WorldWideScience

Sample records for resin cement overhangs

  1. Restoration techniques and marginal overhang in Class II composite resin restorations.

    NARCIS (Netherlands)

    Loomans, B.A.C.; Opdam, N.J.M.; Roeters, F.J.M.; Bronkhorst, E.M.; Huysmans, M.C.D.N.J.M.

    2009-01-01

    OBJECTIVES: The objective of the study was to compare in vitro interproximal overhang formation of Class II composite resin restoration when using different matrix systems. METHODS: 240 lower left molar phantom head teeth with an MO-preparation were divided into 12 groups (n=20). In six groups a

  2. Enhancement of adhesion between resin coating materials and resin cements.

    Science.gov (United States)

    Udo, Tomoaki; Nikaido, Toru; Ikeda, Masaomi; Weerasinghe, Dinesh S; Harada, Naoko; Foxton, Richard M; Tagami, Junji

    2007-07-01

    Resin coating technique is a unique method that improves the dentin bond strength of resin cements in indirect restorations. However, the weak link of a specimen bonded using the resin coating technique was reported to be the bonded interface between the resin coating material and resin cement. The purpose of this study, therefore, was to enhance the bonding performance between a resin coating material and a resin cement. Two light-cured flowable composites, Protect Liner F and Clearfil Flow FX, were used as coating materials, and two dual-cure composite materials, Panavia F 2.0 and Clearfil DC Core Automix, were used as resin cements. The ultimate tensile strength of each material and the microtensile bond strengths of the bonded specimens of resin coating material and resin cement were measured using a crosshead speed of 1.0 mm/min. Three-way ANOVA (p=0.05) revealed that the highest microtensile bond strength was obtained using a combination of Clearfil Flow FX and Clearfil DC Core Automix, and when the surface of the coating material was treated with ED Primer II. It was strongly suggested that materials with a higher ultimate tensile strength, when used in both resin coating and cementation, could enhance the bond strength between the two.

  3. Immobilisation of ion exchange resins in cement

    International Nuclear Information System (INIS)

    Howard, C.G.; Jolliffe, C.B.; Lee, D.J.

    1990-09-01

    The removal of activity from spent decontaminating solutions eg LOMI can be achieved using organic ion exchange resins. These resins can be successfully immobilised in cement based matrices. The optimum cement system contained 10% ordinary Portland cement 84% gg blast furnace slag, 6% microsilica with a water cement ratio of 0.5 and a dry resin loading of 36% with respect to total weight. This formulation was successfully scaled up to 200 litres giving a product with acceptable compressive strength, dimensional stability and elastic modulus. Storage of samples under water appears to have no detrimental effects on the product's properties. (author)

  4. Seating load parameters impact on dental ceramic reinforcement conferred by cementation with resin-cements.

    LENUS (Irish Health Repository)

    Addison, Owen

    2010-09-01

    Cementation of all-ceramic restorations with resin-cements has been demonstrated to reduce the incidence of fracture in service. The aim was to investigate the influence of loading force and loading duration applied during cementation on the reinforcement conferred by a resin-cement on a leucite reinforced glass-ceramic.

  5. Analytical method to estimate resin cement diffusion into dentin

    Science.gov (United States)

    de Oliveira Ferraz, Larissa Cristina; Ubaldini, Adriana Lemos Mori; de Oliveira, Bruna Medeiros Bertol; Neto, Antonio Medina; Sato, Fracielle; Baesso, Mauro Luciano; Pascotto, Renata Corrêa

    2016-05-01

    This study analyzed the diffusion of two resin luting agents (resin cements) into dentin, with the aim of presenting an analytical method for estimating the thickness of the diffusion zone. Class V cavities were prepared in the buccal and lingual surfaces of molars (n=9). Indirect composite inlays were luted into the cavities with either a self-adhesive or a self-etch resin cement. The teeth were sectioned bucco-lingually and the cement-dentin interface was analyzed by using micro-Raman spectroscopy (MRS) and scanning electron microscopy. Evolution of peak intensities of the Raman bands, collected from the functional groups corresponding to the resin monomer (C-O-C, 1113 cm-1) present in the cements, and the mineral content (P-O, 961 cm-1) in dentin were sigmoid shaped functions. A Boltzmann function (BF) was then fitted to the peaks encountered at 1113 cm-1 to estimate the resin cement diffusion into dentin. The BF identified a resin cement-dentin diffusion zone of 1.8±0.4 μm for the self-adhesive cement and 2.5±0.3 μm for the self-etch cement. This analysis allowed the authors to estimate the diffusion of the resin cements into the dentin. Fitting the MRS data to the BF contributed to and is relevant for future studies of the adhesive interface.

  6. Solidification of ion exchange resin wastes in hydraulic cement

    International Nuclear Information System (INIS)

    Neilson, R.M. Jr.; Kalb, P.; Fuhrmann, M.; Colombo, P.

    1982-01-01

    Work has been conducted to investigate the solidification of ion exchange resin wastes with portland cements. These efforts have been directed toward the development of acceptable formulations for the solidification of ion exchange resin wastes and the characterization of the resultant waste forms. This paper describes formulation development work and defines acceptable formulations in terms of ternary phase compositional diagrams. The effects of cement type, resin type, resin loading, waste/cement ratio and water/cement ratio are described. The leachability of unsolidified and solidified resin waste forms and its relationship to full-scale waste form behavior is discussed. Gamma irradiation was found to improve waste form integrity, apparently as a result of increased resin crosslinking. Modifications to improve waste form integrity are described. 3 tables

  7. Retention of gold alloy crowns cemented with traditional and resin cements.

    Science.gov (United States)

    Pinzón, Lilliam M; Frey, Gary N; Winkler, Mark M; Tate, William H; Burgess, John O; Powers, John M

    2009-01-01

    The aim of this study was to measure in vitro retention of cast gold crowns cemented with traditional and resin cements. Forty-eight human molars were prepared on a lathe to produce complete crown preparations with a consistent taper and split into six groups, eight crowns in each group. Crowns were cast in a high-gold alloy and then cemented. After 24 hours, the retention force (N) was recorded and mean values were analyzed by one-way analysis of variance and the Fisher post-hoc least significant difference (PLSD) multiple comparisons test (a = .05). Failure sites were examined under 3100 magnification and recorded. Mean values (SD) for each group in increasing order of retention force were: Harvard Cement: 43 N (27), TempoCem: 59 N (16), PermaCem Dual: 130 N (42), RelyX Luting Cement: 279 N (26), Contax and PermaCem Dual: 286 N (38), and TempoCem with Contax and PermaCem Dual: 340 N (14). The Fisher PLSD interval (P = .05) for comparing cements was 29 N. Zinc-phosphate cement and provisional resin cements had the lowest retention forces. Resin cement with a bonding agent and the hybrid-ionomer cement had similar retention forces. Resin cement with a bonding agent applied after use of a provisional resin cement had a significantly higher retention force than the other cements tested.

  8. Surface Hardness of Resin Cement Polymerized under Different Ceramic Materials

    OpenAIRE

    Kesrak, Pimmada; Leevailoj, Chalermpol

    2012-01-01

    Objectives. To evaluate the surface hardness of two light-cured resin cements polymerized under different ceramic discs. Methods. 40 experimental groups of 2 light-cured resin cement specimens (Variolink Veneer and NX3) were prepared and polymerized under 5 different ceramic discs (IPS e.max Press HT, LT, MO, HO, and Cercon) of 4 thicknesses (0.5, 1.0, 1.5, and 2.0 mm), Those directly activated of both resin cements were used as control. After light activation and 3 7 ∘ C storage in an incuba...

  9. Correlation between the cytotoxicity of self-etching resin cements and the degree of conversion

    Directory of Open Access Journals (Sweden)

    Luís FSA Morgan

    2015-01-01

    Conclusion: These results indicate that photopolymerization of dual cure self-etching resin cements decrease toxic effects on cell culture. Adequate photopolymerization should be considered during cementation when using dual polymerization self-etching resin cements.

  10. The influence of ultrasound on removal of prefabricated metal post cemented with different resin cements

    Directory of Open Access Journals (Sweden)

    Atiyeh Feiz

    2013-01-01

    Conclusion: Ultrasonic energy did not decrease the retention of posts cemented with Panavia or Maxcem Elite cements. Furthermore, it seems that there is no significant difference between removal force of self-etch (Panavia and the self-etch self-adhesive (Maxcem Elite resin cements.

  11. The Translucency Effect of Different Colored Resin Cements used ...

    African Journals Online (AJOL)

    2018-01-30

    Jan 30, 2018 ... [32] studied the optical effect of composite resins on ceramic crowns and noted that there are no industrial standards for resin shade classification. The results of the present study show that cements of the same shade in different systems exhibit different color parameters. In terms of opacity or translucency, ...

  12. Statistical failure analysis of adhesive resin cement bonded dental ceramics

    Science.gov (United States)

    Wang, Yaou; Katsube, Noriko; Seghi, Robert R; Rokhlin, Stanislav I.

    2007-01-01

    The goal of this work is to quantitatively examine the effect of adhesive resin cement on the probability of crack initiation from the internal surface of ceramic dental restorations. The possible crack bridging mechanism and residual stress effect of the resin cement on the ceramic surface are examined. Based on the fracture-mechanics-based failure probability model, we predict the failure probability of glass-ceramic disks bonded to simulated dentin subjected to indentation loads. The theoretical predictions match experimental data suggesting that both resin bridging and shrinkage plays an important role and need to be considered for accurate prognostics to occur. PMID:18670583

  13. Dynamic and static mechanical analysis of resin luting cements.

    Science.gov (United States)

    Tolidis, K; Papadogiannis, D; Papadogiannis, Y; Gerasimou, P

    2012-02-01

    Various types of indirect restorations are available for dental treatment and resin cements are commonly used as a luting medium. The aim of this study was to evaluate the mechanical properties of contemporary resin luting agents under different testing conditions and temperatures. The materials tested were Choice 2 (CH), Clearfil Esthetic Cement (EC), Resicem (RC) and RelyX Unicem (RX). Each material was examined after 24 h of storage at 21 °C dry and wet at 21, 37 and 50 °C under dynamic and static testing and parameters such as shear and flexural modulus, loss tangent, dynamic viscosity and Poisson's ratio were calculated. The resin cements were also subjected to creep testing under different constant loads for 3 h and a recovery time of 50 h. The material with the highest modulus was CH, while RX had the lowest. All resin cements were affected by the presence of water with RX being the least affected and by the increase of temperature, with RC being the least susceptible. None of the materials exhibited full recovery after creep testing and permanent deformation ranged from 0.43% to 5.53%. The resin cements tested in this study showed no major transitions under the different testing conditions. Their behavior was satisfactory for restorations that do not require increased mechanical properties. However, in the case of stress-bearing restorations the conditions in the oral cavity may affect the performance of these materials. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Carbonization-cementation process for treatment of spent IX resins

    International Nuclear Information System (INIS)

    Sathi Sasidharan, N.; Deshingkar, D.S.; Wattal, P.K.

    2004-08-01

    The spent IX resins containing radioactive fission and activation products of reactor structural materials are highly active solid wastes generated during operations of nuclear reactors. Feasibility tests were conducted for carbonization of IX resins to achieve weight and volume reduction and destruction of functional groups so as to make them compatible for immobilization in cement matrix. Carbonization of non-radioactive resins was studied at 250 to 350 degC. Carbonization residues were 20 to 32 wt% depending upon the type of resin and temperature of carbonization. The release of 137 Cs activity to off-gases was 0.004% at 300 degC and 0.05 % at 350 degC. Based on these tests, a 50 liter/batch capacity inactive resin carbonization pilot plant was set up. Carbonization residues could be immobilized into cement matrix with 60 wt % loading using vermiculite and precipitated silica as admixtures. The cumulative fraction of 137 Cs leached from the selected cement matrix was 0.0066 in 200 days. Based on pilot plant studies and cementation tests, the swollen spent resins waste volume could be minimized by 2.7 times. (author)

  15. Cytotoxicity of resin-based luting cements to pulp cells.

    Science.gov (United States)

    Pontes, Elaine Cristina Voltolini; Soares, Diana Gabriela; Hebling, Josimeri; Costa, Carlos Alberto De Souza

    2014-10-01

    To evaluate the cytotoxicity of components released from different types of luting cements to two cell lines obtained from pulp tissue. Three types of luting cements were evaluated, distributed into the following groups: G1--negative control (no treatment); G2--resin-modified glass-ionomer cement (Rely X Luting 2); G3--self-adhesive resin cement (Rely X U200); and G4--conventional resin cement (Rely X ARC). Standardized cylindrical specimens (14 mm diameter and 1 mm thick) prepared with the dental materials were immersed in culture medium (DMEM) for 24 hours to obtain the extracts (DMEM + components released from the cements). Then, the extracts were applied to cultured odontoblast-like MDPC-23 cells or human dental pulp cells (HDPCs). Finally, cell viability (MTT assay), cell death (Annexin/PI) (Kruskal-Wallis/Mann-Whitney; α = 5%) and cell morphology (SEM) were assessed. Cements' components in contact with cells (SEM/EDS) and pH of the extracts were also evaluated. The resin-modified glass-ionomer cement (G2) caused the most intense toxic effect to the two cell lines; the cell viability reduction was around 95.8% and 89.4% for MDPC-23 cells and HDPCs, respectively, which was statistically significantly different compared with that of the negative control group (G1). Also, a high quantity of particles leached from this ionomeric cement was found on the cells, which showed intense morphological alterations. In the G2 group, 100% necrosis was observed for both cell lines, and an acidic pH was detected on the extract. Conversely, Rely X U200 (G3) and Rely X ARC (G4), which presented low solubility and no alteration in pH, caused only slight cytotoxicity to the cultured cells.

  16. Physical and chemical durability of cement impregnated epoxy resin

    International Nuclear Information System (INIS)

    Suryantoro

    1997-01-01

    Immobilization of simulation radioactive waste contains Cs and Sr with cement impregnated epoxy resin has been done. Low level liquid waste in 30% weight mixed cement homogeneously and then set in its curing time about 28 days. Waste from was impregnated with epoxy resin (Bisphenol-A-diglycidylether) and use Triethylenteramin as catalyst. the sample of cement impregnated epoxy resin 2.5 cm x 2.5 cm in diameter and length was tested by Paul Weber. The compressive strength was obtained of 4.08 kN.cm - 2. The sochxlet apparatus was run on flow rate of 300 ml/hour at 100 o C and during 24 hours. The leaching rate of Cs was round on 5.5 x 10 - 4 g.cm - 2.d - 1 and Sr was 6.1 x 10 - 4 g.cm - 2.d - 1 (author)

  17. Effect of resin coating on dentin bonding of resin cement in Class II cavities.

    Science.gov (United States)

    Sultana, Shamim; Nikaido, Toru; Matin, Khairul; Ogata, Miwako; Foxton, Richard M; Tagami, Junji

    2007-07-01

    This study was designed to evaluate the efficacy of resin coating on the regional microtensile bond strength (MTBS) of a resin cement to the dentin walls of Class II cavities. Twenty mesio-occlusal cavities were prepared in human molars. In 10 cavities, a resin coating consisting of a self-etching primer bonding system, Clearfil SE Bond, and a low-viscosity microfilled resin, Protect Liner F, was applied. The other 10 teeth served as a non-coating group. After impression taking and temporization, they were kept in water for one day. Composite inlays were then cemented with a dual-cure resin cement, Panavia F 2.0, and stored in water for one day. Thereafter, MTBSs were measured. Two-way ANOVA (p=0.05) revealed that the MTBS of resin cement to dentin was influenced by resin coating, but not by regional difference. In conclusion, application of a resin coating to the dentin surface significantly improved the MTBS in indirect restorations.

  18. Influence of different ceramics on resin cement Knoop Hardness Number.

    Science.gov (United States)

    Borges, Gilberto A; Agarwal, Parul; Miranzi, Benito A S; Platt, Jeffrey A; Valentino, Thiago Assunção; dos Santos, Paulo Henrique

    2008-01-01

    This study evaluated: (1) the effect of different ceramics on light attenuation that could affect microhardness, measured as the Knoop Hardness Number (KHN), of a resin cement immediately and 24 hours after polymerization and (2) the effect of different activation modes (direct light-activation, light activation through ceramics and chemical activation) on the KHN of a resin cement. Resin cement Rely XARC (3M ESPE) specimens 5.0 mm in diameter and 1.0 mm thickwere made in a Teflon mold covered with a polyester film. The cement was directly light activated for 40 seconds with an XL 2500 curing unit (3M ESPE) with 650 mW/cm2, light activated through ceramic discs of Duceram Plus (DeguDent), Cergogold (DeguDent), IPS Empress (Ivoclar), IPS Empress 2 (Ivoclar), Procera (NobelBiocare), In Ceram Alumina (Vita) and Cercon (DeguDent), having a 1.2 mm thickness or chemically activatedwith-out light application. The resin cement specimens were flattened, and KHN wasobtained using an HMV 2 microhardnesstester (Shimadzu) with a load of 50 g applied for 15 seconds 100 microm from the irradiated surface immediately and after storage at 37 degrees C for 24 hours. Ten measurements were made for each specimen, with three specimens for each group at each time. The data were submitted to ANOVA and Tukey's test (p = 0.05). The KHN of the resin cement was not only affected by the mode of activation, but also by the post-activation testing time. The mean KHN of the resin cementfor chemical activation and through all ceramics showed statistically significant lower values compared to direct activation immediately and at 24 hours. The KHN for 24 hourspost-activation was always superior to the immediate post-activation test except with direct activation. The most opaque ceramics resulted in the lowest KHN values.

  19. Study of mechanical and physicochemical properties of cementated spent ion-exchange-resins

    International Nuclear Information System (INIS)

    Patek, P.

    1981-09-01

    As first part of a study on the possibilities, to immobilize spent ion exchange resins, for final disposal, the dependence of compressive strength from the composition of cement - resin mixtures was detected. Powdered resins, bead resins and ashes from the incinerator plant and several cement brands were examinated. As result an area was defined in the three-phase diagram of cement, resins and water, in which the following leach tests will be performed. (author)

  20. Shear bond strength of a self‑etched resin cement to an indirect ...

    African Journals Online (AJOL)

    ... however there were not statistical difference among the tested surface treatment methods. Conclusion: In Shear bond strength of resin, cement was independent of the surface conditioning methods applied on tested indirect resin composite. Key words: Composite resins, dental bonding, resin cements, surface properties ...

  1. The Translucency Effect of Different Colored Resin Cements used ...

    African Journals Online (AJOL)

    Purpose: The purpose of this study was to evaluate the effect of the different color of resin cements and zirconia cores on the translucency parameter (TP) of the restoration that simulates the implant‑supported fixed prosthesis using titanium base on the bottom. Materials and Methods: Zirconia core plates (Zr‑Zahn) were ...

  2. The Translucency Effect of Different Colored Resin Cements used ...

    African Journals Online (AJOL)

    2018-01-30

    Jan 30, 2018 ... Purpose: The purpose of this study was to evaluate the effect of the different color of resin cements and zirconia cores on the translucency parameter (TP) of the restoration that simulates the implant‑supported fixed prosthesis using titanium base on the bottom. Materials and Methods: Zirconia core plates ...

  3. Influence of Bovine Dentin Site on the Bond Strength of Resin Cement

    OpenAIRE

    Tohru, HAYAKAWA; Hiroyuki, MISHIMA; Shuichi, YAMAKAWA; Mikiko, MASUDA; Masahiro, AIDA; Kimiya, NEMOTO; Yukishige, KOZAWA; Department of Dental Materials, Research Institute of Oral Science, Nihon Univerity School of Dentistry at Matsudo; Department of Anatomy, Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo; Department of Crown and Bridge Prosthodontics, Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo; Department of Crown and Bridge Prosthodontics, Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo; Department of Crown and Bridge Prosthodontics, Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo; Department of Dental Materials, Research Institute of Oral Science, Nihon Univerity School of Dentistry at Matsudo; Department of Anatomy, Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo

    2001-01-01

    The purpose of this study is to investigate the influences of types of resin cements and dentin site(crown and root part)on the adhesion of resin cement to dentin. Three types of resin cements; Super-Bond C&B, Bistite II and Scotchbond Resin Cement were used. The tensile bond strength of each resin cement to crown and root dentin of bovine incisors was measured after 24 hours immersion in water at 37℃. Super-Bond C&B showed no significant difference in bond strength between crown and root den...

  4. Post-irradiation hardness of resin-modified glass ionomer cements and a polyacid-modified composite resin

    International Nuclear Information System (INIS)

    Yap, A.U.J.

    1997-01-01

    This study examined the post-irradiation hardness of resin-modified glass ionomer cements and a polyacid-modified composite resin using a digital microhardness tester. Change in hardness of these materials over a period of 6 months was compared to that of conventional glass ionomer cements and a composite resin. With the exception of the composite resin, all materials showed a significant increase in hardness over 24 h after their initial set. Dual-cure resin-modified glass ionomer cements showed decreased hardness with increased storage time in saline at 37 o C. Results suggest that the addition of resins to glass ionomer cements does not improve initial hardness and does not negate the acid-base reaction of conventional cements. Resin addition may, however, lead to increased water sorption and decreased hardness. (author)

  5. Effect of interim cement application on bond strength between resin cements and dentin: Immediate and delayed dentin sealing.

    Science.gov (United States)

    Brigagão, Vinícius C; Barreto, Luis F D; Gonçalves, Kellem A S; Amaral, Marina; Vitti, Rafael P; Neves, Ana C C; Silva-Concílio, Laís R

    2017-06-01

    Despite the advances in materials and techniques, adhesion to dentin is challenging because of the complex composition of dentin's mineral, organic, and fluid phases. The purpose of this in vitro study was to evaluate the bond strength of 2 different resin cements (conventional and self-adhesive) with or without previous dentin sealing and the effect of interim cement. Forty-five molars were embedded into acrylic resin blocks and a flat dentin surface was exposed. Twenty teeth (n=5 per group) were treated with the conventional resin cement associated with etch-and-rinse or self-etch adhesive approaches, applied before (immediate dentin sealing) or after (delayed dentin sealing) the application/removal of interim cement. Another 25 teeth (n=5, per group) were treated with self-adhesive resin cement with (self-etch mode [immediate dentin sealing or delayed dentin sealing]) or without adhesive application. Furthermore, in the self-adhesive resin cement group, the application of polyacrylic acid for dentin etching before cementation was evaluated. Composite resin blocks were cemented onto flat, treated dentin surfaces, and the assemblies were sectioned into bar-shaped specimens for microtensile bond strength testing. The data were subjected to 1-way ANOVA followed by the post-hoc Tukey test (α=.05). The failure patterns were classified as cohesive, adhesive, or mixed. The application of adhesive before interim cement (immediate dental sealing) promoted the highest values of bond strength for both resin cements (Presin cement, polyacrylic acid-enhanced bond strength after the application of interim cement. The application of dental adhesive immediately after tooth preparation (immediate dentin sealing) and before the use of an interim cement promoted the highest values of bond strength to dentin with the resin cements tested. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. Microleakage of porcelain and composite machined crowns cemented with self-adhesive or conventional resin cement.

    Science.gov (United States)

    Ghazy, Mohamed; El-Mowafy, Omar; Roperto, Renato

    2010-10-01

    Resistance of machined crowns to microleakage when cemented with new self-adhesive cements has not been fully investigated. This study evaluated microleakage of machined crowns milled from porcelain and composite blocks and bonded to teeth with self-adhesive and conventional resin cement. Thirty-two freshly extracted premolars of similar shape and size were sterilized and mounted in resin blocks. Teeth received standard crown preparations with 1-mm circumferential shoulder finish line, flat occlusal surface reduced by 2 mm, and ideal angle of convergence. Prepared teeth were divided into two equal groups and assigned to either porcelain (Vita Mark II, Vident) or composite (Paradigm MZ100, 3M ESPE) blocks for crown fabrication. Optical impressions were captured for each tooth with the intraoral camera of a CEREC 3D machine. Crowns were designed and milled from both materials. Each group was then subdivided into two subgroups (n = 8) according to cement used (self-adhesive resin cement, RelyX Unicem, 3M ESPE or resin cement with self-etching adhesive, Panavia F 2.0, Kuraray). Following seating, a 5-kg weight was applied on the occlusal surface of the crown for 5 minutes. Specimens were then stored in water at 37°C for 24 hours. Specimens were thermocycled for 3000 cycles between 5°C and 55°C, then coated with nail varnish and immersed in a 2.0% basic red fuchsine dye solution for 24 hours. Teeth were then rinsed and sectioned mesiodistally and assessed under magnification for microleakage. A five-point scale was used to score degree of microleakage. Data were statistically analyzed with 2-way ANOVA and Kruskal-Wallis nonparametric test. Crown material had no significant effect on microleakage (p= 0.67); however, cement type had a significant effect (p cement, the resin cement with separate primer/bonding agent resulted in significantly lower microleakage scores, irrespective of crown material. © 2010 by The American College of Prosthodontists.

  7. Microshear bond strength between restorative composites and resin cements

    OpenAIRE

    Rubens Nazareno GARCIA; Mário Fernando de GÓES; Marcelo GIANNINI

    2008-01-01

    Introduction and objective: The techniques of adhesive cementationhave been widely used in dental restoration. The purpose of this studywas to evaluate the microshear bond strength between restorativecomposites and resin cements. Material and methods: Twenty composites blocks were prepared in order to obtain a flat surface, using 600-grid sandpaper. The samples were randomly divided in four groups(n=15) according to the experimental groups: [1] Z250 block + Single Bond + cylinder of RelyX ARC...

  8. Post-cementation colorimetric evaluation of the interaction between the thickness of ceramic veneers and the shade of resin cement.

    Science.gov (United States)

    Calgaro, Patricia Angélica Milani; Furuse, Adilson Yoshio; Correr, Gisele Maria; Ornaghi, Bárbara Pick; Gonzaga, Carla Castiglia

    2014-08-01

    To evaluate the color parameters (CIELab*) after the cementation of ceramic disks of different thicknesses onto a resin substrate using four different shades of resin cements, and determine the color difference (ΔE) between the adhesively cemented disks and a 10 mm-thick A1 shade ceramic control (target color). Ceramic disks, simulating laminate veneers, with thicknesses of 0.5, 0.7 and 1.0 mm (shade A1, IPS Classic) were fabricated (n = 40) and cemented with a dual-cured resin cement (Variolink II, shades A1, bleach, opaque and transparent) onto 120 2 mm-thick resin composite substrates (shade A3.5, Adoro). Each ceramic disk was photocured for 80 seconds. The determination of the CIELab* parameters of each ceramic-cement-substrate set was performed with a spectrophotometer. A 10 mm-thick A1 ceramic disk was used as a control. The results for the color difference (ΔE) obtained from L*, a* and b* parameters were analyzed using ANOVA and Tukey's test (α = 0.05). The ΔE values ranged from 2.46 (1.0 mm, opaque cement) to 12.11 (0.5 mm, A1 cement). The opaque cement showed the lower ΔE values, followed by the bleach, transparent and A1 cements. With respect to the thickness of the ceramic, color differences between the target color and the group with 1.0 mm ceramic disks were smaller for all cement shades tested. Only the combination of 1.0 mm ceramic disks cemented with the opaque cement was able to mask the background color (ΔE resin cement were smaller in comparison with the bleach, transparent and A1 cements.

  9. Comparison of Shear Bond Strengths of Conventional Resin Cement and Self-adhesive Resin Cement bonded to Lithium Disilicate: An in vitro Study.

    Science.gov (United States)

    Roy, Anip K; Mohan, Dennis; Sunith, M; Mandokar, Rashmi B; Suprasidh, S; Rajan, Soumya

    2017-10-01

    The aim of this study is to compare the shear bond strengths of conventional resin cement and self-adhesive resin cement bonded to lithium disilicate. A total of 40 extracted human molar teeth were mounted in self-cure acrylic resin. Teeth were prepared to obtain flat occlusal surface. About 40 lithium disilicate specimens of dimension-10 mm in diameter and thickness of 2 mm-were fabricated using lost wax technique. The samples were divided into four groups: Groups I, II, III, and IV (n = 10). The specimens were surface treated with Monobond S silane coupling agent. Self-etching primer and bonding agent were applied on the bonding surface of the teeth in groups I and III. The specimens were bonded to the primed teeth with the Multilink N resin cement and subjected to the universal testing machine. The specimens were light-cured. Specimens in groups II and IV were luted to teeth using self-adhesive cement RelyX U100. The same force was applied over the specimen as mentioned above. Excess cement was removed, and light curing was done. The specimens in groups III and IV were subjected to thermocycling for 10,000 cycles at temperatures altering between 5°C and 55°C. The shear bond strengths of conventional resin cement and self-adhesive resin cement with lithium disilicate were tested before and after thermocycling. Results indicated that thermocycling has no significant effect on the bond strengths of conventional or self-adhesive resin cement. However, from the study, it is seen that conventional resin cement had a higher shear bond strength value than the self-adhesive resin cement. There was a significant difference between the average shear bond strength values of conventional resin cement (Multilink N) and self-adhesive resin cement (RelyX U100) when bonded to lithium disilicate disks, and thermocycling had no significant effect on the bond strength of conventional or self-adhesive resin cements. Among all-ceramic systems available, lithium disilicate materials

  10. Evaluation of the esthetic effect of resin cements and try-in pastes on ceromer veneers.

    Science.gov (United States)

    Xing, Wenzhong; Jiang, Tao; Ma, Xiao; Liang, Shanshan; Wang, Zhejun; Sa, Yue; Wang, Yining

    2010-01-01

    To evaluate the influence of various shades of resin cements on the final color of ceromer veneers and analyse the agreement of resin cements and corresponding try-in pastes. Ceromer disks (Ceramage, 1.0mm×10mm diameter) were bonded to resin background disks (3.0mm×10mm diameter) using five shades of resin cements (RelyX Veneer), whilst butylphthalate was placed between ceromer and resin background as the control group (n=5). The corresponding try-in pastes were placed between ceromer and resin background disks using the specimens of the control group. After colorimetric evaluations, the thickness of ceromer disks was reduced to 0.8 and 0.5mm. Color measurements were repeated at each thickness. To analyse masking ability of the cement, resin background disks with 0.1mm thick cement layer were fabricated using five shades of resin cements (n=5). Two-way ANOVA of ΔE values of cement shades and control group revealed significant differences in cement shade and thickness, and their interaction (p2.0) in 0.5mm thick specimens and WO shade in 0.8mm thick specimens. There were no perceptible color differences between resin cements and corresponding try-in pastes. The effect of resin cements on the final color of ceromer veneers depended on cement shades and thickness of ceromer. The color of resin cements and corresponding try-in pastes achieved high agreement. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Immobilisation Of Spent Ion Exchange Resins Using Portland Cement Blending With Organic Material

    International Nuclear Information System (INIS)

    Zalina Laili; Mohd Abdul Wahab; Nur Azna Mahmud

    2014-01-01

    Immobilisation of spent ion exchange resins (spent resins) using Portland cement blending with organic material for example bio char was investigated. The performance of cement-bio char matrix for immobilisation of spent ion exchange resins was evaluated based on their compression strength and leachability under different experimental conditions. The results showed that the amount of bio char and spent resins loading effect the compressive strength of the waste form. Several factors affecting the leaching behaviour of immobilised spent resins in cement-bio char matrix. (author)

  12. Longevity of metal-ceramic crowns cemented with self-adhesive resin cement: a prospective clinical study

    Science.gov (United States)

    Brondani, Lucas Pradebon; Pereira-Cenci, Tatiana; Wandsher, Vinicius Felipe; Pereira, Gabriel Kalil; Valandro, Luis Felipe; Bergoli, César Dalmolin

    2017-04-10

    Resin cements are often used for single crown cementation due to their physical properties. Self-adhesive resin cements gained widespread due to their simplified technique compared to regular resin cement. However, there is lacking clinical evidence about the long-term behavior of this material. The aim of this prospective clinical trial was to assess the survival rates of metal-ceramic crowns cemented with self-adhesive resin cement up to six years. One hundred and twenty-nine subjects received 152 metal-ceramic crowns. The cementation procedures were standardized and performed by previously trained operators. The crowns were assessed as to primary outcome (debonding) and FDI criteria. Statistical analysis was performed using Kaplan-Meier statistics and descriptive analysis. Three failures occurred (debonding), resulting in a 97.6% survival rate. FDI criteria assessment resulted in scores 1 and 2 (acceptable clinical evaluation) for all surviving crowns. The use of self-adhesive resin cement is a feasible alternative for metal-ceramic crowns cementation, achieving high and adequate survival rates.

  13. Longevity of metal-ceramic crowns cemented with self-adhesive resin cement: a prospective clinical study

    Directory of Open Access Journals (Sweden)

    Lucas Pradebon BRONDANI

    2017-04-01

    Full Text Available Abstract Resin cements are often used for single crown cementation due to their physical properties. Self-adhesive resin cements gained widespread due to their simplified technique compared to regular resin cement. However, there is lacking clinical evidence about the long-term behavior of this material. The aim of this prospective clinical trial was to assess the survival rates of metal-ceramic crowns cemented with self-adhesive resin cement up to six years. One hundred and twenty-nine subjects received 152 metal-ceramic crowns. The cementation procedures were standardized and performed by previously trained operators. The crowns were assessed as to primary outcome (debonding and FDI criteria. Statistical analysis was performed using Kaplan-Meier statistics and descriptive analysis. Three failures occurred (debonding, resulting in a 97.6% survival rate. FDI criteria assessment resulted in scores 1 and 2 (acceptable clinical evaluation for all surviving crowns. The use of self-adhesive resin cement is a feasible alternative for metal-ceramic crowns cementation, achieving high and adequate survival rates.

  14. Bond strength between zirconium ceramic and dual resinous cement

    Directory of Open Access Journals (Sweden)

    João Galan Junior

    2010-04-01

    Full Text Available Objective: To assess the influence of different surface treatments on the bond strength between the resinous cement Panavia F (Kuraray Co. Ltd., Osaka, Japan and the structure of In-Ceram YZ (Vita Zahnfabrik, Bad Säckingen, Germany. Methods: Fifteen ceramic blocks were assessed: Group 1, finishing with abrasive paper; Group 2, finishing, airborne Al2O3 particle abrasion and silanization; Group 3, finishing, airborne particle abrasion, silicatization and silanization. After treatment, the blocks received cementation of resin composite cylinders with Panavia F (Kuraray Co. Ltd., Osaka, Japan and were submitted to the shear bond strength test in a universal testing machine. Results: The results were statistically analyzed (ANOVA and multiple comparison Student-Newman-Keuls test: Group 1 (9.66 ± 1.67 MPa < Group 2 (16.61 ± 3.38 MPa = Group 3 (19.23 ± 5.69 MPa, with p = 0.007. Conclusion: The structures of the In-Ceram YZ system (Vita Zahnfabrik, Bad Säckingen, Germany associated with Panavia F (Kuraray Co. Ltd., Osaka, Japan require previous etching to achieve greater bond strength between the ceramic and cement, and this treatment may be performed with airborne particle abrasion I or traditional silicatization, both followed by silanization.

  15. Immobilization in cement of ion exchange resins from Spanish nuclear reactors

    International Nuclear Information System (INIS)

    Huebra, A.G. de la; Murillo, R.; Ortiz, S.J.

    1990-01-01

    Ion exchange materials used at nuclear power plants can be immobilized in cements less expensive than polymer matrices. Cement solidification of spent ion exchange resins shows swelling and cracking troubles (during setting time, or of storage). The objective of this study was to select the types of cement that produce the best quality on immobilization of three kinds of resins and to set up cement formulations containing the maximum possible loading of resin. Four cements were selected to carried out the study. After a study of hydration-dehydration phenomena of ion exchange resins, a systematic work has been carried out on immobilization. Tests were performed to study compressive strength and underwater stability by changing water/cement ratio and resin/cement ratio. Mixtures made with water, cement and resin only were loaded with 10% by weight dry resin. Mixtures with higher loadings show poor workability. Tests were carried out by adding organic plasticizers and silica products to improve waste loading. Plasticizers reduced water demand and silica products permit the use of more water. Leaching tests have been performed at 40 O C. In conclusion Blast Furnace Slag is the best cement for immobilization of ion exchange resin both bead and powdered form for mechanical strength, stability and leaching

  16. Evaluation of the rat tissue reaction to experimental new resin cement and mineral trioxide aggregate cement

    Science.gov (United States)

    Yang, Won-Kyung; Ko, Hyun-Jung

    2012-01-01

    Objectives New resin cement (NRC) has been developed as a root repairing material and the material is composed of organic resin matrix and inorganic powders. The aim of this study was to compare the rat subcutaneous tissue response to NRC and mineral trioxide aggregate (MTA) cement and to investigate the tissue toxicity of both materials. Materials and Methods Sixty rats received two polyethylene tube-implants in dorsal subcutaneous regions, MTA and NRC specimens. Twenty rats were sacrificed respectively at 1, 4 and 8 wk after implantation and sectioned to 5 µm thickness and stained with Hematoxylin-Eosin (H-E) or von-Kossa staining. The condition of tissue adjacent to the implanted materials and the extent of inflammation to each implant were evaluated by two examiners who were unaware of the type of implanted materials in the tissues. Data were statistically analyzed with paired t-test (p mineralization of the tissues. PMID:23429672

  17. Relined fiberglass post: an ex vivo study of the resin cement thickness and dentin-resin interface

    Directory of Open Access Journals (Sweden)

    Niélli Caetano de SOUZA

    Full Text Available Abstract The aim of this study was to evaluate the thickness of resin cements in the root thirds when using conventional fiberglass posts (CP and relined fiberglass posts (RP in weakened roots and to evaluate the morphological characteristics of the dentin-resin interface. Forty human maxillary anterior teeth had the crown sectioned below the cemento-enamel junction. The canals were endodontically treated and weakened with diamond burs. Teeth were divided into four groups (n = 10: Group 1 – CP + RelyX ARC; Group 2 – CP + RelyX U200; Group 3 – RP + RelyX ARC; and Group 4 – RP + RelyX U200. Prior to luting, 0.1% Fluorescein and 0.1% Rhodamine B dyes were added to an adhesive and resin cement, respectively. Slices were obtained from the apical, middle, and cervical thirds of the root. Confocal laser scanning microscopy images were recorded in four areas (buccal, lingual, mesial, distal of each third. In each area, four equidistant measures of the resin cement were made and the mean value was calculated. The interface morphology was observed. The data were submitted to three-way ANOVA and Tukey’s test (α = 0.05. The interaction between fiberglass posts, resin cement, and root thirds was significant (p < 0.0001. The resin cement thicknesses were significantly lower for RP in comparison with CP, except in the apical third. There was no significant difference between the resin cements for RP. There was formation of resin cement tags and adhesive tags along the root for RP. RP favored the formation of thin and uniform resin cement films and resin tags in weakened roots.

  18. Relined fiberglass post: an ex vivo study of the resin cement thickness and dentin-resin interface.

    Science.gov (United States)

    Souza, Niélli Caetano de; Marcondes, Maurem Leitão; Breda, Ricardo Vaz; Weber, João Batista Blessmann; Mota, Eduardo Gonçalves; Spohr, Ana Maria

    2016-08-18

    The aim of this study was to evaluate the thickness of resin cements in the root thirds when using conventional fiberglass posts (CP) and relined fiberglass posts (RP) in weakened roots and to evaluate the morphological characteristics of the dentin-resin interface. Forty human maxillary anterior teeth had the crown sectioned below the cemento-enamel junction. The canals were endodontically treated and weakened with diamond burs. Teeth were divided into four groups (n = 10): Group 1 - CP + RelyX ARC; Group 2 - CP + RelyX U200; Group 3 - RP + RelyX ARC; and Group 4 - RP + RelyX U200. Prior to luting, 0.1% Fluorescein and 0.1% Rhodamine B dyes were added to an adhesive and resin cement, respectively. Slices were obtained from the apical, middle, and cervical thirds of the root. Confocal laser scanning microscopy images were recorded in four areas (buccal, lingual, mesial, distal) of each third. In each area, four equidistant measures of the resin cement were made and the mean value was calculated. The interface morphology was observed. The data were submitted to three-way ANOVA and Tukey's test (α = 0.05). The interaction between fiberglass posts, resin cement, and root thirds was significant (p < 0.0001). The resin cement thicknesses were significantly lower for RP in comparison with CP, except in the apical third. There was no significant difference between the resin cements for RP. There was formation of resin cement tags and adhesive tags along the root for RP. RP favored the formation of thin and uniform resin cement films and resin tags in weakened roots.

  19. Degree of Conversion and Mechanical Properties of Resin Cements Cured Through Different All-Ceramic Systems.

    Science.gov (United States)

    Lopes, Camila de Carvalho Almança; Rodrigues, Renata Borges; Silva, André Luis Faria E; Simamoto Júnior, Paulo Cézar; Soares, Carlos José; Novais, Veridiana Resende

    2015-10-01

    The aim of this study was to verify the degree of conversion (DC), Vickers microhardness (VH) and elastic modulus (E) of resin cements cured through different ceramic systems. One 1.5-mm-thick disc of each ceramic system (feldspathic, lithium dissilicate and zircônia veneered with feldspathic) was used. Three dual-cured (Allcem, Variolink II and RelyX U200) and one chemically-cured (Multilink) resin cements were activated through ceramic discs. For dual-cured resin cements was used a conventional halogen light-curing unit (Optilux 501 at 650 mW/cm2 for 120 s). Samples cured without the ceramic disc were used as control. The samples were stored at 37 °C for 24 h. ATR/FTIR spectrometry was used to evaluate the extent of polymerization in the samples (n=5). Micromechanical properties - VH and E - of the resin cements (n=5) were measured with a dynamic indentation test. Data were statistically analyzed with two-way ANOVA, Tukey's test and Pearson's correlation (α=0.05). DC was affected only by the type of resin cement (p=0.001). For VH, significant interaction was detected between resin cement and ceramic (p=0.045). The dual-cured resin cements showed no significant differences in mean values for E and significantly higher values than the chemically-cured resin cement. The degree of conversion and the mechanical properties of the evaluated resin cements depend on their activation mode and the type of ceramics used in 1.5 mm thickness. The dual-cured resin cements performed better than the chemically-cured resin cement in all studied properties.

  20. Marginal adaptation of lithium disilicate ceramic crowns cemented with three different resin cements.

    Science.gov (United States)

    Peroz, Ingrid; Mitsas, Triantafyllos; Erdelt, Kurt; Kopsahilis, Niko

    2018-04-17

    The cementation process and cementation materials have an influence on the marginal adaptation of restorations. The gap could be affected by thermal and mechanical loading (TCML). The computerized x-ray microtomography (μCT) method offers the possibility of measuring the marginal gap without destruction of the restoration. The aim of this study was to evaluate the marginal gap (MG) and the absolute marginal discrepancy (AMD) before and after TCML. Thirty-nine human premolars were prepared for full ceramic crowns made of lithium disilicate. The crowns were cemented by three different resins-Panavia F 2.0, Variolink II, and Relyx Unicem. The MG and AMD were evaluated by μCT before and after TCML. Panavia F 2.0 had the lowest MG (before 118 μm-after TMCL 124 μm) and AMD (before 145 μm-after TMCL 154 μm), followed by Relyx Unicem (MG: before 164 μm-after TCML 155 μm; AMD: before 213 μm-after TMCL 209 μm) and Variolink II (MG: before 317 μm-after TMCL 320 μm; AMD: before 412 μm-after TMCL 406 μm). The differences were statistically significant before and after TCML. Rather than TCML, it appeared the resin cement was responsible for differences between the MG and AMD before and after TCML. μCT is an accurate technique for assessing cemented restorations. Panavia F 2.0 has the lowest MG and AMD before and after TCML. The resin material that features a three-step protocol (Variolink II) produced higher MG and AMG values than the Panavia or Relyx Unicem varieties with less or no intermediate steps at all.

  1. Leachability of chelated ion-exchange resins solidified in cement or cement and fly ash

    International Nuclear Information System (INIS)

    McIsaac, C.V.

    1993-01-01

    Leach tests were conducted at the Idaho National Engineering Laboratory on six small-scale specimens of cement-solidified ion-exchange resin wastes. The ion-exchange resins had been used to process reagent solutions following chemical decontaminations of primary coolant systems at five commercial light water reactors. The decontaminations were performed using the AP/Citrox, Can-Decon, Dow NS-1, and Low Oxidation-State Transition-Metal ION (LOMI) processes. The ion-exchange resin wastes were loaded with radionuclides, transition metals, and organic chelating agents, and were solidified in either unmodified Portland Type 1 cement or in a mixture of Portland Type 1 cement and fly ash. Waste-form specimens were leach-tested in deionized water at 23C using the American National Standards Institute/American Nuclear Society (ANSI/ANS) Standard 16.1 procedure. Release rates, effective diffusivities, and leachability indexes of radionuclides, chelating agents, and stable metals were determined using ANS-16.1 diffusion release models. Releases of radionuclides, chelating agents, and metals from waste forms that degraded during leaching were similar to releases from waste forms that maintained their physical integrity during leaching. The presence of chelating agents in the waste forms did not adversely affect the leachability of the waste forms

  2. Surface roughness and wear of resin cements after toothbrush abrasion

    Directory of Open Access Journals (Sweden)

    Sérgio Kiyoshi ISHIKIRIAMA

    2015-01-01

    Full Text Available Increased surface roughness and wear of resin cements may cause failure of indirect restorations. The aim of this study was to evaluate quantitatively the surface roughness change and the vertical wear of four resin cements subjected to mechanical toothbrushing abrasion. Ten rectangular specimens (15 × 5 × 4 mm were fabricated according to manufacturer instructions for each group (n = 10: Nexus 3, Kerr (NX3; RelyX ARC, 3M ESPE (ARC; RelyX U100, 3M ESPE (U100; and Variolink II, Ivoclar/Vivadent (VL2. Initial roughness (Ra, µm was obtained through 5 readings with a roughness meter. Specimens were then subjected to toothbrushing abrasion (100,000 cycles, and further evaluation was conducted for final roughness. Vertical wear (µm was quantified by 3 readings of the real profile between control and brushed surfaces. Data were subjected to analysis of variance, followed by Tukey’s test (p < 0.05. The Pearson correlation test was performed between the surface roughness change and wear (p < 0.05. The mean values of initial/final roughness (Ra, µm/wear (µm were as follows: NX3 (0.078/0.127/23.175; ARC (0.086/0.246/20.263; U100 (0.296/0.589/16.952; and VL2 (0.313/0.512/22.876. Toothbrushing abrasion increased surface roughness and wear of all resin cements tested, although no correlation was found between those variables. Vertical wear was similar among groups; however, it was considered high and may lead to gap formation in indirect restorations.

  3. The immobilization of anion exchange resins in polymer modified cements

    International Nuclear Information System (INIS)

    Dyer, A.; Morgan, P.D.

    1991-09-01

    Organic anion exchange resins, loaded with 99-Tc as the pertechnate ion, were incorporated into polymer modified cements (Flexocrete Ltd, Preston). BFS/OPC (9:1 mix) also was modified by three polymers from the same source (styrene acrylic (2) styrene butadiene) and loaded with anion exchanger containing the pertechnate. Composites were tested for initial compressive strengths, under water and radiation stability and leach rate. IAEA standard leach testing was with simulated sea and ground waters. Ground water leaching also was carried out on composites subjected to 1.10 9 rads (γ). Leach testing correlated well with compressive strength. Modified composites performed better than the BFS/OPC mix under all conditions studied and were able to encapsulate higher resin loadings. (author)

  4. Marginal Fit and Retention Strength of Zirconia Crowns Cemented by Self-adhesive Resin Cements.

    Science.gov (United States)

    Pilo, R; Folkman, M; Arieli, A; Levartovsky, S

    The absolute marginal gap (AMG) precementation and postcementation and the retention of zirconia crowns cemented to standardized molar preparations (4×10) by self-adhesive resin cements (SARCs) were evaluated. The following SARCs were used: RelyX U-200 (RXU200; 3M ESPE, Seefeld, Germany), SmartCem 2 (SC2; Dentsply, Milford, DE, USA), and G-Cem Automix (GCA; GC, Alsip, IL, USA). The control adhesive resin cement was Panavia 21 (PAN; Kuraray Dental Co Ltd, Osaka, Japan). Twenty measuring locations at a constant interval along the margins were marked, and the AMG was measured by an image analysis system connected to a stereomicroscope (20×). The cemented copings were aged 270 days at 100% humidity and 37°C and then underwent 10,000 thermal cycles, 5°C-55°C. After aging, the crowns were tested for retention, and the debonded surfaces were examined at 3× magnification. The mean marginal gaps precementation and postcementation were 34.8 ± 17.4 μm and 72.1 ± 31 μm, respectively, with no statistically significant differences between the cements. A significant difference ( p≤0.001) in retention between the cements was found. The highest values were obtained for SC2 and GCA (1385 Pa and 1229 Pa, respectively), but these presented no statistically significant differences. The lowest values were found for PAN and RXU200 (738 Pa and 489 Pa, respectively), but these showed no statistically significant differences. The predominant mode of failure in all of the groups was mixed, and no correlations were found between marginal gap and retention.

  5. Comparison of the Amount of Fluoride Release from Nanofilled Resin Modified Glass Ionomer Conventional and Resin Modified Glass Ionomer Cements

    Directory of Open Access Journals (Sweden)

    Sumitha Upadhyay

    2013-01-01

    Full Text Available Objective: To investigate and compare the amount of fluoride release of conventional, resin modified and nanofilled resin modified glass ionomer cements.Materials and Methods: Tablets of glass-ionomer cements were immersed in deionized water and incubated at 37◦C. After 1, 2, 7, 15 and 30 days, fluoride ion was measured under normal atmospheric conditions by fluoride ion selective electrode. Buffer (TISAB II was used to decomplex the fluoride ion and to provide a constant background ionic strength and to maintain the pH of water between 5.0 and 5.5 as the fluoride electrode is sensitive to changes in pH. Statistical evaluation was carried out by one way ANOVA (Analysis of Variance using SPSS 11.0. The significance level was set at p< 0.05.Results: The release of fluoride was highest on day 1 and there was a sudden fall on day 2 in all three groups. Initially fluoride release from conven-tional glass-ionomer cement was highest compared to the other two glass-ionomer cements, but the amount drastically reduced over the period. Although the amount of fluoride release was less than both the resin modified and nanofilled resin modified glass-ionomer cement, the release was sustained consistently for 30 daysConclusion: The cumulative fluoride release of nanofilled resin modified glass ionomer cement was very less compared to the conventional and resin modified glass ionomer cements and Nanofilled resin modified glass ionomer cement released less but steady fluoride as compared to other resin modified glass ionomer cements.

  6. Effect of adhesive resin cements on bond strength of ceramic core materials to dentin.

    Science.gov (United States)

    Gundogdu, M; Aladag, L I

    2018-03-01

    The aim of the present study was to evaluate the effects of self-etch and self-adhesive resin cements on the shear bond strength of ceramic core materials bonded to dentin. Extracted, caries-free, human central maxillary incisor teeth were selected, and the vestibule surfaces were cut flat to obtain dentin surfaces. Ceramic core materials (IPS e.max Press and Prettau Zirconia) were luted to the dentin surfaces using three self-etch adhesive systems (Duo-Link, Panavia F 2.0, and RelyX Ultimate Clicker) and two self-adhesive resin systems (RelyX U200 Automix and Maxcem Elite). A shear bond strength test was performed using a universal testing machine. Failure modes were observed under a stereomicroscope, and bonding interfaces between the adhesive resin cements and the teeth were evaluated with a scanning electron microscope. Data were analyzed with Student's t-test and one-way analysis of variance followed by Tukey's test (α = 0.05). The type of adhesive resin cement significantly affected the shear bond strengths of ceramic core materials bonded to dentin (P materials when the specimens were luted with self-adhesive resin cements (P resin cements exhibited better shear bond strength than the self-adhesive resin cements, except for Panavia cement in the IPS e.max Press group. However, shear bond strengths of the self-adhesive resin cements were dependent on the nature of the ceramic core materials.

  7. Bond strength of self-adhesive resin cement to base metal alloys having different surface treatments

    Directory of Open Access Journals (Sweden)

    Farhad Shafiei

    2018-01-01

    Conclusion: Based on the results, sandblasting improves the shear bond strength of self-etch and self-adhesive resin cement to base metal alloys. The best results can be achieved with a combination of sandblasting and metal primers. The performance of resin cement depends on to their chemical composition, not to the type of system.

  8. The effect of light curing units, curing time, and veneering materials on resin cement microhardness

    OpenAIRE

    Nurcan Ozakar Ilday; Yusuf Ziya Bayindir; Funda Bayindir; Aysel Gurpinar

    2013-01-01

    Background/purpose: Several factors may affects microhardness of resin cement under veneering materials. The aim of this study was to evaluate the effect of different veneering materials, light-curing units and curing times (20/3, 40/6) on the microhardness of dual-cured resin cement. Materials and methods: We pressed dual-cured resin cement specimens (Clearfil SA cement, 5 mm diameter, 1 mm thick) between two microscopic glass slides covered with transparent polystyrene matrix strips to r...

  9. Inhibitor of Carious Lesions in Vitro Around Gallium Alloy restorations By Fluoride releashing Resin-ionomer cement.

    OpenAIRE

    Nasman Nur Alim, drg. PhD

    2008-01-01

    The Result indicate that the fluoride releasing resin-inomer cem,ent provided good adhesion and caries inhibitor in enamel and dentin. A new fluoride releassing resin-ionnomer cement was used for bonding of gallium alloy restoration in vitro. Etching, priming, and fluoride releasing resin-ionomer cement were used the experimental group (ARG), prior to placement of the gallium alloy restoration

  10. Microleakage of a self-adhesive resin cement after post cementation.

    Science.gov (United States)

    Camilotti, Veridiana; Consalter, Admilton Fritsche; Dobrovolsk, Max; Bosquirolli, Virginia; Busato, Priscila R D; Mendonça, Marcio J

    2011-01-01

    The aim of this study is to evaluate the microleakage a self-adhesive cement recently marketed Rely X U100 (3M ESPE). Thirty roots of bovine teeth with 14 mm long were restored with self-adhesive cement and Glassix fiber post DC3 (FGM). Roots were randomly divided into three groups (n=10) according to the technique of placement of the cementing agent: G1 - Centrix syringe; G2 - Lentulo drill and G3 - Manual technical. After cementation, provisional restorations were fabricated with composite resin (Opallis/FGM) without the use adhesive system. After they were finished, polished and thermo cycled by 1000 cycles, in water at temperature of 5 degrees C and 55 degrees C, 30 seconds in each bath. For microleakage test each group of roots was immersed in recipients with Rodhamine B dye solution buffered at 2%, during 24 hours. After this time, the samples were washed in tap water, sectioned and evaluation of dye leakage. The values of infiltration were obtained by the qualitative method (scoring) and statistical analysis using Kruskal-Wallis test and also by the quantitative method (Image Tool) and statistical analysis using ANOVA one way. For both tests, no significant difference between the techniques of placement of the self-adhesive cement. Based on these findings, micro-infiltration was present in all groups, and the placement technique did not influence the degree of micro-leakage, both for the qualitative analysis as to the quantitative.

  11. Simplified cementation of lithium disilicate crowns: Retention with various adhesive resin cement combinations.

    Science.gov (United States)

    Johnson, Glen H; Lepe, Xavier; Patterson, Amanda; Schäfer, Oliver

    2017-09-27

    A composite resin cement and matching self-etch adhesive was developed to simplify the dependable retention of lithium disilicate crowns. The efficacy of this new system is unknown. The purpose of this in vitro study was to determine whether lithium disilicate crowns cemented with a new composite resin and adhesive system and 2 other popular systems provide clinically acceptable crown retention after long-term aging with monthly thermocycling. Extracted human molars were prepared with a flat occlusal surface, 20-degree convergence, and 4 mm axial length. The axio-occlusal line angle was slightly rounded. The preparation surface area was determined by optical scanning and the analysis of the standard tessellation language (STL) files. The specimens were distributed into 3 cement groups (n=12) to obtain equal mean surface areas. Lithium disilicate crowns (IPS e.max Press) were fabricated for each preparation, etched with 9.5% hydrofluoric acid for 15 seconds, and cleaned. Cement systems were RelyX Ultimate with Scotch Bond Universal (3M Dental Products); Monobond S, Multilink Automix with Multilink Primer A and B (Ivoclar Vivadent AG); and NX3 Nexus with OptiBond XTR (Kerr Corp). Each adhesive provided self-etching of the dentin. Before cementation, the prepared specimens were stored in 35°C water. A force of 196 N was used to cement the crowns, and the specimens were polymerized in a 35°C oven at 100% humidity. After 24 hours of storage at 100% humidity, the cemented crowns were thermocycled (5°C to 55°C) for 5000 cycles each month for 6 months. The crowns were removed axially at 0.5 mm/min. The removal force was recorded and the dislodgement stress calculated using the preparation surface area. The type of cement failure was recorded, and the data were analyzed by 1-way ANOVA and the chi-square test (α=.05) after the equality of variances had been assessed with the Levene test. The Levene test was nonsignificant (P=.936). The ANOVA revealed the mean removal

  12. [Research on bond durability among different core materials and zirconia ceramic cemented by self-adhesive resin cements].

    Science.gov (United States)

    Xinyu, Luo; Xiangfeng, Meng

    2017-02-01

    This research estimated shear bond durability of zirconia and different substrates cemented by two self-adhesive resin cements (Clearfil SA Luting and RelyX U100) before and after aging conditioning. Machined zirconia ceramic discs were cemented with four kinds of core material (cobalt-chromium alloy, flowable composite resin core material, packable composite resin, and dentin) with two self-adhesive resin cements (Clearfil SA Luting and RelyX U100). All specimens were divided into eight test groups, and each test group was divided into two subgroups. Each subgroup was subjected to shear test before and after 10 000 thermal cycles. All factors (core materials, cements, and thermal cycle) significantly influenced bond durability of zirconia ceramic (P0.05); observed shear bond strength was significantly higher than those of other substrates (Presin core material, and packable composite resin than that of RelyX U100 (P0.05). Different core materials and self-adhesive resin cements can significantly affect bond durability of zirconia ceramic. 
.

  13. Mechanical Properties and Sliding-impact Wear Resistance of Self-adhesive Resin Cements.

    Science.gov (United States)

    Furuichi, T; Takamizawa, T; Tsujimoto, A; Miyazaki, M; Barkmeier, W W; Latta, M A

    2016-01-01

    The present study determined the mechanical properties and impact-sliding wear characteristics of self-adhesive resin cements. Five self-adhesive resin cements were used: G-CEM LinkAce, BeautiCem SA, Maxcem Elite, Clearfil SA Automix, and RelyX Unicem 2. Clearfil Esthetic Cement was employed as a control material. Six specimens for each resin cement were used to determine flexural strength, elastic modulus, and resilience according to ISO specification #4049. Ten specimens for each resin cement were used to determine the wear characteristics using an impact-sliding wear testing apparatus. Wear was generated using a stainless-steel ball bearing mounted inside a collet assembly. The maximum facet depth and volume loss were determined using a noncontact profilometer in combination with confocal laser scanning microscopy. Data were evaluated using analysis of variance followed by the Tukey honestly significantly different test (α=0.05). The flexural strength of the resin cements ranged from 68.4 to 144.2 MPa; the elastic modulus ranged from 4.4 to 10.6 GPa; and the resilience ranged from 4.5 to 12.0 MJ/m(3). The results for the maximum facet depth ranged from 25.2 to 235.9 μm, and volume loss ranged from 0.0107 to 0.5258 mm(3). The flexural properties and wear resistance were found to vary depending upon the self-adhesive resin cement tested. The self-adhesive cements tended to have lower mechanical properties than the conventional resin cement. All self-adhesive resin cements, apart from G-CEM LinkAce, demonstrated significantly poorer wear resistance than did the conventional resin cement.

  14. Color agreement between nanofluorapatite ceramic discs associated with try-in pastes and with resin cements.

    Science.gov (United States)

    Rigoni, Paulo; Amaral, Flávia Lucisano Botelho do; França, Fabiana Mantovani Gomes; Basting, Roberta Tarkany

    2012-01-01

    The aim of this study was to evaluate the in vitro color agreement between nanofluorapatite ceramic discs (e.max Ceram / Ivoclar Vivadent / A2) associated with try-in pastes and those bonded with resin cements (Vitique / DMG/ try-in shade A2½ and cement shade A2½, Variolink II / Ivoclar Vivadent / try-in shade A1 and cement shade A1, and Choice 2 / Bisco / try-in shade A2 and cement shade A2), and to evaluate the shade stability of the discs bonded with resin cements. The shades of composite resin discs (Lliss / FGM / A2) and nanofluorapatite ceramic discs with try-in pastes or cements were evaluated according to the Vita Classical shade guide by a digital spectrophotometer (Micro EspectroShade, MHT) immediately after placing the try-in pastes or resin cements between composite resin discs and ceramic discs. Other evaluations were performed at 2, 5, and 6 day intervals after cementation with the resin cements. All ceramic discs that received try-in pastes presented an A2 shade. There was no statistical difference in the shade of the ceramic specimens fixed with different cements at the different intervals, as evaluated by the Friedman test (p > 0.05). Two try-in pastes presented shade compatibility with those recommended by the manufacturers. There was no similarity of shades between the ceramic discs with try-in pastes and those with the respective resin cements. Shade stability was observed in ceramic discs with resin cements within the intervals evaluated.

  15. Color agreement between nanofluorapatite ceramic discs associated with try-in pastes and with resin cements

    Directory of Open Access Journals (Sweden)

    Paulo Rigoni

    2012-12-01

    Full Text Available The aim of this study was to evaluate the in vitro color agreement between nanofluorapatite ceramic discs (e.max Ceram / Ivoclar Vivadent / A2 associated with try-in pastes and those bonded with resin cements (Vitique / DMG/ try-in shade A2½ and cement shade A2½, Variolink II / Ivoclar Vivadent / try-in shade A1 and cement shade A1, and Choice 2 / Bisco / try-in shade A2 and cement shade A2, and to evaluate the shade stability of the discs bonded with resin cements. The shades of composite resin discs (Lliss / FGM / A2 and nanofluorapatite ceramic discs with try-in pastes or cements were evaluated according to the Vita Classical shade guide by a digital spectrophotometer (Micro EspectroShade, MHT immediately after placing the try-in pastes or resin cements between composite resin discs and ceramic discs. Other evaluations were performed at 2, 5, and 6 day intervals after cementation with the resin cements. All ceramic discs that received try-in pastes presented an A2 shade. There was no statistical difference in the shade of the ceramic specimens fixed with different cements at the different intervals, as evaluated by the Friedman test (p > 0.05. Two try-in pastes presented shade compatibility with those recommended by the manufacturers. There was no similarity of shades between the ceramic discs with try-in pastes and those with the respective resin cements. Shade stability was observed in ceramic discs with resin cements within the intervals evaluated.

  16. Investigations on cement/polymer Waste packages containing intermediate level waste and organic exchange resins

    International Nuclear Information System (INIS)

    ELsourougy, M.R.; Zaki, A.A.; Aly, H.F.; Khalil, M.Y.

    1995-01-01

    Polymers can be added to cements to improve its nuclear waste immobilization properties. This trend in cementation processes is attracting attention and requiring through investigations. In this work, polymers of different kinds were added to ordinary portland cement for the purpose of solidifying intermediate level liquid wastes and organic ion exchange resins. Epoxy polymer such as Kemapoxy-150 reduced the leaching rate of cesium compared to cement alone. Latex to cement ratio less than 4% caused an increase in leaching rate of cesium. When cesium was absorbed to an organic resin its leachability was improved. 5 figs., 4 tabs

  17. Color agreement between nanofluorapatite ceramic discs associated with try-in pastes and with resin cements

    OpenAIRE

    Rigoni,Paulo; Amaral,Flávia Lucisano Botelho do; França,Fabiana Mantovani Gomes; Basting,Roberta Tarkany

    2012-01-01

    The aim of this study was to evaluate the in vitro color agreement between nanofluorapatite ceramic discs (e.max Ceram / Ivoclar Vivadent / A2) associated with try-in pastes and those bonded with resin cements (Vitique / DMG/ try-in shade A2½ and cement shade A2½, Variolink II / Ivoclar Vivadent / try-in shade A1 and cement shade A1, and Choice 2 / Bisco / try-in shade A2 and cement shade A2), and to evaluate the shade stability of the discs bonded with resin cements. The shades of composite ...

  18. Bond Strength of Resin Cements to Dentin Using New Universal Bonding Agents

    Science.gov (United States)

    2015-06-30

    bonding agents on the bond strength of dual-cure resin cements to dentin. One hundred forty extracted human third molars were mounted in dental stone...Force Postgraduate Dental School (AFPDS) 4. Phone: 210-671-9822 5. Type of clearance: _x_Paper _Article _ Book _Poster _Presentation _Other 6. Title...34Bond Strength of Resin Cements to Dentin Using New Universal Bonding Agents" Materials Repaired with Composite Resin" 7. Intended publication

  19. Retention of cast crowns cemented to amalgam and composite resin cores.

    Science.gov (United States)

    Hormati, A A; Denehy, G E

    1981-05-01

    An in vitro study was conducted to determine the tensile bond strength of complete cast gold restorations cemented with zinc phosphate cement on composite resin and amalgam crown cores. The samples were thermocycled and tested at 1-week, 1-month, and 3-month intervals. Results of the study showed that: (1) the amalgam core provides more retention for the cast gold crown than does the composite resin core and (2) the composite resin core provides increasing retention over a longer time period.

  20. Association of different primers and resin cements for adhesive bonding to zirconia ceramics.

    Science.gov (United States)

    Maeda, Fernando Akio; Bello-Silva, Marina Stella; de Paula Eduardo, Carlos; Miranda Junior, Walter Gomes; Cesar, Paulo Francisco

    2014-06-01

    To evaluate the shear bond strength (SBS) to zirconia ceramics using different associations of primers and resin cements. Two blocks of LAVA zirconia (3Y-TZP) were randomly submitted to an application of three different commercially available primers: Alloy Primer (AP), Z-Prime Plus (ZP), and Signum Zirconia Bond (SZB). Nonprimed specimens were considered controls. After treatment, the 80 specimens (5 mm × 5 mm × 2 mm) were randomly cemented with one of the resin cements: Panavia F, Multilink, seT, and NX3. For cementation, cylinders of resin cement were built on the ceramic surfaces using the SDI SBS apparatus. The specimens were submitted to the SBS test. Fractured surfaces were observed under stereomicroscopy to determine the failure mode, and mean bond strength values were analyzed using the Kruskal-Wallis and Mann-Whitney tests (α = 0.05). Signum Zirconia Bond had the highest SBS compared to all other primers and the control group, regardless of the resin cement used. The highest values were obtained when associating Panavia F with Signum Zirconia Bond. Alloy Primer increased bonding values when associated with seT cement only. When no primer was used, no statistical difference was observed among resin cements. All specimens fractured due to adhesive failure. Signum Zirconia Bond is capable of increasing bonding values of resin cements to zirconia ceramics. Its association with Panavia F shows enhanced results when considering short-term adhesion to zirconia.

  1. Influence of curing protocol and ceramic composition on the degree of conversion of resin cement

    Science.gov (United States)

    Lanza, Marcos Daniel Septimio; Andreeta, Marcello Rubens Barsi; Pegoraro, Thiago Amadei; Pegoraro, Luiz Fernando; Carvalho, Ricardo Marins De

    2017-01-01

    Abstract Due to increasing of aesthetic demand, ceramic crowns are widely used in different situations. However, to obtain long-term prognosis of restorations, a good conversion of resin cement is necessary. Objective: To evaluate the degree of conversion (DC) of one light-cure and two dual-cure resin cements under a simulated clinical cementation of ceramic crowns. Material and Methods: Prepared teeth were randomly split according to the ceramic's material, resin cement and curing protocol. The crowns were cemented as per manufacturer's directions and photoactivated either from occlusal suface only for 60 s; or from the buccal, occlusal and lingual surfaces, with an exposure time of 20 s on each aspect. After cementation, the specimens were stored in deionized water at 37°C for 7 days. Specimens were transversally sectioned from occlusal to cervical surfaces and the DC was determined along the cement line with three measurements taken and averaged from the buccal, lingual and approximal aspects using micro-Raman spectroscopy (Alpha 300R/WITec®). Data were analyzed by 3-way ANOVA and Tukey test at =5%. Results: Statistical analysis showed significant differences among cements, curing protocols and ceramic type (pcrowns; Duolink resin cement culminated in higher DC regardless ceramic composition and curing protocol. Conclusion: The DC of resin cement layers was dependent on the curing protocol and type of ceramic. PMID:29211292

  2. Method to determine the thermal expansion of epoxies, inorganic cements and polyester resins at cryogenic temperatures

    International Nuclear Information System (INIS)

    Sereinig, W.; Gross, F.

    1982-01-01

    An apparatus for measuring the integral thermal expansions at cryogenic temperatures is described. The thermal expansions are given for a number of commercial epoxy resins, commercial polyester resins and inorganic cements. A method to reduce the thermal expansion of the resins by the use of quartz powder fillers is reported. (author)

  3. The influence of resin cements on the final color of ceramic veneers.

    Science.gov (United States)

    Chen, Xiao-Dong; Hong, Guang; Xing, Wen-Zhong; Wang, Yi-Ning

    2015-07-01

    To evaluate the effect of three brands of resin cement on the final color of ceramic veneers. 50 disk-shaped ceramic specimens (IPS e.Max, 0.6mm×8.0mm diameter) and disk-shaped composite resin background specimens (4.0mm×8.0mm diameter) were prepared and divided into 10 groups (n=5). These paired specimens were bonded using ten shades of resin cement (Variolink Veneer, shades LV-3, LV-2, MV, HV+2, HV+3; Panavia F, shades light and brown; and RelyX™ Veneer, shades WO, TR, A3). A spectrophotometer (VITA Easyshade) was used to measure the color parameters (CIE L*a*b* values) of the paired disks before and after cementation. The color differences (ΔE values) after cementation were calculated and statistically analyzed by the One-way ANOVA (at the significant level pceramic disks were measured in terms of the increase in L* value, and the decrease in Cab(*) value after bonding with the resin cement. The ΔE values of ceramic disks after cementation ranged from 1.38 to 7.16. The ΔE values were more than 3.3 when the ceramic disks were cemented with resin cements in shade HV+3 (4.90) and shade WO (7.16). One-way ANOVA of ΔE values revealed significant differences in the resin cement shades. Resin cements can affect the final color of ceramic veneer restorations, and the extent of this effect varies according to the resin cement shades. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  4. Microleakage of different amalgams bonded with dual cure resin cements.

    Science.gov (United States)

    Lombard, R; du Preez, I C; Oberholzer, T G

    2007-03-01

    To reduce microleakage in high-copper amalgam restorations, bonding of amalgam was introduced. This study compared the microleakage of admixed and spherical amalgams when bonded with different bonding intermediates under thermo- and non-thermocycling conditions. Class II butt-joint cavities were prepared in 200 extracted human molar teeth, and randomly divided into 5 groups. Calibra, Duo Cement Plus, RelyX ARC and Amalgambond Plus were applied to 4 of these groups. The fifth group was left untreated. The groups were further divided and restored with either Dispersalloy or Oralloy Magicap S. Ten specimens of each group were thermocycled between 5 degrees C and 55 degrees C, placed in basic fuchsin for 8 hours, sectioned and evaluated for dye penetration under 40X magnification. The mean microleakage scores were analysed using the chi-squared test at a confidence level of 95%. Microleakage of the non-bonded amalgams was significantly higher (p amalgams (thermocycled and non-thermocycled). The microleakage of the different intermediates bonded to Dispersalloy (thermocycled and non-thermocycled) was not significantly different (p > 0.05). The microleakage of the different intermediates was not significant different except for Duo Cement compared to Calibra (p amalgams was not significantly increased by thermocycling (p > 0.05). The microleakage of the two amalgams when bonded with the same resin cements (thermocycled and non-thermocycled) was not significantly different except for Duo Cement (thermocycled) (p = 0.0051) and RelyX (non-thermocycled) (p = 0.0356). Bonding amalgam restorations to tooth structure in butt-joint cavities will reduce microleakage of both admixed and spherical amalgam restorations. Thermal stress does not affect the bond adversely.

  5. Effect of Imaging Powders on the Bond Strength of Resin Cement

    Science.gov (United States)

    2016-09-19

    particular cement .5-25 A review of clinical studies found that the longevity of posterior dental restorations was dependent upon many different...performance as other dental cements , but clinical studies are 6 lacking, so long-term conclusions are not possible.34 Self-adhesive cements have a...Strength of Resin Cement " is appropriately acknowledged and, beyond brief excerpts, is with the permission of the copyright owner. #lIZ Christopher R

  6. Formulation study on immobilization of spent ion exchange resins in polymer cement

    International Nuclear Information System (INIS)

    Xia Lili; Lin Meiqiong; Bao Liangjin; Fan Xianhua

    2006-01-01

    The aim of this study is to develop a formulation of cement-solidified spent radioactive ion exchange resin form. The solidified form consists of a sort of composite cement, epoxide resin emulsion, and spent ion exchange resins. The composite cement is made up of quick-setting sulphoaluminate cement, silica powder, zeolite, and fly ash in the proportion 1:0.05:0.10:0.05. Sixteen combinations of composite cement, epoxide resin emulsion and mixed anion-cation exchange resins are selected according to a three-factors-four-levels normal design table with the compression strength as the evaluation criterion. The resulted formulation is as follows: the mass ratio of polymer emulsion to composite cement is 0.55:1, the loading of mixed anion-cation exchange resins is 0.3, and the anionic-to-cationic exchange resins ratio is 2:1. The polymer cement solidified forms were tested after 28 d curing for Cs + and Sr 2+ leaching rates, pH and conductivity of the leaching water, and radiation-resistant property in addition to their compressive strength. The measurement results indicate that the performance of thus prepared solidified forms can meet the requirements of the National Standard GB14569.1-93 for near earth's surface disposal of low radioactive waste. (authors)

  7. Simulated localized wear of resin luting cements for universal adhesive systems with different curing mode.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Watanabe, Hidehiko; Johnson, William W; Latta, Mark A; Miyazaki, Masashi

    2018-01-29

    This study evaluated the simulated localized wear of resin luting cements for universal adhesive systems using different curing modes. Five resin luting cements for universal adhesive systems were evaluated and subsequently subjected to wear challenge in a Leinfelder-Suzuki wear simulation device. Overall, 20 specimens from each resin luting cement were photo-cured for 40 s (dual-cure group), and 20 specimens of each material were not photo-cured (chemical-cure group). Simulated localized wear was generated using a stainless steel ball-bearing antagonist in water slurry of polymethylmethacrylate beads. In addition, scanning electron microscopy (SEM) observations of resin luting cements and wear facets were conducted. Significant differences in simulated wear and SEM observations of wear facets were evident among the materials in the dual- and chemical-cure groups. The simulated wear and SEM observations of wear facets of G-CEM LinkForce and Panavia V5 were not influenced by the curing mode. SEM observations of resin luting cements were material dependent. In most cases, dual curing appears to ensure greater wear resistance of resin luting cements than chemical curing alone. The wear resistance of some resin luting cements appears to be material dependent and is not influenced by the curing mode.

