WorldWideScience

Sample records for resin nanocomposites suspended

  1. Cellulose whisker/epoxy resin nanocomposites.

    Science.gov (United States)

    Tang, Liming; Weder, Christoph

    2010-04-01

    New nanocomposites composed of cellulose nanofibers or "whiskers" and an epoxy resin were prepared. Cellulose whiskers with aspect ratios of approximately 10 and approximately 84 were isolated from cotton and sea animals called tunicates, respectively. Suspensions of these whiskers in dimethylformamide were combined with an oligomeric difunctional diglycidyl ether of bisphenol A with an epoxide equivalent weight of 185-192 and a diethyl toluenediamine-based curing agent. Thin films were produced by casting these mixtures and subsequent curing. The whisker content was systematically varied between 4 and 24% v/v. Electron microscopy studies suggest that the whiskers are evenly dispersed within the epoxy matrix. Dynamic mechanical thermoanalysis revealed that the glass transition temperature (T(g)) of the materials was not significantly influenced by the incorporation of the cellulose filler. Between room temperature and 150 degrees C, i.e., below T(g), the tensile storage moduli (E') of the nanocomposites increased modestly, for example from 1.6 GPa for the neat polymer to 4.9 and 3.6 GPa for nanocomposites comprising 16% v/v tunicate or cotton whiskers. The relative reinforcement was more significant at 185 degrees C (i.e., above T(g)), where E' was increased from approximately 16 MPa (neat polymer) to approximately 1.6 GPa (tunicate) or approximately 215 MPa (cotton). The mechanical properties of the new materials are well-described by the percolation model and are the result of the formation of a percolating whisker network in which stress transfer is facilitated by strong interactions between the whiskers.

  2. Biphenyl liquid crystalline epoxy resin as a low-shrinkage resin-based dental restorative nanocomposite.

    Science.gov (United States)

    Hsu, Sheng-Hao; Chen, Rung-Shu; Chang, Yuan-Ling; Chen, Min-Huey; Cheng, Kuo-Chung; Su, Wei-Fang

    2012-11-01

    Low-shrinkage resin-based photocurable liquid crystalline epoxy nanocomposite has been investigated with regard to its application as a dental restoration material. The nanocomposite consists of an organic matrix and an inorganic reinforcing filler. The organic matrix is made of liquid crystalline biphenyl epoxy resin (BP), an epoxy resin consisting of cyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (ECH), the photoinitiator 4-octylphenyl phenyliodonium hexafluoroantimonate and the photosensitizer champhorquinone. The inorganic filler is silica nanoparticles (∼70-100 nm). The nanoparticles were modified by an epoxy silane of γ-glycidoxypropyltrimethoxysilane to be compatible with the organic matrix and to chemically bond with the organic matrix after photo curing. By incorporating the BP liquid crystalline (LC) epoxy resin into conventional ECH epoxy resin, the nanocomposite has improved hardness, flexural modulus, water absorption and coefficient of thermal expansion. Although the incorporation of silica filler may dilute the reinforcing effect of crystalline BP, a high silica filler content (∼42 vol.%) was found to increase the physical and chemical properties of the nanocomposite due to the formation of unique microstructures. The microstructure of nanoparticle embedded layers was observed in the nanocomposite using scanning and transmission electron microscopy. This unique microstructure indicates that the crystalline BP and nanoparticles support each other and result in outstanding mechanical properties. The crystalline BP in the LC epoxy resin-based nanocomposite was partially melted during exothermic photopolymerization, and the resin expanded via an order-to-disorder transition. Thus, the post-gelation shrinkage of the LC epoxy resin-based nanocomposite is greatly reduced, ∼50.6% less than in commercialized methacrylate resin-based composites. This LC epoxy nanocomposite demonstrates good physical and chemical properties and good biocompatibility

  3. Preparation and Characterization of Phenolic Resin/Montmorillonite Nanocomposite

    Directory of Open Access Journals (Sweden)

    Morteza Soltan-Dehghan

    2012-12-01

    Full Text Available Phenolic resins have been widely used for selective high technology applications due to their excellent ablative properties, structural integrity and thermal stability that make them appropriate for thermal insulation materials, wood products industry, coatings, moulding compounds and composite materials. Polymer layered silicate nanocomposites based on montmorillonite (MMT have attracted a great deal of attention because of enhanced properties in mechanical, thermal, barrier and clarity properties without a significant increase in density, which is not possible with conventional fillers. Phenolic resin/montmorillonite (Cloisite 15A nanocomposite was prepared by a combined route of solution blending and in-situ polymerization. Theoptimized conditions for preparation of nanocomposite were achieved by evaluation of various processing parameters (mechanical mixer, high speed disperser and high energy ultrasonic source, mixing time (0.5, 1, 3, 10, 24, 48, 72, and 96 h and different amounts of montmorillonite (5 and 10 weight percents of montmorillonite relative to resol. X-Ray Diffractometer and thermal gravimetric analyzer were used accordingly to show the degree of nanodispersions of organomontmorillonite in polymeric matrix and the effect of nanofiller on thermal stability of nanocomposite with respect to neatresol. The results of high energy ultrasonic source show that a nanocomposite of phenolic resin with 5 wt% montmorillonite displays the best dispersion of clay layers. Thermal stability of nanocomposite was increased by 27% in comparison with neat resol.

  4. Effect of staining solutions on discoloration of resin nanocomposites.

    Science.gov (United States)

    Park, Jeong-Kil; Kim, Tae-Hyong; Ko, Ching-Chang; García-Godoy, Franklin; Kim, Hyung-Il; Kwon, Yong Hoon

    2010-02-01

    To examine the effect of staining solutions on the discoloration of resin nanocomposites. Three resin nanocomposites (Ceram X, Grandio, and Filtek Z350) were light cured for 40 seconds at a light intensity of 1000 mW/cm2. The color of the specimens was measured in %R (reflectance) mode before and after immersing the specimens in four different test solutions [distilled water (DW), coffee (CF), 50% ethanol (50ET) and brewed green tea (GT)] for 7 hours/day over a 3-week period. The color difference (deltaE*) was obtained based on the CIEL*a*b* color coordinate values. The specimens immersed in DW, 50ET and GT showed a slight increase in L* value. However, the samples immersed in CF showed a decrease in the L* value and an increase in the b* value. CF induced a significant color change (deltaE*: 3.1-5.6) in most specimens but the other solutions induced only a slight color change. Overall, coffee caused unacceptable color changes to the resin nanocomposites.

  5. Comparative evaluation of shear bond strength of conventional composite resin and nanocomposite resin to sandblasted primary anterior stainless steel crown.

    Science.gov (United States)

    Khatri, A; Nandlal, B

    2007-01-01

    To evaluate and compare the shear bond strength of conventional composite resin and nanocomposite resin to sandblasted primary anterior stainless steel crown. The study samples consisted of 30 primary anterior stainless steel crowns (Unitek TM, size R4), embedded in resin blocks with crown, in test groups of 15 samples each. Mounting of the crown was done using resin block with one crown each. Sandblasting was done and the bonding agent Prime and Bond NT (Dentsply) was applied on the labial surface of the primary anterior sandblasted crown. The composite resin and nanocomposite resin were placed into the well of Teflon jig and bonded to Stainless Steel Crowns. The cured samples were placed in distilled water and stored in incubator at 37 degrees C for 48 hours. Shear bond strength was measured using universal testing machine (Hounsefield U.K. Model, with a capacity of 50 KN). Independent sample 't' test revealed a nonsignificant (P resin and nanocomposite resin had statistically similar mean shear bond strength, with nanocomposite having little more strength compared to conventional composite.

  6. Preparation and characterization of Bismaleimide resin/titania nanocomposites via sol-gel process

    OpenAIRE

    Lu, Guotao; Huang, Ying

    2013-01-01

    Bismaleimide (BMI) resin/ titania nanocomposites were synthesized from allylated-phenolic modified bismaleimide resin and TiO2 via the sol-gel process of tetrabutyltitanate (Ti(OnBu)4, TBT). These nanocomposite materials were characterized by FT-IR, XRD, FE-SEM, TGA and DMA. It was found that the nano-scale TiO2 particles were formed in the AP-BMI resin matrix, and the average primary particle size of the dispersed phase in the nanocomposites was less than 100nm, but the particle aggregates w...

  7. MWCNTs/Resin Nanocomposites: Structural, Thermal, Mechanical and Dielectric Investigation

    Directory of Open Access Journals (Sweden)

    N. D. Alexopoulos

    2015-11-01

    Full Text Available Multi-wall carbon nanotubes (MWCNTs were manufactured, characterized and added to a typical aeronautical resin matrix at different concentrations as nano-reinforcement. The carbon content of produced MWCNTs was determined to be around 98.5% while they consisted of 13-20 wall-layers and their external diameter had an average size in between 20 and 50 nm. MWCNTs were dispersed in an epoxy resin system and tensile specimens for different MWCNTs concentrations were prepared in an open mould. Electrical wiring was attached to the specimens’ surface and surface electrical resistance change was in-situ monitored during monotonic tension till fracture. Performed tensile tests showed that the MWCNTs addition increased both modulus of elasticity and ultimate tensile strength on the nano-composites with a simultaneously dramatic ductility decrease. The MWCNTs addition enhanced the investigated resin matrix with monitoring ability; electrical resistance change of the investigated tensile tests was correlated in the elastic regime with axial nominal strain and the gauge factor of the different MWCNTs concentration specimens were calculated. It was found that lowest MWCNTs concentration gave the best results in terms of piezo-resistivity and simultaneously the least enhancement in the mechanical properties.

  8. Role of Interphase in the Mechanical Behavior of Silica/Epoxy Resin Nanocomposites

    Directory of Open Access Journals (Sweden)

    Yi Hua

    2015-06-01

    Full Text Available A nanoscale representative volume element has been developed to investigate the effect of interphase geometry and property on the mechanical behavior of silica/epoxy resin nanocomposites. The role of interphase–matrix bonding was also examined. Results suggested that interphase modulus and interfacial bonding conditions had significant influence on the effective stiffness of nanocomposites, while its sensitivities with respect to both the thickness and the gradient property of the interphase was minimal. The stiffer interphase demonstrated a higher load-sharing capacity, which also increased the stress distribution uniformity within the resin nanocomposites. Under the condition of imperfect interfacial bonding, the effective stiffness of nanocomposites was much lower, which was in good agreement with the documented experimental observations. This work could shed some light on the design and manufacturing of resin nanocomposites.

  9. Experimental and modeling studies of clay/polydicyclopentadiene resin nanocomposites

    Science.gov (United States)

    Yoonessi, Mitra

    Hybrid organic-inorganic nanocomposites have received considerable attention during the last five years due to their unexpected properties. This work incorporated nanodispersed organically modified montmorillonite clay into polydicyclopentadiene resin matrices. Montmorillonite consists of 1 nm platelet sheets with a 2:1 structure, consisting of an alumina octahedral layer sandwiched between two silica tetrahedral layers. The relative weak forces between platelets allow small molecules like water, solvents and monomers as well as polymers, to enter into the interlayer spacings between the platelet sheets. In-situ polymerization of highly delaminated clay/dicyclopentadiene (DCPD) dispersions was used to prepare clay/polydicyclopentadiene (polyDCPD) nanocomposites. Highly delaminated composites were characterized using X-ray diffraction, X-ray scattering and high resolution TEM. Composites with 0.5--1 weight percent of clay had higher Tg values and flexural moduli. The flow properties of the organically-modified montmorillonite/DCPD liquid dispersions were examined using a co-rotating viscometer. The dispersions with clay concentrations higher than 0.5wt% clay in DCPD showed thixotropic flow behavior. Small angle neutron scattering (SANS) experiments were performed to obtain anisotropic scattering of highly delaminated clay in DCPD due to the orientation of clay platelets and tactoids in the shear field. No anisotropic scattering was observed. The reason for this unexpected result is not yet understood. Highly delaminated organically-modified clay composites were examined using small angle neutron scattering (SANS) and ultra small angle neutron scattering (USANS). The SANS data from 0.5, 1 and 2wt% clay/polyDCPD composites with 2 different types of clay were fitted to the stacked disk model. The average number of clay layers per tactoid was predicted by fitting the experimental data to the stacked disk model. Extensive high-resolution TEM analyses were performed on

  10. Preparation and Property Study of Graphene Oxide Reinforced Epoxy Resin Insulation Nanocomposites with High Heat Conductivity

    Science.gov (United States)

    Shan, Xinran; Liu, Yongchang; Wu, Zhixiong; Liu, Huiming; Zhang, Zhong; Huang, Rongjin; Huang, Chuanjun; Liu, Zheng; Li, Laifeng

    2017-02-01

    In this paper, graphene oxide reinforced epoxy resin nanocomposites were successfully prepared. Compared with unmodified epoxy resin, the heat conductivity of the graphene oxide reinforced epoxy resin nanocomposites had been improved while keeping the insulation performance. The tensile strength was investigated at both room temperature (300 K) and liquid nitrogen temperature (77 K). And the fracture surfaces were examined by scanning electron microscopy (SEM). Results showed that the materials had excellent mechanical properties, which could be advantages for the applications as insulating layer in low temperature superconducting magnets.

  11. Effect of different blue light-curing systems on the polymerization of nanocomposite resins.

    Science.gov (United States)

    Jang, Chang-Min; Seol, Hyo-Joung; Kim, Hyung-Ii; Kwon, Yong Hoon

    2009-12-01

    To examine the degree of polymerization of nanocomposite resins to test the possibility of using a diode-pumped solid state (DPSS) laser as a light-curing source on behalf of the argon laser. DPSS lasers emitting light at 473 nm have many advantages over argon lasers on account of their compactness, efficiency, and price. A 473-nm DPSS laser (LAS) was used with three other light-curing units (a quartz-tungsten-halogen lamp-based unit, a light emitting diode-based unit, and a xenon lamp-based plasma arc unit) to polymerize dental nanocomposite resins. The degree of polymerization was determined by measuring the microhardness, maximum polymerization shrinkage, and increase in temperature during and after light curing. The results were analyzed statistically. The specimens light cured with LAS showed a microhardness that was similar or superior to the values obtained from the specimens cured with the other light-curing units and maximum polymerization shrinkage values. The maximum increase in temperature by LAS was much lower than that induced by the other light-curing units. LAS effectively polymerizes dental nanocomposite resins to an extent similar to that of recently available light-curing units. The results suggest that LAS has good potential as a light source for light curing of dental nanocomposite resins.

  12. Effect of polishing systems on stain susceptibility and surface roughness of nanocomposite resin material.

    Science.gov (United States)

    Barakah, Haifa M; Taher, Nadia M

    2014-09-01

    Different polishing systems vary in their effect on reducing surface roughness and stain susceptibility of dental composite resin materials. The purpose of this study was to compare the effect of 3 polishing systems on the stain susceptibility and surface roughness of 2 nanocomposite resins and a microhybrid composite resin. Forty-five disks (2×10 mm) each were fabricated of 2 nanocomposite resins (Filtek Supreme XT and Tetric EvoCeram) and 1 microhybrid composite resin (Z250). Both sides of the disks were wet finished, and 1 side was polished with PoGo, Astropol, or Hi-Shine (n=5). Unpolished surfaces served as controls. The average roughness (Ra, μm) was measured with a profilometer, and the baseline color was recorded with a spectrophotometer. All specimens were incubated while soaking in a staining solution of coffee, green tea, and berry juice for 3 weeks. The color was recorded again, and the data were analyzed with 2-way ANOVA at α=.05 and Tukey multiple comparison tests. All polishing systems improved the staining resistance of Filtek Supreme XT and Z250 but did not affect that of Tetric EvoCeram. The surface color of Filtek Supreme XT was changed significantly and was the smoothest after polishing with PoGo, whereas Hi-Shine produced significantly rougher surfaces but with the lowest color change. Hi-Shine produced the highest color change in Z250. The surface roughness did not differ significantly between the other polishing systems. Tetric EvoCeram showed no significant differences in color change or surface roughness. Staining susceptibility and surface roughness depend mainly on material composition and on the polishing procedures. Polishing improves the staining resistance of composite resins. Nanocomposite resins did not exhibit better staining resistance or surface roughness than microhybrid composite resin. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Isothermal curing of polymer layered silicate nanocomposites based upon epoxy resin by means of anionic homopolymerisation

    International Nuclear Information System (INIS)

    Román, Frida; Calventus, Yolanda; Colomer, Pere; Hutchinson, John M.

    2013-01-01

    Highlights: • The nanocomposite with low content of clay displayed improved thermal properties. • The vitrification was observed in the isothermal curing. • Dielectric relaxations outside and inside of the clay galleries were detected. - Abstract: The use of an initiator, 4-(dimethylamino) pyridine (DMAP), to promote an anionic homopolymerisation reaction for the isothermal cure of polymer layered silicate (PLS) nanocomposites based on an epoxy resin, as well as the effect of the nanoclay content, have been studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dielectric relaxation spectroscopy (DRS) and transmission electron microscopy (TEM). The vitrification phenomenon was observed during the isothermal cure process, and it was found that the nanocomposite with a low clay content (2 wt%), denoted EDM2, shows improved thermal properties with respect to the unreinforced resin (denoted ED), while the nanocomposite with a higher clay content (5 wt%), denoted EDM5, displayed inferior properties. The cure kinetics were analysed by different methods, and it was observed that the activation energy and kinetic parameters of EDM2 were lower compared to the other two systems. Examination of the nanostructure of the cured EDM2 nanocomposite showed partial exfoliation, while the EDM5 system retains an intercalated nanostructure. In the DRS studies of the curing process of the EDM2 system, two dielectric relaxations were detected, which are associated with the molecular mobility in the curing reaction which takes place both outside and inside the clay galleries

  14. Effect of light-curing units on the thermal expansion of resin nanocomposites.

    Science.gov (United States)

    Park, Jeong-Kil; Hur, Bock; Ko, Ching-Chang; García-Godoy, Franklin; Kim, Hyung-Il; Kwon, Yong Hoon

    2010-12-01

    To examine the thermal expansion of resin nanocomposites after light-curing using different light-curing units. Four different resin nanocomposites and four different light-curing units [quartz-tungsten-halogen (QTH), light emitting diode (LED), laser, and plasma arc] were chosen. Metal dies were filled with resin to make specimens and light-cured. The light intensity and light-curing time of the QTH and LED light-curing units were 1000 mW/cm2 and 40 seconds, 700 mW/cm2 and 40 seconds for the laser, and 1600 mW/cm2 and 3 seconds for the plasma arc. The coefficient of thermal expansion (CTE) was evaluated using a thermomechanical analyzer (TMA) at temperatures ranging from 30-80 degrees C. The CTE of the resin nanocomposites tested ranged from 28.5 to 65.8 (x 10(-6)/ degrees C), depending on the product and type of light-curing unit used. Among the specimens, Grandio showed the lowest CTE. The specimens cured using the plasma arc unit (Apollo 95E) showed the highest CTE. There was a linear correlation between the CTE and filler content (vol%) (R: -0.94-0.99 depending on the light-curing unit). The results may suggest a careful selection of the light-curing unit because there was more expansion in the specimens cured using the plasma arc unit than those cured by the other units.

  15. Thermoset nanocomposites from waterborne bio-based epoxy resin and cellulose nanowhiskers.

    Science.gov (United States)

    Wu, Guo-min; Liu, Di; Liu, Gui-feng; Chen, Jian; Huo, Shu-ping; Kong, Zhen-wu

    2015-01-01

    Thermoset nanocomposites were prepared from a waterborne terpene-maleic ester type epoxy resin (WTME) and cellulose nanowhiskers (CNWs). The curing behaviors of WTME/CNWs nanocomposites were measured with rotational rheometer. The results show that the storage modulus (G') of WTME/CNWs nanocomposites increased with the increase of CNWs content. Observations by scanning electron microscopy (SEM) demonstrate that the incorporation of CNWs in WTME matrix caused microphase separation and destroyed the compactness of the matrix. This effect leads to the glass transition temperatures (Tg) of WTME/CNWs nanocomposites slightly decrease with the increase of CNWs content, which were confirmed by both DSC and DMA tests. The mechanical properties of WTME/CNWs nanocomposites were investigated by tensile testing. The Yong's modulus (E) and tensile strength (σb) of the nanocomposites were significantly reinforced by the addition of CNWs. These results indicate that CNWs exhibit excellent reinforcement effect on WTME matrix, due to the formation and increase of interfacial interaction by hydrogen bonds between CNWs nano-filler and the WTME matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Rheological and electrical properties of hybrid nanocomposites of epoxy resins filled with graphite nanoplatelets and carbon black.

    Science.gov (United States)

    Truong, Quang-Trung; Lee, Seon-Suk; Lee, Dai-Soo

    2011-02-01

    Graphite nanoplatelets (GNP) were prepared by microwave irradiation of natural graphites intercalated with ferric chloride in nitromethane (GIC). Intercalated structure of GIC was confirmed by X-ray diffraction patterns. SEM images of GIC after microwave irradiation showed the exfoliation of GIC, the formation of GNPs. Hybrid nanocomposites of bisphenol-A type epoxy resins filled with GNP and a conductive carbon black (CB) were prepared and rheological and electrical properties of the nanocomposites were investigated. Viscosity and electrical surface resistivity of the nanocomposites showed minima at certain mixtures of GNP and CB in the epoxy resins.

  17. Evaluation of Color Stability and Surface Roughness of Bulk-Fill Resin Composites and Nanocomposites

    OpenAIRE

    Muhammet Karadaş; Sezer Demirbuğa

    2017-01-01

    Objective: The purpose of this study was to evaluate the color stability and surface roughness of four bulk-fill resin composites (SonicFill, Filtek Bulk Fill Flowable, X-tra fil, Filtek Bulk Fill Posterior) and three nanocomposites (G-aenial Universal Flo, Herculite XRV Ultra, Filtek Ultimate) after an aging simulation. Materials and Methods: The upper surfaces of prepared composite discs were polished with Sof-Lex discs. The samples were subjected to a thermocycling process for 3000 cyc...

  18. Protein-based green resins and nanocomposites from waste residues

    Science.gov (United States)

    Rahman, Muhammad Maksudur

    The main goal of the present research is to design and fabricate 'green' nanocomposites using eco-friendly and biodegradable polymers, an effort driven towards an alternative of conventional petroleum-derived polymers in structural applications considering environmental and economic concerns. The behavior of structure, composition and property relationships between the novel combinations of these materials has been analyzed and discussed. The materials used in this study, many of them from non-edible sources, are obtained, derived and/or synthesized using various wastes from agricultural and food industries, as much as possible, so as to utilize wastes that are discarded at present. At the same time, the use of waste sources reduces the dependency of edible source-based biopolymers in various structural applications and thus, reduces the cost of materials significantly. Overall, this study opens up new avenues in the fabrication of low-cost 'green' nanocomposite with facile and 'green' methodology using various agricultural and food wastes.

  19. Effect of nano SiO{sub 2} particles on the morphology and mechanical properties of POSS nanocomposite dental resins

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yizhi; Sun, Yi, E-mail: sunyi@hit.edu.cn; Zeng, Fanlin [Harbin Institute of Technology, Department of Astronautic Science and Mechanics (China); Xie, Weili, E-mail: xwl811@126.com [Harbin Medical University, Department of Stomatology (China); Liu, Yang [Harbin Stomatology Hospital (China); Geng, Lin [Harbin Institute of Technology, School of Materials Science and Engineering (China)

    2014-12-15

    Nanocomposite dental resins composed of polyhedral oligomeric silsesquioxane nanocomposite matrix and 0, 0.5,1, 1.5 and 2 wt% nano SiO{sub 2} as filler were prepared by light curing method. The nanocomposite resins were characterized by performing compressive, three-point flexure, nanoindentation and nanoscratch testings as well as optical microscopy and scanning electron microscope analysis. The effects of different nano SiO{sub 2} contents were studied on compressive strength, flexural strength, hardness and resistance of composite resin. From the mechanical results, it was found that nano SiO{sub 2} effectively enhanced the mechanical properties of the composite resins at low content. With the increase of the nano SiO{sub 2} content, the mechanical properties decreased. It was attributed to the content of nano SiO{sub 2} and dispersion of nanoparticles in matrix.

  20. Effect of light-curing units on the thermal expansion of resin nanocomposites

    Science.gov (United States)

    Park, Jeong-Kil; Hur, Bock; Ko, Ching-Chang; García-Godoy, Franklin; Kim, Hyung-Il; Kwon, Yong Hoon

    2011-01-01

    Purpose To examine the thermal expansion of resin nanocomposites after light-curing using different light-curing units. Methods Four different resin nanocomposites and four different light-curing units [quartz-tungsten-halogen (QTH), light emitting diode (LED), laser, and plasma arc] were chosen. Metal dies were filled with resin to make specimens and light-cured. The light intensity and light-curing time of the QTH and LED light-curing units were 1000 mW/cm2 and 40 seconds, 700 mW/cm2 and 40 seconds for the laser, and 1600 mW/cm2 and 3 seconds for the plasma arc. The coefficient of thermal expansion (CTE) was evaluated using a thermomechanical analyzer (TMA) at temperatures ranging from 30–80°C. Results The CTE of the resin nanocomposites tested ranged from 28.5 to 65.8 (×10−6/°C), depending on the product and type of light-curing unit used. Among the specimens Grandio showed the lowest CTE. The specimens cured using the plasma arc unit (Apollo 95E) showed the highest CTE. There was a linear correlation between the CTE and filler content (vol%) (R: −0.94~−0.99 depending on the light-curing unit). The results may suggest a careful selection of the light-curing unit because there was more expansion in the specimens cured using the plasma arc unit than those cured by the other units. (Am J Dent 2010;23:331–334). PMID:21344832

  1. Preparation and thermal properties of mesoporous silica/phenolic resin nanocomposites via in situ polymerization

    Directory of Open Access Journals (Sweden)

    J. Lv

    2012-10-01

    Full Text Available In order to enhance the adhesion between inorganic particles and polymer matrix, in this paper, the mesoporous silica SBA-15 material was synthesized by the sol-gel method. The surface of SBA-15 was modified using γ-glycidyloxypropyltrimethoxysilane (GOTMS as a coupling agent, and then mesoporous silica/phenolic resin (SBA-15/PF nanocomposites were prepared via in situ polymerization. The structural parameters and physical properties of SBA-15, SBA-15-GOTMS (SBA-15 surface treated using GOTMS as coupling agents and E-SBA-15/PF (SBA-15/PF nanocomposites extracted using ethanol as solvent were characterized by X-ray diffraction (XRD, N2 adsorption-desorption, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, transmission electron microscopy (TEM and thermogravimetric analysis (TGA. The thermal properties of the nanocomposites were studied by differential scanning calorimetry (DSC and thermogravimetric analysis (TGA. The results demonstrated that the GOTMS were successfully grafted onto the surface of SBA-15, and chemical bonds between PF and SBA-15-GOTMS were formed after in situ polymerization. In addition, it is found that the in situ polymerization method has great effects on the textural parameters of SBA-15. The results also showed that the glass transition temperatures and thermal stability of the PF nanocomposites were obviously enhanced as compared with the pure PF at silica contents between 1–3 wt%, due to the uniform dispersion of the modified SBA-15 in the matrix.

  2. Barium ferrite/epoxy resin nanocomposite system: Fabrication, dielectric, magnetic and hydration studies

    Directory of Open Access Journals (Sweden)

    A. Kanapitsas

    2016-03-01

    Full Text Available Composite systems of epoxy resin and barium ferrite nanoparticles have been prepared, and studied varying the content of the inclusions. Morphology of prepared samples has been examined via scanning electron microscopy and X-ray diffraction spectra, while electrical and magnetic properties were investigated by means of broadband dielectric spectroscopy, and magnetization tests respectively. Finally, water vapor sorption measurements were conducted in order to study the water sorption dynamics of the system. Electron microscopy images revealed the successful fabrication of nanocomposites. Dielectric permittivity increases with filler content, while three relaxation processes were detected in the relative spectra. These processes are attributed to interfacial polarization, glass to rubber transition of the matrix, and re-orientation of polar side groups of the polymer’s chain. Magnetization and magnetic saturation increase with magnetic nano-powder content. Nanocomposites absorb a small amount of water, not exceeding 1.7 wt%, regardless filler content, indicating their hydrophobic character.

  3. Anti-flammable vinyl ester resin nano-composite with nano-titania

    Science.gov (United States)

    Das, Rajib

    Anti-flammable material is a common expectation for any industry and household applications to protect the material from fire accident. Polymer composites also play a significant role in preparing anti flammable materials. Vinyl ester resins (VERs) are thermosetting resins that have excellent mechanical and thermal properties of epoxy resins and Nanotitania is an inexpensive, nontoxic and biocompatible inorganic material. In this paper to investigate the flame retardency of polymer nanocomposites VER is used as polymer matrix and TiO2 is used as inorganic nanofiller.3-[2-(2-aminoethylamino) ethylamino]propyl-trimethoxysilane (TATMS), a kind of silane is used as a coupling agent to functionalize the surface of nanoTiO2 to improve its flame retardency by adding Si and N2 group. TGA test and FTIR test have been performed and different peaks for Si and N2 in the modified nanofiller and weight loss of fabricated nanofiller confirmed that fabrication method was successful. After that, nanocomposite sample of VERs reinforced with nano TiO2 prepared and the effects of different loadings on mechanical and flame retardant properties are investigated after and before the modification of nanofillers. From tensile test result it is found that up to 5% loading of modified nanofiller the tensile strength is 62 MPa that is almost as same as pure VER and the tensile strength of unmodified nanofiller based PNC is 68 MPa which is not significant improvement in its mechanical property. From MCC test of flame retardancy it is found that the normalized heat release capacity of modified nanofiller based nanocomposite is decreased by 27.7% than unmodified nanofiller based PNC that is 9.8%. Also the normalized total heat release of modified nanofiller based PNC is 21.4% than unmodified PNC that is 12.4%.

  4. Synthesis of multi-walled carbon nanotubes and their application in resin based nanocomposites

    International Nuclear Information System (INIS)

    Ahmad, Shahid Nisar; Hakeem, Saira; Alvi, Rashid Ahmed; Farooq, Khawar; Farooq, Naveed; Yasmin, Farida; Saeed, Sadaf

    2013-01-01

    Multi-walled carbon nanotubes (MWCNTs) were synthesized by catalytic decomposition of hydrocarbon gas using chemical vapor deposition method. Synthesis was done at different growth temperatures and catalyst ratios. These MWCNTs were dispersed in epoxy resin (E-51) and their effect on mechanical strength of epoxy nanocomposites was studied. Increase in the mechanical strength of epoxy was observed with the addition of CNTs. The surface characterization was done by using optical microscope and scanning electron microscope (SEM). Mechanical properties were determined by the general tensile strength testing method.

  5. Characteristics of epoxy resin/SiO2 nanocomposite insulation: effects of plasma surface treatment on the nanoparticles.

    Science.gov (United States)

    Yan, Wei; Phung, B T; Han, Zhao Jun; Ostrikov, Kostya

    2013-05-01

    The present study compares the effects of two different material processing techniques on modifying hydrophilic SiO2 nanoparticles. In one method, the nanoparticles undergo plasma treatment by using a custom-developed atmospheric-pressure non-equilibrium plasma reactor. With the other method, they undergo chemical treatment which grafts silane groups onto their surface and turns them into hydrophobic. The treated nanoparticles are then used to synthesize epoxy resin-based nanocomposites for electrical insulation applications. Their characteristics are investigated and compared with the pure epoxy resin and nanocomposite fabricated with unmodified nanofillers counterparts. The dispersion features of the nanoparticles in the epoxy resin matrix are examined through scanning electron microscopy (SEM) images. All samples show evidence that the agglomerations are smaller than 30 nm in their diameters. This indicates good dispersion uniformity. The Weibull plot of breakdown strength and the recorded partial discharge (PD) events of the epoxy resin/plasma-treated hydrophilic SiO2 nanocomposite (ER/PTI) suggest that the plasma-treated specimen yields higher breakdown strength and lower PD magnitude as compared to the untreated ones. In contrast, surprisingly, lower breakdown strength is found for the nanocomposite made by the chemically treated hydrophobic particles, whereas the PD magnitude and PD numbers remain at a similar level as the plasma-treated ones.

  6. Preparation of polymer nanocomposite materials based on unsaturated polyester resin and nanosilica A200. Part II - Structural and properties of polymer nanocomposite materials based on unsaturated polyester resin and nanosilica A200 with coupling agent

    International Nuclear Information System (INIS)

    Trinh Minh Dat; Bui Chuong; Bach Trong Phuc; Dinh Van Kai; Luu Van Khue

    2012-01-01

    Effects of coupling agent on the structures and properties of nanocomposite materials based on unsaturated polyester resin and A200 silica nanoparticles were investigated. The viscosity of the resin/A200 silica mixtures increased with increasing coupling agent content because of forming core-shell structures and the mechanical properties of polymer nanocomposites generally were better than those without coupling agent and appeared a maximum in mechanical properties at 4.0 wt% coupling agent content. IR analyze indicated that the coupling agent had reacted with unsaturated polyester resin and A200 silica nanoparticles. SEM, Fe-SEM and TG-SDC demonstrated more homogeneous dispersion of A200 silica nanoparticles in the polymer matrix and accompanied by lower glass transition temperature and melt temperature. Furthermore, it was also found that the best dispersion route involved a methanol dispersion technique. (author)

  7. Nanocomposite of photocurable epoxy-acrylate resin and carbon nanotubes: dynamic-mechanical, thermal and tribological properties

    Directory of Open Access Journals (Sweden)

    Marcos Nunes dos Santos

    2012-01-01

    Full Text Available In this study, the thermal, dynamic-mechanical and tribological behavior of nanocomposites of a photocurable epoxy-acrylate resin and multiwalled carbon nanotubes (MWCNT are investigated. A route consisting of a combination of sonication, mechanical and magnetic stirring is used to disperse 0.25-0.75 wt. (% MWCNT into the resin. Two photocuring cycles using 12 hours and 24 hours of UV-A radiation are studied. The storage modulus, the loss modulus and the tan delta are obtained by dynamic mechanical analysis. Thermal stability is investigated by thermogravimetry, morphology by transmission electronic microscopy (TEM and tribological performance using a pin-on-disk apparatus. The results indicate an increase in stiffness and higher ability to dissipate energy, as well as a shift in the glass transition temperature for the nanocomposites. The addition of nanofillers also decreased friction coefficient and wear rate of the nanocomposites but did not change the observed wear mechanisms.

  8. Nanocomposite of photocurable epoxy-acrylate resin and carbon nanotubes: dynamic-mechanical, thermal and tribological properties

    Directory of Open Access Journals (Sweden)

    Marcos Nunes dos Santos

    2013-04-01

    Full Text Available In this study, the thermal, dynamic-mechanical and tribological behavior of nanocomposites of a photocurable epoxy-acrylate resin and multiwalled carbon nanotubes (MWCNT are investigated. A route consisting of a combination of sonication, mechanical and magnetic stirring is used to disperse 0.25-0.75 wt. (% MWCNT into the resin. Two photocuring cycles using 12 hours and 24 hours of UV-A radiation are studied. The storage modulus, the loss modulus and the tan delta are obtained by dynamic mechanical analysis. Thermal stability is investigated by thermogravimetry, morphology by transmission electronic microscopy (TEM and tribological performance using a pin-on-disk apparatus. The results indicate an increase in stiffness and higher ability to dissipate energy, as well as a shift in the glass transition temperature for the nanocomposites. The addition of nanofillers also decreased friction coefficient and wear rate of the nanocomposites but did not change the observed wear mechanisms.

  9. Magnetic Properties of Iron-Cobalt Oxide Nanocomposites Synthesized in Polystyrene Resin Matrix*

    Science.gov (United States)

    Vaishnava, P. P.; Senaratne, U.; Rodak, D.; Kroll, E.; Tsoi, G.; Naik, R.; Naik, V.; Wenger, L. E.; Tao, Qu; Boolchand, P.; Suryanarayanan, R.

    2004-03-01

    Magnetic nanoparticles have potential applications in memory devices and medical technology. Magnetic iron-cobalt oxide nanoparticles were prepared by in situ precipitation in an ion exchange resin using the method of Ziolo et al^1. The ion exchange resin, consisting of sulfonated divinyl benzene cross linked polystyrene, was exposed to different iron and cobalt salt solutions: a) 4FeCl2 + CoCl2 b) 9FeCl2 + CoCl2 c) 4FeCl3 + CoCl2 d) 9FeCl3 + CoCl_2. The ions bound to the resin are then oxidized with hydrogen peroxide in an alkaline media with mild heat. The resulting nanocomposites were characterized by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Fe^57 Mossbauer Spectroscopy and SQUID magnetometry. It was found that the oxide composition, particle size distribution, magnetic properties including blocking temperature and the amount of superparamagnetic phases are strongly influenced by the stoichiometry of the starting FeCl_2, FeCl_3, and CoCl2 solutions. Three major phases CoFe_2O_4, Fe_3O4 and γ-Fe_2O3 have been identified. The nanocomposites prepared using Fe^2+ and Co^2+ contain larger nanoparticles (10 nm) than those prepared by Fe^3+ and Co^2+ (3 nm) . The details of the structural characterization by XRD and TEM measurements and magnetic characteristics will be presented. *Research supported by NSF grant DGE 980720 ^1Ziolo et al, Science, 257, 5067 (1992).

  10. Determination of surface roughness and topography of dental resin-based nanocomposites using AFM analysis

    Directory of Open Access Journals (Sweden)

    Tijana Lainović

    2013-02-01

    Full Text Available The aim of this study was to determine surface roughness and topography of polished dental resin-based nanocomposites.Four representative dental resin-based nanocomposites were tested in the study: two nanohybrids (Filtek Z550 and Tetric EvoCeram and two nanofilled (Filtek Ultimate Body and Filtek Ultimate Translucent; and two reference materials: one microfilled (Gradia Direct and one microhybrid (Filtek Z250. Polymerized cylindrical specimens (4 mm x 2 mm were polished with multi-step polishing system-Super Snap. Immediately after the polishing, topography of each specimen was examined by Veeco di CP-II Atomic Force Microscope. Specimen’s surface has been scanned in 6 points in contact mode with CONT20A-CP tips. 1 Hz scan rate and 256 x 256 resolution were used to obtain topography on a 90 μm x 90 μm scanning area. Measured topography data were processed by Image Processing and Data Analysis V2.1.15 software. Following parameters were compared among specimens: average roughness and maximum peak-to-valley distance.All of the tested materials had similar average surface roughness after finishing and polishing procedure. The lowest values occurred in the material Filtek Ultimate Body, and the highest in the Filtek Z550. When interpreting maximum peak-to-valley distance the larger differences in values (up to 100% occurred in Filtek Z550, Filtek Z250 and Filtek Ultimate Body, which is a result of the deep polishing channels and tracks. Type, size, distribution of fillers and filler loading in tested materials, didn’t influence average roughness values, but had an impact on maximum peak-to-valley distance values.

  11. Preparation and characterization of polyhedral oligomer silsesquioxane nanocomposites incorporated in epoxy resin

    International Nuclear Information System (INIS)

    Longhi, Marielen; Zini, Lucas Pandolphi; Birriel, Eliena Jonko; Kunst, Sandra Raquel; Zattera, Ademir Jose

    2015-01-01

    The incorporation of nanofiller in thermosetting like epoxy resin as has been studied in order to modify its properties. In this research, nanocomposites were obtained by incorporating 5% by weight of three polyhedral oligomeric silsesquioxane (POSS) with different number of functionalization: Glicidilisobutil-POSS, Triglicidilisobutil- POSS and Glicicil POSS in an epoxy matrix by sonification process. The nanocomposites were characterized by analysis of X-ray diffraction (DRX), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The DRX analysis showed the characteristic peak of POSS and TEM images showed that there is a difference in the dispersion of nanocages for the difference in the number of epoxy groups on the POSS. The incorporation of Glicidilisobutil-POSS showed a significant increase in the glass transition temperature (Tg) value, and also that the most effective from the viewpoint of the dispersion, on the other hand, the Glycidyl-POSS had a greater influence on the thermal stability demonstrating that the dispersion medium is an important characteristic to define the most desirable properties. (author)

  12. Nanocomposites based on epoxy resin and montmorillonite: effect of clay percent and dispersion state on thermomechanical properties

    International Nuclear Information System (INIS)

    Zaioncz, Soraia; Soares, Bluma G.

    2009-01-01

    Nanocomposites of epoxy resin modified with PMMA and montmorillonite organophilic were synthesized with clay content equal to 0.1, 1, 2.5, 5 and 7 (wt %). Dispersion state and the nano structure of materials has been investigated using small angle X-ray scattering (SAXS). The nanocomposites containing 0.1 (wt %) of clay showed an exfoliated morphology, while the nanocomposites with higher clay content (1 to 7 wt %) show that the dispersion state is less uniform and that large aggregates coexist with tactoids stacks of two or three platelets. The nano structure of materials was correlated with its thermomechanical properties obtained by DMTA. The results showed an increase in Tg of the materials to clay content of up to 5 wt % and an increase in the storage modulus for the epoxy matrix. (author)

  13. The Effect of Finishing and Polishing Techniques on the Surface Roughness and the Color of Nanocomposite Resin Restorative Materials.

    Science.gov (United States)

    Avsar, Aysun; Yuzbasioglu, Emir; Sarac, Duygu

    2015-01-01

    Rough, poorly polished surfaces contribute to staining, plaque accumulation, gingival irritation and recurrent caries. Finishing and polishing techniques are critical factors contributing to the longevity of the direct composite resin restorations. The aim of this in vitro study was to evaluate the effects of finishing and polishing systems on surface roughness of six nanocomposite restorative resins. Thirty specimens of each restorative material (n=180) were placed in a teflon mould (6 mm in diameter and 3 mm in depth) and cured with a LED curing unit. Six specimens from each of restorative material were randomly assigned to four groups for finishing and polishing (carbide burs, diamond burs, aluminium oxide discs, silicon rubber polisher) techniques. Mylar strip formed specimens were served as control group. After finishing and polishing procedures surface roughness was evaluated by a profilometer. The data was analyzed by 2-way analysis of variance and the Tukey HSD test (α=0.05). Significant differences were found between the groups in terms roughness (prestorative materials. Although mylar matrix strip formed surfaces presents lower surface roughness values, recountouring and polishing of resin restorations are often required in clinical situations. Aluminium oxide discs and carbide finishing burs are suitable for finishing and polishing procedures for nanocomposite restorative resins.

  14. Evaluation of Color Stability and Surface Roughness of Bulk-Fill Resin Composites and Nanocomposites

    Directory of Open Access Journals (Sweden)

    Muhammet Karadaş

    2017-11-01

    Full Text Available Objective: The purpose of this study was to evaluate the color stability and surface roughness of four bulk-fill resin composites (SonicFill, Filtek Bulk Fill Flowable, X-tra fil, Filtek Bulk Fill Posterior and three nanocomposites (G-aenial Universal Flo, Herculite XRV Ultra, Filtek Ultimate after an aging simulation. Materials and Methods: The upper surfaces of prepared composite discs were polished with Sof-Lex discs. The samples were subjected to a thermocycling process for 3000 cycles, then immersed in the prepared mixture solution for two weeks. Before and after the aging simulation, profilometer and spectrophotometer were used to measure surface roughness (Ra and color of the composite discs. The color change (ΔE of each material was calculated. Results: The ΔE values showed a statistically significant difference among the studied materials (p<0.001. The Ra values of X-tra fil, Filtek Bulk Fill Flowable, SonicFill, and Filtek Bulk Fill Posterior were significantly increased by the aging process (p<0.001, while G-aenial Universal Flo, Filtek Ultimate, and Herculite XRV Ultra showed steady roughness (p<0.001. Conclusion: Filtek Ultimate showed greater susceptibility to staining. Microhybrid X-tra fil and nanohybrid SonicFill with higher filler amounts revealed more surface deterioration.

  15. Evaluation of five primers and two opaque resins for bonding ceria-stabilized zirconia/alumina nanocomposite

    Directory of Open Access Journals (Sweden)

    Kohji Kamada

    2017-03-01

    Full Text Available The purpose of this study was to evaluate the effect of five primers [Super-Bond C&B Monomer (SB, Clearfil Ceramic Primer, Alloy Primer, M.L. Primer, and AZ Primer] and two undercoating opaque resins [Super-Bond C&B (S-opaque and Ceramage Pre-opaque (C-opaque] on the bonding of a resin composite veneering material to a ceria-stabilized tetragonal zirconia polycrystals/alumina nanocomposite (Ce-TZP/Al2O3. Disk-shaped specimens of Ce-TZP/Al2O3 were sandblasted with alumina and primed. The undercoating opaque resins and resin composites were subsequently applied to the specimen, and then light cured. After 5000 thermocycles at 4°C and 60°C, shear bond strengths were determined. Data were analyzed using analysis of variance, Tukey–Kramer honest significant difference test, and Student t test (n = 10, α = 0.05. With the exception of SB/S-opaque, all S-opaque groups exhibited significantly higher bond strengths than C-opaque groups. The use of S-opaque resin is recommended when veneering frameworks made of Ce-TZP/Al2O3.

  16. Aerospace Composite Materials Delivery Order 0003: Nanocomposite Polymeric Resin Enhancements for Improved Composite Performance

    National Research Council Canada - National Science Library

    Chen, Chenggang

    2002-01-01

    .... The addition of clays does not significantly alter the viscosity or cure kinetics so that the modified resin will still be suitable for liquid composite molding techniques such as resin transfer molding...

  17. Green Preparation of Epoxy/Graphene Oxide Nanocomposites Using a Glycidylamine Epoxy Resin as the Surface Modifier and Phase Transfer Agent of Graphene Oxide.

    Science.gov (United States)

    Tang, Xinlei; Zhou, Yang; Peng, Mao

    2016-01-27

    In studies of epoxy/graphene oxide (GO) nanocomposites, organic solvents are commonly used to disperse GO, and vigorous mechanical processes and complicated modification of GO are usually required, increasing the cost and hindering the development and application of epoxy nanocomposites. Here, we report a green, facile, and efficient method of preparing epoxy/GO nanocomposites. When triglycidyl para-aminophenol (TGPAP), a commercially available glycidyl amine epoxy resin with one tertiary amine group per molecule, is used as both the surface modifier and phase transfer agent of GO, GO can be directly and rapidly transferred from water to diglycidyl ether of bisphenol A and other types of epoxy resins by manual stirring under ambient conditions, whereas GO cannot be transferred to these epoxy resins in the absence of TGPAP. The interaction between TGPAP and GO and the effect of the TGPAP content on the dispersion of GO in the epoxy matrix were investigated systematically. Superior dispersion and exfoliation of GO nanosheets and remarkably improved mechanical properties, including tensile and flexural properties, toughness, storage modulus, and microhardness, of the epoxy/GO nanocomposites with a suitable amount of TGPAP were demonstrated. This method is organic-solvent-free and technically feasible for large-scale preparation of high-performance nanocomposites; it opens up new opportunities for exploiting the unique properties of graphene or even other nanofillers for a wide range of applications.

  18. The elastoplastic response of and moisture diffusion through a vinyl ester resin-clay nanocomposite

    DEFF Research Database (Denmark)

    Drozdov, Aleksey D.; Christiansen, Jesper de Claville; Gupta, R.K.

    2002-01-01

    Experimental data are reported on the elastoplastic response of and moisture diffusion through a vinyl ester resin–montmorillonite clay nanocomposite with various amounts of filler. Two simple models are developed for the elastoplastic behavior of a nanocomposite and for the anomalous diffusion...... of penetrant molecules. Adjustable parameters in the constitutive equations are found by fitting the observations. It is revealed that some critical concentration of filler exists (about 1 wt.-%): in the sub-critical region of concentrations, molecular mobility of the host polymer strongly decreases...

  19. In Situ Exfoliation of Graphene in Epoxy Resins: A Facile Strategy to Efficient and Large Scale Graphene Nanocomposites.

    Science.gov (United States)

    Li, Yan; Zhang, Han; Crespo, Maria; Porwal, Harshit; Picot, Olivier; Santagiuliana, Giovanni; Huang, Zhaohui; Barbieri, Ettore; Pugno, Nicola M; Peijs, Ton; Bilotti, Emiliano

    2016-09-14

    Any industrial application aiming at exploiting the exceptional properties of graphene in composites or coatings is currently limited by finding viable production methods for large volumes of good quality and high aspect ratio graphene, few layer graphene (FLG) or graphite nanoplatelets (GNP). Final properties of the resulting composites are inherently related to those of the initial graphitic nanoparticles, which typically depend on time-consuming, resource-demanding and/or low yield liquid exfoliation processes. In addition, efficient dispersion of these nanofillers in polymer matrices, and their interaction, is of paramount importance. Here we show that it is possible to produce graphene/epoxy nanocomposites in situ and with high conversion of graphite to FLG/GNP through the process of three-roll milling (TRM), without the need of any additives, solvents, compatibilisers or chemical treatments. This readily scalable production method allows for more than 5 wt % of natural graphite (NG) to be directly exfoliated into FLG/GNP and dispersed in an epoxy resin. The in situ exfoliated graphitic nanoplatelets, with average aspect ratios of 300-1000 and thicknesses of 5-17 nm, were demonstrated to conferee exceptional enhancements in mechanical and electrical properties to the epoxy resin. The above conclusions are discussed and interpreted in terms of simple analytical models.

  20. Preparation and characterization of ZnO-PMMA resin nanocomposites for denture bases.

    Science.gov (United States)

    Cierech, Mariusz; Wojnarowicz, Jacek; Szmigiel, Dariusz; Bączkowski, Bohdan; Grudniak, Anna Maria; Wolska, Krystyna Izabela; Łojkowski, Witold; Mierzwińska-Nastalska, Elżbieta

    2016-01-01

    The aim of the paper was to investigate the antifungal activity of zinc oxide nanoparticles (ZnONPs) against Candida albicans. Some attempts have been made to find out the best way to introduce ZnONPs into polymethyl methacrylate (PMMA) resin material and to determine some parameters of a newly formed composite. Zinc oxide nanoparticles were manufactured and their basic physical parameters were determined (average particle size, density, specific surface area). Minimal inhibitory concentration (MIC) of ZnONPs was determined for the Candida albicans standard strain. The average size of ZnO conglomerates in the monomer solution of PMMA resin was measured using a dynamic light scattering instrument. PMMA resin samples with incorporated ZnONPs were produced. The morphology of nanopowder and the newly formed composite was examined under a scanning electron microscope (SEM). In addition, the roughness parameter of PMMA resin material was investigated before and after ZnONPs modification. Nanopowder with the average particle size of 30 nm, density of 5.24 g/cm3 and surface area of 39 m2/g was obtained. MIC was determined at the level of 0.75 mg/mL. The average size of ZnO conglomerates in the monomer solution of acrylic resin dropped by 11 times after ultrasound activation. SEM examination of a newly formed composite showed a successful introduction of ZnONPs confirmed by the energy dispersive X-ray spectroscopy (EDS) analysis. There were no statistically significant differences in the biomaterial roughness before and after the modification of ZnONPs. Zinc oxide nanoparticles were successfully incorporated into acrylic resin used for the production of denture bases. The presence of nanoparticles with sizes below 100 nm was confirmed. Nevertheless a newly created composite needs to be further investigated to improve its homogeneity, and to check its microbiological properties, strength and biocompatibility prior to its possible clinical use.

  1. Characterization at Atomic Resolution of Carbon Nanotube/Resin Interface in Nanocomposites by Mapping sp 2-Bonding States Using Electron Energy-Loss Spectroscopy.

    Science.gov (United States)

    Su, Yi-Feng; Park, Jin G; Koo, Ana; Trayner, Sarah; Hao, Ayou; Downes, Rebekah; Liang, Richard

    2016-06-01

    Functionalization is critical for improving mechanical properties of carbon nanotubes (CNTs)/polymer nanocomposites. A fundamental understanding of the role of the CNT/polymer interface and bonding structure is key to improving functionalization procedures for higher mechanical performance. In this study, we investigated the effects of chemical functionalization on the nanocomposite interface at atomic resolution to provide direct and quantifiable information of the interactions and interface formation between CNT surfaces and adjacent resin molecules. We observed and compared electronic structures and their changes at the interfaces of nonfunctionalized and functionalized CNT/polymer nanocomposite samples via scanning transmission electron microscopy and electron energy-loss spectroscopy (EELS) spectrum imaging techniques. The results show that the state of sp 2 bonding and its distribution at the CNT/resin interface can be clearly visualized through EELS mapping. We found that the functionalized CNT/polymer samples exhibited a lower fraction of sp 2 bonding and a lower π*/σ* ratio compared with the nonfunctionalized cases. A good correlation between near-edge fine structures and low-loss plasmon energies was observed.

  2. Green facile scalable synthesis of titania/carbon nanocomposites: new use of old dental resins.

    Science.gov (United States)

    Xiao, Ying; Wang, Xiaoyan; Xia, Yonggao; Yao, Yuan; Metwalli, Ezzeldin; Zhang, Qian; Liu, Rui; Qiu, Bao; Rasool, Majid; Liu, Zhaoping; Meng, Jian-Qiang; Sun, Ling-Dong; Yan, Chun-Hua; Müller-Buschbaum, Peter; Cheng, Ya-Jun

    2014-01-01

    A green facile scalable method inspired by polymeric dental restorative composite is developed to synthesize TiO2/carbon nanocomposites for manipulation of the intercalation potential of TiO2 as lithium-ion battery anode. Poorly crystallized TiO2 nanoparticles with average sizes of 4-6 nm are homogeneously embedded in carbon matrix with the TiO2 mass content varied between 28 and 65%. Characteristic discharge/charge plateaus of TiO2 are significantly diminished and voltage continues to change along with proceeding discharge/charge process. The tap density, gravimetric and volumetric capacities, and cyclic and rate performance of the TiO2/C composites are effectively improved.

  3. Silane effects on the surface morphology and abrasion resistance of transparent SiO2/UV-curable resin nano-composites

    International Nuclear Information System (INIS)

    Hsiang, Hsing-I.; Chang, Yu-Lun; Chen, Chi-Yu; Yen, Fu-Su

    2011-01-01

    Transparent ultraviolet curable nano-composite coatings consisting of nano-sized SiO 2 and acrylate resin have been developed to improve the abrasion resistance of organic polymers. The nano-sized SiO 2 particles were surface-modified using various amounts of 3-methacryloxypropyltrimethoxysilane. The 3-methacryloxypropyltrimethoxysilane concentration effects on the surface morphology and abrasion resistance of the transparent SiO 2 /ultraviolet-curable resin nano-composites were investigated using scanning electron microscopy, atomic force microscopy, and ultraviolet-visible spectrophotometer. The results showed that as the 3-methacryloxypropyltrimethoxysilane/SiO 2 weight ratio increased from 0.2 to 0.6, the dispersion, compatibility and cross-linking density between the 3-methacryloxypropyltrimethoxysilane-modified SiO 2 particles and acrylate resin were improved, leading to an increase in abrasion resistance. However, as the 3-methacryloxypropyltrimethoxysilane/SiO 2 weight ratio was increased to 1.5, the additional 3-methacryloxypropyltrimethoxysilane may exceed that needed to fill the pores with the probability of SiO 2 nano-particles existing on the coating surface was lower than that for samples with a 3-methacryloxypropyltrimethoxysilane/SiO 2 weight ratio of 0.6. This produced a decrease in abrasion resistance.

  4. Improved Dielectric Properties and Energy Storage Density of Poly(vinylidene fluoride-co-hexafluoropropylene) Nanocomposite with Hydantoin Epoxy Resin Coated BaTiO3.

    Science.gov (United States)

    Luo, Hang; Zhang, Dou; Jiang, Chao; Yuan, Xi; Chen, Chao; Zhou, Kechao

    2015-04-22

    Energy storage materials are urgently demanded in modern electric power supply and renewable energy systems. The introduction of inorganic fillers to polymer matrix represents a promising avenue for the development of high energy density storage materials, which combines the high dielectric constant of inorganic fillers with supernal dielectric strength of polymer matrix. However, agglomeration and phase separation of inorganic fillers in the polymer matrix remain the key barriers to promoting the practical applications of the composites for energy storage. Here, we developed a low-cost and environmentally friendly route to modifying BaTiO3 (BT) nanoparticles by a kind of water-soluble hydantoin epoxy resin. The modified BT nanoparticles exhibited homogeneous dispersion in the ferroelectric polymer poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) matrix and strong interfacial adhesion with the polymer matrix. The dielectric constants of the nanocomposites increased significantly with the increase of the coated BT loading, while the dielectric loss of the nanocomposites was still as low as that of the pure P(VDF-HFP). The energy storage density of the nanocomposites was largely enhanced with the coated BT loading at the same electric field. The nanocomposite with 20 vol % BT exhibited an estimated maximum energy density of 8.13 J cm(-3), which was much higher than that of pure P(VDF-HFP) and other dielectric polymers. The findings of this research could provide a feasible approach to produce high energy density materials for practical application in energy storage.

  5. Development of a novel resin-based dental material with dual biocidal modes and sustained release of Ag+ ions based on photocurable core-shell AgBr/cationic polymer nanocomposites.

    Science.gov (United States)

    Cao, Weiwei; Zhang, Yu; Wang, Xi; Chen, Yinyan; Li, Qiang; Xing, Xiaodong; Xiao, Yuhong; Peng, Xuefeng; Ye, Zhiwen

    2017-07-01

    Research on the incorporation of cutting-edge nano-antibacterial agent for designing dental materials with potent and long-lasting antibacterial property is demanding and provoking work. In this study, a novel resin-based dental material containing photocurable core-shell AgBr/cationic polymer nanocomposite (AgBr/BHPVP) was designed and developed. The shell of polymerizable cationic polymer not only provided non-releasing antibacterial capability for dental resins, but also had the potential to polymerize with other methacrylate monomers and prevented nanoparticles from aggregating in the resin matrix. As a result, incorporation of AgBr/BHPVP nanocomposites did not adversely affect the flexural strength and modulus but greatly increased the Vicker's hardness of resin disks. By continuing to release Ag + ions without the impact of anaerobic environment, resins containing AgBr/BHPVP nanoparticles are particularly suitable to combat anaerobic cariogenic bacteria. By reason of the combined bactericidal effect of the contact-killing cationic polymers and the releasing-killing Ag + ions, AgBr/BHPVP-containing resin disks had potent bactericidal activity against S. mutans. The long-lasting antibacterial activity was also achieved through the sustained release of Ag + ions due to the core-shell structure of the nanocomposites. The results of macrophage cytotoxicity showed that the cell viability of dental resins loading less than 1.0 wt% AgBr/BHPVP was close to that of neat resins. The AgBr/BHPVP-containing dental resin with dual bactericidal capability and long term antimicrobial effect is a promising material aimed at preventing second caries and prolonging the longevity of resin composite restorations.

  6. Effect of the amount of 3-methacyloxypropyltrimethoxysilane coupling agent on physical properties of dental resin nanocomposites.

    Science.gov (United States)

    Sideridou, Irini D; Karabela, Maria M

    2009-11-01

    The purpose of this study was to evaluate the effect of the amount of 3-methacryloxypropyl-trimethoxysilane (gamma-MPS) coupling agent on some physical-mechanical properties of an experimental resin composite for understanding the optimum amount of silanization. Silica nanoparticles (Aerosil OX 50) used as filler were silanized with 5 different amounts of gamma-MPS 1.0, 2.5, 5.0, 7.5 and 10 wt% relative to silica. The silanizated silica nanoparticles were identified by FT-IR spectroscopy and thermogravimetric analysis (TGA). Then the silanized nanoparticles (60 wt%) were mixed with a Bis-GMA/TEGDMA (50/50 wt/wt) matrix. Degree of conversion of light cured composites was determined by FT-IR analysis. The static flexural strength and flexural modulus were measured using a three-point bending set up. The dynamic thermomechanical properties were determined by DMA analyzer. Sorption, solubility and volumetric change were determined after storage of composites in water or ethanol/water solution. Thermogravimetric analysis was performed in air and in nitrogen atmosphere from 50 to 800 degrees C. At lower silane amounts used (1.0, 2.5 wt%) the silane molecules must have a parallel orientation relative to the silica surface. At higher silane amounts (>2.5 wt%) silane molecules form a layer around the filler particles which now have to occupy a random, parallel and perpendicularly orientation relative to the silica surface. No significant statistic difference was found to exist between the flexural strength and flexural modulus values of composites with different silane contents. Dynamic elastic modulus E' showed a maximum value for the composite contained 5 wt% silane. The composites with the higher amounts of silane showed the lower values for the tandelta at the T(g) revealing that these composites have better interfacial adhesion between filler and matrix. The amount of silane used for the silanization of silica particles affect the orientation of the silane molecules

  7. Cytoxicity, dynamic and thermal properties of bio-based rosin-epoxy resin/ castor oil polyurethane/ carbon nanotubes bio-nanocomposites.

    Science.gov (United States)

    Huo, Li; Wang, Dan; Liu, Hongmei; Jia, Pan; Gao, Jungang

    2016-08-01

    In order to prepare bio-nanocomposites with no-cytotoxicity, the rosin-based epoxy resin (MPAER) and castor oil-based polyurethane (COPU) were synthesized and carbon nanotubes (CNTs) was used to enhance the properties of curing MPAER/COPU materials. The curing reaction, dynamic mechanical and thermal properties of this system were characterized by FTIR, NMR, DMA, TG et al. The cytotoxicity of materials is evaluated for HeLa cells using a MTT cell-viability assay. The results showed that COPU can cure MPAER and CNTs can increase effectively the properties of MPAER/COPU nanocomposites. The Tg of MPAER/COPU/CNTs has the highest value when CNTs content is 0.4 wt%, which is 52.4 °C higher than the pure MPAER/COPU. Thermal stability of the nanocomposites is enhanced by the addition of CNTs, the initial decomposition temperature Td5 of the sample No. 0.4 has increased from 284.5 to 305.2 °C, which is 20.7 °C higher than No. 0. The impact strength of the No. 0.4 film is 15 kg cm higher than the pure resin system. The survival rate of HeLa cells to the products is greater than 90% within 48 and 72 h, which demonstrate that this material has excellent biocompatibility and no obvious cytotoxicity for HeLa cells, which may be used in the medical treatment.

