesses of 0.50 and 0.25 mm. Each luting cement was placed on the labial dentine surface, and the pH change of the pulpal surface was observed every 3 min for 30 min with SCHEM-100. Glass-ionomer showed the lowest pH values for longer times. Neutralization proceeded furthest in zinc polycarboxylate. The 0.5-mm-thick dentine disks showed no pH change on the pulpal side with all the three cements. The 0.25-mm-thick disks revealed evidence of acid diffusion on the pulpal side of the cemented dentine and significantly lower pH when cemented with glass-ionomer and zinc phosphate than with zinc polycarboxylates. This study demonstrated that glass-ionomer exhibited a lower setting pH than zinc phosphate and zinc polycarboxylate, and acid diffusions from glass-ionomer and zinc phosphate cements were observed when placed on 0.25-mm-thick dentine disks.

  11. Do Laboratory Results Concerning High-Viscosity Glass-Ionomers versus Amalgam for Tooth Restorations Indicate Similar Effect Direction and Magnitude than that of Controlled Clinical Trials? - A Meta-Epidemiological Study.

    Directory of Open Access Journals (Sweden)

    Steffen Mickenautsch

    Full Text Available A large percentage of evidence concerning dental interventions is based on laboratory research. The apparent wealth of laboratory evidence is sometimes used as basis for clinical inference and recommendations for daily dental practice. In this study two null-hypotheses are tested: whether trial results from laboratory and controlled clinical trials concerning the comparison of high-viscosity glass-ionomer cements (HVGIC to amalgam for restorations placed in permanent posterior teeth have: (i similar effect direction and (ii similar effect magnitude.7 electronic databases were searched, as well as reference lists. Odds ratios (OR and Standardised Mean Differences (SMD with 95% Confidence intervals were computed for extracted dichotomous and continuous data, respectively. Pooled effect estimates for laboratory and clinical data were computed to test for effect direction. Odds ratios were converted into SMDs. SMDs from laboratory and clinical data were statistically compared to test for differences in effect magnitude. The analysed results were further investigated within the context of potential influencing or confounding factors using a Directed acyclic graph.Of the accepted eight laboratory and nine clinical trials, 13 and 21 datasets could be extracted, respectively. The pooled results of the laboratory datasets were highly statistically significant in favor of amalgam. No statistically significant differences, between HVGICs and amalgam, were identified for clinical data. For effect magnitude, statistically significant differences between clinical and laboratory trial results were found. Both null-hypotheses were rejected.Laboratory results concerning high-viscosity glass-ionomers versus amalgam for tooth restorations do not indicate similar effect direction and magnitude than that of controlled clinical trials.

  12. Characterization of dental cement obtained from a glass prepared by the polymeric precursor method; Caracterizacao de cimento odontologico obtido a partir de um vidro preparado pelo metodo dos precursores polimericos

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Marcio Jose; Zaghete, Maria Aparecida; Gimenes, Rossano; Paiva-Santos, Carlos de Oliveira [UNESP, Araraquara, SP (Brazil). Inst. de Quimica]. E-mail: marciobert@yahoo.com.br; Palma-Dibb, Regina Guenka [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Odontologia

    2005-09-15

    Glass ionomer cements are glass and polymer composite materials. These materials currently find use in dentistry. The purpose of this work is to obtain glass powders based on the composition 4.5SiO{sub 2} - 3Al{sub 2}O{sub 3} - 2CaO to be used in dentistry. The powders were prepared by a chemical route at 700 deg C. The properties of glass ionomer cements obtained from powders prepared at 700 deg C were studied. Diametral tensile strength and microhardness were evaluated for the experimental glass ionomer cements and a commercial material. It was concluded that the properties of experimental cements were similar to those of the commercial ones. (author)

  13. The behaviour of composites, glass ionomers and compomers in erosive conditions – in vitro study

    Directory of Open Access Journals (Sweden)

    Borş Andreea

    2014-10-01

    Full Text Available Objective: The aim of this in vitro study was to evaluate the influence of erosive conditions on the wear resistance of aesthetic direct restorative materials. Methods: Six dental filling materials were tested: two composites (Filtek Z550 and X-tra fil, two compomers (Dyract Extra and Twinky Star and two glass ionomers (Ketac Molar and Fuji II LC. Twenty disks (10mm×2mm of each material were prepared (n=120 and kept in artificial saliva at 37˚C for 24 hours. Specimens were cycled in acidic soft drink (Coca-Cola 5×/day, for 5’, over 30 days. Initial surface roughness ISR (Ra-μm and final surface roughness FSR were measured using a profilometer. The wear rate was calculated as difference of final minus the initial roughness (ΔSR=FSR-ISR. For statistical analysis t-test and one-way ANOVA test were used by GraphPad Prism version 5.03 statistical software. The level of significance was set at p<0.05. Results: The erosive wear rates (mean±SD, μm after exposure to acidic beverage were: 0.30±0.03 (Ketac Molar, 0.28±0.04 (Fuji II LC, 0.27±0.00 (Filtek Z550, 0.23±0.01 (X-tra fil, 0.20±0.00 (Twinky Star and 0.14±0.01 Dyract Extra, respectively. There were significant differences between the tested materials (p<0.05. Conclusions: Dental filling materials had different behaviour under the same erosive condition, however all investigated aesthetic restorative materials showed surface degradation. These findings suggest that erosive wear resistance of tooth coloured restoratives could influence their longevity in intraoral acidic conditions. Acknowledgements: The study was supported by the Internal Research Grant no. 5/30.01.2013 of the University of Medicine and Pharmacy of Tirgu Mureş.

  14. Comparison of Microleakage of Glass Ionomer Restoration in Primary Teeth Prepared by Er: YAG Laser and the Conventional Method

    Directory of Open Access Journals (Sweden)

    M. Ghandehari

    2012-01-01

    Full Text Available Objective: One of the main criteria in evaluating the restorative materials is the degree of microleakage. The aim of this study was to compare the microleakage of glass ionomer restored cavities prepared by Er:YAG laser or turbine and bur.Materials and Methods: Twenty extracted caries-free deciduous posterior teeth were selected for this study. The teeth were randomly divided into two groups for cavity preparation. Cavities in group one were prepared by high speed turbine and bur. In the second group, Er:YAG laser with a 3W output power, 300 mJ energy and 10 Hz frequency was used. Cavities were restored with GC Fuji II LC. After thermocycling, the samples were immersed into 0.5% methylene blue solution. They were sectioned for examination under optic microscope.Results: The Wilcoxon signed ranks test showed no significant difference between microleakage of the laser group and the conventional group (P>0.05.Conclusion: Er:YAG laser with its advantages in pediatric dentistry may be suggested as an alternative device for cavity preparation.Key Words: Er:YAG laser, Glass ionomer, Microleakage

  15. Evaluation of shear bond strength, penetration ability, microleakage and remineralisation capacity of glass ionomer-based fissure sealants.

    Science.gov (United States)

    Kucukyilmaz, E; Savas, S

    2016-03-01

    The aim of this study was to evaluate the bond strength, penetration ability, microleakage, and remineralisation capacity of glass ionomer-based fissure sealant materials. In this study, three glass ionomer-based fissure sealants were evaluated (Fuji Triage, Fuji VII EP, and GCP Glass Seal). A dye-penetration test was performed to evaluate microleakage under a stereomicroscope. The materials were applied to occlusal tooth surfaces, and bucco-lingual sections (1 mm width) were assessed to evaluate the penetration ability. Shear bond strength of tested materials was assessed using a universal testing machine. Finally, the remineralisation capacities of the materials were evaluated with EDS. The Fuji Triage exhibited the lowest microleakage and unfilled area proportion (p<0.05). The highest shear bond strength was calculated with Fuji VII EP (p<0.05). The fluoride content for all treatment groups was significantly different when remineralisation values were compared to demineralisation (p<0.05). Both the Fuji Triage and Fuji VII EP yielded compatible and satisfactory results and all fissure sealants used in this study are sufficient as anti-caries agents.

