WorldWideScience

Sample records for resin bed temperatures

  1. Method for loading resin beds

    International Nuclear Information System (INIS)

    Notz, K.J.; Rainey, R.H.; Greene, C.W.; Shockley, W.E.

    1978-01-01

    An improved method of preparing nuclear reactor fuel by carbonizing a uranium loaded cation exchange resin provided by contacting a H+ loaded resin with a uranyl nitrate solution deficient in nitrate, comprises providing the nitrate deficient solution by a method comprising the steps of reacting in a reaction zone maintained between about 145 to 200 0 C, a first aqueous component comprising a uranyl nitrate solution having a boiling point of at least 145 0 C with a second aqueous component to provide a gaseous phase containing HNO 3 and a reaction product comprising an aqueous uranyl nitrate solution deficient in nitrate

  2. Assessment of Service Life for Regenerative ECLSS Resin Beds

    Science.gov (United States)

    Cloud, Dale L.; Keilich, Maria C.; Polis, Peter C.; Yanczura, Stephen J.

    2013-01-01

    The International Space Station (ISS) Water Processor Assembly (WPA) and Oxygen Generation Assembly (OGA) manage and process water at various levels of cleanliness for multiple purposes. The effluent of theWPA and the influent of the OGA require water at very high levels of purity. The bulk of the water purification that occurs in both systems is performed by consumable activated carbon and ion exchange resin beds. Replacement beds must be available on orbit in order to continue the ISS critical processes of water purification and oxygen generation. Various hurdles exist in order to ensure viable spare resin beds. These include the characteristics of resin beds such as: storage environment, shelf life requirements, microbial growth, and variations in the levels and species of contaminants the beds are required to remove. Careful consideration has been given to match water models, bed capacities and spares traffic models to ensure that spares are always viable. The results of these studies and considerations, in particular, how shelf life requirements affect resin bed life management, are documented in this paper.

  3. Polyimide Resins Resist Extreme Temperatures

    Science.gov (United States)

    2009-01-01

    Spacecraft and aerospace engines share a common threat: high temperature. The temperatures experienced during atmospheric reentry can reach over 2,000 F, and the temperatures in rocket engines can reach well over 5,000 F. To combat the high temperatures in aerospace applications, Dr. Ruth Pater of Langley Research Center developed RP-46, a polyimide resin capable of withstanding the most brutal temperatures. The composite material can push the service temperature to the limits of organic materials. Designed as an environmentally friendly alternative to other high-temperature resins, the RP-46 polyimide resin system was awarded a 1992 "R&D 100" award, named a "2001 NASA Technology of the Year," and later, due to its success as a spinoff technology, "2004 NASA Commercial Invention of the Year." The technology s commercial success also led to its winning the Langley s "Paul F. Holloway Technology Transfer Award" as well as "Richard T. Whitcom Aerospace Technology Transfer Award" both for 2004. RP-46 is relatively inexpensive and it can be readily processed for use as an adhesive, composite, resin molding, coating, foam, or film. Its composite materials can be used in temperatures ranging from minus 150 F to 2,300 F. No other organic materials are known to be capable of such wide range and extreme high-temperature applications. In addition to answering the call for environmentally conscious high-temperature materials, RP-46 provides a slew of additional advantages: It is extremely lightweight (less than half the weight of aluminum), chemical and moisture resistant, strong, and flexible. Pater also developed a similar technology, RP-50, using many of the same methods she used with RP-46, and very similar in composition to RP-46 in terms of its thermal capacity and chemical construction, but it has different applications, as this material is a coating as opposed to a buildable composite. A NASA license for use of this material outside of the Space Agency as well as

  4. Design and assembling of a moving bed column to operate with ion exchange resin

    International Nuclear Information System (INIS)

    Franca Junior, J.M.; Abrao, A.

    1976-01-01

    A new moving bed column specially designed to operate with ion exchange resins in such peculiar situations where there is gas evolution is reported. The second part reports the use of the column in the preparation of nuclear grade ammonium uranyl tricarbonate (AUTC), from crude uranyl nitrate solution. Uranium-VI is binded into a strong cationic ion exchanger and then eluted with (NH 4 ) 2 CO 3 . The final product is crystallized from the eluate by simply cooling down the temperature to 5 0 or by addition of ethanol. Loading of resin with uranyl ion, its elution with ammonium carbonate and the crystallization of AUTC is described [pt

  5. HIGH ASPECT RATIO ION EXCHANGE RESIN BED - HYDRAULIC RESULTS FOR SPERICAL RESIN BEADS

    International Nuclear Information System (INIS)

    Duignan, M; Charles Nash, C; Timothy Punch, T

    2007-01-01

    A principal role of the DOE Savannah River Site is to safely dispose of a large volume of liquid nuclear waste held in many storage tanks. An in-tank ion exchange unit is being considered for cesium removal to accelerate waste processing. This unit is planned to have a relatively high bed height to diameter ratio (10:1). Complicating the design is the need to cool the ion exchange media; therefore, the ion exchange column will have a central cooling core making the flow path annular. To separate cesium from waste the media being considered is made of resorcinol formaldehyde resin deposited on spherical plastic beads and is a substitute for a previously tested resin made of crystalline silicotitanate. This spherical media not only has an advantage of being mechanically robust, but, unlike its predecessor, it is also reusable, that is, loaded cesium can be removed through elution and regeneration. Resin regeneration leads to more efficient operation and less spent resin waste, but its hydraulic performance in the planned ion exchange column was unknown. Moreover, the recycling process of this spherical resorcinol formaldehyde causes its volume to significantly shrink and swell. To determine the spherical media's hydraulic demand a linearly scaled column was designed and tested. The waste simulant used was prototypic of the wastes' viscosity and density. This paper discusses the hydraulic performance of the media that will be used to assist in the design of a full-scale unit

  6. Continuous biodiesel production in a fixed bed reactor packed with anion-exchange resin as heterogeneous catalyst.

    Science.gov (United States)

    Ren, Yanbiao; He, Benqiao; Yan, Feng; Wang, Hong; Cheng, Yu; Lin, Ligang; Feng, Yaohui; Li, Jianxin

    2012-06-01

    A continuous biodiesel production from the transesterification of soybean oil with methanol was investigated in a fixed bed reactor packed with D261 anion-exchange resin as a heterogeneous catalyst. The conversion to biodiesel achieved 95.2% within a residence time 56 min under the conditions: reaction temperature of 323.15K, n-hexane/soybean oil weight rate of 0.5, methanol/soybean oil molar ratio of 9:1 and feed flow rate of 1.2 ml/min. The resin can be regenerated in-situ and restored to the original activity to achieve continuous production after the resin deactivation. The product obtained was mainly composed of methyl esters. No glycerol in the product was detected due to the resin adsorbing glycerol in the fixed bed, which solved the issue of glycerol separation from biodiesel. It is believed that the fixed bed reactor with D261 has a potential commercial application in the transesterification of triglyceride. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. A STUDY ON ADSORPTION AND DESORPTION BEHAVIORS OF 14C FROM A MIXED BED RESIN

    Directory of Open Access Journals (Sweden)

    SEUNG-CHUL PARK

    2014-12-01

    Full Text Available Spent resin waste containing a high concentration of 14C radionuclide cannot be disposed of directly. A fundamental study on selective 14C stripping, especially from the IRN-150 mixed bed resin, was carried out. In single ion-exchange equilibrium isotherm experiments, the ion adsorption capacity of the fresh resin for non-radioactive HCO3− ion, as the chemical form of 14C, was evaluated as 11mg-C/g-resin. Adsorption affinity of anions to the resin was derived in order of NO3− > HCO3− ≥ H2PO4−. Thus the competitive adsorption affinity of NO3− ion in binary systems appeared far higher than that of HCO3− or H2PO4−, and the selective desorption of HCO3− from the resin was very effective. On one hand, the affinity of Co2+ and Cs+ for the resin remained relatively higher than that of other cations in the same stripping solution. Desorption of Cs+ was minimized when the summation of the metal ions in the spent resin and the other cations in solution was near saturation and the pH value was maintained above 4.5. Among the various solutions tested, from the view-point of the simple second waste process, NH4H2PO4 solution was preferable for the stripping of 14C from the spent resin.

  8. CAREM 25: Design of resin bed for purification and boron removal systems

    International Nuclear Information System (INIS)

    Chocron, Mauricio; Iglesias, Alberto M.; Jimenez Rebagliati, Raul; Raffo Calderon, Maria C.; La Gamma, Ana M.

    2000-01-01

    The purification of the water the primary coolant of a water cooled nuclear reactor as well as the water of many auxiliary systems is controlled by the use of ion exchange resins. In the present paper, the resin beds for three different systems are specified: the purification and control volume system, the suppression pool water and the spent fuel pool water for the reactor CAREM-25. In all cases the dimensioning calculations have been done taking in consideration the amount of contaminants and corrosion products generated under normal operation or post-accident. Also, the results have been contrasted with the experience of the nuclear power plants in operation in Argentina, international design criteria and international standards. For the primary coolant, the boron-removal beds have been sized and an estimation of the maximum dose received by the resins have been calculated. It have been found that the result is well below the damaging threshold reported in the literature. (author)

  9. Studying Room Temperature Curing of Phenolic Resin and their Composites

    Directory of Open Access Journals (Sweden)

    M.H. Beheshty

    2007-10-01

    Full Text Available Phenolic resins are synthetic low molecular weight thermoset resins which are polymerized and cured to higher molecular weights by condensation method. These resins have high weathering resistance, high oxidative thermal properties and good chemical resistance. Phenolic resins can be cured thermally or by acid curing. The most common method of curing phenolic resin is by thermal curing that takes place in the range of 130-180oC. At room temperature, however, phenolic resins are cured by acid catalysts. In this paper, room temperature curing of resol phenolic resin by para toluene sulphonic acid has been investigated. The acid quantity has been determined for room temperature curing of two types of resols to achieve a reasonable hardness and gelation time. Temperature curing and thermal stability of respective resins have been investigated by DSC and TGA, respectively. A glass-phenolic composite plate has been prepared and cured by these two methods. The results show that the optimum amount of acid is 20% by weight. Optimum mechanical properties, chemical resistance and thermal properties have been achieved for acid cured system. The hot cured resin, however, has better properties.

  10. Esterification of oleic acid in a three-phase, fixed-bed reactor packed with a cation exchange resin catalyst.

    Science.gov (United States)

    Son, Sung Mo; Kimura, Hiroko; Kusakabe, Katsuki

    2011-01-01

    Esterification of oleic acid was performed in a three-phase fixed-bed reactor with a cation exchange resin catalyst (Amberlyst-15) at high temperature, which was varied from 80 to 120 °C. The fatty acid methyl ester (FAME) yields in the fixed-bed reactor were increased with increases in the reaction temperature, methanol flow rate and bed height. Moreover, the FAME yields were higher than those obtained using a batch reactor due to an equilibrium shift toward the product that resulted from continuous evaporation of the produced water. In addition, there was no catalyst deactivation during the esterification of oleic acid. However, addition of sunflower oil to the oleic acid reduced the FAME yield obtained from simultaneous esterification and transesterification. The FAME yield was 97.5% at a reaction temperature of 100 °C in the fixed-bed with a height of 5 cm when the methanol and oleic acid feed rates were 8.6 and 9.0 mL/h, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Core Physics of Pebble Bed High Temperature Nuclear Reactors

    NARCIS (Netherlands)

    Auwerda, G.J.

    2014-01-01

    To more accurately predict the temperature distribution inside the reactor core of pebble bed type high temperature reactors, in this thesis we investigated the stochastic properties of randomly stacked beds and the effects of the non-homogeneity of these beds on the neutronics and

  12. The benefits of heavy resins in fluidized-bed ion-exchange columns

    International Nuclear Information System (INIS)

    Giddey, T.B.S.

    1980-01-01

    The advantages to be gained from the use of a high-density ion-exchange resin in a uranium-recovery circuit are shown. It is concluded that, in existing fluidized-bed plants, the throughput of solution can be increased by up to 40 per cent at the same uranium recovery. Alternatively, the values in the barren solution can be improved at the same flow-rate of solution [af

  13. Incineration of ion-exchange resins in fluidized bed. Part of a coordinated programme on treatment of spent ion exchange resins

    International Nuclear Information System (INIS)

    Valkianinen, M.

    1980-10-01

    Incineration of ion-exchange resins in a fluidized bed was studied on the pilot plant scale. The test programme performed consisted of the testing of various bed materials and finding the optimal conditions of incineration of spent resins. Granular resins were incinerated in an ethanol-water mixture. Incinernation converts the organic resin into inert oxide material, which can be solidified for instance with cement. The weight of the ash was 1...20% and the volume 2...30% of the original resins, which contained 15...25% moisture. When solidified with cement the volume of the ash-concrete is 4...22% of the concrete of equal compressive strength acquired by direct solidification. Water immersion and heat tests of solidified ash showed satisfactory results. The absorption of Cs and Co in various bed materials was studied by means of inactive tracer materials. Biotite and chamotte absorbed significantly, but this absorption does not drastically help on the off gas side. The sintering of the bed materials in the presence of sodium was studied. Corundum, chamotte and biotite have a safety limit of 5% sodium of the bed's weight at 850 0 C

  14. Kinetics of filtration of model crud with ion exchange resin bed

    International Nuclear Information System (INIS)

    Takahashi, M.; Ishigure, K.; Fujita, N.

    1987-01-01

    A simple mathematical model is presented to depict the filtration mechanism of crud or colloidal particles in the ion exchange resin bed. In this model the filtration process is classified into four stages, corresponding to the increase in the deposited amounts of the particles on the surfaces of the resins during the filtration process. In the first stage, it is assumed that the adhesion of crud particles is mainly controlled by the electrokinetic interaction between the particle and the virgin surfaces of the resins, while in the third stage the crud particles interact with the particles already adsorbed in the resins. The second stage is a transient period between the first and third stages. In the final stage, the clogging effect becomes significant. At the first stage of filtration, the model explains the rapid decrease of filtration efficiency, which is a matter of great concern from the practical point of view. A comparison is made between the model and laboratory experiments, using monodispersed α-Fe/sub 2/O/sub 3/ particles as model crud, and it is found that the proposed mechanism of filtration process seems quite reasonable

  15. Characterization of radioactive wastes - spent ion-exchange resins and charcoal filter beds

    International Nuclear Information System (INIS)

    Silva, Rozilene Elaine; Isiki, Vera Lucia Keiko; Goes, Marcos Maciel de; Potiens Junior, Ademar Jose; Dellamano, Jose Claudio; Vicente, Roberto

    2009-01-01

    In the present paper we report the initial results of the work undertaken at the Radioactive Waste Management Laboratory (RWML), in Sao Paulo, Brazil, to develop sampling procedures and analytical methods applied to the characterization of radioactive wastes, specifically spent ion-exchange resins and charcoal filter beds generated at the IEA-R1 Research Reactor operated by the Nuclear Energy Research Institute. The work objectives are to characterize those wastes to comply with regulatory requirements, to generate data to support the development of treatment processes, and to improve characterization methods and laboratorial infrastructure. (author)

  16. Fluorinated epoxy resins with high glass transition temperatures

    Science.gov (United States)

    Griffith, James R.

    1991-01-01

    Easily processed liquid resins of low dielectric constants and high glass transition temperatures are useful for the manufacture of certain composite electronic boards. That combination of properties is difficult to acquire when dielectric constants are below 2.5, glass transition temperatures are above 200 C and processability is of conventional practicality. A recently issued patent (US 4,981,941 of 1 Jan. 1991) teaches practical materials and is the culmination of 23 years of research and effort and 15 patents owned by the Navy in the field of fluorinated resins of several classes. In addition to high fluorine content, practical utility was emphasized.

  17. Finite difference program for calculating hydride bed wall temperature profiles

    International Nuclear Information System (INIS)

    Klein, J.E.

    1992-01-01

    A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis

  18. Method to determine the thermal expansion of epoxies, inorganic cements and polyester resins at cryogenic temperatures

    International Nuclear Information System (INIS)

    Sereinig, W.; Gross, F.

    1982-01-01

    An apparatus for measuring the integral thermal expansions at cryogenic temperatures is described. The thermal expansions are given for a number of commercial epoxy resins, commercial polyester resins and inorganic cements. A method to reduce the thermal expansion of the resins by the use of quartz powder fillers is reported. (author)

  19. Correlations of norbornenyl crosslinked polyimide resin structures with resin thermo-oxidative stability, resin glass transition temperature and composite initial mechanical properties

    Science.gov (United States)

    Alston, William B.

    1988-01-01

    PMR (polymerization of monomeric reactants) methodology was used to prepare 70 different polyimide oligomeric resins and 30 different unidirectional graphite fiber/polyimide composites. Monomeric composition as well as chain length between sites of crosslinks were varied to examine their effects on resin thermo-oxidative stability and glass transition temperature (Tg) of the cured/postcured resins. A linear correlation of decreasing 316 C resin weight loss/surface area versus (1) decreasing aliphatic content, or (2) increasing benzylic/aliphatic content stoichiometry ratio over a wide range of resin compositions was observed. An almost linear correlation of Tg versus molecular distance between the crosslinks was also observed. An attempt was made to correlate Tg with initial composite mechanical properties (flexural strength and interlaminar shear strength). However, the scatter in mechanical strength data prevented obtaining a clear correlation. Instead, only a range of composite mechanical properties was obtained at 25, 288, and 316 C. Perhaps more importantly, what did become apparent during the correlation study was (1) the PMR methodology could be used to prepare composites from resins containing a wide variety of monomer modifications, (2) that these composites almost invariably provided satisfactory initial mechanical properties as long as the resins formulated exhibited satisfactory processing flow, and (3) that PMR resins exhibited predictable rates of 316 C weight loss/surface area based on their benzylic/aliphatic stoichiometery ratio.

  20. Effect of Temperature on Electrical Conductivity of Guaiacol-Guanidine Hydrochloride-Formaldehyde Copolymer Resin

    Science.gov (United States)

    Kukade, S. D.; Bawankar, S. V.

    2018-02-01

    The purpose of the present paper is to report temperature dependence of electrical conductivity on Guaiacol-guanidine hydrochloride-formaldehyde copolymer resin. By using a microwave irradiation technique, various ratios of copolymer resin were synthesized from the reacting monomers, i.e., guaiacol, guanidine hydrochloride and formaldehyde. The characterization of the copolymer resins has been fulfilled by spectral methods viz. ultraviolet visible (UV visible), infrared and proton nuclear magnetic spectroscopy (1H-NMR). The solid state direct current electrical conductivity of synthesized copolymer resins has been measured as a function of temperature. The electrical conductivity values of all the copolymers have been found in the range of a semiconductor.

  1. Turbine superalloy component defect repair with low-temperature curing resin

    Science.gov (United States)

    Hunt, David W.; Allen, David B.

    2015-09-08

    Voids, cracks or other similar defects in substrates of thermal barrier coated superalloy components, such as turbine blades or vanes, are filled with resin, without need to remove substrate material surrounding the void by grinding or other processes. The resin is cured at a temperature under 200.degree. C., eliminating the need for post void-filling heat treatment. The void-filled substrate and resin are then coated with a thermal barrier coating.

  2. Temperature and pressure distributions in a 400 kW{sub t} fluidized bed straw gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Erguedenler, A.; Ghaly, A.E.; Hamdullahpur, F. [Technical Univ. of Nova Scotia, Halifax (Canada)

    1993-12-31

    The temperature and pressure distribution characteristics of a 400 kW (thermal) dual-distributor type fluidized bed straw gasifier were investigated. The effects of the bed height, equivalence ratio (actual air-fuel ratio:stoichiometric air-fuel ratio) and fluidization velocity on the temperature and pressure variations in the gasifier were studied. Generally, the bed temperature reached the steady state condition within 15--20 minutes. The average temperature of the dense bed ranged from 649{degrees}C to 875{degrees}C depending on the levels of operating parameters used. The bed temperature increased linearly with increases in the equivalence ratio, higher bed temperatures were observed with lower bed height and no clear trend for the bed temperature with respect to variations in fluidization velocity was observed. The bed height, equivalence ratio and fluidization velocity affected the pressure drop in the fluidized bed gasifier. Increasing the fluidization velocity and/or decreasing the equivalence ratio resulted in higher pressure drops in the dense bed and the freeboard regions whereas increasing the bed height increased the pressure drop only in the dense bed.

  3. Temperature rise during polymerization of different cavity liners and composite resins.

    Science.gov (United States)

    Karatas, Ozcan; Turel, Verda; Bayindir, Yusuf Ziya

    2015-01-01

    The purpose of this study was to evaluate the thermal insulating properties of different light curing cavity liners and composite resins during light emitting diode (LED) curing. Sixty-four dentin discs, 1 mm thick and 8 mm in diameter, were prepared. Specimens were divided into four groups. Calcium hydroxide (Ca[OH]2), resin-modified glass ionomer cement, flowable composite and adhesive systems were applied to dentin discs according to the manufacturers' instructions. The rise in temperature during polymerization with a LED curing unit (LCU) was measured using a K-type thermocouple connected to a data logger. Subsequently, all specimens were randomly divided into one of two groups. A silorane-based composite resin and a methacrylate-based composite resin were applied to the specimens. Temperature rise during polymerization of composite resins with LCU were then measured again. Data were analyzed using one-way ANOVA and post hoc Tukey analyses. There were significant differences in temperature rise among the liners, adhesives, and composite resins (P < 0.05). Silorane-based composite resin exhibited significantly greater temperature rises than methacrylate-based resin (P < 0.05). The smallest temperature rises were observed in Ca(OH)2 specimens. Thermal insulating properties of different restorative materials are important factors in pulp health. Bonding agents alone are not sufficient to protect pulp from thermal stimuli throughout curing.

  4. The degradation of strong basic anion exchange resins and mixed-bed ion-exchange resins: Effect of degradation products on radionuclide speciation

    International Nuclear Information System (INIS)

    Loon, L.R. van; Hummel, W.

    1999-01-01

    The most important water-soluble products of the radiolytic degradation of anion exchange resins in a cementitious environment are ammonia and methylamines. These ligands do not form complexes with most radionuclides. Exceptions are Ni, Ag, and Pd, which form strong complexes with amines. Other degradation products of anion and mixed-bed ion-exchange resins are of no importance concerning the complexation of trivalent radionuclides. This is shown indirectly by adsorption experiments: The degradation products do not have a significant effect on the adsorption of Eu(III) on calcite. The effect of ammonia and methylamines on the complexation of Ni, Ag, and Pd is investigated by chemical modeling. For Ni and Ag, rather reliable predictions can be made using available thermodynamic data. In the case of Pd, large uncertainties are encountered due to unreliable data and gaps in the set of important species. The system Pd(II)-ammonia-water is explored in detail. Predominant species are inferred by chemical analogy, and their thermodynamic data are estimated. The uncertainty in these estimated and measured but unreliable data is bound by qualitative and quantitative chemical reasoning

  5. Effect of Curing Agent and Temperature on the Rheological Behavior of Epoxy Resin Systems

    OpenAIRE

    Lei Zhao; Chenhui Zhao; Guangcheng Zhang

    2012-01-01

    The effect of curing agent (6610) content and temperature on the rheological behavior of the epoxy resin CYD-128 was studied by DSC analysis and viscosity experiments. The results show that the resin system meets the requirements of processing technology. A complete reaction occurs when the curing agent content (40 parts per hundred resin, phr) is a little higher than the theoretical value (33.33 phr), while the degree of reaction of the resin system is reduced when the curing agent content i...

  6. Influence of the temperature on the dielectric properties of epoxy resins

    OpenAIRE

    Dodd, S. J.; Chalashkanov, N. M.; Fothergill, J.; Dissado, L. A.

    2010-01-01

    Electrical degradation processes in epoxy resins, such as electrical treeing, were found to be dependent on the temperature at which the experiments were carried out. Therefore, it is of considerable research interest to study the influence of temperature on the dielectric properties of the polymers and to relate the effect of temperature on these properties to the possible electrical degradation mechanisms. In this work, the dielectric properties of two different epoxy resin systems have bee...

  7. Method for removing cesium from aqueous liquid, method for purifying the reactor coolant in boiling water and pressurized water reactors and a mixed ion exchanged resin bed, useful in said purification

    International Nuclear Information System (INIS)

    Otte, J.N.A.; Liebmann, D.

    1989-01-01

    The invention relates to a method for removing cesium from an aqueous liquid, and to a resin bed containing a mixture of an anion exchange resin and cation exchange resin useful in said purification. In a preferred embodiment, the present invention is a method for purifying the reactor coolant of a presurized water or boiling water reactor. Said method, which is particularly advantageously employed in purifying the reactor coolant in the primary circuit of a pressurized reactor, comprises contacting at least a portion of the reactor coolant with a strong base anion exchange resin and the strong acid cation exchange resin derived from a highly cross-linked, macroporous copolymer of a monovinylidene aromatic and a cross-linking monomer copolymerizable therewith. Although the reactor coolant can sequentially be contacted with one resin type and thereafter with the second resin type, the contact is preferably conducted using a resin bed comprising a mixture of the cation and anion exchange resins. 1 fig., refs

  8. Sorptive Removal of Cesium and Cobalt Ions in a Fixed bed Column Using Lewatit S100 Cation Exchange Resin

    International Nuclear Information System (INIS)

    El-Naggar, M.R.; Ibrahim, H.A.; El-Kamash, A.M.

    2014-01-01

    The sorptive removal of cesium and cobalt ions from aqueous solutions in a fixed bed column packed with Lewatit S100® cation exchange resin has been investigated. A preliminary batch studies were performed to estimate the effect of pH and contact time on the sorption process. Results indicated that Cs + and Co 2+ could be efficiently removed using Lewatit S100® at a ph range of 4-7 with more affinity towards Cs than Co 2+ . Kinetic models have been applied to the sorption rate data and the relevant parameters were determined. The obtained results indicated that the sorption of both Cs + and Co 2+ on Lewatit S100 followed pseudo second-order rather than pseudo first-order or Morris-Webber model. Fixed bed experiments were conducted at a constant initial concentration of 100 mg/l whereas the effect of bed depth (3, 4.5 and 6 cm) and volumetric flow rate (3 and 5 ml/min.) on the breakthrough characteristics of the fixed bed sorption systems were determined. The experimental sorption data were fitted to the well-established column models namely; Thomas and BDST models to compute the different model parameters. The higher column sorption capacities were obtained at bed depth of 3 cm with a flow rate of 3 ml/min., for both Cs + and Co 2+ . The BDST model appeared to describe experimental results better than Thomas model. Results indicate that Lewatit S100® is an efficient material for the removal of cesium and cobalt ions from aqueous solutions.

  9. Adsorption behavior of proteins on temperature-responsive resins

    Czech Academy of Sciences Publication Activity Database

    Poplewska, I.; Muca, R.; Strachota, Adam; Piatkowski, W.; Antos, D.

    2014-01-01

    Roč. 1324, 10 January (2014), s. 181-189 ISSN 0021-9673 Institutional support: RVO:61389013 Keywords : bioseparations * N-isopropylacrylamide * thermo-responsible resins Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.169, year: 2014

  10. Feasibility study - Lowered bed temperature in Fluidised Bed boilers for waste; Foerstudie - Saenkt baeddtemperatur i FB-pannor foer avfallsfoerbraenning

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Fredrik

    2009-01-15

    Waste incineration generally serves two purposes; 1) dispose of waste and 2) generation of heat and power. In the process of power production from waste fuels, the steam temperatures in super heaters are generally limited by the severe fouling and corrosion that occurs at elevated material temperatures, caused by high concentrations of alkali metals and chloride in the flue gas and fly ash. The overall aim of a continuation of present project is to determine if a reduced temperature of the bed zone in a fluidized bed waste incinerator reduces the amount of alkali chlorides in the flue gas. If so, a reduced bed temperature might enable increased steam temperature in super heaters, or, at unchanged steam temperature, improve the lifespan of the super heaters. The results from the project are of interest for plant owners wishing to improve performance of existing plants. The results may also be used to modify the design of future plants by boiler manufacturers. The aim of present pre-study was to determine how far the bed temperature can be reduced in a waste fired fluidized bed boiler in Boraas while maintaining a stable operation with sufficient combustion temperature in the freeboard to fulfil the directives of waste incineration. A continuation of the project will be based on the results from present study. The work is based on experiments at the test boiler. During the present study, no other measurements were performed apart from some sampling of bed material and ashes at different modes of operation. The experiments show that it is possible to alter the air and recycled flue gas in such a manner that the bed temperature is reduced from about 870 deg C to 700 deg C at 100% load and normal fuel mixture, while fulfilling the directive of 850 deg C at 2 seconds. Within normal variations of the fuel properties, however, the bed temperature increases to somewhat above 700 deg C if the fuel turns dry, while it falls below 650 deg C when the fuel turns wet. With

  11. The effect of light-cured nanofilled composite resin shades on their under-surface temperature

    Science.gov (United States)

    Hanum, U. A.; Herda, E.; Indrani, D. J.

    2017-08-01

    The objective of this study was to observe the effect of shades of light-cured nanofilled composite resins on their under-surface temperature. Resin composites specimens of shades bright, medium, and dark shade were obtained from a cylindrical mold. While polymerizing using a curing unit, the under-surface temperature was determined at the bottom of the specimens using a thermocouple wire 20 sec after the start. Results showed that the under-surface temperature of the darker shade specimens were relatively higher that those of the brighter shades with significant diffferences between the resin composites of different shades. To conlude, the under-surface temperature of the light-cured nanofilled resin composites raised from the brighter to the darker shades.

  12. A comparative study to determine strength of autopolymerizing acrylic resin and autopolymerizing composite resin influenced by temperature during polymerization: An In Vitro study

    Directory of Open Access Journals (Sweden)

    Anuj Chhabra

    2017-01-01

    Full Text Available Aim: Temporary coverage of a prepared tooth is an important step during various stages of the fixed dental prosthesis. Provisional restorations should satisfy proper mechanical requirements to resist functional and nonfunctional loads. A few studies are carried out regarding the comparison of the effect of curing environment, air and water, on mechanical properties of autopolymerizing acrylic and composite resin. Hence, the aim of this study was to compare the transverse strength of autopolymerizing acrylic resin and autopolymerizing composite resin as influenced by the temperature of air and water during polymerization. Materials and Methods: Samples of autopolymerizing acrylic resin and composite resin were prepared by mixing as per manufacturer's instructions and were placed in a preformed stainless steel mold. The mold containing the material was placed under different controlled conditions of water temperature and air at room temperature. Polymerized samples were then tested for transverse strength using an Instron universal testing machine. Results: Alteration of curing condition during polymerization revealed a significant effect on the transverse strength. The transverse strength of acrylic resin specimens cured at 60°C and composite resin specimens cured at 80°C was highest. Polymerizing the resin in cold water at 10°C reduced the mechanical strength. Conclusions: Polymerization of the resin in hot water greatly increased its mechanical properties. The method of placing resin restoration in hot water during polymerization may be useful for improving the mechanical requirements and obtaining long-lasting performance.

  13. Effect of different light curing units on Knoop hardness and temperature of resin composite

    OpenAIRE

    Guiraldo Ricardo; Consani Simonides; Xediek Consani Rafael; Mendes Wilson; Lympius Thais; Coelho Sinhoreti Mario

    2009-01-01

    Aim: To evaluate the influence of quartz tungsten halogen and plasma arc curing (PAC) lights on Knoop hardness and change in polymerization temperature of resin composite. Materials and Methods: Filtek Z250 and Esthet X composites were used in the shade A3. The temperature increase was registered with Type-k thermocouple connected to a digital thermometer (Iopetherm 46). A self-cured polymerized acrylic resin base was built in order to guide the thermocouple and to support the dentin disk ...

  14. Effect of adherend temperature on bond strengths of resin bonding systems to denture base resin and a semi-precious alloy.

    Science.gov (United States)

    Murahara, Sadaaki; Minami, Hiroyuki; Suzuki, Shiro; Sakoguchi, Kenji; Shiomuki, Daisaku; Minesaki, Yoshito; Tanaka, Takuo

    2013-01-01

    This study investigated the effect of adherend temperature on shear bond strengths of auto-polymerizing resin to denture base resin and 4-META/MMA-TBBO resin to silver-palladium-copper-gold (Ag-Pd-Cu-Au) alloy. Bonding procedure was carried out when adherend temperature was 10, 23, 37, or 55°C, and shear bond strengths (SBSs) were measured before and after thermocycling. Before thermocycling, there were no significant differences in bond strength among the four adherend temperatures for each adhesive resin: 31.59±6.11-32.89±2.12 MPa for auto-polymerizing resin; 35.43±2.2-38.38±0.61 MPa for 4-META/MMA-TBBO resin. After thermocycling, optimal adherend temperature to achieve the highest bond strength was 37°C for auto-polymerizing resin to denture base resin (30.02±2.29 MPa) and 10ºC for 4-META/MMA-TBBO resin to Ag-Pd-Cu-Au alloy (37.14±2.17 MPa).

  15. Comparison of temperature change among different adhesive resin cement during polymerization process

    Directory of Open Access Journals (Sweden)

    Murat Alkurt

    2017-01-01

    Full Text Available Purpose: The aim of this study was to assess the intra-pulpal temperature changes in adhesive resin cements during polymerization. Materials and Methods: Dentin surface was prepared with extracted human mandibular third molars. Adhesive resin cements (Panavia F 2.0, Panavia SA, and RelyX U200 were applied to the dentin surface and polymerized under IPS e.max Press restoration. K-type thermocouple wire was positioned in the pulpal chamber to measure temperature change (n = 7. The temperature data were recorded (0.0001 sensible and stored on a computer every 0.1 second for sixteen minutes. Differences between the baseline temperature and temperatures of various time points (2, 4, 6, 8, 10, 12, 14, and 16 minute were determined and mean temperature changes were calculated. At various time intervals, the differences in temperature values among the adhesive resin cements were analyzed by two-way ANOVA and post-hoc Tukey honestly test (α = 0.05. Results: Significant differences were found among the time points and resin cements (P < 0.05. Temperature values of the Pan SA group were significantly higher than Pan F and RelyX (P < 0.05. Conclusion: Result of the study on self-adhesive and self-etch adhesive resin cements exhibited a safety intra-pulpal temperature change.

  16. Performance of fixed-bed charged with chelating resin of capillary fiber form for recovery of uranium from seawater

    International Nuclear Information System (INIS)

    Uezu, Kazuya; Saito, Kyoichi; Hori, Takahiro; Furusaki, Shintaro; Sugo, Takanobu; Okamoto, Jiro.

    1988-01-01

    A chelating resin adsorbent containing an amidoxime group of capillary fiber form (AO-C fiber) was prepared by a radiation-induced grafting method. The reaction condition in amidoximation, for an optimized conversion of cyano group into an amidoxime group, was examined to obtain an adsorbent having an amount of amidoxime group, i.e. 5.6 mol/kg of base polymer. The seawater was continuously pumped upwards through a novel fixed-bed, 30 cm in length and charged with a bundle of AO-C fibers. The adsorption rate and pressure drop were determined as a function of superficial velocity of seawater u. For a superficial velocity of 36 m/h, the adsorption column was found to adsorb U from natural seawater at a high rate, i.e. 0.27 g-U/Kg of adsorbent of HCl type in 25 days. The cross-sectional area of the adsorption bed S required to produce 10 kg of U/yr using our AO-C fiber adsorbent was calculated to be S(m 2 ) = 404 u -0.50 . (author)

  17. Assessment of the Harmfulness of Moulding Sands with Alkyd Resin Subjected to the High Temperature Influence

    Directory of Open Access Journals (Sweden)

    Holtzer M.

    2016-12-01

    Full Text Available Out of moulding sands used in the foundry industry, sands with organic binders deserve a special attention. These binders are based on synthetic resins, which ensure obtaining the proper technological properties and sound castings, however, they negatively influence the environment. These resins in their initial state these resins are not very dangerous for people and for the environment, thus under an influence of high temperatures they generate very harmful products, being the result of their thermal decomposition. Depending on the kind of the applied resin, under an influence of a temperature such compounds as: furfuryl alcohol, formaldehyde, phenol, BTEX group (benzene, toluene, ethylbenzene, xylene, and also polycyclic aromatic hydrocarbons (PAHs can be formed and released.

  18. Temperature-dependence of creep behaviour of dental resin-composites.

    Science.gov (United States)

    El-Safty, S; Silikas, N; Watts, D C

    2013-04-01

    To determine the effect of temperature, over a clinically relevant range, on the creep behaviour of a set of conventional and flowable resin-composites including two subgroups having the same resin matrix and varied filler loading. Eight dental resin-composites: four flowable and four conventional were investigated. Stainless steel split moulds (4 mm × 6 mm) were used to prepare cylindrical specimens for creep examination. Specimens were irradiated in the moulds in layers of 2mm thickness (40s each), as well as from the radial direction after removal from the moulds, using a light-curing unit with irradiance of 650 mW/cm(2). A total of 15 specimens from each material were prepared and divided into three groups (n=5) according to the temperature; Group I: (23°C), Group II: (37°C) and Group III: (45°C). Each specimen was loaded (20 MPa) for 2h and unloaded for 2h. Creep was measured continuously over the loading and unloading periods. At higher temperatures greater creep and permanent set were recorded. The lowest mean creep occurred with GS and GH resin-composites. Percentage of creep recovery decreased at higher temperatures. At 23°C, the materials exhibited comparable creep. At 37°C and 45°C, however, there was a greater variation between materials. For all resin-composites, there was a strong linear correlation with temperature for both creep and permanent set. Creep parameters of resin-composites are sensitive to temperature increase from 23 to 45°C, as can occur intra-orally. For a given resin matrix, creep decreased with higher filler loading. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Evaluation of shrinkage polymerization and temperature of different acrylic resins used to splinting transfer copings in indirect impression technique

    Science.gov (United States)

    Franco, Ana Paula G. O.; Karam, Leandro Z.; Galvão, José R.; Kalinowski, Hypolito J.

    2015-09-01

    The aim of the present study was evaluate the shrinkage polymerization and temperature of different acrylic resins used to splinting transfer copings in indirect impression technique. Two implants were placed in an artificial bone, with the two transfer copings joined with dental floss and acrylic resins; two dental resins are used. Measurements of deformation and temperature were performed with Fiber Braggs grating sensor for 17 minutes. The results revealed that one type of resin shows greater values of polymerization shrinkage than the other. Pattern resins did not present lower values of shrinkage, as usually reported by the manufacturer.

  20. Electron Beam Cured Epoxy Resin Composites for High Temperature Applications

    Science.gov (United States)

    Janke, Christopher J.; Dorsey, George F.; Havens, Stephen J.; Lopata, Vincent J.; Meador, Michael A.

    1997-01-01

    Electron beam curing of Polymer Matrix Composites (PMC's) is a nonthermal, nonautoclave curing process that has been demonstrated to be a cost effective and advantageous alternative to conventional thermal curing. Advantages of electron beam curing include: reduced manufacturing costs; significantly reduced curing times; improvements in part quality and performance; reduced environmental and health concerns; and improvement in material handling. In 1994 a Cooperative Research and Development Agreement (CRADA), sponsored by the Department of Energy Defense Programs and 10 industrial partners, was established to advance the electron beam curing of PMC technology. Over the last several years a significant amount of effort within the CRADA has been devoted to the development and optimization of resin systems and PMCs that match the performance of thermal cured composites. This highly successful materials development effort has resulted in a board family of high performance, electron beam curable cationic epoxy resin systems possessing a wide range of excellent processing and property profiles. Hundreds of resin systems, both toughened and untoughened, offering unlimited formulation and processing flexibility have been developed and evaluated in the CRADA program.

  1. Experimental investigation of thermal de-stratification in rock bed TES systems for high temperature applications

    International Nuclear Information System (INIS)

    Okello, Denis; Nydal, Ole J.; Banda, Eldad J.K.

    2014-01-01

    Highlights: • High thermal stratifications exists rock bed TES when charge with high temperature heat. • Faster thermal degradation occurs in highly stratified bed irrespective of the bed length. • Average rate of heat loss as a function of storage time increases with increasing average bed temperature. - Abstract: Solar energy fluctuates so much that it cannot promote continuous use. Integration of Thermal Energy Storage (TES) with solar energy collection devices has the potential of making solar energy available on demand. Thermal energy can be stored in a bed of rocks at temperatures suitable for applications like cooking, boiling space heating, etc. During charging, temperature stratification is observed in the bed. In a stratified system, if the heat is used immediately, then it is possible to extract heat at reasonably high temperature from the top. For cases where the system is to be used after sometime (later at night or the following morning), the high temperature heat at the top is observed to degrade as the system tries to establish thermal equilibrium irrespective of the bed height. The average rate of heat loss from the TES unit to the ambient is found to increase with increasing average bed temperatures

  2. Glass Fiber Resin Composites and Components at Arctic Temperatures

    Science.gov (United States)

    2015-06-01

    mm long 3.16 mm thick type I dog bone specimen was used. Step by step direction can be found in Appendix A. 1. Specimen Mold To create the...dog bone specimen that was left over from a previous experiment was then taped to the back of the new specimen and placed on a table. By pushing on...and even specimen to specimen. Batch 2 was not tested because the specimen had a sticky surface upon curing. Resin Batch 3 performed significantly

  3. RELATION BETWEEN MECHANICAL PROPERTIES AND PYROLYSIS TEMPERATURE OF PHENOL FORMALDEHYDE RESIN FOR GAS SEPARATION MEMBRANES

    Directory of Open Access Journals (Sweden)

    MONIKA ŠUPOVÁ

    2012-03-01

    Full Text Available The aim of this paper has been to characterize the relation between the pyrolysis temperature of phenol-formaldehyde resin, the development of a porous structure, and the mechanical properties for the application of semipermeable membranes for gas separation. No previous study has dealt with this problem in its entirety. Phenol-formaldehyde resin showed an increasing trend toward micropore porosity in the temperature range from 500 till 1000°C, together with closure of mesopores and macropores. Samples cured and pyrolyzed at 1000°C pronounced hysteresis of desorption branch. The ultimate bending strength was measured using a four-point arrangement that is more suitable for measuring of brittle materials. The chevron notch technique was used for determination the fracture toughness. The results for mechanical properties indicated that phenol-formaldehyde resin pyrolyzates behaved similarly to ceramic materials. The data obtained for the material can be used for calculating the technical design of gas separation membranes.

  4. Effect of Curing Agent and Temperature on the Rheological Behavior of Epoxy Resin Systems

    Directory of Open Access Journals (Sweden)

    Lei Zhao

    2012-07-01

    Full Text Available The effect of curing agent (6610 content and temperature on the rheological behavior of the epoxy resin CYD-128 was studied by DSC analysis and viscosity experiments. The results show that the resin system meets the requirements of processing technology. A complete reaction occurs when the curing agent content (40 parts per hundred resin, phr is a little higher than the theoretical value (33.33 phr, while the degree of reaction of the resin system is reduced when the curing agent content is lower (25.00 phr than theoretical value. However, excessive curing agent (50.00 phr results in a lower reaction rate. Curing agent content has little influence on gel time when curing agent content exceeded 33.33 phr and the temperature was less than 70 °C. The isothermal viscosity-time curves shift towards the –x axis when the temperature rises from 50 °C to 80 °C. Meanwhile, higher temperature results in higher reaction rates.

  5. Effect of curing agent and temperature on the rheological behavior of epoxy resin systems.

    Science.gov (United States)

    Zhao, Chenhui; Zhang, Guangcheng; Zhao, Lei

    2012-07-17

    The effect of curing agent (6610) content and temperature on the rheological behavior of the epoxy resin CYD-128 was studied by DSC analysis and viscosity experiments. The results show that the resin system meets the requirements of processing technology. A complete reaction occurs when the curing agent content (40 parts per hundred resin, phr) is a little higher than the theoretical value (33.33 phr), while the degree of reaction of the resin system is reduced when the curing agent content is lower (25.00 phr) than theoretical value. However, excessive curing agent (50.00 phr) results in a lower reaction rate. Curing agent content has little influence on gel time when curing agent content exceeded 33.33 phr and the temperature was less than 70 °C. The isothermal viscosity-time curves shift towards the -x axis when the temperature rises from 50 °C to 80 °C. Meanwhile, higher temperature results in higher reaction rates.

  6. Fundamental aspects related to batch and fixed-bed sulfate sorption by the macroporous type 1 strong base ion exchange resin Purolite A500.

    Science.gov (United States)

    Guimarães, Damaris; Leão, Versiane A

    2014-12-01

    Acid mine drainage is a natural process occurring when sulfide minerals such as pyrite are exposed to water and oxygen. The bacterially catalyzed oxidation of pyrite is particularly common in coal mining operations and usually results in a low-pH water polluted with toxic metals and sulfate. Although high sulfate concentrations can be reduced by gypsum precipitation, removing lower concentrations (below 1200 mg/L) remains a challenge. Therefore, this work sought to investigate the application of ion exchange resins for sulfate sorption. The macroporous type 1 strong base IX resin Purolite A500 was selected for bath and fixed-bed sorption experiments using synthetic sulfate solutions. Equilibrium experiments showed that sulfate loading on the resin can be described by the Langmuir isotherm with a maximum uptake of 59 mg mL-resin(-1). The enthalpy of sorption was determined as +2.83 kJ mol(-1), implying an endothermic physisorption process that occurred with decreasing entropy (-15.5 J mol(-1).K(-1)). Fixed-bed experiments were performed at different bed depths, flow rates, and initial sulfate concentrations. The Miura and Hashimoto model predicted a maximum bed loading of 25-30 g L-bed(-1) and indicated that both film diffusion (3.2 × 10(-3) cm s(-1) to 22.6 × 10(-3) cm s(-1)) and surface diffusion (1.46 × 10(-7) cm(2) s(-1) to 5.64 × 10(-7) cm(2) s(-1)) resistances control the sorption process. It was shown that IX resins are an alternative for the removal of sulfate from mine waters; they ensure very low residual concentrations, particularly in effluents where the sulfate concentration is below the gypsum solubility threshold. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Evaluation of heat transfer in a catalytic fixed bed reactor at high temperatures

    OpenAIRE

    JORGE,L. M. M.; JORGE,R. M. M.; FUJII,F.; GIUDICI,R.

    1999-01-01

    Experimental results of fixed-bed heat-transfer experiments with no chemical reaction are presented and discussed. The runs were carried out in a tubular integral reactor heated by an electrical furnace at temperatures in the range of 100 to 500°C. Experimental temperature profiles were determined for the electrical furnace, for the reactor wall, and for the fixed bed center. Industrial catalyst for the prereforming of hydrocarbons was employed as the packing material. The effects of process ...

  8. Testing temperature on interfacial shear strength measurements of epoxy resins at different mixing ratios

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Thomason, James L.; Minty, Ross

    2015-01-01

    The interfacial properties as Interfacial Shear Stress (IFSS) in fibre reinforced polymers are essential for further understanding of the mechanical properties of the composite. In this work a single fibre testing method is used in combination with an epoxy matrix made from Araldite 506 epoxy resin...... and triethylenetetramine (TETA) hardener. The IFSS was measured by a microbond test developed for a Thermal Mechanical Analyzer. The preliminary results indicate that IFSS has an inverse dependency of both testing temperature and the mixing ratio of hardener and epoxy resin. Especially interesting was the decreasing...

  9. Ultra-low Temperature Curable Conductive Silver Adhesive with different Resin Matrix

    Science.gov (United States)

    Zhou, Xingli; Wang, Likun; Liao, Qingwei; Yan, Chao; Li, Xing; Qin, Lei

    2018-03-01

    The ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conductive treatment of piezoelectric composite material due to the low thermal resistance of composite material and low adhesion strength of adhesive. An ultra-low temperature curable conductive adhesive with high adhesion strength was obtained for the applications of piezoelectric composite material. The microstructure, conductive properties and adhesive properties with different resin matrix were investigated. The conductive adhesive with AG-80 as the resin matrix has the shorter curing time (20min), lower curing temperature (90°C) and higher adhesion strength (7.6MPa). The resistivity of AG-80 sample has the lower value (2.13 × 10-4Ω·cm) than the 618 sample (4.44 × 10-4Ω·cm).

  10. Effect of LED and Argon Laser on Degree of Conversion and Temperature Rise of Hybrid and Low Shrinkage Composite Resins.

    Science.gov (United States)

    Pahlevan, Ayob; Tabatabaei, Masumeh Hasani; Arami, Sakineh; Valizadeh, Sara

    2016-01-01

    Different light curing units are used for polymerization of composite resins. The aim of this study was to evaluate the degree of conversion (DC) and temperature rise in hybrid and low shrinkage composite resins cured by LED and Argon Laser curing lights. DC was measured using FTIR spectroscopy. For measuring temperature rise, composite resin samples were placed in Teflon molds and cured from the top. The thermocouple under samples recorded the temperature rise. After initial radiation and specimens reaching the ambient temperature, reirradiation was done and temperature was recorded again. Both temperature rise and DC data submitted to one-way ANOVA and Tukey-HSD tests (5% significance). The obtained results revealed that DC was not significantly different between the understudy composite resins or curing units. Low shrinkage composite resin showed a significantly higher temperature rise than hybrid composite resin. Argon laser caused the lowest temperature rise among the curing units. Energy density of light curing units was correlated with the DC. Type of composite resin and light curing unit had a significant effect on temperature rise due to polymerization and curing unit, respectively.

  11. Evaluation of glass transition temperature and dynamic mechanical properties of autopolymerized hard direct denture reline resins.

    Science.gov (United States)

    Takase, Kazuma; Watanabe, Ikuya; Kurogi, Tadafumi; Murata, Hiroshi

    2015-01-01

    This study assessed methods for evaluation of glass transition temperature (Tg) of autopolymerized hard direct denture reline resins using dynamic mechanical analysis and differential scanning calorimetry in addition to the dynamic mechanical properties. The Tg values of 3 different reline resins were determined using a dynamic viscoelastometer and differential scanning calorimeter, and rheological parameters were also determined. Although all materials exhibited higher storage modulus and loss modulus values, and a lower loss tangent at 37˚C with a higher frequency, the frequency dependence was not large. Tg values obtained by dynamic mechanical analysis were higher than those by differential scanning calorimetry and higher frequency led to higher Tg, while more stable Tg values were also obtained by that method. These results suggest that dynamic mechanical analysis is more advantageous for characterization of autopolymerized hard direct denture reline resins than differential scanning calorimetry.

  12. Experimental Investigation of Strain Rate and Temperature Dependent Response of an Epoxy Resin Undergoing Large Deformation

    Science.gov (United States)

    Tamrakar, Sandeep; Ganesh, Raja; Sockalingam, Subramani; Haque, Bazle Z.; Gillespie, John W.

    2018-01-01

    Experimental investigation of the effect of strain rate and temperature on large inelastic deformation of an epoxy resin is presented. Uniaxial compression tests were conducted on DER 353 epoxy resin at strain rates ranging from 0.001 to 12,000/s. Experimental results showed significant rate sensitivity in yield stress, which increased from 85 MPa at 0.001/s to 220 MPa at 12,000/s strain rate. Thermal softening became more prominent as the strain rate was increased, resulting in complete absence of strain hardening at high strain rates. Rise in temperature under high strain rate, due to adiabatic heating, was estimated to increase above glass transition temperature (T g ). A series of compression tests carried out at temperatures ranging from ambient to T g + 80 °C showed yield stress vanishing at T g . Above T g , the epoxy became completely rubbery elastic at quasi-static loading rate. Epoxy became less sensitive to strain rate as the temperature was increased further above T g . The strain rate and temperature dependent yield behavior of the epoxy resin is predicted using Ree-Eyring model.

  13. High Temperature Degradation of 5250-4 Polymer Resin

    National Research Council Canada - National Science Library

    Link, Patrick E

    2007-01-01

    .... Isothermal thermo-gravimetric analysis demonstrated that weight loss was negligible for aging in the argon environment, indicating weight loss is the result of an oxidative process at these temperatures...

  14. Effect of different light curing units on Knoop hardness and temperature of resin composite

    Directory of Open Access Journals (Sweden)

    Guiraldo Ricardo

    2009-01-01

    Full Text Available Aim: To evaluate the influence of quartz tungsten halogen and plasma arc curing (PAC lights on Knoop hardness and change in polymerization temperature of resin composite. Materials and Methods: Filtek Z250 and Esthet X composites were used in the shade A3. The temperature increase was registered with Type-k thermocouple connected to a digital thermometer (Iopetherm 46. A self-cured polymerized acrylic resin base was built in order to guide the thermocouple and to support the dentin disk of 1.0 mm thickness obtained from bovine tooth. On the acrylic resin base, elastomer mold of 2.0 mm was adapted. The temperature increase was measured after composite light curing. After 24 h, the specimens were submitted to Knoop hardness test (HMV-2000, Shimadzu, Tokyo, Japan. Data were submitted to ANOVA and Tukey′s test (a = 0.05. Results: For both composites, there were no significant differences (P > 0.05 in the top surface hardness; however, PAC promoted statistically lower (P < 0.05 Knoop hardness number values in the bottom. The mean temperature increase showed no significant statistical differences (P > 0.05. Conclusion: The standardized radiant exposure showed no influence on the temperature increase of the composite, however, showed significant effect on hardness values.

  15. The analysis of European lacquer: optimization of thermochemolysis temperature of natural resins

    Science.gov (United States)

    Decq, Louise; Lynen, Frederic; Schilling, Michael; Fremout, Wim; Cattersel, Vincent; Steyaert, Delphine; Indekeu, Charles; Van Binnebeke, Emile; Saverwyns, Steven

    2016-12-01

    In order to optimize chromatographic analysis of European lacquer, thermochemolysis temperature was evaluated for the analysis of natural resins. Five main ingredients of lacquer were studied: sandarac, mastic, colophony, Manila copal and Congo copal. For each, five temperature programs were tested: four fixed temperatures (350, 480, 550, 650 °C) and one ultrafast thermal desorption (UFD), in which the temperature rises from 350 to 660 °C in 1 min. In total, the integrated signals of 27 molecules, partially characterizing the five resins, were monitored to compare the different methods. A compromise between detection of compounds released at low temperatures and compounds formed at high temperatures was searched. 650 °C is too high for both groups, 350 °C is best for the first, and 550 °C for the second. Fixed temperatures of 480 °C or UFD proved to be a consensus in order to detect most marker molecules. UFD was slightly better for the molecules released at low temperatures, while 480 °C showed best compounds formed at high temperatures.

  16. Effect of different light curing units on Knoop hardness and temperature of resin composite.

    Science.gov (United States)

    Guiraldo, Ricardo Danil; Consani, Simonides; Xediek Consani, Rafael Leonardo; Mendes, Wilson Batista; Lympius, Thais; Coelho Sinhoreti, Mario Alexandre

    2009-01-01

    To evaluate the influence of quartz tungsten halogen and plasma arc curing (PAC) lights on Knoop hardness and change in polymerization temperature of resin composite. Filtek Z250 and Esthet X composites were used in the shade A3. The temperature increase was registered with Type-k thermocouple connected to a digital thermometer (Iopetherm 46). A self-cured polymerized acrylic resin base was built in order to guide the thermocouple and to support the dentin disk of 1.0 mm thickness obtained from bovine tooth. On the acrylic resin base, elastomer mold of 2.0 mm was adapted. The temperature increase was measured after composite light curing. After 24 h, the specimens were submitted to Knoop hardness test (HMV-2000, Shimadzu, Tokyo, Japan). Data were submitted to ANOVA and Tukey's test (alpha = 0.05). For both composites, there were no significant differences (P > 0.05) in the top surface hardness; however, PAC promoted statistically lower (P 0.05). The standardized radiant exposure showed no influence on the temperature increase of the composite, however, showed significant effect on hardness values.

  17. Evaluation of heat transfer in a catalytic fixed bed reactor at high temperatures

    Directory of Open Access Journals (Sweden)

    JORGE L. M. M.

    1999-01-01

    Full Text Available Experimental results of fixed-bed heat-transfer experiments with no chemical reaction are presented and discussed. The runs were carried out in a tubular integral reactor heated by an electrical furnace at temperatures in the range of 100 to 500°C. Experimental temperature profiles were determined for the electrical furnace, for the reactor wall, and for the fixed bed center. Industrial catalyst for the prereforming of hydrocarbons was employed as the packing material. The effects of process conditions (furnace temperature, gas flow rate on the heat-transfer coefficients were evaluated. The experimental results were analyzed in terms of the external, wall, and internal thermal resistances, associated in series, and compared with model predictions. Under the conditions studied, the overall coefficient was mostly a function of the external effective heat-transfer coefficient. An alternative data treatment was proposed to determine the internal heat-transfer coefficient in fixed beds when wall temperature is not constant.

  18. Pressure drop in packed beds of spherical particles at ambient and elevated air temperatures

    Directory of Open Access Journals (Sweden)

    Pešić Radojica

    2015-01-01

    Full Text Available The aim of this work was the experimental investigation of the particle friction factor for air flow through packed bed of particles at ambient and elevated temperatures. The experiments were performed by measuring the pressure drop across the packed bed, heated to the desired temperature by hot air. Glass spherical particles of seven different diameters were used. The temperature range of the air flowing through the packed bed was from 20ºC to 350ºC and the bed voidages were from 0.3574 to 0.4303. The obtained results were correlated using a number of available literature correlations. The overall best fit of all of the experimental data was obtained using Ergun [1] equation, with mean absolute deviation of 10.90%. Ergun`s equation gave somewhat better results in correlating the data at ambient temperature with mean absolute deviation of 9.77%, while correlation of the data at elevated temperatures gave mean absolute deviation of 12.38%. The vast majority of the correlations used gave better results when applied to ambient temperature data than to the data at elevated temperatures. Based on the results obtained, Ergun [1] equation is proposed for friction factor calculation both at ambient and at elevated temperatures. [Projekat Ministarstva nauke Republike Srbije, br. ON172022

  19. Influence of a Liquid Metal Temperature on a Thermal Decomposition of a Phenolic Resin

    Directory of Open Access Journals (Sweden)

    Holtzer M.

    2013-06-01

    Full Text Available Due to the presence of harmful substances in resins those mould sands may be hazardous to the natural environment and workers. The general assessment of harmfulness of sands used for molds and cores encompasses 2 basic points: emission of hazardous substances during processes of preparing sands, pouring mold with liquid metals (high temperatures, cooling and shaking-out; possibility of washing out hazardous substances from used sands to the environment, during storage or economic use outside foundries. We present the results of research on the emission of BTEX compounds from mould sands with phenolic resins during pouring liquid metal of different temperature (cast iron and Al alloy. The research was conducted according to the original method prepared by the authors, which has been used for years in cooperation with various foundries (Poland, abroad.

  20. Experimental Studies on the Synthesis and Performance of Boron-containing High Temperature Resistant Resin Modified by Hydroxylated Tung Oil

    Science.gov (United States)

    Zhang, J. X.; Y Ren, Z.; Zheng, G.; Wang, H. F.; Jiang, L.; Fu, Y.; Yang, W. Q.; He, H. H.

    2017-12-01

    In this work, hydroxylated tung oil (HTO) modified high temperature resistant resin containing boron and benzoxazine was synthesized. HTO and ethylenediamine was used to toughen the boron phenolic resin with specific reaction. The structure of product was studied by Fourier-transform infrared spectroscopy(FTIR), and the heat resistance was tested by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis(TGA). The results indicated that the conjugated triene structure of HTO was involved in the crosslinking of the heating curing progress, and in addition, the open-loop polymerization reaction of benzoxazine resin during heating can effectively reduce the curing temperature of the resin and reduce the release of small molecule volatiles, which is advantageous to follow-up processing. DSC data showed that the initial decomposition temperature of the resin is 350-400 °C, the carbon residue rate under 800 °C was 65%. It indicated that the resin has better heat resistance than normal boron phenolic resin. The resin can be used as an excellent ablative material and anti-friction material and has a huge application market in many fields.

  1. The effects of alkyd/melamine resin ratio and curing temperature on the properties of the coatings

    Directory of Open Access Journals (Sweden)

    RADMILA Z. RADICEVIC

    2005-04-01

    Full Text Available Synthetic resins are used as binders in protective coatings. An alkyd/melamine resin mixture is the usual composition for the preparation of a coating called “baking enamel” cured through functional groups of resins. The effects of the alkyd/butylated melamine resin ratio (from 85/15 to 70/30 and curing temperature (from 100°C to 160°C on the crosslinking and properties of the coating are presented in this paper. The degree of curing was determined by differential scanning calorimetry. These data were used for the estimation of the degree of crosslinking. The hardness, elasticity, impact resistance, degree of adherence and gloss were also determined. Optimal coating properties could be achieved with an alkyd/melamine resin ratio of 75/25, a curing temperature of 130 °C and a curing time of 30 min.

  2. Low Temperature Mechanical Testing of Carbon-Fiber/Epoxy-Resin Composite Materials

    Science.gov (United States)

    Nettles, Alan T.; Biss, Emily J.

    1996-01-01

    The use of cryogenic fuels (liquid oxygen and liquid hydrogen) in current space transportation vehicles, in combination with the proposed use of composite materials in such applications, requires an understanding of how such materials behave at cryogenic temperatures. In this investigation, tensile intralaminar shear tests were performed at room, dry ice, and liquid nitrogen temperatures to evaluate the effect of temperature on the mechanical response of the IM7/8551-7 carbon-fiber/epoxy-resin system. Quasi-isotropic lay-ups were also tested to represent a more realistic lay-up. It was found that the matrix became both increasingly resistant to microcracking and stiffer with decreasing temperature. A marginal increase in matrix shear strength with decreasing temperature was also observed. Temperature did not appear to affect the integrity of the fiber-matrix bond.

  3. Biomass gasification using nickel loaded brown coal char in fluidized bed gasifier at relatively low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Le, D.D.; Xiao, X.B.; Morishita, K.; Takarada, T. [Gunma University, Gumma (Japan)

    2009-07-01

    Our work focuses on developing nickel loaded brown coal char as a new catalyst to decompose tar and to enhance quality of product gas delivered from woody biomass pyrolysis at relatively low temperatures of 823 K and 923 K. It is carried out in two-stage fixed-bed reactor and a lab scale fluidized bed gasifier (FBG) under various conditions. Inside of gasifier is constructed by two beds, the primary one is a fluidized bed with sand. and the second one is a catalyst bed. The catalyst bed is used to evaluate and to compare catalytic activity between the new catalyst and a conventional Ni/Al{sub 2}O{sub 3} catalyst. The new catalyst is prepared by ion exchange method, dried at 380 K in nitrogen for 24 h, and is then calcined at 923 K in nitrogen for 90 min. The temperature as a function of gas yield and the effect of catalysts on gas yield in presence and absence of steam are investigated in this study. The new catalyst has shown high catalytic activity and stable activity and given the high quality of product gas in presence of steam.

  4. Temperature-dependent polymerization shrinkage stress kinetics of resin-composites.

    Science.gov (United States)

    Watts, D C; Alnazzawi, A

    2014-06-01

    To determine temperature dependence of shrinkage stress kinetics for a set of resin composites formulated with dimethacrylate monomer matrices. Six representative resin composites with a range of resin matrices were selected. Two of them were considered as low shrinking resin composites: Kalore and Venus Diamond. The shrinkage stress kinetics at 23°C and 37°C were measured continuously using a Bioman instrument for 60min. Stress levels between materials were compared at two intervals: 2min and 60min. Specimen temperatures were controlled by a newly designed heating device. Stress measurements were monitored for 1h, after irradiation for 40s at 550mW/cm(2) (energy density=22J/cm(2)). Three specimens (n=3) were used at each temperature per material. Shrinkage stress at 23°C ranged from 2.93MPa to 4.71MPa and from 3.57MPa to 5.42MPa for 2min and 60min after photo-activation, respectively. The lowest stress-rates were recorded for Kalore and Venus Diamond (0.34MPas(-1)), whereas the highest was recorded for Filtek Supreme XTE (0.63MPas(-1)). At 37°C, shrinkage stress ranged from 3.27MPa to 5.35MPa and from 3.36MPa to 5.49MPa for 2min and 60min after photo-activation, respectively. Kalore had the lowest stress-rate (0.44MPas(-1)), whereas Filtek Supreme XTE had the highest (0.85MPas(-1)). Materials exhibited a higher stress at 37°C than 23°C except for Kalore and Venus Diamond. Positive correlations were found between shrinkage stress and stress-rate at 23°C and 37°C (r=0.70 and 0.92, respectively). Resin-composites polymerized at elevated temperature (37°C) completed stress build up more rapidly than specimens held at 23°C. Two composites exhibited atypical reduced stress magnitudes at the higher temperature. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Low-Cost Resin Transfer Molding Process Developed for High-Temperature Polyimide Matrix Composites

    Science.gov (United States)

    1996-01-01

    The use of high-temperature polymer matrix composites (PMC's) in aircraft engine applications can significantly reduce engine weight and improve performance and fuel efficiency. High-temperature PMC's, such as those based on the PMR-15 polyimide matrix resin developed by the NASA Lewis Research Center, have been used extensively in military applications where performance improvements have justified their use regardless of the cost involved in producing the component. However, in commercial engines cost is a primary driver, and PMC components must be produced at costs comparable to those of the metal components that they will replace.