  8. Behaviour of Water Droplets Under the Influence of a Uniform Electric Field in Nanocomposite Samples of Epoxy Resin/TiO2

    Directory of Open Access Journals (Sweden)

    Α. Bairaktari

    2013-10-01

    Full Text Available In this paper nanocomposite samples of epoxy resin and TiO2 nanoparticles were investigated with water droplets on their surface. A uniform electric field was applied and the behaviour of the water droplets was observed. Parameters that were studied were the water conductivity, the droplet volume, the number of droplets and the droplet positioning with respect to (w.r.t. the electrodes. All above mentioned parameters influence the flashover voltage of the samples. It is to be noted that – at least in some cases – the water droplet positioning w.r.t. the electrodes was more important in determining the flashover voltage than the droplet volume.

  9. Preparation and characterization of polyhedral oligomer silsesquioxane nanocomposites incorporated in epoxy resin; Elaboracao e caracterizacao de nanocompositos de oligomero poliedrico de silsesquioxano incorporados na resina epoxidica

    Energy Technology Data Exchange (ETDEWEB)

    Longhi, Marielen; Zini, Lucas Pandolphi; Birriel, Eliena Jonko; Kunst, Sandra Raquel; Zattera, Ademir Jose, E-mail: marielen_longhi@hotmail.com [Universidade de Caxias do Sul (LPOL/UCS), RS (Brazil). Laboratorio de Polimeros; Pistor, Vinicius [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2015-07-01

    The incorporation of nanofiller in thermosetting like epoxy resin as has been studied in order to modify its properties. In this research, nanocomposites were obtained by incorporating 5% by weight of three polyhedral oligomeric silsesquioxane (POSS) with different number of functionalization: Glicidilisobutil-POSS, Triglicidilisobutil- POSS and Glicicil POSS in an epoxy matrix by sonification process. The nanocomposites were characterized by analysis of X-ray diffraction (DRX), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The DRX analysis showed the characteristic peak of POSS and TEM images showed that there is a difference in the dispersion of nanocages for the difference in the number of epoxy groups on the POSS. The incorporation of Glicidilisobutil-POSS showed a significant increase in the glass transition temperature (Tg) value, and also that the most effective from the viewpoint of the dispersion, on the other hand, the Glycidyl-POSS had a greater influence on the thermal stability demonstrating that the dispersion medium is an important characteristic to define the most desirable properties. (author)

  10. The effects of silane-SiO2 nanocomposite films on Candida albicans adhesion and the surface and physical properties of acrylic resin denture base material.

    Science.gov (United States)

    Yodmongkol, Sirasa; Chantarachindawong, Rojcharin; Thaweboon, Sroisiri; Thaweboon, Boonyanit; Amornsakchai, Taweechai; Srikhirin, Toemsak

    2014-12-01

    Polysiloxane has been used as a coupling material in restorative dental materials for several decades. However, few studies are available on the application of polysiloxane in other dental prosthesis functions. The purpose of this study was to investigate the effects of silane-SiO2 nanocomposite films on Candida albicans adhesion and the surface and physical properties of acrylic resin denture base materials. Specimens were separated into 2 groups, uncoated and coated. They were coated with a film by using the dip-coating method. Specimens were incubated with Candida albicans 10(7) cells/mL for 1 hour, and the adherent cells were counted under an optical microscope. The following surface properties were measured: surface chemical composition with Fourier-transform infrared spectrometry, surface roughness with a surface profiler, surface energy with the sessile drop method, and surface hardness with a microhardness tester. The physical properties, including water sorption, water solubility, ultimate flexural strength, and flexural modulus, were evaluated according to International Organization for Standardization 20795-1 requirements. The adhesion of Candida albicans and the surface properties of the specimens were investigated after cleaning with effervescent tablets and brushing. An MTT assay was used to evaluate the coated specimens. The results were statistically analyzed with the Mann-Whitney U test (α=.05). A significant reduction in Candida albicans adhesion (P=.002) was observed before cleaning. In addition, the surface energy was comparable (P=.100), the surface hardness increased significantly (P=.008), and the surface roughness remained unchanged (P=.310). After cleaning with effervescent tablets, a significant decrease in Candida albicans adhesion (P=.002) and in surface roughness (P=.008) was observed; however, similar surface energies were measured (P=.100). After cleaning with a toothbrush, the adhesion of Candida albicans was significantly higher on

  11. Preparation and characterization of bio resin natural tannin/poly (vinylidene fluoride): A high dielectric performance nano-composite for electrical storage

    Science.gov (United States)

    Abdalla, S.; Pizzi, A.; Al-Ghamdi, Maryam A.; AlWafi, Reem

    2017-09-01

    We have prepared films of polymer nano-composite (PNC) of poly [vinylidene-fluoride] (PVDF) and bio resin natural tannin (BRNT) nanoparticles. The α and γ electro-active phases were detected, and the addition of BRNT drastically increases the formation of the α-phase. Addition of BRNT produces up to 98% of electro-active phases. Robust electrostatic interactions arise between charges at the BRNT-surfaces, and differences in electron affinity between CH2 and CF2 groups created dielectric dipoles. The addition of BRNT has not only enhanced the formation of the electrically active phases but also makes each dipole in the phase has its specific characteristics for example its own relaxation time. The AC-electrical permittivity showed that the dielectric constant of 10%wt-BRNT nanoparticles in PVDF has a value 44 ε0, which is four times more than the dielectric constant of the as-prepared PVDF films. These data show the importance of these polymers as easy, flexible, and durable energy storage materials.

  12. Convenient routes to synthesize uncommon vaterite nanoparticles and the nanocomposites of alkyd resin/polyaniline/vaterite: The latter possessing superior anticorrosive performance on mild steel surfaces

    International Nuclear Information System (INIS)

    Senarathna, K.G. Chathuranga; Mantilaka, M.M.M.G.P.G.; Peiris, T.A. Nirmal; Pitawala, H.M.T.G.A.; Karunaratne, D.G.G.P.; Rajapakse, R.M.G.

    2014-01-01

    , 0.26% C, 0.04% P, 0.05% S and 0.75% Mn) surfaces. All five composite coatings, with thickness ∼ 40 μm, show dramatic decrease in corrosion current density, and a considerable increase in corrosion resistance, to result in several orders of magnitude lowering of the corrosion rate from that of bare mild steel surfaces and those coated with only alkyd resin. There are considerable positive shifts in the corrosion potential also, when each of the five coatings are applied, separately, on mild steel samples, which provide information for a significant overpotentials induced by these coatings on iron oxidation. All four Alkyd resin/PANI/vaterite coatings show higher anticorrosive performances (by factors of 2 × 10 4 , 5 × 10 4 , 1 × 10 5 and 1.67 × 10 4 , respectively from that of bare mild steel) than that of the Alkyd resin/PANI/calcite coating (by a factor of 1.25 × 10 3 from the same). The improved pore-sealing by relatively smaller (26 nm diameter) and spherical vaterite nanoparticles, when compared with a little larger (38 nm) and somewhat elongated nanoparticles of calcite, is suggested to be responsible for better anticorrosive performance of the Alkyd resin/PANI/vaterite nanocomposites

  13. Polypropylene/ hydrocarbon resin blends nanocomposites; Blendas de polipropileno e resina hidrocarbonica com adicao de nanoparticulas de argila

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Marlon W.M. da; Chinellato, Anne C.; Vidotti, Suel E., E-mail: suel.vidotti@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Sociais Aplicadas

    2015-07-01

    This work dealt with a study on the incorporation of hydrocarbon resin (HC) (Sukorez-120) and organoclay nanoparticles (MMT) (Cloisite 20A) to a homopolymer polypropylene (PP) matrix. The mixtures were done using a twin screw extruder and after molded into thin films. The films were characterized by differential scanning calorimetry (DSC), melt flow index (MFI), X-ray diffraction (DRX) and water vapor permeability. In general, the addition of the hydrocarbon resin led to an increase on the polypropylene crystallinity and a reduction on the water vapor permeability, when compared to the pristine PP. Although it was not possible to perceive synergism by the addition of the organoclay, once the samples containing both HC and MMT presented similar crystallinity but higher permeation values than those obtained by the mixtures prepared without the organoclay. This behavior could be attributed to the lack of the organoclay dispersion, as demonstrated by X-ray, as well as to interface defects that could result in worst barrier properties. (author)

  14. Photocatalytic antibacterial effects are maintained on resin-based TiO2 nanocomposites after cessation of UV irradiation.

    Science.gov (United States)

    Cai, Yanling; Strømme, Maria; Welch, Ken

    2013-01-01

    Photocatalysis induced by TiO2 and UV light constitutes a decontamination and antibacterial strategy utilized in many applications including self-cleaning environmental surfaces, water and air treatment. The present work reveals that antibacterial effects induced by photocatalysis can be maintained even after the cessation of UV irradiation. We show that resin-based composites containing 20% TiO2 nanoparticles continue to provide a pronounced antibacterial effect against the pathogens Escherichia coli, Staphylococcus epidermidis, Streptococcus pyogenes, Streptococcus mutans and Enterococcus faecalis for up to two hours post UV. For biomaterials or implant coatings, where direct UV illumination is not feasible, a prolonged antibacterial effect after the cessation of the illumination would offer new unexplored treatment possibilities.

  15. Photocatalytic antibacterial effects are maintained on resin-based TiO2 nanocomposites after cessation of UV irradiation.

    Directory of Open Access Journals (Sweden)

    Yanling Cai

    Full Text Available Photocatalysis induced by TiO2 and UV light constitutes a decontamination and antibacterial strategy utilized in many applications including self-cleaning environmental surfaces, water and air treatment. The present work reveals that antibacterial effects induced by photocatalysis can be maintained even after the cessation of UV irradiation. We show that resin-based composites containing 20% TiO2 nanoparticles continue to provide a pronounced antibacterial effect against the pathogens Escherichia coli, Staphylococcus epidermidis, Streptococcus pyogenes, Streptococcus mutans and Enterococcus faecalis for up to two hours post UV. For biomaterials or implant coatings, where direct UV illumination is not feasible, a prolonged antibacterial effect after the cessation of the illumination would offer new unexplored treatment possibilities.

  16. Silver nanosheet-coated copper nanowire/epoxy resin nanocomposites with enhanced electrical conductivity and wear resistance

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ningning; Ma, Jingyi; Zhang, Yujuan; Yang, Guangbin; Zhang, Shengmao, E-mail: zsm@henu.edu.cn; Zhang, Pingyu [Henan University, Engineering Research Center for Nanomaterials (China)

    2017-03-15

    Silver (Ag) nanosheet-coated Cu nanowires (denoted as Cu@AgNWs) were prepared with a facile transmetalation reaction method. The effect of reaction conditions on the morphology and microstructure of the as-prepared Cu@AgNWs was investigated, and the thermal stability of Cu@AgNWs was evaluated by thermogravimetric analysis. In the meantime, the as-prepared Cu@AgNWs were used as the nanofillers of epoxy resin (EP), and their effect on the electrical conductivity and wear resistance of the EP-matrix composites was examined. Results indicate that the as-prepared Cu@AgNWs consist of CuNW core and Ag nanosheet shell. The Ag nanosheet shell can well inhibit the oxidation of the CuNW core, thereby providing the as-prepared Cu@AgNWs with good thermal stability even at an elevated temperature of 230 °C. The reaction temperature, Cu/Ag molar ratio, Cu dispersion concentration, and the dropping speed of silver ammonia reagent are suggested to be 40 °C, 5:1, 1% (mass fraction), and poured directly, respectively. Resultant Cu@AgNWs exhibit desired morphology and performance and can effectively increase the electrical conductivity and wear resistance of EP. This could make it feasible for the Cu@AgNW-EP composite to be applied as an electrostatic conductive material.

  17. Evaluation of Polyesterimide Nanocomposites Using Methods of Thermal Analysis

    Science.gov (United States)

    Gornicka, B.; Gorecki, L.; Gryzlo, K.; Kaczmarek, D.; Wojcieszak, D.

    2016-02-01

    Polyesterimide resin applied for winding impregnation has been modified by incorporating the hydrophilic and hydrophobic nanosilica, montmorillonite and aluminium oxide. For assessment of the resins in liquid and cured states thermoanalytical methods TG/DSC were used. For pure and nanofilled resins the results of investigation of AFM topography, bond strength, dielectric strength and partial discharge resistance have been also presented. It was found that dielectric and mechanical properties of polyesterimide resin containing hydrophilic silica as well aluminium oxide were much improved as compared to pure resin. Based on our investigations we have found that the methods of thermal analysis may be very useful for evaluation of nanocomposites: DSC/TGA study of resins in the liquid state under dynamic conditions can be applied to pre-select nanocomposites; isothermal TG curves of cured resins can be utilized for thermal stability evaluation; in turn, TG study after thermal ageing of cured resins could confirm the barrier properties of nanocomposites.

  18. Experimental analysis of graphene nanocomposite on Kevlar

    Science.gov (United States)

    Manigandan, S.; Gunasekar, P.; Nithya, S.; Durga Revanth, G.; Anudeep, A. V. S. C.

    2017-08-01

    Graphene nanocomposite is a two dimensional structure which has intense role in material science. This paper investigates the topological property of the graphene nanocomposite doped in Kevlar fiber by direct mixing process. The Kevlar fiber by direct mixing process. The Kevlar fiber taken as the specimen which is fabricated by vacuum bag moulding process. Epoxy used as resin and HY951 as hardener. Three different specimens are fabricated based on the percentage of graphene nanocomposite 2%, 5%, 10% and 20% respectively. We witnessed the strength of the Kevlar fiber is increased when it is treated with nanocomposite. The percentage of the nanocomposite increase the strength of the fiber is increased. However as the nanocomposite beyond 5% the strength of fiber is dropped. In addition, we also seen the interfacial property of the fiber is dropped when the nanocomposite is added beyond threshold limit.

  19. Thermomechanical Behavior of High Performance Epoxy/Organoclay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Artur Soares Cavalcanti Leal

    2014-01-01

    Full Text Available Nanocomposites of epoxy resin containing bentonite clay were fabricated to evaluate the thermomechanical behavior during heating. The epoxy resin system studied was prepared using bifunctional diglycidyl ether of bisphenol A (DGEBA, crosslinking agent diaminodiphenylsulfone (DDS, and diethylenetriamine (DETA. The purified bentonite organoclay (APOC was used in all experiments. The formation of nanocomposite was confirmed by X-ray diffraction analysis. Specimens of the fabricated nanocomposites were characterized by dynamic mechanical analysis (DMA. According to the DMA results a significant increase in glass transition temperature and storage modulus was evidenced when 1 phr of clay is added to epoxy resin.

  20. Influence of nanometric silicon carbide on phenolic resin composites ...

    Indian Academy of Sciences (India)

    Phenolic resin; nanometric silicon carbide; nanocomposites; friction coefficient. 1. Introduction. Phenolic resin composites have their applications in a wide range of fields ... Curing time and temperature as well as mold materials influence the resulting homogeneity, glass transition temperature and mechanical properties.

  1. Influence of nanometric silicon carbide on phenolic resin composites ...

    Indian Academy of Sciences (India)

    Abstract. This paper presents a preliminary study on obtaining and characterization of phenolic resin-based com- posites modified with nanometric silicon carbide. The nanocomposites were prepared by incorporating nanometric silicon carbide (nSiC) into phenolic resin at 0.5, 1 and 2 wt% contents using ultrasonication to ...

  2. Properties of a nanodielectric cryogenic resin

    Energy Technology Data Exchange (ETDEWEB)

    Polyzos, Georgios [ORNL; Tuncer, Enis [ORNL; Sauers, Isidor [ORNL; More, Karren Leslie [ORNL

    2010-01-01

    Physical properties of a nanodielectric composed of in situ synthesized titanium dioxide (TiO{sub 2}) nanoparticles ({le} 5 nm in diameter) and a cryogenic resin are reported. The dielectric losses were reduced by a factor of 2 in the nanocomposite, indicating that the presence of small TiO{sub 2} nanoparticles restricted the mobility of the polymer chains. Dielectric breakdown data of the nanodielectric was distributed over a narrower range than that of the unfilled resin. The nanodielectric had 1.56 times higher 1% breakdown probability than the resin, yielding 0.64 times thinner insulation thickness for the same voltage level, which is beneficial in high voltage engineering.

  3. Structure-Property Relationship of Thermoset Nanocomposites

    NARCIS (Netherlands)

    Faraz, M.I.

    2013-01-01

    In this thesis we report the synthesis, characterization and thermo-mechanical properties of a high-temperature resistant themoset nanocomposite system based on an aero-space-grade Bismaleimide resin. Various processing techniques with various fillers are used. The emphasis is on establishing the

  4. Suspended microstructures of epoxy based photoresists fabricated with UV photolithography

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Anhøj, Thomas Aarøe; Caviglia, Claudia

    2017-01-01

    In this work we present an easy, fast, reliable and low cost microfabrication technique for fabricating suspended microstructures of epoxy based photoresistswith UV photolithography. Two different fabrication processes with epoxy based resins (SU-8 and mr-DWL) using UV exposures at wavelengths...

  5. Polymer Nanocomposites

    Indian Academy of Sciences (India)

    polymer nanocompo- sites are used as advanced toner materials for high quality colour copiers and printers and as contrast agents in NMR analysis, memory devices. .... tions on polymer nanocomposite can thus pay rich dividends. Suggested Reading. [1] Metal-Polymer Nanocomposites Nicolais, Luigi(ed.) ; Carotenuto,.

  6. Biobased and biodegradable polymer nanocomposites

    Science.gov (United States)

    Qiu, Kaiyan

    In this dissertation, various noncrosslinked and crosslinked biobased and biodegradable polymer nanocomposites were fabricated and characterized. The properties of these polymer nanocomposites, and their relating mechanisms and corresponding applications were studied and discussed in depth. Chapter 1 introduces the research background and objectives of the current research. Chapter 2 presents the development of a novel low cost carbon source for bacterial cellulose (BC) production and fabrication and characterization of biobased polymer nanocomposites using produced BC and soy protein based resins. The carbon source, soy flour extract (SFE), was obtained from defatted soy flour (SF) and BC yield achieved using SFE medium was high. The results of this study showed that SFE consists of five sugars and Acetobacter xylinum metabolized sugars in a specific order. Chapter 3 discusses the fabrication and characterization of biodegradable polymer nanocomposites using BC and polyvinyl alcohol (PVA). These polymer nanocomposites had excellent tensile and thermal properties. Crosslinking of PVA using glutaraldehyde (GA) not only increased the mechanical and thermal properties but the water-resistance. Chapter 4 describes the development and characterization of microfibrillated cellulose (MFC) based biodegradable polymer nanocomposites by blending MFC suspension with PVA. Chemical crosslinking of the polymer nanocomposites was carried out using glyoxal to increase the mechanical and thermal properties as well as to make the PVA partially water-insoluble. Chapter 5 reports the development and characterization of halloysite nanotube (HNT) reinforced biodegradable polymer nanocomposites utilizing HNT dispersion and PVA. Several separation techniques were used to obtain individualized HNT dispersion. The results indicated uniform dispersion of HNTs in both PVA and malonic acid (MA) crosslinked PVA resulted in excellent mechanical and thermal properties of the materials, especially

  7. Renewable Silica-Carbon Nanocomposite and Its Use for Reinforcing Synthetic Wood Made of Rice Straw Powders

    OpenAIRE

    Karyasa, I Wayan

    2016-01-01

    The current study was aimed to prepare and to characterize a renewable silica-carbon nanocomposite from rice straw ashes. It was purposed also to study the use of the produced nanocomposite as reinforcing material in producing a synthetic wood made of three axial blend of treated rice straw powder, phenolfrmaldehyde resin, and the nanocomposite. A simple preparation route of nanocomposite silica-carbon from rice straw was formulated containing three steps, namely pretreating of rice straw, pr...

  8. Large-Strain Transparent Magnetoactive Polymer Nanocomposites

    Science.gov (United States)

    Meador, Michael A.

    2012-01-01

    A document discusses polymer nano - composite superparamagnetic actuators that were prepared by the addition of organically modified superparamagnetic nanoparticles to the polymer matrix. The nanocomposite films exhibited large deformations under a magnetostatic field with a low loading level of 0.1 wt% in a thermoplastic polyurethane elastomer (TPU) matrix. The maximum actuation deformation of the nanocomposite films increased exponentially with increasing nanoparticle concentration. The cyclic deformation actuation of a high-loading magnetic nanocomposite film was examined in a low magnetic field, and it exhibited excellent reproducibility and controllability. Low-loading TPU nanocomposite films (0.1-2 wt%) were transparent to semitransparent in the visible wavelength range, owing to good dispersion of the magnetic nanoparticles. Magnetoactuation phenomena were also demonstrated in a high-modulus, high-temperature polyimide resin with less mechanical deformation.

  9. The Influence of Hydroxylated Carbon Nanotubes on Epoxy Resin Composites

    Directory of Open Access Journals (Sweden)

    Jiaoxia Zhang

    2012-01-01

    Full Text Available Hydroxylated multiwall carbon nanotubes (MWNTs/epoxy resin nanocomposites were prepared with ultrasonic dispersion and casting molding. The effect of hydroxylated MWNTs content on reactive activity of composites is discussed. Then the flexural and electrical properties were studied. Transmission electron microscope was employed to characterize the microstructure of nanocomposites. As a result, the reactive activity of nanocomposites obtained increases with the increasing content of MWNTs. When MWNTs content of the composites is 1 wt%, as compared to neat resin, the flexural strength increases from 143 Mpa to 156 MPa, the modulus increases from 3563 Mpa to 3691 MPa, and the volume and surface resistance of nanocomposites decrease by two orders of magnitude, respectively.

  10. Fabrication and characterization of TiO2-epoxy nanocomposite

    International Nuclear Information System (INIS)

    Chatterjee, Amit; Islam, Muhammad S.

    2008-01-01

    A systematic study has been conducted to investigate the matrix properties by introducing nanosize TiO 2 (5-40 nm, 0.5-2% by weight) fillers into an epoxy resin. Ultrasonic mixing process, via sonic cavitations, was employed to disperse the particles into the resin system. The thermal, mechanical, morphology and the viscoelastic properties of the nanocomposite and the neat resin were measured with TGA, DMA, TEM and Instron. The nano-particles are dispersed evenly throughout the entire volume of the resin. The nanofiller infusion improves the thermal, mechanical and viscoelastic properties of the epoxy resin. The nanocomposite shows increase in storage modulus, glass transition temperature, tensile modulus, flexural modulus and short beam shear strength from neat epoxy resin. The mechanical performance and thermal stability of the epoxy nanocomposites are depending on with the dispersion state of the TiO 2 in the epoxy matrix and are correlated with loading (0.0015-0.006% by volume). In addition, the nanocomposite shows enhanced flexural strength. Several reasons to explain these effects in terms of reinforcing mechanisms were discussed

  11. Magnetic nanocomposites

    OpenAIRE

    Kulkarni, Amit

    2012-01-01

    Composite materials result from combination of two or more materials benefiting from the favorable properties of each constituent. Especially when the filler material is in nanometer size, it offers extra degrees of freedom with which physical properties can be manipulated to obtain new functionalities. Such materials are known as nanocomposites. For instance the electrical conductivity of nanocomposite film depends on the inter particle separation and can be varied from insulating to metalli...

  12. Model for Anomalous Moisture Diffusion through a Polymer-Clay Nanocomposite

    DEFF Research Database (Denmark)

    Drozdov, Aleksey D.; Christiansen, Jesper de Claville; Gupta, R.K.

    2003-01-01

    Experimental data are reported on moisture diffusion and the elastoplastic response of an intercalated nanocomposite with vinyl ester resin matrix and montmorillonite clay filler at room temperature. Observations in diffusion tests showed that water transport in the neat resin is Fickian, whereas...... platelets. Constitutive equations are developed for moisture diffusion through and the elastoplastic behavior of a nanocomposite. Adjustable parameters in these relations are found by fitting the experimental data. Fair agreement is demonstrated between the observations and the results of numerical...

  13. Behaviour of Epoxy Silica Nanocomposites Under Static and Creep Loading

    Science.gov (United States)

    Constantinescu, Dan Mihai; Picu, Radu Catalin; Sandu, Marin; Apostol, Dragos Alexandru; Sandu, Adriana; Baciu, Florin

    2017-12-01

    Specific manufacturing technologies were applied for the fabrication of epoxy-based nanocomposites with silica nanoparticles. For dispersing the fillers in the epoxy resin special equipment such as a shear mixer and a high energy sonicator with temperature control were used. Both functionalized and unfunctionalized silica nanoparticles were added in three epoxy resins. The considered filling fraction was in most cases 0.1, 0.3 and 0.5 wt%.. The obtained nanocomposites were subjected to monotonic uniaxial and creep loading at room temperature. The static mechanical properties were not significantly improved regardless the filler percentage and type of epoxy resin. Under creep loading, by increasing the stress level, the nanocomposite with 0.1 wt% silica creeps less than all other materials. Also the creep rate is reduced by adding silica nanofillers.

  14. Plastic casting resin poisoning

    Science.gov (United States)

    Epoxy poisoning; Resin poisoning ... Epoxy and resin can be poisonous if they are swallowed or their fumes are breathed in. ... Plastic casting resins are found in various plastic casting resin products.

  15. Resin composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Peutzfeldt, Anne; Lussi, Adrian

    2014-01-01

    OBJECTIVE: To investigate how the modulus of elasticity of resin composites influences marginal quality in restorations submitted to thermocyclic and mechanical loading. METHODS: Charisma, Filtek Supreme XTE and Grandio were selected as they were found to possess different moduli of elasticity...... of resin composite (p=0.81) on the quality of dentine margins was observed, before or after loading. Deterioration of all margins was evident after loading (p....008). CONCLUSIONS: The resin composite with the highest modulus of elasticity resulted in the highest number of gap-free enamel margins but with an increased incidence of paramarginal enamel fractures. CLINICAL SIGNIFICANCE: The results from this study suggest that the marginal quality of restorations can...

  16. Nanoparticles Decorated on Resin Particles and Their Flame Retardancy Behavior for Polymer Composites

    Directory of Open Access Journals (Sweden)

    Nour F. Attia

    2017-01-01

    Full Text Available New nanocomposites have been developed by doping of amberlite IR120 resin with spherical TiO2 nanoparticles in the presence of maleate diphosphate. Polystyrene composites of resin, maleate diphosphate, and resin-maleate diphosphate were prepared individually. This is in addition to preparation of polymer nanocomposites of polystyrene-resin doped TiO2 nanoparticles-maleate diphosphate. The flame retardancy and thermal stability properties of these developed polymer composites were evaluated. The inclusion of resin and resin doped nanoparticles improved the fire retardant behavior of polystyrene composites and enhanced their thermal stability. Synergistic behavior between flame retardant, resin, and nanoparticles was detected. The rate of burning of the polymer nanocomposites was recorded as 10.7 mm/min achieving 77% reduction compared to pure polystyrene (46.5 mm/min. The peak heat release rate (PHRR of the new polymer composites has reduced achieving 46% reduction compared to blank polymer. The morphology and dispersion of nanoparticles on resin and in polymer nanocomposites were characterized using transmission and scanning electron microscopy, respectively. The flame retardancy and thermal properties were evaluated using UL94 flame chamber, cone tests, and thermogravimetric analysis, respectively.

  17. Boron nitride-MWCNT/epoxy hybrid nanocomposites: Preparation and mechanical properties

    Science.gov (United States)

    Ulus, Hasan; Üstün, Tugay; Eskizeybek, Volkan; Şahin, Ömer Sinan; Avcı, Ahmet; Ekrem, Mürsel

    2014-11-01

    In this study, production and mechanical properties of hybrid nanocomposites have been investigated. Hybrid nanocomposites are consisting of boron nitride nanoplatelets (BN) and multiwall carbon nanotubes (MWCNT) embedded in epoxy resin. The BN and MWCNT were mixed to epoxy resin in different weight fractions and mixtures were utilized for tensile test specimen production. The synthesized BN and produced hybrid nanocomposites were characterized by SEM, TEM, XRD, FT-IR and TGA analyses. The elasticity modulus and tensile strength values were obtained via tensile tests. The fracture morphologies were investigated after tensile test by means of scanning electron microscopy.

  18. Metal Nanocomposites

    DEFF Research Database (Denmark)

    Fischer, Søren Vang; Uthuppu, Basil; Jakobsen, Mogens Havsteen

    2014-01-01

    We have made SU-8 gold nanoparticle composites in two ways, ex situ and in situ, and found that in both methods nanoparticles embedded in the polymer retained their plasmonic properties. The in situ method has also been used to fabricate a silver nanocomposite which is electrically conductive...

  19. clay nanocomposites

    Indian Academy of Sciences (India)

    The present work deals with the synthesis of specialty elastomer [fluoroelastomer and poly (styrene--ethylene-co-butylene--styrene (SEBS)]–clay nanocomposites and their structure–property relationship as elucidated from morphology studies by atomic force microscopy, transmission electron microscopy and X-ray ...

  20. Metal Nanocomposites

    DEFF Research Database (Denmark)

    Fischer, Søren Vang; Uthuppu, Basil; Jakobsen, Mogens Havsteen

    2014-01-01

    We have made SU-8 gold nanoparticle composites in two ways, ex situ and in situ, and found that in both methods nanoparticles embedded in the polymer retained their plasmonic properties. The in situ method has also been used to fabricate a silver nanocomposite which is electrically conductive. Th...

  1. Asphaltenes-based polymer nano-composites

    Science.gov (United States)

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  2. Proton-conducting membrane based on epoxy resin-poly(vinyl alcohol)-sulfosuccinic acid blend and its nanocomposite with sulfonated multiwall carbon nanotubes for fuel-cell application

    Science.gov (United States)

    Kakati, Nitul; Das, Gautam; Yoon, Young Soo

    2016-01-01

    A blend of poly(vinyl alcohol) (PVA) with diglycidyl ether of bisphenol-A (DGB) in the presence of sulfosuccinic acid (SSA) was investigated as hydrolytically-stable proton-conducting membrane. The PVA modification was carried out by varying the DGB:SSA ratio (20:20, 10:20, and 5:20). A nanocomposite of the blend (20:20) was prepared with sulfonated multiwall carbon nanotubes (viz., 1, 3 and 5 wt%). The water uptake behavior and the proton conductivity of the prepared membranes were evaluated. The ionic conductivity of the membranes and the water uptake behavior depended on the s-MWCNT and the DGB contents. The ionic conductivity showed an enhancement for the blend and for the nanocomposite membrane as compared to the pristine polymer.

  3. Design of carbon nanofiber embedded conducting epoxy resin

    International Nuclear Information System (INIS)

    Gantayat, Subhra; Sarkar, Niladri; Rout, Dibyaranjan; Swain, Sarat K.

    2017-01-01

    Acid treated carbon nanofiber (t-CNF) reinforced epoxy nanocomposites were fabricated by hand lay-up method with various wt % of t-CNF loadings. Pristine or unmodified carbon nano fibers (u-CNFs) were made compatible with epoxy matrix by means of mixed acid treatment. Fabricated nanocomposites were characterized with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) study, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Mechanical and thermal properties of the nanocomposites were measured as a function of t-CNF content. Effect of acid treated CNFs on to the mechanical properties of epoxy nanocomposites was justified by comparing the mechanical properties of epoxy/t-CNF and epoxy/u-CNF nanocomposites with same loading level. The electrical conductivity was achieved by epoxy resin with a threshold at 1 wt % of t-CNF. Substantial improvement in thermal, mechanical and electrical properties of the synthesized epoxy/t-CNF nanocomposites may be suitable for fabricating electronic devices. - Highlights: • Epoxy/t-CNF nanocomposites are characterized by XRD, FTIR, SEM, AFM and TEM. • Electrical conductivity was achieved by epoxy with a threshold at 1 wt% of t-CNF. • Tensile strength is enhanced by 40% due to dispersion of t-CNF. • Synthesized nanocomposites are suitable for fabricating electronic devises.

  4. Design of carbon nanofiber embedded conducting epoxy resin

    Energy Technology Data Exchange (ETDEWEB)

    Gantayat, Subhra [Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha (India); School of Applied Sciences, KIIT University, Bhubaneswar 751024, Odisha (India); Sarkar, Niladri [Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha (India); Rout, Dibyaranjan [School of Applied Sciences, KIIT University, Bhubaneswar 751024, Odisha (India); Swain, Sarat K., E-mail: swainsk2@yahoo.co.in [Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha (India)

    2017-01-15

    Acid treated carbon nanofiber (t-CNF) reinforced epoxy nanocomposites were fabricated by hand lay-up method with various wt % of t-CNF loadings. Pristine or unmodified carbon nano fibers (u-CNFs) were made compatible with epoxy matrix by means of mixed acid treatment. Fabricated nanocomposites were characterized with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) study, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Mechanical and thermal properties of the nanocomposites were measured as a function of t-CNF content. Effect of acid treated CNFs on to the mechanical properties of epoxy nanocomposites was justified by comparing the mechanical properties of epoxy/t-CNF and epoxy/u-CNF nanocomposites with same loading level. The electrical conductivity was achieved by epoxy resin with a threshold at 1 wt % of t-CNF. Substantial improvement in thermal, mechanical and electrical properties of the synthesized epoxy/t-CNF nanocomposites may be suitable for fabricating electronic devices. - Highlights: • Epoxy/t-CNF nanocomposites are characterized by XRD, FTIR, SEM, AFM and TEM. • Electrical conductivity was achieved by epoxy with a threshold at 1 wt% of t-CNF. • Tensile strength is enhanced by 40% due to dispersion of t-CNF. • Synthesized nanocomposites are suitable for fabricating electronic devises.

  5. Applications of nanocomposites and woodfiber plastics for microcellular injection molding

    Science.gov (United States)

    Lih-Sheng Turng; Mingjun Yuan; Hrishikesh Kharbas; Herman Winata; Daniel F. Caulfield

    2003-01-01

    The paper reviews the processing advantages and challenges of microcellular injection molding and presents recent research results on applications of nanocomposites and woodfiber-plastic composites as well as new process develop for the microcellular injection molding process. In particular, two types of polyamide (PA-6) neat resins and their filled counterparts, such...

  6. Polymer-Layered Silicate Nanocomposites for Cryotank Applications

    Science.gov (United States)

    Miller, Sandi G.; Meador, Michael A.

    2007-01-01

    Previous composite cryotank designs have relied on the use of conventional composite materials to reduce microcracking and permeability. However, revolutionary advances in nanotechnology derived materials may enable the production of ultra-lightweight cryotanks with significantly enhanced durability and damage tolerance, as well as reduced propellant permeability. Layered silicate nanocomposites are especially attractive in cryogenic storage tanks based on results that have been reported for epoxy nanocomposite systems. These materials often exhibit an order of magnitude reduction in gas permeability when compared to the base resin. In addition, polymer-silicate nanocomposites have been shown to yield improved dimensional stability, strength, and toughness. The enhancement in material performance of these systems occurs without property trade-offs which are often observed in conventionally filled polymer composites. Research efforts at NASA Glenn Research Center have led to the development of epoxy-clay nanocomposites with 70% lower hydrogen permeability than the base epoxy resin. Filament wound carbon fiber reinforced tanks made with this nanocomposite had a five-fold lower helium leak rate than the corresponding tanks made without clay. The pronounced reduction observed with the tank may be due to flow induced alignment of the clay layers during processing. Additionally, the nanocomposites showed CTE reductions of up to 30%, as well as a 100% increase in toughness.

  7. Review: Resin Composite Filling

    OpenAIRE

    Desmond Ng; Jimmy C. M. Hsiao; Keith C. T. Tong; Harry Kim; Yanjie Mai; Keith H. S. Chan

    2010-01-01

    The leading cause of oral pain and tooth loss is from caries and their treatment include restoration using amalgam, resin, porcelain and gold, endodontic therapy and extraction. Resin composite restorations have grown popular over the last half a century because it can take shades more similar to enamel. Here, we discuss the history and use of resin, comparison between amalgam and resin, clinical procedures involved and finishing and polishing techniques for resin restoration. Although resin ...

  8. Resin Characterization

    Science.gov (United States)

    2015-06-01

    to see plastic deformation of the surface. 8.1.4.3 Density: Density using the Archimedes principle (ASTM D 792). 8.1.4.4 Density as a Function of...the cure and postcure, quickly cool the sample to 0 °C or lower the temperature to quench the reaction, and then ramp the temperature at 5 °C/min to...prepared by pouring 10 g of resin into a 30-mL screw-cap scintillation vial and adding appropriate amounts of initiator, catalyst, and inhibitor

  9. Immobilization of spent resin with epoxy resin

    International Nuclear Information System (INIS)

    Gultom, O.; Suryanto; Sayogo; Ramdan

    1997-01-01

    immobilization of spent resin using epoxy resin has been conducted. The spent resin was mixtured with epoxy resin in variation of concentration, i.e., 30, 40, 50, 60, 70 weight percent of spent resin. The mixture were pour into the plastic tube, with a diameter of 40 mm and height of 40 mm. The density, compressive strength and leaching rate were respectively measured by quanta chrome, paul weber apparatus and gamma spectrometer. The results showed that the increasing of waste concentration would be decreased the compressive strength, and increased density by immobilized waste. The leaching rate of 137 Cs from waste product was not detected in experiment (author)

  10. Fabrication and characterization of TiO{sub 2}-epoxy nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Amit [Center for Composite Materials, University of Delaware, Newark DE-19716, DE (United States); Navel Materials Research Laboratory, DRDO, Ambernath (E) 421506 (India)], E-mail: chatterjeamit@yahoo.com; Islam, Muhammad S. [Center for Composite Materials, University of Delaware, Newark DE-19716, DE (United States)

    2008-07-25

    A systematic study has been conducted to investigate the matrix properties by introducing nanosize TiO{sub 2} (5-40 nm, 0.5-2% by weight) fillers into an epoxy resin. Ultrasonic mixing process, via sonic cavitations, was employed to disperse the particles into the resin system. The thermal, mechanical, morphology and the viscoelastic properties of the nanocomposite and the neat resin were measured with TGA, DMA, TEM and Instron. The nano-particles are dispersed evenly throughout the entire volume of the resin. The nanofiller infusion improves the thermal, mechanical and viscoelastic properties of the epoxy resin. The nanocomposite shows increase in storage modulus, glass transition temperature, tensile modulus, flexural modulus and short beam shear strength from neat epoxy resin. The mechanical performance and thermal stability of the epoxy nanocomposites are depending on with the dispersion state of the TiO{sub 2} in the epoxy matrix and are correlated with loading (0.0015-0.006% by volume). In addition, the nanocomposite shows enhanced flexural strength. Several reasons to explain these effects in terms of reinforcing mechanisms were discussed.

  11. Effect of organoclay incorporation on dental resin morphology;Efeito da incorporacao de argila oganofilica na morfologia de resina adontologica

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Nadja M.S.; Reis, Romulo P.B. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Programa de Pos-graduacao em Ciencia e Engenharia de Materiais; Leite, Itamara F. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Programa de Pos-Graduacao em Ciencia de Materiais; Morais, Crislene R.S.; Silva, Suedina M.L., E-mail: suedina@dema.ufcg.edu.b [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais

    2009-07-01

    The objective of the present work was to incorporate nanosilicates in commercial dental resins in order to prepare dental nanocomposites competitive as commercial nanoparticulates dental resins. Thus, a silicate, Cloisite 20A (C20A), was incorporated in a microhybrid dental resin (Z100) and morphological properties of the nanocomposites evaluated as a function of the incorporation method and the amount of filler employed. The samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD results evidence that nanocomposites have been obtained and according to SEM results, the morphology of microhybrid resin was modified when C20A nanoparticulate was incorporated improve the size distribution and reduce the agglomeration of the particles. (author)

  12. Understanding the thermal, mechanical and electrical properties of epoxy nanocomposites

    International Nuclear Information System (INIS)

    Sarathi, R.; Sahu, R.K.; Rajeshkumar, P.

    2007-01-01

    In the present work, the electrical, mechanical and thermal properties of epoxy nanocomposite materials were studied. The electrical insulation characteristics were analyzed through short time breakdown voltage test, accelerated electrical ageing test, and by tracking test. The breakdown voltage increases with increase in nano-clay content up to 5 wt%, under AC and DC voltages. The volume resistivity, permittivity and tan(δ) of the epoxy nanocomposites were measured. The Weibull studies indicate that addition of nanoclay upto 5 wt% enhances the characteristic life of epoxy nanocomposite insulation material. The tracking test results indicate that the tracking time is high with epoxy nanocomposites as compared to pure epoxy. Ageing studies were carried out to understand the surface characteristic variation through contact angle measurement. The hydrophobicity of the insulating material was analysed through contact angle measurement. The diffusion coefficients of the material with different percentage of clay in epoxy nanocomposites were calculated. The exfoliation characteristics in epoxy nanocomposites were analyzed through wide angle X-ray diffraction (WAXD) studies. The thermal behaviour of the epoxy nanocomposites was analyzed by carrying out thermo gravimetric-differential thermal analysis (TG-DTA) studies. Heat deflection temperature of the material was measured to understand the stability of the material for intermittent temperature variation. The dynamic mechanical analysis (DMA) results indicated that storage modulus of the material increases with small amount of clay in epoxy resin. The activation energy of the material was calculated from the DMA results

  13. Fabrication of optically transparent chitin nanocomposites

    Science.gov (United States)

    Shams, M. Iftekhar; Ifuku, Shinsuke; Nogi, Masaya; Oku, Takeshi; Yano, Hiroyuki

    2011-02-01

    This paper demonstrates the preparation of chitin nanofibers from crab shells using a simple mechanical treatment. The nanofibers are small enough to retain the transparency of neat acrylic resin. Possessing hydroxyl and amine/ N-acetyl functionalities, water suspension of chitin nanofibers was vacuum-filtered 9 times faster than cellulose nanofibers to prepare a nanofiber sheet of 90 mm in diameter. This is a prominent advantage of chitin nanofibers over cellulose nanofibers in terms of commercial application. Interestingly, chitin acrylic resin films exhibited much higher transparency than cellulose acrylic resin films owing to the close affinity between less hydrophilic chitin and hydrophobic resin. Furthermore, the incorporation of chitin nanofibers contributes to the significant improvement of the thermal expansion and mechanical properties of the neat acrylic resin. The properties of high light transmittance and low thermal expansion make chitin nanocomposites promising candidates for the substrate in a continuous roll-to-roll process in the manufacturing of various optoelectronic devices such as flat panel displays, bendable displays, and solar cells.

  14. Electrostatically suspended torsion pendulum

    Science.gov (United States)

    Willemenot, E.; Touboul, P.

    2000-01-01

    A torsion pendulum without a torsion wire has been designed and realized, in order to measure very weak forces. The arm of this torsion pendulum (5.40 g, 1.32×10-6 kg m2 of inertia) is electrostatically suspended. Its 6 degrees of freedom are controlled thanks to electrostatic forces, and capacitive position sensing with a noise spectral density between 10-10 and 10-13 m/√Hz . The torque noise spectral density is 1.3×10-14 Nm/√Hz around 0.05 Hz with a 1/√f increase at lower frequency, corresponding to 10-8 rad/s2/√Hz , and 2×10-10 ms-2/√Hz with a lever arm of 2 cm. The residual seismic noise limit the performances above 0.1 Hz. The free oscillating mode has a torsion stiffness of 5.14×10-8 Nm/rad and a Q of 217. This new instrument allows on ground experiments on very weak parasitic forces inside space accelerometers developed in ONERA, with a good representativeness. For example, it is possible to measure electrostatic stiffnesses with high resolution thanks to the low torque noise spectral density; the electrostatic damping phenomenon is also well seen as illustrated by the rather low Q. The instrument design and operation are described, the main performances are given, and the possibilities offered are discussed.

  15. Electrochromic nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Milliron, Delia; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2018-04-10

    The present invention provides an electrochromic nanocomposite film. In an exemplary embodiment, the electrochromic nanocomposite film, includes (1) a solid matrix of oxide based material and (2) transparent conducting oxide (TCO) nanostructures embedded in the matrix. In a further embodiment, the electrochromic nanocomposite film farther includes a substrate upon which the matrix is deposited. The present invention also provides a method of preparing an electrochromic nanocomposite film.

  16. Fabrication and characterisation of graphene oxide-epoxy nanocomposite

    Science.gov (United States)

    Galpaya, Dilini; Wang, Mingchao; Yan, Cheng; Liu, Meinan; Motta, Nunzio; Waclawik, Eric

    2013-08-01

    Adequate amount of graphene oxide (GO) was firstly prepared by oxidation of graphite and GO/epoxy nanocomposites were subsequently prepared by typical solution mixing technique. X-ray diffraction (XRD) pattern, X-ray photoelectron (XPS), Raman and Fourier transform infrared (FTIR) spectroscopy indicated the successful preparation of GO. Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) images of the graphite oxide showed that they consist of a large amount of graphene oxide platelets with a curled morphology containing of a thin wrinkled sheet like structure. AFM image of the exfoliated GO signified that the average thickness of GO sheets is ~1.0 nm which is very similar to GO monolayer. Mechanical properties of as prepared GO/epoxy nanocomposites were investigated. Significant improvements in both Young's modulus and tensile strength were observed for the nanocomposites at very low level of GO loading. The Young's modulus of the nanocomposites containing 0.5 wt% GO was 1.72 GPa, which was 35 % higher than that of the pure epoxy resin (1.28 GPa). The effective reinforcement of the GO based epoxy nanocomposites can be attributed to the good dispersion and the strong interfacial interactions between the GO sheets and the epoxy resin matrices.

  17. Performance of epoxy-nanocomposite under corrosive environment

    Directory of Open Access Journals (Sweden)

    2007-06-01

    Full Text Available Nanocomposite materials consisting of polymeric matrix materials and natural or synthetic layered minerals like clay are currently an expanding field of study because these new materials often exhibit a wide range of improved properties over their unmodified starting polymers. Epoxy/organoclay nanocomposites have been prepared by intercalating epoxy into the organoclay via direct mixing process. The clay exfoliation was monitored by X-ray diffraction (XRD and transmission electron microscopy (TEM. Water diffusion and sulfuric acid corrosion resistance of epoxy-based nanocomposites were evaluated. Diffusion was studied through epoxy samples containing up to 6 phr (parts per hundred resin of an organically treated montmorillonite. The diffusion of the environmental solution was measured by noting the increase in weight of the samples as a function of immersion time in these solutions at 80°C. The effect of the degree of exfoliation of the organoclay on water barrier and corrosion resistance was specifically studied. The data have been compared to those obtained from the neat epoxy resin to evaluate the diffusion properties of the nanocomposites. The flexural strength of the epoxy/organoclay nanocomposites samples made was examined to compare their mechanical performance under corrosive conditions as a function of immersion time and temperature. It was found, that the organoclay was mainly intercalated with some exfoliation and that addition of the organoclay yields better flexural strength retention under immersion into sulfuric acid.

  18. Polymer nanocomposites for high-temperature composite repair

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Xia [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    A novel repair agent for resin-injection repair of advanced high temperature composites was developed and characterized. The repair agent was based on bisphenol E cyanate ester (BECy) and reinforced with alumina nanoparticles. To ensure good dispersion and compatibility with the BECy matrix in nanocomposites, the alumina nanoparticles were functionalized with silanes. The BECy nanocomposites, containing bare and functionalized alumina nanoparticles, were prepared and evaluated for their thermal, mechanical, rheological, and viscoelastic properties. The monomer of BECy has an extremely low viscosity at ambient temperature, which is good for processability. The cured BECy polymer is a highly cross-linked network with excellent thermal mechanical properties, with a high glass transition temperature (Tg) of 270 C and decomposition temperature above 350 C. The incorporation of alumina nanoparticles enhances the mechanical and rheological properties of the BECy nanocomposites. Additionally, the alumina nanoparticles are shown to catalyze the cure of BECy. Characterization of the nanocomposites included dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy. The experimental results show that the BECy nanocomposite is a good candidate as repair agent for resin-injection repair applications.

  19. Nanocomposites: The End of Compromise

    Science.gov (United States)

    van Damme, H.

    Increase the Young's modulus of a glassy resin by a factor of ten without making it heavier, for a new ski design, for example? Triple the rupture strength of an elastomer? Improve the thermal behaviour of an object made from a thermoplastic polymer by 100 degrees, to make a car dashboard, for example, or a part for the engine? Double the fire resistance time for the sheath around an electricity cable? Reduce the oxygen permeability of a film by a factor of ten, to make long conservation food packaging? All these things have been made possible by incorporating a few percent of inorganic nanoparticles in a polymer matrix. Figures 14.1 and 14.2 illustrate two such nanocomposites: the first was obtained by incorporating lamellar clay particles, and the second by incorporating fibrous nanoparticles, in fact, carbon nanotubes.

  20. Characterization of polymer based nanocomposites with carbon nanotubes.

    Science.gov (United States)

    Ciecierska, Ewelina; Boczkowska, Anna; Kurzydłowski, Krzysztof J

    2014-04-01

    The paper concerns investigation of the processing methods influence on the electrical, thermal and mechanical properties of the polymer matrix nanocomposites with carbon nanotubes (CNTs) as a filler. The focus is put on the relation between microstructure and properties dependently on the parameters of mixing, epoxy matrix curing parameters, neat epoxy resin viscosity, carbon nanotubes modified with different functional groups, as well as carbon nanotubes weight fraction. Nanocomposites with the CNTs varied from 0.05 to 5 wt.% were obtained by dispersion methods such as: mechanical stirring, ultrasonication and combination both of them, as well as calendaring. Three epoxy resin systems were tested, varied in viscosity and curing temperature. Also CNTs nonmodified and modified with amino, carboxyl and hydroxyl groups were used. The choice of the best epoxy resin system and kind of CNTs for fabrication of conductive nanocomposites was done. The lower neat epoxy resin viscosity the better dispersion of CNTs can be achieved. The distribution of CNTs in the epoxy matrix was evaluated using high resolution scanning electron microscopy, supported by image analysis. Electrical conductivity, as well as thermal stability and thermodynamic properties of polymers filled with CNTs were determined. Activation energy of decomposition process was calculated from thermogravimetric curves by Flynn-Wall-Ozawa method. The deterioration of thermal stability was obtained, while mechanical properties increase with the CNTs weight fraction growth up to 0.1%. Calendaring was found as the best method of CNTs dispersion in the polymer matrix.

  1. A model for anomalous moisture diffusion through a polymer-clay nanocomposite

    DEFF Research Database (Denmark)

    Drozdov, Aleksey D.; Christiansen, Jesper de Claville; Gupta, R.K.

    2002-01-01

    Experimental data are reported on moisture diffusion and the elastoplastic response in uniaxial tensile tests of an intercalated nanocomposite with vinyl ester resin matrix and montmorillonite clay filler at room temperature. Observations in diffusion tests show that the moisture transport...... diffusion through a nanocomposite and for its elastoplastic behavior. Adjustable parameters in these relations are found by fitting the experimental data. Fair agreement is demonstrated between the observations and the results of numerical simulation....

  2. Synthesis and properties of epoxy-phenolic clay nanocomposites

    Directory of Open Access Journals (Sweden)

    2007-09-01

    Full Text Available An epoxy-phenolic resin suitable for use as a composite matrix was reinforced with modified nanoclay (montmorillonite type. Characterization by x-ray diffraction and transmission electron microscopy (TEM demonstrated that intercalated nanocomposites were formed with an inter-gallery distance of approximately 10 nm. The influence of nanoparticles on tensile strength and modulus, fracture toughness, and impact toughness was measured and compared with the unreinforced polymer. The results revealed that the maximum enhancement in stiffness and toughness was achieved with 2.5 wt% filler content. The enhancement in toughness behavior was attributed to the activation of multiple energy-dissipating damage mechanisms in the nanocomposites.

  3. Preparation, characterization and X-ray attenuation property of Gd2O3-based nanocomposites

    Science.gov (United States)

    Jayakumar, Sangeetha; Saravanan, T.; Philip, John

    2017-11-01

    In an attempt to develop an alternate to lead-based X-ray shielding material, we describe the X-ray attenuation property of nanocomposites containing Gd2O3 as nanofiller and silicone resin as matrix, prepared by a simple solution-casting technique. Gd2O3 nanoparticles of size 30 and 56 nm are used at concentrations of 25 and 2.5 wt%. The nanoparticles and the nanocomposites are characterized using X-ray diffraction (XRD) studies, small angle X-ray spectroscopy (SAXS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and atomic force microscopy (AFM). The X-ray attenuation property of nanocomposites, studied using an industrial X-ray unit, shows that nanocomposites containing nanoparticles of size 56 nm (G2) exhibit better attenuation than nanocomposites containing nanoparticles of size 30 nm (G1), which is attributed to the greater interfacial interaction between the G2 nanofillers and silicone matrix. In the case of nanocomposites containing G1 nanoparticles, the interfacial interaction between the nanofiller and the matrix is so weak that it results in pulling out of nanofillers, causing voids in the matrix, which act as X-ray transparent region, thereby reducing the overall X-ray attenuation property of G1 nanocomposites. This is further corroborated from the AFM images of the nanocomposites. The weight loss and heat flow curves of pure silicone matrix and the nanocomposites containing Gd2O3 nanoparticles of size 30 and 56 nm show the degradation of silicone resin, due to chain scission, between 403 and 622 °C. The same onset temperature (403 °C) of degradation of matrix with and without nanoparticles shows that the addition of nanofillers to the matrix does not deteriorate the thermal stability of the matrix. This confirms the thermal stability of nanocomposites. Therefore, our study shows that nanocomposites containing G2 nanoparticles are potential candidates for the development of X-ray opaque fabric material.

  4. Review: Resin Composite Filling

    Directory of Open Access Journals (Sweden)

    Desmond Ng

    2010-02-01

    Full Text Available The leading cause of oral pain and tooth loss is from caries and their treatment include restoration using amalgam, resin, porcelain and gold, endodontic therapy and extraction. Resin composite restorations have grown popular over the last half a century because it can take shades more similar to enamel. Here, we discuss the history and use of resin, comparison between amalgam and resin, clinical procedures involved and finishing and polishing techniques for resin restoration. Although resin composite has aesthetic advantages over amalgam, one of the major disadvantage include polymerization shrinkage and future research is needed on reaction kinetics and viscoelastic behaviour to minimize shrinkage stress.

  5. Review: Resin Composite Filling

    Science.gov (United States)

    Chan, Keith H. S.; Mai, Yanjie; Kim, Harry; Tong, Keith C. T.; Ng, Desmond; Hsiao, Jimmy C. M.

    2010-01-01

    The leading cause of oral pain and tooth loss is from caries and their treatment include restoration using amalgam, resin, porcelain and gold, endodontic therapy and extraction. Resin composite restorations have grown popular over the last half a century because it can take shades more similar to enamel. Here, we discuss the history and use of resin, comparison between amalgam and resin, clinical procedures involved and finishing and polishing techniques for resin restoration. Although resin composite has aesthetic advantages over amalgam, one of the major disadvantage include polymerization shrinkage and future research is needed on reaction kinetics and viscoelastic behaviour to minimize shrinkage stress.

  6. Precisely controlled resorcinol-formaldehyde resin coating for fabricating core-shell, hollow, and yolk-shell carbon nanostructures.

    Science.gov (United States)

    Fang, Xiaoliang; Liu, Shengjie; Zang, Jun; Xu, Chaofa; Zheng, Ming-Sen; Dong, Quan-Feng; Sun, Daohua; Zheng, Nanfeng

    2013-08-07

    This work provides a facile one-step sol-gel route to synthesize high-quality resorcinol-formaldehyde (RF) resin coated nanocomposites that can be further used to fabricate desired carbon nanostructures. Colloidal particles with different morphologies and sizes can be coated with high-quality RF resin shells by the proposed cationic surfactant assisted RF resin coating strategy. The as-synthesized RF resin coated nanocomposites are ideal candidates for selective synthesis of core-shell, hollow, and yolk-shell carbon nanostructures. Based on the carboxylic functional RF resin coating, graphitic carbon nanostructures can also be synthesized by employing the graphitization catalyst. The as-synthesized carbon nanostructures show the advantageous performances in several applications. Hollow carbon spheres are potential electrode materials for lithium-sulfur batteries. Hollow graphitic spheres are promising catalyst supports for oxygen reduction reaction. And yolk-shell structured Au@HCS nanoreactors with ultrathin shells exhibit high catalytic activity and recyclability in confined catalysis.

  7. Thermal and Mechanical Behavior of Hybrid Polymer Nanocomposite Reinforced with Graphene Nanoplatelets

    Directory of Open Access Journals (Sweden)

    Minh-Tai Le

    2015-08-01

    Full Text Available In the present investigation, we successfully fabricate a hybrid polymer nanocomposite containing epoxy/polyester blend resin and graphene nanoplatelets (GNPs by a novel technique. A high intensity ultrasonicator is used to obtain a homogeneous mixture of epoxy/polyester resin and graphene nanoplatelets. This mixture is then mixed with a hardener using a high-speed mechanical stirrer. The trapped air and reaction volatiles are removed from the mixture using high vacuum. The hot press casting method is used to make the nanocomposite specimens. Tensile tests, dynamic mechanical analysis (DMA and thermogravimetric analysis (TGA are performed on neat, 0.2 wt %, 0.5 wt %, 1 wt %, 1.5 wt % and 2 wt % GNP-reinforced epoxy/polyester blend resin to investigate the reinforcement effect on the thermal and mechanical properties of the nanocomposites. The results of this research indicate that the tensile strength of the novel nanocomposite material increases to 86.8% with the addition of a ratio of graphene nanoplatelets as low as 0.2 wt %. DMA results indicate that the 1 wt % GNP-reinforced epoxy/polyester nanocomposite possesses the highest storage modulus and glass transition temperature (Tg, as compared to neat epoxy/polyester or the other nanocomposite specimens. In addition, TGA results verify thethermal stability of the experimental specimens, regardless of the weight percentage of GNPs.

  8. Thermal and Mechanical Behavior of Hybrid Polymer Nanocomposite Reinforced with Graphene Nanoplatelets.

    Science.gov (United States)

    Le, Minh-Tai; Huang, Shyh-Chour

    2015-08-24

    In the present investigation, we successfully fabricate a hybrid polymer nanocomposite containing epoxy/polyester blend resin and graphene nanoplatelets (GNPs) by a novel technique. A high intensity ultrasonicator is used to obtain a homogeneous mixture of epoxy/polyester resin and graphene nanoplatelets. This mixture is then mixed with a hardener using a high-speed mechanical stirrer. The trapped air and reaction volatiles are removed from the mixture using high vacuum. The hot press casting method is used to make the nanocomposite specimens. Tensile tests, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) are performed on neat, 0.2 wt %, 0.5 wt %, 1 wt %, 1.5 wt % and 2 wt % GNP-reinforced epoxy/polyester blend resin to investigate the reinforcement effect on the thermal and mechanical properties of the nanocomposites. The results of this research indicate that the tensile strength of the novel nanocomposite material increases to 86.8% with the addition of a ratio of graphene nanoplatelets as low as 0.2 wt %. DMA results indicate that the 1 wt % GNP-reinforced epoxy/polyester nanocomposite possesses the highest storage modulus and glass transition temperature (Tg), as compared to neat epoxy/polyester or the other nanocomposite specimens. In addition, TGA results verify thethermal stability of the experimental specimens, regardless of the weight percentage of GNPs.

  9. A study on the resistance performance of epoxy nano-composites under the vacuum ultraviolet irradiation

    Science.gov (United States)

    Liu, Yang; Li, Guo-hui; Jiang, Li-xiang

    2008-12-01

    Irradiation damage effects of the epoxy resin 648 and epoxy nano-composites are studied by means of simulating the vacuum ultraviolet (VUV) irradiation whose wavelength ranges from 5 to 200 nm. Experimental results of the mass loss, SEM and XPS show that nano-TiO 2 particles exhibit better resistance performance under VUV. Comparing with epoxy resin, the epoxy nano-composite brings significantly less mass loss, slighter flexural strength variation and decreasing gas extraction with less gas component varieties after irradiation. What is more, no new carbon peak-value has been found and principle components of Ols peak-value remain unchanged on the surface.

  10. Effects of Nanofillers on the Thermo-Mechanical Properties and Chemical Resistivity of Epoxy Nanocomposites.

    Science.gov (United States)

    Atchudan, Raji; Pandurangan, Arumugam; Joo, Jin

    2015-06-01

    MWCNTs was synthesized using Ni-Cr/MgO by CVD method and were purified. The purified MWCNT was used as a filler material for the fabrication of epoxy nanocomposites. The epoxy nanocomposites with different amount (wt% = 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0) of nanofillers (CB, SiO2 and MWCNTs) were prepared by casting method. The effects of nanofillers on the properties of neat epoxy matrix were well studied. The thermal properties of nanocomposites were studied using DSC, TGA and flame retardant, and also the mechanical properties such as tensile strength, flexural strength, compressive strength, impact strength, determination of hardness and chemical resistance were studied extensively. Based on the experiment's results, 2 wt% MWCNTs loading in epoxy resin showed the highest improvement in tensile strength, as compared to neat epoxy and to other epoxy systems (CB/epoxy, SiO2/epoxy). Improvements in tensile strength, glass transition temperature and decomposition temperature were observed by the addition of MWCNTs. The mechanical properties of the epoxy nanocomposites were improved due to the interfacial bonding between the MWCNTs and epoxy resin. Strain hardening behavior was higher for MWCNT/epoxy nanocomposites compared with CB/epoxy and SiO2/epoxy nanocomposites. The investigation of thermal and mechanical properties reveals that the incorporation of MWCNTs into the epoxy nanocomposites increases its thermal stability to a great extent. Discrete increase of glass transition temperature of nanocomposites is linearly dependent on MWCNTs content. Due to strong interfacial bonding between MWCNTs and epoxy resin, the chemical resistivity of MWCNT/epoxy nanocomposites is superior to neat epoxy and other epoxy systems.

  11. Resin-Powder Dispenser

    Science.gov (United States)

    Standfield, Clarence E.

    1994-01-01

    Resin-powder dispenser used at NASA's Langley Research Center for processing of composite-material prepregs. Dispenser evenly distributes powder (resin polymer and other matrix materials in powder form) onto wet uncured prepregs. Provides versatility in distribution of solid resin in prepreg operation. Used wherever there is requirement for even, continuous distribution of small amount of powder.

  12. Development of nanocomposites employing high-density polyethylene and organo clay

    International Nuclear Information System (INIS)

    Lessa, Tathiane C. Rodrigues F.; Tavares, Maria Ines B.; Pita, Vitor J.R.R.