  16. Bracket bond strength and cariostatic potential of an experimental resin adhesive system containing Portland cement.

    Science.gov (United States)

    Iijima, Masahiro; Hashimoto, Masanori; Nakagaki, Susumu; Muguruma, Takeshi; Kohda, Naohisa; Endo, Kazuhiko; Mizoguchi, Itaru

    2012-09-01

    To determine if a new experimental resin-based material containing Portland cement (PC) can help prevent enamel caries while providing adequate shear bond strength (SBS). Brackets were bonded to human premolars with experimental resin-based adhesive pastes composed of three weight rations of resin and PC powder (PC 30, 7:3; PC 50, 5:5; PC 70, 3:7; n  =  7). Self-etching primer (SEP) adhesive (Transbond Plus) and resin-modified glass ionomer cement (RMGIC) adhesive (Fuji Ortho FC Automix) were used for comparison. All of the bonded teeth were subjected to alternating immersion in demineralizing (pH 4.55) and remineralizing (pH 6.8) solutions for 14 days. The SBS for each sample was examined, and the Adhesive Remnant Index (ARI) score was calculated. The hardness and elastic modulus of the enamel were determined by a nanoindenter at 20 equidistant depths from the external surface at 100 µm from the bracket edge. Data were compared by one-way analysis of variance and a chi-square test. PC 50 and PC 70 showed significantly greater SBS than Fuji Ortho FC Automix, although Transbond Plus showed significantly greater SBS than other bonding systems. No significant difference in the ARI category was observed among the five groups. For specimens bonded with PC 50 and PC 70, the hardness and elastic modulus values in most locations were equivalent to those of Fuji Ortho FC Automix. Experimental resin-based bonding material containing PC provides adequate SBS and a caries-preventive effect equivalent to that of the RMGIC adhesive system.

  17. Influence of cementation on in vitro performance, marginal adaptation and fracture resistance of CAD/CAM-fabricated ZLS molar crowns.

    Science.gov (United States)

    Preis, Verena; Behr, Michael; Hahnel, Sebastian; Rosentritt, Martin

    2015-11-01

    This study investigated the influence of conventional cementation, self-adhesive cementation, and adhesive bonding on the in vitro performance, fracture resistance, and marginal adaptation of zirconia-reinforced lithium silicate (ZLS) crowns. Human molar teeth (n=40) were prepared and full-contour crowns of a ZLS ceramic (Celtra Duo, DeguDent, G, n=32) and a lithium disilicate ceramic (LDS; IPS e.max CAD, Ivoclar-Vivadent, FL, n=8) were fabricated and glazed. Four groups of ZLS crowns were defined (n=8/group) and cemented with different glass-ionomer cements, resin, and resin-modified self-adhesive luting materials. The LDS crowns served as reference group with adhesive bonding. A combined thermal cycling and mechanical loading (TCML: 3000×5°C/3000×55°C; 1.2×10(6) cycles à 50N) with human antagonists was performed in a chewing simulator. Fracture force of surviving crowns was determined. Marginal adaptation at the cement/tooth and cement/crown interface was investigated by scanning electron microscopy before and after TCML, and the share of perfect margins was determined. Data were statistically analyzed (one-way ANOVA; post hoc Bonferroni, α=0.05). One crown of the adhesive group failed during TCML (879,000 cycles=3.7 years). No statistically significant (p=0.078) differences in fracture resistance were found between different cementations, although highest data in tendency were found for adhesive bonding. Shares of perfect margins at the cement/tooth (93.8±5.6-99.6±0.8%) and cement/crown (84.7±6.6-100.0±0.0%) interfaces did not differ significantly (p>0.05) between the different cementation groups. Marginal adaptation and fracture forces of all tested groups are in a range, where no restrictions should be expected for clinical application. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Do light cured ART conventional high-viscosity glass-ionomer sealants perform better than resin-composite sealants: a 4-year randomized clinical trial

    NARCIS (Netherlands)

    Zhang, W.; Chen, X.; Fan, M.W.; Mulder, J.; Huysmans, M.C.D.N.J.M.; Frencken, J.E.F.M.

    2014-01-01

    OBJECTIVE: The hypotheses tested were: the cumulative survival rates of dentin caries lesion-free pits and fissures of ART conventional high-viscosity glass-ionomer sealants with light-curing (high-intensity LED) and glass-carbomer sealants are higher than those of conventional ART sealants and

  19. Compressive strength of two newly developed glass-ionomer materials for use with the Atraumatic Restorative Treatment (ART) approach in class II cavities.

    Science.gov (United States)

    Koenraads, H; Van der Kroon, G; Frencken, J E

    2009-04-01

    The null-hypotheses tested were that no difference in compressive strength of ART class II cavities exists between those restored with (1) glass-carbomer and a commonly used glass-ionomer; (2) KMEM and the commonly used glass-ionomer and; (3) glass-carbomer and KMEM. 100 molar teeth, stratified by size, were randomly allocated to the four test groups. Large ART class II cavities were drilled and restored with Clearfil photoposterior (negative control), Fuji IX (positive control), Glass-carbomer and Ketac Molar Easymix (KMEM) (experimental groups). Half of the samples in each test group were 5000 times thermocycled between 5 degrees C and 55 degrees C, with a 30s dwell time in each bath and a transfer time of 10s. The restorations were statically tested at the marginal ridge until failure, using a rounded rectangular testing rod at crosshead speed of 1.0mm/min. ANOVA and Student's t-test were applied to test for differences between the dependent variable (compressive strength at the final breaking point) and the independent variables (thermocycling and restorative material). Restorations of Clearfil photoposterior had a statistically significant higher mean compressive strength value at final breaking point than those of the three glass-ionomers tested (p=0.0001). No thermocycling effect was observed (p=0.19). ANOVA between the three glass-ionomer materials and mean compressive strength at final breaking point showed no statistically significant difference (p=0.09). Class II ART cavities restored with the newly launched Glass-carbomer and Ketac Molar Easymix were not significantly more fracture resistant than comparable restorations using the conventional glass-ionomer Fuji IX.

  20. Effect of mechanical load cycling on the microleakage of three different glass ionomer restorations in class V cavities

    Directory of Open Access Journals (Sweden)

    Baharan Ranjbar Omidi

    2015-07-01

    Full Text Available Background and Aims: Microleakage is an important problem with direct restorations and familiarity with contributing factors is of utmost importance. The aim of this study was to evaluate the microleakage of three glass ionomer restorations in class V cavities.   Materials and Methods: In this in vitro study, class V cavity preparations were made on the buccal and lingual/ palatal surfaces of 30 human premolars (60 cavities. The specimens were divided into three group (n=10, 20 cavities. Restored as follows: group1: with Fuji IX (HVGI ionomer/G coat plus, group 2: Ionofil molar (HVGI/ G coat plus, and group 3: Fuji II LC (RMGI / G coat plus. All specimens were finished and polished immediately and were thermocycled (2000 cycles, 5-50°C . In each group; half of the teeth were load cycled (50000 cycles. Finally, the teeth were immersed in 0.15% basic fushine dye for 24 hours at room temperature and then sectioned and observed under stereomicroscope. Data were analyzed using Kruskal-Wallis, Man- Whitney test and a comparison between incisal and gingival microleakage was made using Wilcoxon analysis.   Results: It was shown that the mechanical load cycling and filling material did not cause a statistically significant increase in the incisal and gingival microleakage in any of groups (P>0.05.   Conclusion: It was concluded that the extent microleakage of Fuji II LC was similar to that of the highly viscous glass ionomers (Ionofil molar, Fuji IX and load cycling did not increase the microleakage.

  1. Fracture behavior, marginal gap width, and marginal quality of vented or pre-cemented CAD/CAM all-ceramic crowns luted on Y-TZP implants.