  6. Tailoring the toughness and CTE of high temperature bisphenol E cyanate ester (BECy resin

    Directory of Open Access Journals (Sweden)

    M. Thunga

    2014-05-01

    Full Text Available The objective of the present work is to enhancing the toughness and minimizing the CTE of a special class of bisphenol E cyanate ester (BECy resin by blending it with a thermoplastic toughening agent. Poly(ether sulfone was chosen as a high temperature resistant thermoplastic resin to enhance the thermo-mechanical properties of BECy. The influence of poly(ether sulfone/BECy blend composition on the morphology and phase behavior was studied using scanning electron microscopy and dynamic mechanical analysis. The mechanical properties of the blends were evaluated by flexural tests, which demonstrated significant enhancement in the material’s toughness with an increase in PES concentration from 0 to 15 wt%. The coefficient of thermal expansion of pure BECy was reduced from 61 to 48 ppm/°C in the blends with PES, emphasizing the multi-functional benefits of PES as a toughening agent in BECy.

  7. Microbial community evolution of black and stinking rivers during in situ remediation through micro-nano bubble and submerged resin floating bed technology.

    Science.gov (United States)

    Sun, Yanmei; Wang, Shiwei; Niu, Junfeng

    2018-06-01

    Microbes play important roles during river remediation and the interaction mechanism illustration between microorganisms and sewage is of great significance to improve restoration technology. In this study, micro-nano bubble and submerged resin floating bed composite technology (MBSR) was firstly used to restore two black and stinking urban rivers. After restoration, the water pollution indices such as dissolved oxygen (DO), ammonia nitrogen (NH 4 + -N), total phosphorous (TP), chemical oxygen demand (COD Cr ), water clarity, and the number of facial coliform were significantly improved. Microbial community composition and relative abundance both varied and more aerobic microbes emerged after remediation. The microbial changes showed correlation with DO, NH 4 + -N, TP and COD Cr of the rivers. In summary, the MBSR treatment improved the physiochemical properties of the two black and stinking urban rivers probably through oxygen enrichment of micro-nano bubble and adsorption of submerged resin floating bed, which thereby stimulated functional microbes to degrade pollutants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Investigation of flow mechanisms in conical models of fluidized beds and transfer of the results to high-temperature-coating beds. A study on the coating of nuclear fuel particles in fluidized beds

    International Nuclear Information System (INIS)

    Kalthoff, B.; Gyarmati, E.; Nickel, H.

    The different states of movement of the fluid-solid particle system as occurring in coating of nuclear particle fuel in conical fluidized beds determine the transfer of momentum, heat and mass in the fluidized bed. To know the flow characteristics, therefore, is essential for the understanding of the complex processes which take place during coating. As experimental studies in actual coaters initially were impossible due to the high temperature levels of up to 2000 0 C, information on characteristic behavior of the fluidized bed was obtained from geometrically similar model beds. Based on principles in the mechanics of similarity the fluid-solid particle system was selected. Hence, results obtained in model tests could be correlated to hot fluidized beds by means of a dimensionless characteristic number describing the fluid-solid system. A second combination of characteristic numbers allows the characterization of the three states of a fluidizing regime, i.e., spouting, bubbling, and slugging. For examining the model test results in hot beds, a measuring device was developed applicable to both cold model beds and actual fluidized bed coaters; pressure oscillations originating in the beds could be made visible by means of electronics and their frequency measured. Coating experiments with different batches and at different temperature levels rendered this frequency to decrease with increase in bed height. Thus the frequency is an important index for the momentary state of fluidization of the fluid-solid particle system. (U.S.)

  9. The Effect of Drinks and Temperature on the Staining of Resin Composites Coated with Surface Sealants

    Directory of Open Access Journals (Sweden)

    Hui R

    2014-09-01

    Full Text Available Statement of problem: Surface staining of resin composite by dietary factors may be modified by the placement of a low-viscosity surface sealant aimed at reducing surface voids and defects occurring after light-curing and polishing. Objectives: The aim of this study was to investigate the staining effect of various drinks and temperatures on the surface sealant (Fortify Plus™ sealed on a nano-filled resin composite (Supreme XTE™ after artificial aging at different temperatures. Materials and Methods: Surface sealant was applied on one surface of forty resin composite discs (10×2 mm. Five discs each were immersed in test solutions of black cola, commercial dark grape juice, coffee and distilled water (negative control. Discs were either placed at 4°C (20 discs or 37°C (20 discs and the colour difference (ΔE was calculated based on the colour coordinates at 0 (baseline, 7, 14 and 28 days of staining treatment. Two-factor with replication analysis was carried out with ANOVA. Results: The results showed significant discolouration after 28 days immersion in coffee (P<0.001 and grape juice group (P<0.001. Surface sealant significantly affected colour changes in coffee and grape juice group (P=0.002. Higher temperatures in coffee and grape juice also significantly increased the effect of staining (P<0.001. Conclusions: Surface sealant was able to reduce discolouration in the grape juice group only. A lower temperature of 4°C caused less staining in coffee and grape juice groups as compared to the 37°C corresponding test groups. Prolonged immersion time significantly increased discolouration in coffee and grape juice groups.

  10. High Temperature Flue Gas Desulfurization In Moving Beds With Regenerable Copper Based Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Cengiz, P.A.; Ho, K.K.; Abbasian, J.; Lau, F.S.

    2002-09-20

    The objective of this study was to develop new and improved regenerable copper based sorbent for high temperature flue gas desulfurization in a moving bed application. The targeted areas of sorbent improvement included higher effective capacity, strength and long-term durability for improved process control and economic utilization of the sorbent.

  11. Parametric analysis of a high temperature packed bed thermal storage design for a solar gas turbine

    CSIR Research Space (South Africa)

    Klein, P

    2015-08-01

    Full Text Available The development of a high temperature Thermal Energy Storage (TES) system will allow for high solar shares in Solar Gas Turbine (SGT) plants. In this research a pressurised storage solution is proposed that utilises a packed bed of alumina spheres...

  12. Experimental measurement of variation of heat transfer coefficient and temperature gradients in 16'' deep fluidised beds

    International Nuclear Information System (INIS)

    Blacker, P.T.; McLain, D.R.

    1962-04-01

    The object of the experiments was to choose suitable particulate materials for a fluidised bed cooler, to test a deep fluidised bed for uniformity of heat transfer coefficient, and to explore the temperature distribution in a centrally heated annular fluidised bed. This memorandum records the techniques used and some of the practical aspects involved, together with the performance results obtained, for the assistance of other experimenters who may wish to use fluidised beds as a laboratory technique. Mathematical correlation of the results has not been attempted since some of the properties of the bed material were not known and to determine them was beyond the scope of the work programme. Rather, we have compared our results with those of other experimenters. Graphite tubes, for use in steady state thermal stress experiments, are to be heated by a graphite radiant heater situated in the bore and cooled on the outer surface. The tubes are 2 cm. bore, 8 cm. outside diameter and 48 cm. long. The outside temperature of the tubes is to be between 500 deg. C. and 1500 deg. C. It is estimated that the heat transfer rate required for fracture at the outer surface is 30 watts/cm 2 . This could readily be achieved by cooling with liquid metals, water or high velocity gas. However, serious problems of either materials compatibility or mechanical complexity make these undesirable. A water-cooled fluidised bed of compatible solids fluidised with nitrogen gas can overcome most of these problems and give heat transfer coefficients close to that required, vis. about 0.1 w/cm C . A coolant bed about 20'' long would be required and an annulus of about 2'' radial width round the specimen was considered to be practicable

  13. Novel high glass temperature sugar-based epoxy resins: Characterization and comparison to mineral oil-based aliphatic and aromatic resins

    Directory of Open Access Journals (Sweden)

    P. Niedermann

    2015-02-01

    Full Text Available Curing and rheological behaviour, glass transition temperature, mechanical and thermal properties of two newly synthesized glucopyranoside- (GPTE and glucofuranoside- (GFTE based renewable epoxy resin (EP components were investigated and compared to aromatic and aliphatic EPs. The glucose-based EPs can be successfully cured with amine and anhydride type curing agents, their gel times are suitable for processing and can be well-adopted to the needs of the common composite preparation methods. GPTE showed the highest glass transition temperature (Tg among all investigated resins, followed by GFTE and DGEBA. Below the Tg there was no significant difference between the storage modulus values of the EP systems. The glucose-based EPs had lower tensile and bending strength, but their tensile modulus values are not significantly different from the mineral oil based EPs. The thermal stability of the synthesized GPTE and GFTE is between DGEBA and the aliphatic resins. In applications where bending stresses are dominant over the tensile ones, and outstanding Tg is required, these glucose-based resins offer a feasible renewable option.

  14. Influence of the material for preformed moulds on the polymerization temperature of resin materials for temporary FPDs.

    Science.gov (United States)

    Pott, Philipp-Cornelius; Schmitz-Wätjen, Hans; Stiesch, Meike; Eisenburger, Michael

    2017-08-01

    Temperature increase of 5.5 ℃ can cause damage or necrosis of the pulp. Increasing temperature can be caused not only by mechanical factors, e.g. grinding, but also by exothermic polymerization reactions of resin materials. The aim of this study was to evaluate influences of the form material on the intrapulpal temperature during the polymerization of different self-curing resin materials for temporary restorations. 30 provisonal bridges were made of 5 resin materials: Prevision Temp (Pre), Protemp 4 (Pro), Luxatemp Star (Lux), Structure 3 (Str) and an experimental material (Exp). Moulds made of alginate (A) and of silicone (S) and vacuum formed moulds (V) were used to build 10 bridges each on a special experimental setup. The intrapulpal temperatures of three abutment teeth (a canine, a premolar, and a molar,) were measured during the polymerization every second under isothermal conditions. Comparisons of the maximum temperature (T Max ) and the time until the maximum temperature (t TMax ) were performed using ANOVA and Tukey Test. Using alginate as the mould material resulted in a cooling effect for every resin material. Using the vacuum formed mould, T Max increased significantly compared to alginate ( P material on t TMax . All of the mould materials are suitable for clinical use if the intraoral application time does not exceed the manufacturer's instructions for the resin materials.

  15. High Temperature Transfer Molding Resins: Preliminary Composite Properties of PETI-375

    Science.gov (United States)

    Connell, J. W.; Smith, J. G., Jr.; Hergenrother, P. M.; Criss, J. M., Jr.

    2004-01-01

    As part of an ongoing effort to develop materials for resin transfer molding (RTM) of high performance/high temperature composites, a new phenylethynyl containing imide designated as PETI-375 has been under evaluation. PETI-375 was prepared using 2,3,3 ,4 - biphenyltetracarboxylic dianhydride (a-BPDA), 1,3-bis(4-aminophenoxy)benzene and 2,2 - bis(trifluoromethyl)benzidine and endcapped with 4-phenylethynylphthalic anhydride. This material exhibited a stable melt viscosity of 0.1-0.4 Pa sec at 280 C. High quality, void-free laminates were fabricated by high temperature RTM using unsized T-650 carbon fabric and evaluated. After curing for 1 hour at 371 C, the laminates exhibited a glass transition temperature of approx. 375 C by thermomechanical analysis. The laminates were essentially void and microcrack free as evidenced by optical microscopic examination. The chemistry, physical, and composite properties of PETI-375 will be discussed.

  16. Consideration of emergency source terms for pebble-bed high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Tao, Liu; Jun, Zhao; Jiejuan, Tong; Jianzhu, Cao

    2009-01-01

    Being the last barrier in the nuclear power plant defense-in-depth strategy, emergency planning (EP) is an integrated project. One of the key elements in this process is emergency source terms selection. Emergency Source terms for light water reactor (LWR) nuclear power plant (NPP) have been introduced in many technical documents, and advanced NPP emergency planning is attracting attention recently. Commercial practices of advanced NPP are undergoing in the world, pebble-bed high-temperature gas-cooled reactor (HTGR) power plant is under construction in China which is considered as a representative of advanced NPP. The paper tries to find some pieces of suggestion from our investigation. The discussion of advanced NPP EP will be summarized first, and then the characteristics of pebble-bed HTGR relating to EP will be described. Finally, PSA insights on emergency source terms selection and current pebble-bed HTGR emergency source terms suggestions are proposed

  17. Temperature changes caused by light curing of fiber-reinforced composite resins

    Science.gov (United States)

    Ilday, Nurcan Ozakar; Sagsoz, Omer; Karatas, Ozcan; Bayindir, Yusuf Ziya; Çelik, Neslihan

    2015-01-01

    Objective: The aim of the study is to evaluate temperature change in fiber-reinforced composite (FRC) resin photopolymerized with a light-emitting diode (LED) light-curing unit (LCU). Materials and Methods: Forty dentine disks (1 mm thick and 8 mm diameter) were prepared from human molars. The FRC specimens (2 mm thickness and 8 mm diameter) consisted of polyethylene fiber (Construct (CT)) products or glass fiber (ever Stick (ES)) and one hybrid composite bonded to the dentin disks and polymerized with an LED LCU. Control groups were prepared using the hybrid composite. Temperature rise in dentine samples under the FRC bonded disks was measured using a K-type thermocouple, and data were recorded. Temperature change data were subjected to analysis of variance (ANOVA) and Duncan's test. Results: The results show that addition of fiber (one or two layers) did not change temperature rise values at any of the exposure times (P > 0.05). The CT fiber/two layer/40 s group exhibited the greatest temperature rise (5.49 ± 0.62) and the ES/one layer/10 s group the lowest rise (1.75 ± 0.32). A significant difference was observed in temperature rise measured during 10 and 20 s exposures (P < 0.05). Conclusion: Maximal temperature rise determined in all groups was not critical for pulpal health, although clinicians need to note temperature rises during polymerization. PMID:26069409

  18. 2D Numerical Modelling of the Resin Injection Pultrusion Process Including Experimental Resin Kinetics and Temperature Validation

    DEFF Research Database (Denmark)

    Rasmussen, Filip Salling; Sonne, Mads Rostgaard; Larsen, Martin

    In the present study, a two-dimensional (2D) transient Eulerian thermo-chemical analysis of a carbon fibre epoxy thermosetting Resin Injection Pultrusion (RIP) process is carried out. The numerical model is implemented using the well known unconditionally stable Alternating Direction Implicit (ADI...... inside the composite profile are validated by comparison with experimental measurements and good agreement is found....

  19. The effects of lubrication on the temperature rise and surface finish of amalgam and composite resin.

    Science.gov (United States)

    Jones, C S; Billington, R W; Pearson, G J

    2007-01-01

    It was thought that when finishing and polishing direct filling materials lubrication would affect the surface roughness and temperature rise in samples of amalgam and composite. Previous work by the authors has shown that there is an optimum load, speed and time that produced the smoothest surface when finishing amalgam and composite resin using each of four grades of a disc system. This work was undertaken to examine the effects on temperature rise in samples of amalgam and composite resin of finishing dry compared to finishing with different lubricants. The experiments all used these optimum loads, speeds and times. It also compares the surface finish produced using different lubricants. A high copper amalgam and a hybrid composite resin were finished using the four grades of abrasive discs. Samples produced were 25 mm long by 6 mm wide by 2 mm deep. A thermocouple was inserted 1 mm into the base of the samples. The thermocouple was connected via an electronic thermometer to a computer that permitted the display and recording of temperature against time. After roughening, the samples were finished and polished in a specially constructed jig that mimicked oral finishing. The pre-determined optimum loads, speeds and times were used sequentially for each of the four grades of disc. Five samples were tested for each method of finishing. Firstly, run dry, then in turn lubricated with water, walnut oil and petroleum jelly. After the use of each abrasive disc the surface roughness was measured. One of the five samples was selected at random and prepared for examination in the scanning electron microscope. All results were subjected to non-parametric statistically analyses. With both materials the temperature rise was greatest when run dry, followed by petroleum jelly, walnut oil and the least was when lubricated with water. With these two materials the surface roughness correlates negatively with the temperature rise. The smoothest surface being achieved when finished

  20. Bond strength between fiber posts and composite resin core: influence of temperature on silane coupling agents.

    Science.gov (United States)

    Novais, Veridiana Resende; Simamotos Júnior, Paulo Cézar; Rontani, Regina Maria Puppin; Correr-Sobrinho, Lourenço; Soares, Carlos José

    2012-01-01

    This study evaluated the effect of air drying temperature and different silane coupling agents on the bond strength between glass fiber posts and composite resin core. The post surface was cleaned with alcohol and treated with different silane coupling agents, being three prehydrolyzed silanes [Silano (Angelus), Prosil (FGM), RelyX Ceramic Primer (3M ESPE)] and one two-component silane [Silane Coupling Agent (Dentsply)]. Two post-silanization air drying temperatures, 23ºC and 60ºC, were applied. A cylindrical plastic matrix was placed around the silanized post and filled with composite resin. Each bonded post provided 7 slices for push-out testing. Each slice was loaded to failure under compression at a cross-head speed of 0.5 mm/min. Data were analyzed by two-way ANOVA and Scott-Knott tests (α=0.05). Dunnett's test was used to compare the mean of the control group with that of each experimental group. Scanning electron microscopy (SEM) was used to evaluate the interface of the fractured slices. For the 23ºC air drying temperature, the use of RelyX Ceramic Primer resulted in significantly lower bond strength than the other silane coupling agents, while the bond strength with Silane Coupling Agent was the highest of all groups. Only with Silane Coupling Agent, the bond strength for the 23ºC air drying temperature was significantly higher than that for 60ºC air drying. In conclusion, the use of warm air drying after silane application produced no increase in the bond strength between the fiber-reinforced composite post and the composite core. The two-component silane produced higher bond strength than all prehydrolyzed silanes when it was used with air drying at room temperature.

  1. Energy efficient room temperature synthesis of cardanol-based novolac resin using acoustic cavitation.

    Science.gov (United States)

    Jadhav, Nilesh L; Sastry, Sai Krishna C; Pinjari, Dipak V

    2018-04-01

    The present study deals with synthesis of cardanol-cased novolac (CBN) resin by the condensation reaction between cardanol and formaldehyde using acoustic cavitation. It is a step-growth polymerization which occurs in the presence of an acid catalyst such as adipic acid, citric acid, oxalic acid, sulphuric acid and hydrochloric acid. CBN was also synthesised by a conventional method for the sake of comparison of techniques. The effect of molar ratio, effect of catalyst, effect of different catalyst and effect of power on the conversion to CBN has been studied. The synthesised CBN was characterized using the Fourier Transform Infra Red Spectroscopy (FTIR), Gel Permeation Chromatography (GPC), Nuclear Magnetic Resonance (NMR) Spectroscopy and Thermogravimetric Analysis (TGA). The reaction was monitored by the Acid value, free formaldehyde content and viscosity of the synthesised product. The reaction time required for the conventionally synthesised CBN was 5 h (300 min) with 120 °C as an operating temperature while sonochemically the time reduced to 30 min at room temperature. The amount of time and energy saved can be quantified. Ultrasound facilitated synthesis was found to be an energy efficient and time-saving method for the synthesis of novolac resin. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Influence of light curing unit and ceramic thickness on temperature rise during resin cement photo-activation.

    Science.gov (United States)

    Guiraldo, Ricardo Danil; Consani, Simonides; Mastrofrancisco, Sarina; Consani, Rafael Leonardo Xediek; Sinhoreti, Mario Alexandre Coelho; Correr-Sobrinho, Lourenço

    2008-11-01

    The aim of this study was to determine the effect of different ceramic thickness on heat generation during resin cement photo-activation by QTH (quartz-tungsten-halogen), LED (light emitting diode), and PAC (plasma arc-curing) LCUs (light curing units). The resin cement used was Rely X ARC (3M-ESPE), and the ceramic was IPS Empress Esthetic (Ivoclar-Vivadent), of which 0.7-, 1.4- and 2.0-mm thick disks, 0.8 mm in diameter were made. Temperature increase was recorded with a type-K thermocouple connected to a digital thermometer (Iopetherm 46). An acrylic resin base was built to guide the thermocouple and support the 1.0-mm thick dentin disk. A 0.1-mm thick black adhesive paper matrix with a perforation 6 mm in diameter was placed on the dentin to contain the resin cement and support the ceramic disks of different thicknesses. Three LCUs were used: QTH, LED and PAC. Nine groups were formed (n=10) according to the interaction: 3 ceramic thicknesses, 1 resin cement and 3 photo-activation methods. Temperature increase data were submitted to Tukey's test (5%). For all ceramic thicknesses, a statistically significant difference in temperature increase was observed among the LCUs, with the highest mean value for the QTH LCU (p0.05). The interaction of higher energy density with smaller ceramic thickness showed higher temperature increase values.

  3. Thermal analysis of a high-temperature falling bed fusion reactor blanket

    International Nuclear Information System (INIS)

    DePaz, J.F.; Harkness, S.D.

    1979-01-01

    A high temperature, falling bed blanket has been designed for a tokamak fusion reactor. The design centers on the use of a gravity flow of 0.5 to 1.5 cm diameter Al 2 O 3 balls as the high temperature heat transfer media. This system has the advantage of being able to produce process heat at temperatures in excess of 1000 0 C while maintaining structural temperatures at approximately 400 0 C. Pumping powers for the system are low. A thermal hydraulic analysis of a representative blanket module has, however, identified several potential problem areas. The most important of these is the fact that unless steps are taken to avoid it, as much as 40% of the total power deposited in the high temperature bed is extracted as low temperature heat through the active cooling of the structural shell of the duct channeling falling ceramic balls. The use of more insulating liner bricks was explored and rejected due to the excessively high temperatures that resulted in these bricks. Velocity partitioning of the falling balls appears to be the most promising method for reducing the loss of energy to the actively cooled structure

  4. Stability analysis of the high temperature thermal pebble bed nuclear reactor concept

    International Nuclear Information System (INIS)

    Vondy, D.R.

    1981-02-01

    A study was made of the stability of the high temperature gas-cooled pebble bed core against xenon-driven oscillation. This generic study indicated that a core as large as 3000 MW(t) could be stable. Several aspects present a challenge to analysis including the void space above the pebble bed, the effects of possible control rod configurations, and the temperature feedback contribution. Special methods of analysis were developed in this effort. Of considerable utility was the scheme of including an azimuthal buckling loss term in the neturon balance equations admitting direct solution of the first azimuthal harmonic for a core having azimuthal symmetry. This technique allows the linear stability analysis to be done solving two-dimensional (RZ) problems instead of three-dimensional problems. A scheme for removing the fundamental source contribution was also implemented to allow direct iteration toward the dominant harmonic solution, treating up to three dimensions with diffusion theory

  5. Effect of silane type and air-drying temperature on bonding fiber post to composite core and resin cement.

    Science.gov (United States)

    de Rosatto, Camila Maria Peres; Roscoe, Marina Guimarães; Novais, Veridiana Resende; Menezes, Murilo de Sousa; Soares, Carlos José

    2014-01-01

    This study evaluated the influence of silane type and temperature of silane application on push-out bond strength between fiberglass posts with composite resin core and resin cement. One hundred and sixty fiberglass posts (Exacto, Angelus) had the surface treated with hydrogen peroxide 24%. Posts were divided in 8 groups according to two study factors: air-drying temperature after silane application (room temperature and 60 ºC) and silane type: three pre-hydrolyzed--Silano (Angelus), Prosil (FGM), RelyX Ceramic Primer (3M ESPE) and one two-component silane--Silane Coupling Agent (Dentsply). The posts (n=10) for testing the bond strength between post and composite core were centered on a cylindrical plastic matrix and composite resin (Filtek Z250 XT, 3M ESPE) that was incrementally inserted and photoactivated. Eighty bovine incisor roots (n=10) were prepared for testing the bond strength between post and resin cement (RelyX U100, 3M ESPE) and received the fiberglass posts. Push-out test was used to measure the bond strength. Data were analyzed by two-way ANOVA followed by Tukey's test (α=0.05). ANOVA revealed that temperature and silane had no influence on bond strength between composite core and post. However, for bond strength between post and resin cement, the temperature increase resulted in a better performance for Silane Coupling Agent, Silano and RelyX Ceramic Primer. At room temperature Silane Coupling Agent showed the lowest bond strength. Effect of the warm air-drying is dependent on the silane composition. In conclusion, the use of silane is influenced by wettability of resinous materials and pre-hydrolyzed silanes are more stable compared with the two-bottle silane.

  6. Probabilistic safety assessment framework of pebble-bed modular high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Liu Tao; Tong Jiejuan; Zhao Jun; Cao Jianzhu; Zhang Liguo

    2009-01-01

    After an investigation of similar reactor type probabilistic safety assessment (PSA) framework, Pebble-bed Modular High-Temperature Gas-cooled Reactor (HTR-PM) PSA framework was presented in correlate with its own design characteristics. That is an integral framework which spreads through event sequence structure with initiating events at the beginning and source term categories in the end. The analysis shows that it is HTR-PM design feature that determines its PSA framework. (authors)

  7. Temperature distribution on the MEA surface of a PEMFC with serpentine channel flow bed

    Science.gov (United States)

    Wang, Maohai; Guo, Hang; Ma, Chongfang

    Knowledge of the temperature distribution on the membrane electrode assembly (MEA) surface and heat transfer processes inside a proton exchange membrane fuel cell (PEMFC) is helpful to improvement of cell reliability, durability and performance. The temperature fields on the surface of MEA fixed inside a proton exchange membrane fuel cell with a serpentine channel flow bed were measured by infrared imaging technology under non-humidification conditions. The temperature distributions over the MEA surface under whole channel region were achieved. The experimental results show that the downstream temperatures are higher than the upstream. The hot region on the MEA surface is easy to locate from the infrared temperature image. The mean temperature on the MEA surface and the cell temperature both increase with the current density. Higher current density makes the non-uniformity of temperature distribution on the MEA surface worse. The loading time significantly affects the temperature distribution. Compared with the electrical performance of the cell, the MEA's temperatures need much more time to reach stable. The results indicate that isothermal assumption is not appropriate for a modeling of PEMFCs, and monitoring the temperature of external surface of the flow field plate or end plate cannot supply accurate reference to control the temperatures on MEA surface.

  8. Effects of High-Temperature-Pressure Polymerized Resin-Infiltrated Ceramic Networks on Oral Stem Cells.

    Directory of Open Access Journals (Sweden)

    Mathilde Tassin

    Full Text Available The development of CAD-CAM techniques called for new materials suited to this technique and offering a safe and sustainable clinical implementation. The infiltration of resin in a ceramic network under high pressure and high temperature defines a new class of hybrid materials, namely polymer infiltrated ceramics network (PICN, for this purpose which requires to be evaluated biologically. We used oral stem cells (gingival and pulpal as an in vitro experimental model.Four biomaterials were grinded, immersed in a culture medium and deposed on stem cells from dental pulp (DPSC and gingiva (GSC: Enamic (VITA®, Experimental Hybrid Material (EHM, EHM with initiator (EHMi and polymerized Z100™ composite material (3M®. After 7 days of incubation; viability, apoptosis, proliferation, cytoskeleton, inflammatory response and morphology were evaluated in vitro.Proliferation was insignificantly delayed by all the tested materials. Significant cytotoxicity was observed in presence of resin based composites (MTT assay, however no detectable apoptosis and some dead cells were detected like in PICN materials. Cell morphology, major cytoskeleton and extracellular matrix components were not altered. An intimate contact appeared between the materials and cells.The three new tested biomaterials did not exhibit adverse effects on oral stem cells in our experimental conditions and may be an interesting alternative to ceramics or composite based CAD-CAM blocks.

  9. RESEARCH ON THE INFLUENCE OF TEMPERATURE ON THE ACTIVATION OF SELECTED POROUS MNO2 BEDS

    Directory of Open Access Journals (Sweden)

    Iwona Skoczko

    2016-09-01

    Full Text Available Rising demands concerning water treatment and conservation make it necessary to search for more effective as well as cheap and ecologically safe solutions. During the filtration process quartz sand is replaced by filter materials which also have a strong effect on account of reactions taking place on a bed’s surface. Today’s technologies for groundwater and seepage water treatment in rapid filters make use of oxidation beds. They are able to effectively remove manganese (II and iron (II compounds based on heterogeneous oxidation catalysis. The main catalyst of the manganese removal process in terms of its catalytic oxidation in filtration beds is manganese dioxide. This compound is used as an oxidizing agent in many processes. The research conducted as part of this paper was aimed at creating a product with the qualities similar to a popular Greensand bed protected by patent. The authors tested washed quartz sand varying in granulation which was subject to activation in 10% KMnO4 solution. Grains of quartz sand after covering them with a permanent coat of manganese oxide developed the superficial oxidation layer. While performing the tests, a temperature of the process served as a variable. The beds produced as a result of the experiment enable the removal of iron and manganese from water without prior alkylation. Furthermore, they are an effective method of purifying water of organic pollutants and ammoniacal nitrogen. They function as oxidizing and filtering masses.

  10. Quasi-direct numerical simulation of a pebble bed configuration, Part-II: Temperature field analysis

    International Nuclear Information System (INIS)

    Shams, A.; Roelofs, F.; Komen, E.M.J.; Baglietto, E.

    2013-01-01

    Highlights: ► Quasi direct numerical simulations (q-DNSs) of a pebble bed configuration have been performed. ► This q-DNS database may serve as a reference for the validation of different turbulence modeling approaches. ► A wide range of qualitative and quantitative data throughout the computational domain has been generated. ► Results for mean, RMS of temperature and respective turbulent heat fluxes are extensively reported in this paper. -- Abstract: Good prediction of the flow and heat transfer phenomena in the pebble bed core of a high temperature reactor (HTR) is a challenge for available turbulence models, which still require to be validated. While experimental data are generally desirable in this validation process, due to the complex geometric configuration and measurement difficulties, a very limited amount of data is currently available. On the other hand, direct numerical simulation (DNS) is considered an accurate simulation technique, which may serve as an alternative for validating turbulence models. In the framework of the present study, quasi-direct numerical simulation (q-DNS) of a single face cubic centered pebble bed is performed, which will serve as a reference for the validation of different turbulence modeling approaches in order to perform calculations for a randomly arranged pebble bed. These simulations were performed at a Reynolds number of 3088, based on pebble diameter, with a porosity level of 0.42. Results related to flow field (mean, RMS and covariance of velocity) have been presented in Part-I, whereas, in the present article, we focus our attention to the analysis of the temperature field. A wide range of qualitative and quantitative data for the thermal field (mean, RMS and turbulent heat flux) has been generated

  11. Evaluation of oil and grease removal by adsorptive polymeric resins in semi-industrial scale: influence of temperature; Avaliacao da remocao de oleos e graxas por resinas polimericas adsorventes em escala semi-industrial: influencia da temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luis F.S. de; Silva, Carla M.F. da; Queiros, Yure G.C.; Lucas, Elizabete F. [Universidade Federal do Rio de Janeiro, Instituto de Macromoleculas, Laboratorio de Macromoleculas e Coloides na Industria de Petroleo, Rio de Janeiro, RJ (Brazil)], e-mail: elucas@ima.ufrj.br

    2011-07-01

    The aim of this study was to evaluate the performance of polymeric resins packed in a fixed bed eluted in semi-industrial scale for oil and greases removal disposed in synthetic oily water in different temperature conditions. For this work, columns packed with vinyl and acryl polymer-base were tested and their efficiency of oil removal was evaluated by fluorimetry technique in two different temperatures: 25 and 60 deg C, in a flow rate condition of 200 mL/min. The experimental results were very good: the removal efficiencies were above 98% in both cases. At 60 deg C, the system keep the efficiency for a longer time: no significant loss in the efficiency was observed after eluting 1,000 times of the column bed volume at 25 deg C and 2,000, at 60 deg C. This result characterizes a great potential of application in the industry. (author)

  12. Tailored benzoxazines as novel resin systems for printed circuit boards in high temperature e-mobility applications

    Energy Technology Data Exchange (ETDEWEB)

    Troeger, K., E-mail: altstaedt@uni-bayreuth.de; Darka, R. Khanpour, E-mail: altstaedt@uni-bayreuth.de; Neumeyer, T., E-mail: altstaedt@uni-bayreuth.de; Altstaedt, V., E-mail: altstaedt@uni-bayreuth.de [Polymer Engineering, University of Bayreuth, Germany and Polymer Engineering, Universitaetsstrasse 30, 95447 Bayreuth (Germany)

    2014-05-15

    This study focuses on the development of Bisphenol-F-benzoxazine resins blended with different ratios of a trifunctional epoxy resin suitable as matrix for substrates for high temperature printed circuit board (HT-PCB) applications. With the benzoxazine blends glass transition temperatures of more than 190 °C could be achieved in combination with a coefficient of thermal expansion in thickness direction (z-CTE) of less than 60 ppm/K without adding any fillers. This shows the high potential of the benzoxazine-epoxy blend systems as substrate materials for HT-PCBs. To understand the thermal behavior of the different formulations, the apparent crosslink density was calculated based on data from Dynamic Mechanical Analysis. Laminates in laboratory scale were prepared and characterized to demonstrate the transformation of the neat resin properties into real electronic substrate properties. The produced laminates exhibit a z-CTE below 40 ppm/K.

  13. Electrospun melamine resin-based multifunctional nonwoven membrane for lithium ion batteries at the elevated temperatures

    Science.gov (United States)

    Wang, Qingfu; Yu, Yong; Ma, Jun; Zhang, Ning; Zhang, Jianjun; Liu, Zhihong; Cui, Guanglei

    2016-09-01

    A flame retardant and thermally dimensional stable membrane with high permeability and electrolyte wettability can overcome the safety issues of lithium ion batteries (LIBs) at elevated temperatures. In this work, a multifunctional thermoset nonwoven membrane composed of melamine formaldehyde resin (MFR) nano-fibers was prepared by a electro-spinning method. The resultant porous nonwoven membrane possesses superior permeability, electrolyte wettability and thermally dimensional stability. Using the electrospun MFR membrane, the LiFePO4/Li battery exhibits high safety and stable cycling performance at the elevated temperature of 120 °C. Most importantly, the MFR membrane contains lone pair electron in the nitrogen element, which can chelate with Mn2+ ions and suppress their transfer across the separator. Therefore, the LiMn2O4/graphite cells with the electrospun MFR multifunctional membranes reveal an improved cycle performance even at high temperature. This work demonstrated that electrospun MFR is a promising candidate material for high-safety separator of LIBs with stable cycling performance at elevated temperatures.

  14. Effect of temperature, curing time, and filler composition on surface microhardness of composite resins

    Science.gov (United States)

    Dionysopoulos, Dimitrios; Papadopoulos, Constantinos; Koliniotou-Koumpia, Eugenia

    2015-01-01

    Aim: The aim of this study was to evaluate the microhardness of two composite resins when subjected to three different temperatures and three different light-curing times. Materials and Methods: Two composites were used; Filtek Z250 and Grandio. Three different temperatures (23, 37, and 55oC) were used, utilizing a composite warmer. The heated samples were immediately injected into cylindrical molds (6 mm × 2 mm) and the top surface of the specimens was polymerized for 10, 20, and 40 sec, using a Quartz-Tungsten-Halogen light-curing unit (QTH LCU). Vickers microhardness measurements were performed from both the top and bottom surface of the specimens, following dry storage for 24 hours in the dark. Statistical analysis were performed using one-way analysis of variance (ANOVA) and Tukey post-hoc test at a level of significance of a = 0.05. Results: The results indicated that there was an increase in microhardness as the temperature of the composite was increased for either the top or the bottom surface (P 0.05). Conclusions: Temperature of composites affects their surface microhardness. Also, light-curing time influence microhardness values of the composites tested. PMID:25829688

  15. Two stage, low temperature, catalyzed fluidized bed incineration with in situ neutralization for radioactive mixed wastes

    International Nuclear Information System (INIS)

    Wade, J.F.; Williams, P.M.

    1995-01-01

    A two stage, low temperature, catalyzed fluidized bed incineration process is proving successful at incinerating hazardous wastes containing nuclear material. The process operates at 550 degrees C and 650 degrees C in its two stages. Acid gas neutralization takes place in situ using sodium carbonate as a sorbent in the first stage bed. The feed material to the incinerator is hazardous waste-as defined by the Resource Conservation and Recovery Act-mixed with radioactive materials. The radioactive materials are plutonium, uranium, and americium that are byproducts of nuclear weapons production. Despite its low temperature operation, this system successfully destroyed poly-chlorinated biphenyls at a 99.99992% destruction and removal efficiency. Radionuclides and volatile heavy metals leave the fluidized beds and enter the air pollution control system in minimal amounts. Recently collected modeling and experimental data show the process minimizes dioxin and furan production. The report also discusses air pollution, ash solidification, and other data collected from pilot- and demonstration-scale testing. The testing took place at Rocky Flats Environmental Technology Site, a US Department of Energy facility, in the 1970s, 1980s, and 1990s

  16. OPTIMASI UNJUK KERJA FLUIDIZED BED GASIFIER DENGAN MEVARIASI TEMPERATURE UDARA AWAL

    Directory of Open Access Journals (Sweden)

    Karnowo Karnowo

    2011-02-01

    Full Text Available Gasifikasi merupakan metode mengkonversi secara termokimia bahan bakar padat menjadi bahan bakar gas (syngas dalam wadah gasifier dengan menyuplai agen gasifikasi seperti uap panas, udara dan lainnya. Metode gasifikasi dinilai lebih menguntungkan dan gas pembakaran lebih bersih dibanding pembakaran langsung. Namun demikian, tekonologi gasifikasi masih perlu dikembangkan mengingat masih rendahnya efisiensi gasifikasi. Hal ini karena karakteristik biomassa khususnya sekam padi memiliki kadar air yang tinggi. Penelitian ini bertujuan untuk mengetahui pengaruh temperatur awal udara terhadap efisiensi gasifikasi sekam padi. Alat gasifikasi yang digunakan adalah updraft circulating fluidized bed gasifier. Penelitian dilakukan pada temperatur awal udara yang bervariasi yaitu 300C hingga 4000C. Hasil penelitian menunjukkan bahwa semakin tinggi temperatur awal udara gasifikasi, semakin meningkat efisiensi gasifikasi dan efisiensi karbon. Temperatur awal udara yang optimum didapatkan pada 3000C dengan efisiensi gasifikasi sebesar 65,78%.

  17. Behavior of Alkali Metals and Ash in a Low-Temperature Circulating Fluidized Bed (LTCFB) Gasifier

    DEFF Research Database (Denmark)

    Narayan, Vikas; Jensen, Peter Arendt; Henriksen, Ulrik Birk

    2016-01-01

    , the low reactor temperature ensures that high-alkali biomass fuels canbe used without risk of bed defluidization. This paper presents the first investigation of the fate of alkali metals and ash in lowtemperaturegasifiers. Measurements on bed material and product gas dust samples were made on a 100 k......W and a 6 MW LTCFBgasifier. Of the total fuel ash entering the system, the largest fraction (40−50%) was retained in the secondary cyclone bottoms,while a lower amount (8−10%) was released as dust in the exit gas. Most of the alkali and alkaline earth metals were retained inthe solid ash, along with Si...... by the particle size and the cut size ofthe primary and secondary cyclones. A model accounting for the ash collection by the plant cyclones was shown to predict theproduct gas ash particle release reasonably well....

  18. Standard metabolic rate of the bed bug, Cimex lectularius: effects of temperature, mass, and life stage.

    Science.gov (United States)

    Devries, Zachary C; Kells, Stephen A; Appel, Arthur G

    2013-11-01

    Metabolic rates provide important information about the biology of organisms. For ectothermic species such as insects, factors such as temperature and mass heavily influence metabolism, but these effects differ considerably between species. In this study we examined the standard metabolic rate of the bed bug, Cimex lectularius L. We used closed system respirometry and measured both O2 consumption and CO2 production across a range of temperatures (10, 20, 25, 30, 35°C) and life stages, while also accounting for activity. Temperature had a stronger effect on the mass specific .VO2 (mlg(-1)h(-1)) of mated males (Q10=3.29), mated females (Q10=3.19), unmated males (Q10=3.09), and nymphs that hatched (first instars, Q10=3.05) than on unmated females (Q10=2.77) and nymphs that molted (second through fifth instars, Q10=2.78). First instars had significantly lower respiratory quotients (RQ) than all other life stages. RQ of all stages was not affected by temperature. .VO2 (mlh(-1)) scaled more with mass than values previously reported for other arthropods or that would be predicted by the 3/4-power law. The results are used to understand the biology and ecology of the bed bug. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Multi-podant diglycolamides and room temperature ionic liquid impregnated resins: an excellent combination for extraction chromatography of actinides

    NARCIS (Netherlands)

    Gujar, R.B.; Ansari, S.A.; Verboom, Willem; Mohapatra, P.K.

    2016-01-01

    Extraction chromatography resins, prepared by impregnating two multi-podant diglycolamide ligands, viz. diglycolamide-functionalized calix[4]arene (C4DGA) and tripodal diglycolamide (T-DGA) dissolved in the room temperature ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide

  20. Comparison of Microleakage and Thickness of Resin Cement in Ceramic Inlays with Various Temperatures

    Science.gov (United States)

    Alaghemand, Homayoun; Abolghasemzadeh, Faezeh; Pakdel, Farzaneh; Judi Chelan, Reza

    2014-01-01

    Background and aims. Microleakage is still one of the major problems of composite-based restorations.This study compared the microleakage and thickness of resin cement in ceramic inlays with various temperatures. Materials and methods. Class V cavities were prepared on the buccal and lingual aspects of thirty human molars with occlusal margins in enamel and gingival margins in dentin (3 mm wide, 5 mm long and 2 mm deep). Laboratory-made inlays (LMI) were used for buccal cavities, and CAD/CAM inlays (CMI) were used for lingual cavities. All the cavities were divided into six groups (n=10): 1) LMI at -5°C; 2) LMI at 50°C; 3) LMI at room temperature (25°C); 4) CMI at -5°C; 5) CMI at 50°C; 6) CMI at room temperature (25°C). Inlays were bonded to cavities in a pulp pressure- and temperature-simulating device. After thermocycling and dye penetration, the teeth were divided into two mesiodistal halves. Amount of dye penetration and film thickness were measured under a stereomicroscope and analyzed with Kruskal-Wallis, Wilcoxon and Spearman's correlation tests ( = 0.05). Results. There were no statistically significant differences in leakage between different inlay temperatures (P > 0.05). The mean cement thickness in laboratory-made inlays (gingival margin, 83.7 ± 11 and occlusal margin, 84.7 ± 19) was greater than that in CAD/CAM inlays (gingival margin, 69 ± 16 and occlusal margin, 84.7 ± 16). No correlation was found be-tween cement thickness and microleakage either in enamel or dentin for any of the ceramic systems. Conclusion. Differences in inlay temperature had no effect on microleakage. CAD/CAM inlays had lower cement thickness than laboratory-made inlays, but this was not related to their microleakage. PMID:25024839

  1. A nonintrusive temperature measuring system for estimating deep body temperature in bed.

    Science.gov (United States)

    Sim, S Y; Lee, W K; Baek, H J; Park, K S

    2012-01-01

    Deep body temperature is an important indicator that reflects human being's overall physiological states. Existing deep body temperature monitoring systems are too invasive to apply to awake patients for a long time. Therefore, we proposed a nonintrusive deep body temperature measuring system. To estimate deep body temperature nonintrusively, a dual-heat-flux probe and double-sensor probes were embedded in a neck pillow. When a patient uses the neck pillow to rest, the deep body temperature can be assessed using one of the thermometer probes embedded in the neck pillow. We could estimate deep body temperature in 3 different sleep positions. Also, to reduce the initial response time of dual-heat-flux thermometer which measures body temperature in supine position, we employed the curve-fitting method to one subject. And thereby, we could obtain the deep body temperature in a minute. This result shows the possibility that the system can be used as practical temperature monitoring system with appropriate curve-fitting model. In the next study, we would try to establish a general fitting model that can be applied to all of the subjects. In addition, we are planning to extract meaningful health information such as sleep structure analysis from deep body temperature data which are acquired from this system.

  2. Measurement of flow field in the pebble bed type high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Lee, Sa Ya; Lee, Jae Young

    2008-01-01

    In this study, flow field measurement of the Pebble Bed Reactor(PBR) for the High Temperature Gascooled Reactor(HTGR) was performed. Large number of pebbles in the core of PBR provides complicated flow channel. Due to the complicated geometries, numerical analysis has been intensively made rather than experimental observation. However, the justification of computational simulation by the experimental study is crucial to develop solid analysis of design method. In the present study, a wind tunnel installed with pebbles stacked was constructed and equipped with the Particle Image Velocimetry(PIV). We designed the system scaled up to realize the room temperature condition according to the similarity. The PIV observation gave us stagnation points, low speed region so that the suspected high temperature region can be identified. With the further supplementary experimental works, the present system may produce valuable data to justify the Computational Fluid Dynamics(CFD) simulation method

  3. Comparison of Microleakage and Thickness of Resin Cement in Ceramic Inlays with Various Temperatures

    Directory of Open Access Journals (Sweden)

    Homayoun Alaghemand

    2014-03-01

    Full Text Available Background and aims. Microleakage is still one of the major problems of composite-based restorations. This study compared the microleakage and thickness of resin cement in ceramic inlays with various temperatures. Materials and methods. Class V cavities were prepared on the buccal and lingual aspects of thirty human molars with occlusal margins in enamel and gingival margins in dentin (3 mm wide, 5 mm long and 2 mm deep. Laboratory-made inlays (LMI were used for buccal cavities, and CAD/CAM inlays (CMI were used for lingual cavities. All the cavities were divided into six groups (n=10: 1 LMI at -5°C; 2 LMI at 50°C; 3 LMI at room temperature (25°C; 4 CMI at -5°C; 5 CMI at 50°C; 6 CMI at room temperature (25°C. Inlays were bonded to cavities in a pulp pressure- and temperaturesimulating device. After thermocycling and dye penetration, the teeth were divided into two mesiodistal halves. Amount of dye penetration and film thickness were measured under a stereomicroscope and analyzed with Kruskal-Wallis, Wilcoxon and Spearman's correlation tests ( = 0.05. Results. There were no statistically significant differences in leakage between different inlay temperatures (P > 0.05. The mean cement thickness in laboratory-made inlays (gingival margin, 83.7 ± 11 and occlusal margin, 84.7 ± 19 was greater than that in CAD/CAM inlays (gingival margin, 69 ± 16 and occlusal margin, 84.7 ± 16. No correlation was found between cement thickness and microleakage either in enamel or dentin for any of the ceramic systems. Conclusion. Differences in inlay temperature had no effect on microleakage. CAD/CAM inlays had lower cement thickness than laboratory-made inlays, but this was not related to their microleakage.

  4. Fluidised bed catalytic pyrolysis of scrap tyres: influence of catalyst:tyre ratio and catalyst temperature.

    Science.gov (United States)

    Williams, Paul T; Brindle, Alexander J

    2002-12-01

    Pyrolysis with on-line Zeolite catalysis of scrap tyres was undertaken in a fluidised bed reactor with the aim of maximising the production of higher value single ring aromatic hydrocarbons in the derived oil. Experiments were carried out in relation to the ratio of the catalyst to tyre feedstock and the temperature of the catalyst bed. Two Zeolite catalysts were examined, a Y-type Zeolite catalyst and Zeolite ZSM-5 catalyst of differing pore size and surface activity. The composition of the oils derived from the uncatalysed fluidised bed pyrolysis of tyres showed that benzene concentration was 0.2 wt%, toluene concentration was 0.8 wt%, o-xylene was 0.3 wt%, m/p-xylenes were 1.8 wt% and limonene was 4.3 wt%. Benzene, toluene and xylenes present in the oils showed a significant increase in the presence of both of the catalysts. The maximum concentrations of these chemicals for the Y-Zeolite (CBV-400) catalyst was 1 wt% for benzene, 8wt% for toluene, 3 wt% for o-xylene and 8.5 wt% for m/p-xylenes, produced at a catalyst:tyre ratio of 1.5. There was less influence of catalyst temperature on the yield of benzene, toluene and xylenes, however, increasing the temperature of the catalyst resulted in a marked decrease in limonene concentration. The Y-type Zeolite catalyst produced significantly higher concentrations of benzene, toluene and xylenes which was attributed to the larger pore size and higher surface acidity of the Y-Zeolite catalyst compared to the Zeolite ZSM-5 catalyst.

  5. Numerical investigation of the flow at the pebble bed of the high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Costa, Franklin C.; Navarro, Moyses A.; Santos, Andre A.C.

    2011-01-01

    This paper presents a numerical investigation of the thermal and fluid dynamics among the fuel spheres and the cooling fluid, appearing in the core of pebble bed reactor (PBR-Peeble Bed Reactor) using the CFD-Computational Fluid Dynamics CFX 13.0. The paper presents the two analysis results. In the first phase it was considered two heat transfer models for the fuel spheres. In a model it was established volumetric load generation, with thermal conduction for both the fuel and coating. The other model prescribes a heat flux at the sphere surfaces. In this analysis, it was proceed two simulation in the two sphere arrangements, one considering the spheres in contact, and the other with 2 mm spacing between them. At the second analysis it was evaluated the sphere arrangement influence on the thermal and fluid dynamic behavior of the bed. The four simulations present differences in the flow and in the surface and maximum temperature profiles of the coating.(author)

  6. Resin composite blocks via high-pressure high-temperature polymerization.

    Science.gov (United States)

    Nguyen, Jean-François; Migonney, Véronique; Ruse, N Dorin; Sadoun, Michaël

    2012-05-01

    The aim of this study was to thermo-polymerize under high pressure four commercially available dental resin composites to obtain and characterize composite blocks suitable for CAD/CAM procedures. Gradia (GC, Japan), Vita VM LC (Vita Zahnfabrik, Germany), Grandio (VOCO, Germany), and EsthetX (Dentsply, Germany), were selected for this study. Paradigm (3 M ESPE, USA), a CAD/CAM composite block, was included for comparison. Composite blocks were obtained through polymerization at high-temperature high-pressure (HT/HP). Samples for mechanical/physical characterizations were cut from Paradigm and HT/HP composite blocks while control samples were obtained by photo-polymerizing (PP) the materials in molds. Flexural strength (σ(f)), fracture toughness (K(IC)), hardness, and density (ρ) were determined and compared by pairwise t-tests (α=0.05). Fractured surfaces were characterized under a scanning electron microscope. The results have shown that HT/HP polymerization resulted in a significant (p<0.05) increase in σ(f), hardness, and ρ for all composites investigated. Even if K(IC) of all materials was increased by HT/HP polymerization, significant increases were detected only for Gradia and EsthetX. The Weibull modulus of HT/HP polymerized composites was higher than that of PP counterparts. HT/HP materials had higher σ(f), Weibull modulus, and K(IC) compared to Paradigm. The most significant SEM observation of fractured K(IC) specimens from all the materials tested was the presence of fewer and smaller voids in HT/HP polymerized composites. The results of this study suggest that HT/HP polymerization could be used to obtain dental resin composite blocks with superior mechanical properties, suitable for CAD/CAM processing. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Modeling of river bed deformation composed of frozen sediments with increasing environmental temperature

    Directory of Open Access Journals (Sweden)

    E. I. Debolskaya

    2013-01-01

    Full Text Available This paper is devoted to investigation of the influence of river flow and of the temperature rise on the deformation of the coastal slopes composed of permafrost with the inclusion of ice layer. The method of investigation is the laboratory and mathematical modeling. The laboratory experiments have shown that an increase in water and air temperature changes in a laboratory analogue of permafrost causes deformation of the channel even without wave action, i.e. at steady-state flow and non-erosive water flow velocity. The previously developed model of the bed deformation was improved to account for long-term changes of soil structure with increasing temperature. The three-dimensional mathematical model of coastal slopes thermoerosion of the rivers flowing in permafrost regions, and its verification was based on the results of laboratory experiments conducted in the hydraulic tray. Analysis of the results of mathematical and laboratory modeling showed that bed deformation of the rivers flowing in the permafrost zone, significantly different from the deformation of channels composed of soils not susceptible to the influence of the phase transition «water-ice», and can occur even under the non-erosive velocity of the water flow.

  8. Study on Characteristic of Temperature Coefficient of Reactivity for Plutonium Core of Pebbled Bed Reactor

    Science.gov (United States)

    Zuhair; Suwoto; Setiadipura, T.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    As a part of the solution searching for possibility to control the plutonium, a current effort is focused on mechanisms to maximize consumption of plutonium. Plutonium core solution is a unique case in the high temperature reactor which is intended to reduce the accumulation of plutonium. However, the safety performance of the plutonium core which tends to produce a positive temperature coefficient of reactivity should be examined. The pebble bed inherent safety features which are characterized by a negative temperature coefficient of reactivity must be maintained under any circumstances. The purpose of this study is to investigate the characteristic of temperature coefficient of reactivity for plutonium core of pebble bed reactor. A series of calculations with plutonium loading varied from 0.5 g to 1.5 g per fuel pebble were performed by the MCNPX code and ENDF/B-VII library. The calculation results show that the k eff curve of 0.5 g Pu/pebble declines sharply with the increase in fuel burnup while the greater Pu loading per pebble yields k eff curve declines slighter. The fuel with high Pu content per pebble may reach long burnup cycle. From the temperature coefficient point of view, it is concluded that the reactor containing 0.5 g-1.25 g Pu/pebble at high burnup has less favorable safety features if it is operated at high temperature. The use of fuel with Pu content of 1.5 g/pebble at high burnup should be considered carefully from core safety aspect because it could affect transient behavior into a fatal accident situation.

  9. Modeling the microbial growth and temperature profile in a fixed-bed bioreactor.

    Science.gov (United States)

    da Silveira, Christian L; Mazutti, Marcio A; Salau, Nina P G

    2014-10-01

    Aiming to scale up and apply control and optimization strategies, currently is required the development of accurate plant models to forecast the process nonlinear dynamics. In this work, a mathematical model to predict the growth of the Kluyveromyces marxianus and temperature profile in a fixed-bed bioreactor for solid-state fermentation using sugarcane bagasse as substrate was built up. A parameter estimation technique was performed to fit the mathematical model to the experimental data. The estimated parameters and the model fitness were evaluated with statistical analyses. The results have shown the estimated parameters significance, with 95 % confidence intervals, and the good quality of process model to reproduce the experimental data.

  10. Renewable side reflector structure for a pebble bed high temperature reactor

    International Nuclear Information System (INIS)

    Martin, Roger.

    1977-01-01

    The description is given of a renewable side reflector structure for a pebble bed high temperature reactor of the kind comprising a cylindrical graphite vessel constituting the neutron reflector, this vessel being filled with graphite pebbles containing the nuclear fuel and enclosed in a concrete protective containment. The internal peripheral area of the vessel is constituted by a line of adjacent graphite rods mounted so that they can rotate about their longitudinal axis and manoeuvrable from outside the concrete containment by means of a shaft passing into it [fr

  11. Influence of Temperature on Characters of Thermoelectric Generators Based on Test Bed

    Directory of Open Access Journals (Sweden)

    Zongzheng Ma

    2014-01-01

    Full Text Available In order to achieve the energy recovery of the coolant heat for internal combustion engine (ICE using the thermoelectric generation (TEG technology, one test bed for studying the influence of temperature on the characters of thermoelectric generators was established and the relationship between the temperature and characters of thermoelectric generator was researched based on it. The results showed that the cooling effect improved with the increase of fan speed which the fan was installed in the vertical direction of the radiator, but the cooling effect had a limit speed value. And it also indicated that the forced air cooling was better than the natural convection cooling method which can effectively reduce the temperature of the cold end while it has little effect on the hot end temperature. Moreover, the Seebeck coefficient was reduced with the increase of temperature difference between the two ends of thermoelectric generator and the Seebeck coefficient was also declined with one end temperature rise when the other end temperature was constant.

  12. Setting kinetics and shrinkage of self-adhesive resin cements depend on cure-mode and temperature.

    Science.gov (United States)

    Kitzmüller, Karin; Graf, Alexandra; Watts, David; Schedle, Andreas

    2011-06-01

    To investigate the influence of curing mode and temperature on the shrinkage kinetics of self-adhesive resin cements in comparison to a conventional multi-step resin cement. The shrinkage of self-adhesive resin cements Maxcem Elite (MX), Speedcem (SPC), Smartcem2 (SMC), iCem (IC) and RelyX Unicem (RX) and Nexus Third Generation (NX3) as a multi-step resin cement was measured continuously for 1h using the bonded disk method. All materials were tested with dual-curing (dc) and self-curing (sc) mode. All measurements (n=5 per group) were conducted at room temperature (23°C) as well as at body temperature (37°C). Shrinkage time constants were obtained from a simple exponential growth model. Data were statistically analyzed by ANOVA and the p-values were adjusted for multiplicity according to Hothorn et al. (2008) using the R-package "multcomp". Shrinkages ranged between 1.84 (RX sc23) and 7.09 (IC sc37). The curing-mode changing from sc to dc had the dominant effect for several materials, especially RX, both on final shrinkage and time constant for setting. Temperature increase had an effect on setting and shrinkage for all materials except RX. Final shrinkage for SPC, SMC and NX3 was statistically equivalent (p>0.05). The 3-fold variation in final shrinkage for these materials is significant for clinical material selection. Light curing can lead to a 10-fold increase in the rate of setting. A self-adhesive universal resin cement (RX) had the lowest shrinkage in the groups examined. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Changes in the temperature of a dental light-cured composite resin by different light-curing units

    Science.gov (United States)

    Rastelli, A. N. S.; Jacomassi, D. P.; Bagnato, V. S.

    2008-08-01

    The purpose of this study was to evaluate the temperature increase during the polymerization process through the use of three different light-curing units with different irradiation times. One argon laser (Innova, Coherent), one halogen (Optilight 501, Demetron), and one blue LED (LEC 1000, MM Optics) LCU with 500 mW/cm2 during 5, 10, 20, 30, 40, 50, and 60 s of irradiation times were used in this study. The composite resin used was a microhybrid Filtek Z-250 (3M/ESPE) at color A2. The samples were made in a metallic mold 2 mm in thickness and 4 mm in diameter and previously light-cured during 40 s. A thermocouple (Model 120 202 EAJ, Fenwal Electronic, Milford, MA, USA) was introduced in the composite resin to measure the temperature increase during the curing process. The highest temperature increase was recorded with a Curing Light 2500 halogen LCU (5 and 31°C after 5 and 60 s, respectively), while the lowest temperature increase was recorded for the Innova LCU based on an argon laser (2 and 11°C after 5 and 60 s, respectively). The temperature recorded for LCU based on a blue LED was 3 and 22°C after 5 and 60 s, respectively. There was a quantifiable amount of heat generated during the visible light curing of a composite resin. The amount of heat generated was influenced by the characteristics of the light-curing units used and the irradiation times.

  14. Water and sediment temperatures at mussel beds in the upper Mississippi River basin

    Science.gov (United States)

    Newton, Teresa J.; Sauer, Jennifer; Karns, Byron

    2013-01-01

    Native freshwater mussels are in global decline and urgently need protection and conservation. Declines in the abundance and diversity of North American mussels have been attributed to human activities that cause pollution, waterquality degradation, and habitat destruction. Recent studies suggest that effects of climate change may also endanger native mussel assemblages, as many mussel species are living close to their upper thermal tolerances. Adult and juvenile mussels spend a large fraction of their lives burrowed into sediments of rivers and lakes. Our objective was to measure surface water and sediment temperatures at known mussel beds in the Upper Mississippi (UMR) and St. Croix (SCR) rivers to estimate the potential for sediments to serve as thermal refugia. Across four mussel beds in the UMR and SCR, surface waters were generally warmer than sediments in summer, and were cooler than sediments in winter. This suggests that sediments may act as a thermal buffer for mussels in these large rivers. Although the magnitude of this effect was usually cause mortality in laboratory studies. These data suggest that elevated water temperatures resulting from global warming, thermal discharges, water extraction, and/or droughts have the potential to adversely affect native mussel assemblages.

  15. Sorption of Pb(II) onto a mixture of algae waste biomass and anion exchanger resin in a packed-bed column.

    Science.gov (United States)

    Bulgariu, Dumitru; Bulgariu, Laura

    2013-02-01

    Sorption of Pb(II) was studied by using a biosorbent mixture of algae waste biomass and Purolite A-100 resin in a packed-bed column. Mixing these two components was done to prevent the clogging of the column and to ensure adequate flow rates. Increasing of solution flow rate and initial Pb(II) concentration make that the breakthrough and saturation points to be attained earlier. The experimental breakthrough curves were modeled using Bohart-Adams, Thomas and Yoon-Nelson models, and the parameters for all these models were calculated. A regeneration efficiency of 98% was achieved using 0.1 mol L(-1) HCl and not significant changes in lead uptake capacity after three biosorption/desorption cycles were noted. The biosorbent mixture was able to remove Pb(II) from synthetic wastewater at pH 5.0 and flow rate of 3.5 mL min(-1), and the obtained effluent has better quality characteristics. The biosorbent mixture it is suitable for a continuous system for large-scale applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Establishing Bedding Requirements during Transport and Monitoring Skin Temperature during Cold and Mild Seasons after Transport for Finishing Pigs.

    Science.gov (United States)

    McGlone, John; Johnson, Anna; Sapkota, Avi; Kephart, Rebecca

    2014-05-21

    The broad aim of this study was to determine whether bedding level in the transport trailer influenced pig performance and welfare. Specifically, the objective was to define the bedding requirements of pigs during transportation in commercial settings during cold and mild weather. Animals (n = 112,078 pigs on 572 trailers) used were raised in commercial finishing sites and transported in trailers to commercial processing plants. Dead on arrival (DOA), non-ambulatory (NA), and total dead and down (D&D) data were collected and skin surface temperatures of the pigs were measured by infrared thermography. Data were collected during winter (Experiment 1) and fall/spring (Experiment 2). Total D&D percent showed no interaction between bedding level and outside air temperature in any experiments. Average skin surface temperature during unloading increased with outside air temperature linearly in both experiments (P transport.

  17. Pore Scale Thermal Hydraulics Investigations of Molten Salt Cooled Pebble Bed High Temperature Reactor with BCC and FCC Configurations

    Directory of Open Access Journals (Sweden)

    Shixiong Song

    2014-01-01

    CFD results and empirical correlations’ predictions of pressure drop and local Nusselt numbers. Local pebble surface temperature distributions in several default conditions are investigated. Thermal removal capacities of molten salt are confirmed in the case of nominal condition; the pebble surface temperature under the condition of local power distortion shows the tolerance of pebble in extreme neutron dose exposure. The numerical experiments of local pebble insufficient cooling indicate that in the molten salt cooled pebble bed reactor, the pebble surface temperature is not very sensitive to loss of partial coolant. The methods and results of this paper would be useful for optimum designs and safety analysis of molten salt cooled pebble bed reactors.

  18. Temperature dependence of Young's modulus and internal friction of G-10CR and G-11CR epoxy resins

    International Nuclear Information System (INIS)

    Ledbetter, H.M.; Maerz, G.

    1980-01-01

    The Young's moduli of the epoxy-resin matrix material used in NEMA-designation G-10CR and G-11CR fiberglass-cloth-reinforced composites were measured dynamically and semicontinuously between ambient and liquid-nitrogen temperatures. Both materials exhibit regular temperature behavior, showing large Young's-modulus changes, about 125 and 50%, respectively. Internal friction decreased about 80% during cooling to liquid-nitrogen temperature (76 0 K). The different thermoelastic coefficients of the two materials indicate a different internal structure

  19. Development and testing of nuclear graphite for the German pebble-bed high temperature reactor

    International Nuclear Information System (INIS)

    Haag, G.; Delle, W.; Nickel, H.; Theymann, W.; Wilhelmi, G.