    2009-01-01

    The purpose of this study was to prepare nanocomposites of high-density polyethylene and montmorillonite organoclay by polymer melt intercalation, employing different processing parameters. Effective clay incorporation into polyethylene matrix was observed. The nanocomposites were structurally characterized. Intercalated nanocomposites were obtained from different process parameters, employing polyethylene resin and montmorillonite organoclays. The XRD results and other analysis showed that the processing parameters affect the organoclay delamination. The polyethylene nanocomposite presented the better performance using twin screw extruder, at 90 rpm. The purpose of characterization of polyethylene/organoclay nanocomposite by low-field NMR showed that this technique was important to understand changes in the molecular mobility of polyethylene when organoclay was incorporated. (author)

  13. Multifunctional Polymer/Inorganic Nanocomposites

    National Research Council Canada - National Science Library

    Manias, E

    2003-01-01

    ... in multifunctional nanocomposite materials. Understanding the structure/property relations in polymer/clay nanocomposites is of great importance in designing materials with desired sets of properties...

  14. Development and pharmacological evaluation of in vitro nanocarriers composed of lamellar silicates containing copaiba oil-resin for treatment of endometriosis

    Energy Technology Data Exchange (ETDEWEB)

    Almeida Borges, Vinícius Raphael de [Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); Henriques da Silva, Julianna [Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil); Soares Barbosa, Samantha [Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); Nasciutti, Luiz Eurico [Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil); Cabral, Lúcio Mendes [Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); Pereira de Sousa, Valeria, E-mail: valeria@pharma.ufrj.br [Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil)

    2016-07-01

    In this work, newly developed nanocomposites based upon lamellar silicates are evaluated to determine their potential in controlling endometriosis. The preparation of the new nanocarriers is detailed, properties characterized and in vitro pharmacological evaluation performed. The nanocomposites in this study were obtained from the reaction of copaiba oil-resin (COPA) with the polymer polyvinylpyrrolidone (PVP K-30). COPA was selected due to its antiinflammatory and anticancer activities along with the organophilic derivatives of sodium montmorillonite, Viscogel B8, S7 and S4. The results indicated that it was feasible to obtain a good yield of a COPA nanocomposite using a simple process. Intercalation was confirmed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). In vitro release experiments demonstrated that COPA was released from the nanocomposite in a delayed fashion. Whereas, in vitro pharmacological studies showed a reduction in viability and proliferation of endometriotic cell cultures upon COPA nanocomposite treatment, suggesting that the system developed here can be a promising alternative therapy for the oral treatment of endometriosis. - Highlights: • Nanocomposite containing copaiba oil-resin can be obtained with good yield by intercalation in solution method. • The copaiba oil-resin is released from the nanocomposite following Higuchi's model in a delayed release. • The nanocomposites containing copaiba reduced the viability and proliferative capacity of the endometriotic cell cultures.

  15. Suspended solids in liquid effluents

    International Nuclear Information System (INIS)

    McGrath, J.J.

    1988-06-01

    An international literature review and telephone mail survey was conducted with respect to technical and regulatory aspects of suspended solids in radioactive liquid wastes from nuclear power stations. Results of the survey are summarized and show that suspended solids are an important component of some waste streams. The data available, while limited, show these solids to be associated largely with corrosion products. The solids are highly variable in quantity, size and composition. Filtration is commonly applied for their removal from liquid effluents and is effective. Complex interactions with receiving waters can result in physical/chemical changes of released radionuclides and these phenomena have been seen as reason for not applying regulatory controls based on suspended solids content. 340 refs

  16. Influence of hematite nanorods on the mechanical properties of epoxy resin

    Czech Academy of Sciences Publication Activity Database

    Bogdanović, G.; Kovač, T. S.; Džunuzović, E. S.; Špírková, Milena; Ahrenkiel, P. S.; Nedeljković, J. M.

    2017-01-01

    Roč. 82, č. 4 (2017), s. 437-447 ISSN 0352-5139 R&D Projects: GA ČR(CZ) GA13-06700S Institutional support: RVO:61389013 Keywords : nanocomposites * thermosetting resin * mechanical measurements Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 0.822, year: 2016

  17. Magnetic nanocomposite sensor

    KAUST Repository

    Alfadhel, Ahmed

    2016-05-06

    A magnetic nanocomposite device is described herein for a wide range of sensing applications. The device utilizes the permanent magnetic behavior of the nanowires to allow operation without the application of an additional magnetic field to magnetize the nanowires, which simplifies miniaturization and integration into microsystems. In5 addition, the nanocomposite benefits from the high elasticity and easy patterning of the polymer-based material, leading to a corrosion-resistant, flexible material that can be used to realize extreme sensitivity. In combination with magnetic sensor elements patterned underneath the nanocomposite, the nanocomposite device realizes highly sensitive and power efficient flexible artificial cilia sensors for flow measurement or tactile sensing.

  18. Nanocomposites as Advanced Materials for Aerospace Industry

    Directory of Open Access Journals (Sweden)

    George PELIN

    2012-12-01

    Full Text Available Polymer nanocomposites, consisting of nanoparticles dispersed in polymer matrix, have gained interest due to the attractive properties of nanostructured fillers, as carbon nanotubes and layered silicates. Low volume additions (1- 5% of nanoparticles provide properties enhancements comparable to those achieved by conventional loadings (15- 40% of traditional fillers.Structural nanocomposites represent reinforcement structures based on carbon or glass fibers embedded into polymeric matrix modified with nanofillers.Structural composites are the most important application of nanaocomposites, in aerospace field, as, laminates and sandwich structures. Also, they can by used as anti-lightning, anti-radar protectors and paints. The paper presents the effects of sonic dispersion of carbon nanotubes and montmorrilonite on the mechanical, electrical, rheological and trybological properties of epoxy polymers and laminated composites, with carbon or glass fiber reinforcement, with nanoadditivated epoxy matrix. One significant observation is that nanoclay contents higher than 2% wt generate an increase of the resin viscosity, from 1500 to 50000- 100000 cP, making the matrix impossible to use in high performance composites.Also, carbon nanotubes provide the resin important electrical properties, passing from dielectric to semi- conductive class. These effects have also been observed for fiber reinforced composites.Contrarily to some opinions in literature, the results of carbon nanotubes or nanoclays addition on the mechanical characteristics of glass or carbon fiber composites seem to be rather low.

  19. Dry release of suspended nanostructures

    DEFF Research Database (Denmark)

    Forsén, Esko Sebastian; Davis, Zachary James; Dong, M.

    2004-01-01

    A dry release method for fabrication of suspended nanostructures is presented. The technique has been combined with an anti-stiction treatment for fabrication of nanocantilever based nanoelectromechanical systems (NEMS). The process combines a dry release method, using a supporting layer of photo...

  20. Clarification of olive mill and winery wastewater by means of clay–polymer nanocomposites

    International Nuclear Information System (INIS)

    Rytwo, Giora; Lavi, Roy; Rytwo, Yuval; Monchase, Hila; Dultz, Stefan; König, Tom N.

    2013-01-01

    Highly polluted effluents from olive mills and wineries, among others, are unsuitable for discharge into standard sewage-treatment plants due to the large amounts of organic and suspended matter. Efficiency of all management practices for such effluents depends on an effective pretreatment that lowers the amount of suspended solids. Such pretreatments are usually based on three separate stages, taking a total of 2 to 6 h: coagulation—neutralizing the colloids, flocculation—aggregating the colloids into larger particles, and separation via filtration or decanting. Previous studies have presented the concept of coagoflocculation based on the use of clay–polymer nanocomposites. This process adds a higher density clay particle to the flocs, accelerating the process to between 15 and 60 min. This study examined suitable nanocomposites based on different clays and polymers. The charge of the compounds increased proportionally to the polymer-to-clay ratio. X-ray diffraction (XRD) measurements indicated that in sepiolite-based nanocomposites there is no change in the structure of the mineral, whereas in smectite-based nanocomposites, the polymer intercalates between the clay layers and increases the spacing depending on the polymer-to-clay ratio. Efficiency of the coagoflocculation process was studied with a dispersion analyzer. Sequential addition of olive mill or winery effluents with a boosting dose of nanocomposites may yield a very efficient and rapid clarification pretreatment. Highlights: ► Nanocomposites yielded clarification of olive mill (OMW) and winery effluents (WW). ► In smectite based nanocomposites intercalation of the polymer was measured. ► In sepiolite based nanocomposites no changes in the spacing were observed. ► Colloidal neutralization is the main clarification process in WW but not in OMW. ► Several cycles of effluents might be added to an initial dose of nanocomposites.

  1. Toward advanced gamma rays radiation resistance and shielding efficiency with phthalonitrile resins and composites

    Science.gov (United States)

    Derradji, Mehdi; Zegaoui, Abdeldjalil; Xu, Yi-Le; Wang, An-ran; Dayo, Abdul Qadeer; Wang, Jun; Liu, Wen-bin; Liu, Yu-Guang; Khiari, Karim

    2018-04-01

    The phthalonitrile resins have claimed the leading place in the field of high performance polymers thanks to their combination of outstanding properties. The present work explores for the first time the gamma rays radiation resistance and shielding efficiency of the phthalonitrile resins and its related tungsten-reinforced nanocomposites. The primary goal of this research is to define the basic behavior of the phthalonitrile resins under highly ionizing gamma rays. The obtained results confirmed that the neat phthalonitrile resins can resist absorbed doses as high as 200 kGy. Meanwhile, the remarkable shielding efficiency of the phthalonitrile polymers was confirmed to be easily improved by preparing lead-free nanocomposites. In fact, the gamma rays screening ratio reached the exceptional value of 42% for the nanocomposites of 50 wt% of nano-tungsten loading. Thus, this study confirms that the remarkable performances of the phthalonitrile resins are not limited to the thermal and mechanical properties and can be extended to the gamma rays radiation and shielding resistances.

  2. Effect of Interfacial Polarization and Water Absorption on the Dielectric Properties of Epoxy-Nanocomposites

    NARCIS (Netherlands)

    Marx, Philipp; Wanner, Andrea; Zhang, Zucong; Jin, H.; Tsekmes, I.A.; Smit, J.J.; Kern, Wolfgang; Wiesbrock, Frank

    2017-01-01

    Five types of nanofillers, namely, silica, surface-silylated silica, alumina, surface-silylated alumina, and boron nitride, were tested in this study. Nanocomposites composed of an epoxy/amine resin and one of the five types of nanoparticles were tested as dielectrics with a focus on (i) the surface

  3. (methyl methacrylate) nanocomposites

    Indian Academy of Sciences (India)

    preparation of poly (methyl methacrylate) (PMMA), PMMA/SiO2, and PMMA/TiO2 nanocomposites are reported. These nanocomposite polymers were synthesized by means of free radical polymerization of methyl methacrylate using benzoyl peroxide as an initiator in a water medium. Further 'sol–gel' transformation.

  4. Nanocomposites for Machining Tools

    DEFF Research Database (Denmark)

    Sidorenko, Daria; Loginov, Pavel; Mishnaevsky, Leon

    2017-01-01

    . A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools......, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance....

  5. Superior thermal conductivity of transparent polymer nanocomposites with a crystallized alumina membrane

    Directory of Open Access Journals (Sweden)

    Md. Poostforush

    2014-04-01

    Full Text Available The properties of novel thermoconductive and optically transparent nanocomposites have been reported. The composites were prepared by the impregnation of thermoset resin into crystallized anodic aluminum oxide (AAO. Crystallized AAO synthesized by annealing amorphous AAO membrane at 1200°C. Although through-plane thermal conductivity of nanocomposites improved up to 1.13 W•m–1•K–1 (39 vol% alumina but their transparency was preserved (Tλ550 nm ~ 72%. Integrated annealed alumina phase, low refractive index mismatch between resin and alumina and formation of nano-optical fibers through the membrane resulted in such marvel combination. This report shows a great potential of these types of nanocomposites in ‘heat management’ of lightening devices.

  6. Boron nitride-MWCNT/epoxy hybrid nanocomposites: Preparation and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ulus, Hasan; Üstün, Tugay [Mechanical Engineering Department, Selcuk University, Konya 42075 (Turkey); Eskizeybek, Volkan [Materials Science and Engineering, Canakkale Onsekiz Mart University, Canakkale 17100 (Turkey); Şahin, Ömer Sinan; Avcı, Ahmet [Mechanical Engineering Department, Selcuk University, Konya 42075 (Turkey); Ekrem, Mürsel, E-mail: mekrem@konya.edu.tr [Mechanical Engineering Department, Necmettin Erbakan University, Konya (Turkey)

    2014-11-01

    Highlights: • We studied the effects of BN nanoplatelets on tensile strength and elasticity modulus for polymer composites. • We investigated the synergetic effects of BN nanoplatelets and MWCNTs on tensile strength and elasticity modulus for polymer composites. • Fracture surfaces were examined by SEM analysis. - Abstract: In this study, production and mechanical properties of hybrid nanocomposites have been investigated. Hybrid nanocomposites are consisting of boron nitride nanoplatelets (BN) and multiwall carbon nanotubes (MWCNT) embedded in epoxy resin. The BN and MWCNT were mixed to epoxy resin in different weight fractions and mixtures were utilized for tensile test specimen production. The synthesized BN and produced hybrid nanocomposites were characterized by SEM, TEM, XRD, FT-IR and TGA analyses. The elasticity modulus and tensile strength values were obtained via tensile tests. The fracture morphologies were investigated after tensile test by means of scanning electron microscopy.

  7. Polymer/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Mehrdad shokrieh

    2007-06-01

    Full Text Available Nanocomposite materials have recently attracted increasing interests in the field of modelling. Finite element modelling can be used for computation of bulk properties of polymer/clay nanocomposites. In this study, by   considering the structure of a nano-composite material, a quasi real model is proposed. The model has been used to predict the elastic constants by selection of suitable elements and boundary conditions. The effects of nano-structural parameters on the mechanical properties of a polymer/clay nano-composite are studied. The geometrical overlap of particles, horizontal distance between particles, length of particles and nano-clay volume fraction are defined as functions of the nano-structural parameters and their effects on mechanical properties of nano-composites are studied by a finite element modelling technique.

  8. Carbon nanotube epoxy nanocomposites: the effects of interfacial modifications on the dynamic mechanical properties of the nanocomposites.

    Science.gov (United States)

    Yoonessi, Mitra; Lebrón-Colón, Marisabel; Scheiman, Daniel; Meador, Michael A

    2014-10-08

    Surface functionalization of pretreated carbon nanotubes (CNT) using aromatic, aliphatic, and aliphatic ether diamines was performed. The pretreatment of the CNT consisted of either acid- or photo-oxidation. The acid treated CNT had a higher initial oxygen content compared to the photo-oxidized CNT and this resulted in a higher density of functionalization. X-ray photoelectron spectroscopy (XPS) and thermal gravimetric analysis (TGA) were used to verify the presence of the oxygenated and amine moieties on the CNT surfaces. Epoxy/0.1 wt % CNT nanocomposites were prepared using the functionalized CNT and the bulk properties of the nanocomposites were examined. Macroscale correlations between the interfacial modification and bulk dynamic mechanical and thermal properties were observed. The amine modified epoxy/CNT nanocomposites exhibited up to a 1.9-fold improvement in storage modulus (G') below the glass transition (Tg) and up to an almost 4-fold increase above the Tg. They also exhibited a 3-10 °C increase in the glass transition temperature. The aromatic diamine surface modified epoxy/CNT nanocomposites resulted in the largest increase in shear moduli below and above the Tg and the largest increase in the Tg. Surface examination of the nanocomposites with scanning electron microscopy (SEM) revealed indications of a greater adhesion of the epoxy resin matrix to the CNT, most likely due to the covalent bonding.

  9. Suspended Solids Profiler Shop Test Report

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    2000-01-01

    The Suspended Solids Profiler (SSP) Instrument is planned to be installed in the AZ-101 tank to measure suspended solids concentrations during mixer pump testing. The SSP sensor uses a reflectance measurement principle to determine the suspended solids concentrations. The purpose of this test is to provide a documented means of verifying that the functional components of the SSP operate properly

  10. Selective Clay Placement within a Silicate Clay-Epoxy Blend Nanocomposite and the Effect on Physical Properties

    Science.gov (United States)

    Miller, Sandi G.; Scheiman, Daniel A; Kohlmman, Lee W.

    2009-01-01

    Many epoxy systems under consideration for composite pressure vessels are composed of toughened epoxy resins. In this work, epoxy blends containing both rigid aromatic and flexible aliphatic components were prepared, to model toughened systems, and determine the optimum route of silicate addition. Compositions were chosen such that both glassy and rubbery resins were obtained at room temperature. The physical properties of the nanocomposites varied with T(g) and silicate placement, however, nanocomposite T(g)s were observed which exceeded that of the base resin by greater than 10 C. The tensile strength of the glassy resin remained constant or decreased on the dispersion of clay while that of the rubbery material doubled. Selectively placing the clay in the aliphatic component of the rubbery blend resulted in a greater than 100% increase in material toughness.

  11. Vertical dimensions of suspended horses.

    Science.gov (United States)

    Clutton, R E; Chase-Topping, M; Squires, R; Lawson, H; Minard, H; Rose, S

    2010-11-01

    The dimensions of anaesthetised hobbled horses during suspension and transfer onto the operating table are unknown. These data are required for the cost-effective construction of equine surgical facilities. To measure the distance from the toe to dependent back margin (Bsusp) and poll (Psusp) of anaesthetised suspended horses and correlate them with readily obtained measures from standing animals. Digital photographs of suspended horses were taken in the anaesthesia induction box at a fixed position that allowed trigonometric determination of Bsusp and Psusp. These values were linked with body mass, height at the withers (Wstand), the length of the crest from the poll to the withers (crest) and of the back (back) from the withers to the crop, by deriving an equine morphological index (EMI) using principal component analysis. The EMI and other linear variables were then subjected to single variable regression analysis. EMI was 0.531mass((kg)) + 0.528Wstand((cm)) + 0.469crest((cm)) + 0.468back((cm)) . Bsusp was most accurately estimated using the expression Bsusp= 118.71 + 0.128EMI while Psusp was most strongly associated with Wstand, i.e. Psusp= 46.9 + 1.01Wstand((cm)) . The height of suspended horses at the most ventral margin of the back and the poll can be estimated from measures taken from the standing animal. The data will allow the more informed planning and construction of equine surgical facilities in which mechanical hoists are used. © 2010 EVJ Ltd.

  12. Preparation, Characterization, and Properties of In Situ Formed Graphene Oxide/Phenol Formaldehyde Nanocomposites

    Directory of Open Access Journals (Sweden)

    Weihua Xu

    2013-01-01

    Full Text Available Graphene oxide (GO has shown great potential to be used as fillers to develop polymer nanocomposites for important applications due to their special 2D geometrical structure as well as their outstanding mechanical, thermal, and electrical properties. In this work, GO was incorporated into phenol formaldehyde (PF resin by in situ polymerization. The morphologies and structures of GO sheets were characterized by FTIR, XRD, and AFM methods. The structure and properties of the GO/PF nanocomposites were characterized using FTIR, XRD, DSC, and TGA methods. Effects of GO content, reactive conditions, and blending methods on the structure and properties of GO/PF nanocomposites were studied. It was found that due to the well dispersion of GO sheets in polymer matrix and the strong interfacial interaction between the GO sheets and PF matrix, the thermal stability and thermal mechanical properties of the GO/PF nanocomposites were greatly enhanced.

  13. Distribution and transportation of suspended sediment

    International Nuclear Information System (INIS)

    Schubel, J.R.

    1975-01-01

    A number of studies of the distribution and character of suspended matter in the waters of the Atlantic shelf have documented the variations in the concentration of total suspended matter in both time and space. Very little is known, however, about the ultimate sources of inorganic suspended matter, and even less is known about the routes and rates of suspended sediment transport in shelf waters. Suspended particulate matter constitutes a potential vehicle for the transfer of energy-associated contaminants, radionuclides and oil, back to the coast and therefore to man. The concentrations of total suspended matter in shelf waters are typically so low, however, that the mechanism is ineffective. Studies of suspended particulate matter have a high scientific priority, but in this investigator's opinion the state of knowledge is adequate for preparation of the environmental impact statements that would be required for siting of offshore nuclear power plants and for oil drilling on the Atlantic Continental Shelf

  14. Ultrahard carbon nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Tallant, D. R. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Provencio, P. N. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Overmyer, D. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Simpson, R. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Martinez-Miranda, L. J. [Department of Materials and Nuclear Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2000-05-22

    Modest thermal annealing to 600 degree sign C of diamondlike amorphous-carbon (a-C) films grown at room temperature results in the formation of carbon nanocomposites with hardness similar to diamond. These nanocomposite films consist of nanometer-sized regions of high density a-C embedded in an a-C matrix with a reduced density of 5%-10%. We report on the evolution of density and bonding topologies as a function of annealing temperature. Despite a decrease in density, film hardness actually increases {approx}15% due to the development of the nanocomposite structure. (c) 2000 American Institute of Physics.

  15. Ultrahard carbon nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    SIEGAL,MICHAEL P.; TALLANT,DAVID R.; PROVENCIO,PAULA P.; OVERMYER,DONALD L.; SIMPSON,REGINA L.; MARTINEZ-MIRANDA,L.J.

    2000-01-27

    Modest thermal annealing to 600 C of diamondlike amorphous-carbon (a-C) films grown at room temperature results in the formation of carbon nanocomposites with hardness similar to diamond. These nanocomposite films consist of nanometer-sized regions of high density a-C embedded in an a-C matrix with a reduced density of 5--10%. The authors report on the evolution of density and bonding topologies as a function of annealing temperature. Despite a decrease in density, film hardness actually increases {approximately} 15% due to the development of the nanocomposite structure.

  16. Improvement of epoxy resin properties by incorporation of TiO2 nanoparticles surface modified with gallic acid esters

    International Nuclear Information System (INIS)

    Radoman, Tijana S.; Džunuzović, Jasna V.; Jeremić, Katarina B.; Grgur, Branimir N.; Miličević, Dejan S.; Popović, Ivanka G.; Džunuzović, Enis S.

    2014-01-01

    Highlights: • Nanocomposites of epoxy resin and TiO 2 nanoparticles surface modified with gallates. • The T g of epoxy resin was increased by incorporation of surface modified TiO 2 . • WVTR of epoxy resin decreased in the presence of surface modified TiO 2 nanoparticles. • WVTR of nanocomposites was reduced with increasing gallates hydrophobic chain length. • Modified TiO 2 nanoparticles react as oxygen scavengers, inhibiting steel corrosion. - Abstract: Epoxy resin/titanium dioxide (epoxy/TiO 2 ) nanocomposites were obtained by incorporation of TiO 2 nanoparticles surface modified with gallic acid esters in epoxy resin. TiO 2 nanoparticles were obtained by acid catalyzed hydrolysis of titanium isopropoxide and their structural characterization was performed by X-ray diffraction and transmission electron microscopy. Three gallic acid esters, having different hydrophobic part, were used for surface modification of the synthesized TiO 2 nanoparticles: propyl, hexyl and lauryl gallate. The gallate chemisorption onto surface of TiO 2 nanoparticles was confirmed by Fourier transform infrared and ultraviolet–visible spectroscopy, while the amount of surface-bonded gallates was determined using thermogravimetric analysis. The influence of the surface modified TiO 2 nanoparticles, as well as the length of hydrophobic part of the gallate used for surface modification of TiO 2 nanoparticles, on glass transition temperature, barrier, dielectric and anticorrosive properties of epoxy resin was investigated by differential scanning calorimetry, water vapor transmission test, dielectric spectroscopy, electrochemical impedance spectroscopy and polarization measurements. Incorporation of surface modified TiO 2 nanoparticles in epoxy resin caused increase of glass transition temperature and decrease of the water vapor permeability of epoxy resin. The water vapor transmission rate of epoxy/TiO 2 nanocomposites was reduced with increasing hydrophobic part chain length of

  17. Reduction of polyester resin shrinkage by means of epoxy resin

    International Nuclear Information System (INIS)

    Pietrzak, M.; Brzostowski, A.

    1981-01-01

    An attempt was made to decrease the shrinkage of unsaturated polyester resin, taking place during radiation-induced curing, by the addition of epoxy resin. In order to combine chemically both resins, the epoxy component was modified with cinnamic and acrylic acids. A composition of 90 parts of polyester resin, 10 parts of epoxy resin modified with cinnamic acid, and 150 parts of a silica filler showed a volume shrinkage of 1.2%. (author)

  18. Influence of hematite nanorods on the mechanical properties of epoxy resin

    Directory of Open Access Journals (Sweden)

    Bogdanović Gordana

    2017-01-01

    Full Text Available The mechanical properties of nanocomposites obtained by incorporation of fairly uniform hematite nanorods (α-Fe2O3 NRs into epoxy resin were studied as a function of the content of the inorganic phase. A thorough microstructural characterization of the α-Fe2O3 NRs and the nanocomposites was performed using transmission electron microscopy (TEM and atomic force microscopy (AFM. The TEM measurements revealed rod-like morphology of the nanofiller with a uniform size distribution (8.5 nm×170 nm, diameter×length. High-magnification TEM and AFM measurements indicated agglomeration of α-Fe2O3 NRs embedded in the epoxy resin. Stress at break, strain at break, elastic modulus and tensile toughness of the nanocomposites were compared with the data obtained for pure epoxy resin. Significant influence of nanofiller on the mechanical properties of epoxy resin, as well as on the glass transition temperature, could be noticed for samples with low contents of the inorganic phase (up to 1 wt. %. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 45020

  19. Nanocomposite thermite ink

    Science.gov (United States)

    Tappan, Alexander S [Albuquerque, NM; Cesarano, III, Joseph; Stuecker, John N [Albuquerque, NM

    2011-11-01

    A nanocomposite thermite ink for use in inkjet, screen, and gravure printing. Embodiments of this invention do not require separation of the fuel and oxidizer constituents prior to application of the ink to the printed substrate.

  20. Volumetric composition of nanocomposites

    DEFF Research Database (Denmark)

    Madsen, Bo; Lilholt, Hans; Mannila, Juha

    2015-01-01

    . An analytical model, previously established for conventional fibre composites, is used for the analysis of the volumetric composition. For the aluminosilicate/polylactate nanocomposites, based on the established linear relationship between the porosity content and the fibre volume content, the fibre correlated...... porosity factor is determined to be 0.18. Geometrical considerations of the packing of parallel nanofibres in a square array are used to make the assumption that the maximum obtainable fibre volume content in the nanocomposites will not exceed 6 % due to the small fibre spacing that restricts full matrix...... significant figures. The plotting of the measured nanocomposite density as a function of the nanofibre weight content is shown to be a first good approach of assessing the porosity content of the materials. The known gravimetric composition of the nanocomposites is converted into a volumetric composition...

  1. Tribology of Nanocomposites

    CERN Document Server

    2013-01-01

    This book provides recent information on nanocomposites tribology. Chapter 1 provides information on tribology of bulk polymer nanocomposites and nanocomposite coatings. Chapter 2 is dedicated to nano and micro PTFE for surface lubrication of carbon fabric reinforced polyethersulphone composites. Chapter 3 describes Tribology of MoS2 -based nanocomposites. Chapter 4 contains information on friction and wear of Al2O2 -based composites with dispersed and agglomerated nanoparticles. Finally, chapter 5 is dedicated to wear of multi-scale phase reinforced composites. It is a useful reference for academics, materials and physics researchers, materials, mechanical and manufacturing engineers, both as final undergraduate and postgraduate levels. It is a useful reference for academics, materials and physics researchers, materials, mechanical and manufacturing engineers, both as final undergraduate and postgraduate levels.

  2. Nano-composite materials

    Science.gov (United States)

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  3. Resin composite repair: Quantitative microleakage evaluation of resin-resin and resin-tooth interfaces with different surface treatments

    OpenAIRE

    Celik, Cigdem; Cehreli, Sevi Burcak; Arhun, Neslihan

    2015-01-01

    Objective: The aim was to evaluate the effect of different adhesive systems and surface treatments on the integrity of resin-resin and resin-tooth interfaces after partial removal of preexisting resin composites using quantitative image analysis for microleakage testing protocol. Materials and Methods: A total of 80 human molar teeth were restored with either of the resin composites (Filtek Z250/GrandioSO) occlusally. The teeth were thermocycled (1000?). Mesial and distal 1/3 parts of the res...

  4. Clarification of olive mill and winery wastewater by means of clay-polymer nanocomposites.

    Science.gov (United States)

    Rytwo, Giora; Lavi, Roy; Rytwo, Yuval; Monchase, Hila; Dultz, Stefan; König, Tom N

    2013-01-01

    Highly polluted effluents from olive mills and wineries, among others, are unsuitable for discharge into standard sewage-treatment plants due to the large amounts of organic and suspended matter. Efficiency of all management practices for such effluents depends on an effective pretreatment that lowers the amount of suspended solids. Such pretreatments are usually based on three separate stages, taking a total of 2 to 6h: coagulation-neutralizing the colloids, flocculation-aggregating the colloids into larger particles, and separation via filtration or decanting. Previous studies have presented the concept of coagoflocculation based on the use of clay-polymer nanocomposites. This process adds a higher density clay particle to the flocs, accelerating the process to between 15 and 60 min. This study examined suitable nanocomposites based on different clays and polymers. The charge of the compounds increased proportionally to the polymer-to-clay ratio. X-ray diffraction (XRD) measurements indicated that in sepiolite-based nanocomposites there is no change in the structure of the mineral, whereas in smectite-based nanocomposites, the polymer intercalates between the clay layers and increases the spacing depending on the polymer-to-clay ratio. Efficiency of the coagoflocculation process was studied with a dispersion analyzer. Sequential addition of olive mill or winery effluents with a boosting dose of nanocomposites may yield a very efficient and rapid clarification pretreatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Acrylic polymer nanocomposite resins for water borne coating applications

    NARCIS (Netherlands)

    Nobel, M.L.

    2007-01-01

    Due to environmental and safety regulations the use of volatile organic components (VOC's) containing lacquers for exterior automotive purposes is under growing pressure. As a consequence there is a demand for more environmentally friendly alternatives like water borne coatings, high solid coatings,

  6. Assessing potential nanoparticle release during nanocomposite shredding using direct-reading instruments.

    Science.gov (United States)

    Raynor, Peter C; Cebula, Jessica Ingraham; Spangenberger, Jeffrey S; Olson, Bernard A; Dasch, Jean M; D'Arcy, James B

    2012-01-01

    This study was conducted to determine if engineered nanoparticles are released into the air when nanocomposite parts are shredded for recycling. Test plaques made from polypropylene resin reinforced with either montmorillonite nanoclay or talc and from the same resin with no reinforcing material were shredded by a granulator inside a test apparatus. As the plaques were shredded, an ultrafine condensation particle counter; a diffusion charger; a photometer; an electrical mobility analyzer; and an optical particle counter measured number, lung-deposited surface area, and mass concentrations and size distributions by number in real-time. Overall, the particle levels produced were both stable and lower than found in some occupational environments. Although the lowest particle concentrations were observed when the talc-filled plaques were shredded, fewer nanoparticles were generated from the nanocomposite plaques than when the plain resin plaques were shredded. For example, the average particle number concentrations measured using the ultrafine condensation particle counter were 1300 particles/cm(3) for the talc-reinforced resin, 4280 particles/cm(3) for the nanoclay-reinforced resin, and 12,600 particles/cm(3) for the plain resin. Similarly, the average alveolar-deposited particle surface area concentrations measured using the diffusion charger were 4.0 μm(2)/cm(3) for the talc-reinforced resin, 8.5 μm(2)/cm(3) for the nanoclay-reinforced resin, and 26 μm(2)/cm(3) for the plain resin. For all three materials, count median diameters were near 10 nm during tests, which is smaller than should be found from the reinforcing materials. These findings suggest that recycling of nanoclay-reinforced plastics does not have a strong potential to generate more airborne nanoparticles than recycling of conventional plastics.

  7. Suspended dust in Norwegian cities

    International Nuclear Information System (INIS)

    2001-01-01

    According to calculations, at least 80 000 people in Oslo and 8 000 in Trondheim were annoyed by too much suspended dust in 2000. The dust concentration is greatest in the spring, presumably because dust is swirling up from melting snow and ice on the streets. Car traffic is the main source of the dust, except for some of the most highly exposed regions where wood-firing from old stoves contributes up to 70 percent of the dust. National targets for air quality include suspended dust, nitrogen dioxide, sulphur dioxide and benzene. Calculations show that nitrogen dioxide emissions exceeding the limit affected 4 000 people in Oslo and 1 000 people in Trondheim. The sulphur dioxide emissions in the major cities did non exceed the national quality limit; they did exceed the limit in some of the smaller industrial centres. In Trondheim, measurements show that the national limit for benzene was exceeded. Most of the emission of nitrogen dioxide comes from the road traffic. Local air pollution at times causes considerable health- and well-being problems in the larger cities and industrial centres, where a great part of the population may be at risk of early death, infection of the respiratory passage, heart- and lung diseases and cancer

  8. Color stability of nanocomposites polished with one-step systems.

    Science.gov (United States)

    Ergücü, Zeynep; Türkün, L Sebnem; Aladag, Akin

    2008-01-01

    This study compared the color changes of five novel resin composites polished with two one-step polishing systems when exposed to coffee solution. The resin composites tested were Filtek Supreme XT, Grandio, CeramX, Premise and Tetric EvoCeram. A total of 150 discs (30/resin composites, 10 x 2 mm) were fabricated. Ten specimens/resin composites cured under Mylar strips served as the control. The other samples were polished with PoGo and OptraPol discs for 30 seconds using a slow speed handpiece and immersed in coffee (Nescafé) for seven days. Color measurements were made with Vita Easyshade at baseline and after one and seven days. Repeated Measures ANOVA and Bonferroni tests were used for statistical analyses (pGrandio, there were no significant differences between the Mylar and PoGo groups, while the most stain resistant surfaces were attained with OptraPol. Removing the outermost resin layer by polishing procedures is essential to achieving a stain resistant, more esthetically stable surface. One-step polishing systems can be used successfully for polishing nanocomposites.

  9. Fabrication and characterization of particulate polymer nanocomposites

    Science.gov (United States)

    Du, Ying

    2007-06-01

    A comprehensive series of experiments are conducted to study dynamic crack initiation and propagation in nanocomposite materials. The nanocomposites are fabricated using ultrasonics with an in-situ polymerization technique to produce materials with excellent particle dispersion, as verified by transmission electron microscopy and scanning electron microscopy. Dynamic fracture toughness testing is carried out on three-point bend nanocomposite specimens using a modified split-Hopkinson pressure bar. Dynamic photoelasticity coupled with high-speed photography has also been used to obtain crack tip velocities and dynamic stress fields around the propagating cracks. A relationship between the dynamic stress intensity factor, KD, and the crack tip velocity, a˙, is established. Three different sizes Al2O3 particles were chosen as the reinforcement to fabricate the 1 vol.% polyester/A1 2O3 nanocomposites. A series of experiments were conducted to study the effect of the size of filler particles on fracture behavior of the composites. High strain rate testings conducted using a split Hopkinson preesure bar apparatus revealed a moderate increase in fracture toughness with the decrease of particle size. These three composites were also characterized for the dynamic fracture constitutive behavior. Birefringent coating technique coupled with high-speed photography was employed in this study to obtain the dynamic stress fields around the propagating crack tips. A relationship between the dynamic stress intensity factor K1, and the crack tip velocity, a˙, was established and compared for all three materials. Multi-walled carbon nanotube (MWNT)/polyester composites were fabricated successfully using the in-situ method combined with the sonication technique. The nanotubes were pre-treated and functionalized to make them more soluble to the matrix material before added into the polyester resin. TEM analysis was carried out to verify the dispersion of the nanotubes in the

  10. Epoxy/α-alumina nanocomposite with high electrical insulation performance

    Directory of Open Access Journals (Sweden)

    Yun Chen

    2017-10-01

    Full Text Available An experimental study was conducted to improve the electrical insulation of epoxy resin. The effects of boehmite, γ-alumina and α-alumina nanoparticles on the volume resistivity, dielectric strength and glass transition temperature of epoxy nanocomposites were investigated. The results showed that α-alumina nanoparticles displayed obvious advantages in enhancing electrical insulation performance of epoxy nanocomposites, compared to boehmite and γ-alumina nanoparticles. The direct current volume resistivity and breakdown strength of epoxy nanocomposite with 2.0 wt% α-alumina nanoparticles was improved to 2.2 × 1018 Ω cm and 76.1 kV mm−1 respectively. And these improved values of electrical insulation properties are much higher than these of epoxy nanocomposites reported in previous studies. The main reason of these improvements may be that the epoxy/α-alumina interaction zone was enhanced by crosslink. Keywords: Nanocomposite, Epoxy resin, Insulation, α-alumina

  11. Synthesis and Characterization of TiO2-CNTs Nanocomposite and Investigation of Viscosity and Thermal Conductivity of a New Nanofluid

    Directory of Open Access Journals (Sweden)

    E. Khosravifard

    2012-06-01

    Full Text Available Nanofluids are kinds of fluids engineered by dispersing nanoparticles in base fluids, a new challenge for thermal sciences provided by nanotechnology. Due to their excellent characteristics, nanofluids find wide applications in enhancing heat transfer. This paper presents synthesis and characterization of TiO2-CNTs nanocomposites by sonochemical method and investigation of some properties of TiO2-CNTs nanocomposite suspended in 50:50 (by weight propylene glycol and water mixture as a new nanofluid.

  12. Effect of Interfacial Polarization and Water Absorption on the Dielectric Properties of Epoxy-Nanocomposites

    Directory of Open Access Journals (Sweden)

    Philipp Marx

    2017-05-01

    Full Text Available Five types of nanofillers, namely, silica, surface-silylated silica, alumina, surface-silylated alumina, and boron nitride, were tested in this study. Nanocomposites composed of an epoxy/amine resin and one of the five types of nanoparticles were tested as dielectrics with a focus on (i the surface functionalization of the nanoparticles and (ii the water absorption by the materials. The dispersability of the nanoparticles in the resin correlated with the composition (OH content of their surfaces. The interfacial polarization of the thoroughly dried samples was found to increase at lowered frequencies and increased temperatures. The β relaxation, unlike the interfacial polarization, was not significantly increased at elevated temperatures (below the glass-transition temperature. Upon the absorption of water under ambient conditions, the interfacial polarization increased significantly, and the insulating properties decreased or even deteriorated. This effect was most pronounced in the nanocomposite containing silica, and occurred as well in the nanocomposites containing silylated silica or non-functionalized alumina. The alternating current (AC breakdown strength of all specimens was in the range of 30 to 35 kV·mm−1. In direct current (DC breakdown tests, the epoxy resin exhibited the lowest strength of 110 kV·mm−1; the nanocomposite containing surface-silylated alumina had a strength of 170 kV·mm−1. In summary, water absorption had the most relevant impact on the dielectric properties of nanocomposites containing nanoparticles, the surfaces of which interacted with the water molecules. Nanocomposites containing silylated alumina particles or boron nitride showed the best dielectric properties in this study.

  13. The Effect of Graphite Nanoparticles on Thermal Stability and Ablation of Phenolic/Carbon Fiber/Graphite Nanocomposites

    Directory of Open Access Journals (Sweden)

    Reza Akhlaghi

    2014-08-01

    Full Text Available Phenolic resin composites reinforced with short carbon fiber are one of the most usable materials in ultra-high-temperature applications such as thermal protective in aerospace industries. In this work, novolac type of phenolic resin matrix was modified with graphite nanoparticles to prepare multi-layered nanocomposites. The effect of graphite nanoparticles was studied on the thermal stability, ablation and mechanical properties of novolac/short carbon fiber composites to achieve nanocomposite with optimum properties for ultra-high-temperature applications. In order to evaluate thermal stability and ablation properties of composite and nanocomposites, a sample containing 40 wt% short carbon fiber was prepared as a reference and the structure of its polymeric matrix was modified with nanographite particles. The amounts of nanographite powders in nanocomposite samples were chosen as 6, 9 and 12 wt%. XRD Spectroscopy was used to study and investigate the dispersion of the graphite nanoparticles and morphology in the polymeric matrix. The compression molding under hot press method was used to fabricate the composite and nanocomposite specimens. Thermal properties of the nanocomposites were studied by TGA and oxy-acetylene flame test. Three-point bending and wear tests were performed to measure the mechanical and wear properties of the nanocomposites. The obtained results showed that the addition of nanographite improved the thermal stability, decreased the rate of degradation and at the same time decreased the weight loss and ablation rate of the nanocomposites. Addition of 12 wt% nanographite particles increased thermal stability by about 12% compared to the reference sample. Moreover in nanocomposite with 12 wt% graphite, the rate of ablation decreased by more than 19% compared to the reference composite.

  14. Thermal Degradation of Nanocomposited PMMA/TiO2 Nanocomposites

    International Nuclear Information System (INIS)

    Hafizah, Nik Noor; Mamat, Mohamad Hafiz; Rusop, Mohamad; Said, Che Mohamad Som; Abidin, Mohd Hanafiah

    2013-01-01

    The polymer nanocomposite is a new choice to conventionally filled polymers. The lack of proper binding between the filler and the polymer can lead the decrease of the thermal and other properties of the nanocomposites. In this study, the nanocomposited PMMA/TiO 2 nanocomposites were prepared using sonication and solution casting method at different weight percent TiO 2 . The aims of adding TiO 2 in the PMMA is to study the effects of TiO 2 nanofiller on the thermal properties nanocomposites. FESEM results show the higher amounts of TiO 2 in PMMA increase the rough surface morphology of the samples. Further, the Raman results reveal that the TiO 2 nanofiller were successfully intercalated into the PMMA matrix. In addition, the thermal properties of nanocomposited PMMA/TiO 2 nanocomposites were increased with the addition of TiO 2 in the PMMA.

  15. Hierarchical multifunctional nanocomposites

    Science.gov (United States)

    Ghasemi-Nejhad, Mehrdad N.

    2014-03-01

    Nanocomposites; including nano-materials such as nano-particles, nanoclays, nanofibers, nanotubes, and nanosheets; are of significant importance in the rapidly developing field of nanotechnology. Due to the nanometer size of these inclusions, their physicochemical characteristics differ significantly from those of micron size and bulk materials. The field of nanocomposites involves the study of multiphase materials where at least one of the constituent phases has one dimension less than 100 nm. This is the range where the phenomena associated with the atomic and molecular interaction strongly influence the macroscopic properties of materials. Since the building blocks of nanocomposites are at nanoscale, they have an enormous surface area with numerous interfaces between the two intermix phases. The special properties of the nano-composite arise from the interaction of its phases at the interface and/or interphase regions. By contrast, in a conventional composite based on micrometer sized filler such as carbon fibers, the interfaces between the filler and matrix constitutes have a much smaller surface-to-volume fraction of the bulk materials, and hence influence the properties of the host structure to a much smaller extent. The optimum amount of nanomaterials in the nanocomposites depends on the filler size, shape, homogeneity of particles distribution, and the interfacial bonding properties between the fillers and matrix. The promise of nanocomposites lies in their multifunctionality, i.e., the possibility of realizing unique combination of properties unachievable with traditional materials. The challenges in reaching this promise are tremendous. They include control over the distribution in size and dispersion of the nanosize constituents, and tailoring and understanding the role of interfaces between structurally or chemically dissimilar phases on bulk properties. While the properties of the matrix can be improved by the inclusions of nanomaterials, the

  16. Piezoresistance in Polymer Nanocomposites

    Science.gov (United States)

    Rizvi, Reza

    Piezoresistivity in conductive polymer nanocomposites occurs because of the disturbance of particle networks in the polymer matrix. The piezoresistance effect becomes more prominent if the matrix material is compliant making these materials attractive for applications that require flexible force and displacement sensors such as e-textiles and biomechanical measurement devices. However, the exact mechanisms of piezoresistivity including the relationship between the matrix polymer, conductive particle, internal structure and the composite's piezoresistance need to be better understood before it can be applied for such applications. The objective of this thesis is to report on the development of conductive polymer nanocomposites for use as flexible sensors and electrodes. Electrically conductive and piezoresistive nanocomposites were fabricated by a scalable melt compounding process. Particular attention was given to elucidating the role of matrix and filler materials, plastic deformation and porosity on the electrical conduction and piezoresistance. These effects were parametrically investigated through characterizing the morphology, electrical properties, rheological properties, and piezoresistivity of the polymer nanocomposites. The electrical and rheological behavior of the nanocomposites was modeled by the percolation-power law. Furthermore, a model was developed to describe the piezoresistance behavior during plastic deformation in relation to the stress and filler concentration.

  17. Polymer/Silicate Nanocomposites Used to Manufacture Gas Storage Tanks With Reduced Permeability

    Science.gov (United States)

    Campbell, Sandi G.; Johnston, Chris

    2004-01-01

    Over the past decade, there has been considerable research in the area of polymer-layered silicate nanocomposites. This research has shown that the dispersion of small amounts of an organically modified layered silicate improves the polymer strength, modulus, thermal stability, and barrier properties. There have been several reports on the dispersion of layered silicates in an epoxy matrix. Potential enhancements to the barrier properties of epoxy/silicate nanocomposites make this material attractive for low permeability tankage. Polymer matrix composites (PMCs) have several advantages for cryogenic storage tanks. They are lightweight, strong, and stiff; therefore, a smaller fraction of a vehicle's potential payload capacity is used for propellant storage. Unfortunately, the resins typically used to make PMC tanks have higher gas permeability than metals. This can lead to hydrogen loss through the body of the tank instead of just at welds and fittings. One approach to eliminate this problem is to build composite tanks with thin metal liners. However, although these tanks provide good permeability performance, they suffer from a substantial mismatch in the coefficient of thermal expansion, which can lead to failure of the bond between the liner and the body of the tank. Both problems could be addressed with polymersilicate nanocomposites, which exhibit reduced hydrogen permeability, making them potential candidates for linerless PMC tanks. Through collaboration with Northrop Grumman and Michigan State University, nanocomposite test tanks were manufactured for the NASA Glenn Research Center, and the helium permeability was measured. An organically modified silicate was prepared at Michigan State University and dispersed in an epoxy matrix (EPON 826/JeffamineD230). The epoxy/silicate nanocomposites contained either 0 or 5 wt% of the organically modified silicate. The tanks were made by filament winding carbon fibers with the nanocomposite resin. Helium permeability

  18. Synthesis of new dental nanocomposite with glass nanoparticles

    Directory of Open Access Journals (Sweden)

    Marzieh Monfared

    2013-09-01

    Full Text Available Objective(s: The aim of this study was to synthesis new dental nanocomposites reinforced with fabricated glass nanoparticles and compare two methods for fabrication and investigate the effect of this filler on mechanical properties. Materials and Methods : The glass nanoparticles were produced by wet milling process. The particle size and shape was achieved using PSA and SEM. Glass nanoparticles surface was modified with MPTMS silane. The composite was prepared by mixing these silane-treated nanoparticles with monomers. The resin composition was UDMA /TEGDMA (70/30 weight ratio. Three composites were developed with 5, 7.5 and 10 wt% glass fillers in each group. Two preparation methods were used, in dispersion in solvent method (group D glass nanoparticles were sonically dispersed in acetone and the solution was added to resin, then acetone was evaporated. In non-dispersion in solvent method (group N the glass nanoparticles were directly added to resin. Mechanical properties were investigated included flexural strength, flexural modulus and Vickers hardness. Results: Higher volume of glass nanoparticles improves mechanical properties of composite. Group D has batter mechanical properties than group N. Flexural strength of composite with 10%w filler of group D was 75Mpa against 59 Mpa of the composite with the same filler content of group N. The flexural modulus and hardness of group D is more than group N. Conclusion: It can be concluded that dispersion in solvent method is the best way to fabricate nanocomposites and glass nanoparticles is a significant filler to improve mechanical properties of dental nanocomposite.

  19. Special Resins for Stereolithography: In Situ Generation of Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Gabriele Taormina

    2018-02-01

    Full Text Available The limited availability of materials with special properties represents one of the main limitations to a wider application of polymer-based additive manufacturing technologies. Filled resins are usually not suitable for vat photo-polymerization techniques such as stereolithography (SLA or digital light processing (DLP due to a strong increment of viscosity derived from the presence of rigid particles within the reactive suspension. In the present paper, the possibility to in situ generate silver nanoparticles (AgNPs starting from a homogeneous liquid system containing a well dispersed silver salt, which is subsequently reduced to metallic silver during stereolithographic process, is reported. The simultaneous photo-induced cross-linking of the acrylic resin produces a filled thermoset resin with thermal-mechanical properties significantly enhanced with respect to the unfilled resin, even at very low AgNPs concentrations. With this approach, the use of silver salts having carbon-carbon double bonds, such as silver acrylate and silver methacrylate, allows the formation of a nanocomposite structure in which the release of by-products is minimized due to the active role of all the reactive components in the three dimensional (3D-printing processes. The synergy, between this nano-technology and the geometrical freedom offered by SLA, could open up a wide spectrum of potential applications for such a material, for example in the field of food packaging and medical and healthcare sectors, considering the well-known antimicrobial effects of silver nanoparticles.

  20. Nanocomposites for bone tissue regeneration.

    Science.gov (United States)

    Sahoo, Nanda Gopal; Pan, Yong Zheng; Li, Lin; He, Chao Bin

    2013-04-01

    Natural bone tissue possesses a nanocomposite structure that provides appropriate physical and biological properties. For bone tissue regeneration, it is crucial for the biomaterial to mimic living bone tissue. Since no single type of material is able to mimic the composition, structure and properties of native bone, nanocomposites are the best choice for bone tissue regeneration as they can provide the appropriate matrix environment, integrate desirable biological properties, and provide controlled, sequential delivery of multiple growth factors for the different stages of bone tissue regeneration. This article reviews the composition, structure and properties of advanced nanocomposites for bone tissue regeneration. It covers aspects of interest such as the biomimetic synthesis of bone-like nanocomposites, guided bone regeneration from inert biomaterials and bioactive nanocomposites, and nanocomposite scaffolds for bone tissue regeneration. The design, fabrication, and in vitro and in vivo characterization of such nanocomposites are reviewed.

  1. Measuring suspended sediment in small mountain streams

    Science.gov (United States)

    Robert B. Thomas

    1985-01-01

    Measuring suspended sediment concentration in streams provides a way of monitoring the effects of forest management activities on water quality. Collecting data on suspended sediment is an act of sampling. The nature of the delivery process and the circumstances under which data are collected combine to produce highly variable results that are difficult to analyze and...

  2. 78 FR 63007 - Suspended Counterparty Program

    Science.gov (United States)

    2013-10-23

    ... FEDERAL HOUSING FINANCE AGENCY 12 CFR Part 1227 RIN 2590-AA60 Suspended Counterparty Program... that generally codifies the procedures FHFA follows under its existing Suspended Counterparty Program... reports to FHFA when they become aware that an individual or institution and any affiliates thereof with...

  3. Wave transmission by suspended pipe breakwater

    Digital Repository Service at National Institute of Oceanography (India)

    Mani, J.S.; Jayakumar, S.

    and suspended between the support piles spaced far apart. Experimental studies conducted to determine the wave transmission characteristics indicate that by suspending a row of closely spaced pipes (with a gap to diameter ratio of 0.22 and draft to water depth...

  4. Conducting polyamine nanocomposites development

    International Nuclear Information System (INIS)

    Nascimento, R.C.; Maciel, T.C.G.L.; Guimaraes, M.J.O.C.; Garcia, M.E.F.

    2010-01-01

    Polymeric nanocomposites are hybrid materials formed by the combination of inorganic nanoparticles dispersed in a polymeric matrix with, at least, one dimension in the nanometer range. It was used as nanoparticles layered and tubular clay minerals, and its insertion and dispersion were conducted through the in situ polymerization technique. As the polymer matrix, it was utilized a polyamine, which, later, will be inserted in a polyacrylamide gel for the development of a compound that aggregates both main characteristics. The nanocomposites were prepared in different polymerization conditions (temperature, concentration and nanoparticle type) and characterized by XRD and FTIR. It was observed that regarding the polymerization conditions, the temperature had influence on the kind of material obtained and on the reaction speed; the type of nanoparticle affected its interaction with the polymer matrix, predominantly providing the formation of nanocomposites by the intercalation mechanism in the layered clay. (author)

  5. Method for removing contaminants from plastic resin

    Science.gov (United States)

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2008-12-09

    A resin recycling method that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The method includes receiving the resin in container form. The containers are then ground into resin particles. The particles are exposed to a solvent, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. After separating the particles and the resin, a solvent removing agent is used to remove any residual solvent remaining on the resin particles after separation.

  6. Cure reaction of epoxy resins catalyzed by graphite-based nanofiller

    Science.gov (United States)

    Corcione, C. Esposito; Acocella, Maria Rosaria; Giuri, Antonella; Maffezzoli, Alfonso; Guerra, Gaetano

    2015-12-01

    A significant effort was directed to the synthesis of graphene stacks/epoxy nanocomposites and to the analysis of the effect of a graphene precursor on cure reaction of a model epoxy matrix. A comparative thermal analysis of epoxy resins filled with an exfoliated graphite oxide eGO were conducted. The main aim was to understand the molecular origin of the influence of eGO on the Tg of epoxy resins. The higher Tg values previously observed for low curing temperatures, for epoxy resins with graphite-based nanofillers, were easily rationalized by a catalytic activity of graphitic layers on the reaction between the epoxy and amine groups of the resin, which leads to higher crosslinking density in milder conditions. A kinetic analysis of the cure mechanism of the epoxy resin associated to the catalytical activity of the graphite based filler was performed by isothermal DSC measurements. The DSC results showed that the addition of graphite based filler greatly increased the enthalpy of epoxy reaction and the reaction rate, confirming the presence of a catalytic activity of graphitic layers on the crosslinking reaction between the epoxy resin components (epoxide oligomer and di-amine). A kinetic modelling analysis, arising from an auto-catalyzed reaction mechanism, was finally applied to isothermal DSC data, in order to predict the cure mechanism of the epoxy resin in presence of the graphite based nanofiller.

  7. Nanocomposites for Machining Tools

    Directory of Open Access Journals (Sweden)

    Daria Sidorenko

    2017-10-01

    Full Text Available Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance.

  8. Nanocomposites for Machining Tools.

    Science.gov (United States)

    Sidorenko, Daria; Loginov, Pavel; Mishnaevsky, Leon; Levashov, Evgeny

    2017-10-13

    Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance.

  9. Effect of Sonification Time on Synthesisi and Corrosion Resistance of Epoxy-Clay Nanocomposite

    Directory of Open Access Journals (Sweden)

    Niloufar Bahrami Panah

    2016-09-01

    Full Text Available In recent years many research works have been carried out on anti-corrosive nanocomposites coatings containing mineral reinforcements. The most important criteria in these attempts are polymerization method and the type of matrix and reinforcement of nanocomposites. In this regard, the physical and mechanical properties of the polymers in which a small amount of filler is used can be improved. In this research, an epoxy-clay nanocomposite was synthesized by in-situ polymerization method using a resin matrix based on bisphenol-A type epoxy and montmorillonite clay (Closite 15A. The treatment was used at different ultrasonic stirring times to disperse 1-4 weight percentages of clay particles into the matrix. The structure of synthesized epoxy-clay nanocomposite was studied by scanning electron microscopy and X-ray diffraction techniques. The average size of clay particles was determined by X-ray diffraction measurement. Then, anti-corrosion properties of epoxy-clay coatings, prepared under different ultrasonic durations and applied on carbon steel panels, were investigated by Tafel and electrochemical impedance spectroscopy techniques. For this purpose, the carbon steel panels coated with these coatings were immersed in 3.5% sodium chloride solution and tested at different immersion times. The results indicated that a nanocomposite containing 1% clay, synthesized, stirred 60 min ultrasonically, produced smaller particle size, lower corrosion current density and higher coating corrosion resistance than the other composite formulations. This nanocomposite provided superior protection against corrosion in sodium chloride solution.

  10. Preparation process and properties of exfoliated graphite nanoplatelets filled Bisphthalonitrile nanocomposites

    Science.gov (United States)

    Lei, Yajie; Hu, Guo-Hua; Zhao, Rui; Guo, Heng; Zhao, Xin; Liu, Xiaobo

    2012-11-01

    Exfoliated graphite nanoplatelets (xGnP) filled 4,4'-Bis (3,4-dicyanophenoxy) biphenyl (BPh) nanocomposites were prepared by a resin transfer molding process. The rheological behavior of the BPh pre-polymer, and the morphology and electrical, mechanical and thermal properties of the xGnP/BPh nanocomposites were systematically investigated. The results showed that the xGnP/BPh pre-polymer possessed a higher complex viscosity and storage modulus than the pure BPh and that the xGnP could significantly enhance the mechanical and electrical properties of the resulted nanocomposites. The electrical percolation threshold of the xGnP/BPh nanocomposites was between 5 and 10 wt% xGnP. The flexural strength and modulus of the xGnP/BPh nanocomposites with 10 wt% xGnP exhibited maximum values and their thermal stabilities were greatly improved. Those novel xGnP/BPh nanocomposites could have advanced applications in areas like aerospace and military industry.

  11. Optimization of multicore-shell Fe3O4-SiO2 magnetic nanocomposites synthesis and retention in cellulose pulp

    Science.gov (United States)

    Buteica, Dan; Borbath, Istvan; Nicolae, Ionel Valentin; Turcu, Rodica; Marinica, Oana; Socoliuc, Vlad

    2017-12-01

    The use of magnetite nanoparticles to produce magnetic paper has a severe effect on the color of the paper, which is worth searching means to alleviate. Multicore-shell Fe3O4-SiO2 magnetic nanocomposites were synthesized. The nanocomposite powder was dispersed in cellulose pulp and paper was produced by dehydration on a Rapid Kothen machine. The nanocomposite retention efficiency was investigated in correlation with nanocomposite shell thickness, the resinous vs. deciduous fiber content of the cellulose pulp, the long and short fibers' grinding degree, the cationic starch and polymeric retention agent content of the pulp. The whiteness and magnetization was measured for all paper samples. It was proved that the use of multi-core shell magnetic nanocomposites leads to weaker paper coloring. This effect is enhanced by increasing the polymeric retention agent content of the pulp, in spite of higher composite content.

  12. Effect of doping of multi-walled carbon nanotubes on phenolic based carbon fiber reinforced nanocomposites

    International Nuclear Information System (INIS)

    Saeed, Sadaf; Hakeem, Saira; Faheem, Muhammad; Alvi, Rashid Ahmed; Farooq, Khawar; Hussain, Syed Tajammul; Ahmad, Shahid Nisar

    2013-01-01

    We report on the effect of multi-walled carbon nanotubes (MWCNTs) on different properties of phenolic resin. A low content of MWCNTs (∼ 0.05 wt%) was mixed in phenolic resin and a stable dispersion was achieved by ultrasonication, followed by melt mixing. After curing the characterization of these composites was done by using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform infra-red spectroscopy (FTIR). The thermal and ablative properties of carbon fiber reinforced MWCNTs-phenolic nanocomposites were also studied. The addition of MWCNTs showed improvement in thermal stability and ablation properties.

  13. Effect of doping of multi-walled carbon nanotubes on phenolic based carbon fiber reinforced nanocomposites

    Science.gov (United States)

    Saeed, Sadaf; Hakeem, Saira; Faheem, Muhammad; Alvi, Rashid Ahmed; Farooq, Khawar; Tajammul Hussain, Syed; Nisar Ahmad, Shahid

    2013-06-01

    We report on the effect of multi-walled carbon nanotubes (MWCNTs) on different properties of phenolic resin. A low content of MWCNTs (~ 0.05 wt%) was mixed in phenolic resin and a stable dispersion was achieved by ultrasonication, followed by melt mixing. After curing the characterization of these composites was done by using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform infra-red spectroscopy (FTIR). The thermal and ablative properties of carbon fiber reinforced MWCNTs-phenolic nanocomposites were also studied. The addition of MWCNTs showed improvement in thermal stability and ablation properties.

  14. Contact allergy to epoxy resin

    DEFF Research Database (Denmark)

    Bangsgaard, Nannie; Thyssen, Jacob Pontoppidan; Menné, Torkil

    2012-01-01

    to epoxy resin remained stable over the study period. Of the patients with an epoxy resin-positive patch test, 71% returned a questionnaire; 95 patients had worked with epoxy resin in the occupational setting, and, of these, one-third did not use protective gloves and only 50.5% (48) had participated...

  15. Morphology, thermal and mechanical properties of PVC/MMT nanocomposites prepared by solution blending and solution blending + melt compounding

    DEFF Research Database (Denmark)

    Madaleno, Liliana Andreia Oliveira; Schjødt-Thomsen, Jan; Pinto, José Cruz

    2010-01-01

    and solution blending + melt compounding The effects on morphology, thermal and mechanical properties of the PVC/MMT nanocomposites were studied by varying the amount of Na-MMT and OMMT in both methods SEM and XRD analysis revealed that possible intercalated and exfoliated structures were obtained in all....../MMT nanocomposites prepared by solution blending Vicar tests revealed a significant decrease in Vicar softening temperature of PVC/MMT nanocomposites prepared by solution blending + melt compounding compared to unfilled PVC The mechanical properties of the PVC/MMT nanocomposites were, in general, greatly improved......Two types of montmorillonite (MMT), natural sodium montmorillonite (Na-MMT) and organically modified montmorillonite (OMMT), in different amounts of 1, 2, 5, 10 and 25 phr (parts per hundred resin), were dispersed in rigid poly (vinyl chloride) by two different methods solution blending...

  16. Improving suspended sediment measurements by automatic samplers.

    Science.gov (United States)

    Gettel, Melissa; Gulliver, John S; Kayhanian, Masoud; DeGroot, Gregory; Brand, Joshua; Mohseni, Omid; Erickson, Andrew J

    2011-10-01

    Suspended solids either as total suspended solids (TSS) or suspended sediment concentration (SSC) is an integral particulate water quality parameter that is important in assessing particle-bound contaminants. At present, nearly all stormwater runoff quality monitoring is performed with automatic samplers in which the sampling intake is typically installed at the bottom of a storm sewer or channel. This method of sampling often results in a less accurate measurement of suspended sediment and associated pollutants due to the vertical variation in particle concentration caused by particle settling. In this study, the inaccuracies associated with sampling by conventional intakes for automatic samplers have been verified by testing with known suspended sediment concentrations and known particle sizes ranging from approximately 20 μm to 355 μm under various flow rates. Experimental results show that, for samples collected at a typical automatic sampler intake position, the ratio of sampled to feed suspended sediment concentration is up to 6600% without an intake strainer and up to 300% with a strainer. When the sampling intake is modified with multiple sampling tubes and fitted with a wing to provide lift (winged arm sampler intake), the accuracy of sampling improves substantially. With this modification, the differences between sampled and feed suspended sediment concentration were more consistent and the sampled to feed concentration ratio was accurate to within 10% for particle sizes up to 250 μm.