    Science.gov (United States)

    Zaugg, Lucia K; Meyer, Simon; Rohr, Nadja; Zehnder, Isabella; Zitzmann, Nicola U

    2018-02-01

    To investigate the fracture behavior and marginal gap region of CAD/CAM fabricated lithium disilicate (L) and zirconium dioxide (Z) crowns using palatal venting (PV), pre-cementation with custom analogs (CA), or conventional cementation technique (SP) with adhesive cement (A) or resin-modified glass ionomer cement (B). Twelve groups (n = 6) were set according to material (L, Z), cement (A, B), and technique (PV, CA, SP). Specimens were thermo-mechanical aged (TML), loaded until fracture (LF) and fracture patterns recorded. Marginal gap width and quality were assessed and compared to replicas obtained before and after TML. Crown material significantly influenced LF with a mean of 1037.6 ± 282.4 N in L and 5356.3 ± 1207.0 N in Z groups (p cement material nor cementation method affected the outcome. Fractures occurred along the mesial-distal central fissure in both materials. Gap width before TML was 22.04 ± 13.42 μm for L and 19.98 ± 12.72 μm for Z specimens, with overall no influence of crown material, cement type, or method. Marginal cleanliness just below the polished implant shoulder reached 66.7%-88.9% with A, and 91.7%-100% with B, and tended to increase in all groups during TML indicating a decrease in excess cement. Implant-crown junctions were cleaner with B compared to A (p ≤ .001) and along Z crown surfaces compared to L (p ≤ .007). Crown venting of lithium disilicate and zirconium dioxide crowns did not affect the fracture load and patterns. Complete cement removal was rare, and the observed particle ablation requires further clinical attention, particularly with submucosal margins. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Influence of Acoustic and Electromagnetic Actions on the Properties of Aqueous Nanoparticle Dispersions Used as Tempering Liquids for Dental Cement

    Science.gov (United States)

    Azharonok, V. V.; Belous, N. Kh.; Rodtsevich, S. P.; Goncharik, S. V.; Chubrik, N. N.; Koshevar, V. D.; Lopat‧ko, K. G.; Aftandilyants, E. G.; Veklich, A. N.; Boretskii, V. F.; Orlovich, A. I.

    2016-05-01

    The authors have studied the physicochemical properties of aqueous dispersions containing carbon, silver, and iron nanoparticles which were produced by elastic-spark synthesis under the conditions of subaqueous spark discharge, and also the influence of preliminary acoustic and high-frequency electromagnetic action on them and the change in the functional indices of the glass-ionomer cement tempered by these dispersions.

  3. Antibacterial Activity of Dental Cements Containing Quaternary Ammonium Polyethylenimine Nanoparticles

    International Nuclear Information System (INIS)

    Beyth, N.; Weiss, E.I.; Pilo, R.

    2012-01-01

    Glass ionomer cements (GICs) are commonly used for cementing full cast crown restorations. Regrettably, although the dental cements fill the gap between the tooth and the crown, bacterial micro leakage may occur, resulting in secondary caries. As micro leakage cannot be completely prevented, GCS possessing antibacterial properties are in demand. In the present study the antibacterial activity of insoluble, cross-linked quaternary ammonium polyethylenimine (Qp) nanoparticles incorporated at 1% w/w in two clinically available GCS were studied. The antibacterial activity was tested against Streptococcus mutans and Lactobacillus casei using the direct contact test (Dct) and the agar diffusion test (Ad). Using the direct contact test, antibacterial activity (P<0.05) was found in both tested GICs with incorporated QPEI nanoparticles, the effect lasting for at least one month. However, the ADT showed no inhibition halo in the test bacteria, indicating that the antimicrobial nanoparticles do not diffuse into the agar. The results show that the incorporation of QPEI nanoparticles in glass ionomer cements has a long-lasting antibacterial effect against Streptococcus mutans and Lactobacillus casei. Changing the antibacterial properties of glass ionomer cements by incorporating QPEI antibacterial nanoparticles may prolong the clinical performance of dental crowns.

  4. Antibacterial Activity of Dental Cements Containing Quaternary Ammonium Polyethylenimine Nanoparticles

    Directory of Open Access Journals (Sweden)

    Nurit Beyth

    2012-01-01

    Full Text Available Glass ionomer cements (GICs are commonly used for cementing full cast crown restorations. Regrettably, although the dental cements fill the gap between the tooth and the crown, bacterial microleakage may occur, resulting in secondary caries. As microleakage cannot be completely prevented, GICs possessing antibacterial properties are in demand. In the present study the antibacterial activity of insoluble, cross-linked quaternary ammonium polyethylenimine (QPEI nanoparticles incorporated at 1% w/w in two clinically available GICs were studied. The antibacterial activity was tested against Streptococcus mutans and Lactobacillus casei using the direct contact test (DCT and the agar diffusion test (ADT. Using the direct contact test, antibacterial activity (<0.05 was found in both tested GICs with incorporated QPEI nanoparticles, the effect lasting for at least one month. However, the ADT showed no inhibition halo in the test bacteria, indicating that the antimicrobial nanoparticles do not diffuse into the agar. The results show that the incorporation of QPEI nanoparticles in glass ionomer cements has a long-lasting antibacterial effect against Streptococcus mutans and Lactobacillus casei. Changing the antibacterial properties of glass ionomer cements by incorporating QPEI antibacterial nanoparticles may prolong the clinical performance of dental crowns.

  5. in vitro evaluation of marginal leakage using invasive and noninvasive technique of light cure glass ionomer and flowable polyacid modified composite resin used as pit and fissure sealant

    Directory of Open Access Journals (Sweden)

    Anshu Singla

    2011-01-01

    Full Text Available Aim: This study compared the microleakage of light cure glass ionomer and flowable compomer as pit and fissure sealant, with and without tooth preparation. Materials and Methods: One hundred premolars that were extracted for orthodontic purpose were used. After adequate storage and surface debridement, the teeth were randomly divided into four groups. In Group I and III, the occlusal surfaces were left intact, while in Group II and Group IV, tooth surfaces were prepared. Teeth in Group I and Group II were sealed with Light cure glass ionomer, whereas flowable compomer was used to seal teeth in Group III and IV. The sealed teeth were then immersed in dye. Subsequently, buccolingual sections were made and each section was examined under stereomicroscope for microleakage followed by scoring. Results: In group I, microleakage score ranged from 2 to 4 with mean of 3.64 (±0.757, while in group II the range was observed to be 1-4 with mean of 2.88 (±1.236. Group III recorded a range of 0-4 with the mean of 2.20 (±1.443 while 0-2 and 0.60 (±0.707 being the range and mean observed, respectively, for group IV. Conclusion: Flowable compomer placed after tooth preparation showed better penetration and less marginal leakage than the light cure glass ionomer.

  6. Clinical performance of aesthetic restorative materials in primary teeth according to the FDI criteria.

    Science.gov (United States)

    Bektas Donmez, S; Uysal, S; Dolgun, A; Turgut, M D

    2016-09-01

    The purpose of this study is to evaluate the clinical performance of three different restorative materials in primary teeth according to the FDI criteria. Resin-modified glass ionomer cement, compomer and composite resin restorations (n=93) were made in 31 patients. The restorations were clinically evaluated at baseline, 6th, 12th and 18th month with the FDI criteria. The cumulative survival rate after 18 months was found to be 90.3% for resin modified glass ionomer cement restorations, 100% for compomer restorations and 80.6% for composite resin restorations. Statistically significant increase in surface roughness, colour mismatch, anatomic form loss and marginal deterioration were detected in resin- modified glass ionomer group (p<0.05). The most frequent reason for restoration failure in composite resin group was restoration fractures. The resin-modified glass ionomer restorations necessitates close follow-up because of the risk of increase in surface roughness, changes in colour and loss in anatomic form and marginal adaptation. The clinical performance of compomer restorations is superior to resin-modified glass ionomer and composite resin restorations in primary teeth.

  7. Change in pH during setting of polyelectrolyte dental cements.

    Science.gov (United States)

    Wasson, E A; Nicholson, J W

    1993-04-01

    The change in pH during setting has been studied for five different glass polyalkenoate (ionomer) cements and for two different zinc polycarboxylate cements using a flat-headed combination electrode on both the fresh cement and on a slurry of the set cement. The results show that the pH of the glass ionomers was slightly lower in the early stages of setting than was the pH of the zinc polycarboxylates and also that the pH of glass ionomers rises more slowly. For anhydrous cements (i.e. those formulated from dried polymer) pH was found to rise quicker than for hydrous cements (i.e. those prepared from aqueous solutions of polymer). Previous workers have assumed that anhydrous cements undergo slower rises in pH than hydrous ones. Our results clearly refute this assumption, and also suggest that the reported pulpal irritation associated with the use of anhydrous glass ionomers may be due to something other than low pH.

  8. Morphological Changes Of The Root Surface And Fracture Resistance After Treatment Of Root Fracture By CO2 Laser And Glass Ionomer Or Mineral Trioxide Aggregates

    Science.gov (United States)

    Badr, Y. A.; Abd El-Gawad, L. M.; Ghaith, M. E.