    1987-01-01

    Several types of high temperature reactors have been developed in the Federal Republic of Germany. They are all based on spherical fuel elements being surrounded by graphite as reflector material. As an example, HTR-500 developed by the Hochtemperatur Reaktorbau GmbH is shown. The core consists of the top reflector, the side reflector with inner and outer parts, the bottom reflector and the core support columns. The most serious problem with respect to fast neutron radiation damage had to be solved for the materials of those parts near the pebble bed. Regarding the temperature profile in the core, the top reflector is at 300 deg C, and as cooling gas flows from the top downward, the temperature of the inner side reflector rises to about 700 deg C at the bottom. Fortunately, the highest fast neutron load accumulated during the life time of a reactor corresponds to the lowest temperature. This makes graphite components easier to survive neutron exposure without being mechanically damaged, although the maximum fast neutron fluence is as high as 4 x 10 22 /cm 2 at about 400 deg C. HTR graphite components are divided into four classes according to loading. The raw materials for nuclear graphite, the development of pitch coke nuclear graphite, the irradiation behavior of ATR-2E and ASR-IRS and others are reported. (Kako, I.)

  20. Feasibility of Thorium Fuel Cycles in a Very High Temperature Pebble-Bed Hybrid System

    Directory of Open Access Journals (Sweden)

    L.P. Rodriguez

    2015-08-01

    Full Text Available Nuclear energy presents key challenges to be successful as a sustainable energy source. Currently, the viability of the use thorium-based fuel cycles in an innovative nuclear energy generation system is being investigated in order to solve these key challenges. In this work, the feasibility of three thorium-based fuel cycles (232Th-233U, 232Th-239Pu, and 232Th-U in a hybrid system formed by a Very High Temperature Pebble-Bed Reactor (VHTR and two Pebble-Bed Accelerator Driven Systems (ADSs was evaluated using parameters related to the neutronic behavior such as nuclear fuel breeding, minor actinide stockpile, the energetic contribution of each fissile isotope, and the radiotoxicity of the long lived wastes. These parameters were used to compare the fuel cycles using the well-known MCNPX ver. 2.6e computational code. The results obtained confirm that the 232Th-233U fuel cycle is the best cycle for minimizing the production of plutonium isotopes and minor actinides. Moreover, the inclusion of the second stage in the ADSs demonstrated the possibility of extending the burnup cycle duration and reducing the radiotoxicity of the discharged fuel from the VHTR.

  1. Comparative evaluation of pebble-bed and prismatic fueled high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Kasten, P.R.; Bartine, D.E.

    1981-01-01

    A comparative evaluation has been performed of the HTGR and the Federal Republic of Germany's Pebble Bed Reactor (PBR) for potential commercial applications in the US. The evaluation considered two reactor sizes [1000 and 3000 MW(t)] and three process applications (steam cycle, direct cycle, and process heat, with outlet coolant temperatures of 750, 850, and 950 0 C, respectively). The primary criterion for the comparison was the levelized (15-year) cost of producing electricity or process heat. Emphasis was placed on the cost impact of differences between the prismatic-type HTGR core, which requires periodic refuelings during reactor shutdowns, and the pebble bed PBR core, which is refueled continuously during reactor operations. Detailed studies of key technical issues using reference HTGR and PBR designs revealed that two cost components contributing to the levelized power costs are higher for the PBR: capital costs and operation and maintenance costs. A third cost component, associated with nonavailability penalties, tended to be higher for the PBR except for the process heat application, for which there is a large uncertainty in the HTGR nonavailability penalty at the 950 0 C outlet coolant temperature. A fourth cost component, fuel cycle costs, is lower for the PBR, but not sufficiently lower to offset the capital cost component. Thus the HTGR appears to be slightly superior to the PBR in economic performance. Because of the advanced development of the HTGR concept, large HTGRs could also be commercialized in the US with lower R and D costs and shorter lead times than could large PBRs. It is recommended that the US gas-cooled thermal reactor program continue giving primary support to the HTGR, while also maintaining its cooperative PBR program with FRG

  2. Comparative evaluation of pebble-bed and prismatic fueled high-temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Bartine, D.E.

    1981-01-01

    A comparative evaluation has been performed of the HTGR and the Federal Republic of Germany's Pebble Bed Reactor (PBR) for potential commercial applications in the US. The evaluation considered two reactor sizes (1000 and 3000 MW(t)) and three process applications (steam cycle, direct cycle, and process heat, with outlet coolant temperatures of 750, 850, and 950/sup 0/C, respectively). The primary criterion for the comparison was the levelized (15-year) cost of producing electricity or process heat. Emphasis was placed on the cost impact of differences between the prismatic-type HTGR core, which requires periodic refuelings during reactor shutdowns, and the pebble bed PBR core, which is refueled continuously during reactor operations. Detailed studies of key technical issues using reference HTGR and PBR designs revealed that two cost components contributing to the levelized power costs are higher for the PBR: capital costs and operation and maintenance costs. A third cost component, associated with nonavailability penalties, tended to be higher for the PBR except for the process heat application, for which there is a large uncertainty in the HTGR nonavailability penalty at the 950/sup 0/C outlet coolant temperature. A fourth cost component, fuel cycle costs, is lower for the PBR, but not sufficiently lower to offset the capital cost component. Thus the HTGR appears to be slightly superior to the PBR in economic performance. Because of the advanced development of the HTGR concept, large HTGRs could also be commercialized in the US with lower R and D costs and shorter lead times than could large PBRs. It is recommended that the US gas-cooled thermal reactor program continue giving primary support to the HTGR, while also maintaining its cooperative PBR program with FRG.

  3. Low-temperature nitriding of austenitic steel in a vibrofluidized bed

    Science.gov (United States)

    Baraz, V. R.; Grachev, S. V.

    1999-11-01

    The prospects for use of a vibrofluidized bed (VFB) for low-temperature nitrogen saturation of high-strength austenitic steel based on Cr-Ni-Mn (12Kh17N8G2S2MF) are considered. The positive effect of preliminary plastic deformation on the intensity of nitriding is described. The temperature and time parameters of nitriding in a VFB for strain-aging austenitic steel 12Kh17N8G2S2MF are shown to be adequate for the regimes of the final heat-treatment operation of aging. This creates the possibility of combining the operations of surface alloying and strain aging into a single cycle. This combined treatment increases substantially the resistance of the steel to cyclic loads while preserving the strength parameters. It is shown that the presented method of low-temperature nitriding in a VFB is expedient for improving the service characteristics of austenitic steel 12Kh17N8G2S2MF used for production of force springs of automobile brake systems.

  4. Shrinkage stress kinetics of Bulk Fill resin-based composites at tooth temperature and long time.

    Science.gov (United States)

    Kalliecharan, David; Germscheid, William; Price, Richard B; Stansbury, Jeffrey; Labrie, Daniel

    2016-11-01

    To determine the shrinkage stress kinetics at up to 12h after light exposure and at tooth temperature during placement of selected Bulk Fill resin-based composites (RBCs). Five representative Bulk Fill RBCs from four companies were chosen with a wide range of viscosity and filler volume content. The shrinkage stress kinetics at T=33°C was measured continuously over a period of 12h using a modified tensometer with the ability to measure the cantilever beam deflection to better than 40nm accuracy at a sampling rate of up to 200 samples/s, and thermally stable resulting in a measurement accuracy better than 0.05MPa at 12h. The tensometer compliance was 0.105μm/N. A custom made heater was used to control the RBC sample temperature at T=33°C with a temperature gradient across the sample of less than 1°C. The samples were irradiated for 20s with irradiance of 1.1W/cm 2 and total energy density of 22J/cm 2 . Three samples (n=3) were used for each RBCs. The shrinkage stress at 12h for the five Bulk Fill RBCs ranged from 2.21 to 3.05MPa, maximum stress rate ((dS/dt) M ) varied from 0.18 to 0.41MPa/s, time at which the maximum stress rate occurred (t Max ) were between 1.42 to 3.24s and effective gel time (t gel ) varied from 50 to 770ms. Correlations were observed between (dS/dt) M and t Max (r=-0.946), t Max and filler volume fraction (r=-0.999), and between the shrinkage stress at 12h and t gel (r=0.994). However, no correlation was observed between the stress at 12h and filler volume fraction. The shrinkage stress for four of the five Bulk Fill RBCs were not significantly different (p<0.05) at 6h and beyond after photo-curing and that fully developed stress induced by photo-cured RBCs may only be reached at times longer than 12h. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Establishing Bedding Requirements during Transport and Monitoring Skin Temperature during Cold and Mild Seasons after Transport for Finishing Pigs

    Directory of Open Access Journals (Sweden)

    John McGlone

    2014-05-01

    Full Text Available The broad aim of this study was to determine whether bedding level in the transport trailer influenced pig performance and welfare. Specifically, the objective was to define the bedding requirements of pigs during transportation in commercial settings during cold and mild weather. Animals (n = 112,078 pigs on 572 trailers used were raised in commercial finishing sites and transported in trailers to commercial processing plants. Dead on arrival (DOA, non-ambulatory (NA, and total dead and down (D&D data were collected and skin surface temperatures of the pigs were measured by infrared thermography. Data were collected during winter (Experiment 1 and fall/spring (Experiment 2. Total D&D percent showed no interaction between bedding level and outside air temperature in any experiments. Average skin surface temperature during unloading increased with outside air temperature linearly in both experiments (P < 0.01. In conclusion, over-use of bedding may be economically inefficient. Pig skin surface temperature could be a useful measure of pig welfare during or after transport.

  6. Effects of Core-Shell Rubber (CSR) Nanoparticles on the Fracture Toughness of an Epoxy Resin at Cryogenic Temperatures

    Science.gov (United States)

    Wang, J.; Cannon, S. A.; Schneider, J. A.

    2008-01-01

    This study investigates the effects of core-shell rubber (CSR) nanoparticles on the fracture toughness of an epoxy resin at liquid nitrogen (LN2) temperatures. Varying amounts of Kane Ace (Registered TradeMark) MX130 toughening agent were added to a commercially available EPON 862/W epoxy resin. Resulting fracture toughness was evaluated by the use of Charpy impact tests conducted on an instrumented drop tower. The size and distribution of the CSR nanoparticles were characterized using Transmission Electric Microscopy (TEM) and Small Angle X-ray Scattering (SAXS). Up to nominal 4.6% addition of the CSR nanoparticles, resulted in a nearly 5 times increase in the measured breaking energy. However, further increases in the amount of CSR nanoparticles had no appreciable affect on the breaking energy.

  7. Influence of atmospheric pressure low-temperature plasma treatment on the shear bond strength between zirconia and resin cement.

    Science.gov (United States)

    Ito, Yuki; Okawa, Takahisa; Fukumoto, Takahiro; Tsurumi, Akiko; Tatsuta, Mitsuhiro; Fujii, Takamasa; Tanaka, Junko; Tanaka, Masahiro

    2016-10-01

    Zirconia exhibits excellent strength and high biocompatibility in technological applications and it is has therefore been investigated for clinical applications and research. Before setting prostheses, a crown prosthesis inner surface is sandblasted with alumina to remove contaminants and form small cavities. This alumina sandblasting causes stress-induced phase transition of zirconia. Atmospheric-pressure low-temperature plasma has been applied in the dental industry, particularly for adhesives, as a surface treatment to activate the surface energy and remove contaminants. The purpose of this study was to examine the influence of atmospheric-pressure low-temperature plasma treatment on the shear bond strength between zirconia and adhesive resin cement. The surface treatment method was classified into three groups: untreated (Cont group), alumina sandblast treatment (Sb group), and atmospheric-pressure low-temperature plasma treatment (Ps group). Adhesive resin cement was applied to stainless steel and bonded to zirconia. Shear adhesion tests were performed after complete hardening of the cement. Multiple comparisons were performed using a one-way analysis of variance and the Bonferroni method. X-ray diffractometry was used to examine the change in zirconia crystal structure. Statistically significant differences were noted between the control and Sb groups and between the control and Ps groups. In contrast, no statistically significant differences were noted for the Ps and Sb bond strength. Atmospheric-pressure low-temperature plasma treatment did not affect the zirconia crystal structure. Atmospheric-pressure low-temperature plasma treatment improves the bonding strength of adhesive resin cement as effectively as alumina sandblasting, and does not alter the zirconia crystal structure. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  8. Temperature changes under demineralized dentin during polymerization of three resin-based restorative materials using QTH and LED units

    Directory of Open Access Journals (Sweden)

    Sayed-Mostafa Mousavinasab

    2014-08-01

    Full Text Available Objectives Light-curing of resin-based materials (RBMs increases the pulp chamber temperature, with detrimental effects on the vital pulp. This in vitro study compared the temperature rise under demineralized human tooth dentin during light-curing and the degrees of conversion (DCs of three different RBMs using quartz tungsten halogen (QTH and light-emitting diode (LED units (LCUs. Materials and Methods Demineralized and non-demineralized dentin disks were prepared from 120 extracted human mandibular molars. The temperature rise under the dentin disks (n = 12 during the light-curing of three RBMs, i.e. an Ormocer-based composite resin (Ceram. X, Dentsply DeTrey, a low-shrinkage silorane-based composite (Filtek P90, 3M ESPE, and a giomer (Beautifil II, Shofu GmbH, was measured with a K-type thermocouple wire. The DCs of the materials were investigated using Fourier transform infrared spectroscopy. Results The temperature rise under the demineralized dentin disks was higher than that under the non-demineralized dentin disks during the polymerization of all restorative materials (p 0.05. Conclusions Although there were no significant differences in the DCs, the temperature rise under demineralized dentin disks for the silorane-based composite was higher than that for dimethacrylate-based restorative materials, particularly with QTH LCU.

  9. Temperature changes under demineralized dentin during polymerization of three resin-based restorative materials using QTH and LED units.

    Science.gov (United States)

    Mousavinasab, Sayed-Mostafa; Khoroushi, Maryam; Moharreri, Mohammadreza; Atai, Mohammad

    2014-08-01

    Light-curing of resin-based materials (RBMs) increases the pulp chamber temperature, with detrimental effects on the vital pulp. This in vitro study compared the temperature rise under demineralized human tooth dentin during light-curing and the degrees of conversion (DCs) of three different RBMs using quartz tungsten halogen (QTH) and light-emitting diode (LED) units (LCUs). Demineralized and non-demineralized dentin disks were prepared from 120 extracted human mandibular molars. The temperature rise under the dentin disks (n = 12) during the light-curing of three RBMs, i.e. an Ormocer-based composite resin (Ceram. X, Dentsply DeTrey), a low-shrinkage silorane-based composite (Filtek P90, 3M ESPE), and a giomer (Beautifil II, Shofu GmbH), was measured with a K-type thermocouple wire. The DCs of the materials were investigated using Fourier transform infrared spectroscopy. The temperature rise under the demineralized dentin disks was higher than that under the non-demineralized dentin disks during the polymerization of all restorative materials (p 0.05). Although there were no significant differences in the DCs, the temperature rise under demineralized dentin disks for the silorane-based composite was higher than that for dimethacrylate-based restorative materials, particularly with QTH LCU.

  10. The Effect of Heating Time and Temperature on Epoxy Resin and Calcium Silicate-based Endodontic Sealers.

    Science.gov (United States)

    Atmeh, Amre R; AlShwaimi, Emad

    2017-12-01

    With the growing use of warm obturation techniques during endodontic treatment, more interest is directed toward sealers' compatibility with heat. This study aimed to evaluate the effect of heat application duration and temperature on epoxy resin- and calcium silicate-based sealers using chemical and thermogravimetric analyses. Freshly mixed samples (n = 5/group) of each sealer were heated at 200°C or 250°C for 30 or 60 seconds. Additional 2 sets of samples were examined directly after mixing or after setting without heat exposure. Raman spectroscopy was used to identify changes in the chemical structure, and a 2-way analysis of variance was performed to compare values of measurable peaks that exhibited changes. Additionally, Thermogravimetric Analysis (TGA) was used to evaluate the effect of heat on mass change where sealers were heated to 250°C at a rate of 20°C/min (11-minute duration) or maintained at 37°C for 8 hours. No differences were detected among all the spectra of calcium silicate samples of different groups, while TGA revealed 15% and 18% weight loss upon heating at 250°C and 37°C, respectively. For the resin sealer, significant differences were detected when samples were heated for 60 seconds, involving bonds of benzene rings and aromatic amines in the uncured resin. TGA revealed minimal changes in the sealer mass (1.2% and 1.8%) on heating at 250°C and 37°C, respectively. Heat application duration and temperature can affect the chemical structure of epoxy resin sealers. The consideration of endodontic sealer compatibility as well as the duration of heat application is essential when warm vertical obturation is used. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. An experimental study of heat transfer to a horizontal tube in a large particle fluidized bed at elevated temperature

    Science.gov (United States)

    George, A. H.

    Experimental data for the time-average local heat transfer coefficient to a single horizontal tube in a large particle fluidized bed at elevated temperature, are presented. Refractory particles with surface mean diameter 2.14 mm and 3.23 mm were fluidized by combustion products of propane at bed temperatures of 810 K and 1053 K. The particle sizes are near the largest presently used in pilot plant fluidized bed coal combustors. The superficial gas velocity ranged from that required for minimum fluidization, or slightly packed, to the velocity where slugging first occurred, or the highest velocity air blower capacity would allow. Heat transfer results indicate that a stack of defluidized particles remain on top of the tube at low superficial gas velocities. A very low local heat transfer coefficient was obtained under these conditions. There was less than 10 percent difference in the maximum spatial average heat transfer coefficients for the two particle sizes considered.

  12. Effect of Filler Size and Temperature on Packing Stress and Viscosity of Resin-composites

    Directory of Open Access Journals (Sweden)

    Nick Silikas

    2011-08-01

    Full Text Available The objective of this study was to investigate the effect of filler size on the packing stress and viscosity of uncured resin-composite at 23 °C and 37 °C. A precision instrument used was designed upon the penetrometer principle. Eight resin-composite materials were tested. Packing-stress ranged from 2.60 to 0.43 MPa and viscosity ranged from 2.88 to 0.02 MPa.s at 23 °C. Values for both properties were reduced significantly at 37 °C. Statistical analysis, by ANOVA and post hoc methods, were carried out to check any significant differences between materials tested (P < 0.05. Conclusions: Filler size and distribution will affect the viscosity and packing of resin-composites during cavity placement.

  13. The influence of thorium on the temperature reactivity coefficient in a 400 MWth pebble bed high temperature plutonium incinerating reactor

    International Nuclear Information System (INIS)

    Richards, Guy A.; Serfontein, Dawid E.

    2014-01-01

    This article investigates advanced fuel cycles containing thorium and reactor grade plutonium (Pu(PWR)) in a 400 MW th Pebble Bed Modular Reactor (PBMR) Demonstration Power Plant. Results presented were determined from coupled neutronics and thermo-hydraulic simulations of the VSOP 99/05 diffusion codes. In a previous study impressive burn-ups (601 MWd/kg heavy metal (HM)) and thus plutonium destruction rates (69.2 %) were obtained with pure plutonium fuel with mass loadings of 3 g Pu(PWR)/fuel sphere or less. However the safety performance was poor in that the limit on the maximum fuel temperature during equilibrium operation was exceeded and positive Uniform Temperature Reactivity Coefficients (UTCs) were obtained. In the present study fuel cycles containing mixtures of thorium and plutonium achieved negative maximum UTCs. Plutonium only fuel cycles also achieved negative maximum UTCs, provided that much higher mass loadings are used. It is proposed that the lower thermal neutron flux was responsible for this effect. The plutonium only fuel cycle with 12 g Pu(PWR)/fuel sphere also achieved the adopted safety limits for the PBMR DPP-400 in that the maximum fuel temperature and the maximum power density did not exceed 1130°C or 4.5 kW/sphere respectively. This design would thus be licensable and could potentially be economically feasible. However the burn-up was much lower at 181 MWd/kgHM and thus the plutonium destruction fraction was also much lower at 24.5%, which may be sub-optimal with respect to proliferation and waste disposal objectives and therefore further optimisation studies are proposed. (author)

  14. Effect of Filler Size and Temperature on Packing Stress and Viscosity of Resin-composites

    OpenAIRE

    Elbishari, Haitham; Satterthwaite, Julian; Silikas, Nick

    2011-01-01

    The objective of this study was to investigate the effect of filler size on the packing stress and viscosity of uncured resin-composite at 23 °C and 37 °C. A precision instrument used was designed upon the penetrometer principle. Eight resin-composite materials were tested. Packing-stress ranged from 2.60 to 0.43 MPa and viscosity ranged from 2.88 to 0.02 MPa.s at 23 °C. Values for both properties were reduced significantly at 37 °C. Statistical analysis, by ANOVA and post hoc methods, were c...

  15. Preliminary Safeguards Assessment for the Pebble-Bed Fluoride High-Temperature Reactor (PB-FHR) Concept

    Energy Technology Data Exchange (ETDEWEB)

    Disser, Jay; Arthur, Edward; Lambert, Janine

    2016-09-01

    This report examines a preliminary design for a pebble bed fluoride salt-cooled high temperature reactor (PB-FHR) concept, assessing it from an international safeguards perspective. Safeguards features are defined, in a preliminary fashion, and suggestions are made for addressing further nuclear materials accountancy needs.

  16. Modelling of Effects of Operating Conditions and Coal Reactivity on Temperature of Burning Particles in Fluidized Bed Combustion

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Hartman, Miloslav; Pohořelý, Michael; Trnka, Otakar

    2004-01-01

    Roč. 1, č. 2 (2004), s. 261-274 ISSN 1211-1910 R&D Projects: GA AV ČR IAA4072201; GA AV ČR IAA4072001 Institutional research plan: CEZ:AV0Z4072921 Keywords : fluidized bed combustion * char temperature * modelling Subject RIV: DI - Air Pollution ; Quality

  17. [Microwave In-situ Regeneration of Cu-Mn-Ce/ZSM Catalyst Adsorbed Toluene and Distribution of Bed Temperature].

    Science.gov (United States)

    Hu, Xue-jiao; Bo, Long-li; Liang, Xin-xin; Meng, Hai-long

    2015-08-01

    Microwave in-situ regeneration of Cu-Mn-Ce/ZSM catalyst adsorbed toluene, distribution of fixed bed temperature, adsorption breakthrough curves of the catalyst after several regenerations and characterizations of the catalyst by BET and SEM were investigated in this study. The research indicated that regeneration effect of the catalyst adsorbed was excellent under conditions of microwave power 117 W, air flow 0.5 m3 x h(-1) and catalyst dosage of 800 g. Toluene desorbed was oxidized onto the surface of the catalyst, and the adsorption capacity of the catalyst was recovered simultaneously. Under microwave irradiation, bed temperature decreased slowly from inside to outside in horizontal level, and increased gradually from down to up in vertical level so that the highest temperature reached 250-350 degrees C at the upper sites of the bed. Sintering and agglomeration occurred on the surface of the catalyst in the course of regeneration so that the special surface area and micropore volume of the catalyst were reduced and breakthrough time was shortened, which was verified by six adsorption breakthrough curves and related characteristics of the catalyst. However, the structure of the catalyst was steady after two regenerations, and adsorption breakthrough time was kept at 70 min. The result showed that the changes of surface morphology and pore structure were positively correlated with the distribution of bed temperature.

  18. Kekuatan Rekat Restorasi Komposit Resin pada Permukaan Dentin dengan Sistem Adhesif Self-Etch dalam Berbagai Temperatur

    Directory of Open Access Journals (Sweden)

    Iin Sundari

    2012-10-01

    Full Text Available Single-step self-etch adhesive systems are the system that combine self etching primer and bonding agent into one step application. This system was developed as the effort to simplified in application prosedures and give a good bond strength of resin composites to dentin surface. The purpose of this study was to examine the bond strength of resin composites with two singlestep self-etch adhesives system (Xeno III and Clearfil Tri-S Bond to bovine dentin at temperature of adhesive 3ºC, 22ºC and 30ºC. Adhesive was applied to dentin surface (bovine insisivus mandibular dentin follow by resin composites bonded according to the manufacturer’s instructions. Tensile bond strength of 60 specimens were tested UTM (universal testing machine after 24 hours storage in aquadest at 37 ºC. The results were analyzed using ANOVA test followed by Tukey’s test (p< 0,05. The bond strength of Xeno III was significantly diffrent from that of Clearfil tri-S Bond, 0,66±0,271, 2,70±1,528, 0,23±0,104 versus 2,07±0,272, 4,77±0,689, 4,39±1,205 MPa at temperature of materials 3ºC, 22ºC and 30ºC respectively. The bond strength of two single- step adhesives system (Xeno III and Clearfil Tri-S Bond were highest at temperature 22ºC than other temperatures of materials.DOI: 10.14693/jdi.v15i3.34

  19. Temperature and time influence on the waste plastics pyrolysis in the fixed bed reactor

    Directory of Open Access Journals (Sweden)

    Papuga Saša V.

    2016-01-01

    Full Text Available Pyrolysis as a technique of chemical recycling of plastic materials is causing an increasing level of interest as an environmentally and economically acceptable option for the processing of waste materials. Studies of these processes are carried out under different experimental conditions, in different types of reactors and with different raw materials, which makes the comparison of different processes and the direct application of process parameters quite complex. This paper presents the results of investigation of the influence of temperature in the range of 450°C to 525°C, on the yield of the process of pyrolysis of waste plastics mixture, composed of 45% polypropylene, 35% low density polyethylene and 25% high density polyethylene. Also, this paper presents results of the investigation of the effect of the reaction, atintervals of 30-90 [min], on the yield of pyrolysis of the mentioned waste plastics mixture. Research was conducted in a fixed bed pilot reactor, which was developed for this purpose. The results of the research show that at a temperature of 500°C, complete conversion of raw materials was achieved, for a period of 45 [min], with a maximum yield of the pyrolysis oil of 32.80%, yield of the gaseous products of 65.75% and the solid remains of 1.46%. Afurther increase of temperature increases the yield of gaseous products, at the expense of reducing the yield of pyrolysis oil. Obtained pyrolysis oil has a high calorific value of 45.96 [MJ/kg], and in this regard has potential applications as an alternative fuel.

  20. Very High Temperature Reactor (VHTR) Deep Burn Core and Fuel Analysis -- Complete Design Selection for the Pebble Bed Reactor

    Energy Technology Data Exchange (ETDEWEB)

    B. Boer; A. M. Ougouag

    2010-09-01

    The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor fuel. These transuranic nuclides are incorporated into TRISO coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup, while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239-Pu, 240-Pu and 241-Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a ”standard,” UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge

  1. Gas Turbine High Temperature Gas (Helium) Reactor Using Pebble Bed Fuel Derived from Spent Fuel

    International Nuclear Information System (INIS)

    Cole, Quentin

    2013-01-01

    Project goals: Build on the $1B investment spent during the NGNP Project for the only true Inherently Safe Small Modular Reactor Design – the only SMR design that can make this claim due to negative temperature coefficient of reactivity - no containment required – less construction cost. NPMC in Partnership with Pebble Bed Modular Group, a fully owned subsidiary of Eskom, RSA to Factory Build Complete Plant in Modular Sections at Factory Site in Oswego, NY for transport to site by rail or shipping for world wide export. NPMC will provide Project and Construction Management of all new builds from plant sites through construction, commissioning and startup using local labor. License and Construct ion of spent fuel processing facility in both NY and South Africa using Proven Technology. Ultimate goals of project: 1. Award of the 2013 US DOE Innovative SMR $452M cost share grant for US NRC License Certification 2.Build Full Scale Demonstration Plant at Koeburg, RSA with World Bank Funding managed by NPMC in collaboration with our legal firm, Haynes and Boone LLP 3. Take Plant Orders Immediately (10% Down Payment) 4. Form Strategic Alliance with Domestic and/or International Utility

  2. Analytical calculation of the fuel temperature reactivity coefficient for pebble bed and prismatic high temperature reactors for plutonium and uranium-thorium fuels

    International Nuclear Information System (INIS)

    Talamo, Alberto

    2007-01-01

    We analytically evaluated the fuel coefficient of temperature both for pebble bed and prismatic high temperature reactors when they utilize as fuel plutonium and minor actinides from light water reactors spent fuel or a mixture of 50% uranium, enriched 20% in 235 U, and 50% thorium. In both cores the calculation involves the evaluation of the resonances integrals of the high absorbers fuel nuclides 240 Pu, 238 U and 232 Th and it requires the esteem of the Dancoff-Ginsburg factor for a pebble bed or prismatic core. The Dancoff-Ginsburg factor represents the only discriminating parameter in the results for the two different reactors types; in fact, both the pebble bed and the prismatic reactors share the same the pseudo-cross-section describing an infinite medium made of graphite filled by TRISO particles. We considered only the resolved resonances with a statistical spin factor equal to one and we took into account 267, 72, 212 resonances in the range 1.057-5692, 6.674-14485, 21.78-3472 eV for 240 Pu, 238 U and 232 Th, respectively, for investigating the influence on the fuel temperature reactivity coefficient of the variation of the TRISO kernel radius and TRISO particles packing fraction from 100, 200 to 300 μm and from 10% to 50%, respectively. Finally, in the pebble bed core, we varied the radius of the pebble for setting a fuel temperature reactivity coefficient similar to the one of a prismatic core

  3. Dynamic simulation of a pebble bed high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Rodnizki, J.

    1988-09-01

    A safety analysis of the PNP 500 High Temperature Gas Cooled Reactor (HTGR) was performed. The fuel is embedded in a matrix of graphite spheres containing UO 2 particles - Pebble Bed Reactor, and the output power of the plant is 500 MW (t). The safety analysis is aimed at describing the system behavior following perturbations in its state variables. Anticipated transients were studied using full-scale simulation of the PNP 500, and the resulting temperatures, pressures and mass flows were compared with their permitted values. The analysis was performed in a modular form in which each module stands for a physical component. The computer code was written using DSNP - Dynamic Simulator for Nuclear Power Plants - and the modules developed for HTGR were introduced into the DSNP libraries. The results obtained by simulation of the modules were compared with those derived from analytical calculations. The Gear integration method was included in the DSNP and a new integration method was developed for stiff equations (using the second order Runge - Kutta method with exponential fitting). These integration methods were compared with older ones, and Gear's was found to give the best performance. The following transients were studied: (a) a loss of coolent accident, (b) a step perturbation in reactivity, (c) a step reduction in turbine power, (d) coastdown of the main cooling system. The PNP was found to have a slow reaction time due to its high graphite heat capacity. The consequences of the studied accidents were shown to be limited due to the inherent safety features of the HTGR. The results were compared and found to be in good agreement with those obtained from the COROX and SHOVAV-JUL codes. (author)

  4. Sustainability of thorium-uranium in pebble-bed fluoride salt-cooled high temperature reactor

    International Nuclear Information System (INIS)

    Zhu, G.; Zou, Y.; Xu, H.

    2016-01-01

    Sustainability of thorium fuel in a Pebble-Bed Fluoride salt-cooled High temperature Reactor (PBFHR) is investigated to find the feasible region of high discharge burnup and negative Flibe (2LiF-BeF 2 ) salt Temperature Reactivity Coefficient (TRC). Dispersion fuel or pellet fuel with SiC cladding and SiC matrix is used to replace the tri-structural-isotropic (TRISO) coated particle system for increasing fuel loading and decreasing excessive moderation. To analyze the neutronic characteristics, an equilibrium calculation method of thorium fuel self-sustainability is developed. We have compared two refueling schemes (mixing flow pattern and directional flow pattern) and two kinds of reflector materials (SiC and graphite). This method found that the feasible region of breeding and negative Flibe TRC is between 20 vol% and 62 vol% fuel loading in the fuel. A discharge burnup could be achieved up to about 200 MWd/kgHM. The case with directional flow pattern and SiC reflector showed superior burnup characteristics but the worst radial power peak factor, while the case with mixing flow pattern and SiC reflector, which was the best tradeoff between discharge burnup and radial power peak factor, could provide burnup of 140 MWd/kgHM and about 1.4 radial power peak factor with 50 vol% dispersion fuel. In addition, Flibe salt displays good neutron properties as a coolant of quasi-fast reactors due to the strong 9 Be(n,2n) reaction and low neutron absorption of 6 Li (even at 1000 ppm) in fast spectrum. Preliminary thermal hydraulic calculation shows a good safety margin. The greatest challenge of this reactor may be the decades irradiation time of the pebble fuel. (A.C)

  5. Characteristic behaviour of Pebble Bed High Temperature Gas-cooled Reactors during water ingress events

    International Nuclear Information System (INIS)

    Khoza, Samukelisiwe N.; Serfontein, Dawid E.; Reitsma, Frederik

    2014-01-01

    The presence of water on the tube-side of the steam generators in high temperature gas-cooled reactors (HTGRs) with indirect cycle layouts presents a possibility for a penetration of neutron moderating steam into the core, which may cause a power excursion. This article presents results on the effect of water ingress into the core of the two South African Pebble Bed Modular Reactor design concepts, i.e. the PBMR-200 MW th and the PBMR-400 MW th developed by PBMR SOC Ltd. The VSOP 99/05 suite of codes was used for the simulation of this event. Partial steam vapour pressures were added in stages into the primary circuit in order to investigate the effect of water ingress on reactivity, power profiles and thermal neutron flux profiles. The effects of water ingress into the core are explained by increased neutron moderation, due to the addition of 1 H, which leads to a decrease in resonance capture by 238 U and therefore an increase in the multiplication factor. The more effective moderation of neutrons by definition reduces the fast neutron flux and increases the thermal flux in the core, i.e. leads to a softer spectrum. The more effective moderation also increases the average increase in lethargy between collisions of a neutron with successive fuel kernels, which reduces the probability for neutron capture in the radiative capture resonances of 238 U. The resulting higher resonance escape probability also increases the thermal flux in the core. The softening of the neutron spectrum leads to an increased effective microscopic fission cross section in the fissile isotopes and thus to increased neutron absorption for fission, which reduces the remaining number of neutrons that can diffuse into the reflectors. Therefore water ingress into the core leads to a reduced thermal neutron flux in the reflectors. The power density spatial distribution behaved similarly to the thermal neutron flux in the core. Analysis of possible mechanisms was conducted. The results show that

  6. Degree of conversion and temperature increase of a composite resin light cured with an argon laser and blue LED

    Science.gov (United States)

    Rastelli, A. N. S.; Jacomassi, D. P.; Bagnato, V. S.

    2008-12-01

    Different light sources and power densities used on the photoactivation process may provide changes in the degree of conversion (DC%) and temperature ( T) of the composite resins. Thus, the purpose of this study was to evaluate the DC (%) and T (°C) of the microhybrid composite resin (Filtek™ Z-250, 3M/ESPE) photoactivated with one argon laser and one LED (light-emitting diode) with different power densities. For the KBr pellet technique, the composite resin was placed into a metallic mould (2-mm thickness, 4-mm diameter) and photoactivated as follows: a continuous argon laser (CW) and LED LCUs with power density values of 100, 400, 700, and 1000 mW/cm2 for 20 s. The measurements for DC (%) were made in a FTIR spectrometer Bomen (model MB 102, Quebec, Canada). Spectroscopy (FTIR) spectra for both uncured and cured samples were analyzed using an accessory of the reflectance diffusion. The measurements were recorded in absorbance operating under the following conditions: 32 scans, 4 cm-1 resolution, 300 to 4000-cm-1 wavelength. The percentage of unreacted carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1638 cm-1) against an internal standard before and after the curing of the specimen: aromatic C-C (peak at 1608 cm-1). For T (°C), the samples were created in a metallic mould (2-mm thickness, 4-mm diameter) and photoactivated for 20 s. The thermocouple was attached to the multimeter allowing temperature readings. The DC (%) and T (°C) were submitted to ANOVA and Tukey’s test ( p units.

  7. Pebble Bed Reactors Design Optimization Methods and their Application to the Pebble Bed Fluoride Salt Cooled High Temperature Reactor (PB-FHR)

    Science.gov (United States)

    Cisneros, Anselmo Tomas, Jr.

    The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids---flibe (33%7Li2F-67%BeF)---from molten salt reactors. This combination of fuel and coolant enables FHRs to operate in a high-temperature low-pressure design space that has beneficial safety and economic implications. In 2012, UC Berkeley was charged with developing a pre-conceptual design of a commercial prototype FHR---the Pebble Bed- Fluoride Salt Cooled High Temperature Reactor (PB-FHR)---as part of the Nuclear Energy University Programs' (NEUP) integrated research project. The Mark 1 design of the PB-FHR (Mk1 PB-FHR) is 236 MWt flibe cooled pebble bed nuclear heat source that drives an open-air Brayton combine-cycle power conversion system. The PB-FHR's pebble bed consists of a 19.8% enriched uranium fuel core surrounded by an inert graphite pebble reflector that shields the outer solid graphite reflector, core barrel and reactor vessel. The fuel reaches an average burnup of 178000 MWt-d/MT. The Mk1 PB-FHR exhibits strong negative temperature reactivity feedback from the fuel, graphite moderator and the flibe coolant but a small positive temperature reactivity feedback of the inner reflector and from the outer graphite pebble reflector. A novel neutronics and depletion methodology---the multiple burnup state methodology was developed for an accurate and efficient search for the equilibrium composition of an arbitrary continuously refueled pebble bed reactor core. The Burnup Equilibrium Analysis Utility (BEAU) computer program was developed to implement this methodology. BEAU was successfully benchmarked against published results generated with existing equilibrium depletion codes VSOP

  8. Reduced bed temperature at thermo-chemical conversion of difficult fuels; Saenkt baeddtemperatur vid termokemisk omvandling av svaara braenslen

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Fredrik; Haraldsson, Conny; Johansson, Andreas; Claesson, Frida; Baefver, Linda; Ryde, Daniel

    2010-05-15

    This work investigates the prospect of reducing the concentrations of alkali chlorides in the flue gas by lowering the temperature in the bottom zone of a fluidized bed (FB) furnace below the often used 850 deg C. The directive of a retention time of at least two seconds above 850 deg C is fulfilled by the raise of the flue gas temperature that follows the combustion of unburned gases at the point of injection of secondary and tertiary air, above the bottom bed zone. The aim of the present experiments is to determine the dependency between the temperature and the amount of alkali metals leaving the bottom bed for some selected waste and biomass fuels. The results are intended for plant owners as well as boiler manufacturers. The experiments were performed in an FB-reactor, which was externally heated to specific temperatures between 550 and 850 deg C. The reactor is made of a quartz glass tube with an inner diameter of 60 mm and a length of 1.2 m. The fluidized bed rests upon a porous plate of sintered quartz. The bed material used was 180 gram purified sea sand with particle sizes between 0.1 and 0.3 mm. The fluidizing gas was a mixture of nitrogen and air, introduced in the bottom of the reactor by mass flow controllers. At the outlet of the reactor, the flue gas was divided between conventional gas analyzers and an ICP-MS instrument. The gas flow to the ICP-MS instrument was cooled before a slip stream was sucked out via a capillary to a nebulizer from which the sample gas was led to the ICP-MS instrument. The function of the nebulizer is normally to form an aerosol of liquids, but here it was used solely as a pump. In addition, a known flow of krypton was added into the nebulizer to be used as an internal standard. The novel technique to measure the amount of alkali metals on-line from a batch fired FB-reactor has been shown to work in practice and to provide interesting results, which so far is qualitative only. Further development and calibration work is

  9. Thermal Response and Stability Characteristics of Bistable Composite Laminates by Considering Temperature Dependent Material Properties and Resin Layers

    Science.gov (United States)

    Moore, M.; Ziaei-Rad, S.; Salehi, H.

    2013-02-01

    In this study, the stability characteristics and thermal response of a bistable composite plate with different asymmetric composition were considered. The non-linear finite element method (FEM) was utilized to determine the response of the laminate. Attention was focused on the temperature dependency of laminate mechanical properties, especially on the thermal expansion coefficients of the composite graphite-epoxy plate. Also the effect of including the resin layers on the stability characteristics of the laminate was investigated. The effect of the temperature on the laminate cured configurations in the range of 25°C to 180°C and -60°C to 40°C was examined. The results indicate that the coefficient of thermal expansions has a major effect on the cured shapes. Next, optical microscopy was used to characterize the laminate composition and for the first time the effect of including the resin layers on the actuation loads that causes snapping behavior between two stable shapes was studied. The results obtained from the finite element simulations were compared with experimental results and a good correlation was obtained. Finally, the stability characteristics of a tapered composite panel were investigated for using in a sample winglet as a candidate application of bistable structures.

  10. Effect of heat bed temperature of 3D bioprinter to hardness and compressive strength of scaffold bovine hydroxyapatite

    Science.gov (United States)

    Triyono, Joko; Pratama, Aditya; Sukanto, Heru; Nugroho, Yohanes; Wijayanta, Agung Tri

    2018-02-01

    This study aimed to investigate the effect of heat bed temperature of 3D bioprinter toward compressive strength and hardness bovine bone hydroxyapatite scaffold for bone filler applications. BHA-glycerin mixed with a ratio of 1:1, and keep it for 24 hours. After the homogenization process acquired, bio-Ink with shaped slurry will be used as a material for a 3D printer. The printing process with a temperature variation have performed by setting up heat bed temperature. After printing process was completed, the 3D scaffold was detained on the heat bed for 10 minutes before being picked up. The test results in this study had the lowest hardness value of 9.82±0.62 VHN and the highest number of 24.32±0.99 VHN. The compressive strength testing had the lowest value of 1.62±0.16 MPa with the highest number of 5.67±0.39 MPa. Pore observation using a scanning electron microscope. The result shows that the size of the pores were not much different, that was ±100-200 µm. This observation also indicated that the pore form was square pores.

  11. METHOD OF CALCULATION OF THE NON-STATIONARY TEMPERATURE FIELD INSIDE OF THERMAL PACKED BED ENERGY STORAGE

    Directory of Open Access Journals (Sweden)

    Ermuratschii V.V.

    2014-04-01

    Full Text Available e paper presents a method of the approximate calculation of the non-stationary temperature field inside of thermal packed bed energy storages with feasible and latent heat. Applying thermoelectric models and computational methods in electrical engineering, the task of computing non-stationary heat transfer is resolved with respect to third type boundary conditions without applying differential equations of the heat transfer. For sub-volumes of the energy storage the method is executed iteratively in spatiotemporal domain. Single-body heating is modeled for each sub-volume, and modeling conditions are assumed to be identical for remained bod-ies, located in the same sub-volume. For each iteration step the boundary conditions will be represented by re-sults at the previous step. The fulfillment of the first law of thermodynamics for system “energy storage - body” is obtained by the iterative search of the mean temperature of the energy storage. Under variable boundary con-ditions the proposed method maybe applied to calculating temperature field inside of energy storages with packed beds consisted of solid material, liquid and phase-change material. The method may also be employed to compute transient, power and performance characteristics of packed bed energy storages.

  12. Reduced Bed Temperature in FB-Boilers Burning Waste - part II; Saenkt baeddtemperatur i FB-pannor foer avfallsfoerbraenning - etapp 2

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Fredrik; Pettersson, Anita; Claesson, Frida; Johansson, Andreas; Gunnarsson, Anders; Gyllenhammar, Marianne; Victoren, Anders; Gustafsson, Goeran

    2010-07-01

    This project focuses on evaluating whether lowered bed temperature in FB-boilers for waste combustion gives operational benefits, such as reduced fouling in the convection pass. If so, this mode of operation could reduce the number of unplanned boiler outages, reduce the need for soot blowing, and extend the lifetime of the superheaters at unaltered steam temperature. The project is based on full-scale experiments performed at Ryaverket in Boraas. The plant has two waste-fired 20 MW{sub t} FB-boilers. The study is based on a comparison between operational data and measurement results from two different operating conditions of the boilers. In addition to the data that normally are logged by the control system, samples of fuel, ashes, particles, and deposits were taken and subsequently analyzed. The structure of the bed ash was altered by lowering the bed temperature. Under normal boiler operation, the bed ash contains many small agglomerates that disappeared when the bed temperature was lowered. Due to this, the sand consumption of the plant could be reduced by roughly 25 %. At lowered bed temperature, the concentration of chlorine increased in the bed ash and in the recycled sand while it decreased in the ashes from the cyclone and fabric filter. The concentration of HCl in the flue gas increased as the bed temperature was lowered. This is considered a consequence of less chlorine forming alkali chlorides. Moreover, the particle measurements showed that the amount of submicron particles decreased during lowered bed temperature, which also is an indication of less alkali chlorides in the flue gas. The deposit probes showed an approximate 20 % reduction of the fouling rate when the bed temperature was lowered from 876 to 714 deg C. The chlorine content also decreased in the deposits. For the deposit probes at 500 deg C, (corresponds to a steam temperature of 465 deg C) significant amounts of KCl were found in the deposits, even when the bed temperature was lowered

  13. Fusion energy for alternate applications: the design of a high temperature falling bed as a long-lived blanket

    International Nuclear Information System (INIS)

    Harkness, S.D.; Stevens, H.C.; Hall, M.M.; Gohar, M.Y.A.; de Paz, J.F.

    1979-01-01

    The high temperature falling bed conceptual design work has consisted of a coordinated effort in neutronics, materials science, thermal hydraulics and mechanical design. The neutronics work has been based on a one-dimensional transport analysis and has been used to scope the implication of blanket dimensions, breeding materials, ceramic pebble material and coolant choice on both tritium breeding capabilities and energy deposition into the high temperature region of the blanket. The materials science effort has concentrated on defining the selection of a particular ceramic material. The thermal hydraulic analysis has been concerned with sizing the heat transfer system and defining the temperature gradients in the high temperature blanket. The mechanical design work has evaluated how such a system might be constructed from the point of view of maintainability and structural support

  14. Resin Characterization

    Science.gov (United States)

    2015-06-01

    to see plastic deformation of the surface. 8.1.4.3 Density: Density using the Archimedes principle (ASTM D 792). 8.1.4.4 Density as a Function of...the cure and postcure, quickly cool the sample to 0 °C or lower the temperature to quench the reaction, and then ramp the temperature at 5 °C/min to...prepared by pouring 10 g of resin into a 30-mL screw-cap scintillation vial and adding appropriate amounts of initiator, catalyst, and inhibitor

  15. Measurement of glass transition temperature, residual heat of reaction and mixing ratio of epoxy resins using near infrared spectroscopy: a preliminary study

    DEFF Research Database (Denmark)

    Houmøller, Lars Plejdrup; Laursen, Peter Clemen

    2003-01-01

    As a measure of the degree of curing of epoxy resins, the glass transition temperature, Tg, and the residual heat of reaction, DeltaHr, are often used. In this study, near infrared spectroscopy and multivariate calibration (partial least squares regression (PLSR)) have been used to monitor the two...

  16. RESEARCH ON THE INFLUENCE OF TEMPERATURE ON THE ACTIVATION OF SELECTED POROUS MNO2 BEDS

    OpenAIRE

    Iwona Skoczko; Agnieszka Kisło

    2016-01-01

    Rising demands concerning water treatment and conservation make it necessary to search for more effective as well as cheap and ecologically safe solutions. During the filtration process quartz sand is replaced by filter materials which also have a strong effect on account of reactions taking place on a bed’s surface. Today’s technologies for groundwater and seepage water treatment in rapid filters make use of oxidation beds. They are able to effectively remove manganese (II) and iron (II) com...

  17. A kinetic study of gaseous potassium capture by coal minerals in a high temperature fixed-bed reactor

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    2008-01-01

    into long cylindrical pellets. Kaolin and bituminous coal ash that both have significant amounts of Si and Al show superior potassium capture characteristics. Experimental results show that capture of potassium by kaolin is independent of the gas oxygen content. Kaolin releases water and forms metakaolin......The reactions between gaseous potassium chloride and coal minerals were investigated in a lab-scale high temperature fixed-bed reactor using single sorbent pellets. The applied coal minerals included kaolin, mullite, silica, alumina, bituminous coal ash, and lignite coal ash that were formed...... at temperatures below 1300°C. However, the weight gain by mullite is only slightly smaller than that by kaolin in the temperature range of 1300-1500°C. A simple model was developed for the gas-solid reaction between potassium vapor and metakaolin pellet at 900°C....

  18. Ash behavior and de-fluidization in low temperature circulating fluidized bed biomass gasifier

    DEFF Research Database (Denmark)

    Narayan, Vikas

    at Risø and a 6 MW LTCFB gasifier owned by DONG ENERGY and placed in Kalundborg. In addition to the analysis of the inorganic elemental composition of the collected samples, SEM and TGA analysis of the samples were made to improve understanding on the behavior of the ash forming species within the system...... the bed particle diameters and the fraction of K entrained from the system. The model was also applied to study the de-fluidization behavior of alkali-rich samples in a large scale LTCFB gasifier. The model was used to predict the variations in de-fluidization time on a full scale LTCFB plant with respect...... ensures that high-alkali biomass fuels can be used without risks of bed de-fluidization. This thesis aims to understand the behavior of alkali metals and ash in the LTCFB system. The thesis work involved measurements made on bed material and product gas dust samples on a 100kW LTCFB gasifier placed...

  19. Fabrication and Characterization of High Temperature Resin/Carbon Nanofiber Composites

    Science.gov (United States)

    Ghose, Sayata; Watson, Kent A.; Working, Dennis C.; Criss, Jim M.; Siochi, Emilie J.; Connell, John W.

    2005-01-01

    Multifunctional composites present a route to structural weight reduction. Nanoparticles such as carbon nanofibers (CNF) provide a compromise as a lower cost nanosize reinforcement that yields a desirable combination of properties. Blends of PETI-330 and CNFs were prepared and characterized to investigate the potential of CNF composites as a high performance structural medium. Dry mixing techniques were employed and the effect of CNF loading level on melt viscosity was determined. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, samples containing 30 and 40 wt% CNF were scaled up to approx.300 g and used to fabricate moldings 10.2 cm x 15.2 cm x 0.32 cm thick. The moldings were fabricated by injecting the mixtures at 260-280 C into a stainless steel tool followed by curing for 1 h at 371 C. The tool was designed to impart high shear during the process in an attempt to achieve some alignment of CNFs in the flow direction. Moldings were obtained that were subsequently characterized for thermal, mechanical and electrical properties. The degree of dispersion and alignment of CNFs were investigated using high-resolution scanning electron microscopy. The preparation and preliminary characterization of PETI-330/CNF composites are discussed. Keywords: resins, carbon nanofibers, scanning electron microscopy, electrical properties, thermal conductivity,injection

  20. The Optimization of Radiation Protection in the Design of the High Temperature Reactor-Pebble-Bed Module

    Directory of Open Access Journals (Sweden)

    Sida Sun

    2017-01-01

    Full Text Available The optimization of radiation protection is an important task in both the design and operation of a nuclear power plant. Although this topic has been considerably investigated for pressurized water reactors, there are very few public reports on it for pebble-bed reactors. This paper proposes a routine that jointly optimizes the system design and radiation protection of High Temperature Reactor-Pebble-Bed Module (HTR-PM towards the As Low As Reasonably Achievable (ALARA principle. A systematic framework is also established for the optimization of radiation protection for pebble-bed reactors. Typical calculations for the radiation protection of radioactivity-related systems are presented to quantitatively evaluate the efficiency of the optimization routine, which achieve 23.3%~90.6% reduction of either dose rate or shielding or both of them. The annual collective doses of different systems are reduced through iterative optimization of the dose rates, designs, maintenance procedures, and work durations and compared against the previous estimates. The comparison demonstrates that the annual collective dose of HTR-PM is reduced from 0.490 man-Sv/a before optimization to 0.445 man-Sv/a after optimization, which complies with the requirements of the Chinese regulatory guide and proves the effectiveness of the proposed routine and framework.

  1. A comparative study to determine strength of autopolymerizing acrylic resin and autopolymerizing composite resin influenced by temperature during polymerization: An In Vitro study

    OpenAIRE

    Anuj Chhabra; I V Rudraprasad; D B Nandeeshwar; C Nidhi

    2017-01-01

    Aim: Temporary coverage of a prepared tooth is an important step during various stages of the fixed dental prosthesis. Provisional restorations should satisfy proper mechanical requirements to resist functional and nonfunctional loads. A few studies are carried out regarding the comparison of the effect of curing environment, air and water, on mechanical properties of autopolymerizing acrylic and composite resin. Hence, the aim of this study was to compare the transverse strength of autopolym...

  2. An earthquake transient method for pebble-bed reactors and a fuel temperature model for TRISO fueled reactors

    Science.gov (United States)

    Ortensi, Javier

    This investigation is divided into two general topics: (1) a new method for analyzing the safe shutdown earthquake event in a pebble bed reactor core, and (2) the development of an explicit tristructural-isotropic fuel model for high temperature reactors. The safe shutdown earthquake event is one of the design basis accidents for the pebble bed reactor. The new method captures the dynamic geometric compaction of the pebble bed core. The neutronic and thermal-fluids grids are dynamically re-meshed to simulate the re-arrangement of the pebbles in the reactor during the earthquake. Results are shown for the PBMR-400 assuming it is subjected to the Idaho National Laboratory's design basis earthquake. The study concludes that the PBMR-400 can safely withstand the reactivity insertions induced by the slumping of the core and the resulting relative withdrawal of the control rods. This characteristic stems from the large negative Doppler feedback of the fuel. This Doppler feedback mechanism is a major contributor to the passive safety of gas-cooled, graphite-moderated, high-temperature reactors that use fuel based on TRISO particles. The correct prediction of the magnitude and time-dependence of this feedback effect is essential to the conduct of safety analyses for these reactors. An explicit TRISO fuel temperature model named THETRIS has been developed in this work and incorporated in the CYNOD-THERMIX-KONVEK suite of coupled codes. The new model yields similar results to those obtained with more complex methods, requiring multi-TRISO calculations within one control volume. The performance of the code during fast and moderately-slow transients is verified. These analyses show how explicit TRISO models improve the predictions of the fuel temperature, and consequently, of the power escalation. In addition, a brief study of the potential effects on the transient behavior of high-temperature reactors due to the presence of a gap inside the TRISO particles is included

  3. Effect of nano-silica on dielectric properties and space charge behavior of epoxy resin under temperature gradient

    Science.gov (United States)

    Li, Yuanyuan; Tian, Muqin; Lei, Zhipeng; Zhang, Jianhua

    2018-03-01

    Epoxy resin (EP) nanodielectrics with the mass fraction of nano-silica (SiO2) between 0 and 5 wt% were manufactured. The influence of SiO2 content on the dielectric properties of EP nanodielectrics was studied. It is found that the dielectric properties are the best when the SiO2 content is 0.5 wt%. We further tested and analyzed the dielectric properties of pure EP and EP nanodielectrics with 0.5 wt% SiO2 at the temperature ranging from 40 to 200 °C. The results show that the complexity permittivity and space charge accumulation of the samples increase significantly at low frequency and the temperature above T g. The complexity permittivity and space charge accumulation of the nanocomposites with the loading of 0.5 wt%, however, are smaller than that of pure EP. These results indicate that the interface area between nano-silica and EP matrix suppresses the motions of molecular chains and the migration of charge carriers.

  4. SHOVAV-JUEL. A one dimensional space-time kinetic code for pebble-bed high-temperature reactors with temperature and Xenon feedback

    International Nuclear Information System (INIS)

    Nabbi, R.; Meister, G.; Finken, R.; Haben, M.

    1982-09-01

    The present report describes the modelling basis and the structure of the neutron kinetics-code SHOVAV-Juel. Information for users is given regarding the application of the code and the generation of the input data. SHOVAV-Juel is a one-dimensional space-time-code based on a multigroup diffusion approach for four energy groups and six groups of delayed neutrons. It has been developed for the analysis of the transient behaviour of high temperature reactors with pebble-bed core. The reactor core is modelled by horizontal segments to which different materials compositions can be assigned. The temperature dependence of the reactivity is taken into account by using temperature dependent neutron cross sections. For the simulation of transients in an extended time range the time dependence of the reactivity absorption by Xenon-135 is taken into account. (orig./RW)

  5. Impact of temperature on ammonium and nitrite removal rates in RAS moving bed biofilters

    DEFF Research Database (Denmark)

    Kinyage, John Peter Hewa; Pedersen, Lars-Flemming

    2016-01-01

    The impact of temperature on bacterial processes is well known; however temperature related data on nitrification rates in aquaculture systems are fragmented and compiled from different studies. We sought to determine ammonium and nitrite removal kinetics over a temperature range from 6 to 36 °C...

  6. Simulation in CFD of a Pebble Bed: Advanced high temperature reactor core using OpenFOAM

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, Pamela M.; Su, Jian, E-mail: sujian@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    Numerical simulations of a Pebble Bed nuclear reactor core are presented using the multi-physics tool-kit OpenFOAM. The HTR-PM is modeled using the porous media approach, accounting both for viscous and inertial effects through the Darcy and Forchheimer model. Initially, cylindrical 2D and 3D simulations are compared, in order to evaluate their differences and decide if the 2D simulations carry enough of the sought information, considering the savings in computational costs. The porous medium is considered to be isotropic, with the whole length of the packed bed occupied homogeneously with the spherical fuel elements. Steady-state simulations for normal equilibrium operation are performed, using a semi sine function of the power density along the vertical axis as the source term for the energy balance equation.Total pressure drop is calculated and compared with that obtained from literature for a similar case. At a second stage, transient simulations are performed, where relevant parameters are calculated and compared to those of the literature. (author)

  7. Temperature changes of one-piece implants during the setting of acrylic resin temporary crown. The effect of implant diameter. An in vitro study.

    Science.gov (United States)

    Slutzkey, S; Cohen, O; Lauritano, D; Moses, O; Ormianer, Z; Tal, H; Kolerman, R; Carinci, F; Matalon, S

    2017-01-01

    The purpose of this work is to evaluate changes in temperature of one-piece titanium implant surface during the setting of acrylic resin temporary crowns and to correlate thermal changes to implant diameter. Thirty-three one-piece implants (ARRP, Alpha-Biotec) were divided into 3 groups according to diameter size (G1=3 mm, G2=3.3 mm, G3=3.6 mm). Implants were mounted on an acrylic glass apparatus. Thermocouples were positioned at the most coronal thread. Lower incisor temporary polycarbonate crowns were filled with 80 μL of self-curing acrylic resin and positioned immediately on the implant abutment. Thermal changes of the implant surface were recorded continuously for 10 min. Data were statistically analyzed using one-way analysis of variance. The mean initial temperature (C0) of groups G1, G2 and G3 was similar (24.79±0.78ºC, 25.26±0.63ºC, 24.97±1.06ºC, respectively). The setting of the acrylic resin temporary crown resulted in a significant increase in the implant surface temperature of all groups. The mean thermal amplitude (ΔC) for groups G1, G2 and G3 were 6.79±1.02ºC, 6.61±0.94ºC, 6.65±1.26ºC, respectively. The mean time to maximum temperature (Tmax) for groups G1, G2 and G3 were 337.38±42.91 sec, 324.69±41.46 sec and 317.98±37.91 sec respectively (P>0.05). Direct application of auto-polymerizing resin to the titanium abutment of one-piece implants significantly increased the cervical implant surface temperature. Implant diameter did not influence the temperature changes.

  8. Filled and unfilled temperature-dependent epoxy resin blends for lossy transducer substrates.

    Science.gov (United States)

    Eames, Matthew D C; Hossack, John A

    2009-04-01

    In the context of our ongoing investigation of low-cost 2-dimensional (2-D) arrays, we studied the temperature- dependent acoustic properties of epoxy blends that could serve as an acoustically lossy backing material in compact 2-D array-based devices. This material should be capable of being machined during array manufacture, while also providing adequate signal attenuation to mitigate backing block reverberation artifacts. The acoustic impedance and attenuation of 5 unfilled epoxy blends and 2 filled epoxy blends - tungsten and fiberglass fillers - were analyzed across a 35 degrees C temperature range in 5 degrees C increments. Unfilled epoxy materials possessed an approximately linear variation of impedance and sigmoidal variation of attenuation properties over the range of temperatures of interest. An intermediate epoxy blend was fitted to a quadratic trend line with R(2) values of 0.94 and 0.99 for attenuation and impedance, respectively. It was observed that a fiberglass filler induces a strong quadratic trend in the impedance data with temperature, which results in increased error in the characterization of attenuation and impedance. The tungsten-filled epoxy was not susceptible to such problems because a different method of fabrication was required. At body temperature, the tungsten-filled epoxy could provide a 44 dB attenuation of the round-trip backing block echo in our application, in which the center frequency is 5 MHz and the backing material is 1.1 mm thick. This is an 11 dB increase in attenuation compared with the fiberglass-filled epoxy in the context of our application. This work provides motivation for exploring the use of custom-made tungsten-filled epoxy materials as a substitute PCB-based substrate to provide electrical signal interconnect.

  9. Filled and Unfilled Temperature-Dependent Epoxy Resin Blends for Lossy Transducer Substrates

    Science.gov (United States)

    Eames, Matthew D.C.; Hossack, John A.

    2016-01-01

    In the context of our ongoing investigation of low-cost 2-dimensional (2-D) arrays, we studied the temperature-dependent acoustic properties of epoxy blends that could serve as an acoustically lossy backing material in compact 2-D array-based devices. This material should be capable of being machined during array manufacture, while also providing adequate signal attenuation to mitigate backing block reverberation artifacts. The acoustic impedance and attenuation of 5 unfilled epoxy blends and 2 filled epoxy blends—tungsten and fiberglass fillers—were analyzed across a 35°C temperature range in 5°C increments. Unfilled epoxy materials possessed an approximately linear variation of impedance and sigmoidal variation of attenuation properties over the range of temperatures of interest. An intermediate epoxy blend was fitted to a quadratic trend line with R2 values of 0.94 and 0.99 for attenuation and impedance, respectively. It was observed that a fiberglass filler induces a strong quadratic trend in the impedance data with temperature, which results in increased error in the characterization of attenuation and impedance. The tungsten-filled epoxy was not susceptible to such problems because a different method of fabrication was required. At body temperature, the tungsten-filled epoxy could provide a 44 dB attenuation of the round-trip backing block echo in our application, in which the center frequency is 5 MHz and the backing material is 1.1 mm thick. This is an 11 dB increase in attenuation compared with the fiberglass-filled epoxy in the context of our application. This work provides motivation for exploring the use of custom-made tungsten-filled epoxy materials as a substitute PCB-based substrate to provide electrical signal interconnect. PMID:19406716

  10. Development and applications of methodologies for the neutronic design of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR)

    Science.gov (United States)

    Fratoni, Massimiliano

    This study investigated the neutronic characteristics of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR), a novel nuclear reactor concept that combines liquid salt (7LiF-BeF2---flibe) cooling and TRISO coated-particle fuel technology. The use of flibe enables operation at high power density and atmospheric pressure and improves passive decay-heat removal capabilities, but flibe, unlike conventional helium coolant, is not transparent to neutrons. The flibe occupies 40% of the PB-AHTR core volume and absorbs ˜8% of the neutrons, but also acts as an effective neutron moderator. Two novel methodologies were developed for calculating the time dependent and equilibrium core composition: (1) a simplified single pebble model that is relatively fast; (2) a full 3D core model that is accurate and flexible but computationally intensive. A parametric analysis was performed spanning a wide range of fuel kernel diameters and graphite-to-heavy metal atom ratios to determine the attainable burnup and reactivity coefficients. Using 10% enriched uranium ˜130 GWd/tHM burnup was found to be attainable, when the graphite-to-heavy metal atom ratio (C/HM) is in the range of 300 to 400. At this or smaller C/HM ratio all reactivity coefficients examined---coolant temperature, coolant small and full void, fuel temperature, and moderator temperature, were found to be negative. The PB-AHTR performance was compared to that of alternative options for HTRs, including the helium-cooled pebble-bed reactor and prismatic fuel reactors, both gas-cooled and flibe-cooled. The attainable burnup of all designs was found to be similar. The PB-AHTR generates at least 30% more energy per pebble than the He-cooled pebble-bed reactor. Compared to LWRs the PB-AHTR requires 30% less natural uranium and 20% less separative work per unit of electricity generated. For deep burn TRU fuel made from recycled LWR spent fuel, it was found that in a single pass through the core ˜66% of the TRU can be

  11. Application of Distributed Temperature Sensing for coupled mapping of sedimentation processes and spatio-temporal variability of groundwater discharge in soft-bedded streams

    DEFF Research Database (Denmark)

    Sebök, Éva; Calvache, Carlos Duque; Engesgaard, Peter Knudegaard

    2015-01-01

    -induced temperature anomalies resemble the signal of groundwater discharge while scouring will cause the cable to float in the water column and measure stream water temperatures. DTS applied in a looped layout with nine fibre optic cable rows in a 70 × 5 m section of a soft-bedded stream made it possible to detect...

  12. Simple synthesis of porous melamine-formaldehyde resins by low temperature solvothermal method and its CO2 adsorption properties

    Directory of Open Access Journals (Sweden)

    F. Yin

    2017-11-01

    Full Text Available A simple and environmentally-friendly approach for the preparation of porous melamine-formaldehyde resins (PMFRs was developed by using low-boiling-point solvents, such as water, as pore-forming agent. With using dimethyl sulfoxide (DMSO and low-boiling solvents cosolvent method, PMFRs with a high specific surface area and well-defined pore structure can be synthesized at a low reaction temperature of 140 °C for a short reaction duration in 20 hours, which can replace the conventional methods that use dimethyl sulfoxide (DMSO as reaction medium and require 3 days at 170 °C to achieve similar surface area. When loaded with polyethylenimine (PEI, the PMFR-PEI-30% showed good CO2 adsorption performance with a capacity of up to 2.89 mmol/g at 30 °C. These results bring new perspectives for the development of lowcost and environmentally-friendly synthetic methods for porous materials, which can boost their widespread applications.