  17. Enhancement of adhesion between resin coating materials and resin cements.

    Science.gov (United States)

    Udo, Tomoaki; Nikaido, Toru; Ikeda, Masaomi; Weerasinghe, Dinesh S; Harada, Naoko; Foxton, Richard M; Tagami, Junji

    2007-07-01

    Resin coating technique is a unique method that improves the dentin bond strength of resin cements in indirect restorations. However, the weak link of a specimen bonded using the resin coating technique was reported to be the bonded interface between the resin coating material and resin cement. The purpose of this study, therefore, was to enhance the bonding performance between a resin coating material and a resin cement. Two light-cured flowable composites, Protect Liner F and Clearfil Flow FX, were used as coating materials, and two dual-cure composite materials, Panavia F 2.0 and Clearfil DC Core Automix, were used as resin cements. The ultimate tensile strength of each material and the microtensile bond strengths of the bonded specimens of resin coating material and resin cement were measured using a crosshead speed of 1.0 mm/min. Three-way ANOVA (p=0.05) revealed that the highest microtensile bond strength was obtained using a combination of Clearfil Flow FX and Clearfil DC Core Automix, and when the surface of the coating material was treated with ED Primer II. It was strongly suggested that materials with a higher ultimate tensile strength, when used in both resin coating and cementation, could enhance the bond strength between the two.

  18. Resin impregnation process for producing a resin-fiber composite

    Science.gov (United States)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  19. Suspended particles, colloids and radionuclide transport

    International Nuclear Information System (INIS)

    Chapman, N.; McKinley, I.; Shea, M.; Smellie, J.

    1993-01-01

    Radionuclide can be transported either in true solution or associated with suspended particles and colloids. The definitions of colloids and suspended particles are introduced and the mechanisms by which they can influence radionuclide transport discussed. The aim of the Pocos de Caldas investigations was to characterise the natural particulate material in the groundwater, to investigate the association of trace elements with this material and to obtain information on the stability and mobility of the particles. The concentration of suspended particles measured in the groundwater samples were low; the particles also appear to be immobile. (author) 4 figs

  20. Clever House Made by Using a New Kind of the Nanocomposites

    Directory of Open Access Journals (Sweden)

    Andrey Ponomarev

    2016-01-01

    Full Text Available The materials of this paper concern a new nanocomposites perspective for construction. The development of research in the field of production and application of nanocomposite materials has made it possible to develop building materials, having high exploitation characteristics. One of such materials is a polydisperse armed water soluble epoxy composite coat, named “EpoxyPAN.” This material consists of the water soluble epoxy resin filled by the high strength inorganic fillers and the unique nanocarbon particles, astralenes and nanoporous microfiber. It was found that EpoxyPAN is possible to be used as effective water protection coating and simultaneously as effective electromagnetic waves absorber. The physical and exploitation properties of this nanocomposite and the possible ways of its applications for the Clever House constructions are also described in this paper.

  1. Effect of one-step polishing system on the color stability of nanocomposites.

    Science.gov (United States)

    Alawjali, S S; Lui, J L

    2013-08-01

    This study was to compare the effect of three different one-step polishing systems on the color stability of three different types of nanocomposites after immersion in coffee for one day and seven days and determine which nanocomposite material has the best color stability following polishing with each of the one-step polishing system. The nanocomposites tested were Tetric EvoCeram, Grandio and Herculite Précis. A total of 120 discs (40/nanocomposite, 8mm×2mm) were fabricated. Ten specimens for each nanocomposite cured under Mylar strips served as the control. The other specimens were polished with OptraPol, OneGloss and Occlubrush immersed in coffee (Nescafé) up to seven days. Color measurements were made with a spectrophotometer at baseline and after one and seven days. Two way repeated measure ANOVA, two way ANOVA and Bonferroni tests were used for statistical analyses (P<0.05). The immersion time was a significant factor in the discoloration of the nanocomposites. The effect of three one-step polishing systems on the color stability was also significant. The color change values of the materials cured against Mylar strips were the greatest. The lowest mean color change values were from the Occlubrush polished groups. The effect of the three different types of nanocomposite on the color change was significant. The highest color change values were with Tetric EvoCeram groups. The lowest color change values were with Herculite Précis groups. The color change of nanocomposite resins is affected by the type of composite, polishing procedure and the period of immersion in the staining agent. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Effect of amorphous calcium phosphate and silver nanocomposites on dental plaque microcosm biofilms

    Science.gov (United States)

    Cheng, Lei; Weir, Michael D.; Xu, Hockin H. K.; Antonucci, Joseph M.; Lin, Nancy J.; Lin-Gibson, Sheng; Xu, Sarah M.; Zhou, Xuedong

    2012-01-01

    A dental composite containing amorphous calcium phosphate nanoparticles (NACP) was developed that released calcium (Ca) and phosphate (PO4) ions and possessed acid-neutralization capability. There has been little study on incorporation of antibacterial agents into calcium phosphate composites. The objective of this study was to investigate the effect of silver nanoparticle (NAg) mass fraction in NACP nanocomposite on mechanical properties and dental plaque microcosm biofilm for the first time. NACP nanoparticles of 116 nm were synthesized via a spray-drying technique. NAg nanoparticles were synthesized using Ag 2-ethylhexanoate and 2-(tert-butylamino)ethyl methacrylate, yielding NAg of particle size of 2.7 nm that were well-dispersed in the resin. Five NACP nanocomposites were fabricated with NAg mass fractions of 0, 0.028, 0.042, 0.088, and 0.175%, respectively. Mechanical properties of NACP nanocomposites containing 0–0.042% of NAg matched those of a commercial composite without antibacterial activity. Live/dead assay of dental plaque microcosm biofilms showed complete coverage with live bacteria on commercial composite. However, there were increasingly more dead bacteria with higher NAg content in the NACP nanocomposite. Colony-forming unit (CFU) counts for total microorganisms, total Streptococci, and mutans Streptococci for NACP nanocomposite with 0.042% NAg were about 1/4 those of commercial composite. Lactic acid production on NACP nanocomposite with 0.042% NAg was 1/3 that on commercial composite. In conclusion, novel NACP–NAg nanocomposites were developed which possessed good mechanical properties and potent antibacterial properties, with substantially reduced biofilm viability and lactic acid production. Hence, the NACP–NAg nanocomposites are promising for dental restorations with remineralizing and antibacterial capabilities. PMID:22566464

  3. Identification of nanostructural development in epoxy polymer layered silicate nanocomposites from the interpretation of differential scanning calorimetry and dielectric spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Frida, E-mail: roman@mmt.upc.edu [Laboratori de Termodinamica, Departament de Maquines i Motors Termics, ETSEIAT, Universitat Politecnica de Catalunya, Carrer Colom 11, 08222 Terrassa (Spain); Calventus, Yolanda, E-mail: calventus@mmt.upc.edu [Laboratori de Termodinamica, Departament de Maquines i Motors Termics, ETSEIAT, Universitat Politecnica de Catalunya, Carrer Colom 11, 08222 Terrassa (Spain); Colomer, Pere, E-mail: colomer@mmt.upc.edu [Laboratori de Termodinamica, Departament de Maquines i Motors Termics, ETSEIAT, Universitat Politecnica de Catalunya, Carrer Colom 11, 08222 Terrassa (Spain); Hutchinson, John M., E-mail: hutchinson@mmt.upc.edu [Laboratori de Termodinamica, Departament de Maquines i Motors Termics, ETSEIAT, Universitat Politecnica de Catalunya, Carrer Colom 11, 08222 Terrassa (Spain)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer Comparison of DSC and DRS in the cure of epoxy nanocomposites. Black-Right-Pointing-Pointer Dependence of exfoliation of nanocomposite on clay content. Black-Right-Pointing-Pointer Anionically initiated homopolymerisation in PLS nanocomposites. - Abstract: The effect of nanoclay on the non-isothermal cure kinetics of polymer layered silicate nanocomposites based upon epoxy resin is studied by calorimetric techniques (DSC and TGA) and by dielectric relaxation spectroscopy (DRS) in non-isothermal cure at constant heating rate. The cure process takes place by homopolymerisation, initiated anionically using 3 wt% dimethylaminopyridine (DMAP), and the influence of the nanoclay content has been analysed. Interesting differences are observed between the nanocomposites with 2 wt% and 5 wt% clay content. At low heating rates, these samples vitrify and then devitrify during the cure. For the sample with 2 wt% clay, the devitrification is accompanied by a thermally initiated homopolymerisation, which can be identified by DRS but not by DSC. The effect of this is to improve the exfoliation of the nanocomposite with 2 wt% clay, as verified by transmission electron microscopy, with a corresponding increase in the glass transition temperature. These observations are interpreted in respect of the nanocomposite preparation method and the cure kinetics.

  4. Multidimensional Nanocomposites of Epoxy Reinforced with 1D and 2D Carbon Nanostructures for Improve Fracture Resistance

    Directory of Open Access Journals (Sweden)

    Juventino López-Barroso

    2018-03-01

    Full Text Available A hybrid nanocomposites based on epoxy reinforced with a combination of 1D and 2D carbon nanomaterials for improving impact resistance are reported. Multi-walled carbon nanotubes and oxidized-multi-walled carbon nanotubes are used as 1D nanoreinforcements, and graphene derivative materials such as graphene oxide and reduced graphene oxide are utilized as 2D nanoreinforcements. In this research, the impact resistance of epoxy matrix reinforced with 1D or 2D and the mixture of both nanomaterials is studied. The research is focused on evaluation of the influence of adding different combinations of nanomaterials into epoxy resin and their Izod impact response. Moreover, fracture surface of nanocomposites is observed by scanning electron microscopy. Images show differences between the surfaces of brittle nature on thermoset epoxy polymer and tough nanocomposites. Synergy created with 1D and 2D nanomaterials produces stable dispersions in the processing, reflected in the interface. The interactions in nanocomposites are evidenced by infrared spectra, principally on the peaks related to oxygenated functional groups present in nanomaterials and absent in polymer matrix. Consequently, an increase of 138% in fracture strength of nanocomposites is exhibited, in comparison to the neat epoxy matrix. In addition, hybrid nanocomposites were synthesized in two different methods to evaluate the influence of manufacturing method on final properties of nanocomposites.

  5. Polyolefin nanocomposites in situ polymerization

    International Nuclear Information System (INIS)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine; Basso, Nara R.S.; Quijada, Raul

    2011-01-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  6. Suspended sediment concentration and particle size distribution ...

    Indian Academy of Sciences (India)

    , zinc and nickel) transported in ... Suspended sediment concentration; heavy metal concentration; regression model; particle size distribution;. Kojour watershed; Iran. ..... contaminants in a uranium mine pite–Lake; Water Res. 39 3055–3061.

  7. Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite

    International Nuclear Information System (INIS)

    Shirkavand Hadavand, Behzad; Mahdavi Javid, Kimya; Gharagozlou, Mehrnaz

    2013-01-01

    Highlights: ► Preparation of epoxy polysulfide nanocomposite. ► Multi-walled carbon nanotubes have been modified and dispersed in epoxy polysulfide matrix. ► Mechanical properties of MWNT/epoxy polysulfide have been studied. - Abstract: In this research, multi-walled carbon nanotubes (MWCNTs) were modified by acid functionalization (H 2 SO 4 :HNO 3 = 1:3 by volume) and then mechanical properties of reinforced epoxy polysulfide resin by the both pure and treated MWNTs have been evaluated. For achieving this goal, different weight percentages of pure and treated MWCNT (0.1–0.3 wt%) were dispersed in the epoxy polysulfide resin separately and then mixed with curing agent. Experimental results have shown significant difference between acid treated and untreated MWCNTs in mechanical properties of epoxy polysulfide nanocomposites. In nanocomposite with 0.1–0.3% acid treated MWCNTs we observed increase of Young’s modulus from 458 to 723 MPa, tensile strength from 5.29 to 8.83 MPa and fracture strain from 0.16% to 0.25%. For understanding the structure and morphology of nanocomposite, the dispersion states were studied using scanning electron microscopy (SEM) and field emission electron microscopy (FESEM). The results showed better dispersion of modified carbon nanotube than unmodified in polymeric matrix

  8. Multiscale Hybrid Micro-Nanocomposites Based on Carbon Nanotubes and Carbon Fibers

    Directory of Open Access Journals (Sweden)

    Fawad Inam

    2010-01-01

    Full Text Available Amino-modified double wall carbon nanotube (DWCNT-NH2/carbon fiber (CF/epoxy hybrid micro-nanocomposite laminates were prepared by a resin infusion technique. DWCNT-NH2/epoxy nanocomposites and carbon fiber/epoxy microcomposites were made for comparison. Morphological analysis of the hybrid composites was performed using field emission scanning electron microscope. A good dispersion at low loadings of carbon nanotubes (CNTs in epoxy matrix was achieved by a bath ultrasonication method. Mechanical characterization of the hybrid micro-nanocomposites manufactured by a resin infusion process included three-point bending, mode I interlaminar toughness, dynamic mechanical analysis, and drop-weight impact testing. The addition of small amounts of CNTs (0.025, 0.05, and 0.1 wt% to epoxy resins for the fabrication of multiscale carbon fiber composites resulted in a maximum enhancement in flexural modulus by 35%, a 5% improvement in flexural strength, a 6% improvement in absorbed impact energy, and 23% decrease in the mode I interlaminar toughness. Hybridization of carbon fiber-reinforced epoxy using CNTs resulted in a reduction in and dampening characteristics, presumably as a result of the presence of micron-sized agglomerates.

  9. Comparison Between Structures and Properties of ABS Nanocomposites Derived from Two Different Kinds of OMT

    Science.gov (United States)

    Cai, Yibing; Huang, Fenglin; Xia, Xin; Wei, Qufu; Tong, Xutao; Wei, Anfang; Gao, Weidong

    2010-03-01

    In the present work, the hexadecyl triphenyl phosphonium bromide (P16) and cetyl pyridium chloride (CPC) were used to modify montmorillonite (MMT) based on the structural characteristic of the engineering thermoplastic acrylonitrile-butadiene-styrene copolymer (ABS) and the principle of “like dissolves like”, and then used to prepare the ABS/organic-modified montmorillonite (OMT) nanocomposites by melt-intercalation method. The influences of two different kinds of OMT on the structures and properties of the ABS nanocomposites were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution electron microscopy (HREM), thermogravimetric analyses (TGA), Cone calorimetry and dynamic mechanical analyses (DMA), respectively. The increased basal spacing showed that ABS intercalated into the gallery of the OMT. The morphology indicated that the OMT dispersed well in the ABS resin and the intercalated structure for ABS/OMT-P16 nanocomposites and intercalated-exfoliated structure for ABS/OMT-CPC nanocomposites were respectively formed. The TGA results revealed that onset temperature of thermal degradation and charred residue at 700 °C of the ABS nanocomposites was remarkably enhanced compared to the pure ABS. It was also found from the Cone calorimetry tests that the peak of heat release rate (PHRR) decreased significantly, contributing to the reduced flammability. The DMA measurements indicated that the loading of silicate clays improved the storage modulus of the ABS resin. The partial exfoliation of the OMT-CPC within ABS nanocomposites was advantageous to increasing thermal stability properties, decreasing flammability properties, and improving mechanical properties.

  10. Development of a micromachined electrostatically suspended gyroscope

    OpenAIRE

    Damrongsak, Badin

    2009-01-01

    In this thesis, a new approach based on an electrostatically suspended gyroscope (ESG) was explored in order to improve the performance of micromachined gyroscopes. Typically, a conventional micromachined gyroscope consists of a vibrating mass suspended on elastic beams that are anchored to a substrate. It measures the rotation rate of a body of interest by detecting rotation-induced Coriolis acceleration of a vibrating structure. Such a gyro is sensitive to fabrication imperfections an...

  11. Smart Nacre-inspired Nanocomposites.

    Science.gov (United States)

    Peng, Jingsong; Cheng, Qunfeng

    2018-03-15

    Nacre-inspired nanocomposites with excellent mechanical properties have achieved remarkable attention in the past decades. The high performance of nacre-inspired nanocomposites is a good basis for the further application of smart devices. Recently, some smart nanocomposites inspired by nacre have demonstrated good mechanical properties as well as effective and stable stimuli-responsive functions. In this Concept, we summarize the recent development of smart nacre-inspired nanocomposites, including 1D fibers, 2D films and 3D bulk nanocomposites, in response to temperature, moisture, light, strain, and so on. We show that diverse smart nanocomposites could be designed by combining various conventional fabrication methods of nacre-inspired nanocomposites with responsive building blocks and interface interactions. The nacre-inspired strategy is versatile for different kinds of smart nanocomposites in extensive applications, such as strain sensors, displays, artificial muscles, robotics, and so on, and may act as an effective roadmap for designing smart nanocomposites in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fatigue crack propagation in self-assembling nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, Andreas; Wetzel, Bernd [Institute for Composite Materials (IVW GmbH) Technical University of Kaiserslautern, 67633 Kaiserslautern (Germany)

    2016-05-18

    Self-assembling block-copolymers allow the easy manufacturing of nanocomposites due to the thermodynamically driven in situ formation of nanosized phases in thermosetting resins during the curing process. Complex mechanical dispersion processes can be avoided. The current study investigates the effect of a block-copolymer on the fatigue crack propagation resistance of a cycloaliphatic amine cured epoxy resin. It was found that a small amount of MAM triblock-copolymer significantly increases the resistance to fatigue crack propagation of epoxy. Crack growth rate and the Paris law exponent for fatigue-crack growth were considerably reduced from m=15.5 of the neat epoxy to m=8.1 of the nanocomposite. To identify the related reinforcing and fracture mechanisms structural analyses of the fractured surfaces were performed by scanning electron microscope. Characteristic features were identified to be deformation, debonding and fracture of the nano-phases as well as crack pinning. However, the highest resistance against fatigue crack propagation was achieved in a bi-continuous microstructure that consisted of an epoxy-rich phase with embedded submicron sized MAM inclusions, and which was surrounded by a block-copolymer-rich phase that showed rupture and plastic deformation.

  13. High strain carbon nanotubes based epoxy matrix nanocomposite

    Science.gov (United States)

    Manocha, L. M.; Basak, Arpana; Bhandari, T.; Baishya, T.; Manocha, S.

    2013-06-01

    Multiwalled carbon nanotubes, synthesized by catalytic chemical vapour deposition using xylene as the carbon precursor and ferrocene as the catalyst source, were used as reinforcements for the preparation of carbon nanotubes based epoxy matrix composites. For higher degree of dispersion in the matrix system, oxygen containing groups (C=O, COOH) were attached to the surface of carbon nanotubes by acid treatment followed by rigorous sonication of reinforcement in the matrix system. FTIR confirms the formation of oxygen containing groups on the surface of the carbon nanotubes. Tensile strength and glass transition temperature of the epoxy resin as well as nanocomposite samples have been determined. Carbon nanotubes reinforced composites exhibited ten times higher elongation than as such epoxy mainly due to the strengthening effect of the dispersed nanotubes and the development of moderate interfacial bonding between the resin and the reinforcing agent. A noticeable increase in the glass transition temperature of ˜20°C in the nanocomposites is attributable to the restricted movement of the polymeric chains on account of addition of carbon nanotubes.

  14. A New Epoxy-Based Layered Silicate Nanocomposite Using a Hyperbranched Polymer: Study of the Curing Reaction and Nanostructure Development

    Directory of Open Access Journals (Sweden)

    Pilar Cortés

    2014-03-01

    Full Text Available Polymer layered silicate (PLS nanocomposites have been prepared with diglycidyl ether of bisphenol-A (DGEBA epoxy resin as the matrix and organically modified montmorillonite (MMT as the clay nanofiller. Resin-clay mixtures with different clay contents (zero, two, five and 10 wt% were cured, both isothermally and non-isothermally, using a poly(ethyleneimine hyperbranched polymer (HBP, the cure kinetics being monitored by differential scanning calorimetry (DSC. The nanostructure of the cured nanocomposites was characterized by small angle X-ray scattering (SAXS and transmission electron microscopy (TEM, and their mechanical properties were determined by dynamic mechanical analysis (DMA and impact testing. The results are compared with an earlier study of the structure and properties of the same DGEBA-MMT system cured with a polyoxypropylene diamine, Jeffamine. There are very few examples of the use of HBP as a curing agent in epoxy PLS nanocomposites; here, it is found to enhance significantly the degree of exfoliation of these nanocomposites compared with those cured with Jeffamine, with a corresponding enhancement in the impact energy for nanocomposites with the low clay content of 2 wt%. These changes are attributed to the different cure kinetics with the HBP, in which the intra-gallery homopolymerization reaction is accelerated, such that it occurs before the bulk cross-linking reaction.

  15. Flame Retardant Epoxy Resins

    Science.gov (United States)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.

    2004-01-01

    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  16. Effect of stacking sequence and surface treatment on the thermal conductivity of multilayered hybrid nano-composites

    Science.gov (United States)

    Papanicolaou, G. C.; Pappa, E. J.; Portan, D. V.; Kotrotsos, A.; Kollia, E.

    2018-02-01

    The aim of the present investigation was to study the effect of both the stacking sequence and surface treatment on the thermal conductivity of multilayered hybrid nano-composites. Four types of multilayered hybrid nanocomposites were manufactured and tested: Nitinol- CNTs (carbon nanotubes)- Acrylic resin; Nitinol- Acrylic resin- CNTs; Surface treated Nitinol- CNTs- Acrylic resin and Surface treated Nitinol- Acrylic resin- CNTs. Surface treatment of Nitinol plies was realized by means of the electrochemical anodization. Surface topography of the anodized nitinol sheets was investigated through Scanning Electron Microscopy (SEM). It was found that the overall thermal response of the manufactured multilayered nano-composites was greatly influenced by both the anodization and the stacking sequence. A theoretical model for the prediction of the overall thermal conductivity has been developed considering the nature of the different layers, their stacking sequence as well as the interfacial thermal resistance. Thermal conductivity and Differential Scanning Calorimetry (DSC) measurements were conducted, to verify the predicted by the model overall thermal conductivities. In all cases, a good agreement between theoretical predictions and experimental results was found.

  17. Three-dimensional multifunctional hierarchical nanocomposites: multifunctional materials

    Science.gov (United States)

    Ghasemi-Nejhad, Mehrdad N.; Cao, Anyuan

    2007-04-01

    Traditional 1-D and 2-D composite materials have excellent in-plane properties. However, they are susceptible to interlaminar crack and crack growth leading to delaminations and catastrophic failure of the composite structures. To remedy these problems, researchers have developed 3-D composites using through-the-thickness stitching and/or braiding. However, these two techniques have their own problems. For braiding, the part thickness should be known a priori, which is not practical. Besides the fiber architecture is not arranged orthogonally. For the stitching, it has been shown that while through-the-thickness properties increase, in-plane properties decrease. Here, we explain a novel technique, developed by the authors and co-workers, to develop 3-D multifunctional hierarchical nanocomposites with superior properties. In this approach, multi-walled carbon nanotubes (MWCNTs) are grown vertically over 2-D microfiber woven fabric cloth, without altering the 2-D cloth architecture, to create nano-forests coating of MWCNTs in the thickness direction to yield 3-D orthogonal fiber architechture. The 3-D nano-forest woven cloths are later impregnated with the resins and are subsequently stacked, vacuum bagged, and cured to give 3-D multifunctional hierarchical nanocomposites. Since MWCNTs have superior mechanical, thermal, and electrical properties, the hierarchically developed 3-D multifunctional nanocomposites have enhanced mechanical, thermal, thermomechanical, damping, and electrical properties by many folds.

  18. Bismaleimide Copolymer Matrix Resins

    Science.gov (United States)

    Parker, John A.; Heimbuch, Alvin H.; Hsu, Ming-Ta S.; Chen, Timothy S.

    1987-01-01

    Graphite composites, prepared from 1:1 copolymer of two new bismaleimides based on N,N'-m-phenylene-bis(m-amino-benzamide) structure have mechanical properties superior to those prepared from other bismaleimide-type resins. New heat-resistant composites replace metal in some structural applications. Monomers used to form copolymers with superior mechanical properties prepared by reaction of MMAB with maleic or citraconic anhydride.

  19. System for removing contaminants from plastic resin

    Science.gov (United States)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  20. [Multifunctional nanocomposite materials

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    These novel nanocomposites are microporous nanometal intercalated clays which have been prepared by a polyol process at 200C and a novel microwave-hydrothermal process using ethylene glycol. These novel nanocomposites have been found to be useful in the conversion of coal to asphaltenes. A crystalline tin (IV) arsenate hydroxide hydrate has been made and its lithium selective ion exchange properties have been measured. This exchanger has shown high lithium selectivity. Selective exchange of divalent transition metal ions in cryptomelane-type manganic acid with tunnel structure have also been studied. Several pillared clays have also been synthesized and their Mg[sup 2+], Li[sup +] and UO[sub 2][sup 2+] selectivity has been measured. The pillared clays appear to show some Li selectivity.

  1. Metallocene Based Polyolefin Nanocomposites

    Directory of Open Access Journals (Sweden)

    Walter Kaminsky

    2014-03-01

    Full Text Available One of the most efficient and versatile ways to synthesize polyolefin nanocomposites is the in-situ polymerization of olefins in the presence of nano particles by metallocene catalysts. Metallocene/methylaluminoxane (MAO catalysts are soluble in hydrocarbons and therefore they can be absorbed perfectly in solution onto the surface of particles or fibers and after addition of ethene or propene they can then catalyze a polyolefin film on the surface. Metallocene/MAO and other single site catalysts allow the synthesis of polymers with a precisely defined microstructure, tacticity, and stereoregularity as well as new copolymers with superior properties such as film clarity, high tensile strength and lower content of extractables. The polymer properties can be enlarged by the incorporation of nanofillers. The resulting polyethylene or polypropylene nanocomposites give a tremendous boost to the physical and chemical properties such as dramatically improved stiffness, high gas barrier properties, significant flame retardancy, and high crystallization rates.

  2. Paramagnetic epoxy resin

    Directory of Open Access Journals (Sweden)

    E. C. Vazquez Barreiro

    2017-01-01

    Full Text Available This work illustrates that macrocycles can be used as crosslinking agents for curing epoxy resins, provided that they have appropriate organic functionalities. As macrocycles can complex metal ions in their structure, this curing reaction allows for the introduction of that metal ion into the resin network. As a result, some characteristic physical properties of the metallomacrocycle could be transferred to the new material. The bisphenol A diglycidyl ether (BADGE, n = 0 and hemin (a protoporphyrin IX containing the Fe(III ion, and an additional chloride ligand have been chosen. The new material has been characterized by differential scanning calorimetry (DSC, thermogravimetric analysis (TGA, Fourier Transform Infrared (FT-IR, Nuclear Magnetic Resonance (NMR, Transmission Electron Microscopy (TEM, and magnetic susceptibility measurements. Fe(III remains in the high-spin state during the curing process and, consequently, the final material exhibits the magnetic characteristics of hemin. The loss of the chlorine atom ligand during the cure of the resin allows that Fe(III can act as Lewis acid, catalyzing the crosslinking reactions. At high BADGE n = 0/hemin ratios, the formation of ether and ester bonds occurs simultaneously during the process.

  3. Metallocene Based Polyolefin Nanocomposites

    OpenAIRE

    Walter Kaminsky

    2014-01-01

    One of the most efficient and versatile ways to synthesize polyolefin nanocomposites is the in-situ polymerization of olefins in the presence of nano particles by metallocene catalysts. Metallocene/methylaluminoxane (MAO) catalysts are soluble in hydrocarbons and therefore they can be absorbed perfectly in solution onto the surface of particles or fibers and after addition of ethene or propene they can then catalyze a polyolefin film on the surface. Metallocene/MAO and other single site catal...

  4. (BS-Mn) nanocomposite

    African Journals Online (AJOL)

    Bamboo supported manganese (BS-Mn) nanocomposite was prepared in a single pot system via bottom-up approach using a chemical reduction method. Langmuir surface area, BET surface area, and Single pore surface area were 349.70 m2/g, 218.90 m2/g, and 213.50 m2/g, respectively. The pore size (24.34 Ȧ); pore ...

  5. Self-Healing Nanocomposites for Reusable Composite Cryotanks

    Science.gov (United States)

    Eberly, Daniel; Ou, Runqing; Karcz, Adam; Skandan, Ganesh

    2013-01-01

    Composite cryotanks, or composite overwrapped pressure vessels (COPVs), offer advantages over currently used aluminum-lithium cryotanks, particularly with respect to weight savings. Future NASA missions are expected to use COPVs in spaceflight propellant tanks to store fuels, oxidizers, and other liquids for launch and space exploration vehicles. However, reliability, reparability, and reusability of the COPVs are still being addressed, especially in cryogenic temperature applications; this has limited the adoption of COPVs in reusable vehicle designs. The major problem with composites is the inherent brittleness of the epoxy matrix, which is prone to microcrack formation, either from exposure to cryogenic conditions or from impact from different sources. If not prevented, the microcracks increase gas permeation and leakage. Accordingly, materials innovations are needed to mitigate microcrack damage, and prevent damage in the first place, in composite cryotanks. The self-healing technology being developed is capable of healing the microcracks through the use of a novel engineered nanocomposite, where a uniquely designed nanoparticle additive is incorporated into the epoxy matrix. In particular, this results in an enhancement in the burst pressure after cryogenic cycling of the nanocomposite COPVs, relative to the control COPVs. Incorporating a novel, self-healing, epoxy-based resin into the manufacture of COPVs allows repeatable self-healing of microcracks to be performed through the simple application of a low-temperature heat source. This permits COPVs to be reparable and reusable with a high degree of reliability, as microcracks will be remediated. The unique phase-separated morphology that was imparted during COPV manufacture allows for multiple self-healing cycles. Unlike single-target approaches where one material property is often improved at the expense of another, robustness has been introduced to a COPV by a combination of a modified resin and

  6. Multifunctional Polymer Nanocomposites

    Science.gov (United States)

    Galaska, Alexandra Maria; Song, Haixiang; Guo, Zhanhu

    With more awareness of energy conversion/storage and saving, different strategies have been developed to utilize the sustainable and renewable energy. Introducing nanoscale fillers can make inert polymer matrix possess unique properties to satisfy certain functions. For example, alumina nanoparticles have strengthened the weak thermosetting polymers. A combined mixture of carbon nanofibers and magnetite nanoparticles have made the inert epoxy sensitive for magnetic field for sensing applications. Introducing silica nanoparticles into conductive polymers such as polyaniline has enhanced the giant magnetoresistance behaviors. The introduced nanoparticles have made the transparent polymer have the electromagnetic interference (EMI) shielding function while reduce the density significantly. With the desired miniaturization, the materials combining different functionalities have become importantly interesting. In this talk, methodologies to prepare nanocomposites and their effects on the produced nanocomposites will be discussed. A variety of advanced polymer nanocomposites will be introduced. Unique properties including mechanical, electrical, magnetoresistance etc. and the applications for environmental remediation, energy storage/saving, fire retardancy, electromagnetic interference shielding, and electronic devices will be presented.

  7. Temperature dependence of electrical conductivity in double-wall and multi-wall carbon nanotube/polyester nanocomposites

    OpenAIRE

    Şimşek, Yılmaz; Özyüzer, Lütfi; Seyhan, Abdullah Tuğrul; Tanoğlu, Metin; Schulte, Karl

    2007-01-01

    The aim of this study is to investigate temperature dependence of electrical conductivity of carbon nanotube (CNT)/polyester nanocomposites from room temperature to 77 K using four-point probe test method. To produce nanocomposites, various types and amounts of CNTs (0.1, 0.3 and 0.5 wt.%) were dispersed via 3-roll mill technique within a specially formulized resin blend of thermoset polyesters. CNTs used in the study include multi walled carbon nanotubes (MWCNT) and double-walled carbon nano...

  8. Hyperbranched polysiloxane functionalized graphene oxide for dicyclopentadiene bisphenol dicyanate ester nanocomposites with high performance

    Directory of Open Access Journals (Sweden)

    H. X. Yan

    2014-06-01

    Full Text Available We report an efficient and novel method to functionalize graphene oxide (GO with hyperbranched polysiloxane and successfully compound them with dicyclopentadiene bisphenol dicyanate ester (DCPDCE to prepare nanocomposites. X-ray photoelectron spectroscopy (XPS and Fourier-transform infrared spectra (FT-IR were employed to examine the surface functionalization of GO. The effects of functionalized GO on the curing reaction, mechanical, dielectric and thermal properties of DCPDCE resin were investigated systematically. Results of DSC show that the addition of modified GO can facilitate the curing reaction of DCPDCE and decrease the curing temperature of DCPDCE. Compared with pure DCPDCE resin, the impact and flexural strengths of the nanocomposite materials are improved markedly with up to 66 and 50% increasing magnitude, respectively. Meanwhile, the modified GO/DCPDCE systems exhibit lower dielectric constant and loss than pure DCPDCE resin over the testing frequency from 10 to 60 MHz. In addition, the thermal stability and moisture resistance of modified GO/DCPDCE nanocomposties are also superior to that of pure DCPDCE resin.

  9. Freely suspended perforated polymer nanomembranes for protein separations.

    Science.gov (United States)

    Schuster, Christian; Rodler, Agnes; Tscheliessnig, Rupert; Jungbauer, Alois

    2018-03-13

    Selective removal of nanometer-sized compounds such as proteins from fluids is an often challenging task in many scientific and industrial areas. Addressing such tasks with highly efficient and selective membranes is desirable since commonly used chromatographic approaches are expensive and difficult to scale up. Nanomembranes, molecularly thin separation layers, have been predicted and shown to possess outstanding properties but in spite ultra-fast diffusion times and high-resolution separation, to date they generally lack either of two crucial characteristics: compatibility with biological fluids and low-cost production. Here we report the fast and easy fabrication of highly crosslinked polymer membranes based on a thermoset resin (poly[(o-cresyl glycidyl ether)-co-formaldehyde (PCGF) cured with branched polyethyleneimine (PEI)) with nanoscale perforations of 25 nm diameter. During spin casting, microphase separation of a polylactide-co-glycolide induces the formation of nanometer sized domains that serve as templates for perforations which penetrate the 80 nm thick membranes. Ultrathin perforated nanomembranes can be freely suspended on the cm scale, exhibit high mechanical strength, low surface energies and a sharp permeability cutoff at a hydrodynamic diameter of 10 nm suitable for protein separations.

  10. Biokompatibilitas Gelas Ionomer Modifikasi Resin

    OpenAIRE

    Rotua Lestari M

    2008-01-01

    Saat ini banyak berkembang material baru dalam dunia kedokteran gigi diantaranya adalah Gelas ionomer modifikasi resin yang dikembangkan untuk mengatasi kekurangan-kekurangan dari gelas ionomer konvensional. Adanya penambahan monomer resin daIam bentuk 2-hydroxyethylmetacylate (HEMA) telah meningkatkan kekuatan dari bahan ini. Gelas ionomer modifikasi resin mempunyai sifat-sifat fisis dan mekanis yang lebih baik dibandingkan dengan gelas ionomer konvensional. Gelas ionomer modifikasi ...

  11. The Effect of Oxygen-Plasma Treated Graphene Nanoplatelets upon the Properties of Multiwalled Carbon Nanotube and Polycarbonate Hybrid Nanocomposites Used for Electrostatic Dissipative Applications

    Directory of Open Access Journals (Sweden)

    Akkachai Poosala

    2015-01-01

    Full Text Available Oxygen-plasma treated graphene nanoplatelet (OGNP, multiwalled carbon nanotube (MWCNT and polycarbonate (PC hybrid nanocomposites were prepared via a melting process using a twin-screw extruder. The contents of the OGNPs were in the range of 0.0 to 5.0 parts per hundred resin (phr, whilst the dosage of MWCNTs was kept at a constant of 2.0 wt%. Nanocomposites containing 2.0 wt% of MWCNTs and mixtures of 2.0 wt% of MWCNTs at 1.5 to 5.0 phr of OGNPs had tribocharged voltages, surface resistivities, and decay times, all within the electrostatic discharge (ESD specification. The X-ray diffraction (XRD and scanning electron microscopy (SEM results revealed that the OGNPs slightly intercalated and distributed also within the PC matrix. The glass transition temperature Tg and heat capacity jump, at the glass transition stages of nanocomposite, slightly changed, as the contents of the OGNPs increased. The melt flow index (MFI of nanocomposites significantly decreased when MWCNTs were added to the PC resin and slightly changed as the dosage of OGNPs was increased. Tensile Young’s modulus of nanocomposites tended to increase, as the elongation at break and impact strength decreased, when OGNP concentrations were increased. This research work exhibited that OGNP/MWCNT/PC hybrid nanocomposites do indeed have the potential to be used in ESD applications.

  12. Fabrication of carbon nanotube/epoxy nanocomposite and characterization of its mechanical properties

    International Nuclear Information System (INIS)

    Mubin, Muhammad Shamsul Huda

    2007-02-01

    In this study, carbon nanotube polymer nanocomposites have been fabricated incorporating single walled carbon nantubes (SWNTs) or multiwalled carbon nanotubes (MWNTs) in a thermosetting polymer matrix, epoxy resin. Nanoindentation measurements showed that elastic modulus of epoxy polymer matrix has changed from 3.5 GPa to 4.0 GPa (∼ 15 % increase) only for 0.005 wt% single walled carbon nanotubes loading. The hardness of the single walled carbon nanotube incorporated epoxy nanocomposites remained nearly unchanged for 0.005 wt % nanotube loading. Multiwalled carbon nanotube incorporated epoxy nanocomposites showed deterioration of both the hardness, from 0.2 GPa to 0.08 GPa (∼factor 2.5), and elastic modulus, from 3.5 GPa to 2.1 GPa (∼ factor 1.6), for 0.02 wt % nanotube loading. Homogeneity study using continuous stiffness measurement (CSM) mode of indentation techniques revealed the lack in homogeneity of the fabricated nancomposite may be responsible for deteriorating mechanical properties. High resolution scanning electronic microscopic (SEM) images taken from cross section of carbon nanotubes incorporated epoxy nanocomposites showed several poorly attached thin layers of nanocomposites staked on each other which may be another cause of property deterioration

  13. A Study of Clay-Epoxy Nanocomposites Consisting of Unmodified Clay and Organo Clay

    Directory of Open Access Journals (Sweden)

    Graham Edward

    2006-04-01

    Full Text Available Clay-epoxy nanocomposites were synthesized from DGEBA resin and montmorillonite clay with an in-situ polymerization. One type of untreated clay and two types of organo clay were used to produce the nanocompsoites. The aims of this study were to examine the nanocomposite structure using different tools and to compare the results between the unmodified clay and modified clays as nanofillers. Although diffractogram in reflection mode did not show any apparent peak of both types of materials, the transmitted XRD (X-Ray Difraction graphs, DSC (Differential Scanning Calorimeter analysis and TEM (Transmission Electron Microscope images revealed that the modified clay-epoxy and unmodified clay-epoxy provides different results. Interestingly, the micrographs showed that some of the modified clay layers possessed non-exfoliated layers in the modified clay-epoxy nanocomposites. Clay aggregates and a hackle pattern were found from E-SEM images for both types of nanocomposite materials. It is shown that different tools should be used to determine the nanocomposite structure.

  14. Suspended Morphology in Serbian: Clitics vs. Affixes

    Directory of Open Access Journals (Sweden)

    Miloje Despić

    2017-02-01

    Full Text Available This article offers a case study of what appears to be an instance of “suspended affixation” in Serbian. The phenomenon in question is particularly interesting and potentially theoretically significant since it occurs in a language in which suspended affixation is generally impossible. The account I am led to suggests, however, that what is being “suspended” is not an affix but a second position clitic disguised as an affix. This is not a surprising outcome, since Serbian second position clitics, unlike ordinary affixes, can be elided quite easily. The phenomena examined in this paper provide further support to certain aspects of the theoretical model developed in Embick (2007; 2010 and offer new insights into the interaction between linearization, ellipsis and Local Dislocation. In particular, I show that the forms which allow ‘suspended affixation’ are formed in a special way, namely, via Local Dislocation, which affixes a second position enclitic to its host at PF under linear adjacency. Forms which are created by regular head movement, on the other hand disallow suspended affixation, on the assumption that elements that form complex heads (i.e., Subwords cannot be elided. This article is part of Special Collection:Suspended Affixation

  15. Characterization of Epoxy Functionalized Graphite Nanoparticles and the Physical Properties of Epoxy Matrix Nanocomposites

    Science.gov (United States)

    Miller, Sandi G.; Bauer, Jonathan L.; Maryanski, Michael J.; Heimann, Paula J.; Barlow, Jeremy P.; Gosau, Jan-Michael; Allred, Ronald E.

    2010-01-01

    This work presents a novel approach to the functionalization of graphite nanoparticles. The technique provides a mechanism for covalent bonding between the filler and matrix, with minimal disruption to the sp2 hybridization of the pristine graphene sheet. Functionalization proceeded by covalently bonding an epoxy monomer to the surface of expanded graphite, via a coupling agent, such that the epoxy concentration was measured as approximately 4 wt.%. The impact of dispersing this material into an epoxy resin was evaluated with respect to the mechanical properties and electrical conductivity of the graphite-epoxy nanocomposite. At a loading as low as 0.5 wt.%, the electrical conductivity was increased by five orders of magnitude relative to the base resin. The material yield strength was increased by 30% and Young s modulus by 50%. These results were realized without compromise to the resin toughness.

  16. Speciation of Suspended Particles By Individual Particle Analysis In The Japan Sea And The Western Tropical Pacific Ocean

    Science.gov (United States)

    Nakaguchi, Y.; Asatani, T.; Fujita, A.; Kabuki, J.; Shitashima, K.

    2008-12-01

    Trace elements such as Fe, Cd, Ni, Cu, Zn and Co are called "gbioactive trace metal"h. Reports have been made on bioactive trace metals distribution in sea water for various ocean: the North Pacific (Bruland, 1980; Boyle et al., 1981; Bruland et al., 1994; Ezoe, 2004;), the North Atlantic (Boyle et al., 1981; Bruland and Franks, 1983) and the South China Sea (Wen et al., 2006). The most of bioactive trace metals are taken up by marine organisms such as phytoplankton and bacteria. Consumption and decomposition of particulate matter sinking from surface waters return the bioactive trace metals to solution. On the other hand, some suspended particulate matters come from terrestrial sources transported to the ocean by rivers and by winds in particulate forms, and by rivers in dissolved forms. The bulk composition of suspended particulate matter in the various oceans is well known, whereas, the speciation of elements in suspended particle still remains poorly known. Individual particulate analysis can provide detailed information about the source, formation, transport and reactions of suspended particulate matter. The purpose of this work (1) the determination of dissolved bioactive trace metals (Fe, Co, Ni, Cu, Zn and Cd) in the Japan Sea and the western tropical Pacific Ocean by using the commercial PAPC type chelating resin solid phase extraction with ICP-MS method, (2) investigation for source of bioactive trace metals by the speciation of suspended particles by individual particulate analysis.

  17. Tensile mechanical behavior and fracture toughness of MWCNT and DWCNT modified vinyl-ester/polyester hybrid nanocomposites produced by 3-roll milling

    Energy Technology Data Exchange (ETDEWEB)

    Seyhan, A. Tugrul [Department of Materials Science and Engineering, Anadolu University (Australia), Iki Eylul Campus, 26550 Eskisehir (Turkey); Tanoglu, Metin, E-mail: metintanoglu@iyte.edu.tr [Izmir Institute of Technology (IZTECH), Mechanical Engineering Department, Gulbahce Campus 35437, Izmir (Turkey); Schulte, Karl [Technicshe Universitat Hamburg-Harburg (TUHH), Polymer Composites Section, Denickestrasse 15, D-21073 Hamburg (Germany)

    2009-10-15

    This study aims to investigate the tensile mechanical behavior and fracture toughness of vinyl-ester/polyester hybrid nanocomposites containing various types of nanofillers, including multi- and double-walled carbon nanotubes with and without amine functional groups (MWCNTs, DWCNTs, MWCNT-NH{sub 2} and DWCNT-NH{sub 2}). To prepare the resin suspensions, very low contents (0.05, 0.1 and 0.3 wt.%) of carbon nanotubes (CNTs) were dispersed within a specially synthesized styrene-free polyester resin, conducting 3-roll milling technique. The collected resin stuff was subsequently blended with vinyl-ester via mechanical stirring to achieve final suspensions prior to polymerization. Nanocomposites containing MWCNTs and MWCNT-NH{sub 2} were found to exhibit higher tensile strength and modulus as well as larger fracture toughness and fracture energy compared to neat hybrid polymer. However, incorporation of similar contents of DWCNTs and DWCNT-NH{sub 2} into the hybrid resin did not reflect the same improvement in the corresponding mechanical properties. Furthermore, experimentally measured elastic moduli of the nanocomposites containing DWCNTs, DWCNT-NH{sub 2}, MWCNTs and MWCNT-NH{sub 2} were fitted to Halphin-Tsai model. Regardless of amine functional groups or content of carbon nanotubes, MWCNT modified nanocomposites exhibited better agreement between the predicted and the measured elastic moduli values compared to nanocomposites with DWCNTs. Furthermore, Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) were used to reveal dispersion state of the carbon nanotubes within the hybrid polymer and to examine the CNT induced failure modes that occurred under mechanical loading, respectively. Based on the experimental findings obtained, it was emphasized that the types of CNTs and presence of amine functional groups on the surface of CNTs affects substantially the chemical interactions at the interface, thus tuning the ultimate mechanical

  18. Electrodialytic remediation of suspended mine tailings

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Rojo, Adrian; Pino, Denisse

    2008-01-01

    This work shows the laboratory results of nine electrodialytic remediation experiments on copper mine tailings. A newly designed remediation cell, where the solids were kept in suspension by airflow, was tested. The results show that electric current could remove copper from suspended tailings...... experiment at 40 mA, with approximately 137.5 g mine tailings on dry basis. The removal for a static (baseline) experiment only amounted 15% when passing approximately the same amount of charge through 130 g of mine tailings. The use of air bubbling to keep the tailings suspended increased the removal...

  19. Properties of the Carboxylate ion exchange resins

    International Nuclear Information System (INIS)

    Allard, Bert; Dario, Maarten; Boren, Hans; Torstenfelt, Boerje; Puigdomenech, Ignasi; Johansson, Claes

    2002-09-01

    Weakly acidic, carboxylic resin has been selected, together with strong base anion resins, for water purification at the Forsmark 1 and 2 reactors. For the strong (but not the weak) ion exchange resin the Nuclear Power Inspectorate has given permission to dispose the spent resins in the SFR 1 (the Final Repository for Radioactive Operational Waste). This report gives a review of the carboxylic resins and comes to the conclusion that the resins are very stable and that there should not exist any risks for increased leaching of radionuclides from SFR 1 if these resins are disposed (compared to the strong resins)

  20. Improved thermal stability of methylsilicone resins by compositing with N-doped graphene oxide/Co3O4 nanoparticles

    International Nuclear Information System (INIS)

    Jiang, Bo; Zhao, Liwei; Guo, Jiang; Yan, Xingru; Ding, Daowei; Zhu, Changcheng; Huang, Yudong; Guo, Zhanhu

    2016-01-01

    Nanoparticles play important roles in enhancing the thermal-resistance of hosting polymer resins. Despite tremendous efforts, developing thermally stable methylsilicone resin at high temperatures is still a challenge. Herein, we report a strategy to increase the activation energy to slow down the decomposition/degradation of methylsilicone resin using synergistic effects between the Co 3 O 4 nanoparticles and the nitrogen doped graphene oxide. The N-doped graphene oxides composited with Co 3 O 4 nanoparticles were prepared by hydrolysis of cobalt nitrate hexahydrate in the presence of graphene oxide and were incorporated into the methylsilicone resin. Two-stage decompositions were observed, i.e., 200–300 and 400–500 °C. The activation energy for the low temperature region was enhanced by 47.117 kJ/mol (vs. 57.76 kJ/mol for pure resin). The enhanced thermal stability was due to the fact that the nanofillers prevented the silicone hydroxyl chain ends ‘‘biting’’ to delay the degradation. The activation energy for high-temperature region was enhanced by 11.585 kJ/mol (vs. 171.95 kJ/mol for pure resin). The nanofillers formed a protective layer to isolate oxygen from the hosting resin. The mechanism for the enhanced thermal stability through prohibited degradation with synergism of these nitrogen-doped graphene oxide nanocomposites was proposed as well.Graphical Abstract

  1. [Acrylic resin removable partial dentures

    NARCIS (Netherlands)

    Baat, C. de; Witter, D.J.; Creugers, N.H.J.

    2011-01-01

    An acrylic resin removable partial denture is distinguished from other types of removable partial dentures by an all-acrylic resin base which is, in principle, solely supported by the edentulous regions of the tooth arch and in the maxilla also by the hard palate. When compared to the other types of

  2. Cure shrinkage in casting resins

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J. Brock [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    A method is described whereby the shrinkage of a casting resin can be determined. Values for the shrinkage of several resin systems in frequent use by Sandia have been measured. A discussion of possible methods for determining the stresses generated by cure shrinkage and thermal contraction is also included.

  3. Synergistic effect of carbon nanotube and clay for improving the flame retardancy of ABS resin

    Energy Technology Data Exchange (ETDEWEB)

    Ma Haiyun [Institute of Polymer Composites, Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027 (China); Tong Lifang [Institute of Polymer Composites, Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027 (China); Xu Zhongbin [Institute of Polymer Composites, Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027 (China); Fang Zhengping [Institute of Polymer Composites, Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027 (China)

    2007-09-19

    Synergistic effect between multi-walled carbon nanotubes (MWNTs) and clay on improving the flame retardancy of acrylonitrile-butadiene-styrene (ABS) resin was studied. Flammability properties measured by a cone calorimeter revealed that incorporation of clay and MWNTs into ABS resin significantly reduced the peak heat release rate (PHRR) and slowed down the whole combustion process compared to the individually filled system based on clay or MWNTs. The flame retardancy of the ABS/clay/MWNTs nanocomposites was strongly affected by the formation of a network structure. Linear viscoelastic properties of the ABS nanocomposites showed that the coexistence of clay and MWNTs can enhance the network structure which can hinder the movement of polymer chains and improve flame retardancy. From transmission electron microscope analysis, MWNTs were shortened after combustion and there was no significant change in their diameters. For chars of ABS/clay/MWNTs nanocomposites, some MWNTs ran across between clay layers, indicating a strong interaction existed between clay and MWNTs. The existence of clay enhanced the graphitization degree of MWNTs during combustion. Clay can assist the elimination of dislocations and defects and the rearrangement of crystallites. Al{sub 2}O{sub 3}, one of the components of clay, acts as the catalyst of graphitization.

  4. Effect of mixing sequence on the curing of amine-hardened epoxy/ alumina nanocomposites as assessed by optical refractometry

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available High performance refractometry has been proven to be a useful tool to elucidate the isothermal curing process of nanocomposites. As a model system an amine-hardening epoxy filled with non-surface-treated alumina nanoparticles was selected. The tremendous resolution of this experimental technique is used to study morphological changes within nanocomposites via the refractive index. It is shown that these morphological changes are not simply due to the curing process but also depend on the sequence of mixing the nanoparticles either first into the resin or first into the hardener. Independent of the resin/hardener composition, the type of the mixing sequence discriminates systematically between two distinct refractive index curves produced by the curing process. The difference between the two refractive index curves increases monotonically with curing time, which underlines the importance of the initial molecular environment of the nanoparticles.

  5. Development of novel TGDDM epoxy nanocomposites for aerospace and high performance applications – Study of their thermal and electrical behaviour

    Directory of Open Access Journals (Sweden)

    K. Shree Meenakshi

    2016-01-01

    Full Text Available The present work focuses on a study of the thermal and electrical behaviour of pure N,N′-tetraglycidyl diaminodiphenylmethane (TGDDM for use in aerospace, high performance applications. The synthesis of the tetraglycidyl epoxies was done and they were characterized by FT-IR (Fourier transform infrared spectra and Nuclear magnetic resonance spectra (1H NMR and 13C NMR. Nanoclay and POSS-amine nanoreinforcements denoted as N1 and N2 were incorporated into the synthesized epoxy resins. Curing was done with diaminodiphenylmethane (DDM and bis(3-aminophenylphenylphosphine oxide (BAPPO curing agents denoted as X and Y, respectively. The thermal behaviour of the tetraglycidyl resins and their corresponding nanocomposites was studied by thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. The electrical behaviour namely dielectric strength, comparative tracking index (CTI, volume resistivity, surface resistivity and arc resistance of the nanocomposites was also studied and the interesting results obtained are discussed.

  6. Static Elongation of a Suspended Slinky™

    Science.gov (United States)

    Sawicki, Mikolaj ``Mik''

    2002-05-01

    Elongation of a vertically suspended Slinky under its own weight and a weight hung from it is discussed using elementary considerations. Displacement of the center of mass of Slinky is also found. The results are verified experimentally using a 1 apparatus.

  7. 7 CFR 1212.28 - Suspend.

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS..., PROMOTION, CONSUMER EDUCATION AND INDUSTRY INFORMATION ORDER Honey Packers and Importers Research, Promotion, Consumer Education, and Industry Information Order Definitions § 1212.28 Suspend. “Suspend” means to issue...

  8. Optomechanics for thermal characterization of suspended graphene

    NARCIS (Netherlands)

    Dolleman, R.J.; Houri, S.; Davidovikj, D.; Cartamil Bueno, S.J.; Blanter, Y.M.; van der Zant, H.S.J.; Steeneken, P.G.

    2017-01-01

    The thermal response of graphene is expected to be extremely fast due to its low heat capacity and high thermal conductivity. In this work, the thermal response of suspended single-layer graphene membranes is investigated by characterization of their mechanical motion in response to a

  9. The Shape of Breasts Suspended in Liquid

    NARCIS (Netherlands)

    De Kleijn, S.C.; Rensen, W.H.J.

    2007-01-01

    Philips has designed an optical mammography machine. In this machine the breast is suspended into a cup in which the measurements take place. A special fluid is inserted into the cup to prevent the light from going around the breast instead of going through it but this fluid also weakens the signal.

  10. Environmental toxicology: Acute effects of suspended particulate ...

    African Journals Online (AJOL)

    The elemental contents of suspended particulate matter (dust) samples from Maiduguri, Nigeria, were determined which showed appreciably high levels for especially Pb, Fe, Cu, Zn, K, Ca, and. Na. Wister albino rats were exposed to graded doses of phosphate buffered saline carried dust particles. The hematological ...

  11. (suspended solids and metals) removal efficiencies

    African Journals Online (AJOL)

    ABSTRACT. Presented in this paper are the results of correlational analyses and logistic regression between metal substances (Cd, Cu,. Pb, Zn), as well as suspended solids removal, and physical pond parameters of 19 stormwater retention pond case studies obtained from the International Stormwater BMP database.

  12. Effect of TiO2 Nanoparticles on Tensile Strength of Dental Acrylic Resins.

    Science.gov (United States)

    Shirkavand, Saeed; Moslehifard, Elnaz

    2014-01-01

    Background and aims. Adding further fillers to dental resins may enhance their physical characteristics. The aim of this study was to evaluate the tensile strength of heat-curing acrylic resin reinforced by TiO2nanoparticles added into the resin matrix. Materials and methods. Commercially available TiO2 nanoparticles were obtained and characterized using X-ray diffrac-tion (XRD) and scanning electron microscopy (SEM) to determine their crystalline structure, particle size and morphology. TiO2-acrylic resin nanocomposite was prepared by mixing 0.5, 1 and 2 (wt%) of surface modified TiO2 nanoparticles in an amalgamator providing three groups of samples. Before curing, the obtained paste was packed into steel molds. After cur-ing, the specimens were removed from the molds. The tensile strength test samples were prepared according to ISO 1567. Results. Two crystalline phases were found in TiO2 nanoparticles including: (i) anatase as the major one, and (ii) rutile. The average particle size calculated according to the Scherrer equation was 20.4 nm, showing a normal size distribution. According to SEM images, the nanocomposite with 1wt% TiO2 nanoparticles had a better distribution compared to other groups. In addition, the group by 1wt% TiO2 exhibited higher tensile strength with a significant difference compared to other groups. ANOVA showed significant differences between the contents of TiO2 particles in acrylic resin (F = 22.19; P tensile strength was observed with titania NPs reinforcement agents in 1wt% by weight. Further increase of TiO2 nanoparticles decreased the tensile strength.

  13. Epoxy Resin Composite Based on Functional Hybrid Fillers.

    Science.gov (United States)

    Oleksy, Mariusz; Szwarc-Rzepka, Karolina; Heneczkowski, Maciej; Oliwa, Rafał; Jesionowski, Teofil

    2014-08-22

    A study was carried out involving the filling of epoxy resin (EP) with bentonites and silica modified with polyhedral oligomeric silsesquioxane (POSS). The method of homogenization and the type of filler affect the functional and canceling properties of the composites was determined. The filler content ranged from 1.5% to 4.5% by mass. The basic mechanical properties of the hybrid composites were found to improve, and, in particular, there was an increase in tensile strength by 44%, and in Charpy impact strength by 93%. The developed hybrid composites had characteristics typical of polymer nanocomposites modified by clays, with a fine plate morphology of brittle fractures observed by SEM, absence of a plate separation peak in Wide Angles X-ray Scattering (WAXS) curves, and an exfoliated structure observed by TEM.

  14. Epoxy Resin Composite Based on Functional Hybrid Fillers

    Directory of Open Access Journals (Sweden)

    Mariusz Oleksy

    2014-08-01

    Full Text Available A study was carried out involving the filling of epoxy resin (EP with bentonites and silica modified with polyhedral oligomeric silsesquioxane (POSS. The method of homogenization and the type of filler affect the functional and canceling properties of the composites was determined. The filler content ranged from 1.5% to 4.5% by mass. The basic mechanical properties of the hybrid composites were found to improve, and, in particular, there was an increase in tensile strength by 44%, and in Charpy impact strength by 93%. The developed hybrid composites had characteristics typical of polymer nanocomposites modified by clays, with a fine plate morphology of brittle fractures observed by SEM, absence of a plate separation peak in Wide Angles X-ray Scattering (WAXS curves, and an exfoliated structure observed by TEM.

  15. Industrial-Graded Epoxy Nanocomposites with Mechanically Dispersed Multi-Walled Carbon Nanotubes: Static and Damping Properties

    OpenAIRE

    Giovannelli, Andrea; Di Maio, Dario; Scarpa, Fabrizio

    2017-01-01

    The majority of currently published dispersion protocols of carbon nanotubes rely on techniques that are not scalable to an industrial level. This work shows how to obtain polymer nanocomposites with good mechanical characteristics using multi-walled carbon nanotubes epoxy resins obtained by mechanical mixing only. The mechanical dispersion method illustrated in this work is easily scalable to industrial level. The high shearing force due to the complex field of motion produces a good and rep...

  16. Polymer-Layer Silicate Nanocomposites

    DEFF Research Database (Denmark)

    Potarniche, Catalina-Gabriela

    Nowadays, some of the material challenges arise from a performance point of view as well as from recycling and biodegradability. Concerning these aspects, the development of polymer layered silicate nanocomposites can provide possible solutions. This study investigates how to obtain polymer layered...... silicate nanocomposites and their structure-properties relationship. In the first part of the thesis, thermoplastic layered silicates were obtained by extrusion. Different modification methods were tested to observe the intercalation treatment effect on the silicate-modifier interactions. The silicate...... modification was studied at different silicate/modifier ratios and properties were investigated for obtained nanocomposites with different amounts of modified layered silicate loadings. The obtained nanocomposites presented improved mechanical properties such as toughness, stiffness or a good balance between...

  17. Sonochemical Preparation of Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    Hyoung Jin Choi

    2009-06-01

    Full Text Available Thisreview covers sonochemical fabrication of polymer nanocomposites. In addition to its application to the synthesis of various polymeric systems, due to its powerful efficiency, sonochemistry has been widely used not only as the assistant of dispersion for nanomaterials such as carbon nanotubes (CNT and organophillic clay, but also as a special initiator to enhance polymerization for fabrication of polymer nanocomposites with CNT and metallic nanoparticles. Recent developments in the preparation of multi-walled carbon nanotube/polymer nanocomposites with polystyrene and PMMA, magnetic particle/CNT composites and polymer/clay nanocomposites along with their physical characteristics and potential engineering applications will be introduced. Physical characterizations include morphological, thermal, and rheological properties under either an applied electric or magnetic field.

  18. [Acrylic resin removable partial dentures].

    Science.gov (United States)

    de Baat, C; Witter, D J; Creugers, N H J

    2011-01-01

    An acrylic resin removable partial denture is distinguished from other types of removable partial dentures by an all-acrylic resin base which is, in principle, solely supported by the edentulous regions of the tooth arch and in the maxilla also by the hard palate. When compared to the other types of removable partial dentures, the acrylic resin removable partial denture has 3 favourable aspects: the economic aspect, its aesthetic quality and the ease with which it can be extended and adjusted. Disadvantages are an increased risk of caries developing, gingivitis, periodontal disease, denture stomatitis, alveolar bone reduction, tooth migration, triggering of the gag reflex and damage to the acrylic resin base. Present-day indications are ofa temporary or palliative nature or are motivated by economic factors. Special varieties of the acrylic resin removable partial denture are the spoon denture, the flexible denture fabricated of non-rigid acrylic resin, and the two-piece sectional denture. Furthermore, acrylic resin removable partial dentures can be supplied with clasps or reinforced by fibers or metal wires.

  19. Magnetoelectric Nanocomposites for Flexible Electronics

    KAUST Repository

    Al-Nassar, Mohammed Y.