    2009-09-01

    This in vitro study evaluates the morphological changes of the root surface and fracture resistance after treatment of root cracks by CO2 laser and glass Ionomer or mineral trioxide aggregates (MTA). Fifty freshly extracted human maxillary central incisor teeth with similar dimension were selected. Crowns were sectioned at the cemento-enamel junction, and the lengths of the roots were adjusted to 13 mm. A longitudinal groove with a dimension of 1×5 mm2 and a depth of 1.5 mm was prepared by a high speed fissure bur on the labial surface of the root. The roots were divided into 5 groups: the 10 root grooves in group 1 were remained unfilled and were used as a control group. The 10 root grooves in group 2 were filled with glass Ionomer, 10 root grooves in group 3 were filled with MTA, the 10 root grooves in group 4 were filled with glass Ionomer and irradiated by CO2 laser and the 10 root grooves in group 5 were filled with MTA and irradiated with CO2 laser. Scanning electron microscopy was performed for two samples in each group. Tests for fracture strength were performed using a universal testing machine and a round tip of a diameter of 4 mm. The force was applied vertically with a constant speed of 1 mm min 1. For each root, the force at the time of fracture was recorded in Newtons. Results were evaluated statistically with ANOVA and Turkey's Honestly Significant Difference (HSD) tests. SEM micrographs revealed that the melted masses and the plate-like crystals formed a tight Chemical bond between the cementum and glass Ionomer and melted masses and globular like structure between cementum and MTA. The mean fracture resistance was the maximum fracture resistance in group 5 (810.8 N). Glass Ionomer and MTA with the help of CO2 laser can be an alternative to the treatment of tooth crack or fracture. CO2 laser increase the resistance of the teeth to fracture.

  9. Evaluation of Surface Microhardness and Abrasion Resistance of Two Dental Glass Ionomer Cement Materials after Radiant Heat Treatment

    Directory of Open Access Journals (Sweden)

    Dimitrios Dionysopoulos

    2017-01-01

    Full Text Available The aim of this study was to evaluate the effect of a radiant heat treatment using a dental LED unit on the surface microhardness and abrasion resistance after toothbrushing simulation of two conventional GIC materials. Two conventional GIC materials were studied in this investigation: Ketac Fil Plus Aplicap and IonoStar Molar. Twenty disk-shaped specimens (n=10 were prepared of each GIC (7 mm × 2 mm using cylindrical Teflon molds. Group 1 specimens were left in the mold to set without any treatment, while in Group 2 after placement in the mold the specimens were irradiated for 60 sec at the top surface using a LED light-curing unit. Toothbrushing simulation was carried out using a commercial electric toothbrush which was fixed in a constructed device that allowed the heads of the brushes to be aligned parallel to the surface of the specimens and to control the pressure, with the following parameters: load of the toothbrush standardized at 250 g, medium hardness toothbrush head, and rotation sense changing every 30 sec. The toothbrush abrasion test mechanism, based on a 1.25-Hz frequency for 10,000 cycles, was equivalent to 800 days (~2 years of brushing. Surface hardness, surface roughness, and surface loss after abrasive procedure were evaluated using Vickers method and Vertical Scanning Interferometry. Data were statistically analyzed using one-way ANOVA and Tukey’s post hoc test (a=0.05. The radiant heat treatment increased the surface microhardness and decreased surface roughness and surface loss after abrasive procedures of both the tested GIC materials but to different extent. Between the tested GIC materials there were significant differences in their tested properties (p<0.05.

  10. The use of laser-induced breakdown spectroscopy for the determination of fluorine concentration in glass ionomer cement

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, T.; Pouzar, M.; Novotný, K.; Havránek, Vladimír; Černohorský, T.; Zvolská, M.

    2013-01-01

    Roč. 88, OCT (2013), s. 26-31 ISSN 0584-8547 Grant - others:GA ČR(CZ) GAP207/11/0555 Institutional support: RVO:61389005 Keywords : Fluorine * GIC * Laser-induced breakdown spectroscopy * Quantitative analysis Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.150, year: 2013 http://www.sciencedirect.com/science/article/pii/S0584854713002243#

  11. Comparison of shear bond strength of aesthetic restorative materials

    Directory of Open Access Journals (Sweden)

    B P Suryakumari Nujella

    2012-01-01

    Full Text Available Aim : The present study was conducted to determine and compare the shear bond strengths of Conventional glass ionomer; Resin-modified glass ionomer; Polyacid-modified composite and Composite Resin, and to assess and determine the mode of failure (adhesive, cohesive, mixed. Materials and Methods : Occlusal dentin of 40 extracted human teeth were randomly divided into four groups of ten teeth, each based on the restorative materials tested as follows: Group I: Conventional Glass Ionomer Cement (Control; Group II: Resin-modified Glass Ionomer Cement; Group III: Polyacid-modified Composite Resin; Group IV: Hybrid Composite Resin. The bonded materials were subjected to shear bond strength (SBS testing in a Instron Universal Testing Machine (UTM at a crosshead speed of 0.5 mm/min. The bond failure location was examined by the use of a stereomicroscope at 10× magnification. The mean SBS of Groups I-IV obtained was 3.81, 9.71, 11.96 and 18.16 MPa, respectively. Comparison of mean shear bond strengths of all groups was done by one way ANOVA test and comparison of means in between groups by the Student′s t test. Conclusion : It is concluded that the compomer restorative materials show higher shear bond strength than conventional glass-ionomer and resin-modified glass-ionomer, but less than composite resin.

  12. Influence of cementation and cement type on the fracture load testing methodology of anterior crowns made of different materials.

    Science.gov (United States)

    Stawarczyk, Bogna; Beuer, Florian; Ender, Andreas; Roos, Malgorzata; Edelhoff, Daniel; Wimmer, Timea

    2013-01-01

    To evaluate the influence of cementation on fracture load of anterior crowns made of CAD/CAM-resin-blocks (ART), leucite-reinforced glass-ceramics (LRG), lithium disilicate ceramics (LIT), veneered zirconia (ZRO) and veneered alloy (DEG). Each crown group (n=15/subgroup) was cemented on the metal abutment as follows: i. using glass ionomer, ii. using self-adhesive resin cement, and iii. not cemented. Crowns were tested and analyzed with 2-way and 1-way ANOVA (Scheffé test), and Weibull statistics (pcompared to other groups (pcrowns than for cemented (pmetal ceramic crowns should be generally cemented. Glass-ceramic crowns should be cemented using adhesive cement. Cementation and cement type did not have an influence on the fracture load results for resin, zirconia or lithium disilicate crowns.

  13. Long-term monitoring of microleakage of dental cements by radiochemical diffusion

    International Nuclear Information System (INIS)

    Powis, D.R.; Prosser, H.J.; Wilson, A.D.

    1988-01-01

    Radioactive 14 C sucrose was found to be an ideal marker for microleakage because it did not penetrate tooth tissue, dental cement, or mounting resin. The main finding is that the adhesive cements--the glass-ionomer and polycarboxylate--are significantly more effective at preventing microleakage than are the traditional phosphate cements--silicate and zinc phosphate. The differences can be as high as two orders of magnitude. The adhesive cements provide almost perfect and reliable seals. By contrast, the nonadhesive cements are erratic sealants with most of the restorations leaking

  14. Long-term monitoring of microleakage of dental cements by radiochemical diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Powis, D.R.; Prosser, H.J.; Wilson, A.D.

    1988-06-01

    Radioactive /sup 14/C sucrose was found to be an ideal marker for microleakage because it did not penetrate tooth tissue, dental cement, or mounting resin. The main finding is that the adhesive cements--the glass-ionomer and polycarboxylate--are significantly more effective at preventing microleakage than are the traditional phosphate cements--silicate and zinc phosphate. The differences can be as high as two orders of magnitude. The adhesive cements provide almost perfect and reliable seals. By contrast, the nonadhesive cements are erratic sealants with most of the restorations leaking.

  15. Effect of ultrasound application during setting on the mechanical properties of high viscous glass-ionomers used for ART restorations

    Science.gov (United States)

    Daifalla, Lamia E.; Mobarak, Enas H.