  13. Steam-air fluidized bed gasification of distillers grains: Effects of steam to biomass ratio, equivalence ratio and gasification temperature.

    Science.gov (United States)

    Kumar, Ajay; Eskridge, Kent; Jones, David D; Hanna, Milford A

    2009-03-01

    In this study, thermochemical biomass gasification was performed on a bench-scale fluidized-bed gasifier with steam and air as fluidizing and oxidizing agents. Distillers grains, a non-fermentable byproduct of ethanol production, were used as the biomass feedstock for the gasification. The goal was to investigate the effects of furnace temperature, steam to biomass ratio and equivalence ratio on gas composition, carbon conversion efficiency and energy conversion efficiency of the product gas. The experiments were conducted using a 3x3x3 full factorial design with temperatures of 650, 750 and 850 degrees C, steam to biomass ratios of 0, 7.30 and 14.29 and equivalence ratios of 0.07, 0.15 and 0.29. Gasification temperature was found to be the most influential factor. Increasing the temperature resulted in increases in hydrogen and methane contents, carbon conversion and energy efficiencies. Increasing equivalence ratio decreased the hydrogen content but increased carbon conversion and energy efficiencies. The steam to biomass ratio was optimal in the intermediate levels for maximal carbon conversion and energy efficiencies.

  14. Development of a low-temperature two-stage fluidized bed incinerator for controlling heavy-metal emission in flue gases

    International Nuclear Information System (INIS)

    Peng, Tzu-Huan; Lin, Chiou-Liang; Wey, Ming-Yen

    2014-01-01

    This study develops a low-temperature two-stage fluidized bed system for treating municipal solid waste. This new system can decrease the emission of heavy metals, has low construction costs, and can save energy owing to its lower operating temperature. To confirm the treatment efficiency of this system, the combustion efficiency and heavy-metal emission were determined. An artificial waste containing heavy metals (chromium, lead, and cadmium) was used in this study. The tested parameters included first-stage temperature and system gas velocity. Results obtained using a thermogravimetric analyzer with a differential scanning calorimeter indicated that the first-stage temperature should be controlled to at least 400 °C. Although, a large amount of carbon monoxide was emitted after the first stage, it was efficiently consumed in the second. Loss of the ignition values of ash residues were between 0.005% and 0.166%, and they exhibited a negative correlation with temperature and gas velocity. Furthermore, the emission concentration of heavy metals in the two-stage system was lower than that of the traditional one-stage fluidized bed system. The heavy-metal emissions can be decreased by between 16% and 82% using the low-temperature operating process, silica sand adsorption, and the filtration of the secondary stage. -- Graphical abstract: Heavy-metal emission concentrations in flue gases under different temperatures and gas velocities (dashed line: average of the heavy-metal emission in flue gases in the one-stage fluidized-bed incinerator). Highlights: • Low temperature two-stage system is developed to control heavy metal. • The different first-stage temperatures affect the combustion efficiency. • Surplus CO was destroyed efficiently by the secondary fluidized bed combustor. • Metal emission in two-stage system is lower than in the traditional system. • Temperature, bed adsorption, and filtration are the main control mechanisms

  15. Advanced control system for temperature control in the pressurized fluid bed of Escatron Thermal Plant Power; Sistema de Control Avanzado para Control de la Temperatura del Lecho Fluido a Presion de la Central Termica de Escatron

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In the P. F-B. C a small problem appears, particularly in Escatron the bed temperature gradient is very high. Such gradient very occasionally reaches 50 degree centigree in a same plane. With the reduction of bed difference of temperature, the average bed temperature could be increased with the result steam cycle benefit, at the same time combustion gases would go at a higher temperature to the gas turbine, increasing therefore its performance. The SCAP system will allow to face the resolution of the injection of combustible problem and in this manner achieve the homogenization of bed temperature in Escatron PFBC Thermal Power Station. (Author)

  16. Implementation of an artificial neural network as a PAT tool for the prediction of temperature distribution within a pharmaceutical fluidized bed granulator.

    Science.gov (United States)

    Korteby, Yasmine; Mahdi, Yassine; Azizou, Amel; Daoud, Kamel; Regdon, Géza

    2016-06-10

    In this study, a novel in-line measurement technique of the air temperature distribution during a granulation process using a conical fluidized bed was designed and built for the purpose of measuring the temperature under the Process Analytical Technology (PAT) and introduced to predict the establishment of temperature profiles. Three sets of thermocouples were used, placed at different positions covering the whole operating range, connected to data acquisition measurement hardware, allowing an in-line acquisition and recording of temperatures every second. The measurements throughout the fluidized bed were performed in a steady state by spraying a solution of PVP onto a lactose monohydrate powder bed in order to make predictions of the temperature distribution and the hydrodynamics of the bed during the granulation process using Artificial Neural Networks (ANNs) and to establish the different temperature profiles for different process conditions through the precise predicted information by the constructed, trained, validated and tested neural network. The model's testing results showed a strong prediction capacity of the effects of process variables. Indeed, the predicted temperature values obtained with the ANN model were in good agreement with the values measured with in-line reference method and hence the method can have an application as a predictive control tool. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Post-Vitrification Cure Kinetics of High Temperature Composite Resins: Implications for Characterization and Performance

    Science.gov (United States)

    2013-05-09

    Iso - thermal Cure Kinetics Baseline Residual Cure 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 50 100 150 200 250 Ba se lin e Co rr ec te d Si gn al...observed values, although all large errors were under-predictions Source (Pred. from iso . DSC run, or “observed” ) TG after curing for temp. (°C...He at F lo w (W /g ) Temperature (°C) ESR255 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 5000 10000 15000 20000 25000 30000 35000 100 200 300 Ta n de lta

  18. Methods For The Calculation Of Pebble Bed High Temperature Reactors With High Burnup Plutonium And Minor Actinide Based Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Astrid; Bernnat, Wolfgang; Lohnert, Guenter [Institute for Nuclear Technology and Energy Systems, University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany)

    2008-07-01

    The graphite moderated Modular High Temperature Pebble Bed Reactor enables very flexible loading strategies and is one candidate of the Generation IV reactors. For this reactor fuel cycles with high burnup (about 600 MWd/kg HM) based on plutonium (Pu) and minor actinides (MA) fuel will be investigated. The composition of this fuel is defined in the EU-PuMA-project which aims the reduction of high level waste. There exist nearly no neutronic full core calculations for this fuel composition with high burnup. Two methods (deterministic and Monte Carlo) will be used to determine the neutronics in a full core. The detailed results will be compared with respect to the influence on criticality and safety related parameters. (authors)

  19. Methods For The Calculation Of Pebble Bed High Temperature Reactors With High Burnup Plutonium And Minor Actinide Based Fuel

    International Nuclear Information System (INIS)

    Meier, Astrid; Bernnat, Wolfgang; Lohnert, Guenter

    2008-01-01

    The graphite moderated Modular High Temperature Pebble Bed Reactor enables very flexible loading strategies and is one candidate of the Generation IV reactors. For this reactor fuel cycles with high burnup (about 600 MWd/kg HM) based on plutonium (Pu) and minor actinides (MA) fuel will be investigated. The composition of this fuel is defined in the EU-PuMA-project which aims the reduction of high level waste. There exist nearly no neutronic full core calculations for this fuel composition with high burnup. Two methods (deterministic and Monte Carlo) will be used to determine the neutronics in a full core. The detailed results will be compared with respect to the influence on criticality and safety related parameters. (authors)

  20. Advanced and clean gasification of solid wastes by downstream hot flue gas cleaning with high temperature filters and catalytic beds

    Energy Technology Data Exchange (ETDEWEB)

    Corella, J.; Narvaez, I.; Orio, A. [Univ. Complutense of Madrid (Spain)

    1996-12-31

    Thermochemical gasification of solid wastes has two main advantages over their incineration: a lesser flow rate of exit /stack gas is produced, smaller gas cleaning devices are thus required, and no formation of dioxins/furans, because of the reducing gas atmosphere. Nevertheless, at least two other problems remain to be solved: the destruction or elimination of the halogenated tars produced, and the removal of the heavy metals from the flue gas. Two small pilot plants are being used at University of Madrid to study and solve these problems. They are based on a bubbling fluidized bed gasifier and on a riser type gasifier. They have a continuous feeding of waste (1-4 kg/h) and downstream vessels for high temperature gas cleaning with filters and catalysts. 2 refs., 2 figs.

  1. Soil application of ash produced by low-temperature fluidized bed gasification: effects on soil nutrient dynamics and crop response

    DEFF Research Database (Denmark)

    Müller-Stöver, Dorette Sophie; Ahrenfeldt, Jesper; Holm, Jens Kai

    2012-01-01

    on soil nutrient levels or on crop biomass. We conclude from the results of this study, that—depending on the feedstock used—ashes from LT-CFB gasification of plant biomass can be used to replace mineral fertilizers if they are applied according to their nutrient content, the crop demand, and soil......Recycling of residual products of bioenergy conversion processes is important for adding value to the technologies and as a potential beneficial soil fertility amendment. In this study, two different ash materials originating from low temperature circulating fluidized bed (LT-CFB) gasification...... of either wheat straw (SA) or residue fibers mainly from citrus peels (CP) were tested regarding their potential to be used as fertilizer on agricultural soils. A soil incubation study, a greenhouse experiment with barley and faba bean, and an accompanying outdoor experiment with maize were carried out...

  2. Parametric analysis of a high temperature packed bed thermal storage design for a solar gas turbine

    CSIR Research Space (South Africa)

    Klein, P

    2015-08-01

    Full Text Available , conductive and radiative heat transfer mechanisms and is validated against high temperature experimental data from a laboratory scale test facility. The validated model is further utilised to conduct a parametric design study of a nominal six hour TES (1:55MW...

  3. Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere.

    Science.gov (United States)

    Reynolds, Pamela L; Stachowicz, John J; Hovel, Kevin; Boström, Christoffer; Boyer, Katharyn; Cusson, Mathieu; Eklöf, Johan S; Engel, Friederike G; Engelen, Aschwin H; Eriksson, Britas Klemens; Fodrie, F Joel; Griffin, John N; Hereu, Clara M; Hori, Masakazu; Hanley, Torrance C; Ivanov, Mikhail; Jorgensen, Pablo; Kruschel, Claudia; Lee, Kun-Seop; McGlathery, Karen; Moksnes, Per-Olav; Nakaoka, Masahiro; O'Connor, Mary I; O'Connor, Nessa E; Orth, Robert J; Rossi, Francesca; Ruesink, Jennifer; Sotka, Erik E; Thormar, Jonas; Tomas, Fiona; Unsworth, Richard K F; Whalen, Matthew A; Duffy, J Emmett

    2018-01-01

    Latitudinal gradients in species interactions are widely cited as potential causes or consequences of global patterns of biodiversity. However, mechanistic studies documenting changes in interactions across broad geographic ranges are limited. We surveyed predation intensity on common prey (live amphipods and gastropods) in communities of eelgrass (Zostera marina) at 48 sites across its Northern Hemisphere range, encompassing over 37° of latitude and four continental coastlines. Predation on amphipods declined with latitude on all coasts but declined more strongly along western ocean margins where temperature gradients are steeper. Whereas in situ water temperature at the time of the experiments was uncorrelated with predation, mean annual temperature strongly positively predicted predation, suggesting a more complex mechanism than simply increased metabolic activity at the time of predation. This large-scale biogeographic pattern was modified by local habitat characteristics; predation declined with higher shoot density both among and within sites. Predation rates on gastropods, by contrast, were uniformly low and varied little among sites. The high replication and geographic extent of our study not only provides additional evidence to support biogeographic variation in predation intensity, but also insight into the mechanisms that relate temperature and biogeographic gradients in species interactions. © 2017 by the Ecological Society of America.

  4. Extension of PIV for measuring granular temperature field in dense fluidized beds.

    NARCIS (Netherlands)

    Dijkhuizen, W.; Bokkers, G.A.; Deen, N.G.; van Sint Annaland, M.; Kuipers, J.A.M.

    2007-01-01

    In this work a particle image velocimetry (PIV) technique has been extended to enable the simultaneous measurement of the instantaneous velocity and granular temperature fields. The PIV algorithm has been specifically optimized for dense granular systems and has been thoroughly tested with

  5. High temperature fluidized bed zero valent iron process for flue gas nitrogen monoxide removal

    International Nuclear Information System (INIS)

    Cheng, C.Y.; Chen, S.S.; Tang, C.H.; Chang, Y.M.; Cheng, H.H.; Liu, H.L.

    2008-01-01

    Nitrogen oxides (NO x ) are generated from a variety of sources, and are critical components of photochemical smog. Zero valent iron (ZVI) has been used to remove NO x in a number of studies. The ZVI process requires no extra chemicals or catalysts. In this study, a fluidized ZVI process for removing NO x from flue gases was proposed. The study examined the effects of temperature, ZVI dosage and influent NO concentrations, and observed the kinetic effects between the fluidized ZVI and NO x . A life cycle analysis of the process was also provided. The parametric analysis was conducted in a series of column studies using a continuous emissions monitoring system. Minimum fluidization velocity equations were provided, and the drag coefficient was determined. Capacities of ZVI for NO removal at different temperatures were calculated. Results of the study suggested that temperature, influent concentrations, and flow rates all influenced kinetic coefficients. Different temperatures resulted in different rates of NO removal. It was concluded that between 673 K and 773 K, almost complete NO removals were achieved. 14 refs., 2 tabs., 9 figs

  6. Effective bulk and surface temperatures of the catalyst bed of FT-IR cells used for in situ and operando studies.

    Science.gov (United States)

    Li, Haoguang; Rivallan, Mickael; Thibault-Starzyk, Frederic; Travert, Arnaud; Meunier, Frederic C

    2013-05-21

    The temperature prevailing in the catalyst bed of three different IR spectroscopic reaction cells was assessed by means of thermocouples, an optical pyrometer and reaction rate measurements. One of the cells was a custom-made transmission FT-IR cell for use with thin wafers and the two others were commercial Harrick and Spectra-Tech diffuse reflectance FT-IR (DRIFTS) cells used for the analysis of powdered samples. The rate of CO methanation measured over a 16 wt% Ni/alumina catalyst was used as a means to derive the effective temperature prevailing in the IR cells from that existing in a traditional (non-spectroscopic) reactor having a well-controlled temperature. The sample bed of these three IR cells exhibited a significantly lower temperature than that of the corresponding measure thermocouple, which was yet located in or close to the sample bed. The comparison of Arrhenius plots enabled us to determine a temperature correction valid over a large temperature range. The use of an optical pyrometer was assessed with a view to determining the temperature of the surface of the powdered beds and that at the centre of the wafer. The optical pyrometer proved useful in the case of the catalyst powder, which behaved as a black non-reflecting body. In contrast, the temperature reading was inaccurate in the case of the pressed wafer, probably due to the shiny surface and minute thickness of the wafer, which led to a significant portion of the IR radiation of the surroundings being reflected by and transmitted through the wafer. The optical pyrometer data showed that the temperature of the surface of the powdered beds was significantly lower than that of the bulk of the bed, and that the total flow rate and composition did not affect this value. This work emphasises that the effective bed temperature in spectroscopic cells can be significantly different from that given by measure thermocouples, even when located in the vicinity of the sample, but that the calibration

  7. Resin impregnation process for producing a resin-fiber composite

    Science.gov (United States)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  8. One-dimensional modeling of radial heat removal during depressurized heatup transients in modular pebble-bed and prismatic high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Savage, M.G.

    1984-07-01

    A one-dimensional computational model was developed to evaluate the heat removal capabilities of both prismatic-core and pebble-bed modular HTGRs during depressurized heatup transients. A correlation was incorporated to calculate the temperature- and neutron-fluence-dependent thermal conductivity of graphite. The modified Zehner-Schluender model was used to determine the effective thermal conductivity of a pebble bed, accounting for both conduction and radiation. Studies were performed for prismatic-core and pebble-bed modular HTGRs, and the results were compared to analyses performed by GA and GR, respectively. For the particular modular reactor design studied, the prismatic HTGR peak temperature was 2152.2 0 C at 38 hours following the transient initiation, and the pebble-bed peak temperature was 1647.8 0 C at 26 hours. These results compared favorably with those of GA and GE, with only slight differences caused by neglecting axial heat transfer in a one-dimensional radial model. This study found that the magnitude of the initial power density had a greater effect on the temperature excursion than did the initial temperature

  9. Effect of temperature, hydraulic residence time and elevated PCO2 on acid neutralization within a pulsed limestone bed reactor

    Science.gov (United States)

    Watten, B.J.; Lee, P.C.; Sibrell, P.L.; Timmons, M.B.

    2007-01-01

    Limestone has potential for reducing reagent costs and sludge volume associated with treatment of acid mine drainage, but its use is restricted by slow dissolution rates and the deposition of Fe, Al and Mn-based hydrolysis products on reactive surfaces. We evaluated a pulsed limestone bed (PLB) reactor (15 L/min capacity) that uses a CO2 pretreatment step to accelerate dissolution and hydraulic shearing forces provided by intermittent fluidization to abrade and carry away surface scales. We established the effects of hydraulic residence time (HRT, 5.1-15.9 min), temperature (T, 12-22 ??C) and CO2 tension (PCO2, 34.5-206.8 kPa) on effluent quality when inlet acidity (Acy) was fixed at 440 mg/L (pH=2.48) with H2SO4. The PLB reactor neutralized all H+ acidity (N=80) while concurrently providing unusually high levels of effluent alkalinity (247-1028 mg/L as CaCO3) that allow for side-stream treatment with blending. Alkalinity (Alk) yields rose with increases in PCO2, HRT and settled bed height (BH, cm) and decreased with T following the relationship (R2=0.926; p<0.001): (Alk)non-filtered=-548.726+33.571??(PCO2)0.5+33.671??(HRT)+7.734??(BH)-5.197??(T). Numerical modeling showed CO2 feed requirements for a target Alk yield decrease with increases in HRT, T and the efficiency of off-gas (CO2) recycling. ?? 2007 Elsevier Ltd. All rights reserved.

  10. Effect of Bed Temperature on the Laser Energy Required to Sinter Copper Nanoparticles

    Science.gov (United States)

    Roy, N. K.; Dibua, O. G.; Cullinan, M. A.

    2018-03-01

    Copper nanoparticles (NPs), due to their high electrical conductivity, low cost, and easy availability, provide an excellent alternative to other metal NPs such as gold, silver, and aluminum in applications ranging from direct printing of conductive patterns on metal and flexible substrates for printed electronics applications to making three-dimensional freeform structures for interconnect fabrication for chip-packaging applications. Lack of research on identification of optimum sintering parameters such as fluence/irradiance requirements for sintering of Cu NPs serves as the primary motivation for this study. This article focuses on the identification of a good sintering irradiance window for Cu NPs on an aluminum substrate using a continuous wave (CW) laser. The study also includes the comparison of CW laser sintering irradiance windows obtained with substrates at different initial temperatures. The irradiance requirements for sintering of Cu NPs with the substrate at 150-200°C were found to be 5-17 times smaller than the irradiance requirements for sintering with the substrate at room temperature. These findings were also compared against the results obtained with a nanosecond (ns) laser and a femtosecond (fs) laser.

  11. INFLUENCE OF SILANE HEAT TREATMENT ON THE TENSILE BOND STRENGTH BETWEEN EX-3 SYNTHETIC VENEERING PORCELAIN AND COMPOSITE RESIN USING FIVE DIFFERENT ACTIVATION TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Spartak Yanakiev

    2017-02-01

    Full Text Available Purpose: The purpose of the present study is to assess the effect of five different silane activation temperatures and eight activation methods on the tensile bond strength between one veneering porcelain and one composite resin material. Material and methods: A total of 81 ceramic rods were made of EX-3 veneering ceramic (Kuraray Noritake Dental, Japan. Sintered ceramic bars were grinded with diamond disks to size 10x2x2mm ± 0,05mm. The front part of each bar was polished. After ultrasonic cleaning in distilled water, the specimens were divided into nine groups. Silane was activated with air at room temperature, 38º С, 50º С, 100º С, 120º С using a custom made blow drier. In a silicone mold, a composite resin Z250 (3М ESPE, St. Paul, USA was condensed toward the bond ceramic surface. A total of 81 specimens approximately 2,0 cm long were prepared for tensile bond testing. One way ANOVA, followed by Bonferroni and Games-Howell tests were used for statistical analysis. Results: The lowest tensile bond strength was observed in the control group (3,51MPa. Group 2 yielded the highest bond strength among all groups (19,54MPa. Silane heat treatment enhanced the bond strength for all treatment methods. Within the polished specimens, the highest bond strength was yielded with warm air at 120ºС (11,31MPa. Conclusion: The most effective method for bonding Z250 composite resin to EX-3 veneering ceramic includes HF etching, silane, and adhesive resin. The most effective heat treatment method for bonding is hot air at 120ºС.

  12. Process for Molding Nonreinforced (Neat) Resins

    Science.gov (United States)

    Dickerson, G. E.

    1983-01-01

    Void free moldings obtained for neat, condensation, thermosetting resins. Thermally and mechanically treat resin prior to molding to reduce amount of volatiles. With volatiles reduced molding temperature and pressure are applied in way to drive out remaining volatiles during molding.

  13. Effect of high intensity vs. soft-start halogen irradiation on light-cured resin-based composites. Part I. Temperature rise and polymerization shrinkage.

    Science.gov (United States)

    Hofmann, Norbert; Markert, Tanja; Hugo, Burkard; Klaiber, Bernd

    2003-12-01

    To determine polymerization shrinkage kinetics and temperature rise of light-cured resin-based composites after high intensity vs. soft-start quartz tungsten halogen irradiation. Shrinkage kinetics was evaluated using the "deflecting disk technique", modified for simultaneous measurement of temperature within the resin-based composite using a thermocouple. Additional irradiations after 60 and 65 minutes allowed the determination of temperature rises caused by radiation or by reaction heat. Four hybrids (Filtek Z250, Herculite, Solitaire 2, Tetric Ceram), an inhomogeneously filled hybrid (InTen-S) and a microfill (Filtek A110, formerly Silux Plus) were cured using the quartz tungsten halogen units Astralis 10 and Optilux 501 in the high intensity (A10 HiPo: 10 seconds at 1300 mW/cm2; OL Boost: 10 seconds at 1140 mW/cm2) or soft-start modes (A10 Pulse: increase to 700 mW/cm2 within 10 seconds, three periods of 2 seconds at 1300 mW/cm2 alternating with two periods of 2 seconds at 700 mW/cm2; OL Ramp: exponential increase within 10 seconds, followed by 10 seconds at 1140 mW/cm2). The soft-start protocols produced less contraction, and polymerization shrinkage started later and progressed slower (or: more slowly), compared to high intensity irradiation [correction]. The lowest shrinkage was observed for InTen-S, followed by Filtek Z250 and A110, whereas Solitaire 2, Herculite and Tetric Ceram scored highest for this parameter. Temperature rise was caused more or less equally by radiation and by reaction heat and reached values of up to 28.9 degrees C relative to a baseline of 37 degrees C. For some combinations of curing modes and resin-based composites, less heat was generated by the soft-start protocols and by Optilux 501.

  14. Updated Performance Evaluation of the ISS Water Processor Multifiltration Beds

    Science.gov (United States)

    Bowman, Elizabeth M.; Carter, Layne; Carpenter, Joyce; Orozco, Nicole; Weir, Natalee; Wilson, Mark

    2014-01-01

    The ISS Water Processor Assembly (WPA) produces potable water from a waste stream containing humidity condensate and urine distillate. The primary treatment process is achieved in the Multifiltration Beds, which include adsorbent media and ion exchange resin for the removal of dissolved organic and inorganic contaminants. Two Multifiltration Beds (MF Beds) were replaced on ISS in July 2010 after initial indication of inorganic breakthrough of the first bed and an increasing Total Organic Carbon (TOC) trend in the product water. The first bed was sampled and analyzed Sept 2011 through March 2012. The second MF Bed was sampled and analyzed June 2012 through August 2012. The water resident in the both beds was analyzed for various parameters to evaluate adsorbent loading, performance of the ion exchange resin, microbial activity, and generation of leachates from the ion exchange resin. Portions of the adsorbent media and ion exchange resin were sampled and subsequently desorbed to identify the primary contaminants removed at various points in the bed in addition to microbial analysis. Analysis of the second bed will be compared to results from the first bed to provide a comprehensive overview of how the Multifiltration Beds function on orbit. New data from the second bed supplements the analysis of the first bed (previously reported) and gives a more complete picture of breakthrough compounds, resin breakdown products, microbial activity, and difficult to remove compounds. The results of these investigations and implications to the operation of the WPA on ISS are documented in this paper.

  15. Axial Changes of Catalyst Structure and Temperature in a Fixed-Bed Microreactor During Noble Metal Catalysed Partial Oxidation of Methane

    DEFF Research Database (Denmark)

    Hannemann, S.; Grunwaldt, Jan-Dierk; Kimmerle, B.

    2009-01-01

    The catalytic partial oxidation of methane (CPO) over flame-made 2.5%Rh-2.5%Pt/Al2O3 and 2.5%Rh/Al2O3 in 6%CH4/3%O-2/He shows the potential of in situ studies using miniaturized fixed-bed reactors, the importance of spatially resolved studies and its combination with infrared thermography and on......-line mass spectrometry. This experimental strategy allowed collecting data on the structure of the noble metal (oxidation state) and the temperature along the catalyst bed. The reaction was investigated in a fixed-bed quartz microreactor (1-1.5 mm diameter) following the catalytic performance by on-line gas...... mass spectrometry (MS). Above the ignition temperature of the catalytic partial oxidation of methane (310-330 A degrees C), a zone with oxidized noble metals was observed in the inlet region of the catalyst bed, accompanied by a characteristic hot spot (over-temperature up to 150 A degrees C), while...

  16. Thermal treatment of soil co-contaminated with lube oil and heavy metals in a low-temperature two-stage fluidized bed incinerator

    International Nuclear Information System (INIS)

    Samaksaman, Ukrit; Peng, Tzu-Huan; Kuo, Jia-Hong; Lu, Chien-Hsing; Wey, Ming-Yen

    2016-01-01

    Highlights: • Low-temperature two-stage fluidized bed incineration was applied for soil remediation. • Co-firing of polyethylene with co-contaminated soil was studied. • Co-firing of polyethylene in soil remediation can promote residue quality. • The leachability of heavy metals passed the regulatory threshold values. - Abstract: This study presents the application of a low-temperature two-stage fluidized bed incinerator to remediate contaminants in the soil. The system was designed to control emissions of both gaseous pollutants and heavy metals during combustion. Soil co-contaminated with lube oil and heavy metals such as cadmium, chromium, copper, and lead was examined. Experiments were conducted by estimating various parameters such as operating temperature in the first-stage reactor (500–700 °C), ratio of sand bed height/diameter in the second-stage reactor (H/D: 3, 4, 6), and gas velocity (0.21–0.29 m/s). Heavy metal and gaseous pollutant emissions were also investigated during contaminated soil co-firing with polyethylene. The experimental results indicated that the destruction and removal efficiency of lube oil in treated soil products ranged from 98.27 to 99.93%. On the other hand, leaching tests of bottom ashes illustrated that heavy metals such as chromium, copper, and lead in leachates were complied with the regulations. For gaseous emissions, carbon monoxide concentrations decreased apparently with increasing ratio of sand bed height/diameter in the second-stage reactor. The increase of gas velocity had significant potential to generate the lowest carbon monoxide and particulate matter emissions. Nevertheless, during co-firing with polyethylene, emissions of organic pollutants such as benzene, toluene, ethylbenzene, and xylene and polycyclic aromatic hydrocarbons decrease by using the low-temperature two-stage fluidized bed incineration system.

  17. Sustainability of thorium-uranium in pebble-bed fluoride salt-cooled High Temperature Reactor - 15171

    International Nuclear Information System (INIS)

    Zhu, G.; Zou, Y.; Xu, Hongjie

    2015-01-01

    Sustainability of thorium fuel in a pebble-bed fluoride salt-cooled high temperature reactor (PB-FHR) is investigated to find the feasible region of high discharge burnup and negative FLiBe (2LiF-BeF 2 ) salt temperature reactivity coefficient (TRC). Dispersion fuel or pellet fuel with SiC cladding and SiC matrix is used to replace the tri-structural-isotropic (TRISO) coated particle system for increasing heavy metal loading and decreasing excessive moderation. In order to analyze the neutronic characteristics, an equilibrium calculation method of thorium fuel self-sustainability is developed. We have compared 2 refueling schemes (mixing flow pattern and directional flow pattern) and 2 kinds of reflector materials (SiC and graphite). This method has found that the feasible regions of breeding and negative FLiBe TRC is between 20 vol% and 62 vol% heavy metal loading in the fuel. A discharge burnup could be achieved up to about 200 MWd/kgHM. The case with directional flow pattern and SiC reflector showed superior burnup characteristics but the worst radial power peak factor, while the case with mixing flow pattern and SiC reflector, which was the best tradeoff between discharge burnup and radial power peak factor, could provide burnup of 140 MWd/kgHM and about 1.4 radial power peak factor with 50 vol% dispersion fuel. In addition, FLiBe salt displays good neutron properties as a coolant of quasi-fast reactors due to the strong 9 Be(n,2n) reaction and low neutron absorption of 6 Li (even at 1000 ppm) in fast spectrum. Preliminary thermal hydraulic calculation shows good safety margins. The greatest challenge of this reactor may be the very long irradiation time of the pebble fuel. (authors)

  18. Curing kinetics of alkyd/melamine resin mixtures

    OpenAIRE

    Jovičić Mirjana C.; Radičević Radmila Ž.

    2009-01-01

    Alkyd resins are the most popular and useful synthetic resins applied as the binder in protective coatings. Frequently they are not used alone but are modified with other synthetic resins in the manufacture of the coatings. An alkyd/melamine resin mixture is the usual composition for the preparation of coating called 'baking enamel' and it is cured through functional groups of resins at high temperatures. In this paper, curing kinetics of alkyd resins based on castor oil and dehydrated castor...

  19. Concentrating cesium-137 from seawater using resorcinol-formaldehyde resin for radioecological monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Egorin, Andrei; Tokar, Eduard; Tutov, Mikhail; Avramenko, Valentin [Institute of Chemistry FEBRAS, Vladivostok (Russian Federation); Far Eastern Federal Univ., Vladivostok (Russian Federation); Palamarchuk, Marina; Marinin, Dmitry [Institute of Chemistry FEBRAS, Vladivostok (Russian Federation)

    2017-04-01

    A method of preconcentrating cesium-137 from seawater using a resorcinol-formaldehyde resin, which enables one to optimize the ecological monitoring procedure, has been suggested. Studies of sorption of cesium-137 from seawater by resorcinol-formaldehyde resin have been performed, and it has been demonstrated that the cation exchanger is characterized by high selectivity with respect to cesium-137. It was found that the selectivity depended on the temperature of resin solidification and the seawater pH value. The maximal value of the cesium-137 distribution coefficient is equal to 4.1-4.5 x 10{sup 3} cm{sup 3} g{sup -1}. Under dynamic conditions, the ion-exchange resin capacity is 310-910 bed volumes depending on the seawater pH, whereas the efficiency of cesium removal exceeds 95%. The removal of more than 95% of cesium-137 has been attained using 1-3 M solutions of nitric acid: here, the eluate volume was 8-8.4 bed volumes. Application of 3 M solution of nitric acid results in resin degradation with the release of gaseous products.

  20. Dynamic model development and validation for a nitrifying moving bed biofilter: Effect of temperature and influent load on the performance

    DEFF Research Database (Denmark)

    Sin, Gürkan; Weijma, Jan; Spanjers, Henri

    2008-01-01

    A mathematical model with adequate complexity integrating hydraulics, biofilm and microbial conversion processes is successfully developed for a continuously moving bed biofilter performing tertiary nitrification. The model was calibrated and validated using data from Nether Stowey pilot plant...

  1. The effect of temperature and flow rate on the clarification of the aqueous stevia-extract in a fixed-bed column with zeolites

    Directory of Open Access Journals (Sweden)

    Mantovaneli I. C. C.

    2004-01-01

    Full Text Available Stevia is being used as a sweetener due to its low calorific value and its taste, which is very similar to that of sucrose. After extraction from dried leaves, stevia extract is dark in colour so needs to be clarified for better acceptance by consumers. Adsorption is one of the most important processes in this clarification. In this work the clarification of extract stevia extract in fixed-bed columns with calcium zeolites was studied. Two temperatures (10ºC and 30ºC and six different flow rates (2, 5, 9, 12, 16 and 19 mL/min were studied. The results showed that the mass-transfer coeffcient increases with an increase in flow rate and the length of unused bed reaches a maximum at 9 mL/min for both temperatures. The fit of the Thomas model with the breakthrough data was not very good.

  2. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 1: Process performance and gas product characterization

    DEFF Research Database (Denmark)

    Thomsen, Tobias Pape; Sárossy, Zsuzsa; Gøbel, Benny

    2017-01-01

    Results from five experimental campaigns with Low Temperature Circulating Fluidized Bed (LT-CFB) gasification of straw and/or municipal sewage sludge (MSS) from three different Danish municipal waste water treatment plants in pilot and demonstration scale are analyzed and compared. The gasification...... process is characterized with respect to process stability, process performance and gas product characteristics. All experimental campaigns were conducted at maximum temperatures below 750°C, with air equivalence ratios around 0.12 and with pure silica sand as start-up bed material. A total of 8600kg...... particles in the system. Co-gasification of MSS with sufficient amounts of cereal straw was found to be an effective way to mitigate these issues as well as eliminate thermal MSS drying requirements. Characterization of gas products and process performance showed that even though gas composition varied...

  3. Development and application of a high-temperature sampling probe for burning chamber conditions of fluidized-bed combustion; Korkean laempoetilan naeytteenottosondin kehittaeminen ja soveltaminen leijukerrospolton tulipesaeolosuhteisiin

    Energy Technology Data Exchange (ETDEWEB)

    Larjava, K.; Paerkkae, M.; Jormanainen, P.; Roine, J.; Paakkinen, K. [VTT Chemistry, Espoo (Finland); Linna, V. [VTT Energy, Jyvaeskylae (Finland)

    1996-12-01

    A sampling probe for the burning chamber conditions of fluidized-bed combustion will be developed in this project. The probe will be suitable for sampling vaporous heavy and alkali metals and other condensing compounds (e.g. chlorides) as well combustion gases and alternatively also flue gas particles at high temperatures. The knowledge gained with the probe will help understanding, developing and modeling combustion processes and will thus aid the manufacturers of the boilers. (author)

  4. An in situ spatially resolved analytical technique to simultaneously probe gas phase reactions and temperature within the packed bed of a plug flow reactor.

    Science.gov (United States)

    Touitou, Jamal; Burch, Robbie; Hardacre, Christopher; McManus, Colin; Morgan, Kevin; Sá, Jacinto; Goguet, Alexandre

    2013-05-21

    This paper reports the detailed description and validation of a fully automated, computer controlled analytical method to spatially probe the gas composition and thermal characteristics in packed bed systems. As an exemplar, we have examined a heterogeneously catalysed gas phase reaction within the bed of a powdered oxide supported metal catalyst. The design of the gas sampling and the temperature recording systems are disclosed. A stationary capillary with holes drilled in its wall and a moveable reactor coupled with a mass spectrometer are used to enable sampling and analysis. This method has been designed to limit the invasiveness of the probe on the reactor by using the smallest combination of thermocouple and capillary which can be employed practically. An 80 μm (O.D.) thermocouple has been inserted in a 250 μm (O.D.) capillary. The thermocouple is aligned with the sampling holes to enable both the gas composition and temperature profiles to be simultaneously measured at equivalent spatially resolved positions. This analysis technique has been validated by studying CO oxidation over a 1% Pt/Al2O3 catalyst and the spatial resolution profiles of chemical species concentrations and temperature as a function of the axial position within the catalyst bed are reported.

  5. Impact of the Low-Temperature Reactivity of Reillex(TM) HPQ on Actinide Processing

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    2001-01-01

    Reactive System Screening Tool(TM) data and a computational model are used to predict the impact of pressurization on a typical process-scale ion exchange column due to gases generated by a low temperature exothermic reaction (LTE). The LTE results from a reaction between nitric acid and the ethylbenzene pendant groups of the Reillex(TM) HPQ resin. This reaction would occur if the resin bed were inadvertently heated above 70 degrees C

  6. The effects of fabric for sleepwear and bedding on sleep at ambient temperatures of 17°C and 22°C

    Directory of Open Access Journals (Sweden)

    Shin M

    2016-04-01

    Full Text Available Mirim Shin,1 Mark Halaki,1 Paul Swan,2 Angus Ireland,2 Chin Moi Chow1 1Exercise, Health and Performance Research Group, Faculty of Health Sciences, The University of Sydney, Lidcombe, 2Australian Wool Innovation Limited, The Woolmark Company, Sydney, NSW, Australia Abstract: The fibers used in clothing and bedding have different thermal properties. This study aimed to investigate the influences of textile fabrics on sleep under different ambient temperature (Ta conditions. Seventeen healthy young participants (ten males underwent nine nights of polysomnography testing including an adaptation night. Participants were randomized to each of the three binary factors: sleepwear (cotton vs wool, bedding (polyester vs wool, and Ta (17°C vs 22°C with relative humidity set at 60%. Skin temperature (Tsk and core temperature (Tc were monitored throughout the sleep period. Sleep onset latency (SOL was significantly shortened when sleeping in wool with trends of increased total sleep time and sleep efficiency compared to cotton sleepwear. At 17°C, the proportion of sleep stages 1 (%N1 and 3 (%N3 and rapid eye movement sleep was higher, but %N2 was lower than at 22°C. Interaction effects (sleepwear × Ta showed a significantly shorter SOL for wool than cotton at 17°C but lower %N3 for wool than cotton at 22°C. A significantly lower %N2 but higher %N3 was observed for wool at 17°C than at 22°C. There was no bedding effect on sleep. Several temperature variables predicted the sleep findings in a stepwise multiple regression analysis and explained 67.8% of the variance in SOL and to a lesser degree the %N2 and %N3. These findings suggest that sleepwear played a contributory role to sleep outcomes and participants slept better at 17°C than at 22°C.Keywords: cotton, polyester, wool, polysomnography, skin temperature, core body temperature

  7. Investigation of the influence of heated catalyst feeding system on the intensity of temperature-dependent chemical reaction in the fluidized bed apparatus

    Science.gov (United States)

    Soloveva, O. V.; Solovyev, S. A.

    2016-11-01

    A mathematical model was developed and a numerical study of operation parameters of the fluidized bed apparatus for temperature-dependent processes was performed. Fields of catalyst concentration and temperature fields were obtained. The circulation flow analysis was carried out. The effect of the influence of heated catalyst feeder on the efficiency of apparatus heating was analyzed. The change of the circulating gas flows and catalyst structures due to changes in the heated catalyst feeder was shown. The influence of the catalyst fractional composition on the efficiency of apparatus heating was studied.

  8. Effect of Superficial Gas Velocity on the Solid Temperature Distribution in Gas Fluidized Beds with Heat Production.

    Science.gov (United States)

    Banaei, Mohammad; Jegers, Jeroen; van Sint Annaland, Martin; Kuipers, Johannes A M; Deen, Niels G

    2017-08-02

    The hydrodynamics and heat transfer of cylindrical gas-solid fluidized beds for polyolefin production was investigated with the two-fluid model (TFM) based on the kinetic theory of granular flow (KTGF). It was found that the fluidized bed becomes more isothermal with increasing superficial gas velocity. This is mainly due to the increase of solids circulation and improvement in gas solid contact. It was also found that the average Nusselt number weakly depends on the gas velocity. The TFM results were qualitatively compared with simulation results of computational fluid dynamics combined with the discrete element model (CFD-DEM). The TFM results were in very good agreement with the CFD-DEM outcomes, so the TFM can be a reliable source for further investigations of fluidized beds especially large lab-scale reactors.

  9. Synthesis and electrical characterization of low-temperature thermal-cured epoxy resin/functionalized silica hybrid-thin films for application as gate dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Na, Moonkyong, E-mail: nmk@keri.re.kr [HVDC Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of); System on Chip Chemical Process Research Center, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784 (Korea, Republic of); Kang, Young Taec [Creative and Fundamental Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of); Department of Polymer Science and Engineering, Pusan National University, Busan, 609-735 (Korea, Republic of); Kim, Sang Cheol [HVDC Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of); Kim, Eun Dong [Creative and Fundamental Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of)

    2013-07-31

    Thermal-cured hybrid materials were synthesized from homogenous hybrid sols of epoxy resins and organoalkoxysilane-functionalized silica. The chemical structures of raw materials and obtained hybrid materials were characterized using Fourier transform infrared spectroscopy. The thermal resistance of the hybrids was enhanced by hybridization. The interaction between epoxy matrix and the silica particles, which caused hydrogen bonding and van der Waals force was strengthened by organoalkoxysilane. The degradation temperature of the hybrids was improved by approximately 30 °C over that of the parent epoxy material. The hybrid materials were formed into uniformly coated thin films of about 50 nm-thick using a spin coater. An optimum mixing ratio was used to form smooth-surfaced hybrid films. The electrical property of the hybrid film was characterized, and the leakage current was found to be well below 10{sup −6} A cm{sup −2}. - Highlights: • Preparation of thermal-curable hybrid materials using epoxy resin and silica. • The thermal stability was enhanced through hybridization. • The insulation property of hybrid film was investigated as gate dielectrics.

  10. EDF specifications on nuclear grade resins

    International Nuclear Information System (INIS)

    Mascarenhas, Darren; Gressier, Frederic; Taunier, Stephane; Le-Calvar, Marc; Ranchoux, Gilles; Marteau, Herve; Labed, Veronique

    2012-09-01

    Ion exchange resins are widely used across EDF, especially within the nuclear division for the purification of water. Important applications include primary circuit, secondary circuit and effluent treatment, which require high quality nuclear grade resins to retain the dissolved species, some of which may be radioactive. There is a need for more and more efficient purification in order to decrease worker dose during maintenance but also to decrease volumes of radioactive resin waste. Resin performance is subject to several forms of degradation, including physical, chemical, thermal and radioactive, therefore appropriate resin properties have to be selected to reduce such effects. Work has been done with research institutes, manufacturers and on EDF sites to select these properties, create specifications and to continuously improve on these specifications. An interesting example of research regarding resin performance is the resin degradation under irradiation. Resins used in the CVCS circuit of EDF nuclear power plants are subject to irradiation over their lifetime. A study was carried out on the effects of total integrated doses of 0.1, 1 and 10 MGy on typically used EDF mixed bed resins in a 'mini-CVCS' apparatus to simultaneously test actual primary circuit fluid. The tests confirmed that the resins still perform efficiently after a typical CVCS radiation dose. Certain resins also need additional specifications in order to maintain the integrity of the particular circuits they are used in. Recently, EDF has updated its requirements on these high purity nuclear grade resins, produced generic doctrines for all products and materials used on site which include resins of all grades, and as a result have also updated a guide on recommended resin usage for the French fleet of reactors. An overview of the evolutions will be presented. (authors)

  11. Foam, Foam-resin composite and method of making a foam-resin composite

    Science.gov (United States)

    Cranston, John A. (Inventor); MacArthur, Doug E. (Inventor)

    1995-01-01

    This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F.

  12. Development study of concrete reinforcement made of aramid fiber-reinforced plastic rods with high radiation resistance. 1. Epoxy resin compounds with a handling at room temperature impregnation

    International Nuclear Information System (INIS)

    Udagawa, Akira; Seguchi, Tadao; Moriya, Toshio; Matsubara, Sumiyuki; Hongou, Yoshihiko

    1999-03-01

    Aramid fiber-reinforced plastic (ArFRP) rods were developed in order to avoid from conduction current and/or magnetization of the metallic reinforcement using concrete constructions. For the polymer matrix, new epoxy resin compounds consist of tetraglycidyl diaminodiphenylmethane (30%), diglycidyl ether of bisphenol-A (60%), styrene oxide (10%) and aromatic diamine as a hardner were found to be the best formulation, and which were easily impregnated to the aramid fiber braiding yarn at room temperature. The ArFRP rods has a high radiation resistance, and the tensile strength was maintained to 98% (1.45 GPa) after irradiation dose of 100 MGy (absorbed energy MJ/kg), which is available for the reinforcement of concrete construction for the house of fusion reactor with super conducting magnets. (author)

  13. Optimization of the resin application on the purification system of ISFSF RSG-GAS

    International Nuclear Information System (INIS)

    Junaidi

    1998-01-01

    The purification system in the spent fuel storage is to maintain the coolant water quality to the constant. This system uses the resin of IRN 77-Anion in the mixed bed filter as contamination capture. The returned water flow to the storage will be analyzed to the monitor the bed efficiency. This system can be optimally operated if the mixed bed is contained by 200 liters of resin and this is equivalent with the 0.5 m high of bed and 0.75 m in diameter. The resin must be flushed to be cleaned or changed when the pressure difference in the bed filter is higher than 0.5 bar

  14. Development and application of a high-temperature sampling probe for burning chamber conditions in fluidized-bed combustion; Korkean laempoetilan naeytteenottosondin kehittaeminen ja soveltaminen leijukerrospolton tulipesaeolosuhteisiin

    Energy Technology Data Exchange (ETDEWEB)

    Larjava, K.; Paerkkae, M. [VTT Chemical Technology, Espoo (Finland); Linna, V. [VTT Energy, Jyvaeskylae (Finland). Environmental Technology

    1997-10-01

    Determination of heavy and alkali metals and other condensing compounds (e.g. chlorides) in combustion chamber conditions is limited by the poor suitability of traditional methods for sampling at high temperatures. IFRF has developed a high-temperature sampling probe for sampling HCN and NH{sub 3}, which has been tested for sampling of NH{sub 3} by Chalmers University of Technology in Sweden. VTT Chemical Technology and Chalmers University of Technology have in their preliminary experiments determined contents of vaporous heavy metals in the combustion chamber of a 12 MW circulating fluidized-bed boiler using this probe. According to the results, the modified probe is suitable for heavy metal determination in combustion chamber. Based on this series of experiments, modification of the probe has been started on the own financing of VTT Chemical Technology and a field measurement was performed in November 1994 to test the present version of the probe. Based on the results of that measurement, the probe has been modified further on as a part of this LIEKKI 2 project. Similar kind of a principle has been applied in the probe which has been developed by VTT Energy during 1994. The probe is built for determination of gas composition of fluidized bed in full-scale boilers. The purpose of this project is to develop and test a sampling probe for fluidized bed combustion. The main advantage of the probe is that condensation losses in sampling due to high temperature gradients can be avoided. Thus, the probe is very suitable for sampling vaporous heavy and alkali metals and other condensing species as well as burning gases and alternatively also solids at high temperatures

  15. Plastic casting resin poisoning

    Science.gov (United States)

    Epoxy poisoning; Resin poisoning ... Epoxy and resin can be poisonous if they are swallowed or their fumes are breathed in. ... Plastic casting resins are found in various plastic casting resin products.

  16. Application of resin lining system for countermeasures for preventing leakage from openings in low temperature materials storage; Teion busshitsu chozoji no ekimore oyobi reiki more taisaku toshite no kobunshikei zairyo no tekiyosei

    Energy Technology Data Exchange (ETDEWEB)

    Inada, Y. [Ehime Univ., Ehime (Japan). Faculty of Engineering; Seki, S.

    1996-12-21

    Recently, many of the low temperature materials such as LNG and LPG used as an energy substitution for petroleum were stored in the reclaimed land of the sea side district, however, it is necessary for those storage methods to enlarge sites. Therefore, it was considered to directly store the low temperature materials in openings excavated in the rock mountains. However, countermeasures for leakage of liquid and cold gas from cracks in openings would be an important subject. In this study, as a countermeasure for leakage of liquid and cold gas in the case in which low temperature materials were stored in openings in the rock mountains, the lining of resin materials on the surface of openings was proposed. Characteristics of strength and deformation and values of the thermal physical properties for the resin materials at the low temperature were obtained by experiments. This material was compared with granite supposed as a parent rock, and the thermal property of the resin materials was understood. Next, an analysis was conducted in the case of using the resin materials as a lining, the behavior of the surrounding rocks of the openings and the stability of the lining were investigated. 17 refs., 25 figs., 2 tabs.

  17. Low temperature SO{sub 2} removal with solid sorbents in a circulating fluidized bed absorber. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.K.; Keener, T.C.

    1994-10-10

    A novel flue gas desulfurization technology has been developed at the University of Cincinnati incorporating a circulating fluidized bed absorber (CFBA) reactor with dry sorbent. The main features of CFBA are high sorbent/gas mixing ratios, excellent heat and mass transfer characteristics, and the ability to recycle partially utilized sorbent. Subsequently, higher SO{sub 2} removal efficiencies with higher overall sorbent utilization can be realized compared with other dry sorbent injection scrubber systems.

  18. On natural circulation in High Temperature Gas-Cooled Reactors and pebble bed reactors for different flow regimes and various coolant gases

    International Nuclear Information System (INIS)

    Melesed'Hospital, G.

    1983-01-01

    The use of CO 2 or N 2 (heavy gas) instead of helium during natural circulation leads to improved performance in both High Temperature Gas-Cooled Reactors (HTGR) and in Pebble Bed Reactors (PBR). For instance, the coolant temperature rise corresponding to a coolant pressure level and a rate of afterheat removal could be only 18% with CO 2 as compared to He, for laminar flow in HTGR; this value would be 40% in PBR. There is less difference between HTGR and PBR for turbulent flows; CO 2 is found to be always better than N 2 . These types of results derived from relationships between coolant properties, coolant flow, temperature rise, pressure, afterheat levels and core geometry, are obtained for HTGR and PBR for various flow regimes, both within the core and in the primary loop

  19. Resin composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Peutzfeldt, Anne; Lussi, Adrian

    2014-01-01

    OBJECTIVE: To investigate how the modulus of elasticity of resin composites influences marginal quality in restorations submitted to thermocyclic and mechanical loading. METHODS: Charisma, Filtek Supreme XTE and Grandio were selected as they were found to possess different moduli of elasticity...... of resin composite (p=0.81) on the quality of dentine margins was observed, before or after loading. Deterioration of all margins was evident after loading (p....008). CONCLUSIONS: The resin composite with the highest modulus of elasticity resulted in the highest number of gap-free enamel margins but with an increased incidence of paramarginal enamel fractures. CLINICAL SIGNIFICANCE: The results from this study suggest that the marginal quality of restorations can...

  20. The experimental investigation on the performance of a low temperature waste heat-driven multi-bed desiccant dehumidifier (MBDD) and minimization of entropy generation

    KAUST Repository

    Myat, Aung

    2012-06-01

    We present the experimental investigation on the performance of multi-bed desiccant dehumidification system (MBDD) using a thermodynamic framework with an entropy generation analysis. The cyclic steady state performance of adsorption-desorption processes at the assorted heat source temperatures, and typical ambient humidity conditions was carried out. MBDD unit uses type-RD silica gel pore surface area with of 720 m 2/g. It has a nominal diameter range of 0.4 to 0. 7 mm. The key advantages of MBDD are: (i) it has no moving parts rendering less maintenance, (ii) energy-efficient means of dehumidification by adsorption process with low temperature heat source as compared to the conventional methods, (iii) although it is a pecked bed desiccant, a laminar chamber is employed by arranging the V-shaped configuration of heat exchangers and (iv) it is environmental friendly with the low-carbon footprint. Entropy generation analysis was performed at the assorted heat source temperatures to investigate the performance of MBDD. By conducting the entropy minimization, it is now able to locate the optimal operating conditions of the system while the specific entropy generation is found to be minimal. This analysis shows that the minimization of entropy generation in the dehumidification cycle leads to the maximization of COP in the MBDD and thus, higher delivery of useful effects at the same input resources. © 2011 Elsevier Ltd. All rights reserved.

  1. Effects of reduction temperature to Ni and Fe content and the morphology of agglomerate of reduced laterite limonitic nickel ore by coal-bed method

    Science.gov (United States)

    Abdul, Fakhreza; Pintowantoro, Sungging; Kawigraha, Adji; Nursidiq, Ahlidin

    2018-04-01

    As the current drop of nickel sulfide ore on earth, the attention to nickel laterite ore processing was inscreased in order to fulfill the future nickel demand needs. This research aims to optimized the process of nickel laterite ore extraction using coal bed method. This research was conducted by reducing low grade nickel laterite ore (limonitic) with nickel content of 1.25 %. The reduction process was carried out using CO gas which formed by the reaction of coal and dolomite. The Briquette of nickel ore, coal, Na2SO4 mixtures incorporated in the crucible with bed, then reduced for 6 hours at the temperature of 1200 °C. 1400 °C, and 1400 °C. The result of the research shown that the highest increase of Ni content and Ni recovery value was in the reduction temperature of 1400 °C with the increase of 3.44 %, and the recovery value of Ni equal to 86.75 %. While the highest increase of Fe content and Fe recovery value, respectively, was in the reduction temperature of 1300 °C with the increase of 22.67 % and 1200 °C with Fe recovery value of 89.41 %.

  2. Electrodialytic decontamination of spent ion exchange resins

    International Nuclear Information System (INIS)

    Nott, B.R.

    1982-01-01

    Development of a novel electrodialytic decontamination process for the selective removal of radioactive Cs from spent ion exchange resins containing large amounts of Li is described. The process involves passage of a dc electric current through a bed of the spent ion exchange resin in a specially designed electrodialytic cell. The radiocesium so removed from a volume of the spent resin is concentrated onto a much smaller volume of a Cs selective sorbent to achieve a significant radioactive waste volume reduction. Technical feasibility of the electrodialytic resin decontamination process has been demonstrated on a bench scale with a batch of simulated spent ion exchange resin and using potassium cobalt ferrocyanide as the Cs selective sorbent. A volume reduction factor between 10 and 17 has been estimated. The process appears to be economically attractive. Improvements in process economics can be expected from optimization of the process. Other possible applications of the EDRD process have been identified

  3. Ontario Hydro Research Division's program for treatment of spent ion-exchange resins

    International Nuclear Information System (INIS)

    Nott, B.R.; Dodd, D.J.R.

    1981-09-01

    A brief review of the evolution of work programmes for chemical treatment of spent ion-exchange resins in Ontario Hydro's Research Division is presented. Attention has been focussed on pre-treatment processes for the treatment of the spent resins prior to encapsulation of the products in solid matrices. Spent Resin Regeneration and Acid Stripping processes were considered in some detail. Particular attention was paid to carbon-14 on spent resins, its determination in and removal from the spent resins (with the acid stripping technique). The use of separate cation and anion resin beds instead of mixed bed resins was examined with a view to reducing the volume of resin usage and consequently the volume of waste radioactive ion-exchange resin generated. (author)

  4. Epoxy hydantoins as matrix resins

    Science.gov (United States)

    Weiss, J.

    1983-01-01

    Tensile strength and fracture toughness of castings of the hydantoin resins cured with methylenedianiline are significantly higher than MY 720 control castings. Water absorption of an ethyl, amyl hydantoin formulation is 2.1 percent at equilibrium and Tg's are about 160 C, approximately 15 deg below the final cure temperature. Two series of urethane and ester-extended hydantoin epoxy resins were synthesized to determine the effect of crosslink density and functional groups on properties. Castings cured with methylenedianiline or with hexahydrophthalic anhydride were made from these compounds and evaluated. The glass transition temperatures, tensile strengths and moduli, and fracture toughness values were all much lower than that of the simple hydantoin epoxy resins. Using a methylene bishydantoin epoxy with a more rigid structure gave brittle, low-energy fractures, while a more flexible, ethoxy-extended hydantoin epoxy resin gave a very low Tg.

  5. A study of ion-exchange chromatography in an expanded bed for bovine albumin recovery

    Directory of Open Access Journals (Sweden)

    João Batista Severo Jr.

    2009-04-01

    Full Text Available In the present work, the effect of bed expansion on BSA adsorption on Amberlite IRA 410 ion-exchange resin was studied. The hydrodynamic behavior of an expanded bed adsorption column on effects of the biomolecules and salt addition and temperature were studied to optimize the conditions for BSA recovery on ion-exchange resin. Residence time distribution showed that HEPT, axial dispersion and the Pecletl number increased with temperature and bed height, bed voidage and linear velocity. The binding capacity of the resin increased with bed height. The Amberlite IRA 410 ion-exchange showed an affinity for BSA with a recovery yield of 78.36 % of total protein.No presente trabalho foi estudado o efeito da expansão do leito sobre a adsorção de BSA na resina de troca iônica Amberlite IRA 410. O comportamento hidrodinâmico de uma coluna de adsorção em leito expandido sob efeito da adição de biomoléculas, sal e variação da temperatura também foi estudado para obter as condições ótimas de recuperação da BSA sob a resina de troca iônica. A distribuição do tempo de residência mostrou que a HEPT, a dispersão axial e o número de Pecletl aumentaram com a temperatura, altura do leito, porosidade do leito e velocidade linear. A capacidade de ligação da resina aumentou com a expansão do leito. A resina de troca iônica Amberlite IRA 410 mostrou ter afinidade pela BSA, com uma recuperação de 78,36 % da proteína total.

  6. Influence of the polyhedral oligomeric silsesquioxane n-phenylaminopropyl: POSS in the thermal stability and the glass transition temperature of epoxy resin

    Directory of Open Access Journals (Sweden)

    Vinícius Pistor

    2013-01-01

    Full Text Available In this study, epoxy nanocomposites containing different fractions of n-phenylaminopropyl (POSS were prepared. The nanocomposites were studied by transmission electron microscopy (TEM, gel content, dynamic-mechanical analysis (DMA and thermogravimetric analysis (TGA. The parameters for Avrami's equation were calculated from the degradation curves. The dispersions used to form the nanocomposites were effective above 5 wt % of POSS, and the gel content increased with the addition of POSS. The DMA analysis exhibited an increase in the storage modulus (E' and a shifting of Tg to higher temperatures upon POSS incorporation. The weight loss indicated that the POSS promoted an increase in thermal stability of the epoxy resin. The Avrami parameters demonstrated that the addition of POSS decreased the Avrami constant (k', increased the half-life (t1/2 of degradation and promoted changes in the Avrami exponent (n. These results suggest that the increase in the glass transition temperature and thermal stability depend on the reactive groups in the POSS nanoparticles.

  7. Resin screening for the removal of pyridine-derivatives from waste-water by solvent impregnated resin technology

    NARCIS (Netherlands)

    Bokhove, J.; Schuur, Boelo; de Haan, A.B.

    2013-01-01

    The selective removal of pyridine derivatives by solvent impregnated resins has been studied. A solvent impregnated resin consists of a macro-porous particle that is impregnated with a solvent. This technology allows the use liquid–liquid extraction in fixed-bed operation, and prevents problems like

  8. User's manual for ASTERIX-2: A two-dimensional modular code system for the steady state and xenon transient analysis of a pebble bed high temperature reactor

    International Nuclear Information System (INIS)

    Wu, T.; Cowan, C.L.; Lauer, A.; Schwiegk, H.J.

    1982-03-01

    The ASTERIX modular code package was developed at KFA Laboratory-Juelich for the steady state and xenon transient analysis of a pebble bed high temperature reactor. The code package was implemented on the Stanford Linear Accelerator Center Computer in August, 1980, and a user's manual for the current version of the code, identified as ASTERIX-2, was prepared as a cooperative effort by KFA Laboratory and GE-ARSD. The material in the manual includes the requirements for accessing the program, a description of the major subroutines, a listing of the input options, and a listing of the input data for a sample problem. The material is provided in sufficient detail for the user to carry out a wide range of analysis from steady state operations to the xenon induced power transients in which the local xenon, temperature, buckling and control feedback effects have been incorporated in the problem solution. (orig.)

  9. Initial fracture resistance and curing temperature rise of ten contemporary resin-based composites with increasing radiant exposure.

    Science.gov (United States)

    Shortall, A; El-Mahy, W; Stewardson, D; Addison, O; Palin, W

    2013-05-01

    The principal objective of this study was to determine whether the bulk fracture resistance of ten light activated composites varied over a clinically realistic range of radiant exposures between 5 and 40 J/cm(2). Ten operators were tested for clinically simulated radiant exposure delivery from a Bluephase(®) (Ivoclar Vivadent, Schaan, Liechtenstein) LED light to an occlusal cavity floor in tooth 27 in a mannequin head using a MARC(®)-Patient Simulator (Bluelight Analytics Inc., Halifax, NS) device. Notch disc test samples were prepared to determine the torque resistance to fracture (T) of the composites. Samples were irradiated with the same monowave Bluephase(®) light for 10s, 20s or 40s at distances of 0mm or 7 mm. After 24h, storage samples were fractured in a universal testing machine and torque to failure was derived. Radiant exposure delivered in the clinical simulation ranged from 14.3% to 69.4% of maximum mean radiant exposure deliverable at 0mm in a MARC(®)-Resin Calibrator (Bluelight Analytics Inc., Halifax, NS) test device. Mean torque to failure increased significantly (Pradiant exposure for 8 out of 10 products. The micro-fine hybrid composite Gradia Direct anterior (GC) had the lowest mean (S.D.) T between 10.3 (1.8)N/mm and 13.7 (2.2)N/mm over the tested radiant exposure range. Three heavily filled materials Majesty Posterior, Clearfil APX and Clearfil Photo-Posterior (Kuraray) had mean T values in excess of 25 N/mm following 40 J/cm(2) radiant exposure. Mean T for Z100 (3MESPE) and Esthet-X (Dentsply) increased by 10% and 91% respectively over the tested range of radiant exposures. Individual products require different levels of radiant exposure to optimize their fracture resistance. Light activated composites vary in the rate at which they attain optimal fracture resistance. Unless the clinician accurately controls all the variables associated with energy delivery, there is no way of predicting that acceptable fracture resistance will be

  10. Anion-exchange resin-based desulfurization process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sheth, A C; Dharmapurikar, R; Strevel, S D

    1994-01-01

    The following investigations were performed: (1) batch mode screening of eleven(11) commercially available resins and selection of three candidate resins for further evaluation in a fixed-bed setup. (2) Process variables study using three candidate resins in the fixed-bed setup and selection of the ``best`` resin for process economics development. (3) Exhaustion efficiency and solution concentration were found to be inversely related necessitating a trade-off between the resin cost versus the cost of evaporation/concentration of ensuing effluents. (4) Higher concentration of the HCO{sub 3}{sup {minus}} form of active sites over less active CO{sub 3}{sup 2{minus}} form of sites in the resin was believed to be the main reason for the observed increase in the equilibrium capacity of the resin at an elevated static CO{sub 2}-pressure. This Increase in capacity was found to level off around 80--120 psig range. The increase in CO{sub 2}-pressure, however, did not appear to affect the overall ion-exchange kinetics. (5) In the fixed-bed mode, the solution concentration was found to affect the equilibrium capacity of candidate resins. Their relationship was well satisfied by the Langmuir type non-linear equilibrium isotherm. Alternatively, the effect of solution concentration on overall ion-exchange kinetics varied from resin to resin. (6) Product inhibition effect on the resin was observed as an initial increase followed by a significant decrease in the resin`s equilibrium capacity for SO{sub 4}{sup 2{minus}} as the HCO{sub 3}{sup {minus}}/SO{sub 4}{sup 2{minus}} molar ratio in the solution was increased from 0 to 1.0. This ratio, however, did not affect the overall ion-exchange kinetics.

  11. Ion exchange removal of cesium from Hanford tank waste supernates with SuperLigR 644 resin

    International Nuclear Information System (INIS)

    Hassan, N.M.; McCabe, D.J.; King, W.D.; Hamm, L.L.