  8. Tensile bond strength of dual curing resin-based cements to commercially pure titanium.

    Science.gov (United States)

    Schneider, Rafael; de Goes, Mario Fernando; Henriques, Guilherme Elias Pessanha; Chan, Daniel C N

    2007-01-01

    The aim of this study was to evaluate the tensile bond strength of dual curing luting resin cements to commercially pure titanium at 10 min and 24h after removal of the oxide layer. One hundred and twenty titanium discs were obtained by casting and polishing with silicon carbide papers. The titanium discs were sandblasted with 50 microm aluminum oxide, ultrasonic cleaned and bonded in pairs with the resin-based cements Panavia F and Rely X ARC at 10 min and 24h after the sandblasting. The tensile test was performed with a crosshead speed of 0.5mm/min in an Instron Universal testing machine. The Rely X ARC reached the highest tensile strength value at 24h after sandblasting (18.27 MPa), but there was no statistically significant difference between the two dual curing resin cements for both times tested. All specimens showed a mixture of cohesive fracture in the resin cement and adhesive failure. However, the predominant failure mode for Panavia F was cohesive in resin cement, and the Rely X ARC exhibited a greater proportion of specimens with adhesive failure between the alloy and resin luting cement at 10 min and 24h. Both cements had, statistically, the same tensile bond strength. But in the fracture mode analysis, the adhesive predominant fracture mode of Rely X ARC cement indicates a premature clinical adhesive failure. On the other hand, the cohesive predominant fracture mode of Panavia F indicates a longer clinical adhesive bond with titanium.

  9. The effect of dentin-cleaning agents on resin cement bond strength to dentin.

    Science.gov (United States)

    Saraç, Duygu; Bulucu, Bilinc; Saraç, Y Sinasi; Kulunk, Safak

    2008-06-01

    Provisional cement remnants on dentin affect the bond strength of resin cements to dentin. The authors investigated the effects of dentin-cleaning agents and etching systems on the bond strength of adhesive resin cement. The authors removed the provisional cement from the dentin surfaces of the specimens and then cleaned the surfaces with the dentin-cleaning agents Sikko Tim (VOCO GmbH, Cuxhaven, Germany), Cavity Cleanser (Bisco, Schaumburg, Ill.) or Consepsis Scrub (Ultradent, South Jordan, Utah). They used adhesive resin cement after applying the different etching adhesive systems. Then they examined the dentin surfaces by using scanning electron microscopy. The authors analyzed data by means of a two-way analysis of variance with Tukey honestly significant difference tests (alpha= .05). They found that specimens cleaned with Sikko Tim and Consepsis Scrub had higher shear bond strength values than did those in the no-treatment control group or the group cleaned with Cavity Cleanser. The specimens treated with the total-etching adhesive system had higher shear bond strength than did those treated with the self-etching adhesive systems. Sikko Tim and Consepsis Scrub were effective in removing provisional cement. Adhesive resin cement showed higher bond strength when used in conjunction with the total-etching adhesive system. The use of an effective dentin cleaner before cementation with resin cement can increase bond strength.

  10. Bond Strength of Resin Cements to Zirconia Ceramic Using Adhesive Primers.

    Science.gov (United States)

    Stefani, Ariovaldo; Brito, Rui Barbosa; Kina, Sidney; Andrade, Oswaldo Scopin; Ambrosano, Gláucia Maria Bovi; Carvalho, Andreia Assis; Giannini, Marcelo

    2016-07-01

    To evaluate the influence of adhesive primers on the microshear bond strength of resin cements to zirconia ceramic. Fifty zirconia plates (12 mm × 5 mm × 1.5 mm thick) of a commercially available zirconium oxide ceramic (ZirCad) were sintered, sandblasted with aluminum oxide particles, and cleaned ultrasonically before bonding. The plates were randomly divided into five groups of 10. Three resin cements were selected (RelyX ARC, Multilink Automix, Clearfil SA Cement self-adhesive resin cement), along with two primers (Metal-Zirconia Primer, Alloy Primer) and one control group. The primers and resin cements were used according to manufacturers' recommendations. The control group comprised the conventional resin cement (RelyX ARC) without adhesive primer. Test cylinders (0.75 mm diameter × 1 mm high) were formed on zirconia surfaces by filling cylindrical Tygon tube molds with resin cement. The specimens were stored in distilled water for 24 hours at 37°C, then tested for shear strength on a Shimadzu EZ Test testing machine at 0.5 mm/min. Bond strength data were analyzed statistically by two-way ANOVA and Dunnett's test (5%). The bond strength means in MPa (± s.d.) were: RelyX ARC: 28.1 (6.6); Multilink Automix: 37.6 (4.5); Multilink Automix + Metal-Zirconia Primer: 55.7 (4.0); Clearfil SA Cement: 46.2 (3.3); and Clearfil SA Cement + Alloy Primer: 47.0 (4.1). Metal-Zirconia Primer increased the bond strength of Multilink Automix resin cement to zirconia, but no effect was observed for Alloy Primer using Clearfil SA Cement. RelyX ARC showed the lowest bond strength to zirconia. © 2015 by the American College of Prosthodontists.

  11. Polymerization shrinkage stress of composite resins and resin cements - What do we need to know?

    Science.gov (United States)

    Soares, Carlos José; Faria-E-Silva, André Luis; Rodrigues, Monise de Paula; Vilela, Andomar Bruno Fernandes; Pfeifer, Carmem Silvia; Tantbirojn, Daranee; Versluis, Antheunis

    2017-08-28

    Polymerization shrinkage stress of resin-based materials have been related to several unwanted clinical consequences, such as enamel crack propagation, cusp deflection, marginal and internal gaps, and decreased bond strength. Despite the absence of strong evidence relating polymerization shrinkage to secondary caries or fracture of posterior teeth, shrinkage stress has been associated with post-operative sensitivity and marginal stain. The latter is often erroneously used as a criterion for replacement of composite restorations. Therefore, an indirect correlation can emerge between shrinkage stress and the longevity of composite restorations or resin-bonded ceramic restorations. The relationship between shrinkage and stress can be best studied in laboratory experiments and a combination of various methodologies. The objective of this review article is to discuss the concept and consequences of polymerization shrinkage and shrinkage stress of composite resins and resin cements. Literature relating to polymerization shrinkage and shrinkage stress generation, research methodologies, and contributing factors are selected and reviewed. Clinical techniques that could reduce shrinkage stress and new developments on low-shrink dental materials are also discussed.

  12. Hardening of a dual-cure resin cement using QTH and LED curing units

    Science.gov (United States)

    SANTOS, Maria Jacinta Moraes Coelho; PASSOS, Sheila Pestana; da ENCARNAÇÃO, Monalisa Olga Lessa; SANTOS, Gildo Coelho; BOTTINO, Marco Antonio

    2010-01-01

    Objective This study evaluated the surface hardness of a resin cement (RelyX ARC) photoactivated through indirect composite resin (Cristobal) disks of different thicknesses using either a light-emitting diode (LED) or quartz tungsten halogen (QTH) light source. Material and Methods Eighteen resin cement specimens were prepared and divided into 6 groups according to the type of curing unit and the thickness of resin disks interposed between the cement surface and light source. Three indentations (50 g for 15 s) were performed on the top and bottom surface of each specimen and a mean Vickers hardness number (VHN) was calculated for each specimen. The data were analyzed using two-way ANOVA and Tukey-Kramer test was used for post-hoc pairwise comparisons. Results Increased indirect resin disk thickness resulted in decreased mean VHN values. Mean VHN values for the top surfaces of the resin cement specimens ranged from 23.2 to 46.1 (QTH) and 32.3 to 41.7 (LED). The LED curing light source produced higher hardness values compared to the QTH light source for 2- and 3-mm-thick indirect resin disks. The differences were clinically, but not statistically significant. Increased indirect resin disk thickness also resulted in decreased mean VHN values for the bottom surfaces of the resin cement: 5.8 to 19.1 (QTH) and 7.5 to 32.0 (LED). For the bottom surfaces, a statistically significant interaction was also found between the type of curing light source and the indirect resin disk thickness. Conclusions Mean surface hardness values of resin cement specimens decreased with the increase of indirect resin disk thickness. The LED curing light source generally produced higher surface hardness values. PMID:20485920

  13. Hardening of a dual-cure resin cement using QTH and LED curing units

    Directory of Open Access Journals (Sweden)

    Maria Jacinta Moraes Coelho Santos

    2010-04-01

    Full Text Available OBJECTIVE: This study evaluated the surface hardness of a resin cement (RelyX ARC photoactivated through indirect composite resin (Cristobal disks of different thicknesses using either a light-emitting diode (LED or quartz tungsten halogen (QTH light source. MATERIAL AND METHODS: Eighteen resin cement specimens were prepared and divided into 6 groups according to the type of curing unit and the thickness of resin disks interposed between the cement surface and light source. Three indentations (50 g for 15 s were performed on the top and bottom surface of each specimen and a mean Vickers hardness number (VHN was calculated for each specimen. The data were analyzed using two-way ANOVA and Tukey-Kramer test was used for post-hoc pairwise comparisons. RESULTS: Increased indirect resin disk thickness resulted in decreased mean VHN values. Mean VHN values for the top surfaces of the resin cement specimens ranged from 23.2 to 46.1 (QTH and 32.3 to 41.7 (LED. The LED curing light source produced higher hardness values compared to the QTH light source for 2- and 3-mm-thick indirect resin disks. The differences were clinically, but not statistically significant. Increased indirect resin disk thickness also resulted in decreased mean VHN values for the bottom surfaces of the resin cement: 5.8 to 19.1 (QTH and 7.5 to 32.0 (LED. For the bottom surfaces, a statistically significant interaction was also found between the type of curing light source and the indirect resin disk thickness. CONCLUSION: Mean surface hardness values of resin cement specimens decreased with the increase of indirect resin disk thickness. The LED curing light source generally produced higher surface hardness values.

  14. Microhardness of dual-polymerizing resin cements and foundation composite resins for luting fiber-reinforced posts.

    Science.gov (United States)

    Yoshida, Keiichi; Meng, Xiangfeng

    2014-06-01

    The optimal luting material for fiber-reinforced posts to ensure the longevity of foundation restorations remains undetermined. The purpose of this study was to evaluate the suitability of 3 dual-polymerizing resin cements and 2 dual-polymerizing foundation composite resins for luting fiber-reinforced posts by assessing their Knoop hardness number. Five specimens of dual-polymerizing resin cements (SA Cement Automix, G-Cem LincAce, and Panavia F2.0) and 5 specimens of dual-polymerizing foundation composite resins (Clearfil DC Core Plus and Unifil Core EM) were polymerized from the top by irradiation for 40 seconds. Knoop hardness numbers were measured at depths of 0.5, 2.0, 4.0, 6.0, 8.0, and 10.0 mm at 0.5 hours and 7 days after irradiation. Data were statistically analyzed by repeated measures ANOVA, 1-way ANOVA, and the Tukey compromise post hoc test (α=.05). At both times after irradiation, the 5 resins materials showed the highest Knoop hardness numbers at the 0.5-mm depth. At 7 days after irradiation, the Knoop hardness numbers of the resin materials did not differ significantly between the 8.0-mm and 10.0-mm depths (P>.05). For all materials, the Knoop hardness numbers at 7 days after irradiation were significantly higher than those at 0.5 hours after irradiation at all depths (Presin materials were found to decrease in the following order: DC Core Plus, Unifil Core EM, Panavia F2.0, SA Cement Automix, and G-Cem LincAce (Pcomposite resins were higher than those of the 3 dual-polymerizing resin cements, notable differences were seen among the 5 materials at all depths and at both times after irradiation. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Effect of sulfuric acid etching of polyetheretherketone on the shear bond strength to resin cements.

    Science.gov (United States)

    Sproesser, Oliver; Schmidlin, Patrick R; Uhrenbacher, Julia; Roos, Malgorzata; Gernet, Wolfgang; Stawarczyk, Bogna

    2014-10-01

    To examine the influence of etching duration on the bond strength of PEEK substrate in combination with different resin composite cements. In total, 448 PEEK specimens were fabricated, etched with sulfuric acid for 5, 15, 30, 60, 90, 120, and 300 s and then luted with two conventional resin cements (RelyX ARC and Variolink II) and one self-adhesive resin cement (Clearfil SA Cement) (n = 18/subgroup). Non-etched specimens served as the control group. Specimens were stored in distilled water for 28 days at 37°C and shear bond strengths were measured. Data were analyzed nonparametrically using Kruskal-Wallis-H (p sulfuric acid seems to be suitable and effective for PEEK surface pre-treatment, further investigations are required to examine the effect of other adhesive systems and cements.

  16. Effect of resin cement, aging process and root level on the bond strength of the resin-fiber posts

    Science.gov (United States)

    Almuhim, Khalid Salman

    Background. Little is known about the long-term clinical bonding effectiveness of the Fiber-reinforced composite (FRC) posts cemented with self-etch adhesive systems. Bond stability and longevity of the cemented post are adversely affected by physical and chemical factors over time, such as expansion and contraction stresses caused by thermal changes and occlusal load. This clinical condition can be simulated in vitro by thermocyclic loading; and bonding effectiveness can be evaluated by applying the micropush out test. Therefore, more in vitro studies are needed to evaluate the bond strength of the fiber posts cemented with different resin cement systems after simulating the artificial aging induced by thermocycling. The aim of this study was to compare the microtensile bond strength of two different resin cement systems (total etch, and self-etch resin cement system) used for cementation of fiber reinforced composite posts in three different aging periods using thermocycling. Methods. Following IRB approval, sixty freshly extracted bicuspid single rooted natural teeth were endodontically treated, and the post-spaces were prepared to receive a fiber-post cemented with either a total etch resin cement (Rely-X Ultimate) or with a self-etch resin cement (Rely-X Unicem). No thermocycling, 20,000 and 40,000 cycles was used to age the specimens. Teeth were randomly allocated into six different groups: G1 - Control: Rely-X Ultimate cement with no thermocycling. G2: Rely-X Ultimate cement with 20,000 thermocycling. G3: Rely-X Ultimate cement with 40,000 thermocycling. G4: Rely-X Unicem cement. G5: Rely-X Unicem cement. G6: Rely-X Unicem cement. Microtensile bond strength determined using a micropush out test on a universal testing machine (MTS). Additionally, the failure mode of each specimen was observed under a stereomicroscope (Olympus) at 40x magnification. Finally, one representative sample was randomly selected from each of the five failure modes for scanning

  17. Correlation between clinical performance and degree of conversion of resin cements: a literature review

    Directory of Open Access Journals (Sweden)

    Grace DE SOUZA

    2015-08-01

    Full Text Available AbstractResin-based cements have been frequently employed in clinical practice to lute indirect restorations. However, there are numerous factors that may compromise the clinical performance of those cements. The aim of this literature review is to present and discuss some of the clinical factors that may affect the performance of current resin-based luting systems. Resin cements may have three different curing mechanisms: chemical curing, photo curing or a combination of both. Chemically cured systems are recommended to be used under opaque or thick restorations, due to the reduced access of the light. Photo-cured cements are mainly indicated for translucent veneers, due to the possibility of light transmission through the restoration. Dual-cured are more versatile systems and, theoretically, can be used in either situation, since the presence of both curing mechanisms might guarantee a high degree of conversion (DC under every condition. However, it has been demonstrated that clinical procedures and characteristics of the materials may have many different implications in the DC of currently available resin cements, affecting their mechanical properties, bond strength to the substrate and the esthetic results of the restoration. Factors such as curing mechanism, choice of adhesive system, indirect restorative material and light-curing device may affect the degree of conversion of the cement and, therefore, have an effect on the clinical performance of resin-based cements. Specific measures are to be taken to ensure a higher DC of the luting system to be used.

  18. Leaching of Co and Cs from spent ion exchange resins in cement ...

    Indian Academy of Sciences (India)

    Unknown

    2003-08-22

    Aug 22, 2003 ... matrix with a waste load of 290–350 (kg/m3) spent cation exchange resins, was measured for 60Co : (1,1–4,0) ×. 10–6 (cm2/d) and ... active waste management for a future Serbian radioactive waste disposal centre. Keywords. ... The cement specimens were prepared from construction cement which is ...

  19. The behavior of implant-supported dentures and abutments using the cemented cylinder technique with different resinous cements

    Directory of Open Access Journals (Sweden)

    Ivete Aparecida de Mathias Sartori

    2008-01-01

    Full Text Available Objective: Evaluate the behavior of implant-supported dentures and their components, made by cemented cylinder technique, using threetypes of resin cements. Methods: Fifty three patients, of whom 26 were women and 27 men, aged between 25 and 82 years. Results: With partial (54.43% and total (45.57% implant-supported dentures, of the Cone Morse, external and internal hexagon types (Neodent®, Curitiba, Brazil, totaling 237 fixations, were analyzed. The resin cements used were Panavia® (21.94%, EnForce® (58.23% and Rely X® (19.83% and the components were used in accordance with the Laboratory Immediate Loading - Neodent® sequence. The period of time of denture use ranged between 1 and 5 years. The results reported that 5(2.1% cylinders were loosened from metal structure (both belonging to Rely X group, 2(0.48% implants were lost after the first year of use, 16(6.75% denture retention screws wereloosened and 31(13.08% abutment screws were unloosened.Conclusion: The reasons for these failures probably are: metal structure internal retention failure, occlusal pattern, cementation technique and loading conditions. The cemented cylinder technique was effective when used in partial and total implant-supported rehabilitations, keeping prosthetic components stable, despite the resin cement utilized. However, further clinical studies must be conducted.

  20. Shear bond strength of a self‑etched resin cement to an indirect ...

    African Journals Online (AJOL)

    2014-11-15

    Nov 15, 2014 ... Objectives: The aim of this study was to compare the shear bond strength of resin cement (Rely X‑U200) bonded to differently conditioned indirect composite samples. Materials and Methods: Sixty‑six composite resin specimens (5 mm in diameter and 3 mm in thickness) were prepared with an indirect ...

  1. Correlation between Microleakage and Absolute Marginal Discrepancy in Zirconia Crowns Cemented with Four Resin Luting Cements: An In Vitro Study

    OpenAIRE

    Cristian, Abad-Coronel; Jeanette, Li; Francisco, Martínez-Rus; Guillermo, Pradíes

    2016-01-01

    Objectives. To evaluate microleakage and absolute marginal discrepancy (AMD) and to assess correlation between AMD and microleakage with four resin luting cements. Material and Methods. 20 extracted human third molars were prepared for full-coverage crowns. 20 zirconia copings were made (LAVA, 3M ESPE) and cemented. Specimens were randomly allocated for each used type of cement into 4 groups, RelyX® (Rx), Multilink® (Mk), PANAVIA 2.1® (P), and Maxcem® (Mx) and immersed in 10% safranin for 72 ...

  2. Influence of Resin Cements on Color Stability of Different Ceramic Systems.

    Science.gov (United States)

    Rodrigues, Renata Borges; Lima, Erick de; Roscoe, Marina Guimarães; Soares, Carlos José; Cesar, Paulo Francisco; Novais, Veridiana Resende

    2017-01-01

    The purpose of this study was to evaluate color stability of two dental ceramics cemented with two resin cements, assessing the color difference (ΔE00) by the measurement of L*, a*, b*, c* and h* of transmittance. The combination of two ceramic system (feldspathic and lithium disilicate) and two resin cements - color A3 (RelyX ARC and Variolink II) resulted in 4 groups (n=5). Ten disks-shaped specimens were fabricated for each ceramic system (10x1.5 mm), etched with hydrofluoric acid (10%) and silanized prior to cementation. The color analysis was performed 24 h after cementation of the samples and after 6 months of storage in relative humidity by means of spectrophotometry. The ΔE00 values were analyzed statistically by two-way ANOVA followed by the Tukey test (p<0.05). One-way ANOVA were calculated for the means of individual color coordinates (L*, a*, b*, c* and h*). Two-way ANOVA showed that only the ceramic factor was significant (p=0.003), but there was no difference for the cement factor (p=0.275) nor for the ceramic/cement interaction (p=0.161). The feldspathic ceramic showed the highest values of ΔE00. Variations in L*, a*, b*, c* and h* were more significant for feldspathic ceramic. In conclusion, storage alters similarly the optical properties of the resin cements and feldspathic porcelain was more susceptible to cement color change after aging.

  3. Influence of curing protocol and ceramic composition on the degree of conversion of resin cement

    Directory of Open Access Journals (Sweden)

    Marcos Daniel Septimio Lanza

    Full Text Available Abstract Due to increasing of aesthetic demand, ceramic crowns are widely used in different situations. However, to obtain long-term prognosis of restorations, a good conversion of resin cement is necessary. Objective: To evaluate the degree of conversion (DC of one light-cure and two dual-cure resin cements under a simulated clinical cementation of ceramic crowns. Material and Methods: Prepared teeth were randomly split according to the ceramic's material, resin cement and curing protocol. The crowns were cemented as per manufacturer's directions and photoactivated either from occlusal suface only for 60 s; or from the buccal, occlusal and lingual surfaces, with an exposure time of 20 s on each aspect. After cementation, the specimens were stored in deionized water at 37°C for 7 days. Specimens were transversally sectioned from occlusal to cervical surfaces and the DC was determined along the cement line with three measurements taken and averaged from the buccal, lingual and approximal aspects using micro-Raman spectroscopy (Alpha 300R/WITec®. Data were analyzed by 3-way ANOVA and Tukey test at =5%. Results: Statistical analysis showed significant differences among cements, curing protocols and ceramic type (p<0.001. The curing protocol 3x20 resulted in higher DC for all tested conditions; lower DC was observed for Zr ceramic crowns; Duolink resin cement culminated in higher DC regardless ceramic composition and curing protocol. Conclusion: The DC of resin cement layers was dependent on the curing protocol and type of ceramic.

  4. Comparison of Flexural Strength of Resin Cements After Storing in Different Media and Bleaching Agents.

    Science.gov (United States)

    Geramipanah, Farideh; Rezaei, Susan Mir Mohammad; Jafary, Maryam; Sadighpour, Leyla

    2015-06-01

    The aim of this study was to determine the effects of different storage media and bleaching treatments on the flexural strength of two resin cements (Panavia and BisCem). One hundred rectangular-shaped specimens were prepared with two resin cements and were stored in five media types (n = 10): distilled water (DW), lactic acid (LA), sodium hydroxide (NH), in-office bleaching (OB) and home bleaching (HB). There was significant interaction between the solutions and cements (p except Panavia in OB) (p exception of in-office bleaching.

  5. Effect of surface treatment of prefabricated posts on bonding of resin cement

    DEFF Research Database (Denmark)

    Sahafi, Alireza; Peutzfeld, Anne; Asmussen, Erik

    2004-01-01

    This in vitro study evaluated the effect of various surface treatments of prefabricated posts of titanium alloy (ParaPost XH), glass fiber (ParaPost Fiber White) and zirconia (Cerapost) on the bonding of two resin cements: ParaPost Cement and Panavia F by a diametral tensile strength (DTS) test...... the start of mixing the resin cement, the specimen was freed from the mold and stored in water at 37 degrees C for seven days. Following water storage, the specimen was wet-ground to a final length of approximately 3 mm. The DTS of specimens was determined in a Universal Testing Machine. The bonding...

  6. Treatment of a Vertical Root Fracture Using Dual-Curing Resin Cement: A Case Report

    Directory of Open Access Journals (Sweden)

    Nima Moradi Majd

    2012-01-01

    Full Text Available Introduction. Vertical root fracture (VRF is one of the most frustrating complications of root canal treatment. The prognosis of the root with VRF is poor therefore tooth extraction and root amputation are usually the only treatment options. However, bonding of the fracture line with adhesive resin cement during the intentional replantation procedure was recently suggested as an alternative to tooth extraction. Methods. A vertically fractured left maxillary incisor was carefully extracted, fracture line was treated with adhesive resin cement, a retrograde cavity was produced and filled with calcium-enriched mixture (CEM cement, and tooth was replanted. Results. After 12 months the tooth was asymptomatic. The size of periapical radiolucency was noticeably reduced and there was no clinical sign of ankylosis. Conclusion. Using adhesive resin cement to bond the fracture lines extraorally in roots with VRF and intentional replantation of the reconstructed teeth could be considered as an alternative to tooth extraction, especially for anterior teeth.

  7. Relationship Between Simulated Gap Wear and Generalized Wear of Resin Luting Cements.

    Science.gov (United States)

    Tsujimoto, A; Barkmeier, W W; Takamizawa, T; Latta, M A; Miayazaki, M

    The relationship between the simulated gap wear and generalized wear of resin luting cements was investigated. Five resin luting cements, G-Cem LinkForce (GL), Multilink Automix (MA), NX3 Nexus, Panavia V5 (PV), and RelyX Ultimate were evaluated and subsequently subjected to a wear challenge in a Leinfelder-Suzuki (Alabama) wear simulation device. Half of the specimens from each resin luting cement were photo-cured for 40 seconds and the other half were not photo-cured. The simulated gap and generalized wear were generated using a flat-ended stainless steel antagonist. Wear testing was performed in a water slurry of polymethyl methacrylate beads, and the simulated gap and generalized wear were determined using a noncontact profilometer (Proscan 2100) in conjunction with the Proscan and AnSur 3D software. A strong relationship was found between the gap wear and generalized wear simulation models. The simulated gap wear and generalized wear of the resin luting cements followed similar trends in terms of both volume loss and mean depth of wear facets with each curing method. Unlike the simulated gap wear and generalized wear of GL and PV, those of MA, NX, and RU were influenced by the curing method. The results of this study indicate that simulated gap wear of resin luting cements is very similar to simulated generalized wear. In most cases, dual curing appears to ensure greater wear resistance of resin luting cements than chemical curing alone. The wear resistance of some resin luting cements appears to be material dependent and is not influenced by the curing method.

  8. Color management of porcelain veneers: influence of dentin and resin cement colors.

    Science.gov (United States)

    Dozic, Alma; Tsagkari, Maria; Khashayar, Ghazal; Aboushelib, Moustafa

    2010-01-01

    Porcelain veneers have become an interesting treatment option to correct the shape and color of anterior teeth. Because of their limited thickness and high translucency, achieving a good color match is influenced by several variables. The aim of this work was to investigate the influence of natural dentin and resin cement colors on final color match of porcelain veneers. A preselected shade tab (A1) was chosen as the target color for a maxillary central incisor, and its color parameters (L*a*b*) were measured using a digital spectrophotometer (SpectroShade, MHT). Nine natural dentin colors (Natural Die Material, Ivoclar Vivadent) representing a wide range of tooth colors were used to prepare resin replicas of the maxillary central incisor with a standard preparation for porcelain veneers. The prepared porcelain veneers (IPS Empress Esthetic, A1, 0.6 mm thick, Ivoclar Vivadent) were cemented on the resin dies (nine groups of natural dentin colors) using seven shades of resin cement (Variolink Veneers, Ivoclar Vivadent). The L*a*b* values of the cemented veneers were measured, and DE values were calculated against the preselected target color (A1). DE greater than 3.3 was considered as a significant color mismatch detectable by the human eye. The seven shades of resin cement had no significant influence on the final color of the veneers, as the measured DE values were almost identical for every test group. On the other hand, the color of natural dentin was a significant factor that influenced final color match. None of the 63 tested combinations (nine natural dentin colors and seven resin cement colors) produced an acceptable color match. Thin porcelain veneers cannot mask underlying tooth color even when different shades of resin cement are used. Incorporation of opaque porcelain (high chroma) may improve final color match.

  9. [Color stability of ceromer veneers/resin cements after accelerated ageing].

    Science.gov (United States)

    Wang, Likai; Liu, Yanan; Zheng, Yan; Li, Pingping; Shi, Lianshui

    2014-02-01

    To investigate the color stability of ceromer veneers/resin cements after accelerated ageing, and to provide the reference for clinical application and choice. Fifteen groups of ceromer veneers/resin cements samples, five samples in each group, were prepared as experimental groups.In the fifteen groups, ceromer veneers in three thickness (1.00, 0.75, 0.50 mm) and resin cements of five shades(A1,A3, B 0.5, WO, TR), were matched through permutation and combination. Three groups of ceromer veneers with different thickness (1.00, 0.75, 0.50 mm) were used as control groups. All samples were put into xenon lamp ageing instrument to accelerate ageing.Spectrophotometer were used to measure the lightness(L(*)), red green color(a(*)) and blue yellow color(b(*)) of samples before and after accelerated ageing process, and the change of lightness (ΔL) , red green color (Δa) , blue yellow color (Δb) and color variation(ΔE) were calculated.We investigated the effect of thickness of ceromer veneer and color of resin cement on color variation by using analysis of variance. The thickness factor and color factor showed significant effect on ΔE values, and they have interaction (P ceromer veneer and the color of resin cement could both affect the color stability of ceromer veneers/resin cements. The changes of lightness and color in ceromer veneers/resin cements were considered clinically acceptable after accelerated ageing.

  10. Interfacial fracture toughness of different resin cements bonded to a lithium disilicate glass ceramic.

    Science.gov (United States)

    Hooshmand, Tabassom; Rostami, Golriz; Behroozibakhsh, Marjan; Fatemi, Mostafa; Keshvad, Alireza; van Noort, Richard

    2012-02-01

    To evaluate the effect of HF acid etching and silane treatment on the interfacial fracture toughness of a self-adhesive and two conventional resin-based cements bonded to a lithium disilicate glass ceramic. Lithium disilicate glass ceramic discs were prepared with two different surface preparations consisting of gritblasted with aluminium oxide, and gritblasted and etched with hydrofluoric acid. Ceramic surfaces with a chevron shaped circular hole were treated by an optimized silane treatment followed by an unfilled resin and then three different resin cements (Variolink II, Panavia F2, and Multilink Sprint). Specimens were kept in distilled water at 37°C for 24h and then subjected to thermocycling. The interfacial fracture toughness was measured and mode of failures was also examined. Data were analysed using analysis of variance followed by T-test analysis. No statistically significant difference in the mean fracture toughness values between the gritblasted and gritblasted and etched surfaces for Variolink II resin cement was found (P>0.05). For the gritblasted ceramic surfaces, no significant difference in the mean fracture toughness values between Panavia F2 and Variolink II was observed (P>0.05). For the gritblasted and etched ceramic surfaces, a significantly higher fracture toughness for Panavia F2 than the other cements was found (Pceramic system was affected by the surface treatment and the type of luting agent. Dual-cured resin cements demonstrated a better bonding efficacy to the lithium disilicate glass ceramic compared to the self-adhesive resin cement. The lithium disilicate glass ceramic surfaces should be gritblasted and etched to get the best bond when used with Panavia F2 and Multilink Sprint resin cements, whereas for the Variolink II only gritblasting is required. The best bond overall is achieved with Panavia F2. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. The strengthening of resin cemented dental ceramic materials

    OpenAIRE

    Hooi, Paul

    2013-01-01

    The aim of the current investigation was to advance the understanding of the mechanism of resin-strengthening conferred to dental ceramic materials by resin-based composite materials. The investigation is presented as a series of manuscripts. In the first study (Manuscript 3.1), dental porcelain disc-shaped specimens were resin-coated with three resin-based composite materials with different flexural moduli at discrete resin thicknesses. The discs were loaded to failure in a biaxial flexure t...

  12. Effect of ultraviolet aging on translucency of resin-cemented ceramic veneers: an in vitro study.

    Science.gov (United States)

    Turgut, Sedanur; Bagis, Bora; Turkaslan, Suha S; Bagis, Yildirim Hakan

    2014-01-01

    The aim of this in vitro study was to evaluate the translucency of ceramic veneers cemented with light- or dual-cured resin cements after accelerated aging. A total of 392 specimens were made of shade A1 with 0.5- and 1.0-mm thickness. Light-cured RelyX Veneer and dual-cured Maxcem Elite and Variolink II resin cements were applied on the porcelain discs with a thickness of 0.1 mm. Translucency parameter (TP) values of the ceramic veneers after cementation and UV aging test were evaluated. Statistical analyses were done with ANOVA and Tukey's tests and paired sample t-test (p resin cements affected the TP values of 0.5-mm-thick ceramic, while RelyX Veneer Tr (TP = 11.15; p = 0.608), Variolink II Tr (TP = 10.98; p = 0.55), and Maxcem Clear (TP = 11.81; p = 0.702) did not affect the translucency of 1-mm-thick ceramics (TP = 11.38). The aging process affected TP values of both ceramics and cemented ceramics, as the TP values decreased after aging. Among the TP values of opaque shade resin cements, there were significant differences between the "ceramic," "ceramic + RelyX Veneer WO," "ceramic + Variolink II WO," and "ceramic + Maxcem WO" variables for both 0.5 and 1 mm thicknesses (p ceramic," "ceramic + RelyX Veneer Tr," "ceramic + Variolink II Tr," and "ceramic + Maxcem Clear" variables at 0.5 mm thickness, and there were no significant differences between "ceramic," "ceramic + RelyX Veneer Tr," and "ceramic + Variolink II Tr" variables after aging (p > 0.05). The TP of the same color of resin cements varied related to the type or brand. Aging caused both the ceramics and cemented ceramics to become more opaque. © 2013 by the American College of Prosthodontists.

  13. Tensile bond strength of ceramic crowns to dentin using resin cements.

    Science.gov (United States)

    Simon, James F; de Rijk, Waldemar G; Hill, Jennifer; Hill, Nathaniel

    2011-01-01

    This study measured the bond strength of the self-adhesive resin cements and a bonded resin cement for crowns bonded to extracted teeth with preparations having a total taper greater than 30 degrees. A crown pull-off test was used with direction of pull along the path of insertion. The CAD/CAM system Cerec was used to create crowns with the pull-off loop as an integral part of the crown structure. One hundred extracted human molars were prepared for all-ceramic crowns with a 1.5-mm shoulder, greater than 30-degree axial wall convergence, a flat occlusal surface and 3 to 5 mm occlusal/ gingival height. All-ceramic crowns were cemented with five different self-adhesive cements (Rely X Unicem, Maxcem Elite, BisCem, SmartCem 2, and G-Cem) and one bonded resin cement (Multilink). Forfour cements (excluding GCem and Multilink) there were 2 groups, one with HF etching and one without ceramic surface treatment. The crowns were then subject to tensile stress until either the crown fractured or the crown was lifted off from the tooth. For several cements, the bond strength exceeded the tensile strength of the all-ceramic crown; thus, the crown fractured, leaving the cemented part of the crown on the tooth. The effect of ceramic surface etching was not statistically significant at p = 0.05; however, for each cement, the treated crowns showed a lower coefficient of variance (COV). For this study, the COV ranged from 24.9 % to 97.9 %. Loads ranged from 41.3 to 190.3 N. Some of the new self-etching resin cements can create bonds to non-retentive crown preparations that are stronger than the strength of a ceramic crown; however, these high bond strengths may not be able to be achieved consistently.

  14. Influence of Surface Treatments on the Bond Strength of Resin Cements to Monolithic Zirconia.

    Science.gov (United States)

    Elsaka, Shaymaa E

    To assess the influence of surface treatment on the microtensile bond strength (μTBS) of resin cements to monolithic zirconia materials. Two types of monolithic zirconia (Zenostar T [ZT] and Prettau Anterior [PA]) were evaluated. The specimens were assigned to three groups based on the surface treatment applied: group 1: control, assintered; group 2: sandblasted with 50-μm Al₂O₃; group 3: tribochemically silica sandblasted. Two types of resin cements (Multilink Speed [MS] and Multilink N [MN]) were applied to each group for evaluating the bond strength using the μTBS test. The fractured specimens were observed with a stereomicroscope and SEM. Surface roughness and topography of monolithic zirconia were examined after treatment. Data were analyzed using ANOVA and Tukey's test. A Weibull analysis was performed on the bond strength data. The bond strength was significantly affected by the surface treatment and the type of resin cement (p zirconia (p = 0.387). Surface treatment with tribochemical silica sandblasting revealed significantly higher bond strength (p zirconia was changed due to surface treatments. The surface treatment of monolithic zirconia with tribochemical silica sandblasting enhanced the bond strength between zirconia and resin cements. Resins cements containing adhesive phosphate monomer (APM, MS) provided higher bond strength to monolithic zirconia than non-APM (MN).

  15. Comparison of temperature change among different adhesive resin cement during polymerization process

    Directory of Open Access Journals (Sweden)

    Murat Alkurt

    2017-01-01

    Full Text Available Purpose: The aim of this study was to assess the intra-pulpal temperature changes in adhesive resin cements during polymerization. Materials and Methods: Dentin surface was prepared with extracted human mandibular third molars. Adhesive resin cements (Panavia F 2.0, Panavia SA, and RelyX U200 were applied to the dentin surface and polymerized under IPS e.max Press restoration. K-type thermocouple wire was positioned in the pulpal chamber to measure temperature change (n = 7. The temperature data were recorded (0.0001 sensible and stored on a computer every 0.1 second for sixteen minutes. Differences between the baseline temperature and temperatures of various time points (2, 4, 6, 8, 10, 12, 14, and 16 minute were determined and mean temperature changes were calculated. At various time intervals, the differences in temperature values among the adhesive resin cements were analyzed by two-way ANOVA and post-hoc Tukey honestly test (α = 0.05. Results: Significant differences were found among the time points and resin cements (P < 0.05. Temperature values of the Pan SA group were significantly higher than Pan F and RelyX (P < 0.05. Conclusion: Result of the study on self-adhesive and self-etch adhesive resin cements exhibited a safety intra-pulpal temperature change.

  16. Effect of surface treatment of FRC-Post on bonding strength to resin cements

    Directory of Open Access Journals (Sweden)

    Chan-Hyun Park,

    2011-03-01

    Full Text Available Objectives The purpose of this study was to evaluate the effect of surface treatment of FRC-Post on bonding strength to resin cements. Materials and Methods Pre-surface treated LuxaPost (DMG, Rely-X Fiber Post (3M ESPE and self adhesive resin cement Rely-X Unicem (3M ESPE, conventional resin cement Rely-X ARC (3M ESPE, and Rely-X Ceramic Primer (3M ESPE were used. After completing the surface treatments of the posts, posts and resin cement were placed in clear molds and photo-activation was performed. The specimens were sectioned perpendicular to the FRC-Post into 2 mm-thick segments, and push-out strength were measured. The results of bond strength value were statistically analyzed using independent samples t-test and one-way ANOVA with multiple comparisons using Scheffe's test. Results Silanization of posts affect to the bond strength in LuxaPost, and did not affect in Rely-X Fiber Post. Rely-X ARC showed higher value than Rely-X Unicem. Conclusions Silanization is needed to enhance the bond strength between LuxaPost and resin cements.

  17. Comparison of shear test methods for evaluating the bond strength of resin cement to zirconia ceramic.

    Science.gov (United States)

    Kim, Jae-Hoon; Chae, Soyeon; Lee, Yunhee; Han, Geum-Jun; Cho, Byeong-Hoon

    2014-11-01

    This study compared the sensitivity of three shear test methods for measuring the shear bond strength (SBS) of resin cement to zirconia ceramic and evaluated the effects of surface treatment methods on the bonding. Polished zirconia ceramic (Cercon base, DeguDent) discs were randomly divided into four surface treatment groups: no treatment (C), airborne-particle abrasion (A), conditioning with Alloy primer (Kuraray Medical Co.) (P) and conditioning with Alloy primer after airborne-particle abrasion (AP). The bond strengths of the resin cement (Multilink N, Ivoclar Vivadent) to the zirconia specimens of each surface treatment group were determined by three SBS test methods: the conventional SBS test with direct filling of the mold (Ø 4 mm × 3 mm) with resin cement (Method 1), the conventional SBS test with cementation of composite cylinders (Ø 4 mm × 3 mm) using resin cement (Method 2) and the microshear bond strength (μSBS) test with cementation of composite cylinders (Ø 0.8 mm × 1 mm) using resin cement (Method 3). Both the test method and the surface treatment significantly influenced the SBS values. In Method 3, as the SBS values increased, the coefficients of variation decreased and the Weibull parameters increased. The AP groups showed the highest SBS in all of the test methods. Only in Method 3 did the P group show a higher SBS than the A group. The μSBS test was more sensitive to differentiating the effects of surface treatment methods than the conventional SBS tests. Primer conditioning was a stronger contributing factor for the resin bond to zirconia ceramic than was airborne-particle abrasion.

  18. Bond strength of a composite resin to glass ionomer cements using different adhesive systems

    Directory of Open Access Journals (Sweden)

    Ana Carolina de Oliveira BECCI

    2017-08-01

    Full Text Available Abstract Introduction Glass ionomer cements are often used as a base or cavity lining prior to restorative material. Objective To evaluate the bond strength of a composite resin to different glass ionomer cements, when using a two-step conventional and self-etching adhesive systems. Material and method Three glass ionomer cements (Ketac Molar Easymix, Vitremer and Vitrebond, the composite resin Filtek Z350 XT and the adhesive systems Adper Single Bond 2, Clearfil SE Bond and Adper Easy One were used. As negative control, resin was bonded to cement without using an adhesive system. Holes (4 mm diameter, 2 mm deep prepared in acrilic bloks were filled with the glass ionomer cements (n=12/group. On the surface, an area of 1mm in diameter was delimited, the adhesive system was applied, and a specimen of composite resin with 1 mm height was made. After 24 hours storage (37 °C and 100% humidity, the microshear test was performed. Data were analyzed using two-way ANOVA and Tukey test for comparison between groups (α=0.05. Result The adhesive systems significantly improved the bond strenght of composite resin to glass ionomer cements (p≤0.001. There was no significant difference in bond strength when self-etching adhesive systems were compared with the simplified etch-and-rinse adhesive, except for Vitrebond where Clearfil SE Bond determined higher bond strength when compared to Adper Single Bond 2 (p=0.003. Conclusion Self-etching adhesive systems are a good option for establishing the bond between the composite resin and the glass ionomer cement.

  19. HPLC analysis of monomers eluted from self-adhesive resin cements

    Directory of Open Access Journals (Sweden)

    Özgür Genç Şen

    2016-08-01

    Full Text Available OBJECTIVE: The aim of this study was to determine the residual monomer leaching from two self-adhesive resin cements polymerized with Light Emitting Diode (LED or halogen light curing unit. MATERIALS AND METHOD: Clearfil SA (group A, n = 48 and BisCem (group B, n = 48 cements were inserted in plastic moulds. Each group was further divided into two subgroups. Specimens were light cured with LED light curing unit (LCU in group A1 and group B1 and halogen LCU in group A2 and group B2 for 20 seconds. The following compounds released from the samples stored in distilled water were analyzed: triethylene glycol-dimethacrylate (TEGDMA and bisphenol A glycidyl methacrylate (Bis-GMA. Analysis of substances was performed with the use of high performance liquid chromatography, after 1 hour and 24 hour incubation periods. Factorial experimental design and independent t-test was used for statistical analyses. RESULTS: Self-adhesive resin cements released more Bis-GMA and TEGDMA when they were polymerized with LED LCUs (p0.05. Clearfil SA cement released more Bis-GMA than BisCem (p<0.05. BisCem released more TEGDMA than Clearfil SA (p<0.05. CONCLUSION: The results of this study showed that the quantity of Bis-GMA and TEGDMA leached from self-adhesive resin cements was influenced by the type of LCU and by the type of self-adhesive resin cement.

  20. Comparison of Micro-Shear Bond Strength of Resin Cements to Root Dentin of Bovine Teeth

    Directory of Open Access Journals (Sweden)

    R Dabili

    2012-01-01

    Full Text Available Introduction: Nowadays resin cements are commonly used in operative dentistry but the strength of micro- shear bonds of these cements was different in various studies. The aim of this study was to compare the micro-shear bond strength of three resin cements with different mechanisms consisting of maxcem, variolink II and panavia F2.0 to bovine tooth dentin. Methods: Thirty nine longitudinal slices of bovine root dentin were prepared. Specimens were randomly divided into three equal groups. In each group one resin cement was used in cylinders with 1×2mm diameters on each slice. After setting of the cement, micro-shear bond strength was evaluated by a micro-tester device with 0.5mm/min cross head speed. Data were analyzed by ANOVA, Tukey and Bonferroni tests. Results: Micro-shear bond strength of Panavia F2.0, Maxcem and Variolink II was 15.07, 7.33 and 4.97Mpa, respectively. There were significant differences between groups. Conclusion: Micro-shear bond strength of total-Etch resin cements was lower than self-Etch ones.

  1. Bacterial colonization of resin composite cements: influence of material composition and surface roughness.

    Science.gov (United States)

    Glauser, Stephanie; Astasov-Frauenhoffer, Monika; Müller, Johannes A; Fischer, Jens; Waltimo, Tuomas; Rohr, Nadja

    2017-08-01

    So-called secondary caries may develop in the cement gap between the tooth and the bonded restoration. Cement materials with a low susceptibility to biofilm formation are therefore desirable. In the present study, the adhesion of Strepococcus mutans onto three adhesive (Multilink Automix, RelyX Ultimate, and Panavia V5) and three self-adhesive (Multilink Speed Cem, RelyX Unicem 2 Automix, and Panavia SA plus) resin composite cements was evaluated. Previous studies have failed to evaluate concomitantly the effect of both the composition of the cements and their surface roughness on biofilm formation. The presence of S. mutans on cement surfaces with differing degrees of roughness was therefore recorded using fluorescence microscopy and crystal violet staining, and the composition of the cements was analyzed using energy-dispersive X-ray spectroscopy mapping. Biofilm formation on resin composite cements was found to be higher on rougher surfaces, implying that adequate polishing of the cement gap is essential. The use of copper-containing cements (Multilink Automix, Panavia V5, and Panavia SA plus) significantly reduced biofilm formation. © 2017 Eur J Oral Sci.

  2. Solidification of radioactive waste resins using cement mixed with organic material

    International Nuclear Information System (INIS)

    Laili, Zalina; Yasir, Muhamad Samudi; Wahab, Mohd Abdul

    2015-01-01

    Solidification of radioactive waste resins using cement mixed with organic material i.e. biochar is described in this paper. Different percentage of biochar (0%, 5%, 8%, 11%, 14% and 18%) was investigated in this study. The characteristics such as compressive strength and leaching behavior were examined in order to evaluate the performance of solidified radioactive waste resins. The results showed that the amount of biochar affect the compressive strength of the solidified resins. Based on the data obtained for the leaching experiments performed, only one formulation showed the leached of Cs-134 from the solidified radioactive waste resins

  3. Solidification of radioactive waste resins using cement mixed with organic material

    Energy Technology Data Exchange (ETDEWEB)

    Laili, Zalina, E-mail: liena@nm.gov.my [Nuclear Science Programme, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor Malaysia (Malaysia); Waste and Environmental Technology Division, Malaysian Nuclear Agency (Nuclear Malaysia), Bangi, 43000 Kajang, Selangor (Malaysia); Yasir, Muhamad Samudi [Nuclear Science Programme, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor Malaysia (Malaysia); Wahab, Mohd Abdul [Waste and Environmental Technology Division, Malaysian Nuclear Agency (Nuclear Malaysia), Bangi, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    Solidification of radioactive waste resins using cement mixed with organic material i.e. biochar is described in this paper. Different percentage of biochar (0%, 5%, 8%, 11%, 14% and 18%) was investigated in this study. The characteristics such as compressive strength and leaching behavior were examined in order to evaluate the performance of solidified radioactive waste resins. The results showed that the amount of biochar affect the compressive strength of the solidified resins. Based on the data obtained for the leaching experiments performed, only one formulation showed the leached of Cs-134 from the solidified radioactive waste resins.

  4. Effect of brand and shade of resin cements on the final color of lithium disilicate ceramic.

    Science.gov (United States)

    Dede, Doğu Ömür; Ceylan, Gözlem; Yilmaz, Burak

    2017-04-01

    Resin cements are available in various shades from different manufacturers. However, there is no standard for the optical properties of these cements, which may result in differences in the color of translucent ceramic restorations. The purpose of this in vitro study was to evaluate the effects of different shades and brands of resin cements on the color of a lithium disilicate ceramic. Ten ceramic disks (11×1.5 mm, shade A2) were fabricated from lithium disilicate high-translucency blocks. Eighty cement disks (11×0.2 mm) were fabricated from 4 brands (Maxcem; Variolink; Clearfil; and RelyX) of resin cements in translucent and universal (shade A2) shades. Color measurements of ceramic specimens were made without (control) and with each brand/shade of resin cement material (test) with a spectrophotometer, and International Commission on Illumination Lab (CIELab) color coordinates were recorded. Color differences (ΔE 00 ) between the control and test groups were calculated. ΔE 00 results were analyzed by 2-way ANOVA and subsequent pairwise testing. Comparisons were performed using the Student t test, and then all P values were corrected with the step-down Bonferroni procedure (α=.05). The effect on the ΔE 00 values (Presin cement materials was significant. Both shades of RelyX cement groups had significantly lower and Variolink_translucent cement group had significantly higher ΔE 00 results than other brands (Pceramic was not visually perceptible (ΔE 00 ≤1.30). Clinically unacceptable results (ΔE 00 >2.25) were observed only for Variolink_translucent cement (2.36). Same-shade resin cements from different manufacturers had different effects on the color of lithium disilicate ceramic. The effects of different shades of resin cements from the same manufacturer on the color of lithium disilicate ceramic were statistically different for only RelyX, which may also be considered clinically different based on clinical acceptability thresholds for color difference

  5. Evaluation of the Compressive Strength of Cement-Spent Resins Matrix Mixed with Bio char

    International Nuclear Information System (INIS)

    Zalina Laili; Muhamad Samudi Yasir; Zalina Laili; Mohd Abdul Wahab; Nur Azna Mahmud; Nurfazlina Zainal Abidin

    2015-01-01

    The evaluation of compressive strength of cement-spent resins matrix mixed with bio char was investigated. In this study, bio char with different percentage (5 %, 8 %, 11 % 14 % and 18 %) was used as alternative admixture material for cement solidification of spent resins. Some properties of the physical and chemical of spent resins and bio char were also investigated. The performance of cemented spent resins with the addition of bio char was evaluated based on their compressive strength and the water resistance test. The compressive strength was evaluated at three different curing periods of 7, 14 and 28 days, while 4 weeks of immersion in distilled water was chosen for water resistance test. The result indicated that the compressive strength at 7, 14 and 28 days of curing periods were above the minimum criterion for example > 3.45 MPa of acceptable level for cemented waste form. Statistical analysis showed that there was no significant relationship between the compressive strength of the specimen and the percentage of bio char content. Result from the water resistance test showed that only one specimen that contained of 5 % of bio char failed the water resistance test due to the high of spent resins/ bio char ratio. The compressive strength of cement solidified spent resins was found increased after the water resistance test indicating further hydration occurred after immersed in water. The results of this study also suggest that the specimen with 8 %, 11 %, 14 % and 18 % of bio char content were resistance in water and suitable for the leaching study of radionuclides from cement-bio char-spent resins matrix. (author)

  6. Chlorhexidine release and antibacterial properties of chlorhexidine-incorporated polymethyl methacrylate-based resin cement.

    Science.gov (United States)

    Hiraishi, N; Yiu, C K Y; King, N M; Tay, F R

    2010-07-01

    This study evaluated chlorhexidine release from experimental, chlorhexidine-incorporated polymethyl methacrylate (PMMA)-based resin cements prepared from Super-Bond C&B (Sun Medical) and examined the antimicrobial activity against Streptococcus mutans and Enterococcus faecalis. Chlorhexidine diacetate was added into PMMA polymer to obtain chlorhexidine concentration of 0.0, 1.0, 2.0, 3.0, and 4.0 wt %. Chlorhexidine-incorporated, cured resin disks were immersed in distilled water at 37 degrees C for 5 weeks, and the chlorhexidine release was analyzed by high-performance liquid chromatography. The antibacterial effect of freshly mixed resin cements was examined using the agar diffusion test. For the direct contact test, the wells (n = 6) of microtiter plates were coated with cements. The coated wells were aged up to 3 weeks prior to the placement of bacterial suspensions directly on cured cements. The 3.0 and 4.0% chlorhexidine-incorporated cement exhibited chlorhexidine release for 5 weeks; however, more than 98% of chlorhexidine was retained in resin matrix. No release was detected from the 1.0 and 2.0% incorporated cement at 1 week and 2 weeks, respectively. The agar diffusion test failed to detect antibacterial effects against Enterococcus faecalis, whereas the direct contact test revealed the antibacterial effect of 3.0 and 4.0% incorporated cements against each microbe for 2 weeks. The 3.0 and 4.0% chlorhexidine-incorporated resin cement possessed prolonged chlorhexidine release and antibacterial properties for 2 weeks. (c) 2010 Wiley Periodicals, Inc.

  7. Aspects of bonding between resin luting cements and glass ceramic materials.

    Science.gov (United States)

    Tian, Tian; Tsoi, James Kit-Hon; Matinlinna, Jukka P; Burrow, Michael F

    2014-07-01

    The bonding interface of glass ceramics and resin luting cements plays an important role in the long-term durability of ceramic restorations. The purpose of this systematic review is to discuss the various factors involved with the bond between glass ceramics and resin luting cements. An electronic Pubmed, Medline and Embase search was conducted to obtain laboratory studies on resin-ceramic bonding published in English and Chinese between 1972 and 2012. Eighty-three articles were included in this review. Various factors that have a possible impact on the bond between glass ceramics and resin cements were discussed, including ceramic type, ceramic crystal structure, resin luting cements, light curing, surface treatments, and laboratory test methodology. Resin-ceramic bonding has been improved substantially in the past few years. Hydrofluoric acid (HF) etching followed by silanizaiton has become the most widely accepted surface treatment for glass ceramics. However, further studies need to be undertaken to improve surface preparations without HF because of its toxicity. Laboratory test methods are also required to better simulate the actual oral environment for more clinically compatible testing. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Effect of accelerated aging on the color and opacity of resin cements.

    Science.gov (United States)

    Ghavam, Maryam; Amani-Tehran, Mohammad; Saffarpour, Mahshid

    2010-01-01

    The color stability of resin cements plays a major role in the esthetic performance of porcelain laminate veneers. Some dual-polymerizable resin cements used to bond porcelain laminates were shown to undergo color changes during service. Some recently produced cements are described as being color stable, but scientific data are not available. The current study evaluated the effect of accelerated aging on the color and opacity of resin cements. The hypothesis was that the auto-polymerizing cements would show less color and opacity stability. Forty (0.7 x 18 mm) feldspathic porcelain disks were prepared and divided into four equal groups. The resin cements were bonded to the disks by application of an identical load of 2.5 kilograms, and they were polymerized according to the manufacturer's instructions. The groups were: Variolink Veneer (light-polymerizing), Variolink II (light-polymerizing), Variolink II (dual-polymerizing) and Multilink (auto-polymerizing). A spectrophotometer was used to measure the following color parameters in the CIE L*a*b* color space on a black and white background: deltaa*, deltab*, deltaL*, deltaC, deltaH, deltaE and deltaCR (contrast ratio). The measurements were performed before and after aging. Paired t- and one-way ANOVA tests were used to analyze the data (alpha = .05). None of the groups showed significant differences in deltaE before and after aging (p > .05); deltaE remained in the range of clinical acceptance (deltaE aging. The studied cements can ensure color stability when used to cement porcelain laminate veneers, but the change in opacity can affect clinical results. Auto polymerizing cements become more opaque with aging; therefore, porcelain restorations may lose their match with other teeth.

  9. [Influence of primers ' chemical composition on shear bond strength of resin cement to zirconia ceramic].

    Science.gov (United States)

    Łagodzińska, Paulina; Bociong, Kinga; Dejak, Beata

    2014-01-01

    Resin cements establish a strong durable bond between zirconia ceramic and hard tissues of teeth. It is essential to use primers with proper chemical composition before cementation. The aim of this study was to assess the influence of primer's chemical composition on the shear bond strength of zirconia ceramic to resin cements. 132 zirconia specimens were randomly assigned to four groups. There were four resin systems used. They included resin cement and respective primer, dedicated to zirconia: Clearfil Ceramic Primer/Panavia F2.0, Monobond Plus/Multilink Automix, AZ - Primer/ResiCem, Z - Prime Plus/Duo-Link. In each group the protocol of cementation was as follows: application of primer to the zirconia surface and application of the respective resin cement in cylindric mold (dimensions: 3.0 mm height and 3.0 mm diameter). Then, the shear bond strength was evaluated and the failure type was assessed in lupes (×2.5 magnification), also random specimens under SEM. The Wilcoxon test was used to analyze the data, the level of significance was α = 0.05. Finally, the known chemical composition of each primer was analysed in reference to probable chemical bonds, which may occure between primers and zirconia. The mean shear bond strength between resin cements and zirconia was the highest for Z-Prime Plus/Duo-Link (8.24 ± 3,21 MPa) and lowest for Clearfil Ceramic Primer/Panavia F 2.0 (4.60 ± 2.21 MPa). The analysis revealed significant difference between all groups, except pair Clearfil Ceramic Primer/Panavia F 2.0 and AZ-Primer/ResiCem. The failure type in groups of Clearfil Ceramic Primer/Panavia F 2.0 and AZ-Primer/ResiCem was mainly adhesive, in groups Monobond Plus/ /Multilink Automix and Z-Prime Plus/Duo-Link mainly mixed. The chemical composition of primers affects different bond mechanisms between resin cements and zirconia. The highest shear bond strength of resin cement to zirconia can be obtained for the primer composed of 10-Methacryloyloxydecyl dihydrogen

  10. [Evaluation of the esthetic effect of resin cements on the final color of ceramic veneer restorations].

    Science.gov (United States)

    Chen, Xiaodong; Zhang, Shaopu; Xing, Wenzhong; Zhan, Kangru; Wang, Yining

    2015-02-01

    To evaluate the influence of various shades of resin cements on the final color of an improved lithium-disilicate pressed glass ceramic veneers and analyze the agreement of resin cements and corresponding try-in pastes. Forty-eight artificial maxillary central incisor teeth were sequenced according to the measured color parameters and divided at random into 8 groups (n = 6). These artificial teeth were prepared following veneer preparation protocol. An improved lithium- disilicate pressed glass ceramic materials (IPS e.max Press, Ivoclar Vivadent) were selected as the veneer material. The shape and curvature of each veneer wax pattern were duplicated with the same impression to guarantee the similarity. The ceramic veneer specimens were delivered on the artificial teeth using the corresponding try-in pastes of 8 shades (Variolink Veneer, shades of LV-3, LV-2, MV, HV+2, HV+3; and 3M RelyXTM Veneer, shades of WO, TR, A3) and bonded with the resin cements. A clinical spectrophotometer was used to measure the color parameters of the ceramic veneers before the try-in, during the try-in procedure, and after cementation. ΔE values and C*ab values were calculated. The result of one-way ANOVA indicated that the color changes of ceramic veneer cementation with resin cements were statistically significantly different in the shades of resin cements (P ceramic veneer after cementation ranged from 0.93 to 6.79. The color changes of ceramic veneer specimens using the shades of LV-3, HV+3, WO were 3.31, 4.90 and 6.79, respectively (ΔE>3.3). The ΔE values of the ceramic veneer specimens between the resin cements and corresponding try-in pastes were from 0.72 to 1.79 (except the shade of HV+3). The LV-3, HV+3, WO shades were able to change the final color of a ceramic veneer. The color of resin cements and corresponding try-in pastes achieved high agreement (except the shade of HV+3).

  11. Evaluation of tensile retention of Y-TZP crowns cemented on resin composite cores: effect of the cement and Y-TZP surface conditioning.

    Science.gov (United States)

    Rippe, M P; Amaral, R; Oliveira, F S; Cesar, P F; Scotti, R; Valandro, L F; Bottino, M A

    2015-01-01

    This study evaluated the effect of the cement type (adhesive resin, self-adhesive, glass ionomer, and zinc phosphate) on the retention of crowns made of yttria-stabilized polycrystalline tetragonal zirconia (Y-TZP). Therefore, 108 freshly extracted molars were embedded in acrylic resin, perpendicular to their long axis, and prepared for full crowns: the crown preparations were removed and reconstructed using composite resin plus fiber posts with dimensions identical to the prepared dentin. The preparations were impressed using addition silicone, and Y-TZP copings were produced, which presented a special setup for the tensile testing. Cementation was performed with two adhesive resin cements (Multilink Automix, Ivoclar-Vivadent; RelyX ARC, 3M ESPE, St Paul, MN, USA), one self-adhesive resin cement (RelyX U100, 3M ESPE), one glass ionomer based cement (RelyX Luting, 3M ESPE), and one zinc phosphate cement (Cimento de Zinco, SS White, Rio de Janeiro, Brazil). For the resin cement groups, the inner surfaces of the crowns were subjected to three surface treatments: cleaning with isopropyl alcohol, tribochemical silica coating, or application of a thin low-fusing glass porcelain layer plus silanization. After 24 hours, all groups were subjected to thermocycling (6000 cycles) and included in a special device for tensile testing in a universal testing machine to test the retention of the infrastructure. After testing, the failure modes of all samples were analyzed under a stereomicroscope. The Kruskal-Wallis test showed that the surface treatment and cement type (α=0.05) affected the tensile retention results. The Multilink cement presented the highest tensile retention values, but that result was not statistically different from RelyX ARC. The surface treatment was statistically relevant only for the Multilink cement. The cement choice was shown to be more important than the crown surface treatment for cementation of a Y-TZP crown to a composite resin substrate.

  12. In vitro shear bond strength of two self-adhesive resin cements to zirconia.

    Science.gov (United States)

    Qeblawi, Dana M; Campillo-Funollet, Marc; Muñoz, Carlos A

    2015-02-01

    Although the use of anatomic-contour zirconia restorations has expanded in the recent past, disagreement still exists as to reliable cementation techniques and materials. The purpose of this in vitro study was to compare the immediate and artificially aged shear bond strength of 2 commercially available self-adhesive resin cements to zirconia: one with silica coating and silanation as a zirconia surface treatment and the other contained a phosphate monomer, which eliminated the need for a separate primer. Sixty composite resin rods (2.5 mm in diameter and 3 mm in length) were fabricated from a nano-optimized composite resin by using a polypropylene mold, then light polymerized with a light-emitting diode. zirconia plates (10×10×4mm) were sectioned from an yttrium-stabilized zirconia puck, sintered, and then mounted in autopolymerizing acrylic resin custom tray material. Composite resin rods were cemented to the zirconia plates with 2 different cements. The surface treatment of zirconia followed the manufacturers' instructions for each cement. The specimens were tested for shear bond strength at 3 aging conditions: immediate, after 24 hours of moist storage, and after 30 days of moist storage with 10000 thermocycles. Specimens were loaded to failure in a universal testing machine, and the data were analyzed with 2-way ANOVA (α=.05). Weibull parameters (modulus and characteristic strength) also were calculated for each group. Two-way ANOVA revealed that only the aging condition significantly affected the bond strength to zirconia. The cement and the interaction of the cement and aging did not significantly affect the shear bond strength to zirconia. The highest bond strength for both cements was achieved at 24 hours, whereas the lowest bond strength values were recorded in the immediate groups. No significant differences in bond strength to zirconia were observed between a cement with a silane priming step and an methacryloxydecyl dihydrogen phosphate

  13. Correlation between Microleakage and Absolute Marginal Discrepancy in Zirconia Crowns Cemented with Four Resin Luting Cements: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Abad-Coronel Cristian

    2016-01-01

    Full Text Available Objectives. To evaluate microleakage and absolute marginal discrepancy (AMD and to assess correlation between AMD and microleakage with four resin luting cements. Material and Methods. 20 extracted human third molars were prepared for full-coverage crowns. 20 zirconia copings were made (LAVA, 3M ESPE and cemented. Specimens were randomly allocated for each used type of cement into 4 groups, RelyX® (Rx, Multilink® (Mk, PANAVIA 2.1® (P, and Maxcem® (Mx and immersed in 10% safranin for 72 hours. 20x magnification lenses were used to observe microleakage areas (μm2 and images software was used to measure AMD areas (μm. Discrepancy and microleakage between the cements were compared with one-way ANOVA test with confidence interval of 95%. Results. Rx Group showed microleakage has lowest value and AMD has highest value. P Group showed microleakage has the highest value and Mk Group presented AMD has lowest value. There were no significative differences between the cements. There were no linear correlations between microleakage and AMD; however a complex regression statistical model obtained allowed formulating an association between both variables (microleakage = AMD0,896. Conclusions. No significative differences were found among 4 types of cements. No linear correlations between AMD and microleakage were found. Clinical Significance. AMD is not easily related to microleakage. Characteristics of cements are fundamental to decreasing of microleakage values.

  14. Influence of resin cement polymerization shrinkage on stresses in porcelain crowns.

    Science.gov (United States)

    May, Liliana G; Kelly, J Robert

    2013-10-01

    The aim of this study was to analyze the influence of polymerization shrinkage of the cement layer on stresses within feldspathic ceramic crowns, using experimentally validated FEA models for (1) increasing occlusal cement thickness; and, (2) bonded versus non-bonded ceramic-cement interfaces. 2-D axial symmetric models simulated stylized feldspathic crowns (1.5mm occlusal thickness) cemented with resin-cement layers of 50-500μm on dentin preparations, being loaded (500N) or not. Ceramic-cement interface was either bonded or not. Cement was bonded to the dentin in all models. Maximum axial shrinkage of 0%, 1%, 2%, 3%, 4% and 4.65% were simulated. The first principal stresses developing in the cementation surface at the center and at the occluso-axial line-angle of the crown were registered. Polymerization shrinkage of the cement increased tensile stresses in the ceramic, especially in loaded non-bonded crowns for thicker cement layers. Stresses in loaded non-bonded crowns increased as much as 87% when cement shrinkage increased from 0% to 4.65% (100-187MPa), for a 500μm-thick cement. Increasing polymerization shrinkage strain raised the tensile stresses, especially at the internal occlusal-axial line-angle, for bonded crowns. Changes in the polymerization shrinkage strain (from 0% to 4.65%) have little effect on the tensile stresses generated at the cementation surface of the ceramic crowns, when the occlusal cement thickness is thin (approx. 50μm for bonded crowns). However, as the cement becomes thicker stresses within the ceramic become significant. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Effect of resin cements and aging on cuspal deflection and fracture resistance of teeth restored with composite resin inlays.

    Science.gov (United States)

    Salaverry, Aurélio; Borges, Gilberto Antonio; Mota, Eduardo Gonçalves; Burnett Júnior, Luiz Henrique; Spohr, Ana Maria

    2013-12-01

    To evaluate the influence of resin cements and aging on cuspal deflection, fracture resistance, and mode of failure of endodontically treated teeth restored with composite resin inlays. Seventy-two maxillary premolars were divided into 6 groups: 1: sound teeth as control (C); 2: preparations without restoration (WR); 3: inlays luted with RelyX ARC (ARC); 4: inlays luted with RelyX Unicem (RLXU); 5: inlays luted with Maxcem Elite (MCE); 6: inlays luted with SeT (ST). Groups 2 to 6 received mesio-occlusal-distal preparations and endodontic treatment. Stone casts were made for groups 3 to 6. Composite resin inlays were built over each cast and luted with the resin cements. A 200-N load was applied on the occlusal aspect and the cuspal deflection was measured using a micrometer before and after 500,000 cycles of fatigue loading (200 N; 500,000 cycles). The specimens were then submitted to an axial load until failure. The median cuspal deflection (µm) and median fracture resistance (N) were calculated and statistically analyzed using Kruskal-Wallis and Mann-Whitney tests (p inlays luted with RelyX ARC maintained cuspal deflection stability and showed higher fracture resistance of the teeth than did inlays luted with the other cements tested.

  16. Use of an Italian pozzolanic cement for the solidification of bead ion exchange resins

    International Nuclear Information System (INIS)

    De Angelis, G.

    1988-05-01

    Granular ion-exchange resins represent a large portion of the medium-active wastes generated at nuclear power stations. The most common practice for their confinement is to mix them with cement paste and cast the mixture in a concrete shell. Such a procedure however does not prove successful in many cases, because of the extreme swelling to which the embedded resin can give rise. This phenomenon has been investigated carefully. In particular, measurements of the swelling pressure have been made together with evaluation of the volume changes of the resin beads due to ion exchange and of the weight increase as a function of relative humidity. The ion exchange capacity, which continues even after incorporation in the cement matrix has also been put into evidence. The conclusion was drawn that a three component diagram (water - dry resin- cement) has to be prepared every time in order to identify the region corresponding to the better formulations. With this in mind the optimum waste loading of 11.5 wt% of dry resin was chosen to incorporate a mixed bed resin (Amberlite IR 120 Na + and IRA 400 Cl - in the weight ratio of 1:1) into an Italian pozzolanic cement (425 type). Several properties of the final waste form have been investigated, ranging from mechanical (crushing strength, tensile strength, flexural strength, ultrasonic pulse velocity, elastic modulus and Poisson ratio), to thermal stability, radiation stability, permeability, leachability and resistance to bacterial attack. Dimensional stability was also measured with the aim of examining the expansion phenomena which can take place in the presence of resin beads. The data obtained are encouraging for future application of the type 425 cement tested in the field of radwastes. An attempt to explain the performance of this binder, based on its intrinsic properties, was also made. (author)

  17. Synthesis and characterization of cement slurries additives with epoxy resins - kinetics, thermodynamic and calorimetric analysis

    International Nuclear Information System (INIS)

    Tavares, A.M.G.; Andrade Junior, M.A.S.; Cestari, A.R.; Vieira, E.F.S.

    2010-01-01

    Cement has been used in the world, presenting a wide versatility. However, due to its chemical nature, it is subject to several types of chemical damages, especially for agents of acidic nature. With the purpose of increase its life-time, new cement slurries have been modified with the addition of specific additives. The objective of this work is to modify cement slurries with epoxy resins, which promote higher resistance of those materials in relation to acid attacks. Three cement slurries were synthesized with epoxy resins and a standard slurries, which was composed by cement and water. After 30 days of hydration, the samples were characterized by XDR, FTIR and thermal analysis (TG and DSC). The hydration processes of the cement slurries were studied by heat-conduction microcalorimetry. A kinetic study of HCl interaction with the new slurries were performed by the batch methodology at 25, 35, 45 e 55 deg C. It was verified that the addition of the polymers delayed the processes of hydration of the slurries, decreasing the flow of heat released as a function of the amount of added resin and, increased the resistance of those slurries to the acid attack. (author)

  18. Water sorption and water solubility of self-etching and self-adhesive resin cements.

    Science.gov (United States)

    Petropoulou, Aikaterini; Vrochari, Areti D; Hellwig, Elmar; Stampf, Susanne; Polydorou, Olga

    2015-11-01

    The long-term success of indirect restorations depends on the clinical behavior of luting cements. In the oral environment, properties such as water sorption and solubility negatively affect the cements' clinical performance over time, jeopardizing the restoration's longevity. The purpose of this in vitro study was to compare the water sorption and solubility characteristics of self-etching, self-adhesive, and conventional resin cements. One conventional (Calibra), 1 self-etching (Panavia F), and 2 self-adhesive (Clearfil SA, G-Cem Automix) dual-polymerized resin cements were used. Fourteen disks of each material were prepared. Water sorption and solubility were calculated according to International Organization for Standards (ISO) specification 4049:2009. According to the water sorption test, all materials were found to interact with water. No statistically significant differences were found between the water sorption of Panavia F and Clearfil SA (P=.911). These cements exhibited higher water sorption values than the other materials (Psolubility (Psolubility values than the other materials. G-Cem Automix and Calibra exhibited negative solubility. However, all water sorption and solubility values were below the threshold values proposed by the ISO standard. Within the limitations of the present in vitro study, the interaction of resin cements with water is not type-related (conventional, self-etching, or self-adhesive). Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  19. Effect of different surface treatments on shear bond strength of zirconia to three resin cements

    Science.gov (United States)

    Dadjoo, Nisa

    Statement of problem: There are no standard guidelines for material selection to obtain acceptable bonding to high-strength zirconium oxide ceramic. Studies suggest resin cements in combination with MDP-containing primer is a reasonable choice, however, the other cements cannot be rejected and need further investigation. Objective: The purpose of this in vitro study was the evaluation of the shear bond strength of three composite resin cements to zirconia ceramic after using different surface conditioning methods. Materials and methods: One hundred and twenty sintered Y-TZP ceramic (IPS e.max ZirCAD) squares (8 x 8 x 4 mm) were embedded in acrylic molds, then divided into three groups (n=40) based on the type of cement used. Within each group, the specimens were divided into four subgroups (n=10) and treated as follows: (1) Air abrasion with 50microm aluminum oxide (Al2O 3) particles (ALO); (2) Air abrasion + Scotchbond Universal adhesive (SBU); (3) Air abrasion + Monobond Plus (MBP); (4) Air abrasion + Z-Prime Plus (ZPP). Composite cylinders were used as carriers to bond to conditioned ceramic using (1) RelyX Ultimate adhesive resin cement (RX); (2) Panavia SA self-adhesive resin cement (PSA); (3) Calibra esthetic cement (CAL). The bonded specimens were submerged in distilled water and subjected to 24-hour incubation period at 37°C. All specimens were stressed in shear at a constant crosshead speed of 0.5 mm/min until failure. Statistical analysis was performed by ANOVA. The bond strength values (MPa), means and standard deviations were calculated and data were analyzed using analysis of variance with Fisher's PLSD multiple comparison test at the 0.05 level of significance. The nature of failure was recorded. Results: The two-way ANOVA showed Panavia SA to have the highest strength at 44.3 +/- 16.9 MPa (presin cement, Panavia SA, yielded the strongest bond to Y-TZP ceramic when compared to adhesive (RelyX Ultimate) or esthetic (Calibra) resin cements. Air

  20. [Effect of ceramic thickness and resin cement shades on final color of heat-pressed ceramic veneers].

    Science.gov (United States)

    Ren, D F; Zhan, K R; Chen, X D; Xing, W Z

    2017-02-09

    Objective: To analyze the effect of ceramic materials thickness and resin cement shades on the final color of ceramic veneers in the discolored teeth, and to investigate the color agreement of try-in pastes to the corresponding resin cements. Methods: Sixty artificial maxillary central incisor teeth (C2 shade) were used to simulate the natural discolored teeth and prepared according to veneer tooth preparation protocol. Veneers of different thickness in the body region (0.50 and 0.75 mm) were fabricated using ceramic materials (LT A2 shade, IPS e.max Press). The ceramic veneer specimens were bonded to the artificial teeth using the 6 shades of resin cements (Variolink Veneer: shades of LV-3, LV-2, HV+3; RelyX™ Veneer: shades of TR, A3, WO) ( n= 5). A clinical spectrophotometer was used to measure the color parameters of ceramic veneers at the cervical, body and incisal regions. Color changes of veneers before and after cementation were calculated and registered as ΔE1, and the changes between try-in paste and the corresponding resin cements were registered as ΔE2. Results: Three-way ANOVA indicated that ΔE1 and ΔE2 values were significantly affected by the ceramic thickness, resin cement shades and measuring regions ( Pceramic veneers were cemented with resin cements in shades of HV+3 and WO. The ΔE2 values of six shades ranged from 0.60-2.56. The shades of HV+3, WO and A3 resin cements were more than 1.60. Conclusions: Different thickness of ceramic materials, resin cement shades and measuring regions could affect the final color of ceramic veneers. The color differences of some resin cements and corresponding try-in pastes might be observed in clinical practice.

  1. Bond strength of resin cement to dentin and to surface-treated posts of titanium alloy, glass fiber, and zirconia.

    Science.gov (United States)

    Sahafi, Alireza; Peutzfeldt, Anne; Asmussen, Erik; Gotfredsen, Klaus

    2003-01-01

    To determine the effect of surface treatments on bond strength of two resin cements (ParaPost Cement and Panavia F) to posts of titanium alloy (ParaPost XH), glass fiber (ParaPost Fiber White), and zirconia (Cerapost), and to dentin. After embedding, planar surfaces of posts (n = 9 to 14) and human dentin (n = 10) were obtained by grinding. The posts received one of three surface treatments: 1. roughening (sandblasting, hydrofluoric acid etching), 2. application of primer (Alloy Primer, Metalprimer II, silane), or 3. roughening followed by application of primer (sandblasting or etching followed by primer, Cojet treatment). ParaPost Cement and Panavia F were bonded to the post and dentin specimens, and the bonded specimens were placed in water at 37 degrees C for 7 days. The specimens were debonded in shear. Panavia F had significantly higher bond strength to ground ParaPost XH, Cerapost, and dentin than did ParaPost Cement. Most surface treatments resulted in an improved bond strength of resin cements to the posts. Compared to the ground control, Cojet treatment and sandblasting were the most effective treatments. Etching of Cerapost with hydrofluoric acid with and without silane treatment significantly decreased the bond strength of Panavia F to the post. The bond strength of resin cements to the posts was affected by the material of the post, the surface treatment of the post, and by the type of resin cement. The bond strength of resin cement to dentin was influenced by the type of resin cement.