    2014-01-01

    This study was conducted to evaluate the effect of ultrasound application on the surface microhardness (VHN) and diametral tensile strength (DTS) of three high viscous glass-ionomer restorative materials (HVGIRMs). For each test (VHN and DTS), a total of 180 specimens were prepared from three HVGIRMs (Ketac-Molar Aplicap, Fuji IX GP Fast, and ChemFil Rock). Specimens of each material (n = 60) were further subdivided into three subgroups (n = 20) according to the setting modality whether ultrasound (20 or 40 s) was applied during setting or not (control). Specimens within each subgroup were then equally divided (n = 10) and tested at 24 h or 28 days. For the VHN measurement, five indentations, with a 200 g load and a dwell time for 20 s, were made on the top surface of each specimen. The DTS test was done using Lloyd Testing machine at a cross-head speed of 0.5 mm/min. Ultrasound application had no significant effect on the VHN. Fuji IX GP Fast revealed the highest VHN value, followed by Ketac-Molar Aplicap, and the least was recorded for ChemFil Rock. Fuji IX GP Fast and Ketac-Molar Aplicap VHN values were significantly increased by time. ChemFil Rock recorded the highest DTS value at 24 h and was the only material that showed significant improvement with both US application times. However, this improvement did not sustain till 28 days. The ultrasound did not enhance the surface microhardness, but its positive effect on the diametral tensile strength values was material and time dependent. PMID:26644916

  16. Three-year survival of ART high-viscosity glass-ionomer and resin composite restorations in people with disability.

    Science.gov (United States)

    Molina, Gustavo F; Faulks, Denise; Mazzola, Ignacio; Cabral, Ricardo J; Mulder, Jan; Frencken, Jo E

    2018-01-01

    To assess the 3-year cumulative survival rate of atraumatic restorative treatment (ART) and conventional resin composite restorations (CRT) placed in persons with disability. Patients referred for restorative care to the Haemophilia Foundation special care service were treated by one of two specialists. Patients and/or caregivers were provided with written and verbal information regarding treatment options and selected the alternative they preferred. Treatment was provided as selected unless this option proved clinically unfeasible when an alternative technique was proposed. The treatment protocols were ART (hand instruments/high-viscosity glass-ionomer) in the clinic or CRT (rotary instrumentation/resin composite) in the clinic or under general anaesthesia (GA). After 6, 12, 24 and 36 months, two independent, trained and calibrated examiners evaluated restoration survival using established ART codes. The proportional hazard model with frailty corrections gave survival estimates over 3 years. Sixty-six patients (13.6 ± 7.8 years) with 16 different disability profiles participated. CRT in the clinic proved feasible for five patients (13%), and 14 patients received CRT under GA (21%). ART was used for 47 patients (71.2%). Altogether, 298 dentine carious lesions were restored in primary and permanent teeth (182 ART; 116 CRT). The 3-year cumulative survival rates and jackknife standard errors for the 182 ART and 116 CRT restorations were 94.8 ± 2.1 and 82.8 ± 5.3%, respectively (p = 0.01). The 3-year follow-up results confirm that ART is an effective treatment protocol. Patients with disability, many of whom have difficulty coping with CRT, may benefit from the ART approach.

  17. In vitro microleakage of luting cements and crown foundation material.

    Science.gov (United States)

    Lindquist, T J; Connolly, J

    2001-03-01

    Microleakage is a concern for the long-term prognosis of a cemented crown and foundation. The aims of this investigation were, first, to evaluate microleakage of zinc phosphate cement and resin-reinforced glass ionomer cement under ideal (dry) versus contaminated (wet) conditions, and second, to compare 3 foundations under both ideal and contaminated conditions. One hundred forty extracted molar teeth were cleaned and mounted. Tooth preparations for complete veneer cast crowns were completed with a chamfer finish line. A mesial surface class II cavity preparation 4 mm wide buccolingually and 2 mm deep was made in each tooth. Seven restorative groups were formed: amalgam/cavity varnish, amalgam/dentinal bonding agent, and composite/dentinal bonding agent, each with dry and contaminated groups, and a seventh group of class II cavity preparations without foundations. Finish lines for crown margins were refined 1.5 mm gingival to the restoration. Artificial crowns were cast in type III gold. Treatment groups were divided into 4 cement groups: dry and contaminated zinc phosphate cement and dry and contaminated resin-reinforced glass ionomer cement. The specimens were thermocycled and immersed in erythrosine B solution for 24 hours. Subsequently, they were rinsed, and their coronal portions were embedded in clear resin. Teeth were sectioned mesiodistally, and standard photomicrographs were made. The microleakage of each restoration and crown was measured. The least foundation microleakage was recorded for amalgam/dentinal bonding agents (ideal group) and composite/dentinal bonding agents (ideal group). The most microleakage was observed within the group without a foundation. In cement groups, the control and experiment sides were evaluated separately but displayed the same order of finding. The least leakage was recorded with resin-reinforced glass ionomer cement (ideal group); the most microleakage was noted with zinc phosphate cement (ideal group). An interaction was

  18. Influence of abutment height and thermocycling on retrievability of cemented implant-supported crowns.

    Science.gov (United States)

    Mehl, Christian; Harder, Sönke; Shahriari, Ahoo; Steiner, Martin; Kern, Matthias

    2012-01-01

    To evaluate the influence of abutment height and thermocycling on the retrievability of cemented implant crowns. Ninety tapered titanium abutments (6 degree taper, 4.3 mm diameter, 8.5 mm height) were shortened to 2, 3, or 4 mm, respectively. Ninety crowns were designed and manufactured using CAD/CAM techniques and laser sintering a CoCr alloy. The crowns were cemented either with a glass-ionomer, a polycarboxylate, or a composite resin cement followed by 3-day storage in demineralized water without thermocycling or 150-day storage with 37,500 thermal cycles. The force (in N) and the number of attempts needed to remove the crowns using a universal testing machine (UTM) or a clinically used removal device (Coronaflex) were recorded. Statistical analysis at a level of significance of P ≤ .05 was conducted using the Kruskal-Wallis and Mann-Whitney U tests (Coronaflex) and three-way and two-way ANOVA, Tukey's HSD post hoc tests, and t tests (UTM). Regardless of whether the crowns were retrieved with Coronaflex or UTM, the crowns cemented with the glass-ionomer cement were significantly easier to retrieve followed by the polycarboxylate and the resin cement, both of which differed significantly from each other (P ≤ .001). With both retrieval methods, the cement, abutment height, and thermocycling were significantly influential (P ≤ .0001). Significant interactions could be found for retrieval with UTM between the abutment height and thermocycling, between the cement and thermocycling, and between all three factors (P ≤ .05). Glass-ionomer cement may be used for retrievable cementation of implant restorations, whereas polycarboxylate cement and especially composite resin cement should be used for a nonretrievable permanent cementation.

  19. Marginal Adaptation Evaluation of Biodentine and MTA Plus in "Open Sandwich" Class II Restorations.

    Science.gov (United States)

    Aggarwal, Vivek; Singla, Mamta; Yadav, Suman; Yadav, Harish; Ragini

    2015-01-01

    This study aimed at evaluation of two different commercially available calcium silicate materials (Biodentine and mineral trioxide aggregate [MTA] Plus) used as dentin substitute. Sixty Class II cavities were prepared in extracted mandibular third molars, with margins extending 1 mm below the cementum-enamel junction. The samples were divided into three groups on the basis of dentin substitute used: resin modified glass ionomer cement, Biodentine, and MTA Plus. Cavities were restored with composite resins in an "open sandwich" technique. The samples were subjected to alternate aging in phosphate buffered saline and cyclic loading. Marginal adaptation was evaluated in terms of "continuous margin" at the gingival margin, using a low vacuum scanning electron microscope. Statistical analysis was done with two-way analysis of variance with Holm-Sidak's correction for multiple comparisons. The glass ionomer group and Biodentine group presented an overall 83% and 91% of continuous margins, with no difference between them. MTA Plus showed least values of continuous margins. Granular deposits were seen over the surface of Biodentine and MTA Plus. Biodentine and resin-modified glass ionomer cement, when used as a dentin substitute under composite restorations in open sandwich technique, gave satisfactory marginal adaptation values. Contemporary calcium silicate materials can be used as dentin substitute materials in "open sandwich" Class II restorations. This study evaluates the marginal adaptation of Biodentine, MTA Plus, and resin modified glass ionomer cement used as dentin substitutes and reports better adaptation obtained with Biodentine and glass ionomer cement. © 2015 Wiley Periodicals, Inc.