    2002-01-01

    SuperLig R 644 ion exchange resin is currently being evaluated for cesium ( 137 Cs) removal from radioactive Hanford tank waste supernates as part of the River Protection Project. Testing was performed with actual Hanford tank wastes of widely different compositions using two identical ion exchange columns connected in series each containing approximately 5.5-6.5 ml of SuperLig R 644 resin. The ion exchange columns utilized the same resin material that was eluted between the column tests. This was done to demonstrate the performance of the SuperLig R 644 resin for cesium removal from waste samples of different compositions, determine the loading and elution profiles, and to validate design assumptions for full-scale column performances. Decontaminated product solutions generated at the same operating temperature and constant residence times (bed volumes per hour) exhibited the same chemical compositions as their feed samples. The compositions of eluate solutions were generally as expected with the exception of uranium and total organic carbon, which where concentrated by the resin. Development of a pretreatment method for the SuperLig R 644 resin has been critical to successful column operation with different waste solutions. (author)

  12. Hydrogen-rich gas production by steam gasification of char from biomass fast pyrolysis in a fixed-bed reactor: influence of temperature and steam on hydrogen yield and syngas composition.

    Science.gov (United States)

    Yan, Feng; Luo, Si-yi; Hu, Zhi-quan; Xiao, Bo; Cheng, Gong

    2010-07-01

    Steam gasification experiments of biomass char were carried out in a fixed-bed reactor. The experiments were completed at bed temperature of 600-850 degrees C, a steam flow rate of 0-0.357 g/min/g of biomass char, and a reaction time of 15min. The aim of this study is to determine the effects of bed temperature and steam flow rate on syngas yield and its compositions. The results showed that both high gasification temperature and introduction of proper steam led to higher yield of dry gas and higher carbon conversion efficiency. However, excessive steam reduced gas yield and carbon conversion efficiency. The maximum dry gas yield was obtained at the gasification temperature of 850 degrees C and steam flow rate of 0.165 g/min/g biomass char. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Resin selection criteria for tough composite structures

    Science.gov (United States)

    Chamis, C. C.; Smith, G. T.

    1983-01-01

    Resin selection criteria are derived using a structured methodology consisting of an upward integrated mechanistic theory and its inverse (top-down structured theory). These criteria are expressed in a "criteria selection space" which are used to identify resin bulk properties for improved composite "toughness". The resin selection criteria correlate with a variety of experimental data including laminate strength, elevated temperature effects and impact resistance.

  14. Effect of temperature on the performance of laboratory-scale phosphorus-removing filter beds in on-site wastewater treatment.

    Science.gov (United States)

    Herrmann, Inga; Nordqvist, Kerstin; Hedström, Annelie; Viklander, Maria

    2014-12-01

    P-sorbing filter beds appear to be viable options for treating wastewater to reduce P discharges and recover this non-renewable resource. However, greater knowledge of filters' responses to temperature variations is required to assess their likely performance in full-scale applications and facilitate the transfer of laboratory results to the field. Thus, in the present study two filter materials (Top16 and Polonite) were characterized physicochemically and effects of temperature on their performance were investigated under controlled laboratory conditions. Using a 2(2) factorial design and secondary wastewater eight filter columns were tested at temperatures of 4.3°C and 16.5°C. Temperature significantly (α=0.05) and strongly affected the P binding capacity of both materials, as it was 1.2- and 1.5-fold higher at 16.5°C than at 4.3°C for Top16 and Polonite, respectively. This is probably due to the enhanced precipitation of calcium phosphates at higher temperature. Observed reductions in total organic carbon content in the wastewater were also positively correlated with temperature, while the pH and reduction of dissolved organic carbon remained unaffected. The physicochemical analyses indicated that several calcium phases dissolved from the filter materials, primarily gypsum and bassanite from Top16 and Portlandite from Polonite. No clear evidence of any crystalline calcium phosphates was observed in the used materials. The results clearly show that temperature strongly influences the retention of P in filters and its effects should be carefully considered before using candidate filters in full-scale applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Free volume of an epoxy resin and its relation to structural relaxation: evidence from positron lifetime and pressure-volume-temperature experiments.

    Science.gov (United States)

    Dlubek, Günter; Hassan, E M; Krause-Rehberg, Reinhard; Pionteck, Jürgen

    2006-03-01

    The microstructure of the free volume and its temperature dependence in the epoxy resin diglycidyl ether of bisphenol-A (DGEBA) have been examined using positron annihilation lifetime spectroscopy (PALS, 80-350K, 10(-5) Pa) and pressure-volume-temperature (PVT, 293-470 K, 0.1-200MPa) experiments. Employing the Simha-Somcynsky lattice-hole theory (S-S eos), the excess (hole) free volume fraction h and the specific free and occupied volumes, Vf=hV and Vocc=(1-h)V, were estimated. From the PALS spectra analyzed with the new routine LT9.0 the hole size distribution, its mean, , and mean dispersion, sigma h, were calculated. varies from 35 130 A3. From a comparison of with V and Vf, the specific hole number N'h was estimated to be independent of the temperature [Nh(300 K)=N'h/V=0.65 nm-3]. From comparison with reported dielectric and viscosity measurements, we found that the structural relaxation slows down faster than the shrinkage of the hole free volume Vf would predict on the basis of the free volume theory. Our results indicate that the structural relaxation in DGEBA operates via the free-volume mechanism only when liquidlike clusters of cells of the S-S lattice appear which contain a local free volume of approximately 1.5 or more empty S-S cells. The same conclusion follows from the pressure dependency of the structural relaxation and Vf. It is shown that PALS mirrors thermal volume fluctuations on a subnanometer scale via the dispersion in the ortho-positronium lifetimes. Using a fluctuation approach, the temperature dependency of the characteristic length of dynamic heterogeneity, xi, is estimated to vary from xi=1.9 nm at Tg to 1.0 nm at T/Tg>1.2. A model was proposed which relates the spatial structure of the free volume as concluded from PALS to the known mobility pattern of the dynamic glass transition at low (cooperative alpha-relaxation) and high (alpha-relaxation) temperatures. We discuss possible reasons for the differences between the results of our

  16. Experimental and Theoretical Studies of Moisture and Temperature Effects on the Mechanical Properties of Graphite/Epoxy Laminates and Neat Resins

    Science.gov (United States)

    Sternstein, S. S.

    1984-01-01

    The properties of high performnce composites which are strongly dependent on the physical properties of the matrix resin were studied. Moisture adversely affect the properties of both neat epoxy resin and epoxy matrix composites. Inhomogeneous swelling as to the moisture degradation of mechanical properties, both in the neat resin and the composite. It is postulated that the postcuring process can change structure/moisture interactions and partially alleviate its adverse effects. The study is directed toward are understanding of the physical/mechanical/thermodynamic aspects of this problem.

  17. Adsorptive Removal of Trichloroethylene in Water by Crop Residue Biochars Pyrolyzed at Contrasting Temperatures: Continuous Fixed-Bed Experiments

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2015-01-01

    Full Text Available Biochar (BC has attracted great attention as an alternative sorbent to activated carbon (AC. Objective of this study was to determine trichloroethylene (TCE removal by soybean stover BC pyrolyzed at 300 (BC300 and 700°C (BC700 in continuous fixed-bed column. Columns packed with BC300, BC700, and AC reached breakthrough time in 1.1, 27.0, and 50.7 h, respectively. BC700 had higher TCE adsorption capacity than BC300 due to its higher surface area, nonpolarity, and aromaticity. The sorption capacities of AC (774.0 mg g−1 and BC700 (515.1 mg g−1 were 21.6 and 14.4 times higher than that of BC300 (35.9 mg g−1. The lower desorption rate of TCE from BC300 than BC700 and AC may be attributed to the strong binding/partition of TCE to the noncarbonized part of BC. Thomas model also adequately described the adsorption data indicating interphase mass transfer. Overall, AC showed best efficiency for removing TCE from water in column experiments. However, although sorption and desorption capabilities of BC700 were a little lower than AC, it is still a good alternative for AC to remove organic contaminants such as TCE from water due to its cost-effectiveness.

  18. Comparison of electron beam and laser beam powder bed fusion additive manufacturing process for high temperature turbine component materials

    Energy Technology Data Exchange (ETDEWEB)

    Dryepondt, Sebastien N [ORNL; Kirka, Michael M [ORNL; Pint, Bruce A [ORNL; Ryan, Daniel [Solar Turbines, Inc.

    2016-04-01

    The evolving 3D printer technology is now at the point where some turbine components could be additive manufactured (AM) for both development and production purposes. However, this will require a significant evaluation program to qualify the process and components to meet current design and quality standards. The goal of the project was to begin characterization of the microstructure and mechanical properties of Nickel Alloy X (Ni-22Cr-18Fe-9Mo) test bars fabricated by powder bed fusion (PBF) AM processes that use either an electron beam (EB) or laser beam (LB) power source. The AM materials produced with the EB and LB processes displayed significant differences in microstructure and resultant mechanical properties. Accordingly, during the design analysis of AM turbine components, the specific mechanical behavior of the material produced with the selected AM process should be considered. Comparison of the mechanical properties of both the EB and LB materials to those of conventionally processed Nickel Alloy X materials indicates the subject AM materials are viable alternatives for manufacture of some turbine components.

  19. Condensate treatment in BWR circuits by filter demineralizer units using powdered ion exchange resin at medium and high temperature

    International Nuclear Information System (INIS)

    De Martino, R.

    1983-01-01

    Considering the radiation build-up in some BWR reactors, we make a correlation between this phenomenon and the condensate purification system applied and the point of its utilization into the circuits. The application temperature of such a plant seems to have a very important role on the equilibria of metals contained in the reactor water and on the oxide composition. The efficiency of the condensate polishing system and the corrosion control are the most interesting objectives to achieve and to maintain, to control and regulate the physical and chemical process in the feedwater and in the reactor water. Up to date the technology owns major knowledge and a consistent know-how on using chemical products in order to increase the condensate polishing system efficiency. It is also considered a typical parallel case of a conventional power station and a secondary system of BWR units. (author)

  20. Review: Resin Composite Filling

    OpenAIRE

    Desmond Ng; Jimmy C. M. Hsiao; Keith C. T. Tong; Harry Kim; Yanjie Mai; Keith H. S. Chan

    2010-01-01

    The leading cause of oral pain and tooth loss is from caries and their treatment include restoration using amalgam, resin, porcelain and gold, endodontic therapy and extraction. Resin composite restorations have grown popular over the last half a century because it can take shades more similar to enamel. Here, we discuss the history and use of resin, comparison between amalgam and resin, clinical procedures involved and finishing and polishing techniques for resin restoration. Although resin ...

  1. Thermal rearrangement of novolak resins used in microlithography

    Science.gov (United States)

    Hardy, Ricky; Zampini, Anthony; Monaghan, Michael J.; O'Leary, Michael J.; Cardin, William J.; Eugster, Timothy J.

    1995-06-01

    Changes in phenolic-formaldehyde resin properties are described in terms of thermal exposure. At high temperature, resin molecular weight, dissolution properties and chemical composition change depending on the presence or absence of monomers. Without monomer in the resin melt at 220 degree(s)C, resin molecular weight increases with a corresponding decrease in dissolution rate. In the presence of monomer, molecular weight generally decreases. Dissolution rate may fluctuate depending on the monomer mixture. Three,five- Xylenol and 2,3,5-trimethylphenol co-monomers induced the most extreme changes in resin properties with thermal treatment. Resin degradation-recombination processes suggest a classical Friedel-Craft rearrangement mechanism.

  2. New bismaleimide matrix resins for graphite fiber composites

    Science.gov (United States)

    Hsu, M.-T. S.; Chen, T. S.; Parker, J. A.; Heimbuch, A. H.

    1985-01-01

    Two new bismaleimide resins based on the N,N'-m-phenylene-bis(m-amino-benzamide) structure have been synthesized and characterized. The mixtures of the two resins gave better handling, processing, mechanical, and thermal properties in graphite composites than did the individual resins. The mechanical strength of the cured graphite composites prepared from the 1:1 copolymer of the two bismaleimide resins was excellent at both ambient and elevated temperatures. The physical and mechanical properties of the composites from the new bismaleimide matrix resin systems are compared with conventional composites based on epoxy and other bismaleimide systems. The copolymer system provides another method for improving bismaleimide resins.

  3. Thermal decomposition of expanded polystyrene in a pebble bed reactor to get higher liquid fraction yield at low temperatures.

    Science.gov (United States)

    Chauhan, R S; Gopinath, S; Razdan, P; Delattre, C; Nirmala, G S; Natarajan, R

    2008-11-01

    Expanded polystyrene is one of the polymers produced in large quantities due to its versatile application in different fields. This polymer is one of the most intractable components in municipal solid waste. Disposal of polymeric material by pyrolysis or catalytic cracking yields valuable hydrocarbon fuels or monomers. Literature reports different types of reactors and arrangements that have uniform temperatures during pyrolysis and catalytic cracking. The present study focuses on reducing the temperature to maximize the quantity of styrene monomer in the liquid product. A bench scale reactor has been developed to recover the styrene monomer and other valuable chemicals. Experiments were carried under partial oxidation and vacuum conditions in the temperature range of 300-500 degrees C. In the pyrolysis optimization studies, the best atmospheric condition was determined to be vacuum, the pyrolysis temperature should be 500 degrees C, yield of liquid product obtained was 91.7% and yield of styrene obtained was 85.5%. In the characterization studies, distillation and IR spectroscopy experiments were carried out. The remaining of the liquid product comprises of benzene, ethyl benzene, and styrene dimers and trimers.

  4. IPN Polysiloxane-Epoxy Resin for High Temperature Coatings: Structure Effects on Layer Performance after 450 °C Treatment

    Directory of Open Access Journals (Sweden)

    Simone Giaveri

    2017-11-01

    Full Text Available Coatings for high temperatures (HT > 400 °C are obtained from interpenetrating polymer network (IPN binders formed by simultaneous polymerization of silicone and epoxide pre-polymers. A ceramic layer; mainly composed of silica and fillers; remains on the metal surface after a thermal treatment at 450 °C. The layer adhesion and the inorganic filler’s distribution have been investigated by, firstly, exchanging the organic substituents (methyl and phenyl of the silicone chains and, secondly, by adding conductive graphene nanoplatelets with the aim to assure a uniform distribution of heat during the thermal treatment. The results are evidence that different substituent ratios affect the polymer initial layout. The adhesion tests of paint formulations are analysed and were related to instrumental analyses performed using glow discharge optical emission spectroscopy (GDOES; thermal analyses (TG/DTA and DSC; electron microscopy with energy dispersive X-ray analysis (SEM-EDX. A greater resistance to powdering using phenyl groups instead of methyl ones; and an improved distribution of fillers due to graphene nanoplatelet addition; is evidenced.

  5. Solidification of ion exchange resin wastes

    International Nuclear Information System (INIS)

    1982-08-01

    Solidification media investigated included portland type I, portland type III and high alumina cements, a proprietary gypsum-based polymer modified cement, and a vinyl ester-styrene thermosetting plastic. Samples formulated with hydraulic cement were analyzed to investigate the effects of resin type, resin loading, waste-to-cement ratio, and water-to-cement ratio. The solidification of cation resin wastes with portland cement was characterized by excessive swelling and cracking of waste forms, both after curing and during immersion testing. Mixed bed resin waste formulations were limited by their cation component. Additives to improve the mechanical properties of portland cement-ion exchange resin waste forms were evaluated. High alumina cement formulations dislayed a resistance to deterioration of mechanical integrity during immersion testing, thus providing a significant advantage over portland cements for the solidification of resin wastes. Properties of cement-ion exchange resin waste forms were examined. An experiment was conducted to study the leachability of 137 Cs, 85 Sr, and 60 Co from resins modified in portland type III and high alumina cements. The cumulative 137 Cs fraction release was at least an order of magnitude greater than that of either 85 Sr or 60 Co. Release rates of 137 Cs in high alumina cement were greater than those in portland III cement by a factor of two.Compressive strength and leach testing were conducted for resin wastes solidified with polymer-modified gypsum based cement. 137 Cs, 85 Sr, and 60 Co fraction releases were about one, two and three orders of magnitude higher, respectively, than in equivalent portland type III cement formulations. As much as 28.6 wt % dry ion exchange resin was successfully solidified using vinyl ester-styrene compared with a maximum of 25 wt % in both portland and gypsum-based cement

  6. Effect of heat source shape on the thermal field in the pebble bed core of High Temperature Gas-cooled Reactor (HTGR)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Leisheng; Lee, Jaeyoung [Handong Global University, Pohang (Korea, Republic of)

    2015-10-15

    In this study, in order to minimize the error brought by non-uniform heat flux, the spherical heaters are employed as heat source; subsequently, thermal field and heat transfer characteristics of the pebbles are investigated. The thermal field of the pebble surface in PBR is measured with heat source in different shapes. The HTGR design concept exhibits excellent safety features due to the low power density and the large amount of graphite present in the core which gives a large thermal inertia in an accident such as loss of coolant. However, the possible appearance of hot spots in the pebble bed cores of HTGR may affect the integrity of the pebbles, which has drawn the attention of many scientists to investigate the thermal field and to predict the maximum temperature locations in the pebbles using CFD method, Lee et.al has also done some experimental work on measuring the surface temperature of the pebbles as well as visualizing flow patterns of the coolant gas, and it was found that the temperature near the contacting points between pebbles was not higher than the flow stagnation points due to the higher thermal conductivity of the pebble. Certain error of temperature measurement might occur because of not very uniform heat flux in the pebbles since heater in cylindrical shape was utilized as heat source in previous experiment. More uniform heat flux and more complicated thermal profile are found in the result obtained using spherical heaters. The result shows that the temperature in contact point is higher than that in the top point, which is different from the previous results. The complex thermal phenomena observed in the lower-half side-sphere can be explained by the flow pattern near the surface.

  7. Batch statistical process control of a fluid bed granulation process using in-line spatial filter velocimetry and product temperature measurements.

    Science.gov (United States)

    Burggraeve, A; Van den Kerkhof, T; Hellings, M; Remon, J P; Vervaet, C; De Beer, T

    2011-04-18

    Fluid bed granulation is a batch process, which is characterized by the processing of raw materials for a predefined period of time, consisting of a fixed spraying phase and a subsequent drying period. The present study shows the multivariate statistical modeling and control of a fluid bed granulation process based on in-line particle size distribution (PSD) measurements (using spatial filter velocimetry) combined with continuous product temperature registration using a partial least squares (PLS) approach. Via the continuous in-line monitoring of the PSD and product temperature during granulation of various reference batches, a statistical batch model was developed allowing the real-time evaluation and acceptance or rejection of future batches. Continuously monitored PSD and product temperature process data of 10 reference batches (X-data) were used to develop a reference batch PLS model, regressing the X-data versus the batch process time (Y-data). Two PLS components captured 98.8% of the variation in the X-data block. Score control charts in which the average batch trajectory and upper and lower control limits are displayed were developed. Next, these control charts were used to monitor 4 new test batches in real-time and to immediately detect any deviations from the expected batch trajectory. By real-time evaluation of new batches using the developed control charts and by computation of contribution plots of deviating process behavior at a certain time point, batch losses or reprocessing can be prevented. Immediately after batch completion, all PSD and product temperature information (i.e., a batch progress fingerprint) was used to estimate some granule properties (density and flowability) at an early stage, which can improve batch release time. Individual PLS models relating the computed scores (X) of the reference PLS model (based on the 10 reference batches) and the density, respectively, flowabililty as Y-matrix, were developed. The scores of the 4 test

  8. Mal-distribution of temperature in an industrial dual-bed reactor for conversion of CO2 to methanol

    International Nuclear Information System (INIS)

    Mirvakili, A.; Rahimpour, M.R.

    2015-01-01

    Design of dual type methanol reactor includes a gas cooled reactor for methanol synthesis. The gas cooled reactor faces with the problem of gas condensate formation and two phase flow in the practical operating conditions owing to a high temperature drop in the last 2 m of the reactor length. In this study, three strategies are proposed in order to prevent gas condensate formation in the gas cooled reactor which is designed based on dual type design. The first strategy is utilization of a partial condenser before the gas cooled reactor, the second strategy is injection of hot synthesis gas (HGS) to the last 2 m of the reactor and the third is warming the shell side of the reactor with steam in a jacket (JS) around the last 2 m of the reactor. Simulation results show that, the most effective strategy (ES) is application of a partial condenser to separate the methanol and water in the inlet of the gas cooled reactor by condensation. In ES, the dew point temperature in the porous media reduces via in-situ methanol and water removal at the inlet of the gas cooled reactor and gas temperature ascends along the length of the reactor. Moreover, methanol production enhances about 7.9% and CO 2 decreases 2.6% in ES rather than in the conventional methanol synthesis reactor (CR). The elimination of the gas condensate formation on one hand and enhancing the methanol production and decreasing CO 2 emission on the other hand can be considered as the superiority of the suggested ES to the CR and other strategies. - Graphical abstract: Schematic diagram of heating process in ES (self-heat recuperation technology). Display Omitted - Highlights: • Gas cooled reactor of dual type methanol faces with a significant problem. • Temperature drop in the last of the reactor increased drastically. • Temperature is less than dew point temperature in the porous media. • Methanol and water are condensed at the last of the reactor. • Self-heat recuperation technology is developed to

  9. Understanding and predicting bed humidity in fluidized bed granulation.

    Science.gov (United States)

    Hu, Xinhui; Cunningham, John; Winstead, Denita

    2008-04-01

    Bed humidity is a critical parameter that needs to be controlled in a fluidized bed granulation to ensure reliability. To predict and control the bed humidity during the fluidized bed granulation process, a simple model based on the mass conservation of moisture was developed. The moisture mass balance model quantitatively simulates the effects of spray rate, binder solution concentration, airflow rate, inlet air temperature, and dew point on the bed humidity. The model was validated by a series of granulations performed in different scale granulators including Glatt GPCG-1, GPCG-15, and GPCG-60. Good agreement was observed between the theoretical prediction and the measured loss on drying (LOD). The model developed in the current work enables us to choose the appropriate parameters for the fluidized bed granulation and can be used as a valuable tool in process scaling-up. 2007 Wiley-Liss, Inc

  10. Effects of Low-temperature Pre-oxidation on the Titanomagnetite Ore Structure and Reduction Behaviors in a Fluidized Bed

    Science.gov (United States)

    Adetoro, Ajala Adewole; Sun, Haoyan; He, Shengyi; Zhu, Qingshan; Li, Hongzhong

    2018-04-01

    With respect to high efficient utilization of low-grade iron ore resource, the behavior of low-temperature "973 K to 1123 K (700 °C to 850 °C)" oxidation, on the phase transition of SA TTM ore (South African titanomagnetite), and its effect on subsequent reduction was investigated. The results showed that hematite and rutile are the oxidation product below 1048 K (775 °C), while pseudobrookite is the stable phase above 1073 K (800 °C). With the increase in temperature and oxidation time, there is a competitive relationship between the amount of hematite and pseudobrookite generated. The reduction efficiency of SA TTM was significantly improved by oxidation pretreatment, primarily due to the dissociation of titania-ferrous oxides to more easily reducible hematite. But the generation of pseudobrookite phase decreases the amount of free hematite available for reduction, which weakens the improvement effect of pre-oxidation. The equilibrium relationship between the metallization degree and the gas reduction potential for TTM ore with pre-oxidation treatment has been built. Finally, the reduction metallization degree for the first and second step can be improved averagely by 16.67 and 3.45 pct, respectively, for sample pre-oxidized at 1098 K (825 °C) for 15 and 90 minutes, while 26.96 and 7.4 pct, improvement is achieved for sample pre-oxidized at a lower temperature of 1048 K (775 °C) for 120 minutes.

  11. PILOT-SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D

    2007-01-09

    Savannah River National Laboratory (SRNL) performed pilot-scale hydraulic/chemical testing of spherical resorcinol formaldehyde (RF) ion exchange (IX) resin for the River Protection Project Hanford Tank Waste Treatment & Immobilization Plant (WTP) Project. The RF resin cycle testing was conducted in two pilot-scale IX columns, 1/4 and 1/2 scale. A total of twenty-three hydraulic/chemical cycles were successfully completed on the spherical RF resin. Seven of the cycles were completed in the 12-inch IX Column and sixteen cycles were completed in the 24-inch IX Column. Hydraulic testing showed that the permeability of the RF resin remained essentially constant, with no observed trend in the reduction of the permeability as the number of cycles increased. The permeability during the pilot-scale testing was 2 1/2 times better than the design requirements of the WTP full-scale system. The permeability of the resin bed was uniform with respect to changes in bed depth. Upflow Regeneration and Simulant Introduction in the IX columns revealed another RF resin benefit; negligible radial pressures to the column walls from the swelling of resin beads. In downflow of the Regeneration and Simulant Introduction steps, the resin bed particles pack tightly together and produce higher hydraulic pressures than that found in upflow. Also, upflow Simulant Introduction produced an ideal level bed for the twenty cycles completed using upflow Simulant Introduction. Conversely, the three cycles conducted using downflow Simulant Introduction produced an uneven bed surface with erosion around the thermowells. The RF resin bed in both columns showed no tendency to form fissures or pack more densely as the number of cycles increased. Particle size measurements of the RF resin showed no indication of particle size change (for a given chemical) with cycles and essentially no fines formation. Micrographs comparing representative bead samples before and after testing indicated no change in bead

  12. PILOT-SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D

    2006-11-08

    Savannah River National Laboratory (SRNL) performed pilot-scale hydraulic/chemical testing of spherical resorcinol formaldehyde (RF) ion exchange (IX) resin for the River Protection Project-Hanford Tank Waste Treatment & Immobilization Plant (WTP) Project. The RF resin cycle testing was conducted in two pilot-scale IX columns, 1/4 and 1/2 scale. A total of twenty-three hydraulic/chemical cycles were successfully completed on the spherical RF resin. Seven of the cycles were completed in the 12 inch IX Column and sixteen cycles were completed in the 24 inch IX Column. Hydraulic testing showed that the permeability of the RF resin remained essentially constant, with no observed trend in the reduction of the permeability as the number of cycles increased. The permeability during the pilot-scale testing was 2 1/2 times better than the design requirements of the WTP full-scale system. The permeability of the resin bed was uniform with respect to changes in bed depth. Upflow Regeneration and Simulant Introduction in the IX columns revealed another RF resin benefit; negligible radial pressures to the column walls from the swelling of resin beads. In downflow of the Regeneration and Simulant Introduction steps, the resin bed particles pack tightly together and produce higher hydraulic pressures than that found in upflow. Also, upflow Simulant Introduction produced an ideal level bed for the twenty cycles completed using upflow Simulant Introduction. Conversely, the three cycles conducted using downflow Simulant Introduction produced an uneven bed surface with erosion around the thermowells. The RF resin bed in both columns showed no tendency to form fissures or pack more densely as the number of cycles increased. Particle size measurements of the RF resin showed no indication of particle size change (for a given chemical) with cycles and essentially no fines formation. Micrographs comparing representative bead samples before and after testing indicated no change in bead

  13. PILOT-SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN

    International Nuclear Information System (INIS)

    Adamson, D

    2007-01-01

    Savannah River National Laboratory (SRNL) performed pilot-scale hydraulic/chemical testing of spherical resorcinol formaldehyde (RF) ion exchange (IX) resin for the River Protection Project Hanford Tank Waste Treatment and Immobilization Plant (WTP) Project. The RF resin cycle testing was conducted in two pilot-scale IX columns, 1/4 and 1/2 scale. A total of twenty-three hydraulic/chemical cycles were successfully completed on the spherical RF resin. Seven of the cycles were completed in the 12-inch IX Column and sixteen cycles were completed in the 24-inch IX Column. Hydraulic testing showed that the permeability of the RF resin remained essentially constant, with no observed trend in the reduction of the permeability as the number of cycles increased. The permeability during the pilot-scale testing was 2 1/2 times better than the design requirements of the WTP full-scale system. The permeability of the resin bed was uniform with respect to changes in bed depth. Upflow Regeneration and Simulant Introduction in the IX columns revealed another RF resin benefit; negligible radial pressures to the column walls from the swelling of resin beads. In downflow of the Regeneration and Simulant Introduction steps, the resin bed particles pack tightly together and produce higher hydraulic pressures than that found in upflow. Also, upflow Simulant Introduction produced an ideal level bed for the twenty cycles completed using upflow Simulant Introduction. Conversely, the three cycles conducted using downflow Simulant Introduction produced an uneven bed surface with erosion around the thermowells. The RF resin bed in both columns showed no tendency to form fissures or pack more densely as the number of cycles increased. Particle size measurements of the RF resin showed no indication of particle size change (for a given chemical) with cycles and essentially no fines formation. Micrographs comparing representative bead samples before and after testing indicated no change in bead

  14. Recovery of tretrachloroaurate through ion exchange with Dowex 11 resin

    International Nuclear Information System (INIS)

    Alguacil, F.J.

    1998-01-01

    The recovery of the tretrachloroaurate complex by the anionic ion exchange resin Dowex 11 has been studied. The kinetics of gold adsorption were dependent of both gold and resin concentrations and temperature. The adsorption isotherm can be described by the expression Q=kC''n. The loaded resin could be eluted by an acidic thiourea solution at 20 degree centigree. After several adsorption-elution cycles there is not any apparent loss in the adsorption properties of the resin. (Author) 6 refs

  15. Performance and design considerations for an anaerobic moving bed biofilm reactor treating brewery wastewater: Impact of surface area loading rate and temperature.

    Science.gov (United States)

    di Biase, A; Devlin, T R; Kowalski, M S; Oleszkiewicz, J A

    2017-06-05

    Three 4 L anaerobic moving bed biofilm reactors (AMBBR) treated brewery wastewater with AC920 media providing 680 m 2 protected surface area per m 3 of media. Different hydraulic retention times (HRT; 24, 18, 12, 10, 8 and 6 h) at 40% media fill and 35 °C, as well as different temperatures (15, 25 and 35 °C) at 50% media fill and 18 h HRT were examined. Best performance at 35 °C and 40% media fill was observed when HRT was 18 h, which corresponded with 92% removal of soluble COD (sCOD). Organic loading rates (OLR) above 24 kg-COD m -3 d -1 decreased performance below 80% sCOD removal at 35 °C and 40% media fill. The reason was confirmed to be that surface area loading rates (SALR) above 50 g-sCOD m -2 d -1 caused excessive biofilm thickness that filled up internal channels of the media, leading to mass transfer limitations. Temperature had a very significant impact on process performance with 50% media fill and 18 h HRT. Biomass concentrations were significantly higher at lower temperatures. At 15 °C the mass of volatile solids (VS) was more than three times higher than at 35 °C for the same OLR. Biofilms acclimated to 25 °C and 15 °C achieved removal of 80% sCOD at SALR of 10 g-sCOD m -2 d -1 and 1.0 g-sCOD m -2 d -1 , respectively. Even though biomass concentrations were higher at lower temperature, biofilm acclimated to 25 °C and 15 °C performed significantly slower than that acclimated to 35 °C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor.

    Science.gov (United States)

    Morgan, Trevor James; Turn, Scott Q; George, Anthe

    2015-01-01

    A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water). The amounts of char (organic fraction) and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for 'dry' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The 'dry' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s 'dry' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. The reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis) and high concentration of alkali

  17. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor.

    Directory of Open Access Journals (Sweden)

    Trevor James Morgan

    Full Text Available A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water. The amounts of char (organic fraction and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for 'dry' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The 'dry' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s 'dry' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. The reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis and high

  18. The pebble-bed high-temperature reactor as a source of nuclear process heat. Vol. 10

    International Nuclear Information System (INIS)

    Schulten, R.; Kugeler, K.; Kugeler, M.; Niessen, H.F.; Roeth-Kamat, M.; Woike, O.

    1974-08-01

    The necessary development steps, which have to be taken for the construction of a prototype plant for nuclear process heat, are enumerated. In particular, the work which is involved for the development of the nuclear steam-reforming technique, for the further development of the ball-shaped fuel elements at high gas outlet temperatures and for the reactor components, is described in detail. A brief survey of the needs of development of the IHX (intermediate heat exchanger) is given. An attempt is made to give overall time and cost estimates. (orig.) [de

  19. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor

    Science.gov (United States)

    Morgan, Trevor James; Turn, Scott Q.; George, Anthe

    2015-01-01

    A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water). The amounts of char (organic fraction) and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for 'dry' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The 'dry' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s 'dry' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. The reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis) and high concentration of alkali

  20. Immobilization of spent resin with epoxy resin

    International Nuclear Information System (INIS)

    Gultom, O.; Suryanto; Sayogo; Ramdan

    1997-01-01

    immobilization of spent resin using epoxy resin has been conducted. The spent resin was mixtured with epoxy resin in variation of concentration, i.e., 30, 40, 50, 60, 70 weight percent of spent resin. The mixture were pour into the plastic tube, with a diameter of 40 mm and height of 40 mm. The density, compressive strength and leaching rate were respectively measured by quanta chrome, paul weber apparatus and gamma spectrometer. The results showed that the increasing of waste concentration would be decreased the compressive strength, and increased density by immobilized waste. The leaching rate of 137 Cs from waste product was not detected in experiment (author)

  1. The Shandong Shidao Bay 200 MWe High-Temperature Gas-Cooled Reactor Pebble-Bed Module (HTR-PM Demonstration Power Plant: An Engineering and Technological Innovation

    Directory of Open Access Journals (Sweden)

    Zuoyi Zhang

    2016-03-01

    Full Text Available After the first concrete was poured on December 9, 2012 at the Shidao Bay site in Rongcheng, Shandong Province, China, the construction of the reactor building for the world's first high-temperature gas-cooled reactor pebble-bed module (HTR-PM demonstration power plant was completed in June, 2015. Installation of the main equipment then began, and the power plant is currently progressing well toward connecting to the grid at the end of 2017. The thermal power of a single HTR-PM reactor module is 250 MWth, the helium temperatures at the reactor core inlet/outlet are 250/750 °C, and a steam of 13.25 MPa/567 °C is produced at the steam generator outlet. Two HTR-PM reactor modules are connected to a steam turbine to form a 210 MWe nuclear power plant. Due to China's industrial capability, we were able to overcome great difficulties, manufacture first-of-a-kind equipment, and realize series major technological innovations. We have achieved successful results in many aspects, including planning and implementing R&D, establishing an industrial partnership, manufacturing equipment, fuel production, licensing, site preparation, and balancing safety and economics; these obtained experiences may also be referenced by the global nuclear community.

  2. The effect of fiber placement or flowable resin lining on microleakage in Class II adhesive restorations.

    Science.gov (United States)

    Belli, Sema; Orucoglu, Hasan; Yildirim, Cihan; Eskitascioglu, Gürcan

    2007-04-01

    The aim of this in vitro study was to evaluate the effect of two fibers (polyethylene or glass) and a flowable resin liner on microleakage in Class II adhesive restorations. Class II adhesive cavities were prepared on mesial and distal surfaces of 40 extracted sound human molars. The cavity margins were below or above the CEJ. The teeth were randomly divided into four groups according to the restoration technique: group 1: restored with a resin composite (AP-X, Kuraray) in bulk after SE Bond (Kuraray) treatment; group 2: flowable resin liner (Protect Liner F, Kuraray) was used before composite restoration; in group 3, a polyethylene fiber (Ribbond) and in group 4, a glass fiber (everStick NET, StickTech) was placed into the bed of flowable resin before composite restoration. Samples were finished, stored in distilled water for 7 days at room temperature, and then thermocycled for 300 cycles between 5 degrees C and 55 degrees C. After sealing the apices, the teeth were varnished within 1 mm of the margins and placed in 0.5% basic fuchsin dye for 24 h at 37 degrees C. After rinsing, the teeth were sectioned longitudinally through the restorations and microleakage was evaluated with a stereomicroscope. Marginal penetration was scored on a 0 to 4 scale, and the data were statistically analyzed using Kruskal-Wallis and the Mann-Whitney U-test. Flowable resin, everStick NET, and Ribbond THM used in combination with flowable resin significantly reduced leakage at occlusal margins in cavities with enamel margins (p 0.05). Use of flowable composite alone or in combination with polyethylene or glass fibers reduces occlusal leakage in Class II adhesive cavities with enamel margins.

  3. Creep behavior of an epoxy resin and an epoxy-based FRP in condition of simultaneous supply of radiation and stress at cryogenic temperatures

    International Nuclear Information System (INIS)

    Nishiura, Tetsuya; Nishijima, Shigehiro; Okada, Toichi

    1995-01-01

    Creep tests of an epoxy resin and an epoxy-based FRP in bending under irradiation condition have been carried out, to investigate the synergistic effects of radiation and stress on mechanical properties of FRP. Simultaneous supply of stress and irradiation on the epoxy resin and the FRP enhanced creep rates in comparison with that supply of the stress on a post-irradiated one did. ESR spectra measurement was also carried out to study the change of molecule of the resin irradiated. Increase of molecular weight between crosslinks was found out to be enhanced by the synergistic effect of radiation and stress. The mechanism of increased damage of FRP induced by the effects of simultaneous stress and irradiation is discussed. (author)

  4. Performance Evaluation of the ISS Water Processor Multifiltration Beds

    Science.gov (United States)

    Bowman, Elizabeth M.; Carter, Layne; Wilson, Mark; Cole, Harold; Orozco, Nicole; Snowdon, Doug

    2012-01-01

    The ISS Water Processor Assembly (WPA) produces potable water from a waste stream containing humidity condensate and urine distillate. The primary treatment process is achieved in the Multifiltration Bed, which includes adsorbent media and ion exchange resin for the removal of dissolved organic and inorganic contaminants. The first Multifiltration Bed was replaced on ISS in July 2010 after initial indication of inorganic breakthrough. This bed was returned to ground in July 2011 for an engineering investigation. The water resident in the bed was analyzed for various parameters to evaluate adsorbent loading, performance of the ion exchange resin, microbial activity, and generation of leachates from the ion exchange resin. Portions of the adsorbent media and ion exchange resin were sampled and subsequently desorbed to identify the primary contaminants removed at various points in the bed. In addition, an unused Multifiltration Bed was evaluated after two years in storage to assess the generation of leachates during storage. This assessment was performed to evaluate the possibility that these leachates are impacting performance of the Catalytic Reactor located downstream of the Multifiltration Bed. The results of these investigations and implications to the operation of the WPA on ISS are documented in this paper.

  5. The characteristics of bed agglomeration during fluidized bed combustion of eucalyptus bark

    International Nuclear Information System (INIS)

    Chaivatamaset, Pawin; Tia, Suvit

    2015-01-01

    The bed agglomeration behaviors were investigated experimentally when eucalyptus bark was burning tested in a laboratory scale fluidized bed reactor. The focuses of this work were the influences of operating conditions and bed materials on the bed agglomeration tendency and the elucidation in the behaviors of fuel inorganic elements and the governing mode of the agglomeration. It was found that the defluidization caused by the bed agglomeration was clearly detectable from the decrease in measured bed pressure. The growth of bed particle and accumulation of agglomerates during combustion provided the partial to complete defluidization. The defluidization was promoted by the increase of bed temperature and bed particle size, and the decrease of fluidizing air velocity. The SEM-EDS analyses revealed that the bed agglomeration was mainly attributed to the formation of potassium silicate compounds as liquid phase during the combustion. This was initiated by the chemical reaction between the bed particle and the released ash constituents. In this study, the inorganic migration from fuel particle to bed particle was likely dominated by the condensation/reaction. The thermodynamic examination by ternary phase diagram analysis corroborated that the liquid phase formation of the ash derived materials controlled the agglomeration. The alumina sand prevented the bed agglomeration since it was inactive in the formation of viscous molten substances during combustion at the observed temperatures. - Highlights: • The behaviors of bed agglomeration were studied during the fluidized bed combustion of eucalyptus bark. • The increase in bed temperature and sand size, and the decrease of air velocity promoted bed defluidization. • The formation of molten potassium silicate compounds conduced to the bed agglomeration. • Condensation/reaction was the dominant inorganic migration mechanism from fuel particle to bed particle. • The alumina sand prevented effectively the bed

  6. Bed agglomeration characteristics of palm shell and corncob combustion in fluidized bed

    International Nuclear Information System (INIS)

    Chaivatamaset, Pawin; Sricharoon, Panchan; Tia, Suvit

    2011-01-01

    Bed particle agglomeration was studied experimentally in an atmospheric laboratory scale fluidized bed combustor using quartz sand as bed material. Palm shell and corncob were tested. The objectives of the study were (i) to describe the contributions of the biomass ash properties and the operating conditions on the bed agglomeration tendency in term of the bed defluidization time (t def ) and the extent of potassium accumulation in the bed (K/Bed) and (ii) to further elucidate the ash inorganic behaviors and the governing bed agglomeration mechanisms. Defluidization caused by the bed agglomeration was experienced in all experiments during combustion of these biomasses, as a consequence of the presence of potassium in biomass. The experimental results indicated that biomass ash characteristics were the significant influence on the bed agglomeration. The increasing bed temperature, bed particle size and static bed height and the decreasing fluidizing air velocity enhanced the bed agglomeration tendency. The SEM/EDS analyses on the agglomerates confirmed that the agglomeration was attributed to the formation of potassium silicate liquid enriched on the surface of quartz sand particles in conjunction with the high surface temperature of the burning biomass char particles. Thermodynamic examination based on the phase diagram analysis confirmed that the molten phase formation was responsible for the agglomeration. In this study, the high molten ash fraction resulting from the high potassium content in biomass promoted the agglomeration and thus defluidization. - Highlights: → Palm shell and corncob of Thailand are tested their bed agglomeration behaviors during fluidized bed combustion. → The increase of bed temperature, bed particle size and static bed height and the decrease of air velocity enhance bed agglomeration. → The formation of ash derived potassium silicate melts enriched on sand surface is the key process. → The collision between char and sand

  7. Anion-exchange resin-based desulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Sheth, A.C.; Strevel, S.D.; Dharmapurikar, R.

    1992-01-01

    Under the current grant, the University of Tennessee Space Institute (UTSI) will carry out the bench scale evaluation and further development of the anion-exchange resin-based desulfurization concept to desulfurize alkali metal sulfates. This concept has been developed and patented by UTSI under US Patent No. 4,917,874. The developmental program proposed under this DOE grant includes screening of commercially available resins to select three candidate resins for further study. These three resins will undergo a series of experiments designed to test the resins' performance under different process conditions (including the use of spent MHD seed material). The best of these resins will be used in optimizing the regeneration step and in testing the effects of performance enhancers. The process schematic developed from the results will be used to estimate the related economics. During this reporting period, October 1, 1991 to September 30, 1992, analysis of batch mode screening experiments was completed to select three candidate resins for process variables study in the fixed-bed set-up. This setup was modified and the experiments were carded out to evaluate effects of major process variables. The analysis of fixed-bed experiments is going on and we have also started simple batch mode experiments to identify desirable conditions for resin regeneration step. We have also started simple process engineering type calculations to determine the trade-off between the solution concentration and the resulting evaporation/concentration load.

  8. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 2: Evaluation of ash materials as phosphorus fertilizer.

    Science.gov (United States)

    Thomsen, Tobias Pape; Hauggaard-Nielsen, Henrik; Gøbel, Benny; Stoholm, Peder; Ahrenfeldt, Jesper; Henriksen, Ulrik B; Müller-Stöver, Dorette Sophie

    2017-08-01

    The study is part 2 of 2 in an investigation of gasification and co-gasification of municipal sewage sludge in low temperature gasifiers. In this work, solid residuals from thermal gasification and co-gasification of municipal sewage sludge were investigated for their potential use as fertilizer. Ashes from five different low temperature circulating fluidized bed (LT-CFB) gasification campaigns including two mono-sludge campaigns, two sludge/straw mixed fuels campaigns and a straw reference campaign were compared. Experiments were conducted on two different LT-CFBs with thermal capacities of 100kW and 6MW, respectively. The assessment included: (i) Elemental composition and recovery of key elements and heavy metals; (ii) content of total carbon (C) and total nitrogen (N); (iii) pH; (iv) water extractability of phosphorus after incubation in soil; and (v) plant phosphorus response measured in a pot experiment with the most promising ash material. Co-gasification of straw and sludge in LT-CFB gasifiers produced ashes with a high content of recalcitrant C, phosphorus (P) and potassium (K), a low content of heavy metals (especially cadmium) and an improved plant P availability compared to the mono-sludge ashes, thereby showing the best fertilizer qualities among all assessed materials. It was also found that bottom ashes from the char reactor contained even less heavy metals than cyclone ashes. It is concluded that LT-CFB gasification and co-gasification is a highly effective way to purify and sanitize sewage sludge for subsequent use in agricultural systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Review: Resin Composite Filling

    Directory of Open Access Journals (Sweden)

    Desmond Ng

    2010-02-01

    Full Text Available The leading cause of oral pain and tooth loss is from caries and their treatment include restoration using amalgam, resin, porcelain and gold, endodontic therapy and extraction. Resin composite restorations have grown popular over the last half a century because it can take shades more similar to enamel. Here, we discuss the history and use of resin, comparison between amalgam and resin, clinical procedures involved and finishing and polishing techniques for resin restoration. Although resin composite has aesthetic advantages over amalgam, one of the major disadvantage include polymerization shrinkage and future research is needed on reaction kinetics and viscoelastic behaviour to minimize shrinkage stress.

  10. Review: Resin Composite Filling

    Science.gov (United States)

    Chan, Keith H. S.; Mai, Yanjie; Kim, Harry; Tong, Keith C. T.; Ng, Desmond; Hsiao, Jimmy C. M.

    2010-01-01

    The leading cause of oral pain and tooth loss is from caries and their treatment include restoration using amalgam, resin, porcelain and gold, endodontic therapy and extraction. Resin composite restorations have grown popular over the last half a century because it can take shades more similar to enamel. Here, we discuss the history and use of resin, comparison between amalgam and resin, clinical procedures involved and finishing and polishing techniques for resin restoration. Although resin composite has aesthetic advantages over amalgam, one of the major disadvantage include polymerization shrinkage and future research is needed on reaction kinetics and viscoelastic behaviour to minimize shrinkage stress.

  11. Steam gasification of coal at low-medium (600-800{sup o}C) temperature with simultaneous CO{sub 2} capture in a bubbling fluidized bed at atmospheric pressure. 2. Results and recommendations for scaling up

    Energy Technology Data Exchange (ETDEWEB)

    Corella, J.; Toledo, J.M.; Molina, G. [Universidad Complutense de Madrid, Madrid (Spain). Dept. of Chemical Engineering

    2008-03-19

    A gasification gas with an H{sub 2} content as high as 80 vol %, dry basis has been obtained by gasification of coal with pure steam at 600-800{sup o}C. The gasifier used was an atmospheric and bubbling fluidized bed operating with CaO in the bed as the CO{sub 2} sorbent. The research was carried out at a small pilot plant scale with continuous feeding of coal and batch mode introduction of the CaO. The gas composition and gas quality (tar content) is given for the following variables of operation: (a) type of in-bed sorbent used, (b) the amount of CaO in the bed related to the amount of coal fed, (c) temperature in the gasifier bed, (d) weight hourly space velocity (h{sup -1}) of the coal in the gasifier, and (e) time(-on-stream). To capture CaO at atmospheric pressure, the gasification with in-bed CaO had to be carried out at low-medium (600-800{sup o}C) gasification temperatures. For this reason, the tar content in the gasification gas was high (up to 52 g/Nm{sup 3}), which lowered the value of the H{sub 2}-rich gasification raw gas. It is demonstrated that a gas rich in H{sub 2} (80 vol % H{sub 2}, dry basis), and with very low CO{sub 2} and tar contents, can be obtained only if the coal gasification, at atmospheric pressure and with pure steam, is carried out at (CaO/coal) ratios above 10-15.

  12. Geomechanics of bedded salt

    International Nuclear Information System (INIS)

    Serata, S.; Milnor, S.W.

    1979-01-01

    Creep data from the literature search is reinterpreted by SGI, resulting in a better understanding of the temperature and stress state dependence of the octahedral creep rate and the octahedral shear strength. The concept of a transition strength between the elastic and the plastic states is in agreement with the data. The elastic and rheological properties of salt are described, and a set of constitutive equations is presented. The dependence of material properties on parameters such as temperature is considered. Findings on the permeability of salt are summarized, and the in-situ behavior of openings in bedded salt is described based on extensive engineering experience. A stress measuring system utilizing a finite element computer code is discussed. Geological factors affecting the stability of salt openings are considered, and the Stress Control Technique for designing stable openings in bedded salt formations is explained

  13. Sequestration Resins for Accelerating Removal of Radioactive Contaminants

    International Nuclear Information System (INIS)

    Frattini, Paul-L.; Wells, Daniel-M.; Garcia, Susan-E.; Richard, Kohlmann; Asay, Roger; Yengoyan, Leon

    2012-09-01

    The Electric Power Research Institute (EPRI) is developing sequestration resins that can be used in the treatment of nuclear plant water streams for the enhanced removal of ionic cobalt. EPRI is focusing on three key areas of success: 1. Plant safety. The resins that are synthesized must be fully tested to determine that no leachable species or decomposition products (in the event of a resin bed failure) would be introduced to the plant. 2. Acceptable system performance. The resins are currently being synthesized in a powdered form for use in the reactor water clean-up and fuel pool clean-up systems that utilize pre-coatable filter elements. The resins must have effective flocking behavior; uniform application over the underlay resin and efficient removal from the septa elements after use. Bead type resins are also under development. 3. Enhanced cobalt removal. The resins are expected to out-perform the currently used ion exchange resins in the removal of ionic cobalt. During nuclear plant maintenance or refueling outages, current ion exchange resins may require several days to reduce concentrations of cobalt (for example, radio-cobalt 60 Co and 58 Co) and other activated corrosion products to safe levels in reactor coolant streams. This performance limitation often delays key maintenance activities. EPRI's resins are expected to provide at least a three-fold increase in removal capacity in light water reactor coolants. These resins also offer the potential for higher overall removal efficiencies reducing occupational exposures and waste management costs. This paper addresses issues from the range of novel resin development for radio-cobalt removal from synthesis at the bench-top level through scale-up to demonstration of use in an actual operating nuclear power plant. (authors)

  14. A scaled experimental study of control blade insertion dynamics in Pebble-Bed Fluoride-Salt-Cooled High-Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Buster, Grant C., E-mail: grant.buster@gmail.com; Laufer, Michael R.; Peterson, Per F.

    2016-07-15

    Highlights: • A granular dynamics scaling methodology is discussed. • Control blade insertion in a representative pebble-bed core is experimentally studied. • Control blade insertion forces and pebble displacements are experimentally measured. • X-ray tomography techniques are used to observe pebble displacement distributions. - Abstract: Direct control element insertion into a pebble-bed reactor core is proposed as a viable control system in molten-salt-cooled pebble-bed reactors. Unlike helium-cooled pebble-bed reactors, this reactor type uses spherical fuel elements with near-neutral buoyancy in the molten-salt coolant, thus reducing contact forces on the fuel elements. This study uses the X-ray Pebble Bed Recirculation Experiment facility to measure the force required to insert a control element directly into a scaled pebble-bed. The required control element insertion force, and therefore the contact force on fuel elements, is measured to be well below recommended limits. Additionally, X-ray tomography is used to observe how the direct insertion of a control element physically displaces spherical fuel elements. The tomography results further support the viability of direct control element insertion into molten-salt-cooled pebble-bed reactor cores.

  15. Resin-Powder Dispenser

    Science.gov (United States)

    Standfield, Clarence E.

    1994-01-01

    Resin-powder dispenser used at NASA's Langley Research Center for processing of composite-material prepregs. Dispenser evenly distributes powder (resin polymer and other matrix materials in powder form) onto wet uncured prepregs. Provides versatility in distribution of solid resin in prepreg operation. Used wherever there is requirement for even, continuous distribution of small amount of powder.

  16. Influence of nanometric silicon carbide on phenolic resin composites ...

    Indian Academy of Sciences (India)

    Phenolic resin; nanometric silicon carbide; nanocomposites; friction coefficient. 1. Introduction. Phenolic resin composites have their applications in a wide range of fields ... Curing time and temperature as well as mold materials influence the resulting homogeneity, glass transition temperature and mechanical properties.

  17. Development of transition metal oxide catalysts for treatment of off-gases released during pyrolysis of organic ion exchange resins

    International Nuclear Information System (INIS)

    Sathi Sasidharan, N.; Deshingkar, D.S.; Wattal, P.K.

    2005-08-01

    The spent IX resin wastes arising from nuclear power plants have high radiation level due to fission product 137 Cesium and activation product 60 Cobalt. The pyrolysis and oxidative pyrolysis processes have potential to minimize final waste form volumes of these wastes. The major difficulty in deploying these processes for treatment of spent IX resins is release of off-gases containing large quantities of aromatic hydrocarbons, amines, sulphur dioxide, hydrogen sulphide, carbonyl sulphide etc. As an alternative to high temperature incineration of the pyrolysis off gases, feasibility of using catalytic combustion at moderate temperatures was investigated in the laboratory. Copper chromite, copper oxide-ceric oxide and vanadium pentaoxide catalysts supported on alumina were prepared and tested for oxidation of styrene monomer, toluene, ethyl benzene and trimethyl amine at 22500 hr -1 space velocity and temperature range of 300 to 500 degC. At temperatures over 475 degC, all three catatyst gave oxidation efficiency of over 97% for these compounds over concentration range of few tens of ppm to few thousands ppm. A composite catalyst bed of three catalysts comprising principally of copper chromite is proposed for treatment of IX resin pyrolysis off-gases. (author)

  18. In-Bed Accountability Development for a Passively Cooled, Electrically Heated Hydride (PACE) Bed

    International Nuclear Information System (INIS)

    Klein, J.E.

    2005-01-01

    A nominal 1500 STP-L PAssively Cooled, Electrically heated hydride (PACE) Bed has been developed for implementation into a new Savannah River Site tritium project. The 1.2 meter (four-foot) long process vessel contains on internal 'U-tube' for tritium In-Bed Accountability (IBA) measurements. IBA will be performed on six, 12.6 kg production metal hydride storage beds.IBA tests were done on a prototype bed using electric heaters to simulate the radiolytic decay of tritium. Tests had gas flows from 10 to 100 SLPM through the U-tube or 100 SLPM through the bed's vacuum jacket. IBA inventory measurement errors at the 95% confidence level were calculated using the correlation of IBA gas temperature rise, or (hydride) bed temperature rise above ambient temperature, versus simulated tritium inventory.Prototype bed IBA inventory errors at 100 SLPM were the largest for gas flows through the vacuum jacket: 15.2 grams for the bed temperature rise and 11.5 grams for the gas temperature rise. For a 100 SLPM U-tube flow, the inventory error was 2.5 grams using bed temperature rise and 1.6 grams using gas temperature rise. For 50 to 100 SLPM U-tube flows, the IBA gas temperature rise inventory errors were nominally one to two grams that increased above four grams for flows less than 50 SLPM. For 50 to 100 SLPM U-tube flows, the IBA bed temperature rise inventory errors were greater than the gas temperature rise errors, but similar errors were found for both methods at gas flows of 20, 30, and 40 SLPM.Electric heater IBA tests were done for six production hydride beds using a 45 SLPM U-tube gas flow. Of the duplicate runs performed on these beds, five of the six beds produced IBA inventory errors of approximately three grams: consistent with results obtained in the laboratory prototype tests

  19. In-Bed Accountability Development for a Passively Cooled, Electrically Heated Hydride (PACE) Bed

    International Nuclear Information System (INIS)

    KLEIN, JAMES

    2004-01-01

    A nominal 1500 STP-L PAssively Cooled, Electrically heated hydride (PACE) Bed has been developed for implementation into a new Savannah River Site tritium project. The 1.2 meter (four-foot) long process vessel contains an internal ''U-tube'' for tritium In-Bed Accountability (IBA) measurements. IBA will be performed on six, 12.6 kg production metal hydride storage beds. IBA tests were done on a prototype bed using electric heaters to simulate the radiolytic decay of tritium. Tests had gas flows from 10 to 100 SLPM through the U-tube or 100 SLPM through the bed's vacuum jacket. IBA inventory measurement errors at the 95 percent confidence level were calculated using the correlation of IBA gas temperature rise, or (hydride) bed temperature rise above ambient temperature, versus simulated tritium inventory. Prototype bed IBA inventory errors at 100 SLPM were the largest for gas flows through the vacuum jacket: 15.2 grams for the bed temperature rise and 11.5 grams for the gas temperature rise. For a 100 SLPM U-tube flow, the inventory error was 2.5 grams using bed temperature rise and 1.6 grams using gas temperature rise. For 50 to 100 SLPM U-tube flows, the IBA gas temperature rise inventory errors were nominally one to two grams that increased above four grams for flows less than 50 SLPM. For 50 to 100 SLPM U-tube flows, the IBA bed temperature rise inventory errors were greater than the gas temperature rise errors, but similar errors were found for both methods at gas flows of 20, 30, and 40 SLPM. Electric heater IBA tests were done for six production hydride beds using a 45 SLPM U-tube gas flow. Of the duplicate runs performed on these beds, five of the six beds produced IBA inventory errors of approximately three grams: consistent with results obtained in the laboratory prototype tests

  20. Shear bond strength of an autopolymerizing repair resin to injection-molded thermoplastic denture base resins.

    Science.gov (United States)

    Hamanaka, Ippei; Shimizu, Hiroshi; Takahashi, Yutaka

    2013-09-01

    This study investigated the shear bond strength of an autopolymerizing repair resin to injection-molded thermoplastic denture base resins. Four injection-molded thermoplastic resins (two polyamides, a polyethylene terephthalate copolymer and a polycarbonate) were used in this study. The specimens were divided into eight groups according to the type of surface treatment given: (1) no treatment, (2) air abrasion with alumina, (3) dichloromethane, (4) ethyl acetate, (5) 4-META/MMA-TBB resin, (6) alumina and 4-META/MMA-TBB resin, (7) tribochemical silica coating or (8) tribochemical silica coating and 4-META/MMA-TBB resin. Half of the specimens in groups 1, 5, 6 and 8 were thermocycled for 10,000 cycles in water between 5-55°C with a dwell time of 1 min at each temperature. The shear bond strengths were determined. The shear bond strengths to the two polyamides treated with alumina, dichloromethane and ethyl acetate and no treatment were very low. The greatest post-thermocycling bond strengths to polyamides were recorded for the specimens treated with tribochemical silica coating and 4-META/MMA-TBB resin (PA12: 16.4 MPa, PACM12: 17.5 MPa). The greatest post-thermocycling bond strengths to polyethylene terephthalate copolymer and polycarbonate were recorded for the treatment with alumina and 4-META/MMA-TBB resin (22.7 MPa, 20.8 MPa). Polyamide was exceedingly difficult to bond to an autopolymerizing repair resin; the shear bond strength improved using tribochemical silica coating followed by the application of 4-META/MMA-TBB resin. Both polyethylene terephthalate copolymer and polycarbonate were originally easy to bond to an autopolymerizing repair resin. However, with 4-META/MMA-TBB resin, the bond was more secure.

  1. Steam gasification of coal at low-medium (600-800{sup o}C) temperature with simultaneous CO{sub 2} capture in fluidized bed at atmospheric pressure: The effect of inorganic species. 1. Literature review and comments

    Energy Technology Data Exchange (ETDEWEB)

    Corella, J.; Toledo, J.M.; Molina, G. [Universidad Complutense de Madrid, Madrid (Spain). Dept. for Chemical Engineering

    2006-08-30

    This paper addresses the H{sub 2} production with simultaneous CO{sub 2} capture by steam gasification of coal in a fluidized bed, at low/medium temperatures (600-800{sup o}C) and atmospheric pressure. This work is mainly aimed at reviewing the effects of the inorganic species present in the matrix of the coal or added to the gasifier bed. The most promising species seems to be the calcined limestone (CaO), which intervenes in the overall gasification reaction network in at least five different types of reactions. The effectiveness of the CaO for CO{sub 2} capture in the coal gasifier is, therefore, affected/influenced by the other four simultaneous or competitive types of reactions in the gasifier. The effects of the temperature in the gasifier and of the (CaO/coal) ratio fed to the gasifier are finally reviewed and discussed in detail.

  2. New system applying image processor to automatically separate cation exchange resin and anion exchange resin for condensate demineralizer

    International Nuclear Information System (INIS)

    Adachi, Tsuneyasu; Nagao, Nobuaki; Yoshimori, Yasuhide; Inoue, Takashi; Yoda, Shuji

    2014-01-01

    In PWR plant, condensate demineralizer is equipped to remove corrosive ion in condensate water. Mixed bed packing cation exchange resin (CER) and anion exchange resin (AER) is generally applied, and these are regenerated after separation to each layer periodically. Since the AER particle is slightly lighter than the CER particle, the AER layer is brought up onto the CER layer by feeding water upward from the bottom of column (backwashing). The separation performance is affected by flow rate and temperature of water for backwashing, so normally operators set the proper condition parameters regarding separation manually every time for regeneration. The authors have developed the new separation system applying CCD camera and image processor. The system is comprised of CCD camera, LED lamp, image processor, controller, flow control valves and background color panel. Blue color of the panel, which is corresponding to the complementary color against both ivory color of AER and brown color of CER, is key to secure the system precision. At first the color image of the CER via the CCD camera is digitized and memorized by the image processor. The color of CER in the field of vision of the camera is scanned by the image processor, and the position where the maximum difference of digitized color index is indicated is judged as the interface. The detected interface is able to make the accordance with the set point by adjusting the flow rate of backwashing. By adopting the blue background panel, it is also possible to draw the AER out of the column since detecting the interface of the CER clearly. The system has provided the reduction of instability factor concerning separation of resin during regeneration process. The system has been adopted in two PWR plants in Japan, it has been demonstrating its stable and precise performance. (author)

  3. Synthesis and thermal degradation studies of melamine formaldehyde resins.

    Science.gov (United States)

    Ullah, Sami; Bustam, M A; Nadeem, M; Naz, M Y; Tan, W L; Shariff, A M

    2014-01-01

    Melamine formaldehyde (MF) resins have been synthesized at different reaction temperature and pH values. Different molar ratios of melamine and formaldehyde were used to synthesize the corresponding resins. The prepared resin samples were characterized by using molecular weight determination viscometry and thermogravimetric analysis (TGA). The maximum percentage of solid content (69.7%) was obtained at pH 8.5 and 75°C temperature. The molecular weight of MF resin was increased with an increase of melamine monomer concentration. The highest residual weight 14.125 wt.% was obtained with sample 10.

  4. Synthesis and Thermal Degradation Studies of Melamine Formaldehyde Resins

    Directory of Open Access Journals (Sweden)

    Sami Ullah

    2014-01-01

    Full Text Available Melamine formaldehyde (MF resins have been synthesized at different reaction temperature and pH values. Different molar ratios of melamine and formaldehyde were used to synthesize the corresponding resins. The prepared resin samples were characterized by using molecular weight determination viscometry and thermogravimetric analysis (TGA. The maximum percentage of solid content (69.7% was obtained at pH 8.5 and 75°C temperature. The molecular weight of MF resin was increased with an increase of melamine monomer concentration. The highest residual weight 14.125 wt.% was obtained with sample 10.

  5. Effect of process temperature on morphology of CNTs grown in a vertically fluidized bed reactor with Fe{sub 2}O{sub 3}/Al{sub 2}O{sub 3} catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Shukrullah, Shazia, E-mail: zshukrullah@gmail.com; Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my; Shaharun, Maizatul Shima, E-mail: maizats@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    Carbon nanotubes (CNTs) are one of the most researched materials due to their exceptional mechanical and electrical properties. Among the various techniques, catalytic chemical vapor deposition in a fluidized bed reactor is the most promising technique for bulk production of CNTs. To meet the demand of good quality along with the bulk production of CNTs, the effect of reaction temperature on the micro structures, morphology, diameter, quality and quantity of CNTs was investigated in these studies. CNTs were synthesized at process temperature ranging from 700-850°C by catalytic decomposition of C{sub 2}H{sub 4} on Fe{sub 2}O{sub 3}/Al{sub 2}O{sub 3} catalyst a vertical fluidized bed reactor. The microstructures of the grown CNTs at different reaction temperatures were investigated by using scanning electron microscope. The results of this study depicted a positive correlation between the average diameter of CNTs and reaction temperature. Narrow diameters (35∼40 nm) of CNTs with fewer defects were found at the low and mild temperatures, in particular 800°C. At this temperature, a dynamic equilibrium between the rate of C{sub 2}H{sub 4} decomposition and CNTs quantity was found due to maximum carbon diffusion over catalyst. The CNTs produced with Fe{sub 2}O{sub 3}/Al{sub 2}O{sub 3} catalyst wer e also exhibiting high quality with relatively small mean outer diameter and fewer surface defects.

  6. Epoxy resin

    Science.gov (United States)

    Wilson, Glenn R.; Salyer, Ival O.; Ball, III, George L.