    2015-09-01

    Flexibility, low cost, versatility, miniaturization and multi-functionality are key aspects driving research and innovation in many branches of the electronics industry. With many anticipated emerging applications, like wearable, transparent and biocompatible devices, interest among the research community in pursuit for novel multifunctional miniaturized materials have been amplified. In this context, multiferroic polymer-based nanocomposites, possessing both ferroelectricity and ferromagnetism, are highly appealing. Most importantly, these nanocomposites possess tunable ferroelectric and ferromagnetic properties based on the parameters of their constituent materials as well as the magnetoelectric effect, which is the coupling between electric and magnetic properties. This tunability and interaction is a fascinating fundamental research field promising tremendous potential applications in sensors, actuators, data storage and energy harvesting. This dissertation work is devoted to the investigation of a new class of multiferroic polymer-based flexible nanocomposites, which exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature, with the goal of understanding and optimizing the origin of their magnetoelectric coupling. The nanocomposites consist of high aspect ratio ferromagnetic nanowires (NWs) embedded inside a ferroelectric co-polymer, poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE) matrix. First, electrochemical deposition of ferromagnetic NWs inside anodic aluminum oxide membranes is discussed. Characterization of electrodeposited iron, nickel and highly magnetostrictive iron-gallium alloy NWs was done using XRD, electron and magnetic force microscopy. Second, different nanocomposite films have been fabricated by means of spin coating and drop casting techniques. The effect of incorporation of NWs inside the ferroelectric polymer on its electroactive phase is discussed. The remanent and saturation polarization as well

  20. Morphology, thermal, mechanical, and barrier properties of graphene oxide/poly(lactic acid) nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Woo; Choi, Hyun Muk [Kyonggi University, Suwon (Korea, Republic of)

    2016-01-15

    To improve the physical and gas barrier properties of biodegradable poly(lactic acid) (PLA) film, two graphene nanosheets of highly functionalized graphene oxide (0.3 wt% to 0.7 wt%) and low-functionalized graphene oxide (0.5 wt%) were incorporated into PLA resin via solution blending method. Subsequently, we investigated the effects of material parameters such as loading level and degree of functionalization for the graphene nanosheets on the morphology and properties of the resultant nanocomposites. The highly functionalized graphene oxide (GO) caused more exfoliation and homogeneous dispersion in PLA matrix as well as more sustainable suspensions in THF, compared to low-functionalized graphene oxide (LFGO). When loaded with GO from 0.3 wt% to 0.7 wt%, the glass transition temperature, degree of crystallinity, tensile strength and modulus increased steadily. The GO gave rise to more pronounced effect in the thermal and mechanical reinforcement, relative to LFGO. In addition, the preparation of fairly transparent PLA-based nanocomposite film with noticeably improved barrier performance achieved only when incorporated with GO up to 0.7wt%. As a result, GO may be more compatible with hydrophilic PLA resin, compared to LFGO, resulting in more prominent enhancement of nanocomposites properties.

  1. Morphology, thermal, mechanical, and barrier properties of graphene oxide/poly(lactic acid) nanocomposite films

    International Nuclear Information System (INIS)

    Kim, Seong Woo; Choi, Hyun Muk

    2016-01-01

    To improve the physical and gas barrier properties of biodegradable poly(lactic acid) (PLA) film, two graphene nanosheets of highly functionalized graphene oxide (0.3 wt% to 0.7 wt%) and low-functionalized graphene oxide (0.5 wt%) were incorporated into PLA resin via solution blending method. Subsequently, we investigated the effects of material parameters such as loading level and degree of functionalization for the graphene nanosheets on the morphology and properties of the resultant nanocomposites. The highly functionalized graphene oxide (GO) caused more exfoliation and homogeneous dispersion in PLA matrix as well as more sustainable suspensions in THF, compared to low-functionalized graphene oxide (LFGO). When loaded with GO from 0.3 wt% to 0.7 wt%, the glass transition temperature, degree of crystallinity, tensile strength and modulus increased steadily. The GO gave rise to more pronounced effect in the thermal and mechanical reinforcement, relative to LFGO. In addition, the preparation of fairly transparent PLA-based nanocomposite film with noticeably improved barrier performance achieved only when incorporated with GO up to 0.7wt%. As a result, GO may be more compatible with hydrophilic PLA resin, compared to LFGO, resulting in more prominent enhancement of nanocomposites properties.

  2. Chromatography resin support

    Science.gov (United States)

    Dobos, James G.

    2002-01-01

    An apparatus and method of using an improved chromatography resin support is disclosed. The chromatography support platform is provided by a stainless steel hollow cylinder adapted for being inserted into a chromatography column. An exterior wall of the stainless steel cylinder defines a groove for carrying therein an "O"-ring. The upper surface of the stainless steel column is covered by a fine stainless steel mesh welded to the edges of the stainless steel cylinder. When placed upon a receiving ledge defined within a chromatography column, the "O"-ring provides a fluid tight seal with the inner edge wall of the chromatography cylinder. The stainless steel mesh supports the chromatography matrix and provides a back flushable support which is economical and simple to construct.

  3. 21 CFR 872.3140 - Resin applicator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Resin applicator. 872.3140 Section 872.3140 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3140 Resin applicator. (a) Identification. A resin applicator is a brushlike device intended for use in spreading dental resin on a tooth during application of...

  4. Improvement of interaction between pre-dispersed multi-walled carbon nanotubes and unsaturated polyester resin

    Energy Technology Data Exchange (ETDEWEB)

    Beg, M. D. H., E-mail: dhbeg@yahoo.com; Moshiul Alam, A. K. M., E-mail: akmmalam@gmail.com; Yunus, R. M. [Universiti Malaysia Pahang, Faculty of Chemical and Natural Resources Engineering (Malaysia); Mina, M. F. [Bangladesh University of Engineering and Technology, Department of Physics (Bangladesh)

    2015-01-15

    Efforts are being given to the development of well-dispersed nanoparticle-reinforced polymer nanocomposites in order to tailor the material properties. In this perspective, well dispersion of multi-walled carbon nanotubes (MWCNTs) in unsaturated polyester resin (UPR) was prepared using pre-dispersed MWCNTs in tetrahydrofuran solvent with ultrasonication method. Then the well-dispersed MWCNTs reinforced UPR nanocomposites were fabricated through solvent evaporation. Fourier-transform infrared spectroscopy indicates a good interaction between matrix and MWCNTs. This along with homogeneous dispersion of nanotubes in matrix has been confirmed by the field emission scanning electron microscopy. At low shear rate, the value of viscosity of UPR is 8,593 mPa s and that of pre-dispersed MWCNT–UPR suspension is 43,491 mPa s, showing implicitly a good dispersion of nanotubes. A notable improvement in the crystallinity of UPR from 14 to 21 % after MWCNTs inclusion was observed by X-ray diffractometry. The mechanical properties, such as tensile strength, tensile modulus, impact strength, and elongation-at-break, of nanocomposite were found to be increased to 22, 20, 28, and 87 %, respectively. The estimated melting enthalpy per gram for composites as analyzed by differential scanning calorimetry is higher than that of UPR. The onset temperature of thermal decomposition in the nanocomposites as monitored by thermogravimetric analysis is found higher than that of UPR. Correlations among MWCNTs dispersion, nucleation, fracture morphology, and various properties were measured and reported.

  5. Environmental degradation of structured nanocomposites

    Science.gov (United States)

    2017-03-01

    resistance. The nanocomposite formulations were also deposited on the surface of 315L stainless steel shim to determine the effects of the augmented weather...CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified 19. SECURITY CLASSIFICATION OF...change to their sheet resistance. The nanocomposite formulations were also deposited on the surface of 315L stainless steel shim to determine the

  6. Energy content of suspended detritus from Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumari, L.; Sumitra-Vijayaraghavan; Royan, J.P.

    Energy components of suspended matter included phytoplankton, zooplankton and detritus inclusive of microorganisms adsorbed to detritus. Of these, detritus contributed most of the energy (98%). The average caloric content of suspended detritus...

  7. Comparison of the Nanostructure and Mechanical Performance of Highly Exfoliated Epoxy-Clay Nanocomposites Prepared by Three Different Protocols

    Directory of Open Access Journals (Sweden)

    Fatemeh Shiravand

    2014-05-01

    Full Text Available Three different protocols for the preparation of polymer layered silicate nanocomposites based upon a tri-functional epoxy resin, triglycidyl para-amino phenol (TGAP, have been compared in respect of the cure kinetics, the nanostructure and their mechanical properties. The three preparation procedures involve 2 wt% and 5 wt% of organically modified montmorillonite (MMT, and are: isothermal cure at selected temperatures; pre-conditioning of the resin-clay mixture before isothermal cure; incorporation of an initiator of cationic homopolymerisation, a boron tri-fluoride methyl amine complex, BF3·MEA, within the clay galleries. It was found that features of the cure kinetics and of the nanostructure correlate with the measured impact strength of the cured nanocomposites, which increases as the degree of exfoliation of the MMT is improved. The best protocol for toughening the TGAP/MMT nanocomposites is by the incorporation of 1 wt% BF3·MEA into the clay galleries of nanocomposites containing 2 wt% MMT.

  8. Development of silane grafted ZnO core shell nanoparticles loaded diglycidyl epoxy nanocomposites film for antimicrobial applications.

    Science.gov (United States)

    Suresh, S; Saravanan, P; Jayamoorthy, K; Ananda Kumar, S; Karthikeyan, S

    2016-07-01

    In this article a series of epoxy nanocomposites film were developed using amine functionalized (ZnO-APTES) core shell nanoparticles as the dispersed phase and a commercially available epoxy resin as the matrix phase. The functional group of the samples was characterized using FT-IR spectra. The most prominent peaks of epoxy resin were found in bare epoxy and in all the functionalized ZnO dispersed epoxy nanocomposites (ZnO-APTES-DGEBA). The XRD analysis of all the samples exhibits considerable shift in 2θ, intensity and d-spacing values but the best and optimum concentration is found to be 3% ZnO-APTES core shell nanoparticles loaded epoxy nanocomposites supported by FT-IR results. From TGA measurements, 100wt% residue is obtained in bare ZnO nanoparticles whereas in ZnO core shell nanoparticles grafted DGEBA residue percentages are 37, 41, 45, 46 and 52% for 0, 1, 3, 5 and 7% ZnO-APTES-DGEBA respectively, which is confirmed with ICP-OES analysis. From antimicrobial activity test, it was notable that antimicrobial activity of 7% ZnO-APTES core shell nanoparticles loaded epoxy nanocomposite film has best inhibition zone effect against all pathogens under study. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The suspended sentence in French Criminal Law

    Directory of Open Access Journals (Sweden)

    Jovašević Dragan

    2016-01-01

    Full Text Available From the ancient times until today, criminal law has provided different criminal sanctions as measures of social control. These coercive measures are imposed on the criminal offender by the competent court and aimed at limitting the offender's rights and freedoms or depriving the offender of certain rights and freedoms. These sanctions are applied to the natural or legal persons who violate the norms of the legal order and injure or endanger other legal goods that enjoy legal protection. In order to effectively protect social values, criminal legislations in all countries predict a number of criminal sanctions. These are: 1 imprisonment, 2 precautions, 3 safety measures, 4 penalties for juveniles, and 5 sanctions for legal persons. Apart and instead of punishment, warning measures have a significant role in the jurisprudence. Since they emerged in the early 20th century in the system of criminal sanctions, there has been an increase in their application to criminal offenders, especially when it comes to first-time offenders who committed a negligent or accidental criminal act. Warnings are applied in case of crimes that do not have serious consequences, and whose perpetrators are not hardened and incorrigible criminals. All contemporary criminal legislations (including the French legilation provide a warning measure of suspended sentence. Suspended sentence is a conditional stay of execution of sentence of imprisonment for a specified time, provided that the convicted person does not commit another criminal offense and fulfills other obligations. This sanction applies if the following two conditions are fulfilled: a forma! -which is attached to the sentence of imprisonment; and b material -which is the court assessment that the application of this sanction is justified and necessary in a particular case. In many modern criminal legislations, there are two different types of suspended (conditional sentence: 1 ordinary (classical suspended

  10. Magnetic Nanocomposite Cilia Sensors

    KAUST Repository

    Alfadhel, Ahmed

    2016-07-19

    Recent progress in the development of artificial skin concepts is a result of the increased demand for providing environment perception such as touch and flow sensing to robots, prosthetics and surgical tools. Tactile sensors are the essential components of artificial skins and attracted considerable attention that led to the development of different technologies for mimicking the complex sense of touch in humans. This dissertation work is devoted to the development of a bioinspired tactile sensing technology that imitates the extremely sensitive hair-like cilia receptors found in nature. The artificial cilia are fabricated from permanent magnetic, biocompatible and highly elastic nanocomposite material, and integrated on a giant magneto-impedance magnetic sensor to measure the stray field. A force that bends the cilia changes the stray field and is therefore detected with the magnetic sensor, providing high performance in terms of sensitivity, power consumption and versatility. The nanocomposite is made of Fe nanowires (NWs) incorporated into polydimethylsiloxane (PDMS). Fe NWs have a high remanent magnetization, due the shape anisotropy; thus, they are acting as permanent nano-magnets. This allows remote device operation and avoids the need for a magnetic field to magnetize the NWs, benefiting miniaturization and the possible range of applications. The magnetic properties of the nanocomposite can be easily tuned by modifying the NWs concentration or by aligning the NWs to define a magnetic anisotropy. Tactile sensors are realized on flexible and rigid substrates that can detect flow, vertical and shear forces statically and dynamically, with a high resolution and wide operating range. The advantage to operate the sensors in liquids and air has been utilized to measure flows in different fluids in a microfluidic channel. Various dynamic studies were conducted with the tactile sensor demonstrating the detection of moving objects or the texture of objects. Overall

  11. Magnetoelectric polymer nanocomposite for flexible electronics

    International Nuclear Information System (INIS)

    Alnassar, M.; Alfadhel, A.; Ivanov, Yu. P.; Kosel, J.

    2015-01-01

    This paper reports the fabrication and characterization of a new type of magnetoelectric polymer nanocomposite that exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature. The multiferroic nanocomposite consists of high aspect ratio ferromagnetic iron nanowires embedded inside a ferroelectric co-polymer poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE). The nanocomposite has been fabricated via a simple low temperature spin coating technique. Structural, ferromagnetic, ferroelectric, and magnetoelectric properties of the developed nanocomposite have been characterized. The nanocomposite films showed isotropic magnetic properties due to the random orientation of the iron nanowires inside the film. In addition, the embedded nanowires did not hinder the ferroelectric phase development of the nanocomposite. The developed nanocomposite showed a high magnetoelectric coupling response of 156 mV/cmOe measured at 3.1 kOe DC bias field. This value is among the highest reported magnetoelectric coupling in two phase particulate polymer nanocomposites

  12. Magnetoelectric polymer nanocomposite for flexible electronics

    KAUST Repository

    Al-Nassar, Mohammed Y.

    2015-03-06

    This paper reports the fabrication and characterization of a new type of magnetoelectric polymer nanocomposite that exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature. The multiferroic nanocomposite consists of high aspect ratio ferromagnetic iron nanowires embedded inside a ferroelectric co-polymer poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE). The nanocomposite has been fabricated via a simple low temperature spin coating technique. Structural, ferromagnetic, ferroelectric, and magnetoelectric properties of the developed nanocomposite have been characterized. The nanocomposite films showed isotropic magnetic properties due to the random orientation of the iron nanowires inside the film. In addition, the embedded nanowires did not hinder the ferroelectric phase development of the nanocomposite. The developed nanocomposite showed a high magnetoelectric coupling response of 156 mV/cmOe measured at 3.1 kOe DC bias field. This value is among the highest reported magnetoelectric coupling in two phase particulate polymer nanocomposites.

  13. Centimeter-scale suspended photonic crystal mirrors.

    Science.gov (United States)

    Moura, João P; Norte, Richard A; Guo, Jingkun; Schäfermeier, Clemens; Gröblacher, Simon

    2018-01-22

    Demand for lightweight, highly reflective and mechanically compliant mirrors for optics experiments has seen a significant surge. In this aspect, photonic crystal (PhC) membranes are ideal alternatives to conventional mirrors, as they provide high reflectivity with only a single suspended layer of patterned dielectric material. However, due to limitations in nanofabrication, these devices are usually not wider than 300 μm. Here we experimentally demonstrate suspended PhC mirrors spanning areas up to 10 × 10 mm 2 . We overcome limitations imposed by the size of the PhC and measure reflectivities greater than 90 % on 56 nm thick mirrors at a wavelength of 1550 nm-an unrivaled performance compared to PhC mirrors with micro scale diameters. These structures bridge the gap between nano scale technologies and macroscopic optical elements.

  14. Batch fabrication of nanotubes suspended between microelectrodes

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Stöckli, T.; Knapp, H. F.

    2007-01-01

    We report a fabrication method, which uses standard UV-lithography to pattern the catalyst for the chemical vapour deposition(CVD) of suspended double clamped single walled carbon nanotubes. By using an aqueous solution of Fe(NO3)3 the patterning of the catalyst material onto microelectrodes can...... to the regions of maximum electric field, enabling accurate positioning of a nanotube by controlling the shape of the microelectrodes. The CNT bridges are deflected tens of nm when a DC voltage is applied between the nanotube and a gate microelectrode indicating that the clamping through the catalyst particles...... is not only mechanically stable but also electrical conducting. This method could be used to fabricate nanoelectromechanical systems based on suspended double clamped CNTs depending only on photolithography and standard Cleanroom processes....

  15. Photothermoelectric Effect in Suspended Semiconducting Carbon Nanotubes

    Science.gov (United States)

    Aspitarte, Lee; Deborde, Tristan; Sharf, Tal; Kevek, Josh; Minot, Ethan

    2014-03-01

    We have performed scanning photocurrent microscopy measurements of field-effect transistors (FETs) made from individual suspended carbon nanotubes (CNTs).Photocurrent generation in individual carbon nanotube based devices has been previously attributed the photovoltaic effect, in contrast to graphene based devices which are dominated by the photothermoelectric effect. In this work, we present the first measurements of strong photothermoelectric currents in individual suspended carbon nanotube field-effect transistors. In certain electrostatic doping regimes light induced temperature gradients lead to significant thermoelectric currents which oppose and overwhelm the photovoltaic contribution. Our measurements give new insight into the tunable and spatially inhomogeneous Seebeck coefficient of electrostatically-gated CNTs and demonstrate a new mechanism for optimizing CNT-based photodetectors and energy harvesting devices.

  16. Inclusions in freely suspended smectic films

    Science.gov (United States)

    Stannarius, Ralf; Harth, Kirsten

    Smectic liquid crystal phases have a unique property: Like soap solutions, they can form stable freely suspended films. Their aspect ratios can be larger than one million to one. Such films can serve as models for two-dimensional (2D) uids, with or without in-plane anisotropy. Solid or liquid inclusions trapped in these films by capillary forces can move in the film plane and interact with other inclusions, with film thickness gradients or the film boundaries, and even with the local orientation field. We describe preparation techniques to incorporate particles or droplets in thin smectic films, and optical observation methods. Several aspects make inclusions in freely suspended films interesting research objects: They provide rich information on capillary forces as well as surface and interfacial tensions, they can serve as platforms for hydrodynamic studies in 2D, and they may help to understand coalescence dynamics at the transition from 2D to 3D...

  17. Dispersion of cellulose nanofibers in biopolymer based nanocomposites

    Science.gov (United States)

    Wang, Bei

    -acrylic acid coated fibers improved their potential to interact with both acidic and basic resins. From transmission electron micrograph, it was shown that the nanofibers were partially dispersed in the polymer matrix. The mechanical properties of the nanocomposites were lower than those predicted by theoretical calculations for both nanofiber reinforced biopolymers.

  18. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  19. and phenol–formaldehyde resin

    Indian Academy of Sciences (India)

    formaldehyde resin (PFR) modified with tetraethylorthosilicate are investigated in detail. The chemical synthesis of PFR, its modification with nanometer- sized SiO2 particles created by sol–gel method and subsequent coating, enables a preparation of ...

  20. Bending characteristics of resin concretes

    Directory of Open Access Journals (Sweden)

    Ribeiro Maria Cristina Santos

    2003-01-01

    Full Text Available In this research work the influence of composition and curing conditions in bending strength of polyester and epoxy concrete is analyzed. Various mixtures of resin and aggregates were considered in view of an optimal combination. The Taguchi methodology was applied in order to reduce the number of tests, and in order to evaluate the influence of various parameters in concrete properties. This methodology is very useful for the planning of experiments. Test results, analyzed by this methodology, shown that the most significant factors affecting bending strength properties of resin concretes are the type of resin, resin content and charge content. An optimal formulation leading to a maximum bending strength was achieved in terms of material parameters.

  1. Epoxy hydantoins as matrix resins

    Science.gov (United States)

    Weiss, J.

    1983-01-01

    Tensile strength and fracture toughness of castings of the hydantoin resins cured with methylenedianiline are significantly higher than MY 720 control castings. Water absorption of an ethyl, amyl hydantoin formulation is 2.1 percent at equilibrium and Tg's are about 160 C, approximately 15 deg below the final cure temperature. Two series of urethane and ester-extended hydantoin epoxy resins were synthesized to determine the effect of crosslink density and functional groups on properties. Castings cured with methylenedianiline or with hexahydrophthalic anhydride were made from these compounds and evaluated. The glass transition temperatures, tensile strengths and moduli, and fracture toughness values were all much lower than that of the simple hydantoin epoxy resins. Using a methylene bishydantoin epoxy with a more rigid structure gave brittle, low-energy fractures, while a more flexible, ethoxy-extended hydantoin epoxy resin gave a very low Tg.

  2. Effects of Surface Treatments of Montmorillonite Nanoclay on Cure Behavior of Diglycidyl Ether of Bisphenol A Epoxy Resin

    International Nuclear Information System (INIS)

    Tcherbi-Narteh, A.; Hosur, M.V.; Triggs, E.; Jelaani, S.

    2013-01-01

    Diglycidyl ether of Bisphenol A (DGEBA) based SC-15 epoxy resin was modified with three different commercially available montmorillonite (MMT) nanoclay: Nanomer I.28E and Cloisite 10A and 30B. Cure behavior of nanocomposites was studied using a variety of techniques. Primary focus of this study was to investigate influence of different surface modifications of MMT nanoclay on rheological properties and cure behavior of SC-15 epoxy resin. By adding MMT to SC-15 epoxy resin, chemistry of the epoxy is altered leading to changes in rheological properties and ultimately enthalpy and activation energy of reactions. Addition of Nanomer I.28E delayed gelation, while Cloisite 10A and 30B accelerated gelation, regardless of the curing temperature. Activation energy of reaction was lower with the addition of Nanomer I.28E and Cloisite 10A and higher for Cloisite 30B compared to neat SC-15 epoxy composite.

  3. Sedimentation of suspended solids in ultrasound field

    Directory of Open Access Journals (Sweden)

    Vikulina Vera

    2018-01-01

    Full Text Available Physical and chemical effects of aquatic environment that occur in an ultrasonic field change the sedimentation rate of coagulated suspension. This might only happen in case of cavitation of ultrasonic filed that causes a change of potentials of the medium. Research of the influence of ultrasonic vibrations on coagulation of suspended solids within water purification allows expanding their scope of implementation. The objective of the research is to estimate the effect of ultrasound on the sedimentation of the suspended solids, to determine of the efficiency of the process in relation to the dose of the coagulant, and to calculate the numerical values of the constants in the theoretical equation. The experiment condition was held in the water with the clay substances before the introduction of the coagulant. The method of magnetostriction ultrasonic generator was applied to receive ultrasonic vibration. Estimate of concentration of clay particles in water was performed using photometry. As a result of the research, the obtained data allow determining the increase in efficiency of suspended particles sedimentation related to the dose of coagulant, depending on time of ultrasonic treatment. The experiments confirmed the connection between the effect of sedimentation in the coagulation process, the coagulant dose and the time of scoring. Studies have shown that the increase in the duration of ultrasonic treatment causes a decrease of administered doses of coagulant.

  4. Resin glycosides from Porana duclouxii.

    Science.gov (United States)

    Ding, Wen-Bing; Zhang, Dai-Gui; Liu, Chun-Jie; Li, Guan-Hua; Li, You-Zhi

    2014-01-01

    A new intact resin glycoside (3) and two glycosidic acids (1 and 2), all having a common trisaccharide moiety and (11S)-hydroxytetradecanoic acid or (3S,11S)-dihydroxytetradecanoic acid as the aglycone, were obtained from the roots of Porana duclouxii. Their structures were elucidated by spectroscopic analyses and chemical correlations. These compounds represent the first examples of resin glycosides from the genus Porana.

  5. Karakteristik Komposit Resin Berkemampuan Mengalir

    Directory of Open Access Journals (Sweden)

    Bambang Irawan

    2015-10-01

    Full Text Available The use of resin composites as posterior restoratives has markedly increased over the past decade. The patients demand for better esthetics, concerns related to possible mercury toxicity from amalgam and improvements in resin composite materials have significantly contributed the popularity of these materials. Early problems related to composites included excessive wear, less of anatomic form, post operative sensitivity, secondary caries and marginal leakage. Marginal adaptation still remains an unavoidable problem for composite restoration, especially at the gingival wall of cervical or Class II restoration. In an attempt to improve marginal sealing, many techniques and lining materials have been designed. To reduce stress generated by polymerization shrinkage, applying and curing of resin composites in layers is often recommended. Using a thick adhesive layer or low-viscosity resin may, due to its elastic properties, serve as a flexible intermediate layer and compensate for the polymerization stress created in resin composite. Flowable composites were created by retaining the same small particle size of traditional hybrid composite but reducing the filler content and allowing the increased resin to reduce the viscosity of the mixture. Flowable composites were introduced in 1996 as liners, fissure sealants and also in tunnel preparations. They have been suggested for Class I, II, III and V cavity restorations, preventive resin restorations and composite, porcelain and amalgam repairing. Their usage as a liner under high filled resins in posterior restorations has been shown to improve the adaptation of composites and effectively achieve clinically acceptable results. This article attempts to give a broad characteristics of different types of flowable composites. 

  6. Liquid monobenzoxazine based resin system

    Science.gov (United States)

    Tietze, Roger; Nguyen, Yen-Loan; Bryant, Mark

    2014-10-07

    The present invention provides a liquid resin system including a liquid monobenzoxazine monomer and a non-glycidyl epoxy compound, wherein the weight ratio of the monobenzoxazine monomer to the non-glycidyl epoxy compound is in a range of about 25:75 to about 60:40. The liquid resin system exhibits a low viscosity and exceptional stability over an extended period of time making its use in a variety of composite manufacturing methods highly advantageous.

  7. Characteristics of resin floc dispersion of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Tetsurou (Nitto Denko Corp., Ibaraki, Osaka (Japan)); Sawa, Toshio; Shindoh, Toshikazu

    1989-09-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of resin floc dispersion. The factors related to resin floc dispersion of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index in addition to the measurement of physical, chemical and electrochemical properties of powdered ion exchange resin. The effect of adsorption of iron oxide and polymer electrolyte and of ion exchange were determined. In addition, considered floc dispersion with adsorbing iron oxide, it was assumed that the amount and filling ratio of resin floc were related to summation and multiplication of surface electric charge respectively. An experimental expression was obtained for simulation of the change of specific settle volume of resin floc by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author).

  8. Characteristics of resin floc dispersion of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    International Nuclear Information System (INIS)

    Adachi, Tetsurou; Sawa, Toshio; Shindoh, Toshikazu.

    1989-01-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of resin floc dispersion. The factors related to resin floc dispersion of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index in addition to the measurement of physical, chemical and electrochemical properties of powdered ion exchange resin. The effect of adsorption of iron oxide and polymer electrolyte and of ion exchange were determined. In addition, considered floc dispersion with adsorbing iron oxide, it was assumed that the amount and filling ratio of resin floc were related to summation and multiplication of surface electric charge respectively. An experimental expression was obtained for simulation of the change of specific settle volume of resin floc by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author)

  9. Epoxy Resin Based Composites, Mechanical and Tribological Properties: A Review

    Directory of Open Access Journals (Sweden)

    S.A. Bello

    2015-12-01

    Full Text Available High fuel consumption by automobile and aerospace vehicles built from legacy alloys has been a great challenge to global design and material engineers. This has called for researches into material development for the production of lighter materials of the same or even superior mechanical properties to the existing materials in this area of applications. This forms a part of efforts to achieve the global vision 2025 i.e to reduce the fuel consumption by automobile and aerospace vehicles by at least 75 %. Many researchers have identified advanced composites as suitable materials in this regard. Among the common matrices used for the development of advanced composites, epoxy resin has attained a dominance among its counterparts because of its excellent properties including chemical, thermal and electrical resistance properties, mechanical properties and dimensional stability. This review is a reflection of the extensive study on the currently ongoing research aimed at development of epoxy resin hybrid nanocomposites for engineering applications. In this paper, brief explanation has been given to different terms related to the research work and also, some previous works (in accordance with materials within authors’ reach in the area of the ongoing research have been reported.

  10. The manufacturing of polyamide- and polypropylene-organoclay nanocomposite filaments and their suitability for textile applications

    Energy Technology Data Exchange (ETDEWEB)

    Onder, Emel, E-mail: onderem@itu.edu.tr [Istanbul Technical University, Faculty of Textile Technologies and Design, Department of Textile Engineering, Inonu Cad. No. 65, Gumussuyu, 34437 Istanbul (Turkey); Sarier, Nihal, E-mail: n.sarier@iku.edu.tr [Istanbul Kultur University, Faculty of Engineering, Department of Civil Engineering, Atakoy Campus, 34156 Istanbul (Turkey); Ersoy, M. Sabri, E-mail: ersoymehm@itu.edu.tr [Istanbul Technical University, Faculty of Textile Technologies and Design, Department of Textile Engineering, Inonu Cad. No. 65, Gumussuyu, 34437 Istanbul (Turkey)

    2012-09-10

    Highlights: Black-Right-Pointing-Pointer PA6 and PP monofilaments comprising organoclays were produced via melt spinning. Black-Right-Pointing-Pointer The performance of fibers was evaluated from the viewpoint of textile end-uses. Black-Right-Pointing-Pointer PA6 nanocomposite fibers are good candidates for technical textile applications. Black-Right-Pointing-Pointer PP nanocomposite fibers are very suitable for nonwoven textile market. - Abstract: In this study, we prepared polymer-clay monofilaments using a melt spinning technique in which organoclays were incorporated into polyamide 6 (PA6) and polypropylene (PP) homopolymer resins. The structural and thermal characterizations of the monofilaments were performed by Fourier transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric (TG) analyses. The detailed mechanical and dynamic mechanical analyses (DMA) of the nanocomposite filaments were conducted to evaluate their mechanical performances in relation to the type and ratio of organoclays incorporated into the structure. Thermal analysis, tensile test and dynamic mechanic analysis results show that the properties of the nanocomposite fibers were considerably more desirable compared with those of ordinary PP and PA6 fibers.

  11. Functional energy nanocomposites surfaces based on mesoscopic microspheres, polymers and graphene flakes

    Science.gov (United States)

    Alekseev, S. A.; Dmitriev, A. S.; Dmitriev, A. A.; Makarov, P. G.; Mikhailova, I. A.

    2017-11-01

    In recent years, there has been a great interest in the development and creation of new functional energy materials, including for improving the energy efficiency of power equipment and for effectively removing heat from energy devices, microelectronics and optoelectronics (power micro electronics, supercapacitors, cooling of processors, servers and Data centers). In this paper, the technology of obtaining a new nanocomposite based on mesoscopic microspheres, polymers and graphene flakes is considered. The methods of sequential production of functional materials from graphite flakes of different volumetric concentration using polymers based on epoxy resins and polyimide, as well as the addition of a mesoscopic medium in the form of monodisperse microspheres are described. The data of optical and electron microscopy of such nanocomposites are presented, the main problems in the appearance of defects in such materials are described, the possibilities of their elimination by the selection of different concentrations and sizes of the components. Data are given on the measurement of the hysteresis of the contact angle and the evaporation of droplets on similar substrates. The results of studying the mechanical, electrophysical and thermal properties of such nanocomposites are presented. Particular attention is paid to the investigation of the thermal conductivity of these nanocomposites with respect to the creation of thermal interface materials for cooling devices of electronics, optoelectronics and power engineering.

  12. Electrical conductive nanopolymers based on bisphenol F epoxy resin reinforced with nano polypyrrole

    Science.gov (United States)

    Bitarafhaghighi, Vahidreza

    In this study, spherical polypyrrole (PPy) nanostructure has successfully served as nanofiller for obtaining epoxy resin polymer nanocomposites (PNCs). The effects of nanofiller loading level on mechanical properties, thermal stability, electrical conductivity, and dielectric properties were systematically studied. The dynamic storage and loss modulii were studied, together with the glass-transition temperature (Tg) being obtained from the peak of tan delta. The PPy nanofillers could increase the electrical conductivity. Finally, the real permittivity was observed to increase with increasing the PPy loading, and the enhanced permittivity was analyzed by the interfacial polarization.

  13. Structural and electronic properties of carbon nanotube-reinforced epoxy resins.

    Science.gov (United States)

    Suggs, Kelvin; Wang, Xiao-Qian

    2010-03-01

    Nanocomposites of cured epoxy resin reinforced by single-walled carbon nanotubes exhibit a plethora of interesting behaviors at the molecular level. We have employed a combination of force-field-based molecular mechanics and first-principles calculations to study the corresponding binding and charge-transfer behavior. The simulation study of various nanotube species and curing agent configurations provides insight into the optimal structures in lieu of interfacial stability. An analysis of charge distributions of the epoxy functionalized semiconducting and metallic tubes reveals distinct level hybridizations. The implications of these results for understanding dispersion mechanism and future nano reinforced composite developments are discussed.

  14. The suspended sentence in German criminal law

    Directory of Open Access Journals (Sweden)

    Jovašević Dragan

    2017-01-01

    Full Text Available From the ancient times until today, criminal law in all countries has provided different criminal sanctions as social control measures. These are court-imposed coercive measures that take away or limit certain rights and freedoms of criminal offenders. Sanctions are applied to natural or legal persons who violate the norms of the legal order and cause damage or endanger other legal goods that enjoy legal protection. In order to effectively protect social values jeopardized by the commission of crime, state legislations prescribe several kinds of criminal sanctions: 1 penalties, 2 precautions, 3 safety measures, 4 penalties for juvenile offenders, and 5 sanctions for legal persons. Penalties are the basic, the oldest and the most important type of criminal sanctions. They are prescribed for the largest number of criminal offences. Imposed instead of or alongside with penalties, warning measures have particularly important role in jurisprudence. Since they were introduced in the system of criminal sanctions in the early 20th century, there has been a notable increase in the application of these measures, particularly in cases involving negligent and accidental offences, and minor offences that do not cause serious consequences, whose perpetrators are not persons with criminal characteristics. Warning measures (suspended sentence are envisaged in all contemporary criminal legislations, including the German legislation. Suspended sentence is a conditional stay of execution of the sentence of imprisonment for a specified time, provided that the convicted person fulfills the imposed obligations and does not commit another criminal offense. Two conditions must be fulfilled for the application of these sanctions: a the formal requirement, which is attached to the sentence of imprisonment; and b the substantive requirement, which implies the court assessment that the application of these sanctions is justified and necessary in a particular case. Many

  15. Development of green nanocomposites reinforced by cellulose nanofibers extracted from paper sludge

    Science.gov (United States)

    Takagi, Hitoshi; Nakagaito, Antonio N.; Kusaka, Kazuya; Muneta, Yuya

    2015-03-01

    Cellulose nanofibers have been showing much greater potential to enhance the mechanical and physical properties of polymer-based composite materials. The purpose of this study is to extract the cellulose nanofibers from waste bio-resources; such as waste newspaper and paper sludge. The cellulosic raw materials were treated chemically and physically in order to extract individualized cellulose nanofiber. The combination of acid hydrolysis and following mechanical treatment resulted in the extraction of cellulose nanofibers having diameter of about 40 nm. In order to examine the reinforcing effect of the extracted cellulose nanofibers, fully biodegradable green nanocomposites were fabricated by composing polyvinyl alcohol (PVA) resin with the extracted cellulose nanofibers, and then the tensile tests were conducted. The results showed that the enhancement in mechanical properties was successfully obtained in the cellulose nanofiber/PVA green nanocomposites.

  16. Effect of Carbon Nanofiber-Matrix Adhesion on Polymeric Nanocomposite Properties—Part II

    Directory of Open Access Journals (Sweden)

    Khalid Lafdi

    2008-01-01

    carbon nanocomposite. Carbon nanofibers were subjected to electrochemical oxidation in 0.1 M nitric acid for varying times. The strength of adhesion between the nanofiber and an epoxy matrix was characterized by flexural strength and modulus. The surface functional groups formed and their concentration of nanofibers showed a dependence on the degree of oxidation. The addition of chemical functional groups on the nanofiber surface allows them to physically and chemically adhere to the continuous resin matrix. The chemical interaction with the continuous epoxy matrix results in the creation of an interphase region. The ability to chemically and physically interact with the epoxy region is beneficial to the mechanical properties of a carbon nanocomposite. A tailored degree of surface functionalization was found to increase adhesion to the matrix and increase flexural modulus.

  17. Real time polymer nanocomposites-based physical nanosensors: theory and modeling

    Science.gov (United States)

    Bellucci, Stefano; Shunin, Yuri; Gopeyenko, Victor; Lobanova-Shunina, Tamara; Burlutskaya, Nataly; Zhukovskii, Yuri

    2017-09-01

    Functionalized carbon nanotubes and graphene nanoribbons nanostructures, serving as the basis for the creation of physical pressure and temperature nanosensors, are considered as tools for ecological monitoring and medical applications. Fragments of nanocarbon inclusions with different morphologies, presenting a disordered system, are regarded as models for nanocomposite materials based on carbon nanoсluster suspension in dielectric polymer environments (e.g., epoxy resins). We have formulated the approach of conductivity calculations for carbon-based polymer nanocomposites using the effective media cluster approach, disordered systems theory and conductivity mechanisms analysis, and obtained the calibration dependences. Providing a proper description of electric responses in nanosensoring systems, we demonstrate the implementation of advanced simulation models suitable for real time control nanosystems. We also consider the prospects and prototypes of the proposed physical nanosensor models providing the comparisons with experimental calibration dependences.

  18. The magnetic and microwave absorbing properties of the as spun Nd-Fe-Co-B nanocomposites

    Science.gov (United States)

    Jun, Li; Guozhi, Xie; Peicheng, Ji; Jie, Qu; Jiangwei, Chen; Jing, Chen

    2017-12-01

    In this paper, microstructure, magnetic and microwave absorbing properties of NdxFe85-xCo4B11 nanocomposites (x = 3, 5, 7, 9) flaky-shaped particles prepared by melt spun were investigated. The analyses of XRD spectra suggest that all samples only have the single α -Fe phase. With the increase of the Nd content, the complex permittivity-frequency and permeability-frequency were increased at first, and then decreased with higher Nd content. The resin composites of 70 wt% of these nanocomposite powders showed excellent electromagnetic wave absorption properties in GHz range. A minimum reflection loss of -23.1 dB is obtained at 9.8 GHz for composite Nd9Fe76Co4B11.

  19. Mechanical, thermal and microstructural characteristics of cellulose fibre reinforced epoxy/organoclay nanocomposites

    KAUST Repository

    Alamri, H.

    2012-10-01

    Epoxy nanocomposites reinforced with recycled cellulose fibres (RCFs) and organoclay platelets (30B) have been fabricated and investigated in terms of WAXS, TEM, mechanical properties and TGA. Results indicated that mechanical properties generally increased as a result of the addition of nanoclay into the epoxy matrix. The presence of RCF significantly enhanced flexural strength, fracture toughness, impact strength and impact toughness of the composites. However, the inclusion of 1 wt.% clay into RCF/epoxy composites considerably increased the impact strength and toughness. The presence of either nanoclay or RCF accelerated the thermal degradation of neat epoxy, but at high temperature, thermal stability was enhanced with increased char residue over neat resin. The failure micromechanisms and energy dissipative processes in these nanocomposites were discussed in terms of microstructural observations. © 2012 Published by Elsevier Ltd. All rights reserved.

  20. Evaluation of bisphenol E cyanate ester for the resin-injection repair of advanced composites

    Energy Technology Data Exchange (ETDEWEB)

    Lio, Wilber Yaote [Iowa State Univ., Ames, IA (United States)

    2009-12-01

    This thesis is a compilation of a general introduction and literature review that ties together the subsequent chapters which consist of two journal articles that have yet to be submitted for publication. The overall topic relates to the evaluation and application of a new class of cyanate ester resin with unique properties that lend it applicable to use as a resin for injection repair of high glass transition temperature polymer matrix composites. The first article (Chapter 2) details the evaluation and optimization of adhesive properties of this cyanate ester and alumina nanocomposites under different conditions. The second article (Chapter 3) describes the development and evaluation of an injection repair system for repairing delaminations in polymer matrix composites.

  1. Biopolymeric nanocomposites with enhanced interphases.

    Science.gov (United States)

    Yin, Yi; Hu, Kesong; Grant, Anise M; Zhang, Yuhong; Tsukruk, Vladimir V

    2015-10-06

    Ultrathin and robust nanocomposite membranes were fabricated by incorporating graphene oxide (GO) sheets into a silk fibroin (SF) matrix by a dynamic spin-assisted layer-by-layer assembly (dSA-LbL). We observed that in contrast to traditional SA-LbL reported earlier fast solution removal during dropping of solution on constantly spinning substrates resulted in largely unfolded biomacromolecules with enhanced surface interactions and suppressed nanofibril formation. The resulting laminated nanocomposites possess outstanding mechanical properties, significantly exceeding those previously reported for conventional LbL films with similar composition. The tensile modulus reached extremely high values of 170 GPa, which have never been reported for graphene oxide-based nanocomposites, the ultimate strength was close to 300 MPa, and the toughness was above 3.4 MJ m(-3). The failure modes observed for these membranes suggested the self-reinforcing mechanism of adjacent graphene oxide sheets with strong 2 nm thick silk interphase composed mostly from individual backbones. This interphase reinforcement leads to the effective load transfer between the graphene oxide components in reinforced laminated nanocomposite materials with excellent mechanical strength that surpasses those known today for conventional flexible laminated carbon nanocomposites from graphene oxide and biopolymer components.

  2. The Effect of Novolac and Graphite Polycrystal on the Acetone Penetration and Thermal Resistance of Nanocomposites Based on Nitrile Rubber

    Directory of Open Access Journals (Sweden)

    Rasool Mahboudi

    2015-03-01

    Full Text Available Developments of high diffusive environments in coincidence with emerging fluids with strong ability to destroy polymeric systems have resulted in rapid deformation and destruction of polymeric parts when in contact with such aggressive environments. Therefore, nowadays, there is a great need to develop highly resistant materials towards aggressive chemicals and harsh conditions. In this paper the effect of graphite polycrystal powders and novolac type phenolic resin has been experimentally studied towards acetone diffusion and thermal stability of polyacrylonitrile butadiene rubber/novolac/graphite polycrystal nanocomposites. The results obtained from dynamic mechanical thermal analysis (DMTA and swelling in acetone showed that after 32 h samples reached to 94.2% of final swelling state. By using Avrami equation and swelling experimental data, the functionality of Ln(m/m0 to novolac and graphite polycrystal weight fraction and test duration time were evaluated. This theoretical equation evaluated and predicted the amount of Ln(m/m0 with 5.92% error after 32 h. Increases in graphite polycrystal content were followed by decreases in diffusion of acetone and modulus, before glass transition temperature, and increased thermal stability and thermal resistance of the nanocomposites. Increases in novolac content by 35 wt%, decreased glass transition temperature, thermal stability and thermal resistance of the nanocomposites. In nanocomposite, containing 45 wt% of novolac, dynamic mechanical thermal analysis (DMTA data and scanning electron microscope (SEM images showed phase separation of thermoset and elastomer in the nanocomposite blend.

  3. Electrical conductivity and electromagnetic interference shielding of epoxy nanocomposite foams containing functionalized multi-wall carbon nanotubes

    Science.gov (United States)

    Li, Jiantong; Zhang, Guangcheng; Zhang, Hongming; Fan, Xun; Zhou, Lisheng; Shang, Zhengyang; Shi, Xuetao

    2018-01-01

    Epoxy/functionalized multi-wall carbon nanotube (EP/F-MWCNT) microcellular foams were fabricated through a supercritical CO2 (scCO2) foaming method. MWCNTs with carboxylation treatment were disentangled by using alpha-zirconium phosphate (ZrP) assisting dispersion method and functionalized with sulfanilamide. The F-MWCNTs were redispersed in acetone for mixing with epoxy resins to prepare nanocomposites. It was found that the dispersion of MWCNTs could be improved, thus heterogeneous nucleation effect of F-MWCNTs took place effectively during the foaming process, resulting in the formation of microcellular structure with larger cell density and smaller cell size. The volume conductivity and electromagnetic interference shielding performance of foamed EP/F-MWCNT nanocomposites were studied. When the F-MWCNT addition was 5 wt%, the conductivity of the foamed EP/F-MWCNT nanocomposites was 3.02 × 10-4 S/cm and the EMI shielding effectiveness (SE) reached 20.5 dB, significantly higher than the corresponding results of nanocomposite counterparts, indicating that introducing microcellular structure in EP/F-MWCNT nanocomposites would beneficial to improve their electrical conductivity and electromagnetic interference shielding performance.

  4. Inorganic-Organic Nanocomposite Assembly Using Collagen as Template and Sodium Tripolyphosphate as A Biomimetic Analog of Matrix Phosphoprotein

    Science.gov (United States)

    Dai, Lin; Qi, Yi-Pin; Niu, Li-Na; Liu, Yan; Pucci, Cesar R.; Looney, Stephen W.; Ling, Jun-Qi; Pashley, David H.; Tay, Franklin R.

    2011-01-01

    Nanocomposites created with polycarboxylic acid alone as a stabilization agent for prenucleation clusters-derived amorphous calcium phosphate exhibit non-periodic apatite deposition. In the present study, we report the use of inorganic polyphosphate as a biomimetic analog of matrix phosphoprotein for directing polyacrylic acid-stabilized amorphous nanoprecursor phases to assemble into periodic apatite-collagen nanocomposites. The sorption and desorption characteristics of sodium tripolyphosphate to type I collagen was examined. Periodic nanocomposite assembly with collagen as a template was demonstrated with TEM and SEM using a Portland cement-based resin composite and a phosphate-containing simulated body fluid. Apatite was detected within the collagen at 24 hours and became more distinct at 48 hours, with prenucleation clusters attaching to the collagen fibril surface during the initial infiltration stage. Apatite-collagen nanocomposites at 72 hours were heavily mineralized with periodically-arranged intrafibrillar apatite platelets. Defect-containing nanocomposites caused by desorption of TPP from collagen fibrils were observed in regions lacking the inorganic phase. PMID:21857797

  5. Functionalized Multiwalled Carbon Nanotubes-Reinforced Vinylester/Epoxy Blend Based Nanocomposites: Enhanced Mechanical, Thermal, and Electrical Properties

    Directory of Open Access Journals (Sweden)

    Ankita Pritam Praharaj

    2015-01-01

    Full Text Available This paper presents a study on the mechanical, thermal, and electrical characterization of a new class of low cost multiphase nanocomposites consisting of Vinylester resin/epoxy (VER/EP blend (40 : 60 w/w reinforced with amine functionalized multiwalled carbon nanotubes (f-MWCNTs. Five different sets of VER/EP nanocomposites are fabricated with addition of 0, 1, 3, 5, and 7 wt.% of f-MWCNTs. A detailed investigation of mechanical properties like tensile strength, impact strength, Young’s modulus, and hardness, thermal properties like thermogravimetric analysis (TGA and thermal conductivity, electrical properties like dielectric strength, dielectric constant, and electrical conductivity, and corrosive and swelling properties of the nanocomposites has been carried out. Here, we report significant improvement in all the above properties of the fabricated nanocomposites with nanofiller (f-MWCNTs addition compared to the virgin blend (0 wt. nanofiller loading. The properties are best observed in case of 5 wt.% nanofiller loading with gradual deterioration thereafter which may be due to the nucleating tendency of the nanofiller particles. Thus the above nanocomposites could be a preferable candidate for a wide range of structural, thermal, electrical, and solvent based applications.

  6. A flowrate measurement method by counting of radioactive particles suspended in a liquid

    International Nuclear Information System (INIS)

    Daniel, G.

    1983-04-01

    By external counting of fine #betta# emitting radioactive particles suspended in a liquid, the flowrate in a system of pipes can be measured. The study comprises three phases: 1. - The hydraulic validity of the method is demonstrated in laminar as well as in turbulent flow under certain conditions of particles size and density and of liquid viscosity. 2. - Radioactive labelling of microspheres of serumalbumin or ion exchange resins with indium 113m delivered by a generator Tin 113 → Indium 113m. 3. - Counting with a scintillation detector: a method of threshold overstepping is experimented with a mechanical or electronic simulator; the statistical study of particle superposition under the detector enables a correction for the resulting counting losses to be proposed. The method provides absolute measurements, but is particularly suitable to measure relative flowrates in a hydraulic network. It can be continuous and does not perturb the flow and the network. The accuracy of the method is analysed in details [fr

  7. Fabrication of ammonium perchlorate/copper-chromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Eslami, Abbas, E-mail: eslami@umz.ac.ir [Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O.Box 47416-95447, Babolsar (Iran, Islamic Republic of); Juibari, Nafise Modanlou [Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O.Box 47416-95447, Babolsar (Iran, Islamic Republic of); Hosseini, Seyed Ghorban [Department of Chemistry, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran (Iran, Islamic Republic of)

    2016-09-15

    The ammonium perchlorate/Cu(II)-Cr(III)-oxides(AP/Cu-Cr-O) core-shell nanocomposites were in-situ prepared by deposition of copper and chromium oxides on suspended ammonium perchlorate particles in ethyl acetate as solvent. The results of differential scanning calorimetery (DSC) and thermal gravimetric analysis (TGA) experiments showed that the nanocomposites have excellent catalytic effect on the thermal decomposition of AP, so that the released heat increases up to about 3-fold over initial values, changing from 450 J/g for pure AP to 1510 J/g for most appropriate mixture. For better comparison, single metal oxide/AP core-shell nanocomposite have also been prepared and the results showed that they have less catalytic effect respect to mixed metal oxides system. Scanning electron microscopy (SEM) results revealed homogenous deposition of nanoparticles on the surface of AP and fabrication of core-shell structures. The kinetic parameters of thermal decomposition of both pure AP and AP/Cu-Cr-O samples have been calculated by Kissinger method and the results showed that the values of pre-exponential factor and activation energy are higher for AP/Cu-Cr-O nanocomposite. The better catalytic effect of Cu-Cr-O nanocomposites is probably attributed to the synergistic effect between Cu{sup 2+} and Cr{sup 3+} in the nanocomposites, smaller particle size and more crystal defect. - Highlights: • The Cu-Cr-O nanoparticles were synthesized by chemical liquid deposition method. • Then, the AP/Cu-Cr-O core-shell nanocomposites were prepared. • The core-shell samples showed high catalytic activity for AP decomposition. • Thermal decomposition of samples occurs at lower temperature range.

  8. Fabrication of ammonium perchlorate/copper-chromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate

    International Nuclear Information System (INIS)

    Eslami, Abbas; Juibari, Nafise Modanlou; Hosseini, Seyed Ghorban

    2016-01-01

    The ammonium perchlorate/Cu(II)-Cr(III)-oxides(AP/Cu-Cr-O) core-shell nanocomposites were in-situ prepared by deposition of copper and chromium oxides on suspended ammonium perchlorate particles in ethyl acetate as solvent. The results of differential scanning calorimetery (DSC) and thermal gravimetric analysis (TGA) experiments showed that the nanocomposites have excellent catalytic effect on the thermal decomposition of AP, so that the released heat increases up to about 3-fold over initial values, changing from 450 J/g for pure AP to 1510 J/g for most appropriate mixture. For better comparison, single metal oxide/AP core-shell nanocomposite have also been prepared and the results showed that they have less catalytic effect respect to mixed metal oxides system. Scanning electron microscopy (SEM) results revealed homogenous deposition of nanoparticles on the surface of AP and fabrication of core-shell structures. The kinetic parameters of thermal decomposition of both pure AP and AP/Cu-Cr-O samples have been calculated by Kissinger method and the results showed that the values of pre-exponential factor and activation energy are higher for AP/Cu-Cr-O nanocomposite. The better catalytic effect of Cu-Cr-O nanocomposites is probably attributed to the synergistic effect between Cu 2+ and Cr 3+ in the nanocomposites, smaller particle size and more crystal defect. - Highlights: • The Cu-Cr-O nanoparticles were synthesized by chemical liquid deposition method. • Then, the AP/Cu-Cr-O core-shell nanocomposites were prepared. • The core-shell samples showed high catalytic activity for AP decomposition. • Thermal decomposition of samples occurs at lower temperature range.

  9. The Use of Clay-Polymer Nanocomposites in Wastewater Pretreatment

    Science.gov (United States)

    Rytwo, Giora

    2012-01-01

    Some agricultural effluents are unsuitable for discharge into standard sewage-treatment plants: their pretreatment is necessary to avoid clogging of the filtering devices by colloidal matter. The colloidal stability of the effluents is mainly due to mutual repulsive forces that keep charged particles in suspension. Pretreatment processes are based on two separate stages: (a) neutralization of the charges (“coagulation”) and (b) bridging between several small particles to form larger aggregates that sink, leaving clarified effluent (“flocculation”). The consequent destabilization of the colloidal suspension lowers total suspended solids (TSSs), turbidity, and other environmental quality parameters, making the treatments that follow more efficient. Clay-based materials have been widely used for effluent pretreatment and pollutant removal. This study presents the use of nanocomposites, comprised of an anchoring particle and a polymer, as “coagoflocculants” for the efficient and rapid reduction of TSS and turbidity in wastewater with a high organic load. The use of such particles combines the advantages of coagulant and flocculant by neutralizing the charge of the suspended particles while bridging between them and anchoring them to a denser particle (the clay mineral), enhancing their precipitation. Very rapid and efficient pretreatment is achieved in one single treatment step. PMID:22454607

  10. The Use of Clay-Polymer Nanocomposites in Wastewater Pretreatment

    Directory of Open Access Journals (Sweden)

    Giora Rytwo

    2012-01-01

    Full Text Available Some agricultural effluents are unsuitable for discharge into standard sewage-treatment plants: their pretreatment is necessary to avoid clogging of the filtering devices by colloidal matter. The colloidal stability of the effluents is mainly due to mutual repulsive forces that keep charged particles in suspension. Pretreatment processes are based on two separate stages: (a neutralization of the charges (“coagulation” and (b bridging between several small particles to form larger aggregates that sink, leaving clarified effluent (“flocculation”. The consequent destabilization of the colloidal suspension lowers total suspended solids (TSSs, turbidity, and other environmental quality parameters, making the treatments that follow more efficient. Clay-based materials have been widely used for effluent pretreatment and pollutant removal. This study presents the use of nanocomposites, comprised of an anchoring particle and a polymer, as “coagoflocculants” for the efficient and rapid reduction of TSS and turbidity in wastewater with a high organic load. The use of such particles combines the advantages of coagulant and flocculant by neutralizing the charge of the suspended particles while bridging between them and anchoring them to a denser particle (the clay mineral, enhancing their precipitation. Very rapid and efficient pretreatment is achieved in one single treatment step.

  11. Dynamic piezoresistive response of hybrid nanocomposites

    Science.gov (United States)

    Gbaguidi, Audrey; Anees, Muhammad; Namilae, Sirish; Kim, Daewon

    2017-04-01

    Hybrid nanocomposites with carbon nanotubes and graphitic platelets as fillers are known to exhibit remarkable electrical and mechanical properties with many potential strain and damage sensing applications. In this work, we fabricate hybrid nanocomposites with carbon nanotube sheet and coarse graphite platelets as fillers with epoxy matrix. We then examine the electromechanical behavior of these nanocomposites under dynamic loading. The electrical resistivity responses of the nanocomposites are measured in frequency range of 1 Hz to 50 Hz with different levels of induced strains. Axial cycling loading is applied using a uniaxial electrodynamic shaker, and transverse loading is applied on end-clamped specimen using modified speakers. In addition, a dynamic mechanical analysis of nanocomposite specimen is performed to characterize the thermal and dynamic behavior of the nanocomposite. Our results indicate that these hybrid nanocomposites exhibit a distinct piezoresistive response under a wide range of dynamic loading conditions, which can be beneficial for potential sensing applications.

  12. Shape memory polyurethane nanocomposites

    Science.gov (United States)

    Cao, Feina

    stress could be tailored by the processing conditions. The recovery stress increased with decrease of stretching rate, and increase of stretching temperature and stretch ratio. The recovery stress of polyurethane/clay nanocomposites largely depended on the degree of clay exfoliation. Higher recovery stress was found in nanocomposites with better clay dispersion. The dependence of stress relaxation on stretching conditions, clay type, and clay content was also investigated and related to shape recovery stress. It was found that stress relaxation occurred more easily in the presence of nanoclay.

  13. Non-isothermal curing kinetics and physical properties of MMT-reinforced unsaturated polyester (UP) resins

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, María A., E-mail: angelesvh@yahoo.com [Tecnológico de Estudios Superiores de Ecatepec, Av. Tecnológico S/N, Valle de Anáhuac, 55210 Ecatepec de Morelos (Mexico); Vázquez, H. [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Física, Av. San Rafael Atlixco 186, col. Vicentina, Mexico, D.F. 09340 (Mexico); Guthausen, G. [KIT, Pro2NMR at MVM and IBG, Karlsruhe (Germany)

    2015-07-10

    Highlights: • Non-isothermal DSC analysis results have shown that the addition of MMT to a UP resin produces a delay in the cure reaction. • The shape of experimental heat-flow DSC curves showed two exothermic peaks for all the samples at different heating rates. • The overall kinetic analysis was performed by isoconversional methods. • It was found that the dependence of the activation energy (E{sub a}) on degree of reaction (α) is complex. - Abstract: Cure behavior of unsaturated polyester (UP)/montmorillonite (MMT)/methyl ethyl ketone peroxide (MEKP)/cobalt octoate intercalated nanocomposites with various MMT loadings was investigated by dynamic differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). UP/MMT nanocomposites were prepared by sequential mixing. Non-isothermal DSC curves were obtained by applying heating rates ranging from 5 to 20 °C/min. They presented two exothermic peaks, which should correspond to two independent cure reactions. The effective activation energy E{sub a}, was determined by applying both the Kissinger’s and Starink’s methods. The results showed slightly higher activation energy for nanocomposites, except for UP/10-MMT. It was found that the dependence of E{sub a} on α is complex. All the systems in this study fitted Sesták–Berggren (SB) model in overall reaction controlled kinetics and the corresponding model parameters, n, m, A were obtained, but it was insufficient in depicting the complex reaction kinetics. Transmission electron microscopy data support the formation of a partially delaminated nanocomposite material. UP and nanocomposites showed similar behavior on thermal stability.

  14. Desorption of pyrethroids from suspended solids.

    Science.gov (United States)

    Fojut, Tessa L; Young, Thomas M

    2011-08-01

    Pyrethroid insecticides have been widely detected in sediments at concentrations that can cause toxicity to aquatic organisms. Desorption rates play an important role in determining the bioavailability of hydrophobic organic compounds, such as pyrethroids, because these compounds are more likely to be sorbed to solids in the environment, and times to reach sorptive equilibrium can be long. In the present study, sequential Tenax desorption experiments were performed with three sorbents, three aging times, and four pyrethroids. A biphasic rate model was fit to the desorption data with r(2)  > 0.99, and the rapid and slow compartment desorption rate constants and compartment fractions are reported. Suspended solids from irrigation runoff water collected from a field that had been sprayed with permethrin 1 d before were used in the experiments to compare desorption rates for field-applied pyrethroids with those for laboratory-spiked materials. Suspended solids were used in desorption experiments because suspended solids can be a key source of hydrophobic compounds in surface waters. The rapid desorption rate parameters of field-applied permethrin were not statistically different from those of laboratory spiked permethrin, indicating that desorption of the spiked pyrethroids is comparable to desorption of the pyrethroids added and aged in the field. Sorbent characteristics had the greatest effect on desorption rate parameters; as organic carbon content of the solids increased, the rapid desorption fractions and rapid desorption rate constants both decreased. The desorption rate constant of the slow compartment for sediment containing permethrin aged for 28 d was significantly different compared to aging for 1 d and 7 d, whereas desorption in the rapid and slow compartments did not differ between these treatments. Copyright © 2011 SETAC.

  15. Geodetic monitoring of suspended particles in rivers

    Science.gov (United States)

    Kamnik, Rok; Maksimova, Daria; Kovačič, Boštjan

    2017-10-01

    There is a trend in modern approach to the management of space of collecting the spatial data, in order to obtain useful information. In this paper a research of suspended particles in the river Drava and Mura will be introduced. The goal is to connect different fields of water management in countries where the rivers Drava and Mura flows in purpose of water management sustainability. The methods such as GNSS for mapping cross sections of the river, the use of ADCP (Acoustic Doppler Current Profiler) measurement system and water sampling to monitor sediment in the water will be presented.

  16. Electronic structure of cobalt nanocrystals suspended inliquid

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongjian; Guo, Jinghua; Yin, Yadong; Augustsson, Andreas; Dong, Chungli; Nordgren, Joseph; Chang, Chinglin; Alivisatos, Paul; Thornton, Geoff; Ogletree, D. Frank; Requejo, Felix G.; de Groot, Frank; Salmeron, Miquel

    2007-07-16

    The electronic structure of cobalt nanocrystals suspended in liquid as a function of size has been investigated using in-situ x-ray absorption and emission spectroscopy. A sharp absorption peak associated with the ligand molecules is found that increases in intensity upon reducing the nanocrystal size. X-ray Raman features due to d-d and to charge-transfer excitations of ligand molecules are identified. The study reveals the local symmetry of the surface of {var_epsilon}-Co phase nanocrystals, which originates from a dynamic interaction between Co nanocrystals and surfactant + solvent molecules.