  20. Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type

    Science.gov (United States)

    2015-01-01

    PURPOSE The objective of this study was to evaluate the influence of various cement types on the stress distribution in monolithic zirconia crowns under maximum bite force using the finite element analysis. MATERIALS AND METHODS The models of the prepared #46 crown (deep chamfer margin) were scanned and solid models composed of the monolithic zirconia crown, cement layer, and prepared tooth were produced using the computer-aided design technology and were subsequently translated into 3-dimensional finite element models. Four models were prepared according to different cement types (zinc phosphate, polycarboxylate, glass ionomer, and resin). A load of 700 N was applied vertically on the crowns (8 loading points). Maximum principal stress was determined. RESULTS Zinc phosphate cement had a greater stress concentration in the cement layer, while polycarboxylate cement had a greater stress concentration on the distal surface of the monolithic zirconia crown and abutment tooth. Resin cement and glass ionomer cement showed similar patterns, but resin cement showed a lower stress distribution on the lingual and mesial surface of the cement layer. CONCLUSION The test results indicate that the use of different luting agents that have various elastic moduli has an impact on the stress distribution of the monolithic zirconia crowns, cement layers, and abutment tooth. Resin cement is recommended for the luting agent of the monolithic zirconia crowns. PMID:26816578

  1. Conventional glass-ionomer materials: A review of the developments in glass powder, polyacid liquid and the strategies of reinforcement.

    Science.gov (United States)

    Baig, Mirza Shahzad; Fleming, Garry J P

    2015-08-01

    The development of glass-ionomers (GIs) from the earliest experimental GI formulations to the modern day commercially available GIs was reviewed. The aim of the review was to identify the developments in the glass powder and polyacid liquid constituents of GIs since their inception in the late 1960s. The glass powder has undergone major changes from the earliest GI powder formulation (G200) in an effort to enhance the reactivity with the polyacid liquid. The GI liquids have also been optimised by the manufacturers in terms of polyacid composition, molecular weight and concentration to improve the handling characteristics. Despite these developments in the glass powder and polyacid liquid constituents, GIs cannot 'truly' be advocated for the restoration of posterior dentition due to the poor mechanical properties when compared with dental amalgam and resin-based composites (RBCs). Various attempts to improve the mechanical properties of GIs through substitution of reinforcing fillers to the GI powder or modification of the GI liquid were identified in the dental literature. Despite the claimed improvements in mechanical properties of the modified GIs, a wide variation in mixing and testing conditions was identified which prevented a valid assessment of the reported reinforcement strategies. When investigating a GI reinforcement strategy it is crucial that the mixing and testing conditions are standardised to allow a valid comparison between studies. The dental literature reporting the earliest experimental GIs to modern day commercially available GIs (1969-2015) was reviewed. In addition, full-text publications and abstracts published in English reporting various GI reinforcement strategies were included. Nevertheless, major improvements in GI formulations through a reinforcement strategy have yet to be made to enable clinical usage of GIs for the restoration of posterior dentition. GIs chemically are inherently weak but bond to sound tooth structure without the

  2. Comparison between effectiveness of a low-viscosity glass ionomer and a resin-based glutaraldehyde containing primer in treating dentine hypersensitivity--a 25.2-month evaluation.

    NARCIS (Netherlands)

    Polderman, R.N.; Frencken, J.E.F.M.

    2007-01-01

    OBJECTIVES: The null-hypothesis tested was; there is no difference in effectiveness between a new low-viscosity glass ionomer and a resin-based glutaraldehyde containing primer in treating hypersensitive teeth after 2 years. METHODS: Using a split-mouth design, hypersensitive teeth in 14 adult

  3. A Comparative Evaluation of the Effect of Resin based Sealers on Retention of Crown Cemented with Three Types of Cement – An In Vitro Study

    Science.gov (United States)

    Sharma, Sumeet; Patel, J.R.; Sethuraman, Rajesh; Singh, Sarbjeet; Wazir, Nikhil Dev; Singh, Harvinder

    2014-01-01

    Aim: In an effort to control postoperative sensitivity, dentin sealers are being applied following crown preparations, with little knowledge of how crown retention might be affected. A previous study demonstrated no adverse effect when using a gluteraldehyde-based sealer, and existing studies have shown conflicting results for resin-based products. This study determined the retention of the casting cemented with three types of cement, with and without use of resin sealers and it determined the mode of failure. Materials and Methods: Extracted human molars (n=60) were prepared with a flat occlusal, 20-degree taper, and 4-mm axial length. The axial surface area of each preparation was determined and specimens were distributed equally among groups (n=10). A single-bottle adhesive system (one step single bottle adhesive system) was used to seal dentin, following tooth preparation. Sealers were not used on the control specimens. The test castings were prepared by using Ni-Cr alloy for each specimen and they were cemented with a seating force of 20 Kg by using either Zinc Phosphate (Harvard Cement), Glass Ionomer (GC luting and lining cement,GC America Inc.) and modified-resin cement (RelyXTMLuting2). Specimens were thermocycled for one month and were then removed along the path of insertion by using a Universal Testing Machine at 0.5 mm/min. A single-factor ANOVA was used with a p value of .05. The nature of failure was recorded and the data was analyzed by using Chi-square test. Results: Mean dislodgement stress for Zinc phosphate (Group A) was 24.55±1.0 KgF and that for zinc phosphate with sealer (Group D) was 14.65±0.8 KgF. For glass ionomer (Group B) without sealer, the mean value was 32.0±1.0 KgF and mean value for glass ionomer with sealer (Group E) was 37.90±1.0 KgF. The mean value for modified resin cement (Group C) was 44.3±1.0KgF and that for modified resins with sealer (Group F) was 57.2±1.2 KgF. The tooth failed before casting dislodgement in 8 to 10

  4. A Comparative Evaluation of the Effect of Resin based Sealers on Retention of Crown Cemented with Three Types of Cement - An In Vitro Study.

    Science.gov (United States)

    Sharma, Sumeet; Patel, J R; Sethuraman, Rajesh; Singh, Sarbjeet; Wazir, Nikhil Dev; Singh, Harvinder

    2014-03-01

    In an effort to control postoperative sensitivity, dentin sealers are being applied following crown preparations, with little knowledge of how crown retention might be affected. A previous study demonstrated no adverse effect when using a gluteraldehyde-based sealer, and existing studies have shown conflicting results for resin-based products. This study determined the retention of the casting cemented with three types of cement, with and without use of resin sealers and it determined the mode of failure. Extracted human molars (n=60) were prepared with a flat occlusal, 20-degree taper, and 4-mm axial length. The axial surface area of each preparation was determined and specimens were distributed equally among groups (n=10). A single-bottle adhesive system (one step single bottle adhesive system) was used to seal dentin, following tooth preparation. Sealers were not used on the control specimens. The test castings were prepared by using Ni-Cr alloy for each specimen and they were cemented with a seating force of 20 Kg by using either Zinc Phosphate (Harvard Cement), Glass Ionomer (GC luting and lining cement,GC America Inc.) and modified-resin cement (RelyXTMLuting2). Specimens were thermocycled for one month and were then removed along the path of insertion by using a Universal Testing Machine at 0.5 mm/min. A single-factor ANOVA was used with a p value of .05. The nature of failure was recorded and the data was analyzed by using Chi-square test. Mean dislodgement stress for Zinc phosphate (Group A) was 24.55±1.0 KgF and that for zinc phosphate with sealer (Group D) was 14.65±0.8 KgF. For glass ionomer (Group B) without sealer, the mean value was 32.0±1.0 KgF and mean value for glass ionomer with sealer (Group E) was 37.90±1.0 KgF. The mean value for modified resin cement (Group C) was 44.3±1.0KgF and that for modified resins with sealer (Group F) was 57.2±1.2 KgF. The tooth failed before casting dislodgement in 8 to 10 specimens cemented with modified

  5. Do light cured ART conventional high-viscosity glass-ionomer sealants perform better than resin-composite sealants: a 4-year randomized clinical trial.