    1976-07-13

    By mixing one part of a prepolymer containing a polyamine partially polymerized with an organic epoxide and subsequently reacted with a fatty acid containing from 8 to 32 carbon atoms, and then reacting this prepolymer mixture with 3 parts of an organic epoxide, a composition was obtained which made a gas frothable, shear-stable, room temperature curing, low density foam. A particularly advantageous prepolymer was prepared using a polyamine selected from the group consisting of diethylenetriamine, triethylenetetramine, and tetraethylenepentamine, partially polymerized with an organic epoxide having an average molecular weight of about 350 and having an epoxide equivalent of 185 to 192, and reacted with 2-10 weight percent linoleic acid. When one part of this prepolymer was reacted with about three parts of epoxy, and frothed by whipping in air or nitrogen an epoxy foam was produced which could be troweled onto surfaces and into corners or crevices, and subsequently cured, at near ambient temperature, to a strong dimensionally stable foam product.

  7. Curing kinetics of alkyd/melamine resin mixtures

    Directory of Open Access Journals (Sweden)

    Jovičić Mirjana C.

    2009-01-01

    Full Text Available Alkyd resins are the most popular and useful synthetic resins applied as the binder in protective coatings. Frequently they are not used alone but are modified with other synthetic resins in the manufacture of the coatings. An alkyd/melamine resin mixture is the usual composition for the preparation of coating called 'baking enamel' and it is cured through functional groups of resins at high temperatures. In this paper, curing kinetics of alkyd resins based on castor oil and dehydrated castor oil with melamine resin, has been studied by DSC method with programmed heating and in isothermal mode. The results determined from dynamic DSC curves were mathematically transformed using the Ozawa isoconversional method for obtaining the isothermal data. These results, degree of curing versus time, are in good agreement with those determined by the isothermal DSC experiments. By applying the Ozawa method it is possible to calculate the isothermal kinetic parameters for the alkyd/melamine resin mixtures curing using only calorimetric data obtained by dynamic DSC runs. Depending on the alkyd resin type and ratio in mixtures the values of activation energies of curing process of resin mixtures are from 51.3 to 114 kJ mol-1. The rate constant of curing increases with increasing the content of melamine resin in the mixture and with curing temperature. The reaction order varies from 1.12 to 1.37 for alkyd based on dehydrated castor oil/melamine resin mixtures and from 1.74 to 2.03 for mixtures with alkyd based on castor oil. Based on the results obtained, we propose that dehydrated castor oil alkyd/melamine resin mixtures can be used in practice (curing temperatures from 120 to 160°C.

  8. Synthesis and characterizations of melamine-based epoxy resins.

    Science.gov (United States)

    Ricciotti, Laura; Roviello, Giuseppina; Tarallo, Oreste; Borbone, Fabio; Ferone, Claudio; Colangelo, Francesco; Catauro, Michelina; Cioffi, Raffaele

    2013-09-05

    A new, easy and cost-effective synthetic procedure for the preparation of thermosetting melamine-based epoxy resins is reported. By this innovative synthetic method, different kinds of resins can be obtained just by mixing the reagents in the presence of a catalyst without solvent and with mild curing conditions. Two types of resins were synthesized using melamine and a glycidyl derivative (resins I) or by adding a silane derivative (resin II). The resins were characterized by means of chemical-physical and thermal techniques. Experimental results show that all the prepared resins have a good thermal stability, but differ for their mechanical properties: resin I exhibits remarkable stiffness with a storage modulus value up to 830 MPa at room temperature, while lower storage moduli were found for resin II, indicating that the presence of silane groups could enhance the flexibility of these materials. The resins show a pot life higher than 30 min, which makes these resins good candidates for practical applications. The functionalization with silane terminations can be exploited in the formulation of hybrid organic-inorganic composite materials.

  9. Heat transfer in a fixed bed and mass transfer in a counter-current moving bed

    Science.gov (United States)

    Dellaretti, F. O.

    The behavior of gas-solid reactors known as compact-fixed and moving beds, is analyzed from a theoretical viewpoint. For a compact fixed-bed the solution of the energy balance equations is obtained for the cases of a uniform temperature inside the solid pellets (i.e., the Biot number is zero) and for the case in which there are temperature gradients within the pellets (Bi 0). For short contact times, beds with Bi 0 have gas- and solid- temperatures which are greater than the temperatures within beds with Bi = 0. For long times, the situation is reversed. For a compact-moving bed the solution of the mass balance equations is obtained for the cases of a feed-solid with an oscillating concentration. For both types of beds there is an equivalence between mass transfer and energy transfer so that the solutions can be interchanged with suitable definitions of dimensionless variables.

  10. The solidification of spent resin

    International Nuclear Information System (INIS)

    Shiao, S. J.; Tsai, C. M.; Shyu, Y. H.

    1991-01-01

    A quasi-steady apparatus was applied to measure the thermal conductivity of solids ranging in size for 0.3 to 200 L, and temperature distributions in the solids were recorded during the curing, and theoretical equation for conduction in a cylindrical form with uniform energy generation was established to define the thermal state of reaction. The heat of reaction calculated from the theoretical equation with experimental values for the maximum temperature and thermal conductivity agrees very well with the data reported. The relationships among heat of reaction and amount of curing agent, retardant, loading of spent resin, and water were established

  11. Gas distributor for fluidized bed coal gasifier

    Science.gov (United States)

    Worley, Arthur C.; Zboray, James A.

    1980-01-01

    A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

  12. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    Energy Technology Data Exchange (ETDEWEB)

    Nietert, R.E.

    1983-02-01

    The following five appendices are included: (1) physical properties of materials, (2) thermal entrance length Nusselt number variations, (3) stationary particle bed temperature variations, (4) falling bed experimental data and calculations, and (5) stationary bed experimental data and calculations. (MOW)

  13. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    International Nuclear Information System (INIS)

    Nietert, R.E.

    1983-02-01

    The following five appendices are included: (1) physical properties of materials, (2) thermal entrance length Nusselt number variations, (3) stationary particle bed temperature variations, (4) falling bed experimental data and calculations, and (5) stationary bed experimental data and calculations

  14. Thermal cycling effects on adhesion of resin-bovine enamel junction among different composite resins.

    Science.gov (United States)

    Chen, Wen-Cheng; Ko, Chia-Ling; Wu, Hui-Yu; Lai, Pei-Ling; Shih, Chi-Jen

    2014-10-01

    Thermal cycling is used to mimic the changes in oral cavity temperature experienced by composite resins when used clinically. The purpose of this study is to assess the thermal cycling effects of in-house produced composite resin on bonding strength. The dicalcium phosphate anhydrous filler surfaces are modified using nanocrystals and silanization (w/NP/Si). The resin is compared with commercially available composite resins Filtek Z250, Z350, and glass ionomer restorative material GIC Fuji-II LC (control). Different composite resins were filled into the dental enamel of bovine teeth. The bond force and resin-enamel junction graphical structures of the samples were determined after thermal cycling between 5 and 55°C in deionized water for 600 cycles. After thermal cycling, the w/NP/Si 30wt%, 50wt% and Filtek Z250, Z350 groups showed higher shear forces than glass ionomer GIC, and w/NP/Si 50wt% had the highest shear force. Through SEM observations, more of the fillings with w/NP/Si 30wt% and w/NP/Si 50wt% groups flowed into the enamel tubule, forming closed tubules with the composite resins. The push-out force is proportional to the resin flow depth and uniformity. The push-out tubule pore and resin shear pattern is the most uniform and consistent in the w/NP/Si 50wt% group. Accordingly, this developed composite resin maintains great mechanical properties after thermal cycling. Thus, it has the potential to be used in a clinical setting when restoring non-carious cervical lesions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Zinc and resin bonded NdFeB magnets

    International Nuclear Information System (INIS)

    Leonowicz, M.; Kaszuwara, W.

    2002-01-01

    Zinc and resin bonded NdFeB magnets were processed. Basic magnetic parameters as well as compressive strength were evaluated versus annealing temperature and volume fraction of the bonding agent. For the zinc bonded magnets phase composition was investigated. The additional NdZn 5 phase was found in the Zn bonded magnets after annealing. Comparison of the Zn and resin bonded magnets reveals higher remanence for the former and higher coercivity for the latter. For the Zn and resin bonded magnets, 15 wt.% Zn / 370 o C and 7-10 wt.% resin were chosen as the optimal processing parameters. (author)

  16. Determination of degradation conditions of exchange resins containing technetium

    International Nuclear Information System (INIS)

    Rivera S, A.; Monroy G, F.; Quintero P, E.

    2014-10-01

    The quantification of Tc-99 in spent exchange resins, coming from nuclear power plants, is indispensable to define their administration. The Tc-99 is a pure beta emitter of 210000 years of half-life, volatile and of a high mobility in water and soil. For this reason, the objective of this work is to establish a digestion method of ionic exchange resins containing technetium that retains more than 95% of this radioisotope. Mineralization tests were carried out of a resin Amberlite IRN-150 by means of an oxidation heat, in acid medium, varying the resin mass, the medium volume, the media type, the temperature and the digestion time. The digested samples were analyzed by gas chromatography to estimate the grade of their degradation. The 99m Tc was used as tracer to determine the technetium percentage recovered after mineralizing the resin. The digestion process depends on the temperature and the resin mass. At higher temperature better mineralization of samples and to greater resin mass to a constant temperature, less degradation of the resin. The spectra beta of the 99m Tc and 99 Tc are presented. (Author)

  17. Theory of the computer code RET 1 for the calculation of space-time dependent temperature and composition properties of metal hydride hydrogen storage beds

    Energy Technology Data Exchange (ETDEWEB)

    El Osery, I.A.

    1983-01-01

    The work presented is a part of an extensive hydrogen energy research program conducted by the Inshas Nuclear Research Center (Egypt). The physical and mathematical modelling of the metal hydride hydrogen storage beds considered in the RET 1 computer code is described. A cylindrical conduction bed model is used. Two alternatives are considered for heat exchange: either fluid is passing through tubes surrounded by solid alloy, or solid alloy rods surrounded by annular fluid tubes. The numerical solution of the associated mass and heat transfer problem is discussed. In this solution, implicit finite difference approximations derived by Taylor expansions are applied. Some of the numerical results obtained by the RET 1 computer code are interpreted. (12 refs., 4 tabs., 3 figs.)

  18. Enhanced DOC removal using anion and cation ion exchange resins.

    Science.gov (United States)

    Arias-Paic, Miguel; Cawley, Kaelin M; Byg, Steve; Rosario-Ortiz, Fernando L

    2016-01-01

    Hardness and DOC removal in a single ion exchange unit operation allows for less infrastructure, is advantageous for process operation and depending on the water source, could enhance anion exchange resin removal of dissolved organic carbon (DOC). Simultaneous application of cationic (Plus) and anionic (MIEX) ion exchange resin in a single contact vessel was tested at pilot and bench scales, under multiple regeneration cycles. Hardness removal correlated with theoretical predictions; where measured hardness was between 88 and 98% of the predicted value. Comparing bench scale DOC removal of solely treating water with MIEX compared to Plus and MIEX treated water showed an enhanced DOC removal, where removal was increased from 0.5 to 1.25 mg/L for the simultaneous resin application compared to solely applying MIEX resin. A full scale MIEX treatment plant (14.5 MGD) reduced raw water DOC from 13.7 mg/L to 4.90 mg/L in the treated effluent at a bed volume (BV) treatment rate of 800, where a parallel operation of a simultaneous MIEX and Plus resin pilot (10 gpm) measured effluent DOC concentrations of no greater than 3.4 mg/L, even at bed volumes of treatment 37.5% greater than the full scale plant. MIEX effluent compared to simultaneous Plus and MIEX effluent resulted in differences in fluorescence intensity that correlated to decreases in DOC concentration. The simultaneous treatment of Plus and MIEX resin produced water with predominantly microbial character, indicating the enhanced DOC removal was principally due to increased removal of terrestrially derived organic matter. The addition of Plus resin to a process train with MIEX resin allows for one treatment process to remove both DOC and hardness, where a single brine waste stream can be sent to sewer at a full-scale plant, completely removing lime chemical addition and sludge waste disposal for precipitative softening processes. Published by Elsevier Ltd.

  19. Sewage sludge gasification in fluidized bed: influence of temperature and the stoichiometric relation; Gasificacion de fangos de depuradora en lecho fluidizado: influencia de la temperatura y de la relacion estequiometrica

    Energy Technology Data Exchange (ETDEWEB)

    Manya, J.J.; Gonzalo, A.; Sanchez, J.L.; Arauzo, J. [Universidad de Zaragoza, Aragon (Spain). Inst. de Investigacion en Ingenieria. Grupo de Procesos Termoquimicos; Rocha, J.D. [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico (NIPE); Mesa Perez, J.M. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Agricola (FEAGRI)

    2004-07-01

    The gasification of a dry granular sewage sludge has been experimentally studied. The gasification was carried out in a bench scale BFB facility, operated at steady state. The attention was focused on the presence of tar in the produced gas which affect the process efficiency and give negative drawbacks in the utilization in motors. The influence of two operating variables (bed temperature and equivalence ratio) on the gasification performances has been explored. Results show that the composition of produced gas is quite dependent of the variables analyzed. However, the results of tar yield show an unexpected behaviour. (author)

  20. Aging in CTBN modified epoxy resin stocks

    International Nuclear Information System (INIS)

    Creed, K.E. Jr.

    1979-01-01

    The cause of degradation in the glass transition temperature (T/sub G/) of a partially crystallized polymer was investigated. Sample epoxy resin filled capacitors were cured at 90 0 C for 24 hours, then stored at room atmospheric conditions. These showed typical degradation in T/sub G/ after storage for one month. One set of epoxy resin castings was stored at room atmosphere and another set was stored in a dry box at 0% relative humidity and 27 0 C. The samples at room atmospheric conditions showed typical degradation in T/sub G/, while the T/sub G/ for those stored in the dry box increased. Further tests were then made on epoxy resin castings at various curing temperatures and times at both room atmosphere and 0% humidity. Resulting data indicated that absorption of moisture during storage was the predominant cause of T/sub G/ degradation, with stress relaxation another, though smaller, contributing factor

  1. Studi Numerik Karakteristik Pengeringan Batubara pada Fluidized Bed Coal Dyer Terhadap Pengaruh Variasi Temperatur Air Heater dengan Tube Heater Tersusun Staggered dan Perbandingan Volume Chamber dan Volume Batubara Sebesar 50%

    Directory of Open Access Journals (Sweden)

    Ayu Sarah Novrizqa

    2013-03-01

    Full Text Available Indonesia mempunyai sumber daya batubara yang cukup besar dan sebagian besar sumber daya tersebut termasuk ke dalam batubara peringkat rendah berupa lignit dan sub-bituminus yang memiliki kadar air yang tinggi. Tingginya kadar air menyebabkan rendahnya nilai kalor, sehingga pemanfaatan batubara jenis ini menjadi terbatas dan sulit untuk dipasarkan. Oleh karena itu perlu adanya teknologi pengeringan yang dapat meningkatkan nilai kalor dari batubara tersebut. Dalam proses pengeringan akan melibatkan perpindahan panas dan massa. Proses ini akan didefinisikan dalam suatu studi numerik, dimana penelitian ini dilakukan dengan metode numerik dengan software Fluent 6.3.26. Pemilihan kondisi simulasi digunakan model turbulensi k-ε realizable dan skema interpolasi first-order upwind. Serta mempelajari pengaruh temperatur inlet udara pengering yang divariasikan. Variasi temperatur adalah 316 K, 327 K, 339 K. Dari penelitian ini  dapat diketahui nilai drying rate serta pengaruh temperatur dan posisi batubara dalam proses pengeringan pada drying chamber fluidized bed coal dryer dengan tube heater tersusun staggered serta pengaruh dari perbandingan volume batubara dengan volume chamber sebesar 50%. Moisture content batubara yang paling banyak berkurang dialami oleh temperature outlet terbesar yaitu 339 K dari 0,22 hingga 0,0167. Laju pengeringan yang memiliki waktu paling cepat yaitu pada temperatur 339 K, sekitar 1100 detik, sedangkan yang memiliki waktu paling lama yaitu pada temperatur 316 K, sekitar 4600 detik.

  2. Reduction of polyester resin shrinkage by means of epoxy resin

    International Nuclear Information System (INIS)

    Pietrzak, M.; Brzostowski, A.

    1981-01-01

    An attempt was made to decrease the shrinkage of unsaturated polyester resin, taking place during radiation-induced curing, by the addition of epoxy resin. In order to combine chemically both resins, the epoxy component was modified with cinnamic and acrylic acids. A composition of 90 parts of polyester resin, 10 parts of epoxy resin modified with cinnamic acid, and 150 parts of a silica filler showed a volume shrinkage of 1.2%. (author)

  3. Application of the pentaiodide strong base resin disinfectant to the U.S. space program

    Science.gov (United States)

    Marchin, George L.

    1990-01-01

    A pentaiodide resin is described which has 70 percent of its weight composed of elemental iodine, has a relatively low iodine residual, and may offer superior disinfection capability for applications on long-duration space vehicles. Such a disinfectant is crucial for use on spacecraft for long periods of time where water would be recycled through various systems. The pentaiodide resin is capable of devitalizing 1 x 10 to the 9th bacteria per ml in aqueous suspension within 10 seconds of contact with the resin bed. A number of organisms have already been tested and the resin continues to prove effective. Resin properties and composition are discussed and a detailed account of the first investigation of the pentaiodide resin as a disinfectant against the intestinal parasite Giardia lamblia is provided.

  4. Low-melt Viscosity Polyimide Resins for Resin Transfer Molding (RTM) II

    Science.gov (United States)

    Chuang, Kathy C.; Criss, Jim M.; Mintz, Eric A.; Scheiman, Daniel A.; Nguyen, Baochau N.; McCorkle, Linda S.

    2007-01-01

    A series of polyimide resins with low-melt viscosities in the range of 10-30 poise and high glass transition temperatures (Tg s) of 330-370 C were developed for resin transfer molding (RTM) applications. These polyimide resins were formulated from 2,3,3 ,4 -biphenyltetracarboxylic dianhydride (a-BPDA) with 4-phenylethynylphthalic anhydride endcaps along with either 3,4 - oxyaniline (3,4 -ODA), 3,4 -methylenedianiline, (3,4 -MDA) or 3,3 -methylenedianiline (3,3 -MDA). These polyimides had pot lives of 30-60 minutes at 260-280 C, enabling the successful fabrication of T650-35 carbon fiber reinforced composites via RTM process. The viscosity profiles of the polyimide resins and the mechanical properties of the polyimide carbon fiber composites will be discussed.

  5. Fluidized-bed nuclear reactor

    International Nuclear Information System (INIS)

    Grimmett, E.S.; Kunze, J.F.

    1975-01-01

    A reactor vessel containing a fluidized-bed region of particulate material including both a neutron-moderating and a fertile substance is described. A gas flow including fissile material passes through the vessel at a sufficient rate to fluidize the particulate material and at a sufficient density to support a thermal fission reaction within the fluidized-bed region. The high-temperature portion of a heat transfer system is located within the fluidized-bed region of the reactor vessel in direct contact with the fluidized particles. Heat released by fission is thereby transferred at an enhanced rate to a coolant circulating within the heat transfer system. Fission products are continuously removed from the gas flow and supplemental fissile material added during the reactor operation. (U.S.)

  6. Clinical physiology of bed rest

    Science.gov (United States)

    Greenleaf, John E.

    1993-01-01

    Maintenance of optimal health in humans requires the proper balance between exercise, rest, and sleep as well as time in the upright position. About one-third of a lifetime is spent sleeping; and it is no coincidence that sleeping is performed in the horizontal position, the position in which gravitational influence on the body is minimal. Although enforced bed rest is necessary for the treatment of some ailments, in some cases it has probably been used unwisely. In addition to the lower hydrostatic pressure with the normally dependent regions of the cardiovascular system, body fuid compartments during bed rest in the horizontal body position, and virtual elimination of compression on the long bones of the skeletal system during bed rest (hypogravia), there is often reduction in energy metabolism due to the relative confinement (hypodynamia) and alteration of ambulatory circadian variations in metabolism, body temperature, and many hormonal systems. If patients are also moved to unfamiliar surroundings, they probably experience some feelings of anxiety and some sociopsychological problems. Adaptive physiological responses during bed rest are normal for that environment. They are attempts by the body to reduce unnecessary energy expenditure, to optimize its function, and to enhance its survival potential. Many of the deconditioning responses begin within the first day or two of bed rest; these early responses have prompted physicians to insist upon early resumption of the upright posture and ambulation of bedridden patients.

  7. Heat exchanger support apparatus in a fluidized bed

    Science.gov (United States)

    Lawton, Carl W.

    1982-01-01

    A heat exchanger is mounted in the upper portion of a fluidized combusting bed for the control of the temperature of the bed. A support, made up of tubes, is extended from the perforated plate of the fluidized bed up to the heat exchanger. The tubular support framework for the heat exchanger has liquid circulated therethrough to prevent deterioration of the support.

  8. Experimental investigation on the changes in bed properties of a ...

    African Journals Online (AJOL)

    user

    Abstract. Biomass gasifiers of fixed bed, downdraft type are generally used for driving internal combustion engines. As part of research work, a versatile, throat type, biomass gasifier was developed. The gasifier had facilities for bed temperature measurements, pressure measurements, physical observation, sampling of bed ...

  9. Experimental investigation on the changes in bed properties of a ...

    African Journals Online (AJOL)

    Biomass gasifiers of fixed bed, downdraft type are generally used for driving internal combustion engines. As part of research work, a versatile, throat type, biomass gasifier was developed. The gasifier had facilities for bed temperature measurements, pressure measurements, physical observation, sampling of bed particles, ...

  10. Resin composite repair: Quantitative microleakage evaluation of resin-resin and resin-tooth interfaces with different surface treatments

    OpenAIRE

    Celik, Cigdem; Cehreli, Sevi Burcak; Arhun, Neslihan

    2015-01-01

    Objective: The aim was to evaluate the effect of different adhesive systems and surface treatments on the integrity of resin-resin and resin-tooth interfaces after partial removal of preexisting resin composites using quantitative image analysis for microleakage testing protocol. Materials and Methods: A total of 80 human molar teeth were restored with either of the resin composites (Filtek Z250/GrandioSO) occlusally. The teeth were thermocycled (1000?). Mesial and distal 1/3 parts of the res...

  11. Maximizing the functional lifetime of Protein A resins.

    Science.gov (United States)

    Zhang, Jennifer; Siva, Sethu; Caple, Ryan; Ghose, Sanchayita; Gronke, Rob

    2017-05-01

    Protein A chromatography is currently the industry gold-standard for monoclonal antibody and Fc-fusion protein purification. The high cost of Protein A, however, makes resin lifetime and resin reuse an important factor for process economics. Typical resin lifetime studies performed in the industry usually examine the effect of resin re-use on binding capacity, yield, and product quality without answering the fundamental question of what is causing the decrease in performance. A two part mechanistic study was conducted in an attempt to decouple the effect of the two possible factors (resin hydrolysis and/or degradation vs. resin fouling) on column performance over lifetime of the most commonly used alkali-stable Protein A resins (MabSelect SuRe and MabSelect SuRe LX). The change in binding capacity as a function of sodium hydroxide concentration (rate of hydrolysis), temperature, and stabilizing additives was examined. Additionally, resin extraction studies and product cycling studies were conducted to determine cleaning effectiveness (resin fouling) of various cleaning strategies. Sodium hydroxide-based cleaning solutions were shown to be more effective at preventing resin fouling. Conversely, cold temperature and the use of stabilizing additives in conjunction with sodium hydroxide were found to be beneficial in minimizing the rate of Protein A ligand hydrolysis. An effective and robust cleaning strategy is presented here to maximize resin lifetime and thereby the number of column cycles for future manufacturing processes. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:708-715, 2017. © 2017 American Institute of Chemical Engineers.

  12. Development of local heat transfer and pressure drop models for pebble bed high temperature gas-cooled reactor cores - HTR2008-58296

    International Nuclear Information System (INIS)

    McLaughlin, B.; Worsley, M.; Stainsby, R.; Grief, A.; Dennier, A.; Macintosh, S.; Van Heerden, E.

    2008-01-01

    This paper describes pressure drop and heat transfer coefficient predictions for a typical coolant flow within the core of a pebble bed reactor (PBR) by examining a representative group of pebbles remote from the reflector region. The three- dimensional steady state flow and heat transfer predictions utilized in this work are obtained from a computational fluid dynamics (CFD) model created in the commercial software ANSYS FLUENT TM . This work utilizes three RANS turbulence models and the Chilton-Colburn analogy for heat transfer. A methodology is included in this paper for creating a quality unstructured mesh with prismatic surface layers on a random arrangement of touching pebbles. The results of the model are validated by comparing them with the correlations of the German KTA rules for a PBR. (authors)

  13. H2 production with low carbon content via MSR in packed bed membrane reactors for high-temperature polymeric electrolyte membrane fuel cell

    International Nuclear Information System (INIS)

    Ribeirinha, P.; Abdollahzadeh, M.; Boaventura, M.; Mendes, A.

    2017-01-01

    Highlights: • H 2 removal diminishes the backward reaction and increases the residence time. • Selective CO 2 removal has low effect on the CH 3 OH conversion compared to H 2 removal. • IL membranes for MSR intents require minimum permeance of ⩾1 × 10 −6 mol s −1 m −2 Pa −1 . • IL-based PBMRs are easier to operate and have low energy consumption. - Abstract: This work compares the hydrogen purity and recovery produced by a methanol steam reforming (MSR) packed bed membrane reactor (PBMR) equipped with a membrane selective to hydrogen (Pd-Ag) and with a membrane selective to carbon dioxide (porous membrane filled with ionic liquids-ILs). A 3-dimensional non-isothermal PBMR model was developed in Fluent (Ansys™) for simulating a PBMR equipped with these two types of membranes and simulating a conventional packed bed reactor (PBR). For the development PBMR models a MSR mechanistic kinetic model was fitted to experimental reaction rates of a commercial catalyst (BASF RP60). The results indicated that selective hydrogen removal from the reaction medium originates a significant increase in the methanol conversion, while the carbon dioxide removal has a smaller effect. CO 2 -PBMR showed to be more efficient in terms of energy consumption than H 2 -PMBR. The simulation results showed also that ILs membranes must have a minimum permeance of ⩾1 x 10 −6 mol s −1 m −2 Pa −1 and CO 2 /H 2 selectivity of ⩾200 at 473 K to be attractive for this type of applications. The advantages and limitations of each reactor configuration are discussed based on experimental and simulated data.

  14. Exercise thermoregulation after 14 days of bed rest

    Science.gov (United States)

    Greenleaf, J. E.; Reese, R. D.

    1980-01-01

    The effects of bed rest and exercise training during bed rest on body temperature and thermoregulatory responses at rest and during exercise are investigated. Seven male subjects underwent three two-week periods of bed rest during which isometric, isotonic, or no exercises were performed, separated by two ambulatory control periods and preceded by a two-week control period, during which they exercised regularly. Rectal and mean skin temperatures and sweating responses were determined during 70-min submaximal supine exercise during the bed rest and recovery periods. Measurements reveal a reduction in basal oral temperature during the control-recovery periods, with a relatively constant level during bed rest periods, and a significant increase in the rectal temperature elavation brought on by exercise following all three bed-rest regimes. It is concluded that the excessive increase in rectal temperature could be influenced by changes in skin heat conductance or the inhibition of sweating.

  15. Waste minimization pretreatment via pyrolysis and oxidative pyrolysis of organic ion exchange resin

    International Nuclear Information System (INIS)

    Chun, U.K.; Choi, K.; Yang, K.H.; Park, J.K.; Song, M.J.

    1998-01-01

    Pyrolysis and/or oxidative pyrolysis of organic ion exchange resins and other combustible waste may be effective pretreatment processes before vitrification. Three different methods were examined with the TGA to pretreat the resins: pyrolysis; oxidative pyrolysis; and oxidative pyrolyses of ash remaining after the pyrolysis of resin. The latter two methods were found to provide better volume reduction than the pyrolysis-only process. Between the two types of resins, cationic and anionic, the cationic exchange resin was less volatile. Pyrolysis and oxidative pyrolysis of mixed resin (50% cation and 50% anion by wt.) showed volatilization at the temperatures where volatilization was observed for each of the separate resins. Because of certain limitations of the commercial TGA, tube furnace experiments were performed, generally, to examine the pyrolysis of larger quantities of cationic, anionic, and mixed resin, and to examine off-gas characteristics. The cationic resin-only and anionic resin-only gravimetric results showed good agreement with the smaller-scale TGA results. SEM pictures of the different variants of the resin (cationic, anionic, and mixed) show a different morphology for each. Off-gas data showed the presence of H 2 S, SO 2 , CO, and NO during the pyrolysis of cationic resin. CO was observed during the pyrolysis of anionic resin. The mixed resin trials showed the presence of the gases approximately at the temperatures where the gases would evolve if the results of the two different resins (cationic and anionic) were superimposed. However, the amount of hydrogen sulfide relative to the sulfur dioxide was found to increase significantly compared to the results of the cationic resin-only trials

  16. Modelling of HTR (High Temperature Reactor Pebble-Bed 10 MW to Determine Criticality as A Variations of Enrichment and Radius of the Fuel (Kernel With the Monte Carlo Code MCNP4C

    Directory of Open Access Journals (Sweden)

    Hammam Oktajianto

    2014-12-01

    Full Text Available Gas-cooled nuclear reactor is a Generation IV reactor which has been receiving significant attention due to many desired characteristics such as inherent safety, modularity, relatively low cost, short construction period, and easy financing. High temperature reactor (HTR pebble-bed as one of type of gas-cooled reactor concept is getting attention. In HTR pebble-bed design, radius and enrichment of the fuel kernel are the key parameter that can be chosen freely to determine the desired value of criticality. This paper models HTR pebble-bed 10 MW and determines an effective of enrichment and radius of the fuel (Kernel to get criticality value of reactor. The TRISO particle coated fuel particle which was modelled explicitly and distributed in the fuelled region of the fuel pebbles using a Simple-Cubic (SC lattice. The pebble-bed balls and moderator balls distributed in the core zone using a Body-Centred Cubic lattice with assumption of a fresh fuel by the fuel enrichment was 7-17% at 1% range and the size of the fuel radius was 175-300 µm at 25 µm ranges. The geometrical model of the full reactor is obtained by using lattice and universe facilities provided by MCNP4C. The details of model are discussed with necessary simplifications. Criticality calculations were conducted by Monte Carlo transport code MCNP4C and continuous energy nuclear data library ENDF/B-VI. From calculation results can be concluded that an effective of enrichment and radius of fuel (Kernel to achieve a critical condition was the enrichment of 15-17% at a radius of 200 µm, the enrichment of 13-17% at a radius of 225 µm, the enrichments of 12-15% at radius of 250 µm, the enrichments of 11-14% at a radius of 275 µm and the enrichment of 10-13% at a radius of 300 µm, so that the effective of enrichments and radii of fuel (Kernel can be considered in the HTR 10 MW. Keywords—MCNP4C, HTR, enrichment, radius, criticality 

  17. Engineering solutions for a reflector change concept in the high-temperature reactor with pebble bed core and OTTO-fueling

    International Nuclear Information System (INIS)

    Kasper, K.J.

    1975-06-01

    In the field of reactor engineering an increasing tendency is visible towards a 'repairable reactor'. In the construction of the HTR with spherical fuel elements this fact should already be taken into account at an early stage. Additionally it is possible that in connection with the OTTO-fueling load conditions for the graphite reflector could result which are locally not far away from limiting values. Therefore the removability of the reflector is included in the reactor construction as an accompanying technical step of the physical lay-out of the core. The core arrangements, realized for HTR until recently, are discussed as well as the properties of the graphites used and the operating conditions in the reactors are stated. At the example of the PR 3,000 proposals are offered for the construction of a removable side and top reflector for a pebble bed reactor. Hereby a solution was found which, on one hand allows the changing of the reflector and on the other hand requires no significant increase of the costs for the reactor assembly. Moreover the requirements of reactor operation and of repairability are satisfied in an optimal manner. (orig.) [de

  18. A PROTOTYPE FOUR INCH SHORT HYDRIDE (FISH) BED AS A REPLACEMENT TRITIUM STORAGE BED

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.; Estochen, E.; Shanahan, K.; Heung, L.

    2011-02-23

    The Savannah River Site (SRS) tritium facilities have used 1st generation (Gen1) metal hydride storage bed assemblies with process vessels (PVs) fabricated from 3 inch nominal pipe size (NPS) pipe to hold up to 12.6 kg of LaNi{sub 4.25}Al{sub 0.75} metal hydride for tritium gas absorption, storage, and desorption for over 15 years. The 2nd generation (Gen2) of the bed design used the same NPS for the PV, but the added internal components produced a bed nominally 1.2 m long, and presented a significant challenge for heater cartridge replacement in a footprint limited glove-box. A prototype 3rd generation (Gen3) metal hydride storage bed has been designed and fabricated as a replacement candidate for the Gen2 storage bed. The prototype Gen3 bed uses a PV pipe diameter of 4 inch NPS so the bed length can be reduced below 0.7 m to facilitate heater cartridge replacement. For the Gen3 prototype bed, modeling results show increased absorption rates when using hydrides with lower absorption pressures. To improve absorption performance compared to the Gen2 beds, a LaNi{sub 4.15}Al{sub 0.85} material was procured and processed to obtain the desired pressure-composition-temperature (PCT) properties. Other bed design improvements are also presented.

  19. A Study of the Surface Photovoltage of ZnO-Resin Layers.

    Science.gov (United States)

    Tashiro, I; Kimura, T; Endo, K

    1969-01-01

    The surface photovoltage of ZnO resin layer has been used as the basis for an imaging process generally known as chargeless electrophotography. This paper explores effects of the ambient air pressure and the layer temperature on the surface photovoltage of ZnO resin layers. Experiments were made by using ZnO-silicone resin layer, ZnO-alkyd resin layer, and ZnO-acryl resin layer. The surface potential of the dark adapted layers were measured while the ambient air pressure decreased, and the surface photovoltage and its decay curve were measured under various ambient air pressures. ZnO-silicone resin layer showed a remarkably high sensitivity in terms of surface photovoltage to the ambient air pressure changes. Marked variations were observed in the surface potential of the dark adapted layers both in air and in a vacuum of 5 x 10(-5) Torr when the layer temperature had been slowly raised. The surface potential exhibited a maximum peak when silicone resin was used as a binder and a minimum peak when alkyd resin or acryl resin was used, both peaks being registered at a temperature slightly higher than room temperature in air. After the layers had been annealed for a few hours at a high temperature, relationships between the surface photovoltage and the layer temperature were measured while the layer temperature decreased. The surface photovoltage and its decay of the ZnO-silicone resin layer revealed higher sensitivity to the changes of ambient air pressure and layer temperature than to those of other ZnO-resin layers. This difference is accounted for by a specific property of the silicone resin that enforces adsorption of the water molecule onto the surface of ZnO. Some applications of the above experiments are also discussed.

  20. The effect of processing on autohesive strength development in thermoplastic resins and composites

    Science.gov (United States)

    Howes, Jeremy C.; Loos, Alfred C.; Hinkley, Jeffrey A.

    1989-01-01

    In the present investigation of processing effects on the autohesive bond strength of neat polysulfone resin and graphite-reinforced polysulfone-matrix composites measured resin bond strength development in precracked compact tension specimens 'healed' by heating over a contact period at a given temperature. The critical strain energy release rate of refractured composite specimens did not exhibit the strong time or temperature dependence of the neat resin tests; only 80-90 percent of the undamaged fracture energy is recoverable.

  1. Method of heat decomposition for chemical decontaminating resin waste

    International Nuclear Information System (INIS)

    Kikuchi, Akira.

    1988-01-01

    Purpose: To make resin wastes into non-deleterious state, discharge them into a resin waste storage tank of existent radioactive waste processing facility and store and dispose them. Constitution: In the processing of chemical decontaminating resin wastes, iron exchange resins adsorbing chemical decontaminating agents comprising a solution of citric acid, oxalic acid, formic acid and EDTA alone or as a mixture of them are heated to dry, thermally decomposed and then separated from the ion exchange resins. That is, the main ingredients of the chemical decontaminating agents are heat-decomposed when heated and dried at about 250 deg C in air and converted into non-toxic gases such as CO, CO 2 , NO, NO 2 or H 2 O. Further, since combustion or carbonization of the basic materials for the resin is not caused at such a level of temperature, the resin wastes removed with organic acid and chelating agents are transferred to an existent resin waste storage tank and stored therein. In this way, facility cost and radiation exposure can remarkably be decreased. (Kamimura, M.)

  2. Method for removing contaminants from plastic resin

    Science.gov (United States)

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2008-12-09

    A resin recycling method that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The method includes receiving the resin in container form. The containers are then ground into resin particles. The particles are exposed to a solvent, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. After separating the particles and the resin, a solvent removing agent is used to remove any residual solvent remaining on the resin particles after separation.

  3. Effects of combustion temperature on air emissions and support fuel consumption in full scale fluidized bed sludge incineration: with particular focus on nitrogen oxides and total organic carbon.

    Science.gov (United States)

    Löschau, Margit

    2018-04-01

    This article describes a pilot test at a sewage sludge incineration plant and shows its results considering the impacts of reducing the minimum combustion temperature from 850°C to 800°C. The lowering leads to an actual reduction of the average combustion temperature by 25 K and a significant reduction in the fuel oil consumption for support firing. The test shall be used for providing evidence that the changed combustion conditions do not result in higher air pollutant emissions. The analysis focusses on the effects of the combustion temperature on nitrogen oxides (NO x ) and total organic carbon emissions. The evaluation of all continuously monitored emissions shows reduced emission levels compared to the previous years, especially for NO x .

  4. Kinetics and adsorption isotherm of C-phycocyanin from Spirulina platensis on ion-exchange resins

    Directory of Open Access Journals (Sweden)

    L. Sala

    2014-12-01

    Full Text Available C-phycocyanin is a natural blue dye extracted from Spirulina platensis, which has many applications in the food and pharmaceutical industries. In this paper the effect of pH and temperature on the adsorption of C-phycocyanin onto two different ion exchange resins (Streamline DEAE and Streamline Q XL for expanded bed adsorption chromatography was investigated. Moreover, the kinetics and adsorption isotherm were evaluated. The equilibrium for the Q XL matrix was reached after 60 min, while for DEAE it was only reached after 140 min. C-phycocyanin showed the highest partition coefficient at pH 7.5 for both resins at 25 ºC. The C-phycocyanin adsorption isotherm was very well represented by the Langmuir, Freundlich and Langmuir-Freundlich models, where the estimated values for Qm and Kd obtained by the Langmuir isotherm were, respectively, 33.92 mg.mL-1 and 0.123 mg.mL-1 for DEAE, and 28.12 mg.mL-1 and 0.082 mg.mL-1 for the Q XL matrix. A negative cooperativity was observed for C-phycocyanin binding when the Q XL matrix was used, while the cooperativity was purely independent using the DEAE matrix.

  5. Fiber reinforced silicon-containing arylacetylene resin composites

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available A silicon-containing arylacetylene resin (SAR, a poly(dimethylsilyleneethynylene phenyleneethynylene (PMSEPE, was synthesized. The PMSEPE is a solid resin at ambient temperature with a softening temperature about 60°C and soluble in some solvents like tetrahydrofuran. The melt viscosity of the PMSEPE resin is less than 1 Pa•s. The resin could cure at the temperature of lower than 200°C. Fiber reinforced PMSEPE composites were prepared from prepregs which were made by the impregnation of fibers in PMSEPE resin solution. The composites exhibit good mechanical properties at room temperature and 250°C. The observation on fracture surfaces of the composites reinforced by glass fibers and carbon fibers demonstrates that the adhesion between the fibers and resin is good. The results from an oxyacetylene flame test show that the composites have good ablation performance and XRD analyses indicate that SiC forms in the residues during the ablation of the composites.

  6. Contact allergy to epoxy resin

    DEFF Research Database (Denmark)

    Bangsgaard, Nannie; Thyssen, Jacob Pontoppidan; Menné, Torkil

    2012-01-01

    to epoxy resin remained stable over the study period. Of the patients with an epoxy resin-positive patch test, 71% returned a questionnaire; 95 patients had worked with epoxy resin in the occupational setting, and, of these, one-third did not use protective gloves and only 50.5% (48) had participated...

  7. Moisture diffusion parameter characteristics for epoxy composites and neat resins

    Science.gov (United States)

    Long, E. R., Jr.

    1979-01-01

    The moisture absorption characteristics of two graphite/epoxy composites and their corresponding cured neat resins were studied in high humidity and water immersion environments at elevated temperatures. Moisture absorption parameters, such as equilibrium moisture content and diffusion coefficient derived from data taken on samples exposed to high humidity and water soak environments, were compared. Composite swelling in a water immersion environment was measured. Tensile strengths of cured neat resin were measured as a function of their equilibrium moisture content after exposure to different moisture environments. The effects of intermittent moderate tensile loads on the moisture absorption parameters of composite and cured neat resin samples were determined.

  8. The kinetics of fossil resin extraction from a flotation concentrate

    Energy Technology Data Exchange (ETDEWEB)

    Li, L.; Yu, Q.; Miller, J.D. [Univ. of Utah, Salt Lake City, UT (United States)

    1995-11-01

    The kinetics of fossil resin extraction from a flotation concentrate by heptane were investigated as a function of process variables using monosize particles. Experimental results provide for a better understanding of the refining process and the basis for subsequent design and construction of a continuous resin refining circuit. Based on the effect of process variables (particle size, stirring speed, and temperature) the resin extraction rate appears to be controlled by surface solvation phenomena. The initial extraction rate was found to be inversely proportional to the initial particle size and a kinetic model is being developed to describe the experimental results.

  9. Uranium extraction from sulfuric acid solution using anion exchange resin

    International Nuclear Information System (INIS)

    Sheta, M. E.; Abdel Aal, M. M.; Kandil, A. T.

    2012-12-01

    Uranium is currently recovered from sulfuric acid leach liquor using anion exchange resin as Amberlite IRA 402 (CT). This technology is based on fact that, uranium exists as anionic complexes. This takes place by controlling the pH of the solution, agitation time, temperature and resin to solution ratio (R/S). In this work, batch stirrer tank used for uranium extraction from sulfate medium and after extraction, elution process was done using 1M NaCl solution. After extraction and elution process, the resin was separated from the system and uranium was determined in the solution. (Author)

  10. Radial voidage variation in fixed beds of fuel wood pellets

    International Nuclear Information System (INIS)

    Hamel, Stefan; Krumm, Wolfgang

    2012-01-01

    Fixed beds of fuel wood are commonly found in numerous processes: storage and transportation, drying and thermal conversion such as combustion or gasification. Pellets in particular are mostly used as fuel for domestic heating boilers. The characterization of spatial voidage distribution is of great importance for flow and reactor modelling. The present study focuses on the radial porosity variations of cylindrical beds of commercially available wood pellets. The experimental procedure is based on the classical technique of consolidating packed beds with a resin. The radial voidage distribution of three different cylindrical beds is determined by image analysis of sections of the solidified packing. The results are discussed and summarized in a mathematical expression correlating the radial voidage distribution depending on packing core porosity and dimensionless distance from the tube wall. -- Highlights: ► Packing characteristics for commercially available wood pellets were investigated. ► Radial porosity variations of cylindrical pellets beds were investigated. ► Epoxy resin consolidated packings were investigated by image analysis. ► Mathematical term for radial voidage distribution of pellet packing was derived.

  11. Fluid-bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, G.; Schoebotham, N.

    1981-02-01

    In Energy Equipment Company's two-stage fluidized bed system, partial combustion in a fluidized bed is followed by burn-off of the generated gases above the bed. The system can be retrofitted to existing boilers, and can burn small, high ash coal efficiently. It has advantages when used as a hot gas generator for process drying. Tests on a boiler at a Cadbury Schweppes plant are reported.

  12. Quantification of groundwater-stream water interactions based on temperature depth profiles under strong upwelling conditions in a sand-bed stream

    Science.gov (United States)

    Gaona, Jaime; Lewandowski, Jörg

    2017-04-01

    The quantification of groundwater-surface water interactions is not only required for budgets but also for an understanding of the complex relations between hyporheic exchange flows (HEF) and the associated chemical and biological processes that take place in hyporheic zones (HZ). Thus, there is a strong need to improve methods for flux estimation.The present study aims to quantify the vertical fluxes across the riverbed from data of temperature depth profiles recorded at the River Schlaube in East Brandenburg, Germany. In order to test the capabilities and limitations of existing methods, fluxes were calculated with an analytical (VFLUX, based on the amplitude attenuation and phase shift analysis) and a numerical (1DTempPro, parametrization based on observed values) approach for heat conduction. We conclude that the strong limitations of the flux estimates are caused by thermal and hydraulic heterogeneities of the sediment properties. Consequently, upscaling of fluxes must include other thermal techniques able to portray the spatial variability of thermal patterns, along with further developments of methods to link thermal depth profiles, thermal patterns of the surface of the streambed and all the other factors involved. Considering time and costs of temperature depth profiles of riverbeds, and the need for multiple devices to cover larger areas, it is additionally tested whether vertical fluxes can be infered from the uppermost temperature sensors of a data set. That would ease hyporheic investigations at larger scales.

  13. Enhancement of adhesion between resin coating materials and resin cements.

    Science.gov (United States)

    Udo, Tomoaki; Nikaido, Toru; Ikeda, Masaomi; Weerasinghe, Dinesh S; Harada, Naoko; Foxton, Richard M; Tagami, Junji

    2007-07-01

    Resin coating technique is a unique method that improves the dentin bond strength of resin cements in indirect restorations. However, the weak link of a specimen bonded using the resin coating technique was reported to be the bonded interface between the resin coating material and resin cement. The purpose of this study, therefore, was to enhance the bonding performance between a resin coating material and a resin cement. Two light-cured flowable composites, Protect Liner F and Clearfil Flow FX, were used as coating materials, and two dual-cure composite materials, Panavia F 2.0 and Clearfil DC Core Automix, were used as resin cements. The ultimate tensile strength of each material and the microtensile bond strengths of the bonded specimens of resin coating material and resin cement were measured using a crosshead speed of 1.0 mm/min. Three-way ANOVA (p=0.05) revealed that the highest microtensile bond strength was obtained using a combination of Clearfil Flow FX and Clearfil DC Core Automix, and when the surface of the coating material was treated with ED Primer II. It was strongly suggested that materials with a higher ultimate tensile strength, when used in both resin coating and cementation, could enhance the bond strength between the two.

  14. Properties of Graphene Oxide/Epoxy Resin Composites

    OpenAIRE

    Jijun Tang; Haijun Zhou; Yunxia Liang; Xinlan Shi; Xin Yang; Jiaoxia Zhang

    2014-01-01

    The graphene oxide (GO) was obtained by pressurized oxidation method using natural graphite as raw materials. Then the GO/epoxy resin composites were prepared by casting. The mechanical and damping properties of composites were studied. As a result, the impact intensity of GO/epoxy resin composites was prominently improved with the content of the graphene oxide increasing. The glass transition temperature decreased and the damping capacity is improved.

  15. Effect of pressure on dynamic heterogeneity in dendrimeric alkyd resin

    Science.gov (United States)

    Paluch, M.; Sekula, M.; Maślanka, S.; Mańczyk, K.; Sułkowski, W. W.; Rzoska, S. J.; Ziolo, J.

    2004-01-01

    Broadband dielectric spectroscopy is employed to investigate the non-Debye relaxation behavior in a dendrimeric alkyd resin. From temperature-dependent measurements at ambient pressure, we found a very broad distribution of relaxation times. This is attributed to the complex geometrical topology of the molecule. However, compression significantly reduces the non-Debye character of the dielectric response; thus, pressure induces dynamic homogeneity in the dendrimeric alkyd resin.

  16. Polymerization of epoxy resins studied by positron annihilation

    International Nuclear Information System (INIS)

    Suzuki, T.; Hayashi, T.; Ito, Y.

    1999-01-01

    The polymerization process of epoxy resins (bisphenol-A dicyanate) was studied using positron-annihilation spectroscopy. The polymerization from monomer to polymer through a polymerization reaction was followed by positron-annihilation lifetime spectroscopy measurements. Resins kept at curing temperatures (120, 150 and 200 o C) changed form from of powder to a solid through a liquid. The size of the intermolecular spaces of the solid samples increased along with the progress of polymerization. (author)

  17. Application conditions for ester cured alkaline phenolic resin sand

    Directory of Open Access Journals (Sweden)

    Ren-he Huang

    2016-07-01

    Full Text Available Five organic esters with different curing speeds: propylene carbonate (i.e. high-speed ester A; 1, 4-butyrolactone; glycerol triacetate (i.e. medium-speed ester B; glycerol diacetate; dibasic ester (DBE (i.e. low-speed ester C, were chosen to react with alkaline phenolic resin to analyze the application conditions of ester cured alkaline phenolic resin. The relationships between the curing performances of the resin (including pH value, gel pH value, gel time of resin solution, heat release rate of the curing reaction and tensile strength of the resin sand and the amount of added organic ester and curing temperature were investigated. The results indicated the following: (1 The optimal added amount of organic ester should be 25wt.%-30wt.% of alkaline phenolic resin and it must be above 20wt.%-50 wt.% of the organic ester hydrolysis amount. (2 High-speed ester A (propylene carbonate has a higher curing speed than 1, 4-butyrolactone, and they were both used as high-speed esters. Glycerol diacetate is not a high-speed ester in alkaline phenolic resin although it was used as a high-speed ester in ester cured sodium silicate sand; glycerol diacetate and glycerol triacetate can be used as medium-speed esters in alkaline phenolic resin. (3 High-speed ester A, medium-speed ester B (glycerol triacetate and low-speed ester C (dibasic ester, i.e., DBE should be used below 15 ìC, 35 ìC and 50 ìC, respectively. High-speed ester A or low-speed ester C should not be used alone but mixed with medium-speed ester B to improve the strength of the resin sand. (4 There should be a suitable solid content (generally 45wt.%-65wt.% of resin, alkali content (generally 10wt.%-15wt.% of resin and viscosity of alkaline phenolic resin (generally 50-300 mPa≤s in the preparation of alkaline phenolic resin. Finally, the technique conditions of alkaline phenolic resin preparation and the application principles of organic ester were discussed.

  18. Measurement of net nitrogen and phosphorus mineralization in wetland soils using a modification of the resin-core technique

    Science.gov (United States)

    Noe, Gregory B.

    2011-01-01

    A modification of the resin-core method was developed and tested for measuring in situ soil N and P net mineralization rates in wetland soils where temporal variation in bidirectional vertical water movement and saturation can complicate measurement. The modified design includes three mixed-bed ion-exchange resin bags located above and three resin bags located below soil incubating inside a core tube. The two inner resin bags adjacent to the soil capture NH4+, NO3-, and soluble reactive phosphorus (SRP) transported out of the soil during incubation; the two outer resin bags remove inorganic nutrients transported into the modified resin core; and the two middle resin bags serve as quality-control checks on the function of the inner and outer resin bags. Modified resin cores were incubated monthly for a year along the hydrogeomorphic gradient through a floodplain wetland. Only small amounts of NH4+, NO3-, and SRP were found in the two middle resin bags, indicating that the modified resin-core design was effective. Soil moisture and pH inside the modified resin cores typically tracked changes in the surrounding soil abiotic environment. In contrast, use of the closed polyethylene bag method provided substantially different net P and N mineralization rates than modified resin cores and did not track changes in soil moisture or pH. Net ammonification, nitrifi cation, N mineralization, and P mineralization rates measured using modified resin cores varied through space and time associated with hydrologic, geomorphic, and climatic gradients in the floodplain wetland. The modified resin-core technique successfully characterized spatiotemporal variation of net mineralization fluxes in situ and is a viable technique for assessing soil nutrient availability and developing ecosystem budgets.

  19. Effect of bed configuration on pebble flow uniformity and stagnation in the pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gui, Nan; Yang, Xingtuan [Institute of Nuclear and New Energy Technology of Tsinghua University, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Beijing 100084 (China); Tu, Jiyuan [Institute of Nuclear and New Energy Technology of Tsinghua University, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Beijing 100084 (China); School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, VIC 3083 (Australia); Jiang, Shengyao, E-mail: jiangshy@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology of Tsinghua University, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Beijing 100084 (China)

    2014-04-01

    Highlights: • Pebble flow uniformity and stagnation characteristics are very important for HTR-PM. • Arc- and brachistochrone-shaped configuration effects are studied by DEM simulation. • Best bed configurations with uniform flow and no stagnated pebbles are suggested. • Detailed quantified characteristics of bed configuration effects are shown for explanation. - Abstract: Pebble flow uniformity and stagnation characteristics are very important for the design of pebble bed high temperature gas-cooled reactor. Pebble flows inside some specifically designed contraction configurations of pebble bed are studied by discrete element method. The results show the characteristics of stagnation rates, recycling rates, radial distribution of pebble velocity and residence time. It is demonstrated clearly that the bed with a brachistochrone-shaped configuration achieves optimum levels of flow uniformity and recycling rate concentration, and almost no pebbles are stagnated in the bed. Moreover, the optimum choice among the arc-shaped bed configurations is demonstrated too. Detailed information shows the quantified characteristics of bed configuration effects on flow uniformity. In addition, a good design of the pebble bed configuration is suggested.

  20. Selective separation of indium by iminodiacetic acid chelating resin

    Energy Technology Data Exchange (ETDEWEB)

    Fortes, M.C.B.; Benedetto, J.S. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Martins, A.H. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Metalurgica e de Materiais]. E-mail: ahmartin@demet.ufmg.br

    2007-04-15

    - Indium can be recovered by treating residues, flue dusts, slags, and metallic intermediates in zinc smelting. This paper investigates the adsorption characteristics of indium and iron on an iminodiacetic acid chelating resin, Amberlite{sup R} IRC748 (Rohm and Haas Co.-USA). High concentrations of iron are always present in the aqueous feed solution of indium recovery. In addition, the chemical behaviour of iron in adsorptive systems is similar to that of indium. The metal concentrations in the aqueous solution were based on typical indium sulfate leach liquor obtained from zinc hydrometallurgical processing in a Brazilian plant. The ionic adsorption experiments were carried out by the continuous column method. Amberlite{sup R} IRC748 resin had a high affinity for indium under acidic conditions. Indium ions adsorbed onto the polymeric resin were eluted with a 0.5 mol/dm{sup 3} sulphuric acid solution passed through the resin bed in the column. 99.5% pure indium sulfate aqueous solution was obtained using the iminodiacetic acid chelating resin Amberlite{sup R} IRC748. (author)

  1. Combustion studies in a fluidised bed-The link between temperature, NO{sub x} and N{sub 2}O formation, char morphology and coal type

    Energy Technology Data Exchange (ETDEWEB)

    Valentim, B.; Lemos de Sousa, M.J. [Centro de Geologia da Universidade do Porto, Faculdade de Ciencias, Praca de Gomes Teixeira, 4099-002, Porto (Portugal); Abelha, P.; Boavida, D.; Gulyurtlu, I. [Departamento de Engenharia Energetica e Controlo Ambiental (DEECA), Instituto Nacional de Engenharia, Tecnologia e Inovacao (INETI), Estrada do Paco do Lumiar, 22, Edif. J, 1649-038, Lisboa (Portugal)

    2006-06-06

    Five commercially available high volatile bituminous coals from different origins were studied with the objective of characterizing their petrographic nature with respect to emissions of NO{sub x} and N{sub 2}O. The chars produced [at temperatures ranging from 700 to 1000 {sup o}C] from these coals were also petrographic ally analyzed to assess the contribution of char to NO{sub x} and N{sub 2}O formation during combustion. Vitrinite-rich coals produced higher porous chars (cenospheres and tenuinetworks) than those that are rich in inertinite. The former coals were, however, found to release lower concentrations of NO. Consistent with previous works, N{sub 2}O emissions were observed to decrease significantly with temperature, however, on the whole, the N{sub 2}O emissions from vitrinite-rich high volatile coals were less than those from inertinite-rich coals. Additionally, high porous chars were found to give rise to lower emissions of NO and N{sub 2}O. (author)

  2. Evaluation of resins for use in brachytherapy

    International Nuclear Information System (INIS)

    Carvalho, Luiz Claudio F.M. Garcia; Ferraz, Wilmar Barbosa; Chrcanovic, Bruno Ramos; Santos, Ana Maria M.

    2011-01-01

    Brachytherapy is an advanced cancer treatment where radioactive seeds or sources are placed near or directly into the tumor thus reducing the radiation exposure in the surrounding healthy tissues. Prostate cancer can be treated with interstitial brachytherapy in initial stage of the disease in which tiny radioactive seeds with cylindrical geometry are used. Several kinds of seeds have been developed in order to obtain a better dose distribution around them and with a lower cost manufacturing. These seeds consist of an encapsulation, a radionuclide carrier, and X-ray marker. Among the materials that have potential for innovation in the construction of seeds, biocompatible resins appear as an important option. In this paper, we present some characterization results with Fourier transform infrared spectroscopic (FTIR) and ultraviolet-visible spectroscopy (UV-vis) performed on two types of resins in which curing temperatures for each one were varied as also the results of coatings with these resins under titanium substrates. Interactions of these resins in contact with the simulated body fluid were evaluated by atomic force microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. (author)

  3. Evaluation of resins for use in brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Luiz Claudio F.M. Garcia; Ferraz, Wilmar Barbosa; Chrcanovic, Bruno Ramos; Santos, Ana Maria M., E-mail: ferrazw@cdtn.b, E-mail: amms@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Brachytherapy is an advanced cancer treatment where radioactive seeds or sources are placed near or directly into the tumor thus reducing the radiation exposure in the surrounding healthy tissues. Prostate cancer can be treated with interstitial brachytherapy in initial stage of the disease in which tiny radioactive seeds with cylindrical geometry are used. Several kinds of seeds have been developed in order to obtain a better dose distribution around them and with a lower cost manufacturing. These seeds consist of an encapsulation, a radionuclide carrier, and X-ray marker. Among the materials that have potential for innovation in the construction of seeds, biocompatible resins appear as an important option. In this paper, we present some characterization results with Fourier transform infrared spectroscopic (FTIR) and ultraviolet-visible spectroscopy (UV-vis) performed on two types of resins in which curing temperatures for each one were varied as also the results of coatings with these resins under titanium substrates. Interactions of these resins in contact with the simulated body fluid were evaluated by atomic force microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. (author)

  4. Fluidized bed incinerator development

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Johnson, A.J.

    1976-01-01

    A fluidized bed incinerator is being developed for burning rad contaminated solid and liquid waste materials. In situ neutralization of acid gases by the bed material, catalytic afterburning, and gas filtration are used to produce a clean flue gas without the use of aqueous scrubbing

  5. Phosphorus-containing imide resins - Modification by elastomers

    Science.gov (United States)

    Varma, I. K.; Fohlen, G. M.; Parker, J. A.; Varma, D. S.

    1984-01-01

    The syntheses and general features of addition-type maleimide resins based on bis(m-aminophenyl)phosphine oxide and tris(m-aminophenyl)phosphine oxide have been reported previously. These resins have been used to fabricate graphite cloth laminates having excellent flame resistance. These composites did not burn even in pure oxygen. However, these resins were somewhat brittle. This paper reports the modification of these phosphorus-containing resins by an amine-terminated butadiene-acrylonitrile copolymer (ATBN) and a perfluoroalkylene diaromatic amine elastomer (3F). An approximately two-fold increase in short beam shear strength and flexural strength was observed at 7 percent ATBN concentration. The tensile, flexural, and shear strengths were reduced when 18 percent ATBN was used. Anaerobic char yields of the resins at 800 C and the limiting oxygen indexes of the laminates decreased with increasing ATBN concentration. The perfluorodiamine (3F) was used with both imide resins at 6.4 percent concentration. The shear strength was doubled in the case of the bisimide with no loss of flammability characteristics. The modified trisimide laminate also had improved properties over the unmodified one. The dynamic mechanical analysis of a four-ply laminate indicated a glass transition temperature above 300 C. Scanning electron micrographs of the ATBN modified imide resins were also recorded.

  6. temperature

    Directory of Open Access Journals (Sweden)

    G. Polt

    2015-10-01

    Full Text Available In-situ X-ray diffraction was applied to isotactic polypropylene with a high volume fraction of α-phase (α-iPP while it has been compressed at temperatures below and above its glass transition temperature Tg. The diffraction patterns were evaluated by the Multi-reflection X-ray Profile Analysis (MXPA method, revealing microstructural parameters such as the density of dislocations and the size of coherently scattering domains (CSD-size. A significant difference in the development of the dislocation density was found compared to compression at temperatures above Tg, pointing at a different plastic deformation mechanism at these temperatures. Based on the individual evolutions of the dislocation density and CSD-size observed as a function of compressive strain, suggestions for the deformation mechanisms occurring below and above Tg are made.

  7. Improved management of SG BD demineralizer for reduced generation of low-level radioactive spent resin in Korean nuclear power plants

    International Nuclear Information System (INIS)

    Rhee, I.; Cho, D.; Yeon, J.

    2003-01-01

    Most nuclear power plants in Korea have adopted Ethanolamine(ETA) as a secondary pH control agent to increase the pH at the liquid phase, which may reduce the corrosion in steam generator tubes and moisture separator/reheat system. Along with its beneficial effect of SG protection from corrosion and degradation, the replacement of ammonia with ETA causes the increased generation of spent resin and the reduced run time of demineralizer in steam generator blowdown(SG BD) system. The composition ratio of cation- to anion- exchange resin in SG BD mixed bed should be increased in the ETA chemistry environment to meet the ratio of cation to anion in the aqueous solution, which results in the simultaneous exhaustion of cation and anion exchange resins. The utilization rate of mixed bed is greatest at the cation-to-anion ratio of 95:1 on the theoretical equivalent basis in the solution, but practically highest at that of 22:1 due to the possible inhomogeneous distribution of cation and anion exchange resins in SG BD bed. The run time of the bed could be extended by 30% such that, at that much, the purchase cost of new resin is saved and the production rate of spent resin is reduced. The guideline on the replacement of resin in SG BD bed is not necessary to secure the removal of radioactive particles without the leakage of the primary coolant into the secondary side since all the radioactive ions can be eliminated by SG BD bed with the sufficient time. They are retained during more than one month after their ingress into the SG BD bed without leakage. With the reduced replacement, thus, the SG BD spent resin that comprises 65% of low-level radioactive solid waste can be much cut down

  8. 21 CFR 177.2490 - Polyphenylene sulfide resins.

    Science.gov (United States)

    2010-04-01

    ... contact with food at temperatures up to and including normal baking and frying temperatures; provided that... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyphenylene sulfide resins. 177.2490 Section 177.2490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...

  9. Positron Annihilation in a Rubber Modified Epoxy Resin

    DEFF Research Database (Denmark)

    Mogensen, O. E.; Jacobsen, F. M.; Pethrick, R. A.

    1979-01-01

    Positron annihilation data is reported on a rubber-modified epoxy resin. Studies of the temperature dependence of the o-positronium lifetime indicated the existence of three distinct regions; the associated transition temperatures by comparison with dilatometric data can be ascribed respectively...

  10. Dsc cure kinetics of an unsaturated polyester resin using empirical kinetic model

    International Nuclear Information System (INIS)

    Abdullah, I.

    2015-01-01

    In this paper, the kinetics of curing of unsaturated polyester resin initiated with benzoyl peroxide was studied. In case of unsaturated polyester (UP) resin, isothermal test alone could not predict correctly the curing time of UP resin. Therefore, isothermal kinetic analysis through isoconventional adjustment was used to correctly predict the curing time and temperature of UP resin. Isothermal kinetic analysis through isoconversional adjustment indicated that 97% of UP resin cures in 33 min at 120 degree C. Curing of UP resin through microwaves was also studied and found that 67% of UP resin cures in 1 min at 120 degree C. The crosslinking reaction of UP resin is so fast at 120 degree C that it becomes impossible to predict correctly the curing time of UP resin using isothermal test and the burial of C=C bonds in microgels makes it impossible to be fully cured by microwaves at 120 degree C. The rheological behaviour of unsaturated polyester resin was also studied to observe the change in viscosity with respect to time and temperature. (author)

  11. Catalytic oxidative pyrolysis of spent organic ion exchange resins from nuclear power plants

    International Nuclear Information System (INIS)

    Sathi Sasidharan, N.; Deshingkar, D.S.; Wattal, P.K.; Shirsat, A.N.; Bharadwaj, S.R.