  17. Modification of bifunctional epoxy resin using CO{sub 2} fixation process and nanoclay

    Energy Technology Data Exchange (ETDEWEB)

    Khoshkish, Morteza; Bouhendi, Hosein, E-mail: H.boohendi@ippi.ac.ir; Vafayan, Mehdi

    2014-10-15

    A bifunctional epoxy resin was modified by using a CO{sub 2} fixation solution process in the presence of tetra n-butyl ammonium bromide (TBAB) as catalyst and the modified treated resin was treated by cloisite 30B as nano additive. The Unmodified epoxy resin (UME), CO{sub 2} fixated modified epoxy resin (CFME), and CFME/clay nano composite (CFMEN), were cured by diethylenetriamine (DETA). A cycloaliphatic compound as a reactive diluent was used to control the viscosity of high viscose CFME. The exfoliation of organoclay in UME and CFME was investigated by X-ray diffraction and activation energy was computed using the advanced integral isoconversional method. The activation energy dependency demonstrated that the mechanism of UME curing did not change in the presence of nanoclay. In contrast, the CO{sub 2} fixation results showed a significant change in the activation energy dependency. The Thermal stability parameters include the initial degradation temperature (IDT), the temperature at the maximum rate of weight loss (T{sub max}), and the decomposition activation energy (E{sub d}) were determined by thermal gravimetry analysis. Dynamic mechanical thermal analysis measurements showed that the presence of organoclay in CFME increases the T{sub g} of nano composite in contrast to UME. The fracture roughness of UME, CFME and CFNE were determined by scanning electron microscope. The exfoliated UME/1%clay nanocomposite was confirmed by TEM image. - Highlights: • A new epoxy resin was synthesized using CO{sub 2} fixation reaction. • The synthesized epoxy resin was modified by an organo nano-clay. • CO{sub 2} fixation noticeably changed the curing mechanism. • CO{sub 2} fixation reaction consumes CO{sub 2} which is a harmful greenhouse gas.

  18. Modification of bifunctional epoxy resin using CO2 fixation process and nanoclay

    International Nuclear Information System (INIS)

    Khoshkish, Morteza; Bouhendi, Hosein; Vafayan, Mehdi

    2014-01-01

    A bifunctional epoxy resin was modified by using a CO 2 fixation solution process in the presence of tetra n-butyl ammonium bromide (TBAB) as catalyst and the modified treated resin was treated by cloisite 30B as nano additive. The Unmodified epoxy resin (UME), CO 2 fixated modified epoxy resin (CFME), and CFME/clay nano composite (CFMEN), were cured by diethylenetriamine (DETA). A cycloaliphatic compound as a reactive diluent was used to control the viscosity of high viscose CFME. The exfoliation of organoclay in UME and CFME was investigated by X-ray diffraction and activation energy was computed using the advanced integral isoconversional method. The activation energy dependency demonstrated that the mechanism of UME curing did not change in the presence of nanoclay. In contrast, the CO 2 fixation results showed a significant change in the activation energy dependency. The Thermal stability parameters include the initial degradation temperature (IDT), the temperature at the maximum rate of weight loss (T max ), and the decomposition activation energy (E d ) were determined by thermal gravimetry analysis. Dynamic mechanical thermal analysis measurements showed that the presence of organoclay in CFME increases the T g of nano composite in contrast to UME. The fracture roughness of UME, CFME and CFNE were determined by scanning electron microscope. The exfoliated UME/1%clay nanocomposite was confirmed by TEM image. - Highlights: • A new epoxy resin was synthesized using CO 2 fixation reaction. • The synthesized epoxy resin was modified by an organo nano-clay. • CO 2 fixation noticeably changed the curing mechanism. • CO 2 fixation reaction consumes CO 2 which is a harmful greenhouse gas

  19. Suspended-sediment inflows to Watts Bar Reservoir. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, L.K.

    1993-09-01

    Suspended-sediment inflows to Watts Bar Reservoir are important data that are required in numerical modeling of transport and deposition of sediment in the reservoir. Acceptable numerical modeling requires sediment inflow rates and locations in order to be able to compute the location and quantity of sediment deposited within the reservoir. Therefore, the representativeness of modeling results is highly dependent on the characteristics of sediment input to the model. The following recommendations, that account for suspended-sediment inflows to be used in the numerical modeling of sediment transport and deposition in Watts Bar Reservoir, were developed through an evaluation of available watershed and sediment deposition data. (1) Use the suspended-sediment rating regression equations of Gaydos et al., for Emory River at Oakdale, TN, and for Poplar Creek near Oak Ridge, TN, to represent the suspended-sediment inflows into Watts Bar Reservoir from its tributaries; (2) Use a suspended-sediment rating regression equation that was derived from suspended-sediment and streamflow data of the Little Tennessee River at McGhee, TN, to represent sediment inflow from the Little Tennessee River for simulation of any historical year before the completion of Tellico Dam; (3) Check the appropriateness of any assumption for suspended-sediment inflows from upstream reservoirs by using its long-term relationship to local suspended-sediment inflows and to the suspended-sediment outflow through Watts Bar Dam; and (4) Focus refinements to suspended-sediment inflow rates on the Clinch arm of Watts Bar Reservoir.

  20. Resin technologies: construction and staining of resin TMA's.

    Science.gov (United States)

    Howat, William J; Wilson, Susan J

    2010-01-01

    The traditional formaldehyde-fixed paraffin-embedded tissue, and therefore the tissue microarrays created from it, provide good morphology but with a compromised antigenicity when compared to frozen tissue. In contrast, while solving the issue of antigenicity, frozen tissue suffers from a lack of morphology. We have demonstrated that tissue microarrays constructed in glycol methacrylate resin, when combined with a cold acetone fixation step, have been able to combine the superior morphology of resin-embedded sections with the superior antigenicity of frozen tissue for prospectively collected material.

  1. Stretchable piezoelectric nanocomposite generator.

    Science.gov (United States)

    Park, Kwi-Il; Jeong, Chang Kyu; Kim, Na Kyung; Lee, Keon Jae

    2016-01-01

    Piezoelectric energy conversion that generate electric energy from ambient mechanical and vibrational movements is promising energy harvesting technology because it can use more accessible energy resources than other renewable natural energy. In particular, flexible and stretchable piezoelectric energy harvesters which can harvest the tiny biomechanical motions inside human body into electricity properly facilitate not only the self-powered energy system for flexible and wearable electronics but also sensitive piezoelectric sensors for motion detectors and in vivo diagnosis kits. Since the piezoelectric ZnO nanowires (NWs)-based energy harvesters (nanogenerators) were proposed in 2006, many researchers have attempted the nanogenerator by using the various fabrication process such as nanowire growth, electrospinning, and transfer techniques with piezoelectric materials including polyvinylidene fluoride (PVDF) polymer and perovskite ceramics. In 2012, the composite-based nanogenerators were developed using simple, low-cost, and scalable methods to overcome the significant issues with previously-reported energy harvester, such as insufficient output performance and size limitation. This review paper provides a brief overview of flexible and stretchable piezoelectric nanocomposite generator for realizing the self-powered energy system with development history, power performance, and applications.

  2. Stretchable piezoelectric nanocomposite generator

    Science.gov (United States)

    Park, Kwi-Il; Jeong, Chang Kyu; Kim, Na Kyung; Lee, Keon Jae

    2016-06-01

    Piezoelectric energy conversion that generate electric energy from ambient mechanical and vibrational movements is promising energy harvesting technology because it can use more accessible energy resources than other renewable natural energy. In particular, flexible and stretchable piezoelectric energy harvesters which can harvest the tiny biomechanical motions inside human body into electricity properly facilitate not only the self-powered energy system for flexible and wearable electronics but also sensitive piezoelectric sensors for motion detectors and in vivo diagnosis kits. Since the piezoelectric ZnO nanowires (NWs)-based energy harvesters (nanogenerators) were proposed in 2006, many researchers have attempted the nanogenerator by using the various fabrication process such as nanowire growth, electrospinning, and transfer techniques with piezoelectric materials including polyvinylidene fluoride (PVDF) polymer and perovskite ceramics. In 2012, the composite-based nanogenerators were developed using simple, low-cost, and scalable methods to overcome the significant issues with previously-reported energy harvester, such as insufficient output performance and size limitation. This review paper provides a brief overview of flexible and stretchable piezoelectric nanocomposite generator for realizing the self-powered energy system with development history, power performance, and applications.

  3. Phase change nanocomposites with tunable melting temperature and thermal energy storage density.

    Science.gov (United States)

    Liu, Minglu; Wang, Robert Y

    2013-08-21

    Size-dependent melting decouples melting temperature from chemical composition and provides a new design variable for phase change material applications. To demonstrate this potential, we create nanocomposites that exhibit stable and tunable melting temperatures through numerous melt-freeze cycles. These composites consist of a monodisperse ensemble of Bi nanoparticles (NPs) embedded in a polyimide (PI) resin matrix. The Bi NPs operate as the phase change component whereas the PI resin matrix prevents nanoparticle coalescence during melt-freeze cycles. We tune melting temperature and enthalpy of fusion in these composites by varying the NP diameter. Adjusting the NP volume fraction also controls the composite's thermal energy storage density. Hence it is possible to leverage size effects to tune phase change temperature and energy density in phase change materials.

  4. Large aperture nanocomposite deformable mirror technology

    Science.gov (United States)

    Chen, Peter C.; Hale, Richard D.

    2007-12-01

    We report progress in the development of deformable mirrors (DM) using nanocomposite materials. For the extremely large telescopes (ELTs) currently being planned, a new generation of DMs with unprecedented performance is a critical path item. The DMs need to have large apertures (meters), continuous surfaces, and low microroughness. Most importantly, they must have excellent static optical figures and yet be sufficiently thin (1-2 mm) and flexible to function with small, low powered actuators. Carbon fiber reinforced plastics (CFRP) have the potential to fulfill these requirements. However, CFRP mirrors made using direct optical replication have encountered a number of problems. Firstly, it is difficult if not impossible for a CFRP mirror to maintain a good static optical figure if a small number of plies are used, but adding more plies to the laminate tends to make the substrate too thick and stiff. Secondly, direct optical replication requires precision mandrels, the costs of which become prohibitive at multi-meter apertures. We report development of a new approach. By using a combination of a novel support structure, selected fibers, and binding resins infused with nanoparticles, it is possible to make millimeter thick optical mirrors that can both maintain good static optical figures and yet still have the required flexibility for actuation. Development and refinement of a non-contact, deterministic process of fine figuring permits generation of accurate optical surfaces without the need for precision optical mandrels. We present data from tests that have been carried out to demonstrate these new processes. A number of flat DMs have been fabricated, as well as concave and convex DMs in spherical, parabolic, and other forms.

  5. Tensile mechanical behavior and fracture toughness of MWCNT and DWCNT modified vinyl-ester/polyester hybrid nanocomposites produced by 3-roll milling

    OpenAIRE

    Seyhan, Abdullah Tuğrul; Tanoğlu, Metin; Schulte, Karl

    2009-01-01

    This study aims to investigate the tensile mechanical behavior and fracture toughness of vinyl-ester/polyester hybrid nanocomposites containing various types of nanofillers, including multi- and double-walled carbon nanotubes with and without amine functional groups (MWCNTs, DWCNTs, MWCNT-NH2 and DWCNT-NH2). To prepare the resin suspensions, very low contents (0.05, 0.1 and 0.3 wt.%) of carbon nanotubes (CNTs) were dispersed within a specially synthesized styrene-free polyester resin, conduct...

  6. Epoxy Resins in Electron Microscopy

    Science.gov (United States)

    Finck, Henry

    1960-01-01

    A method of embedding biological specimens in araldite 502 (Ciba) has been developed for materials available in the United States. Araldite-embedded tissues are suitable for electron microscopy, but the cutting qualities of the resin necessitates more than routine attention during microtomy. The rather high viscosity of araldite 502 also seems to be an unnecessary handicap. The less viscous epoxy epon 812 (Shell) produces specimens with improved cutting qualities, and has several features—low shrinkage and absence of specimen damage during cure, minimal compression of sections, relative absence of electron beam-induced section damage, etc.—which recommends it as a routine embedding material. The hardness of the cured resin can be easily adjusted by several methods to suit the materials embedded in it. Several problems and advantages of working with sections of epoxy resins are also discussed. PMID:13822825

  7. Improved thermal stability of methylsilicone resins by compositing with N-doped graphene oxide/Co{sub 3}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Bo, E-mail: jiangbo5981@hit.edu.cn; Zhao, Liwei [Harbin Institute of Technology, Polymer Materials and Engineering Department (China); Guo, Jiang; Yan, Xingru; Ding, Daowei [University of Tennessee, Integrated Composites Laboratory (ICL) Department of Chemical and Biomolecular Engineering (United States); Zhu, Changcheng; Huang, Yudong [Harbin Institute of Technology, Polymer Materials and Engineering Department (China); Guo, Zhanhu, E-mail: zguo10@utk.edu [University of Tennessee, Integrated Composites Laboratory (ICL) Department of Chemical and Biomolecular Engineering (United States)

    2016-06-15

    Nanoparticles play important roles in enhancing the thermal-resistance of hosting polymer resins. Despite tremendous efforts, developing thermally stable methylsilicone resin at high temperatures is still a challenge. Herein, we report a strategy to increase the activation energy to slow down the decomposition/degradation of methylsilicone resin using synergistic effects between the Co{sub 3}O{sub 4} nanoparticles and the nitrogen doped graphene oxide. The N-doped graphene oxides composited with Co{sub 3}O{sub 4} nanoparticles were prepared by hydrolysis of cobalt nitrate hexahydrate in the presence of graphene oxide and were incorporated into the methylsilicone resin. Two-stage decompositions were observed, i.e., 200–300 and 400–500 °C. The activation energy for the low temperature region was enhanced by 47.117 kJ/mol (vs. 57.76 kJ/mol for pure resin). The enhanced thermal stability was due to the fact that the nanofillers prevented the silicone hydroxyl chain ends ‘‘biting’’ to delay the degradation. The activation energy for high-temperature region was enhanced by 11.585 kJ/mol (vs. 171.95 kJ/mol for pure resin). The nanofillers formed a protective layer to isolate oxygen from the hosting resin. The mechanism for the enhanced thermal stability through prohibited degradation with synergism of these nitrogen-doped graphene oxide nanocomposites was proposed as well.Graphical Abstract.

  8. Process for Molding Nonreinforced (Neat) Resins

    Science.gov (United States)

    Dickerson, G. E.

    1983-01-01

    Void free moldings obtained for neat, condensation, thermosetting resins. Thermally and mechanically treat resin prior to molding to reduce amount of volatiles. With volatiles reduced molding temperature and pressure are applied in way to drive out remaining volatiles during molding.

  9. 21 CFR 172.280 - Terpene resin.

    Science.gov (United States)

    2010-04-01

    ... CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Coatings, Films and Related Substances § 172.280 Terpene resin. The food additive terpene resin may be safely used...

  10. Action of ionizing radiation on epoxy resins

    Energy Technology Data Exchange (ETDEWEB)

    Van de Voorde, M. E.

    1970-12-01

    The resistance of classical and experimental epoxy resins to irradiation was studied. The resistance to irradiation of epoxy resins of diverse compositions as well as the development of resins having a radioresistance that approaches that of certain ceramics are discussed. Sources of irradiation and the techniques of dosimetry used are described. The structures of certain epoxy resins and of hardeners are given. The preparation of these resins and their physical properties is described. The effects of radiation on epoxy resins, as well as conditions of irradiation, and suggested mechanisms for degradation of the irradiated resins are discussed. The relationship between chemical structure of the resins and their physical properties is evaluated. (115 references) (JCB)

  11. Suspended and Stitched (Mother and Child

    Directory of Open Access Journals (Sweden)

    Sally Barker

    2013-07-01

    Full Text Available Suspended and Stitched (Mother and Child (2013 incorporates large pieces of stone that have been split apart, drilled, stitched back together with rusty wire, and then embedded with latex casts of the artist's nipples. One piece of stone hangs, suspended from a beam; it is connected to a smaller piece using delicate rusty wire, and both pieces balance precariously over a poured piece of rubber, one that appears to be a split pool of milk. Attached to the upper piece of stone are the artist's latex cast nipples, emerging organically, they are thus called 'The Nipple Flowers', and were first made by Barker twenty years ago. Here they are here remade, to engage with the theme of ageing and progression as well as that of fertility and breast-feeding one's child. The overall work at once creates and destroys balance. Fragile, creaturely structures break free and are at the same time connected to the strong, grounded and weighty. Broken, split and cracked, materials are then healed and repaired. Elements are connected, but inevitably they move apart.

  12. Acoustic measuring techniques for suspended sediment

    Science.gov (United States)

    Gruber, P.; Felix, D.; Storti, G.; Lattuada, M.; Fleckenstein, P.; Deschwanden, F.

    2016-11-01

    Acoustic signals can be used in various ways for suspended sediment monitoring. One possibility which lends itself particularly well in the context of hydropower plants (HPPs), is to use installations for acoustic discharge measurement (ADM). Such installations already exist at waterways of many HPPs. Similar to certain turbidimeters, the attenuation of the forward scattered signal travelling through the water-sediment mixture is correlated with suspended sediment concentration (SSC). This correlation can be based on reference SSCs, e.g. from gravimetric analyses of bottle samples. Without the need of additional sensors and practically maintenance-free, this method is used successfully in the HPP Fieschertal to warn the HPP operator of high SSC to prevent excessive turbine abrasion. Acoustic methods and systems that allow for estimating both SSC and particle size distribution (PSD) are under development. The simultaneous determination of SSC and PSD is not possible using a single frequency. Therefore, multi-frequency approaches are investigated for generally scattered signals. When backscattered signals are used, a stronger frequency dependency can be exploited. However, the reliable simultaneous determination of particle size (and distribution) and concentration is still a major challenge due to a low signal-to-noise ratio and an ill- posed problem of estimating concentration and size from recorded signals. The optimal setup configuration (angles, frequencies) for such a system is not unique and further investigations are recommended.

  13. Improving Fracture Toughness of Epoxy Nanocomposites by Silica Nanoparticles

    Directory of Open Access Journals (Sweden)

    Seyed Reza Akherati Sany

    2017-04-01

    Full Text Available An epoxy resin was modified by silica nanoparticles and cured with an anhydride. The particles with different batches of 12, 20, and 40 nm sizes were each distributed into the epoxy resin ultrasonically. Electron microscopy images showed that the silica particles were well dispersed throughout the resin. Tensile test results showed that Young’s modulus and tensile strength increased with the volume fraction and surface area of the silica particles. The simultaneous use of two average sizes of 20 and 40 nm diameter silica particles still increased these mechanical properties but other combinations of silica particles were unsuccessful. A three-point bending test on each pre-cracked specimen was performed to measure the mode I fracture toughness energy. The fracture energy increased from 283 J/m2 for the unmodified epoxy to about 740 J/m2 for the epoxy with 4.5 wt% of 12 nm diameter silica nanoparticles. The fracture energy of smaller particles was greater because of their higher surface to volume ratio. The fracture energy results showed also that the combined nanoparticles has a synergic effect on the fracture toughness of nanocomposites. Simultaneous use of 10 and 20 nm particles increased the fracture energy to about 770 J/m2. Finally, crack-opening displacement was calculated and found to be in the range of several micrometers which was much larger than the sizes of particles studied. Thus, the toughening mechanisms of crack pinning and crack deflection have a negligible effect on improvement of toughness, nevertheless, the plastic deformation and plastic void growth are dominant mechanisms in epoxy toughening by nanoparticles.

  14. Method for loading resin beds

    International Nuclear Information System (INIS)

    Notz, K.J.; Rainey, R.H.; Greene, C.W.; Shockley, W.E.

    1978-01-01

    An improved method of preparing nuclear reactor fuel by carbonizing a uranium loaded cation exchange resin provided by contacting a H+ loaded resin with a uranyl nitrate solution deficient in nitrate, comprises providing the nitrate deficient solution by a method comprising the steps of reacting in a reaction zone maintained between about 145 to 200 0 C, a first aqueous component comprising a uranyl nitrate solution having a boiling point of at least 145 0 C with a second aqueous component to provide a gaseous phase containing HNO 3 and a reaction product comprising an aqueous uranyl nitrate solution deficient in nitrate

  15. Uranium sorption by tannin resins

    International Nuclear Information System (INIS)

    Olivares Rieumont, S.; Martinez Luzardo, J.; Torres Hernandez, J.; Lima Cazorla, D. de la Rosa.

    1998-01-01

    The sorption of uranium by immobilised Eucalyptus Saligna Sm. and Lysiloma latisiliqua L tannins was investigated. Immobilization condition were analyzed. These resins resulted suitable adsorbent for the concentration of uranium from aqueous systems. The sorption of uranium is pH dependent. At pH 5.5 maximum in sorption capacity is registered. The presence of appreciable amount of sodium chloride do not have any effect on uranium removal. Carbonate and calcium ions in concentrations similar to these that could be found in sea water and other natural water do not decrease the uranium uptake. Tannin resins can be used several times without an appreciable decay of their sorption capacity

  16. Precisely controlled resorcinol-formaldehyde resin coating for fabricating core-shell, hollow, and yolk-shell carbon nanostructures

    Science.gov (United States)

    Fang, Xiaoliang; Liu, Shengjie; Zang, Jun; Xu, Chaofa; Zheng, Ming-Sen; Dong, Quan-Feng; Sun, Daohua; Zheng, Nanfeng

    2013-07-01

    This work provides a facile one-step sol-gel route to synthesize high-quality resorcinol-formaldehyde (RF) resin coated nanocomposites that can be further used to fabricate desired carbon nanostructures. Colloidal particles with different morphologies and sizes can be coated with high-quality RF resin shells by the proposed cationic surfactant assisted RF resin coating strategy. The as-synthesized RF resin coated nanocomposites are ideal candidates for selective synthesis of core-shell, hollow, and yolk-shell carbon nanostructures. Based on the carboxylic functional RF resin coating, graphitic carbon nanostructures can also be synthesized by employing the graphitization catalyst. The as-synthesized carbon nanostructures show the advantageous performances in several applications. Hollow carbon spheres are potential electrode materials for lithium-sulfur batteries. Hollow graphitic spheres are promising catalyst supports for oxygen reduction reaction. And yolk-shell structured Au@HCS nanoreactors with ultrathin shells exhibit high catalytic activity and recyclability in confined catalysis.This work provides a facile one-step sol-gel route to synthesize high-quality resorcinol-formaldehyde (RF) resin coated nanocomposites that can be further used to fabricate desired carbon nanostructures. Colloidal particles with different morphologies and sizes can be coated with high-quality RF resin shells by the proposed cationic surfactant assisted RF resin coating strategy. The as-synthesized RF resin coated nanocomposites are ideal candidates for selective synthesis of core-shell, hollow, and yolk-shell carbon nanostructures. Based on the carboxylic functional RF resin coating, graphitic carbon nanostructures can also be synthesized by employing the graphitization catalyst. The as-synthesized carbon nanostructures show the advantageous performances in several applications. Hollow carbon spheres are potential electrode materials for lithium-sulfur batteries. Hollow graphitic

  17. Method of removing contaminants from plastic resins

    Energy Technology Data Exchange (ETDEWEB)

    Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee' s Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

    2008-11-18

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  18. Method of removing contaminants from plastic resins

    Energy Technology Data Exchange (ETDEWEB)

    Bohnert,George W. (Harrisonville, MO); Hand,Thomas E. (Lee' s Summit, MO); Delaurentiis,Gary M. (Jamestown, CA)

    2007-08-07

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  19. Method for removing contaminants from plastic resin

    Science.gov (United States)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-30

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  20. Mechanical properties of hybrid SiC/CNT filled toughened epoxy nanocomposite

    Science.gov (United States)

    Ratim, S.; Ahmad, S.; Bonnia, N. N.; Yahaya, Sabrina M.

    2018-01-01

    Mechanical properties of epoxy nanocomposites filled single filler have been extensively studied by various researchers. However, there are not much discovery on the behavior of hybrid nanocomposite. In this study, single and hybrid nanocomposites of toughened epoxy filled CNT/SiC nanoparticles were investigated. The hybrid nanocomposites samples were prepared by combining CNT and SiC nanoparticles in toughened epoxy matrix via mechanical stirring method assisted with ultrasonic cavitations. Epoxy resin and liquid epoxidized natural rubber (LENR) mixture were first blend prior to the addition of nanofillers. Then, the curing process of the nanocomposite samples were conducted by compression molding technique at 130°C for 2 hours. The purpose of this study is to investigate the hybridization effect of CNT and SiC nanoparticles on mechanical properties toughened epoxy matrix. The total loading of single and hybrid nanofillers were fixed to 4% volume are 0, 4C, 4S, 3S1C, 2S2C, and 1S3C. Mechanical properties of hybrid composites show that the highest value of tensile strength achieved by 3S1C sample at about 7% increment and falls between their single composite values. Meanwhile, the stiffness of the same sample is significantly increased at about 31% of the matrix. On the other hand, a highest flexural property is obtained by 1S3C sample at about 20% increment dominated by CNT content. However, the impact strength shows reduction trend with the addition of SiC and CNT into the matrix. The hybridization of SiC and CNT show highest value in sample 1S3C at about 3.37 kJ/m2 of impact energy absorbed. FESEM micrograph have confirmed that better distributions and interaction observed between SiC nanoparticles and matrix compared to CNT, which contributed to higher tensile strength and modulus.

  1. IMPROVING AIRCRAFT PARTS DUE TO USING NANO-COMPOSITE AND MICRO-COMPOSITE MATERIAL

    Directory of Open Access Journals (Sweden)

    Hassany Merhdad Boer

    2017-01-01

    Full Text Available In this paper it is investigated how to make composite carbon nanofiber/ epoxy resin and carbon micro-fiber / epoxy resin. Also, these materials' features are compared and it is shown how effective and benefitial are the received products containing carbon nano- and micro-fibers.In this study, epoxy composites were prepared in order to improve their mechanical and electrical properties. Ergo, carbon nanofibers and carbon microfibers were used as fillers. On the one hand, purchased microfibers were incorporatedinto the epoxy resin to produce epoxy/carbon microfiber composites via mechanical mixing at 1800 rpm in different concentrations (0.0125, 0.0225, 0.05, and 0.1.On the other hand, carbon nanofibers were prepared via electrospining method at room temperature, then epoxy/carbon nanofiber nanocomposites were prepared at mixing temperature of 60 °C at 1200 rpm at different concentrations (0.0125, 0.05, and 0.1.Morphology of samples was investigated via Field Emission Scanning Electron Microscopy (FESEM. Mechanical properties of samples were investigated via tensile and bending tests. Tensile test results revealed that incorporation of 0.0125 wt% carbon naofibers increased the epoxy resins modulus about 200%. Bending strength of sample containing 0.1wt% carbon microfibers had the most increment (from 20 to 100 MPa.

  2. Two-dimensional Lagrangian simulation of suspended sediment

    Science.gov (United States)

    Schoellhamer, David H.

    1988-01-01

    A two-dimensional laterally averaged model for suspended sediment transport in steady gradually varied flow that is based on the Lagrangian reference frame is presented. The layered Lagrangian transport model (LLTM) for suspended sediment performs laterally averaged concentration. The elevations of nearly horizontal streamlines and the simulation time step are selected to optimize model stability and efficiency. The computational elements are parcels of water that are moved along the streamlines in the Lagrangian sense and are mixed with neighboring parcels. Three applications show that the LLTM can accurately simulate theoretical and empirical nonequilibrium suspended sediment distributions and slug injections of suspended sediment in a laboratory flume.

  3. Percolation Threshold in Polycarbonate Nanocomposites

    Science.gov (United States)

    Ahuja, Suresh

    2014-03-01

    Nanocomposites have unique mechanical, electrical, magnetic, optical and thermal properties. Many methods could be applied to prepare polymer-inorganic nanocomposites, such as sol-gel processing, in-situ polymerization, particle in-situ formation, blending, and radiation synthesis. The analytical composite models that have been put forth include Voigt and Reuss bounds, Polymer nanocomposites offer the possibility of substantial improvements in material properties such as shear and bulk modulus, yield strength, toughness, film scratch resistance, optical properties, electrical conductivity, gas and solvent transport, with only very small amounts of nanoparticles Experimental results are compared against composite models of Hashin and Shtrikman bounds, Halpin-Tsai model, Cox model, and various Mori and Tanaka models. Examples of numerical modeling are molecular dynamics modeling and finite element modeling of reduced modulus and hardness that takes into account the modulus of the components and the effect of the interface between the hard filler and relatively soft polymer, polycarbonate. Higher nanoparticle concentration results in poor dispersion and adhesion to polymer matrix which results in lower modulus and hardness and departure from the existing composite models. As the level of silica increases beyond a threshold level, aggregates form which results in weakening of the structure. Polymer silica interface is found to be weak as silica is non-interacting promoting interfacial slip at silica-matrix junctions. Our experimental results compare favorably with those of nanocomposites of polyesters where the effect of nanoclay on composite hardness and modulus depended on dispersion of nanoclay in polyester.

  4. Metal oxide/polyaniline nanocomposites

    Indian Academy of Sciences (India)

    Nanocomposites of iron oxide with conducting polymer in the form of powders of varying compositions have been studied to understand the effects of particle size, cluster size and magnetic inter-particle interactions. The sizes of the nanoparticles were estimated to be ∼ 10–20 nm from the X-ray diffraction (XRD) and the ...

  5. Nanocomposites with biodegradable polycaprolactone matrix

    Czech Academy of Sciences Publication Activity Database

    Janigová, I.; Lednický, František; Jochec-Mošková, D.; Chodák, I.

    2011-01-01

    Roč. 301, č. 1 (2011), s. 1-8 ISSN 1022-1360. [Eurofillers /8./. Alessandria, 21.06.2009-25.06.2009] Institutional research plan: CEZ:AV0Z40500505 Keywords : melt mixing * nanocomposite s * organoclay Subject RIV: CD - Macromolecular Chemistry

  6. Microcellular nanocomposite injection molding process

    Science.gov (United States)

    Mingjun Yuan; Lih-Sheng Turng; Rick Spindler; Daniel Caulfield; Chris Hunt

    2003-01-01

    This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The molded parts produced based on the Design of Experiments (DOE) matrices were subjected to tensile testing, impact testing, and Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Dynamic Mechanical...

  7. Magnetic Nanocomposite Cilia Tactile Sensor

    KAUST Repository

    Alfadhel, Ahmed

    2015-10-21

    A multifunctional biomimetic nanocomposite tactile sensor is developed that can detect shear and vertical forces, feel texture, and measure flow with extremely low power consumption. The sensor\\'s high performance is maintained within a wide operating range that can be easily adjusted. The concept works on rigid and flexible substrates and the sensors can be used in air or water without any modifications.

  8. How Nano are Nanocomposites (Preprint)

    National Research Council Canada - National Science Library

    Schafer, Dale W; Justice, Ryan S

    2007-01-01

    ...s (single and multi-walled), and layered silicates. The conclusion is that large-scale disorder is ubiquitous in nanocomposites regardless of the level of dispersion, leading to substantial reduction of mechanical properties (modulus) compared to predictions based on idealized filler morphology.

  9. The Effects of in Situ-Formed Silver Nanoparticles on the Electrical Properties of Epoxy Resin Filled with Silver Nanowires

    Directory of Open Access Journals (Sweden)

    Gwang-Seok Song

    2016-04-01

    Full Text Available A novel method for preparing epoxy/silver nanocomposites was developed via the in situ formation of silver nanoparticles (AgNPs within the epoxy resin matrix while using silver nanowires (AgNWs as a conductive filler. The silver–imidazole complex was synthesized from silver acetate (AgAc and 1-(2-cyanoethyl-2-ethyl-4-methylimidazole (imidazole. AgNPs were generated in situ during the curing of the epoxy resin through the thermal decomposition of the AgAc–imidazole complex, which was capable of reducing Ag+ to Ag by itself. The released imidazole acted as a catalyst to cure the epoxy. Additionally, after the curing process, the in situ-generated AgNPs were stabilized by the formed epoxy network. Therefore, by using the thermal decomposition method, uniformly dispersed AgNPs of approximately 100 nm were formed in situ in the epoxy matrix filled with AgNWs. It was observed that the nanocomposites containing in situ-formed AgNPs exhibited isotropic electrical properties in the epoxy resins in the presence of AgNWs.

  10. Diterpene resin acids in conifers.

    Science.gov (United States)

    Keeling, Christopher I; Bohlmann, Jörg

    2006-11-01

    Diterpene resin acids are a significant component of conifer oleoresin, which is a viscous mixture of terpenoids present constitutively or inducibly upon herbivore or pathogen attack and comprises one form of chemical resistance to such attacks. This review focuses on the recent discoveries in the chemistry, biosynthesis, molecular biology, regulation, and biology of these compounds in conifers.

  11. Occupational exposure to epoxy resins

    NARCIS (Netherlands)

    Terwoert, J.; Kersting, K.

    2014-01-01

    Products based on epoxy resins as a binder have become popular in various settings, among which the construction industry and in windmill blade production, as a result of their excellent technical properties. However, due to the same properties epoxy products are a notorious cause of allergic skin

  12. Improved algal harvesting using suspended air flotation.

    Science.gov (United States)

    Wiley, Patrick E; Brenneman, Kristine J; Jacobson, Arne E

    2009-07-01

    Current methods to remove algae from a liquid medium are energy intensive and expensive. This study characterized algae contained within a wastewater oxidation pond and sought to identify a more efficient harvesting technique. Analysis of oxidation pond wastewater revealed that algae, consisting primarily of Chlorella and Scenedesmus, composed approximately 80% of the solids inventory during the study period. Results demonstrated that suspended air flotation (SAF) could harvest algae with a lower air:solids (A/S) ratio, lower energy requirements, and higher loading rates compared to dissolved air flotation (DAF) (P plants by enabling cost effective means to reduce solids content of the final effluent. Furthermore, use of SAF to harvest commercially grown Chlorella and Scenedesmus may reduce manufacturing costs of algal-based products such as fuel, fertilizer, and fish food.

  13. Organics and Suspended Solids Removal from Hospital

    Directory of Open Access Journals (Sweden)

    Fakhri Y. Hmood

    2013-05-01

    Full Text Available The Sequencing Batch Reactor (SBR method is used for treating samples of waste water taken from hospitals in Mosul. Many run periods are used (6-24 hours for             6 months. It is found that the organics and suspended solids removal increase with increasing the period of run, it is in the range ( 96-82 % and ( 100-95 % respectively, while the pH values are nearly neutral (7.05 to 7.5.     BOD5 and SS concentrations of the effluent are within the limits of Iraqi standards,  40:30 mg/l respectively. Hence, SBR method could be used for treating hospitals, small factories and some  residential sectors waste waters.  

  14. Polyamide blend-based nanocomposites: A review

    Directory of Open Access Journals (Sweden)

    W. S. Chow

    2015-03-01

    Full Text Available Polymer blend nanocomposites have been considered as a stimulating route for creating a new type of high performance material that combines the advantages of polymer blends and the merits of polymer nanocomposites. In nanocomposites with multiphase matrices, the concept of using nanofillers to improve select properties (e.g., mechanical, thermal, chemical, etc of a polymer blend, as well as to modify and stabilize the blend morphology has received a great deal of interest. This review reports recent advances in the field of polyamide (PA blend-based nanocomposites. Emphasis is placed on the PA-rich blends produced by blending with other thermoplastics in the presence of nanofillers. The processing and properties of PA blend-based nanocomposites with nanofillers are discussed. In addition, the mechanical properties and morphology changes of PA blends with the incorporation of nanofillers are described. The issues of compatibility and toughening of PA blend nanocomposites are discussed, and current challenges are highlighted.

  15. Formation of Silver and Gold Dendrimer Nanocomposites

    International Nuclear Information System (INIS)

    Balogh, Lajos; Valluzzi, Regina; Laverdure, Kenneth S.; Gido, Samuel P.; Hagnauer, Gary L.; Tomalia, Donald A.

    1999-01-01

    Structural types of dendrimer nanocomposites have been studied and the respective formation mechanisms have been described, with illustration of nanocomposites formed from poly(amidoamine) PAMAM dendrimers and zerovalent metals, such as gold and silver. Structure of {(Au(0)) n- PAMAM} and {(Ag(0)) n- PAMAM} gold and silver dendrimer nanocomposites was found to be the function of the dendrimer structure and surface groups as well as the formation mechanism and the chemistry involved. Three different types of single nanocomposite architectures have been identified, such as internal ('I'), external ('E') and mixed ('M') type nanocomposites. Both the organic and inorganic phase could form nanosized pseudo-continuous phases while the other components are dispersed at the molecular or atomic level either in the interior or on the surface of the template/container. Single units of these nanocomposites may be used as building blocks in the synthesis of nanostructured materials

  16. Thermal investigation of tetrafunctional epoxy resin filled with different carbonaceous nanostructures

    Science.gov (United States)

    Romano, Vittorio; Naddeo, Carlo; Vertuccio, Luigi; Lafdi, Khalid; Guadagno, Liberata

    2016-05-01

    This paper presents a preliminary investigation of thermal behaviour of epoxy nanocomposites containing different types of nanofillers, such as 1-D Multiwall Carbon Nanotubes (MWCNTs) and 2-D predominant shape of Exfoliated Graphite nanoparticles (EG). The cure behavior of the different epoxy formulations (filled and unfilled) was studied by Differential Scanning Calorimetry (DSC). The DSC technique is particularly advantageous for studying the cure of reactive epoxy systems because the curing process is accompanied by the liberation of heat. For all the epoxy nanocomposites analyzed in this work, Differential Scanning Calorimetry (DSC) investigation shows curing degree (DC) values higher than 92% for the curing cycle up to 200°C, reaching up to 100% for the samples filled with Exfoliated Graphite nanoparticles (EG). The calorimetric results also show that Exfoliated Graphite nanoparticles accelerate the curing process of the epoxy resin of about 20°C. Transient Plane Source measurements of thermal conductivity show that this acceleration is directly related to the better heat conduction obtained through the incorporation in the epoxy matrix of carbonaceous nanostructures with predominantly two-dimensional shape (Exfoliated Graphite nanoparticles). The experimental results clearly demonstrate that the use of graphene sheets is very hopeful for obtaining nanocomposites characterized by high performance that are able to meet the ambitious requirements in the aeronautical field.

  17. Epoxy resin/phosphonium ionic liquid/carbon nanofiller systems: Chemorheology and properties

    Directory of Open Access Journals (Sweden)

    H. Maka

    2014-10-01

    Full Text Available Epoxy nanocomposites with commercial carbon nanotubes (CNT or graphene (GN have been prepared using phosphonium ionic liquid [trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl phosphinate, IL-f]. IL-f served simultaneously as nanofiller dispersing medium and epoxy resin catalytic curing agent. An influence of IL-f/epoxy weight ratio (3, 6 and 9/100, phr, carbon nanofiller type and content on viscosity of epoxy compositions during storage at ambient temperature was evaluated. Curing process was controlled for neat and CNT or GN modified epoxy compositions (0.25-1.0 wt.% load using differential scanning calorimetry and rheometry. Epoxy nanocomposites exhibited slightly increased glass transition temperature values (146 to 149°C whereas tan δ and storage modulus decreased (0.30 to 0.27 and 2087 to 1070 MPa, respectively as compared to reference material. Crosslink density regularly decreased for composites with increasing CNT content (11 094 to 7 020 mol/m3. Electrical volume resistivity of the nanocomposites was improved in case of CNT to 4•101 Ω•m and GN to 2•105 Ω•m (nanofiller content 1 wt.%. Flame retardancy was found for modified epoxy materials with as low GN and phosphorus content as 0.25 and 0.7 wt.%, respectively (increase of limiting oxygen index to 26.5%.

  18. Synthesis and characterisation of epoxy resins reinforced with carbon nanotubes and nanofibers.

    Science.gov (United States)

    Prolongo, S G; Gude, M R; Ureña, A

    2009-10-01

    Epoxy nanocomposites were fabricated using two kinds of nanofiller, amino-functionalized multi-walled carbon nanotubes (CNTs) and non-treated long carbon nanofibers (CNFs). The non-cured mixtures were analysed through viscosity measurements. The effect of the nanoreinforcement on the curing process was determined by differential scanning calorimetry. Finally, the characterisation of cured nanocomposites was carried out studying their thermo-mechanical and electrical behaviour. At room temperature, the addition of CNTs causes a viscosity increase of epoxy monomer much more marked than the introduction of CNFs due to their higher specific area. It was probed that in that case exists chemical reaction between amino-functionalized CNTs and the oxirane rings of epoxy monomer. The presence of nanoreinforcement induces a decrease of curing reaction rate and modifies the epoxy conversion reached. The glass transition temperature of the nanocomposites decreases with the contents of CNTs and CNFs added, which could be related to plasticization phenomena of the nanoreinforcements. The storage modulus of epoxy resin significantly increases with the addition of CNTs and CNFs. This augment is higher with amino-functionalized CNTs due, between other reasons, to the stronger interaction with the epoxy matrix. The electrical conductivity is greatly increased with the addition of CNTs and CNFs. In fact, the percolation threshold is lower than 0.25 wt% due to the high aspect ratio of the used nanoreinforcements.

  19. Fabrication de structures tridimensionnelles de nanocomposites polymeres charges de nanotubes de carbone a simple paroi

    Science.gov (United States)

    Laberge Lebel, Louis

    There is currently a worldwide effort for advances in micro and nanotechnologies due to their high potential for technological applications in fields such as microelectromechanical systems (MEMS), organic electronics and structural microstructures for aerospace. In these applications, carbon nanotube/polymer nanocomposites represent interesting material options compared to conventional resins for their enhanced mechanical and electrical properties. However, several significant scientific and technological challenges must first be overcome in order to rapidly and cost-effectively fabricate nanocomposite-based microdevices. Fabrication techniques have emerged for fabricating one- of two-dimensional (1D/2D) nanocomposite structures but few techniques are available for three-dimensional (3D) nanocomposite structures. The overall objective of this thesis is the development of a manufacturing technique allowing the fabrication of 3D structures of single-walled carbon nanotube (C-SWNT)/polymer nanocomposite. This thesis reports the development of a direct-write fabrication technique that greatly extends the fabrication space for 3D carbon nanotube/polymer nanocomposite structures. The UV-assisted direct-write (UV-DW) technique employs the robotically-controlled micro-extrusion of a nanocomposite filament combined with a UV exposure that follows the extrusion point. Upon curing, the increased rigidity of the extruded filament enables the creation of multi-directional shapes along the trajectory of the extrusion point. The C-SWNT material is produced by laser ablation of a graphite target and purified using a nitric acid reflux. The as-grown and purified material is characterized under transmission electron microscopy and Raman spectroscopy. The purification procedure successfully graphed carboxylic groups on the surface of the C-SWNTs, shown by X-ray photoelectron spectroscopies. An incorporation procedure in the polymer is developed involving a non

  20. Method to produce catalytically active nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2017-12-19

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  1. Method to produce catalytically active nanocomposite coatings

    Science.gov (United States)

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2016-02-09

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  2. Viscoelastic properties of graphene-based epoxy resins

    Science.gov (United States)

    Nobile, Maria Rossella; Fierro, Annalisa; Rosolia, Salvatore; Raimondo, Marialuigia; Lafdi, Khalid; Guadagno, Liberata

    2015-12-01

    In this paper the viscoelastic properties of an epoxy resin filled with graphene-based nanoparticles have been investigated in the liquid state, before curing, by means of a rotational rheometer equipped with a parallel plate geometry. Exfoliated graphite was prepared using traditional acid intercalation followed by a sudden treatment at high temperature (900°C). The percentage of exfoliated graphite was found to be 56%. The epoxy matrix was prepared by mixing a tetrafunctional precursor with a reactive diluent which produces a significant decrease in the viscosity of the epoxy precursor so that the dispersion step of nanofillers in the matrix can easily occur. The hardener agent, the 4,4-diaminodiphenyl sulfone (DDS), was added at a stoichiometric concentration with respect to all the epoxy rings. The inclusion of the partially exfoliated graphite (pEG) in the formulated epoxy mixture significantly modifies the rheological behaviour of the mixture itself. The epoxy mixture, indeed, shows a Newtonian behaviour while, at 3 wt % pEG content, the complex viscosity of the nanocomposite clearly shows a shear thinning behaviour with η* values much higher at the lower frequencies. The increase in complex viscosity with the increasing of the partially exfoliated graphite content was mostly caused by a dramatic increase in the storage modulus. All the graphene-based epoxy mixtures were cured by a two-stage curing cycles: a first isothermal stage was carried out at the lower temperature of 125°C for 1 hour while the second isothermal stage was performed at the higher temperature of 200°C for 3 hours. The mechanical properties of the cured nanocomposites show high values in the storage modulus and glass transition temperature.

  3. nanocomposites chitosan /clay for electrochemical sensors

    International Nuclear Information System (INIS)

    Braga, Carla R. Costa; Melo, Frank M. Araujo de; Costa, Gilmara M. Silva; Silva, Suedina M. Lima

    2009-01-01

    This study was performed to obtain films of nanocomposites chitosan/bentonite and chitosan/montmorillonite intercalation by the technique of solution in the proportions of 5:1 and 10:1. The nanocomposites were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD) and the nanocomposites Chitosan/montmorillonite also were characterized by thermogravimetric analysis (TG). The results indicated that the feasibility of obtaining films of nanocomposites exfoliate. Among the suggested applications for films developed in this study includes them use for electrochemical sensors. (author)

  4. Dental plaque microcosm biofilm behavior on calcium phosphate nanocomposite with quaternary ammonium

    Science.gov (United States)

    Cheng, Lei; Weir, Michael D.; Zhang, Ke; Wu, Eric; Xu, Sarah M.; Zhou, Xuedong; Xu, Hockin H. K.

    2012-01-01

    Objectives Half of dental restorations fail in 10 years, with secondary caries as the main reason. Calcium phosphate composites could remineralize tooth lesions. The objectives of this study were to: (1) Impart antibacterial activity to a composite with nanoparticles of amorphous calcium phosphate (NACP); and (2) investigate the effect of quaternary ammonium dimethacrylate (QADM) on mechanical and dental plaque microcosm biofilm properties for the first time. Methods The NACP and glass particles were filled into a dental resin that contained bis(2-methacryloyloxy-ethyl) dimethyl-ammonium bromide, the QADM. NACP nanocomposites containing 0%, 7%, 14%, and 17.5% of QADM by mass, respectively, were photo-cured. A commercial composite with no antibacterial activity was used as control. Mechanical properties were measured in three-point flexure. A human saliva microcosm model was used to grow biofilms on composites. Live/dead assay, metabolic activity, colony-forming unit (CFU) counts, and lactic acid production of biofilms on the composites were measured. Results Increasing QADM mass fraction monotonically reduced the biofilm viability, CFU and lactic acid. Biofilms on NACP nanocomposite with 17.5% QADM had metabolic activity that was 30% that on a commercial composite control (pcontrol was 6-fold those on NACP+17.5% QADM nanocomposite. Composite control had long strings of cells with normal short-rod shapes, while some cells on NACP-QADM nanocomposites disintegrated into pieces. Adding QADM to NACP did not decrease the strength and elastic modulus, which matched (p>0.1) those of a commercial composite without Ca-PO4 or antibacterial activity. Significance A dental plaque microcosm model was used to evaluate the novel NACP-QADM nanocomposite. The nanocomposite greatly reduced the biofilm viability, metabolic activity and lactic acid, while its mechanical properties matched those of a commercial composite. NACP-QADM nanocomposite with calcium phosphate fillers, good

  5. EDF specifications on nuclear grade resins

    International Nuclear Information System (INIS)

    Mascarenhas, Darren; Gressier, Frederic; Taunier, Stephane; Le-Calvar, Marc; Ranchoux, Gilles; Marteau, Herve; Labed, Veronique

    2012-09-01

    Ion exchange resins are widely used across EDF, especially within the nuclear division for the purification of water. Important applications include primary circuit, secondary circuit and effluent treatment, which require high quality nuclear grade resins to retain the dissolved species, some of which may be radioactive. There is a need for more and more efficient purification in order to decrease worker dose during maintenance but also to decrease volumes of radioactive resin waste. Resin performance is subject to several forms of degradation, including physical, chemical, thermal and radioactive, therefore appropriate resin properties have to be selected to reduce such effects. Work has been done with research institutes, manufacturers and on EDF sites to select these properties, create specifications and to continuously improve on these specifications. An interesting example of research regarding resin performance is the resin degradation under irradiation. Resins used in the CVCS circuit of EDF nuclear power plants are subject to irradiation over their lifetime. A study was carried out on the effects of total integrated doses of 0.1, 1 and 10 MGy on typically used EDF mixed bed resins in a 'mini-CVCS' apparatus to simultaneously test actual primary circuit fluid. The tests confirmed that the resins still perform efficiently after a typical CVCS radiation dose. Certain resins also need additional specifications in order to maintain the integrity of the particular circuits they are used in. Recently, EDF has updated its requirements on these high purity nuclear grade resins, produced generic doctrines for all products and materials used on site which include resins of all grades, and as a result have also updated a guide on recommended resin usage for the French fleet of reactors. An overview of the evolutions will be presented. (authors)

  6. Evaluation of the suspending property of grewia gum in ...

    African Journals Online (AJOL)

    The suspending properties evaluated included the sedimentation rate, sedimentation volume, ease of redispersibility, apparent viscosity and degree of flocculation. Results obtained after 8 weeks of storage showed that the optimum suspending concentration for grewia gum in the drug was 1% w/v. The sedimentation rate ...

  7. Turbulence Flow Characteristics of Suspended Sediments and its ...

    African Journals Online (AJOL)

    This paper presents an attempt to describe velocity distribution of suspended sediment laden flow by using a theory based on Monin-Obukhov Length L. It will be shown that experimental results from open channel flow with suspended sediments are better accounted for by this theory. The method involves the coupling of ...

  8. Characterization and morphology of solids suspended in rain water

    International Nuclear Information System (INIS)

    Iturbe G, J.L.; Lopez M, B.E.; Torre O, J. De la

    2000-01-01

    This work presents the results obtained from the analysis of rain water in Mexico. The study treats over the characterization and morphology of the solids suspended in form of particles in the atmosphere. The solids suspended were obtained of the pluvial precipitations after these have been centrifuged. Subsequently of the separation, the particulate matter was analysed by Sem and X-ray dispersive energy

  9. The suspending properties of Cissus rubiginosa fruit mucilage in ...

    African Journals Online (AJOL)

    Background: Materials with suspending properties like mucilage have been obtained from natural sources and used to stabilize liquid formulations containing poorly dispersible solids. Objective: The aim of this study was to evaluate the suspending properties of Cissus rubiginosa fruit mucilage (CRM) in paracetamol oral ...

  10. Evaluation of the Suspending Properties of the Co- precipitate of ...

    African Journals Online (AJOL)

    The parameters tested were sedimentation rate, flow rate, viscosity, and pH. The effect of ... solution of the solid in the continuous phase [1]. There are two ... When two gums are co-precipitated, their ability to suspend a drug tends to increase more than their individual abilities. This work sought to evaluate the suspending ...

  11. Evaluation of the suspending properties of Cola acuminata gum on ...

    African Journals Online (AJOL)

    Many natural gums are employed as suspending agents in the formulation of pharmaceutical suspensions. The search to develop locally available natural gum from apparently a waste product as an alternative suspending agent stimulated the interest in this present study. Cola acuminata gum (CAG) extracted from Cola ...

  12. Evaluation of the suspending properties of Adansonia digitata gum ...

    African Journals Online (AJOL)

    Sedimentation volume and rate, rheology, and ease of redispersion were employed as evaluation parameters. The results showed that both hot and cold water extracts of the gum used at 2-3 % w/v produced a better suspending property than 4 % w/v Compound Tragacanth gum. The suspending ability of the gums was in ...

  13. Properties of freely suspended liquid crystal films and their applications

    Science.gov (United States)

    Yablonskii, S. V.; Bodnarchuk, V. V.; Yoshino, K.

    2016-05-01

    We report the review on the physical properties of the liquid crystal freely suspended films. The importance of the freely suspended films for the study of the fundamental problems of the self-confined systems as well as their practical implementations are demonstrated.

  14. Energy values of suspended detritus in Andaman Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumari, L.; Royan, J.P.; Sumitra-Vijayaraghavan

    Energy content of suspended detritus was determined in Andaman Sea waters during April-May 1988. The caloric content of suspended detritus ranged from 987 to 7040 cal. per gram dry wt with an average value of 5530 cal. per gram dry wt. The results...

  15. 40 CFR 230.21 - Suspended particulates/turbidity.

    Science.gov (United States)

    2010-07-01

    ..., particulate specific gravity, particle shape, and physical and chemical properties of particle surfaces. (b... Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.21 Suspended particulates..., usually smaller than silt, and organic particles. Suspended particulates may enter water bodies as a...

  16. Hard and flexible nanocomposite coatings using nanoclay-filled hyperbranched polymers.

    Science.gov (United States)

    Fogelström, Linda; Malmström, Eva; Johansson, Mats; Hult, Anders

    2010-06-01

    The combination of hardness, scratch resistance, and flexibility is a highly desired feature in many coating applications. The aim of this study is to achieve this through the introduction of an unmodified nanoclay, montmorillonite (Na(+)MMT), in a polymer resin based on the hyperbranched polyester Boltorn H30. Smooth and transparent films were prepared from both the neat and the nanoparticle-filled hyperbranched resins. X-ray diffraction (XRD) and transmission electron microscopy (TEM) corroborated a mainly exfoliated structure in the nanocomposite films, which was also supported by results from dynamic mechanical analysis (DMA). Furthermore, DMA measurements showed a 9-16 degrees C increase in Tg and a higher storage modulus-above and below the T(g)-both indications of a more cross-linked network, for the clay-containing film. Thermogravimetric analysis (TGA) demonstrated the influence of the nanofiller on the thermal properties of the nanocomposites, where a shift upward of the decomposition temperature in oxygen atmosphere is attributed to the improved barrier properties of the nanoparticle-filled materials. Conventional coating characterization methods demonstrated an increase in the surface hardness, scratch resistance and flexibility, with the introduction of clay, and all coatings exhibited excellent chemical resistance and adhesion.

  17. Polymer/Silicate Nanocomposites Developed for Improved Strength and Thermal Stability

    Science.gov (United States)

    Campbell, Sandi G.

    2003-01-01

    Over the past decade, polymer-silicate nanocomposites have been attracting considerable attention as a method of enhancing polymer properties. The nanometer dimensions of the dispersed silicate reinforcement can greatly improve the mechanical, thermal, and gas barrier properties of a polymer matrix. In a study at the NASA Glenn Research Center, the dispersion of small amounts (less than 5 wt%) of an organically modified layered silicate (OLS) into the polymer matrix of a carbon-fiber-reinforced composite has improved the thermal stability of the composite. The enhanced barrier properties of the polymer-clay hybrid are believed to slow the diffusion of oxygen into the bulk polymer, thereby slowing oxidative degradation of the polymer. Electron-backscattering images show cracking of a nanocomposite matrix composite in comparison to a neat resin matrix composite. The images show that dispersion of an OLS into the matrix resin reduces polymer oxidation during aging and reduces the amount of cracking in the matrix significantly. Improvements in composite flexural strength, flexural modulus, and interlaminar shear strength were also obtained with the addition of OLS. An increase of up to 15 percent in these mechanical properties was observed in composites tested at room temperature and 288 C. The best properties were seen with low silicate levels, 1 to 3 wt%, because of the better dispersion of the silicate in the polymer matrix.

  18. Effects of staining and bleaching on color change of dental composite resins.

    Science.gov (United States)

    Villalta, Patricia; Lu, Huan; Okte, Zeynep; Garcia-Godoy, Franklin; Powers, John M

    2006-02-01

    Discoloration of resin-based composites by colored solutions is a common problem. The use of bleaching agents for discolored natural teeth is becoming increasingly popular. It is not clear if bleaching agents can remove the stain from composite resins. The purpose of this study was to investigate the effects of 2 staining solutions and 3 bleaching systems on the color changes of 2 dental composite resins. Forty-five disk-shaped specimens (9 x 2.5 mm) of each of 2 composite resins, Filtek Supreme (FS) and Esthet X (EX), were prepared. The specimens were then divided into 3 groups of 15 specimens each and immersed in 2 staining solutions (coffee or red wine) or distilled water (control) for 3 hours daily over a 40-day test period. The 3 groups were then divided into 3 subgroups (n = 5), and 3 bleaching agents (Crest Night Effects, Colgate Simply White Night, or Opalescence Quick) were applied to the surface of the specimens over a 14-day period. Color of the specimens was measured with a spectrophotometer using CIELAB color space relative to CIE standard illuminant D55 at baseline, after staining, and after bleaching. The color differences (deltaE(ab)*) between the 3 measurements were calculated. The value deltaE(ab)* = 3.3 was used as an acceptable value in subjective visual evaluations. Analysis of variance and nonparametric analysis (Kruskal-Wallis test and Mann-Whitney test) were used to analyze the data. After staining, FS had more color change than EX and was more affected by the wine solution. After bleaching, the color of both EX and FS specimens returned to the baseline. The color differences between bleaching and baseline were less than value deltaE(ab)* = 3.3 for all groups. The nanocomposite (FS) changed color more than the microhybrid composite (EX) as a result of staining in coffee or red wine solutions. After bleaching, discoloration was removed completely from the composite resins tested.

  19. Optimization of Processing Condition of Nanocomposites According to the Structural Changes of Halloysite Nanotubes Under Impact Behavior

    Science.gov (United States)

    Kim, Yun-Hae; Park, Soo-Jeong; Nakagaito, Antonio Norio

    2017-08-01

    In the present study, optimal dispersion conditions were developed to disperse nanocomposites containing halloysite nanotubes (HNTs) and unsaturated polyester (UP) resin using ultrasonic dispersion method. Due to the presence of a substantial amount of water in HNTs, their properties depend on the operating temperature when dispersing. It is, therefore, important to understand the structural changes of HNTs that occur when changing the operating temperature. HNTs heat-treated at various temperatures have different structures and mechanical/chemical properties. Therefore, in this research, HNTs were treated at two temperatures, 773.15 K and 973.15 K (500 °C and 700 °C), and the correlation between UP resin and heat-treated HNTs was studied in detail. The quantities of HNTs were 0.5 and 1 wt pct, for the 773.15 K and 973.15 K (500 °C and 700 °C) heat treatment temperatures, respectively. The contents of HNTs were restricted in order to demonstrate the aggregation phenomenon. The dispersion was carried out by ultrasonication. All structural changes including dispersion behavior were examined by TEM. The mechanical properties were assessed by impact tests. The results showed that the high impact strength of the nanocomposite containing 1 wt pct of 973.15 K (700 °C) heat-treated HNT was superior. In other words, it can be said that the rheological property of the matrix resin depended on the quantities of HNTs and the heat treatment temperature.

  20. Foam, Foam-resin composite and method of making a foam-resin composite

    Science.gov (United States)

    Cranston, John A. (Inventor); MacArthur, Doug E. (Inventor)

    1995-01-01

    This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F.

  1. Synthesis, Characterization, and Microwave-Absorbing Properties of Polypyrrole/MnFe2O4 Nanocomposite

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Hosseini

    2012-01-01

    Full Text Available Conductive polypyrrole (PPy-manganese ferrite (MnFe2O4 nanocomposites with core-shell structure were synthesized by in situ polymerization in the presence of dodecyl benzene sulfonic acid (DBSA as the surfactant and dopant and iron chloride (FeCl3 as the oxidant. The structure and magnetic properties of manganese ferrite nanoparticles were measured by using powder X-ray diffraction (XRD and vibrating sample magnetometer (VSM, respectively. Its morphology, microstructure, and DC conductivity of the nanocomposite were characterized by scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, and four-wire technique, respectively. The microwave-absorbing properties of the nanocomposite powders dispersing in resin acrylic coating with the coating thickness of 1.5 mm were investigated by using vector network analyzers in the frequency range of 8–12 GHz. A minimum reflection loss of −12 dB was observed at 11.3 GHz.

  2. In-situ Elevated Temperature Mechanical Performance of MWCNT/epoxy Nanocomposite

    Directory of Open Access Journals (Sweden)

    Bhanu Pratap Singh

    2017-03-01

    Full Text Available The present investigation has been focused on the effects of multi-walled carbon nanotube (MWCNT addition on the mechanical performance of epoxy under different in-service elevated temperature environments. Room temperature flexural test results revealed that addition of 0.1 wt. % MWCNT into epoxy resin resulted in modulus and strength enhancement of 21 % and 9 % respectively. With increase in service temperature, significant decrement in both modulus and strength was noticed for both materials (neat epoxy and MWCNT/epoxy nanocomposite, but the rate of degradation was found to be quite drastic for the nanocomposite. At 90 °C temperature, the CNT/epoxy nanocomposite exhibited inferior modulus and strength, which are 41 % and 59 % lower than neat epoxy respectively. The variation trend in elastic modulus with temperature obtained from both flexural testing and DMA for both these materials was also analyzed. It was found that addition of 0.1 % CNT in the epoxy reduced the glass transition temperature by about 16°C.

  3. The difference nanocomposite hardness level using LED photoactivation based on curing period variations

    Directory of Open Access Journals (Sweden)

    Hasiana Tatian

    2011-03-01

    Full Text Available Polimerizatian is the critical stage to determine the quality of composites resin, this involves isolated monomer carbon double bonds being converted to an extended network of single bonds. Physical and mechanical properties of composites are influenced by the level of conversion attained during polymerization. An adequate light intensity and light curing time are important to obtain the degree of polymerization. The objective of this study is to evaluate the difference of the hardness nanocomposites which activated by LED LCU based on the variation of curing times. This study is a true experimental research. The samples were made from nanocomposites material with cylinder form of 4 mm in depth, 6 mm in diameter. This samples divided into 3 groups of curing times. Group, I was cured for 20's curing time as a control due to manufactory recommended; Group II was cured for 30's, and Group III was cured for 40's and the hardness (Rebound hardness tester was determined using Rebound scale (RS and converted by Mohs scale (MS. There was a very significant level of hardness rate from each group using ANOVA test. The result of the study concludes that there were the differences on the nanocomposites hardness level cured under different curing times 20, 30 and 40 sec. The longer of curing times, the higher level of hardness.