  2. Effect of various surface treatments of tooth – colored posts on bonding strength of resin cement

    Directory of Open Access Journals (Sweden)

    Mirzaei M.

    2008-11-01

    Full Text Available "nBackground and Aim: Various studies have shown that reliable bond at the root - post - core interfaces are critical for the clinical success of post - retained restorations. Severe stress concentration at post - cement interface increases post debonding from the root. To form a bonded unit that reduces the risk of fracture, it is important to optimize the adhesion. Therefore, some post surface treatments have been proposed. The purpose of this study was to investigate the influence of various surface treatments of tooth - colored posts on the bonding of resin cement. "nMaterials and Methods: In this interventional study, 144 tooth colored posts were used in 18 groups (8 samples in each group. The posts included quartz fiber (Matchpost, glass fiber (Glassix, and zirconia ceramic (Cosmopost and the resin cement was Panavia F 2.0. The posts received the following surface treatments: 1- No surface treatment (control group, 2- Etching with HF and silane, 3- Sandblasting with Cojet sand, 4- Sandblasting with Cojet sand and application of silane, 5- Sandblasting with alumina particles, 6- Sandblasting with alumina particles and application of silane. Then, posts were cemented into acrylic molds with Panavia F 2.0 resin cement. The specimens were placed in water for 2 days and debonded in pull - out test. Statistical analysis was performed using ANOVA followed by Tamhane and Tukey HSD. Failure modes were observed under a stereomicroscope (10 . P<0.05 was considered as the significant level. "nResults: Surface treatments (sandblasting with Cojet and alumina particles ,with or without silane resulted in improved bond strength of resin cement to glass fiber post (Glassix and zirconia ceramic (Cosmopost [p<0/05], but not to the quartz fiber post (Matchpost. In general, higher bond strengths resulted in a to higher percentage of cohesive failures within the cement. "nConclusion: Based on the results of this study, sandblasting with cojet and alumina

  3. Influence of Er,Cr: YSGG laser on bond strength of self-adhesive resin cement

    Directory of Open Access Journals (Sweden)

    Matheus Coelho Bandéca

    2012-08-01

    Full Text Available The purpose of this study was to investigate the bond strength of fiber post previously laser treated root canals. Forty single-rooted bovine teeth were endodontically treated, randomly and equally divided into two main groups according to the type of pretreatment: G1: 2.5% NaOCl (control group; and G2: Er,Cr:YSGG laser. Each group was further subdivided into 2 groups based on the category of adhesive systems/ luting materials used: a: an etch-and-rinse resin cement (Single Bond/RelyX ARC; 3M ESPE, and b: a self-adhesive resin cement (Rely X Unicem; 3M ESPE. Three 1.5 mm thick slabs were obtained per root and the push-out test was performed at a crosshead speed of 0.5 mm/min until post dislodgement occurred. Data were analyzed by ANOVA and post-hoc Tukey's test at a pre-set alpha of 0.05. Analysis of variance showed no statistically significant difference (p > 0.05 among the groups G1a (25.44 ± 2.35 and G1b (23.62 ± 3.48, G2a (11.77 ± 2.67 and G2b (9.93 ± 3.37. Fractures were observed at the interface between the dentin and the resin in all groups. The Er,Cr:YSGG laser irradiation did not influence on the bond strength of the resin cements and the etch-and-rinse resin cement had better results on bond strength than self-adhesive resin cement.

  4. Fracture Resistance of Lithium Disilicate Ceramics Bonded to Enamel or Dentin Using Different Resin Cement Types and Film Thicknesses.

    Science.gov (United States)

    Rojpaibool, Thitithorn; Leevailoj, Chalermpol

    2017-02-01

    To investigate the influence of cement film thickness, cement type, and substrate (enamel or dentin) on ceramic fracture resistance. One hundred extracted human third molars were polished to obtain 50 enamel and 50 dentin specimens. The specimens were cemented to 1-mm-thick lithium disilicate ceramic plates with different cement film thicknesses (100 and 300 μm) using metal strips as spacers. The cements used were etch-and-rinse (RelyX Ultimate) and self-adhesive (RelyX U200) resin cements. Compressive load was applied on the ceramic plates using a universal testing machine, and fracture loads were recorded in Newtons (N). Statistical analysis was performed by multiple regression (p resin cement. Bonding to dentin resulted in lower fracture loads than bonding to enamel. Reduced resin film thickness could reduce lithium disilicate restoration fracture. Etch-and-rinse resin cements are recommended for cementing on either enamel or dentin, compared with self-adhesive resin cement, for improved fracture resistance. © 2015 by the American College of Prosthodontists.

  5. Effect of High-Irradiance Light-Curing on Micromechanical Properties of Resin Cements.

    Science.gov (United States)

    Peutzfeldt, Anne; Lussi, Adrian; Flury, Simon

    2016-01-01

    This study investigated the influence of light-curing at high irradiances on micromechanical properties of resin cements. Three dual-curing resin cements and a light-curing flowable resin composite were light-cured with an LED curing unit in Standard mode (SM), High Power mode (HPM), or Xtra Power mode (XPM). Maximum irradiances were determined using a MARC PS radiometer, and exposure duration was varied to obtain two or three levels of radiant exposure (SM: 13.2 and 27.2 J/cm 2 ; HPM: 15.0 and 30.4 J/cm 2 ; XPM: 9.5, 19.3, and 29.7 J/cm 2 ) ( n = 17). Vickers hardness ( H V ) and indentation modulus ( E IT ) were measured at 15 min and 1 week. Data were analyzed with nonparametric ANOVA, Wilcoxon-Mann-Whitney tests, and Spearman correlation analyses ( α = 0.05). Irradiation protocol, resin-based material, and storage time and all interactions influenced H V and E IT significantly ( p ≤ 0.0001). Statistically significant correlations between radiant exposure and H V or E IT were found, indicating that high-irradiance light-curing has no detrimental effect on the polymerization of resin-based materials ( p ≤ 0.0021). However, one resin cement was sensitive to the combination of irradiance and exposure duration, with high-irradiance light-curing resulting in a 20% drop in micromechanical properties. The results highlight the importance of manufacturers issuing specific recommendations for the light-curing procedure of each resin cement.

  6. Effect of High-Irradiance Light-Curing on Micromechanical Properties of Resin Cements

    Directory of Open Access Journals (Sweden)

    Anne Peutzfeldt

    2016-01-01

    Full Text Available This study investigated the influence of light-curing at high irradiances on micromechanical properties of resin cements. Three dual-curing resin cements and a light-curing flowable resin composite were light-cured with an LED curing unit in Standard mode (SM, High Power mode (HPM, or Xtra Power mode (XPM. Maximum irradiances were determined using a MARC PS radiometer, and exposure duration was varied to obtain two or three levels of radiant exposure (SM: 13.2 and 27.2 J/cm2; HPM: 15.0 and 30.4 J/cm2; XPM: 9.5, 19.3, and 29.7 J/cm2 (n=17. Vickers hardness (HV and indentation modulus (EIT were measured at 15 min and 1 week. Data were analyzed with nonparametric ANOVA, Wilcoxon-Mann-Whitney tests, and Spearman correlation analyses (α=0.05. Irradiation protocol, resin-based material, and storage time and all interactions influenced HV and EIT significantly (p≤0.0001. Statistically significant correlations between radiant exposure and HV or EIT were found, indicating that high-irradiance light-curing has no detrimental effect on the polymerization of resin-based materials (p≤0.0021. However, one resin cement was sensitive to the combination of irradiance and exposure duration, with high-irradiance light-curing resulting in a 20% drop in micromechanical properties. The results highlight the importance of manufacturers issuing specific recommendations for the light-curing procedure of each resin cement.

  7. Effect of exposure time on the polymerization of resin cement through ceramic.

    Science.gov (United States)

    AlShaafi, Maan M; AlQahtani, Mohammed Q; Price, Richard B

    2014-04-01

    This study measured the effects of using three different exposure times to cure one resin cement through two types of ceramic. One light-curing resin cement (Variolink II, Ivoclar Vivadent) was exposed for 20 s, 40 s, or 60 s with a BluePhase G2 light (Ivoclar Vivadent) on the high power setting through 1.0 mm of either ZirPress (ZR) or Empress Esthetic (EST) ceramic (Ivoclar Vivadent). The degree of conversion (DC) of the resin was measured 100 s after light exposure. The Knoop microhardness (KHN) was measured 5 min after light exposure and again after 24 h. The DC and KHN results were analyzed with ANOVA followed by Scheffe's post-hoc multiple comparison tests at α = 0.05. Increasing exposure time had a significant effect on the KHN and DC values for the resins exposed through both ceramics. As exposure times increased, the influence of the ceramic was reduced; however, the microhardness values were greater for the cement exposed through EST ceramic. When the exposure time was increased from 20 s to 40 s, microhardness values for the resin increased by 39.6% through the EST ceramic. When exposed for 60 s, there were no differences between the 100-s DC values or 5-min KHN values using either ceramic (p > 0.05). There was an excellent correlation between the DC at 100 s and the microhardness values measured at 5 min. Resin polymerization was greater through EST than ZR ceramic. At least 40 s to 60 s from the Blue- Phase G2 on high power mode is required to cure this resin cement through 1.0 mm of ceramic.

  8. Bond strength of different resin cement and ceramic shades bonded to dentin.

    Science.gov (United States)

    Passos, Sheila Pestana; Kimpara, Estevão Tomomitsu; Bottino, Marco Antonio; Júnior, Gildo Coelho; Rizkalla, Amin S

    2013-10-01

    To evaluate the microtensile bond strength (MTBS) of ceramic cemented to dentin varying the resin cement and ceramic shades. Two VITA VM7 ceramic shades (Base Dentine 0M1 and Base Dentine 5M3) were used. A spectrophotometer was used to determine the percentage translucency of ceramic (thickness: 2.5 mm). For the MTBS test, 80 molar dentin surfaces were etched and an adhesive was applied. Forty blocks (7.2 x 7.2 x 2.5 mm) of each ceramic shade were produced and the ceramic surface was etched (10% hydrofluoric acid) for 60 s, followed by the application of silane and resin cement (A3 yellow and transparent). The blocks were cemented to dentin using either A3 or transparent cement. Specimens were photoactivated for 20 s or 40 s, stored in distilled water (37°C/24 h), and sectioned. Eight experimental groups were obtained (n = 10). Specimens were tested for MTSB using a universal testing machine. Data were statistically analyzed using ANOVA and Tukey's post-hoc tests (α ceramics were 10.06 (± 0.25)% and 1.34 (± 0.02)%, respectively. The lowest MTBS was observed for the ceramic shade 5M3. For the 0M1 ceramic, the A3 yellow cement that was photocured for 20 s exhibited the lowest MTBS, while the transparent cement that was photocured for 40 s presented the highest MTBS. For the 2.5-mm-thick 5M3 ceramic restorations, the MTBS of ceramic cemented to dentin significantly increased. The dual-curing cement Variolink II photocured for 40 s is not recommended for cementing the Base Dentine 5M3 feldspathic ceramic to dentin.

  9. Cementation of residue ion exchange resins at Rocky Flats

    International Nuclear Information System (INIS)

    Dustin, D.F.; Beckman, T.D.; Madore, C.M.

    1998-01-01

    Ion exchange resins have been used to purify nitric acid solutions of plutonium at Rocky Flats since the 1950s. Spent ion exchange resins were retained for eventual recovery of residual plutonium, typically by incineration followed by the aqueous extraction of plutonium from the resultant ash. The elimination of incineration as a recovery process in the late 1980s and the absence of a suitable alternative process for plutonium recovery from resins led to a situation where spent ion exchange resins were simply placed into temporary storage. This report describes the method that Rocky Flats is currently using to stabilize residue ion exchange resins. The objective of the resin stabilization program is: (1) to ensure their safety during interim storage at the site, and (2) to prepare them for ultimate shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. Included in the discussion is a description of the safety concerns associated with ion exchange resins, alternatives considered for their stabilization, the selection of the preferred treatment method, the means of implementing the preferred option, and the progress to date

  10. Can a soda-lime glass be used to demonstrate how patterns of strength dependence are influenced by pre-cementation and resin-cementation variables?

    LENUS (Irish Health Repository)

    Hooi, Paul

    2013-01-01

    To determine how the variability in biaxial flexure strength of a soda-lime glass analogue for a PLV and DBC material was influenced by precementation operative variables and following resin-cement coating.

  11. Effect of Ultrasonic Versus Manual Cementation on the Fracture Strength of Resin Composite Laminates

    NARCIS (Netherlands)

    Ozcan, M.; Mese, A.

    2009-01-01

    This study evaluated the effect of conventional versus ultrasonic cementation techniques on the fracture strength of resin composite laminates. In addition, the failure modes were assessed. Window-type preparations I mm above the cemento-enamel junction were made on intact human maxillary central

  12. Microleakage of inlay ceramic systems luted with self-adhesive resin cements.

    Science.gov (United States)

    Uludag, Bulent; Yucedag, Elif; Sahin, Volkan

    2014-12-01

    To evaluate the microleakage of Cerec 3, IPS e.max Press, and Turkom-Cera inlays cemented with three self-adhesive resin cements. Ninety standardized class III MOD cavities were prepared in intact human mandibular third molars. Ceramic inlays were fabricated according to the manufacturer's instructions and were cemented using three self-adhesive resin cements (RelyX Unicem, Smartcem 2, and SpeedCEM). The specimens were stored in distilled water at 37°C for 24 h and subjected to 1000 thermocycles in water between 5°C and 55°C with a dwell time of 30 s. Subsequently, the specimens were subjected to 100,000 cycles of mechanical loading of 50 N at 1.6 Hz in 37°C water. The specimens were immersed in 0.5% basic fuchsine for 24 h and were sectioned using a low-speed diamond blade. The percentage of dye leakage at the tooth/restoration interface was measured and compared by Kruskal-Wallis tests with Bonferonni correction and Mann-Whitney U-tests at a significance level of pinlays (p<0.05). Regardless of the ceramic system and self-adhesive resin cement used, dentin margins were associated with higher microleakage than enamel margins.

  13. The effect of transmitted Er:YAG laser energy through a dental ceramic on different types of resin cements.

    Science.gov (United States)

    Tak, Onjen; Sari, Tugrul; Arslan Malkoç, Meral; Altintas, Subutayhan; Usumez, Aslihan; Gutknecht, Norbert

    2015-07-06

    The laser debonding procedure of adhesively luted all-ceramic restorations is based on the ablation of resin cement due to the transmitted laser energy through the ceramic. The purpose of this study was to determine the effect of Er:YAG laser irradiation transmitted through a dental ceramic on five different resin cements. Five different resin cements were evaluated in this study: G-Cem LinkAce, Multilink Automix, Variolink II, Panavia F, and Rely X Unicem U100. Disc shaped resin cement specimens (n = 10) were fabricated for each group. A ceramic disc was placed between the resin cement discs and the tip of the handpiece of Er:YAG laser device. The resin cement discs were irradiated through the ceramic and the volume of the resin cement discs were measured using a micro-CT system before and after Er:YAG laser irradiation. The volume loss of the resin cement discs was calculated and analyzed with one-way ANOVA and Tukey-HSD tests. The highest volume loss was determined in G-Cem (1.1 ± 0.6 mm 3 ) and Multilink (1.3 ± 0.1 mm 3 ) (P < 0.05) groups, and the lowest volume loss was determined in Rely X (0.3 ± 0.07 mm 3 ), Variolink (0.4 ± 0.2 mm 3 ), and Panavia (0.6 ± 0.2 mm 3 ) groups (P < 0.05). All resin cements were affected by the laser irradiation resulting in the volume loss of the cement; however, there are significant differences among different resin cements. All the resin cements tested in this study were effected by the Er:YAG laser irradiation and there were significant differences among the resin cements with regard to ablation volume. Lasers Surg. Med. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  14. Effects of Different Surface Treatment Methods and MDP Monomer on Resin Cementation of Zirconia Ceramics an In Vitro Study.

    Science.gov (United States)

    Tanış, Merve Çakırbay; Akçaboy, Cihan

    2015-01-01

    Resin cements are generally preferred for cementation of zirconia ceramics. Resin bonding of zirconia ceramics cannot be done with the same methods of traditional ceramics because zirconia is a silica-free material. In recent years, many methods have been reported in the literature to provide the resin bonding of zirconia ceramics. The purpose of this in vitro study is to evaluate effects of different surface treatments and 10-metacryloxydecyl dihydrogen phosphate (MDP) monomer on shear bond strength between zirconia and resin cement. 120 zirconia specimens were treated as follows: Group I: sandblasting, group II: sandblasting + tribochemical silica coating + silane, group III: sandblasting + Nd:YAG (neodymium: yttrium-aluminum-garnet) laser. One specimen from each group was evaluated under scanning electron microscope (SEM). Specimens in each group were bonded either with conventional resin cement Variolink II or with a MDP containing resin cement Panavia F2.0. Subgroups of bonded specimens were stored in distilled water (37°C) for 24 hours or 14 days. Following water storage shear bond strength test was performed at a crosshead speed of 1 mm/min in a universal test machine. Then statistical analyses were performed. Highest shear bond strength values were observed in group II. No significant difference between group I and III was found when Panavia F2.0 resin cement was used. When Variolink II resin cement was used group III showed significantly higher bond strength than group I. In group I, Panavia F2.0 resin cement showed statistically higher shear bond strength than Variolink II resin cement. In group II no significant difference was found between resin cements. No significant difference was found between specimens stored in 37°C distilled water for 24 hours and 14 days. In group I surface irregularities with sharp edges and grooves were observed. In group II less roughened surface was observed with silica particles. In group III surface microcracks

  15. Additional chemical polymerization of dual resin cements: reality or a goal to be achieved?

    Directory of Open Access Journals (Sweden)

    Luzia Sakaguti UMETSUBO

    Full Text Available Abstract Introduction This study serves as a warning to dentists and researchers that dual-cured resin cements may not polymerize completely under some prosthetic crowns. Objective The aim of this study was to analyse the polymerization degree of dual-cured resin cements under prosthetic barrier, by microhardness test. Material and method Three cements (Bistite II, RelyX ARC and Variolink II were light-cured through different barriers, placed between the cement and the light source: G1: without barrier; G2: composite resin (Cesead; G3: Inceram alumina; G4: IPS Empress; G5: Inceram zirconia; G6: tooth fragment. Photopolymerization was carried out using a halogen light unit (650 mW/cm2; microhardness was evaluated using the Microhardness Tester FM 700, under a load of 50gf with a dwell time of 15s, at two evaluation times (30min and 24h. Result The results were submitted to ANOVA and Tukey tests (5%. Both Inceram alumina and Inceram zirconia ceramic barriers hindered polymerization. Bistite, followed by RelyX and Variolink, exhibited the highest microhardness values (p<0.05. As the highest values were obtained without a barrier, it was determined that the barrier, followed by the tooth, influenced microhardness. Both Empress and Cesead had the smallest microhardness values but with no statistically significant difference between them. Conclusion The barrier negatively affected the microhardness of dual-cured resin cements; evaluation time did not affect microhardness values for most of the conditions tested. There is a limited effect of the chemical activator on the polymerization of some dual-cured cements, and their performance is product specific.

  16. The effect of time between handling and photoactivation on self-adhesive resin cement properties.

    Science.gov (United States)

    da Silva Fonseca, Andrea Soares Quirino; Mizrahi, Jamil; Menezes, Livia Rodrigues; Valente, Lisia Lorea; de Moraes, Rafael Ratto; Schneider, Luis Felipe

    2014-06-01

    To evaluate the degree of conversion, absorption, and solubility in water of self-adhesive resin cements subjected to different time intervals between material preparation and the photoactivation procedure. Two dual self-adhesive resin cements were tested: RelyX Unicem and SmartCem2. The degree of conversion as a function of time was evaluated by Fourier-transformed infrared spectroscopy using the attenuated total reflectance technique. Three time intervals between handling and photoactivation were applied: Group 1 = immediately; Group 2 = a 1-minute interval; Group 3 = a 4-minute interval. All specimens were irradiated with a light-emitting diode source for 40 seconds. Thirty discs of each cement (1 mm thick × 6 mm diameter, n = 10) were prepared for the absorption and solubility tests. These specimens were stored in distilled water at 37°C for 90 days. The results were subjected to ANOVA with two factors (material and activation time intervals) and Tukey's test (95% significance). The 4-minute interval significantly reduced the degree of conversion of SmartCem2 (30.6% ± 8.3%). No other significant changes were observed for the degree of conversion; however, the time intervals before photoactivation interfered significantly in the water absorption of the RelyX Unicem specimens but not the SmartCem2 specimens. The time intervals did not affect the solubility of either cement. In all cases, SmartCem2 had higher solubility than RelyX Unicem. The time interval between handling and photoactivation significantly influenced the degree of conversion and water sorption of the resin-based cements. In general, one can say that the self-adhesive resin cements should be photoactivated as soon as possible after the material handling process. © 2014 by the American College of Prosthodontists.

  17. In vitro wear gap formation of self-adhesive resin cements: a CLSM evaluation.

    Science.gov (United States)

    Belli, Renan; Pelka, Matthias; Petschelt, Anselm; Lohbauer, Ulrich

    2009-12-01

    To evaluate the depth of wear gaps of new self-adhesive cements after toothbrush abrasion and ACTA wear test. Luting spaces (325+/-25 microm width, 2mm depth) were produced in Empress 2 ceramic blocks with a diamond saw to obtain flat substrate segments for toothbrush abrasion (n=24) and ACTA wear (n=27). After etching and silanization, the slits were filled with 8 self-adhesive cements, 2 conventional resin cements and 1 flowable composite, stored for 2 weeks in distilled water at 37 degrees C and planished to the cement level. Toothbrush abrasion was carried out in a toothbrush simulator (Willytec, Germany) for 20,000 cycles (load 1N) using an abrasive slurry based on a commercial toothpaste (Elmex, Gaba, Germany, RDA=77). The ACTA wear experiment was performed following the ACTA protocol in millet seed slurry for 400,000 cycles (Willytec). The gap replicas were measured for vertical wear loss under a confocal laser scanning microscope (CLSM). The data were analyzed using one-way ANOVA and a mod-LSD test at pGrandio Flow. Grandio Flow and AllCem showed to be the most resistant to the ACTA wear test, while SpeedCem the least resistant. No correlation was found between the two wear test experiments. Self-adhesive cements have good wear resistance to toothbrush abrasion but most of them wear more rapidly under higher loads in the ACTA test than conventional resin cements and flowable composites.

  18. Shear bond strength of four resin cements used to lute ceramic core material to human dentin.

    Science.gov (United States)

    Altintas, Subutayhan; Eldeniz, Ayçe Unverdi; Usumez, Aslihan

    2008-12-01

    This study evaluated the effect of four resin cements on the shear bond strength of a ceramic core material to dentin. One hundred twenty molar teeth were embedded in a self-curing acrylic resin. The occlusal third of the crowns were sectioned under water cooling. All specimens were randomly divided into four groups of 30 teeth each according to the resin cement used. One hundred twenty cylindrical-shaped, 2.7-mm wide, 3-mm high ceramic core materials were heat-pressed. The core cylinders were then luted with one of the four resin systems to dentin (Super-Bond C&B, Chemiace II, Variolink II, and Panavia F). Half of the specimens (n = 15) were tested after 24 hours; the other half (n = 15) were stored in distilled water at 37 degrees C for 1 day and then thermocycled 1000 times between 5 degrees C and 55 degrees C prior to testing. Shear bond strength of each specimen was measured using a universal testing machine at a crosshead speed of 1 mm/min. The bond strength values were calculated in MPa, and the results were statistically analyzed using a two-way analysis of variance (ANOVA) and Tukey HSD tests. The shear bond strength varied significantly depending on the resin cement used (p 0.05). Significant interactions were present between resin cement and thermocycling (p 0.05). The increase in the shear bond strength values in the Panavia F (4.5 +/- 0.7 MPa) and Variolink II (5.5 +/- 2.1 MPa) groups after thermocycling was also not statistically significant (p > 0.05). Variolink II and Panavia F systems showed higher shear bond strength values than Chemiace II and Super-Bond C&B. They can be recommended for luting ceramic cores to dentin surfaces.

  19. Comparison the Effects of Different Root Canal Irrigants on the Retention of Quarts Fiber Posts Cemented by Resin Cement

    Directory of Open Access Journals (Sweden)

    Mehdi Shirinzad

    2012-01-01

    Full Text Available Introduction: Root canal irrigants could change the structure of root dentin and affect the posts retention the purpose of this study was to compare the effects of three different endodontic irrigants on the retention of quarts fiber posts cemented by different resin cements. Materials & Methods: In this in-vitro study, 10 mm long post spaces were prepared in root canals of 120 premolars after endodontic therapy and cutting the crowns at the cementoenamel junction. The teeth were randomly divided into four equal groups based on the irrigants as follows: distilled water, 2% chlorhexidine, 0.25% iodine and 1% NaOCl. Quarts fiber posts were cemented by Panavia F2. Samples were stored at 370c and humidity of 100% for one week. After thermocycling, the retention of fiber posts were measured by tensile test and modes of failure were reported. Data were analyzed by One-Way ANOVA, Tukey and Fisher's exact tests.Results: The mean and standard deviation of the posts retention were 367.08±63.07, 377.59±72.02, 363.11±68.53 and 342.89±74.94 for distilled water, chlorhexidine 2%, iodine 0.25% and sodium hypochlorite, respectively. One-way ANOVA showed that there was a significant difference among the groups (P<0.001. The results of Tukey test showed that posts retention was significantly higher after rinsing by chlorhexidine (P<0.01Conclusion: According to the results of this study, chlorhexidine rinse had a favorable effect on retention of posts cemented by resin cement.

  20. Effect of Different Thicknesses of Pressable Ceramic Veneers on Polymerization of Light-cured and Dual-cured Resin Cements

    Science.gov (United States)

    Cho, Seok-Hwan; Lopez, Arnaldo; Berzins, David W.; Prasad, Soni; Ahn, Kwang Woo

    2015-01-01

    Aim This study evaluated the effects of ceramic veneer thicknesses on the polymerization of two different resin cements. Materials and Methods A total of 80 ceramic veneer discs were fabricated by using a pressable ceramic material (e.max Press; Ivoclar Vivadent) from a Low Translucency (LT) ingot (A1 shade). These discs were divided into light-cured (LC; NX3 Nexus LC; Kerr) and dual-cured (DC; NX3 Nexus DC; Kerr) and each group was further divided into 4 subgroups, based on ceramic disc thickness (0.3 mm, 0.6 mm, 0.9 mm, and 1.2 mm). The values of Vickers microhardness (MH) and degree of conversion (DOC) were obtained for each specimen after a 24-hour storage period. Association between ceramic thickness, resin cement type, and light intensity readings (mW/cm2) with respect to microhardness and degree of conversion was statistically evaluated by using ANOVA. Results For the DOC values, there was no significant difference observed among the LC resin cement subgroups, except in the 1.2 mm subgroup; only the DOC value (14.0 ± 7.4%) of 1.2 mm DC resin cement had significantly difference from that value (28.9 ± 7.5%) of 1.2 mm LC resin cement (Presin cement groups, there was statistically significant difference (Presin cement groups demonstrated higher values than DC resin cement groups. On the other hands, among the DC resin cement subgroups, the MH values of 1.2 mm DC subgroup was significantly lower than the 0.3 mm and 0.6 mm subgroups (P.05). Conclusion The degree of conversion and hardness of the resin cement was unaffected with veneering thicknesses between 0.3 and 0.9 mm. However, the DC resin cement group resulted in a significantly lower DOC and MH values for the 1.2 mm subgroup. Clinical Significance While clinically adequate polymerization of LC resin cement can be achieved with a maximum 1.2 mm of porcelain veneer restoration, the increase of curing time or light intensity is clinically needed for DC resin cements at the thickness of more than 0.9 mm

  1. Bond strength of resin cement to dentin and to surface-treated posts of titanium alloy, glass fiber, and zirconia

    DEFF Research Database (Denmark)

    Sahafi, Alireza; Peutzfeldt, Anne; Asmussen, Erik

    2003-01-01

    of posts (n = 9 to 14) and human dentin (n = 10) were obtained by grinding. The posts received one of three surface treatments: 1. roughening (sandblasting, hydrofluoric acid etching), 2. application of primer (Alloy Primer, Metalprimer II, silane), or 3. roughening followed by application of primer...... with and without silane treatment significantly decreased the bond strength of Panavia F to the post. CONCLUSION: The bond strength of resin cements to the posts was affected by the material of the post, the surface treatment of the post, and by the type of resin cement. The bond strength of resin cement to dentin...

  2. Factors affecting on bond strength of glass fiber post cemented with different resin cements to root canal

    Science.gov (United States)

    Clavijo, V. R. G.; Bandéca, M. C.; Calixto, L. R.; Nadalin, M. R.; Saade, E. G.; Oliveira-Junior, O. B.; Andrade, M. F.

    2009-09-01

    Luting materials provides the retention of endodontic post. However, the failures of endodontic posts predominantly occurred are the losses of retention. Thus, the alternating use to remove the smear layer, open the dentine tubules, and/or etch the inter-tubular dentine can be provided by EDTA. This study was performed to evaluate effect of EDTA on bond strength of glass fiber post cemented with different resin cements to root canal. Fifty bovine incisors were selected and the crowns were removed to obtain a remaining 14-mm-height root. The roots were randomly distributed into five groups: GI: RelyX™ ARC/LED; GII: RelyX™ U100/LED; GIII EDTA/RelyX™ U100/LED; GIV: Multilink™; and GV: EDTA/Multlink™. After endodontic treatment, the post space was prepared with the drills designated for the quartz-coated-carbon-fiber post Aestheti-Post®. Before application of resin cements, root canals were irrigated with 17% EDTA (GIII and GV) during 1 min, rinsed with distilled water and dried using paper points. The light-cured materials were light-activated with UltraLume LED 5 (Ultradent, South Jordan, Utah) with power density of 1315 mW/cm2. Specimens were perpendicularly sectioned into approximately 1 mm thick sections and the stubs were performed on Universal Testing Machine. The analysis of variance (ANOVA) and Tukey’s post-hoc tests showed significant statistical different between RelyX™ ARC (GI) and RelyX™ U100 independent of the pre-treatment (GII to GIII) ( P 0.05) to all resin cements between the Cervical to Apical regions (GI to GV). The use of 17% EDTA showed no difference significant between the resin cements evaluated (GII to GIII; GIV to GV). Within the limitations of the current study, it can be concluded that the use of EDTA did not provide efficiency on bond strength. The RelyX™ ARC showed higher bond strength values than RelyX™ U100.

  3. Polymerization of dual cure resin cements applied for luting tooth colored fiber posts

    Directory of Open Access Journals (Sweden)

    Ghavam M.

    2007-05-01

    Full Text Available Background and Aim: Insufficient polymerization of resin cements is of considerable clinical importance, because of mechanical deficiencies and biological side effects of uncured resin. Dual cure resin cements are getting popular in luting tooth colored posts and although their curing is claimed to proceed chemically, polymerization efficiency in deep areas of canal is uncertain. The aim of this study was to evaluate degree of polymerization of dual-cure resin cements used for luting translucent and opaque fiber posts in different distances from the light tip. Materials and Methods: In this experimental in vitro study, degree of conversion of two dual cured resin cements, Rely X ARC (3M, ESPE and Nexus 2 (Kerr, USA were measured when used with DT-Light and DT-White posts (RTD, France. The light curing unit used was Optilux 501, with output of 650-700 mw/cm2 with emitting time of 60 seconds. Degree of conversion was measured in three different depths (4, 6, 8 mm by FTIR. The data were analyzed using ANOVA and Post hoc tests. P0.05. Nexus used with DT-Light had lower DC% in 8 mm depth (P<0.05. Nexus used with DT-White showed lower DC% in 8 mm depth compared to 4 mm depth. The control groups of both cements showed significant increased DC% in 4 mm depth compared to 6 and 8 mm depths (P<0.05. DT-White caused decreased DC% in both cements in 4 mm. DT-Light caused increased DC% of Rely X in 6 mm depth compared to DT-White and control. DT-Light increased DC% of Nexus in 6 and 8 mm depths, compared to DT-White and control groups. Conclusion: Based on the results of this study, application of translucent fiber posts has a significant effect on degree of polymerization in dual-cure resin cements, compared to opaque types. Their better light transmission to deep areas due to the effect of optical fibers, can lead to better results.

  4. Hardness of resin cement cured under different thickness of lithium disilicate-based ceramic.

    Science.gov (United States)

    Zhang, Xuan; Wang, Fu

    2011-11-01

    The lithium disilicate-based ceramic is a newly developed all-ceramic material, which is lithium disilicate-based and could be used for fabricating almost all kinds of restorations. The extent of light attenuation by ceramic material was material-dependent. Ceramic materials with different crystal composition or crystalline content would exhibit distinct light-absorbing characteristics. The aim of this study was to analyze the influence of ceramic thickness and light-curing time on the polymerization of a dual-curing resin luting material with a lithium disilicate-based ceramic. A lithium disilicate-based ceramic was used in this study. The light attenuation caused by ceramic with different thickness was determined using a spectral radiometer. The commercial dual-cured resin cement was light-cured directly or through ceramic discs with different thickness (1, 2 and 3 mm, respectively) for different times (10, 20, 30, 40, 50 and 60 seconds, respectively). The polymerization efficiency of resin cement was expressed in terms as Vickers hardness (VHN) measured after 24 hours storage. Two-way analysis of variance (ANOVA) and Tukey's HSD tests were used to determine differences. Intensity of polymerizing light transmitted through ceramic discs was reduced from 584 mW/cm(2) to about 216 mW/cm(2)2, 80 mW/cm(2) and 52 mW/cm(2) at thicknesses of 1 mm, 2 mm and 3 mm, respectively. Resin cement specimens self-cured alone showed significantly lower hardness values. When resin cement was light-cured through ceramic discs with a thickness of 1 mm, 2 mm and 3 mm, no further increasing in hardness values was observed when light-curing time was more than 30 seconds, 40 seconds and 60 seconds, respectively. Within the limitation of the present study, ceramic thickness and light-curing time had remarkable influence on the polymerization of dual-cured resin cement. When resin cement is light-cured beneath a lithium disilicate ceramic with different thickness, prolonging light

  5. Influence of Curing Light Attenuation Caused by Aesthetic Indirect Restorative Materials on Resin Cement Polymerization

    Science.gov (United States)

    Pick, Bárbara; Gonzaga, Carla Castiglia; Junior, Washington Steagall; Kawano, Yoshio; Braga, Roberto Ruggiero; Cardoso, Paulo Eduardo Capel

    2010-01-01

    Objectives: To verify the effect of interposing different indirect restorative materials on degree of conversion (DC), hardness, and flexural strength of a dual-cure resin cement. Methods: Discs (2 mm-thick, n=5) of four indirect restorative materials were manufactured: a layered glass-ceramic (GC); a heat-pressed lithium disilicate-based glass-ceramic veneered with the layered glass-ceramic (LD); a micro-hybrid (MH); and a micro-filled (MF) indirect composite resin. The light transmittance of these materials was determined using a double-beam spectrophotometer with an integrating sphere. Bar-shaped specimens of a dual-cure resin cement (Nexus 2/SDS Kerr), with (dual-cure mode) and without the catalyst paste (light-cure mode), were photoactivated through the discs using either a quartz-tungsten-halogen (QTH) or a light-emitting diode (LED) unit. As a control, specimens were photoactivated without the interposed discs. Specimens were stored at 37ºC for 24h before being submitted to FT-Raman spectrometry (n=3), Knoop microhardness (n=6) and three-point bending (n=6) tests. Data were analyzed by ANOVA/Tukey’s test (α=0.05). Results: MH presented the highest transmittance. The DC was lower in light-cure mode than in dual-cure mode. All restorative materials reduced the cement microhardness in light-cure mode. GC and LD with QTH and GC with LED decreased the strength of the cement for both activation modes compared to the controls. Curing units did not affect DC or microhardness, except when the dual-cure cement was photoactivated through LD (LED>QTH). Flexural strength was higher with QTH compared to LED. Conclusions: Differences in transmittance among the restorative materials significantly influenced cement DC and flexural strength, regardless of the activation mode, as well as the microhardness of the resin cement tested in light-cure mode. Microhardness was not impaired by the interposed materials when the resin cement was used in dual-cure mode. PMID:20613921

  6. Fracture frequency and longevity of fractured resin composite, polyacid-modified resin composite, and resin-modified glass ionomer cement class IV restorations: an up to 14 years of follow-up

    DEFF Research Database (Denmark)

    van Dijken, Jan W V; Pallesen, Ulla

    2010-01-01

    The aim of this study was to evaluate the fracture frequency and longevity of fractured class IV resin composite (RC), polyacid-modified resin composite (compomer; PMRC), and resin-modified glass ionomer cement (RMGIC) restorations in a longitudinal long-term follow-up. Eighty-five class IV RC (43...

  7. Degree of conversion and bond strength of resin-cements to feldspathic ceramic using different curing modes.

    Science.gov (United States)

    Novais, Veridiana Resende; Raposo, Luís Henrique Araújo; Miranda, Rafael Resende de; Lopes, Camila de Carvalho Almança; Simamoto, Paulo Cézar; Soares, Carlos José

    2017-01-01

    The aim of this study was to assess the performance of resin cements when different curing modes are used, by evaluating the degree of conversion and bond strength to a ceramic substrate. Three resin cements were evaluated, two dual-cured (Variolink II and RelyX ARC) and one light-cured (Variolink Veneer). The dual-cured resin cements were tested by using the dual activation mode (base and catalyst) and light-activation mode (base paste only). For degree of conversion (DC) (n=5), a 1.0 mm thick feldspathic ceramic disc was placed over the resin cement specimens and the set was light activated with a QTH unit. After 24 h storage, the DC was measured with Fourier transform infrared spectroscopy (FTIR). For microshear bond strength testing, five feldspathic ceramic discs were submitted to surface treatment, and three cylindrical resin cement specimens were bonded to each ceramic surface according to the experimental groups. After 24 h, microshear bond testing was performed at 0.5 mm/min crosshead speed until the failure. Data were submitted to one-way ANOVA followed by Tukey test (presin cements cured by using the dual activation mode. The Variolink II group presented higher DC and bond strength values when using light-activation only when compared with the Variolink Veneer group. The base paste of dual-cured resin cements in light-activation mode can be used for bonding translucent ceramic restorations of up to or less than 1.0 mm thick.

  8. Different Strategies to Bond Bis-GMA-based Resin Cement to Zirconia.

    Science.gov (United States)

    Lopes, Guilherme Carpena; Spohr, Ana Maria; De Souza, Grace M

    To evaluate the effect of different bonding strategies on short- and long-term bis-GMA-based resin cement bond strengths to zirconia. One hundred twenty samples of fully-sintered zirconia (Prettau Zirconia) were sandblasted and randomly distributed into 5 groups (n = 24): UA: Scotchbond Universal Adhesive; SZP: Signum Zirconia Bond I + II; ZPP: Z-Prime Plus; EXP: MZ experimental primer; CO: no primer application (control). After performing these surface treatments, translucent tubes (0.8 mm diameter and 1.0 mm height) were placed on the zirconia specimens, and bis-GMA-based cement (Duo-Link) was injected into them and light cured. Specimens were tested for microshear bond strength either 24 h or 6 months (m) after water storage (37°C) and surfaces were characterized by SEM and EDX. Two-way ANOVA and Tukey's post-hoc test (p zirconia surface. In these groups, EDX demonstrated the presence of phosphorus. Group ZPP resulted in a nonhomogeneous layer, exposing the zirconia substrate underneath. EXP application resulted in an undetectable layer. Water storage did not affect resin cement bond strengths to zirconia irrespective of the surface treatment. Bis-GMA-based resin cement bond strengths to zirconia are affected by specific bonding strategies.

  9. Effect of fluoride-containing desensitizing agents on the bond strength of resin-based cements to dentin

    Directory of Open Access Journals (Sweden)

    Duygu Saraç

    2009-10-01

    Full Text Available OBJECTIVE: The objective of this study was to evaluate the effect of desensitizing agents containing different amounts of fluoride on the shear bond strength of a dual polymerized resin cement and a resin-modified glass ionomer cement (RMGIC to dentin. MATERIAL AND METHODS: One hundred human molars were mounted in acrylic resin blocks and prepared until the dentin surface was exposed. The specimens were treated with one of four desensitizing agents: Bifluorid 12, Fluoridin, Thermoline and PrepEze. The remaining 20 specimens served as untreated controls. All groups were further divided into 2 subgroups in which a dual polymerized resin cement (Bifix QM or a resin-modified glass ionomer cement (AVANTO was used. The shear bond strength (MPa was measured using a universal testing machine at a 0.5 mm/min crosshead speed. The data were analyzed statistically with a 2-way ANOVA, Tukey HSD test and regression analysis (α=0.05. The effect of the desensitizing agents on the dentin surface was examined by scanning electron microscopy. RESULTS: The fluoride-containing desensitizing agents affected the bond strength of the resin-based cements to dentin (p<0.001. PrepEze showed the highest bond strength values in all groups (p<0.001. CONCLUSION: Regression analysis showed a reverse relation between bond strength values of resin cements to dentin and the amount of fluoride in the desensitizing agent (p<0.05.

  10. The bond of different post materials to a resin composite cement and a resin composite core material.

    Science.gov (United States)

    Stewardson, D; Shortall, A; Marquis, P

    2012-01-01

    To investigate the bond of endodontic post materials, with and without grit blasting, to a resin composite cement and a core material using push-out bond strength tests. Fiber-reinforced composite (FRC) posts containing carbon (C) or glass (A) fiber and a steel (S) post were cemented into cylinders of polymerized restorative composite without surface treatment (as controls) and after grit blasting for 8, 16, and 32 seconds. Additional steel post samples were sputter-coated with gold before cementation to prevent chemical interaction with the cement. Cylindrical composite cores were bonded to other samples. After sectioning into discs, bond strengths were determined using push-out testing. Profilometry and electron microscopy were used to assess the effect of grit blasting on surface topography. Mean (standard deviation) bond strength values (MPa) for untreated posts to resin cement were 8.41 (2.80) for C, 9.61(1.88) for A, and 19.90 (3.61) for S. Prolonged grit blasting increased bond strength for FRC posts but produced only a minimal increase for S. After 32 seconds, mean values were 20.65 (4.91) for C, 20.41 (2.93) for A, and 22.97 (2.87) for S. Gold-coated steel samples produced the lowest bond strength value, 7.84 (1.40). Mean bond strengths for untreated posts bonded to composite cores were 6.19 (0.95) for C, 13.22 (1.61) for A, and 8.82 (1.18) for S, and after 32 seconds of grit blasting the values were 17.30 (2.02) for C, 26.47 (3.09) for A, and 20.61 (2.67) for S. FRC materials recorded higher roughness values before and after grit blasting than S. With prolonged grit blasting, roughness increased for A and C, but not for S. There was no evidence of significant bonding to untreated FRC posts, but significant bonding occurred between untreated steel posts and the resin cement. Increases in the roughness of FRC samples were material dependent and roughening significantly increased bond strength values (ptested FRC posts is required for effective bonding.

  11. Effect of different laser surface treatment on microshear bond strength between zirconia ceramic and resin cement.

    Science.gov (United States)

    Akhavan Zanjani, Vagharaldin; Ahmadi, Hadi; Nateghifard, Afshin; Ghasemi, Amir; Torabzadeh, Hassan; Abdoh Tabrizi, Maryam; Alikhani, Farnaz; Razi, Reza; Nateghifard, Ardalan

    2015-11-01

    The purpose of this study was to evaluate the effect of sandblasting, carbon dioxide (CO₂), and erbium,chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers on the microshear bond strength of zirconia to resin cement. Sixty-one sintered yttria stabilized tetragonal zirconia blocks (10 × 5 × 2 mm) were prepared and divided into four experimental groups (n = 15); one sample was retained as a control. The samples were treated by aluminium oxide air abrasion, CO₂4W, Er,Cr:YSGG 3W, and Er,Cr:YSGG 2W, respectively. One sample from each group and the control sample were analyzed by scanning electron microscope. Panavia F2.0 resin microcylinders were prepared and placed on treated surfaces, light cured, and incubated for 48 h. Microshear bond strength testing was done by a microtensile tester machine, and the type of bond failures were determined by stereomicroscope. Data were analyzed by one-way anova and Tukey's test at a significance level of P ceramic surfaces to enhance the bonding strength of resin cement to zirconia. CO₂laser at 4W and Er,Cr:YSGG laser at only 3-W output power can be regarded as surface treatment options for roughening the zirconia surface to establish better bond strength with resin cements. © 2014 Wiley Publishing Asia Pty Ltd.

  12. Bond strength of resin cements to noble and base metal alloys with different surface treatments.

    Directory of Open Access Journals (Sweden)

    Farkhondeh Raeisosadat

    2014-10-01

    Full Text Available The bond strength of resin cements to metal alloys depends on the type of the metal, conditioning methods and the adhesive resins used. The purpose of this study was to evaluate the bond strength of resin cements to base and noble metal alloys after sand blasting or application of silano-pen.Cylinders of light cured Z 250 composite were cemented to "Degubond 4" (Au Pd and "Verabond" (Ni Cr alloys by either RelyX Unicem or Panavia F2, after sandblasting or treating the alloys with Silano-Pen. The shear bond strengths were evaluated. Data were analyzed by three-way ANOVA and t tests at a significance level of P<0.05.When the alloys were treated by Silano-Pen, RelyX Unicem showed a higher bond strength for Degubond 4 (P=0.021 and Verabond (P< 0.001. No significant difference was observed in the bond strength of Panavia F2 to the alloys after either of surface treatments, Degubond 4 (P=0.291 and Verabond (P=0.899. Panavia F2 showed a higher bond strength to sandblasted Verabond compared to RelyX Unicem (P=0.003. The bond strength of RelyX Unicem was significantly higher to Silano-Pen treated Verabond (P=0.011. The bond strength of the cements to sandblasted Degubond 4 showed no significant difference (P=0.59. RelyX Unicem had a higher bond strength to Silano-Pen treated Degubond 4 (P=0.035.The bond strength of resin cements to Verabond alloy was significantly higher than Degubond 4. RelyX Unicem had a higher bond strength to Silano-Pen treated alloys. Surface treatments of the alloys did not affect the bond strength of Panavia F2.

  13. Curing efficiency of dual-cure resin cement under zirconia with two different light curing units.

    Science.gov (United States)

    Gultekin, Pınar; Pak Tunc, Elif; Ongul, Deger; Turp, Volkan; Bultan, Ozgur; Karataslı, Burcin

    2015-01-01

    Adequate polymerization is a crucial factor in obtaining optimal physical properties and a satisfying clinical performance from composite resin materials. The aim of this study was to evaluate the polymerization efficiency of dual-cure resin cement cured with two different light curing units under zirconia structures having differing thicknesses. 4 zirconia discs framework in 4 mm diameter and in 0.5 mm, 1 mm and 1.5 mm thickness were prepared using computer-aided design system. One of the 0.5 mm-thick substructures was left as mono-layered whereas others were layered with feldspathic porcelain of same thickness and ceramic samples with 4 different thicknesses (0.5, 1, 1.5 and 2.0 mm) were prepared. For each group (n=12) resin cement was light cured in polytetrafluoroethylene molds using Light Emitting Diode (LED) or Quartz-Tungsten Halogen (QHT) light curing units under each of 4 zirconia based discs (n=96). The values of depth of cure (in mm) and the Vickers Hardness Number values (VHN) were evaluated for each specimen. The use of LED curing unit produced a greater depth of cure compared to QTH under ceramic discs with 0.5 and 1 mm thickness (punit produced significantly greater VHN values compared to the QTH unit (pLight curing may not result in adequate resin cement polymerization under thick zirconia structures. LED light sources should be preferred over QTH for curing dual-cure resin cements, especially for those under thicker zirconia restorations.

  14. CURING EFFICIENCY OF DUAL-CURE RESIN CEMENT UNDER ZIRCONIA WITH TWO DIFFERENT LIGHT CURING UNITS

    Directory of Open Access Journals (Sweden)

    Pınar GÜLTEKİN

    2015-04-01

    Full Text Available Purpose: Adequate polymerization is a crucial factor in obtaining optimal physical properties and a satisfying clinical performance from composite resin materials. The aim of this study was to evaluate the polymerization efficiency of dual-cure resin cement cured with two different light curing units under zirconia structures having differing thicknesses. Materials and Methods: 4 zirconia discs framework in 4 mm diameter and in 0.5 mm, 1 mm and 1.5 mm thickness were prepared using computer-aided design system. One of the 0.5 mm-thick substructures was left as mono-layered whereas others were layered with feldspathic porcelain of same thickness and ceramic samples with 4 different thicknesses (0.5, 1, 1.5 and 2.0 mm were prepared. For each group (n=12 resin cement was light cured in polytetrafluoroethylene molds using Light Emitting Diode (LED or Quartz-Tungsten Halogen (QHT light curing units under each of 4 zirconia based discs (n=96. The values of depth of cure (in mm and the Vickers Hardness Number values (VHN were evaluated for each specimen. Results: The use of LED curing unit produced a greater depth of cure compared to QTH under ceramic discs with 0.5 and 1 mm thickness (p<0.05.At 100μm and 300 μm depth, the LED unit produced significantly greater VHN values compared to the QTH unit (p<0.05. At 500 μm depth, the difference between the VHN values of LED and QTH groups were not statistically significant. Conclusion: Light curing may not result in adequate resin cement polymerization under thick zirconia structures. LED light sources should be preferred over QTH for curing dual-cure resin cements, especially for those under thicker zirconia restorations.

  15. Shear bond strength evaluation of resin composite to resin-modified glass-ionomer cement using three different resin adhesives vs. glass-ionomer based adhesive

    Directory of Open Access Journals (Sweden)

    Mostafa Sadeghi

    2015-12-01

    Full Text Available Background: The clinical success of sandwich technique depends on the strength of resin-modified glass ionomer cement (RMGIC bonding to both dentin and resin composite. Therefore, the shear bond strength (SBS of resin composite bonded to RMGIC utilizing different resin adhesives versus a GIC-based adhesive was compared. Materials and methods: In this in vitro study, 84 holes (5×2 mm were prepared in acrylic blocks, randomly divided into seven groups (n=12 and filled with RMGIC (Light-Cured Universal Restorative, GC. In the Group I; no adhesive was applied on the RMGIC. In the Group II, non-etched and Group III was etched with phosphoric acid. In groups II and III, after rinsing, etch-and-rinse adhesive (OptiBond Solo Plus; in the Group IV; a two-step self-etch adhesive (OptiBond XTR and in Group V; a one-step self-etch (OptiBond All-in-One were applied on the cement surfaces. Group VI; a GIC-based adhesive (Fuji Bond LC was painted over the cement surface and cured. Group VII; the GIC-based adhesive was brushed over RMGIC followed by the placement of resin composite and co-cured. Afterward; resin composite (Point 4 cylinders were placed on the treated cement surfaces. The specimens were placed in 100% humidity at 37 ± 1°C and thermo cycled. The shear bond test was performed at a cross-head speed of 1 mm/min and calculated in MPa; the specimens were examined to determine mode of failure. The results were analyzed using one-way ANOVA and Tukey test. Results: The maximum (24.62±3.70 MPa and minimum (18.15±3.38 MPa SBS mean values were recorded for OptiBond XTR adhesive and the control group, respectively. The pairwise comparisons showed no significant differences between the groups that bonded with different adhesives. The adhesive failure was the most common failure mode observed. Conclusion: This study suggests that GIC-based adhesive could be applied over RMGIC as co-cure technique for sandwich restorations in lieu of employing the resin

  16. Effect of blastfurnace slag addition to Portland cement for cationic exchange resins encapsulation

    Directory of Open Access Journals (Sweden)

    Stefan L.

    2013-07-01

    Full Text Available In the nuclear industry, cement-based materials are extensively used to encapsulate spent ion exchange resins (IERs before their final disposal in a repository. It is well known that the cement has to be carefully selected to prevent any deleterious expansion of the solidified waste form, but the reasons for this possible expansion are not clearly established. This work aims at filling the gap. The swelling pressure of IERs is first investigated as a function of ions exchange and ionic strength. It is shown that pressures of a few tenths of MPa can be produced by decreases in the ionic strength of the bulk solution, or by ion exchanges (2Na+ instead of Ca2+, Na+ instead of K+. Then, the chemical evolution of cationic resins initially in the Na+ form is characterized in CEM I (Portland cement and CEM III (Portland cement + blastfurnace slag cements at early age and an explanation is proposed for the better stability of CEM III material.

  17. Bond strength of selected composite resin-cements to zirconium-oxide ceramic

    Science.gov (United States)

    Fons-Font, Antonio; Amigó-Borrás, Vicente; Granell-Ruiz, María; Busquets-Mataix, David; Panadero, Rubén A.; Solá-Ruiz, Maria F.

    2013-01-01

    Objectives: The aim of this study was to evaluate bond strengths of zirconium-oxide (zirconia) ceramic and a selection of different composite resin cements. Study Design: 130 Lava TM cylinders were fabricated. The cylinders were sandblasted with 80 µm aluminium oxide or silica coated with CoJet Sand. Silane, and bonding agent and/or Clearfil Ceramic Primer were applied. One hundred thirty composite cement cylinders, comprising two dual-polymerizing (Variolink II and Panavia F) and two autopolymerizing (Rely X and Multilink) resins were bonded to the ceramic samples. A shear test was conducted, followed by an optical microscopy study to identify the location and type of failure, an electron microscopy study (SEM and TEM) and statistical analysis using the Kruskal-Wallis test for more than two independent samples and Mann-Whitney for two independent samples. Given the large number of combinations, Bonferroni correction was applied (α=0.001). Results: Dual-polymerizing cements provided better adhesion values (11.7 MPa) than the autopolymerizing (7.47 MPa) (p-value M-Wceramic) was produced at a lesser force than cohesive failure (fracture of cement) (p-value M-Wceramic, creating a more rough and retentive surface, thus providing an improved micromechanical interlocking between the cement and the ceramic. Key words:Shear bond strength, silica coating, surface treatment, zirconia ceramics, phosphate monomer. PMID:22926485

  18. Effect of resin cement and ceramic thickness on final color of laminate veneers: an in vitro study.

    Science.gov (United States)

    Turgut, Sedanur; Bagis, Bora

    2013-03-01

    Different shades of resin cements may adversely affect the final color of translucent restorations, especially thin laminates. The purpose of this study was to determine the effect of different types and shades of resin cement and different thicknesses and shades of IPS Empress Esthetic ceramics on the final color of laminate restorations. A total of 392 disks were made with A1, A3, EO, and ET shades of IPS Empress Esthetic with 0.5-mm and 1-mm thicknesses. Two dual-polymerizable and 2 light-polymerizable resin cement systems from different manufacturers (a total of 13 shades) were selected for cementation (n=7). Similarly, with porcelain ingot shades A1 and A3, opaque and translucent shades were selected from the Rely X Veneer and Maxcem Elite cement systems. For the opaque and translucent shades of the Variolink II resin cement system, the highest and lowest (+3 and -3) and medium (0) shades of Variolink Veneer cement were included in the study. Color changes in the porcelain substructures after cementation were examined with a colorimeter, and color differences (ΔE) were calculated. The results were analyzed with Wilcoxon signed-ranks and Kruskal-Wallis tests (α=.05). The results indicated that the color of porcelain disks changed significantly after cementation (Presin cement systems were found at different coordinates in the CIE L*a*b* system. The final color difference (ΔE) of cemented veneers decreased when ceramic thickness increased. The type and shade of resin cement and the thickness and shade of the ceramic all influenced the resulting optical color of laminate restorations. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  19. Evaluation of Surface Treatment Methods on the Bond Strength of Zirconia Ceramics Systems, Resin Cements and Tooth Surface

    Directory of Open Access Journals (Sweden)

    Akkuş Emek

    2015-07-01

    Full Text Available Objectives: To compare the effects of airborne-particle abrasion (APA and tribochemical silica coating (TSC surface treatment methods on the shear bond strength of zirconia ceramics systems, resin cements and tooth surface

  20. Effect of axial groove and resin luting cements on the retention of complete cast metal crowns

    Directory of Open Access Journals (Sweden)

    K Rajkumar

    2009-01-01

    Full Text Available Background : The design of the tooth preparation and the cementing medium are important consid-erations in the retention of crowns and fixed partial dentures. The purpose of this invitro study was to determine the effect of axial groove on the retention of complete cast metal crowns using two resin luting cements. Methods: Forty freshly extracted intact human molar teeth were prepared in their long axis to receive complete cast metal crowns. The specimens were randomly divided into two groups (one control and one study group. An axial groove of uniform size and shape was made on the prepared teeth under the study group. Axial surface area of prepared teeth specimens was measured. Complete cast metal crowns were fabricated for each specimen. Specimens of each group were divided into subgroups of 10 samples and were cemented with two resin luting cements, RelyX Unicem® and Calibra®, re-spectively. The cemented crowns were loaded in tension using a Universal Instron testing machine. The maximal tensile strength was recorded. Data were compared using the Mann-Whitney U test (α=0.05. Results: No significant differences in the tensile stress values were noted between the control (mean: 5.76±0.392 MPa and study (mean: 5.93±0.751 MPa groups cemented with RelyX Unicem. No sig-nificant differences in the tensile stress values were noted between the control (mean: 4.92±0.641 MPa and study (mean: 5.15 ±0.478 MPa groups cemented with Calibra. However, significant dif-ference in the tensile stress values was found between the two resin cements in the control and study groups. Conclusion: Axial groove placed in tooth preparations for resin bonded complete cast metal crowns had no statistically significant effect on retention. The use of (RelyX Unicem® yielded greater reten-tion values when compared to Calibra®.

  1. A Comparative Evaluation of the Effect of Resin based Sealers on Retention of Crown Cemented with Three Types of Cement – An In Vitro Study

    Science.gov (United States)

    Sharma, Sumeet; Patel, J.R.; Sethuraman, Rajesh; Singh, Sarbjeet; Wazir, Nikhil Dev; Singh, Harvinder

    2014-01-01

    Aim: In an effort to control postoperative sensitivity, dentin sealers are being applied following crown preparations, with little knowledge of how crown retention might be affected. A previous study demonstrated no adverse effect when using a gluteraldehyde-based sealer, and existing studies have shown conflicting results for resin-based products. This study determined the retention of the casting cemented with three types of cement, with and without use of resin sealers and it determined the mode of failure. Materials and Methods: Extracted human molars (n=60) were prepared with a flat occlusal, 20-degree taper, and 4-mm axial length. The axial surface area of each preparation was determined and specimens were distributed equally among groups (n=10). A single-bottle adhesive system (one step single bottle adhesive system) was used to seal dentin, following tooth preparation. Sealers were not used on the control specimens. The test castings were prepared by using Ni-Cr alloy for each specimen and they were cemented with a seating force of 20 Kg by using either Zinc Phosphate (Harvard Cement), Glass Ionomer (GC luting and lining cement,GC America Inc.) and modified-resin cement (RelyXTMLuting2). Specimens were thermocycled for one month and were then removed along the path of insertion by using a Universal Testing Machine at 0.5 mm/min. A single-factor ANOVA was used with a p value of .05. The nature of failure was recorded and the data was analyzed by using Chi-square test. Results: Mean dislodgement stress for Zinc phosphate (Group A) was 24.55±1.0 KgF and that for zinc phosphate with sealer (Group D) was 14.65±0.8 KgF. For glass ionomer (Group B) without sealer, the mean value was 32.0±1.0 KgF and mean value for glass ionomer with sealer (Group E) was 37.90±1.0 KgF. The mean value for modified resin cement (Group C) was 44.3±1.0KgF and that for modified resins with sealer (Group F) was 57.2±1.2 KgF. The tooth failed before casting dislodgement in 8 to 10

  2. A Comparative Evaluation of the Effect of Resin based Sealers on Retention of Crown Cemented with Three Types of Cement - An In Vitro Study.

    Science.gov (United States)

    Sharma, Sumeet; Patel, J R; Sethuraman, Rajesh; Singh, Sarbjeet; Wazir, Nikhil Dev; Singh, Harvinder

    2014-03-01

    In an effort to control postoperative sensitivity, dentin sealers are being applied following crown preparations, with little knowledge of how crown retention might be affected. A previous study demonstrated no adverse effect when using a gluteraldehyde-based sealer, and existing studies have shown conflicting results for resin-based products. This study determined the retention of the casting cemented with three types of cement, with and without use of resin sealers and it determined the mode of failure. Extracted human molars (n=60) were prepared with a flat occlusal, 20-degree taper, and 4-mm axial length. The axial surface area of each preparation was determined and specimens were distributed equally among groups (n=10). A single-bottle adhesive system (one step single bottle adhesive system) was used to seal dentin, following tooth preparation. Sealers were not used on the control specimens. The test castings were prepared by using Ni-Cr alloy for each specimen and they were cemented with a seating force of 20 Kg by using either Zinc Phosphate (Harvard Cement), Glass Ionomer (GC luting and lining cement,GC America Inc.) and modified-resin cement (RelyXTMLuting2). Specimens were thermocycled for one month and were then removed along the path of insertion by using a Universal Testing Machine at 0.5 mm/min. A single-factor ANOVA was used with a p value of .05. The nature of failure was recorded and the data was analyzed by using Chi-square test. Mean dislodgement stress for Zinc phosphate (Group A) was 24.55±1.0 KgF and that for zinc phosphate with sealer (Group D) was 14.65±0.8 KgF. For glass ionomer (Group B) without sealer, the mean value was 32.0±1.0 KgF and mean value for glass ionomer with sealer (Group E) was 37.90±1.0 KgF. The mean value for modified resin cement (Group C) was 44.3±1.0KgF and that for modified resins with sealer (Group F) was 57.2±1.2 KgF. The tooth failed before casting dislodgement in 8 to 10 specimens cemented with modified-resin

  3. Push-out strength of modified Portland cements and resins.

    Science.gov (United States)

    Iacono, Francesco; Gandolfi, Maria Giovanna; Huffman, Bradford; Sword, Jeremy; Agee, Kelli; Siboni, Francesco; Tay, Franklin; Prati, Carlo; Pashley, David

    2010-02-01

    Modified calcium-silicate cements derived from white Portland cement (PC) were formulated to test their push-out strength from radicular dentin after immersion for 1 month. Slabs obtained from 42 single-rooted extracted teeth were prepared with 0.6 mm diameter holes, then enlarged with rotary instruments. After immersion in EDTA and NaOC1, the holes were filled with modified PCs or ProRoot MTA, Vitrebond and Clearfil SE. Different concentrations of phyllosilicate (montmorillonite-MMT) were added to experimental cements. ProRoot MTA was also included as reference material. Vitrebond and Clearfil SE were included as controls. Each group was tested after 1 month of immersion in water or PBS. A thin-slice push-out test on a universal testing machine served to test the push-out strength of materials. Results were statistically analyzed using the least squares means (LSM) method. The modified PCs had push-out strengths of 3-9.5 MPa after 1 month of immersion in water, while ProRoot MTA had 4.8 MPa. The push-out strength of PC fell after incubation in PBS for 1 month, while the push-out strength of ProRoot MTA increased. There were no significant changes in Clearfil SE Bond or Vitrebond after water or PBS storage.

  4. Degree of conversion and bond strength of resin-cements to feldspathic ceramic using different curing modes

    Directory of Open Access Journals (Sweden)

    Veridiana Resende NOVAIS

    Full Text Available Abstract Resin cements have led to great advances in dental ceramic restoration techniques because of their ability to bond to both dental structures and restorative materials. Objective The aim of this study was to assess the performance of resin cements when different curing modes are used, by evaluating the degree of conversion and bond strength to a ceramic substrate. Material and Methods Three resin cements were evaluated, two dual-cured (Variolink II and RelyX ARC and one light-cured (Variolink Veneer. The dual-cured resin cements were tested by using the dual activation mode (base and catalyst and light-activation mode (base paste only. For degree of conversion (DC (n=5, a 1.0 mm thick feldspathic ceramic disc was placed over the resin cement specimens and the set was light activated with a QTH unit. After 24 h storage, the DC was measured with Fourier transform infrared spectroscopy (FTIR. For microshear bond strength testing, five feldspathic ceramic discs were submitted to surface treatment, and three cylindrical resin cement specimens were bonded to each ceramic surface according to the experimental groups. After 24 h, microshear bond testing was performed at 0.5 mm/min crosshead speed until the failure. Data were submitted to one-way ANOVA followed by Tukey test (p<0.05. Scanning electron microscopy (SEM was used for classifying the failure modes. Results Higher DC and bond strength values were shown by the resin cements cured by using the dual activation mode. The Variolink II group presented higher DC and bond strength values when using light-activation only when compared with the Variolink Veneer group. Conclusion The base paste of dual-cured resin cements in light-activation mode can be used for bonding translucent ceramic restorations of up to or less than 1.0 mm thick.

  5. Influence of the Resin Cement Insertion Protocol on the bond Strength of Glass-Fiber Posts

    Directory of Open Access Journals (Sweden)

    João Stein Bassotto

    2017-08-01

    Full Text Available Objective: Evaluate the effect of different techniques for insertion of the resin cement on the bond strength of glass-fiber posts cemented with RelyX U200. Methods: Thirty single-rooted premolars were sectioned at 14 mm from the apex, prepared with ProTaper Universal system and filled by single-cone technique with AH Plus sealer. Root canal filling was partially removed, maintaining 4 mm of gutta-percha at the apical third. Specimens were randomly divided into 3 experimental groups (n=10, according to the strategy used to fiber post cementation, as described: CENTRIX, POST/CEMENT, LENTULO. Exacto N1 glass fiber posts were placed into root canal and cemented with RelyX U200. A cutting machine was used for root’s sectioning providing 3 slices, one for each root third (cervical, medium and apical. Push-out test was performed using a universal testing machine and stereomicroscope was used to analyze the failure mode. Results: CENTRIX (10,05 ± 3,25 Mpa and LENTULO (9,80 ± 3,21 Mpa showed higher means of bond strength values, superior to POST/CEMENT (6,47 ± 3,85 Mpa. Regarding to root third, the cervical third presented the higher bond strength mean (10,62 ± 3,66 Mpa and the apical root third presented the lowest bond strength values (6,58 ± 3,28 Mpa. Conclusion: Bond strength values of glass fiber posts are influenced by the method of insertion of the resin cement RelyX U200. On this sense Centrix and Lentulo systems are recommended.

  6. Effect of Surface Treatment with Carbon Dioxide (CO2) Laser on Bond Strength between Cement Resin and Zirconia.

    Science.gov (United States)

    Kasraei, Shahin; Atefat, Mohammad; Beheshti, Maryam; Safavi, Nassimeh; Mojtahedi, Maryam; Rezaei-Soufi, Loghman

    2014-01-01

    Since it is not possible to form an adequate micromechanical bond between resin cement and zirconia ceramics using common surface treatment techniques, laser pretreatment has been suggested for zirconia ceramic surfaces. The aim of this study was to evaluate the effect of Carbon Dioxide (CO2) Laser treatment on shear bond strength (SBS) of resin cement to zirconia ceramic. In this in vitro study thirty discs of zirconia with a diameter of 6 mm and a thickness of 2 mm were randomly divided into two groups of 15. In the test group the zirconia disc surfaces were irradiated by CO2 laser with an output power of 3 W and energy density of 265.39 j/cm(2). Composite resin discs were fabricated by plastic molds, measuring 3 mm in diameter and 2 mm in thickness and were cemented on zirconia disk surfaces with Panavia F2.0 resin cement (Kuraray Co. Ltd, Osaka, Japan). Shear bond strength was measured by a universal testing machine at a crosshead speed of 0.5 mm/min. The fracture type was assessed under a stereomicroscope at ×40. Surface morphologies of two specimens of the test group were evaluated under SEM before and after laser pretreatment. Data was analyzed by paired t-test (p value resin cement and zirconia ceramic (p value = 0.001). Under the limitations of this study, surface treatment with CO2 laser increased the SBS between resin cement and the zirconia ceramic.

  7. Effect of MDP-Based Silane and Different Surface Conditioner Methods on Bonding of Resin Cements to Zirconium Framework.

    Science.gov (United States)

    Özdemir, Hatice; Yanikoğlu, Nuran; Sağsöz, Nurdan

    2017-07-24

    To determine the shear bond strength (SBS) between zirconium framework and resin cements after different surface conditioner methods and after application of 10-methacryloyloxydecyl dihydrogen phosphate (MDP) based silane and a bonding agent mix. 128 disc-shaped zirconium-oxide specimens were prepared. Specimens were placed in autopolymerizing acrylic resin. The bonding surface of specimens was smoothed consecutively with 600-, 800-, and 1200-grit silicon carbide papers under water cooling. Eight groups were prepared: CJ, Co-Jet; N, Nd-YAG laser; E, Er-YAG laser; NS, Nd-YAG laser + silane; ES, Er-YAG laser + silane; CJB, Co-Jet + bonding agent; NSB, Nd-YAG laser + silane + bonding agent; ESB, Er-YAG laser + silane + bonding agent. SEM analysis was performed under 2000× magnification. Dual- and self-cured resin cements were bonded to specimens, and shear force was applied. Data were analyzed with one-way ANOVA and Tukey's multiple comparison test (p MDP-based silane and bonding agent mix increased SBS values of each cement belonging to each group. SB values of dual-cure resin cement were higher than those of self-cure resin cements. Different surface conditioner methods exhibit an important effect on the SBS of resin cements to zirconium. The application of MDP-based silane and bonding agent mix enhanced SB values. © 2017 by the American College of Prosthodontists.

  8. The effect of ultrafast fiber laser application on the bond strength of resin cement to titanium.

    Science.gov (United States)

    Ates, Sabit Melih; Korkmaz, Fatih Mehmet; Caglar, Ipek Satıroglu; Duymus, Zeynep Yeşil; Turgut, Sedanur; Bagis, Elif Arslan

    2017-07-01

    The purpose of this study was to investigate the effect of ultrafast fiber laser treatment on the bond strength between titanium and resin cement. A total of 60 pure titanium discs (15 mm × 2 mm) were divided into six test groups (n = 10) according to the surface treatment used: group (1) control, machining; group (2) grinding with a diamond bur; group (3) ultrafast fiber laser application; group (4) resorbable blast media (RBM) application; group (5) electro-erosion with copper; and group (6) sandblasting. After surface treatments, resin cements were applied to the treated titanium surfaces. Shear bond strength testing of the samples was performed with a universal testing machine after storing in distilled water at 37 °C for 24 h. One-way ANOVA and Tukey's HSD post hoc test were used to analyse the data (P titanium.

  9. Mixture Design and Its Application in Cement Solidification for Spent Resin

    International Nuclear Information System (INIS)

    Gan, Xueying; Lin, Meiqing; Chen, Hui

    1994-01-01

    The study is aimed to assess the usefulness of the mixture design for spent resin immobilization in cement. Although a considerable amount of research has been carried out to determine the limits for the composition of an acceptable resin-cement mixture, no efficient experimental strategy exists that explores the full properties of waste form against composition relationship. In order to gain an overall view, this report introduces the method of mixture design and mixture analysis, and describes the design of experiment of the 5-component mixture with the constraint conditions. The mathematic models of 28-day compressive strength varying with the ingredients are fitted, and the main effect and interaction effect of two ingredients are identified quantitatively along with the graphical interpretation using the response trace plot and contour plots

  10. Effects of Mechanical and Chemical Pretreatments of Zirconia or Fiber Posts on Resin Cement Bonding

    Science.gov (United States)

    Li, Rui; Zhou, Hui; Wei, Wei; Wang, Chen; Sun, Ying Chun; Gao, Ping

    2015-01-01

    The bonding strength between resin cement and posts is important for post and core restorations. An important method of improving the bonding strength is the use of various surface pretreatments of the post. In this study, the surfaces of zirconia (fiber) posts were treated by mechanical and/or chemical methods such as sandblasting and silanization. The bonding strength between the zirconia (fiber) post and the resin cement was measured by a push-out method after thermocycling based on the adhesion to Panavia F 2.0 resin cement. The zirconia and fiber posts exhibited different bonding strengths after sandblasting and/or silanization because of the different strengths and chemical structures. The zirconia post showed a high bonding strength of up to 17.1 MPa after a combined treatment of sandblasting and silanization because of the rough surface and covalent bonds at the interface. This effect was also enhanced by using 1,2-bis(trimethoxysilyl)ethane for the formation of a flexible layer at the interface. In contrast, a high bonding strength of 13.9 MPa was obtained for the fiber post treated by silane agents because the sandblasting treatment resulted in damage to the fiber post, as observed by scanning electron microscopy. The results indicated that the improvement in the bonding strength between the post and the resin cement could be controlled by different chemical and/or mechanical treatments. Enhanced bonding strength depended on covalent bonding and the surface roughness. A zirconia post with high bonding strength could potentially be used for the restoration of teeth in the future. PMID:26066349

  11. Influence of infected root dentin on the bond strength of a self-adhesive resin cement

    Directory of Open Access Journals (Sweden)

    Débora Delai

    2018-01-01

    Full Text Available Aim: The aim of this study was to determine the bond strength (BS of a self-adhesive resin cement to the contaminated root dentin. Materials and Methods: The crown and apical third of twenty single-rooted teeth were removed. The root canals were flared and 1-mm-thick root sections were obtained. The sections were rinsed, dried, and sterilized. The control group (n=20 was composed of one section of each third, which remained immersed in sterile trypticase soy broth (TSB for 2 months. The other sections comprised the experimental group (n = 40 and were immersed in a suspension of Enterococcus faecalis. The culture medium was changed at every 4 days for 2 months. The sections were rinsed with distilled water, dried, and the root canal space was fi lled with the self-adhesive resin cement RelyX™ U200. After 24 h, the push-out test was performed and the types of interface failure were observed on a stereo microscope. Statistical Analysis: Data were statistically analyzed by the nonparametric Mann–Whitney test (α=5%. Results: A significant reduction was observed in the BS of resin cement to the contaminated dentin compared to the healthy dentin, for both thirds analyzed (P < 0.05. The BS was signifi cantly greater at the cervical third compared to the middle third for specimens in the experimental group (P < 0.05. Adhesive and mixed failures were observed more frequently in specimens contaminated with E. faecalis. Conclusion: Bacterial contamination negatively infl uenced the BS of the self-adhesive resin cement to the root dentin, and there was a predominance of adhesive and mixed failures.

  12. Restoration of Strip Crown with a Resin-Bonded Composite Cement in Early Childhood Caries

    OpenAIRE

    Jeong, Mi-ae; Kim, Ah-hyeon; Shim, Youn-soo; An, So-youn

    2013-01-01

    Background. Early childhood caries is a widely prevalent disease throughout the world. It is necessary to treat this condition in early childhood; however, child behavior management may be particularly challenging during treatment. To overcome this challenge, we used Carigel to remove caries and RelyX Unicem resin cement for strip crown restoration. It not only has the desired aesthetic effect but is also more effective for primary teeth, which are used for a shorter period than permanent tee...

  13. Effects of adding silica particles on certain properties of resin-modified glass-ionomer cement

    OpenAIRE

    Felemban, Nayef H.; Ebrahim, Mohamed I.

    2016-01-01

    Objective: This study was conducted to evaluate the effect of incorporation of silica particles with different concentrations on some properties of resin-modified glass ionomer cement (RMGIC): Microleakage, compressive strength, tensile strength, water sorption, and solubility. Materials and Methods: Silica particle was incorporated into RMGIC powder to study its effects, one type of RMGIC (Type II visible light-cured) and three concentrations of silica particles (0.06, 0.08, and 0.1% weight)...