    2005-08-01

    The spent IX resins from nuclear power reactors are highly active solid wastes generated during operations of nuclear reactors. Catalytic oxidative pyrolysis of these resins can lead to high volume reduction of these wastes. Low temperature pyrolysis of transition metal ion loaded IX resins in presence of nitrogen was carried out in order to optimize catalyst composition to achieve maximum weight reduction. Thermo gravimetric analysis of the pyrolysis residues was carried out in presence of air in order to compare the oxidative characteristics of transition metal oxide catalysts. Copper along with iron, chromium and nickel present in the spent IX resins gave the most efficient catalyst combination for catalytic and oxidative pyrolysis of the residues. During low temperature catalytic pyrolysis, 137 Cesium volatility was estimated to be around 0.01% from cationic resins and around 0.1% from anionic resins. During oxidative pyrolysis at 700 degC, nearly 10 to 40% of 137 Cesium was found to be released to off gases depending upon type of resin and catalyst loaded on to it. The oxidation of pyrolytic residues at 700 degC gave weight reduction of 15% for cationic resins and 93% for anionic resins. Catalytic oxidative pyrolysis is attractive for reducing weight and volume of spent cationic resins from PHWRs and VVERs. (author)

  12. Flame Retardant Epoxy Resins

    Science.gov (United States)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.

    2004-01-01

    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  13. Experimental study of flow field characteristics on bed configurations in the pebble bed reactor

    International Nuclear Information System (INIS)

    Jia, Xinlong; Gui, Nan; Yang, Xingtuan; Tu, Jiyuan; Jia, Haijun; Jiang, Shengyao

    2017-01-01

    Highlights: • PTV study of flow fields of pebble bed reactor with different configurations are carried out. • Some criteria are proposed to quantify vertical velocity field and flow uniformity. • The effect of different pebble bed configurations is also compared by the proposed criteria. • The displacement thickness is used analogically to analyze flow field characteristics. • The effect of mass flow variation in the stagnated region of the funnel flow is measured. - Abstract: The flow field characteristics are of fundamental importance in the design work of the pebble bed high temperature gas cooled reactor (HTGR). The different effects of bed configurations on the flow characteristics of pebble bed are studied through the PTV (Particle Tracking Velocimetry) experiment. Some criteria, e.g. flow uniformity (σ) and mass flow level (α), are proposed to estimate vertical velocity field and compare the bed configurations. The distribution of the Δθ (angle difference between the individual particle velocity and the velocity vector sum of all particles) is also used to estimate the resultant motion consistency level. Moreover, for each bed configuration, the thickness of displacement is analyzed to measure the effect of the funnel flow zone based on the boundary layer theory. Detailed information shows the quantified characteristics of bed configuration effects on flow uniformity and other characteristics; and the sequence of levels of each estimation criterion is obtained for all bed configurations. In addition, a good design of the pebble bed configuration is suggested and these estimation criteria can be also applied and adopted in testing other geometry designs of pebble bed.

  14. Bismaleimide Copolymer Matrix Resins

    Science.gov (United States)

    Parker, John A.; Heimbuch, Alvin H.; Hsu, Ming-Ta S.; Chen, Timothy S.

    1987-01-01

    Graphite composites, prepared from 1:1 copolymer of two new bismaleimides based on N,N'-m-phenylene-bis(m-amino-benzamide) structure have mechanical properties superior to those prepared from other bismaleimide-type resins. New heat-resistant composites replace metal in some structural applications. Monomers used to form copolymers with superior mechanical properties prepared by reaction of MMAB with maleic or citraconic anhydride.

  15. System for removing contaminants from plastic resin

    Science.gov (United States)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  16. Kompregnasi Reaktif In-Situ Kayu Kelapa Sawit Dengan Resin Damar (Agathis dammara) dan Poliuretan Termodifikasi

    OpenAIRE

    Nurfajriani

    2016-01-01

    Research on oil palm trunk (OPT) which reinforced by dammar resin (Agathis dammara) and modified polyurethane by reactive compregnation of in-situ technique has been performed. This work was carried out into several stages. First, the compregnator was modified by using various pressure and temperatures to enhance the quality of compregnated OPT samples by natural and synthetic resins. Second, OPT samples were prepared with the dimension of 15x2x2 cm3. Third, dammar resin and modified polyuret...

  17. Anion-exchange resin-based desulfurization process. Annual technical progress report, October 1, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Sheth, A.C.; Strevel, S.D.; Dharmapurikar, R.

    1992-12-31

    Under the current grant, the University of Tennessee Space Institute (UTSI) will carry out the bench scale evaluation and further development of the anion-exchange resin-based desulfurization concept to desulfurize alkali metal sulfates. This concept has been developed and patented by UTSI under US Patent No. 4,917,874. The developmental program proposed under this DOE grant includes screening of commercially available resins to select three candidate resins for further study. These three resins will undergo a series of experiments designed to test the resins` performance under different process conditions (including the use of spent MHD seed material). The best of these resins will be used in optimizing the regeneration step and in testing the effects of performance enhancers. The process schematic developed from the results will be used to estimate the related economics. During this reporting period, October 1, 1991 to September 30, 1992, analysis of batch mode screening experiments was completed to select three candidate resins for process variables study in the fixed-bed set-up. This setup was modified and the experiments were carded out to evaluate effects of major process variables. The analysis of fixed-bed experiments is going on and we have also started simple batch mode experiments to identify desirable conditions for resin regeneration step. We have also started simple process engineering type calculations to determine the trade-off between the solution concentration and the resulting evaporation/concentration load.

  18. Solidifying process and flame retardancy of epoxy resin cured with boron-containing phenolic resin

    Science.gov (United States)

    Deng, Peng; Shi, Yan; Liu, Yuansen; Liu, Yuan; Wang, Qi

    2018-01-01

    For the sake of improving the charring performance and flame retardancy of epoxy resin (EP), boron-containing phenolic resin (BPR) instead of a conventional curing agent, linear phenolic resin (LPR) was employed to cure EP. Of several possible chemical structures for BPR, the existence of benzyl hydroxy groups in BPR chains has been confirmed using 1H nuclear magnetic resonance spectroscopy. The resonance of these groups may reasonably explain the higher curing reactivity of BPR-cured EP than that of LPR-cured EP. Thermogravimetric analysis, observation of the morphologies of the char residues and X-ray photoelectron spectroscopic were performed to characterize the charring process. Due to the presence of B2O3 produced on the char surface from decomposition of phenyl borates and the facile high self-crosslinking reaction of BPR, a more continuous and stronger char barrier was formed for BPR-cured EP compared to that for the LPR-cured EP system. Therefore the former exhibited much better flame retardancy. In addition, BPR-cured EP also displayed better dynamic mechanical properties, than those observed for LPR-cured EP. It is not subject to the significant lowering the glass transition temperature of the polymer which accompanies curing with LPR. This suggests that BPR cured resin may meet the requirement for utilization at high temperature.

  19. Paramagnetic epoxy resin

    Directory of Open Access Journals (Sweden)

    E. C. Vazquez Barreiro

    2017-01-01

    Full Text Available This work illustrates that macrocycles can be used as crosslinking agents for curing epoxy resins, provided that they have appropriate organic functionalities. As macrocycles can complex metal ions in their structure, this curing reaction allows for the introduction of that metal ion into the resin network. As a result, some characteristic physical properties of the metallomacrocycle could be transferred to the new material. The bisphenol A diglycidyl ether (BADGE, n = 0 and hemin (a protoporphyrin IX containing the Fe(III ion, and an additional chloride ligand have been chosen. The new material has been characterized by differential scanning calorimetry (DSC, thermogravimetric analysis (TGA, Fourier Transform Infrared (FT-IR, Nuclear Magnetic Resonance (NMR, Transmission Electron Microscopy (TEM, and magnetic susceptibility measurements. Fe(III remains in the high-spin state during the curing process and, consequently, the final material exhibits the magnetic characteristics of hemin. The loss of the chlorine atom ligand during the cure of the resin allows that Fe(III can act as Lewis acid, catalyzing the crosslinking reactions. At high BADGE n = 0/hemin ratios, the formation of ether and ester bonds occurs simultaneously during the process.

  20. Influence of the molecular structure on hydrolyzability of epoxy resins

    International Nuclear Information System (INIS)

    Pays, M.F.

    1996-01-01

    EDF has decided to use glass reinforced composites for certain pipework in Pressurized Water Reactors (service water, emergency-supplied service water, fine pipe works, etc...) as a replacement for traditional materials. In practice, steel is prone to rapid corrosion in these circuits; introducing composites could prove economically viable if their long term behaviour can be demonstrated. However, composite materials can undergo deterioration in service through hydrolysis of the resin or the fibre-matrix interface. Different resins can be chosen depending on the programmed use. A first study has covered the hydrolyzability of polyester and vinyl ester resins. The present document undertakes the resistance to hydrolysis of epoxy resins, concentrating on those reputed to withstand high temperatures. This research uses model monomer, linking the molecular structure of the materials to their resistance to hydrolysis. (author)

  1. Isoconversional kinetic analysis of the alkyd/melamine resins curing

    Directory of Open Access Journals (Sweden)

    Jovičić Mirjana

    2013-01-01

    Full Text Available The curing reaction for the mixtures of alkyd resins based on ricinoleic acid, phthalic anhydride and three polyols (glycerin, trimethylolpropane or ethoxylated pentaerythritol with two different commercial melamine resins was investigated by differential scanning calorimetry (DSC. The curing kinetics analysis was performed using the isoconversional methods (Ozawa-Flynn-Wall, Kissinger-Akahira-Sunose and Friedman. Isoconversional methods were carried out with three heating rates (5, 10 and 20°C/min in a scanning temperature range from 40 to 250°C. It was found that the curing activation energy of resin mixtures is influenced by alkyd and melamine resin type due to the catalytic effect of hydroxyl group on the reactions. The dependence of apparent curing degree on time, which was obtained by mathematical transformations of dynamic DSC data using Ozawa-Flynn-Wall method, describes well the isothermal DSC experiments.

  2. Fluidized-bed calciner with combustion nozzle and shroud

    International Nuclear Information System (INIS)

    Wielang, J.A.; Palmer, W.B.; Kerr, W.B.

    1977-01-01

    A nozzle employed as a burner within a fluidized bed is coaxially enclosed within a tubular shroud that extends beyond the nozzle length into the fluidized bed. The open-ended shroud portion beyond the nozzle end provides an antechamber for mixture and combustion of atomized fuel with an oxygen-containing gas. The arrangement provides improved combustion efficiency and excludes bed particles from the high-velocity, high-temperature portions of the flame to reduce particle attrition. 4 claims, 2 figures

  3. Transient quenching of superheated debris beds during bottom reflood

    Energy Technology Data Exchange (ETDEWEB)

    Tutu, N.K.; Ginsberg, T.; Klein, J.; Schwarz, C.E.; Klages, J.

    1984-01-01

    The experimental data suggest that for small liquid supply rate and low initial particle temperature, the bed quench process is a one-dimensional frontal phenomenon. The bed heat flux is constant during most of the duration of the quench period. The range of conditions which display one-dimensional frontal cooling characteristics is identified as the deep bed regime of bed quenching, and a limiting mathematical model was developed to describe the observed behavior. For large liquid supply rate and high initial bed temperature, the bed quench process is a complex phenomenon. Under these conditions, the bed heat flux displays a nonuniform time dependence. In order to characterize this shallow bed regime, it was necessary to develop a detailed transient model of the coolant-debris interaction. This model, while developed for the shallow bed regime, also applies to the deep bed regime. Numerical computations clearly demonstrate the importance of developing a general reliable model for the solid-fluid heat transfer coefficients.

  4. Transient quenching of superheated debris beds during bottom reflood

    International Nuclear Information System (INIS)

    Tutu, N.K.; Ginsberg, T.; Klein, J.; Schwarz, C.E.; Klages, J.

    1984-01-01

    The experimental data suggest that for small liquid supply rate and low initial particle temperature, the bed quench process is a one-dimensional frontal phenomenon. The bed heat flux is constant during most of the duration of the quench period. The range of conditions which display one-dimensional frontal cooling characteristics is identified as the deep bed regime of bed quenching, and a limiting mathematical model was developed to describe the observed behavior. For large liquid supply rate and high initial bed temperature, the bed quench process is a complex phenomenon. Under these conditions, the bed heat flux displays a nonuniform time dependence. In order to characterize this shallow bed regime, it was necessary to develop a detailed transient model of the coolant-debris interaction. This model, while developed for the shallow bed regime, also applies to the deep bed regime. Numerical computations clearly demonstrate the importance of developing a general reliable model for the solid-fluid heat transfer coefficients

  5. Biokompatibilitas Gelas Ionomer Modifikasi Resin

    OpenAIRE

    Rotua Lestari M

    2008-01-01

    Saat ini banyak berkembang material baru dalam dunia kedokteran gigi diantaranya adalah Gelas ionomer modifikasi resin yang dikembangkan untuk mengatasi kekurangan-kekurangan dari gelas ionomer konvensional. Adanya penambahan monomer resin daIam bentuk 2-hydroxyethylmetacylate (HEMA) telah meningkatkan kekuatan dari bahan ini. Gelas ionomer modifikasi resin mempunyai sifat-sifat fisis dan mekanis yang lebih baik dibandingkan dengan gelas ionomer konvensional. Gelas ionomer modifikasi ...

  6. Fluidized bed selective pyrolysis of coal

    Science.gov (United States)

    Shang, J.Y.; Cha, C.Y.; Merriam, N.W.

    1992-12-15

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.

  7. Rock bed heat accumulators. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Riaz, M.

    1977-12-01

    The principal objectives of the research program on rock bed heat accumulators (or RBHA) are: (1) to investigate the technical and economic feasibility of storing large amounts of thermal energy (in the tens of MWt range) at high temperature (up to 500/sup 0/C) over extended periods of time (up to 6 months) using native earth or rock materials; (2) to conduct studies to establish the performance characteristics of large rock bed heat accumulators at various power and temperature levels compatible with thermal conversion systems; and (3) to assess the materials and environmental problems associated with the operation of such large heat accumulators. Results of the study indicate that rock bed heat accumulators for seasonal storage are both technically and economically feasible, and hence could be exploited in various applications in which storage plays an essential role such as solar power and total energy systems, district and cogeneration heating systems.

  8. Bed rest during pregnancy

    Science.gov (United States)

    ... Belizán JM, Bergel E. Bed rest in singleton pregnancies for preventing preterm birth. Cochrane Database ... and Gynecology, Loma Linda University School of Medicine, Loma Linda Center for Fertility, ...

  9. Enuresis (Bed-Wetting)

    Science.gov (United States)

    ... Symptoms of enuresis Enuresis is when an older child (age 7 or older) wets the bed at night ... feel guilt and embarrassment. It’s true that your child should take responsibility for bedwetting. He or she could do this ...

  10. Particle fuel bed tests

    International Nuclear Information System (INIS)

    Horn, F.L.; Powell, J.R.; Savino, J.M.

    1985-01-01

    Gas-cooled reactors, using packed beds of small diameter coated fuel particles have been proposed for compact, high-power systems. The particulate fuel used in the tests was 800 microns in diameter, consisting of a thoria kernel coated with 200 microns of pyrocarbon. Typically, the bed of fuel particles was contained in a ceramic cylinder with porous metallic frits at each end. A dc voltage was applied to the metallic frits and the resulting electric current heated the bed. Heat was removed by passing coolant (helium or hydrogen) through the bed. Candidate frit materials, rhenium, nickel, zirconium carbide, and zirconium oxide were unaffected, while tungsten and tungsten-rhenium lost weight and strength. Zirconium-carbide particles were tested at 2000 K in H 2 for 12 hours with no visible reaction or weight loss

  11. Innovative rock bed construction

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.

    1983-06-01

    A general discussion of the use of rock beds for heating and cooling thermal storage is particularized for design and construction in Phoenix, Arizona. The rock bed parameters for three two-story condominium apartments constructed in 1982 are discussed, including sizing criteria and original construction details. A revised construction method using gabions that are self-supporting chain link cylinders provided a much more economical construction method as well as other advantages of speed and structural flexibility.

  12. A preliminary study of the effects of plastic film-mulched raised beds on soil temperature and crop performance of early-sown short-season spring maize (Zea mays L. in the North China Plain

    Directory of Open Access Journals (Sweden)

    Jing Dang

    2016-08-01

    Full Text Available To identify a strategy for earlier sowing and harvesting of spring maize (Zea mays L. in an alternative maize–maize double cropping system, a 2-year field experiment was performed at Quzhou experimental station of China Agricultural University in 2014 and 2015. A short-season cultivar, Demeiya number 1 (KX7349, was used in the experiment. Soil temperature to 5 cm depth in the early crop growth stage, crop growth, crop yield, and water use of different treatments (plastic film-mulched raised bed (RF and flat field without plastic film mulching (CK in 2014; RF, plastic film-mulched flat field (FF, and CK in 2015 were measured or calculated and compared. Soil temperature in the film-mulched treatments was consistently higher than that in CK (1.6–3.5 °C in average during the early growth stage. Crops in plastic film-mulched treatments used 214 fewer growing-degree days (GDDs in 2014 and 262 fewer GDDs in 2015. In 2014, the RF treatment yielded 32.7% higher biomass than CK, although its 9.4% higher grain yield was not statistically significant. Also, RF used 17.9% less water and showed 33.1% higher water use efficiency (WUE than CK. In 2015, RF and FF showed 56.2% and 49.5% higher yield, 15.0% and 4.5% lower water use (ET, and 63.4% and 75.7% higher WUE, respectively, than CK. RF markedly increased soil temperature in the early crop season, accelerated crop growth, reduced ET, and greatly increased crop yield and WUE. Compared with FF, RF had no obvious effect on crop growth rate, although soil temperature during the period between sowing and stem elongation was slightly increased. However, RF resulted in lower ET and higher WUE than FF. Effects of RF on soil water dynamics as well as its cost-effectiveness remain topics for further study.

  13. Fluidized bed incineration of a slurry waste from caprolactam production

    Energy Technology Data Exchange (ETDEWEB)

    Cammarota, A.; D' Amore, M.; Donsi, G.; Massimilla, L.

    1980-08-01

    Caprolactam tails are a slurry waste produced in the SNIA process for the synthesis of caprolactam. They contain about 65% water, 25% ash and 10% combustible matter. The ashes are low melting, due to the presence of sodium compounds. The incineration of this waste is carried out at temperatures below 600/sup 0/C in beds of silica sand, using a laboratory scale apparatus with a 40 mm ID fluidization column. Variables investigated include sand particle size, slurry flow rate, bed temperature, bed height. The concentrations of CO/sub 2/ and CO are determined continuously in the flue gases. Bed solids are sampled periodically to determine the carbon content. Results of experiments show that the low temperature incineration on a bed of inert solids is a useful technique for the disposal of caprolactam tails. 8 refs.

  14. The Physiology of Bed Rest. Chapter 39

    Science.gov (United States)

    Fortney, Suzanne M.; Schneider, Victor S.; Greenleaf, John E.

    1996-01-01

    Prolonged rest in bed has been utilized by physicians and other health-care workers to immobilize and confine patients for rehabilitation and restoration of health since time immemorial. The sitting or horizontal position is sought by the body to relieve the strain of the upright or vertical postures, for example during syncopal situations, bone fractures, muscle injuries, fatigue, and probably also to reduce energy expenditure. Most health-care personnel are aware that adaptive responses occurring during bed rest proceed concomitantly with the healing process; signs and symptoms associated with the former should be differentiated from those of the latter. Not all illnesses and infirmities benefit from prolonged bed rest. Considerations in prescribing bed rest for patients-including duration, body position, mode and duration of exercise, light-dark cycles, temperature, and humidity-have not been investigated adequately. More recently, adaptive physiological responses have been measured in normal, healthy subjects in the horizontal or slightly head-down postures during prolonged bed rest as analogs for the adaptive responses of astronauts exposed to the microgravity environment of outer and bed-rest research.

  15. Peningkatan Kualitas Kayu Kelapa Sawit (Elaeis guineensis Jacq.) Yang Di Kompregnasi Dengan Resin Getah Damar (Agathis dammara)

    OpenAIRE

    Widiarti, Leni

    2015-01-01

    The quality increasing of oil palm trunk (Elaeis guineensis Jacq.) by compregnated with dammar resin (Agathis dammara) has been performed. Sellulose as a natural polymer of the oil palm trunk interacted with dammar resin and the mechanical properties of the oil palm trunk was increased. OPT compregnate with dammar resin was performed in vacum compregnator with the duration time of two seconds. The temperature of compregnate was room temperature with 0%, 10%, 20%, 30%, and 40% concentrations o...

  16. Rehydration ratio of fluid bed-dried vegetables

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The goal has been to obtain dry vegetables with 6% to 10% water content and of good rehydration quality. Experimental data. (bed height, gas temperature and velocity, pressure drop over the bed, drying time) have been measured and relevant values have been calculated. The results have shown that drying of ...

  17. Gas cleaning with hot char beds studied by stable isotopes

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Ahrenfeldt, Jesper; Ambus, Per

    2014-01-01

    The chemistry taking place in a high temperature char bed used for binding aromatic tar compounds has been studied in detail. 13C labelled tar compounds were used to trace the incorporation into the char bed using isotope ratio mass spectrometry (IRMS) and GC-MS. Furthermore, compounds labelled...

  18. Thermal Expansion and Swelling of Cured Epoxy Resin Used in Graphite/Epoxy Composite

    Science.gov (United States)

    Adamson, M. J.

    1979-01-01

    The thermal expansion and swelling of resin material as influenced by variations in temperature during moisture absorption is discussed. Comparison measurements using composites constructed of graphite fibers and each of two epoxy resin matrices are included. Polymer theory relative to these findings is discussed and modifications are proposed.

  19. Studies concerning the anion ex-change resins catalyzed esterification of epichlorohydrin with organic acids

    Directory of Open Access Journals (Sweden)

    E.I. Muresan

    2009-09-01

    Full Text Available The paper studies the esterification of carboxylic acids with epichlorohydrin over two macroporous strong base anion exchange resins with different polymer matrix. For both resins, the influence of reaction parameters (temperature, catalyst loading, molar ratio on the reaction rate and the yields of the two isomeric esters were investigated.

  20. Effect of preheat repetition on color stability of methacrylate- and silorane-based composite resins.

    Science.gov (United States)

    Abed Kahnamouei, Mehdi; Gholizadeh, Sarah; Rikhtegaran, Sahand; Daneshpooy, Mehdi; Kimyai, Soodabeh; Alizadeh Oskoee, Parnian; Rezaei, Yashar

    2017-01-01

    Background. The aim of this study was to investigate the effect of preheating methacrylate- and silorane-based composite resins on their color stability up to 40 times at 55‒60°C. Methods. Seventy-six methacrylate and silorane-based composite resin samples, with a diameter of 10 mm and a height of 2 mm, were divided into 4 groups (n=19). After the samples were prepared, their color parameters were determined using a reflective spectrophotometer. The composite resin samples were separately stored in a solution of tea for 40 consecutive days. Then the samples underwent a color determination procedure again using a spectrophotometer and color changes were recorded. Finally two-way ANOVA was used to study the effect of composite temperature on its staining (Pcomposite resin samples compared to non-heated samples at P=0.005 and P=0.029 for silorane-based and Z250 composite resin samples, respectively. Results. Both composite resin type (P=0.014) and preheating (Pcomposite resin samples, up to 55‒60°C for 40 rounds, resulted in more color changes compared with unheated composite resin samples. After storage in a solution of tea the color change rate in the composite resin samples of silorane-based was higher than the Z250 composite resin samples.

  1. Properties of the Carboxylate ion exchange resins

    International Nuclear Information System (INIS)

    Allard, Bert; Dario, Maarten; Boren, Hans; Torstenfelt, Boerje; Puigdomenech, Ignasi; Johansson, Claes

    2002-09-01

    Weakly acidic, carboxylic resin has been selected, together with strong base anion resins, for water purification at the Forsmark 1 and 2 reactors. For the strong (but not the weak) ion exchange resin the Nuclear Power Inspectorate has given permission to dispose the spent resins in the SFR 1 (the Final Repository for Radioactive Operational Waste). This report gives a review of the carboxylic resins and comes to the conclusion that the resins are very stable and that there should not exist any risks for increased leaching of radionuclides from SFR 1 if these resins are disposed (compared to the strong resins)

  2. Active carbon-ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent.

    Science.gov (United States)

    Liu, Wei-Min; Hu, Yi-Qiang; Tu, Shan-Tung

    2010-07-15

    Active carbon-ceramic sphere as support of ruthenium catalysts were evaluated through the catalytic wet air oxidation (CWAO) of resin effluent in a packed-bed reactor. Active carbon-ceramic sphere and ruthenium catalysts were characterized by N(2) adsorption and chemisorption measurements. BET surface area and total pore volume of active carbon (AC) in the active carbon-ceramic sphere increase with increasing KOH-to-carbon ratio, and AC in the sample KC-120 possesses values as high as 1100 m(2) g(-1) and 0.69 cm(3) g(-1) (carbon percentage: 4.73 wt.%), especially. Active carbon-ceramic sphere supported ruthenium catalysts were prepared using the RuCl(3) solution impregnation onto these supports, the ruthenium loading was fixed at 1-5 wt.% of AC in the support. The catalytic activity varies according to the following order: Ru/KC-120>Ru/KC-80>Ru/KC-60>KC-120>without catalysts. It is found that the 3 wt.% Ru/KC-120 catalyst displays highest stability in the CWAO of resin effluent during 30 days. Chemical oxygen demand (COD) and phenol removal were about 92% and 96%, respectively at the reaction temperature of 200 degrees C, oxygen pressure of 1.5 MPa, the water flow rate of 0.75 L h(-1) and the oxygen flow rate of 13.5 L h(-1). 2010 Elsevier B.V. All rights reserved.

  3. Coolability of volumetrically heated particle beds

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Muhammad

    2017-03-22

    In case of a severe nuclear reactor accident, with loss of coolant, a particle bed may be formed from the fragmentation of the molten core in the residual water at different stages of the accident. To avoid further propagation of the accident and maintain the integrity of the reactor pressure vessel, the decay heat of the particle bed must be removed. To better understand the various thermo-hydraulic processes within such heat-generating particle beds, the existing DEBRIS test facility at IKE has been modified to be able to perform novel boiling, dryout and quenching experiments. The essential experimental data includes the pressure gradients measured by 8 differential pressure transducers along the bed height as a function of liquid and vapour superficial velocities, the determination of local dryout heat fluxes for different system pressures as well as the local temperature distribution measured by a set of 51 thermocouples installed inside the particle bed. The experiments were carried out for two different particle beds: a polydispersed particle bed which consisted of stainless steel balls (2 mm, 3 mm and 6 mm diameters) and an irregular particle bed which consisted of a mixture of steel balls (3 mm and 6 mm) and irregularly shaped Al{sub 2}O{sub 3} particles. Additionally, all experiments were carried out for different flow conditions, such as the reference case of passive 1D top-flooding, 1D bottom flooding (driven by external pumps and different downcomer configurations) and 2D top-/bottom-/lateral flooding with a perforated downcomer. In this work, it has been observed that for both particle beds with downcomer configurations an open downcomer leads to the best coolability (dryout heat flux = 1560 kW/m{sup 2}, polydispersed particle bed, psys = 1 bar) of the particle bed, mainly due to bottom-flow with enhanced natural convection. It has also been shown that a potential lateral flow via a perforation of the downcomer does not bring any further improvements

  4. Strain Rate Sensitivity of Epoxy Resin in Tensile and Shear Loading

    Science.gov (United States)

    Gilat, Amos; Goldberg, Robert K.; Roberts, Gary D.

    2005-01-01

    The mechanical response of E-862 and PR-520 resins is investigated in tensile and shear loadings. At both types of loading the resins are tested at strain rates of about 5x10(exp 5), 2, and 450 to 700 /s. In addition, dynamic shear modulus tests are carried out at various frequencies and temperatures, and tensile stress relaxation tests are conducted at room temperature. The results show that the toughened PR-520 resin can carry higher stresses than the untoughened E-862 resin. Strain rate has a significant effect on the response of both resins. In shear both resins show a ductile response with maximum stress that is increasing with strain rate. In tension a ductile response is observed at low strain rate (approx. 5x10(exp 5) /s), and brittle response is observed at the medium and high strain rates (2, and 700 /s). The hydrostatic component of the stress in the tensile tests causes premature failure in the E-862 resin. Localized deformation develops in the PR-520 resin when loaded in shear. An internal state variable constitutive model is proposed for modeling the response of the resins. The model includes a state variable that accounts for the effect of the hydrostatic component of the stress on the deformation.

  5. Behavior study of spend ion exchange resins immobilized in pyrolyzed polymer matrix

    International Nuclear Information System (INIS)

    Ramos, P.B; Fuentes, N.O; Luca, V.

    2012-01-01

    The pyrolysis of spent ion exchange resins contained in epoxy resins represents an attractive alternative to cementation as a confining method. In this sense, a significant reduction of volume can be achieved, as well as avoiding the dispersion of the exhausted ion exchange resin by the means of an epoxy resin used as a matrix, while potentially limiting the release of highly radioactive long life isotopes such us Cs-137, Sr-90 and Co-60 among others. Three types of monoliths were made: (i) epoxy resin, (ii) epoxy resin with carbon and (iii) a binder of epoxy resin and clay. In every case, the monolith contained the ion exchange resin. They were prepared by the mixing of resin pearl loaded with epoxy cations and a subsequent pyrolysis process with a temperature increase ratio of 2 o C /min reaching maximum values in the range between 200 o C - 800 o C, remaining in it for 1 hour. Monoliths obtained for each final temperature had been characterized to obtain data corresponding to the mass loss, volume reduction and lixiviation, as well as mechanical and microstructural properties (author)

  6. [Acrylic resin removable partial dentures

    NARCIS (Netherlands)

    Baat, C. de; Witter, D.J.; Creugers, N.H.J.

    2011-01-01

    An acrylic resin removable partial denture is distinguished from other types of removable partial dentures by an all-acrylic resin base which is, in principle, solely supported by the edentulous regions of the tooth arch and in the maxilla also by the hard palate. When compared to the other types of

  7. Cure shrinkage in casting resins

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J. Brock [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    A method is described whereby the shrinkage of a casting resin can be determined. Values for the shrinkage of several resin systems in frequent use by Sandia have been measured. A discussion of possible methods for determining the stresses generated by cure shrinkage and thermal contraction is also included.

  8. Preparation and Property Study of Graphene Oxide Reinforced Epoxy Resin Insulation Nanocomposites with High Heat Conductivity

    Science.gov (United States)

    Shan, Xinran; Liu, Yongchang; Wu, Zhixiong; Liu, Huiming; Zhang, Zhong; Huang, Rongjin; Huang, Chuanjun; Liu, Zheng; Li, Laifeng

    2017-02-01

    In this paper, graphene oxide reinforced epoxy resin nanocomposites were successfully prepared. Compared with unmodified epoxy resin, the heat conductivity of the graphene oxide reinforced epoxy resin nanocomposites had been improved while keeping the insulation performance. The tensile strength was investigated at both room temperature (300 K) and liquid nitrogen temperature (77 K). And the fracture surfaces were examined by scanning electron microscopy (SEM). Results showed that the materials had excellent mechanical properties, which could be advantages for the applications as insulating layer in low temperature superconducting magnets.

  9. Carbonization-cementation process for treatment of spent IX resins

    International Nuclear Information System (INIS)

    Sathi Sasidharan, N.; Deshingkar, D.S.; Wattal, P.K.

    2004-08-01

    The spent IX resins containing radioactive fission and activation products of reactor structural materials are highly active solid wastes generated during operations of nuclear reactors. Feasibility tests were conducted for carbonization of IX resins to achieve weight and volume reduction and destruction of functional groups so as to make them compatible for immobilization in cement matrix. Carbonization of non-radioactive resins was studied at 250 to 350 degC. Carbonization residues were 20 to 32 wt% depending upon the type of resin and temperature of carbonization. The release of 137 Cs activity to off-gases was 0.004% at 300 degC and 0.05 % at 350 degC. Based on these tests, a 50 liter/batch capacity inactive resin carbonization pilot plant was set up. Carbonization residues could be immobilized into cement matrix with 60 wt % loading using vermiculite and precipitated silica as admixtures. The cumulative fraction of 137 Cs leached from the selected cement matrix was 0.0066 in 200 days. Based on pilot plant studies and cementation tests, the swollen spent resins waste volume could be minimized by 2.7 times. (author)

  10. Effects of resin content and preparing conditions on the properties of polyphenylene sulfide resin/graphite composite for bipolar plate

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Li-gang; Li, Ai-ju; Yin, Qiang [Key Laboratory for Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Shandong Key Laboratory of Engineering Ceramics, Shandong University, Jinan 250061 (China); Wang, Wei-qiang [School of Mechanical Engineering, Shandong University, Jinan 250061 (China); Lin, Heng; Zhao, Yi-bo [School of Material Science and Engineering, Shandong University, Jinan 250061 (China)

    2008-03-15

    In the paper, a kind of polyphenylene sulfide (PPS) resin/graphite (G) composite for bipolar plate was prepared by using the PPS resin as adhesive and simple hot pressing. The influences of the resin content, the molding temperature and holding time on the conductivity and the bending strength of the PPS/G composite bipolar plate were investigated firstly and then the optimum content and the preparing conditions of the composite were obtained. The experimental results show that the electrical conductivity decreases and the bending strength reveals a serrated variation with increase in PPS resin content; when the holding time is certain, the conductivity decreases and the bending strength increases with the molding temperature increasing. The experimental results further show that the effect of the holding time on the properties of the composite is different at different molding temperatures. The PPS/G composite with 20% PPS resin content has electrical conductivity of 118.9 S cm{sup -1} and bending strength of 52.4 MPa when it molded at 380 C for 30 min, and has electrical conductivity of 105 S cm{sup -1}, bending strength of 55.7 MPa when it molded at 390 C for 30 min. The properties of the composites can meet the requirements of United States Department of Energy (DOE). (author)

  11. Nanomechanical properties of dental resin-composites.

    Science.gov (United States)

    El-Safty, S; Akhtar, R; Silikas, N; Watts, D C

    2012-12-01

    To determine by nanoindentation the hardness and elastic modulus of resin-composites, including a series with systematically varied filler loading, plus other representative materials that fall into the categories of flowable, bulk-fill and conventional nano-hybrid types. Ten dental resin-composites: three flowable, three bulk-fill and four conventional were investigated using nanoindentation. Disc specimens (15mm×2mm) were prepared from each material using a metallic mold. Specimens were irradiated in the mold at top and bottom surfaces in multiple overlapping points (40s each) with light curing unit at 650mW/cm(2). Specimens were then mounted in 3cm diameter phenolic ring forms and embedded in a self-curing polystyrene resin. After grinding and polishing, specimens were stored in distilled water at 37°C for 7 days. Specimens were investigated using an Agilent Technologies XP nanoindenter equipped with a Berkovich diamond tip (100nm radius). Each specimen was loaded at one loading rate and three different unloading rates (at room temperature) with thirty indentations, per unloading rate. The maximum load applied by the nanoindenter to examine the specimens was 10mN. Dependent on the type of the resin-composite material, the mean values ranged from 0.73GPa to 1.60GPa for nanohardness and from 14.44GPa to 24.07GPa for elastic modulus. There was a significant positive non-linear correlation between elastic modulus and nanohardness (r(2)=0.88). Nonlinear regression revealed a significant positive correlation (r(2)=0.62) between elastic moduli and filler loading and a non-significant correlation (r(2)=0.50) between nanohardness and filler loading of the studied materials. Varying the unloading rates showed no consistent effect on the elastic modulus and nanohardness of the studied materials. For a specific resin matrix, both elastic moduli and nanohardness correlated positively with filler loading. For the resin-composites investigated, the group-average elastic

  12. Effect of bed particles to combustion of gases in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, R.; Wallen, V.; Etelaeaho, R.; Correia, S. [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1997-10-01

    The objective of this project was to obtain experimental data on effects of sand particles to the combustion of gases. The effect of the surface area of the particles was tested using different sized particles. The fluidized bed reactor used in these experiments was a stainless-steel tube with an internal diameter of 42 mm surrounded by an electric heater. The test rig was built in the Laboratory of Energy and Process Engineering at Tampere University of Technology. In order to elucidate the possible changes of particle surface, microscopic and porosimetric studies were conducted with both fresh bed particles and used bed particles. These measurements indicate that carbon monoxide significantly reacts with oxygen in the particulate or emulsion phase of a fluidized bed, if the residence time is long enough. The reaction rate depends mainly on temperature, air coefficient, residence time and particle size of the solids. It seems that the combustion enhances if the average particle size increases. Whether this is caused by increased free path length or reduced specific surface area of the bed is yet unknown. The first might be more probable cause because the majority of reactions often took place in the freeboard right above the bed. It was clear that the bed hindered proper combustion in several cases. (orig.)

  13. Characterization and Process Development of Cyanate Ester Resin and Composite

    Energy Technology Data Exchange (ETDEWEB)

    Frame, B.J.

    1998-03-01

    Cyanate ester (or polycyanate) resins offer advantages as composite matrices because of their high thermal stability, low outgassing, low water absorption and radiation resistance. This report describes the results of a processing study to develop high-strength hoop-wound composite by the wet-filament winding method using Toray T1000G carbon fiber and YLA RS-14A polycyanate resin as the constituent materials. Process trials, tests and analyses were conducted in order to gain insight into factors that can affect final properties of the cured cyanate ester resin and its composites. The study shows that the cyanate ester resin has a broad process envelope but that an inert-atmosphere cure is essential for obtaining optimum resin and composite properties. Minimizing moisture exposure prior to cure is also crucial as it affects the T{sub g} of the resin and composite. Recommendations for reducing moisture contact with the resin during wet-winding are presented. High fiber volume fraction ({approximately}80%) composites wound and cured with these methods yielded excellent hoop tensile strengths (660 to 670 ksi average with individual rings failing above 700 ksi), which are believed to be the highest recorded strengths for this class of materials. The measured transverse properties were also exceptional for these high fiber fraction composites. Based on the available data, this cyanate ester resin system and its composites are recommended for space and vacuum applications only. Further testing is required before these materials can be recommended for long term use at elevated temperatures in an ambient air environment. The results of all analyses and tests performed as part of this study are presented as well as baseline process for fabricating thick, stage-cured composites. The manufacture of a 1 in. thick composite cylinder made with this process is also described.

  14. Benzoxazine resin/carbon nanotube nanostructured composite's degradation kinetic.

    Science.gov (United States)

    Untem, Flávia O; Botelho, Edson C; Rezende, Mirabel C; Costa, Michelle Leali

    2014-07-01

    In the last decades a new class of thermoset phenolic resin is emerging as a substitute of the traditional epoxy and phenolic resins in the aircraft industry. This new class is called polybenzoxazines and its associates the epoxy resin's mechanical properties and phenolic resin's thermal and flame retardant properties, resulting in a resin with superior properties when analyzed with the others singly. The introduction of carbon nanotubes in low concentration into polymeric matrices can produce nanostructured materials with good properties. Thus, in this study, nanostructured composites of benzoxazine resin were processed with different concentration of carbon nanotubes (0.1%, 0.5% and 1.0% w/w). In order to evaluate the thermostability of the benzoxazine resin and its nanostructured composites, it was performed a degradation kinetic study using the thermogravimetric technique. For that, the analysis have been done with the temperature ranging from 25 degrees C to 1000 degrees C at nitrogen atmosphere (100 mL x min(-1)) and in different heating rates (2, 4, 6, 8, 10 and 20 degrees C x min(-1)), in order to obtain the kinetic parameters (activation energy, E(a), and pre-exponential factor, A), based on Ozawa-Wall-Flynn model. The results showed excellent agreement between the thermogravimetric curves obtained and the Ozawa-Wall-Flynn method. The degradation kinetic study showed that the introduction of carbon nanotubes in the benzoxazine matrix does not change the thermostability of the resin, so that it does not have a significant influence in the shelf life of the material.

  15. Stability of IRA-45 solid amine resin as a function of carbon dioxide absorption and steam desorption cycling

    Science.gov (United States)

    Wood, Peter C.; Wydeven, Theodore

    1987-01-01

    The removal of CO2 from the NASA Space Station's cabin atmosphere, which may be undertaken by a solid-amine water (steam)-desorbed system, is presently evaluated with a view to long-term amine resin stability and adsorption/desorption cycling by means of an automated laboratory flow-testing facility. While the CO2-adsorption capacity of the IRA-45 amine resin used gradually decreased over time, the rate of degradation significantly decreased after the first 10 cycles. Attention is given to the presence (and possible need for removal) of trimethylamine in the process air downstream of the resin bed.

  16. Epoxy foams using multiple resins and curing agents

    Science.gov (United States)

    Russick, Edward M.; Rand, Peter B.

    2000-01-01

    An epoxy foam comprising a plurality of resins, a plurality of curing agents, at least one blowing agent, at least one surfactant and optionally at least one filler and the process for making. Preferred is an epoxy foam comprising two resins of different reactivities, two curing agents, a blowing agent, a surfactant, and a filler. According to the present invention, an epoxy foam is prepared with tailorable reactivity, exotherm, and pore size by a process of admixing a plurality of resins with a plurality of curing agents, a surfactant and blowing agent, whereby a foamable mixture is formed and heating said foamable mixture at a temperature greater than the boiling temperature of the blowing agent whereby said mixture is foamed and cured.

  17. Large scale purification of puerarin from Puerariae Lobatae Radix through resins adsorption and acid hydrolysis.

    Science.gov (United States)

    Guo, Hai-Dong; Zhang, Qing-Feng; Chen, Ji-Guang; Shangguang, Xin-Cheng; Guo, Yu-Xian

    2015-02-01

    Puerarin is the major isoflavone of Puerariae Lobatae Radix. A method for large scale purification of puerarin was developed through resins adsorption and acid hydrolysis. The adsorption properties of six macroporous resins (D101, S-8, H103, X-5, HPD600, AB-8) were compared through the adsorption kinetics and equilibrium adsorption isotherms. Results showed that H103 resin had the best adsorption rate and capacity. The mass transfer zone motion model was further used for analyzing the fixed bed adsorption of H103 resin. Its length of mass transfer zone with 2mg/ml of puerarin in water and 10% ethanol at flow rate of 10ml/min were 41.6 and 47.5cm, while the equilibrium adsorption capacity was 165.03 and 102.88mg/g, respectively. By using 75% ethanol, puerarin could be well desorbed from the resin with recovery of 97.4%. Subsequently, H103 resin was successfully used for puerarin purification from Puerariae Lobatae Radix. The content of total isoflavones and puerarin in the resin adsorption product were 69.25% and 41.78%, respectively, which were about three times increased compared to the crude extract. Then, the product was hydrolyzed by 2.5M HCl at 90°C for 1h. Puerarin with purity of 90% and a byproduct daidzein with purity of 78% were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Dynamic thermo-mechanical properties of various flowable resin composites

    Science.gov (United States)

    Balthazard, Rémy; Vincent, Marin; Dahoun, Abdessellam; Mortier, Eric

    2016-01-01

    Background This study compared the storage modulus (E’), the loss modulus (E’’) and the loss tangent (tan δ) of various flowable resin composites. Material and Methods Grandio Flow (GRF), GrandioSo Heavy Flow (GHF), Filtek Supreme XTE (XTE) and Filtek Bulk Fill (BUL) flowable resins and Clinpro Sealant (CLI) ultra-flowable pit and fissure sealant resin were used. 25 samples were tested using a dynamical mechanical thermal analysis system in bending mode. Measurements were taken within a temperature range of 10 to 55°C. The results were statistically analyzed using mixed-effect and repeated-measure analysis of variance followed by paired multiple comparisons. Results For all the materials, the E’ values decrease with temperature, whereas the tan δ values increase. Irrespective of the temperature, GHF and GRF present E’ and E’’ values significantly higher than all the other materials and CLI presents values significantly lower than all the other materials. Observation of the values for all the materials reveals a linear progression of the tan δ values with temperature. Conclusions A variation in temperature within a physiological range generates modifications in mechanical properties without damaging the material, however. Filler content in volume terms appears to be the crucial parameter in the mechanical behavior of tested materials. Key words:Dynamic mechanical thermal analysis, elastic modulus, filler content, flowable resin composites, loss modulus, loss tangent. PMID:27957266

  19. Effect of various drying bed on thermodynamic characteristics

    Directory of Open Access Journals (Sweden)

    Ali Motevali

    2017-09-01

    Full Text Available In this study thermodynamic parameter and energy consumption in drying of two plant dill and mint in three bed drying including fix, semi fix and fluid with using a hot air drying was investigated. Experimental was conducted in three bed drying including fix, semi fix and fluid and four levels temperature (30, 40, 50 and 60 °C. Maximum energy consumption in dill drying at 40 °C and fluid bed to be 16.41 MJ and minimum energy consumption at 30 °C and fix bed to be 2.77 MJ. Also minimum energy consumption in mint drying at 60 °C and fix bed to be 3.64 MJ and maximum energy consumption at 40 °C and fluid bed to be 28.65 MJ. The highest energy, drying and thermal efficiency for both mint and dill was achieved at 60 °C on the fixed bed, whereas the lowest efficiency was at 40 °C and on the fluidized bed. Also the highest power and specific heat consumption for both mint and dill was achieved at 40 °C on the fluid bed, whereas the lowest efficiency was at 30 °C and on the fluidized bed.

  20. An Engineering Evaluation of Spherical Resorcinol Formaldehyde Resin

    Energy Technology Data Exchange (ETDEWEB)

    Birdwell Jr, Joseph F [ORNL; Lee, Denise L [ORNL; Taylor, Paul Allen [ORNL; Collins, Robert T [ORNL; Hunt, Rodney Dale [ORNL

    2010-09-01

    , quantification of cesium adsorption performance as a function of operating temperature and pH, and evaluation of sodium uptake (titration) as function of pH and counteranion concentration. The results of these efforts are presented in this report. Hydraulic performance of the resin and the use of eluant alternatives to nitric acid have also been evaluated and have been reported elsewhere (Taylor 2009, Taylor and Johnson 2009).

  1. Bed bug deterrence

    Directory of Open Access Journals (Sweden)

    Haynes Kenneth F

    2010-09-01

    Full Text Available Abstract A recent study in BMC Biology has determined that the immature stage of the bed bug (the nymph signals its reproductive status to adult males using pheromones and thus avoids the trauma associated with copulation in this species. The success of this nymphal strategy of deterrence is instructive. Against the background of increasing problems with bed bugs, this research raises the question whether pheromones might be used to control them. See research article http://www.biomedcentral.com/1741-7007/8/121

  2. Tailoring the Spacer Arm for Covalent Immobilization of Candida antarctica Lipase B—Thermal Stabilization by Bisepoxide-Activated Aminoalkyl Resins in Continuous-Flow Reactors

    Directory of Open Access Journals (Sweden)

    Emese Abaházi

    2016-06-01

    Full Text Available An efficient and easy-to-perform method was developed for immobilization of CaLB on mesoporous aminoalkyl polymer supports by bisepoxide activation. Polyacrylate resins (100–300 µm; ~50 nm pores with different aminoalkyl functional groups (ethylamine: EA and hexylamine: HA were modified with bisepoxides differing in the length, rigidity and hydrophobicity of the units linking the two epoxy functions. After immobilization, the different CaLB preparations were evaluated using the lipase-catalyzed kinetic resolution (KR of racemic 1-phenylethanol (rac-1 in batch mode and in a continuous-flow reactor as well. Catalytic activity, enantiomer selectivity, recyclability, and the mechanical and long-term stability of CaLB immobilized on the various supports were tested. The most active CaLB preparation (on HA-resin activated with 1,6-hexanediol diglycidyl ether—HDGE retained 90% of its initial activity after 13 consecutive reaction cycles or after 12 month of storage at 4 °C. The specific rate (rflow, enantiomer selectivity (E and enantiomeric excess (ee achievable with the best immobilized CaLB preparations were studied as a function of temperature in kinetic resolution of rac-1 performed in continuous-flow packed-bed bioreactors. The optimum temperature of the most active HA-HDGE CaLB in continuous-flow mode was 60 °C. Although CaLB immobilized on the glycerol diglycidyl ether (GDGE-activated EA-resin was less active and less selective, a much higher optimum temperature (80 °C was observed with this form in continuous-flow mode KR of rac-1.

  3. Dynamic and static mechanical analysis of resin luting cements.

    Science.gov (United States)

    Tolidis, K; Papadogiannis, D; Papadogiannis, Y; Gerasimou, P

    2012-02-01

    Various types of indirect restorations are available for dental treatment and resin cements are commonly used as a luting medium. The aim of this study was to evaluate the mechanical properties of contemporary resin luting agents under different testing conditions and temperatures. The materials tested were Choice 2 (CH), Clearfil Esthetic Cement (EC), Resicem (RC) and RelyX Unicem (RX). Each material was examined after 24 h of storage at 21 °C dry and wet at 21, 37 and 50 °C under dynamic and static testing and parameters such as shear and flexural modulus, loss tangent, dynamic viscosity and Poisson's ratio were calculated. The resin cements were also subjected to creep testing under different constant loads for 3 h and a recovery time of 50 h. The material with the highest modulus was CH, while RX had the lowest. All resin cements were affected by the presence of water with RX being the least affected and by the increase of temperature, with RC being the least susceptible. None of the materials exhibited full recovery after creep testing and permanent deformation ranged from 0.43% to 5.53%. The resin cements tested in this study showed no major transitions under the different testing conditions. Their behavior was satisfactory for restorations that do not require increased mechanical properties. However, in the case of stress-bearing restorations the conditions in the oral cavity may affect the performance of these materials. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. The Safety of Hospital Beds

    Science.gov (United States)

    Gervais, Pierre; Pooler, Charlotte; Merryweather, Andrew; Doig, Alexa K.; Bloswick, Donald

    2015-01-01

    To explore the safety of the standard and the low hospital bed, we report on a microanalysis of 15 patients’ ability to ingress, move about the bed, and egress. The 15 participants were purposefully selected with various disabilities. Bed conditions were randomized with side rails up or down and one low bed with side rails down. We explored the patients’ use of the side rails, bed height, ability to lift their legs onto the mattress, and ability to turn, egress, and walk back to the chair. The standard bed was too high for some participants, both for ingress and egress. Side rails were used by most participants when entering, turning in bed, and exiting. We recommend that side rails be reconsidered as a means to facilitate in-bed movement, ingress, and egress. Furthermore, single deck height settings for all patients are not optimal. Low beds as a safety measure must be re-evaluated. PMID:28462302

  5. Material characterization of a polyester resin system for the pultrusion process

    DEFF Research Database (Denmark)

    Baran, Ismet; Akkerman, Remko; Hattel, Jesper Henri

    2014-01-01

    to develop a cure kinetics model which accurately predicts the cure rate evolutions and describes the curing behaviour of the resin over a wide range of different processing conditions. The viscosity of the resin is subsequently obtained from rheological experiments using a rheometer. Based on this, a resin....... The temperature- and curedependent elastic modulus of the resin system is determined using a dynamic mechanical analyzer (DMA) in tension mode. A cure hardening and thermal softening model is developed and a least squares non-linear regression analysis is performed. The variation in elastic modulus...... with temperature and phase transition is captured for a fully cured resin sample. © 2014 Elsevier Ltd. All rights reserved....

  6. SYNROC production using a fluid bed calciner

    International Nuclear Information System (INIS)

    Ackerman, F.J.; Grens, J.Z.; Ryerson, F.J.; Hoenig, C.L.; Bazan, F.; Campbell, J.H.

    1982-01-01

    SYNROC is a titanate-based ceramic developed for immobilization of high-level nuclear reactor wastes in solid form. Fluid-bed SYNROC production permits slurry drying, calcining and redox to be carried out in a single unit. We present results of studies from two fluid beds; the Idaho Exxon internally-heated unit and the externally-heated unit constructed at Lawrence Livermore National laboratory. Bed operation over a range of temperature, feed rate, fluidizing rate and redox conditions indicate that high density, uniform particle-size SYNROC powders are produced which facilitate the densification step and give HUP parts with dense, well-developed phases and good leaching characteristics. 3 figures, 3 tables

  7. New ion exchange resin designs and regeneration procedures yield improved performance for various condensate polishing applications

    International Nuclear Information System (INIS)

    Najmy, S.W.

    2002-01-01

    Condensate polishing is an application with many different design and operational aspects. The past decade has brought new challenges for improved water quality with respect to both soluble and insoluble contaminants. Nonetheless, the endeavors to understand the compositional complexities of the ion exchange resin bead and the convoluted dynamics of ion exchange chemistry and chemical engineering mechanisms occurring within the mixed bed condensate polisher have brought new ideas and expectations for ion exchange resin in deep-bed condensate polishers than ever before. The new products and procedures presented here are a collaboration of a great deal of effort on the part of researchers, consultants, system engineers, station chemists, lab technicians and others. The studies discussed in this paper unequivocally demonstrate the merits of: 1. A specially designed cation resin to achieve greater than 95% insoluble iron removal efficiency, 2. A less-separable mixed resin for improved control of reactor water sulfate in BWR primary cycles, 3. Applying increased levels of regeneration chemicals and retrofitting the service vessels with re-mixing capability to improve the operation of deep-bed condensate polishers in PWR secondary cycles. (authors)

  8. [Acrylic resin removable partial dentures].

    Science.gov (United States)

    de Baat, C; Witter, D J; Creugers, N H J

    2011-01-01

    An acrylic resin removable partial denture is distinguished from other types of removable partial dentures by an all-acrylic resin base which is, in principle, solely supported by the edentulous regions of the tooth arch and in the maxilla also by the hard palate. When compared to the other types of removable partial dentures, the acrylic resin removable partial denture has 3 favourable aspects: the economic aspect, its aesthetic quality and the ease with which it can be extended and adjusted. Disadvantages are an increased risk of caries developing, gingivitis, periodontal disease, denture stomatitis, alveolar bone reduction, tooth migration, triggering of the gag reflex and damage to the acrylic resin base. Present-day indications are ofa temporary or palliative nature or are motivated by economic factors. Special varieties of the acrylic resin removable partial denture are the spoon denture, the flexible denture fabricated of non-rigid acrylic resin, and the two-piece sectional denture. Furthermore, acrylic resin removable partial dentures can be supplied with clasps or reinforced by fibers or metal wires.

  9. Chromatography resin support

    Science.gov (United States)

    Dobos, James G.

    2002-01-01

    An apparatus and method of using an improved chromatography resin support is disclosed. The chromatography support platform is provided by a stainless steel hollow cylinder adapted for being inserted into a chromatography column. An exterior wall of the stainless steel cylinder defines a groove for carrying therein an "O"-ring. The upper surface of the stainless steel column is covered by a fine stainless steel mesh welded to the edges of the stainless steel cylinder. When placed upon a receiving ledge defined within a chromatography column, the "O"-ring provides a fluid tight seal with the inner edge wall of the chromatography cylinder. The stainless steel mesh supports the chromatography matrix and provides a back flushable support which is economical and simple to construct.

  10. 21 CFR 872.3140 - Resin applicator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Resin applicator. 872.3140 Section 872.3140 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3140 Resin applicator. (a) Identification. A resin applicator is a brushlike device intended for use in spreading dental resin on a tooth during application of...

  11. SuperLig® 639 Resin Performance using 8 Molar LAW Feed

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Restivo, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hamm, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-15

    All prior testing with SuperLig® 639 has been done with the aqueous concentration of LAW at ~5 M [Na+], where the resin sinks, and can be used in a conventional down-flow column orientation. However, the aqueous LAW stream from the Waste Treatment Plant is expected to be ~8 M [Na+]. The resin would float in this higher density liquid, potentially disrupting the ability to achieve a good decontamination due to poor packing of the resin that leads to channeling. Testing was completed with a higher salt concentration in the feed simulant (7.8 M [Na+]) in an engineering-scale apparatus with two columns, each containing ~0.9 L of resin. Testing of this system used a simulant of the LAW solution, and substituted ReO4 - as a surrogate for TcO4 -. Results were then compared using computer modeling. Bench-scale testing was also performed, and examined an unconstrained resin bed, while engineering-scale tests used both constrained and unconstrained beds in a two-column, lead and lag sequential arrangement.

  12. The study of epoxy polyamide and polyvinyl resins as corrosion ...

    African Journals Online (AJOL)

    The corrosion resistance of two commonly used protective coatings (epoxy polyamide and polyvinyl resins) in the Niger Delta area of Nigeria has been assessed. The coatings on low carbon steel were subjected to varying conditions of pH, temperature and exposure time and the corrosion rates calculated. At a pH of 2, 3, 4, ...

  13. Bed Prism Spectacles

    Science.gov (United States)

    Ribeiro, Jair Lúcio Prados

    2018-01-01

    We only became aware of the existence of bed prism spectacles when a student brought them to the classroom and asked us about how they work. The device proved to be a fertile source of curiosity among the students, and, to be properly understood, it required us to develop a comparison between reflection in a typical mirror and total internal…

  14. Practice Hospital Bed Safety

    Science.gov (United States)

    ... the mattress end Subscribe: FDA Consumer Health Information "Hospital beds are found in nearly all patient care settings or environments," says Joan Ferlo Todd, RN, a senior nurse-consultant at the Food and Drug Administration’s (FDA) Center for Devices and Radiological Health (CDRH). " ...

  15. Ash level meter for a fixed-bed coal gasifier

    Science.gov (United States)

    Fasching, George E.

    1984-01-01

    An ash level meter for a fixed-bed coal gasifier is provided which utilizes the known ash level temperature profile to monitor the ash bed level. A bed stirrer which travels up and down through the extent of the bed ash level is modified by installing thermocouples to measure the bed temperature as the stirrer travels through the stirring cycle. The temperature measurement signals are transmitted to an electronic signal process system by an FM/FM telemetry system. The processing system uses the temperature signals together with an analog stirrer position signal, taken from a position transducer disposed to measure the stirrer position to compute the vertical location of the ash zone upper boundary. The circuit determines the fraction of each total stirrer cycle time the stirrer-derived bed temperature is below a selected set point, multiplies this fraction by the average stirrer signal level, multiplies this result by an appropriate constant and adds another constant such that a 1 to 5 volt signal from the processor corresponds to a 0 to 30 inch span of the ash upper boundary level. Three individual counters in the processor store clock counts that are representative of: (1) the time the stirrer temperature is below the set point (500.degree. F.), (2) the time duration of the corresponding stirrer travel cycle, and (3) the corresponding average stirrer vertical position. The inputs to all three counters are disconnected during any period that the stirrer is stopped, eliminating corruption of the measurement by stirrer stoppage.

  16. Heat transfer in the inner and boundary region of pebble beds

    International Nuclear Information System (INIS)

    Robold, K.

    1982-07-01

    The effective thermal conductivity in the inner and boundary region of pebble beds have been measured. The experiments were carried out in evacuated pebble beds and beds with stagnant Helium (p = 700...850 mbar). The temperature range was 300 to 1900 K. The experimental results are described by new models. (orig.) [de

  17. Bed agglomeration in fluidized combustor fueled by wood and rice straw blends

    NARCIS (Netherlands)

    Thy, P.; Jenkins, B.M.; Williams, R.B.; Lesher, C.E.; Bakker, R.R.

    2010-01-01

    Petrographic techniques have been used to examine bed materials from fluidized bed combustion experiments that utilized wood and rice straw fuel blends. The experiments were conducted using a laboratory-scale combustor with mullite sand beds, firing temperatures of 840 to 1030 °C, and run durations

  18. Bed agglomeration in fluidized combustor fueled by wood and rice straw blends

    DEFF Research Database (Denmark)

    Thy, Peter; Jenkins, Brian; Williams, R.B.

    2010-01-01

    Abstract Petrographic techniques have been used to examine bed materials from fluidized bed combustion experiments that utilized wood and rice straw fuel blends. The experiments were conducted using a laboratory-scale combustor with mullite sand beds, firing temperatures of 840 to 1030 °C, and run...... areas between bed particles, ultimately led to bed agglomeration. The interfaces and the presence of gas bubbles in the cement suggest a bonding material with a high surface tension and a liquid state. The cement films originate by filling of irregularities on individual and partially agglomerated bed...

  19. Mesoporous carbon adsorbents from melamine-formaldehyde resin using nanocasting technique for CO2 adsorption.

    Science.gov (United States)

    Goel, Chitrakshi; Bhunia, Haripada; Bajpai, Pramod K

    2015-06-01

    Mesoporous carbon adsorbents, having high nitrogen content, were synthesized via nanocasting technique with melamine-formaldehyde resin as precursor and mesoporous silica as template. A series of adsorbents were prepared by varying the carbonization temperature from 400 to 700°C. Adsorbents were characterized thoroughly by nitrogen sorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), elemental (CHN) analysis, Fourier transform infrared (FTIR) spectroscopy and Boehm titration. Carbonization temperature controlled the properties of the synthesized adsorbents ranging from surface area to their nitrogen content, which play major role in their application as adsorbents for CO2 capture. The nanostructure of these materials was confirmed by XRD and TEM. Their nitrogen content decreased with an increase in carbonization temperature while other properties like surface area, pore volume, thermal stability and surface basicity increased with the carbonization temperature. These materials were evaluated for CO2 adsorption by fixed-bed column adsorption experiments. Adsorbent synthesized at 700°C was found to have the highest surface area and surface basicity along with maximum CO2 adsorption capacity among the synthesized adsorbents. Breakthrough time and CO2 equilibrium adsorption capacity were investigated from the breakthrough curves and were found to decrease with increase in adsorption temperature. Adsorption process for carbon adsorbent-CO2 system was found to be reversible with stable adsorption capacity over four consecutive adsorption-desorption cycles. From three isotherm models used to analyze the equilibrium data, Temkin isotherm model presented a nearly perfect fit implying the heterogeneous adsorbent surface. Copyright © 2015. Published by Elsevier B.V.

  20. Predicting the Viscosity of Low VOC Vinyl Ester and Fatty Acid-Based Resins

    National Research Council Canada - National Science Library

    LaScala, John J; Jeyarajasingam, Amutha; Winston, Cherise; Sand, James M; Palmese, Guiseppe R

    2005-01-01

    .... The viscosities of these resins were measured as a function of reactive diluent content and type, temperature, and vinyl ester molecular weight to determine the operating window for composite manufacture...

  1. performance evaluation of a pebble bed solar crop dryer abstract

    African Journals Online (AJOL)

    Dr Obe

    crop dryer indicates that maximum absorber temperature of 72. 0. C, heat storage bed temperature of 58. 0. C and chamber temperature of 57. 0. C were obtained using the dryer when the ..... thermometers and relative humidity sensors and thermocouple wire located at strategic points within the solar collector/heart storage.

  2. Hydraulic Permeability of Resorcinol-Formaldehyde Ion-Exchange Resin - Effects of Oxygen Uptake and Radiation

    International Nuclear Information System (INIS)

    Taylor, Paul Allen

    2009-01-01

    An ion-exchange process, using spherical resorcinol-formaldehyde (RF) resin is the baseline process for removing cesium from the dissolved salt solution in the high-level waste tanks at the U.S. Department of Energy's (DOE) Hanford site in Washington State. The RF resin is also being evaluated for use in the proposed Small Column Ion Exchange (SCIX) system, which is an alternative treatment option at DOE's Savannah River Site (SRS)in South Carolina. Testing at ORNL will determine the impact of radiation exposure and oxygen uptake by the RF resin on the hydraulic permeability of the resin. Samples of the resin will be removed periodically to measure physical properties (bead size and compressibility) and cesium capacity. The proposed full-scale treatment system at Hanford, the Waste Treatment Plant (WTP), will use an ion-exchange column containing nominally 680 gal of resin, which will treat 30 gpm of waste solution. The ion-exchange column is designed for a typical pressure drop of 6 psig, with a maximum of 9.7 psig. The lab-scale column is 3-in. clear PVC pipe and is prototypic of the proposed Hanford column. The fluid velocity in the lab-scale test will be much higher than for the full-scale column, in order to generate the maximum pressure drop expected in that column (9.7 psig). The frictional drag from this high velocity will produce similar forces on the resin in the lab-scale column as would be expected at the bottom of the full-scale column. The chemical changes in the resin caused by radiation exposure and oxygen uptake are expected to cause physical changes in the resin that could reduce the bed porosity and reduce the hydraulic permeability of the resin bed. These changes will be monitored by measuring the pressure drop through the lab-scale column and by measuring the physical properties of samples of the resin. The test loop with the lab-scale column is currently being fabricated, and operation will start by late May. Testing will be completed by the

  3. Treatment by absorbers of oil contaminated process waters. Ion exchange resins and filtration

    International Nuclear Information System (INIS)

    La Gamma, Ana M.; Becquart, Elena T.; Chocron, Mauricio; Ambrosioni, P.M.; Schoenbrod, B.