  4. Microleakage of four composite resin systems in class II restorations.

    Science.gov (United States)

    Majeed, A; Osman, Y I; Al-Omari, T

    2009-11-01

    To compare the microleakage at the enamel and dentine/cementum margins of three nanocomposites and a microhybrid composite in Class II restorations. Four light-cured dental resin restorative materials in combination with their respective bonding agents were investigated. Eighty non-carious, extracted human molars were divided into 4 groups of 20 teeth each. The apices of the teeth were sealed with a resin modified glass ionomer cement. Standardized Class II slot cavities were prepared on the proximal surfaces of each tooth. Each group had an equal number of cavities with gingival margins on enamel and on dentine/cementum. Restorations were placed as indicated: Group 1 (G1): Ceram-X mono/Prime & Bond NT (Dentsply), G2: Premise/ OptiBond Solo Plus (Kerr), G3: Grandio/Admira Bond (VOCO), G4: Z100/Adper Scotchbond Multi-Purpose (3M ESPE). After thermocycling and immersion in 0.5% methylene blue dye solution, the teeth were sectioned and dye penetration was scored on a scale of 0 to 3 on both the enamel and dentine/cementum margins. The data were analyzed using a Kruskal-Wallis one way ANOVA and Mann-Whitney U test of ranks (significance at p Grandio/Admira Bond showed significantly lower microleakage when compared to the other materials tested while Z100/Adper Scotchbond Multi-Purpose showed the largest microleakage (p Grandio/Admira Bond showing the least microleakage when compared to the other three materials tested. At the enamel margins, all materials tested performed reasonably well.

  5. [Multifunctional nanocomposite materials]. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    These novel nanocomposites are microporous nanometal intercalated clays which have been prepared by a polyol process at 200C and a novel microwave-hydrothermal process using ethylene glycol. These novel nanocomposites have been found to be useful in the conversion of coal to asphaltenes. A crystalline tin (IV) arsenate hydroxide hydrate has been made and its lithium selective ion exchange properties have been measured. This exchanger has shown high lithium selectivity. Selective exchange of divalent transition metal ions in cryptomelane-type manganic acid with tunnel structure have also been studied. Several pillared clays have also been synthesized and their Mg{sup 2+}, Li{sup +} and UO{sub 2}{sup 2+} selectivity has been measured. The pillared clays appear to show some Li selectivity.

  6. Electrospun Borneol-PVP Nanocomposites

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Li

    2012-01-01

    Full Text Available The present work investigates the validity of electrospun borneol-polyvinylpyrrolidone (PVP nanocomposites in enhancing drug dissolution rates and improving drug physical stability. Based on hydrogen bonding interactions and via an electrospinning process, borneol and PVP can form stable nanofiber-based composites. FESEM observations demonstrate that composite nanofibers with uniform structure could be generated with a high content of borneol up to 33.3% (w/w. Borneol is well distributed in the PVP matrix molecularly to form the amorphous composites, as verified by DSC and XRD results. The composites can both enhance the dissolution profiles of borneol and increase its physical stability against sublimation for long-time storage by immobilization of borneol molecules with PVP. The incorporation of borneol in the PVP matrix weakens the tensile properties of nanofibers, and the mechanism is discussed. Electrospun nanocomposites can be alternative candidates for developing novel nano-drug delivery systems with high performance.

  7. Colloidal QDs-polymer nanocomposites

    Science.gov (United States)

    Gordillo, H.; Suárez, I.; Rodríguez-Cantó, P.; Abargues, R.; García-Calzada, R.; Chyrvony, V.; Albert, S.; Martínez-Pastor, J.

    2012-04-01

    Nanometer-size colloidal semiconductor nanocrystals, or Quantum Dots (NQD), are very prospective active centers because their light emission is highly efficient and temperature-independent. Nanocomposites based on the incorporation of QDs inside a polymer matrix are very promising materials for application in future photonic devices because they combine the properties of QDs with the technological feasibility of polymers. In the present work some basic applications of these new materials have been studied. Firstly, the fabrication of planar and linear waveguides based on the incorporation of CdS, CdSe and CdTe in PMMA and SU-8 are demonstrated. As a result, photoluminescence (PL) of the QDs are coupled to a waveguide mode, being it able to obtain multicolor waveguiding. Secondly, nanocomposite films have been evaluated as photon energy down-shifting converters to improve the efficiency of solar cells.

  8. Magnetic Nanocomposite Cilia Energy Harvester

    KAUST Repository

    Khan, Mohammed Asadullah

    2016-02-11

    An energy harvester capable of converting low frequency vibrations into electrical energy is presented. The operating principle, fabrication process and output characteristics at different frequencies are discussed. The harvester is realized by fabricating an array of polydimethylsiloxane (PDMS) - iron nanowire nanocomposite cilia on a planar coil array. Each coil element consists of 14 turns and occupies an area of 600 μm x 600μm. The cilia are arranged in a 12x5 array and each cilium is 250 μm wide and 2 mm long. The magnetic characteristics of the fabricated cilia indicate that the nanowires are well aligned inside of the nanocomposite, increasing the efficiency of energy harvesting. The energy harvester occupies an area of 66.96 mm2 and produces an output r.m.s voltage of 206.47μV, when excited by a 40 Hz vibration of 1 mm amplitude.

  9. Bitumen nanocomposites with improved performance

    KAUST Repository

    Kosma, Vasiliki

    2017-11-29

    Bitumen-clay nanocomposite binders with styrene-butadienestyrene triblock copolymer, SBS, and combinations of SBS and crumb rubber (CR) with different CR/SBS ratios have been synthesized and characterized. In addition to the binder, samples containing the binder and concrete sand (with a weight ratio 1:9) were prepared. The modified binders were studied in terms of filler dispersion, storage stability, mechanical performance and water susceptibility. We demonstrate that the samples containing nanoclays consistently outperform those based only on the polymer additives. We also find that nanocomposite samples based on a combination of SBS and CR are best, since in addition to other improvements they show excellent storage stability. Our work shows that substituting CR with SBS as a bitumen additive and combining it with inexpensive nanoclays leads to new materials with enhanced performance and improved stability for practical asphalt applications.

  10. Thermal behavior of a quantum dot nanocomposite as a color converting material and its application to white LED.

    Science.gov (United States)

    Woo, Ju Yeon; Kim, Kyung Nam; Jeong, Sohee; Han, Chang-Soo

    2010-12-10

    We present a novel nanocomposite, a mixture of a CdSe/CdS/ZnS red quantum dot (QD), an Sr(2)SiO(4):Eu green phosphor and silicone resin for a color converting material. The temperature rise and the optical characteristics of the nanocomposite due to the addition of the QD have been investigated in terms of QD content ratio and the mixing components. The experimental results suggested that a small addition of QDs generated a large amount of heat during light conversion at the wavelength of QD emission. Considering the temperature rise in a nanocomposite, we applied 0.2 wt% QDs on an InGaN blue LED chip. As a result, we could achieve a white LED device with a high color rendering index of 83.2, a high luminance of 65.86 lm W(-1) and a moderate temperature increase of 94 °C. The white LED converted by the newly developed QD-phosphor nanocomposite has great potential in future illumination.

  11. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance

    Science.gov (United States)

    Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo

    2016-12-01

    Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m2 and ~78 kW/m2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay.

  12. The effect of EGDMA on tensile and thermal properties of irradiated low density polyethylene/sepiolite nanocomposites

    Science.gov (United States)

    Ghazali, Siti Nadia Aini; Mohamad, Zurina; Majid, Rohah A.; Appadu, Sivanesan

    2017-07-01

    This study presents the influence of ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent through electron beam crosslinking process. Therefore, the effects of EGDMA on irradiated low density polyethylene/sepiolite (LDPE/SEP) nanocomposites on the tensile and thermal properties at 4 part per hundred resin (phr) sepiolite were investigated. The LDPE/SEP nanocomposites were prepared by melt mixing using twin screw extruder at 160 ˚C with a screw speed of 50 rpm. The nanocomposites were then undergone injection moulding process followed by irradiated using 2 MeV electron beam machine at doses ranging from 0 to 200 kGy in the air at ambient temperature. It was found that the tensile strength and Young's modulus were slightly increased with the presence of co-agent. The sample containing 4 phr sepiolite at 200 kGy showed 9% increase in tensile strength when EGDMA was added. However, the result of thermogravimetry analysis (TGA) showed some reduction in thermal stability of nanocomposites on 100 kGy irradiation dose. EGDMA had reduced the optimum irradiation dose without having any adverse effect on tensile and thermal properties.

  13. Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: Thermal and mechanical properties

    Directory of Open Access Journals (Sweden)

    H. F. Xie

    2012-09-01

    Full Text Available Carboxyl-modified multi-walled carbon nanotubes (MWCNT–COOHs as nanofillers were incorporated into diglycidyl ether of bisphenol A (DGEBA toughened with carboxyl-terminated butadiene-acrylonitrile (CTBN. The carboxyl functional carbon nanotubes were characterized by Fourier-transform infrared spectroscopy and thermogravimetric analysis. Furthermore, cure kinetics, glass transition temperature (Tg, mechanical properties, thermal stability and morphology of DGEBA/CTBN/MWCNT–COOHs nanocomposites were investigated by differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, universal test machine, thermogravimetric analysis and scanning electron microscopy (SEM. DSC kinetic studies showed that the addition of MWCNT–COOHs accelerated the curing reaction of the rubber-toughened epoxy resin. DMA results revealed that Tg of rubber-toughened epoxy nanocomposites lowered with MWCNT–COOH contents. The tensile strength, elongation at break, flexural strength and flexural modulus of DGEBA/CTBN/MWCNT-COOHs nanocomposites were increased at lower MWCNT-COOH concentration. A homogenous dispersion of nanocomposites at lower MWCNT–COOH concentration was observed by SEM.

  14. Effect of surface modified TiO2 nanoparticles on thermal, barrier and mechanical properties of long oil alkyd resin-based coatings

    Directory of Open Access Journals (Sweden)

    T. S. Radoman

    2015-10-01

    Full Text Available Novel soy alkyd-based nanocomposites (NCs were prepared using TiO2 nanoparticles (NPs surface modified with different gallates, and for the first time with imine obtained from 3,4-dihydroxybenzaldehyde and oleylamine (DHBAOA. Unmodified and surface modified anatase TiO2 NPs were characterized by transmission electron microscopy (TEM, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR and ultraviolet-visible (UV-Vis spectroscopy, while the amount of adsorbed ligands was calculated from thermogravimetric analysis (TGA results. Surface modification of TiO2 NPs was confirmed by FTIR and UV-Vis spectra. The influence of the TiO2 surface modification on the dispersion of TiO2 NPs in alkyd resin, thermal, barrier and mechanical properties and chemical resistance of alkyd resin/TiO2 NC coatings was investigated. The obtained results revealed that glass transition temperature of all investigated NCs is lower than for pure resin, that the presence of TiO2 NPs surface modified with gallates had no significant influence on the thermooxidative stability of alkyd resin, while TiO2-DHBAOA NPs slightly improved alkyd resin thermooxidative stability. Also, the presence of surface modified TiO2 NPs improved barrier properties, increased stress and strain at break and hardness and chemical resistance and decreased modulus of elasticity and abrasion resistance of alkyd resin.

  15. The antifungal effects and mechanical properties of silver bromide/cationic polymer nano-composite-modified Poly-methyl methacrylate-based dental resin.

    Science.gov (United States)

    Zhang, Yu; Chen, Yin-Yan; Huang, Li; Chai, Zhi-Guo; Shen, Li-Juan; Xiao, Yu-Hong

    2017-05-08

    Poly-methyl methacrylate (PMMA)-based dental resins with strong and long-lasting antifungal properties are critical for the prevention of denture stomatitis. This study evaluated the antifungal effects on Candida albicans ATCC90028, the cytotoxicity toward human dental pulp cells (HDPCs), and the mechanical properties of a silver bromide/cationic polymer nano-composite (AgBr/NPVP)-modified PMMA-based dental resin. AgBr/NPVP was added to the PMMA resin at 0.1, 0.2, and 0.3 wt%, and PMMA resin without AgBr/NPVP served as the control. Fungal growth was inhibited on the AgBr/NPVP-modified PMMA resin compared to the control (P  0.05) between the experimental and control groups. These data indicate that the incorporation of AgBr/NPVP conferred strong and long-lasting antifungal effects against Candida albicans to the PMMA resin, and it has low toxicity toward HDPCs, and its mechanical properties were not significantly affected.

  16. Current practicality of nanotechnology in dentistry. Part 1: Focus on nanocomposite restoratives and biomimetics

    Directory of Open Access Journals (Sweden)

    Scott A Saunders

    2009-11-01

    Full Text Available Scott A SaundersMirrorMonitor Creativity, Royersford, PA USAAbstract: First described in 1959 by physicist Richard P Feynman, who saw it as an unavoidable development in the progress of science, nanotechnology has been part of mainstream scientific theory with potential medical and dental applications since the early 1990s. Nanoparticles, nanospheres, nanorods, nanotubes, nanofibers, dendrimers and other nanostructures have been studied for various applications to biologic tissues and systems. While many layers of nanotechnologic capability have been envisioned for oral health in the last decade (eg, oral hygiene maintenance, local anesthesia, even whole-tooth replacement, few of these applications have been developed. Part 1 of a three-part series reviews the current clinical utility of nanotechnology’s most tangible contribution to dentistry to date: the restoration of tooth structure with nanocomposites. Characterized by filler-particle sizes of ≤100 nm, these materials can offer esthetic and strength advantages over conventional microfilled and hybrid resin-based composite (RBC systems, primarily in terms of smoothness, polishability and precision of shade characterization, plus flexural strength and microhardness similar to those of the better-performing posterior RBCs. Available comparative data for nanocomposites and organically-modified ceramic (Ormocer® restoratives are also reviewed. Finally, plausible “next-phase” trends in current nanorestorative research are judiciously examined, including 1 calcium-, phosphate-, and fluoride-ion-releasing nanocomposites for anticaries applications and 2 restorative systems based on biomimetic emulation of the nanomolecular assembly processes inherent in dental enamel formation using nanorods, nanospheres, and recombinant amelogenins.Keywords: nanostructure, dental restorative, resin-based composite, biomimetic, amelogenin

  17. Synthesis of Hybrid SiC/SiO2 Nanoparticles and Their Polymer Nanocomposites

    Science.gov (United States)

    Hassan, Tarig A.; Rangari, Vijaya K.; Baker, Fredric; Jeelani, Shaik

    2013-06-01

    In the present investigation, silicon carbide (β-SiC) nanoparticles ( 30 nm) were coated on silicon dioxide (SiO2) nanoparticles ( 200 nm) using sonochemical method. The resultant hybrid nanoparticles were then infused into SC-15 epoxy resin to enhance the thermal and mechanical properties of SC-15 epoxy for structural application. To fabricate an epoxy-based nanocomposite containing SiC/SiO2 hybrid nanoparticles, we have opted a two-step process. In the first step, the silica nanoparticles were coated with SiC nanoparticles using high intensity ultrasonic irradiation. In a second step, 1 wt.% of as-prepared SiC/SiO2 particles were dispersed in epoxy part-A (diglycidylether of bisphenol A) using a high intensity ultrasound for 30 min at 5°C. The part-B (cycloaliphatic amine hardener) of the epoxy was then mixed with part-A-SiC/SiO2 mixture using a high-speed mechanical stirrer for 10 min. The SiC/SiO2/epoxy resin mixture was cured at room temperature for 24 h. The SiC nanoparticles coating on SiO2 was characterized using X-ray diffraction (XRD) and high resolution transmission electron microscope (TEM). The as-prepared nanocomposite samples were characterized using thermo gravimetric analysis (TGA) and differential scanning calorimeter (DSC). Compression tests have been carried out for both nanocomposite and neat epoxy systems. The results indicated that 1 wt.% (SiC) + (SiO2) loading derived improvements in both thermal and mechanical properties when compared to the neat epoxy system.

  18. Graphene-Based Polymer Nanocomposites

    Science.gov (United States)

    2015-03-31

    responsible for the low modulus of multilayer graphene in nanocomposites [34] and the reversible loss of Bernal stacking of few-layer graphene under... extrusion or injection moulding to exfoliate the graphene or GO with a strong shear force [76]. It is simple for scale-up production, and can be applied...Lombardo, A.; Ferrari, A. C., The Shear Mode of Multilayer Graphene. Nature Materials 2012, 11, 294-300. 29. Gong, L.; Young, R. J.; Kinloch, I. A

  19. Silicone nanocomposite coatings for fabrics

    Science.gov (United States)

    Eberts, Kenneth (Inventor); Lee, Stein S. (Inventor); Singhal, Amit (Inventor); Ou, Runqing (Inventor)

    2011-01-01

    A silicone based coating for fabrics utilizing dual nanocomposite fillers providing enhanced mechanical and thermal properties to the silicone base. The first filler includes nanoclusters of polydimethylsiloxane (PDMS) and a metal oxide and a second filler of exfoliated clay nanoparticles. The coating is particularly suitable for inflatable fabrics used in several space, military, and consumer applications, including airbags, parachutes, rafts, boat sails, and inflatable shelters.

  20. Photopolymerizable Nanocomposites for Holographic Applications

    OpenAIRE

    Leite, Elsa

    2010-01-01

    Photopolymerizable nanocomposites with good optical properties consisting of an acrylamide based photopolymer and zeolite nanoparticles (Beta, zeolite A, AlPO-18, silicalite-1 and zeolite L) were fabricated and characterized for holographic applications. The colloidal zeolite solutions used in this project were characterized by several techniques including X-Ray Diffraction (XRD), Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM) and Raman spectroscopy to ensure their success...

  1. Synthesis of Hydrophobic, Crosslinkable Resins.

    Science.gov (United States)

    1984-12-01

    Bismaleimides have also been crosslinked with radical initiators to produce brittle networks [4].If a damine is added, chain extension and radical crosslinkinq...are produced during cure.The company also produced a similar phenylene based resin, with pendant nitrile groups which could be crosslinked without the...benzenes and tetra substituted cyclopentadienones [881. g. Preparation of poly 1,4 phenylene by nickel (0> catalysed electropolymerisation 1891. Cont’d

  2. Synergistic effect of carbon nanofiber and sub-micro filamentary nickel nanostrand on the shape memory polymer nanocomposite

    International Nuclear Information System (INIS)

    Lu, Haibao; Leng, Jinsong; Du, Shanyi; Gou, Jihua

    2011-01-01

    This work studies the synergistic effect of carbon nanofiber (CNF) and sub-micro filamentary nickel nanostrand on the thermal and electrical properties, as well as the electro-active shape memory behavior, of a shape memory polymer (SMP) nanocomposite. The combination of electrical CNF and electromagnetic nickel nanostrand is used to render insulating thermo-responsive SMPs conductive. Subsequently, the shape memory behavior of the SMP can be activated by the electrical resistive heating. It is shown that sub-micro filamentary nickel-coated nanostrands significantly improved the electrical conductivity to facilitate the actuation of the SMP nanocomposite despite the low nanostrand volume content and low electrical voltage. Also the CNFs are blended with the SMP resin to facilitate the dispersion of nanostrands and improve the thermal conductivity to accelerate the electro- and thermo-active responses

  3. Characterization of a nanoparticle-filled resin for application in scan-LED-technology.

    Science.gov (United States)

    Kolb, Eva; Kummerlöwe, Claudia; Klare, Martin

    2011-10-01

    Scan-LED-technology is a new rapid prototyping technique with increasing applications in the production of custom-made medical products. The present work is dealing with the examination of a silica/urethandimethacrylate (UDMA) nanocomposite for application in scan-LED-technology. The use of specific LED in a photo-DSC unit enables the simulation of crucial parameters of nanoparticle-filled resins for their application in scan-LED-technology. The conversion of double bonds during the curing reaction and the rate of conversion were studied as a function of radiation intensity, silica nanoparticle content, and silanization of the nanoparticles with 3-methacryloyloxypropyl-trimethoxysilane (MPTMS). The conversion of double bonds is increasing with increasing radiation intensity. The increasing conversion of the nanoparticle-filled resins is discussed as a combined effect of increasing nanoparticle content, alternated initiator/double bond ratio and increasing radiation intensity. A significant dependence of the reaction rate on nanoparticle content could not be found. Only for the unfilled resin, the rate was increasing at higher radiation intensities. The influence of residual solvent on conversion and rate of reaction was also analyzed. TGA measurements combined with FTIR were used to study the silanization of the nanoparticles. The silane layer thickness on the surface of the silica nanoparticles was determined.

  4. Nanocrystal-polymer nanocomposite electrochromic device

    Science.gov (United States)

    Milliron, Delia; Runnerstrom, Evan; Helms, Brett; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2015-12-08

    Described is an electrochromic nanocomposite film comprising a solid matrix of an oxide based material, the solid matrix comprising a plurality of transparent conducting oxide (TCO) nanostructures dispersed in the solid matrix and a lithium salt dispersed in the solid matrix. Also described is a near infrared nanostructured electrochromic device having a functional layer comprising the electrochromic nanocomposite film.

  5. Nanocomposite of graphene and metal oxide materials

    Science.gov (United States)

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  6. Highly Conductive Multifunctional Graphene Polycarbonate Nanocomposites

    Science.gov (United States)

    Yoonessi, Mitra; Gaier, James R.

    2010-01-01

    Graphene nanosheet bisphenol A polycarbonate nanocomposites (0.027 2.2 vol %) prepared by both emulsion mixing and solution blending methods, followed by compression molding at 287 C, exhibited dc electrical percolation threshold of approx.0.14 and approx.0.38 vol %, respectively. The conductivities of 2.2 vol % graphene nanocomposites were 0.512 and 0.226 S/cm for emulsion and solution mixing. The 1.1 and 2.2 vol % graphene nanocomposites exhibited frequency-independent behavior. Inherent conductivity, extremely high aspect ratio, and nanostructure directed assembly of the graphene using PC nanospheres are the main factors for excellent electrical properties of the nanocomposites. Dynamic tensile moduli of nanocomposites increased with increasing graphene in the nanocomposite. The glass transition temperatures were decreased with increasing graphene for the emulsion series. High-resolution electron microscopy (HR-TEM) and small-angle neutron scattering (SANS) showed isolated graphene with no connectivity path for insulating nanocomposites and connected nanoparticles for the conductive nanocomposites. A stacked disk model was used to obtain the average particle radius, average number of graphene layers per stack, and stack spacing by simulation of the experimental SANS data. Morphology studies indicated the presence of well-dispersed graphene and small graphene stacking with infusion of polycarbonate within the stacks.

  7. Biopolymer nanocomposite films reinforced with nanocellulose whiskers

    Science.gov (United States)

    Amit Saxena; Marcus Foston; Mohamad Kassaee; Thomas J. Elder; Arthur J. Ragauskas

    2011-01-01

    A xylan nanocomposite film with improved strength and barrier properties was prepared by a solution casting using nanocellulose whiskers as a reinforcing agent. The 13C cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR) analysis of the spectral data obtained for the NCW/xylan nanocomposite films indicated the signal intensity originating...

  8. Nanocomposite of graphene and metal oxide materials

    Science.gov (United States)

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2013-10-15

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  9. The overall effect of reactive rubber nanoparticles and nano clay on the mechanical properties of epoxy resin

    Directory of Open Access Journals (Sweden)

    Mona A. Ahmed

    2015-10-01

    Full Text Available Epoxy resin, a thermoset polymer matrix used for technical applications; exhibit some outstanding properties such as high modulus, high chemical resistance and high dimension stability. However, the high crosslink density of epoxy makes this material brittle with low impact strength and poor resistance to crack propagation, which limits their many end use applications. It is an important objective to explore new routes toward toughening of epoxy resins without affecting stiffness, strength, and glass temperature. The main objective of this work is to incorporate reactive rubber nanoparticles (RRNP and organically modified nanoclay (Cloisite-30B into epoxy matrix with the aim of obtaining improved material with higher toughness without compromising the other desired mechanical properties. Epoxy hybrids nanocomposites containing RRNP, Cloisite-30B and RRNP/Cloisite-30B mixture were synthesized and characterized to compare the different properties which normally result from the use of single filler and hence aiming to improve toughness/stiffness balance.

  10. Evaluation of adhesion of reline resins to the thermoplastic denture base resin for non-metal clasp denture.

    Science.gov (United States)

    Kim, Ji Hye; Choe, Han Cheol; Son, Mee Kyoung

    2014-01-01

    This study aimed to evaluate the tensile and transverse bond strength of chairside reline resins (Tokuyama Rebase II, Mild Rebaron LC) to a thermoplastic acrylic resin (Acrytone) used for non metal clasp denture. The results were compared with those of a conventional heat polymerized acrylic resin (Paladent 20) and a thermoplastic polyamide resin (Biotone). The failure sites were examined by scanning electron microscopy to evaluate the mode of failure. As results, the bond strength of reline resins to a thermoplastic acrylic resin was similar to the value of a conventional heat polymerized acrylic resin. However, thermoplastic polyamide resin showed the lowest value. The results of this study indicated that a thermoplastic acrylic resin for non metal clasps denture allows chairside reline and repair. It was also found that the light-polymerized reline resin had better bond strength than the autopolymerizing reline resin in relining for a conventional heat polymerized acrylic resin and a thermoplastic acrylic resin.

  11. Nanocomposite organomineral hybrid materials. Part I

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2016-02-01

    Full Text Available The paper addresses the issues of alkoxide method of sol-gel synthesis and non-hydrolytic method of sol-gel synthesis and colloidal method of sol-gel synthesis. The authors also consider an alternative approach based on the use of soluble silicates as precursors in the sol-gel technology, of nanocomposites. It was shown that nanocomposites can be produced through aerogels. The paper also analyzes the mixing technologies of nanocomposites preparation. It has been demonstrated the possibility to change the types of nano-phase which is used for obtaining nanocomposites in different approaches. Various models of packaging spherical, fibrous and layered nanoparticles, introduced into the structure of the nanocomposite, in the preparation thereof were examined.

  12. Nanocomposite organomineral hybrid materials. Part 3

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2016-06-01

    Full Text Available The paper addresses the issues of alkoxide method of sol-gel synthesis and non-hydrolytic method of sol-gel synthesis and colloidal method of sol-gel synthesis. The authors also consider an alternative approach based on the use of soluble silicates as precursors in the sol-gel technology, of nanocomposites. It was shown that nanocomposites can be produced through aerogels. The paper also analyzes the mixing technologies of nanocomposites preparation. It has been demonstrated the possibility to change the types of nano-phase which is used for obtaining nanocomposites in different approaches. Various models of packaging spherical, fibrous and layered nanoparticles, introduced into the structure of the nanocomposite, in the preparation thereof were examined.

  13. Controlled fabrication of luminescent and magnetic nanocomposites

    Science.gov (United States)

    Ma, Yingxin; Zhong, Yucheng; Fan, Jing; Huang, Weiren

    2018-03-01

    Luminescent and magnetic multifunctional nanocomposite is in high demand and widely used in many scales, such as drug delivery, bioseparation, chemical/biosensors, and so on. Although lots of strategies have been successfully developed for the demand of multifunctional nanocomposites, it is not easy to prepare multifunctional nanocomposites by using a simple method, and satisfy all kinds of demands simultaneously. In this work, via a facile and versatile method, luminescent nanocrystals and magnetic nanoparticles were successfully synthesized through self-assembly under vigorous stirring and ultrasonic treatment. These multifunctional nanocomposites are not only water stable but also find wide application such as magnetic separation and concentration with a series of moderate speed, multicolor fluorescence at different emission wavelength, high efficiency of the excitation and emission, and so on. By changing different kinds of luminescent nanocrystals and controlling the amount of luminescent and magnetic nanoparticles, a train of multifunctional nanocomposites was successfully fabricated via a versatile and robust method.

  14. Nanocomposite organomineral hybrid materials. Part 2

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2016-04-01

    Full Text Available The paper addresses the issues of alkoxide method of sol-gel synthesis and non-hydrolytic method of sol-gel synthesis and colloidal method of sol-gel synthesis. The authors also consider an alternative approach based on the use of soluble silicates as precursors in the sol-gel technology, of nanocomposites. It was shown that nanocomposites can be produced through aerogels. The paper also analyzes the mixing technologies of nanocomposites preparation. It has been demonstrated the possibility to change the types of nano-phase which is used for obtaining nanocomposites in different approaches. Various models of packaging spherical, fibrous and layered nanoparticles, introduced into the structure of the nanocomposite, in the preparation thereof were examined.

  15. Tailored Nanocomposites of Polypropylene with Layered Silicates

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L.; Nakajima, H; Manias, E; Krishnamoorti, R

    2009-01-01

    The melt rheological properties of layered silicate nanocomposites with maleic anhydride (MA) functionalized polypropylene are contrasted to those based on ammonium-terminated polypropylene. While the MA functionalized PP based nanocomposites exhibit solid-like linear viscoelastic behavior, consistent with the formation of a long-lived percolated nanoparticle network, the single-end ammonium functionalized PP based nanocomposites demonstrated liquid-like behavior at comparable montmorillonite concentrations. The differences in the linear viscoelasticity are attributed to the presence of bridging interactions in MA functionalized nanocomposites. Further, the transient shear stress of the MA functionalized nanocomposites in start-up of steady shear is a function of the shear strain alone, and the steady shear response is consistent with that of non-Brownian systems. The weak dependence of the steady first normal stress difference on the steady shear stress suggests that the polymer chain mediated silicate network contributes to such unique flow behavior.

  16. Fabrication and properties of multiferroic nanocomposite films

    KAUST Repository

    Al-Nassar, Mohammed Y.

    2015-01-01

    A new type of multiferroic polymer nanocomposite is presented, which exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature. The multiferroic nanocomposite consists of a ferroelectric copolymer poly(vinylindene fluoride-trifluoroethylene) [P(VDF-TrFE)] and high aspect ratio ferromagnetic nickel (Ni) nanowires (NWs), which were grown inside anodic aluminum oxide membranes. The fabrication of nanocomposite films with Ni NWs embedded in P(VDF-TrFE) has been successfully carried out via a simple low-temperature spin-coating technique. Structural, ferromagnetic, and ferroelectric properties of the developed nanocomposite have been investigated. The remanent and saturation polarization as well as the coercive field of the ferroelectric phase are slightly affected by the incorporation of the NWs as well as the thickness of the films. While the former two decrease, the last increases by adding the NWs or increasing the thickness. The ferromagnetic properties of the nanocomposite films are found to be isotropic.

  17. Resin selection criteria for tough composite structures

    Science.gov (United States)

    Chamis, C. C.; Smith, G. T.

    1983-01-01

    Resin selection criteria are derived using a structured methodology consisting of an upward integrated mechanistic theory and its inverse (top-down structured theory). These criteria are expressed in a "criteria selection space" which are used to identify resin bulk properties for improved composite "toughness". The resin selection criteria correlate with a variety of experimental data including laminate strength, elevated temperature effects and impact resistance.

  18. Solidifying power station resins and sludges

    International Nuclear Information System (INIS)

    Willis, A.S.D.; Haigh, C.P.

    1984-01-01

    Radioactive ion exchange resins and sludges arise at nuclear power stations from various operations associated with effluent treatment and liquid waste management. As the result of an intensive development programme, the Central Electricity Generating Board (CEGB) has designed a process to convert power station resins and sludges into a shielded, packaged solid monolithic form suitable for final disposal. Research and development, the generic CEGB sludge/resin conditioning plant and the CEGB Active Waste Project are described. (U.K.)

  19. Volumetric polymerization shrinkage of contemporary composite resins

    OpenAIRE

    Nagem Filho, Halim; Nagem, Haline Drumond; Francisconi, Paulo Afonso Silveira; Franco, Eduardo Batista; Mondelli, Rafael Francisco Lia; Coutinho, Kennedy Queiroz

    2007-01-01

    The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill ...

  20. Porous Ceramic Spheres from Ion Exchange Resin

    Science.gov (United States)

    Dynys, Fred

    2005-01-01

    A commercial cation ion exchange resin, cross-linked polystyrene, has been successfully used as a template to fabricate 20 to 50 micron porous ceramic spheres. Ion exchange resins have dual template capabilities. Pore architecture of the ceramic spheres can be altered by changing the template pattern. Templating can be achieved by utilizing the internal porous structure or the external surface of the resin beads. Synthesis methods and chemical/physical characteristics of the ceramic spheres will be reported.

  1. Bond strength of resin-resin interfaces contaminated with saliva and submitted to different surface treatments

    OpenAIRE

    Furuse, Adilson Yoshio; Cunha, Leonardo Fernandes da; Benetti, Ana Raquel; Mondelli, José

    2007-01-01

    The purpose of this study was to investigate the effect of different surface treatments on shear bond strength of saliva-contaminated resin-resin interfaces. Flat resin surfaces were fabricated. In the control group, no contamination or surface treatment was performed. The resin surfaces of the experimental groups were contaminated with saliva and air-dried, and then submitted to: (G1) rinsing with water and drying; (G2) application of an adhesive system; (G3) rinsing and drying, abrasion wit...

  2. Influence of charge carriers on corrugation of suspended graphene

    Science.gov (United States)

    Kirilenko, Demid A.; Gorodetsky, Andrei; Baidakova, Marina V.

    2018-02-01

    Electronic degrees of freedom are predicted to play a significant role in mechanics of two-dimensional crystalline membranes. Here we show that appearance of charge carriers may cause a considerable impact on suspended graphene corrugation, thus leading to additional mechanism resulting in charge carriers mobility variation with their density. This finding may account for some details of suspended graphene conductivity dependence on its doping level and suggests that proper modeling of suspended graphene-based device properties must include the influence of charge carriers on its surface corrugation.

  3. Novel silica-based ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    Eichrom`s highly successful Diphonixo resin resembles a conventional ion exchange resin in its use of sulfonic acid ligands on a styrene- divinylbenzene matrix. Diphonix resin exhibits rapid exchange kinetics that allow economical operation of ion exchange systems. Unlike conventional resins, Diphonix resin contains chelating ligands that are diphosphonic acid groups that recognize and remove the targeted metals and reject the more common elements such as sodium, calcium and magnesium. This latter property makes Diphonix ideal for many industrial scale applications, including those involving waste treatment. For treatment of low-level, transuranic (TRU) and high- level radioactive wastes, Diphonix`s polystyrene backbone hinders its application due to radiolytic stability of the carbon-hydrogen bonds and lack of compatibility with expected vitrification schemes. Polystyrene-based Diphonix is approximately 60% carbon- hydrogen. In response to an identified need within the Department of Energy for a resin with the positive attributes of Diphonix that also exhibits greater radiolytic stability and final waste form compatibility, Eichrom has successfully developed a new, silica-based resin version of Diphonix. Target application for this new resin is for use in environmental restoration and waste management situations involving the processing of low-level, transuranic and high-level radioactive wastes. The resin can also be used for processing liquid mixed waste (waste that contains low level radioactivity and hazardous constituents) including mixed wastes contaminated with organic compounds. Silica-based Diphonix is only 10% carbon-hydrogen, with the bulk of the matrix silica.

  4. Microbiological study of water-softener resins.

    Science.gov (United States)

    Stamm, J M; Engelhard, W E; Parsons, J E

    1969-09-01

    Microbial identification using effluents backflushed from exhausted urban and rural tank resins and cleaned resins containing the sulfonated copolymer of styrene and divinylbenzene (SDB) were completed, along with microbial assessment of the concentrated stock salt brine. Forty-four different bacterial and fungal genera were identified. Extensive biochemical and animal virulence tests completed on one of the six bacterial salt brine isolates indicated a pathogenic staphylococcal strain. The retention of Staphylococcus aureus, a Flavobacterium sp, and Escherichia coli B bacteriophage was demonstrated both by using the nonexhausted sodium-regenerated resin and by using the same resin exchanged with different mono-, di-, and trivalent cations. Effluent counts completed after bacterial seepage through the resins indicated the Pb(++) exchanged resin removed 55% of the bacteria; Na(+), Fe(++), and Al(+++) removed 31 to 36% and Ca(++) and Cu(++) removed about 10 to 15%. Seventy per cent or more of the bacteriophage was removed by Fe(++), Cu(++), and Al(+++), whereas the Ca(++) and Na(++) cations removed 25 to 31%. Over a 77-day period, nonsterile tap water was passed through bacterial seeded and uninoculated SDB (Na) resin columns. Effluent and resin elution counts demonstrated the growth and survival of 2 different bacteria per column. Increased bacterial retention, survival, and multiplication occurred concomitantly with accumulation of organic and inorganic materials and the Ca(++) and Mg(++) cations from the tap water. Furthermore, microbial elution from resin particles taken from column depths of 1, 8, and 16 cm indicated a bacterial diminution with increasing depths.

  5. Heat-cured Acrylic Resin versus Light-activated Resin: A Patient ...

    African Journals Online (AJOL)

    Context: Although light-activated resins (Eclipse) have been reported to possess superior physical and mechanical properties compared with the heat-cured acrylic resins (Lucitone-199), a few studies have compared overdentures with a locator attachment constructed from heat-cured acrylic resins with those constructed ...

  6. Rheological and morphological properties of graphene-epoxy nanocomposites

    Science.gov (United States)

    Nobile, Maria Rossella; Raimondo, Marialuigia; Lafdi, Khalid; Guadagno, Liberata

    2016-05-01

    In this paper the rheological and morphological properties of an epoxy resin filled with graphene-based nanoparticles have been investigated. Two samples of partially exfoliated graphite (pEG) and carboxylated partially exfoliated graphite (CpEG), differing essentially for the content of carboxylated groups, are used. The percentage of exfoliated graphite is slightly different for the two samples: 56% for pEG and and 60% for CpEG. Exfoliated graphite is prepared using traditional acid intercalation followed by a sudden treatment at high temperature (900°C). The epoxy matrix is prepared by mixing a tetrafunctional precursor with a reactive diluent which produces a significant decrease in the viscosity of the epoxy precursor so that the dispersion step of nanofillers in the matrix can easily occur. The hardener agent, the 4,4-diaminodiphenyl sulfone (DDS), is added at a stoichiometric concentration with respect to all the epoxy rings. The inclusion of the pEG and CpEG samples in the formulated epoxy mixture significantly modifies the rheological behaviour of the mixture itself. The epoxy mixture, indeed, shows a Newtonian behavior; on the contrary the complex viscosity of the nanocomposites clearly shows a shear thinning behavior at 3 wt % of pEG content and at 0.75 wt% of CpEG content. The increase in complex viscosity with the increasing of pEG and CpEG content is mostly caused by a dramatic increase in the storage modulus of the nanocomposites. All the graphene-based epoxy mixtures are cured by a two-stage curing cycles: a first isothermal stage is carried out at the lower temperature of 125°C for 1 hour and, then, a second isothermal stage at the higher temperature of 200°C for 3 hours. The different morphology shown by the two pEG and CpEG samples is consistent with the difference in the percentage of exfoliation degree and well correlates with the rheological behavior of investigated graphene-epoxy nanocomposites.

  7. Introduction to suspended-sediment sampling

    Science.gov (United States)

    Nolan, K. Michael; Gray, John R.; Glysson, G. Douglas

    2005-01-01

    Knowledge of the amount and timing of sediment transport in streams is important to those directly or indirectly responsible for developing and managing water and land resources. Such data are often used to judge the health of watershed and the success or failure of activities designed to mitigate adverse impacts of sediment on streams and stream habitats. This training class presents an introduction to methods currently used by the U.S. Geological Survey (USGS) to sample suspended-sediment concentrations in streams. The presentation is narrated, but you control the pace of the presentation. If the computer you are using can view 'MPEG' videos you will be able to take advantage of videos interspersed in the presentation. A test, found at the end of the presentation, can be taken to assess how well you understood the training material. The class, which is registered as class SW4416 with the National Training Center of the USGS, should take two or three hours to complete. In order to use the presentation provided via this Web page, you will need to download a large disc images (linked below) and 'burn' it to a blank CD-ROM using a CD-ROM recorder on your computer. The presentation will only run on a Windows-based personal computer (PC). The presentation was developed using Macromedia Director MX 20041 and is contained in the file 'SIR05-5077.exe' which should autolaunch. If it does not, the presentation can be started by double-clicking on the file name. A sound card and speakers are necessary to take advantage of narrations that accompany the presentation. Text of narrations is provided, if you are unable to listen to narrations. Instructions for installing and running the presentation are included in the file 'Tutorial.htm', which is on the CD. 1 Registered Trademark: Macromedia Incorporated

  8. Marginal and internal fit of nano-composite CAD/CAM restorations

    Directory of Open Access Journals (Sweden)

    So-Hyun Park

    2016-02-01

    Full Text Available Objectives The purpose of this study was to compare the marginal and internal fit of nano-composite CAD-CAM restorations. Materials and Methods A full veneer crown and an mesio-occluso-distal (MOD inlay cavity, which were prepared on extracted human molars, were used as templates of epoxy resin replicas. The prepared teeth were scanned and CAD-CAM restorations were milled using Lava Ultimate (LU and experimental nano-composite CAD/CAM blocks (EB under the same milling parameters. To assess the marginal and internal fit, the restorations were cemented to replicas and were embedded in an acrylic mold for sectioning at 0.5 mm intervals. The measured gap data were pooled according to the block types and measuring points for statistical analysis. Results Both the block type and measuring point significantly affected gap values, and their interaction was significant (p = 0.000. In crowns and inlays made from the two blocks, gap values were significantly larger in the occlusal area than in the axial area, while gap values in the marginal area were smallest (p < 0.001. Among the blocks, the restorations milled from EB had a significantly larger gap at all measuring points than those milled from LU (p = 0.000. Conclusions The marginal and internal gaps of the two nano-composite CAD/CAM blocks differed according to the measuring points. Among the internal area of the two nano-composite CAD/CAM restorations, occlusal gap data were significantly larger than axial gap data. The EB crowns and inlays had significantly larger gaps than LU restorations.

  9. Comparison of Cashew Nut Shell Liquid (CNS ) Resin with ...

    African Journals Online (AJOL)

    synthetic) resin. Compressive and tensile strength tests conducted proved that composites developed with cashew nut shell liquid (CNSL) resin were comparable to those developed with polyester resin. In the results, CNSL has an ultimate ...

  10. Ratios of total suspended solids to suspended sediment concentrations by particle size

    Science.gov (United States)

    Selbig, W.R.; Bannerman, R.T.

    2011-01-01

    Wet-sieving sand-sized particles from a whole storm-water sample before splitting the sample into laboratory-prepared containers can reduce bias and improve the precision of suspended-sediment concentrations (SSC). Wet-sieving, however, may alter concentrations of total suspended solids (TSS) because the analytical method used to determine TSS may not have included the sediment retained on the sieves. Measuring TSS is still commonly used by environmental managers as a regulatory metric for solids in storm water. For this reason, a new method of correlating concentrations of TSS and SSC by particle size was used to develop a series of correction factors for SSC as a means to estimate TSS. In general, differences between TSS and SSC increased with greater particle size and higher sand content. Median correction factors to SSC ranged from 0.29 for particles larger than 500m to 0.85 for particles measuring from 32 to 63m. Great variability was observed in each fraction-a result of varying amounts of organic matter in the samples. Wide variability in organic content could reduce the transferability of the correction factors. ?? 2011 American Society of Civil Engineers.

  11. Resin composite for sealing and its use in a solar cell. Fushiyo jushi soseibutsu oyobi sore wo mochiita taiyo denchi

    Energy Technology Data Exchange (ETDEWEB)

    Toma, H.; Mimura, T.; Takehara, N.

    1994-01-28

    This invention presents resin composites for sealing of a solar cell composed of a hardening resin and a thermoplastic resin which has a number average molecular weight larger than that of the hardening resin and is soluble in the hardening resin, and the invention affords a solar cell to endure a long-term stable operation and to give a good performance. The hardening resin includes unsaturated polyester resin, phenolic resin, alkyd resin, unsaturated acrylic resin, epoxy resin, polyurethane resin, melamine resin, diallyl phthalate resin, their oligomers and their modifications. The thermoplastic resin includes saturated polyester resin, phenolic resin, acrylic resin, styrene resin, epoxy resin, polyurethane resin, polyvinyl acetate resin, polyvinyl chloride resin, polyvinyl alcohol resin, polyacetal resin, their modifications and their copolymer resin. 2 figs., 3 tabs.

  12. Flame-retardant electrical conductive nanopolymers based on bisphenol F epoxy resin reinforced with nano polyanilines.

    Science.gov (United States)

    Zhang, Xi; He, Qingliang; Gu, Hongbo; Colorado, Henry A; Wei, Suying; Guo, Zhanhu

    2013-02-01

    Both fibril and spherical polyaniline (PANI) nanostructures have successfully served as nanofillers for obtaining epoxy resin polymer nanocomposites (PNCs). The effects of nanofiller morphology and loading level on the mechanical properties, rheological behaviors, thermal stability, flame retardancy, electrical conductivity, and dielectric properties were systematically studied. The introduction of the PANI nanofillers was found to reduce the heat-release rate and to increase the char residue of epoxy resin. A reduced viscosity was observed in both types of PANI-epoxy resin liquid nanosuspension samples at lower loadings (1.0 wt % for PANI nanospheres; 1.0 and 3.0 wt % for PANI nanofibers), the viscosity was increased with further increases in the PANI loading for both morphologies. The dynamic storage and loss modulii were studied, together with the glass-transition temperature (T(g)) being obtained from the peak of tan δ. The critical PANI nanofiller loading for the modulus and T(g) was different, i.e., 1.0 wt % for the nanofibers and 5.0 wt % for the nanospheres. The percolation thresholds of the PANI nanostructures were identified with the dynamic mechanical property and electrical conductivity, and, because of the higher aspect ratio, nanofibers reached the percolation threshold at a lower loading (3.0 wt %) than the PANI nanospheres (5.0 wt %). The PANI nanofillers could increase the electrical conductivity, and, at the same loading, the epoxy nanocomposites with the PANI nanofibers showed lower volume resistivity than the nanocomposites with the PANI nanospheres, which were discussed with the contact resistance and percolation threshold. The tensile test indicated an improved tensile strength of the epoxy matrix with the introduction of the PANI nanospheres at a lower loading (1.0 wt %). Compared with pure epoxy, the elasticity modulus was increased for all the PNC samples. Moreover, further studies on the fracture surface revealed an enhanced

  13. Air pollution in Aleppo city, gases,suspended particulates

    International Nuclear Information System (INIS)

    Othman, I.; Sabra, Sh.; Al-Kharfan, K.

    1994-06-01

    Total suspended particulates measured by using High Volume Air Sampler. The Co and O 3 were measured during weekday and weekend. The concentration of all pollutants at city center are higher than other measured areas. (author). 10 figs., 10 tabs

  14. 40 CFR 1042.335 - Reinstating suspended certificates.

    Science.gov (United States)

    2010-07-01

    ... Testing Production-line Engines § 1042.335 Reinstating suspended certificates. (a) Send us a written.... (b) Give us data from production-line testing that shows the remedied engine family complies with all...

  15. Particles matter: Transformation of suspended particles in constructed wetlands

    NARCIS (Netherlands)

    Mulling, B.T.M.

    2013-01-01

    This thesis shows that constructed wetlands transform suspended particles in (treated) municipal wastewater through selective precipitation in ponds, biological filtering by plankton communities and physical and biological retention in reed beds. These processes effectively remove faecal indicator

  16. Novel Resuscitation from Lethal Hemorrhage - Suspended Animation for Delayed Resuscitation

    National Research Council Canada - National Science Library

    Safar, Peter

    2002-01-01

    .... We have conceived and documented "suspended animation for delayed resuscitation" with the use of hypothermic saline flush into the aorta within the first 5 minute of no blood flow, using novel...

  17. Curing kinetics of alkyd/melamine resin mixtures

    OpenAIRE

    Jovičić Mirjana C.; Radičević Radmila Ž.

    2009-01-01

    Alkyd resins are the most popular and useful synthetic resins applied as the binder in protective coatings. Frequently they are not used alone but are modified with other synthetic resins in the manufacture of the coatings. An alkyd/melamine resin mixture is the usual composition for the preparation of coating called 'baking enamel' and it is cured through functional groups of resins at high temperatures. In this paper, curing kinetics of alkyd resins based on castor oil and dehydrated castor...

  18. Monitoring the mechanical behaviour of electrically conductive polymer nanocomposites under ramp and creep conditions.

    Science.gov (United States)

    Pedrazzoli, D; Dorigato, A; Pegoretti, A

    2012-05-01

    Various amounts of carbon black (CB) and carbon nanofibres (CNF) were dispersed in an epoxy resin to prepare nanocomposites whose mechanical behaviour, under ramp and creep conditions, was monitored by electrical measurements. The electrical resistivity of the epoxy resin was dramatically reduced by both nanofillers after the percolation threshold (1 wt% for CB and 0.5 wt% for CNF), reaching values in the range of 10(3)-10(4) omega . cm for filler loadings higher than 2 wt%. Due to the synergistic effects between the nanofillers, an epoxy system containing a total nanofiller amount of 2 wt%, with a relative CB/CNF ratio of 90/10 was selected for the specific applications. A direct correlation between the tensile strain and the increase of the electrical resistance was observed over the whole experimental range, and also the final failure of the samples was clearly detected. Creep tests confirmed the possibility to monitor the various deformational stages under constant loads, with a strong dependency from the temperature and the applied stress. The obtained results are encouraging for a possible application of nanomodified epoxy resin as a matrix for the preparation of structural composites with sensing (i.e., damage-monitoring) capabilities.

  19. Suspended-sediment and suspended-sand concentrations and loads for selected streams in the Mississippi River Basin, 1940-2009

    Science.gov (United States)

    Heimann, David C.; Cline, Teri L.; Glaspie, Lori M.

    2011-01-01

    This report presents suspended-sediment concentration and streamflow data, describes load-estimation techniques used in the computation of annual suspended-sediment loads, and presents annual suspended-sediment loads for 48 streamgaging stations within the Mississippi River Basin. Available published, unpublished, and computed annual total suspended-sediment and suspended-sand loads are presented for water years 1940 through 2009. When previously published annual loads were not available, total suspended-sediment and sand loads were computed using available data for water years 1949 through 2009. A table of suspended-sediment concentration and daily mean streamflow data used in the computation of annual loads is presented along with a table of compiled and computed annual suspended-sediment and suspended-sand loads, annual streamflows, and flow-weighted concentrations for the 48 stations.

  20. Suspended sediment apportionment in a South-Korean mountain catchment

    Science.gov (United States)

    Birkholz, Axel; Meusburger, Katrin; Park, Ji-Hyung; Alewell, Christine

    2016-04-01

    Due to the rapid agricultural expansion and intensification during the last decades in South-Korea, large areas of hill slope forests were transformed to paddies and vegetable fields. The intensive agriculture and the easily erodible soils in our catchment are a major reason for the increased erosion causing suspended sediments to infiltrate into the close drinking water reservoir. The drinking water reservoir Lake Soyang provides water supply for over ten million people in Seoul. Landscape managers need to know the exact origin of these sediments before they can create landscape amelioration schemes. We applied a compound-specific stable isotope (CSSI) approach (Alewell et al., 2015) to apportion the sources of the suspended sediments between forest and agricultural soil contribution to the suspended sediments in a different catchment and applied the same approach to identify and quantify the different sources of the suspended sediments in the river(s) contributing to Lake Soyang. We sampled eight soil sites within the catchment considering the different landuse types forest, rice paddies, maize and vegetables. Suspended sediments were sampled at three outlets of the different sub-catchments. Soils and suspended sediments are analysed for bulk carbon and nitrogen isotopes, compound-specific carbon isotopes of plant-wax derived long-chain fatty acids and long-chain n-alkanes. Fatty acid and alkane isotopes are then used in mixing calculations and the mixing model software IsoSource to find out the contribution of the different source soils to the suspended sediments. We present first data of the source soils and the suspended sediments. C. Alewell, A. Birkholz, K. Meusburger, Y. Schindler-Wildhaber, L. Mabit, 2015. Sediment source attribution from multiple land use systems with CSIA. Biogeosciences Discuss. 12: 14245-14269.

  1. Suspended particles and the gravitational instability of a rotating plasma

    International Nuclear Information System (INIS)

    Sharma, R.C.; Sharma, K.C.

    1980-01-01

    The gravitational instability of an infinite homogeneous self-graviting and finitely conducting, rotating gas-particle medium, in the presence of a uniform vertical magnetic field, is studied to include finite Larmor radius and suspended particles effects. The particular cases of the effects of rotation, finite conductivity, finite Larmor radius and suspended particles on the waves propagated along and perpendicular to magnetic field have been discussed. Jeans's criterion determines the gravitational instability. (orig.)

  2. Evaluation of the Suspending Properties of the Coprecipitate of ...

    African Journals Online (AJOL)

    Purpose: To evaluate the suspending properties of the co-precipitate from Irvingia gabonensis gum variety Excelsa (Fam: Irvingiaceae) and gelatin. Methods: The gum from Irvingia gabonensis was extracted and co-precipitated with gelatin in gum/gelatin ratios of 1:1, 1:2, 1:3, 1:4, 1:0 and 0:1. The suspending ability of the ...

  3. Input to Resin Column Structural Analysis if Autocatalytic Resin Reaction Occurs in HB-Line Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Hallman, D.F.

    2001-07-10

    Solutions of plutonium in nitric acid are purified and concentrated using anion resin prior to precipitation. There have been instances of resin column explosions caused by autocatalytic reactions of anion resins in nitric acid within the DOE complex

  4. Gold Loading on Ion Exchange Resins in Non-Ammoniacal Resin-Solution Systems

    Directory of Open Access Journals (Sweden)

    Abrar Muslim

    2010-12-01

    Full Text Available The loading of gold using strong base anion exchange resin in non-ammoniac resin-solution (NARS systems has been studied. The loading of gold onto ion exchange resins is affected by polythionate concentration, and trithionate can be used as the baseline in the system. The results also show that resin capacity on gold loading increases due to the increase in the equilibrium thiosulfate concentration in the NARS system. Gold loading performances show the need of optimization the equilibrium concentrations of thiosulfate in the NARS system. Keywords: equilibrium, gold loading, resin capacity, thiosulfate, trithionate

  5. Polyimide Resins Resist Extreme Temperatures

    Science.gov (United States)

    2009-01-01

    Spacecraft and aerospace engines share a common threat: high temperature. The temperatures experienced during atmospheric reentry can reach over 2,000 F, and the temperatures in rocket engines can reach well over 5,000 F. To combat the high temperatures in aerospace applications, Dr. Ruth Pater of Langley Research Center developed RP-46, a polyimide resin capable of withstanding the most brutal temperatures. The composite material can push the service temperature to the limits of organic materials. Designed as an environmentally friendly alternative to other high-temperature resins, the RP-46 polyimide resin system was awarded a 1992 "R&D 100" award, named a "2001 NASA Technology of the Year," and later, due to its success as a spinoff technology, "2004 NASA Commercial Invention of the Year." The technology s commercial success also led to its winning the Langley s "Paul F. Holloway Technology Transfer Award" as well as "Richard T. Whitcom Aerospace Technology Transfer Award" both for 2004. RP-46 is relatively inexpensive and it can be readily processed for use as an adhesive, composite, resin molding, coating, foam, or film. Its composite materials can be used in temperatures ranging from minus 150 F to 2,300 F. No other organic materials are known to be capable of such wide range and extreme high-temperature applications. In addition to answering the call for environmentally conscious high-temperature materials, RP-46 provides a slew of additional advantages: It is extremely lightweight (less than half the weight of aluminum), chemical and moisture resistant, strong, and flexible. Pater also developed a similar technology, RP-50, using many of the same methods she used with RP-46, and very similar in composition to RP-46 in terms of its thermal capacity and chemical construction, but it has different applications, as this material is a coating as opposed to a buildable composite. A NASA license for use of this material outside of the Space Agency as well as

  6. The solidification of spent resin

    International Nuclear Information System (INIS)

    Shiao, S. J.; Tsai, C. M.; Shyu, Y. H.

    1991-01-01

    A quasi-steady apparatus was applied to measure the thermal conductivity of solids ranging in size for 0.3 to 200 L, and temperature distributions in the solids were recorded during the curing, and theoretical equation for conduction in a cylindrical form with uniform energy generation was established to define the thermal state of reaction. The heat of reaction calculated from the theoretical equation with experimental values for the maximum temperature and thermal conductivity agrees very well with the data reported. The relationships among heat of reaction and amount of curing agent, retardant, loading of spent resin, and water were established

  7. Effective Optical Properties of Plasmonic Nanocomposites.

    Science.gov (United States)

    Etrich, Christoph; Fahr, Stephan; Hedayati, Mehdi Keshavarz; Faupel, Franz; Elbahri, Mady; Rockstuhl, Carsten

    2014-01-27

    Plasmonic nanocomposites find many applications, such as nanometric coatings in emerging fields, such as optotronics, photovoltaics or integrated optics. To make use of their ability to affect light propagation in an unprecedented manner, plasmonic nanocomposites should consist of densely packed metallic nanoparticles. This causes a major challenge for their theoretical description, since the reliable assignment of effective optical properties with established effective medium theories is no longer possible. Established theories, e.g., the Maxwell-Garnett formalism, are only applicable for strongly diluted nanocomposites. This effective description, however, is a prerequisite to consider plasmonic nanocomposites in the design of optical devices. Here, we mitigate this problem and use full wave optical simulations to assign effective properties to plasmonic nanocomposites with filling fractions close to the percolation threshold. We show that these effective properties can be used to properly predict the optical action of functional devices that contain nanocomposites in their design. With this contribution we pave the way to consider plasmonic nanocomposites comparably to ordinary materials in the design of optical elements.

  8. Effective Optical Properties of Plasmonic Nanocomposites

    Directory of Open Access Journals (Sweden)

    Christoph Etrich

    2014-01-01

    Full Text Available Plasmonic nanocomposites find many applications, such as nanometric coatings in emerging fields, such as optotronics, photovoltaics or integrated optics. To make use of their ability to affect light propagation in an unprecedented manner, plasmonic nanocomposites should consist of densely packed metallic nanoparticles. This causes a major challenge for their theoretical description, since the reliable assignment of effective optical properties with established effective medium theories is no longer possible. Established theories, e.g., the Maxwell-Garnett formalism, are only applicable for strongly diluted nanocomposites. This effective description, however, is a prerequisite to consider plasmonic nanocomposites in the design of optical devices. Here, we mitigate this problem and use full wave optical simulations to assign effective properties to plasmonic nanocomposites with filling fractions close to the percolation threshold. We show that these effective properties can be used to properly predict the optical action of functional devices that contain nanocomposites in their design. With this contribution we pave the way to consider plasmonic nanocomposites comparably to ordinary materials in the design of optical elements.

  9. Comparison of Cashew Nut Shell Liquid (CNS Resin with Polyester Resin in Composite Development

    Directory of Open Access Journals (Sweden)

    C. C. Ugoamadi

    2013-12-01

    Full Text Available Natural resins can compete effectively with the synthetic ones in composite development. In this research, cashew nuts were picked and processed for the extraction of the resin content. The resin (natural resin so obtained was mixed with cobalt amine (accelerator, methyl ethyl ketone peroxide (catalyst to develop two sets of composite specimens – specimens without fibres and specimens reinforced with glass fibres. This method of sample specimen development was repeated with polyester (synthetic resin. Compressive and tensile strength tests conducted proved that composites developed with cashew nut shell liquid (CNSL resin were comparable to those developed with polyester resin. In the results, CNSL has an ultimate compressive strength of 55MPa compared to that of polyester resin with an ultimate strength of 68MPa. The result of tensile strength proved cashew nut shell liquid resin (with ultimate strength of 44MPa to be better than polyester resin with 39MPa as ultimate tensile strength. This means that natural resins could be a better substitute for the synthetic ones when the required quantities of fibers (reinforcements and fillers are used in the fibre-reinforced plastic composite developments.

  10. Bond strength of resin-resin interfaces contaminated with saliva and submitted to different surface treatments.

    Science.gov (United States)

    Furuse, Adilson Yoshio; da Cunha, Leonardo Fernandes; Benetti, Ana Raquel; Mondelli, José

    2007-12-01

    The purpose of this study was to investigate the effect of different surface treatments on shear bond strength of saliva-contaminated resin-resin interfaces. Flat resin surfaces were fabricated. In the control group, no contamination or surface treatment was performed. The resin surfaces of the experimental groups were contaminated with saliva and air-dried, and then submitted to: (G1) rinsing with water and drying; (G2) application of an adhesive system; (G3) rinsing and drying, abrasion with finishing disks, etching and application of adhesive system; (G4) rinsing and drying, etching, application of silane and adhesive system. Resin cylinders were placed over the treated surfaces. The specimens were stored in water or ethanol. Shear bond strength tests were performed and the mode of failure was evaluated. Data were submitted to two-way ANOVA and Dunnett T3 test. Contamination of resin-resin interfaces with saliva significantly reduced shear strength, especially after prolonged storage (presin increments.

  11. resin as polymer-supported synthesis support

    Indian Academy of Sciences (India)

    Administrator

    dichloro-5,6-dicyano- benzoqunone ... ports used most widely in SPOS are Merrifield resin .... (2 × 10 mL). The resin was dried at 50°C for one hour to give white beads. IR (KBr): 3108, 3312 cm–1. 1H-NMR (500 MHz, CDCl3): δ 7⋅13 (br s, PS), 7⋅01.

  12. [Delayed asthma bronchiale due to epoxy resin].

    Science.gov (United States)

    Authried, Georg; Al-Asadi, Haifaa; Møller, Ulla; Sherson, David Lee

    2013-10-28

    Epoxy resin is a low molecular weight agent, which can cause both acute and delayed allergic reactions. However, it is known causing skin reactions with direct or airborne contact. Rarely it can cause airway reactions like asthma bronchiale. We describe a case of a windmill worker who developed delayed asthma bronchiale due to airborne contact with epoxy resin.

  13. Epoxidation of linseed oil-Alkyd resins

    International Nuclear Information System (INIS)

    Motawie, A.M.; Ismail, E.A.; Mazroua, A.M.; Abd EI Aziem, M.S.; Ramadan, A.M.