  14. Transient and residual stresses in a pressable glass-ceramic before and after resin-cement coating determined using profilometry.

    LENUS (Irish Health Repository)

    2011-05-01

    The effect of heat-pressing and subsequent pre-cementation (acid-etching) and resin-cementation operative techniques on the development of transient and residual stresses in different thicknesses of a lithium disilicate glass-ceramic were characterised using profilometry prior to biaxial flexure strength (BFS) determination.

  15. DESENSITIZING BIOACTIVE AGENTS IMPROVES BOND STRENGTH OF INDIRECT RESIN-CEMENTED RESTORATIONS: PRELIMINARY RESULTS

    Science.gov (United States)

    Pires-De-Souza, Fernanda de Carvalho Panzeri; de Marco, Fabíola Fiorezi; Casemiro, Luciana Assirati; Panzeri, Heitor

    2007-01-01

    Objective: The aim of this study was to assess the bond strength of indirect composite restorations cemented with a resin-based cement associated with etch-and-rinse and self-etching primer adhesive systems to dentin treated or not with a bioactive material. Materials and Method: Twenty bovine incisor crowns had the buccal enamel removed and the dentin ground flat. The teeth were assigned to 4 groups (n=5): Group I: acid etching + Prime & Bond NT (Dentsply); Group II: application of a bioactive glass (Biosilicato®)+ acid etching + Prime & Bond NT; Group III: One-up Bond F (J Morita); Group IV: Biosilicato® + One-up Bond F. Indirect composite resin (Artglass, Kulzer) cylinders (6x10mm) were fabricated and cemented to the teeth with a dualcure resin-based cement (Enforce, Dentsply). After cementation, the specimens were stored in artificial saliva at 37oC for 30 days and thereafter tested in tensile strength in a universal testing machine (EMIC) with 50 kgf load cell at a crosshead speed of 1 mm/min. Failure modes were assessed under scanning electron microscopy. Data were analyzed statistically by ANOVA and Tukey's test (95% level of confidence). Results: Groups I, II and III had statistically similar results (p>0.05). Group IV had statistically significant higher bond strength means (p<0.05) than the other groups. The analysis of the debonded surfaces showed a predominance of adhesive failure mode for Group III and mixed failure mode for the other groups. Conclusion: The use of desensitizing agent did not affect negatively the bonding of the indirect composite restorations to dentin, independently of the tested adhesive systems. PMID:19089114

  16. Desensitizing bioactive agents improves bond strength of indirect resin-cemented restorations: preliminary results

    Directory of Open Access Journals (Sweden)

    Fernanda de Carvalho Panzeri Pires-de-Souza

    2007-04-01

    Full Text Available OBJECTIVE: The aim of this study was to assess the bond strength of indirect composite restorations cemented with a resin-based cement associated with etch-and-rinse and self-etching primer adhesive systems to dentin treated or not with a bioactive material. MATERIALS AND METHOD: Twenty bovine incisor crowns had the buccal enamel removed and the dentin ground flat. The teeth were assigned to 4 groups (n=5: Group I: acid etching + Prime & Bond NT (Dentsply; Group II: application of a bioactive glass (Biosilicato®+ acid etching + Prime & Bond NT; Group III: One-up Bond F (J Morita; Group IV: Biosilicato® + One-up Bond F. Indirect composite resin (Artglass, Kulzer cylinders (6x10mm were fabricated and cemented to the teeth with a dual-cure resin-based cement (Enforce, Dentsply. After cementation, the specimens were stored in artificial saliva at 37ºC for 30 days and thereafter tested in tensile strength in a universal testing machine (EMIC with 50 kgf load cell at a crosshead speed of 1 mm/min. Failure modes were assessed under scanning electron microscopy. Data were analyzed statistically by ANOVA and Tukey's test (95% level of confidence. RESULTS: Groups I, II and III had statistically similar results (p>0.05. Group IV had statistically significant higher bond strength means (p<0.05 than the other groups. The analysis of the debonded surfaces showed a predominance of adhesive failure mode for Group III and mixed failure mode for the other groups. CONCLUSION: The use of desensitizing agent did not affect negatively the bonding of the indirect composite restorations to dentin, independently of the tested adhesive systems.

  17. [Hardness development of self-adhesive resin cement in simulated root canal].

    Science.gov (United States)

    Ding, Hong; Lan, Weidong; Meng, Xiangfeng

    2012-06-01

    To compare the hardness development of dual-cured self-adhesive and universal resin cement in simulated root canal. The light-proof half-cylinder steel slot with one end open were syringed and filled respectively by self-adhesive A (RelyX Unicem), B (BisCem) and universal C (DUOLINK) resin cements, then the open end of slot was irradiated directly by a light unit for 20 s. Specimens were stored in a light-proof box for 0.5 h, Knoop microhardness was measured along the vertical surfaces of specimens from 1 mm to 10mm depth at 1 mm intervals. The same measurements were taken at 24 h and 120 h after irradiation. Data were analyzed by One-way ANOVA. Hardness of each group decreased with the increase of simulated canal depth (Phardness showed no significant change between 5 mm and more depth of group A, between 4 mm and more depth of group B and C. The increase of hardness for each group was more rapid within 0.5 h after irradiation, thereafter the hardness increased gradually to maximum at 24 h. At 120 h after irradiation, hardness of group C was greater than that of other two groups at more than 1 mm depth (Phardness has significant difference between self-adhesive and universal resin cements, however their hardness development is similar.

  18. Effect of Enamel and Dentin Surface Treatment on the Self-Adhesive Resin Cement Bond Strength.

    Science.gov (United States)

    Mushashe, Amanda Mahmmad; Gonzaga, Carla Castiglia; Cunha, Leonardo Fernandes da; Furuse, Adilson Yoshio; Moro, Alexandre; Correr, Gisele Maria

    2016-01-01

    The aim of this study was to evaluate the effect of enamel and dentin surface treatment on the micro-shear bond strength of self-adhesive cement. Seventy-two extracted third molars had their crowns embedded in acrylic resin and worn to obtain a flat enamel or dentin surface. The enamel and dentin specimens were randomly assigned to 8 groups (n=12) that were based on surface treatment (11.5% polyacrylic acid solution or no treatment), substrate condition (wet or dry) and storage period (1 day or 90 days), and treated accordingly. Cylinders (1 × 1 mm) were fabricated using self-adhesive resin cement (RelyX U200) following the manufacturer's instructions. The specimens were stored in distilled water at 37 °C for either 1 day or 90 days and subjected to micro-shear bond strength test (EMIC DL 2000 at 0.5 mm/min). After this, the failure type of the specimens was determined. Data were subjected to statistical analysis (a=0.05). According to the results, the 11.5% polyacrylic acid application decreased the bond strength in both enamel and dentin samples. The moist groups showed higher bond strength than the dry ones, regardless of the substrate and surface treatment. Storage period did not influence bond strength. In conclusion, surface treatment with 11.5% polyacrylic acid and absence of moisture decreased the bond strength of the resin-cement (RelyU200), regardless of the storage period.

  19. A Comparison of Tensile Bond Strength Between Low Translucency and High Translucency Lithium Disilicate Ceramics Using Two Different Resin Cements

    Science.gov (United States)

    2015-06-01

    Computer animated design of a veneered dental restoration 2 Figure 2: Computer animated design of a cementable dental implant restoration using a...Hill, E. E. (2007). Dental cements for definitive luting: a review and practical clinical considerations. Dental Clinics of North America, 51(3), 643-58...A COMPARISON OF TENSILE BOND STRENGTH BETWEEN LOW TRANSLUCENCY AND HIGH TRANSLUCENCY LITHIUM DISILICATE CERAMICS USING TWO DIFFERENT RESIN CEMENTS

  20. Effect of aging and curing mode on the compressive and indirect tensile strength of resin composite cements

    OpenAIRE

    Rohr, Nadja; Fischer, Jens

    2017-01-01

    Background Resin composite cements are used in dentistry to bond ceramic restorations to the tooth structure. In the oral cavity these cements are subjected to aging induced by masticatory and thermal stresses. Thermal cycling between 5 and 55 °C simulates the effect of varying temperatures in vitro. Purpose of this study was to compare indirect tensile to compressive strength of different cements before and after thermal cycling. The effect of the curing mode was additionally assessed. Metho...

  1. A comparison of the survival of fibre posts cemented with two different composite resin systems.

    Science.gov (United States)

    Mehta, S B; Millar, B J

    2008-12-13

    To evaluate the outcomes of a fibre post cemented with two different luting agents. A single type of tooth coloured fibre post (Fibre-White Parapost, Coltene Whaledent) was used along with two different types of luting cement. A total of 129 teeth were treated in this retrospective audit: 79 treated were luted with Calibra Aesthetic Dental Resin Cement (Dentsply) and 50 with Panavia F 2.0 (Kuraray). All teeth were treated by the same operator and had a minimum ferrule of 2 mm and a ParaCore (Coltene Whaledent) composite core placed over the post. Where Calibra Aesthetic Dental Resin Cement was used, all the restorations were undertaken between June 2002 and October 2003 and were reviewed for a period of 38 to 54 months. Where Panavia had been used, all restorations were placed between February 2004 and December 2005 and reviewed for a period of 28 to 50 months. The results for the Calibra cemented posts were: 64 returned for recall and of these 23 were classed as failed. The causes were: root fracture (2), decementation (3), fracture at post-core interface (6), endodontic failure (8) and marginal caries (4). The results for the Panavia cemented posts were: 44 returned for recall and 9 were classed as failed; the causes of failure were fracture at post-core interface (6), endodontic failure (1) and marginal caries (2). For posts cemented with Calibra, a success rate of 64.1% was determined over a period of 38 to 54 months. The use of Panavia resulted in fewer post failures with a reported success rate of 79.5% over an evaluation period of 28 to 50 months. Mechanical failures by means of fractures occurring anywhere along the length of the post-core complex were the major cause of lack of success. Significantly higher failure rates were observed to occur in partially dentate patients, in those with parafunctional habits and also amongst anterior teeth. While the majority of the mechanical failures were amenable to repair, the latter mode of failure appears to be a

  2. Light transmittance of zirconia as a function of thickness and microhardness of resin cements under different thicknesses of zirconia

    Science.gov (United States)

    Egilmez, Ferhan; Ergun, Gulfem; Kaya, Bekir M.

    2013-01-01

    Objective: The objective of this study was to compare microhardness of resin cements under different thicknesses of zirconia and the light transmittance of zirconia as a function of thickness. Study design: A total of 126 disc-shaped specimens (2 mm in height and 5 mm in diameter) were prepared from dual-cured resin cements (RelyX Unicem, Panavia F and Clearfil SA cement). Photoactivation was performed by using quartz tungsten halogen and light emitting diode light curing units under different thicknesses of zirconia. Then the specimens (n=7/per group) were stored in dry conditions in total dark at 37°C for 24 h. The Vicker’s hardness test was performed on the resin cement layer with a microhardness tester. Statistical significance was determined using multifactorial analysis of variance (ANOVA) (alpha=.05). Light transmittance of different thicknesses of zirconia (0.3, 0.5 and 0.8 mm) was measured using a hand-held radiometer (Demetron, Kerr). Data were analyzed using one-way ANOVA test (alpha=.05). Results: ANOVA revealed that resin cement and light curing unit had significant effects on microhardness (p zirconia thickness resulted in lower transmittance. There was no correlation between the amount of light transmitted and microhardness of dual-cured resin cements (r = 0.073, p = 0.295). Conclusion: Although different zirconia thicknesses might result in insufficient light transmission, dual-cured resin cements under zirconia restorations could have adequate microhardness. Key words:Zirconia, microhardness, light transmittance, resin cement. PMID:23385497

  3. Comparative Shear-Bond Strength of Six Dental Self-Adhesive Resin Cements to Zirconia

    Directory of Open Access Journals (Sweden)

    Si-Eun Lee

    2015-06-01

    Full Text Available This study compared shear bond strength (SBS of six self-adhesive resin cements (SARC and one resin-modified glass ionomer cement (RMGIC to zirconia before and after thermocycling. The cylinder shape (Φ 2.35 mm × 3 mm of six SARCs (G-CEM LinkAce (GLA, Maxcem Elite (MAX, Clearfil SA Luting (CSL, PermaCem 2.0 (PM2, Rely-X U200 (RXU, Smartcem 2 (SC2 were bonded to the top surface of the zirconia specimens with light-curing. RMGIC (Fujicem (FJC was bonded to the specimens with self-curing. The shear bond strength of all cemented specimens was measured with universal testing machine. Half of the specimens were thermocycled 5000 times before shear bonding strength testing. Fractured surfaces were examined with a field-emission SEM (10,000× and analyzed by energy dispersive x-ray analysis. MAX, PM2, SC2 group without thermocycling and GLA, MAX, PM2 group with thermocycling showed adhesive failure, but GLA, CSL, RXU, FJC group without thermocycling and SLC, RXU, SC2, FJC group with thermocycling indicated cohesive failure. Within the limitation of this study, All of SARCs except MAX demonstrated higher bond strength than that of RMGIC regardless of thermocycling. Also, SARC containing MDP monomers (CSL retained better bonds than other cements.

  4. Evaluation of residual monomer release and toxicity of self-adhesive resin cements.

    Science.gov (United States)

    Kurt, Aysegul; Altintas, Subutay Han; Kiziltas, Mustafa Volkan; Tekkeli, Serife Evrim; Guler, Eray Metin; Kocyigit, Abdurrahim; Usumez, Aslihan

    2018-01-30

    The aim of this study was to evaluate the amount of leached residual monomers from self-adhesive resin cements and evaluate their toxicity in-vitro. A total of 60 disk-shaped specimens (5 mm in diameter and 0.5 mm in thickness) were prepared from each cement (RelyX U200, SpeedCEM, G-Cem) (n=20). Specimens were immersed in artificial saliva and the amount of released monomers [urethane dimethacrylate (UDMA) and triethyleneglycol dimethacrylate (TEGDMA)] was identified. Then, the cytotoxicity and genotoxicity effect on cells were evaluated using the defined amounts of released monomers from cements. The highest monomer release was detected in G-Cem (p<0.05). The highest cytotoxicity value was identified from SpeedCEM (p<0.01) and the highest genotoxicity values were calculated from RelyX U200 (p<0.05). Released UDMA and TEGDMA from self-adhesive resin cements induced cytotoxicity and genotoxicity effect on cells.

  5. Evaluating the effect of ceramic veneer thickness on degree of conversion in three luting resin cements

    Directory of Open Access Journals (Sweden)

    Nafiseh Elmamooz

    2017-06-01

    Full Text Available compare the effect of different ceramic thicknesses on degree of conversion (DC of 3 light-cured resin cements. Methods: In this experimental in-vitro study, the degree of conversion of three light-cured resin cements, Variolink Veneer (Ivoclar, Liechtenstein, RelyX Veneer (3M ESPE, USA and Choice2 (Bisco, USA were evaluated beneath feldespatic ceramic discs (Vita VMK Master with a same shade,  2m2, in different thicknesses (0.5, 1, 2 and3 mm using FTIR. The light curing unit used was Optilux 501, with an intensity of 600 mW/cm2 and exposure duration of 40 seconds. Three specimens of each cement group were examined in each condition. The obtained data was submitted to Kolmogorov-Smirnov and also checked for absence of skewness and kurtosis for normal distribution. After that, ANOVA test was used for comparison between experimental groups (Tukey HSD. Results: In all the three used cements, DC decreased as ceramic thickness increased. This reduction was not significant when using 0.5 and 1 mm ceramic discs, however, it was significant between 1, 2, and 3mm discs(p

  6. Evaluation of ISO 4049: water sorption and water solubility of resin cements.

    Science.gov (United States)

    Müller, Johannes A; Rohr, Nadja; Fischer, Jens

    2017-04-01

    The aim of this study was to evaluate the water sorption and solubility test design of ISO 4049 for resin cements. Sorption and solubility of six dual-curing resin cements [RelyX Unicem 2 Automix (RUN), Multilink Speed CEM (MLS), Panavia SA Plus (PSA), RelyX Ultimate (RUL), Multilink Automix (MLA), and Panavia V5 (PV5)] were analyzed by storage in distilled water after dual-curing. In addition, sorption and solubility during thermal cycling were assessed with self-cured and dual-cured specimens. After water storage, all cements revealed sorption in the range of 30 μg mm -3 except for PV5, for which sorption was markedly lower (mean ± SD = 20.8 ± 0.4 μg mm -3 ). Solubility values were negative for RUN and RUL (-2.1 ± 0.08 μg mm -3 and -1.9 ± 0.13 μg mm -3 , respectively). All other cements attained positive values in the range of 0.4-0.8 μg mm -3 . Thermal cycling effects were more pronounced. The assessment of water sorption according to ISO 4049 provides reliable results. Solubility results must be interpreted with care because absorbed water may distort the values. © 2017 Eur J Oral Sci.

  7. Bonding effectiveness of self-adhesive and conventional-type adhesive resin cements to CAD/CAM resin blocks. Part 2: Effect of ultrasonic and acid cleaning.

    Science.gov (United States)

    Kawaguchi, Asuka; Matsumoto, Mariko; Higashi, Mami; Miura, Jiro; Minamino, Takuya; Kabetani, Tomoshige; Takeshige, Fumio; Mine, Atsushi; Yatani, Hirofumi

    2016-01-01

    The present study assessed the effect of ultrasonic and acid cleaning on resin cement bonding to CAD/CAM resin blocks. One of two resin cements, PANAVIA V5 (PV5) or PANAVIA SA CEMENT HANDMIX (PSA), were bonded to one of 24 CAD/CAM blocks (KATANA AVENCIA BLOCK). Each cement group was divided into four subgroups: no cleaning (Ctl), ultrasonic cleaning (Uc), acid cleaning (Ac) and Uc+Ac. Micro-tensile bond strengths (µTBSs) were measured immediately and 1, 3, and 6 months after water storage. Block surfaces after each treatment were analyzed by scanning electron microscopy. Analysis of variance revealed a statistically significant effect for the parameters 'surface treatment' (p<0.001, F=40), 'resin cement' (p<0.001, F=696) and 'water aging' (p<0.001, F=71). The PV5 group exhibited higher µTBS values than the PSA group. Although cleaning after sandblasting was effective in removing residual alumina particles, it did not affect the long-term bonding durability with non-contaminated CAD/CAM resin blocks.

  8. Effects of oxalate desensitizer with different resin cement-retained indirect composite inlays on fracture resistance of teeth.

    Science.gov (United States)

    Shafiei, Fereshteh; Alavi, Ali Asghar; Karimi, Fatemeh; Ansarifard, Elham

    2013-06-01

    This study investigated whether the tubular occluding effect of oxalate desensitizer (OX) during adhesive cementation (three resin cements) influenced fracture resistance of teeth restored with adhesive inlays. Ninety intact maxillary premolars were randomly divided into 9 groups of 10 each. The two control groups were Gr 1, intact teeth and Gr 2, mesio-occlusodistal preparation only. In six experimental groups, the composite inlays were cemented with ED Primer II/Panavia F 2.0, Excite DSC/Variolink II, and One-Step Plus/Duolink according to manufacturers' instructions (Groups 3, 5, and 7, respectively) or with OX during cementation (Groups 4, 6, and 8, respectively). In Group 9, inlays were cemented with a resin cement without adhesive system. After thermocycling, fracture strength was tested. The data were analyzed using two-way and one-way ANOVA and LSD post hoc tests (α = 0.05). Fracture resistance of the six groups were significantly affected by OX (p = 0.002) but not by the resin cement type (p > 0.05). The interaction of the two factors was statistically significant (p = 0.052). A statistically significant difference between all groups was found (p inlay cemented with Panavia F2.0 and Variolink II, but it had no significant effect when cemented with Duolink. © 2012 by the American College of Prosthodontists.

  9. Effect of Silanization on Microtensile Bond Strength of Different Resin Cements to a Lithium Disilicate Glass Ceramic.

    Science.gov (United States)

    Gré, Cristina Parise; de Ré Silveira, Renan C; Shibata, Shizuma; Lago, Carlo Tr; Vieira, Luiz Cc

    2016-02-01

    This study evaluated the influence of a silane-coupling agent on the bond strength of a self-adhesive cement and a conventional resin cement to a lithium disilicate glass ceramic. A total of eight ceramic blocks were fabricated and divided into four groups (n = 2). In groups 1 and 3, ceramic surfaces were etched with hydrofluoric acid 10% for 20 seconds, rinsed for 30 seconds, and air-dried. One layer of a silane agent was applied onto all ceramic specimens and air-dried for 30 seconds. In groups 2 and 4, ceramic surfaces were etched with hydrofluoric acid, rinsed, and air-dried without application of the silane-coupling agent. The ceramic blocks were bonded to a block of composite with a self-adhesive resin cement or with a conventional resin cement, according to the manufacturer's instructions. After 24 hours in distilled water at 37°C, the specimens were sectioned perpendicular to the bonding interface area to obtain beams with a bonding area of 0.8 mm(2) and submitted to a microtensile bond strength test at a crosshead speed of 0.5 mm/min. Data were statistically analyzed with one-way analysis of variance and the Games-Howell post hoc test (p = 0.05). Fractured specimens were examined under optical microscopy at 40x magnification. Silanization resulted in higher microtensile bond strength compared to groups without silane. No significant differences were found between the conventional resin cement and the self-adhesive resin cement with silane agent (p = 0.983), and without silane agent (p = 0.877). Silanization appears to be crucial for resin bonding to a lithium disilicate-based ceramic, regardless of the resin cement used. The self-adhesive resin cement performed as well as the conventional resin cement. Applying one layer of a silane-coupling agent after etching the ceramic surface with hydrofluoric acid 10% enhanced the bond strength between resin cements and a glass ceramic.

  10. Physico-Chemical Studies Involving Incorporation of Radioactive and Industrial Waste In Cement-Epoxy Resin Matrix

    International Nuclear Information System (INIS)

    Sayed, M.S.; Hafez, N.

    1999-01-01

    Cement and epoxy resin as chemical additives are proposed to incorporate different types of wastes. The study was extended to prepare different mixtures of cement and epoxy resin in presence of some toxic ions. The studied ions were Cd II, Ni II, Cu II, Fe III, Ce IV, 154+152 Eu, phenol and toluene. The physical, mechanical and leaching properties of the mixtures were studied. The thermal analysis and infrared spectra were also investigated. It was observed that all the studied properties of the epoxy modified cement as a disposal matrix was improved

  11. Behavior of resin-based endodontic sealer cements in thin and thick films.

    Science.gov (United States)

    Pane, Epita S; Palamara, Joseph E A; Messer, Harold H

    2012-09-01

    For root canal fillings, a thin layer of sealer cement is generally recommended. However, with resin-based sealers, lower bond strength to dentin has been shown in thin layers compared to thick, contrary to typical behavior of adhesive layers between two adherents. The aim of this study was to evaluate tensile and shear bond strength of thin and thick films of three resin-based sealers (one epoxy-based and two methacrylate-based) materials and to investigate corner effects of one methacrylate-based resin sealer. Freshly mixed sealer cements were placed between metal-to-metal surfaces of plano-parallel stainless steel aligned rods with diameter 4.7 mm. Ten samples were prepared for each type, thickness (0.1 and 1.0 mm) of sealer and test. Tensile and shear strengths were measured after 48 h for the methacrylate-based materials and after 7 days for the epoxy-based material using a universal testing machine at a crosshead speed of 1mm/min. Corner effects were investigated using one methacrylate-based resin material. Film thickness had a highly significant influence on both tensile and shear strengths. For methacrylate resin-based sealers, thin films had higher bond strength than thick (ptensile and shear bond strength). With the epoxy-based sealer either no difference (shear) or lower bond strength in thin films (tensile; ptensile bond strength results. The higher tensile and shear bond strength of resin-based sealer in thin films is the opposite of that previously reported for bonding to dentin. The substrate clearly has an important role in failure behavior. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Cementation of secondary wastes generated from carbonisation of spent organic ion exchange resins from nuclear power plants

    International Nuclear Information System (INIS)

    Sathi Sasidharan, N.; Deshingkar, D.S.; Wattal, P.K.

    2004-07-01

    The spent IX resins containing radioactive fission and activation products from power reactors are highly active solid wastes generated during operations of nuclear reactors. Process for carbonization of IX resins to achieve weight and volume reduction has been optimized on 50 dm 3 /batch pilot test rig. The process generates carbonaceous residue, organic liquid condensates (predominantly styrene) and aqueous alkaline scrubber solutions as secondary wastes. The report discusses laboratory tests on leaching of 137 Cs from cement matrix incorporating carbonaceous residues and extrapolation of results to 200 liter matrix block. The cumulative fraction of 137 Cs leached from 200 liter cement matrix was estimated to be 0.0021 in 200 days and 0.0418 over a period of 30 years. Incorporation of organic liquid condensates into cement matrix has been tried out successfully. Thus two types of secondary wastes generated during carbonization of spent IX resins can be immobilized in cement matrix. (author)

  13. Conventional dual-cure versus self-adhesive resin cements in dentin bond integrity

    Directory of Open Access Journals (Sweden)

    Renata Andreza Talaveira da Silva

    2011-08-01

    Full Text Available During post preparation, the root canal is exposed to the oral cavity, and endodontic treatment may fail because of coronal leakage, bacterial infection and sealing inability of the luting cement. OBJECTIVE: this study quantified the interfacial continuity produced with conventional dual-cure and self-adhesive resin cements in the cervical (C, medium (M and apical (A thirds of the root. MATERIAL AND METHODS: Forty single-rooted human teeth were restored using Reforpost # 01 conical glass-fiber posts and different materials (N=10 per group: group AC=Adper™ ScotchBond™ Multi-purpose Plus + AllCem; group ARC=Adper™ ScotchBond™ Multi-purpose Plus + RelyX ARC; group U100=RelyX U100; and group MXC=Maxcem Elite. After being kept in 100% humidity at 37°C for 72 hours, the samples were sectioned parallel to their longitudinal axis and positive epoxy resin replicas were made. The scanning electron micrographs of each third section of the teeth were combined using Image Analyst software and measured with AutoCAD-2002. We obtained percentage values of the interfacial continuity. RESULTS: Interfacial continuity was similar in the apical, medium and cervical thirds of the roots within the groups (Friedman test, p>0.05. Comparison of the different cements in a same root third showed that interfacial continuity was lower in MXC (C=45.5%; M=48.5%; A=47.3% than in AC (C=85.9%, M=81.8% and A=76.0%, ARC (C=83.8%, M=82.4% and A=75.0% and U100 (C=84.1%, M=82.4% and A=77.3% (Kruskal-Wallis test, p<0.05. CONCLUSIONS: Allcem, Rely X ARC and U100 provide the best cementation; cementation was similar among root portions; in practical terms, U100 is the best resin because it combines good cementation and easy application and none of the cements provides complete interfacial continuity.

  14. Influence of light-curing units and restorative materials on the micro hardness of resin cements

    Directory of Open Access Journals (Sweden)

    Kuguimiya Rosiane

    2010-01-01

    Full Text Available Aim: The aim of this study was to evaluate the effect of indirect restorative materials (IRMs and light-curing units (LCUs on the micro hardness of dual-cured resin cement. Materials and Methods: A total of 36 cylindrical samples (2 mm thick were prepared with dual-cured resin cement (Relyx ARC photo-activated with either a QTH (Optilight Plus for 40s or a LED (Radii light-curing unit for 65s. Photo-activation was performed through the 2-mm- thick IRMs and the samples were divided into six groups (n=6 according to the combination of veneering materials (without, ceramic and indirect resin and LCUs (QTH and LED. In the control group, the samples were light-cured with a QTH unit without the interposition of any restorative material. Vickers micro hardness test was performed on the top and bottom surfaces of each sample (load of 50 g for 15 secs. The data were statistically analyzed using a three-way ANOVA followed by Tukey x s post-hoc test ( P < 0.05. Results: There were no statistically significant differences on the top surface between the light curing-units ( P > 0.05; however, the LED provided greater hardness on the bottom surface when a ceramic material was used ( P < 0.05. The mean hardness in photo-activated samples, in which there was no interposition of indirect materials, was significantly greater ( P < 0.01. Conclusions: It may be concluded that the interposition of the restorative material decreased the micro hardness in the deeper cement layer. Such decrease, however, was lower when the ceramic was interposed and the cement light-cured with LED.

  15. Effects of coronal substrates and water storage on the microhardness of a resin cement used for luting ceramic crowns

    Directory of Open Access Journals (Sweden)

    Luana Menezes de MENDONÇA

    2014-07-01

    Full Text Available Composite resin and metallic posts are the materials most employed for reconstruction of teeth presenting partial or total destruction of crowns. Resin-based cements have been widely used for cementation of ceramic crowns. The success of cementation depends on the achievement of adequate cement curing. Objectives: To evaluate the microhardness of Variolink® II (Ivoclar Vivadent, Schaan, Liechtenstein, used for cementing ceramic crowns onto three different coronal substrate preparations (dentin, metal, and composite resin, after 7 days and 3 months of water storage. The evaluation was performed along the cement line in the cervical, medium and occlusal thirds on the buccal and lingual aspects, and on the occlusal surface. Material and Methods: Thirty molars were distributed in three groups (N=10 according to the type of coronal substrate: Group D- the prepared surfaces were kept in dentin; Groups M (metal and R (resin- the crowns were sectioned at the level of the cementoenamel junction and restored with metallic cast posts or resin build-up cores, respectively. The crowns were fabricated in ceramic IPS e.max® Press (Ivoclar Vivadent, Schaan, Liechtenstein and luted with Variolink II. After 7 days of water storage, 5 specimens of each group were sectioned in buccolingual direction for microhardness measurements. The other specimens (N=5 were kept stored in deionized water at 37ºC for three months, followed by sectioning and microhardness measurements. Results: Data were first analyzed by three-way ANOVA that did not reveal significant differences between thirds and occlusal surface (p=0.231. Two-way ANOVA showed significant effect of substrates (p<0.001 and the Tukey test revealed that microhardness was significantly lower when crowns were cemented on resin cores and tested after 7 days of water storage (p=0.007. Conclusion: The type of material employed for coronal reconstruction of preparations for prosthetic purposes may influence the

  16. Effect of root canal rinsing protocol on dentin bond strength of two resin cements using three different method of test.

    Science.gov (United States)

    Khoroushi, Maryam; Sheikhi, Mohammadreza; Khalilian-Gourtani, Amirhossein; Soleimani, Bahram

    2016-07-01

    Different studies have used different tests to evaluate bond strength of resin cements to root dentin. In this in vitrostudy, three different tests were used to evaluate the bond strength of two resin cements to root dentin using two root dentin irrigation protocols. Ninety-six intact single-rooted teeth were selected for this study. Forty-eight teeth, with a root length of 15mm, were randomly divided into two groups and irrigated with normal saline or 2.5% sodium hypochlorite solutions during root canal preparation, respectively. For each 12 specimens from each group, fiber post #1 was bonded using an etch-and-rinse (Duo-Link) and a self-adhesive (BisCem) resin cement, respectively. After incubation, two specimens were prepared for the push-out test from the middle thirds of the roots. In another 24 teeth, after two 1.5-mm sections were prepared from the middle thirds of the prepared roots, sections of the post were bonded in two subgroups with each of the cements mentioned above and the samples were prepared for the pull-out test. For shear test, the crowns of 48 teeth were cut away, the dentin surfaces were prepared, the two irrigation solutions were used, and the resin cements were bonded. Data collected from the three tests were evaluated by ANOVA, post-hoc Tukey and Weibull tests (α=0.05). There were significant differences in the mean bond strength values between the three bond strength tests (Pstrength in all tests (P>0.05). Under the limitations of the present study, the method of the test used had an effect on the recorded bond strength between the resin cement and root dentin. Cement type and irrigation protocol resulted in similar variations with all the tests. Push-out and shear tests exhibited more coherent results. Bond strength, endodontically treated tooth, fiber post, resin cement, sodium hypochlorite.

  17. Effect of ceramic material and resin cement systems on the color stability of laminate veneers after accelerated aging.

    Science.gov (United States)

    Lee, Seong-Min; Choi, Yu-Sung

    2018-01-05

    Laminate veneers are susceptible to color change during clinical service. Studies that compare the effects of different ceramic and resin cement systems on color stability are lacking. The purpose of this in vitro study was to evaluate the color stability of laminate veneers after accelerated aging using different ceramic and resin cement systems. Ceramic specimens (N=168; shade A1; thickness, 0.50 ±0.05 mm; diameter, 10.00 ±0.10 mm) were prepared using nanofluorapatite and lithium disilicate (high translucency [HT] to low translucency [LT]) ceramics. Light-polymerizing (LP) cements were classified by brightness (high or low). Dual-polymerizing cements were classified by composition (base-only [DB] or base-catalyst [DC]) for comparison of color stability on the basis of polymerization type. DB cement was light-polymerizing, whereas DC cement was dual-polymerizing. They were further classified by shade (transparent, white, or yellow [n=7, each]). Color difference (ΔE) values were obtained by spectrophotometric quantification of L* (lightness), a* (green-red), and b* (blue-yellow) values before and after aging. The Kruskal-Wallis, Mann-Whitney U, Wilcoxon signed rank, and Bonferroni post hoc tests were used for statistical analysis. After specimens were subjected to accelerated aging, HT ceramic specimens luted with yellow-shade DC cement exhibited the greatest color change (ΔE=2.11), whereas HT and LT ceramic specimens luted with low-brightness LP cement exhibited the least color change (ΔE=1.37). In HT ceramic specimens, which exhibited the greatest color change of the 3 ceramic types, transparent shade cement exhibited significantly lower ΔE values than the other shades with DB (Pceramics. The ΔE values of DB cement were not always lower than those of DC cement. For all specimens, the aging of laminate veneers decreased the L* values and increased the a* and b* values. Ceramic and resin-cement systems affected the color stability of laminate veneers

  18. Tensile bond strength of indirect composites luted with three new self-adhesive resin cements to dentin

    Directory of Open Access Journals (Sweden)

    Cafer Türkmen

    2011-08-01

    Full Text Available OBJECTIVE: The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. MATERIAL AND METHODS: Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group: direct composite resin restoration (Alert with etch-and-rinse adhesive system (Bond 1 primer/adhesive, Group 2: indirect composite restoration (Estenia luted with a resin cement (Cement-It combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond, Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. RESULTS: The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7 showed better results compared to the other groups (p0.05. The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. CONCLUSION: The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces.

  19. Effect of siloxane quantity and ph of silane coupling agents and contact angle of resin bonding agent on bond durability of resin cements to machinable ceramic.

    Science.gov (United States)

    Meng, Xiangfeng; Yoshida, Keiichi; Taira, Yohsuke; Kamada, Kohji; Luo, Xiaoping

    2011-02-01

    The aim of this study was to measure siloxane quantity, pH value, and resin wettability on ceramics silanized by five silane coupling agents, and to test the correlation of these parameters of silane coupling agents with bond durability between a machinable glass ceramic and resin cements. 1.5-mm-thick ceramic plates (ProCAD, Ivoclar Vivadent) were polished, cleaned, and bonded with ten combinations of five silane coupling agents (Monobond S [Ivoclar Vivadent], Rely X Ceramic Primer [3M], Clearfil Ceramic Primer [Kuraray], GC Ceramic Primer [GC], Porcelain Liner M [Sun Medical]) and two dual-curing resin cements (VariolinkII [VLII, Ivoclar Vivadent], Linkmax HV [LMHV, GC]). Their microshear bond strength was measured after 0, 10,000, and 30,000 thermal cycles. Siloxane quantity, pH value of silane coupling agents and contact angle of Heliobond (Ivoclar Vivadent) to silanized ceramic were measured using a FTIR spectrophotometer, pH-indicator strips, and a contact-angle meter, respectively. Bond strength data were analyzed by three-way ANOVA. For each cement, Pearson's correlation coefficient was calculated to analyze possible correlation between bond strength under different thermocycling conditions and absorbance peak of siloxane, pH value of silane coupling agents, and contact angle of resin to the silanized ceramic surface. The bond strength of ceramic was significantly influenced by the silane coupling agent and thermal cycles, not by resin cement. For both cements, only a negative correlation was found to be significant between the contact angle of resin to silanized ceramic surfaces and bond strength after 30,000 thermal cycles. The better the wettability of resin on different silanized ceramic surfaces could improve their bond durability.

  20. Microscopic evaluation of the human dental pulp after full crown cementation with resin cement

    OpenAIRE

    Santiago, Luiz C.; Pegoraro, Luiz F.; Consolaro, Alberto; Valle, Accácio L. do; Bonfante, Gerson

    2010-01-01

    This study evaluated microscopically the dental pulp reactions in human premolars prepared for metaloceramic crowns cemented with different luting agents and also measured the remaining dentin thickness (RDT) of the prepared teeth. Twenty-five teeth were selected from patients that needed exodontia for orthodontic reasons and were randomly divided in three groups: group 1- five teeth were not prepared to serve as a positive control group; groups - 2, and 3 the teeth were prepared for metaloce...

  1. Bracket bond strength and cariostatic potential of an experimental resin adhesive system containing Portland cement.

    Science.gov (United States)

    Iijima, Masahiro; Hashimoto, Masanori; Nakagaki, Susumu; Muguruma, Takeshi; Kohda, Naohisa; Endo, Kazuhiko; Mizoguchi, Itaru

    2012-09-01

    To determine if a new experimental resin-based material containing Portland cement (PC) can help prevent enamel caries while providing adequate shear bond strength (SBS). Brackets were bonded to human premolars with experimental resin-based adhesive pastes composed of three weight rations of resin and PC powder (PC 30, 7:3; PC 50, 5:5; PC 70, 3:7; n  =  7). Self-etching primer (SEP) adhesive (Transbond Plus) and resin-modified glass ionomer cement (RMGIC) adhesive (Fuji Ortho FC Automix) were used for comparison. All of the bonded teeth were subjected to alternating immersion in demineralizing (pH 4.55) and remineralizing (pH 6.8) solutions for 14 days. The SBS for each sample was examined, and the Adhesive Remnant Index (ARI) score was calculated. The hardness and elastic modulus of the enamel were determined by a nanoindenter at 20 equidistant depths from the external surface at 100 µm from the bracket edge. Data were compared by one-way analysis of variance and a chi-square test. PC 50 and PC 70 showed significantly greater SBS than Fuji Ortho FC Automix, although Transbond Plus showed significantly greater SBS than other bonding systems. No significant difference in the ARI category was observed among the five groups. For specimens bonded with PC 50 and PC 70, the hardness and elastic modulus values in most locations were equivalent to those of Fuji Ortho FC Automix. Experimental resin-based bonding material containing PC provides adequate SBS and a caries-preventive effect equivalent to that of the RMGIC adhesive system.

  2. Bonding effectiveness of self-adhesive and conventional-type adhesive resin cements to CAD/CAM resin blocks. Part 1: Effects of sandblasting and silanization.

    Science.gov (United States)

    Higashi, Mami; Matsumoto, Mariko; Kawaguchi, Asuka; Miura, Jiro; Minamino, Takuya; Kabetani, Tomoshige; Takeshige, Fumio; Mine, Atsushi; Yatani, Hirofumi

    2016-01-01

    The present study assessed the effect of sandblasting and silanization on resin cement bond strengths to CAD/CAM resin blocks. Twenty four blocks (KATANA AVENCIA BLOCK) were divided into two resin cement groups (PANAVIA V5 [PV5] and PANAVIA SA CEMENT HANDMIX [PSA]), and further divided into four subgroups representing different surface treatment methods: no treatment (Ctl), silanization (Si), sandblasting (Sb), and Sb+Si. After resin application, microtensile bond strengths (μTBSs) were measured immediately, 1, 3 and 6 months after water storage. In addition, surfaces resulting from each of the treatment methods were analyzed by scanning electron microscopy (SEM). Three-way analysis of variance revealed a statistically significant effect for the parameters 'surface treatment' (p<0.001, F=370), 'resin cement' (p<0.001, F=103, PSA

  3. Restoration of Strip Crown with a Resin-Bonded Composite Cement in Early Childhood Caries

    Directory of Open Access Journals (Sweden)

    Mi-ae Jeong

    2013-01-01

    Full Text Available Background. Early childhood caries is a widely prevalent disease throughout the world. It is necessary to treat this condition in early childhood; however, child behavior management may be particularly challenging during treatment. To overcome this challenge, we used Carigel to remove caries and RelyX Unicem resin cement for strip crown restoration. It not only has the desired aesthetic effect but is also more effective for primary teeth, which are used for a shorter period than permanent teeth are. Case Presentation. We report a case of three pediatric patients with early childhood caries, in whom caries was removed by using Carigel to avoid the risk of pulpal exposure associated with high-speed handpieces. Subsequently, aesthetic restoration was performed using strip crown with RelyX Unicem self-adhesive resin cement. Conclusion. RelyX Unicem has the following advantages: (1 not requiring have any special skills for the dentist for performing the procedure, (2 decreased occurrence of bubbles during injection of the cement, and (3 overall short duration of the procedure. Thus, it is appropriate for the treatment of pediatric patients whose behavior is difficult to manage. However, further studies are required in order to establish the use of RelyX Unicem as a stable restorative material in early childhood caries.

  4. Bonding of Resin Cement to Zirconia with High Pressure Primer Coating

    Science.gov (United States)

    Wang, Ying-jie; Jiao, Kai; Liu, Yan; Zhou, Wei; Shen, Li-juan; Fang, Ming; Li, Meng; Zhang, Xiang; Tay, Franklin R.; Chen, Ji-hua

    2014-01-01

    Objectives To investigate the effect of air-drying pressure during ceramic primer coating on zirconia/resin bonding and the surface characteristics of the primed zirconia. Methods Two ceramic primers (Clearfil Ceramic Primer, CCP, Kuraray Medical Inc. and Z-Prime Plus, ZPP, Bisco Inc.) were applied on the surface of air-abraded zirconia (Katana zirconia, Noritake) and dried at 4 different air pressures (0.1–0.4 MPa). The primed zirconia ceramic specimens were bonded with a resin-based luting agent (SA Luting Cement, Kuraray). Micro-shear bond strengths of the bonded specimens were tested after 3 days of water storage or 5,000× thermocycling (n = 12). Failure modes of the fractured specimens were examined with scanning electron miscopy. The effects of air pressure on the thickness of the primer layers and the surface roughness (Sa) of primed zirconia were evaluated using spectroscopic ellipsometry (n = 6), optical profilometry and environmental scanning electron microscopy (ESEM) (n = 6), respectively. Results Clearfil Ceramic Primer air-dried at 0.3 and 0.4 MPa, yielding significantly higher µSBS than gentle air-drying subgroups (pzirconia bond strength and durability significantly. Higher air-drying pressure (0.3-0.4 MPa) for CCP and intermediate pressure (0.2 MPa) for ZPP are recommended to produce strong, durable bonds between resin cement and zirconia ceramics. PMID:24992678

  5. The Effect of Color Selection on the Color Stability of the Resin Cement

    Directory of Open Access Journals (Sweden)

    Merve Çakırbay Tanış

    2017-11-01

    Full Text Available Objective: The aim of this study was to determine effect of shade selection on resin cement’s color stability. Materials and Methods: Ten resin cement samples in dimensions of 10 mm diameter and 2 mm thickness for each group [group 1: Translucent base and translucent catalyst, group 2: Bleach XL (B1 base and yellow (A3 catalyst, group 3: White (A1 base and A3 catalyst] totally 30 samples were prepared. Color coordinates of each sample were recorded after polymerization and 5000 thermal cycles. Color variation (ΔE was calculated for each sample and statistical analyses were performed. Results: The lowest ΔE values were obtained for group 1. Group 2 showed higher ΔE values than group 3 however there were no statistical difference. Conclusion: Translucent base and translucent catalyst mixture showed clinically acceptable color stability while B1 base and A3 catalyst and A1 base and A3 catalyst mixtures did not show clinically acceptable color stability. Shade of the resin cement partially effected its color stability.

  6. Effect of curing mode on the micro-mechanical properties of dual-cured self-adhesive resin cements.

    Science.gov (United States)

    Ilie, Nicoleta; Simon, Alexander

    2012-04-01

    Light supplying to luting resin cements is impeded in several clinical situations, causing us to question whether materials can properly be cured to achieve adequately (or adequate) mechanical properties. The aim of this study was therefore to analyse the effect of light on the micro-mechanical properties of eight popular dual-cured self-adhesive resin cements by comparing them with two conventional, also dual-cured, resin cements. Four different curing procedures were applied: auto-polymerisation (dark curing) and light curing (LED unit, Freelight 2, 20 s) by applying the unit directly on the samples' surface, at a distance of 5 and 10 mm. Twenty minutes after curing, the samples were stored for 1 week at 37°C in a water-saturated atmosphere. The micro-mechanical properties-Vickers hardness, modulus of elasticity, creep and elastic/plastic deformation-were measured. Data were analysed with multivariate ANOVA followed by Tukey's test and partial eta-squared statistics (p micro-mechanical properties was measured, whereas the influence of the curing procedure and type of cement-conventional or self-adhesive-was generally low. The influence of light on the polymerisation process was material dependent, with four different behaviour patterns to be distinguished. As a material category, significantly higher micro-mechanical properties were measured for the conventional compared to the self-adhesive resin cements, although this difference was low. Within the self-adhesive resin cements group, the variation in micro-mechanical properties was high. The selection of suitable resin cements should be done by considering, besides its adhesive properties, its micro-mechanical properties and curing behaviour also.

  7. Bond Strength of Resin Cement and Glass Ionomer to Nd:YAG Laser-Treated Zirconia Ceramics.

    Science.gov (United States)

    Asadzadeh, Nafiseh; Ghorbanian, Foojan; Ahrary, Farzaneh; Rajati Haghi, Hamidreza; Karamad, Reza; Yari, Amir; Javan, Abdollah

    2017-09-05

    To investigate the effect of neodymium-doped yttrium aluminum garnet (Nd:YAG) laser irradiation on the surface properties and bond strength of zirconia ceramics. Forty-eight zirconia ceramic pieces (4 × 4 × 1 mm 3 ) were divided into four groups according to surface treatment as follows: two control groups (no treatment) for resin bonding (CRC) and glass ionomer (GI) bonding (CGC); two laser treatment groups (Nd:YAG irradiation, 3 W, 200 MJ, 10 Hz, 180 μs) for resin bonding (LRC) and GI bonding (LGC). The ceramics in the control groups and the laser groups were distinguished by the application of different cements (resin cement and GI). Following surface treatments, the specimens were cemented to human dentin with resin cement and GI. After bonding, the shear bond strength (SBS) of the ceramic to dentin was measured, and the failure mode of each specimen was analyzed using a stereomicroscope. A one-way ANOVA compared the average bond strength of the four groups. Pairwise comparisons among the groups were performed using the Games-Howell test. The level of significance was set at 0.05. The means (± standard deviation) of SBS values in the CRC, CGC, LRC, and LGC groups were 3.98 ± 1.10, 1.66 ± 0.59, 10.24 ± 2.46, and 2.21 ± 0.38 MPa, respectively. Data showed that the application of the Nd:YAG laser resulted in a significantly greater SBS of the resin cement to the zirconia ceramics (p ceramic via Nd:YAG laser improves the bond strength of the resin cement to the zirconia ceramic. GI cement does not provide sufficient bond strength of zirconia ceramics to dentin. © 2017 by the American College of Prosthodontists.

  8. Effect of three endodontic sealers on the bond strength of prefabricated fiber posts luted with three resin cements.

    Science.gov (United States)

    Aleisa, Khalil; Alghabban, Rawda; Alwazzan, Khalid; Morgano, Steven M

    2012-05-01

    There is limited information in the literature regarding the effect of eugenol-based sealers on the bond strength of resin-bonded endodontic posts. The purpose of this study was to evaluate the effect of 1 resin-based and 2 different eugenol-based endodontic sealers on the bond strength of prefabricated fiber posts luted with 3 different resin cements. One hundred thirty-five prefabricated fiber posts were luted into extracted single-rooted teeth with 1 of 3 composite resin cements (Rely X Unicem, Paracore, and Variolink II). Specimens were divided into 3 groups with 45 teeth each. The first 2 groups were obturated with gutta percha and 1 of 2 eugenol-based endodontic sealers (Endofil, Tubli-Seal). The third group was obturated with a resin-based root canal sealer (AH26). The forces required for dislodgment of posts from their prepared post spaces were recorded by using a universal testing machine. Data were collected and a 2-way ANOVA was applied to the mean retentive strengths of various combinations of sealer and cement. A Tukey multiple comparison test was performed to determine which groups were significantly different (α=.05). Endofil and Tubli-Seal (eugenol-based sealers) groups had significantly lower bond strengths for the posts than the AH26 group (PParacore and Variolink II resin cements when a eugenol sealer was used. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  9. Degree of conversion of a resin cement light-cured through ceramic veneers of different thicknesses and types.

    Science.gov (United States)

    Runnacles, Patrício; Correr, Gisele Maria; Baratto Filho, Flares; Gonzaga, Carla Castiglia; Furuse, Adilson Yoshio

    2014-01-01

    During the cementation of ceramic veneers the polymerization of resin cements may be jeopardized if the ceramics attenuate the irradiance of the light-curing device. The aim of this study was to evaluate the effect of different types and thicknesses of ceramic veneers on the degree of conversion of a light-cured resin-based cement (RelyX Veneer). The cement was light-cured after interposing ceramic veneers [IPS InLine, IPS Empress Esthetic, IPS e.max LT (low translucency) and IPS e.max HT (high translucency) - Ivoclar Vivadent] of four thicknesses (0.5 mm, 1.0 mm, 1.5 mm and 2.0 mm). As control, the cement was light-cured without interposition of ceramics. The degree of conversion was evaluated by FTIR spectroscopy (n=5). Data were analyzed with one-way ANOVA and Tukey's test (α=0.05). Significant differences were observed among groups (pceramics of 0.5 mm and 1.0 mm (p>0.05). Among 1.5-mm-thick veneers, IPS e.max LT was the only one that showed different results from the control (p0.05). The degree of conversion of the evaluated light-cured resin cement depends on the thickness and type of ceramics employed when veneers thicker than 1.5 mm are cemented.

  10. Effect of Er:YAG laser irradiation on bonding property of zirconia ceramics to resin cement.

    Science.gov (United States)

    Lin, Yihua; Song, Xiaomeng; Chen, Yaming; Zhu, Qingping; Zhang, Wei

    2013-12-01

    This study aimed to investigate whether or not an erbium: yttrium-aluminum-garnet (Er:YAG) laser could improve the bonding property of zirconia ceramics to resin cement. Surface treatments can improve the bonding properties of dental ceramics. However, little is known about the effect of Er:YAG laser irradiated on zirconia ceramics. Specimens of zirconia ceramic pieces were made, and randomly divided into 11 groups according to surface treatments, including one control group (no treatment), one air abrasion group, and nine Er:YAG laser groups. The laser groups were subdivided by applying different energy intensities (100, 200, or 300 mJ) and irradiation times (5, 10, or 15 sec). After surface treatments, ceramic pieces had their surface morphology observed, and their surface roughness was measured. All specimens were bonded to resin cement. Shear bond strength was measured after the bonded specimens were stored in water for 24 h, and additionally aged by thermocycling. Statistical analyses were performed using one way analysis of variance (ANOVA) and Tukey's test for shear bond strength, and Dunnett's t test for surface roughness, with α=0.05. Er:YAG laser irradiation changed the morphological characteristics of zirconia ceramics. Higher energy intensities (200, 300 mJ) could roughen the ceramics, but also caused surface cracks. There were no significant differences in the bond strength between the control group and the laser groups treated with different energy intensities or irradiation times. Air abrasion with alumina particles induced highest surface roughness and shear bond strength. Er:YAG laser irradiation cannot improve the bonding property of zirconia ceramics to resin cement. Enhancing irradiation intensities and extending irradiation time have no benefit on the bond of the ceramics, and might cause material defect.

  11. Effects of silane application on luting fiber posts using self-adhesive resin cement.

    Science.gov (United States)

    Leme, Ariene Arcas; Pinho, André Luis; de Gonçalves, Luciano; Correr-Sobrinho, Lorenço; Sinhoreti, Mario Alexandre

    2013-06-01

    To evaluate the effects of different glass-fiber post surface treatments on the bond strength to root dentin. Fifty bovine incisors were used in this study. After removing the crowns, the teeth were endodontically treated. The roots were randomly divided into five groups according to post surface treatment. The groups were as follows: CO (Control) - no treatment; G1 - RelyX Ceramic Primer (silane) only; G2 - silane and Solobond M; G3 - silane and Scotchbond Adhesive; G4 - silane and Excite. For post cementation, RelyX Unicem was used according to the manufacturer's recommendation and the roots were stored in a light-proof container with 100% relative humidity for 24 h. The specimens were transversally sectioned. Subsequently, the cervical, middle, and apical regions of the root were positioned in a push-out device and tested at 0.5 mm/min using a universal testing machine (Instron). The data were statistically analyzed with two-way ANOVA and Tukey's post-hoc test. The fractured specimens were then observed under a stereoscopic loupe at 60X magnification. No significant difference in bond strength was found among the groups that received a silane or silane plus an adhesive system (p > 0.05). However, the CO (no silane) showed the lowest bond strength. Regarding G1, G2, G3, and G4, the cervical region of the root canal attained better bond strengths than did the middle or apical regions. The most frequent failure mode occurred at the cement/dentin interface. Silane application may be necessary to improve the adhesion of fiber posts luted with the self-adhesive resin cement evaluated here. The application of an adhesive layer between the fiber post and resin cement did not have any influence on the bond strength when the silane coupling was previously used.

  12. Influence of resin cement shade on the color and translucency of ceramic veneers

    Directory of Open Access Journals (Sweden)

    Daiana Kelly Lopes HERNANDES

    Full Text Available ABSTRACT Objective This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3 layer on color change, translucency parameter (TP, and chroma of low (LT and high (HT translucent reinforced lithium disilicate ceramic laminates. Material and Methods One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B and white (W background readings was used for TP analysis, while chroma was calculated by the formula C*ab=(a*2+b*2½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. Results HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Conclusions Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable.

  13. Influence of resin cement shade on the color and translucency of ceramic veneers.

    Science.gov (United States)

    Hernandes, Daiana Kelly Lopes; Arrais, Cesar Augusto Galvão; Lima, Erick de; Cesar, Paulo Francisco; Rodrigues, José Augusto

    2016-01-01

    This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3) layer on color change, translucency parameter (TP), and chroma of low (LT) and high (HT) translucent reinforced lithium disilicate ceramic laminates. One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent) was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick) under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE) of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B) and white (W) background readings was used for TP analysis, while chroma was calculated by the formula C*ab=(a*2+b*2)½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable.

  14. Effects of curing protocol and storage time on the micro-hardness of resin cements used to lute fiber-reinforced resin posts

    Science.gov (United States)

    RAMOS, Marcelo Barbosa; PEGORARO, Thiago Amadei; PEGORARO, Luiz Fernando; CARVALHO, Ricardo Marins

    2012-01-01

    Objectives To determine the micro-hardness profile of two dual cure resin cements (RelyX - U100®, 3M-ESPE and Panavia F 2.0®, Kuraray) used for cementing fiber-reinforced resin posts (Fibrekor® - Jeneric Pentron) under three different curing protocols and two water storage times. Material and methods Sixty 16mm long bovine incisor roots were endodontically treated and prepared for cementation of the Fibrekor posts. The cements were mixed as instructed, dispensed in the canal, the posts were seated and the curing performed as follows: a) no light activation; b) light-activation immediately after seating the post, and; c) light-activation delayed 5 minutes after seating the post. The teeth were stored in water and retrieved for analysis after 7 days and 3 months. The roots were longitudinally sectioned and the microhardness was determined at the cervical, middle and apical regions along the cement line. The data was analyzed by the three-way ANOVA test (curing mode, storage time and thirds) for each cement. The Tukey test was used for the post-hoc analysis. Results Light-activation resulted in a significant increase in the microhardness. This was more evident for the cervical region and for the Panavia cement. Storage in water for 3 months caused a reduction of the micro-hardness for both cements. The U100 cement showed less variation in the micro-hardness regardless of the curing protocol and storage time. Conclusions The micro-hardness of the cements was affected by the curing and storage variables and were material-dependent. PMID:23138743

  15. Influence of the color of composite resin foundation and luting cement on the final color of lithium disilicate ceramic systems.

    Science.gov (United States)

    Dede, Doğu Ömür; Sahin, Onur; Özdemir, Oğuz Süleyman; Yilmaz, Burak; Celik, Ersan; Köroğlu, AySegül

    2017-01-01

    Lithium disilicate restorations are commonly used, particularly in the anterior region. The color of the underlying composite resin foundation (CRF) and luting cement may negatively affect the color of lithium disilicate ceramic restorations. The purpose of this in vitro study was to investigate the effect of CRF and resin cement materials on the color of lithium disilicate ceramics in 2 different translucencies. Twenty disks (11×1.5 mm, shade A2) were fabricated from medium-opacity (mo) (n=10) and high-translucency (ht) (n=10) lithium disilicate (Lds) blocks (IPS e.max Press). Five CRF disks (11×3 mm) were fabricated in 5 different shades (A1, A2, A3, B2, C2) and 30 resin cement disks (11×0.2 mm) in the shades of translucent (Tr), universal (Un=A2), and white-opaque (Wo). Ceramic specimens were placed on each CRF, and the resin cement combination and color was measured with a spectrophotometer. CIELAB color coordinates were recorded, and the color coordinates of both ceramics on the shades of the A2 CRF and resin cement were saved as the control. Color differences (ΔE 00 ) between the control and test groups were calculated. Data were analyzed with 3-way analysis ANOVA and compared with the Tukey HSD test (α=.05). The ΔE 00 values were influenced by the shades of the CRF, resin cement materials, and also their interactions (Pceramic type. The ΔE 00 values of the Wo cement groups (1.73 to 2.96) were significantly higher than those of the other cement shades (0.88 to 1.29) for each ceramic type and CRF shade (Pceramics in 2 different translucencies were similarly influenced by the color of the underlying cement and CRF. When translucent and universal cement shades were used, the core shade did not affect the final color of the ceramics. White opaque cement caused clinically unacceptable color changes in both ceramics on all shades of CRFs except the C2 CRF and when high translucency ceramic was used on the A2 CRF. These changes were clinically acceptable

  16. Effect of Steam Autoclaving on the Tensile Strength of Resin Cements Used for Bonding Two-Piece Zirconia Abutments.

    Science.gov (United States)

    Fadanelli, Marcos Alexandre; Amaral, Flávia Lucisano Botelho do; Basting, Roberta Tarkany; Turssi, Cecilia Pedroso; Sotto-Maior, Bruno Salles; França, Fabiana Mantovani Gomes

    2017-04-01

    The purpose of this study was to evaluate the effects of steam autoclave sterilization on the tensile strength of two types of resin cements used to bond customized CAD/CAM zirconia abutments onto titanium bases. Forty sets of zirconia abutments cemented to screwed titanium bases of implants analogs were divided into 4 groups (n = 10). Two groups were treated with a conventional chemically activated resin cement (ML, Multilink Ivoclar Vivadent) and the other two groups with a self-adhesive dual resin cement (RelyX U200, 3M ESPE). One group from each cement was submitted to steam autoclaving. The autoclave sterilization cycle was performed after 72 hours of cementation for 15 minutes at 121°C and 2.1 Kgf/cm 2 . The samples were subjected to tensile strength testing in a universal testing machine (200 Kgf, 0.5 mm/min), from which the means and standard deviations were obtained in Newtons. Results showed (via ANOVA and Tukey's test; α = 0.05) that in the absence of steam autoclaving, no difference was observed in tensile strength between the cements tested: ML: 344.87 (93.79) and U200: 280 (92.42) (P = .314). Steam autoclaving, however, significantly increased tensile strength for the ML: 465.42 (87.87) compared to U200: 289.10 (49.02) (P 0.05). The authors concluded that steam autoclaving increases the mean tensile strength of the chemically activated cement compared to the dual-cure self-adhesive cement. The performance of both cements evaluated was similar if the sterilization step was disconsidered.

  17. Evaluation of bond strength between leucite-based and lithium disilicate-based ceramics to dentin after cementation with conventional and self-adhesive resin agents.

    Science.gov (United States)

    Rigolin, Fernando J; Miranda, Milton E; Flório, Flávia M; Basting, Roberta T

    2014-01-01

    The aim of this study was to compare the microtensile bond strength of two heat-pressed ceramics (leucite-based--IPS Empress Esthetic/Ivoclar Vivadent, and lithium disilicate-based --IPS e.max Press/Ivoclar Vivadent) to dentin with the use of conventional and self-adhesive resin cements. The occlusal surface of 60 intact human molars was removed and the dentin was exposed. Ceramic blocks were cemented randomly with regard to the cementation systems (n = 10): conventional dual resin cement (Variolink II/Ivoclar Vivadent), conventional self-polymerizing resin cement (Multilink/Ivoclar Vivadent), and dual self-adhesive resin cement (RelyX U100/3M ESPE). The dual cementation systems were photoactivated with a LED light device (Radii Cal, SDI) for 40 seconds. The specimens were sectioned to obtain sticks of approximately 1 mm2 for microtensile tests on a universal testing machine (EMIC). The type of fracture was analyzed under a scanning electron microscope. The Analysis of Variance (ANOVA) and the Tukey test (alpha = 0.05) showed that there was no difference between types of ceramic. Average microtensile bond strength was higher for the conventional dual resin cement (Variolink II) and the self-adhesive dual resin cement (RelyX U100), despite greater prevalence of premature loss of the sticks with the latter. Average bond strength was lower when the conventional self-polymerizing resin cement (Multilink) was used. Leucite-based and lithium disilicate-based cements present similar bond strength to the dentin with conventional dual resin cement (Variolink II) and a dual self-adhesive cement (RelyX U100).

  18. Bond strength of resin cement to CO2 and Er:YAG laser-treated zirconia ceramic

    Directory of Open Access Journals (Sweden)

    Shahin Kasraei

    2014-11-01

    Full Text Available Objectives It is difficult to achieve adhesion between resin cement and zirconia ceramics using routine surface preparation methods. The aim of this study was to evaluate the effects of CO2 and Er:YAG laser treatment on the bond strength of resin cement to zirconia ceramics. Materials and Methods In this in-vitro study 45 zirconia disks (6 mm in diameter and 2 mm in thickness were assigned to 3 groups (n = 15. In control group (CNT no laser treatment was used. In groups COL and EYL, CO2 and Er:YAG lasers were used for pretreatment of zirconia surface, respectively. Composite resin disks were cemented on zirconia disk using dual-curing resin cement. Shear bond strength tests were performed at a crosshead speed of 0.5 mm/min after 24 hr distilled water storage. Data were analyzed by one-way ANOVA and post hoc Tukey's HSD tests. Results The means and standard deviations of shear bond strength values in the EYL, COL and CNT groups were 8.65 ± 1.75, 12.12 ± 3.02, and 5.97 ± 1.14 MPa, respectively. Data showed that application of CO2 and Er:YAG lasers resulted in a significant higher shear bond strength of resin cement to zirconia ceramics (p < 0.0001. The highest bond strength was recorded in the COL group (p < 0.0001. In the CNT group all the failures were adhesive. However, in the laser groups, 80% of the failures were of the adhesive type. Conclusions Pretreatment of zirconia ceramic via CO2 and Er:YAG laser improves the bond strength of resin cement to zirconia ceramic, with higher bond strength values in the CO2 laser treated samples.

  19. The Effect of Lithium Disilicate Ceramic Thickness and Translucency on Shear Bond Strength of Light-cured Resin Cement

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Moghaddas

    2017-09-01

    Full Text Available Introduction: To achieve acceptable clinical performance, a ceramic veneer must be bonded to enamel by well-polymerized resin cement. Among different factors, thickness and translucency of the ceramic may affect the resin cement polymerization. Thus, the current study evaluated the effect of the thickness and translucency of lithium disilicate ceramic on light-cured resin cement bond strength to enamel. Methods: In this laboratory study, 208 sound bovine incisors were equally divided into 16 groups (n = 13. The lithium disilicate ceramic cubes in four thicknesses (0.4, 0.6, 0.8 and 1 mm with four translucencies (high and medium opaque, high and low translucent were fabricated and bonded to prepared enamel surfaces using a light-cured translucent resin cement according to manufacturer recommendations. After 5000 cycles of thermocycling, the bonded specimens were placed in a universal testing machine and loaded to the point of fracture. To determine the mode of failure, each sample was observed under a stereomicroscope. Data were recorded and analyzed by Shapiro-Wilk test and two-way analysis of variance (ANOVA. Results: The ceramic thickness and translucency could not significantly affect shear bond strength (SBS of resin cement to enamel (p = 0.17 and p = 0.097, respectively.  The Adhesive and ceramic cohesive failures were reported as the maximum and minimum mode of failure, respectively. Conclusion: The SBS of the light-cured resin cement bonding to enamel and lithium disilicate ceramic was not affected by the translucency of ceramics having a thickness of less than 1 mm.

  20. Effects of coronal substrates and water storage on the microhardness of a resin cement used for luting ceramic crowns.

    Science.gov (United States)

    Mendonça, Luana Menezes de; Pegoraro, Luiz Fernando; Lanza, Marcos Daniel Septímio; Pegoraro, Thiago Amadei; Carvalho, Ricardo Marins de

    2014-01-01

    Composite resin and metallic posts are the materials most employed for reconstruction of teeth presenting partial or total destruction of crowns. Resin-based cements have been widely used for cementation of ceramic crowns. The success of cementation depends on the achievement of adequate cement curing. To evaluate the microhardness of Variolink® II (Ivoclar Vivadent, Schaan, Liechtenstein), used for cementing ceramic crowns onto three different coronal substrate preparations (dentin, metal, and composite resin), after 7 days and 3 months of water storage. The evaluation was performed along the cement line in the cervical, medium and occlusal thirds on the buccal and lingual aspects, and on the occlusal surface. Thirty molars were distributed in three groups (N=10) according to the type of coronal substrate: Group D- the prepared surfaces were kept in dentin; Groups M (metal) and R (resin)- the crowns were sectioned at the level of the cementoenamel junction and restored with metallic cast posts or resin build-up cores, respectively. The crowns were fabricated in ceramic IPS e.max® Press (Ivoclar Vivadent, Schaan, Liechtenstein) and luted with Variolink II. After 7 days of water storage, 5 specimens of each group were sectioned in buccolingual direction for microhardness measurements. The other specimens (N=5) were kept stored in deionized water at 37ºC for three months, followed by sectioning and microhardness measurements. Data were first analyzed by three-way ANOVA that did not reveal significant differences between thirds and occlusal surface (p=0.231). Two-way ANOVA showed significant effect of substrates (presin cores and tested after 7 days of water storage (p=0.007). The type of material employed for coronal reconstruction of preparations for prosthetic purposes may influence the cement properties.

  1. Resistance to bond degradation between dual-cure resin cements and pre-treated sintered CAD-CAM dental ceramics.

    Science.gov (United States)

    Osorio, Raquel; Castillo-de Oyagüe, Raquel; Monticelli, Francesca; Osorio, Estrella; Toledano, Manuel

    2012-07-01

    To evaluate the bond stability of resin cements when luted to glass-reinforced alumina and zirconia CAD/CAM dental ceramics. Eighteen glass-infiltrated alumina and eighteen densely sintered zirconia blocks were randomly conditioned as follows: Group 1: No treatment; Group 2: Sandblasting (125 µm Al₂O₃-particles); and Group 3: Silica-coating (50 µm silica-modified Al₂O₃-particles). Composite samples were randomly bonded to the pretreated ceramic surfaces using different resin cements: Subgroup 1: Clearfil Esthetic Cement (CEC); Subgroup 2: RelyX Unicem (RXU); and Subgroup 3: Calibra (CAL). After 24 h, bonded specimens were cut into 1 ± 0.1 mm² sticks. One-half of the beams were tested for microtensile bond strength (MTBS). The remaining one-half was immersed in 10 % NaOCl aqueous solution (NaOClaq) for 5 h before testing. The fracture pattern and morphology of the debonded surfaces were assessed with a field emission gun scanning electron microscope (FEG-SEM). A multiple ANOVA was conducted to analyze the contributions of ceramic composition, surface treatment, resin cement type, and chemical challenging to MTBS. The Tukey test was run for multiple comparisons (p Resin-ceramic interfacial longevity depended on cement selection rather than on surface pre-treatments. The MDP-containing and the self-adhesive resin cements were both suitable for luting CAD/CAM ceramics. Despite both cements being prone to degradation, RXU luted to zirconia or untreated or sandblasted alumina showed the most stable interfaces. CAL experimented spontaneous debonding in all tested groups.

  2. Influence of light curing unit and ceramic thickness on temperature rise during resin cement photo-activation.

    Science.gov (United States)

    Guiraldo, Ricardo Danil; Consani, Simonides; Mastrofrancisco, Sarina; Consani, Rafael Leonardo Xediek; Sinhoreti, Mario Alexandre Coelho; Correr-Sobrinho, Lourenço

    2008-11-01

    The aim of this study was to determine the effect of different ceramic thickness on heat generation during resin cement photo-activation by QTH (quartz-tungsten-halogen), LED (light emitting diode), and PAC (plasma arc-curing) LCUs (light curing units). The resin cement used was Rely X ARC (3M-ESPE), and the ceramic was IPS Empress Esthetic (Ivoclar-Vivadent), of which 0.7-, 1.4- and 2.0-mm thick disks, 0.8 mm in diameter were made. Temperature increase was recorded with a type-K thermocouple connected to a digital thermometer (Iopetherm 46). An acrylic resin base was built to guide the thermocouple and support the 1.0-mm thick dentin disk. A 0.1-mm thick black adhesive paper matrix with a perforation 6 mm in diameter was placed on the dentin to contain the resin cement and support the ceramic disks of different thicknesses. Three LCUs were used: QTH, LED and PAC. Nine groups were formed (n=10) according to the interaction: 3 ceramic thicknesses, 1 resin cement and 3 photo-activation methods. Temperature increase data were submitted to Tukey's test (5%). For all ceramic thicknesses, a statistically significant difference in temperature increase was observed among the LCUs, with the highest mean value for the QTH LCU (p0.05). The interaction of higher energy density with smaller ceramic thickness showed higher temperature increase values.

  3. Leaching behavior of 60Co and 137Cs from spent ion exchange resins in cement-bentonite clay matrix

    Science.gov (United States)

    Plecas, Ilija; Pavlovic, Radojko; Pavlovic, Snezana

    2004-05-01

    The leach rate of 60Co and 137Cs from two different ion exchange resins: (a) spent cation exchange resins and (b) spent mix bead ion exchange resins in cement-bentonite matrix has been studied. The solidification matrix was a standard Portland cement mixed with 290-350 kg/m 3 spent cation exchange resins, with or without 2-5% of bentonite clay. The leach rates from the cement-bentonite matrix as 60Co: (4.2-7.3) × 10 -5 cm/d, and for 137Cs: (3.2-6.6) × 10 -5 cm/d, after 245 days were measured. From the leaching data the apparent diffusivity of cobalt and cesium in cement-bentonite clay matrix with a waste load of 290-350 kg/m 3 spent cation exchange resins was measured as 60Co: (1.0-4.0) × 10 -6 cm 2/d and for 137Cs: (0.5-2.6) × 10 -4 cm 2/d after 245 days. These results are part of a 20-year mortar and concrete testing project which will influence the design of radioactive waste management for a future Serbian radioactive waste disposal center.

  4. The physics of water sorption by resin-modified glass-ionomer dental cements.

    Science.gov (United States)

    Nicholson, J W

    1997-11-01

    The water-sorption characteristics of two commercial resin-modified glass-ionomer dental cements (Baseline VLC, ex. Detrey Dentsply, and Vitremer lining cement, ex. 3M Dental Products) have been studied in more detail than previously. Water sorption in both cements proved to be rapid, reaching equilibrium at approximately 48 h for Baseline VLC and at approximately 10 d for Vitremer. Over the first 8 h or so, absorption was shown to follow Fick's law, with a diffusion coefficient of 1.56x10(-7) cm2 s(-1) for Baseline VLC (cured for 20 s) and 5.09x10(-7) cm2 s(-1) for Vitremer (also cured for 20 s). As expected, sorption of water was found to be faster in specimens cured for shorter cure times and slower for those cured for longer times. In the presence of sodium chloride, both at 0.9% and at 1 M, diffusion coefficients were significantly greater than in pure water, but did not vary significantly with sodium chloride concentration, being approximately 3.3x10(-7) cm2 s(-)1 for Baseline VLC and 8.0x10(-7) cm2 s(-1) for Vitremer. This is attributed to conformational changes in hydrophilic segments of the polymer on absorption of aqueous sodium chloride in which the molecules form more compact coils than in the presence of pure water. They thus create a microstructure that is more permeable to water. Sorption in salt solutions became non-Fickian much sooner than in pure water, i.e. at 3-4 h for both cements. This is probably due to concentration changes of salt within the cement, suggesting that these materials possess a degree of permselectivity. Finally, equilibrium water uptakes varied with salt concentration, being least in 1 M NaCl, which reflects the different chemical potentials of water in the various storage media.

  5. Effect of newly Developed Resin Cements and Thermocycling on the Strength of Porcelain Laminate Veneers.

    Science.gov (United States)

    Alqahtani, Fawaz I

    2017-03-01

    The aim of this study was to determine the effect of different luting cements and accelerated artificial aging (AAA) in the fracture resistance of porcelain laminate veneers (PLVs). A total of 80 disc-shaped specimens were prepared using computer-aided design/computer-aided milling technology from lithium disilicate glass-ceramic blocks. Specimens (0.5 mm thick, 10 mm diameter) were divided into eight groups of 10 specimens per group. The control groups consisted of specimens without cement and not subjected to AAA (CN group) and specimens prepared without cement but subjected to AAA (CW group). The experimental groups were subjected to AAA and cemented with Variolink Veneer, Variolink Esthetic LC, Variolink Esthetic DC, RelyX Unicem, RelyX Veneer, or RelyX Ultimate. Specimens were individually tested for biaxial flexure on a universal testing machine. One-way analysis of variance and the Tukey's post hoc test were used to compare the groups' significance statistically (α = 0.05). The loads to fracture (LTF) values in the CN group were higher than those in the CW and experimental groups. The lowest LTF value was in the CW group (31.5 ± 9.5 N) and the highest LTF value in the CN group (56.7 ± 10.6 N). Tukey's post hoc test demonstrated a statistically significant (p aging had a significant effect on the LTF value of the tested specimens compared with the resin cements used. Cohesive failure within the PLVs was the most common mode of failure. Fatigue strength of dental ceramics and moisture was shown to affect the mechanical properties of all-ceramic restorations. All-ceramic material is extremely sensitive to humidity and thermocycling.

  6. Surface pH of resin-modified glass polyalkenoate (ionomer) cements.

    Science.gov (United States)

    Woolford, M J; Chadwick, R G

    1992-12-01

    The recently developed group of materials known as light-activated, or resin-modified, glass polyalkenoate (ionomer) cements have been produced in response to clinical demands for a command set cavity base material. This study monitored the surface pH of three commercially available resin-modified glass ionomer cements over a 60-min period following either mixing alone or mixing followed by a 30-s exposure to a curing lamp. The results indicate that each material behaves in a unique manner. For all materials and conditions the pH reached after a 60-min period was significantly (P pH of two of the materials (Baseline VLC and Vitrebond) as compared to the same materials in the uncured state. In the case of XR-Ionomer, however, no significant (P > 0.05) effect of light curing upon the surface pH was apparent. The precise clinical consequences of a low surface pH are unclear but may be an aetiological factor in postoperative pulpal sensitivity. It is therefore recommended that a sublining of a proprietary calcium hydroxide lining material should be placed routinely beneath these materials and every effort made to ensure effective light curing.