    Science.gov (United States)

    Zhang, WeiWei; Chen, Xi; Fan, Ming-Wen; Mulder, Jan; Huysmans, Marie-Charlotte C D N J M; Frencken, Jo E

    2014-05-01

    The hypotheses tested were: the cumulative survival rates of dentin caries lesion-free pits and fissures of ART conventional high-viscosity glass-ionomer sealants with light-curing (high-intensity LED) and glass-carbomer sealants are higher than those of conventional ART sealants and resin-composite sealants after 4 years. The randomized controlled clinical trial covered 405 children (mean age 8-years). Three dentists placed sealants in pits and fissures of high caries-risk children. Evaluation by two independent evaluators was conducted after 0.5, 1, 2, 3 and 4 years. The Kaplan-Meier survival method, ANOVA and t-test were used in data analyses. 1304 first permanent molars were sealed. 12.3% of children and 15.4% of sealants dropped out. 46 re-exposed pits and fissures, 39 (occlusal) 7 (free smooth surfaces), in 42 children developed a dentin carious lesion. The cumulative survival of dentin caries lesion-free occlusal pits and fissures in ART plus LED group (98%) was statistically significantly higher than in the resin-composite group (96.4%) and in the glass-carbomer group (94.5%). The cumulative survival of dentin caries lesion-free occlusal pits and fissures in the glass-carbomer group was statistically significantly lower than that in the conventional ART group (97.3%). For the free smooth surfaces, there was no statistically significantly difference among the four sealant groups. Light-cured ART conventional high-viscosity glass-ionomer sealants prevented the occurrence of dentin cavities best. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Fracture resistance of aluminium oxide and lithium disilicate-based crowns using different luting cements: an in vitro study.

    Science.gov (United States)

    Al-Wahadni, Ahed M; Hussey, David L; Grey, Nicholas; Hatamleh, Muhanad M

    2009-03-01

    The aim of this study was to investigate the fracture resistance of two types of ceramic crowns cemented with two different cements. Forty premolar crowns were fabricated using lithium-disilicate (IPS Empress-2) and glass-infiltrated aluminium-oxide (In-Ceram) ceramic systems. The crowns were divided into four groups (n=10) with Group 1 (IPS Empress-2) and Group 2 (In-Ceram) cemented with glass ionomer cement. Group 3 (IPS Empress-2) and Group 4 (In-Ceram) were cemented with resin cement. Crowns were tested in a universal testing machine at a compressive-load speed of 10 mm/min. Fracture modes were grouped into five categories. One way analysis of variance (ANOVA) and Bonferroni post-hoc tests were used to detect statistical significances (pcement type had no statistical significant effect (p>0.05) on fracture resistance within each ceramic system tested. In-Ceram crowns cemented with either glass ionomer or resin cements exhibited a statistically significantly higher fracture-resistance than IPS Empress-2 crowns (pcrowns was the common mode exhibited. Fracture resistance of IPS Empress-2 and In-Ceram crowns was not affected by the type of cement used for luting. Both In-Ceram and IPS Empress-2 crowns can be successfully luted with the cements tested with In-Ceram exhibiting higher fracture resistance than IPS Empress-2.

  7. Influence of cement film thickness on the retention of implant-retained crowns.

    Science.gov (United States)

    Mehl, Christian; Harder, Sönke; Steiner, Martin; Vollrath, Oliver; Kern, Matthias

    2013-12-01

    The main goal of this study was to establish a new, high precision procedure to evaluate the influence of cement film thickness on the retention of cemented implant-retained crowns. Ninety-six tapered titanium abutments (6° taper, 4.3 mm diameter, Camlog) were shortened to 4 mm. Computer-aided design was used to design the crowns, and selective laser sintering, using a cobalt-chromium alloy, was used to produce the crowns. This method used a focused high-energy laser beam to fuse a localized region of metal powder to build up the crowns gradually. Before cementing, preset cement film thicknesses of 15, 50, 80, or 110 μm were established. Glass ionomer, polycarboxylate, or resin cements were used for cementation. After 3 days storage in demineralized water, the retention of the crowns was measured in tension using a universal testing machine. The cement film thicknesses could be achieved with a high level of precision. Interactions between the factors cement and cement film thickness could be found (p ≤ 0.001). For all cements, crown retention decreased significantly between a cement film thickness of 15 and 50 μm (p ≤ 0.001). At 15 μm cement film thickness, the resin cement was the most retentive cement, followed by the polycarboxylate and then the glass ionomer cement (p ≤ 0.05). The results suggest that cement film thickness has an influence on the retentive strength of cemented implant-retained crowns. © 2013 by the American College of Prosthodontists.

  8. The biocompatibility of modified experimental Portland cements with potential for use in dentistry.

    Science.gov (United States)

    Camilleri, J

    2008-12-01

    To evaluate the biocompatibility of a group of new potential dental materials and their eluants by assessing cell viability. Calcium sulpho-aluminate cement (CSA), calcium fluoro-aluminate cement (CFA) and glass-ionomer cement (GIC; Ketac Molar), used as the control, were tested for biocompatibility. Using a direct test method cell viability was measured quantitatively using alamarBluetrade mark dye, and an indirect test method where cells were grown on material elutions and cell viability was assessed using methyltetrazolium (MTT) assay as recommended by ISO 10 993-Part 5 for in vitro testing. Statistical analysis was performed by analysis of variance and Tukey multi-comparison test method. Elution collected from the prototype cements and the GIC cured for 1 and 7 days allowed high cell activity after 24 h cell exposure, which reduced after 48 h when compared to the nontoxic glass-ionomer control, but increased significantly after 72 h cell contact. Elutions collected after 28 days revealed reduced cell activity at all cell exposure times. Cells placed in direct contact with the prototype materials showed reduced cell activity when compared with the control. Cell growth was poor when seeded in direct contact with the prototype cements. GIC encouraged cell growth after 1 day of contact. The eluted species for all the cements tested exhibited adequate cell viability in the early ages with reduced cell activity at 28 days. Changes in the production of calcium hydroxide as a by-product of cement hydration affect the material biocompatibility adversely.

  9. In vitro evaluation of microleakage of various types of dental cements.

    Science.gov (United States)

    Medić, Vesna; Obradović-Djuricić, Kosovka; Dodić, Slobodan; Petrović, Renata

    2010-01-01

    Microleakage is defined as the clinically undetectable seepage of oral fluids containing bacteria and debris between cement layer and tooth restoration. This in vitro study investigated the effect of different dental cements (zinc-phosphate, polycarboxylate, glass-ionomer and resin cement) on microleakage in different ceramic crown systems (metal ceramic crown, metal ceramic crown with a porcelain margin, Empress 2 and in Ceram all-ceramic crowns) fixed on extracted human teeth. One hundred and sixty intact human premolars were randomized to four groups of forty teeth each, according to the different ceramic crown systems. They were prepared in a standardized manner for metal-ceramic and all-ceramic crowns. Crowns were made following a standard laboratory technique, and each group of crowns were divided into four groups according to the different cement agents and cemented on their respective abutments. The specimens were subjected to thermocycling, placed in methylene blue solutions, embedded in resin blocks and vertically cut in the bucco-oral and meso-distal direction. The microleakage in the area of tooth-cement interface was defined as linear penetration of methylene blue and was determined with a microscope to assign microleakage scores using a five-point scale. A significant association was found between a cement type and degree of microleakage (p = 0.001). No statistically significant differences were found among the different ceramic crown systems luted with the same dental cement. The smallest degree of microleakage was observed in specimens luted with resin cement (X = 1.73), followed by glass-ionomer cement (X=2.45) and polycarboxylate cement (X = 3.20). The greatest degree of microleakage was detected in the crowns fixed with zincphosphate cement (X = 3.33). The investigated dental cements revealed different sealing abilities. The use of resin cement resulted in the percentage of 0 microleakage scores. Due to this feature, the resin cement is to be

  10. Influence of CAD/CAM systems and cement selection on marginal discrepancy of zirconia-based ceramic crowns.

    Science.gov (United States)

    Martínez-Rus, Francisco; Suárez, María J; Rivera, Begoña; Pradíes, Guillermo

    2012-04-01

    To analyze the effect of ceramic manufacturing technique and luting cement selection on the marginal adaptation of zirconium oxide-based all-ceramic crowns. An extracted mandibular first premolar was prepared for a complete coverage restoration and subsequently duplicated 40 times in a liquid crystal polymer (LCP). All-ceramic crowns (n = 10) were fabricated on LCP models using the following systems: glass-infiltrated zirconia-toughened alumina (In-Ceram Zirconia) and yttrium cation-doped tetragonal zirconia polycrystals (In-Ceram YZ, Cercon, and Procera Zirconia). The restorations (n = 5) were cemented on their respective dies with glass-ionomer cement (Ketac Cem Aplicap) and resin cement (Panavia 21). The absolute marginal discrepancy of the crowns was measured before and after cementation by scanning electronic microscopy at 160 points along the circumferential margin. The data were analyzed using one-way ANOVA for repeated measures and for independent samples, Scheffé's multiple range post hoc test, and Student's t-test (alpha = 0.05). There were statistical differences in the mean marginal openings among the four all-ceramic systems before and after luting (P cementation values (P cement resulted in larger marginal discrepancies than glass-ionomer cement (P < 0.0001).