    2004-01-01

    Three types of different linseed oil-alkyd resin ( Alk (I), Alk (II), and Alk (III) ) were prepared with the calculated amounts of mono glycerides and adipic acid (1:1, 1:2, and 2:1 Eq.Wt) respectively via monoglyceride method. The obtained alkyd resins were epoxidized via reaction with the calculated quantities of peracetic acid, which was prepared by the reaction of acetic anhydride with H 2 O 2 . Epoxidation occurred with the ratio (1: 1, 1 :3, and 1:6 Eq. Wt) of alkyd to peracetic acid. The effect of reaction time on the epoxy group content was measured during the epoxidation process. The prepared alkyd resins were analyzed by IR and H 1 NMR. The metal coated film properties of epoxidized alkyd resins were compared with those of unmodified alkyd resins. It was observed that the coating films of epoxidized alkyd resins have better in drying properties, hardness, adhesion, impact and flexibility than those of un epoxidized alkyd resins. The flammability properties of the paper coated films for the prepared brominated epoxidized alkyd resins were found to be fire retardant

  14. Facile synthesis of hypercrosslinked resins via chloromethylation ...

    Indian Academy of Sciences (India)

    A sort of non-polystyrene type hypercrosslinked resin was firstly synthesized through chloromethylation of simple aryl molecules (benzene, toluene, naphthalene, diphenyl), succedent continuous Friedel–Crafts alkylation polymerization and post-crosslinking reaction. The chemical and porous structures of these novel resins ...

  15. Polymer/metal nanocomposites for biomedical applications.

    Science.gov (United States)

    Zare, Yasser; Shabani, Iman

    2016-03-01

    Polymer/metal nanocomposites consisting of polymer as matrix and metal nanoparticles as nanofiller commonly show several attractive advantages such as electrical, mechanical and optical characteristics. Accordingly, many scientific and industrial communities have focused on polymer/metal nanocomposites in order to develop some new products or substitute the available materials. In the current paper, characteristics and applications of polymer/metal nanocomposites for biomedical applications are extensively explained in several categories including strong and stable materials, conductive devices, sensors and biomedical products. Moreover, some perspective utilizations are suggested for future studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Biomimetic magnetic nanocomposite for smart skins

    KAUST Repository

    Alfadhel, Ahmed

    2015-11-01

    We report a biomimetic tactile sensor consisting of magnetic nanocomposite artificial cilia and magnetic sensors. The nanocomposite is fashioned from polydimethylsiloxane and iron nanowires and exhibits a permanent magnetic behavior. This enables remote operation without an additional magnetic field to magnetize the nanowires, which simplifies device integration. Moreover, the highly elastic and easy patternable nanocomposite is corrosion resistant and thermally stable. The highly sensitive and power efficient tactile sensors can detect vertical and shear forces from interactions with objects. The sensors can operate in dry and wet environment with the ability to measure different properties such as the texture and the movement or stability of objects, with easily adjustable performance.

  17. Synthesis and characterization of phenol/formaldehyde nanocomposites: Studying the effect of incorporating reactive rubber nanoparticles or Cloisite-30B nanoclay on the mechanical properties, morphology and thermal stability

    Directory of Open Access Journals (Sweden)

    Walaa S.E. Solyman

    2017-01-01

    Full Text Available In this work, phenol/formaldehyde nanocomposites were synthesized using reactive rubber nanoparticles (RRNP and cloisite30B nanoclay with different percentages and were fully investigated. A little amount of these nanomaterials enhanced the mechanical properties of the produced composites. This enhancement is attributed to the interaction of these nanomaterials with the bakelite matrix. In bakelite/RRNP, the mechanical properties enhancement is due to the chemical connection of RRNP to the bakelite matrix while in bakelite/Cloisite30B, this enhancement is due to polar/polar interaction. It was observed that the composites exhibited an intercalated disordered structure by means of Xray diffraction (XRD and transmission electronic microscopy. The crosslinking density of the bakelite network was greatly influenced by the presence and type of nanomaterial that was added to the resin. The thermal stability was investigated with TGA/DSC which proved that these nanocomposite are (10–20% more thermally stable than neat Bakelite resin.

  18. Physical Properties of Synthetic Resin Materials

    Science.gov (United States)

    Fishbein, Meyer

    1939-01-01

    A study was made to determine the physical properties of synthetic resins having paper, canvas, and linen reinforcements, and of laminated wood impregnated with a resin varnish. The results show that commercial resins have moduli of elasticity that are too low for structural considerations. Nevertheless, there do exist plastics that have favorable mechanical properties and, with further development, it should be possible to produce resin products that compare favorably with the light-metal alloys. The results obtained from tests on Compound 1840, resin-impregnated wood, show that this material can stand on its own merit by virtue of a compressive strength four times that of the natural wood. This increase in compressive strength was accomplished with an increase of density to a value slightly below three times the normal value and corrected one of the most serious defects of the natural product.

  19. Electrodialytic decontamination of spent ion exchange resins

    International Nuclear Information System (INIS)

    Nott, B.R.

    1982-01-01

    Development of a novel electrodialytic decontamination process for the selective removal of radioactive Cs from spent ion exchange resins containing large amounts of Li is described. The process involves passage of a dc electric current through a bed of the spent ion exchange resin in a specially designed electrodialytic cell. The radiocesium so removed from a volume of the spent resin is concentrated onto a much smaller volume of a Cs selective sorbent to achieve a significant radioactive waste volume reduction. Technical feasibility of the electrodialytic resin decontamination process has been demonstrated on a bench scale with a batch of simulated spent ion exchange resin and using potassium cobalt ferrocyanide as the Cs selective sorbent. A volume reduction factor between 10 and 17 has been estimated. The process appears to be economically attractive. Improvements in process economics can be expected from optimization of the process. Other possible applications of the EDRD process have been identified

  20. Embedding of reactor wastes in plastic resins

    International Nuclear Information System (INIS)

    1979-01-01

    STEAG Kernenergie GmbH is so far the only firm commercially to condition radioactive bead ion exchange resins by embedding in polystyrene resins. The objective of the work reported here was to study and develop methods for immobilization of other reactor wastes in plastic resins. Comparison studies on high quality cement however showed favourable results for cement with respect to process safety and economy. For this reason STEAG interrupted its work in the field of resin embedding after about one year. The work carried out during this period is surveyed in this report, which includes a comprehensive literature study on reactor wastes and their solidification in plastic resins as well as on regulations with regard to radioactive waste disposal in the member states of the European Communities

  1. Disinfection of denture base acrylic resin.

    Science.gov (United States)

    Lin, J J; Cameron, S M; Runyan, D A; Craft, D W

    1999-02-01

    During repair or adjustments of acrylic resin removable complete and partial dentures, particles of the acrylic resin from the interior of the prosthesis may expose dental personnel to microbial health hazards if the prosthesis has not been thoroughly disinfected. This study investigates the efficacy of a commercially prepared microbial disinfectant (Alcide) on the external and internal surfaces of acrylic resins. Four groups of acrylic resin were incubated in an experimental model to simulate the oral environment over time. Specimens were treated in 2 groups, disinfected and not disinfected, and then further grouped by breaking and not breaking. Analysis was performed with microbial colony counts, SEM, and statistical analyses. Viable microorganisms still remain on the internal and external surfaces of treated resins. Chlorine dioxide reduces, but does not eliminate, viable microorganisms on these dental prostheses.

  2. Industrial-Graded Epoxy Nanocomposites with Mechanically Dispersed Multi-Walled Carbon Nanotubes: Static and Damping Properties

    Science.gov (United States)

    Di Maio, Dario

    2017-01-01

    The majority of currently published dispersion protocols of carbon nanotubes rely on techniques that are not scalable to an industrial level. This work shows how to obtain polymer nanocomposites with good mechanical characteristics using multi-walled carbon nanotubes epoxy resins obtained by mechanical mixing only. The mechanical dispersion method illustrated in this work is easily scalable to industrial level. The high shearing force due to the complex field of motion produces a good and reproducible carbon nanotube dispersion. We have tested an industrial epoxy matrix with good baseline mechanical characteristics at different carbon nanotube weight loads. ASTM-derived tensile and compressive tests show an increment in both Young’s modulus and compressive strength compared with the pristine resin from a starting low wt %. Comparative vibration tests show improvement in the damping capacity. The new carbon nanotube enhanced epoxy resin has superior mechanical proprieties compared to the market average competitor, and is among the top products in the bi-components epoxy resins market. The new dispersion method shows significant potential for the industrial use of CNTs in epoxy matrices. PMID:29064400

  3. Industrial-Graded Epoxy Nanocomposites with Mechanically Dispersed Multi-Walled Carbon Nanotubes: Static and Damping Properties.

    Science.gov (United States)

    Giovannelli, Andrea; Di Maio, Dario; Scarpa, Fabrizio

    2017-10-24

    The majority of currently published dispersion protocols of carbon nanotubes rely on techniques that are not scalable to an industrial level. This work shows how to obtain polymer nanocomposites with good mechanical characteristics using multi-walled carbon nanotubes epoxy resins obtained by mechanical mixing only. The mechanical dispersion method illustrated in this work is easily scalable to industrial level. The high shearing force due to the complex field of motion produces a good and reproducible carbon nanotube dispersion. We have tested an industrial epoxy matrix with good baseline mechanical characteristics at different carbon nanotube weight loads. ASTM-derived tensile and compressive tests show an increment in both Young's modulus and compressive strength compared with the pristine resin from a starting low wt %. Comparative vibration tests show improvement in the damping capacity. The new carbon nanotube enhanced epoxy resin has superior mechanical proprieties compared to the market average competitor, and is among the top products in the bi-components epoxy resins market. The new dispersion method shows significant potential for the industrial use of CNTs in epoxy matrices.

  4. Industrial-Graded Epoxy Nanocomposites with Mechanically Dispersed Multi-Walled Carbon Nanotubes: Static and Damping Properties

    Directory of Open Access Journals (Sweden)

    Andrea Giovannelli

    2017-10-01

    Full Text Available The majority of currently published dispersion protocols of carbon nanotubes rely on techniques that are not scalable to an industrial level. This work shows how to obtain polymer nanocomposites with good mechanical characteristics using multi-walled carbon nanotubes epoxy resins obtained by mechanical mixing only. The mechanical dispersion method illustrated in this work is easily scalable to industrial level. The high shearing force due to the complex field of motion produces a good and reproducible carbon nanotube dispersion. We have tested an industrial epoxy matrix with good baseline mechanical characteristics at different carbon nanotube weight loads. ASTM-derived tensile and compressive tests show an increment in both Young’s modulus and compressive strength compared with the pristine resin from a starting low wt %. Comparative vibration tests show improvement in the damping capacity. The new carbon nanotube enhanced epoxy resin has superior mechanical proprieties compared to the market average competitor, and is among the top products in the bi-components epoxy resins market. The new dispersion method shows significant potential for the industrial use of CNTs in epoxy matrices.

  5. Solidification of ion exchange resin wastes

    International Nuclear Information System (INIS)

    1982-08-01

    Solidification media investigated included portland type I, portland type III and high alumina cements, a proprietary gypsum-based polymer modified cement, and a vinyl ester-styrene thermosetting plastic. Samples formulated with hydraulic cement were analyzed to investigate the effects of resin type, resin loading, waste-to-cement ratio, and water-to-cement ratio. The solidification of cation resin wastes with portland cement was characterized by excessive swelling and cracking of waste forms, both after curing and during immersion testing. Mixed bed resin waste formulations were limited by their cation component. Additives to improve the mechanical properties of portland cement-ion exchange resin waste forms were evaluated. High alumina cement formulations dislayed a resistance to deterioration of mechanical integrity during immersion testing, thus providing a significant advantage over portland cements for the solidification of resin wastes. Properties of cement-ion exchange resin waste forms were examined. An experiment was conducted to study the leachability of 137 Cs, 85 Sr, and 60 Co from resins modified in portland type III and high alumina cements. The cumulative 137 Cs fraction release was at least an order of magnitude greater than that of either 85 Sr or 60 Co. Release rates of 137 Cs in high alumina cement were greater than those in portland III cement by a factor of two.Compressive strength and leach testing were conducted for resin wastes solidified with polymer-modified gypsum based cement. 137 Cs, 85 Sr, and 60 Co fraction releases were about one, two and three orders of magnitude higher, respectively, than in equivalent portland type III cement formulations. As much as 28.6 wt % dry ion exchange resin was successfully solidified using vinyl ester-styrene compared with a maximum of 25 wt % in both portland and gypsum-based cement

  6. Determining the best technique for digestion of resin from lightning rod contaminated by-Am-241

    Energy Technology Data Exchange (ETDEWEB)

    Oshiro, Mauricio T.; Bueno, Vanessa N.; Sakata, Solange K.; Potiens Junior, Ademar J., E-mail: apotiens@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Lightning rods containing radioactive Am-241 were sold in Brazil between 1970 and 1989, when the National Nuclear Energy Commission, CNEN, through Resolution No. 4/89 suspended the authorization to manufacture and installation. As a consequence the lightning rod became radioactive waste may present risks to human health and the environment the correct management for final disposal is required. One of the products of the decontamination lightning rod is the resin used in paint, that are possibly contaminated by Am-241, a highly toxic radioisotope. The objective was to determine the best method for digestion of this of resin from lightning rod contaminated by-Am-241 for subsequent analysis. Three methods for sample digestion were evaluated: the first involving the application of H{sub 2}SO{sub 4} and H{sub 2}O{sub 2} directly on the sample; In the second method, the pre-carbonized in an oven resin were added HNO{sub 3}, H{sub 2}O{sub 2}, HF, HClO{sub 4}, and H{sub 2}O oxidants and the third method involving the addition of H{sub 2}SO{sub 4}, HNO{sub 3}, H{sub 2}O{sub 2}, HClO{sub 4} and H{sub 2}O directly to the sample. To choose the most efficient method were expressed as yield, cost and time-effective.

  7. Small-angle scattering from nanocomposites: Elucidation of hierarchical morphology/property relationships

    Science.gov (United States)

    Justice, Ryan Scott

    2007-12-01

    Loading polymer matrices with nanoscale fillers is widely believed to have the potential to push polymer properties to extreme values. Realization of anticipated properties, however, has proven elusive. Recent nanocomposite research suggests better characterization of the large-scale morphology will provide insight explaining these shortfalls. The chapters in this dissertation present ultra small-angle X-ray scattering (USAXS) as a viable tool for elucidating the hierarchical filler morphology that exists within polymer nanocomposites. In Chapter 1, the relationship between imaging data and scattering data is discussed in the context of filler dispersion, where scattering is presented as a complementary characterization technique that, when combined with microscopy, can reveal significantly more morphological information than possible with either technique independently. Chapter 2 provides the details of both a simplified and a fractal tube form factor for the analysis of tube-like (hollow cylinder) fillers, and the analysis of carbon nanotube-filled bismaleimide composites is presented. In Chapter 3, the fractal tube form factor is also used to augment the analysis of percolative networks in carbon nanofiber-filled epoxy composites. The analysis shows that the morphology resulting in electrical percolation in these systems is much more complicated than more common analysis techniques have shown in the literature. Chapter 4 presents the characterization of a system of colloidal silica/epoxy nanocomposites that shows toughness and modulus improvement without sacrificing the working temperature of the neat resin. USAXS analysis concludes the nanoparticles are individually dispersed up to loadings of 25 wt% with an exclusion zone extending to at least ˜10x the particle radius at all loadings. While the exclusion zone is not mechanically significant, the silica particles are shown to be effective in reinforcing hard resins. In Chapter 5, the details of a layered

  8. Analysis of atomic oxygen and ultraviolet exposure effects on cycloaliphatic epoxy resins reinforced with octa-functional POSS

    Science.gov (United States)

    Suliga, Agnieszka; Jakubczyk, Ewa M.; Hamerton, Ian; Viquerat, Andrew

    2018-01-01

    In this study, novel nanocomposites were created by incorporation of Silsesquioxane containing eight glycidylether groups (octa-POSS) into a cycloaliphatic epoxy cured by an anhydride. The developed resin system, with different nanoparticle concentrations, was used on the outer layers of an ultra-thin CFRP structure in order to provide better environmental resistance to the environment of low Earth orbit (LEO) which was tested in a ground-simulation facility. The developed resins were subjected to space-like degrading factors and their response to corrosion, radiation and elevated temperatures was monitored by mass loss, together with measuring changes in surface chemistry (ATR-FTIR), functionality development (contact angle measurement and XPS), roughness (scanning laser microscopy) and morphology (SEM). The influence of increasing octa-POSS content on thermo-mechanical properties was measured with DMTA and the strength and modulus of elasticity were determined by flexural test. The addition of octa-POSS in any loading improves the environmental resistance, however, the most significant retention of mass and mechanical and surface properties after space-like exposure was observed in the 20 wt% octa-POSS reinforced cycloaliphatic epoxy. The results presented here may contribute to the development of novel class of nanocomposites which can offer an extended service life in LEO.

  9. A biomimetic approach to enhancing interfacial interactions: polydopamine-coated clay as reinforcement for epoxy resin.

    Science.gov (United States)

    Yang, Liping; Phua, Si Lei; Teo, Jun Kai Herman; Toh, Cher Ling; Lau, Soo Khim; Ma, Jan; Lu, Xuehong

    2011-08-01

    A facile biomimetic method was developed to enhance the interfacial interaction in polymer-layered silicate nanocomposites. By mimicking mussel adhesive proteins, a monolayer of polydopamine was constructed on clay surface by a controllable coating method. The modified clay (D-clay) was incorporated into an epoxy resin, it is found that the strong interfacial interactions brought by the polydopamine benefits not only the dispersion of the D-clay in the epoxy but also the effective interfacial stress transfer, leading to greatly improved thermomechanical properties at very low inorganic loadings. Rheological and infrared spectroscopic studies show that the interfacial interactions between the D-clay and epoxy are dominated by the hydrogen bonds between the catechol-enriched polydopamine and the epoxy.

  10. Reinforcement of a PMMA resin for fixed interim prostheses with nanodiamonds.

    Science.gov (United States)

    Protopapa, Popi; Kontonasaki, Eleana; Bikiaris, Dimitrios; Paraskevopoulos, Konstantinos M; Koidis, Petros

    2011-01-01

    The aim of this study was to investigate the possible reinforcement of Nanodiamonds (ND) in a PMMA resin for fixed interim restorations. The fracture toughness (K(Ic)), impact strength and the dynamic thermomechanical properties (T(g), E´, E´´, tanδ) of a series of PMMA-ND nanocomposites with different amounts of ND were evaluated. The fracture toughness increased as the ND percentage increased up to 0.38% wt but a greater amount of ND induced a decrease in K(Ic). Impact strength and Young's modulus were also increased by increasing nanoparticles content, indicating the reinforcing effect of ND. Dynamic mechanical properties were also affected. By increasing the ND content an increase of storage modulus was recorded, while glass transition was shifted at higher temperatures. Under the limitations of this study, it can be suggested that reinforcing PMMA with ND nanoparticles -especially at low concentrations- may increase the overall performance of fixed interim prostheses.

  11. Effects of Functionalized Graphene Nanoplatelets on the Morphology and Properties of Phenolic Resins

    Directory of Open Access Journals (Sweden)

    Jing Dai

    2016-01-01

    Full Text Available Graphene nanoplatelets (Gnps were covalently functionalized by 3-aminopropyltriethoxysilane (KH550 and noncovalently functionalized by Triton X-100, respectively. The morphology and structure of KH550 modified graphene (K-Gnp and Triton X-100 modified graphene (T-Gnp were characterized by Fourier transform infrared spectroscopy, scanning electron micrograph, and Raman spectrometer. The influences of K-Gnp and T-Gnp on thermal conductivity, fracture toughness, and thermal stability of the boron phenolic resin (BPR were investigated. Both covalently functionalized K-Gnp and noncovalently functionalized T-Gnp not only improve the dispersion of Gnp in the polymer matrix but also increase interfacial bonding strength between the BPR matrix and Gnp, thus leading to the enhanced mechanical property and thermal stability of nanocomposites. Besides this, mechanical property and thermal stability of the BPR containing K-Gnp are superior to those of BPR containing T-Gnp.

  12. Optical Properties of Nanoparticles and Nanocomposites

    CSIR Research Space (South Africa)

    Kumbhakar, P

    2014-01-01

    Full Text Available Semiconductor and metallic nanomaterials and nanocomposites possess interesting linear absorption, photoluminescence emission, and nonlinear optical properties. Nanomaterials having small particle sizes exhibit enhanced optical emission as well...

  13. Polymer Nanocomposite Membranes for Antifouling Nanofiltration.

    Science.gov (United States)

    Kamal, Tahseen; Ali, Nauman; Naseem, Abbas A; Khan, Sher B; Asiri, Abdullah M

    2016-01-01

    Fouling refers to the unwanted and undesirable attachment of biological macromolecules, inorganic, organic matter, and microorganisms on water contact surfaces. Fouling reduces the performance of devices involving these submerged surfaces and is considered the bottle-neck issue for various applications in the biomedical industry, food processing, and water treatment, especially in reverse osmosis (RO) desalination. Investigations have proven that nanocomposite membranes can exhibit enhanced antifouling performances and can be used for longer life times. The nanocomposite means addition of nanomaterials to main matrix at low loadings, exhibiting better properties compared to virgin matrix. In this review, a summarized description about related methods and their mechanisms for the fabrication of nanocomposite membranes with antifouling properties has been documented. Around 87 manuscripts including 10 patents were used to demonstrate the antifouling applications of of various nanocomposite membranes.

  14. Polymer nanotube nanocomposites: synthesis, properties, and applications

    National Research Council Canada - National Science Library

    Mittal, Vikas

    2010-01-01

    ... in these commercially important areas of polymer technology. It sums up recent advances in nanotube composite synthesis technology, provides basic introduction to polymer nanotubes nanocomposite technology for the readers new to this field, provides valuable...

  15. Titanium Nanocomposite: Lightweight Multifunction Structural Material

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to research and develop lightweight metal matrix nanocomposites (MMnC) using a Titanium (Ti) metal matrix. Ti MMnC will crosscut the advancement of both...

  16. Polymer-noble metal nanocomposites: Review

    CSIR Research Space (South Africa)

    Folarin, OM

    2011-09-01

    Full Text Available Polymer-noble metal nanocomposites have been extensively investigated due to their potential ability to provide materials with novel mechanical, electronic or chemical behaviour for technological applications. Many preparative procedures have been...

  17. Polymer and ceramic nanocomposites for aerospace applications

    Science.gov (United States)

    Rathod, Vivek T.; Kumar, Jayanth S.; Jain, Anjana

    2017-11-01

    This paper reviews the potential of polymer and ceramic matrix composites for aerospace/space vehicle applications. Special, unique and multifunctional properties arising due to the dispersion of nanoparticles in ceramic and metal matrix are briefly discussed followed by a classification of resulting aerospace applications. The paper presents polymer matrix composites comprising majority of aerospace applications in structures, coating, tribology, structural health monitoring, electromagnetic shielding and shape memory applications. The capabilities of the ceramic matrix nanocomposites to providing the electromagnetic shielding for aircrafts and better tribological properties to suit space environments are discussed. Structural health monitoring capability of ceramic matrix nanocomposite is also discussed. The properties of resulting nanocomposite material with its disadvantages like cost and processing difficulties are discussed. The paper concludes after the discussion of the possible future perspectives and challenges in implementation and further development of polymer and ceramic nanocomposite materials.

  18. Poly (propylene carbonate)/exfoliated graphite nanocomposites ...

    Indian Academy of Sciences (India)

    propylene carbonate)/exfoliated graphite nanocomposites: selective adsorbent for the extraction and detection of gold(III). Sher Bahadar Khan Hadi M Marwani Jongchul Seo Esraa M Bakhsh Kalsoom Akhtar Dowan Kim Abdullah M Asiri. Volume 38 ...

  19. Carbon nanotubes dispersed polymer nanocomposites: mechanical ...

    Indian Academy of Sciences (India)

    Keywords. Carbon nanotubes; nanocomposite; Young's modulus; breakdown strength; dielectric constant; thermal conductivity. 1. Introduction. The polymer composite has material characteristics use- ful for diverse applications such as capacitors and acoustic emission sensors. The nanoscaled fillers are dispersed in po-.

  20. In situ SU-8 silver nanocomposites

    DEFF Research Database (Denmark)

    Fischer, Søren Vang; Uthuppu, Basil; Jakobsen, Mogens Havsteen

    2015-01-01

    Nanocomposite materials containing metal nanoparticles are of considerable interest in photonics and optoelectronics applications. However, device fabrication of such materials always encounters the challenge of incorporation of preformed nanoparticles into photoresist materials. As a solution...... to this problem, an easy new method of fabricating silver nanocomposites by an in situ reduction of precursors within the epoxy-based photoresist SU-8 has been developed. AgNO3 dissolved in acetonitrile and mixed with the epoxy-based photoresist SU-8 forms silver nanoparticles primarily during the pre- and post...... silver nanocomposite materials can be spin coated as homogeneous thin films and structured by using UV lithography. A resolution of 5 mu m is achieved in the lithographic process. The UV exposure time is found to be independent of the nanoparticle concentration. The fabricated silver nanocomposites...

  1. Evaluation of Resin-Resin Interface in Direct Composite Restoration Repair

    Science.gov (United States)

    Stoleriu, S.; Andrian, S.; Pancu, G.; Nica, I.; Iovan, G.

    2017-06-01

    The aim of this study was to evaluate the resin-resin interface when a universal bonding agent was used in two different strategies in direct restoration repair. Two composite resins (a micro-filled hybrid and a nano-filled hybrid) as old restorations that have to be repair, a universal bonding agent and a micro-filled hybrid composite resin (different then that aged) as new material for repair were chosen for the study. Non-aged samples were used as control and aged samples were used as study groups. The universal bonding agent was applied in etch-and-rinse and in self-etch strategies. The interface between old and new composite resins was evaluated by SEM and the microleakage was assessed by scoring the dye penetration. Very good adaptation of the two different composite resins placed in direct contact in non-aged samples was recorded. No gaps or defects were visible and strong resin-resin contact was observed. After aging, enlargement of resin-resin junction were observed in most of the samples and a increased dye penetration was recorded irrespective of the strategy (etch-and-rinse or self-etch) used for bonding agent application.

  2. Bond strength of a chairside autopolymerizing reline resin to injection-molded thermoplastic denture base resins.

    Science.gov (United States)

    Hamanaka, Ippei; Shimizu, Hiroshi; Takahashi, Yutaka

    2017-01-01

    This study evaluated the shear bond strength of a chairside autopolymerizing reline resin to injection-molded thermoplastic denture base resins. Four kinds of injection-molded thermoplastic resins (two polyamides, a polyethylene terephthalate copolymer and a polycarbonate) and PMMA, as a control, were tested. The eight types of surface treatment: ((1) no treatment, (2) air abrasion, (3) dichloromethane, (4) ethyl acetate, (5) 4-META/MMA-TBB resin, (6) air abrasion and 4-META/MMA-TBB resin, (7) tribochemical silica coating, and (8) tribochemical silica coating and 4-META/MMA-TBB resin) were applied to each specimen. The chairside autopolymerizing reline resins were bonded to disks of the injection-molded thermoplastic denture base resins. All of the specimens were immersed in water for 4 months and then thermocycled for 10,000 cycles in water between 5 and 55°C. The shear bond strengths were determined. The shear bond strengths of the two polyamides treated using air abrasion, dichloromethane and ethyl acetate and no treatment were exceedingly low. The greatest bond strength was recorded for the polyethylene terephthalate copolymer specimens treated with tribochemical silica coating and 4-META/MMA-TBB resin (22.5MPa). The bond strengths of the other injection-molded thermoplastic denture base resins increased using 4-META/MMA-TBB resin. Tribochemical silica coating and 4-META/MMA-TBB resin were the most effective surface treatments among all denture base resins tested. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  3. Temperature signal in suspended sediment export from an Alpine catchment

    Science.gov (United States)

    Costa, Anna; Molnar, Peter; Stutenbecker, Laura; Bakker, Maarten; Silva, Tiago A.; Schlunegger, Fritz; Lane, Stuart N.; Loizeau, Jean-Luc; Girardclos, Stéphanie

    2018-01-01

    Suspended sediment export from large Alpine catchments ( > 1000 km2) over decadal timescales is sensitive to a number of factors, including long-term variations in climate, the activation-deactivation of different sediment sources (proglacial areas, hillslopes, etc.), transport through the fluvial system, and potential anthropogenic impacts on the sediment flux (e.g. through impoundments and flow regulation). Here, we report on a marked increase in suspended sediment concentrations observed near the outlet of the upper Rhône River Basin in the mid-1980s. This increase coincides with a statistically significant step-like increase in basin-wide mean air temperature. We explore the possible explanations of the suspended sediment rise in terms of changes in water discharge (transport capacity), and the activation of different potential sources of fine sediment (sediment supply) in the catchment by hydroclimatic forcing. Time series of precipitation and temperature-driven snowmelt, snow cover, and ice melt simulated with a spatially distributed degree-day model, together with erosive rainfall on snow-free surfaces, are tested to explore possible reasons for the rise in suspended sediment concentration. We show that the abrupt change in air temperature reduced snow cover and the contribution of snowmelt, and enhanced ice melt. The results of statistical tests show that the onset of increased ice melt was likely to play a dominant role in the suspended sediment concentration rise in the mid-1980s. Temperature-driven enhanced melting of glaciers, which cover about 10 % of the catchment surface, can increase suspended sediment yields through an increased contribution of sediment-rich glacial meltwater, increased sediment availability due to glacier recession, and increased runoff from sediment-rich proglacial areas. The reduced extent and duration of snow cover in the catchment are also potential contributors to the rise in suspended sediment concentration through

  4. Mesoporous metal oxide graphene nanocomposite materials

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun; Aksay, Ilhan A.; Kou, Rong; Wang, Donghai

    2016-05-24

    A nanocomposite material formed of graphene and a mesoporous metal oxide having a demonstrated specific capacity of more than 200 F/g with particular utility when employed in supercapacitor applications. A method for making these nanocomposite materials by first forming a mixture of graphene, a surfactant, and a metal oxide precursor, precipitating the metal oxide precursor with the surfactant from the mixture to form a mesoporous metal oxide. The mesoporous metal oxide is then deposited onto a surface of the graphene.

  5. Polysaccharide-based nanocomposites and their applications

    Science.gov (United States)

    Zheng, Yingying; Monty, Jonathan; Linhardt, Robert J.

    2014-01-01

    Polysaccharide nanocomposites have become increasingly important materials over the past decade. Polysaccharides offer a green alternative to synthetic polymers in the preparation of soft nanomaterials. They have also been used in composites with hard nanomaterials, such as metal nanoparticles and carbon-based nanomaterials. This mini review describes methods for polysaccharide nanocomposite preparation and reviews the various types and diverse applications for these novel materials. PMID:25498200

  6. Attached and suspended microbial communities in a pristine confined aquifer

    Science.gov (United States)

    Flynn, Theodore M.; Sanford, Robert A.; Bethke, Craig M.

    2008-07-01

    We compare the community of microbes attached to the sediments in a pristine confined aquifer to the free-floating community suspended in the groundwater there. We sampled the attached microbial community at 19 wells completed in the glacial Mahomet aquifer in east central Illinois using in situ samplers, and we sampled the suspended community by filtering microbes from groundwater. At each well, we profiled the two communities using terminal restriction fragment length polymorphism and compared the profiles we obtained with multivariate statistical analyses. Some populations at a well are detected both in the attached and suspended communities, but the shared populations represent, on average, only one third of each community; the remaining populations are detected exclusively in one community or the other. Clones closely related to the iron-reducing bacteria Geobacter and Geothrix represent more than 20% of the total attached community detected at many wells, but at no well do they make up more than 1% of the suspended community. To fully characterize the microbial community in an aquifer, it may be necessary to sample the attached as well as suspended communities.

  7. Mineralogy of fossil resins in Northern Eurasia

    Science.gov (United States)

    Bogdasarov, M. A.

    2007-12-01

    The investigation is focused on identification and origin of fossil resins from the Cretaceous, Tertiary, and Quaternary sediments of Northern Eurasia on the basis of detailed study of their physical and chemical characteristics: morphology; size; mass; density; optical, mechanical, and thermal properties; chemical composition; etc. The composition of amorphous organic minerals with polymeric structure, fossil resins included, is studied with IR spectrometry, the EPR method, derivatography at low heating rates, XRD, chemical analysis, emission spectrometry, etc. The results of investigation summarized for the Baltic-Dnieper, North Siberian, and Far East amber-bearing provinces show some similarity of fossil resins in combination with specific features inherent to each province. Resins from the Baltic-Dnieper province should be termed as amber (succinite). Their variety is the most characteristic of Northern and Eastern Europe. Amber-like fossil resins from the North Siberian and Far East provinces are irrelevant to succinite. They usually occur as brittle resins, namely, retinite and gedanite, without jewelry value. Viscous fossil resin rumänite with an expected high economic value occurs in the Far East, on the shore of Sakhalin Island.

  8. Investigation of fossil resins and amber

    Directory of Open Access Journals (Sweden)

    E.Yu. Makarova

    2017-05-01

    Full Text Available Fossil resins and amber are a product of lithogenesis of resinous substances of higher plants – resinite. These components of plants, like other lipoid ingredients (suberins, coutines, sporinins, natural rubbers are resistant to microbial action, so they are well preserved in bacterial processing of organic matter in the stages of sedimento- and diagenesis, and are well diagnosed in microscopic studies. They occur in a rather wide age range of sedimentary rocks. The amber of the Baltic region of the Eocene age is most fully studied. The article presents the results of a study of the collection of fossil resins and amber from various regions of the world. Samples were studied microscopically; carbon isotope analysis, infrared spectroscopy (IR spectroscopy were performed. The most informative analysis of high-molecular polymeric compounds is IR spectroscopy. It was found that in the analyzed samples of fossil resins of different ages, aromatic compounds are not observed, most of which are first volatilized in fossilization processes. The possibility of influencing the group composition of amber and amber-like resins for sedimentation, diagenesis and catagenesis is discussed. The IR spectra of fossil and modern resin conifers are compared. Using the IR spectroscopy method, an attempt was made to identify the botanical origin of fossil resins.

  9. Solid-phase extraction with slurry injection of the resin into ETAAS for trace determination of thallium in natural water

    International Nuclear Information System (INIS)

    Isoshi, Nukatsuka; Hiroyuki, Seitoh; Kunio, Ohzeki

    2004-01-01

    Thallium in natural water samples was determined by electrothermal atomic absorption spectrometry after 1000-fold enrichment by mini solid-phase extraction from a 100-mL sample solution. A TI-pyrrolidine-1-carbodithioate complex formed in a sample solution of pH 1.6 was extracted on fine particles of a cellulose nitrate resin dispersed in the sample solution. The cellulose nitrate resin was then collected on a membrane filter (25 mm ) by filtration under suction using a glass funnel with an effective filtration area of 0.64 cm 2 . As a result, a circular thin layer of the resin phase with a diameter of 9 mm was obtained. Then the resin phase was carved out by an acrylate resin puncher with a 10-mm hole to put it into a sample cup containing 100 μL of 10 mM HNO 3 containing 0.5 mM NaCl. The resin phase was suspended in the solution by ultrasonication. 1000-fold enrichment was thus attained within 15 min, and the suspension was delivered to electrothermal atomic absorption spectrometry. The linear calibration graph was obtained in the range of 0-4 ng of TI in 100 mL of a sample solution. The detection limit obtained by 3 σ method was 0.19 ng. The proposed method was applied to the determination of TI in natural water samples. The results showed the concentration of TI in seawater was 12.1 ± 1.8 pg mL -1 for the calibration graph method and 12.6 ± 1.4 pg mL -1 for the standard addition method. A snowmelt sample contained 20.7 ± 1.0 pg mL -1 of TI. (author)

  10. Melamine-modified urea formaldehyde resin for bonding particleboards

    Science.gov (United States)

    Chung-Yun Hse; Feng Fu; Hui Pan

    2008-01-01

    For the development of a cost-effective melamine-modified urea formaldehyde resin (MUF), the study evaluated the effects of reaction pH and melamine content on resin properties and bond performance of the MUF resin adhesive systems. Eight resins, each with three replicates, were prepared in a factorial experiment that included two formulation variables: two reaction...

  11. Traumatic resin ducts as indicators of bark beetle outbreaks

    Science.gov (United States)

    R. Justin DeRose; Matthew F. Bekker; James N. Long

    2017-01-01

    The formation of traumatic resin ducts (TRDs) represents an important induced defense in woody plants that enhances oleoresin production and flow in response to environmental perturbations. In some genera (Pinus), resin ducts are copious and conspicuous; however, in others (Picea), resin ducts are relatively rare. The occurrence and strength of resin ducts, in...

  12. Molecular dynamics modeling and characterization of graphene/polymer nanocomposites

    Science.gov (United States)

    Rahman, Rezwanur

    The current work focuses on the characterization of graphene based nanocomposites using molecular dynamic simulation and multiscale modeling approaches. Both graphene-epoxy and graphene-cellulose nanocomposites were considered in this study. A hierarchical multiscale modeling approach has been proposed using peridynamics and molecular dynamics simulation. Firstly, the mechanical properties of crosslinked graphene/epoxy (G-Ep) nanocomposites were investigated by molecular mechanics (MM) and molecular dynamics (MD) simulations. The influence of graphene's weight concentration, aspect ratio and dispersion on stress-strain response and elastic properties were studied. The results show significant improvement in Young's modulus and shear modulus for the G-Ep system in comparison to the neat epoxy resin. It appears that the RDF, molecular energy and aspect ratios are influenced by both graphene concentrations and aspect ratios. The graphene concentrations in the range of 1-3% are seen to improve Young's modulus and shorter graphenes are observed to be more effective than larger ones. In addition, the dispersed graphene system is more promising in enhancing in-plane elastic modulus than the agglomerated graphene system. The cohesive and pullout forces versus displacements data were plotted under normal and shear modes in order to characterize interfacial properties. The cohesive force is significantly improved by attaching the graphene with a chemical bond at the graphene-epoxy interface. In the second part of the work, cellulose was considered to study the mechanical properties of graphene-cellulose bionanocomposite. Similar to graphene-epoxy systems, the effect of graphene dispersion and agglomeration were studied in the stress-strain plots of graphene-cellulose system. A pcff forcefield was used to define intermolecular and intramolecular interactions. The effect of graphene's aspect ratio and weight concentration on the structural property of each unitcell was

  13. SEM and elemental analysis of composite resins

    International Nuclear Information System (INIS)

    Hosoda, H.; Yamada, T.; Inokoshi, S.

    1990-01-01

    Twenty-four chemically cured, 21 light-cured anterior, three light-cured anterior/posterior, and 18 light-cured posterior composite resins were examined using scanning electron microscopy, and the elemental composition of their filler particles was analyzed with an energy dispersive electron probe microanalyzer. According to the results obtained, the composite resins were divided into five groups (traditional, microfilled type, submicrofilled type, hybrid type, and semihybrid), with two additional hypothetical categories (microfilled and hybrid). Characteristics of each type were described with clinical indications for selective guidance of respective composite resins for clinical use

  14. In-depth disinfection of acrylic resins.

    Science.gov (United States)

    Chau, V B; Saunders, T R; Pimsler, M; Elfring, D R

    1995-09-01

    This study demonstrated that bacteria penetrate three kinds of dental acrylic resin after a short time period. Samples of acrylic resin were contaminated with a variety of bacteria and were then placed in three different disinfecting solutions as directed by the manufacturers. After the specific dilution and immersion time, cultures were made from the resin samples. The only effective disinfectant was a 0.525% solution of sodium hypochlorite at a 10-minute immersion. It disinfected not only the surfaces but also the bacteria that penetrated the surfaces to a depth of 3 mm.

  15. Immobilisation of ion exchange resins in cement

    International Nuclear Information System (INIS)

    Howard, C.G.; Jolliffe, C.B.; Lee, D.J.

    1990-09-01

    The removal of activity from spent decontaminating solutions eg LOMI can be achieved using organic ion exchange resins. These resins can be successfully immobilised in cement based matrices. The optimum cement system contained 10% ordinary Portland cement 84% gg blast furnace slag, 6% microsilica with a water cement ratio of 0.5 and a dry resin loading of 36% with respect to total weight. This formulation was successfully scaled up to 200 litres giving a product with acceptable compressive strength, dimensional stability and elastic modulus. Storage of samples under water appears to have no detrimental effects on the product's properties. (author)

  16. Cobalt Ions Improve the Strength of Epoxy Resins

    Science.gov (United States)

    Stoakley, D. M.; St. Clair, A. K.

    1986-01-01

    Technique developed for improving mechanical strength of epoxy resins by adding cobalt ions in form of tris(acetylacetonato)cobalt (III) complex. Solid cast disks prepared from cobalt ion-containing epoxy resins tested for flexural strength and stiffness. Incorporation of cobalt ions into epoxies increased flexural strength of resins by 10 to 95 percent. Suitable resins for this technique include any liquid or solid TGMDA resins. Improved epoxy formulation proves useful as composite matrix resin, adhesive, or casting resin for applications on commercial and advanced aircraft.

  17. Unique morphology of dispersed clay particles in a polymer nanocomposite

    CSIR Research Space (South Africa)

    Malwela, T

    2011-02-01

    Full Text Available This communication reports a unique morphology of dispersed clay particles in a polymer nanocomposite. A nanocomposite of poly[butylene succinate)-co-adipate] (PBSA) with 3 wt% of organically modified montmorillonite was prepared by melt...

  18. Cyclic viscoelasticity and viscoplasticity of polypropylene/clay nanocomposites

    DEFF Research Database (Denmark)

    Drozdov, Aleksey; Christiansen, Jesper de Claville; Hog Lejre, Anne-Lise

    2012-01-01

    Observations are reported in tensile relaxation tests under stretching and retraction on poly-propylene/clay nanocomposites with various contents of filler. A two-phase constitutive model is developed in cyclic viscoelasticity and viscoplasticity of hybrid nanocomposites. Adjustable parameters...

  19. Handbook of polymer nanocomposites processing, performance and application

    CERN Document Server

    Mohanty, Amar; Misra, Manjusri; Kar, Kamal K; Pandey, Jitendra; Rana, Sravendra; Takagi, Hitoshi; Nakagaito, Antonio; Kim, Hyun-Joong

    Volume A forms one volume of a Handbook about Polymer Nanocomposites. In some 20 chapters the preparation, architecture, characterisation, properties and application of polymer nanocomposites are discussed by experts in their respective fields.

  20. Probing charged impurities in suspended graphene using Raman spectroscopy.

    Science.gov (United States)

    Ni, Zhen Hua; Yu, Ting; Luo, Zhi Qiang; Wang, Ying Ying; Liu, Lei; Wong, Choun Pei; Miao, Jianmin; Huang, Wei; Shen, Ze Xiang

    2009-03-24

    Charged impurity (CI) scattering is one of the dominant factors that affects the carrier mobility in graphene. In this paper, we use Raman spectroscopy to probe the charged impurities in suspended graphene. We find that the 2D band intensity is very sensitive to the CI concentration in graphene, while the G band intensity is not affected. The intensity ratio between the 2D and G bands, I(2D)/I(G), of suspended graphene is much stronger compared to that of nonsuspended graphene, due to the extremely low CI concentration in the former. This finding is consistent with the ultrahigh carrier mobility in suspended graphene observed in recent transport measurements. Our results also suggest that at low CI concentrations that are critical for device applications, the I(2D)/I(G) ratio is a better criterion in selecting high quality single layer graphene samples than is the G band blue shift.

  1. System for concentrating and analyzing particles suspended in a fluid

    Science.gov (United States)

    Fiechtner, Gregory J [Bethesda, MD; Cummings, Eric B [Livermore, CA; Singh, Anup K [Danville, CA

    2011-04-26

    Disclosed is a device for separating and concentrating particles suspended in a fluid stream by using dielectrophoresis (DEP) to trap and/or deflect those particles as they migrate through a fluid channel. The method uses fluid channels designed to constrain a liquid flowing through it to uniform electrokinetic flow velocities. This behavior is achieved by connecting deep and shallow sections of channels, with the channel depth varying abruptly along an interface. By careful design of abrupt changes in specific permeability at the interface, an abrupt and spatially uniform change in electrokinetic force can be selected. Because these abrupt interfaces also cause a sharp gradient in applied electric fields, a DEP force also can be established along the interface. Depending on the complex conductivity of the suspended particles and the immersion liquid, the DEP force can controllably complement or oppose the local electrokinetic force transporting the fluid through the channel allowing for manipulation of particles suspended in the transporting liquid.

  2. Shear bond strength of an autopolymerizing repair resin to injection-molded thermoplastic denture base resins.

    Science.gov (United States)

    Hamanaka, Ippei; Shimizu, Hiroshi; Takahashi, Yutaka

    2013-09-01

    This study investigated the shear bond strength of an autopolymerizing repair resin to injection-molded thermoplastic denture base resins. Four injection-molded thermoplastic resins (two polyamides, a polyethylene terephthalate copolymer and a polycarbonate) were used in this study. The specimens were divided into eight groups according to the type of surface treatment given: (1) no treatment, (2) air abrasion with alumina, (3) dichloromethane, (4) ethyl acetate, (5) 4-META/MMA-TBB resin, (6) alumina and 4-META/MMA-TBB resin, (7) tribochemical silica coating or (8) tribochemical silica coating and 4-META/MMA-TBB resin. Half of the specimens in groups 1, 5, 6 and 8 were thermocycled for 10,000 cycles in water between 5-55°C with a dwell time of 1 min at each temperature. The shear bond strengths were determined. The shear bond strengths to the two polyamides treated with alumina, dichloromethane and ethyl acetate and no treatment were very low. The greatest post-thermocycling bond strengths to polyamides were recorded for the specimens treated with tribochemical silica coating and 4-META/MMA-TBB resin (PA12: 16.4 MPa, PACM12: 17.5 MPa). The greatest post-thermocycling bond strengths to polyethylene terephthalate copolymer and polycarbonate were recorded for the treatment with alumina and 4-META/MMA-TBB resin (22.7 MPa, 20.8 MPa). Polyamide was exceedingly difficult to bond to an autopolymerizing repair resin; the shear bond strength improved using tribochemical silica coating followed by the application of 4-META/MMA-TBB resin. Both polyethylene terephthalate copolymer and polycarbonate were originally easy to bond to an autopolymerizing repair resin. However, with 4-META/MMA-TBB resin, the bond was more secure.

  3. Magnetic ion-exchange resin treatment: Impact of water type and resin use

    OpenAIRE

    Mergen, Maxime Rodolphe Denis; Jefferson, Bruce; Parsons, Simon A.; Jarvis, Peter

    2008-01-01

    Three raw waters of fundamentally different natural organic matter (NOM) character were treated by magnetic resin using a bench-scale method designed to mimic how the resin is used in continuous operation. Increasing water hydrophobicity resulted in reduced dissolved organic carbon (DOC) removal with removal of 56%, 33% and 25% for waters containing 21%, 50% and 75% hydrophobic NOM, respectively. Study of consecutive resin uses showed that the NOM in the hydrophobic water ha...

  4. Optimal estimation of suspended-sediment concentrations in streams

    Science.gov (United States)

    Holtschlag, D.J.

    2001-01-01

    Optimal estimators are developed for computation of suspended-sediment concentrations in streams. The estimators are a function of parameters, computed by use of generalized least squares, which simultaneously account for effects of streamflow, seasonal variations in average sediment concentrations, a dynamic error component, and the uncertainty in concentration measurements. The parameters are used in a Kalman filter for on-line estimation and an associated smoother for off-line estimation of suspended-sediment concentrations. The accuracies of the optimal estimators are compared with alternative time-averaging interpolators and flow-weighting regression estimators by use of long-term daily-mean suspended-sediment concentration and streamflow data from 10 sites within the United States. For sampling intervals from 3 to 48 days, the standard errors of on-line and off-line optimal estimators ranged from 52.7 to 107%, and from 39.5 to 93.0%, respectively. The corresponding standard errors of linear and cubic-spline interpolators ranged from 48.8 to 158%, and from 50.6 to 176%, respectively. The standard errors of simple and multiple regression estimators, which did not vary with the sampling interval, were 124 and 105%, respectively. Thus, the optimal off-line estimator (Kalman smoother) had the lowest error characteristics of those evaluated. Because suspended-sediment concentrations are typically measured at less than 3-day intervals, use of optimal estimators will likely result in significant improvements in the accuracy of continuous suspended-sediment concentration records. Additional research on the integration of direct suspended-sediment concentration measurements and optimal estimators applied at hourly or shorter intervals is needed.

  5. 5-year clinical performance of resin composite versus resin modified glass ionomer restorative system in non-carious cervical lesions

    DEFF Research Database (Denmark)

    Franco, Eduardo Batista; Benetti, Ana Raquel; Ishikiriama, Sérgio Kiyoshi

    2006-01-01

    To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions.......To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions....

  6. 21 CFR 175.380 - Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins.

    Science.gov (United States)

    2010-04-01

    ...-isopropylidenediphenol-epichlorohydrin epoxy resins. 175.380 Section 175.380 Food and Drugs FOOD AND DRUG ADMINISTRATION... Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins. The...′-isopropylidenediphenol-epichlorohydrin epoxy resins, to which may have been added certain optional adjuvant substances...

  7. Viscoelastic and shock response of nanoclay and graphite platelet reinforced vinyl ester nanocomposites

    Science.gov (United States)

    Almagableh, Ahmad Mohammad

    The focus of ongoing research at University of Mississippi is to develop stronger, safer and more cost-effective structural materials for the new generation naval ships with an emphasis on lightweight nanoparticle reinforced glass/carbon polymeric based composites and structural foams for blast, shock and impact mitigation. Brominated 510A-40 vinyl ester nanocomposite resin systems are planned to be used in the composite face sheets of sandwich structures with fire-resistant foam layered in between to further reduce flammability along with optimal flexural rigidity, vibration damping and enhanced energy absorption. In this work, the viscoelastic and dynamic performance of brominated nanoclay and graphite platelet reinforced vinyl ester nanocomposites for blast (shock) loading applications are studied. The Dynamic Mechanical Analyzer (DMA Q800) was used to obtain the viscoelastic properties, modulus (stiffness), creep/ stress relaxation, and damping (energy dissipation), of 1.25 and 2.5 wt. percent nanoclay and exfoliated graphite nanoplatelet (xGnP) reinforced brominated vinyl ester. Effects of frequency (time) on the viscoelastic behavior were investigated by sweeping the frequency over three decades: 0.01, 0.1, 1 and 10 Hz, and temperature range from 30-150°C at a step rate of 4°C per minute. Master curves were generated by time-temperature superpositioning of the experimental data at a reference temperature. Bromination of vinyl ester resin was found to significantly increase the glass transition temperature (Tg) and damping for all nanocomposites. The nano reinforced composites, however showed a drop in initial storage modulus with bromination. Nanocomposites with 1.25 and 2.5 M. percent graphite had the highest storage modulus along with the lowest damping among brominated specimens. In this research, a shock Tube, servo-hydraulic Material Testing System (MTS) and Split-Hopkinson Pressure Bar (SHPB) are used to characterize the mechanical response and energy

  8. Thermoset polymer-layered silicic acid nanocomposites

    Science.gov (United States)

    Wang, Zhen

    Nanocomposites are formed when phase mixing occurs on a nanometer length scale. Due to the improved phase morphology and interfacial properties, nanocomposites exhibit mechanical properties superior to conventional composites. Toyota researchers first demonstrated that organoclay could be exfoliated in a nylon-6 matrix to greatly improve the thermal and mechanical properties of the polymer, which has resulted in a practical application in the automobile industry. A great deal of research has been conducted on organic-inorganic hybrid composites in which smectite clays are used as reinforcement agents. However, little work has been devoted to derivatives of other layered inorganic solids. In the present work, the first examples of organic polymer-layered silicic acid nanocomposites have been prepared by formation of a cured epoxy polymer network in the presence of organo cation exchange forms of magadiite. The exfoliation of silicate nanolayers in the epoxy matrix was achieved by in-situ intragallery polymerization during the thermosetting process. In general, the tensile properties, solvent resistance, barrier properties and chemical stability of the polymer matrix are greatly improved by the embedded silicate nanolayers when the matrix is flexible (sub-ambient Tg). The improvement of properties are dependent on the silicate loading, the degree of nanolayer separation and interfacial properties. Interestingly, the exfoliation also affects the polymer elasticity in a favorable way. The mechanism leading to nanocomposite formation is proposed. One exfoliated epoxy-magadiite nanocomposite/composition possessed unique transparent optical properties. The exfoliation chemistry was successfully extended to the other members of the layered silicic acid family. A new approach also was developed to prepare thermoset epoxy polymer-layered silicate nanocomposites in which curing agents can be directly intercalated into the intragallery without the need for alkylammonium ions

  9. Shape-morphing nanocomposite origami.

    Science.gov (United States)

    Andres, Christine M; Zhu, Jian; Shyu, Terry; Flynn, Connor; Kotov, Nicholas A

    2014-05-20

    Nature provides a vast array of solid materials that repeatedly and reversibly transform in shape in response to environmental variations. This property is essential, for example, for new energy-saving technologies, efficient collection of solar radiation, and thermal management. Here we report a similar shape-morphing mechanism using differential swelling of hydrophilic polyelectrolyte multilayer inkjets deposited on an LBL carbon nanotube (CNT) composite. The out-of-plane deflection can be precisely controlled, as predicted by theoretical analysis. We also demonstrate a controlled and stimuli-responsive twisting motion on a spiral-shaped LBL nanocomposite. By mimicking the motions achieved in nature, this method offers new opportunities for the design and fabrication of functional stimuli-responsive shape-morphing nanoscale and microscale structures for a variety of applications.

  10. High performance polyethylene nanocomposite fibers

    Directory of Open Access Journals (Sweden)

    A. Dorigato

    2012-12-01

    Full Text Available A high density polyethylene (HDPE matrix was melt compounded with 2 vol% of dimethyldichlorosilane treated fumed silica nanoparticles. Nanocomposite fibers were prepared by melt spinning through a co-rotating twin screw extruder and drawing at 125°C in air. Thermo-mechanical and morphological properties of the resulting fibers were then investigated. The introduction of nanosilica improved the drawability of the fibers, allowing the achievement of higher draw ratios with respect to the neat matrix. The elastic modulus and creep stability of the fibers were remarkably improved upon nanofiller addition, with a retention of the pristine tensile properties at break. Transmission electronic microscope (TEM images evidenced that the original morphology of the silica aggregates was disrupted by the applied drawing.

  11. Graphite nanoreinforcements in polymer nanocomposites

    Science.gov (United States)

    Fukushima, Hiroyuki

    Nanocomposites composed of polymer matrices with clay reinforcements of less than 100 nm in size, are being considered for applications such as interior and exterior accessories for automobiles, structural components for portable electronic devices, and films for food packaging. While most nanocomposite research has focused on exfoliated clay platelets, the same nanoreinforcement concept can be applied to another layered material, graphite, to produce nanoplatelets and nanocomposites. Graphite is the stiffest material found in nature (Young's Modulus = 1060 GPa), having a modulus several times that of clay, but also with excellent electrical and thermal conductivity. The key to utilizing graphite as a platelet nanoreinforcement is in the ability to exfoliate this material. Also, if the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with not only excellent mechanical properties but electrical properties as well, opening up many new structural applications as well as non-structural ones where electromagnetic shielding and high thermal conductivity are requirements. In this research, a new process to fabricate exfoliated nano-scale graphite platelets was established (Patent pending). The size of the resulted graphite platelets was less than 1 um in diameter and 10 nm in thickness, and the surface area of the material was around 100 m2/g. The reduction of size showed positive effect on mechanical properties of composites because of the increased edge area and more functional groups attached with it. Also various surface treatment techniques were applied to the graphite nanoplatelets to improve the surface condition. As a result, acrylamide grafting treatment was found to enhance the dispersion and adhesion of graphite flakes in epoxy matrices. The resulted composites showed better mechanical properties than those with commercially available carbon fibers, vapor grown carbon fibers

  12. The strengthening of resin cemented dental ceramic materials

    OpenAIRE

    Hooi, Paul

    2013-01-01

    The aim of the current investigation was to advance the understanding of the mechanism of resin-strengthening conferred to dental ceramic materials by resin-based composite materials. The investigation is presented as a series of manuscripts. In the first study (Manuscript 3.1), dental porcelain disc-shaped specimens were resin-coated with three resin-based composite materials with different flexural moduli at discrete resin thicknesses. The discs were loaded to failure in a biaxial flexure t...

  13. Pengaruh Sifat-Sifat Fisik Resin Akrilik Terhadap Basis Protesa

    OpenAIRE

    Amriani Syahfitri

    2008-01-01

    Saat ini resin akrilik banyak digunakan secara umum untuk konstruksi gigi tiruan. Sebagai bahan basis prothesa, penggunaan resin akrilik terutama resin heat cured adalah yang paling sering digunakan selain bernilai estetis, juga lebih ekonomis. Pada prothesa yang ideal memerlukan suatu basis yang kuat, Syarat- syarat basis protesa tidak semuanya dapat dipenuhi oleh basis resin akrilik. Sifat-sifat fisik resin akrilik mempunyai pengaruh terhadap basis protesa. Untuk menghindari k...

  14. Mechanical Properties and Tensile Fatigue of Graphene Nanoplatelets Reinforced Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Shen

    2013-01-01

    Full Text Available Graphene nanoplatelets (GNPs are novel nanofillers possessing attractive characteristics, including robust compatibility with most polymers, high absolute strength, and cost effectiveness. In this study, GNPs were used to reinforce epoxy composite and epoxy/carbon fiber composite laminates to enhance their mechanical properties. The mechanical properties of GNPs/epoxy nanocomposite, such as ultimate tensile strength and flexure properties, were investigated. The fatigue life of epoxy/carbon fiber composite laminate with GPs-added 0.25 wt% was increased over that of neat laminates at all levels of cyclic stress. Consequently, significant improvement in the mechanical properties of ultimate tensile strength, flexure, and fatigue life was attained for these epoxy resin composites and carbon fiber-reinforced epoxy composite laminates.

  15. Brick-and-Mortar Self-Assembly Approach to Graphitic Mesoporous Carbon Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Sheng [ORNL; Fulvio, Pasquale F [ORNL; Mayes, Richard T [ORNL; Wang, Xiqing [ORNL; Mahurin, Shannon Mark [ORNL; Bauer, Christopher [ORNL; Presser, Volker [Drexel University; Mcdonough, John [Drexel University; Gogotsi, Yury [ORNL

    2011-01-01

    Mesoporous carbon materials do not have sufficient ordering at the atomic scale to exhibit good electronic conductivity. To date, mesoporous carbons having uniform mesopores and high surface areas have been prepared from partially-graphitizable precursors in the presence of templates. High temperature thermal treatments above 2000 C, which are usually required to increase conductivity, result in a partial or total collapse of the mesoporous structures and reduced surface areas induced by growth of graphitic domains, limiting their applications in electric double layer capacitors and lithium-ion batteries. In this work, we successfully implemented a 'brick-and-mortar' approach to obtain ordered graphitic mesoporous carbon nanocomposites with tunable mesopore sizes below 850 C without using graphitization catalysts or high temperature thermal treatments. Phenolic resin-based mesoporous carbons act as mortar to highly conductive carbon blacks and carbon onions (bricks). The capacitance and resistivity of final materials can be tailored by changing the mortar to brick ratios.

  16. Longitudinal standing waves on a vertically suspended slinky

    Science.gov (United States)

    Young, Richard A.

    1993-04-01

    The vertically suspended slinky is a system where variable tension, and variable mass density, combine to produce a simple solution for the longitudinal normal modes. The time taken for a longitudinal wave to traverse a single turn of the slinky is found to be constant for a variety of slinky configurations. For the freely suspended slinky this constant traverse time yields standing wave frequencies that depend only on the length of the hanging slinky and not on the material, radius, or stiffness of the slinky. Data, obtained by students in a laboratory setting, are presented to illustrate the application of these results.

  17. Optical fiber end-facet polymer suspended-mirror devices

    Science.gov (United States)

    Yao, Mian; Wu, Jushuai; Zhang, A. Ping; Tam, Hwa-Yaw; Wai, P. K. A.

    2017-04-01

    This paper presents a novel optical fiber device based on a polymer suspended mirror on the end facet of an optical fiber. With an own-developed optical 3D micro-printing technology, SU-8 suspended-mirror devices (SMDs) were successfully fabricated on the top of a standard single-mode optical fiber. Optical reflection spectra of the fabricated SU- 8 SMDs were measured and compared with theoretical analysis. The proposed technology paves a way towards 3D microengineering of the small end-facet of optical fibers to develop novel fiber-optic sensors.

  18. Suspended 3D pyrolytic carbon microelectrodes for electrochemistry

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Caviglia, Claudia; Keller, Stephan Sylvest

    2017-01-01

    the mechanical stability, shrinkage and material properties. The smallest feature size fabricated in the suspended carbon layer was 2 μm. A three electrode microelectrode chip with 3D pyrolytic carbon microstructures as the working electrode was designed and fabricated. The electrodes were characterized...... resistance as compared to 2D carbon electrodes. The higher sensitivity of 3D carbon microelectrodes for electrochemical sensing was illustrated by dopamine detection.......Carbon microelectrodes have a wide range of applications because of their unique material properties and biocompatibility. This work presents the fabrication and characterization of suspended pyrolytic carbon microstructures serving as three-dimensional (3D) carbon microelectrodes...

  19. Design of a LC-tuned magnetically suspended rotating gyroscope

    Science.gov (United States)

    Jin, Lichuan; Zhang, Huaiwu; Zhong, Zhiyong

    2011-04-01

    A inductor-capacitor (LC) tuned magnetically suspended rotating gyroscope prototype is designed and analyzed. High permeability ferrite cores are used for providing suspension force, and the rotation system is designed using the switched reluctance motor (SRM) principle. According to the LC-tuned principle, magnetic suspension force expression has been derived. The electromagnetic properties of the gyroscope are simulated by the Ansoft Maxwell software. And our result is expected to be able to serve as a prototype of micro-electromechanical system (MEMS) magnetically suspended rotating gyroscope in future practical applications.

  20. Resin Flow Analysis in the Injection Cycle of a Resin Transfer Molded Radome

    Science.gov (United States)

    Golestanian, Hossein; Poursina, Mehrdad

    2007-04-01

    Resin flow analysis in the injection cycle of an RTM process was investigated. Fiberglass and carbon fiber mats were used as reinforcements with EPON 826 epoxy resin. Numerical models were developed in ANSYS finite element software to simulate resin flow behavior into a mold of conical shape. Resin flow into the woven fiber mats is modeled as flow through porous media. The injection time for fiberglass/epoxy composite is found to be 4407 seconds. Required injection time for the carbon/epoxy composite is 27022 seconds. Higher injection time for carbon/epoxy part is due to lower permeability value of the carbon fibers compared to glass fiber mat.