  7. Influence of the interposition of ceramic spacers on the degree of conversion and the hardness of resin cements.

    Science.gov (United States)

    Calgaro, Patricia Angélica Milani; Furuse, Adilson Yoshio; Correr, Gisele Maria; Ornaghi, Bárbara Pick; Gonzaga, Carla Castiglia

    2013-01-01

    This study evaluated: I) the effect of photo-activation through ceramics on the degree of conversion (DC) and on the Knoop hardness (KHN) of light- and dual-cured resin cements; and II) two different protocols for obtaining the spectra of uncured materials, to determine the DC of a dual-cured resin cement. Thin films of cements were photo-activated through ceramics [feldspathic porcelain (FP); lithium disilicate glass-ceramics of low translucency (e.max-LT), medium opacity (e.max-MO) and high translucency (e.max-HT); glass-infiltrated alumina composite (IC) and polycrystalline zirconia (ZR)] with thicknesses of 1.5 and 2.0 mm. DC was analyzed by Fourier transform infrared (FTIR) spectroscopy. Two protocols were used to obtain the spectra of the uncured materials: I) base and catalyst pastes were mixed, and II) thin films of base and catalyst pastes were obtained separately, and an average was obtained. KHN assessment was performed with cylindrical specimens. The results were analyzed by ANOVA and Tukey's test (α= 0.05). The light-cured cement showed higher DC (61.9%) than the dual-cured cement (55.7%). The DC varied as follows: FP (65.4%), e.max-HT (65.1%), e.max-LT (61.8%), e.max-MO (60.9%), ZR (54.8%), and IC (44.9%). The light-cured cement showed lower KHN (22.0) than the dual-cured (25.6) cement. The cements cured under 1.5 mm spacers showed higher KHN (26.2) than when polymerized under 2.0 mm ceramics (21.3). Regarding the two protocols, there were significant differences only in three groups. Thus, both methods can be considered appropriate. The physical and mechanical properties of resin cements may be affected by the thickness and microstructure of the ceramic material interposed during photo-activation.

  8. Effect of adhesive cements on reduction of microleakage at the amalgam/composite-resin interface

    Directory of Open Access Journals (Sweden)

    Khoroushi M

    2007-05-01

    Full Text Available Background and Aim: Patients always complain about metallic color of amalgam restorations. Covering amalgam by composite can solve this problem. Since polymerization shrinkage is a serious shortcoming in composites, application of the combined amalgam and composite restoration is one of the methods to reduce leakage in the cervical margins of posterior restorations. The aim of this invitro study was to evaluate the microleakage of amalgam/composite interface when Rely-X ARC adhesive resin cement was used in the joint. Materials and Methods: Twenty-four sound extracted premolars were chosen. Mesial and distal class II conventional cavities were prepared and the samples were divided into 4 groups of 12. In all groups, the bases of the cavities were restored with amalgam and then the remaining part was filled by composite resin. Specimens in groups 1 and 2 were restored with composite-resin, immediately after condensing amalgam without or with application of Rely-X ARC (3M, ESPE respectively. In groups 3 and 4, composite resin were applied 24 hours after condensation of amalgam, without or with application of Rely-X ARC respectively. After polishing and thermocycling, all specimens were prepared for dye penetration and the degree of leakage was scored and analyzed using Kruskall Wallis test with p<0.05 as the level of significance. Results: The frequency of dye penetration in different groups was obtained. The most and the least scores were observed in groups 3 and 4 respectively. No statistically significant difference was observed in different methods. Conclusion: None of the methods in this study could seal the amalgam/composite-resin interface.

  9. Tensile bond strength of an adhesive resin cement to different alloys having various surface treatments.

    Science.gov (United States)

    Abreu, Amara; Loza, Maria A; Elias, Augusto; Mukhopadhyay, Siuli; Looney, Stephen; Rueggeberg, Frederick A

    2009-02-01

    The ability of a resin cement to bond to a restorative alloy is critical for maximal crown retention to nonideal preparations. Surface treatment and metal type may have an important role in optimizing resin-to-metal strength. The purpose of this study was to examine the effect of surface pretreatment on the tensile strength of base and noble metals bonded using a conventional resin cement. Cylindrical plastic rods (9.5 mm in diameter), cast in base (Rexillium NBF) or noble metal (IPS d.SIGN 53), were divided into rods 10 mm in length (n=10-12). Specimens were heated in a porcelain furnace to create an oxide layer. Test specimens were further subjected to airborne-particle abrasion (50-microm Al(2)O(3) particles) alone or with the application of a metal primer (Alloy Primer). Similarly treated rod ends were joined using resin cement (RelyX ARC), thermocycled (x500, 5 degrees -55 degrees C) and stored (24 hours, 37 degrees C) before debonding using a universal testing machine. Debond strength and failure site were recorded. Rank-based ANOVA for unbalanced designs was used to test for significant interaction (alpha=.050). Each pair of treatments was compared separately for each metal (Bonferroni-adjusted significance level of .0083, overall error rate for comparisons, .05). The 2 metals were compared separately for each of the 3 treatments using an adjusted significance level of .017, maintaining an overall error rate of .05. A multinomial logit model was used to describe the effect of metal type and surface pretreatment on failure site location (alpha=.05). Interaction between metal type and surface pretreatment was significant for stress values (P=.019). Metal type did not significantly affect tensile bond strength for any of the compared surface pretreatments. Metal primer significantly improved tensile bond strength for each metal type. Most failures tended to occur as either adhesive or mixed in nature. Metal primer application significantly enhanced tensile bond

  10. Shear bond strength evaluation of resin composite bonded to three different liners: TheraCal LC, Biodentine, and resin-modified glass ionomer cement using universal adhesive: An in vitro study

    OpenAIRE

    Deepa, Velagala L; Dhamaraju, Bhargavi; Bollu, Indira Priyadharsini; Balaji, Tandri S

    2016-01-01

    Aims: To compare and evaluate the bonding ability of resin composite (RC) to three different liners: TheraCal LC TM (TLC), a novel resin-modified (RM) calcium silicate cement, Biodentine TM (BD), and resin-modified glass ionomer cement (RMGIC) using an universal silane-containing adhesive and characterizing their failure modes. Materials and Methods: Thirty extracted intact human molars with occlusal cavity (6-mm diameter and 2-mm height) were mounted in acrylic blocks and divided into th...

  11. Effect of Resin Cement Mixing Method on the Retention Strength of a CAD/CAM Zirconia Crowns

    OpenAIRE

    Sadighpour, Leyla; Fazel, Akbar; Geramipanah, Farideh; Allahdadi, Mahdi

    2014-01-01

    Several treatments have been suggested to improve the retention of zirconia-based restorations luted with different cements. Resin cements are believed to improve crown retention under certain circumstances. The aim of the present study was to examine the effect of three cements with different mixing methods on the retention of CAD/CAM zirconia crowns. Thirty extracted human molars were randomly divided into three groups and prepared for all-ceramic crowns (6° taper, 4-mm height and a 1.2 mm ...

  12. Influence of activation mode of resin cement on the shade of porcelain veneers.

    Science.gov (United States)

    Magalhães, Ana Paula Rodrigues; Cardoso, Paula de Carvalho; de Souza, João Batista; Fonseca, Rodrigo Borges; Pires-de-Souza, Fernanda de Carvalho Panzeri; Lopez, Lawrence Gonzaga

    2014-06-01

    The aim of this study was to evaluate the influence of resin luting cement's activation mode in the final shade of porcelain veneers after accelerated artificial aging (AAA). Porcelain veneers (IPS Empress Esthetic) were produced using a standardized shade (ET1) and thickness (0.6 mm). Twenty bovine teeth were collected, prepared, and divided into two groups: group I (n = 10)-light-cured group, only base paste was applied to the veneers; group II (n = 10)-dual-cured group, in which the same base paste used in group I and a transparent catalyst were proportionally mixed for 20 seconds and then applied to the veneers. The specimens were light-cured for 60 seconds each and were next subjected to AAA. They were submitted to color readings with a spectrophotometer in three instances: in the tooth surface (only the substrate), after the cementation and polymerization of the veneers, and after the AAA. The values of L*, a*, and b* were obtained and the total color change was calculated (∆E*). Values obtained were subjected to statistical analysis, with a significance of 0.05. There were no significant differences between dual- and light-cured modes considering ∆E*, L*, a*, and b* values obtained after aging (p > 0.05). Within the dual-cured mode there were no significant differences in ∆E*, L*, a*, and b* values (p > 0.05). No relevant differences were found between the two activation modes in color change. When submitted to aging, dual- and light-cured modes of the resin cement showed visually perceptible (∆E* > 1.0) color changes; however, within the threshold of clinical acceptance (∆E* > 3.3). © 2013 by the American College of Prosthodontists.

  13. Optical fiber sensors and their application in monitoring stress build-up in dental resin cements

    Science.gov (United States)

    Ottevaere, H.; Tabak, M.; Fernandez Fernandez, A.; Berghmans, F.; Thienpont, H.

    2005-09-01

    The field of optical fiber sensing is highly diverse and this diversity is perceived as a great advantage over more conventional sensors in that an optical sensor can be tailored to measure any of a myriad of physical parameters. In this paper we present a niche application for optical fiber sensors in the domain of biophotonics, namely the monitoring of stress build-up during the curing process of dental resin cements. We discuss the origin of this stress build-up and the problems it can cause when treating patients. Optical fiber sensors aim at excelling in two kind of applications: firstly to perform quality control on batch produced dental cements and measure their total material shrinkage, secondly to monitor the hardening of the cement during in-vivo measurements resulting in the dynamic measurement of the shrinkage and to control the stress in a facing based restoration. We therefore investigated two types of optical fiber sensors as alternatives to conventional measurement techniques; namely polarimetric optical fiber sensors and fiber Bragg gratings written in polarization maintaining fibers. After discussing the results obtained with both optical fiber sensors, we will conclude with a critical assessment of the suitability of the two proposed sensing configurations for multi-parameter stress monitoring.

  14. Histological assessment of pulpal responses to resin modified glass ionomer cements in human teeth

    Directory of Open Access Journals (Sweden)

    Ali Eskandarizadeh

    2015-01-01

    Full Text Available Background: The biocompatibility of resin-modified glass ionomers (RMGIs as a lining material is still under question. The present study evaluated the response of the pulp-dentin complex following application of resin-modified glass-ionomer cement, calcium hydroxide and conventional glass-ionomer in deep cavities prepared in human teeth. Materials and Methods: In this controlled clinical trial, 30 deep class V buccal cavities (3 mm × 2 mm × 2 mm were prepared in human premolars treatment planned to be extracted for orthodontic reasons and divided into 3 groups. Groups were lined by a RMGI (Vivaglass, conventional glass Ionomer (Ionocid and calcium hydroxide respectively. The cavities were subsequently filled with amalgam. Each group was then divided into two sub-groups according to time intervals 5 and 30 days. The patients were referred to Kerman Dental School and in accordance with orthodontic treatment plan; premolars were extracted and then prepared for histological assessment. The sections were stained with hematoxylin and eosin and periodic acid Schiff techniques. All of the samples were examined using a number of criteria including odontoblastic changes, inflammatory cells response, reactionary dentin formation and presence of microorganisms. The data were analyzed by Kruskal-Wallis and Mann-Whitney tests. P 0.05. Conclusion: Ionocid and Vivaglass resin-modified glass ionomers can be used as lining materials in human teeth.

  15. The influence of light exposure on polymerization of dual-cure resin cements.

    Science.gov (United States)

    Rueggeberg, F A; Caughman, W F

    1993-01-01

    This study investigated the degree of monomer conversion of four commercial dual-cure resin cements. The products were subjected to various postmix treatments: no light exposure, a 60-second exposure through Mylar only, and either a 20-second or 60-second exposure through an overlying cured wafer of composite 1.5 mm thick. The infrared spectrum of the treated specimens was recorded at specified times postmix for each cure treatment: 2, 5, 10, 30, and 60 minutes as well as after 24 hours. The degree of cure was then determined from the infrared spectra. The results demonstrate a wide range of potential cures among the various brands. Regardless of brand, the chemical component of cure was always lower than when the specimens were exposed to any lighting condition. For most resin systems tested, the cure observed 10 minutes postmix was almost equivalent to the cure after 24 hours. Despite manufacturers' claims, there is no evidence for a substantial chemically induced polymerization of dual-cure resins that occurs after light exposure is completed.

  16. Bond strength of fibre glass and carbon fibre posts to the root canal walls using different resin cements.

    Science.gov (United States)

    Farina, Ana Paula; Cecchin, Doglas; Garcia, Lucas da Fonseca Roberti; Naves, Lucas Zago; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2011-08-01

    The aim of the study was to evaluate the bond strength of fibre glass and carbon fibre posts in the root canal walls cemented with self-adhesive (RelyX-Unicem) and chemical (Cement-Post) resin cements. Forty maxillary canines were divided into four groups according to the cement and post used and submitted to the push-out test (0.5 mm min(-1)). The data were submitted to statistical analysis (2-way ANOVA, Bonferroni--P<0.05) and fracture analysis by Scanning Electronic Microscopy. Fibre glass presented the best results when cemented with RelyX-Unicem and Cement-Post (P<0.05). RelyX-Unicem presented the highest bond strength values for both posts (P<0.05). Fracture analysis showed predominance of cohesive fracture of post for RelyX-Unicem and adhesive fracture between dentin/cement and mixed for Cement-Post. The bond strength values were significantly affected by the type of post and cement used and the highest values were found for fibre glass posts and RelyX-Unicem. © 2010 The Authors. Australian Endodontic Journal © 2010 Australian Society of Endodontology.

  17. Comparison of Microleakage and Thickness of Resin Cement in Ceramic Inlays with Various Temperatures

    Science.gov (United States)

    Alaghemand, Homayoun; Abolghasemzadeh, Faezeh; Pakdel, Farzaneh; Judi Chelan, Reza

    2014-01-01

    Background and aims. Microleakage is still one of the major problems of composite-based restorations.This study compared the microleakage and thickness of resin cement in ceramic inlays with various temperatures. Materials and methods. Class V cavities were prepared on the buccal and lingual aspects of thirty human molars with occlusal margins in enamel and gingival margins in dentin (3 mm wide, 5 mm long and 2 mm deep). Laboratory-made inlays (LMI) were used for buccal cavities, and CAD/CAM inlays (CMI) were used for lingual cavities. All the cavities were divided into six groups (n=10): 1) LMI at -5°C; 2) LMI at 50°C; 3) LMI at room temperature (25°C); 4) CMI at -5°C; 5) CMI at 50°C; 6) CMI at room temperature (25°C). Inlays were bonded to cavities in a pulp pressure- and temperature-simulating device. After thermocycling and dye penetration, the teeth were divided into two mesiodistal halves. Amount of dye penetration and film thickness were measured under a stereomicroscope and analyzed with Kruskal-Wallis, Wilcoxon and Spearman's correlation tests ( = 0.05). Results. There were no statistically significant differences in leakage between different inlay temperatures (P > 0.05). The mean cement thickness in laboratory-made inlays (gingival margin, 83.7 ± 11 and occlusal margin, 84.7 ± 19) was greater than that in CAD/CAM inlays (gingival margin, 69 ± 16 and occlusal margin, 84.7 ± 16). No correlation was found be-tween cement thickness and microleakage either in enamel or dentin for any of the ceramic systems. Conclusion. Differences in inlay temperature had no effect on microleakage. CAD/CAM inlays had lower cement thickness than laboratory-made inlays, but this was not related to their microleakage. PMID:25024839

  18. Comparison of Microleakage and Thickness of Resin Cement in Ceramic Inlays with Various Temperatures

    Directory of Open Access Journals (Sweden)

    Homayoun Alaghemand

    2014-03-01

    Full Text Available Background and aims. Microleakage is still one of the major problems of composite-based restorations. This study compared the microleakage and thickness of resin cement in ceramic inlays with various temperatures. Materials and methods. Class V cavities were prepared on the buccal and lingual aspects of thirty human molars with occlusal margins in enamel and gingival margins in dentin (3 mm wide, 5 mm long and 2 mm deep. Laboratory-made inlays (LMI were used for buccal cavities, and CAD/CAM inlays (CMI were used for lingual cavities. All the cavities were divided into six groups (n=10: 1 LMI at -5°C; 2 LMI at 50°C; 3 LMI at room temperature (25°C; 4 CMI at -5°C; 5 CMI at 50°C; 6 CMI at room temperature (25°C. Inlays were bonded to cavities in a pulp pressure- and temperaturesimulating device. After thermocycling and dye penetration, the teeth were divided into two mesiodistal halves. Amount of dye penetration and film thickness were measured under a stereomicroscope and analyzed with Kruskal-Wallis, Wilcoxon and Spearman's correlation tests ( = 0.05. Results. There were no statistically significant differences in leakage between different inlay temperatures (P > 0.05. The mean cement thickness in laboratory-made inlays (gingival margin, 83.7 ± 11 and occlusal margin, 84.7 ± 19 was greater than that in CAD/CAM inlays (gingival margin, 69 ± 16 and occlusal margin, 84.7 ± 16. No correlation was found between cement thickness and microleakage either in enamel or dentin for any of the ceramic systems. Conclusion. Differences in inlay temperature had no effect on microleakage. CAD/CAM inlays had lower cement thickness than laboratory-made inlays, but this was not related to their microleakage.

  19. Influence of polymerization mode and C-factor on cohesive strength of dual-cured resin cements

    NARCIS (Netherlands)

    Jongsma, L.A.; Kleverlaan, C.J.; Pallav, P.; Feilzer, A.J.

    2012-01-01

    Objectives The aim of this study is to determine the influence of the C-factor and the mode of polymerization on the cohesive strength of various dual-cure resin cements. Methods Three curing conditions were tested; chemical curing with free shrinkage conditions (C = 0), and constraint shrinkage

  20. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic : The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R; Ozcan, M; Bottino, MA; Valandro, LF

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR,

  1. Effect of the cross-linking silane concentration in a novel silane system on bonding resin-composite cement

    NARCIS (Netherlands)

    Matinlinna, Jukka; Ozcan, Mutlu; Lassila, Lippo; Kalk, Warner; Vallittu, Pekka

    2008-01-01

    Objective. Four experimental blends of an organo-functional silane monomer with a non-functional cross-linking silane monomer (a novel silane system) were evaluated as adhesion promoters in an experiment in which a resin-composite cement was bonded to silica-coated titanium. Material and Methods.

  2. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R.; Ozcan, M.; Bottino, M.A.; Valandro, L.F.

    2006-01-01

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR,

  3. Bond strength of a resin cement to high-alumina and zirconia-reinforced ceramics: The effect of surface conditioning

    NARCIS (Netherlands)

    Valandro, L.F.; Ozcan, M.; Bottino, M.C.; Bottino, M.A.; Scotti, R.; Della Bona, A.

    2006-01-01

    Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (in-Ceram Zirconia)

  4. Bond strength of a resin cement to high-alumina and zirconia-reinforced ceramics : The effect of surface conditioning

    NARCIS (Netherlands)

    Felipe Valandro, Luiz; Ozcan, Mutlu; Bottino, Marco Cicero; Bottino, Marco Antonio; Scotti, Roberto; Della Bona, Alvaro

    Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (in-Ceram Zirconia)

  5. The adhesive system and root canal region do not influence the degree of conversion of dual resin cement

    Science.gov (United States)

    PEREIRA, Priscilla Cristoforides; de MELO, Renata Marques; CHAVES, Carolina; GALHANO, Graziela A. P.; BOTTINO, Marco Antonio; BALDUCCI, Ivan

    2010-01-01

    Objectives The aim of this study was to evaluate the influence of two adhesive systems and the post space region on the degree of conversion of dual resin cement and its bond strength to root dentin. Material and Methods One three-step etch-andrinse (All-bond 2, Bisco) and another one-step self-etch (Xeno III, Dentsply) adhesive systems were applied on 20 (n=10) crownless bovine incisors, at 12-mm-deep post space preparation, and a fiber post (DT Light Post, Bisco) was cemented using a dual cure resin cement (Duo-Link, Bisco). Three transverse sections (3 mm) were obtained, being one from each study region (cervical, middle and apical). The degree of conversion of the dual cure resin cement was determined by a micro-Raman spectrometer. The data (%) were submitted to repeated-measures analysis of variance and Tukey's test (p<0.05). Results For both groups, the degree of conversion means (%) (All bond 2cervical = 69.3; All bond 2middle = 55.1; All bond 2apical= 56; Xeno IIIcervical = 68.7; Xeno IIImiddle = 68.8; Xeno IIIapical = 54.3) were not significantly different along the post space regions (p<0.05). Conclusion Neither the adhesive nor the post space region influenced the degree of conversion of the cement layer. PMID:21085803

  6. The adhesive system and root canal region do not influence the degree of conversion of dual resin cement

    Directory of Open Access Journals (Sweden)

    Priscilla Cristoforides Pereira

    2010-10-01

    Full Text Available OBJECTIVES: The aim of this study was to evaluate the influence of two adhesive systems and the post space region on the degree of conversion of dual resin cement and its bond strength to root dentin. MATERIAL AND METHODS: One three-step etch-and-rinse (All-bond 2, Bisco and another one-step self-etch (Xeno III, Dentsply adhesive systems were applied on 20 (n=10 crownless bovine incisors, at 12-mm-deep post space preparation, and a fiber post (FRC Postec, Ivoclar was cemented using a dual cure resin cement (Duo-Link, Bisco. Three transverse sections (3 mm were obtained, being one from each study region (cervical, middle and apical. The degree of conversion of the dual cure resin cement was determined by a micro-Raman spectrometer. The data (% were submitted to repeated-measures analysis of variance and Tukey's test (p<0.05. RESULTS: For both groups, the degree of conversion means (% (All bond 2cervical = 69.3; All bond 2middle = 55.1; All bond 2apical= 56; Xeno III cervical = 68.7; Xeno IIImiddle = 68.8; Xeno III apical = 54.3 were not significantly different along the post space regions (p<0.05. CONCLUSION: Neither the adhesive nor the post space region influenced the degree of conversion of the cement layer.

  7. Effect of Resin-modified Glass Ionomer Cement Dispensing/Mixing Methods on Mechanical Properties.

    Science.gov (United States)

    Sulaiman, T A; Abdulmajeed, A A; Altitinchi, A; Ahmed, S N; Donovan, T E

    2018-03-23

    Resin-modified glass ionomer cements (RMGIs) are often used for luting indirect restorations. Hand-mixing traditional cements demands significant time and may be technique sensitive. Efforts have been made by manufacturers to introduce the same cement using different dispensing/mixing methods. It is not known what effects these changes may have on the mechanical properties of the dental cement. The purpose of this study was to evaluate the mechanical properties (diametral tensile strength [DTS], compressive strength [CS], and fracture toughness [FT]) of RMGIs with different dispensing/mixing systems. The RMGI specimens (n=14)-RelyX Luting (hand mix), RelyX Luting Plus (clicker-hand mix), RelyX Luting Plus (automix) (3M ESPE), GC Fuji PLUS (capsule-automix), and GC FujiCEM 2 (automix) (GC)-were prepared for each mechanical test and examined after thermocycling (n=7/subgroup) for 20,000 cycles to the following: DTS, CS (ISO 9917-1) and FT (ISO standard 6872; Single-edge V-notched beam method). Specimens were mounted and loaded with a universal testing machine until failure occurred. Two-/one-way analysis of variance followed by Tukey honestly significantly different post hoc test was used to analyze data for statistical significance ( p<0.05). The interaction effect of both dispensing/mixing method and thermocycling was significant only for the CS test of the GC group ( p<0.05). The different dispensing/mixing methods had no effect on the DTS of the tested cements. The CS of GC Fuji PLUS was significantly higher than that of the automix version ( p<0.05). The FT decreased significantly when switching from RelyX (hand mix) to RelyX Luting Plus (clicker-hand mix) and to RelyX Luting Plus (automix) ( p<0.05). Except in the case of the DTS of the GC group and the CS of GC Fuji PLUS, thermocycling had a significant effect reducing the mechanical properties of the RMGI cements ( p<0.05). Introducing alternative dispensing/mixing methods for mixing RMGIs to reduce time and

  8. BOND STRENGTH DURABILITY OF SELF-ETCHING ADHESIVES AND RESIN CEMENTS TO DENTIN

    Science.gov (United States)

    Chaves, Carolina de Andrade Lima; de Melo, Renata Marques; Passos, Sheila Pestana; Camargo, Fernanda Pelógia; Bottino, Marco Antonio; Balducci, Ivan

    2009-01-01

    Objectives: To evaluate the microtensile bond strength (μTBS) of one- (Xeno III, Dentsply) and two-step (Tyrian-One Step Plus, Bisco) self-etching adhesive systems bonded to dentin and cemented to chemically cured (C&B Metabond) or light-cured paste of a dual-cure resin cement (Variolink II, Ivoclar) within a short (24 h) and long period of evaluation (90 days). Material and Methods: Forty recently extracted human molars had their roots removed and their occlusal dentin exposed and ground wet with 600-grit SiC paper. After application of one of the adhesives, the resin cement was applied to the bonded surface and a composite resin block was incrementally built up to a height of 5 mm (n=10). The restored teeth were stored in distilled water at 37°C for 7 days. The teeth were then cut along two axes (x and y), producing beam-shaped specimens with 0.8 mm2 cross-sectional area, which were subjected to μTBS testing at a crosshead speed of 0.05 mm/min and stressed to failure after 24 h or 90 days of storage in water. The μTBS data in MPa were subjected to three-way analysis of variance and Tukey's test (α= 0.05). Results: The interaction effect for all three factors was statistically significant (three-way ANOVA, p<0.001). All eight experimental means (MPa) were compared by the Tukey's test (p<0.05) and the following results were obtained: Tyrian-One Step Plus/C&B/24 h (22.4±7.3); Tyrian-One Step Plus/Variolink II/24 h (39.4±11.6); Xeno III/C&B/24 h (40.3±12.9); Xeno III/Variolink II/24 h (25.8±10.5); Tyrian-One Step Plus/C&B/90 d (22.1±12.8) Tyrian-One Step Plus/VariolinkII/90 d (24.2±14.2); Xeno III/C&B/90 d (27.0±13.5); Xeno III/Variolink II/ 90 d (33.0±8.9). Conclusions: Xeno III/Variolink II was the luting agent/adhesive combination that provided the most promising bond strength after 90 days of storage in water. PMID:19466243

  9. Bond strength durability of self-etching adhesives and resin cements to dentin

    Directory of Open Access Journals (Sweden)

    Carolina de Andrade Lima Chaves

    2009-06-01

    Full Text Available OBJECTIVES: To evaluate the microtensile bond strength (µTBS of one- (Xeno III, Dentsply and two-step (Tyrian-One Step Plus, Bisco self-etching adhesive systems bonded to dentin and cemented to chemically cured (C&B Metabond or light-cured paste of a dual-cure resin cement (Variolink II, Ivoclar within a short (24 h and long period of evaluation (90 days. MATERIAL AND METHODS: Forty recently extracted human molars had their roots removed and their occlusal dentin exposed and ground wet with 600-grit SiC paper. After application of one of the adhesives, the resin cement was applied to the bonded surface and a composite resin block was incrementally built up to a height of 5 mm (n=10. The restored teeth were stored in distilled water at 37ºC for 7 days. The teeth were then cut along two axes (x and y, producing beam-shaped specimens with 0.8 mm² cross-sectional area, which were subjected to µTBS testing at a crosshead speed of 0.05 mm/min and stressed to failure after 24 h or 90 days of storage in water. The µTBS data in MPa were subjected to three-way analysis of variance and Tukey's test (α= 0.05. RESULTS: The interaction effect for all three factors was statistically significant (three-way ANOVA, p<0.001. All eight experimental means (MPa were compared by the Tukey's test (p<0.05 and the following results were obtained: Tyrian-One Step Plus /C&B/24 h (22.4±7.3; Tyrian-One Step Plus /Variolink II/24 h (39.4±11.6; Xeno III/C&B/24 h (40.3±12.9; Xeno III/Variolink II/24 h (25.8±10.5; Tyrian-One Step Plus /C&B/90 d (22.1±12.8 Tyrian-One Step Plus/VariolinkII/90 d (24.2±14.2; Xeno III/C&B/90 d (27.0±13.5; Xeno III/Variolink II/90 d (33.0±8.9. CONCLUSIONS: Xeno III/Variolink II was the luting agent/adhesive combination that provided the most promising bond strength after 90 days of storage in water.

  10. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, José Renato Cavalcanti, E-mail: joserenatocq@hotmail.com [Potiguar University, Department of Biotechnology, Natal (Brazil); Nogueira Junior, Lafayette [São Paulo State University, Department of Prosthodontics and Dental Materials, São José dos Campos (Brazil); Massi, Marcos [Federal University of São Paulo, Institute of Science and Technology, São José dos Campos (Brazil); Silva, Alecssandro de Moura; Bottino, Marco Antonio [São Paulo State University, Department of Prosthodontics and Dental Materials, São José dos Campos (Brazil); Sobrinho, Argemiro Soares da Silva [Technological Institute of Aeronautics, Department of Physics, São José dos Campos (Brazil); Özcan, Mutlu [University of Zurich, Dental Materials Unit, Center for Dental and Oral Medicine, Clinic for Fixed and Removable Prosthodontics and Dental Materials Science, Zurich (Switzerland)

    2013-10-01

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0–14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  11. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    International Nuclear Information System (INIS)

    Queiroz, José Renato Cavalcanti; Nogueira Junior, Lafayette; Massi, Marcos; Silva, Alecssandro de Moura; Bottino, Marco Antonio; Sobrinho, Argemiro Soares da Silva; Özcan, Mutlu

    2013-01-01

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0–14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  12. Effect of toothbrushing abrasion on weight and surface roughness of pH-cycled resin cements and indirect restorative materials.

    Science.gov (United States)

    Prakki, Anuradha; Cilli, Renato; de Araújo, Paulo Amarante; Navarro, Maria Fidela de Lima; Mondelli, José; Mondelli, Rafael Francisco Lia

    2007-10-01

    To evaluate wear resistance, by weight loss and roughness changes, of resin cements and indirect restorative materials to toothbrushing and toothbrushing associated with pH-challenge simulation. The following materials were studied: Enforce resin cement (Dentsply), Rely X resin cement (3M ESPE), Variolink II resin cement (Ivoclar/Vivadent), Artglass indirect resin composite (Heraeus Kulzer), and Duceram Plus porcelain (Degussa). Twenty cylindrical specimens were prepared for each material for a total of 10 groups (n = 10). After finishing and polishing, the specimens were subjected to toothbrushing. One group of each material was pH cycled before abrasion. For toothbrushing, a machine containing soft-bristle tips, dentifrice, and water was used. One hundred thousand brushing cycles were performed. Weight loss was determined as the percentage difference between initial (before brushing) and final (after brushing) measurements. Roughness changes were evaluated by the difference between initial and final measurements. Data were analyzed with the paired t test, 2-way ANOVA, and Tukey test (alpha = 0.05). Paired t test showed significant differences in weight loss and roughness after toothbrushing (P <.01). Statistically significant differences were found among materials for both weight loss, which ranged from 0.34% (Duceram Plus) to 1.85% (Enforce/pH), and roughness changes, which ranged from -0.03 microm (Duceram Plus) to 0.29 microm (Rely X/pH). Among cements, Variolink II exhibited the least weight loss and roughness increase. Of all materials, Duceram Plus porcelain presented the lowest weight loss and became smoother after abrasion. pH cycling had no influence on material weight or roughness changes after abrasion.

  13. Effect of mode of polymerization of bonding agent on shear bond strength of autocured resin composite luting cements.

    Science.gov (United States)

    Dong, Cecilia C S; McComb, Dorothy; Anderson, James D; Tam, Laura E

    2003-04-01

    There have been anecdotal reports of low bond strength with autocured resin composite materials, particularly when light-cured bonding agents that combine primer and adhesive in a 1-bottle preparation are used. The objective of this study was to determine if the mode of polymerization of the bonding agent influences the strength of the attachment of autocured resin composite luting cements to dentin. The shear bond strength of 2 resin luting cements, Calibra and RelyX ARC, polymerized by autocuring, in combination with 4 different bonding agents, Scotchbond Multipurpose Plus, Prime & Bond NT, IntegraBond and Single Bond, polymerized to bovine dentin by light-curing, autocuring or dual-curing, was determined. The pH of each bonding agent and its components was measured. Two-way analysis of variance was used to test the effect of cement and adhesive on shear bond strength. For each bonding agent, the adhesive variable combined the factors product brand and mode of polymerization. With significant interaction among the above variables, the least square means of the 16 combinations of resin cement and adhesive were compared. There was no consistent relationship between shear bond strength and mode of polymerization of the bonding agent. Significant differences in bond strength were specific to the proprietary brand of bonding agent. The pH of the bonding agent depends on the manufacturer's formulation, and low pH may contribute to low bond strength. The low in vitro bond strength occurring with some combinations of bonding agent and resin cement could be clinically significant.

  14. Setting kinetics and shrinkage of self-adhesive resin cements depend on cure-mode and temperature.

    Science.gov (United States)

    Kitzmüller, Karin; Graf, Alexandra; Watts, David; Schedle, Andreas

    2011-06-01

    To investigate the influence of curing mode and temperature on the shrinkage kinetics of self-adhesive resin cements in comparison to a conventional multi-step resin cement. The shrinkage of self-adhesive resin cements Maxcem Elite (MX), Speedcem (SPC), Smartcem2 (SMC), iCem (IC) and RelyX Unicem (RX) and Nexus Third Generation (NX3) as a multi-step resin cement was measured continuously for 1h using the bonded disk method. All materials were tested with dual-curing (dc) and self-curing (sc) mode. All measurements (n=5 per group) were conducted at room temperature (23°C) as well as at body temperature (37°C). Shrinkage time constants were obtained from a simple exponential growth model. Data were statistically analyzed by ANOVA and the p-values were adjusted for multiplicity according to Hothorn et al. (2008) using the R-package "multcomp". Shrinkages ranged between 1.84 (RX sc23) and 7.09 (IC sc37). The curing-mode changing from sc to dc had the dominant effect for several materials, especially RX, both on final shrinkage and time constant for setting. Temperature increase had an effect on setting and shrinkage for all materials except RX. Final shrinkage for SPC, SMC and NX3 was statistically equivalent (p>0.05). The 3-fold variation in final shrinkage for these materials is significant for clinical material selection. Light curing can lead to a 10-fold increase in the rate of setting. A self-adhesive universal resin cement (RX) had the lowest shrinkage in the groups examined. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Effect of different light curing methods on mechanical and physical properties of resin-cements polymerized through ceramic discs.

    Science.gov (United States)

    Cekic-Nagas, Isil; Ergun, Gulfem

    2011-08-01

    The aim of this study was to compare the polimerization ability of three different light-curing units (quartz tungsten halogen, light-emitting diodes and plasma arc) and their exposure modes (high-intensity and soft-start) by determination of microhardness, water sorption and solubility, and diametral tensile strength of 5 dual-curing resin cements. A total of 720 disc-shaped samples (1 mm height and 5 mm diameter) were prepared from different dual-curing resin cements (Duolink, Nexus, Bifix-QM, Panavia F and RelyX Unicem). Photoactivation was performed by using quartz tungsten halogen (high-power and soft-up modes), light-emitting diode (standard and exponential modes) and plasma arc (normal and ramp-curing modes) curing units through ceramic discs. Then the samples (n=8/per group) were stored dry in the dark at 37°C for 24 h. The Vickers hardness test was performed on the resin cement layer with a microhardness tester (Shimadzu HMV). For sorption and solubility tests; the samples were stored in a desiccator at 37°C and weighed to a constant mass. The samples were weighed both before and after being immersed in deionized water for different periods of time (24 h and 7 days) and being desiccated. The diametral tensile strength of the samples was tested in a universal testing machine at a crosshead speed of 0.5 mm/min. Data were analyzed statistically by nonparametric Kruskal Wallis and Mann-Whitney U tests at 5% significance level. Resin cement and light-curing unit had significant effects (p0.05) were obtained with different modes of LCUs. The study indicates that polymerization of resin cements with different light-curing units may result in various polymer structures, and consequently different mechanical and physical properties.

  16. Effect of different light curing methods on mechanical and physical properties of resin-cements polymerized through ceramic discs

    Directory of Open Access Journals (Sweden)

    Isil Cekic-nagas

    2011-08-01

    Full Text Available OBJECTIVE: The aim of this study was to compare the polimerization ability of three different light-curing units (quartz tungsten halogen, light-emitting diodes and plasma arc and their exposure modes (high-intensity and soft-start by determination of microhardness, water sorption and solubility, and diametral tensile strength of 5 dual-curing resin cements. Material and methods: A total of 720 disc-shaped samples (1 mm height and 5 mm diameter were prepared from different dual-curing resin cements (Duolink, Nexus, Bifix-QM, Panavia F and RelyX Unicem. Photoactivation was performed by using quartz tungsten halogen (high-power and soft-up modes, light-emitting diode (standard and exponential modes and plasma arc (normal and ramp-curing modes curing units through ceramic discs. Then the samples (n=8/per group were stored dry in the dark at 37°C for 24 h. The Vickers hardness test was performed on the resin cement layer with a microhardness tester (Shimadzu HMV. For sorption and solubility tests; the samples were stored in a desiccator at 37°C and weighed to a constant mass. The samples were weighed both before and after being immersed in deionized water for different periods of time (24 h and 7 days and being desiccated. The diametral tensile strength of the samples was tested in a universal testing machine at a crosshead speed of 0.5 mm/min. Data were analyzed statistically by nonparametric Kruskal Wallis and Mann-Whitney U tests at 5% significance level. RESULTS: Resin cement and light-curing unit had significant effects (p0.05 were obtained with different modes of LCUs. Conclusion: The study indicates that polymerization of resin cements with different light-curing units may result in various polymer structures, and consequently different mechanical and physical properties.

  17. Effect of CO2 and Nd:YAG Lasers on Shear Bond Strength of Resin Cement to Zirconia Ceramic

    Science.gov (United States)

    Kasraei, Shahin; Yarmohamadi, Ebrahim; Shabani, Amanj

    2015-01-01

    Objectives: Because of poor bond between resin cement and zirconia ceramics, laser surface treatments have been suggested to improve adhesion. The present study evaluated the effect of CO2 and Nd:YAG lasers on the shear bond strength (SBS) of resin cement to zirconia ceramic. Materials and Methods: Ninety zirconia disks (6×2 mm) were randomly divided into six groups of 15. In the control group, no surface treatment was used. In the test groups, laser surface treatment was accomplished using CO2 and Nd:YAG lasers, respectively (groups two and three). Composite resin disks (3×2 mm) were fabricated and cemented to zirconia disks with self-etch resin cement and stored in distilled water for 24 hours. In the test groups four-six, the samples were prepared as in groups one-three and then thermocycled and stored in distilled water for six months. The SBS tests were performed (strain rate of 0.5 mm/min). The fracture modes were observed via stereomicroscopy. Data were analyzed with one and two-way ANOVA, independent t and Tukey’s tests. Results: The SBS values of Nd:YAG group (18.95±3.46MPa) was significantly higher than that of the CO2 group (14.00±1.96MPa), but lower than that of controls (23.35±3.12MPa). After thermocycling and six months of water storage, the SBS of the untreated group (1.80±1.23 MPa) was significantly lower than that of the laser groups. In groups stored for 24 hours, 60% of the failures were adhesive; however, after thermocycling and six months of water storage, 100% of failures were adhesive. Conclusion: Bonding durability of resin cement to zirconia improved with CO2 and Nd:YAG laser surface treatment of zirconia ceramic. PMID:27148380

  18. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    Science.gov (United States)

    Queiroz, José Renato Cavalcanti; Nogueira Junior, Lafayette; Massi, Marcos; Silva, Alecssandro de Moura; Bottino, Marco Antonio; Sobrinho, Argemiro Soares da Silva; Özcan, Mutlu

    2013-10-01

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0-14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  19. Effect of aging and curing mode on the compressive and indirect tensile strength of resin composite cements.

    Science.gov (United States)

    Rohr, Nadja; Fischer, Jens

    2017-11-21

    Resin composite cements are used in dentistry to bond ceramic restorations to the tooth structure. In the oral cavity these cements are subjected to aging induced by masticatory and thermal stresses. Thermal cycling between 5 and 55 °C simulates the effect of varying temperatures in vitro. Purpose of this study was to compare indirect tensile to compressive strength of different cements before and after thermal cycling. The effect of the curing mode was additionally assessed. Indirect tensile strength and compressive strength of 7 dual-curing resin composite cements (Multilink Automix, Multilink SpeedCem, RelyX Ultimate, RelyX Unicem 2 Automix, Panavia V5, Panavia SA Plus, Harvard Implant semi-permanent) was measured. The specimens were either autopolymerized or light-cured (n = 10). The mechanical properties were assessed after 24 h water storage at 37 °C and after aging (20,000 thermo cycles) with previous 24 h water storage at 37 °C. Indirect tensile strength ranged from 5.2 ± 0.8 to 55.3 ± 4.2 MPa, compressive strength from 35.8 ± 1.8 MPa to 343.8 ± 19.6 MPa. Thermocyclic aging of 20,000 cycles can be considered a suitable method to simulate the degradation of indirect tensile strength but not compressive strength of resin composite cements. The effect of thermocycling and the curing mode on the resin composite cements is material dependent and cannot be generalized.

  20. Effect of Endodontic Retreatment on Push-out Bond Strength and Quality of Fiber Postbonding Interface of Resin Cements.

    Science.gov (United States)

    Pelegrine, Rina Andréa; Paulillo, Luís Alexandre Maffei Sartini; Kato, Augusto Shoji; Fontana, Carlos Eduardo; Pinheiro, Sérgio Luiz; De Martin, Alexandre Sigrist; Bueno, Carlos Eduardo da Silveira

    2016-01-01

    The aim of this study is to evaluate the impact of endodontic retreatment on push-out bond strength and dentin interface of two resin cements used for fiber postcementation during endodontic retreatment. The root canals of 40 extracted human canines were prepared, obturated and divided into four groups (n = 10). Gutta-percha was partially removed and fiber posts were immediately cemented in groups 1 and 2 using Panavia F with ED Primer and RelyX™ U200, respectively. In groups 3 and 4, the root canal access was sealed with temporary restorative cement, specimens were stored for 30 days, endodontically retreated, and fiber posts were cemented using the resin cements applied to groups 1 and 2, respectively. Push-out tests and scanning electron microscopy analyses of different areas were performed. Data from push-out bond strengths were analyzed by one-way analysis of variance and Tukey's tests. Higher bond strength values were detected in the apical third for group 1 than group 3 (p 0.05). Comparisons between different thirds in the same group revealed a higher bond strength in the apical third for group 1. Scanning electron microscopy showed formation of hybrid layer and extensive resin tags in group 1. No hybrid layer was observed in groups 2 and 4. Endodontic retreatment had adverse effects on the push-out bond strength and dentinal interface of Panavia F with ED Primer when used for fiber postcementation specifically in the apical third, but not on RelyX™ U200. A significant interaction was detected between endodontic retreatment and resin cement, which indicated that endodontic retreatment might adversely affect the push-out bond strength and dentinal interface of Panavia F with ED Primer when used for fiber postcementation specifically in the apical third.

  1. The Influence of Sonic and Ultrasonic Vibration on the Shear Bond Strength of a Selected Resin Luting Cement.

    Science.gov (United States)

    Marchan, Shivaughn M; White, Daniel; Smith, William; Dhuru, Virendra

    2015-03-01

    This study determined the effect of sonic and ultrasonic instrumentation on the shear bond strengths of Panavia 21, a popular cement for the luting of resin-bonded restorations. 84 Ni-Cr cylinders were cemented to randomly selected resin composite substrates using Panavia 21 following the manufacturer's instructions. The Ni-Cr-composite specimens were divided into 7 groups of 12 specimens each based upon the procedure used for removing the excess cement. For Group 1 (Co) specimens the excess cement was removed with microbrushes immediately after cementation. Groups 2 through 7 were based on the use of vibrating instrument and the time period after which the excess material was removed. These included the cement, Panavia 21, three vibrating instruments, Sonic with a universal tip (So), Piezoelectric ultrasonic with a USPIS tip (Pu), Magnetorestrive ultrasonic with a FS1-100 tip (Mu) and two different time periods, soon after cementation (9m) and one hour after cementation (1h). Once excess cement REMOVAL WAS COMPLETED, THE SPECIMENS WERE SUBJECTED TO SHEAR TESTING. Mean Shear Bond strengths ranged from 16.03 MPa (Co) to 19.91 MPa (So 1h). Statistical analysis demonstrated that interaction of the main effects were significant (F = 4.27, p = 0.042). Post-hoc analysis demonstrated that the effect of timing was significant in all the instrumented groups. The majority of the tested specimens failed cohesively compared to mainly adhesive failures for the control group. The effect of type of instrumentation immediately following polymerization setting had no effect on the shear bond strengths however a delay of 1 hour for all types of instrumentation had a beneficial effect of improving observed shear bond strengths.

  2. Effects of radiant exposure and wavelength spectrum of light-curing units on chemical and physical properties of resin cements

    Directory of Open Access Journals (Sweden)

    Adriano Fonseca Lima

    2016-11-01

    Full Text Available Objectives In this study, we evaluated the influence of different radiant exposures provided by single-peak and polywave light-curing units (LCUs on the degree of conversion (DC and the mechanical properties of resin cements. Materials and Methods Six experimental groups were established for each cement (RelyX ARC, 3M ESPE; LuxaCore Dual, Ivoclar Vivadent; Variolink, DMG, according to the different radiant exposures (5, 10, and 20 J/cm2 and two LCUs (single-peak and polywave. The specimens were made (7 mm in length × 2 mm in width × 1 mm in height using silicone molds. After 24 hours of preparation, DC measurement was performed using Fourier transform infrared spectrometry. The same specimens were used for the evaluation of mechanical properties (flexural strength, FS; elastic modulus, E by a three-point bending test. Data were assessed for normality, after which two-way analysis of variance (ANOVA and post hoc Tukey's test were performed. Results No properties of the Variolink cement were influenced by any of the considered experimental conditions. In the case of the RelyX ARC cement, DC was higher when polywave LCU was used; FS and E were not influenced by the conditions evaluated. The LuxaCore cement showed greater sensitivity to the different protocols. Conclusions On the basis of these results, both the spectrum of light emitted and the radiant exposure used could affect the properties of resin cements. However, the influence was material-dependent.

  3. Effects of radiant exposure and wavelength spectrum of light-curing units on chemical and physical properties of resin cements.

    Science.gov (United States)

    Lima, Adriano Fonseca; Formaggio, Stephanie Ellen Ferreira; Zambelli, Lígia França Aires; Palialol, Alan Rodrigo Muniz; Marchi, Giselle Maria; Saraceni, Cintia Helena Coury; de Oliveira, Marcelo Tavares

    2016-11-01

    In this study, we evaluated the influence of different radiant exposures provided by single-peak and polywave light-curing units (LCUs) on the degree of conversion (DC) and the mechanical properties of resin cements. Six experimental groups were established for each cement (RelyX ARC, 3M ESPE; LuxaCore Dual, Ivoclar Vivadent; Variolink, DMG), according to the different radiant exposures (5, 10, and 20 J/cm 2 ) and two LCUs (single-peak and polywave). The specimens were made (7 mm in length × 2 mm in width × 1 mm in height) using silicone molds. After 24 hours of preparation, DC measurement was performed using Fourier transform infrared spectrometry. The same specimens were used for the evaluation of mechanical properties (flexural strength, FS; elastic modulus, E ) by a three-point bending test. Data were assessed for normality, after which two-way analysis of variance (ANOVA) and post hoc Tukey's test were performed. No properties of the Variolink cement were influenced by any of the considered experimental conditions. In the case of the RelyX ARC cement, DC was higher when polywave LCU was used; FS and E were not influenced by the conditions evaluated. The LuxaCore cement showed greater sensitivity to the different protocols. On the basis of these results, both the spectrum of light emitted and the radiant exposure used could affect the properties of resin cements. However, the influence was material-dependent.

  4. Effect of surface modifications on the bond strength of zirconia ceramic with resin cement resin.

    Science.gov (United States)

    Hallmann, Lubica; Ulmer, Peter; Lehmann, Frank; Wille, Sebastian; Polonskyi, Oleksander; Johannes, Martina; Köbel, Stefan; Trottenberg, Thomas; Bornholdt, Sven; Haase, Fabian; Kersten, Holger; Kern, Matthias

    2016-05-01

    Purpose of this in vitro study was to evaluate the effect of surface modifications on the tensile bond strength between zirconia ceramic and resin. Zirconia ceramic surfaces were treated with 150-μm abrasive alumina particles, 150-μm abrasive zirconia particles, argon-ion bombardment, gas plasma, and piranha solution (H2SO4:H2O2=3:1). In addition, slip casting surfaces were examined. Untreated surfaces were used as the control group. Tensile bond strengths (TBS) were measured after water storage for 3 days or 150 days with additional 37,500 thermal cycling for artificial aging. Statistical analyses were performed with 1-way and 3-way ANOVA, followed by comparison of means with the Tukey HSD test. After storage in distilled water for three days at 37 °C, the highest mean tensile bond strengths (TBS) were observed for zirconia ceramic surfaces abraded with 150-μm abrasive alumina particles (TBS(AAP)=37.3 MPa, TBS(CAAP)=40.4 MPa), and 150-μm abrasive zirconia particles (TBS(AZP)=34.8 MPa, TBS(CAZP)=35.8 MPa). Also a high TBS was observed for specimens treated with argon-ion bombardment (TBS(BAI)=37.8 MPa). After 150 days of storage, specimens abraded with 150-μm abrasive alumina particles and 150-μm abrasive zirconia particles revealed high TBS (TBS(AAP)=37.6 MPa, TBS(CAAP)=33.0 MPa, TBS(AZP)=22.1 MPa and TBS(CAZP)=22.8 MPa). A high TBS was observed also for specimens prepared with slip casting (TBS(SC)=30.0 MPa). A decrease of TBS was observed for control specimens (TBS(UNT)=12.5 MPa, TBS(CUNT)=9.0 MPa), specimens treated with argon-ion bombardment (TBS(BAI)=10.3 MPa) and gas plasma (TBS(GP)=11.0 MPa). A decrease of TBS was observed also for specimens treated with piranha solution (TBS(PS)=3.9 MPa, TBS(CPS)=4.1 MPa). A significant difference in TBS after three days storage was observed for specimens treated with different methods (p0.05), CAAP(p>0.05) and SC(p>0.05). However, the failure patterns of debonded specimens prepared with 150-μm abrasive zirconia

  5. The effects of shelf life on the compressive strength of resin-modified glass ionomer cement

    Science.gov (United States)

    Wajong, K. H.; Damiyanti, M.; Irawan, B.

    2017-08-01

    Resin-modified glass ionomer cement (RMGIC) is a restoration material composed of powder and liquid whose stability is affected by its shelf life. This is an issue that has not been taken into consideration by customers or sellers. To observe the effects of shelf life on the compressive strength of RMGIC, 30 cylindrical (d = 4mm and t = 6mm) specimens of RMGIC (Fuji II LC, GC, Tokyo, Japan) were divided into three groups with different storage times and their compressive strength was tested with a universal testing machine. Results were statistically analyzed with the one-way ANOVA test. There were significant differences (p<0.05) between the three groups of RMGIC. There is a decrease in the compressive strength value along with the duration of storage time.

  6. Comparison of Hypersensitivity in Metal Ceramic Crowns cemented with Zinc Phosphate and Self-adhesive Resin: A Prospective Study.

    Science.gov (United States)

    Shankar, Thatapudi; Garhnayak, Mirna; Garhnayak, Lokanath; Dhal, Angurbala; Kar, Aswini K

    2017-10-01

    Luting agents used to fix artificial prostheses, such as fixed partial denture (FPD) to tooth are basically viscous in nature and show chemical reaction for fixation. Postcementation hypersensitivity is a frequent complaint of patients. The present study was conducted to compare postcementation hypersensitivity with zinc phosphate and self-adhesive resin in complete coverage crown. This study included 30 patients in which 60 porcelein fused to metal crowns was placed. Two metal crowns were placed in each patient in nonantagonis-tic contralateral quadrants. First crown was cemented with zinc phosphate cement, while the other was cemented with self-adhesive resin. Hypersensitivity was evaluated by visual analog scale (VAS) score and by clinical test. For clinical evaluation of sensitivity, hot and cold water was applied to the cervical margin of restoration for 5 seconds and response was recorded. This study consisted of 30 patients in which 60 crowns were given. There was no statistical difference in VAS score of mastication in zinc phosphate cement recorded at baseline, 1 week, 4 weeks, 6 months, 1 year, and 2 years (p > 0.05). Cold response also did not show a significant difference at six time points. Warm response showed slight decrease in subsequent time points but was nonsignificant (p > 0.05). Similarly, with self-adhesive resin cement, VAS score during mastication, hot and cold response was statistically nonsignificant (p > 0.05). Postcementation hypersensitivity is a frequent complaint that patient may experience. However, we found no statistically significant difference in both cements tested. Postcementation hypersensitivity is an unpleasant sensation experienced by patients. This may affect the success of any prosthesis. Thus, selection of luting agent for cementation plays an important role to eliminate this symptom.

  7. Lack of correlation between tubular dentine cement penetration, adhesiveness and leakage in roots filled with gutta percha and an endodontic cement based on epoxy amine resin.

    Science.gov (United States)

    Machado, Ricardo; Silva Neto, Ulisses Xavier da; Carneiro, Everdan; Fariniuk, Luiz Fernando; Westphalen, Vânia Portela Ditzel; Cunha, Rodrigo Sanches

    2014-01-01

    To analyze possible correlations among tubular dentine cement penetration, adhesiveness and apical leakage in fillings performed with gutta percha and an endodontic cement based on epoxy amine resin. Sixty similar, extracted human mandibular central incisors were irrigated, instrumented and filled following the same protocol. First, apical leakage was quantified by fluid filtration tests. Then, these same specimens were sectioned for analysis of tubular dentine cement penetration and the middle thirds were submitted to push-out tests to analyze the adhesiveness of the fillings. In brief, the means and standard deviations with a confidence interval of 95% were as follows: tubular dentine cement penetration (8.875±4.540), adhesiveness (4.441±2.683) and apical leakage (0.318±0.215). The data were confronted using the Pearson's test (P>0.05), and it was possible to prove that there was no correlation between (1) tubular dentine cement penetration and apical leakage (r2: 0.08276), (2) tubular dentine cement penetration and adhesiveness (r2: -0.2412) and (3) adhesiveness and apical leakage (r2: 0.1340). After analysis of these data, it could be observed that there exists no correlation among the variables analyzed in this study.

  8. Effects of enamel deproteinization on bracket bonding with conventional and resin-modified glass ionomer cements.

    Science.gov (United States)

    Pereira, Tatiana Bahia Junqueira; Jansen, Wellington Corrêa; Pithon, Matheus Melo; Souki, Bernardo Quiroga; Tanaka, Orlando Motohiro; Oliveira, Dauro Douglas

    2013-08-01

    The objective of this study was to test the effects of enamel deproteinization on bracket bonding with conventional and resin-modified glass ionomer cement (RMGIC). One hundred premolars, extracted for orthodontic reasons, were divided into five groups (n = 20). Group 1 (control): enamel was etched with 35 per cent phosphoric acid, a thin layer of adhesive was applied, and the brackets were bonded with Transbond XT. Group 2: enamel was etched with 10 per cent polyacrylic acid and the brackets were bonded with conventional glass ionomer cement (GIC). Group 3: enamel was treated with 5.25 per cent NaOCl, etched with 10 per cent polyacrylic acid, and the brackets were bonded with conventional GIC. Group 4: enamel was etched with 10 per cent polyacrylic acid and the brackets were bonded with RMGIC. Group 5: enamel was treated with 5.25 per cent NaOCl, etched with 10 per cent polyacrylic acid, and the brackets were bonded with RMGIC. The teeth were stored in distilled water for 24 hours before they were submitted to shear testing. The results demonstrated that bond strength values of group 1 (17.08 ± 6.39 MPa) were significantly higher in comparison with the other groups. Groups 2 (3.43 ± 1.94 MPa) and 3 (3.92 ± 1.57 MPa) presented values below the average recommended in the literature. With regard to adhesive remnant index, the groups in which the enamel was treated with NaOCl showed a behaviour similar to that of the resin composite. It is conclude with enamel treatment with NaOCl increased bonding strength of brackets bonded with GIC and RMGIC, but increased bond strength was not statistically significant when compared to the untreated groups.

  9. Pilot evaluation of resin composite cement adhesion to zirconia using a novel silane system.

    Science.gov (United States)

    Matinlinna, Jukka P; Lassila, Lippo V J; Vallittu, Pekka K

    2007-02-01

    In this study, we evaluated the effect of two silane coupling agents and their blends with a cross-linker silane on the bond strength of a dimethacrylate-based resin composite cement to surface-conditioned zirconia. A total of 40 planar zirconia specimens were used for 8 test groups. After alumina particle abrasion, followed by tribochemical silica-coating, the specimens were randomly assigned to four silanizations: with 1.0 vol% 3-methacryloyloxypropyltrimethoxysilane or 1.0 vol% 3-mercaptopropyltrimethoxysilane or their blends with 1.0 vol% 1,2-bis-(triethoxysilyl)ethane (all in ethanol/water). The resin composite (RelyX ARC, 3M ESPE) stubs (n=10/group) were light-polymerized onto zirconia specimens. Four test groups were tested without water storage and 4 thermo-cycled at 6000 cycles (5+/-1 degrees C to 55+/-1 degrees C), with a dwelling time of 30 s. The shear bond strength of the cement stubs to zirconia was measured using a universal testing machine at a constant cross-head speed of 1 mm/min. Scanning electron microscopy was employed for imaging the zirconia surface after conditioning and testing. Failure mode was evaluated visually. A surface chemical analysis was carried out with the EDXA system. The highest shear bond strength was 21.9+/-8.7 MPa, obtained with a blend of 3-mercaptopropyltrimethoxysilane and 1,2-bis-(triethoxysilyl)ethane (dry storage), and 16.0+/-1.5 MPa, with 3-methacryloyloxypropyltrimethoxysilane (thermo-cycled). Thermo-cycling decreased the bond strengths significantly (ANOVA, pethane.

  10. Can a soda-lime glass be used to demonstrate how patterns of strength dependence are influenced by pre-cementation and resin-cementation variables?

    Science.gov (United States)

    Hooi, Paul; Addison, Owen; Fleming, Garry J P

    2013-01-01

    To determine how the variability in biaxial flexure strength of a soda-lime glass analogue for a PLV and DBC material was influenced by precementation operative variables and following resin-cement coating. The flexural modulus of a transparent soda-lime glass was determined by longitudinally sectioning into rectangular bar-shaped specimens and the flexural moduli of three resin-based materials (Venus Flow, Rely-X Veneer and Clearfil Majesty Posterior) was also determined. Disc shaped soda-lime glass specimens (n=240) were divided into ten groups and were alumina particle air abraded, hydrofluoric (HF) acid-etched and resin-cement coated prior to biaxial flexure strength testing. Sample sets were profilometrically evaluated to determine the surface texture. One-way analyses of variance (ANOVA) and post hoc all paired Tukey tests were performed at a significance level of Plime glass was 40.0 (1.0)GPa and the Venus Flow, Rely-X Veneer and Clearfil Majesty Posterior were 3.0 (0.2)GPa, 6.0 (0.2)GPa and 14.8 (1.6)GPa, respectively. At a theoretical 'zero' resin-coating thickness an increase in biaxial flexure strength of 20.1% (63.2MPa), 30.8% (68.8MPa) and 36.3% (71.7MPa), respectively was evident compared with the control (52.6 (5.5)MPa). Disc-shaped specimens cut from round stock facilitated rapid fabrication of discs with uniform surface condition and demonstrated strength dependence was influenced by precementation parameters and resin-cementation variables. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Studies on the incorporation of spent ion exchange resins from nuclear power plants into bitumen and cement

    International Nuclear Information System (INIS)

    Bonnevie-Svendsen, M.; Tallberg, K.; Aittola, P.; Tollbaeck, H.

    1976-01-01

    The joint Nordic incorporation experiments should provide technical data needed for the assessment of solidification techniques for wastes from nuclear reactors in the Nordic countries. Spent ion exchange resins are a main fraction of such wastes, and more knowledge about their incorporation is wanted. The effects of simulated and real ion exchange wastes on the quality of bitumen and cement incorporation products were studied. Blown and distilled bitumen and three Portland cement qualities were used. Product characterizations were based on properties relevant for safe waste management, storage, transport and disposal. The applicability and relevance of established and suggested tests is discussed. Up to 40-60% dry resin could be incorporated into bitumen without impairing product qualities. Products with higher resin contents were found to swell in contact with water. The products had a high leach resistance. Their form stability was improved by incorporated resins. Product qualities appeared to be less affected by physico-chemical variables than by mechanical process parameters. Pure resin-cement products tend to decompose in water. Product qualities were strongly affected by a variety of physico-chemical process parameters, and integer products were only obtained within narrow tolerance limits. Caesium was rapidly leached out. To attain integer products and improved leach resistance within technically acceptable tolerance limits it was necessary to utilize stabilizing and caesium-retaining additives such as Silix and vermiculite. Under the present conditions the water content of the resins limited the amounts that could be incorporated in 40-50wt% or about 70vol.% water-saturated (containing 20-40% dry) resin. (author)

  12. Evaluation in vivo of biocompatibility of differents resin-modified cements for bonding orthodontic bands

    Directory of Open Access Journals (Sweden)

    JANAINA A. MESQUITA

    2017-10-01

    Full Text Available ABSTRACT The focus of this study was to test the hypothesis that there would be no difference between the biocompatibility of resin-modified glass ionomer cements. Sixty male Wistar rats were selected and divided into four groups: Control Group; Crosslink Group; RMO Group and Transbond Group. The materials were inserted into rat subcutaneous tissue. After time intervals of 7, 15 and 30 days morphological analyses were performed. The histological parameters assessed were: inflammatory infiltrate intensity; reaction of multinucleated giant cells; edema; necrosis; granulation reaction; young fibroblasts and collagenization. The results obtained were statistically analyzed by the Kruskal-Wallis and Dunn test (P<0.05. After 7 days, Groups RMO and Transbond showed intense inflammatory infiltrate (P=0.004, only Group RMO presented greater expression of multinucleated giant cell reaction (P=0.003 compared with the control group. After the time intervals of 15 and 30 days, there was evidence of light/moderate inflammatory infiltrate, lower level of multinucleated giant cell reaction and thicker areas of young fibroblasts in all the groups. The hypothesis was rejected. The Crosslink cement provided good tissue response, since it demonstrated a lower level of inflammatory infiltrate and higher degree of collagenization, while RMO demonstrated the lowest level of biocompatibility.

  13. Characteristics of novel root-end filling material using epoxy resin and Portland cement.

    Science.gov (United States)

    Lee, Sang-Jin; Chung, Jin; Na, Hee-Sam; Park, Eun-Joo; Jeon, Hyo-Jin; Kim, Hyeon-Cheol

    2013-04-01

    The aim of this study was to evaluate the physical properties and cytotoxicity of a novel root-end filling material (EPC) which is made from epoxy resin and Portland cement as a mineral trioxide aggregate (MTA) substitute. EPC, developed as a root-end filling material, was compared with MTA and a mixture of AH Plus sealer and MTA (AMTA) with regard to the setting time, radio-opacity, and microleakage. Setting times were evaluated using Vicat apparatus. Digital radiographs were taken to evaluate the aluminium equivalent radio-opacity using an aluminium step wedge. Extracted single-rooted teeth were used for leakage test using methylene blue dye. After canal shaping and obturation, the apical 3-mm root was resected, and a root-end cavity with a depth of 3 mm was prepared. The root-end cavities were filled with MTA, AMTA, and EPC for 15 specimens in each of three groups. After setting in humid conditions for 24 h, the specimens were tested for apical leakage. For evaluation of the biocompatibility of EPC, cell (human gingival fibroblast) viability was compared for MTA and Portland cement by MTT assay, and cell morphological changes were compared for MTA and AH Plus by fluorescence microscopy using DAPI and F-actin staining. The setting time, radio-opacity, and microleakage were compared using one-way ANOVA and Scheffe's post hoc comparison, and the cytotoxicity was compared using the nonparametric Kruskal-Wallis rank sum test. Statistical significance was set at 95%. EPC had a shorter setting time and less microleakage compared with MTA (p Portland cement, was found to be a useful material for root-end filling, with favourable radio-opacity, short setting time, low microleakage, and clinically acceptable low cytotoxicity. The novel root-end filling material would be a potentially useful material for a surgical endodontic procedure with favourable properties.

  14. The effects of non-thermal plasma and conventional treatments on the bond strength of fiber posts to resin cement.

    Science.gov (United States)

    do Prado, Maíra; da Silva, Eduardo Moreira; Marques, Juliana das Neves; Gonzalez, Caroline Brum; Simão, Renata Antoun

    2017-05-01

    This study compared the effect of hexamethyldisiloxane (HMDSO) and ammonia (NH 3 ) plasmas on the bond strength of resin cement to fiber posts with conventional treatments. Sixty-five fiber posts were divided into 5 groups: Control (no surface treatment); H 2 O 2 (24% hydrogen peroxide for 1 min); Blasting (blasting with aluminum oxide for 30 sec); NH 3 (NH 3 plasma treatment for 3 min); HMDSO (HMDSO plasma treatment for 15 min). After the treatments, the Ambar adhesive (FGM Dental Products) was applied to the post surface ( n = 10). The fiber post was inserted into a silicon matrix that was filled with the conventional resin cement Allcem Core (FGM). Afterwards, the post/cement specimens were cut into discs and subjected to a push-out bond strength (POBS) test. Additionally, 3 posts in each group were evaluated using scanning electron microscopy. The POBS data were analyzed by one-way analysis of variance and the Tukey's honest significant difference post hoc test (α = 0.05). The Blasting and NH 3 groups showed the highest POBS values. The HMDSO group showed intermediate POBS values, whereas the Control and H 2 O 2 groups showed the lowest POBS values. Blasting and NH 3 plasma treatments were associated with stronger bonding of the conventional resin cement Allcem to fiber posts, in a procedure in which the Ambar adhesive was used.

  15. The Effects of Exposure Time on the Surface Microhardness of Three Dual-Cured Dental Resin Cements

    Directory of Open Access Journals (Sweden)

    Matheus C. Bandéca

    2011-06-01

    Full Text Available This study evaluated the exposure time of light-curing of the polymers used for cementation on microhardness test in different storage times. The polymers (specifically called resin cements were RelyX ARC, RelyX U100, and SET. Five specimens of each group were prepared and photo-polymerized with exposure times of 20 s and 180 s, using a LED polymerization unit with wavelength of 440 ~ 480 nm and light output was consistently 1,500 mW/cm2. The Vickers hardness test was performed in a MMT-3 Microhardness Tester. Data were submitted to ANOVA and Tukey's test (α = 0.05. The values of RelyX ARC showed statistically significant difference to groups with light exposure when considering only chemical cure (p < 0.05. The groups with light exposure (20 s and 180 s showed no significant difference between them (p > 0.05. The RelyX U100 cured only chemically showed statistically significant difference between 48 h and 7 days (p < 0.05. The SET resin cement showed no significant difference to groups without light exposure for all storage times (p > 0.05. The values of hardening of the dual-cured resin cements improved after setting by light and chemical activation demonstrating the importance of light curing.

  16. Effect of surface treatments on the bond strength between resin cement and differently sintered zirconium-oxide ceramics.

    Science.gov (United States)

    Yenisey, Murat; Dede, Doğu Ömür; Rona, Nergiz

    2016-01-01

    This study investigated the effects of surface treatments on bond strength between resin cement and differently sintered zirconium-oxide ceramics. 220 zirconium-oxide ceramic (Ceramill ZI) specimens were prepared, sintered in two different period (Short=Ss, Long=Ls) and divided into ten treatment groups as: GC, no treatment; GSil, silanized (ESPE-Sil); GSilPen, silane flame treatment (Silano-Pen); GSb, sandblasted; GSbSil, sandblasted+silanized; GSbCoSil, sandblasted+silica coated (CoJet)+silanized; GSbRoSil, sandblasted+silica coated (Rocatech-Plus)+silanized; GSbDSil, sandblasted+diamond particle abraded (Micron MDA)+silanized; GSbSilPen, sandblasted+silane flame treatment+silanized; GSbLSil, sandblasted+Er:Yag (Asclepion-MCL30) laser treated+silanized. The composite resin (Filtek Z-250) cylinders were cemented to the treated ceramic surfaces with a resin cement (Panavia F2.0). Shear bond strength test was performed after specimens were stored in water for 24h and thermo-cycled for 6000 cycles (5-55 °C). Data were statistically analyzed with two-way analysis of variance (ANOVA) and Tamhane's multiple comparison test (α=0.05). According to the ANOVA, sintering time, surface treatments and their interaction were statistically significant (presin cement and differently sintered zirconium-oxide ceramics. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  17. Effect of activation mode of dual-cured resin cements and low-viscosity composite liners on bond strength to dentin.

    Science.gov (United States)

    Garcia, Rubens Nazareno; Reis, André Figueiredo; Giannini, Marcelo

    2007-07-01

    The aim of this study was to investigate the influence of the activation mode of dual-cured resin cements and application of low-viscosity composite liners over self-primed dentin on bond strength (BS) of dentin-bonding agents (DBA). Three DBA (Single Bond; Prompt L-Pop and Clearfil SE Bond), their respective resin cements (RelyX ARC and Panavia F) and two low-viscosity composites (Filtek Flow and Protect Liner F) were tested. After removing the buccal enamel surfaces of 25 bovine incisors, each flat dentin surface was sectioned longitudinally and divided into two similar parts. The dentin surfaces were wet-abraded with 600-grit SiC paper and randomly divided into 10 groups. Experimental groups comprised the use of DBA and their respective dual-cured resin cements, with or without light-activation of resin cements. The low-viscosity resin was used only for the self-etching systems, Prompt L-Pop and Clearfil SE Bond. Three resin cement cylinders (0.5mm high and 0.75mm diameter) were built on each bonded dentin surface, using a tygon tubing mold. After water storage for 24h, specimens were subjected to micro-shear testing. Data were statistically analyzed by two-way ANOVA and Tukey test. Light-activation of resin cements resulted in significantly higher BS for all DBA versus groups in which the resin cements were allowed to self-cure. The low-viscosity composite application increased the BS only for Prompt L-Pop. The bond strength of resin cements to dentin is reduced if light-activation is not employed. The use of a low-viscosity composite liner resulted in improved bond strength only for the single-step self-etching adhesive.

  18. Micro-shear bond strength of different resin cements to ceramic/glass-polymer CAD-CAM block materials.

    Science.gov (United States)

    Cekic-Nagas, Isil; Ergun, Gulfem; Egilmez, Ferhan; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2016-10-01

    The aim of this study was to evaluate the effects of hydrofluoric acid treatment on bond strength of resin cements to three different types of ceramic/glass containing CAD-CAM block composite materials. CAD-CAM block materials of polymer infiltrated (Vita Enamic), resin nanoceramic (Lava Ultimate) and nanoceramic (Cerasmart) with a thickness of 1.5mm were randomly divided into two groups according to the surface treatment performed. In Group 1, specimens were wet-ground with silicon carbide abrasive papers up to no. 1000. In Group 2, 9.6% hydrofluoric acid gel was applied to ceramics. Three different resin cements (RelyX, Variolink Esthetic and G-CEM LinkAce) were applied to the tubes in 1.2-mm thick increments and light-cured for 40s using LED light curing unit. Half of the specimens (n=10) were submitted to thermal cycling (5000 cycles, 5-55°C). The strength measurements were accomplished with a universal testing machine (Lloyd Instruments) at a cross-head speed of 0.5mm/min until the failure occurs. Failure modes were examined using a stereomicroscope and scanning electron microscope. The data were analyzed with multivariate analysis of variance (MANOVA) and Tukey's post hoc tests (α=0.05). There were significant differences between ceramics and resin cements (pceramics (pceramic/glass-polymer materials might promote the bonding capacity of these systems. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  19. Comparison of the resin cement bond strength to an indirect composites treated by Er;YAG laser and sandblast

    Directory of Open Access Journals (Sweden)

    Mansure Mirzaee

    2014-04-01

    Full Text Available   Background and Aims: Indirect composites are designed to overcome the shortcomings of direct composites such as polymerization shrinkage and low degree of conversion. But, good adhesion of resin cements to indirect composites is still difficult. This research was designed to assess the effect of different powers of Er;YAG laser compared with sandblasting. On the micro tensil bond strength of resin cement to indirect composites.   Materials and Methods: Specimens were prepred using dental resin composite (Gradia GC and metallic mold (15×5×5 mm and were cured according to the manufacturer’s instructions. 24 blocks were prepared and randomly divided into 12 groups. G1:no treatment (as control, G 2-6: Er; YAG laser irradiation (2, 3, 4, 5, 6 Watt, G7: sandblast. Two composite blocks were bonded to each other with Panavia F.2. resin cement. The cylindrical sections with dimensions of 1 mm were tested in a microtensile bond strength tester device using 0.5 mm/min speed until fracture points. Data were analyzed using 2-way ANOVA and T-test.   Results: Interaction between lasers irradiation and sandblast treatments were significant (P0.05 whether samples were sandblasted or not. Samples which received 300 mJ of laser showed lower bond strength compared with no laser treatment. Other groups showed no significant difference (P>0.05.   Conclusion: It seems that application of sandblast with proper variables, is a good way to improve bond strength.Laser application had no influence in improving the bond strength between the indirect composite and resin cement.

  20. Effect of thickness of indirect restoration and distance from the light-curing unit tip on the hardness of a dual-cured resin cement.

    Science.gov (United States)

    de Paula, Andréia Bolzan; Tango, Rubens Nisie; Sinhoreti, Mário Alexandre Coelho; Alves, Marcelo Corrêa; Puppin-Rontani, Regina M

    2010-01-01

    This study evaluated the Knoop hardness and polymerization depth of a dual-cured resin cement, light-activated at different distances through different thicknesses of composite resin. One bovine incisor was embedded in resin and its buccal surface was flattened. Dentin was covered with PVC film where a mold (0.8-mm-thick and 5 mm diameter) was filled with cement and covered with another PVC film. Light curing (40 s) was carried out through resin discs (2, 3, 4 or 5 mm) with a halogen light positioned 0, 1, 2 or 3 mm from the resin surface. After storage, specimens were sectioned for hardness measurements (top, center, and bottom). Data were subjected to split-plot ANOVA and Tukey's test (alpha=0.05). The increase in resin disc thickness decreased cement hardness. The increase in the distance of the light-curing tip decreased hardness at the top region. Specimens showed the lowest hardness values at the bottom, and the highest at the center. Resin cement hardness was influenced by the thickness of the indirect restoration and by the distance between the light-curing unit tip and the resin cement surface.

  1. Light curing through glass ceramics: effect of curing mode on micromechanical properties of dual-curing resin cements.