  11. Can poly(acrylic) acid molecular weight mixtures improve the compressive fracture strength and elastic modulus of a glass-ionomer restorative?

    Science.gov (United States)

    Dowling, Adam H; Fleming, Garry J P

    2011-11-01

    To optimize the compressive fracture strength (σ) and elastic modulus (E) of a glass-ionomer (GI) restorative using poly(acrylic) acid (PAA) weight average molecular weight (M(w)) mixtures. 174 PAA solutions were prepared (four control PAA M(w)s at three PAA concentrations (25, 35 and 45%) (n=12) and six M(w) mixtures (Groups A-F at nine blend ratios and three PAA concentrations (n=162))). The viscosity (η) of each PAA solution was determined using a digital viscometer. The PAA solutions were hand-mixed with a commercial GI restorative powder (Ionofil Molar; Voco, Cuxhaven, Germany) and σ and E were determined using cylindrical (6 mm height, 4 mm diameter) specimens (n=20) at 24 h. Data were analyzed using analyses of variance (ANOVA) (three-, two- and one-way) and regression analyses at p0.083). The current approach to improving the mechanical properties of GI restoratives using PAA M(w) mixtures is encouraging, however, further manipulation of the GI restorative system by optimizing PAA M(w) mixtures, blend ratios and PAA concentrations is required to elicit further improvements in σ and E without impacting upon the η of the PAA solution. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. In vivo characterization of polymer based dental cements

    Directory of Open Access Journals (Sweden)

    Widiyanti P

    2011-12-01

    Full Text Available Background: In vivo studies investigating the characterization of dental cements have been demonstrated. As few in vitro studies on this cement system have been performed. Previous researches in dental material has been standardized dental cement which fulfilled the physical and mechanical characteristic such as shear strength but were on in vitro condition, the animal model and clinical study of dental cement from laboratory has not been done yet. This research examined physical and mechanical characteristic in vivo using rabbit by making the caries (class III in anterior teeth especially in mesial or distal incisive, fulfilled the cavity by dental cement and analyzed the compressive strength, tensile strength, and microstructure using scanning electron microscope (SEM. Purpose: This study is aimed to describe the in vivo characterization of dental cements based on polymer (zinc phosphate cement, polycarboxylate, glass ionomer cement and zinc oxide eugenol. Methods: First, preparation was done on animal model’s teeth (6 rabbits, male, 5 months old. The cavity was made which involved the dentin. Then the cavity was filled with dental cement. After the filling procedure, the animal model should be kept until 21 days and than the compressive test, tensile test and microstructure was characterized. Compressive test and tensile test was analyzed using samples from extracted tooth and was measured with autograph. The microstructure test was measured using SEM. Results: The best compressive strength value was belongs to zinc phosphate cement which was 101.888 Mpa and the best tensile strength value was belongs to glass ionomer cement which was 6.555 Mpa. Conclusion: In conclusion, comparing with 3 others type of dental cements which are zinc phosphate, polycarboxylate and glass ionomer cement, zinc oxide eugenol cement has the worst for both physical and mechanical properties.Latar belakang: Studi in vivo meneliti karakterisasi secara in vivo dari

  13. Fracture resistance of metal- and galvano-ceramic crowns cemented with different luting cements: in vitro comparative study.

    Science.gov (United States)

    Ghazy, Mohamed H; Madina, Manal M Abo

    2006-01-01

    This study aimed to compare the fracture resistance of galvano-ceramic crowns with metal-ceramic crowns cemented to natural premolar teeth with different luting cements. Sixty intact maxillary premolars were prepared to receive full-coverage crown restorations and were divided into 2 equal groups (n = 30): galvano-ceramic crowns and metal-ceramic crowns. Each group was further subdivided into 3 equal subgroups (n = 10) according to the luting cement used: zinc-phosphate, glass-ionomer, or adhesive-resin cement. The specimens were then compressively loaded until failure in a universal testing machine. The metal-ceramic crowns exhibited higher resistance to fracture compared to galvano-ceramic crowns, but both exceeded the normal documented values of occlusal masticatory forces.

  14. Evaluation of tensile retention of Y-TZP crowns cemented on resin composite cores: effect of the cement and Y-TZP surface conditioning.

    Science.gov (United States)

    Rippe, M P; Amaral, R; Oliveira, F S; Cesar, P F; Scotti, R; Valandro, L F; Bottino, M A

    2015-01-01

    This study evaluated the effect of the cement type (adhesive resin, self-adhesive, glass ionomer, and zinc phosphate) on the retention of crowns made of yttria-stabilized polycrystalline tetragonal zirconia (Y-TZP). Therefore, 108 freshly extracted molars were embedded in acrylic resin, perpendicular to their long axis, and prepared for full crowns: the crown preparations were removed and reconstructed using composite resin plus fiber posts with dimensions identical to the prepared dentin. The preparations were impressed using addition silicone, and Y-TZP copings were produced, which presented a special setup for the tensile testing. Cementation was performed with two adhesive resin cements (Multilink Automix, Ivoclar-Vivadent; RelyX ARC, 3M ESPE, St Paul, MN, USA), one self-adhesive resin cement (RelyX U100, 3M ESPE), one glass ionomer based cement (RelyX Luting, 3M ESPE), and one zinc phosphate cement (Cimento de Zinco, SS White, Rio de Janeiro, Brazil). For the resin cement groups, the inner surfaces of the crowns were subjected to three surface treatments: cleaning with isopropyl alcohol, tribochemical silica coating, or application of a thin low-fusing glass porcelain layer plus silanization. After 24 hours, all groups were subjected to thermocycling (6000 cycles) and included in a special device for tensile testing in a universal testing machine to test the retention of the infrastructure. After testing, the failure modes of all samples were analyzed under a stereomicroscope. The Kruskal-Wallis test showed that the surface treatment and cement type (α=0.05) affected the tensile retention results. The Multilink cement presented the highest tensile retention values, but that result was not statistically different from RelyX ARC. The surface treatment was statistically relevant only for the Multilink cement. The cement choice was shown to be more important than the crown surface treatment for cementation of a Y-TZP crown to a composite resin substrate.

  15. Use of infrared and magnetic nuclear resonance techniques in the characterization of the acid-base reaction of an experimental dental cement

    International Nuclear Information System (INIS)

    Bertolini, Marcio Jose; Zaghete, Maria Aparecida; Gimenes, Rossano

    2009-01-01

    Glass ionomer cements (GICs) are products of the acid-base setting reaction between an finely fluoro-alumino silicate glass powder and poly(acrylic acid) in aqueous solution. The sol gel method is an adequate route of preparation of the glasses used to obtain the GICs. The objective of this paper was to compare two powders: a commercial and an experimental and to investigate the structural changes during hardening of the cements by FTIR and Al MAS NMR. These analyses showed that the experimental glass powder reacted with organic acid to form the GICs and it is a promising material to manufacture dental cements. (author)

  16. Remineralizing efficacy of silver diamine fluoride and glass ionomer type VII for their proposed use as indirect pulp capping materials - Part II (A clinical study).

    Science.gov (United States)

    Sinha, N; Gupta, A; Logani, A; Shah, N

    2011-07-01

    To evaluate in vivo the remineralizing efficacy of silver diamine fluoride (SDF), glass ionomer Type VII (GC VII) and calcium hydroxide (Dycal). 60 subjects in the age group of 18-35 years, matching the inclusion criteria and having deep carious lesions in the permanent first and second molars were selected. The teeth were aseptically opened under rubber dam and after gross caries removal, approximately 0.4mg of soft discolored dentin was removed with a sharp spoon excavator from the mesial or distal aspect of the cavity. The test material was randomly selected and applied in a thickness of 1.5-2mm and the cavity sealed with cavit. T