    Science.gov (United States)

    Flury, Simon; Lussi, Adrian; Hickel, Reinhard; Ilie, Nicoleta

    2014-04-01

    The aim of this study was to investigate micromechanical properties of five dual-curing resin cements after different curing modes including light curing through glass ceramic materials. Vickers hardness (VH) and indentation modulus (Y HU) of Panavia F2.0, RelyX Unicem 2 Automix, SpeedCEM, BisCem, and BeautiCem SA were measured after 1 week of storage (37 °C, 100 % humidity). The resin cements were tested following self-curing or light curing with the second-generation light-emitting diode (LED) curing unit Elipar FreeLight 2 in Standard Mode (1,545 mW/cm(2)) or with the third-generation LED curing unit VALO in High Power Mode (1,869 mW/cm(2)) or in XtraPower Mode (3,505 mW/cm(2)). Light curing was performed directly or through glass ceramic discs of 1.5 or 3 mm thickness of IPS Empress CAD or IPS e.max CAD. VH and Y HU were analysed with Kruskal-Wallis tests followed by pairwise Wilcoxon rank sum tests (α = 0.05). RelyX Unicem 2 Automix resulted in the highest VH and Y HU followed by BeautiCem SA, BisCem, SpeedCEM, and finally Panavia F2.0. Self-curing of RelyX Unicem 2 Automix and SpeedCEM lowered VH and Y HU compared to light curing whereas self-curing of Panavia F2.0, BisCem, and BeautiCem SA led to similar or significantly higher VH and Y HU compared to light curing. Generally, direct light curing resulted in similar or lower VH and Y HU compared to light curing through 1.5-mm-thick ceramic discs. Light curing through 3-mm-thick discs of IPS e.max CAD generally reduced VH and Y HU for all resin cements except SpeedCEM, which was the least affected by light curing through ceramic discs. The resin cements responded heterogeneously to changes in curing mode. The applied irradiances and light curing times adequately cured the resin cements even through 1.5-mm-thick ceramic discs. When light curing resin cements through thick glass ceramic restorations, clinicians should consider to prolong the light curing times even with LED curing units providing high

  2. Effect of silane type and air-drying temperature on bonding fiber post to composite core and resin cement.

    Science.gov (United States)

    de Rosatto, Camila Maria Peres; Roscoe, Marina Guimarães; Novais, Veridiana Resende; Menezes, Murilo de Sousa; Soares, Carlos José

    2014-01-01

    This study evaluated the influence of silane type and temperature of silane application on push-out bond strength between fiberglass posts with composite resin core and resin cement. One hundred and sixty fiberglass posts (Exacto, Angelus) had the surface treated with hydrogen peroxide 24%. Posts were divided in 8 groups according to two study factors: air-drying temperature after silane application (room temperature and 60 ºC) and silane type: three pre-hydrolyzed--Silano (Angelus), Prosil (FGM), RelyX Ceramic Primer (3M ESPE) and one two-component silane--Silane Coupling Agent (Dentsply). The posts (n=10) for testing the bond strength between post and composite core were centered on a cylindrical plastic matrix and composite resin (Filtek Z250 XT, 3M ESPE) that was incrementally inserted and photoactivated. Eighty bovine incisor roots (n=10) were prepared for testing the bond strength between post and resin cement (RelyX U100, 3M ESPE) and received the fiberglass posts. Push-out test was used to measure the bond strength. Data were analyzed by two-way ANOVA followed by Tukey's test (α=0.05). ANOVA revealed that temperature and silane had no influence on bond strength between composite core and post. However, for bond strength between post and resin cement, the temperature increase resulted in a better performance for Silane Coupling Agent, Silano and RelyX Ceramic Primer. At room temperature Silane Coupling Agent showed the lowest bond strength. Effect of the warm air-drying is dependent on the silane composition. In conclusion, the use of silane is influenced by wettability of resinous materials and pre-hydrolyzed silanes are more stable compared with the two-bottle silane.

  3. The effect of curing conditions on the dentin bond strength of two dual-cure resin cements.

    Science.gov (United States)

    Tagami, Atsuko; Takahashi, Rena; Nikaido, Toru; Tagami, Junji

    2017-10-01

    The purpose of this study was to determine the effect of the curing condition (i.e., the curing mode and restoration thickness) on the tensile bond strength of a dual-cure resin cement applied to dentin. Indirect composite resin disks (1, 2, and 3mm in thickness) were prepared. The irradiance of a halogen light curing unit through each disk was measured by a curing radiometer. A measurement was also taken for the condition with no disk. Following this, two dual-cure resin cements, Panavia F2.0 and Panavia V5, were polymerized in either dual-cure mode or self-cure mode to bond the composite resin disk to the flat dentin surface. The specimens were sectioned and subjected to a microtensile bond strength (μTBS) test after 24h of water storage. The data were statistically analyzed by two-way ANOVA followed with multiple comparisons by post-hoc Tukey's test (α=0.05). The irradiance values [mW/cm 2 ] measured through indirect composite resin disks were 600 (0mm), 200 (1mm), 90 (2mm), and not detected (3mm). Two-way ANOVA indicated that both the curing condition and the type of resin cement affected the μTBS (pPanavia V5 bonded to dentin were significantly higher than those of Panavia F2.0 bonded to dentin (pPanavia V5, showed higher dentin bonding than Panavia F2.0 in both dual- and self-cure modes. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  4. Bond strength of resin cement to dentin and to surface-treated posts of titanium alloy, glass fiber, and zirconia

    DEFF Research Database (Denmark)

    Sahafi, Alireza; Peutzfeldt, Anne; Asmussen, Erik

    2003-01-01

    PURPOSE: To determine the effect of surface treatments on bond strength of two resin cements (ParaPost Cement and Panavia F) to posts of titanium alloy (ParaPost XH), glass fiber (ParaPost Fiber White), and zirconia (Cerapost), and to dentin. MATERIALS AND METHODS: After embedding, planar surfaces...... of posts (n = 9 to 14) and human dentin (n = 10) were obtained by grinding. The posts received one of three surface treatments: 1. roughening (sandblasting, hydrofluoric acid etching), 2. application of primer (Alloy Primer, Metalprimer II, silane), or 3. roughening followed by application of primer...

  5. [Effect of a chemical primer on the bond strength of a zirconia ceramic with self-adhesive resin cement].

    Science.gov (United States)

    Zhang, Hong; Jing, Ye; Nie, Rongrong; Meng, Xiangfeng

    2015-10-01

    To evaluate the bond strength and durability of a self-adhesive resin cement with a zirconia ceramic pretreated by a zirconia primer. Zirconia ceramic (Vita Inceram YZ) plates with a thickness of 2.5 mm were fired, polished, and then cleaned. Half of the polished ceramic plates were sandblasted with 50 μm alumina particles at 0.3 MPa for 20 s. The surface compound weight ratios were measured via X-ray fluorescence microscopy. The polished and sandblasted ceramic plates were directly bonded with self-adhesive resin cement (Biscem) or were pretreated by a zirconia primer (Z Primer Plus) before bonding with Biscem. The specimens of each test group were divided into two subgroups (n=10) and subjected to the shear test after 0 and 10,000 thermal cycles. The data were analyzed via three-way ANOVA. After air abrasion, 8.27% weight ratio of alumina attached to the zirconia surface. Compared with air abrasion, primer treatment more significantly improved the primary resin bond strength of the zirconia ceramic. The primary resin bond strength of the zirconia ceramic with no primer treatment was not affected by thermocycling (P>0.05). However, the primary resin bond strength of the zirconia ceramic with primer treatment was significantly decreased by thermocycling (Presin bond strengths of zirconia ceramics. However, the bond interface of the primer is not stable and rapidly degraded during thermocycling.

  6. Can heat treatment procedures of pre-hydrolyzed silane replace hydrofluoric acid in the adhesion of resin cement to feldspathic ceramic?

    Science.gov (United States)

    Cotes, Caroline; de Carvalho, Rodrigo Furtado; Kimpara, Estevão Tomomitsu; Leite, Fabíola Pessoa; Ozcan, Mutlu

    2013-12-01

    To evaluate the influence of heat treatment (HT) procedures of a pre-hydrolyzed silane on bond strength of resin cement to a feldspathic ceramic. Ceramic and composite blocks (N = 30) were divided into six groups (n = 5) and subjected to the following conditioning procedures: G1: 9.6% hydrofluoric acid (HF) for 20 s + silane (RelyX Ceramic Primer, 3M ESPE) + resin cement (Panavia F2.0, Kuraray) (control); G2: HF (20 s) + silane + heat treatment in furnace (HTF) (100°C, 2 min) + resin cement; G3: silane + HTF + resin cement; G4- HF (20 s) + silane + heat treatment with hot air (HTA) (50 ± 5°C for 1 min) + resin cement; G5: silane + HTA + resin cement; G6: silane + resin cement. The microtensile bond strength (MTBS) test was performed using a universal testing machine (1 mm/min). After debonding, the substrate and adherent surfaces were analyzed using a stereomicroscope and SEM to categorize the failure types. The data were statistically evaluated using one-way ANOVA and Tukey's test (5%). The control group (G1) showed no pre-test failures and presented significantly higher mean MTBS (16.01 ± 1.12 MPa) than did other groups (2.63 ± 1.05 to 12.55 ± 1.52 MPa) (p = 0.0001). In the groups where HF was not used, HTF (G3: 12.55 ± 1.52 MPa) showed significantly higher MTBS than did HTA (G5: 2.63 ± 1.05 MPa) (p silane either in a furnace or with the application of hot air cannot replace the use of HF gel for the adhesion of resin cement to feldspathic ceramic. Yet when mean bond strengths and incidence of pre-test failures are considered, furnace heat treatment delivered the second best results after the control group, being considerably better than hot air application.

  7. Influence of the resin cement thickness on the fatigue failure loads of CAD/CAM feldspathic crowns.

    Science.gov (United States)

    Gressler May, Liliana; Kelly, J Robert; Bottino, Marco Antonio; Hill, Tom

    2015-08-01

    to evaluate the influence of the occlusal resin cement thickness on the cyclic loads-to-failure of feldspathic crowns and to compare the results to data from monotonic tests. A large range of cement thickness (50μm and 500μm) was tested, in order to better measure the influence of this variable. Feldspathic ceramic crowns (Vita Mark II blocks, Vita Zahnfabrik) were bonded to dentin analog dies (G10 (NEMA grade G10, International Paper), with occlusal resin cement thicknesses of 50μm and 500μm (Multilink Automix, Ivoclar). The dies were prepared with microchannels for water transport to the cement layer. After 96-h water storage, the specimens (n=20) were submitted to cyclic loads (500,000 cycles at 20Hz; initial maximum load=40% of monotonic load, from previous data) following a staircase sensitivity design (step size=25N). Failure loads at 500,000 cycles were compared to monotonic failure loads (from a previous study with specimens produced by the same author, using the same materials, specimen configuration and cementation protocol). Crowns with an occlusal cement layer of 50μm were more resistant than those cemented with 500μm (246.4±22.9N vs. 158.9±22.9N), under wet cyclic testing conditions (pcement thickness of 50μm was more favorable for the structural performance of feldspathic crowns than was 500μm. Cyclic fatigue reduced failure loads well below those found under monotonic loading. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. An in vitro evaluation of the zirconia surface treatment by mesoporous zirconia coating on its bonding to resin cement.

    Science.gov (United States)

    Zhang, Yanli; Sun, Ting; Liu, Ruoyu; Feng, Xiaoli; Chen, Aijie; Shao, Longquan

    2014-01-01

    The effect of zirconia surface treatment by mesoporous zirconia coating on the microtensile bond strength (MTBS) between zirconia and resin cement was investigated in this work. 160 zirconia specimens were prepared and divided into four groups according to surface treatments: (1) airborne-particle-abrasion treatment (APA); (2) glass infiltration and hydrofluoric acid treatment (GI+HF); (3) mesoporous zirconia coating (MZ); and (4) no treatment (C). The as-prepared zirconia specimens were bonded using Panavia F2.0 and RelyX Unicem. The MTBS values were tested using a universal testing machine, and data were analyzed using ANOVA and SNK methods (a=0.05). The MTBS values obtained after GI+HF and MZ treatments were significantly higher than those obtained after APA and C treatments (Psurface treatments using GI+HF and MZ yield higher bond strength than those using APA or C, regardless of the resin cements.

  9. Influence of Curing Units and Indirect Restorative Materials on the Hardness of Two Dual-curing Resin Cements Evaluated by the Nanoindentation Test.

    Science.gov (United States)

    Kuguimiya, Rosiane Noqueira; Rode, Kátia Martins; Carneiro, Paula Mendes Acatauassú; Aranha, Ana Cecilia Corrêa; Turbino, Miriam Lacalle

    2015-06-01

    To evaluate the hardness of a dual-curing self-adhesive resin cement (RelyX U200) and a conventional dual-curing resin cement (RelyX ARC) cured with different light curing units of different wavelengths (Elipar Freelight 2 LED [430 to 480 nm, conventional], Bluephase LED [380 to 515 nm, polywave], AccuCure 3000 Laser [488 nm]) by means of the nanoindentation test. Bovine incisors were cleaned and then sectioned at the cementoenamel junction to remove the crown. After embedding in acrylic, dentin surfaces of the specimens were exposed and ground flat to standardize the surfaces. To simulate clinically placing indirect restorations, ceramic (IPS e.maxPress/Ivoclar Vivadent) or indirect composite resin (SR Adoro/Ivoclar Vivadent) slabs were cemented on dentin surfaces. The specimens were sectioned longitudinally at low speed under constant irrigation and then polished. In the positive control group, the cement was light cured without the interposition of indirect restorative material; in the negative control group, after the indirect restorative material was cemented, no light curing was performed, allowing only chemical polymerization of the cement. All specimens were stored in distilled water at 37°C for 7 days. Nanoindentadion hardness of the cement layer was measured under a 100-mN load. Data were statistically analyzed using ANOVA and Tukey's test (p resin cements evaluated was negatively influenced by the interposition of an indirect restorative material; only the LEDs were able to maintain the same degree of cement polymerization when an indirect restorative material was used. The photoactivation step is required during the cementation of indirect restorations to ensure adequate polymerization of dual-curing resin cements.

  10. Long-term degradation of resin-based cements in substances present in the oral environment: influence of activation mode

    Directory of Open Access Journals (Sweden)

    Eduardo Moreira da SILVA

    2013-06-01

    Full Text Available Indirect restorations in contact with free gingival margins or principally within the gingival sulcus, where the presence of organic acids produced by oral biofilm is higher, may present faster degradation of the resin-based cement pellicle. Objectives To investigate the degradation of four resin-based cements: Rely X ARC (R, Variolink II (V, Enforce (E and All Cem (A, after immersion in distilled water (DW, lactic acid (LA and artificial saliva (AS and to analyze the influence of the activation mode on this response. Material and Methods Two activation modes were evaluated: chemical (Ch and dual (D. In the dual activation, a two-millimeter thick ceramic disk (IPS Empress System was interposed between the specimen and light-curing unit tip. Specimens were desiccated, immersed in distilled water, artificial saliva and lactic acid 0.1 M at 37°C for 180 days, weighed daily for the first 7 days, and after 14, 21, 28, 90 and 180 days and were desiccated again. Sorption and solubility (µg/mm 3 were calculated based on ISO 4049. The data were submitted to multifactor analysis of variance (MANOVA and Tukey's HSD test for media comparisons (α=0.05. Results Sorption was higher after immersion in LA (pD (p<0.05. The lowest solubility was presented by R (p<0.05. Conclusions Lactic acid increased the degradation of resin-based cements. Moreover, the physical component of activation, i.e., light-activation, contributed to a low degradation of resin-based cements.

  11. Microtensile bond strength between indirect composite resin inlays and dentin: effect of cementation strategy and mechanical aging.

    Science.gov (United States)

    Prochnow, Emília Pithan; Amaral, Marina; Bergoli, César Dalmolin; Silva, Tatiana Bernardon; Saavedra, Guilherme; Valandro, Luiz Felipe

    2014-08-01

    To evaluate the microtensile bond strength of indirect resin composite inlays to dentin using two cementation strategies, before and after mechanical aging. Standardized inlay cavities (bucco-lingual width: 3 mm; depth: 4 mm) were prepared in 32 human premolars. The teeth were embedded in self-curing acrylic resin up to 3 mm from the cementoenamel junction, impressions were made using a polyvinyl siloxane material, master dies were obtained using type 4 stone, and inlay composite resin restorations were fabricated (Sinfony, 3M ESPE). The teeth were randomly allocated into 4 groups according to the cementation strategy (conventional [C] and simplified [S]) and aging (mechanical cycling [MC] and not aged): C[G1]: Adper SingleBond + RelyX ARC without aging; CMC[G2]: conventional cementation + mechanical cycling (106 cycles, 88 N, 4 Hz, ± 37°C); S[G3]: self-adhesive resin cement (RelyX U-100) without aging; SMC[G4] self-adhesive cementation + mechanical cycling. Intaglio surfaces of composite inlays were treated by tribochemical silica coating in G1 and G2, while G3 and G4 received no surface treatment. Non-aged specimens were stored in a moist environment at ca 37°C for the same period as MC (3 days). Non-trimmed beam specimens (bonding area = 1 mm²) were produced by serial cutting, and microtensile testing was performed (0.5 mm/min). Two-way ANOVA showed that the microtensile bond strength was affected only by cementation strategy (p < 0.0001). Tukey's test showed that groups G1 (35.1 ± 9.1) and G2 (32.7 ± 10.7) presented significantly higher bond strength values than G3 (8.7 ± 6.3) and G4 (5.2 ± 4.6). The use of a conventional adhesive technique and tribochemical silica coating resulted in higher μTBS than the one-step simplified cementation, even after mechanical cycling.

  12. Effect of dentin-cleaning techniques on the shear bond strength of self-adhesive resin luting cement to dentin.

    Science.gov (United States)

    Santos, M J M C; Bapoo, H; Rizkalla, A S; Santos, G C

    2011-01-01

    This in vitro study evaluated the influence of different cleansing techniques on the bond strength of self-adhesive cement to dentin. A total of 33 noncarious human molars were sectioned mesiodistally and embedded in chemically cured resin with the buccal or lingual surfaces facing upward. Superficial dentin was exposed and resin disk provisional restorations were cemented to the dentin surfaces with noneugenol provisional cement and were stored in distilled water at 37°C. After seven days, the provisional restorations were removed and 13 specimens were randomly assigned to each of the five groups (n=13), according to the following cleansing treatments: G1-excavator (control); G2-0.12% chlorhexidine digluconate; G3-40% polyacrylic acid; G4-mixture of flour pumice and water; and G5-sandblasting with 50 μm aluminum oxide particles at a pressure of 87 psi. Resin composite disks (Filtek Supreme Plus, 3M ESPE Dental Products, St Paul, MN, USA) 4.7 (±0.1) mm in diameter and 3.0 (±0.5) mm in height were cemented with self-adhesive cement (RelyX Unicem, 3M ESPE), photocured, and stored in distilled water at 37°C for 24 hours. Shear bond strength testing was conducted using a universal test machine at a crosshead speed of 0.5 mm/min until failure. Data were analyzed using analysis of variance (ANOVA) and the Tukey-B rank order test. Sandblasting with aluminum oxide (11.32 ± 1.70 MPa) produced significantly higher shear bond strength values compared with any other treatment groups (p<0.05). No significant differences were found between G1-control (7.74 ± 1.72 MPa), G2-chlorhexidine (6.37 ± 1.47 MPa), and G4-pumice (7.33 ± 2.85 MPa) (p<0.05).

  13. Efficiency of dual-cured resin cement polymerization induced by high-intensity LED curing units through ceramic material.

    Science.gov (United States)

    Watanabe, H; Kazama, Re; Asai, T; Kanaya, F; Ishizaki, H; Fukushima, M; Okiji, T

    2015-01-01

    This study aimed to evaluate the ability of high-intensity light-emitting diode (LED) and other curing units to cure dual-cured resin cement through ceramic material. A halogen curing unit (Jetlite 3000, Morita), a second-generation LED curing unit (Demi, Kerr), and two high-intensity LED curing units (PenCure 2000, Morita; Valo, Ultradent) were tested. Feldspathic ceramic plates (VITABLOCS Mark II, A3; Vita Zahnfabrik) with thicknesses of 1.0, 2.0, and 3.0 mm were prepared. Dual-cured resin cement samples (Clearfil Esthetic Cement, Kuraray Noritake Dental) were irradiated directly or through one of the ceramic plates for different periods (5, 10, 15, or 20 seconds for the high-intensity LED units and 20, 40, 60, or 80 seconds for the others). The Knoop hardness test was used to determine the level of photopolymerization that had been induced in the resin cement. Data were analyzed by one-way analysis of variance and Dunnett's post-hoc test to identify test-control (maximum irradiation without a ceramic plate) differences for each curing unit (presin cement through a ceramic plate resulted in decreased KHN values compared with direct irradiation. When the irradiation period was extended, only the LED units were able to achieve similar KHN values to those observed under direct irradiation in the presence of plates ≥2.0-mm thick. High-intensity LED units require a shorter irradiation period than halogen and second-generation LED curing units to obtain KHN values similar to those observed during direct irradiation.

  14. Comparison of two test designs for evaluating the shear bond strength of resin composite cements.

    Science.gov (United States)

    Hu, M; Weiger, R; Fischer, J

    2016-02-01

    To compare a shear bond strength test for resin composite cements developed in order to better consider the shrinkage stress (here termed "Swiss shear test") with the shear test design according to ISO 29022. Four restorative materials (VITA Enamic (VE), VITA Suprinity (VS), Vitablocs Mark II (VM) and VITA YZ T (YZ)) served as substrate. VE, VS and VM were polished or etched. YZ was polished, sandblasted or etched. Specimens were either bonded according to the Swiss or the ISO shear test. RelyX Unicem 2 Automix, Maxcem Elite and PermaFlo DC were used as cements. Shear bond strength (SBS) was measured. Failure modes (adhesive, cohesive or mixed) were evaluated by means of SEM. Mean SBS values obtained with the Swiss shear test were significantly lower than those obtained with the ISO shear test. VE and VM exhibited similar SBS, values of VS were significantly higher. On etched surfaces VM and VE exhibited primarily cohesive failures, VS primarily adhesive failures. On polished substrates significantly lower bond strength values and exclusively adhesive failures were observed. YZ exhibited solely adhesive failures. Compared to polished YZ, SBS significantly increased after sandblasting and even more after etching. Only for adhesively failed specimens mean SBS values of Swiss and ISO shear test were strongly correlated. Both test designs showed the same ranking of test results. When adhesive failure occurred test results were strongly correlated. When cohesive failure was involved, both test designs did not provide reliable results. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Influence of Curing Mode on the Surface Energy and Sorption/Solubility of Dental Self-Adhesive Resin Cements

    Directory of Open Access Journals (Sweden)

    Hyun-Jin Kim

    2017-02-01

    Full Text Available This study investigated the influence of curing mode (dual- or self-cure on the surface energy and sorption/solubility of four self-adhesive resin cements (SARCs and one conventional resin cement. The degree of conversion (DC and surface energy parameters including degree of hydrophilicity (DH were determined using Fourier transform infrared spectroscopy and contact angle measurements, respectively (n = 5. Sorption and solubility were assessed by mass gain or loss after storage in distilled water or lactic acid for 60 days (n = 5. A linear regression model was used to correlate between the results (%DC vs. DH and %DC/DH vs. sorption/solubility. For all materials, the dual-curing consistently produced significantly higher %DC values than the self-curing (p < 0.05. Significant negative linear regressions were established between the %DC and DH in both curing modes (p < 0.05. Overall, the SARCs showed higher sorption/solubility values, in particular when immersed in lactic acid, than the conventional resin cement. Linear regression revealed that %DC and DH were negatively and positively correlated with the sorption/solubility values, respectively. Dual-curing of SARCs seems to lower the sorption and/or solubility in comparison with self-curing by increased %DC and occasionally decreased hydrophilicity.

  16. Bond strength of a dental leucite-based glass ceramic to a resin cement using different silane coupling agents.

    Science.gov (United States)

    Hooshmand, Tabassom; Matinlinna, Jukka P; Keshvad, Alireza; Eskandarion, Solmaz; Zamani, Fereshteh

    2013-01-01

    To evaluate the effect of different types of novel silane coupling agents with two concentrations on the micro-tensile bond strength of a dental glass ceramic with leucite crystals to a dual-cured resin cement using an optimized method of silane application. Leucite-reinforced feldspathic ceramic blocks were fabricated, wet ground and cleansed. The bonding ceramic surfaces were treated with different organosilane solutions as follows: Control silane: Monobond S; methacryloxypropyltrimethoxy silane and experimental silanes with two concentrations (1.0 and 2.5 vol%): amino, isocyanate, styryl, and acrylate silanes. The silane application method consisted of brush application, hot air drying followed by rinsing with hot water and drying. Then a thin layer of an unfilled resin and a dual-cured resin cement was light-cured on the ceramic surfaces. The resin-ceramic blocks were stored in distilled water at 37°C for 24 h and sectioned to produce beam specimens (n=17) with a 1.0 mm(2) cross-sectional area. Specimens were then subjected to thermocycling and tested in a micro-tensile tester device. Data were analyzed using analysis of variance and Tamhane post-hoc test. The mean micro-tensile bond strength value for the styryl silane was significantly higher (P0.05). The micro-tensile bond strength of the leucite-based dental glass ceramic to a resin cement was affected by the type of silane coupling agent and not by the concentration of silane solutions. The best bond strength overall was achieved by methacryloxypropyltrimethoxysilane and experimental styryl silane solutions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Modeling of the interaction between chemical and mechanical behavior of ion exchange resins encapsulated into a cement-based matrix

    International Nuclear Information System (INIS)

    Neji, Mejdi

    2014-01-01

    Ion exchange resins (IER) are widely used in the nuclear industry to purge non directly storable infected effluents. IER then become a solid waste which could be stored as any classical nuclear waste. One way of conditioning consists in embedding it into a cement paste matrix. This process raises some concerns regarding the cohesiveness of the composite. Once embedded, the IER might indeed interact with the cement paste which would lead, in some cases, to the swelling of the composite. This thesis has been set up to address this potential issue, with the aim to develop a numerical tool able to predict the mechanical behavior of this kind of material. This work only focuses on the long term behavior and more specifically on the potential degradations of the cement paste/IER composite due to cationic IER. (author)

  18. Immobilisation in cement of ion exchange resins arising from the purification of reagents used for the decontamination of reactor circuits

    International Nuclear Information System (INIS)

    Donoghue, S.J.; Howard, C.G.; Lee, D.J.

    1987-06-01

    An account of the annual decontaminations undertaken on the SGHWR at Winfrith is given with reasons for changing from Citrox reagents to LOMI plus the effects of using nitric acid permanganate solution as a preoxidising agent. Safe disposal of these reagents after use is a problem concerning many water cooled reactor operators. A brief review of the various methods of disposal is given. The proposed method of disposing of LOMI wastes generated at Winfrith is to remove the activity onto ion exchange resins then immobilize them in a cement matrix. Duolite C225 (a cross linked polystyrene with sulphonic acid functional groups) has been identified as a suitable ion exchanger. Duolite C225 in the sodium form can be successfully immobilised in blended cement systems. The formulation which appears acceptable is manufactured from a 9 to 1 blend of Blast Furnace Slag and Ordinary Portland Cement, containing 40% ion exchange resin by weight, in the form of a slurry. The product has adequate strength for handling and shows little dimensional change with time. Experiments show that above 50% waste loading the product becomes unstable and its strength is unacceptably low. Changes in the metal cation have shown little effect on the properties of the product. Increasing the waste loading appears to have little effect on the hydration rate of the product. Preliminary calculations show that a volume reduction factor of 4 is obtained by taking the active LOMI effluent, removing the activity onto the Duolite C225 and then immobilising in cement. (author)

  19. Effect of light-curing method and indirect veneering materials on the Knoop hardness of a resin cement

    Directory of Open Access Journals (Sweden)

    Nelson Tetsu Iriyama

    2009-06-01

    Full Text Available This study evaluated the Knoop hardness of a dual-cured resin cement (Rely-X ARC activated solely by chemical reaction (control group or by chemical / physical mode, light-cured through a 1.5 mm thick ceramic (HeraCeram or composite (Artglass disc. Light curing was carried out using conventional halogen light (XL2500 for 40 s (QTH; light emitting diodes (Ultrablue Is for 40 s (LED; and Xenon plasma arc (Apollo 95E for 3 s (PAC. Bovine incisors had their buccal face flattened and hybridized. On this surface a rubber mold (5 mm in diameter and 1 mm in height was bulk filled with the resin cement. A polyester strip was seated for direct light curing or through the discs of veneering materials. After dry storage in the dark (24 h 37°C, the samples (n = 5 were sectioned for hardness (KHN measurements, taken in a microhardness tester (50 gF load 15 s. The data were statistically analyzed by ANOVA and Tukey's test (α = 0.05. The cement presented higher Knoop hardness values with Artglass for QTH and LED, compared to HeraCeram. The control group and the PAC/Artglass group showed lower hardness values compared to the groups light-cured with QTH and LED. PAC/HeraCeram resulted in the worst combination for cement hardness values.

  20. Microleakage of conventional, resin-modified, and nano-ionomer glass ionomer cement as primary teeth filling material

    Directory of Open Access Journals (Sweden)

    Dita Madyarani

    2014-12-01

    Full Text Available Background: Glass ionomer cements are one of many dental materials that widely used in pediatric dentistry due to their advantage of fluoride release and chemical bond to tooth structure. Adherence of the filling material to the cavity walls is one of the most important characteristic that need to be examined its effect on microleakage. Purpose: This study was conducted to examine the microleakage of nano-ionomer glass ionomer cement compared with the conventional and resin-modified glass ionomer cements. Methods: Standard class V cavities sized 3 mm x 2 mm x 2 mm were made on a total of 21 extracted maxillary primary canine teeth and restored with the conventional, resin-modified, dan nano-ionomer glass ionomer cements. All the teeth were immersed in a 2% methylene blue dye for 4 hours. The depth of dye penetration was assessed using digital microscope after sectioning the teeth labio-palatally. The results were statistically analyzed using Kruskal-Wallis test. Results: All type of glass ionomer material showed microleakage. Conventional glass ionomer cement demonstrated the least microleakage with mean score 1.29. the resin-modified glass ionomer cements (mean score 1.57 and nano-ionomer glass ionomer cement (mean score 2.57. Conclusion: The conventional glassionomer, resin modified glassionomer, and nano-ionomer glassionomer showed micro leakage as filling material in primary teeth cavity. The micro leakage among three types was not significant difference. All three material were comparable in performance and can be used for filling material but still needs a coating material to fill the microleakage.Latar belakang: Semen ionomer kaca adalah salah satu dari banyak bahan gigi yang banyak digunakan dalam praktek kedokteran gigi anak karena bahan tersebut merilis fluoride dan berikatan kimia dengan struktur gigi. Perlekatan bahan tumpatan pada dinding kavitas adalah salah satu karakteristik paling penting yang perlu diteliti efeknya terhadap

  1. Evaluation of the Bond Strength of Resin Cements Used to Lute Ceramics on Laser-Etched Dentin

    Science.gov (United States)

    Duzdar, Lale; Oksuz, Mustafa; Tanboga, Ilknur

    2014-01-01

    Abstract Objective: The purpose of this study was to investigate the shear bond strength (SBS) of two different adhesive resin cements used to lute ceramics on laser-etched dentin. Background data: Erbium, chromium: yttrium, scandium, gallium, garnet (Er,Cr:YSGG) laser irradiation has been claimed to improve the adhesive properties of dentin, but results to date have been controversial, and its compatibility with existing adhesive resin cements has not been conclusively determined. Materials and methods: Two adhesive cements, one “etch-and-rinse” [Variolink II (V)] and one “self-etch” [Clearfil Esthetic Cement (C)] luting cement, were used to lute ceramic blocks (Vita Celay Blanks, Vita) onto dentin surfaces. In total, 80 dentin specimens were distributed randomly into eight experimental groups according to the dentin surface-etching technique used Er,Cr:YSGG laser and Er:YAG laser: (1) 37% orthophosphoric acid+V (control group), (2) Er,Cr:YSGG laser+V, (3) Er,Cr:YSGG laser+acid+V, (4) Er:YAG laser+V, (5) Er:YAG laser+acid+V, (6) C, (7) Er,Cr:YSGG laser+C, and (8) Er:YAG laser+C. Following these applications, the ceramic discs were bonded to prepared surfaces and were shear loaded in a universal testing machine until fracture. SBS was recorded for each group in MPa. Shear test values were evaluated statistically using the Mann–Whitney U test. Results: No statistically significant differences were evident between the control group and the other groups (p>0.05). The Er,Cr:YSGG laser+A+V group demonstrated significantly higher SBS than did the Er,Cr:YSGG laser+V group (p=0.034). The Er,Cr:YSGG laser+C and Er:YAG laser+C groups demonstrated significantly lower SBS than did the C group (pceramic bond strengths, depending upon the adhesive cement used. PMID:24992276

  2. Modelling of the interaction between chemical and mechanical behaviour of ion exchange resins incorporated into a cement-based matrix

    Directory of Open Access Journals (Sweden)

    Le Bescop P.

    2013-07-01

    Full Text Available In this paper, we present a predictive model, based on experimental data, to determine the macroscopic mechanical behavior of a material made up of ion exchange resins solidified into a CEM III cement paste. Some observations have shown that in some cases, a significant macroscopic expansion of this composite material may be expected, due to internal pressures generated in the resin. To build the model, we made the choice to break down the problem in two scale’s studies. The first deals with the mechanical behavior of the different heterogeneities of the composite, i.e. the resin and the cement paste. The second upscales the information from the heterogeneities to the Representative Elementary Volume (REV of the composite. The heterogeneities effects are taken into account in the REV by applying a homogenization method derived from the Eshelby theory combined with an interaction coefficient drawn from the poroelasticity theory. At the first scale, from the second thermodynamic law, a formulation is developed to estimate the resin microscopic swelling. The model response is illustrated on a simple example showing the impact of the calculated internal pressure, on the macroscopic strain.

  3. Comparison of Elastic Modulus and Compressive Strength of Ariadent and Harvard Polycarboxylate Cement and Vitremer Resin Modified Glass Ionomer

    Directory of Open Access Journals (Sweden)

    Ahmadian Khoshemehr Leila

    2009-09-01

    Full Text Available Background: Luting agents are used to attach indirect restoration into or on the tooth. Poor mechanical properties of cement may be a cause of fracture of this layer and lead to caries and restoration removal. The purpose of this study was to compare the elastic modulus and compressive strength of Ariadent (A Poly and Harvard polycarboxylate (H Poly cements and Vitremer resin modified glass ionomer (RGl.Materials & Methods: In this experimental study 15 specimens were prepared form each experimental cement in Laboratory of Tehran Oil Refining Company. The cylindrical specimens were compressed in Instron machine after 24 hours. Elastic modulus and compressive strength were calculated from stress/strain curve of each specimen. One way ANOVA and Tukey tests were used for statistical analysis and P values<0.05 were considered to be statistically significant.Results: The mean elastic modulus and mean compressive strength were 2.2 GPa and 87.8MPa in H poly, 2.4 GPa and 56.5 MPa in A Poly, and 0.8GPa and 105.6 MPa in RGI, respectively. Statistical analysis showed that compressive strength and elastic modulus of both polycarboxylate cements were significantly different from hybrid ionomer (P<0.05, but the difference between elastic modulus of two types of polycarboxilate cements was not statistically significant. Compressive strength of two polycarboxilate cements were significantly different (P<0.05. Conclusion: An ideal lutting agent must have the best mechanical properties. Between the tested luttins RGl cement had the lowest elastic modulus and the highest compressive strength, but the A poly cement had the highest elastic modulus and the lowest compressive strength. Therefore none of them was the best.

  4. Effect of light energy density on conversion degree and hardness of dual-cured resin cement.

    Science.gov (United States)

    Komori, Paula Carolina de Paiva; de Paula, Andréia Bolzan; Martin, Airton Abrāo; Tango, Rubens Nisie; Sinhoreti, Mario Alexandre Coelho; Correr-Sobrinho, Lourenço

    2010-01-01

    This study evaluated the effect of different light energy densities on conversion degree (CD) and Knoop hardness number (KHN) of RelyX ARC (RLX) resin cement. After manipulation according to the manufacturer's instructions, RLX was inserted into a rubber mold (0.8 mm x 5 mm) and covered with a Mylar strip. The tip of the light-curing unit (LCU) was positioned in contact with the Mylar surface. Quartz-tungsten-halogen (QTH) and light-emitting diode (LED) LCUs with light densities of 10, 20 and 30 J/cm2 were used to light-cure the specimens. After light curing, the specimens were stored dry in lightproof containers at 37 degrees C. After 24 hours, the CD was analyzed by FT-Raman and, after an additional 24-hours, samples were submitted to Knoop hardness testing. The data of the CD (%) and KHN were submitted to two-way ANOVA and the Tukey's test (alpha = 0.05). QTH and LED were effective light curing units. For QTH, there were no differences among the light energy densities for CD or KHN. For LED, there was a significant reduction in CD with the light energy density set at 10 J/cm2. KHN was not influenced by the light-curing unit and by its light energy density.

  5. Effect of light curing unit on resin-modified glass-ionomer cements: a microhardness assessment.

    Science.gov (United States)

    Cefaly, Daniela Francisca Gigo; de Mello, Liliam Lucia Carrara Paes; Wang, Linda; Lauris, José Roberto Pereira; D'Alpino, Paulo Henrique Perlatti

    2009-01-01

    To evaluate the microhardness of resin-modified glass-ionomer cements (RMGICs) photoactivated with a blue light-emitting diode (LED) curing light. Thirty specimens were distributed in 3 groups: Fuji II LC Improved/GC (RM1), Vitremer/3M ESPE (RM2) and Filtek Z250/3M ESPE (RM3). Two commercial light-curing units were used to polymerize the materials: LED/Ultrablue IS and a halogen light/XL3000 (QTH). After 24 h, Knoop microhardness test was performed. Data were submitted to three-way ANOVA and Tukey's test at a pre-set alpha of 0.05. At the top surface, no statistically significant difference (p>0.05) in the microhardness was seen when the LED and QTH lights were used for all materials. At the bottom surface, microhardness mean value of RM2 was significantly higher when the QTH light was used (plight was used. No statistically significant difference (p>0.05) was seen at the bottom surface for RM3, irrespective of the light used. Top-to-bottom surface comparison showed no statistically significant difference (p>0.05) for both RMGICs, regardless of the light used. For RM3, microhardness mean value at the top was significantly higher (pcuring units were used. The microhardness values seen when a LED light was used varied depending on the restorative material tested.

  6. Effect of light curing unit on resin-modified glass-ionomer cements: a microhardness assessment

    Directory of Open Access Journals (Sweden)

    Daniela Francisca Gigo Cefaly

    2009-06-01

    Full Text Available OBJECTIVE: To evaluate the microhardness of resin-modified glass-ionomer cements (RMGICs photoactivated with a blue light-emitting diode (LED curing light. MATERIAL AND METHODS: Thirty specimens were distributed in 3 groups: Fuji II LC Improved/GC (RM1, Vitremer/3M ESPE (RM2 and Filtek Z250/ 3M ESPE (RM3. Two commercial light-curing units were used to polymerize the materials: LED/Ultrablue IS and a halogen light/XL3000 (QTH. After 24 h, Knoop microhardness test was performed. Data were submitted to three-way ANOVA and Tukey's test at a pre-set alpha of 0.05. RESULTS: At the top surface, no statistically significant difference (p>0.05 in the microhardness was seen when the LED and QTH lights were used for all materials. At the bottom surface, microhardness mean value of RM2 was significantly higher when the QTH light was used (p0.05 was seen at the bottom surface for RM3, irrespective of the light used. Top-to-bottom surface comparison showed no statistically significant difference (p>0.05 for both RMGICs, regardless of the light used. For RM3, microhardness mean value at the top was significantly higher (p<0.05 than bottom microhardness when both curing units were used. CONCLUSION: The microhardness values seen when a LED light was used varied depending on the restorative material tested.

  7. Influence of silane heat treatment on bond strength of resin cement to a feldspathic ceramic.

    Science.gov (United States)

    de Carvalho, Rodrigo Furtado; Martins, Maria Elizabeth Marques Nogueira; de Queiroz, José Renato Cavalcanti; Leite, Fabíola Pessoa Pereira; Ozcan, Mutlu

    2011-01-01

    This study evaluated the influence of heat treatment (HT) of the silane on the microtensile bond strength of resin cement to a feldspathic ceramic. Ceramic (VITA VM7) and composite blocks (N=32) were divided into four groups (n=6 for bond test, n=2 for SEM) at random and subject to following sequence of conditioning: G1: HF 9.6%+Silane+Panavia F2.0, G2: HF 9.6%+Silane+HT+Panavia F2.0, G3: Silane+HT+Panavia F2.0, and G4: Silane+Panavia F2.0. HT was performed in an oven (100°C, 2 minutes). G1 (17.6±2.3 MPa) and G2 (19±3.2 MPa) showed significantly higher mean bond strength than those of G3 (9.1±2.8 MPa) and G4 (10.9±1.8 MPa). SEM analysis showed exclusively mixed failures. Silane HT did not increase the bond strength.

  8. The effect of several dentin desensitizers on shear bond strength of adhesive resin luting cement using self-etching primer.

    Science.gov (United States)

    Huh, Jung-Bo; Kim, Jee-Hwan; Chung, Moon-Kyu; Lee, Ho-Yong; Choi, Yong-Geun; Shim, June-Sung

    2008-12-01

    Dentin desensitizers can inhibit the bonding between dentin and resin cements. This study examined the effect of the previous application of desensitizers on the shear bond strength of one resin cement using self-etching primer to dentin. One hundred and twenty-five dentin exposed teeth were randomly assigned to four experimental groups and one control group of 25 teeth each. Four dentin desensitizers were applied to the four experimental groups, respectively. The dentin desensitizers used were SuperSeal (Phoenix Dental, Inc., USA), MS-Coat (Sun Medical Co. Ltd, Japan), Gluma (Heraeus Kulzer, Germany), and Copalite Varnish (Cooley & Cooley Ltd, USA). Panavia F (Kuraray Co. Ltd, Tokyo, Japan) was attached to the top of each experimental and control group teeth using an Ultradent testing jig (Ultradent Product, Inc., Utah, USA), and the shear bond strength was measured using a Universal testing machine (Model 6022, Instron Co., Canton, MA, USA). The tooth surface was examined by scanning electron microscopy (SEM, JSM-T2000, JEOL, Tokyo, Japan). The control group showed the greatest shear bond strength (14.74 MPa) followed by SuperSeal (12.33 MPa), Gluma (5.28 MPa), MS-Coat (4.44 MPa) and Copalite Varnishtrade mark (3.14 MPa). There was no significant difference in shear bond strength between the control group and the experimental group treated with Superseal. The shear bond strength in the other experimental groups treated with Gluma, Varnish, and MS-Coat was similar to each other but significantly lower than control or Superseal. SEM showed revealed resin tags in most of the dentinal tubules in the experimental group treated with the Superseal. Among the four dentin desensitizers, Superseal was the only one that did not interfere with the process of resin bonding. The other dentin desensitizers that contained a resin ingredient interfered with resin retention.

  9. Durability of resin cement bond to aluminium oxide and zirconia ceramics after air abrasion and laser treatment.

    Science.gov (United States)

    Foxton, Richard M; Cavalcanti, Andrea N; Nakajima, Masatoshi; Pilecki, Peter; Sherriff, Martyn; Melo, Luciana; Watson, Timothy F

    2011-02-01

    The erbium laser has been introduced for cutting enamel and dentin and may have an application in the surface modification of high-strength aluminum oxide and zirconia ceramics. The aim of this study was to evaluate the durability of the bond of conventional dual-cured resin cements to Procera Al(2)O(3) and zirconium oxide ceramics after surface treatment with air abrasion and erbium laser. One hundred twenty Al(2)O(3) and 120 zirconia specimens measuring 3 × 3 × 0.7 mm(3) were divided equally into three groups, and their surfaces treated as follows: either untreated (controls), air abraded with Al(2)O(3) particles, or erbium-laser-treated at a power setting of 200 mJ. The surface of each specimen was then primed and bonded with one of two dual-cured resin cements (either SCP-100 Ceramic Primer and NAC-100 or Monobond S and Variolink II) using a 1-mm thick Tygon tube mold with a 0.75-mm internal bore diameter. After 24 hours and 6 months of water storage at 37°C, a microshear bond strength test was performed at a crosshead speed of 1 mm/min. Surface morphology was examined using a confocal microscope, and failure modes were observed using an optical microscope. The data were analyzed using the Kaplan-Meier nonparametric survival analysis. In the case of zirconia, air abrasion and Erbium:yttrium-aluminum-garnet (Er:YAG) laser treatment of the ceramic surface resulted in a significant reduction in the bond strengths of both resin cements after 6 months water storage; however, when the zirconia surface was left untreated, the SCP-100/NAC-100 group did not significantly reduce in bond strength. In the case of alumina, no treatment, air abrasion and Er:YAG laser treatment of the surface led to no significant reduction in the bond strengths of the three SCP-100/NAC-100 groups after 6 months water storage, whereas all three Monobond S/Variolink II groups showed a significant reduction. Er:YAG laser treatment of the zirconia surface did not result in a durable resin

  10. Effects of Hot Chemical Etching and 10-Metacryloxydecyl Dihydrogen Phosphate (MDP) Monomer on the Bond Strength of Zirconia Ceramics to Resin-Based Cements.

    Science.gov (United States)

    Akay, Canan; Çakırbay Tanış, Merve; Şen, Murat

    2017-07-01

    The purpose of this in vitro study was to evaluate the hot chemical etching method on the shear bond strength between zirconia and two resin cements. Sixty zirconia specimens (13 × 7.5 × 2.5 mm 3 ) were prepared and treated as follows: (1) airborne-particle abrasion with 50 μm Al 2 O 3 particles; (2) hot chemical etching for 10 minutes; (3) hot chemical etching for 30 minutes. Sixty composite cylinders of 3 mm diameter and height were prepared and bonded to zirconia specimens, which were divided into subgroups A and B. Group A: cemented with conventional resin cement (Variolink II); group B: cemented with 10-metacryloxydecyl dihydrogen phosphate (MDP) monomer containing resin cement (Panavia SA) after the application of surface treatments. Next, the specimens were stored in 37ºC distilled water for 24 hours. Following water storage, shear bond strength test was performed at a 1 mm/min crosshead speed in a universal testing machine. The statistical analyses were performed with one-way ANOVA and post hoc Tukey tests. p MDP monomer-containing resin cement, Panavia SA, improved the resin bonding of zirconia ceramics when combined with airborne-particle abrasion. © 2016 by the American College of Prosthodontists.

  11. Influence of atmospheric pressure low-temperature plasma treatment on the shear bond strength between zirconia and resin cement.

    Science.gov (United States)

    Ito, Yuki; Okawa, Takahisa; Fukumoto, Takahiro; Tsurumi, Akiko; Tatsuta, Mitsuhiro; Fujii, Takamasa; Tanaka, Junko; Tanaka, Masahiro

    2016-10-01

    Zirconia exhibits excellent strength and high biocompatibility in technological applications and it is has therefore been investigated for clinical applications and research. Before setting prostheses, a crown prosthesis inner surface is sandblasted with alumina to remove contaminants and form small cavities. This alumina sandblasting causes stress-induced phase transition of zirconia. Atmospheric-pressure low-temperature plasma has been applied in the dental industry, particularly for adhesives, as a surface treatment to activate the surface energy and remove contaminants. The purpose of this study was to examine the influence of atmospheric-pressure low-temperature plasma treatment on the shear bond strength between zirconia and adhesive resin cement. The surface treatment method was classified into three groups: untreated (Cont group), alumina sandblast treatment (Sb group), and atmospheric-pressure low-temperature plasma treatment (Ps group). Adhesive resin cement was applied to stainless steel and bonded to zirconia. Shear adhesion tests were performed after complete hardening of the cement. Multiple comparisons were performed using a one-way analysis of variance and the Bonferroni method. X-ray diffractometry was used to examine the change in zirconia crystal structure. Statistically significant differences were noted between the control and Sb groups and between the control and Ps groups. In contrast, no statistically significant differences were noted for the Ps and Sb bond strength. Atmospheric-pressure low-temperature plasma treatment did not affect the zirconia crystal structure. Atmospheric-pressure low-temperature plasma treatment improves the bonding strength of adhesive resin cement as effectively as alumina sandblasting, and does not alter the zirconia crystal structure. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  12. The effect of photopolymerization on the degree of conversion, polymerization kinetic, biaxial flexure strength, and modulus of self-adhesive resin cements.

    Science.gov (United States)

    Aguiar, Thaiane R; de Oliveira, Michele; Arrais, César A G; Ambrosano, Glaucia M B; Rueggeberg, Frederick; Giannini, Marcelo

    2015-02-01

    Understanding the effect of the degree of conversion on the mechanical properties of auto- and dual-polymerizing self-adhesive resin cements leads to a better estimation of their performance in different clinical scenarios. The purpose of this study was to evaluate the effect of photopolymerization on the degree of conversion (DC) and polymerization kinetic of 4 dual-polymerized resin cements, 20 minutes after mixing, and its effects on the mechanical properties (biaxial flexural strength [FS] and modulus [FM]) after short-term aging. Conventional (RelyX ARC and Clearfil Esthetic Cement) and self-adhesive resin cements (RelyX Unicem and Clearfil SA Cement) were applied to a Fourier infrared spectrometer to assess the DC (n=5) under the following 3 polymerization conditions: direct light exposure (dual-polymerizing mode), exposure through the prepolymerized disk, or autopolymerizing. The polymerization kinetic was recorded for 20 minutes. Then, disk-shaped specimens (n=11) were prepared to evaluate the effect of polymerization on the FS and FM in both extreme polymerization conditions (dual-polymerizing or autopolymerizing). Data were statistically analyzed by 2-way repeated measure ANOVA (DC) and by 2-way ANOVA (FS and FM), followed by the Tukey-Kramer post hoc test (α=.05). Autopolymerizing groups exhibited reduced DC means, whereas intermediate values were observed when resin cements were polymerized through the disk. All groups exhibited higher DC at the end of 20 minutes. The polymerization kinetic revealed a rising curve, and materials, when directly photopolymerized, reached a plateau immediately after light exposure. Regarding the flexural biaxial testing, most of the resin cements were affected by polymerization mode and differences among groups were product dependent. The resin cements achieved immediate higher DC and mechanical properties when photopolymerized. The total absence of photoactivation may still impair their mechanical properties even

  13. The effect of different power outputs of carbon dioxide laser on bonding between zirconia ceramic surface and resin cement.

    Science.gov (United States)

    Ural, CaĞri; KalyoncuoĞlu, Elif; Balkaya, Veysel

    2012-12-01

    The purpose of this in vitro study was to evaluate the influence of different power outputs of a carbon dioxide (CO2) laser on shear bond strength of resin cement to zirconium dioxide-based ceramic. Fifty zirconium dioxide core specimens (10 mm diameter and 2 mm thickness) were produced and they were embedded in the centers of auto-polymerizing acrylic resin blocks. Ten specimens served as control and no surface treatment was applied. Subsequently specimens were randomly divided into four groups, each containing 10 specimens for surface treatment with CO2 laser with different output power; laser treated with 2 W (Group 2 W), 3 W (Group 3 W), 4 W (Group 4 W) and finally 5 W (Group 5 W). Fifty composite resin discs were fabricated and cemented with adhesive resin cement to the specimen surfaces. A universal test machine was used for shear bond strength test at a crosshead speed 1 mm/min. Data were statistically analyzed by one-way analyses of variance (ANOVA) with Post-Hoc Tukey tests (α = 0.05). It was found that the shear bond strength values were affected by power outputs of laser (p < 0.05). Highest shear bond strength values were obtained with group 2 W (21.0 ± 2.7). Lowest values were obtained with group 5 W (14.4 ± 1.6). The current study revealed that there was a relationship between laser output power and shear bond strength for zirconium dioxide ceramics. However, output power of the laser and the energy level is a critical factor on micromechanical retention.

  14. Influence of alloy microstructure on the microshear bond strength of basic alloys to a resin luting cement.

    Science.gov (United States)

    Bauer, José; Costa, José Ferreira; Carvalho, Ceci Nunes; Souza, Douglas Nesadal de; Loguercio, Alessandro Dourado; Grande, Rosa Helena Miranda

    2012-01-01

    The aim of this study was to evaluate the influence of microstructure and composition of basic alloys on their microshear bond strength (µSBS) to resin luting cement. The alloys used were: Supreme Cast-V (SC), Tilite Star (TS), Wiron 99 (W9), VeraBond II (VBII), VeraBond (VB), Remanium (RM) and IPS d.SIGN 30 (IPS). Five wax patterns (13 mm in diameter and 4mm height) were invested, and cast in a centrifugal casting machine for each basic alloy. The specimens were embedded in resin, polished with a SiC paper and sandblasted. After cleaning the metal surfaces, six tygon tubes (0.5 mm height and 0.75 mm in diameter) were placed on each alloy surface, the resin cement (Panavia F) was inserted, and the excess was removed before light-curing. After storage (24 h/37°C), the specimens were subjected to µSBS testing (0.5 mm/min). The data were subjected to a one-way repeated measures analysis of variance and Turkey's test (α=0.05). After polishing, their microstructures were revealed with specific conditioners. The highest µSBS (mean/standard deviation in MPa) were observed in the alloys with dendritic structure, eutectic formation or precipitation: VB (30.6/1.7), TS (29.8/0.9), SC (30.6/1.7), with the exception of IPS (31.1/0.9) which showed high µSBS but no eutectic formation. The W9 (28.1/1.5), VBII (25.9/2.0) and RM (25.9/0.9) showed the lowest µSBS and no eutectic formation. It seems that alloys with eutectic formation provide the highest µSBS values when bonded to a light-cured resin luting cement.

  15. Effect of Resin Cement Mixing Method on the Retention Strength of a CAD/CAM Zirconia Crowns.

    Science.gov (United States)

    Sadighpour, Leyla; Fazel, Akbar; Geramipanah, Farideh; Allahdadi, Mahdi

    2014-12-01

    Several treatments have been suggested to improve the retention of zirconia-based restorations luted with different cements. Resin cements are believed to improve crown retention under certain circumstances. The aim of the present study was to examine the effect of three cements with different mixing methods on the retention of CAD/CAM zirconia crowns. Thirty extracted human molars were randomly divided into three groups and prepared for all-ceramic crowns (6° taper, 4-mm height and a 1.2 mm rounded shoulder finish line). A zirconia crown (Tizian CAD/CAM) was fabricated for each tooth. The crowns were air-abraded using airborne particles, adjusted, and cemented to the corresponding tooth with one of the following cements: Panavia F2 (PAN group), RelyX Unicem (UNH group) or RelyX Unicem Aplicap (UNA group). After 3,000 rounds of thermal cycling, retention was measured using a specific retentive jig and a universal testing machine. The retention strength was measured by dividing the retention force by the surface area of each tooth. The means of the pull-out test results for each group were compared using analysis of variance and Tukey's HSD test (α = 0.05). The mode of failure was examined using a stereomicroscope. The mean retention value was 6.45 (0.34) MPa for the UNA group, 4.99 MPa (0.47) for the UNH group, and 4.45 (0.39) for the PAN group; the differences among the three test groups were significant. A mixed failure was observed in 83.3 % of specimens, while no cohesive failure occurred in the crowns. Within the limitations of the present study, of the three tested cements, Relyx Unicem Aplicap cement was associated with the highest retention force for Tizian zirconia crowns.

  16. Do blood contamination and haemostatic agents affect microtensile bond strength of dual cured resin cement to dentin?

    Directory of Open Access Journals (Sweden)

    Kerem KiLiC

    2013-01-01

    Full Text Available Objective The purpose of this study was to evaluate the effects of blood contamination and haemostatic agents such as Ankaferd Blood Stopper (ABS and hydrogen peroxide (H2O2 on the microtensile bond strength between dual cured resin cement-dentin interface. Material and Methods Twelve pressed lithium disilicate glass ceramics were luted to flat occlusal dentin surfaces with Panavia F under the following conditions: Control Group: no contamination, Group Blood: blood contamination, Group ABS: ABS contamination Group H2O2: H2O2 contamination. The specimens were sectioned to the beams and microtensile testing was carried out. Failure modes were classified under stereomicroscope. Two specimens were randomly selected from each group, and SEM analyses were performed. Results There were significant differences in microtensile bond strengths (µTBS between the control and blood-contaminated groups (p0.05. Conclusions Contamination by blood of dentin surface prior to bonding reduced the bond strength between resin cement and the dentin. Ankaferd Blood Stoper and H2O2 could be used safely as blood stopping agents during cementation of all-ceramics to dentin to prevent bond failure due to blood contamination.

  17. Influence of different surface treatments on bond strength of novel CAD/CAM restorative materials to resin cement.

    Science.gov (United States)

    Kömürcüoğlu, Meltem Bektaş; Sağırkaya, Elçin; Tulga, Ayça

    2017-12-01

    To evaluate the effects of different surface treatments on the bond strength of novel CAD/CAM restorative materials to resin cement by four point bending test. The CAD/CAM materials under investigation were e.max CAD, Mark II, Lava Ultimate, and Enamic. A total of 400 bar specimens (4×1.2×12 mm) (n=10) milled from the CAD/CAM blocks underwent various pretreatments (no pretreatment (C), hydrofluoric acid (A), hydrofluoric acid + universal adhesive (Scotchbond) (AS), sandblasting (Sb), and sandblasting + universal adhesive (SbS)). The bars were luted end-to-end on the prepared surfaces with a dual curing adhesive resin cement (Variolink N, Ivoclar Vivadent) on the custom-made stainless steel mold. Ten test specimens for each treatment and material combination were performed with four point bending test method. Data were analyzed using ANOVA and Tukey's test. The surface treatment and type of CAD/CAM restorative material showed a significant effect on the four point bending strength (FPBS) ( P CAD/CAM restorative materials was modified after treatments. The surface treatment of sandblasting or HF acid etching in combination with a universal adhesive containing MDP can be suggested for the adhesive cementation of the novel CAD/CAM restorative materials.

  18. The effects of dentin and intaglio indirect ceramic optimized polymer restoration surface treatment on the shear bond strength of resin cement

    Science.gov (United States)

    Puspitarini, A.; Suprastiwi, E.; Usman, M.

    2017-08-01

    Ceramic optimized polymer (ceromer) bonds to the tooth substrate through resin cements. The bond strength between dentin, resin cement, and ceromer depends on the applied surface treatment. To analyze the effects of dentin and intaglio ceromer surface treatment on the shear bond strength self-adhesive resin cement. Forty-five dentin premolar and ceromer specimens were bonded with resin cement and divided into three groups as follows: in group 1, no treatment was applied; in group 2, dentin surface treatment was carried out with acid etching and a bonding agent; and in group 3, dentin surface treatment was carried out with acid etching, a bonding agent, and intaglio ceromer surface treatment with etching and silane. All specimens were incubated at 37 °C for 24 hours, and the shear bond strength was measured using a universal testing machine. Group 3 showed the highest shear bond strength, followed by group 2. The surface treatment of dentin and intaglio ceromer showed significantly improved shear bond strength in the group comparison. Dentin and intaglio ceromer surface treatment can improved the shear bond strength self-adhesive resin cement.

  19. Evaluation of long-term bond strength and selected properties of self-adhesive resin cements

    Directory of Open Access Journals (Sweden)

    Carianne Mendes de ALMEIDA

    2018-03-01

    Full Text Available Abstract This study evaluated the shear bond strength (SBS of self-adhesive resin cements (SARCs to dentin and their physical-chemical properties. Five commercial SARCs were evaluated [SmartCem®2 – DENTSPLY (SC2; BisCem® – Bisco (BC; SeT PP® − SDI (SeT; Relyx U100® – 3M ESPE (U100 and YCEM® SA - Yller (YCEM]. The SARCs were evaluated for SBS to dentin (n = 10 after 24 h, 6 months, and 12 months. The dentin demineralization caused by acidic monomers was observed by SEM, and pH-neutralization of eluate was observed for 24 h. Degree of conversion (DC, rate of polymerization (Rp, flexural strength (FS, and elastic modulus (E were evaluated. Immediate SBS of SC2, SET, U100, and YCEM were statistically higher than that of BC (p < 0.001. After 12 months, all SARCs showed reduced SBS values and U100 showed values similar to those of SET and YCEM, and higher than those of BC and SC2 (p = 0.001. Demineralization pattern of SARCs was similar. At 24h, all SARCs showed no differences in the pH-value, except BC and U100 (p < 0.001. YCEM showed the highest Rp. U100, YCEM, and SC2 showed statistically higher FS (p<0.001 and E (p < 0.001 when compared with SET and BC. U100 and YCEM showed the best long-term bonding irrespective of the storage period. A significant reduction in SBS was found for all groups after 12 months. SBS was not shown to be correlated with physical-chemical properties, and appeared to be material-dependent. The polymerization profile suggested that an increased time of light activation, longer than that recommended by manufacturers, would be necessary to optimize DC of SARCs.

  20. The effect of resin coating on the shear punch strength of restorative glass ionomer cements.

    Science.gov (United States)

    Pilo, Raphael; Ben-Amar, Ariel; Barnea, Anna; Blasbalg, Yaron; Levartovsky, Shifra

    2017-05-01

    The aim of the current study was to examine the shear punch strength (SPS) of high-strength glass ionomer cements (HSGICs) in relation to coating applications and duration of coating. I-Ninety specimens each of Fuji IX GP Fast (FIX Fast), Ionofil Molar AC (IM), Riva Self Cure (R) and Ketac Molar (KM) were prepared and divided into uncoated and coated groups, sub-divided into three sub-groups and incubated for 24 h, 1 week or 8 weeks (distilled water, 37 °C) before SPS. II-Ninety specimens each of uncoated and coated Fuji IX GP Extra were similarly prepared, divided into six sub-groups and incubated for 2 h, 24 h, 1 week, 1 month, 2 months or 3 months (artificial saliva, 37 °C) before SPS. Another 90 specimens were coated for 2 h, 24 h, 1 week, 1 month or 2 months, after which the coating was removed. Specimens were re-incubated in artificial saliva until the end of the 3-month period and then subjected to SPS. None of the materials gained extra strength when coated. Uncoated KM, IM (at all times) and FIX Fast (at 24 h) were stronger. Fuji IX GP Extra achieved 11.5 MPa after 2 h, which increased to 56.7 MPa after 24 h. The highest strength after 3 months was achieved when the coating was retained for 2 h (71.7 MPa). A resin coating will not positively affect the SPS of HSGICs. There is no need to protect HSGICs from water to gain extra strength unless the coating is retained for 2 h.

  1. Effect of sandblasting, silica coating, and laser treatment on the microtensile bond strength of a dental zirconia ceramic to resin cements.

    Science.gov (United States)

    Mahmoodi, Nasrin; Hooshmand, Tabassom; Heidari, Solmaz; Khoshro, Kimia

    2016-02-01

    The purpose of this in vitro study was to evaluate the effect of laser irradiation as well as other surface treatment methods on the microtensile bond strength of a dental zirconia ceramic to the two types of resin cements. Zirconia ceramic blocks (ICE Zirkon) were sintered according to the manufacturer's instructions and duplicated in resin composites. The ceramic specimens were divided into four groups according to the following surface treatments: no surface treatment (control), sandblasting with alumina, silica coating plus silanization, and Nd:YAG laser irradiation. The specimens were divided equally and then bonded with Panavia F2.0 (self-etching resin cement) and Clearfil SA Luting (self-adhesive resin cement) to the composite blocks. The bonded ceramic-composite blocks were stored in distilled water at 37 °C for 72 h, cut to prepare bar-shaped specimens with a bonding area of approximately 1 mm(2), and thermocycled for 3000 cycles between 5 and 55 °C, and the microtensile bond strengths were measured using a universal testing machine. The data were analyzed by ANOVA and Tukey post hoc test. The results showed that the self-adhesive resin cement used in this study did not improve the microtensile bond strength when the zirconia surface was sandblasted by alumina. The use of the Nd:YAG laser did not enhance the bond strength between the zirconia and both types of resin cements. In addition, silica coating of the zirconia surfaces plus silane application significantly improved the bond strength regardless of the type of resin cement utilized.

  2. Bond strength of novel CAD/CAM restorative materials to self-adhesive resin cement: the effect of surface treatments.

    Science.gov (United States)

    Elsaka, Shaymaa E

    2014-12-01

    To evaluate the effect of different surface treatments on the microtensile bond strength (μTBS) of novel CAD/CAM restorative materials to self-adhesive resin cement. Two types of CAD/CAM restorative materials (Vita Enamic [VE] and Lava Ultimate [LU]) were used. The specimens were divided into five groups in each test according to the surface treatment performed; Gr 1 (control; no treatment), Gr 2 (sandblasted [SB]), Gr 3 (SB+silane [S]), Gr 4 (hydrofluoric acid [HF]), and Gr 5 (HF+S). A dual-curing self-adhesive resin cement (Bifix SE [BF]) was applied to each group for testing the adhesion after 24 h of storage in distilled water or after 30 days using the μTBS test. Following fracture testing, specimens were examined with a stereomicroscope and SEM. Surface roughness and morphology of the CAD/CAM restorative materials were characterized after treatment. Data were analyzed using ANOVA and Tukey's test. The surface treatment, type of CAD/CAM restorative material, and water storage periods showed a significant effect on the μTBS (p0.05). On the other hand, for the VE/BF system, surface treatment with HF+S showed higher bond strength values compared with SB and HF surface treatments (pmaterials was modified after treatments. The effect of surface treatments on the bond strength of novel CAD/CAM restorative materials to resin cement is material dependent. The VE/BF CAD/CAM material provided higher bond strength values compared with the LU/BF CAD/CAM material.

  3. Influence of energy density of different light sources on knoop hardness of a dual-cured resin cement

    Directory of Open Access Journals (Sweden)

    Evandro Piva

    2008-06-01

    Full Text Available The purpose of this study was to evaluate the Knoop hardness of a dual-cured resin-based luting cement irradiated with different light sources as well energy density through a ceramic sample. Three light-curing unit (LCUs were tested: tungsten halogen light (HAL, light-emitting diode (LED and xenon plasma-arc (PAC lamp. Disc-shaped specimens were fabricated from a resin-based cement (Enforce. Three energy doses were used by modifying the irradiance (I of each LCU and the irradiation time (T: 24 Jcm-2 (I/2x2T, 24 Jcm-2 (IxT and 48 Jcm-2 (Ix2T. Energy doses were applied through a 2.0-mm-thick ceramic sample (Duceram Plus. Three groups underwent direct irradiation over the resin cement with the different LCUs and a chemically-activated group served as a control. Thirteen groups were tested (n=10. Knoop hardness number (KHN means were obtained from cross-sectional areas. Two-way ANOVA and the Holm-Sidak method were used for statistical comparisons of activation mode and energy doses (a=5%. Application of 48 J.cm-2 energy dose through the ceramic using LED (50.5±2.8 and HAL (50.9±3.7 produced significantly higher KHN means (p<0.05 than the control (44.7±3.8. LED showed statistically similar performance to HAL. Only HAL showed a relationship between the increase of LCU energy dose and hardness increase.

  4. Biocompatibility of a restorative resin-modified glass ionomer cement applied in very deep cavities prepared in human teeth.

    Science.gov (United States)

    Soares, Diana Gabriela; Basso, Fernanda Gonçalves; Scheffel, Débora Lopes Sales; Giro, Elisa Maria Aparecida; de Souza Costa, Carlos Alberto; Hebling, Josimeri

    2016-01-01

    This study evaluated whether a restorative resin-modified glass ionomer cement, Vitremer (VM), would be biocompatible with pulp tissue when used as a liner in very deep cavities prepared in young human permanent teeth. Two dental cements in current use as liner materials, Vitrebond (VB) and Dycal (DY), were compared to VM. Class V cavities were prepared in 36 sound premolars that were scheduled for extraction, and the cavity floor was lined with the restorative cement (VM) or a liner/base control cement (VB or DY). For VM specimens, the cavity floor was pretreated with a primer (polyacrylic acid plus 2-hydroxyethyl methacrylate). Teeth were extracted after 7 or 30 days and processed for microscopic evaluation. In the VM group, inward diffusion of dental material components through dentinal tubules, associated with disruption of the odontoblastic layer, moderate to intense inflammatory response, and resorption of inner dentin, was observed in 2 teeth at 7 days. These histologic features were observed in 1 tooth at 30 days. In the VB group, mild inflammatory reactions and tissue disorganization observed at 7 days were resolved at 30 days. No pulpal damage occurred in the DY specimens. Of the materials tested, only Vitremer was not considered biocompatible, because it caused persistent pulpal damage when applied in very deep cavities (remaining dentin thickness less than 0.3 mm).

  5. Effect of various amounts of nanosilver incorporation on the mechanical properties of resin modified glass-ionomer cement

    Directory of Open Access Journals (Sweden)

    Roza Haghgoo

    2013-08-01

    Full Text Available   Background and Aims: Metallic nano-particles show exclusive biological, chemical and physical characteristic. The purpose of this research was to evaluate the effect of various amounts of nanosilver incorporation (0 (as control, 20, 40, 80, 120, 200 ppm on the mechanical Properties ( compressive and flexural strength of resin modified Glass ionomer Cement.   Materials and Methods: Based on ISO 4049 and ISO 9971 for polyalkenoid cements, 90 cases in each group were prepared for the flexural and compressive strength. Specimens in 6 groups with different amounts of nanosilver (20, 40, 80, 120 and 200 ppm and control (Fuji II LC improved, stored in distilled water at 37 ° C for 1 day and 30 days. Flexural strength, using a three-point bending method, Modulus of elasticity and the compressive strength were measured by universal testing machine (Zwick with crosshead speed of 0.5 mm/min. Data were analyzed using two-way ANOVA and Tukey post HOC test.   Results: The flexural strength and modulus of various amounts of nanosilver incorporation of resin modified glass-ionomer cement were not significantly different (P>0.05. The compressive strength of incorporating of20 ppm compared with control (P=0.01, 40 ppm (P=0.02 and 80 ppm compared with control (P<0.001 were increased. The flexural strength and compressive strength of Fuji II LC, containing nanosilver particles were increased after 1 day and 1 month significantly (P<0.001.   Conclusion: Incorporation of 20 to 80 ppm nanosilver into Fuji II LC had increased mechanical properties compared to the original cement.

  6. The influence of silane evaporation procedures on microtensile bond strength between a dental ceramic and a resin cement.

    Science.gov (United States)

    Pereira, Carolina Nemesio de Barros; Buono, Vicente Tadeu Lopes; Mota, Joao Mauricio Lima de Figueiredo

    2010-01-01

    To assess the influence of silane evaporation procedures on bond strength between a dental ceramic and a chemically activated resin cement. Eighteen blocks (6 mm Chi 14 mm Chi 14 mm) of ceramic IPS Empress 2 were cemented (C and B) to composite resin (InTen-S) blocks using a chemical adhesive system (Lok). Six groups were analyzed, each with three blocks divided according to ceramic surface treatment: two control groups (no treatment, NT; 10% hydrofluoric acid plus silane Monobond-S dried at room temperature, HFS); the other four groups comprised different evaporation patterns (silane rinsed and dried at room temperature, SRT; silane rinsed in boiling water and dried as before, SBRT; silane rinsed with boiling water and heat dried at 50 degrees C, SBH; silane dried at 50 +/- 5 degrees C, rinsed in boiling water and dried at room temperature, SHBRT). The cemented blocks were sectioned to obtain specimens for microtensile test 7 days after cementation and were stored in water for 30 days prior to testing. Fracture patterns were analyzed by optical and scanning electron microscopy. Statistics and All blocks of NT debonded during sectioning. One way ANOVA tests showed higher bond strengths for HFS than for the other groups. SBRT and SBH were statistically similar, with higher bond strengths than SRT and SHBRT. Failures were 100% adhesive in SRT and SHBRT. Cohesive failures within the "adhesive zone" were detected in HFS (30%), SBRT (24%) and SBH (40%). Silane treatment enhanced bond strength in all conditions evaluated, showing best results with HF etching.

  7. The effect of resin cements and primer on retentive force of zirconia copings bonded to zirconia abutments with insufficient retention.

    Science.gov (United States)

    Kim, Seung-Mi; Yoon, Ji-Young; Lee, Myung-Hyun; Oh, Nam-Sik

    2013-05-01

    The purpose of this study was to investigate the effect of resin cements and primer on the retentive force of zirconia copings bonded to zirconia abutments with insufficient retention. Zirconia blocks (Lava, 3M ESPE, St. Paul, MN, USA) were obtained and forty sets of zirconia abutments and copings were fabricated using CAD/CAM technology. They were grouped into 4 categories as follows, depending on the types of resin cements used, and whether the primer is applied or not:Panavia F2.0 (P), Panavia F2.0 using Primer (PRIME Plus, Bisco Inc, Schaumburg, IL, USA) (PZ), Superbond C&B (S), and Superbond C&B using Primer (SZ). For each of the groups, the cementation was conducted. The specimens were kept in sterilized water (37℃) for 24 hours. Retentive forces were tested and measured, and a statistical analysis was carried out. The nature of failure was recorded. The means and standard deviations of retentive force in Newton for each group were 265.15 ± 35.04 N (P), 318.21 ± 22.24 N (PZ), 445.13 ± 78.54 N (S) and 508.21 ± 79.48 N (SZ). Superbond C&B groups (S & SZ) showed significantly higher retentive force than Panavia F2.0 groups (P & PZ). In Panavia F2.0 groups, the use of primer was found to contribute to the increase of retentive force. On the other hand, in Superbond C&B groups, the use of primer did not influence the retention forces. Adhesive failure was observed in all groups. This study suggests that cementation of the zirconia abutments and zirconia copings with Superbond C&B have a higher retentive force than Panavia F2.0. When using Panavia F2.0, the use of primer increases the retentive force.

  8. Influence of glass particle size of resin cements on bonding to glass ceramic: SEM and bond strength evaluation.

    Science.gov (United States)

    Valentini, Fernanda; Moraes, Rafael R; Pereira-Cenci, Tatiana; Boscato, Noéli

    2014-05-01

    This study investigated the effect of the filler particle size (micron or submicron) of experimental resin cements on the microtensile bond strength to a glass-ceramic pretreated with hydrofluoric acid (HFA) etching or alumina airborne-particle abrasion (AA). Cements were obtained from a Bis-GMA/TEGDMA mixture filled with 60 mass% micron-sized (1 ± 0.2 µm) or submicron-sized (180 ± 30 µm) Ba-Si-Al glass particles. Ceramic blocks (PM9; VITA) were treated with 10% HFA for 60 s or AA for 15 s. Silane and adhesive were applied. Ceramic blocks were bonded to resin composite blocks (Z250; 3M ESPE) using one of the cements. Bonded specimens were sectioned into beams (n = 20/group) and subjected to microtensile bond strength tests. Data were analyzed using ANOVA and Student-Newman-Keuls' tests (5%). Failure modes were classified under magnification. Morphologies of the treated ceramic surfaces and bonded interfaces were evaluated by scanning electron microscopy. The HFA-submicron group had lower bond strengths than the other groups. All AA-submicron specimens debonded prematurely. Mixed failures were predominant for HFA groups, whereas interfacial failures predominated for AA groups. SEM revealed a honeycomb-like aspect in the HFA-treated ceramic, whereas the AA-treated groups showed an irregular retentive pattern. Continuity of cement infiltration along the bonded interface was more uniform for HFA-treated compared to AA-treated specimens. Cracks toward the bulk of the ceramic were observed in AA-treated specimens. Particle size significantly influenced the ceramic bond strength, whereas surface treatment had a minor effect. Copyright © 2014 Wiley Periodicals, Inc.

  9. Comparison of resin cement adhesion to Y-TZP ceramic following manufacturers' instructions of the cements only

    NARCIS (Netherlands)

    Ozcan, Mutlu; Kerkdijk, Sandra; Valandro, Luiz Felipe

    The objectives of this study were (1) to evaluate the bond strength of four resin materials with various chemical compositions following the manufacturers' instructions only and (2) to test their durability in dry and thermal aged conditions when they were bonded to zirconia ceramic. Four types of

  10. Bonding of resin-based luting cements to zirconia with and without the use of ceramic priming agents.

    Science.gov (United States)

    Koizumi, Hiroyasu; Nakayama, Daisuke; Komine, Futoshi; Blatz, Markus B; Matsumura, Hideo

    2012-08-01

    This study evaluated and compared bonding characteristics of resin-based luting agents and special ceramic primers to zirconia. Disk specimens (n = 242) were fabricated from zirconium dioxide ceramics (Katana) and bonded with four resin-based luting agents without priming. In addition, zirconia was bonded with 7 bondingsystem combinations of three priming agents and three resin-based luting agents. Two of the resin-based luting agents and two ceramic priming agents contain an identical adhesive monomer, 10-methacryloyloxydecyl dihydrogen phosphate (MDP), either in the material itself or in the priming agent. Shear bond strength was determined after 20,000 cycles of thermocycling. The Kruskal-Wallis test was performed for both pre- and post-thermocycling groups to evaluate the difference among primer and luting agent variations. On the basis of the Kruskal-Wallis test, Steel-Dwass multiple comparisons were further performed to compare the difference among four luting agents and seven conbinations of three primers and three luting agents for both pre- and post-thermocycling conditions. Within the four unprimed groups, Clearfil SA Cement (5.8 MPa) and Panavia F 2.0 (6.7 MPa) showed statistically higher post-thermocycling bond strength than the other materials (0.1 MPa) (p primed with Monobond Plus (4.0-4.6 MPa) (p priming agents containing the adhesive monomer MDP provide better bond strength to zirconia than do other systems.

  11. In vitro abrasion of resin-coated highly viscous glass ionomer cements: a confocal laser scanning microscopy study.

    Science.gov (United States)

    Kanik, Özgur; Turkun, L Sebnem; Dasch, Walter

    2017-04-01

    The aim of this study was to evaluate the effect of resin coating on the wear depth of highly viscous glass ionomer cements (HVGICs) after 40,000 cycles, corresponding to over 8 years of tooth brushing. A resin composite (Gradia Direct Posterior), two HVGICs (EQUIA Fil and Riva Self Cure), a resin coating (EQUIA Coat) and a conventional varnish (Fuji Varnish) were used in the study. The control groups were the resin composite group and the non-coated HVGICs groups. Samples (n = 8) were produced in flat plastic moulds at 23 ± 1 °C and stored in artificial saliva sodium acetate-acetic acid-glycerine formalin (SAGF medium) for 7 days at 37 ± 1 °C. The abrasion test was carried out in a toothbrush simulator (Willytec) with a load of 1 N using abrasive toothpaste slurry. Vertical loss was measured at different cycles under confocal laser scanning microscopy (CLSM). Data were analysed using one-way ANOVA, Tukey's HSD test, repeated measures ANOVA and Bonferroni tests (p resin composite group showed significantly lower vertical wear loss than the non-coated groups and the varnished groups of HVGICs (p resin coating had better wear resistance than the varnished and non-coated groups (p material-based wear, HVGICs with resin coatings abraded less than the resin composite group tested (Gradia Direct Posterior 5.06 ± 0.54 μm, EQUIA Fil 4.06 ± 1.68 μm, Riva Self Cure 4.73 ± 2.44 μm), but statistically, there were no significant differences between them after 40,000 cycles (p > 0.05). After 40,000 cycles, when the total wear loss of the materials including both coatings wear was compared, there were no differences between the non-coated and the resin-coated groups. The results of this study indicate that the resin coating protects the glass ionomer materials from excessive wear until 20,000 cycles making both HVGICs to abrade in a similar manner as the resin composite. If we include the wear of the coating to the general material wear loss at

  12. Physical Properties, Film Thickness, and Bond Strengths of Resin-Modified Glass Ionomer Cements According to Their Delivery Method.

    Science.gov (United States)

    Sulaiman, Taiseer A; Abdulmajeed, Awab A; Altitinchi, Ali; Ahmed, Sumitha N; Donovan, Terence E

    2018-03-05

    To determine the effect of changing the dispensing or mixing method of resin-modified glass ionomer (RMGI) cements on their water sorption, solubility, film thickness, and shear bond strength. Disc-shaped specimens of RMGI cements (RelyX: Luting [handmix], Luting Plus [clicker-handmix], Luting Plus [automix], GC: Fuji PLUS [capsule-automix], FujiCEM 2 [automix], [n = 10]) were prepared according to ISO standard 4049 for water sorption and solubility tests. Furthermore, the percentage of mass change, percentage of solubility, and percentage of water absorbed was also determined. Film thickness was measured according to ISO standard 9917-2; the mean of 5 measurements for each cement was calculated. Shear bond strength for each cement was determined according to ISO standard 29022 before and after thermocycling at 20,000 cycles, temperatures 5 to 55°C with a 15-second dwell time (n = 10/subgroup). Two- and one-way ANOVA were used to analyze data for statistical significance (p 0.05). RelyX Luting Plus (clicker-handmix) displayed lower solubility than its handmix and automix counterparts (p < 0.05). Film thickness of RelyX cements was significantly different (p < 0.05). RelyX Luting Plus (automix) had the lowest film thickness (19 μm) compared to its handmix (48 μm) and clicker-handmix (117 μm) counterparts (p < 0.05). GC Fuji PLUS (capsule-automix, 22 μm) was significantly lower than the automix version (GC FujiCEM 2, 127 μm) (p < 0.05). Shear bond strength of RelyX Luting Plus (automix) was significantly lower than its handmix and clicker-handmix versions (p < 0.05). GC Fuji PLUS (capsule-automix) was significantly higher than GC FujiCEM 2 (automix) (p < 0.05). The binary interaction of the two independent variables (dispensing/mixing method and thermocycling) was significant for the shear bond strengths of the GC cements only (p < 0.05). Change in the dispensing/mixing method of RMGI cement from the same brand may have an effect on its physical properties

  13. Effects of ceramic shade and thickness on the micro-mechanical properties of a light-cured resin cement in different shades.

    Science.gov (United States)

    Öztürk, Elif; Bolay, Şükran; Hickel, Reinhard; Ilie, Nicoleta

    2015-01-01

    The aim of this study was to evaluate the micro-mechanical properties of a light-cured resin cement in four different shades when polymerized through a leucite-reinforced glass-ceramic in different shades and thicknesses. A light-cured resin cement in four different shades (HV+1, HV+3, LV-1 and LV-3) was selected for this study. The specimens were cured by using a LED-unit (Bluephase®, IvoclarVivadent) for 20 s under a leucite-reinforced glass-ceramic (IPS Empress® CAD, IvoclarVivadent) in two different shades (A1 and A3) of different thicknesses (1 and 2 mm). Specimens cured directly, without an intermediate ceramic, served as control. The specimens were stored after curing for 24 h at 37°C by maintaining moisture conditions with distilled water. Micro-mechanical properties (indentation modulus, E; Hardness, HV; creep, Cr) of the resin cements were measured with an automatic microhardness indenter (Fisherscope H100C, Germany). Twenty groups were included (n = 3), while 10 measurements were performed on each specimen. Data were statistically analyzed by using one-way ANOVA and Tukey's post-hoc test, as well as a multivariate analysis to test the influence of the study parameters. Significant differences were observed between the micromechanical properties of the tested resin cements (p resin cement shade showed the highest effect on the micromechanical properties (Partial-eta squared (ηP(2))-E = 0.45, ηP(2)-HV = 0.59, ηP(2)-Cr = 0.29) of the resin cement, followed by ceramic thickness (ηP(2)-E = 0.38, ηP(2)-HV = 0.3, ηP(2)-Cr = 0.04) and ceramic shade (ηP(2)-E = 0.2, ηP(2)-HV = 0.26). Resin cement shade is an important factor influencing the mechanical properties of the material. Light shades of a resin cement express higher E and HV as well as lower Cr values compared with the darker ones.

  14. The effect of ceramic primer on shear bond strength of resin composite cement to zirconia: a function of water storage and thermal cycling.

    Science.gov (United States)

    Keul, Christine; Liebermann, Anja; Roos, Malgorzata; Uhrenbacher, Julia; Stawarczyk, Bogna; Ing, Dipl

    2013-11-01

    The authors investigated the use of ceramic primers combined with self-adhesive resin composite cements on the shear bond strength (SBS) to zirconia and compared them with one conventional resin composite cement. The authors divided zirconia substrates (N = 550) into three groups: RelyX Unicem Aplicap self-adhesive universal resin composite cement (3M ESPE, St. Paul, Minn.) (group A) (n = 220); G-CEM Capsule self-adhesive resin composite cement (GC Europe, Leuven, Belgium) (group B) (n = 220); and Panavia 21 with Clearfil Porcelain Bond Activator and Clearfil SE Bond primer (n = 110) (Kuraray Dental, Tokyo) used as a standard comparison (SC). The authors examined the self-adhesive resin composite cements without (0) and with (1) the use of a ceramic primer. They measured SBS initially (37°C for three hours), after water storage (37°C for one, four, nine, 16 or 25 days) and after thermal cycling (5°C and 55°C for 1,500, 6,000, 13,500, 24,000 or 37,500 cycles). The authors analyzed data by using descriptive statistics, the Mann-Whitney test, the Kruskal-Wallis test and a χ(2) test. Application of a ceramic primer did not result in a negative impact on SBS. Specimens in the A1 group (that is, RelyX Unicem Aplicap with ceramic primer) exhibited significantly higher SBS before and after water storage and thermal cycling compared with specimens that were not treated with a primer. The self-adhesive resin composite cements combined with ceramic primer exhibited similar or higher SBS values compared with those in the SC group at each aging duration (that is, water storage and thermal cycling). With respect to G-CEM Capsule, the authors observed a significantly positive effect of the primer after nine and 16 days' water storage and after one and four days' thermal cycling. They observed predominantly adhesive failures. Ceramic primer in combination with self-adhesive resin composite cement demonstrated a positive effect on SBS to zirconia and should be used for

  15. Resin cements formulated with thio-urethanes can strengthen porcelain and increase bond strength to ceramics.

    Science.gov (United States)

    Bacchi, Atais; Spazzin, Aloisio Oro; de Oliveira, Gabriel Rodrigues; Pfeifer, Carmem; Cesar, Paulo Francisco

    2018-04-06

    The use of thio-urethane oligomers has been shown to significantly improve the mechanical properties of resin cements (RCs). The aim of this study was to use thio-urethane-modified RC to potentially reinforce the porcelain-RC structure and to improve the bond strength to zirconia and lithium disilicate. Six oligomers were synthesized by combining thiols - pentaerythritol tetra-3-mercaptopropionate (PETMP, P) or trimethylol-tris-3-mercaptopropionate (TMP, T) - with di-functional isocyanates - 1,6-Hexanediol-diissocyante (HDDI) (aliphatic, AL) or 1,3-bis(1-isocyanato-1-methylethyl)benzene (BDI) (aromatic, AR) or Dicyclohexylmethane 4,4'-Diisocyanate (HMDI) (cyclic, CC). Thio-urethanes (20 wt%) were added to a BisGMA/UDMA/TEGDMA organic matrix. Filler was introduced at 60 wt%. The microshear bond strength (μSBS), Weibull modulus (m), and failure pattern of RCs bonded to zirconia (ZR) and lithium disilicate (LD) ceramics was evaluated. Biaxial flexural test and fractographic analysis of porcelain discs bonded to RCs were also performed. The biaxial flexural strength (σ bf ) and m were calculated in the tensile surfaces of porcelain and RC structures (Z = 0 and Z = -t 2 , respectively). The μSBS was improved with RCs formulated with oligomers P_AL or T_AL bonded to LD and P_AL, P_AR or T_CC bonded to zirconia in comparison to controls. Mixed failures predominated in all groups. σ bf had superior values at Z = 0 with RCs formulated with oligomers P_AL, P_AR, T_AL, or T_CC in comparison to control; σ bf increased with all RCs composed by thio-urethanes at Z = -t 2 . Fractographic analysis revealed all fracture origins at Z = 0. The use of specific thio-urethane oligomers as components of RCs increased both the biaxial flexural strength of the porcelain-RC structure and the μSBS to LD and ZR. The current investigation suggests that it is possible to reinforce the porcelain-RC pair and obtain higher bond strength to LD and ZR with RCs

  16. Shear Bond Strength of a Resin Cement to Different Alloys Subjected to Various Surface Treatments

    Directory of Open Access Journals (Sweden)

    Fariba Ezoji

    2016-08-01

    Full Text Available Objectives: Micromechanical retention of resin cements to alloys is an important factor affecting the longevity of metal base restorations. This study aimed to compare the bond strength and etching pattern of a newly introduced experimental etchant gel namely Nano Met Etch with those of conventional surface treatment techniques for nickel-chrome (Ni-Cr and high noble alloys. Materials and Methods: A total of 120 discs (8×10×15 mm were cast with Ni-Cr (n=20, high noble BegoStar (n=50 and gold coin alloys (n=50. Their Surfaces were ground with abrasive papers. Ni-Cr specimens received sandblasting and etching. High noble alloy specimens (begoStar and gold coin received sandblasting, sandblasting-alloy primer, etching, etch-alloy primer and alloy primer alone. Cylindrical specimens of Panavia were bonded to surfaces using Tygon tubes. Specimens were subjected to micro-shear bond strength testing after storing at 37°C for 24 hours.Results: In gold coin group, the highest bond strength was achieved after sandblasting (25.82±1.37MPa, P<0.001 and etching+alloy primer (26.60 ± 5.47 MPa, P<0.01. The lowest bond strength belonged to sandblasting+alloy primer (17.79±2.96MPa, P<0.01. In BegoStar group, the highest bond strength was obtained in the sandblasted group (38.40±3.29MPa, P<0.001 while the lowest bond strength was detected in the sandblast+ alloy primer group (15.38±2.92MPa, P<0.001. For the Ni-Cr alloy, bond strength in the etched group (20.79±2.01MPa was higher than that in the sandblasted group (18.25±1.82MPa (P<0.01.Conclusions: For the Ni-Cr alloy, etching was more efficient than sandblasting but for the high noble alloys, higher Au content increased the efficacy of etching.

  17. Micromorphological characterization of the adhesive interface of self-adhesive resin cements

    OpenAIRE

    Bittner, Aleksandra

    2013-01-01

    Resin luting agents are used to lute indirect restorations to hard tooth tissues. The luting procedure consists mostly of several tooth pretreatment steps as etching, priming and application of adhesive and only at the very end applying of a resin luting agent. Such a multi-step luting procedure with separate adhesive system is quite time-consuming and technique sensitive. Therefore, constant inquiry from the practitioners for the resin luting agents with simplified application procedure, hav...

  18. Chemical characterization and bioactivity of epoxy resin and Portland cement-based sealers with niobium and zirconium oxide radiopacifiers.

    Science.gov (United States)

    Viapiana, Raqueli; Guerreiro-Tanomaru, Juliane Maria; Hungaro-Duarte, Marco Antonio; Tanomaru-Filho, Mário; Camilleri, Josette

    2014-09-01

    The purpose of this study was to characterize and to evaluate the bioactivity potential of experimental root canal sealers (ES) based on Portland cement, epoxy resin with nano- and micro-particles of niobium or zirconium oxide used as radiopacifiers in comparison to AH Plus and MTA Fillapex. Specimens of the sealers (10 mm in diameter×1 mm thick) were prepared and the radiopacity was evaluated according to ISO 6876 (2012) specifications. Characterization of the sealers was performed under the scanning electron microscope (SEM) immediately after setting and after immersion for 28 days in Hank's balanced salt solution (HBSS). In addition X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy were also performed. The pH and calcium ion release were measured after 1, 7, 14, 21 and 28 days after completion of seating using a digital pH meter and an atomic absorption spectrophotometer, respectively. The experimental sealers exhibited an average radiopacity of 2.5 mm thickness of aluminum, which was similar to MTA Fillapex (P>0.05) and inferior to AH Plus (Pepoxy resin and radiopacifier exhibited a degree of bioactivity although no evidence of cement hydration was demonstrated on material characterization. The radiopacifier particle size had limited effect on the sealer microstructure and chemical properties. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    International Nuclear Information System (INIS)

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-01-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission's ''Technical Position on Waste Form'' (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity

  20. Money Overhang, Credit Overhang and Financial Imbalances in the Euro Area

    NARCIS (Netherlands)

    Kool, C.J.M.; de Regt, E.; van Veen, T.

    2014-01-01

    This paper focusses on the relation between external imbalances and domestic money and credit growth in the euro area. We compute money and credit overhang both for the euro area as a whole and for individual member countries. Our results show that both aggregate money and credit overhang have

  1. Heat treatment of pre-hydrolyzed silane increases adhesion of phosphate monomer-based resin cement to glass ceramic.

    Science.gov (United States)

    de Carvalho, Rodrigo Furtado; Cotes, Caroline; Kimpara, Estevão Tomomitsu; Leite, Fabíola Pessoa Pereira; Özcan, Mutlu

    2015-01-01

    This study evaluated the influence of different forms of heat treatment on a pre-hydrolyzed silane to improve the adhesion of phosphate monomer-based (MDP) resin cement to glass ceramic. Resin and feldspathic ceramic blocks (n=48, n=6 for bond test, n=2 for microscopy) were randomly divided into 6 groups and subject to surface treatments: G1: Hydrofluoric acid (HF) 9.6% for 20 s + Silane + MDP resin cement (Panavia F); G2: HF 9.6% for 20 s + Silane + Heat Treatment (oven) + Panavia F; G3: Silane + Heat Treatment (oven) + Panavia F; G4: HF 9.6% for 20 s + Silane + Heat Treatment (hot air) + Panavia F; G5: Silane + Heat Treatment (hot air) + Panavia F; G6: Silane + Panavia F. Microtensile bond strength (MTBS) test was performed using a universal testing machine (1 mm/min). After debonding, the substrate and adherent surfaces were analyzed using stereomicroscope and scanning electron microscope (SEM) to categorize the failure types. Data were analyzed statistically using two-way test ANOVA and Tukey's test (=0.05). Heat treatment of the silane containing MDP, with prior etching with HF (G2: 13.15 ± 0.89a; G4: 12.58 ± 1.03a) presented significantly higher bond strength values than the control group (G1: 9.16 ± 0.64b). The groups without prior etching (G3: 10.47 ± 0.70b; G5: 9.47 ± 0.32b) showed statistically similar bond strength values between them and the control group (G1). The silane application without prior etching and heat treatment resulted in the lowest mean bond strength (G6: 8.05 ± 0.37c). SEM analysis showed predominantly adhesive failures and EDS analysis showed common elements of spectra (Si, Na, Al, K, O, C) characterizing the microstructure of the glass-ceramic studied. Heat treatment of the pre-hydrolyzed silane containing MDP in an oven at 100 °C for 2 min or with hot air application at 50 ± 5 ºC for 1 min, was effective in increasing the bond strength values between the ceramic and resin cement containing MDP.

  2. Comparative evaluation of shear bond strength, between IPS-Empress2 ceramics and three dual-cured resin cements

    Directory of Open Access Journals (Sweden)

    Hajimiragha H

    2006-06-01

    Full Text Available Background and Aim: Cementation is one of the most critical steps of the porcelain restoration technique. However, limited information is available concerning the bond strength of current ceramic bonding systems. The aim of this study was to evaluate the shear bond strength of three dual-cure resin cements to IPS-Empress2 ceramics. Materials and Methods: In this experimental study, 30 pairs of IPS-Empress 2 ceramic discs were fabricated with 10 and 8 mm diameters and 2.5 mm thickness. After sandblasting and ultrasonic cleaning, the surfaces of all specimens were etched with 9% hydrofluoric acid for 60 seconds. Then, the three groups of 10 bonded specimens were prepared ceramic bonding resin systems including Panavia F2, Variolink II and Rely X ARC. After storage in 37±1c water for 24 hours and thermocycling in 5c and 55c water for 500 cycles with 1-minute dwell time, the shear bond strengths were determined using Instron machine at speed of 0.5mm/min. Data were analyzed by One Way ANOVA test. For multiple paired comparisons, the Tukey HSD method was used. The mode of failure was evaluated by scanning electro microscope (SEM. P<0.05 was considered as the limit of significance. Result: Significant differences were found between different cement types (P<0.05. Variolink II provided the highest bonding values with IPS-Empress2. A combination of different modes of failure was observed. Conclusion: Based on the results of this study, according to the highest mode of cohesive failure, Variolink II seems to have the strongest bond with IPS-Empress2 ceramics.

  3. Influence of different surface treatments on bond strength of novel CAD/CAM restorative materials to resin cement

    Science.gov (United States)

    Kömürcüoğlu, Meltem Bektaş; Sağırkaya, Elçin

    2017-01-01

    PURPOSE To evaluate the effects of different surface treatments on the bond strength of novel CAD/CAM restorative materials to resin cement by four point bending test. MATERIALS AND METHODS The CAD/CAM materials under investigation were e.max CAD, Mark II, Lava Ultimate, and Enamic. A total of 400 bar specimens (4×1.2×12 mm) (n=10) milled from the CAD/CAM blocks underwent various pretreatments (no pretreatment (C), hydrofluoric acid (A), hydrofluoric acid + universal adhesive (Scotchbond) (AS), sandblasting (Sb), and sandblasting + universal adhesive (SbS)). The bars were luted end-to-end on the prepared surfaces with a dual curing adhesive resin cement (Variolink N, Ivoclar Vivadent) on the custom-made stainless steel mold. Ten test specimens for each treatment and material combination were performed with four point bending test method. Data were analyzed using ANOVA and Tukey's test. RESULTS The surface treatment and type of CAD/CAM restorative material showed a significant effect on the four point bending strength (FPBS) (P<.001). For LDC, AS surface treatment showed the highest FPBS results (100.31 ± 10.7 MPa) and the lowest values were obtained in RNC (23.63 ± 9.0 MPa) for control group. SEM analyses showed that the surface topography of CAD/CAM restorative materials was modified after treatments. CONCLUSION The surface treatment of sandblasting or HF acid etching in combination with a universal adhesive containing MDP can be suggested for the adhesive cementation of the novel CAD/CAM restorative materials. PMID:29279763

  4. Overhanging amalgam restorations by undergraduate students.

    Science.gov (United States)

    Quadir, Fauzia; Ali Abidi, S Yawar; Ahmed, Shahbaz

    2014-07-01

    To determine the frequency of overhanging margins in amalgam restorations done by undergraduate students at Fatima Jinnah Dental College Hospital, Karachi. Observational study. Department of Operative Dentistry, Fatima Jinnah Dental Hospital, Karachi, from January to June 2009. Patients aged 20 - 45 years attending the Department of Operative Dentistry requiring class-II restorations were included in the study. Whereas, third molars, overlapped proximal surfaces, teeth adjacent to edentulous spaces and pregnant females were excluded. One hundred and fifty patients were selected randomly aged between 20 - 45 years requiring class-II restorations. Posterior Bitewing radiographs were taken and 1600 surfaces were examined. Restorations were done by undergraduate students at Fatima Jinnah Dental College Hospital, Karachi. Chi-square test was utilized to analyze the relationship between location and surface of overhang. Overhanging amalgam restorations were common in the restorations done by undergraduate students (58%). The occurrence of overhangs was more frequent on the distal surfaces (56%) Although the association of amalgam overhangs with the surfaces of the teeth was significant (p p amalgam restorations done by undergraduate students.

  5. A resin composite material containing an eugenol derivative for intracanal post cementation and core build-up restoration.

    Science.gov (United States)

    Almaroof, A; Rojo, L; Mannocci, F; Deb, S

    2016-02-01

    To formulate and evaluate new dual cured resin composite based on the inclusion of eugenyl methacrylate monomer (EgMA) with Bis-GMA/TEGDMA resin systems for intracanal post cementation and core build-up restoration of endodontically treated teeth. EgMA was synthesized and incorporated at 5% (BTEg5) or 10% (BTEg10) into dual-cure formulations. Curing properties, viscosity, Tg, radiopacity, static and dynamic mechanical properties of the composites were determined and compared with Clearfil™DC Core-Plus, a commercial dual-cure, two-component composite. Statistical analysis of the data was performed with ANOVA and the Tukey's post-hoc test. The experimental composites were successfully prepared, which exhibited excellent curing depths of 4.9, 4.7 and 4.2 mm for BTEg0, BTEg5 and BTEg10 respectively, which were significantly higher than Clearfil™DC. However, the inclusion of EgMA initially led to a lower degree of cure, which increased when measured at 24 h with values comparable to formulations without EgMA, indicating post-curing. The inclusion of EgMA also lowered the polymerization exotherm thereby reducing the potential of thermal damage to host tissue. Both thermal and viscoelastic analyses confirmed the ability of the monomer to reduce the stiffness of the composites by forming a branched network. The compressive strength of BTEg5 was significantly higher than the control whilst flexural strength increased significantly from 95.9 to 114.8 MPa (BTEg5) and 121.9 MPa (BTEg10). Radiopacity of the composites was equivalent to ∼3 mm Al allowing efficient diagnosis. The incorporation of EgMA within polymerizable formulations provides a novel approach to prepare reinforced resin composite material for intracanal post cementation and core build-up and the potential to impart antibacterial properties of eugenol to endodontic restorations. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Effect of Resin Cement Porosity on Retention of Glass-Fiber Posts to Root Dentin: An Experimental and Finite Element Analysis.

    Science.gov (United States)

    Da Silva, Natércia Rezende; Aguiar, Grazielle Crystine Rodrigues; Rodrigues, Monise de Paula; Bicalho, Aline Aredes; Soares, Priscilla Barbosa Ferreira; Veríssimo, Crisnicaw; Soares, Carlos José

    2015-01-01

    The aim of this study was to evaluate the effect of porosity of self-adhesive resin on the stress distribution, post retention and failure mode of fiber post cemented to human root dentin. Ten human central upper incisors with circular root canal were selected. They were sectioned with 15 mm and were endodontically filled. The roots were scanned using micro-CT after post space preparation for root filling remaining evaluation. Fiber posts were cemented using self-adhesive resin cement (Rely X U200, 3M-ESPE). Two 1-mm-thick slices from the cervical, medium and apical thirds were scanned for resin cement bubbles volume measurements and submitted to a push-out test (PBS). Three operators using stereomicroscopy and confocal laser microscopy classified the failure mode. Stress distributions during the push-out test were analyzed using 3D finite element analysis. PBS values (MPa) were submitted to one-way ANOVA and Tukey's post hoc tests and the failure modes using the Kappa coefficient to assess inter-operator agreement. Chi-square test was used to determine significant differences between the methods ( = 0.05). Push-out bond strength was significantly affected by the bubbles presence in all root depth (p<0.05). The stress concentration was higher when the bubbles were present. Adhesive dentin/resin cement interface failure was the most frequent type of failure. Confocal microscopy was better than stereomicroscopy for failure analysis. Bubbles generated during resin cement insertion into the root canal negatively affect the stress distribution and the bond strength. The use of confocal microscopy is recommended for failure analysis.

  7. Stability of the bond between two resin cements and an yttria-stabilized zirconia ceramic after six months of aging in water.

    Science.gov (United States)

    da Silva, Eduardo M; Miragaya, Luciana; Sabrosa, Carlos Eduardo; Maia, Lucianne C

    2014-09-01

    The behavior of the luting cement and the cementation protocol are essential in the clinical success of ceramic restorations. The purpose of this study was to evaluate the bond stability of 2 resin cements and a yttria-stabilized tetragonal polycrystalline zirconia (Y-TZP) ceramic submitted to 2 surface treatments. Sixty plates of a Y-TZP ceramic were assigned to 3 groups according to the surface treatments: control, as sintered surface; methacryloxydecyl dihydrogen phosphate (MDP), coated with an MDP-based primer, and tribochemical silica-coating (TSC), coated with tribochemical silica. The plates of each group were further divided into 2 subgroups according to the resin cement as follows: RelyX adhesive resin cement (conventional) and RelyX Unicem (self-adhesive). Cylinders of resin cements (∅=0.75 mm × 0.5 mm in height) were built up on the ceramic surfaces, and the plates stored in distilled water at 37°C for either 24 hours or 6 months before being submitted to a microshear bond strength test. The data were submitted to 3-way ANOVA and the Tukey honestly significant difference test (α=.05). Three-way ANOVA showed statistical significance for the 3 independent factors: resin cement, surface treatment, and period of water immersion (Presin cement applied on ceramic surfaces treated with TSC, the microshear bond strength of all the other groups decreased after 6 months of aging in water. The microshear bond strength decreased most in the control groups (-81.5% for ARC and -93.1% for Unicem). In the group treated with TSC, the microshear bond strength for Unicem decreased by 54.8% and in that treated with MDP-based primer by -42.5%. In the group treated with MDP-based primer, the microshear bond strength for RelyX ARC decreased by -52.8%. Irrespective of surface treatments, self-adhesive resin cement was not able to maintain the bond to Y-TZP ceramic after 6 months of aging in water. Copyright © 2014 Editorial Council for the Journal of Prosthetic

  8. Leaching of Co and Cs from spent ion exchange resins in cement ...

    Indian Academy of Sciences (India)

    Unknown

    2003-08-22

    Aug 22, 2003 ... process produces deionized water, as the radioactive ions are removed together with non radioactive ones. Ion ex- changers are resins that are polymers with cross-linking. (connections between long carbon chains in a polymer). The resin has active groups in the form of electrically charged sites. At these ...

  9. Effect of antibacterial/adhesive approaches on bonding durability of fiber posts cemented with self-etch resin cement.

    Science.gov (United States)

    Shafiei, Fereshteh; Memarpour, Mahtab; Vafamand, Narges; Mohammadi, Mahsa

    2017-09-01

    Longevity of post-retained restoration is highly depended on bonding stability of fiber post (FP) to root dentin. This study evaluated the effect of different antibacterial/adhesive approaches on bonding durability of FPs luted into root canal with a self-etch cement. Seventy-two human maxillary central incisor roots were divided into six groups after endodontic treatment, based on the antibacterial/adhesive treatments as follows: 1)ED primer II (ED, control); 2) Clearfil Protect Bond (PB); 3) 2% chlorhexidine (CH) pretreatment + ED primer II (CH+ED); 4) CH-incorporated into ED primer II (CH in ED); 5) CH pretreatment + Clearfil SE Bond (CH+SE); and 6)CH-incorporated into SE primer (CH in SE). The FPs were then cemented using PanaviaF2.0. After micro-slicing the bonded root dentin, a push-out bond strength (PBS) test was performed immediately or after two years of water storage. Data were analyzed using ANOVA and post hoc Tukey tests (α=0.05). The effects of antibacterial/adhesive approach, time and interaction between the main factors were significant ( p =0.01). There was no significant difference between the immediate groups, except between the CH+ED group (the lowest PBS) and PB and CH in SE groups (the highest PBS) ( p ≤0.03). After aging, the same difference was observed ( p ≤0.02); the control group exhibited a significantly lower PBS compared to the other groups ( p ≤0.01), except for CH+ED. Aging significantly decreased PBS of all the groups ( p ≤0.01); the control group exhibited the highest reduction. CH incorporated into self-etch primers or in pretreatment step prior to two-step self-etch adhesive and antibacterial adhesive could improve bond stability of self-etch cemented fiber post. However, none of these was capable of inhibiting bond degradation over time. Key words: Push-out bond strength, Fiber post, Chlorhexidine.

  10. Microtensile bond strength of a resin cement to silica-coated and silanized in-ceram zirconia before and after aging

    NARCIS (Netherlands)

    Valandro, Luiz Felipe; Ozcan, Mutlu; Amaral, Regina; Pereira Leite, Fabiola Pessoa; Bottino, Marco Antonio

    2007-01-01

    Purpose: This study compared the microtensile bond strength of resin-based cement (Panavia F) to silica-coated, silanized, glass-infiltrated high-alumina zirconia (In-Ceram Zirconia) ceramic in dry conditions and after various aging regimens. Materials and Methods: The specimens were placed in 1 of

  11. Effect of various surface conditioning methods on the adhesion of dual-cure resin cement with MDP functional monomer to zirconia after thermal aging

    NARCIS (Netherlands)

    Ozcan, Mutlu; Nijhuis, Henk; Felipe Valandro, Luiz

    This study evaluated the effect of chairside and laboratory types of surface conditioning methods on the adhesion of dual-cure resin cement with MDP functional monomer to zirconia ceramic after thermocycling. Disk-shaped (diameter: 10 mm, thickness: 2 mm) Y-TZP ceramics (Lava(TM), 3M ESPE) were used

  12. Effects of hydrogen peroxide pretreatment and heat activation of silane on the shear bond strength of fiber-reinforced composite posts to resin cement.

    Science.gov (United States)

    Pyun, Jung-Hoon; Shin, Tae-Bong; Lee, Joo-Hee; Ahn, Kang-Min; Kim, Tae-Hyung; Cha, Hyun-Suk

    2016-04-01

    To evaluate the effects of hydrogen peroxide pretreatment and heat activation of silane on the shear bond strength of fiber-reinforced composite posts to resin cement. The specimens were prepared to evaluate the bond strength of epoxy resin-based fiber posts (D.T. Light-Post) to dual-curing resin cement (RelyX U200). The specimens were divided into four groups (n=18) according to different surface treatments: group 1, no treatment; group 2, silanization; group 3, silanization after hydrogen peroxide etching; group 4, silanization with warm drying at 80℃ after hydrogen peroxide etching. After storage of the specimens in distilled water at 37℃ for 24 hours, the shear bond strength (in MPa) between the fiber post and resin cement was measured using a universal testing machine. The fractured surface of the fiber post was examined using scanning electron microscopy. Data were analyzed using one-way ANOVA and post-hoc analysis with Tukey's HSD test (α=0.05). Silanization of the fiber post (Group 2) significantly increased the bond strength in comparison with the non treated control (Group 1) (Psilanization also significantly increased the bond strength (Group 3 and 4) (Psilane agent (Group 2 and 3) (P>.05). Fiber post silanization and subsequent heat treatment (80℃) with warm air blower can be beneficial in clinical post cementation. However, hydrogen peroxide etching prior to silanization was not effective in this study.

  13. Microtensile bond strength of a resin cement to feldpathic ceramic after different etching and silanization regimens in dry and aged conditions

    NARCIS (Netherlands)

    Brentel, Aline Scalone; Ozcan, Mutlu; Valandro, Luiz Felipe; Alarca, Lilian Guimaraes; Amaral, Regina; Bottino, Marco Antonio

    2007-01-01

    Objectives. This study evaluated the durability of bond strength between resin cement and a feldspathic ceramic submitted to different etching regimens with and without silane coupling agent application. Methods. Thirty-two blocks (6.4 mm x 6.4 mm x 4.8 mm) were fabricated using a microparticulate

  14. Effect of Self-Adhesive and Separate Etch Adhesive Dual Cure Resin Cements on the Bond Strength of Fiber Post to Dentin at Different Parts of the Root

    Directory of Open Access Journals (Sweden)

    Ehsan Mohamadian Amiri

    2017-10-01

    Full Text Available Objectives: Bonding of fiber posts to intracanal dentin is challenging in the clinical setting. This study aimed to compare the effect of self-adhesive and separate etch adhesive dual cure resin cements on the bond strength of fiber post to dentin at different parts of the root.Materials and Methods: This in-vitro experimental study was conducted on 20 single-rooted premolars. The teeth were decoronated at 1mm coronal to the cementoenamel junction (CEJ, and the roots underwent root canal treatment. Post space was prepared in the roots. Afterwards, the samples were randomly divided into two groups. In group 1, the fiber posts were cemented using Rely X Unicem cement, while in group 2, the fiber posts were cemented using Duo-Link cement, according to the manufacturer's instructions. The intracanal post in each root was sectioned into three segments of coronal, middle, and apical, and each cross-section was subjected to push-out bond strength test at a crosshead speed of 1mm/minute until failure. Push-out bond strength data were analyzed using independent t-test and repeated measures ANOVA.Results: The bond strength at the middle and coronal segments in separate etch adhesive cement group was higher than that in self-adhesive cement group. However, the bond strength at the apical segment was higher in self-adhesive cement group compared to that in the other group. Overall, the bond strength in separate etch adhesive cement group was significantly higher than that in self-adhesive cement group (P<0.001.Conclusions: Bond strength of fiber post to intracanal dentin is higher after the use of separate etch adhesive cement compared to self-adhesive cement.

  15. The effect of light curing units, curing time, and veneering materials on resin cement microhardness

    Directory of Open Access Journals (Sweden)

    Nurcan Ozakar Ilday

    2013-06-01

    Conclusion: Light-curing units, curing time, and veneering materials are important factors for achieving adequate dual cure resin composite microhardness. High-intensity light and longer curing times resulted in the highest microhardness values.

  16. The Effect of Accelerated Aging on the Colour Stability of Composite Resin Luting Cements using Different Bonding Techniques.

    Science.gov (United States)

    Haralur, Satheesh B; Alfaifi, Mohammed; Almuaddi, Abdulmajeed; Al-Yazeedi, Mazen; Al-Ahmari, Abdulmajeed

    2017-04-01

    The main criterion of successful aesthetic restoration is to match the colour of the adjacent teeth. Porcelain laminate veneer is widely practiced indirect restoration in the contemporary aesthetic dentistry. The underlying luting cement colour influences the final outcome of the thin, translucent veneer shade. Hence, colour stability of luting cement is important criteria during their selection. The objective of the study was to assess the colour stability of the different dentin bonding techniques in composite resin luting cements. A total of forty intact, non carious teeth were prepared to receive Porcelain Laminate Veneers (PLV). The lithium disilicate PLV were fabricated, and fitting surface was conditioned with 5% hydrofluoric acid and silane application. According to the bonding technique employed for the cementation of the PLV, the teeth samples were randomly divided into the four groups of ten each. The Group I and Group II samples were conditioned with etch and wash; the polymerization of resin was accomplished with the dual cure for Group I and light cure for Group II. The Group III and Group IV samples were conditioned with self-etch and self-adhesive technique correspondingly. The teeth shade was recorded in similar locations with a spectrophotometer before and after subjecting them to the accelerated ageing process. The ageing process included the thermocycling process in water between 5°C and 55°C for 5000 cycles followed by 100 hours xenon light exposure. The data were analysed with SPSS 19.0 by ANOVA and LSD post-hoc comparison. The higher mean colour change was observed in Group I sample (etch washdual cure) with a ∆E value of 2.491. The ∆E value for Group II (etch wash-light cure) and Group III (selfetch) was 1.110 and 2.357 respectively. The lowest mean colour change was observed in Group IV (self-adhesive) with ∆E at 0.614. Statistical analysis showed significant differences between Group IV and Group I; Group IV and Group III with

  17. Simple Approach to Superamphiphobic Overhanging Silicon Nanostructures

    DEFF Research Database (Denmark)

    Kumar, Rajendra; Mogensen, Klaus Bo; Bøggild, Peter

    2010-01-01

    Superhydrophobic silicon nanostructures were fabricated by anisotropic etching of silicon coated with a thin hydrophobic layer. At certain etch parameters, overhanging nanostructures form at the apexes of the rod-shaped tips, This leads to superoleophobic behavior for several oily liquids...

  18. The influence of Y-TZP surface treatment on topography and ceramic/resin cement interfacial fracture toughness.

    Science.gov (United States)

    Paes, P N G; Bastian, F L; Jardim, P M

    2017-09-01

    Consider the efficacy of glass infiltration etching (SIE) treatment as a procedure to modify the zirconia surface resulting in higher interfacial fracture toughness. Y-TZP was subjected to 5 different surface treatments conditions consisting of no treatment (G1), SIE followed by hydrofluoric acid treatment (G2), heat treated at 750°C (G3), hydrofluoric acid treated (G4) and airborne-particle abrasion with alumina particles (G5). The effect of surface treatment on roughness was evaluated by Atomic Force Microscopy providing three different parameters: R a , R sk and surface area variation. The ceramic/resin cement interface was analyzed by Fracture Mechanics K I test with failure mode determined by fractographic analysis. Weibull's analysis was also performed to evaluate the structural integrity of the adhesion zone. G2 and G4 specimens showed very similar, and high R a values but different surface area variation (33% for G2 and 13% for G4) and they presented the highest fracture toughness (K IC ). Weibull's analysis showed G2 (SIE) tendency to exhibit higher K IC values than the other groups but with more data scatter and a higher early failure probability than G4 specimens. Selective glass infiltration etching surface treatment was effective in modifying the zirconia surface roughness, increasing the bonding area and hence the mechanical imbrications at the zirconia/resin cement interface resulting in higher fracture toughness (K IC ) values with higher K IC values obtained when failure probability above 20% was expected (Weibull's distribution) among all the experimental groups. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Influence of light transmission through fiber posts: Quantitative analysis, microhardness, and on bond strength of a resin cement

    Directory of Open Access Journals (Sweden)

    Luís Fernando Dos Santos Alves Morgan

    2018-01-01

    Full Text Available Context: Light transmission (LT into deeper areas of the dentin root is limited. Aim: The aim of this study is to perform a quantitative investigation of the radial transmission of light (LT through different fiber posts and its influence on the Knoop hardness number (KHN and bond strength (BS of a dual-cure self-adhesive resin cement at 3 different depths. Materials and Methods: Four types of fiber posts (2 translucent and 2 conventional were used. LT and KHN analyses were performed in a specially designed matrix, which allowed measurements at 3 different depths. LT was measured using a volt-ampere meter while KHN tests were performed in a microhardness tester. For BS analysis, endodontically treated bovine roots were divided into 4 groups, each group receiving one type of post. After cementation, cross sections of the root were tested for resistance to displacement using a universal testing machine. Statistical Analysis Used: Statistical analysis was performed by using this ANOVA and Tukey's test. Results: For LT, translucent posts showed significantly higher values at all depths compared to the conventional ones. For all posts, LT decreased at the deeper depths. The KHN results showed no statistical differences among the different posts, regardless of depth. For BS, a translucent post showed the highest values, and comparative analyses between the different depths of posts also showed statistically significant differences while comparisons among the different depths of the same post showed no differences. Conclusions: LT depended on the type of post and on depth. The type of post did not significantly influence the cement KHN. A translucent post showed higher BS in pooled data.

  20. Study of the effect of Kaolin in the mortar of cement matrices by confinement of ion exchange resins

    Directory of Open Access Journals (Sweden)

    Labied S.

    2018-01-01

    Full Text Available Radioactive waste arising as a result of nuclear activities should be safely managed from its generation to final disposal in an appropriate conditioned form to reduce the risk of radiation exposure of technical personnel and of the public and to limit contamination of the environment. The immobilization of low and intermediate level radioactive wastes in cementitious matrices is the most commonly used technique to produce inexpensive waste matrix that complies with regulatory requirements in order to protect humans and the environment against nuisance caused by ionizing radiation. Cement based materials are used in radioactive waste management to produce stable waste forms. This matrix constitutes the first build engineering barrier in disposal facilities. In this work, the kaolin is used to enhance the mechanical performance of the matrix of confinement of ion exchange resins by gradually replacing the sand in mortar with kaolin clay. The Kaolin clay sample was a special pure product, sourced from a foreign country. The maximum quantity of resins that can be incorporated into the mortar formulation without the packages losing their strength is 13.915% which results in a better mechanical strength at 6.7686 MPA compression with kaolin.

  1. Streptococcus mutans-induced secondary caries adjacent to glass ionomer cement, composite resin and amalgam restorations in vitro.

    Science.gov (United States)

    Gama-Teixeira, Adriana; Simionato, Maria Regina Lorenzeti; Elian, Silvia Nagib; Sobral, Maria Angela Pita; Luz, Maria Aparecida Alves de Cerqueira

    2007-01-01

    The aim of this study was to define, in vitro, the potential to inhibit secondary caries of restorative materials currently used in dental practice. Standard cavities were prepared on the buccal and lingual surfaces of fifty extracted human third molars. The teeth were randomly divided into five groups, each one restored with one of the following materials: glass ionomer cement (GIC); amalgam; light-cured composite resin; ion-releasing composite; and light-cured, fluoride-containing composite resin. The teeth were thermocycled, sterilized with gamma irradiation, exposed to a cariogenic challenge using a bacterial system using Streptococcus mutans, and then prepared for microscopic observation. The following parameters were measured in each lesion formed: extension, depth, and caries inhibition area. The outer lesions developed showed an intact surface layer and had a rectangular shape. Wall lesions were not observed inside the cavities. After Analysis of Variance and Component of Variance Models Analysis, it was observed that the GIC group had the smallest lesions and the greatest number of caries inhibition areas. The lesions developed around Amalgam and Ariston pHc restorations had an intermediate size and the largest lesions were observed around Z-100 and Heliomolar restorations. It may be concluded that the restorative materials GIC, amalgam and ion-releasing composites may reduce secondary caries formation.

  2. Shear bond strength of Biodentine, ProRoot MTA, glass ionomer cement and composite resin on human dentine ex vivo.

    Science.gov (United States)

    Kaup, Markus; Dammann, Christoph Heinrich; Schäfer, Edgar; Dammaschke, Till

    2015-04-19

    The aim of this study was to compare the shear bond strength of Biodentine, ProRoot MTA (MTA), glass ionomer cement (GIC) and composite resin (CR) on dentine. 120 extracted human third molars were embedded in cold-cured-resin and grinned down to the dentine. For each material 30 specimens were produced in standardised height and width and the materials were applied according to manufacturers´ instructions on the dentine samples. Only in the CR group a self-etching dentine-adhesive was used. In all other groups the dentine was not pre-treated. All specimens were stored at 37.5 °C and 100% humidity for 2d, 7d and 14d. With a testing device the shear bond strength was determined (separation of the specimens from the dentine surface). The statistical evaluation was performed using ANOVA and Tukey-test (p Biodentine increased significantly compared to the 2d investigation period (p Biodentine showed a significantly higher shear bond strength than MTA (p Biodentine and GIC was not significant (p > 0.05). After 7d Biodentine showed comparable shear bond values than GIC, whereas the shear bond values for MTA were significantly lower even after 14d. The adhesion of Biodentine to dentine surface seams to be superior compared to that of MTA.

  3. Effect of reduced exposure times on the cytotoxicity of resin luting cements cured by high-power led

    Directory of Open Access Journals (Sweden)

    Gulfem Ergun

    2011-06-01

    Full Text Available OBJECTIVE: Applications of resin luting agents and high-power light-emitting diodes (LED light-curing units (LCUs have increased considerably over the last few years. However, it is not clear whether the effect of reduced exposure time on cytotoxicity of such products have adequate biocompatibility to meet clinical success. This study aimed at assessing the effect of reduced curing time of five resin luting cements (RLCs polymerized by high-power LED curing unit on the viability of a cell of L-929 fibroblast cells. MATERIAL AND METHODS: Disc-shaped samples were prepared in polytetrafluoroethylene moulds with cylindrical cavities. The samples were irradiated from the top through the ceramic discs and acetate strips using LED LCU for 20 s (50% of the manufacturer's recommended exposure time and 40 s (100% exposure time. After curing, the samples were transferred into a culture medium for 24 h. The eluates were obtained and pipetted onto L-929 fibroblast cultures (3x10(4 per well and incubated for evaluating after 24 h. Measurements were performed by dimethylthiazol diphenyltetrazolium assay. Statistical significance was determined by two-way ANOVA and two independent samples were compared by t-test. RESULTS: Results showed that eluates of most of the materials polymerized for 20 s (except Rely X Unicem and Illusion reduced to a higher extent cell viability compared to samples of the same materials polymerized for 40 s. Illusion exhibited the least cytotoxicity for 20 s exposure time compared to the control (culture without samples followed by Rely X Unicem and Rely X ARC (90.81%, 88.90%, and 83.11%, respectively. For Rely X ARC, Duolink and Lute-It 40 s exposure time was better (t=-1.262 p=0,276; t=-9.399 p=0.001; and t=-20.418 p<0.001, respectively. CONCLUSION: The results of this study suggest that reduction of curing time significantly enhances the cytotoxicity of the studied resin cement materials, therefore compromising their clinical

  4. Resin-modified glass-ionomer cements versus resin-based materials as fissure sealants: a meta-analysis of clinical trials.

    Science.gov (United States)

    Yengopal, V; Mickenautsch, S

    2010-02-01

    To appraise quantitatively current evidence regarding the caries-preventing effect of resin-modified glass-ionomer cement (RM-GIC) fissure sealants in comparison to that of resin-based fissure sealants. Systematic review with meta-analysis. 8 Anglophone databases and 2 Lusophone databases were searched until 15 April 2009, using a pre-determined search strategy. Clinical trials were considered for inclusion if their titles/abstracts were relevant to the topic, published in English, Portuguese or Spanish and had a two-arm longitudinal study design. The outcome measure of the caries-preventive effect was caries absence on sealed teeth. Two reviewers independently extracted data from the accepted articles in order to complete a 2x2 table for meta-analysis. The unit of interest was the tooth, and the number of caries-free teeth (n) at the end of each time interval (6, 12 and 24 months) was compared against the total number of evaluated teeth (N). Datasets were assessed for their clinical and methodological heterogeneity, following Cochrane guidelines, and only homogeneous datasets were combined for meta-analysis, using a random effects model (RevMan 4.2). Differences in the caries-preventive effect were computed on the basis of the combined Relative Risk (RR) with 95% confidence interval (CI). Of the 212 articles identified, only 6 trials were included. From these, 19 separate datasets were extracted. For the pooled data, equivalent caries-preventive effects were observed at 6 months (RR= 0.98, 95% CI 0.95- 1.00; p = 0.08); 12 months (RR=1.00, 95% CI 0.96-1.04, p = 0.99) and 24 months (RR=1.01, 95% CI 0.84-1.21, p = 0.91). The 36-month data (not pooled) favoured resin-based sealants (RR 0.93, 95% CI 0.88-0.97, p = 0.002). This meta-analysis found no conclusive evidence that either material was superior to the other in preventing dental caries.

  5. Streptococcus mutans counts in plaque adjacent to orthodontic brackets bonded with resin-modified glass ionomer cement or resin-based composite

    Directory of Open Access Journals (Sweden)

    Solange Machado Mota

    2008-03-01

    Full Text Available This study investigated the number of Streptococcus mutans CFU (colony forming units in the saliva and plaque adjacent to orthodontic brackets bonded with a glass ionomer cement - GIC (Fuji Ortho or a resin-based composite - RC (Concise. Twenty male and female patients, aged 12 to 20 years, participated in the study. Saliva was collected before and after placement of appliances. Plaque was collected from areas adjacent to brackets and saliva was again collected on the 15th, 30th, and 45th day after placement. On the 30th day, 0.4% stannous fluoride gel was applied for 4 minutes. No significant modification in the number of Streptococcus mutans CFU in saliva was observed after placement of the fixed orthodontic appliances. On the 15th day, the percentage of Streptococcus mutans CFU in plaque was statistically lower in sites adjacent to GIC-bonded brackets (mean = 0.365 than in those adjacent to RC-bonded brackets (mean = 0.935. No evidence was found of a contribution of GIC to the reduction of CFU in plaque after the 15th day. Topical application of stannous fluoride gel on the 30th day reduced the number of CFU in saliva, but not in plaque. This study suggests that the antimicrobial activity of GIC occurs only in the initial phase and is not responsible for a long-term anticariogenic property.

  6. Investigation of the fatigue behavior of adhesive bonding of the lithium disilicate glass ceramic with three resin cements using rotating fatigue method.

    Science.gov (United States)

    Yassini, E; Mirzaei, M; Alimi, A; Rahaeifard, M

    2016-08-01

    To investigate the fatigue behavior of bonding interface of lithium disilicate ceramic with three different dual cure resin cements. Forty five bar shaped ceramic-resin-ceramic specimens were prepared and divided into 3 groups (n=15) according to the resin cement used (group1: Panavia F2.0, group 2: RelyX Ultimate, group 3: Duo-Link Universal). Three specimens of each group were tested using three point bending test and the fracture strength of the resin-ceramic bond was measured. Other specimens of each group were placed in the rotating fatigue testing machine at stresses equal to 30%, 40%, 50% and 60% of the fracture strength. The cyclic loading was continued until fracture or a maximum of 10,000 cycles. For the specimens which did not fail until 10,000 cycles, the cyclic loading was stopped and the remained fracture strength of the specimens was measured. None of the specimens with cyclic loads of 30% and 40% of the fracture strength, have failed until 10,000 cycles. After 10,000 load cycles, the fracture strength of these specimens was significantly lower than their initial fracture strength. On the other hand, all specimens with cyclic stresses equal to 50% and 60% of the fracture strength have failed before 10,000 cycles so that the numbers of load cycles of RelyX specimens were significantly higher than those of Panavia ones and the numbers of cycles of Panavia specimens were significantly higher than those of Duo-Link specimens. The fatigue resistance of the ceramic-resin interface is significantly lower than its bond strength. Furthermore, RelyX Ultimate showed the highest fatigue resistance and Duo-Link Universal exhibited the weakest fatigue resistance. Since dental restorations are under cyclic loading caused by mastication forces, the results of this research can be used to select fatigue resistant resin cements for bonding of ceramic restorations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Atmospheric moisture effects on the testing rate and cementation seating load following resin-strengthening of a soda lime glass analogue for dental porcelain.

    Science.gov (United States)

    Hooi, Paul; Addison, Owen; Fleming, Garry J P

    2013-12-01

    To investigate if resin-cementation of a soda lime glass dental analogue could elucidate information regarding the pattern of resin-reinforcement when coated in an environment actively scavenged of moisture. 192 soda lime disc-shaped specimens (alumina particle air abraded, hydrofluoric acid-etched and silane coated) were randomly assigned to eight groups (n=24 per group) prior to resin-coating at seating loads of 5 N (Groups A-D) and 30 N (Groups E-H) in an environment where moisture was actively scavenged and maintained below 15 ppm. Following one week storage the discs were tested in biaxial flexure at crosshead rates of 0.01, 0.1, 1 and 10mm/min. Analysis of group means was performed utilising a general linear model univariate analysis and post hoc all paired Tukey tests (Pcementation seating load (Pcementation loads and testing conditions. The decrease in resin-penetration expected within the 'resin-ceramic hybrid layer' following removal of the 30 N seating load was proposed as the modifying resin-strengthening parameter. These observations are supported by the viscoelastic and creep behaviour of resins at slow testing rates which becomes the dominant or determining phenomenon. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Transmission of composite polymerization contraction force through a flowable composite and a resin-modified glass ionomer cement

    Directory of Open Access Journals (Sweden)

    Juan Carlos Castañeda-Espinosa

    2007-12-01

    Full Text Available The purpose of this study was to evaluate the individual contraction force during polymerization of a composite resin (Z-250, a flowable composite (Filtek Flow, FF and a resin-modified glass ionomer cement (Vitrebond, VB, and the transmission of Z-250 composite resin polymerization contraction force through different thicknesses of FF and VB. The experiment setup consisted of two identical parallel steel plates connected to a universal testing machine. One was fixed to a transversal base and the other to the equipment's cross head. The evaluated materials were inserted into a 1-mm space between the steel plates or between the inferior steel plate and a previously polymerized layer of an intermediate material (either FF or VB adhered to the upper steel plate. The composite resin was light-cured with a halogen lamp with light intensity of 500 mW/cm² for 60 s. A force/time graph was obtained for each sample for up to 120 s. Seven groups of 10 specimens each were evaluated: G1: Z-250; G2: FF; G3: VB; G4: Z-250 through a 0.5-mm layer of FF; G5: Z-250 through a 1-mm layer of FF; G6: Z-250 through a 0.5-mm of VB; G7: Z-250 through a 1-mm layer of VB. They were averaged and compared using one-way ANOVA and Tukey test at a = 0.05. The obtained contraction forces were: G1: 6.3N + 0.2N; G2: 9.8 + 0.2N; G3: 1.8 + 0.2N; G4: 6.8N + 0.2N; G5: 6.9N + 0.3N; G6: 4.0N + 0.4N and G7: 2.8N + 0.4N. The use of VB as an intermediate layer promoted a significant decrease in polymerization contraction force values of the restorative system, regardless of material thickness. The use of FF as an intermediate layer promoted an increase in polymerization contraction force values with both material thicknesses.

  9. TRANSMISSION OF COMPOSITE POLYMERIZATION CONTRACTION FORCE THROUGH A FLOWABLE COMPOSITE AND A RESIN-MODIFIED GLASS IONOMER CEMENT

    Science.gov (United States)

    Castañeda-Espinosa, Juan Carlos; Pereira, Rosana Aparecida; Cavalcanti, Ana Paula; Mondelli, Rafael Francisco Lia

    2007-01-01

    The purpose of this study was to evaluate the individual contraction force during polymerization of a composite resin (Z-250), a flowable composite (Filtek Flow, FF) and a resin-modified glass ionomer cement (Vitrebond, VB), and the transmission of Z-250 composite resin polymerization contraction force through different thicknesses of FF and VB. The experiment setup consisted of two identical parallel steel plates connected to a universal testing machine. One was fixed to a transversal base and the other to the equipment's cross head. The evaluated materials were inserted into a 1-mm space between the steel plates or between the inferior steel plate and a previously polymerized layer of an intermediate material (either FF or VB) adhered to the upper steel plate. The composite resin was light-cured with a halogen lamp with light intensity of 500 mW/cm2 for 60 s. A force/time graph was obtained for each sample for up to 120 s. Seven groups of 10 specimens each were evaluated: G1: Z-250; G2: FF; G3: VB; G4: Z-250 through a 0.5-mm layer of FF; G5: Z-250 through a 1-mm layer of FF; G6: Z-250 through a 0.5-mm of VB; G7: Z-250 through a 1-mm layer of VB. They were averaged and compared using one-way ANOVA and Tukey test at a = 0.05. The obtained contraction forces were: G1: 6.3N ± 0.2N; G2: 9.8 ± 0.2N; G3: 1.8 ± 0.2N; G4: 6.8N ± 0.2N; G5: 6.9N ± 0.3N; G6: 4.0N ± 0.4N and G7: 2.8N ± 0.4N. The use of VB as an intermediate layer promoted a significant decrease in polymerization contraction force values of the restorative system, regardless of material thickness. The use of FF as an intermediate layer promoted an increase in polymerization contraction force values with both material thicknesses. PMID:19089187

  10. Thio-urethane oligomers improve the properties of light-cured resin cements.

    Science.gov (United States)

    Bacchi, Ataís; Consani, Rafael L; Martim, Gedalias C; Pfeifer, Carmem S

    2015-05-01

    Thio-urethanes were synthesized by combining 1,6-hexanediol-diissocyante (aliphatic) with pentaerythritol tetra-3-mercaptopropionate (PETMP) or 1,3-bis(1-isocyanato-1-methylethyl)benzene (aromatic) with trimethylol-tris-3-mercaptopropionate (TMP), at 1:2 isocyanate:thiol, leaving pendant thiols. Oligomers were added at 10-30 phr to BisGMA-UDMA-TEGDMA (5:3:2, BUT). 25 wt% silanated inorganic fillers were added. Commercial cement (Relyx Veneer, 3M-ESPE) was also evaluated with 10-20 phr of aromatic oligomer. Near-IR was used to follow methacrylate conversion (DC) and rate of polymerization (Rpmax). Mechanical properties were evaluated in three-point bending (ISO 4049) for flexural strength/modulus (FS/FM, and toughness), and notched specimens (ASTM Standard E399-90) for fracture toughness (KIC). Polymerization stress (PS) was measured on the Bioman. Volumetric shrinkage (VS, %) was measured with the bonded disk technique. Results were analyzed with ANOVA/Tukey's test (α=5%). In general terms, for BUT cements, conversion and mechanical properties in flexure increased for selected groups with the addition of thio-urethane oligomers. The aromatic versions resulted in greater FS/FM than aliphatic. Fracture toughness increased by two-fold in the experimental groups (from 1.17 ± 0.36 MPam(1/2) to around 3.23 ± 0.22 MPam(1/2)). Rpmax decreased with the addition of thio-urethanes, though the vitrification point was not statistically different from the control. VS and PS decreased with both oligomers. For the commercial cement, 20 phr of oligomer increased DC, vitrification, reduced Rpmax and also significantly increased KIC, and reduced PS and FM. Thio-urethane oligomers were shown to favorably modify conventional dimethacrylate networks. Significant reductions in polymerization stress were achieved at the same time conversion and fracture toughness increased. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Consequences of enamel preparation with sodium hypochlorite, polyacrylic and phosphoric acids for the bonding of brackets with resin-modified glass ionomer cements

    OpenAIRE

    Trindade, Alessandra Marques; Pereira, Tatiana Bahia Junqueira; Smith Neto, Perrin; Horta, Martinho Campolina Rebello; Pithon, Matheus Melo; Akaki, Emílio; Oliveira, Dauro Douglas

    2013-01-01

    The aim of this study was to evaluate the effects of deproteinization with 5.25% sodium hypochlorite (NaOCl) prior to enamel conditioning with 10% polyacrylic acid (PAA) and 35% phosphoric acid (PA) on the bond strength (BS) of brackets bonded with resin-modified glass ionomer cement (RMGIC). One hundred human premolars extracted for orthodontic reasons were divided into 5 groups (n = 20 in each group): G1 (control), enamel conditioning with PA, application of adhesive and bonding of brackets...

  12. Shear Bond Strength of MDP-Containing Self-Adhesive Resin Cement and Y-TZP Ceramics: Effect of Phosphate Monomer-Containing Primers

    Science.gov (United States)

    Ahn, Jin-Soo; Yi, Young-Ah; Lee, Yoon; Seo, Deog-Gyu

    2015-01-01

    Purpose. This study was conducted to evaluate the effects of different phosphate monomer-containing primers on the shear bond strength between yttria-tetragonal zirconia polycrystal (Y-TZP) ceramics and MDP-containing self-adhesive resin cement. Materials and Methods. Y-TZP ceramic surfaces were ground flat with #600-grit SiC paper and divided into six groups (n = 10). They were treated as follows: untreated (control), Metal/Zirconia Primer, Z-PRIME Plus, air abrasion, Metal/Zirconia Primer with air abrasion, and Z-PRIME Plus with air abrasion. MDP-containing self-adhesive resin cement was applied to the surface-treated Y-TZP specimens. After thermocycling, a shear bond strength test was performed. The surfaces of the Y-TZP specimens were analyzed under a scanning electron microscope. The bond strength values were statistically analyzed using one-way analysis of variance and the Student–Newman–Keuls multiple comparison test (P Zirconia Primer combined with air abrasion, air abrasion alone, and, lastly, Metal/Zirconia Primer application. The control group yielded the lowest results (P < 0.05). Conclusion. The application of MDP-containing primer resulted in increased bond strength between Y-TZP ceramics and MDP-containing self-adhesive resin cements. PMID:26539485

  13. Shear Bond Strength of MDP-Containing Self-Adhesive Resin Cement and Y-TZP Ceramics: Effect of Phosphate Monomer-Containing Primers.

    Science.gov (United States)

    Ahn, Jin-Soo; Yi, Young-Ah; Lee, Yoon; Seo, Deog-Gyu

    2015-01-01

    This study was conducted to evaluate the effects of different phosphate monomer-containing primers on the shear bond strength between yttria-tetragonal zirconia polycrystal (Y-TZP) ceramics and MDP-containing self-adhesive resin cement. Y-TZP ceramic surfaces were ground flat with #600-grit SiC paper and divided into six groups (n = 10). They were treated as follows: untreated (control), Metal/Zirconia Primer, Z-PRIME Plus, air abrasion, Metal/Zirconia Primer with air abrasion, and Z-PRIME Plus with air abrasion. MDP-containing self-adhesive resin cement was applied to the surface-treated Y-TZP specimens. After thermocycling, a shear bond strength test was performed. The surfaces of the Y-TZP specimens were analyzed under a scanning electron microscope. The bond strength values were statistically analyzed using one-way analysis of variance and the Student-Newman-Keuls multiple comparison test (P MDP-containing primer resulted in increased bond strength between Y-TZP ceramics and MDP-containing self-adhesive resin cements.

  14. Short- and Long-Term Bond Strength Between Resin Cement and Glass-Ceramic Using a Silane-Containing Universal Adhesive.

    Science.gov (United States)

    Murillo-Gómez, F; Rueggeberg, F A; De Goes, M F

    This study aimed to evaluate the effect of various silane-containing solutions on bonding between resin cement and glass ceramic after 24 hours and after six months of water storage. Glass-ceramic plaques (IPS e.max CAD) were sandblasted with aluminum oxide, etched with 10% hydrofluoric acid (HF), and divided into five "silane treatment" groups: RelyX Ceramic Primer (RCP), RelyX Ceramic Primer and Single Bond Plus (RCP+SB), Scotchbond Universal (SBU), Clearfil Ceramic Primer (CP), and no solution (HF-only control). Each group was divided into two "storage time" subgroups: 24 hours or six months in 37°C water. Eighteen resin cement cylinders (RelyX Ultimate) were bonded to each treatment group substrate (n=18) and then subjected to microshear testing. Failure mode was analyzed using scanning electron microscopy. Debond data were analyzed using a two-way analysis of variance and the Tukey post hoc test (α=0.05) as well as Weibull distributions. The factors "silane treatment," "storage time," (psilane and adhesive system improved short and long-term ceramic/resin cement bond strength.

  15. The effect of sandblasting and different primers on shear bond strength between yttria-tetragonal zirconia polycrystal ceramic and a self-adhesive resin cement.

    Science.gov (United States)

    Yi, Y-A; Ahn, J-S; Park, Y-J; Jun, S-H; Lee, I-B; Cho, B-H; Son, H-H; Seo, D-G

    2015-01-01

    To evaluate the effect of zirconia primers, air-abrasion, and tribochemical surface treatment methods on the shear bond strength between yttria-tetragonal zirconia polycrystal (Y-TZP) ceramic and self-adhesive resin cement. Y-TZP ceramic surfaces were ground flat with 600-grit silicon carbide paper and then divided into seven groups of 10 and treated as follows: untreated (control), Monobond Plus, Z-PRIME Plus, ESPE Sil with CoJet, air-abrasion, Monobond Plus with air-abrasion, and Z-PRIME Plus with air-abrasion. Self-adhesive resin cement was placed onto the treated Y-TZP specimens for each group. All specimens were thermocycled and subjected to a shear bond strength test. Scanning electron microscope images of the fractured areas and x-ray diffraction (XRD) analysis of the surface-treated Y-TZP specimens were performed. Data were statistically analyzed using one-way analysis of variance and the Student-Newman-Keuls multiple comparison test (pceramic and self-adhesive resin cement.

  16. Leaching of 137Cs from the ion-exchange resin incorporated in polyethylene or cement composite

    International Nuclear Information System (INIS)

    Mariyama, N.; Dojiri, S.; Matsuzuru, H.

    1977-01-01

    The results of an evaporation of a composite, which has been developed by incorporation of spent ion-exchange resin in polyethylene for the solidification of radioactive wastes, are reported. Transport phenomena involved in the leaching of 137 Cs from the composite matrix into surrounding water were investigated using two methods based on theoretical equations, a diffusion equation derived for a plane source model, and a rate equation for diffusion coupled with a first-order reaction. The leaching data were also analyzed by an empirical method employing a polynomial equation. Comparative results are presented. (U.K.)

  17. Comparative evaluation for microleakage between Fuji-VII glass ionomer cement and light-cured unfilled resin: A combined in vivo in vitro study

    Directory of Open Access Journals (Sweden)

    Ashwin R

    2007-06-01

    Full Text Available Glass ionomer cement, besides being used as restorative material, can also be used as pit and fissure sealant. The use of glass ionomer cement as pit and fissure sealant has added benefit by its fluoride-releasing property that results in increased resistance of the fissures to demineralize. The capacity of a sealant to prevent microleakage into the fissure is important, since microleakage may initiate and support a carious lesion beneath the sealant. The study was carried out to compare marginal microleakage between Fuji-VII glass ionomer cement (G C Corporation, Tokyo, Japan and the conventional light-cured unfilled resin as pit and fissure sealants (3M Concise, 3M Dental Products, St. Paul, USA. The dye used was 2% methylene blue (Qualigens Fine Chemicals, Mumbai, India. The teeth were sectioned and studied under the stereomicroscope. The result revealed that there was no difference in microleakage ( P > 0.05 between the two materials.

  18. Effects of proximal grooves and abutment height on the resistance of resin-cemented crowns in teeth with inadequate resistance: An in vitro study.

    Science.gov (United States)

    Huang, Yi-Chen; Lin, Chun-Li; Ko, Ellen Wen-Ching

    2015-01-01

    The resistance form is a key factor for a successful crown fabrication. This in vitro study evaluates the effects of proximal grooves and abutment height on the resistance of single cast crowns in molars with inadequate resistance. Sixty extracted human molars were prepared to possess 20° of total occlusal convergence for single crown fabrication. All of the prepared teeth were divided into six groups and prepared according to three axial heights (2, 3, and 4 mm) with or without preparing a pair of proximal grooves. Alloy metal copings of 5% titanium were casted and cemented. A self-adhesive modified-resin cement was used for cementation. A lateral dislodgement test was performed with an increasing external force applied at a 45° angulation on a universal testing machine. The force required to dislodge the crown from the tooth or to break the core was recorded. Proximal grooves increased the dislodgement resistance in groups with an abutment height of 4 mm, whereas adding grooves made no significant differences in resistance in groups with abutment heights of 2 and 3 mm. The 2 mm groups exhibited worse performance than the other groups, whether they had proximal grooves or not. An abutment height of 3 mm provided adequate resistance for single cast crowns when self-adhesive modified-resin cement was used. Preparing a pair of proximal grooves on abutments shorter than 4 mm had no significant influence on the resistance.

  19. Shear bond strength evaluation of resin composite bonded to three different liners: TheraCal LC, Biodentine, and resin-modified glass ionomer cement using universal adhesive: An in vitro study.

    Science.gov (United States)

    Deepa, Velagala L; Dhamaraju, Bhargavi; Bollu, Indira Priyadharsini; Balaji, Tandri S

    2016-01-01

    To compare and evaluate the bonding ability of resin composite (RC) to three different liners: TheraCal LC™ (TLC), a novel resin-modified (RM) calcium silicate cement, Biodentine™ (BD), and resin-modified glass ionomer cement (RMGIC) using an universal silane-containing adhesive and characterizing their failure modes. Thirty extracted intact human molars with occlusal cavity (6-mm diameter and 2-mm height) were mounted in acrylic blocks and divided into three groups of 10 samples each based on the liner used as Group A (TLC), Group B (BD), and Group C (RMGIC). Composite post of 3 mm diameter and 3 mm height was then bonded to each sample using universal adhesive. Shear bond strength (SBS) analysis was performed at a cross-head speed of 1 mm/min. Statistical analysis was performed with one-way analysis of variance (ANOVA) and post hoc test using Statistical Package for the Social Sciences (SPSS) version 20. No significant difference was observed between group A and group C (P = 0.573) while group B showed the least bond strength values with a highly significant difference (P = 0.000). The modes of failure were predominantly cohesive in Groups A and B (TLC and BD) while RMGIC showed mixed and adhesive failures. Hence, this present study concludes that the bond strength of composite resin to TLC and RMGIC was similar and significantly higher than that of BD following application of universal adhesive.

  20. Effects of metal primers on bonding of adhesive resin cement to noble alloys for porcelain fusing.

    Science.gov (United States)

    Okuya, Nobuhiro; Minami, Hiroyuki; Kurashige, Hisanori; Murahara, Sadaaki; Suzuki, Shiro; Tanaka, Takuo

    2010-03-01

    This study evaluated the effects of metal primers on the bonding of adhesive resin to four pure metals (Au, Pd, Ag, Cu) and two noble alloys for porcelain fusing (high-gold and high-palladium content alloys). Bonding surface was polished with 600-grit silicon carbide paper and primed with one of the three metal primers (V-Primer, Metaltite, and M.L. Primer). Bonded specimens were fabricated by applying adhesive resin (Super-Bond C&B) on the primed surface. Shear bond strength (SBS) was determined both before and after thermocycling (4-60 degrees C for 2,000 cycles). The highest SBS values to each pure metal after thermocycling were 33.5 MPa for Au by M.L. Primer, 35.0 MPa for Ag by V-Primer, and 34.4 MPa for Cu by Metaltite. SBS to high-gold content alloy after thermocycling was 33.3 MPa by M.L. Primer. None of the primers was effective for pure Pd and high-palladium content alloy after thermocycling.

  1. [Aging effect of one bottle-type ceramic primer on bonding efficacy of resin cement].

    Science.gov (United States)

    Goto, Haruhiko

    2008-04-01

    To understand the degradation mechanisms of commercially available one bottle-type ceramic primer, we prepared one bottle-type experimental ceramic primer consisting of gamma-methacryloxy-propyl-trimethoxysilane, gamma-MPTS, and 90% ethanol solution. The effects of aging of the experimental primer on the hydrolysis and condensation behavior of gamma -MPTS and on the bonding efficacy of gamma-MPTS at the interface between cement and ceramic were studied. We used two lamina bond porcelain primers (LB), that had been aged for 20 months and newly purchased. Experimental primer was aged at 20 degrees C. After aging, we measured 29Si NMR spectrum of the gamma-MPTS and the shear bond strength of the cement to silane-treated ceramic by varying aging periods. When the LB was aged for 20 months, the mean bond strength decreased from 26 to 11 MPa. To understand the degradation mechanism in the bond strength, the effects of aging of experimental primer on molecular species of gamma-MPTS were examined. With prolonging its aging period, the methoxy group of the silicone functional portion in the gamma-MPTS hydrolyzed and the hydrolyzed gamma-MPTS species condensed together. The molecular weight of condensed gamma-MPTS species increased. On the other hand, when the dimer species of gamma-MPTS were produced, a maximum mean bond strength of 28 MPa was observed. Thereafter, the bond strength dropped down and leveled off at 16 MPa. When the LB was aged for 20 months, the bond strength dramatically decreased. This decrease in the mean bond strength was probably attributed to ester exchange reaction of the methoxyl group in the gamma-MPTS by the ethanol used as diluent solvent.

  2. In vitro shear bond strength of Y-TZP ceramics to different core materials with the use of three primer/resin cement systems.

    Science.gov (United States)

    Al-Harbi, Fahad A; Ayad, Neveen M; Khan, Zahid A; Mahrous, Amr A; Morgano, Steven M

    2016-01-01

    Durability of the bond between different core materials and zirconia retainers is an important predictor of the success of a dental prosthesis. Nevertheless, because of its polycrystalline structure, zirconia cannot be etched and bonded to a conventional resin cement. The purpose of this in vitro study was to compare the effects of 3 metal primer/resin cement systems on the shear bond strength (SBS) of 3 core materials bonded to yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramic retainers. Zirconia ceramic (Cercon) disks (5×3 mm) were airborne-particle abraded, rinsed, and air-dried. Disk-shaped core specimens (7×7 mm) that were prepared of composite resin, Ni-Cr, and zirconia were bonded to the zirconia ceramic disks by using one of 3 metal primer/cement systems: (Z-Prime Plus/BisCem, Zirconia Primer/Multilink Automix, or Clearfil Ceramic Primer/Clearfil SA). SBS was tested in a universal testing machine. Stereomicroscopy was used to evaluate the failure mode of debonded specimens. Data were analyzed using 2-way ANOVA and post hoc analysis using the Scheffe procedure (α=.05). Clearfil SA/Clearfil Ceramic Primer system with an Ni-Cr core yielded the highest SBS value (19.03 MPa), whereas the lowest SBS value was obtained when Multilink Automix/Zirconia Primer system was used with the zirconia core group (4.09 MPa). Differences in mean SBS values among the cement/primer groups were statistically significant, except for Clearfil SA and BisCem with both composite resin and zirconia cores. Differences in mean SBS values among the core subgroups were not statistically significant, except for zirconia core with BisCem, Multilink, and Clearfil SA. The predominant failure mode was adhesive, except for Clearfil SA and BisCem luting agents with composite resin cores, which displayed cohesive failure, and Multilink Automix with a composite resin, core as well as Clearfil SA with Ni-Cr cores, where the debonded specimens of each group displayed a mixed

  3. Effect of ultraviolet light irradiation on bond strength of fiber post: Evaluation of surface characteristic and bonded area of fiber post with resin cement.

    Science.gov (United States)

    Reza, Fazal; Ibrahim, Nur Sukainah

    2015-01-01

    Fiber post is cemented to a root canal to restore coronal tooth structure. This research aims to evaluate the effect of ultraviolet (UV) irradiation on bond strength of fiber post with resin cement. A total of 40 of the two types of fiber posts, namely, FRC Prostec (FRC) and Fiber KOR (KOR), were used for the experiment. UV irradiation was applied on top of the fiber post surface for 0, 15, 20, and 30 min. The irradiated surface of the fiber posts (n = 5) were immediately bonded with resin cement (Rely X U200) after UV irradiation. Shear bond strength (SBS) MPa was measured, and the dislodged area of post surfaces was examined with scanning electron microscopes. Changes in surface roughness (Ra) of the FRC group after UV irradiation were observed (n = 3) using atomic force microscopy. Data of SBS were statistically analyzed using one-way analysis of variance, followed by multiple comparisons (P < 0.05). SBS was significantly higher for 20 min of UV irradiation of the FRC group while significantly higher SBS was observed with 15 min of UV irradiation of the KOR group. Resin cement was more evident (cohesive failure) on the dislodged post surface of the UV treated groups compared with the control. The surface roughness of the FRC post was Ra = 175.1 nm and Ra = 929.2 nm for the control and the 20 min group, respectively. Higher surface roughness of the UV irradiated group indicated formation of mechanical retention on the fiber post surface. Evidence of cohesive failure was observed which indicated higher SBS of fiber post with the UV irradiated group.

  4. Effects of air abrasion with alumina or glass beads on surface characteristics of CAD/CAM composite materials and the bond strength of resin cements

    Directory of Open Access Journals (Sweden)

    ARAO Nobuaki

    2015-12-01

    Full Text Available ABSTRACT Objective The study aimed to evaluate effects of air abrasion with alumina or glass beads on bond strengths of resin cements to CAD/CAM composite materials. Material and Methods CAD/CAM composite block materials [Cerasmart (CS and Block HC (BHC] were pretreated as follows: (a no treatment (None, (b application of a ceramic primer (CP, (c alumina-blasting at 0.2 MPa (AB, (d AB followed by CP (AB+CP, and (e glass-beads blasting at 0.4 MPa (GBB followed by CP (GBB+CP. The composite specimens were bonded to resin composite disks using resin cements [G-CEM Cerasmart (GCCS and ResiCem (RC]. The bond strengths after 24 h (TC 0 and after thermal cycling (TC 10,000 at 4–60°C were measured by shear tests. Three-way ANOVA and the Tukey compromise post hoc tests were used to analyze statistically significant differences between groups (α=0.05. Results For both CAD/CAM composite materials, the None group exhibited a significant decrease in bond strength after TC 10,000 (p0.05. The AB+CP group showed a significantly higher bond strength after TC 10,000 than did the AB group for RC (p<0.05, but not for GCCS. The GBB+CP group showed the highest bond strength for both thermal cyclings (p<0.05. Conclusions Air abrasion with glass beads was more effective in increasing bond durability between the resin cements and CAD/CAM composite materials than was using an alumina powder and a CP.

  5. Clinical evaluation of a new art material: Nanoparticulated resin-modified glass ionomer cement

    Science.gov (United States)

    Konde, S.; Raj, S.; Jaiswal, D.

    2012-01-01

    Context: The success of atraumatic restorative treatment (ART) technique depends on the restorative material; hence, clinical studies with various materials are necessary. Aim: The aim of the present study was to clinically evaluate and compare the nanoionomer and high-viscosity glass ionomer using United States Public Health Services (USPHS) Modified Cvar/Ryge Criteria with ART approach. Materials and Methods: Two primary molars in 50 healthy children aged between 5 and 8 years were selected for the study. The teeth were treated with ART and divided into two groups. The group 1 teeth were restored with nanoionomer (Ketac Nano 100 3M ESPE) and group 2 with high-viscosity glass ionomer cement (HVGIC), (Fuji IX GC). Each restoration was evaluated using the USPHS Modified Cvar/Ryge Criteria at baseline and 6 months’ and 12 months’ time interval. Statistical analysis used: Chi-squared (χ2) test. Results: Nanoionomer was significantly better than HVGIC with respect to color match at baseline, 6 months, and 12 months (P0.05), but at 12 months, nanoionomer was statistically better than HVGIC (P0.05). Conclusion: The results indicate that nanoionomer can be a successful alternative restorative material for use with ART technique. PMID:24478966

  6. Effect of post space treatment with adhesives on the push-out bond strength of fiber posts luted with self-adhesive resin cements

    Directory of Open Access Journals (Sweden)

    Tufan Can Okay

    2017-01-01

    Full Text Available Objective: The aim of this study was to evaluate the push-out bond strength of fiber posts used in the restoration of endodontically-treated teeth with extreme material loss, luted with two different self-adhesive resin cements alone or with the combination of an adhesive. Materials and Method: The post spaces of 80 extracted mandibular first premolar roots were prepared and divided into 4 experimental groups according to fiber post (RelyX Fiber Post luting material. Group 1 was luted with RelyX Unicem, Group 2 was luted with RelyX Unicem + Adper Easy One, Group 3 was luted with Clearfil SA Cement, and Group 4 was luted with Clearfil SA Cement + S3 Bond. After 24 h and 1 month, horizontal sections of 1 mm thickness were made from the coronal, middle and apical root parts of the fiber posts, and push-out tests were performed. Groups were compared by using one way analysis of variance (ANOVA and Tukey’s HSD post hoc tests and storage periods were compared by using independent samples t-test (α=0.05. Results: For both evaluation time periods, RelyX Unicem + Adper Easy One showed the highest bond strength. Regarding the 24 h period, the lowest bond strength values were found for the apical sections followed by middle and coronal sections. One month results revealed similar bond strength values for the middle and apical sections (p>0.05 which were significantly lower than the values found for the coronal sections (p<0.05. RelyX Unicem + Adper Easy One exhibited greater push-out bonding strength compared to other groups in the middle and apical sections (p<0.05. Conclusion: According to the results of this in vitro study it can be concluded that, using an adhesive system in combination with a self-adhesive resin cement during post cementation may improve the bond strength.

  7. The Debt Overhang Hypothesis: Evidence from Pakistan

    Directory of Open Access Journals (Sweden)

    Shah Muhammad Imran

    2016-04-01

    Full Text Available This study investigates the debt overhang hypothesis for Pakistan in the period 1960-2007. The study examines empirically the dynamic behaviour of GDP, debt services, the employed labour force and investment using the time series concepts of unit roots, cointegration, error correlation and causality. Our findings suggest that debt-servicing has a negative impact on the productivity of both labour and capital, and that in turn has adversely affected economic growth. By severely constraining the ability of the country to service debt, this lends support to the debt-overhang hypothesis in Pakistan. The long run relation between debt services and economic growth implies that future increases in output will drain away in form of high debt service payments to lender country as external debt acts like a tax on output. More specifically, foreign creditors will benefit more from the rise in productivity than will domestic producers and labour. This suggests that domestic labour and capital are the ultimate losers from this heavy debt burden.

  8. Light Transmission of Novel CAD/CAM Materials and Their Influence on the Degree of Conversion of a Dual-curing Resin Cement.

    Science.gov (United States)

    Egilmez, Ferhan; Ergun, Gulfem; Cekic-Nagas, Isil; Vallittu, Pekka K; Lassila, Lippo V J

    To evaluate the light transmission characteristics of different types, shades, and thicknesses of novel CAD/CAM materials and their effect on the degree of conversion (DC) of a dual-curing resin cement. Square specimens (12 × 12 mm2) of three CAD/CAM materials - GC Cerasmart, Lava Ultimate, Vita Enamic - of different thicknesses (1.00, 1.50, and 2.00 mm, n = 5 per thickness) were irradiated with an LED unit. The amount of transmitted light was quantified. Thereafter, the DC% of the dual-curing resin cement (RelyX Ultimate) was recorded after 15 min using Fourier transform infrared spectroscopy. Statistical analysis was performed using two-way ANOVA followed by the Tukey's HSD post-hoc test at a significance level of p light irradiation (p  0.05). Conversely, material thickness significantly affected light transmission (p light irradiation; p = 0.637 for DC). Linear regression analysis showed a correlation between delivered energy and DC% results of the Vita Enamic (R² = 0.4169, p light transmission in 2-mm-thick specimens of all CAD/CAM materials indicates that proper curing of the cement beneath CAD/CAM materials should be ensured.

  9. Analysis of Self-Adhesive Resin Cement Microshear Bond Strength on Leucite-Reinforced Glass-Ceramic with/without Pure Silane Primer or Universal Adhesive Surface Treatment.

    Science.gov (United States)

    Lee, Yoon; Kim, Jae-Hoon; Woo, Jung-Soo; Yi, Young-Ah; Hwang, Ji-Yun; Seo, Deog-Gyu

    2015-01-01

    To evaluate the microshear bond strength (μSBS) of self-adhesive resin (SA) cement on leucite-reinforced glass-ceramic using silane or universal adhesive. Ceramic blocks were etched with 9.5% hydrofluoric acid and divided into three groups (n = 16): (1) negative control (NC) without treatment; (2) Single Bond Universal (SBU); (3) RelyX Ceramic Primer as positive control (PC). RelyX Unicem resin cement was light-cured, and μSBS was evaluated with/without thermocycling. The μSBS was analyzed using one-way analysis of variance. The fractured surfaces were examined using stereomicroscopy and scanning electron microscopy (SEM). Without thermocycling, μSBS was highest for PC (30.50 MPa ± 3.40), followed by SBU (27.33 MPa ± 2.81) and NC (20.18 MPa ± 2.01) (P 0.05). PC and NC predominantly fractured by cohesive failure within the ceramic and mixed failure, respectively. SBU treatment improves μSBS between SA cement and glass ceramics, but to a lower value than PC, and the improvement is eradicated by thermocycling. NC exhibited the lowest μSBS, which remained unchanged after thermocycling.

  10. Effect of pH on the release of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resins collected from operating nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1991-06-01

    Data are presented on the physical stability and leachability of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small-scale waste--form specimens collected during solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station were leach-tested and subjected to compressive strength testing in accordance with the Nuclear Regulatory Commission's Technical Position on Waste Form'' (Revision 1). Samples of untreated resin waste collected from each solidification vessel before the solidification process were analyzed for concentrations of radionuclides, selected transition metals, and chelating agents to determine the quantities of these chemicals in the waste-form specimens. The chelating agents included oxalic, citric, and picolinic acids. In order to determine the effect of leachant chemical composition and pH on the stability and leachability of the waste forms, waste-form specimens were leached in various leachants. Results of this study indicate that differences in pH do not affect releases from cement-solidified decontamination ion-exchange resin waste forms, but that differences in leachant chemistry and the presence of chelating agents may affect the releases of radionuclides and chelating agents. Also, this study indicates that the cumulative releases of radionuclides and chelating agents are similar for waste- form specimens that decomposed and those that retained their general physical form. 36 refs., 60 figs., 28 tabs.

  11. Effect of pH on the release of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resins collected from operating nuclear power stations

    International Nuclear Information System (INIS)

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.

    1991-06-01

    Data are presented on the physical stability and leachability of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small-scale waste--form specimens collected during solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station were leach-tested and subjected to compressive strength testing in accordance with the Nuclear Regulatory Commission's ''Technical Position on Waste Form'' (Revision 1). Samples of untreated resin waste collected from each solidification vessel before the solidification process were analyzed for concentrations of radionuclides, selected transition metals, and chelating agents to determine the quantities of these chemicals in the waste-form specimens. The chelating agents included oxalic, citric, and picolinic acids. In order to determine the effect of leachant chemical composition and pH on the stability and leachability of the waste forms, waste-form specimens were leached in various leachants. Results of this study indicate that differences in pH do not affect releases from cement-solidified decontamination ion-exchange resin waste forms, but that differences in leachant chemistry and the presence of chelating agents may affect the releases of radionuclides and chelating agents. Also, this study indicates that the cumulative releases of radionuclides and chelating agents are similar for waste- form specimens that decomposed and those that retained their general physical form. 36 refs., 60 figs., 28 tabs

  12. Characterization of the Mineral Trioxide Aggregate–Resin Modified Glass Ionomer Cement Interface in Different Setting Conditions

    Science.gov (United States)

    Eid, Ashraf A.; Komabayashi, Takashi; Watanabe, Etsuko; Shiraishi, Takanobu; Watanabe, Ikuya

    2012-01-01

    Introduction Mineral trioxide aggregate (MTA) has been used successfully for perforation repair, vital pulpotomies, and direct pulp capping. However, little is known about the interactions between MTA and glass ionomer cement (GIC) in final restorations. In this study, 2 null hypotheses were tested: (1) GIC placement time does not affect the MTA-GIC structural interface and hardness and (2) moisture does not affect the MTA-GIC structural interface and hardness. Methods Fifty cylinders were half filled with MTA and divided into 5 groups. The other half was filled with resin-modified GIC either immediately after MTA placement or after 1 or 7 days of temporization in the presence or absence of a wet cotton pellet. The specimens were then sectioned, carbon coated, and examined using a scanning electron microscope and an electron probe micro-analyzer (SEM-EPMA) for interfacial adaptation, gap formation, and elemental analysis. The Vickers hardness numbers of the interfacial MTA were recorded 24 hours after GIC placement and 8 days after MTA placement and analyzed using the analysis of variance test. Results Hardness testing 24 hours after GIC placement revealed a significant increase in hardness with an increase of temporization time but not with a change of moisture conditions (P MTA placement indicated no significant differences among groups. SEM-EPMA showed interfacial adaptation to improve with temporization time and moisture. Observed changes were limited to the outermost layer of MTA. The 2 null hypotheses were not rejected. Conclusions GIC can be applied over freshly mixed MTA with minimal effects on the MTA, which seemed to decrease with time. PMID:22794220

  13. Bond strength of resin modified glass ionomer cement to primary dentin after cutting with different bur types and dentin conditioning

    Directory of Open Access Journals (Sweden)

    Rebeca Di Nicoló

    2007-10-01

    Full Text Available The aim of this in vitro study was to evaluate the effect of different bur types and acid etching protocols on the shear bond strength (SBS of a resin modified glass ionomer cement (RM-GIC to primary dentin. Forty-eight clinically sound human primary molars were selected and randomly assigned to four groups (n=12. In G1, the lingual surface of the teeth was cut with a carbide bur until a 2.0-mm-diameter dentin area was exposed, followed by the application of RM-GIC (Vitremer - 3M/ESPE prepared according to the manufacturer's instructions. The specimens of G2, received the same treatment of G1, however the dentin was conditioned with phosphoric acid. In groups G3 and G4 the same procedures of G1 and G2 were conducted respectively, nevertheless dentin cutting was made with a diamond bur. The specimens were stored in distilled water at 37ºC for 24h, and then tested in a universal testing machine. SBS. data were submitted to 2-way ANOVA (= 5% and indicated that SBS values of RM-GIC bonded to primary dentin cut with different burs were not statistically different, but the specimens that were conditioned with phosphoric acid presented SBS values significantly higher that those without conditioning. To observe micromorphologic characteristics of the effects of dentin surface cut by diamond or carbide rotary instruments and conditioners treatment, some specimens were examined by scanning electron microscopy. Smear layer was present in all specimens regardless of the type of rotary instrument used for dentin cutting, and specimens etched with phosphoric acid presented more effective removal of smear layer. It was concluded that SBS of a RM-GIC to primary dentin was affected by the acid conditioning but the bur type had no influence.

  14. Evaluation of fracture resistance of endodontically treated maxillary premolars, restored with ceromer or heat-pressed ceramic inlays and fixed with dual-resin cements.

    Science.gov (United States)

    Ortega, V L; Pegoraro, L F; Conti, P C R; do Valle, A L; Bonfante, G

    2004-04-01

    The aim of this study was to evaluate the fracture resistance of endodontically maxillary premolars restored with mesio-occlusal-distal (MOD) inlays made with ceramic (IPS-Empress 2) and ceromer (Targis) and luted with three different dual-cured resin cements (Enforce, Variolink II, Panavia F). Sixty maxillary premolars were randomly distributed into six groups, according to their mesio-distal and facio-lingual dimensions. The teeth were endodontically treated and MOD cavities prepared. After the restorations were cemented, the samples were thermocycled and submitted to an axial compressive load by the action of a rounded end steel cylinder contacting the incline planes of occlusal surfaces of the teeth. The mode of fracture was analysed with a microscope. The best results were found with the combinations (cement/restorative material) Enforce/Targis (107.57 kgf) and Enforce/Empress (90.21 kgf) followed by Variolink II/Targis (86.44 kgf)-Variolink II/Empress (84.07 kgf) and Panavia F/Targis (82.43 kgf)-Panavia F/Empress (76.73 kgf). Analysis of variance (P < 0.05) showed a significant difference between Enforce and Panavia cements regardless of the restorative material. Considering the same luting agent there was no statistically significant difference between the restorative materials. Fracture of lingual cusps occurred in 55 of the 60 teeth and most of them were of the cohesive type.

  15. Pull-out bond strength of a self-adhesive resin cement to NaOCl-treated root dentin: effect of antioxidizing agents

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2014-05-01

    Full Text Available Objectives This study evaluated the effect of three antioxidizing agents on pull-out bond strengths of dentin treated with sodium hypochlorite. Materials and Methods Root canals of 75 single-rooted human teeth were prepared. Fifteen teeth were irrigated with normal saline for a negative control group, and the remaining 60 teeth (groups 2 - 5 with 2.5% NaOCl. The teeth in group 2 served as a positive control. Prior to post cementation, the root canals in groups 3 - 5 were irrigated with three antioxidizing agents including 10% rosmarinic acid (RA, Baridge essence, 10% hesperidin (HPN, Sigma, and 10% sodium ascorbate hydrogel (SA, AppliChem. Seventy-five spreaders (#55, taper .02, Produits Dentaires S.A were coated with silica and silanized with the Rocatec system and ceramic bond. All the prepared spreaders were cemented with a self-adhesive resin cement (Bifix SE, Voco Gmbh in the prepared canals. After storage in distilled water (24 h/37℃, the spreaders were pulled out in a universal testing machine at a crosshead speed of 1.0 mm/min. Pull-out strength values were analyzed by one-way ANOVA and Tukey's HSD test (α = 0.05. Results There were significant differences between study groups (p = 0.016. The highest pull-out strength was related to the SA group. The lowest strength was obtained in the positive control group. Conclusions Irrigation with NaOCl during canal preparation decreased bond strength of resin cement to root dentin. Amongst the antioxidants tested, SA had superior results in reversing the diminishing effect of NaOCl irrigation on the bond strength to root dentin.

  16. Comparative evaluation of shear bond strength of zirconia restorations cleansed various cleansing protocols bonded with two different resin cements: An In vitro study

    Directory of Open Access Journals (Sweden)

    Sriram Sankar

    2017-01-01

    Full Text Available Context: Yttria partially stabilized tetragonal zirconia polycrystalline restorations have gained widespread use because of its enhanced strength and esthetics. During the try-in process, zirconia is likely to be contaminated with saliva. This contamination leads to a clear weakening of the bond between restorative material and cement. For this reason, zirconia surface should be cleaned before cementation. Hence, the purpose of this study is to compare the shear bond strength of zirconia restorations cleansed with various surface cleansing protocols bonded with two different resin cements. Materials and Methods: Eighty samples of zirconia discs were prepared in the dimensions 2.5 mm diameter and 4.5 mm thickness. They were divided into two groups of each forty samples based on luting cement used. Each group was further subdivided into four subgroups of each (n = 10: Group 1: uncontaminated zirconia blocks, Group 2: saliva-contaminated zirconia blocks and cleaned only with distilled water, Group 3: saliva-contaminated zirconia blocks treated with Ivoclean, and Group 4: saliva-contaminated zirconia blocks were air abraded. Eighty human maxillary premolars were then sectioned to expose dentin and were mounted on an acrylic block. A jig was fabricated to bond zirconia with the tooth using two self-adhesive resin cements. The samples were subjected to shear bond strength testing. The data were analyzed using one-way analysis of variance and Tukey's honest significance difference test with a level of significance set at p < 0.05. Results: The mean shear bond strength values of Group 1 and 2 - subgroup B are 10.3 ± 0.4 and 9.80 ± 0.7 (saliva-contaminated zirconia, cleansed with distilled water only, respectively, were lowest among all test subgroups and were significantly less than mean values of subgroup C, Group 1 - 20.45 ± 0.6 and Group 2 - 20.75 ± 0.4 (Ivoclean group and subgroup D, Group 1 - 20.90 ± 0.3 and Group 2 - 20.60 ± 0.5 (air

  17. Effect of diphenyliodonium hexafluorphosphate on resin cements containing different concentrations of ethyl 4-(dimethylamino)benzoate and 2-(dimethylamino)ethyl methacrylate as co-initiators.

    Science.gov (United States)

    Andrade, Kamila Menezes Guedes de; Palialol, Alan Rodrigo; Lancellotti, Ailla C; Aguiar, Flávio Henrique Baggio; Watts, David C; Gonçalves, Luciano Souza; Lima, Adriano Fonseca; Marchi, Giselle Maria

    2016-06-01

    The present study evaluated the influence of diphenyliodonium hexafluorphosphate (DPI) combined with two different amines [ethyl 4-(dimethylamino)benzoate (EDAB) and 2-(dimethylamino)ethyl methacrylate (DMAEMA)] on the properties of model resin cements. A comonomer base containing a 1:1 mass ratio of 2.2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane (bis-GMA) and triethyleneglycol dimethacrylate (TEGDMA) was obtained, after which 1mol% of camphorquinone and 0.1mol% of hydroxyl butyl toluene were added to the comonomer blend. Concentrations of co-initiators varied at 0, 0.5 or 1mol% for DPI and in 1 or 2mol% for amines (DMAEMA or EDAB). Silanated Ba-Al-Si glass (60wt%) was added as filler. The combination of each amine and DPI concentration resulted in 12 formulations, which had the following properties analyzed: degree of conversion (DC), water sorption (Wsp) and solubility (Wsl), flexural strength (FS) and flexural modulus (Ef). Data for DC, FS and Ef were analyzed by two-way ANOVA and Tukey's test (α=0.05) and Wsp and Wsl by Kruskal-Wallis and Dunn tests (α=0.05). EDAB promoted a higher DC than did DMAEMA; however, DPI increased DC for all materials with DMAEMA. The physical properties of resin formulations containing EDAB were significantly better than those of groups with DMAEMA; however, DPI had a positive influence on the chemical and physical properties of the model resin cement containing DMAEMA, especially with higher concentrations of amine. EDAB proved to be more reactive than DMAEMA, being less influenced by DPI. Resins containing a 1:2 CQ/amine ratio had better properties than those with 1:1. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Evaluation of Effect of Zirconia Surface Treatment, Using Plasma of Argon and Silane, on the Shear Bond Strength of Two Composite Resin Cements.

    Science.gov (United States)

    Kaimal, Aswathy; Ramdev, Poojya; Shruthi, C S

    2017-08-01

    Yttria stabilised tetragonal zirconia opens new vistas for all ceramic restoration by the mechanism of transformation toughening, making it much stronger compared to all other ceramic materials. Currently, it is the most recent core material for all ceramic fixed partial dentures due to its ability to withstand high simulated masticatory loads. Problems which have been reported with zirconia restorations involve the core cement interface leading to loss of retention of the prosthesis. Different reasons which have been reported for the same include the lack of adhesion between zirconia and commonly used cements due to absence of silica phase which makes zirconia not etchable. In addition, the hydrophobic nature of zirconia causes low wettability of zirconia surface by the adhesive cements which are commonly used. The purpose of this in vitro study was to compare and evaluate the effect of two pre-treatments of zirconia, using plasma of argon and silane, on the shear bond strength values of two composite resin cements to zirconia and to evaluate the failure pattern of the debonded areas using stereomicroscopic analysis. Sixty zirconia discs (10 mm×2 mm) were randomly divided into three groups (n=20), following surface treatment, with airborne particle abrasion, using 110 µm Al2O3: Group I (control), Group II (plasma of argon cleaning), and Group III (application of silane primer). Each group had two subgroups based on the type of resin cement used for bonding: subgroup A; Rely X Ultimate (3M ESPE) and subgroup B; Panavia F (Kuraray). In subgroup A, Rely X universal silane primer and in subgroup B Clearfil ceramic primer was used. Shear bond strengths were determined after water storage for one day and thermocycling for 5000 cycles. Data (megapascal) were analyzed using ANOVA and Bonferroni test. Specimens were subjected to stereomicroscopic analysis, for evaluation of failure pattern. Group III produced the highest shear bond strength followed by Group II and Group

  19. Synthesis and characterization of cement slurries additives with epoxy resins - kinetics, thermodynamic and calorimetric analysis; Sintese e caracterizacao de pastas de cimento aditivadas com resinas epoxi - analises cineticas, termodinamicas e calorimetricas

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, A.M.G.; Andrade Junior, M.A.S.; Cestari, A.R.; Vieira, E.F.S., E-mail: macleybiane@gmail.co [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil)

    2010-07-01

    Cement has been used in the world, presenting a wide versatility. However, due to its chemical nature, it is subject to several types of chemical damages, especially for agents of acidic nature. With the purpose of increase its life-time, new cement slurries have been modified with the addition of specific additives. The objective of this work is to modify cement slurries with epoxy resins, which promote higher resistance of those materials in relation to acid attacks. Three cement slurries were synthesized with epoxy resins and a standard slurries, which was composed by cement and water. After 30 days of hydration, the samples were characterized by XDR, FTIR and thermal analysis (TG and DSC). The hydration processes of the cement slurries were studied by heat-conduction microcalorimetry. A kinetic study of HCl interaction with the new slurries were performed by the batch methodology at 25, 35, 45 e 55 deg C. It was verified that the addition of the polymers delayed the processes of hydration of the slurries, decreasing the flow of heat released as a function of the amount of added resin and, increased the resistance of those slurries to the acid attack. (author)

  20. Resistance to fracture of endodontically treated premolars restored with glass ionomer cement or acid etch composite resin: An in vitro study

    Directory of Open Access Journals (Sweden)

    B Ranga

    2010-01-01

    Full Text Available Aim: Due to the weakness of endodontically treated posterior teeth requires more strengthened restoration to withstand occlusal forces. The purpose of the present study was to determine and compare the resistance to fracture of endodontically treated maxillary 1 st premolars restored with different materials in mesio-occluso-distal (MOD cavity preparations. Materials and Methods: MOD cavity preparations in 80 endodontically treated maxillary 1 st premolars were restored using four different methods. Fiber rings were filled with stone plaster and the teeth were placed into the plaster up to the level of cemento-enamel junction. The teeth were grouped according to restorative method, mounted in an Instrom T.T. machine, and the buccal walls subjected to a slowly increasing compressive force until fracture occurred. Result: The force of fracture of the walls of each tooth was recorded and the results in the various groups compared. All teeth fractured in a similar manner irrespective of the restorative method used. Conclusion: The resistance to the fracture of the teeth was the same when they were stored with glass ionomer cement as a base over which composite resin was placed. When the entire cavities were filled with glass ionomer cement, the resistance to fracture of the teeth decreased significantly compared with the acid etch resin technique.

  1. Physicochemical properties and cytotoxicity of an experimental resin-based pulp capping material containing the quaternary ammonium salt and Portland cement.

    Science.gov (United States)

    Yang, Y W; Yu, F; Zhang, H C; Dong, Y; Qiu, Y N; Jiao, Y; Xing, X D; Tian, M; Huang, L; Chen, J H

    2018-01-01

    To evaluate in vitro the physicochemical properties, cytotoxicity and calcium phosphate nucleation of an experimental light-curable pulp capping material composed of a resin with antibacterial monomer (MAE-DB) and Portland cement (PC). The experimental material was prepared by mixing PC with a resin containing MAE-DB at a 2 : 1 ratio. Cured pure resin containing MAE-DB served as control resin. ProRoot MTA and Dycal served as commercial controls. The depth of cure, degree of monomer conversion, water absorption and solubility of dry samples, calcium release, alkalinizing activity, calcium phosphate nucleation and the cytotoxicity of materials were evaluated. Statistical analysis was carried out using anova followed by Tukey's HSD test (equal variance assumed) or Tamhane test (equal variance not assumed) and independent-samples t-tests. The experimental material had a cure depth of 1.19 mm, and the mean degree of monomer conversion was 70.93% immediately post-cure and 88.75% at 24 h post-cure. The water absorption of the experimental material was between those of MTA and Dycal, and its solubility was significantly less (P material exhibited continuous calcium release and an alkalinizing power between those of MTA and Dycal throughout the test period. Freshly set experimental material, control resin and all 24-h set materials had acceptable cytotoxicity. The experimental material, MTA and Dycal all exhibited the formation of apatite precipitates after immersion in phosphate-buffered saline. The experimental material possessed adequate physicochemical properties, low cytotoxicity and good calcium phosphate nucleation. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  2. Push-out bond strength of fiber posts to root dentin using glass ionomer and resin modified glass ionomer cements

    Directory of Open Access Journals (Sweden)

    Jefferson Ricardo PEREIRA

    2014-10-01

    Full Text Available OBJECTIVE: The purpose of this study was to assess the push-out bond strength of glass fiber posts to root dentin after cementation with glass ionomer (GICs and resinmodified glass ionomer cements (RMGICs. MATERIAL AND METHODS: Fifty human maxillary canines were transversally sectioned at 15 mm from the apex. Canals were prepared with a step back technique until the application of a #55 K-file and filled. Post spaces were prepared and specimens were divided into five groups according to the cement used for post cementation: Luting & Lining Cement; Fuji II LC Improved; RelyX Luting; Ketac Cem; and Ionoseal. After cementation of the glass fiber posts, all roots were stored at 100% humidity until testing. For push-out test, 1-mm thick slices were produced. The push-out test was performed in a universal testing machine at a crosshead speed of 0.5 mm/minute and the values (MPa were analyzed by Kolmogorov-Smirnov and Levene's tests and by two-way ANOVA and Tukey's post hoc test at a significance level of 5%. RESULTS: Fiber posts cemented using Luting & Lining Cement, Fuji II LC Improved, and Ketac Cem presented the highest bond strength to root dentin, followed by RelyX Luting. Ionoseal presented the lowest bond strength values (P>0.05. The post level did not influence the bond strength of fiber posts to root dentin (P=0.148. The major cause of failure was cohesive at the cement for all GICs and RMGICs. CONCLUSIONS: Except for Ionoseal, all cements provided satisfactory bond strength values.

  3. The influence of chemical activation on hardness of dual-curing resin cements A influência da ativação química na dureza de cimentos resinosos duais

    Directory of Open Access Journals (Sweden)

    Renata Garcia Fonseca

    2004-09-01

    Full Text Available During the cementation of metallic restorations, the polymerization of dual-curing resin cements depends exclusively on chemical activation. This study evaluated the influence of chemical activation compared with dual-curing (chemical and light activation, on the hardness of four dual-curing resin cements. In a darkened environment, equal weight proportions of base and catalyst pastes of the cements Scotchbond Resin Cement, Variolink II, Enforce and Panavia F were mixed and inserted into moulds with cavities of 4 mm in diameter and 2 mm in height. Subsequently, the cements were: 1 not exposed to light (chemical activation = self-cured groups or 2 photoactivated (dual-curing = dual-cured groups. The Vickers hardness number was measured at 1 hour, 24 hours and 7 days after the start time of cements' spatulation. For all the cements, the hardness values of self-cured groups were lower than those of the respective dual-cured groups at 1 hour and 24 hours. At 7 days, this behavior continued for Variolink II and Panavia F, whilst for Scotchbond Resin Cement and Enforce there was no statistical difference between the two activation modes. All cements showed a significant increase in their hardness values from 1 hour to 7 days for both activation modes. Of the self-cured groups, Scotchbond Resin Cement and Variolink II presented the highest and the lowest hardness values, respectively, for all three times tested. Within the limitations of this study, up to the time of 24 h, chemical activation alone was unable to promote similar hardness as to that obtained with dual-curing.Na cimentação de restaurações metálicas, a polimerização dos cimentos resinosos duais depende exclusivamente da ativação química. Este estudo avaliou a influência da ativação química, comparada à dupla ativação (química e pela luz, na dureza de 4 cimentos resinosos duais. Em ambiente isento de luz, quantidades iguais em massa das pastas base e catalisadora dos

  4. Development of precast bridge deck overhang system : technical report.

    Science.gov (United States)

    2011-07-01

    The implementation of full-depth, precast overhang panel systems has the potential to improve constructability, : productivity, and make bridges more economical. Initial testing and analyses reported in the 0-6100-2 report resulted in : a design that...

  5. Reinforcing Effects of Calcium Silicate-based Cement and Dual Cure Composite Resin in Simulated Immature Teeth with an Open Apex: Anin vitroStudy.

    Science.gov (United States)

    S Zhabuawala, Murtuza; R Nadig, Roopa; S Pai, Veena; Gowda, Yashwanth; M Aswathanarayana, Ranjini

    2017-01-01

    To evaluate the fracture resistance of simulated immature teeth with an apical plug of biodentine followed by composite resin vs total obturation with biodentine tested immediately and after 3 months of aging and also to find out the chemical composition of dentin in contact with these materials. Extracted human maxillary central incisors with simulated immature apex with radicular dentin thickness (RDT) of 1 to 1.5 mm selected and divided into three groups of 20 each. Group I (control)-4 mm biodentine apically and thermoplasticized gutta-percha. Group II-4 mm biodentine apically and composite resin. Group III-complete obturation with biodentine. About 10 samples from each group were tested immediately and remaining 10 stored in phosphate buffered solution (PBS) and tested after 3 months for fracture resistance and chemical analysis of dentin. No significant difference in fracture resistance between the groups was observed when tested immediately. After 3 months of aging, only biodentine group showed a significant reduction in fracture resistance with increased Ca/P ratio of root dentine. Biodentine group has shown drastic reduction in fracture resistance after 3 months of aging, and hence, cannot be recommended as a reinforcement material in immature teeth with thin dentin walls. How to cite this article: Zhabuawala MS, Nadig RR, Pai VS, Gowda Y, Aswathanarayana RM. Reinforcing Effects of Calcium Silicate-based Cement and Dual Cure Composite Resin in Simulated Immature Teeth with an Open Apex: An in vitro Study. Int J Clin Pediatr Dent 2017;10(4):351-357.

  6. Adhesion of resin-modified glass-ionomer cements may affect the integrity of tooth structure in the open sandwich technique.

    Science.gov (United States)

    Czarnecka, Beata; Kruszelnicki, Anna; Kao, Anthony; Strykowska, Marta; Nicholson, John W

    2014-12-01

    To study the interfaces between model cavities prepared in teeth and four glass ionomer cements (two conventional and two resin-modified). Ten non-cavitated molars and premolars were used and, in each, two 3mm deep slot preparations were created on opposing sides of the tooth. The teeth were conditioned as appropriate, then restored using the open sandwich technique, using a conventional glass ionomer (Fuji IX, Ketac Molar) or resin modified glass ionomer (Fuji II LC or N100), followed by completion with composite resin. The teeth were then embedded in a transparent acrylic resin and cut parallel to the long axis through both restorations, using a low speed diamond wheel saw. Samples were evaluated using a metallographic light microscope (100×). Three areas were assessed: the axial wall, the axial gingival line angle and the cavo-surface line angle. Bonding was categorized as inadequate or adequate based on the appearance and inadequate bonding was further studied and classified. Data were analysed statistically using the McNamara analysis. The majority of materials failed to make adequate contact with the axial wall, and there were also flaws at the axial/gingival line angle in several samples. By contrast, the cavo-surface line angle was generally soundly filled and the materials showed intimate contact with the tooth surface in this region. The most serious inadequacy, though, was not lack of intimate contact and/or adhesive bond, but the presence of perpendicular cracks in 30% of the Fuji II LC samples which extended into the underlying dentin. The problems of placement and dentin cracking experienced with these materials demonstrate that adhesive bond strength alone cannot be used as the criterion of success for restorative materials. In fact good adhesion can, in certain cases, promote cracking of the dentin due to stresses within the material, an outcome which is undesirable. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All

  7. Effect of resin-modified glass-ionomer cement lining and composite layering technique on the adhesive interface of lateral wall

    Directory of Open Access Journals (Sweden)

    Larissa Marinho AZEVEDO

    2015-06-01

    Full Text Available Interface integrity can be maintained by setting the composite in a layering technique and using liners. Objective The aim of this in vitro study was to verify the effect of resin-modified glass-ionomer cement (RMGIC lining and composite layering technique on the bond strength of the dentin/resin adhesive interface of lateral walls of occlusal restorations. Material and Methods Occlusal cavities were prepared in 52 extracted sound human molars, randomly assigned into 4 groups: Group 2H (control – no lining + two horizontal layers; Group 4O: no lining + four oblique layers; Group V-2H: RMGIC lining (Vitrebond + two horizontal layers; and Group V-4O: RMGIC lining (Vitrebond + four oblique layers. Resin composite (Filtek Z250, 3M ESPE was placed after application of an adhesive system (Adper™ Single Bond 2, 3M ESPE dyed with a fluorescent reagent (Rhodamine B to allow confocal microscopy analysis. The teeth were stored in deionized water at 37oC for 24 hours before being sectioned into 0.8 mm slices. One slice of each tooth was randomly selected for Confocal Laser Scanning Microscopy (CLSM analysis. The other slices were sectioned into 0.8 mm x 0.8 mm sticks to microtensile bond strength test (MPa. Data were analyzed by two-way ANOVA and Fisher's test. Results There was no statistical difference on bond strength among groups (p>0.05. CLSM analysis showed no significant statistical difference regarding the presence of gap at the interface dentin/resin among groups. Conclusions RMGIC lining and composite layering techniques showed no effect on the microtensile bond strength and gap formation at the adhesive interface of lateral walls of high C-factor occlusal restorations.

  8. In vitro antibacterial activity of a novel resin-based pulp capping material containing the quaternary ammonium salt MAE-DB and Portland cement.

    Science.gov (United States)

    Yang, Yanwei; Huang, Li; Dong, Yan; Zhang, Hongchen; Zhou, Wei; Ban, Jinghao; Wei, Jingjing; Liu, Yan; Gao, Jing; Chen, Jihua

    2014-01-01

    Vital pulp preservation in the treatment of deep caries is challenging due to bacterial infection. The objectives of this study were to synthesize a novel, light-cured composite material containing bioactive calcium-silicate (Portland cement, PC) and the antimicrobial quaternary ammonium salt monomer 2-methacryloxylethyl dodecyl methyl ammonium bromide (MAE-DB) and to evaluate its effects on Streptococcus mutans growth in vitro. The experimental material was prepared from a 2 : 1 ratio of PC mixed with a resin of 2-hydroxyethylmethacrylate, bisphenol glycerolate dimethacrylate, and triethylene glycol dimethacrylate (4 : 3 : 1) containing 5 wt% MAE-DB. Cured resin containing 5% MAE-DB without PC served as the positive control material, and resin without MAE-DB or PC served as the negative control material. Mineral trioxide aggregate (MTA) and calcium hydroxide (Dycal) served as commercial controls. S. mutans biofilm formation on material surfaces and growth in the culture medium were tested according to colony-forming units (CFUs) and metabolic activity after 24 h incubation over freshly prepared samples or samples aged in water for 6 months. Biofilm formation was also assessed by Live/Dead staining and scanning electron microscopy. S. mutans biofilm formation on the experimental material was significantly inhibited, with CFU counts, metabolic activity, viability staining, and morphology similar to those of biofilms on the positive control material. None of the materials affected bacterial growth in solution. Contact-inhibition of biofilm formation was retained by the aged experimental material. Significant biofilm formation was observed on MTA and Dycal. The synthesized material containing HEMA-BisGMA-TEGDMA resin with MAE-DB as the antimicrobial agent and PC to support mineralized tissue formation inhibited S. mutans biofilm formation even after aging in water for 6 months, but had no inhibitory effect on bacteria in solution. Therefore, this material shows

  9. Influence of different power outputs of intraoral Nd:YAG laser on shear bond strength of a resin cement to nickel-chromium dental alloy.

    Science.gov (United States)

    sadat Madani, Azam; Astaneh, Pedram Ansari; Shahabi, Sima; Nakhaei, Mohammad Reza; Bagheri, Hossein G; Chiniforush, Nasim

    2013-01-01

    Up to now, there is no any experience about the application of dental lasers to bond resin composites to metal surfaces in dentistry. The aim of this preliminary study was to evaluate if the laser irradiation of ceramic-covered alloy surface would improve the bond strength of resin to metal, and if different parameters of laser output may influence the strength of this bond. Fifty three cylinders (thickness of 5 mm and diameter of 10 mm) were made up of a commercially available nickel-chromium alloy by lost-wax technique. Forty prepared specimens were divided into four groups. Five specimens in each group were covered by slurry of dental opaque porcelain and irradiated by Nd:YAG laser using different output parameters for each group. Other five specimens in each group were treated using the same laser parameters without porcelain covering. Five sandblasted specimen served as control group. Panavia F2.0 was bonded on the metal surfaces using polyethylene tubes. In ceramic-coated specimens, silane was applied to achieve chemical bond between silica particles and resin cement. All specimens were thermocycled and subjected to shear bond strength (SBS) test (50 kgf at 0.5 mm/min). Two specimens of each ceramic-coated laser-treated groups were studied using scanning electron microscopy and wavelength dispersive X-ray spectroscopy which showed stabilization of silica particles on the metal surface. ANOVA procedure showed that although shear bond strength was significantly higher in porcelain-covered laser treated samples, but the effect of power output of laser irradiation was not significant (P = 0.917). There were no statistically significant difference between SBS in control samples and laser treated specimens without porcelain covering. It can be concluded that Nd:YAG laser surface treatment may improve the silica coating of alloy surface to achieve better resin-metal bond.

  10. The effect of salivary pH on diametral tensile strength of resin modified glass ionomer cement coated with coating agent

    Science.gov (United States)

    Ismayanti, D.; Triaminingsih, S.; Eriwati, Y. K.

    2017-08-01

    The aim of this study was to evaluate the effect of artificial saliva with different acidities on the diametral tensile strength of Resin Modified Glass Ionomer Cement (RMGIC) coated with varnish and nanofilled coating agent. The specimens coated with coating agents were immersed in artificial saliva with pH of 4.5, 5.5, and 7 for 24 hours in an incubatorat 37°C. The diametral tensile strength of the specimens was tested with Universal Testing Machine. There were no significant differences on the diametral tensile strength of all specimens that were put into groups based on the acidity of the saliva and the type of coating agent (p>0.05). Both varnish and nanofilled coating agent stayed on the RMGIC in the acidic condition that simulated the true condition of oral cavity in people with high caries risk for the 24 hours of maturation.

  11. The effect of CO2 laser irradiation plus fluoride dentifrice on the inhibition of secondary caries on root surfaces adjacent to glass ionomer cement or composite resin restorations

    Science.gov (United States)

    Rodrigues, S. R.; Moraes, M.; Hanashiro, F. S.; Youssef, M. N.; Brugnera Junior, A.; Nobre-dos-Santos, M.; de Souza-Zaroni, W. C.

    2016-02-01

    Although the cariostatic effects of CO2 laser on the root surface have been shown, there is scarce information regarding its effects on root secondary caries. The objective of this research was to investigate the effect of the association of CO2 laser and a fluoride dentifrice on the inhibition of secondary caries on root surfaces adjacent to composite-resin or glass-ionomer-cement restorations. Dental blocks of human roots were divided into two groups: composite resin (CR) or glass ionomer cement (GIC). Subsequently, the blocks were divided into four subgroups (n  =  10): C, non-fluoride dentifrice; FD, fluoride dentifrice; L, CO2 laser with an energy density of 6.0 J cm-2  +  non-fluoride dentifrice; and L  +  FD, CO2 laser  +  fluoride dentifrice. The blocks were subjected to pH cycling to simulate a high cariogenic challenge. Dental demineralization around the restorations was quantified by microhardness analysis. The results were subjected to analysis of variance (ANOVA) and the Tukey-Kramer test (p  ⩽  0.05). As for mineral loss, it can be observed that all the groups that were treated with a fluoride dentifrice and laser, used alone or not, were statistically similar and superior to the RC-C group. It was concluded that CO2 laser irradiation and a fluoride dentifrice used alone or combined with each other are efficient surface treatments for preventing secondary root caries, regardless of the restorative material used.

  12. The effect of a nano-filled resin coating on the 3-year clinical performance of a conventional high-viscosity glass-ionomer cement.

    Science.gov (United States)

    Diem, Vu Thi Kieu; Tyas, Martin J; Ngo, Hien C; Phuong, Lam Hoai; Khanh, Ngo Dong

    2014-04-01

    The main aim of the study was to compare the clinical performance of the conventional high-powder/liquid ratio glass-ionomer cement (GIC) Fuji IX GP Extra (F IX), Fuji IX GP Extra with a low-viscosity nano-filled resin coating, G-Coat Plus (F IX+GCP), and a resin composite, Solare (S), as a comparison material. Moderate-depth occlusal cavities in the first permanent molars of 91 11-12-year-old children (1-4 restorations per child) were restored with either F IX (87 restorations), F IX+GCP (84 restorations) or S (83 restorations). Direct clinical assessment, photographic assessment and assessment of stone casts of the restorations were carried out at 6 months, 1 year, 2 years and 3 years. The colour match with the tooth of the GIC restorations improved over the 3 years of the study. Marginal staining and marginal adaptation were minimal for all restorations; three restorations exhibited secondary caries at 3 years. From the assessment of the casts, at 2 years, there was significantly less wear of the F IX GP Extra+GCP restorations than the F IX GP Extra restorations (P < 0.005). At 3 years, approximately 37 % of F IX GP Extra restorations showed wear slightly more than the adjacent enamel, compared to 28 % of F IX GP Extra+GCP restorations and 21 % of Solare restorations. Although this was not statistically significant, there was a trend that GCP can protect F IX GP Extra against wear. Although both Fuji IX GP Extra and Fuji IX GP Extra with G-Coat Plus showed acceptable clinical performance in occlusal cavities in children, the application of G-Coat Plus gave some protection against wear. The application of G-Coat Plus to Fuji IX GP Extra glass-ionomer cement may be beneficial in reducing wear in occlusal cavities.

  13. The effect of CO2 laser irradiation plus fluoride dentifrice on the inhibition of secondary caries on root surfaces adjacent to glass ionomer cement or composite resin restorations

    International Nuclear Information System (INIS)

    Rodrigues, S R; Moraes, M; Youssef, M N; De Souza-Zaroni, W C; Hanashiro, F S; Brugnera Junior, A; Nobre-dos-Santos, M

    2016-01-01

    Although the cariostatic effects of CO 2 laser on the root surface have been shown, there is scarce information regarding its effects on root secondary caries. The objective of this research was to investigate the effect of the association of CO 2 laser and a fluoride dentifrice on the inhibition of secondary caries on root surfaces adjacent to composite-resin or glass-ionomer-cement restorations. Dental blocks of human roots were divided into two groups: composite resin (CR) or glass ionomer cement (GIC). Subsequently, the blocks were divided into four subgroups (n  =  10): C, non-fluoride dentifrice; FD, fluoride dentifrice; L, CO 2 laser with an energy density of 6.0 J cm −2   +  non-fluoride dentifrice; and L  +  FD, CO 2 laser  +  fluoride dentifrice. The blocks were subjected to pH cycling to simulate a high cariogenic challenge. Dental demineralization around the restorations was quantified by microhardness analysis. The results were subjected to analysis of variance (ANOVA) and the Tukey–Kramer test (p  ⩽  0.05). As for mineral loss, it can be observed that all the groups that were treated with a fluoride dentifrice and laser, used alone or not, were statistically similar and superior to the RC–C group. It was concluded that CO 2 laser irradiation and a fluoride dentifrice used alone or combined with each other are efficient surface treatments for preventing secondary root caries, regardless of the restorative material used. (paper)

  14. Controlled, prospective, randomized, clinical split-mouth evaluation of partial ceramic crowns luted with a new, universal adhesive system/resin cement: results after 18 months.

    Science.gov (United States)

    Vogl, Vanessa; Hiller, Karl-Anton; Buchalla, Wolfgang; Federlin, Marianne; Schmalz, Gottfried

    2016-12-01

    A new universal adhesive with corresponding luting composite was recently marketed which can be used both, in a self-etch or in an etch-and-rinse mode. In this study, the clinical performance of partial ceramic crowns (PCCs) inserted with this adhesive and the corresponding luting material used in a self-etch or selective etch approach was compared with a self-adhesive universal luting material. Three PCCs were placed in a split-mouth design in 50 patients. Two PCCs were luted with a combination of a universal adhesive/resin cement (Scotchbond Universal/RelyX Ultimate, 3M ESPE) with (SB+E)/without (SB-E) selective enamel etching. Another PCC was luted with a self-adhesive resin cement (RelyX Unicem 2, 3M ESPE). Forty-eight patients were evaluated clinically according to FDI criteria at baseline and 6, 12 and 18 months. For statistical analyses, the chi-square test (α = 0.05) and Kaplan-Meier analysis were applied. Clinically, no statistically significant differences between groups were detected over time. Within groups, clinically significant increase for criterion "marginal staining" was detected for SB-E over 18 months. Kaplan-Meier analysis revealed significantly higher retention rates for SB+E (97.8 %) and SB-E (95.6 %) in comparison to RXU2 (75.6 %). The 18-month clinical performance of a new universal adhesive/composite combination showed no differences with respect to bonding strategy and may be recommended for luting PCCs. Longer-term evaluation is needed to confirm superiority of SB+E over SB-E. At 18 months, the new multi-mode adhesive, Scotchbond Universal, showed clinically reliable results when used for luting PCCs.

  15. Frequency of Iatrogenic Changes Caused from Overhang Restorations

    Directory of Open Access Journals (Sweden)

    Boteva E.

    2015-11-01

    Full Text Available Overhangs from different restorations are an iatrogenic error with different results, short and long term consequences related to bone changes and periodontal diseases. Amalgam “tattoos”, idiopathic subgingival hypertrophy, marginal periodontitis and bone reductions in the intradental septum are major problems. The aim of the present study is to evaluate the frequency of traumatic restorations in distal teeth and clinical criteria, related to the x-ray findings. Evaluating criteria, for repairing the overhangs or for replacement of the restorations, is also a goal. Three hundred and sixteen - 316 patients from both sexes, 632 dental x-rays with 948 distal teeth and 632 restorations, at least two radiographs for each patient, were analyzed. Overhangs are classified in three groups: small, middle and large. In the criteria bone changes from the overhangs are analyzed separately from the existing or nonexisting bone changes from a generalized periodontal diseases. The frequency of iatrogenic changes in this cohort group is 10.6% from 632 restored teeth. This is a relatively small number compared with the other published studies. These overhangs are on distal teeth in sound teeth arches which makes them difficult for corrections. The evaluated criteria for replacement based on x-ray findings and clinical experience includes: operative and nonoperative corrections, restoration replacement, perio- and endo-therapy and follow up terms for secondary caries.

  16. A Retrospective Study of the 3-Year Survival Rate of Resin-Modified Glass-Ionomer Cement Class II Restorations in Primary Molars.

    Science.gov (United States)

    Webman, Mark; Mulki, Ezat; Roldan, Rosie; Arevalo, Oscar; Roberts, John F; Garcia-Godoy, Franklin

    2016-01-01

    To determine the three-year survival rate of Class II resin-modified glass-ionomer cement (RMGIC), Vitremer, restorations in primary molars and to compare these results with measurements of survival of Class II restorations of standard restorative materials. Data on Class II restorations placed in primary molars during a six-year period were collected through a chart review and radiographic evaluation in the office of a board-certified pediatric dentist. A radiograph showing that the restoration was intact was required at least 3 years after placement to qualify as successful. If no radiograph existed, the restoration was excluded. If the restoration was not found to be intact radiographically or was charted as having been replaced before three years it was recorded as a failure. The results of this study were then compared to other standard restorative materials using normalized annual failure rates. Of the 1,231 Class II resinmodified glass-ionomer cement restorations placed over six years 427 met the inclusion criteria. There was a 97.42% survival rate for a 3-year period equivalent to an annual failure rate of 0.86%. A novel approach comparing materials showed that in this study Vitremer compared very favorably to previously published success rates of other standard restorative materials (amalgam, composite, stainless steel crown, compomer) and other RMGIC studies.

  17. Effect of light-activation with different light-curing units and time intervals on resin cement bond strength to intraradicular dentin.

    Science.gov (United States)

    Miguel-Almeida, Maria Eleonora; Azevedo, Mario Lucio da Costa; Rached-Júnior, Fuad Abi; Oliveira, Camila Favero; Silva, Ricardo Gariba; Messias, Danielle Cristine

    2012-01-01

    The aim of this study was to assess the bond strength of a resin cement to intraradicular dentin varying the light-curing unit and the moment at which the light was applied. Post spaces of endodontically treated canines were prepared. The roots were distributed into 6 groups (n=10) according to the light-curing unit and the moment of light exposure: I) Quartz tungsten halogen-600 mW/cm² (QTH) + immediate light activation (t0); II) QTH + light activation after 10 min (t10); III) Light-emitting diodes (LED)-800 mW/cm² (LED-800)+ t0; IV) LED-800 + t10; V) LED-1,500 mW/cm² (LED-1500)+ t0; VI) LED-1500 + t10. After post cementation, slices from coronal, middle and apical post/root regions were submitted to the push-out test and failure evaluation. It was verified that LED-800 (4.40 ± 3.00 MPa) and LED-1500 (4.67 ± 3.04 MPa) provided bond strength statistically superior to QTH (3.13 ± 1.76 MPa) (p0.05). There was no significant difference between t0 and t10 (p>0.05). Coronal post/root region (4.75 ± 3.10 MPa) presented significantly higher bond strength than the apical (3.32 ± 2.30 MPa) (plight-activation, regardless of the moment of light exposure.

  18. Deposition of crystalline hydroxyapatite nano-particle on zirconia ceramic: a potential solution for the poor bonding characteristic of zirconia ceramics to resin cement.

    Science.gov (United States)

    Azari, Abbas; Nikzad, Sakineh; Yazdani, Arash; Atri, Faezeh; Fazel Anvari-Yazdi, Abbas

    2017-07-01

    The poor bonding strength of zirconia to different dental substrates is one of the challenging issues in restorative dentistry. Hydroxyapatite is an excellent biocompatible material with fine bonding properties. In this study, it was hypothesized that hydroxyapatite coating on zirconia would improve its bond strength. Forty-five zirconia blocks were prepared and randomly divided into three groups: hydroxyapatite coating, sandblasting, and no preparation (control). The blocks were bonded to cement and the micro-shear bond strength was measured following load application. The bond strength values were analyzed with the Kruskal-Wallis test in 3 groups and paired comparisons were made using the Mann-Whitney U test. The failure patterns of the specimens were studied by a stereomicroscope and a scanning electron microscope and then analyzed by the chi-square test (significance level = 0.05). Deposition of hydroxyapatite on the zirconia surface significantly improved its bond strength to the resin cement in comparison with the control specimens (p < 0.0001). Also, the bond strength was similar to the sandblasted group (p = 0.34). The sandblasted and control group only showed adhesive failure, but the hydroxyapatite coated group had mixed failures, indicating the better quality of bonding (p < 0.0001). As a final point, hydroxyapatite coating on the zirconia surface improved the bond strength quality and values.

  19. Residual HEMA and TEGDMA Release and Cytotoxicity Evaluation of Resin-Modified Glass Ionomer Cement and Compomers Cured with Different Light Sources

    Directory of Open Access Journals (Sweden)

    Murat Selim Botsali

    2014-01-01

    Full Text Available The purpose of this study was first to evaluate the elution of 2-hydroxyethyl methacrylate (HEMA and triethylene glycol dimethacrylate (TEGDMA monomers from resin-modified glass ionomer cement (RMGIC and compomers cured with halogen and light-emitting diode (LED light-curing units (LCUs. The effect of cured materials on the viability of L929 fibroblast cells was also evaluated. One RMGIC (Ketac N100 and two compomers (Dyract Extra and Twinkystar were tested. Materials were prepared in teflon disks and light-cured with LED or halogen LCUs. The residual monomers of resin materials in solution were identified using high-performance liquid chromatography. The fibroblast cells’ viability was analyzed using MTT assay. The type of LCU did not have a significant effect on the elution of HEMA and TEGDMA. A greater amount of HEMA than TEGMDA was eluted. The amount of TEGDMA eluted from Twinkystar was greater than Dyract Extra (P0.05. Curing with the LED LCU decreased the cells’ viability more than curing with the halogen LCU for compomers. For Ketac N100, the halogen LCU decreased the cells’ viability more than the LED LCU.

  20. In vitro quantitative evaluation of marginal microleakage in class II restorations confected with a glass ionomer cement and two composite resins

    Directory of Open Access Journals (Sweden)

    BIJELLA Maria Fernanda Borro

    2001-01-01

    Full Text Available This study evaluated, in vitro, marginal microleakage in class II restorations confected with the glass ionomer cement Vitremer and with the composite resins Ariston pHc and P-60. The aims of the study were to assess the effect of thermocycling on those materials and to evaluate two methods utilized in the analysis of dye penetration. Sixty premolars divided in three groups were utilized; the teeth had proximal cavities whose cervical walls were located 1 mm below the cementoenamel junction. Half of the test specimens from each group underwent thermocycling; the other half remained in deionized water, at 37ºC. The specimens were immersed, for 24 hours, in a basic 0.5% fuchsin solution at 37ºC. For the analysis of microleakage, the specimens were sectioned in a mesio-distal direction, and the observation was carried out with the software Imagetools. The results were evaluated through the 2-way ANOVA and through the Tukey?s test. All groups presented marginal microleakage. The smallest values were obtained with Vitremer, followed by those obtained with the composite resins P-60 and Ariston pHc. There was no statistically significant difference caused by thermocycling, and the method of maximum infiltration was the best for detecting the extension of microleakage.

  1. Structural optimization under overhang constraints imposed by additive manufacturing technologies

    Science.gov (United States)

    Allaire, G.; Dapogny, C.; Estevez, R.; Faure, A.; Michailidis, G.

    2017-12-01

    This article addresses one of the major constraints imposed by additive manufacturing processes on shape optimization problems - that of overhangs, i.e. large regions hanging over void without sufficient support from the lower structure. After revisiting the 'classical' geometric criteria used in the literature, based on the angle between the structural boundary and the build direction, we propose a new mechanical constraint functional, which mimics the layer by layer construction process featured by additive manufacturing technologies, and thereby appeals to the physical origin of the difficulties caused by overhangs. This constraint, as well as some variants, is precisely defined; their shape derivatives are computed in the sense of Hadamard's method, and numerical strategies are extensively discussed, in two and three space dimensions, to efficiently deal with the appearance of overhang features in the course of shape optimization processes.

  2. Application of advanced glazing and overhangs in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimpour, Abdulsalam [Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran (Iran, Islamic Republic of); Maerefat, Mehdi [Department of Mechanical Engineering, Tarbiat Modares University, P.O. Box 14115-111, Tehran (Iran, Islamic Republic of)

    2011-01-15

    External shading affects the solar energy incident on a window and the transferred energy within the room through the window. In present study, the effect of advanced glazing and overhangs on the solar energy transmitted into or lost from the room through the fenestration areas have been evaluated for typical residential buildings in Tehran, using EnergyPlus trademark software. It was found that appropriate overhangs or side fins in the south, west and east windows would lead to the optimal reduction of the annual energy transferred into the buildings and can have an energetic behaviour equivalent to high performance glazing. The results have been summarized in a table to simple selecting the best window with different glazings, overhangs and side fins based on energy rating. (author)

  3. Systematic review on highly viscous glass-ionomer cement/resin coating restorations (Part II): 
Do they merge Minamata Convention and minimum intervention dentistry?

    Science.gov (United States)

    Kielbassa, Andrej M; Glockner, Georg; Wolgin, Michael; Glockner, Karl

    2017-01-01

    With the Minamata Convention the use of mercury will be phased down, and this undoubtedly will have an effect on dental treatment regimens and economic resources. Composite resin restorations are considered viable alternatives to amalgam fillings; however, these will not be covered completely by health insurance systems in many countries. Recently, a high-viscosity glass-ionomer cement (hvGIC) processed with a resinous coating (RC) has been introduced, and has been marketed as a restorative material in load-bearing Class I cavities (and in Class II cavities with limited size), thus serving as a possible alternative to amalgam fillings. To discuss the outcome based on the evaluation presented in Part I of this paper, and to critically appraise the methodologies of the various studies. Two of the included studies were industry-funded, and status of the other clinical trials remained unclear. Quality of study reporting was considered perfectible. The use of a light-cured nanofilled resin coating material would seem advantageous, at least when regarding short- and medium term outcomes. Within the respective indications and cavity geometries, the hvGIC/RC approach would seem promising, could merge the phase-down of mercury and the objectives of minimally invasive treatment to some extent, and might be a restorative alternative for patients suffering from allergies or not willing to afford other sophisticated or expensive techniques. These recommendations are based on studies evaluating EQUIA Fil (GC), but are not transferable to clinical perspectives of the glass hybrid successor product (EQUIA Forte; GC).

  4. Evaluation of shear bond strength of two resin-based composites and glass ionomer cement to pure tricalcium silicate-based cement (Biodentine®).

    Science.gov (United States)

    Cantekin, Kenan; Avci, Serap

    2014-01-01

    Tricalcium silicate is the major constituent phase in mineral trioxide aggregate (MTA). It is thus postulated that pure tricalcium silicate can replace the Portland cement component of MTA. The aim of this study was to evaluate bond strength of methacrylate-based (MB) composites, silorane-based (SB) composites, and glass ionomer cement (GIC) to Biodentine® and mineral trioxide aggregate (MTA). Acrylic blocks (n=90, 2 mm high, 5 mm diameter central hole) were prepared. In 45 of the samples, the holes were fully filled with Biodentine® and in the other 45 samples, the holes were fully filled with MTA. The Biodentine® and the MTA samples were randomly divided into 3 subgroups of 15 specimens each: Group-1: MB composite; Group-2: SB composite; and Group-3: GIC. For the shear bond strength (SBS) test, each block was secured in a universal testing machine. The highest (17.7 ± 6.2 MPa) and the lowest (5.8 ± 3.2 MPa) bond strength values were recorded for the MB composite-Biodentine® and the GIC-MTA, respectively. Although the MB composite showed significantly higher bond strength to Biodentine (17.7 ± 6.2) than it did to MTA (8.9 ± 5.7) (p Biodentine® = 8.0 ± 3,6) and GIC (GIC and MTA = 5.8 ± 3.2; GIC and Biodentine = 6.7 ± 2.6) showed similar bond strength performance with MTA compared with Biodentine (p = 0.73 and p = 0.38, respectively). The new pure tricalcium-based pulp capping, repair, and endodontic material showed higher shear bond scores compared to MTA when used with the MB composite.

  5. Evaluation of shear bond strength of two resin-based composites and glass ionomer cement to pure tricalcium silicate-based cement (Biodentine®

    Directory of Open Access Journals (Sweden)

    Kenan CANTEK?N

    2014-07-01

    Full Text Available Objectives: Tricalcium silicate is the major constituent phase in mineral trioxide aggregate (MTA. It is thus postulated that pure tricalcium silicate can replace the Portland cement component of MTA. The aim of this study was to evaluate bond strength of methacrylate-based (MB composites, silorane-based (SB composites, and glass ionomer cement (GIC to Biodentine® and mineral trioxide aggregate (MTA. Material and Methods: Acrylic blocks (n=90, 2 mm high, 5 mm diameter central hole were prepared. In 45 of the samples, the holes were fully filled with Biodentine® and in the other 45 samples, the holes were fully filled with MTA. The Biodentine® and the MTA samples were randomly divided into 3 subgroups of 15 specimens each: Group-1: MB composite; Group-2: SB composite; and Group-3: GIC. For the shear bond strength (SBS test, each block was secured in a universal testing machine. Results: The highest (17.7±6.2 MPa and the lowest (5.8±3.2 MPa bond strength values were recorded for the MB composite-Biodentine® and the GIC-MTA, respectively. Although the MB composite showed significantly higher bond strength to Biodentine (17.7±6.2 than it did to MTA (8.9±5.7 (p<0.001, the SB composite (SB and MTA=7.4±3.3; SB and Biodentine®=8.0±3,6 and GIC (GIC and MTA=5.8±3.2; GIC and Biodentine=6.7±2.6 showed similar bond strength performance with MTA compared with Biodentine (p=0.73 and p=0.38, respectively. Conclusions: The new pure tricalcium-based pulp capping, repair, and endodontic material showed higher shear bond scores compared to MTA when used with the MB composite.

  6. Solidification of ion exchange resin wastes

    International Nuclear Information System (INIS)

    1982-08-01

    Solidification media investigated included portland type I, portland type III and high alumina cements, a proprietary gypsum-based polymer modified cement, and a vinyl ester-styrene thermosetting plastic. Samples formulated with hydraulic cement were analyzed to investigate the effects of resin type, resin loading, waste-to-cement ratio, and water-to-cement ratio. The solidification of cation resin wastes with portland cement was characterized by excessive swelling and cracking of waste forms, both after curing and during immersion testing. Mixed bed resin waste formulations were limited by their cation component. Additives to improve the mechanical properties of portland cement-ion exchange resin waste forms were evaluated. High alumina cement formulations dislayed a resistance to deterioration of mechanical integrity during immersion testing, thus providing a significant advantage over portland cements for the solidification of resin wastes. Properties of cement-ion exchange resin waste forms were examined. An experiment was conducted to study the leachability of 137 Cs, 85 Sr, and 60 Co from resins modified in portland type III and high alumina cements. The cumulative 137 Cs fraction release was at least an order of magnitude greater than that of either 85 Sr or 60 Co. Release rates of 137 Cs in high alumina cement were greater than those in portland III cement by a factor of two.Compressive strength and leach testing were conducted for resin wastes solidified with polymer-modified gypsum based cement. 137 Cs, 85 Sr, and 60 Co fraction releases were about one, two and three orders of magnitude higher, respectively, than in equivalent portland type III cement formulations. As much as 28.6 wt % dry ion exchange resin was successfully solidified using vinyl ester-styrene compared with a maximum of 25 wt % in both portland and gypsum-based cement

  7. Influence of previous provisional cementation on the bond strength between two definitive resin-based luting and dentin bonding agents and human dentin.

    Science.gov (United States)

    Erkut, Selim; Küçükesmen, Hakki Cenker; Eminkahyagil, Neslihan; Imirzalioglu, Pervin; Karabulut, Erdem

    2007-01-01

    This study evaluated the effect of two different types of provisional luting agents (RelyX Temp E, eugenol-based; RelyX Temp NE, eugenol-free) on the shear bond strengths between human dentin and two different resin-based luting systems (RelyXARC-Single Bond and Duo Link-One Step) after cementation with two different techniques (dual bonding and conventional technique). One hundred human molars were trimmed parallel to the original long axis, to expose flat dentin surfaces, and were divided into three groups. After related surface treatments for each specimen, the resin-based luting agent was applied in a silicone cylindrical mold (3.5 x 4 mm), placed on the bonding-agent-treated dentin surfaces and polymerized. In the control group (n = 20), the specimens were further divided into two groups (n = 10), and two different resin-based luting systems were immediately applied following the manufacturer's protocols: RelyX ARC-Single Bond (Group I C) and Duo Link-One Step (Group II C). In the provisionalization group (n = 40), the specimens were further divided into four subgroups of 10 specimens each (Group I N, I E and Group II N, II E). In Groups I N and II N, eugenol-free (RelyX NE), and in groups I E and II E, eugenol-based (RelyX E) provisional luting agents (PLA), were applied on the dentin surface. The dentin surfaces were cleaned with a flour-free pumice, and the resin-based luting systems RelyX ARC (Group I N and E) and Duo Link (Group II N and E) were applied. In the Dual bonding groups (n = 40), the specimens were divided into four subgroups of 10 specimens each (Group I ND, ED and Group II ND, ED). The specimens were treated with Single Bond (Groups I ND and ED) or One Step (Groups II ND and ED). After the dentin bonding agent treatment, RelyX Temp NE was applied to Groups I ND and II ND, and RelyX Temp E was applied to Groups I ED and II ED. The dentin surfaces were then cleaned as described in the provisionalization group, and the resin-based luting systems

  8. Deposition of SiOx thin films on Y-TZP by reactive magnetron sputtering: influence of plasma parameters on the adhesion properties between Y-TZP and resin cement for application in dental prosthesis

    Directory of Open Access Journals (Sweden)

    José Renato Calvacanti de Queiroz

    2011-01-01

    Full Text Available In this paper SiOx thin films were deposited on Y-TZP ceramics by reactive magnetron sputtering technique in order to improve the adhesion properties between Y-TZP and resin cement for applications in dental prosthesis. For fixed cathode voltage, target current, working pressure and target-to-substrate distance, SiOx thin films were deposited at different oxygen concentrations in the Ar+O2 plasma forming gas. After deposition processes, SiOx thin films were characterized by profilometry, energy dispersive spectroscopy (EDS, optical microscopy and scanning electron microscopy (SEM. Adhesion properties between Y-TZP and resin cement were evaluated by shear testing. Results indicate that films deposited at 20%O2 increased the bond strength to (32.8 ± 5.4 MPa. This value has not been achieved by traditional methods.

  9. Influence of different kinds of rosins and hydrogenated resins on the setting time of Grossman cements Influência de diferentes tipos de breus e resinas hidrogenadas sobre o tempo de endurecimento dos cimentos do tipo Grossman

    Directory of Open Access Journals (Sweden)

    Manoel Damião SOUSA NETO

    1999-01-01

    Full Text Available In this study, the effect on the setting time by the addition of different kinds of rosin and hydrogenated resin on the Grossman cement powder was evaluated. The experiments were carried out following the American Dental Association’s specification number 57 for root canal sealers. For this analysis, different Grossman cement powders were prepared using different rosins (X, WW and WG and hydrogenated resins (Staybelite and Staybelite ester 10. The study of the physicochemical properties of the Grossman cements obtained the different kinds of rosins and hydrogenated resins interference on the cement’s setting time. The hydrogenated resin, having a higher pH, increased the setting time of the cement when compared to the X, WW and WG rosins.No presente estudo, analisou-se o efeito da adição de diferentes tipos de breus e resinas hidrogenadas ao pó do cimento de GROSSMAN sobre o tempo de endurecimento. Os experimentos foram realizados de acordo com a Especificação 57 para materiais obturadores de canais radiculares da American Dental Association (ADA. Para análise, foram aviados pós do cimento de GROSSMAN com diferentes tipos de breu (X, WW e WG e resinas hidrogenadas (Stabylite e Stabylite éster 10. Os estudos das propriedades físico-químicas dos cimentos tipo GROSSMAN obtidos de diferentes tipos de breus e resinas hidrogenadas interferem no tempo de endurecimento do cimento. A resina hidrogenada, obtida do processo de hidrogenação tem o pH mais alto, provocando um aumento do tempo de endurecimento do cimento em relação aos breus tipo X, WW e WG, que têm pH mais ácido.

  10. Crown and bridge cements: clinical applications.

    Science.gov (United States)

    Bunek, Sabiha S; Powers, John M

    2012-12-01

    Cement selection can be confusing because factors such as substrate, the type of restoration, and patient needs must be considered. Some substrates require additional treatment before cementation. This article describes the most commonly used traditional crown and bridge cements (GI and RMGI) used for metal and metal-ceramic restorations, and resin cements used for all-ceramic restorations. Advantages, disadvantages, indications, and contraindications of cements have been reviewed. Recommended uses of cements for metal, ceramic, and laboratory composite restorations have been presented. General guidelines for surface treatment ot silica- and zirconia-based restorations when using resin cements have been discussed.

  11. The effect of surface treatment with a fractional carbon dioxide laser on shear bond strength of resin cement to a lithium disilicate-based ceramic.

    Science.gov (United States)

    Ahrari, Farzaneh; Boruziniat, Alireza; Mohammadipour, Hamideh Sadat; Alirezaei, Mehrnoosh

    2017-01-01

    This study investigated the impact of different surface treatments, including fractional carbon dioxide (CO 2 ) laser on shear bond strength (SBS) of resin cement to lithium disilicate ceramic. In this in vitro study, 72 blocks of IPS e.max CAD ceramic were randomly divided into six groups in terms of treatment ( n = 12). Group 1 underwent etching with 9.6% hydrofluoric (HF) acid, whereas group 2 was subjected to air abrasion with aluminum oxide particles. Groups 3 and 4 were treated with a fractional CO 2 laser for 10 s using 10 W/14 mJ (group 3) or 20 W/10 mJ (group 4). In groups 5 and 6, the CO 2 laser was applied similar to that in groups 3 and 4, respectively; then, the specimens were etched by HF acid. After silane application, luting cement was bonded to the specimens. The SBS was assessed with a universal testing machine, and the type of bond failure was determined. Data were analyzed by ANOVA, Duncan, and Fisher's exact tests. Surface conditioning with fractional CO 2 laser alone resulted in significantly lower SBS than HF acid treatment ( P < 0.05). Bond strengths of the specimens treated with a combination of laser irradiation and acid etching were significantly greater than all the other groups ( P < 0.05). No significant difference was found in the distribution of failure modes among the groups ( P = 0.337). The combination of fractional CO 2 laser irradiation and HF acid etching could be recommended when extra retention is required for lithium disilicate-based restorations, whereas laser treatment alone cannot produce sufficient SBS.

  12. Effect of selective enamel etching on clinical performance of CAD/CAM partial ceramic crowns luted with a self-adhesive resin cement.

    Science.gov (United States)

    Federlin, Marianne; Hiller, Karl-Anton; Schmalz, Gottfried

    2014-11-01

    This study was conducted to evaluate a self-adhesive resin luting cement [RelyX Unicem 3MESPE-RXU] for luting partial ceramic crowns (PCCs) with and without selective enamel etching in a prospective, randomized clinical trial. Thirty-four patients had received the intended treatment. Two PCCs (Vita Mark II; Cerec 3D; Sirona) had been placed in a split-mouth design: one with RXU without enamel etching (RXU), the other with RXU with selective enamel etching (RXU + E). Restorations were evaluated at baseline (BL) and after 12, 24, and 36 months (USPHS criteria). For statistical analysis, the Chi-square test was applied (α = 0.05). Clinical survival of all restorations (n = 68) after 3 years was determined using Kaplan-Meier analysis. Twenty three patients (12 male/11 female) were available for clinical evaluation after 3 years. 19 RXU-PCCs were placed in molars, four in premolars, 18 RXU + E-PCCs in molars, five in premolars. Concerning clinical changes, no significant differences were found between luting strategies RXU/RXU + E at all recalls. Statistically significant changes over time were observed for marginal adaptation and marginal discoloration between BL and 36 m for RXU and RXU + E. For RXU + E, postoperative hypersensitivities decreased significantly from BL (n = 6) to 36 m (n = 0). Of the 68 restorations originally included, eight RXU and four RXU + E restorations failed. At 3 years, Kaplan-Meier survival of RXU was 72.9 %, that of RXU + E 87.6 %. Survival rates were not statistically significant different. Although clinical survival of RXU + E is slightly better at 3 years, restorations of both groups perform similar with respect to clinical changes over time as evaluated by modified USPHS criteria. The self-adhesive resin cement RXU can be used in conjunction with selective enamel etching, because survival rates of PCCs in the RXU + E group were not lower but, as a trend, even better than without enamel

  13. A comparative evaluation of the retention of metallic brackets bonded with resin-modified glass ionomer cement under different enamel preparations: A pilot study

    Science.gov (United States)

    Sharma, Padmaja; Valiathan, Ashima; Arora, Ankit; Agarwal, Sachin

    2013-01-01

    Introduction: For orthodontists, the ideal bonding material should be less moisture-sensitive and should release fluoride, thereby reducing unfavorable iatrogenic decalcification. Resin-Modified Glass Ionomer Cements (RMGICs), due to their ability to bond in the presence of saliva and blood can be a very good bonding agent for orthodontic attachments especially in the areas of mouth, which are difficult to access. Moreover, th