    2003-01-01

    Pressurized Heavy Water Reactors have a system devoted to the purification and upgrading of the collected heavy water leaks. The purification train is fed with different degradation ratios (D 2 O/H 2 O) activities and impurities. The water is distilled in a packed bed column filled with a mesh type packing. With the purpose of minimizing the column stack corrosion, the water is pretreated in a train consisting on an activated charcoal bed-strong cationic-anionic resin and a final polishing mixed bed resin. Traces of oils are retained by the charcoal bed but some compounds extracted by the aqueous phase are suspected to be responsible for the resins fouling or precursors of potentially aggressive agents inside the distillation column. In the present work, the identification, evaluation of alternatives for the retention like dead end and cross flow micro filtration, adsorption and ion exchange were tested and the results compared to the original products present in the water upgrading purification train. (author)

  4. Modeling biomass gasification in circulating fluidized beds

    Science.gov (United States)

    Miao, Qi

    reactions occur in gas phase. Each section was divided into a number of small cells, over which mass and energy balances were applied. Due to the high heating rate in circulating fluidized bed, the pyrolysis was considered instantaneous. A number of homogeneous and heterogeneous reactions were considered in the model. Mass transfer resistance was considered negligible since the reactions were under kinetic control due to good gas-solid mixing. The model is capable of predicting the bed temperature distribution along the gasifier, the concentration and distribution of each species in the vertical direction of the bed, the composition and lower heating value (LHV) of produced gas, the gasification efficiency, the overall carbon conversion and the produced gas production rate. A sensitivity analysis was performed to test its response to several gasifier operating conditions. The model sensitivity analysis showed that equivalence ratio (ER), bed temperature, fluidization velocity, biomass feed rate and moisture content had various effects on the gasifier performance. However, the model was more sensitive to variations in ER and bed temperature. The model was validated using the experimental results obtained from the demonstration plant. The reactor was operated on rice husk at various ERs, fluidization velocities and biomass feed rates. The model gave reasonable predictions. The model was also validated by comparing the simulation results with two other different size CFBBGs using different biomass feedstock, and it was concluded that the developed model can be applied to other CFBBGs using various biomass fuels and having comparable reactor geometries. A thermodynamic model was developed under ASPEN PLUS environment. Using the approach of Gibbs free energy minimization, the model was essentially independent of kinetic parameters. A sensitivity analysis was performed on the model to test its response to operating variables, including ER and biomass moisture content. The results

  5. Separation and characterization of resins and asphaltenes coming from Castilla crude Evaluation of their molecular interaction

    International Nuclear Information System (INIS)

    Navarro, Lina; Alvarez, Mario; Grosso, Jorge Luis; Navarro, Uriel

    2004-01-01

    The study of resins and asphaltenes, the heaviest fractions of oil, has become an area of interest due to the abundance of heavy crude oils in Colombia and Latin America. We studied the chemical composition of the heavy fractions of Castilla crude oil, evaluated some of its molecular parameters and found evidence of the interaction between the resins extracted from the crude with the asphaltenes of the original crude. With this objective, we carried out at the pilot plant level precipitation of the resin-asphaltene (R-A) aggregate by adding and mixing under controlled conditions, a paraffin solvent, from the Apiay refinery, called Apiasol. By extracting Soxhlet with the same solvent, resin 1 of aggregate R-A was separated. Resin ll defined as the soluble fraction that is part of the maltenes, was separated from the deasphalted crude by open column chromatography, using alumina as support, according to the SAR method (Saturated, Aromatics, Resins). The fractions of resins and the asphaltenes obtained, were characterized by: Nuclear Magnetic Resonance (NMR), FT-lR, DRX, elementary analysis (C, H, N, S), metal content (Ni and V), distribution of molecular weight by GPC, and average molecular weight by VPO. The results obtained show evidence that resin l which is part of the aggregate has less average molecular weight than resin ll which is present in the fraction of maltenes. In addition, some changes were found in the elementary analysis of among the resins. On the one hand, and taking into account the existing theories of molecular interactions among these fractions, it was found that the resins l separated from the R-A aggregate, when added to the crude, they stabilize their asphaltenes. This evaluation was carried out by analyzing the flocculation point of the crude and its mixtures with 1,9% and 3,8% of resin l, when they are titrated with a precipitating agent in an NIR cell that works with high pressure and temperature

  6. Modification of Bisphenol-A Based Bismaleimide Resin (BPA-BMI) with an Allyl-Terminated Hyperbranched Polyimide (AT-PAEKI)

    National Research Council Canada - National Science Library

    Qin, Haihu; Mather, Patrick T; Baek, Jong-Beom; Tan, Loon-Seng

    2006-01-01

    ... bismaleimide resin (BPA-BMI). This was pursued in anticipation of improvements in processability as well as physical properties including glass transition temperature, elastic modulus, and fracture toughness...

  7. Synthesis, structural characterization, and performance evaluation of resorcinol-formaldehyde (R-F) ion-exchange resin

    International Nuclear Information System (INIS)

    Hubler, T.L.; Franz, J.A.; Shaw, W.J.; Bryan, S.A.; Hallen, R.T.; Brown, G.N.; Bray, L.A.; Linehan, J.C.

    1995-08-01

    The 177 underground storage tanks at the DOE's Hanford Site contain an estimated 180 million tons of high-level radioactive wastes. It is desirable to remove and concentrate the highly radioactive fraction of the tank wastes for vitrification. Resorcinol-formaldehyde (R-F) resin, an organic ion-exchange resin with high selectivity and capacity for the cesium ion, which is a candidate ion-exchange material for use in remediation of tank wastes. The report includes information on the structure/function analysis of R-F resin and the synthetic factors that affect performance of the resin. CS-100, a commercially available phenol-formaldehyde (P-F) resin, and currently the baseline ion-exchanger for removal of cesium ion at Hanford, is compared with the R-F resin. The primary structural unit of the R-F resin was determined to consist of a 1,2,3,4-tetrasubstituted resorcinol ring unit while CS-100, was composed mainly of a 1,2,4-trisubstituted ring. CS-100 shows the presence of phenoxy-ether groups, and this may account for the much lower decontamination factor of CS-100 for cesium ion. Curing temperatures for the R-F resin were found to be optimal at 105--130C. At lower temperatures, insufficient curing, hence crosslinking, of the polymer resin occurs and selectivity for cesium drops. Curing at elevated temperatures leads to chemical degradation. Optimal particle size for R-F resin is in the range of 20--50 mesh-sized particles. R-F resin undergoes chemical degradation or oxidation which destroys ion-exchange sites. The ion-exchange sites (hydroxyl groups) are converted to quinones and ketones. CS-100, though it has much lower performance for cesium ion-exchange, is significantly more chemically stable than R-F resin. To gamma radiation, CS-100 is more radiolytically stable than R-F resin

  8. Synthesis, structural characterization, and performance evaluation of resorcinol-formaldehyde (R-F) ion-exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Hubler, T.L.; Franz, J.A.; Shaw, W.J.; Bryan, S.A.; Hallen, R.T.; Brown, G.N.; Bray, L.A.; Linehan, J.C.

    1995-08-01

    The 177 underground storage tanks at the DOE`s Hanford Site contain an estimated 180 million tons of high-level radioactive wastes. It is desirable to remove and concentrate the highly radioactive fraction of the tank wastes for vitrification. Resorcinol-formaldehyde (R-F) resin, an organic ion-exchange resin with high selectivity and capacity for the cesium ion, which is a candidate ion-exchange material for use in remediation of tank wastes. The report includes information on the structure/function analysis of R-F resin and the synthetic factors that affect performance of the resin. CS-100, a commercially available phenol-formaldehyde (P-F) resin, and currently the baseline ion-exchanger for removal of cesium ion at Hanford, is compared with the R-F resin. The primary structural unit of the R-F resin was determined to consist of a 1,2,3,4-tetrasubstituted resorcinol ring unit while CS-100, was composed mainly of a 1,2,4-trisubstituted ring. CS-100 shows the presence of phenoxy-ether groups, and this may account for the much lower decontamination factor of CS-100 for cesium ion. Curing temperatures for the R-F resin were found to be optimal at 105--130C. At lower temperatures, insufficient curing, hence crosslinking, of the polymer resin occurs and selectivity for cesium drops. Curing at elevated temperatures leads to chemical degradation. Optimal particle size for R-F resin is in the range of 20--50 mesh-sized particles. R-F resin undergoes chemical degradation or oxidation which destroys ion-exchange sites. The ion-exchange sites (hydroxyl groups) are converted to quinones and ketones. CS-100, though it has much lower performance for cesium ion-exchange, is significantly more chemically stable than R-F resin. To gamma radiation, CS-100 is more radiolytically stable than R-F resin.

  9. Dynamic mechanical studies on epoxy resins cured by electron beam radiation

    International Nuclear Information System (INIS)

    Sui Gang; Zhang Zuoguang; Liang Zhiyong; Chen Changqi

    2003-01-01

    Dynamic mechanical analyses on electron beam (EB)-cured epoxy resins were made in the paper. Through the studies on variation rules of gel fraction, tan δ and storage modulus for varied samples, the important effects of EB radiation dosage, initiator dosage, chemical structure, molecular weight and distribution, and heat treatment on curing reaction and properties of epoxy resin systems have been obtained. Under low radiation doses, the gel fraction, glass transition temperature (Tg) and high temperature modulus of cured epoxy resin increase with increasing radiation dose and initiator dosage. The crosslinking density of epoxy resin decreases slightly with increasing molecular weight. When radiation doses increase, the molecular weight has a little influence on the increasing of curing level and an optimal dosage of initiator appears. The experimental results indicate that the radiation reactivity of epoxy resins is directly associated with their chemical structures. Under the same radiation dose, the reaction extent in sample with high polydispersity is higher than that in low polydispersity sample, but the degree of homogeneity in crosslinking structure is lower. When the EB-cured epoxy resin is heated, the crosslinking density is enhanced. If the temperature of heating treatment exceeds the thermal-initiating temperature of initiator, the local thermal-crosslinking network can be formed in resin system

  10. Toughened epoxy resin system and a method thereof

    Science.gov (United States)

    Janke, Christopher J.; Dorsey, George F.; Havens, Stephen J.; Lopata, Vincent J.

    1998-01-01

    Mixtures of epoxy resins with cationic initiators are curable under high energy ionizing radiation such as electron beam radiation, X-ray radiation, and gamma radiation. The composition of this process consists of an epoxy resin, a cationic initiator such as a diaryliodonium or triarylsulfonium salt of specific anions, and a toughening agent such as a thermoplastic, hydroxy-containing thermoplastic oligomer, epoxy-containing thermoplastic oligomer, reactive flexibilizer, rubber, elastomer, or mixture thereof. Cured compositions have high glass transition temperatures, good mechanical properties, and good toughness. These properties are comparable to those of similar thermally cured epoxies.

  11. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  12. and phenol–formaldehyde resin

    Indian Academy of Sciences (India)

    formaldehyde resin (PFR) modified with tetraethylorthosilicate are investigated in detail. The chemical synthesis of PFR, its modification with nanometer- sized SiO2 particles created by sol–gel method and subsequent coating, enables a preparation of ...

  13. Bending characteristics of resin concretes

    Directory of Open Access Journals (Sweden)

    Ribeiro Maria Cristina Santos

    2003-01-01

    Full Text Available In this research work the influence of composition and curing conditions in bending strength of polyester and epoxy concrete is analyzed. Various mixtures of resin and aggregates were considered in view of an optimal combination. The Taguchi methodology was applied in order to reduce the number of tests, and in order to evaluate the influence of various parameters in concrete properties. This methodology is very useful for the planning of experiments. Test results, analyzed by this methodology, shown that the most significant factors affecting bending strength properties of resin concretes are the type of resin, resin content and charge content. An optimal formulation leading to a maximum bending strength was achieved in terms of material parameters.

  14. VA National Bed Control System

    Data.gov (United States)

    Department of Veterans Affairs — The VA National Bed Control System records the levels of operating, unavailable and authorized beds at each VAMC, and it tracks requests for changes in these levels....

  15. Improved lignin pyrolysis for phenolics production in a bubbling bed reactor--Effect of bed materials.

    Science.gov (United States)

    Li, Dongbing; Briens, Cedric; Berruti, Franco

    2015-01-01

    Lignin pyrolysis was studied in a bubbling fluidized bed reactor equipped with a fractional condensation train, using nitrogen as the fluidization gas. The effect of different bed materials (silica sand, lignin char, activated lignin char, birch bark char, and foamed glass beads) on bio-oil yield and quality was investigated for a pyrolysis temperature of 550 °C. Results how that a bed of activated lignin char is preferable to the commonly used silica sand: pyrolysis of Kraft lignin with a bed of activated lignin char not only provides a pure char product, but also a higher dry bio-oil yield (with a relative increase of 43%), lower pyrolytic water production, and better bio-oil quality. The bio-oil obtained from Kraft lignin pyrolysis with a bed of activated lignin char has a lower average molecular weight, less tar, more phenolics, and less acidity than when sand is used as bed material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Deleterious Thermal Effects Due To Randomized Flow Paths in Pebble Bed, and Particle Bed Style Reactors

    Science.gov (United States)

    Moran, Robert P.

    2013-01-01

    A review of literature associated with Pebble Bed and Particle Bed reactor core research has revealed a systemic problem inherent to reactor core concepts which utilize randomized rather than structured coolant channel flow paths. For both the Pebble Bed and Particle Bed Reactor designs; case studies reveal that for indeterminate reasons, regions within the core would suffer from excessive heating leading to thermal runaway and localized fuel melting. A thermal Computational Fluid Dynamics model was utilized to verify that In both the Pebble Bed and Particle Bed Reactor concepts randomized coolant channel pathways combined with localized high temperature regions would work together to resist the flow of coolant diverting it away from where it is needed the most to cooler less resistive pathways where it is needed the least. In other words given the choice via randomized coolant pathways the reactor coolant will take the path of least resistance, and hot zones offer the highest resistance. Having identified the relationship between randomized coolant channel pathways and localized fuel melting it is now safe to assume that other reactor concepts that utilize randomized coolant pathways such as the foam core reactor are also susceptible to this phenomenon.

  17. Resin glycosides from Porana duclouxii.

    Science.gov (United States)

    Ding, Wen-Bing; Zhang, Dai-Gui; Liu, Chun-Jie; Li, Guan-Hua; Li, You-Zhi

    2014-01-01

    A new intact resin glycoside (3) and two glycosidic acids (1 and 2), all having a common trisaccharide moiety and (11S)-hydroxytetradecanoic acid or (3S,11S)-dihydroxytetradecanoic acid as the aglycone, were obtained from the roots of Porana duclouxii. Their structures were elucidated by spectroscopic analyses and chemical correlations. These compounds represent the first examples of resin glycosides from the genus Porana.

  18. Karakteristik Komposit Resin Berkemampuan Mengalir

    Directory of Open Access Journals (Sweden)

    Bambang Irawan

    2015-10-01

    Full Text Available The use of resin composites as posterior restoratives has markedly increased over the past decade. The patients demand for better esthetics, concerns related to possible mercury toxicity from amalgam and improvements in resin composite materials have significantly contributed the popularity of these materials. Early problems related to composites included excessive wear, less of anatomic form, post operative sensitivity, secondary caries and marginal leakage. Marginal adaptation still remains an unavoidable problem for composite restoration, especially at the gingival wall of cervical or Class II restoration. In an attempt to improve marginal sealing, many techniques and lining materials have been designed. To reduce stress generated by polymerization shrinkage, applying and curing of resin composites in layers is often recommended. Using a thick adhesive layer or low-viscosity resin may, due to its elastic properties, serve as a flexible intermediate layer and compensate for the polymerization stress created in resin composite. Flowable composites were created by retaining the same small particle size of traditional hybrid composite but reducing the filler content and allowing the increased resin to reduce the viscosity of the mixture. Flowable composites were introduced in 1996 as liners, fissure sealants and also in tunnel preparations. They have been suggested for Class I, II, III and V cavity restorations, preventive resin restorations and composite, porcelain and amalgam repairing. Their usage as a liner under high filled resins in posterior restorations has been shown to improve the adaptation of composites and effectively achieve clinically acceptable results. This article attempts to give a broad characteristics of different types of flowable composites. 

  19. Liquid monobenzoxazine based resin system

    Science.gov (United States)

    Tietze, Roger; Nguyen, Yen-Loan; Bryant, Mark

    2014-10-07

    The present invention provides a liquid resin system including a liquid monobenzoxazine monomer and a non-glycidyl epoxy compound, wherein the weight ratio of the monobenzoxazine monomer to the non-glycidyl epoxy compound is in a range of about 25:75 to about 60:40. The liquid resin system exhibits a low viscosity and exceptional stability over an extended period of time making its use in a variety of composite manufacturing methods highly advantageous.

  20. Inert blanketing of a hydride bed using typical grade protium

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.E. [Savannah River National Laboratory, Aiken (United States)

    2015-03-15

    This paper describes the impact of 500 ppm (0.05%) impurities in protium on the absorption rate of a 9.66 kg LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride bed. The presence of 500 ppm or less inerts (i.e. non-hydrogen isotopes) can significantly impact hydrogen bed absorption rates. The impact on reducing absorption rates is significantly greater than predicted assuming uniform temperature, pressure, and compositions throughout the bed. Possible explanations are discussed. One possibility considered was the feed gas contained impurity levels higher than 500 ppm. It was shown that a level of 5000 ppm of inerts would have been necessary to fit the experimental result so this possibility wa dismissed. Another possibility is that the impurities in the protium supply reacted with the hydride material and partially poisoned the hydride. If the hydride were poisoned with CO or another impurity, the removal of the over-pressure gas in the bed would not be expected to allow the hydride loading of the bed to continue as the experimental results showed, so this possibility was also dismissed. The last possibility questions the validity of the calculations. It is assumed in all the calculations that the gas phase composition, temperature, and pressure are uniform throughout the bed. These assumptions are less valid for large beds where there can be large temperature, pressure, and composition gradients throughout the bed. Eventually the impact of 0.05% inerts in protium on bed absorption rate is shown and explained in terms of an increase in inert partial pressure as the bed was loaded.

  1. Characteristics of resin floc dispersion of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Tetsurou (Nitto Denko Corp., Ibaraki, Osaka (Japan)); Sawa, Toshio; Shindoh, Toshikazu

    1989-09-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of resin floc dispersion. The factors related to resin floc dispersion of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index in addition to the measurement of physical, chemical and electrochemical properties of powdered ion exchange resin. The effect of adsorption of iron oxide and polymer electrolyte and of ion exchange were determined. In addition, considered floc dispersion with adsorbing iron oxide, it was assumed that the amount and filling ratio of resin floc were related to summation and multiplication of surface electric charge respectively. An experimental expression was obtained for simulation of the change of specific settle volume of resin floc by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author).

  2. Characteristics of resin floc dispersion of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    International Nuclear Information System (INIS)

    Adachi, Tetsurou; Sawa, Toshio; Shindoh, Toshikazu.

    1989-01-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of resin floc dispersion. The factors related to resin floc dispersion of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index in addition to the measurement of physical, chemical and electrochemical properties of powdered ion exchange resin. The effect of adsorption of iron oxide and polymer electrolyte and of ion exchange were determined. In addition, considered floc dispersion with adsorbing iron oxide, it was assumed that the amount and filling ratio of resin floc were related to summation and multiplication of surface electric charge respectively. An experimental expression was obtained for simulation of the change of specific settle volume of resin floc by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author)

  3. SEM/XPS analysis of fractured adhesively bonded graphite fibre surface resin-rich/graphite fibre composites

    Science.gov (United States)

    Devilbiss, T. A.; Wightman, J. P.; Progar, D. J.

    1988-01-01

    Samples of graphite fiber-reinforced polyimide were fabricated allowing the resin to accumulate at the composite surface. These surface resin-rich composites were then bonded together and tested for lap shear strength both before and after thermal aging. Lap shear strength did not appear to show a significant improvement over that previously recorded for resin-poor samples and was shown to decrease with increasing aging time and temperature.

  4. Development of new addition-type composite resins

    Science.gov (United States)

    Kray, R. J.

    1981-01-01

    The most promising of a number of new addition type polyimides and polyaromatic melamine (NCNS) resins for use in high performance composite materials. Three different cure temperature ranges were of interest: 530-560 K (500-550 F), 475-530 K (400-500 F), and 450 K (350 F). Examined were a wide variety of polyimide precursors terminated with 5 norbornene groups and addition polymerized at 560 K similar to PMR-15 and LARC-160 polyimides. In addition, a number of lower curing cinnamal end capped polyimides and a bismaleimide were investigated but were not found promising. A group of NCNS resins were investigated and some were found to be superior to current epoxy resins in moisture resistance, oxidative aging and flame and smoke properties.

  5. Waterborne hyperbranched alkyd-acrylic resin obtained by miniemulsion polymerization

    Directory of Open Access Journals (Sweden)

    Edwin Murillo

    Full Text Available Abstract Four waterborne hyperbranched alkyd-acrylic resins (HBRAA were synthesized by miniemulsion polymerization from a hyperbranched alkyd resin (HBR, methyl methacrylate (MMA, butyl acrylate (BA and acrylic acid (AA, by using benzoyl peroxide (BPO and ammonium persulfate (AP as initiators. The reaction between HBR and acrylic monomers was evidenced by differential scanning calorimetric (DSC, nuclear magnetic resonance (NMR and gel permeation chromatography (GPC. The conversion percentage, glass transition temperature (Tg, content of acrylic polymer (determined by soxhlet extraction and molecular weight increased with the content of acrylic monomers used in the synthesis. The main structure formed during the synthesis was the HBRAA. The analysis by dynamic light scattering (DLS showed that the particle size distribution of HBRAA2, HBRAA3 and HBRAA4 resins were mainly monomodal. The film properties (gloss, flexibility, adhesion and drying time of the HBRAA were good.

  6. Bed-To-Wall Heat Transfer in a Supercritical Circulating Fluidised Bed Boiler

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur

    2014-06-01

    Full Text Available The purpose of this work is to find a correlation for heat transfer to walls in a 1296 t/h supercritical circulating fluidised bed (CFB boiler. The effect of bed-to-wall heat transfer coefficient in a long active heat transfer surface was discussed, excluding the radiation component. Experiments for four different unit loads (i.e. 100% MCR, 80% MCR, 60% MCR and 40% MCR were conducted at a constant excess air ratio and high level of bed pressure (ca. 6 kPa in each test run. The empirical correlation of the heat transfer coefficient in a large-scale CFB boiler was mainly determined by two key operating parameters, suspension density and bed temperature. Furthermore, data processing was used in order to develop empirical correlation ranges between 3.05 to 5.35 m·s-1 for gas superficial velocity, 0.25 to 0.51 for the ratio of the secondary to the primary air, 1028 to 1137K for bed temperature inside the furnace chamber of a commercial CFB boiler, and 1.20 to 553 kg·m-3 for suspension density. The suspension density was specified on the base of pressure measurements inside the boiler’s combustion chamber using pressure sensors. Pressure measurements were collected at the measuring ports situated on the front wall of the combustion chamber. The obtained correlation of the heat transfer coefficient is in agreement with the data obtained from typical industrial CFB boilers.

  7. Computational analysis of frp composite under different temperature gradient

    Science.gov (United States)

    Gunasekar, P.; Manigandan, S.

    2017-05-01

    Composite material strength depends on the stiffness of fiber and the resin which is used for reinforcement. The strength of the laminate can be increased by applying good manufacturing practices. The strength is directly depending on the property of resin. The property of the any compound subjected to changed when they exposed to the temperature. This paper investigates the strength of laminate when they subjected to different temperature gradient of resin while manufacturing. The resin is preheated before adding hardener with them. These types of laminate reinforced with resin at different levels of temperature 20c, 40c, and 60c. These different temperature resin are used for reinforcement and the specimen tested. The comparative results are made to find how the stiffness of laminate changes with respect to the thermal property of resin. The results are helpful to obtain high strength laminate.

  8. Production of fungal volatile organic compounds in bedding materials

    OpenAIRE

    S. LAPPALAINEN; A. PASANEN; P. PASANEN

    2008-01-01

    The high relative humidity of the air and many potential growth media, such as bedding materials, hay and grains in the horse stable, for example, provide suitable conditions for fungal growth. Metabolic activity of four common agricultural fungi incubated in peat and wood shavings at 25°C and 4°C was characterized in this study using previously specified volatile metabolites of micro-organisms and CO 2 production as indicators. The volatile organic compounds were collected into Tenax resin a...

  9. Nail bed onychomatricoma.

    Science.gov (United States)

    Wang, Lei; Gao, Tianwen; Wang, Gang

    2014-10-01

    Onychomatricoma is a rare tumor originating from the nail matrix, and, in rare conditions, from the ventral aspect of the proximal nailfold. Here we report a rare case of a 51-year-old man presenting with melanonychia mainly involving the distal nail plate. Histopathologic examination showed typical findings of onychomatricoma mainly involving the nail bed, while the nail matrix was largely uninvolved. We also identified fungal infection in a focal area of the distal nail plate. Our findings indicate that onychomatricoma can develop in the surrounding epithelial tissue of the nail unit, including the nail bed, and suggest that fungal infection may represent a secondary phenomenon of onychomatricoma. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Monitoring the Cure State of Thermosetting Resins by Ultrasound

    Science.gov (United States)

    Lionetto, Francesca; Maffezzoli, Alfonso

    2013-01-01

    The propagation of low intensity ultrasound in a curing resin, acting as a high frequency oscillatory excitation, has been recently proposed as an ultrasonic dynamic mechanical analysis (UDMA) for cure monitoring. The technique measures sound velocity and attenuation, which are very sensitive to changes in the viscoelastic characteristics of the curing resin, since the velocity is related to the resin storage modulus and density, while the attenuation is related to the energy dissipation and scattering in the curing resin. The paper reviews the results obtained by the authors’ research group in the last decade by means of in-house made ultrasonic set-ups for both contact and air-coupled ultrasonic experiments. The basics of the ultrasonic wave propagation in polymers and examples of measurements of the time-evolution of ultrasonic longitudinal modulus and chemical conversion of different thermosetting resins are presented. The effect of temperature on the cure kinetics, the comparison with rheological, low frequency dynamic mechanical and calorimetric results, and the correlation between ultrasonic modulus and crosslinking density will be also discussed. The paper highlights the reliability of ultrasonic wave propagation for monitoring the physical changes taking place during curing and the potential for online monitoring during polymer and polymer matrix composite processing. PMID:28788306

  11. Monitoring the Cure State of Thermosetting Resins by Ultrasound

    Directory of Open Access Journals (Sweden)

    Alfonso Maffezzoli

    2013-09-01

    Full Text Available The propagation of low intensity ultrasound in a curing resin, acting as a high frequency oscillatory excitation, has been recently proposed as an ultrasonic dynamic mechanical analysis (UDMA for cure monitoring. The technique measures sound velocity and attenuation, which are very sensitive to changes in the viscoelastic characteristics of the curing resin, since the velocity is related to the resin storage modulus and density, while the attenuation is related to the energy dissipation and scattering in the curing resin. The paper reviews the results obtained by the authors’ research group in the last decade by means of in-house made ultrasonic set-ups for both contact and air-coupled ultrasonic experiments. The basics of the ultrasonic wave propagation in polymers and examples of measurements of the time-evolution of ultrasonic longitudinal modulus and chemical conversion of different thermosetting resins are presented. The effect of temperature on the cure kinetics, the comparison with rheological, low frequency dynamic mechanical and calorimetric results, and the correlation between ultrasonic modulus and crosslinking density will be also discussed. The paper highlights the reliability of ultrasonic wave propagation for monitoring the physical changes taking place during curing and the potential for online monitoring during polymer and polymer matrix composite processing.

  12. New acrylic resin composite with improved thermal diffusivity.

    Science.gov (United States)

    Messersmith, P B; Obrez, A; Lindberg, S

    1998-03-01

    Studies have shown that physical characteristics of denture base materials may affect patient acceptance of denture prostheses by altering sensory experience of food during mastication. Thermal diffusivity is one material property that has been cited as being important in determining gustatory response, with denture base acrylic resins having low thermal diffusivity compared with denture base metal alloys. This study prepared and characterized experimental acrylic resin composite material with increased thermal diffusivity. Sapphire (Al2O3) whiskers were added to conventional denture base acrylic resin during processing to achieve loadings of 9.35% and 15% by volume. Cylindrical test specimens containing an embedded thermocouple were used to determine thermal diffusivity over a physiologic temperature range (0 degree to 70 degrees C). Thermal diffusivities of the sapphire containing composites were found to be significantly higher than the unmodified acrylic resin. Thermal diffusivity was found to increase in proportion to the volume percentage of sapphire filler, which suggested that the high aspect ratio ceramic particles formed a pathway for heat conduction through the insulating polymer matrix. The thermal diffusivity of denture base acrylic resin was increased by the addition of thermally conducting sapphire whiskers.

  13. Electrodeposition properties of modified cational epoxy resin-type photoresist

    International Nuclear Information System (INIS)

    Yong He; Yunlong Zhang; Feipeng Wu; Miaozhen Li; Erjian Wang

    1999-01-01

    Multi-component cationic epoxy and acrylic resin system for ED photoresist was used in this work, since they can provide better storage stability for ED emulsion and better physical and chemical properties of deposited film than one-component system. The cationic main resin (AE) was prepared from amine modified epoxy resins and then treated with acetic acid. The amination degree was controlled as required. The synthetic procedure of cationic main resins is described in scheme I. The ED photoresist (AME) is composed of cationic main resin (AE) and nonionic multifunctional acrylic crosslinkers (PETA), in combination with suitable photo-initiator. They can easily be dispersed in deionized water to form a stable ED emulsion. The exposed part of deposited film upon UV irradiation occurs crosslinking to produce an insoluble semi-penetrating network and the unexposed part remains good solubility in the acidic water solution. It is readily utilized for fabrication of fine micropattern. The electrodeposition are carried out on Cu plate at room temperature. To evaluate the electrodeposition properties of ED photoresist (AME), the different influences are examined

  14. Mathematical modelling of MSW incineration on a travelling bed.

    Science.gov (United States)

    Yang, Y B; Goh, Y R; Zakaria, R; Nasserzadeh, V; Swithenbank, J

    2002-01-01

    The rising popularity of incineration of municipal solid waste (MSW) calls for detailed mathematical modelling and understanding of the incineration process. In this paper, governing equations for mass, momentum and heat transfer for both solid and gaseous phases in a moving bed in a solid-waste incineration furnace are described and relevant sub-models are presented. The burning rates of volatile hydrocarbons in the moving bed of solids are limited not only by the reaction kinetics but also the mixing of the volatile fuels with the under-fire air. The mixing rate is averaged across a computation cell and correlated to a number of parameters including local void fraction of the bed, gas velocity and a length scale comparable to the particle size in the bed. A correlation equation is also included to calculate the mixing in the freeboard area immediately next to the bed surface. A small-scale fixed bed waste incinerator was built and test runs were made in which total mass loss from the bed, temperature and gas composition at different locations along the bed height were measured. A 2-D bed-modelling program (FLIC) was developed which incorporates the various sub-process models and solves the governing equations for both gases and solids. Thermal and chemical processes are mainly confined within a layer about 5-9 times in thickness of the averaged particle size in the burning bed. For a large part of the burning process, the total mass loss rate was constant until the solid waste was totally dried out and a period of highly rising CO emission followed. The maximum bed temperature was around 1200 K. The whole burning process ended within 60 min. Big fluctuations in species concentration were observed due to channelling and subsequent 'catastrophic' changes in the local bed conditions. Reasonably good agreement between modelling and measurements has been achieved. Yet the modelling work is complicated by the channelling phenomenon in the bed. Numerical simulations

  15. Pressurized fluidized-bed combustion part-load behavior. Volume I. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, A. G.; Pillai, K. K.; Raven, P.; Wood, P.

    1981-09-01

    Tests performed during 1980 to determine the part-load characteristics of a pressurized fluidized-bed combustor for a combined-cycle power plant and to examine its behavior during load changing are discussed. Part-load operation was achieved by varying the bed temperature by amounts between 200 to 300/sup 0/F and the bed depth from between 9 and 10 ft at rates varying between 0.2 ft/min and 0.5 ft/min. The performance at part-load steady-state conditions and during transient conditions is reported with information on combustion efficiency (99% at full-load with 9 ft bed depth and 1650/sup 0/F bed temperature; 95% with 4 ft depth and 1390/sup 0/F); sulfur retention (95/sup 0/ at full load to 80% at low bed depth and low bed temperature); sulfur emissions (no definitive results); NO/sub x/ emissions (tendency for increase as bed temperature was reduced); alkali emissions (no bed temperature effect detected); and heat transfer. It was demonstrated that load can be altered in a rapid and controlled manner by changing combinations of bed depth temperature and pressure. The most important practical change was the reduction in O/sub 2/ concentration which occurred when the bed height was increased at a rapid rate. The extra energy required to reheat the incoming bed material resulted (in the most extreme case) in a temporary drop in excess air from 65% to 12%. In a full-scale plant the loss of heat from the stored bed material would be much lower and the excess air trough when increasing load would not be as pronounced. Nevertheless, it seems prudent to design full-scale plant for a full load excess air of not less than about 50% when using bed depth as a load control parameter.

  16. Irradiation effects in the storage and disposal of radioactive ion-exchange resins

    International Nuclear Information System (INIS)

    Swyler, K.J.; Dodge, C.E.; Dayal, R.; Weiss, A.J.

    1982-01-01

    Research is under way to characterize the effects of self-irradiation on radwastes which may be generated when organic ion-exchange media are used in water demineralization or decontamination operations at nuclear facilities. External factors affecting the relation between laboratory evaluations and field performance are emphasized. Initial experiments do not yet indicate substantial radiation dose-rate effects on radiolytic gas yields or acid product formation, when (fully swollen) sulfonic acid resins are irradiated in a sealed air environment. At the same time, oxygen gas is removed from the environment of irradiated resins. Interaction between mild steel coupons and acidic species produced in the irradiation induced decomposition of sulfonic acid resin results in irradiation enhanced corrosion. Corrosion rates depend on radiation dose rate, moisture content and resin chemical loading. In some cases, corrosion rates decrease with time, suggesting depletion of acidic species within the resin bed, or a synergistic interaction between resin and corrosion coupon. Implications of these and other results on evaluating field behavior of radwaste containing ion-exchange media are discussed. 4 figures, 2 tables

  17. Thermal enhancement cartridge heater modified (TECH Mod) tritium hydride bed development, Part 1 - Design and fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.E.; Estochen, E.G. [Savannah River National Laboratory, Aiken, SC (United States)

    2015-03-15

    The Savannah River Site (SRS) tritium facilities have used first generation (Gen1) LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride storage beds for tritium absorption, storage, and desorption. The Gen1 design utilizes hot and cold nitrogen supplies to thermally cycle these beds. Second and third generation (Gen2 and Gen3) storage bed designs include heat conducting foam and divider plates to spatially fix the hydride within the bed. For thermal cycling, the Gen2 and Gen3 beds utilize internal electric heaters and glovebox atmosphere flow over the bed inside the bed external jacket for cooling. The currently installed Gen1 beds require replacement due to tritium aging effects on the LANA0.75 material, and cannot be replaced with Gen2 or Gen3 beds due to different designs of these beds. At the end of service life, Gen1 bed desorption efficiencies are limited by the upper temperature of hot nitrogen supply. To increase end-of-life desorption efficiency, the Gen1 bed design was modified, and a Thermal Enhancement Cartridge Heater Modified (TECH Mod) bed was developed. Internal electric cartridge heaters in the new design to improve end-of-life desorption, and also permit in-bed tritium accountability (IBA) calibration measurements to be made without the use of process tritium. Additional enhancements implemented into the TECH Mod design are also discussed. (authors)

  18. THERMAL ENHANCEMENT CARTRIDGE HEATER MODIFIED TECH MOD TRITIUM HYDRIDE BED DEVELOPMENT PART I DESIGN AND FABRICATION

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.; Estochen, E.

    2014-03-06

    The Savannah River Site (SRS) tritium facilities have used 1{sup st} generation (Gen1) LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride storage beds for tritium absorption, storage, and desorption. The Gen1 design utilizes hot and cold nitrogen supplies to thermally cycle these beds. Second and 3{sup rd} generation (Gen2 and Gen3) storage bed designs include heat conducting foam and divider plates to spatially fix the hydride within the bed. For thermal cycling, the Gen2 and Gen 3 beds utilize internal electric heaters and glovebox atmosphere flow over the bed inside the bed external jacket for cooling. The currently installed Gen1 beds require replacement due to tritium aging effects on the LANA0.75 material, and cannot be replaced with Gen2 or Gen3 beds due to different designs of these beds. At the end of service life, Gen1 bed desorption efficiencies are limited by the upper temperature of hot nitrogen supply. To increase end-of-life desorption efficiency, the Gen1 bed design was modified, and a Thermal Enhancement Cartridge Heater Modified (TECH Mod) bed was developed. Internal electric cartridge heaters in the new design to improve end-of-life desorption, and also permit in-bed tritium accountability (IBA) calibration measurements to be made without the use of process tritium. Additional enhancements implemented into the TECH Mod design are also discussed.

  19. Determination of the gel point of a polyfurfuryl alcohol resin and characterization of its curing rheokinetics

    DEFF Research Database (Denmark)

    Dominguez, Juan Carlos; Madsen, Bo

    2013-01-01

    The determination of the gel point of a resin is a key in order to design and optimize the manufacturing process of composite materials. In this work, the gel point of a biobased polyfurfuryl alcohol (FA) resin has been determined by rheological isothermal tests at different curing temperatures....... The obtained gel times using three different amounts of catalyst (2, 4 and 6 % wt.) were correlated to temperature by the Macosko model; to predict the gel time at any temperature within the studied range. Furthermore, the evolution of the complex viscosity of the FA resin after its gel point has been studied...... of the resin system. The evolution of the viscosity has been modeled using widely used rheokinetic models. Finally, since rheological properties such as viscosity and complex modulus (G*) are highly sensitive to the molecular weight of a polymeric system, and they can be used as indicators of the degree...

  20. Differences in interfacial bond strengths of graphite fiber-epoxy resin composites

    Science.gov (United States)

    Needles, H. L.

    1985-01-01

    The effect of epoxy-size and degree of cure on the interfacial bonding of an epoxy-amine-graphite fiber composite system is examined. The role of the fiber-resin interface in determining the overall mechanical properties of composites is poorly understood. A good interfacial adhesive bond is required to achieve maximum stress transfer to the fibers in composites, but at the same time some form of energy absorbing interfacial interaction is needed to achieve high fracture toughening. The incompatibility of these two processes makes it important to understand the nature and basic factors involved at the fiber-resin interface as stress is applied. The mechanical properties including interlaminar shear values for graphite fiber-resin composites are low compared to glass and boron-resin composites. These differences have been attributed to poor fiber-matrix adhesion. Graphite fibers are commonly subjected to post-treatments including application of organic sizing in order to improve their compatibility with the resin matrix and to protect the fiber tow from damage during processing and lay-up. In such processes, sized graphite fiber tow is impregnated with epoxy resin and then layed-up i nto the appropriate configuration. Following an extended ambient temperature cure, the graphite-resin composite structure is cured at elevated temperature using a programmed temperature sequence to cure and then cool the product.

  1. A Spouted Bed Reactor Monitoring System for Particulate Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Wendt; R. L. Bewley; W. E. Windes

    2007-06-01

    Conversion and coating of particle nuclear fuel is performed in spouted (fluidized) bed reactors. The reactor must be capable of operating at temperatures up to 2000°C in inert, flammable, and coating gas environments. The spouted bed reactor geometry is defined by a graphite retort with a 2.5 inch inside diameter, conical section with a 60° included angle, and a 4 mm gas inlet orifice diameter through which particles are removed from the reactor at the completion of each run. The particles may range from 200 µm to 2 mm in diameter. Maintaining optimal gas flow rates slightly above the minimum spouting velocity throughout the duration of each run is complicated by the variation of particle size and density as conversion and/or coating reactions proceed in addition to gas composition and temperature variations. In order to achieve uniform particle coating, prevent agglomeration of the particle bed, and monitor the reaction progress, a spouted bed monitoring system was developed. The monitoring system includes a high-sensitivity, low-response time differential pressure transducer paired with a signal processing, data acquisition, and process control unit which allows for real-time monitoring and control of the spouted bed reactor. The pressure transducer is mounted upstream of the spouted bed reactor gas inlet. The gas flow into the reactor induces motion of the particles in the bed and prevents the particles from draining from the reactor due to gravitational forces. Pressure fluctuations in the gas inlet stream are generated as the particles in the bed interact with the entering gas stream. The pressure fluctuations are produced by bulk movement of the bed, generation and movement of gas bubbles through the bed, and the individual motion of particles and particle subsets in the bed. The pressure fluctuations propagate upstream to the pressure transducer where they can be monitored. Pressure fluctuation, mean differential pressure, gas flow rate, reactor

  2. Method for digesting spent ion exchange resins and recovering actinides therefrom using microwave radiation

    Science.gov (United States)

    Maxwell, III, Sherrod L.; Nichols, Sheldon T.

    1999-01-01

    The present invention relates to methods for digesting diphosphonic acid substituted cation exchange resins that have become loaded with actinides, rare earth metals, or heavy metals, in a way that allows for downstream chromatographic analysis of the adsorbed species without damage to or inadequate elution from the downstream chromatographic resins. The methods of the present invention involve contacting the loaded diphosphonic acid resin with concentrated oxidizing acid in a closed vessel, and irradiating this mixture with microwave radiation. This efficiently increases the temperature of the mixture to a level suitable for digestion of the resin without the use of dehydrating acids that can damage downstream analytical resins. In order to ensure more complete digestion, the irradiated mixture can be mixed with hydrogen peroxide or other oxidant, and reirradiated with microwave radiation.

  3. Development of heat-resistant neutron shielding resin for high payload metal cask

    International Nuclear Information System (INIS)

    Kamoshida, Mamoru; Hiranuma, Takeshi; Shimizu, Masashi

    2007-01-01

    A new neutron shielding resin has been developed for a dual-purpose metal cask. The resin is composed of a cycloaliphatic epoxy, anhydrous acid, catalyst, aluminum hydroxide and boron tetracarbide. Its long-term stability was verified by thermal degradation tests. Estimated weight loss of the resin during storage was about 1-2%. Because the curing reaction of epoxy and curing reagents was moderate at room temperature, a large amount of resin could be treated at one time which would lower fabrication cost. The fabrication process was verified by a full-scale mock-up test. No significant voids or cracks were found in the resin and uniform elemental composition was confirmed. (author)

  4. Direct contact condensation in packed beds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi; Klausner, James F.; Mei, Renwei; Knight, Jessica [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2006-12-15

    A diffusion driven desalination process was recently described where a very effective direct contact condenser with a packed bed is used to condense water vapor out of an air/vapor mixture. A laboratory scale direct contact condenser has been fabricated as a twin tower structure with two stages, co-current and countercurrent. Experiments have been operated in each stage with respective saturated air inlet temperatures of 36, 40 and 43{sup o}C. The temperature and humidity data have been collected at the inlet and exit of the packed bed for different water to air mass flow ratios that vary between 0 and 2.5. A one-dimensional model based on conservation principles has been developed, which predicts the variation of temperature, humidity, and condensation rate through the condenser stages. Agreement between the model and experiments is very good. It is observed that the countercurrent flow stage condensation effectiveness is significantly higher than that for the co-current stage. The condensation heat and mass transfer rates were found to decrease when water blockages occur within the packed bed. Using high-speed digital cinematography, it was observed that this problem can occur at any operating condition, and is dependent on the packing surface wetting characteristics. This observation is used to explain the requirement for two different empirical constants, depending on packing diameter, suggested by Onda for the air side mass transfer coefficient correlation. (author)

  5. Effect of intermediate agents and pre-heating of repairing resin on composite-repair bonds.

    Science.gov (United States)

    Papacchini, Federica; Magni, Elisa; Radovic, Ivana; Mazzitelli, Claudia; Monticellia, Francesca; Goracci, Cecilia; Polimeni, Antonella; Ferrari, Marco

    2007-01-01

    This study investigated the composite-to-composite microtensile bond strength and interfacial quality after using different combinations of intermediate agents and pre-curing temperatures of repairing resin. Forty-five composite discs (8x4 mm) of Gradia Direct Anterior (GC Corp), stored in a saline solution at 37 degrees C for one month, were sandblasted (50 microm aluminum oxide), cleaned (35% phosphoric acid) and randomly divided into three groups (n=15) according to the intermediate agent applied: (1) no treatment; (2) unfilled resin (Scotchbond Multi-Purpose Adhesive, 3M ESPE); (3) flowable composite (Gradia LoFlo, GC Corp). Each disc was incrementally repaired (8x8 mm) with the same resin as the substrate. For each group, three subgroups (n=5) were created, depending on the pre-curing temperature of the repairing resin-4 degrees C, 23 degrees C or 37 degrees C. Two bonded specimens per group were prepared to evaluate the composite-to-composite interfacial quality via scanning electron microscope. Microtensile bond strength measurements were performed with the remaining three specimens and failure mode was examined by stereomicroscopy. Two-way ANOVA revealed that temperature (p resin in groups where intermediate agents were used. The highest bond strengths were recorded when flowable composite was used as an intermediate agent under each of the three temperature conditions. Interfacial quality improved by raising the resin temperature from 4 degrees C to 37 degrees C.

  6. Flow monitoring of microwave pre-heated resin in LCM processes

    Science.gov (United States)

    Rubino, F.; Paradiso, V.; Carlone, P.

    2017-10-01

    Liquid composite molding is manufacturing techniques that involve the injection or infusion of catalyzed liquid resin into a mold to impregnate a dry fiber preform. The challenges of LCM processes are related to the obtaining of a complete wetting of the reinforcement as well as a reduction of the void to obtain a final product with high mechanical properties. The heating of the resin prior the injection into the mold cavity has proven to be useful to improve the LCM processes. The increasing of temperature results in a reduction of resin viscosity and allows the resin to flow more easily through the reinforcement; the cure stage is also improved resulting in a reduction of global process time required. Besides the conventional solutions to heat up the resin based on the thermal conduction, in-line microwave heating is a suitable method to heat dielectric materials providing an even temperature distribution through the resin, thereby avoiding a thermal gradient between the surface and the core of liquid resin, which could result in a premature and uncontrolled cure. In the present work, an in-line microwave system, manually controlled, have been coupled with a VARTM apparatus to heat the resin before the infusion. In addition, parallel-plate dielectric sensors and pressure sensors, embedded into the mold, were employed to track the flow front through the fiber reinforcement in two distinct cases: unheated resin and pre-heated resin. The aim of work was to assess the effectiveness of microwave pre-heating to improve the macro and micro-impregnation of dry preform. The obtained results showed capability of in-line microwave heating to shorten the impregnation of dry fabric and provide a homogeneous wetting of fibers.

  7. Cation immobilization in pyrolyzed simulated spent ion exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Luca, Vittorio, E-mail: vluca@cnea.gov.ar [Programa Nacional de Gestion de Residuos Radiactivos, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Av. General, Paz 1499, 1650 San Martin, Provincia de Buenos Aires (Argentina); Bianchi, Hugo L. [Gerencia de Quimica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Av. General, Paz 1499, 1650 San Martin, Provincia de Buenos Aires (Argentina); ECyT, Universidad Nacional de General San Martin, Campus Miguelete, Ed. Tornavias, Martin de Irigoyen 3100, 1650 San Martin (Argentina); Conicet, Av. Rivadavia 1917, 1033 Buenos Aires (Argentina); Manzini, Alberto C. [Programa Nacional de Gestion de Residuos Radiactivos, Comision Nacional de Energia Atomica, Av. Del Libertador 8250, CP 1429, Ciudad Autonoma de Buenos Aires (Argentina)

    2012-05-15

    Significant quantities of spent ion exchange resins that are contaminated by an assortment of radioactive elements are produced by the nuclear industry each year. The baseline technology for the conditioning of these spent resins is encapsulation in ordinary Portland cement which has various shortcomings none the least of which is the relatively low loading of resin in the cement and the poor immobilization of highly mobile elements such as cesium. The present study was conducted with cationic resin samples (Lewatit S100) loaded with Cs{sup +}, Sr{sup 2+}, Co{sup 2+}, Ni{sup 2+} in roughly equimolar proportions at levels at or below 30% of the total cation exchange capacity. Low temperature thermal treatment of the resins was conducted in inert (Ar), or reducing (CH{sub 4}) gas atmospheres, or supercritical ethanol to convert the hydrated polymeric resin beads into carbonaceous materials that contained no water. This pyrolytic treatment resulted in at least a 50% volume reduction to give mechanically robust spherical materials. Scanning electron microscope investigations of cross-sections of the beads combined with energy dispersive analysis showed that initially all elements were uniformly distributed through the resin matrix but that at higher temperatures the distribution of Cs became inhomogeneous. Although Cs was found in the entire cross-section, a significant proportion of the Cs occurred within internal rings while a proportion migrated toward the outer surfaces to form a crustal deposit. Leaching experiments conducted in water at 25 Degree-Sign C showed that the divalent contaminant elements were very difficult to leach from the beads heated in inert atmospheres in the range 200-600 Degree-Sign C. Cumulative fractional loses of the order of 0.001 were observed for these divalent elements for temperatures below 500 Degree-Sign C. Regardless of the processing temperature, the cumulative fractional loss of Cs in water at 25 Degree-Sign C reached a plateau or

  8. Cation immobilization in pyrolyzed simulated spent ion exchange resins

    International Nuclear Information System (INIS)

    Luca, Vittorio; Bianchi, Hugo L.; Manzini, Alberto C.

    2012-01-01

    Significant quantities of spent ion exchange resins that are contaminated by an assortment of radioactive elements are produced by the nuclear industry each year. The baseline technology for the conditioning of these spent resins is encapsulation in ordinary Portland cement which has various shortcomings none the least of which is the relatively low loading of resin in the cement and the poor immobilization of highly mobile elements such as cesium. The present study was conducted with cationic resin samples (Lewatit S100) loaded with Cs + , Sr 2+ , Co 2+ , Ni 2+ in roughly equimolar proportions at levels at or below 30% of the total cation exchange capacity. Low temperature thermal treatment of the resins was conducted in inert (Ar), or reducing (CH 4 ) gas atmospheres, or supercritical ethanol to convert the hydrated polymeric resin beads into carbonaceous materials that contained no water. This pyrolytic treatment resulted in at least a 50% volume reduction to give mechanically robust spherical materials. Scanning electron microscope investigations of cross-sections of the beads combined with energy dispersive analysis showed that initially all elements were uniformly distributed through the resin matrix but that at higher temperatures the distribution of Cs became inhomogeneous. Although Cs was found in the entire cross-section, a significant proportion of the Cs occurred within internal rings while a proportion migrated toward the outer surfaces to form a crustal deposit. Leaching experiments conducted in water at 25 °C showed that the divalent contaminant elements were very difficult to leach from the beads heated in inert atmospheres in the range 200–600 °C. Cumulative fractional loses of the order of 0.001 were observed for these divalent elements for temperatures below 500 °C. Regardless of the processing temperature, the cumulative fractional loss of Cs in water at 25 °C reached a plateau or steady-state within the first 24 h increasing only

  9. Evolution of Particle Bed Reactor Fuel

    Science.gov (United States)

    Jensen, Russell R.; Evans, Robert S.; Husser, Dewayne L.; Kerr, John M.

    1994-07-01

    To realize the potential performance advantages inherent in a particle bed reactor (PBR) for nuclear thermal propulsion (NTP) applications, high performance particle fuel is required. This fuel must operate safely and without failure at high temperature in high pressure, flowing hydrogen propellant. The mixed mean outlet temperature of the propellant is an important characteristic of PBR performance. This temperature is also a critical parameter for fuel particle design because it dictates the required maximum fuel operating temperature. In this paper, the evolution in PBR fuel form to achieve higher operating temperatures is discussed and the potential thermal performance of the different fuel types is evaluated. It is shown that the optimum fuel type for operation under the demanding conditions in a PBR is a coated, solid carbide particle.

  10. Sampling and characterization of spent exchange resins of Atucha I nuclear power plant

    International Nuclear Information System (INIS)

    Varani, Jose L.; Cernadas, D.; Iglesias, Alberto M.; Raffo Calderon, Maria del C.

    2004-01-01

    The present storage facilities for spent resins in Atucha I NPP would be full within the next 5 years, accordingly some tasks are being planned to conditioning these waste and so generate enough storage capacity for the remaining life of the plant. Among this tasks is the characterization of spent resins that has several objectives: to know their chemical and radiochemical composition; the homogeneity of these parameters in the total volume of spent resins; the existence or not of compact zones; the proportion of 'crud'; the breakage degree of the micro-spheres; etc. The first step was to analyse the criterion to follow for sampling resins in the storage deposit of 40 m 3 . In order to take some samples from different points, a special device was required. It had to be introduced closed in the resin bed, opened to take the sample and then closed again to return to the surface. A device used in cereal industry for sampling silos to different depths was modified in its internal capacity for reducing operator dose and increasing the length of rod in order to reaching the bottom of the pit. The device was tested in cold mock up before to taking actual samples. Active resins samples, five in total up to now, were taken from deposit to different depths and kept in lead containers. After analysing the samples, the following average results were extracted: 1.7 x 10 5 Bq/g of Co-60, 9.7 x 10 5 Bq/g of Cs-137 and 774 Bq/g of total alpha, which corresponds to intermediate activity waste. The differences between the values of activity of the different samples are of up to 310 % for Co-60 and of up to 788 % for the Cs-137 what indicates a great inhomogeneity. The direct observation of resin grains, placed in a transparent glass burette, did not demonstrate an important proportion of broken or divided resins. (author)

  11. Resin technologies: construction and staining of resin TMA's.

    Science.gov (United States)

    Howat, William J; Wilson, Susan J

    2010-01-01

    The traditional formaldehyde-fixed paraffin-embedded tissue, and therefore the tissue microarrays created from it, provide good morphology but with a compromised antigenicity when compared to frozen tissue. In contrast, while solving the issue of antigenicity, frozen tissue suffers from a lack of morphology. We have demonstrated that tissue microarrays constructed in glycol methacrylate resin, when combined with a cold acetone fixation step, have been able to combine the superior morphology of resin-embedded sections with the superior antigenicity of frozen tissue for prospectively collected material.

  12. Adsorption of aromatic amino acids in a fixed bed column

    Directory of Open Access Journals (Sweden)

    Cremasco M.A.

    2003-01-01

    Full Text Available Phenylalanine (Phe and tyrosine (Tyr are two of the twenty amino acids in proteins; they are classified as aromatic amino acids, because both have a benzene ring in their structures. These amino acids are important in the synthesis of several biologically active amines, such as beta-endorphin, a neurotransmitter. Amino acids can be separated by ion-exchange chromatography. In this case, it is important that fixed-bed adsorber design adequately predict the breakthrough curve. This work presents a mathematical model for both fluid and porous phases. In the solution proposed for this model the liquid-phase concentration inside the particles is solved analytically and is related to the liquid-phase concentration in the bed using Duhamel's theorem. The solution for liquid-phase concentration in the bed is then solved numerically instead of analytically. The basic mass transfer parameters are from the literature. The results from the model are compared with those obtained experimentally using Phe and Tyr diluted in aqueous solutions in a fixed bed of PVP (poly-4-vinylpyridine resin.

  13. Heat Transfer in a Fixed Bed of Straw Char

    DEFF Research Database (Denmark)

    Fjellerup, Jan Søren; Henriksen, Ulrik Birk; Jensen, Anker

    2003-01-01

    A model for the thermal conductivity of a straw char bed has been developed. The model extends the work of Yagi and Kunii to describe heat transfer in a bed of cylinders, using a relationship between the interparticle distance and the external porosity. To verify the model, thermal conductivity...... the experimental uncertainty over the range of conditions investigated. The heat transfer model was used in a parametric study to evaluate the effect of gas flow rate, particle diameter, porosity, and temperature on the thermal conductivity in a straw char bed....... experiments were performed on shredded and un-shredded straw char samples, varying particle size, bed packing (loose or dense), and temperature. Predictions with the model, using the measured external porosity and particle diameter as input parameters, are in agreement with measurements within...

  14. The effects of fouled anion resin on condensate polishing plant performance at Dungeness B power station

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Chris [British Energy, Barnwood, Gloucester (United Kingdom)

    2008-10-15

    The return to power, after an outage, at Dungeness B Power Station was delayed because of problems in achieving an in-specification feedwater acid conductivity. Dungeness B has a full flow cation/mixed bed condensate polishing plant (CPP). Investigations showed that the acid conductivity was produced by carbon dioxide and organic impurities both by-passing the CPP and slipping through it. Resin analysis showed that the anion resin had severely impaired sulfate removal kinetics. The paper covers the work done to try and identify the nature and source of the organics and their effect on the anion resin. One significant finding was that the carbonate removal kinetics were as impaired as those for sulfate removal; this had not been previously experienced in the CPP at any British Energy plant. (orig.)

  15. Coal Bed Methane Primer

    Energy Technology Data Exchange (ETDEWEB)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  16. Bed Rest Muscular Atrophy

    Science.gov (United States)

    Greenleaf, John E.

    2000-01-01

    A major debilitating response from prolonged bed rest (BR) is muscle atrophy, defined as a "decrease in size of a part of tissue after full development has been attained: a wasting away of tissue as from disuse, old age, injury or disease". Part of the complicated mechanism for the dizziness, increased body instability, and exaggerated gait in patients who arise immediately after BR may be a result of not only foot pain, but also of muscular atrophy and associated reduction in lower limb strength. Also, there seems to be a close association between muscle atrophy and bone atrophy. A discussion of many facets of the total BR homeostatic syndrome has been published. The old adage that use determines form which promotes function of bone (Wolff's law) also applies to those people exposed to prolonged BR (without exercise training) in whom muscle atrophy is a consistent finding. An extreme case involved a 16-year-old boy who was ordered to bed by his mother in 1932: after 50 years in bed he had "a lily-white frame with limbs as thin as the legs of a ladder-back chair". These findings emphasize the close relationship between muscle atrophy and bone atrophy. In addition to loss of muscle mass during deconditioning, there is a significant loss of muscle strength and a decrease in protein synthesis. Because the decreases in force (strength) are proportionately greater than those in fiber size or muscle cross-sectional area, other contributory factors must be involved; muscle fiber dehydration may be important.

  17. Fluid-dynamic behavior of flaxseed fluidized and spouted bed

    Directory of Open Access Journals (Sweden)

    Elza Brandão Santana

    2017-09-01

    Full Text Available ABSTRACT: Processing of particles in a moving bed, such as a fluidized bed or a spouting bed, is commonly used in the operations of drying, coating, and granulation of particulate systems. This process has applications in the chemical, pharmaceutical and, presently, agronomical industries, especially for seed treatment/coating. This research aimed to analyze the fluid-dynamic behavior of fluidized and spouting beds with different air temperatures and loads of flaxseeds (Linum usitatissimum L., with estimates of the fluid-dynamic parameters correlated to each process. The parameters were compared with the values obtained from classical correlations in the literature, with indications of associated percentages of deviation. Influence of fluid dynamics on the physiological quality of seeds was assessed by germination tests and the germination speed index. An analysis of the results indicated that seed processing was adequate for processing in dynamically active beds; however, temperatures above 50ºC in both beds caused significant reductions in the physiological quality of the seeds. Processing in a fluidized bed presented a smaller reduction of the physiological properties of the flaxseed.

  18. Numerical modeling of pyrolysis of sawdust in a packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingmin; Chen, Xiaoping [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    An unsteady, one-dimensional mathematical model has been developed to describe the pyrolysis of sawdust in a packed bed. The sawdust bed was pyrolyzed using the hot gas and an electric heater outside the bed as the source of energy. The developed model includes mass, momentum and energy conservations of gas and solid within the bed. The gas flow in the bed is modeled using Darcy's law for fluid through a porous medium. The heat transfer model includes heat conduction inside the bed and convection between the bed and the hot gas. The kinetic model consists of primary pyrolysis reaction. A finite volume fully implicit scheme is employed for solving the heat and mass transfer model equations. A Runge-Kutta fourth order method is used for the chemical kinetics model equations. The model predictions of mass loss history and temperature were validated with published experimental results, showing a good agreement. The effects of inlet temperature on the pyrolysis process have been analyzed with model simulation. A sensitivity analysis using the model suggests that the predictions could be improved by considering the second reaction which could generate volatile flowing in the void.

  19. Measurement of water diffusion in epoxy and polyester resins with radionuclides

    International Nuclear Information System (INIS)

    Mozisek, M.

    1976-01-01

    A brief characteristic is given of diffusion processes in polymers and their importance in the corrosion of plastics and synthetic resins. The method and equipment are described for the application of radionuclides in measuring the diffusion of water in epoxy and polyester resins. The desorption of water labelled with tritium and the diffusion coefficients of water molecules were investigated in five samples of resins. The experimental results show that there are evident differences between the individual evaluated synthetic resins in the diffusion rate of water molecules at temperatures within the region of 15 to 55 degC. Of the epoxy resins, the smallest diffusion rate of water was found for ChS Epoxifurol EFF hardened with the EFF 33 setting agent, and for ChS Epoxi 110 Bg 15. The ChS Epoxifurol EFF 33 type set by adding 20% aminoamide has a higher diffusion rate probably due to the presence of polar functional groups. The epoxy resin Eprosin E 26 containing a considerable amount of inorganic filler has a substantially higher diffusion rate for water molecules than the other types of evaluated resins. The polyester resin ChS Polyester 221 has the lowest rate of water diffusion. (J.B.)

  20. Two-dimensional photonic crystal polarizer modulated by silicon resin

    Science.gov (United States)

    Tan, Chunhua; Huang, Xuguang

    2007-11-01

    Photonic crystals(PCs)have many potential applications because of their ability to control light-wave propagation. In this paper, we theoretically investigate the tunability of light propagation in photonic crystal waveguides in two-dimensional photonic crystals with square lattices composed of heat-resistant silicon resin. Waveguides can be obtained by the infiltration of silicon resin into air regions in two-dimensional photonic crystals composed of air holes with square lattices of dielectric cylinders. The refractive index of silicon resin can be changed by manipulating the temperature of the sample. Numerical simulation by solving Maxwell's equations using the plane wave expansion(PWE) method shows that the band gaps can be continuously tuned by silicon resin, accordingly the light propagation in photonic crystal waveguides can be controlled. The band gap is analyzed in the temperature range of 20°C-120°C. In our work, the gap map for a square lattice of dielectric cylinders is also simulated. The method can separate TM- and TE-polarized modes in the waveguide. Such a mechanism of band gap adjustment should open up a new application for designing field-sensitive polarizer in photonic integrated circuits.

  1. Degradation of ion spent resin using the Fenton's reagent

    International Nuclear Information System (INIS)

    Araujo, Leandro Goulart de

    2013-01-01

    The most common method for spent radioactive ion exchange resin treatment is its immobilization in cement, which reduces the radionuclides release into the environment. Although this method is efficient, it increases considerably the final volume of the waste due to the low incorporation capacity. The objective of this work was to develop a degradation method of spent resins arising from the nuclear research reactor located at the Nuclear and Energy Research Institute (IPEN-CNEN/SP), using an Advanced Oxidation Process (AOP) with Fenton's reagents. This method would allow a higher incorporation in cement. Three different resins were evaluated: cationic, anionic and a mixture of both resins. The reactions were conducted varying the catalyst concentration (25, 50, 100 and 150 mM), the volume of hydrogen peroxide (320 to 460 mL), and three different temperatures, 50, 60 and 70 deg C. Degradation of about 98% was achieved using a 50 mM catalyst solution and 330 mL of hydrogen peroxide solution. The most efficient temperature was 60 deg C. (author)

  2. Particle bed reactor modeling

    Science.gov (United States)

    Sapyta, Joe; Reid, Hank; Walton, Lew

    The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.

  3. Polyimides Based on Asymmetric Dianhydrides (II) (a-BPDA vs a-BTDA) for Resin Transfer Molding (RTM)

    Science.gov (United States)

    Chuang, Kathy C.; Criss, Jim M.; Mintz, Eric A.

    2010-01-01

    A new series of low-melt viscosity imide resins (10-20 poise at 280 C) were formulated from asymmetric 2,3,3',4' -benzophenone dianhydride (a-BTDA) and 4-phenylethynylphthalic endcaps, along with 3,4' -oxydianiline, 3,3' -methylenedianiline and 3,3'- diaminobenzophenone, using a solvent-free melt process. a-BTDA RTM resins exhibited higher glass transition temperatures (Tg's = 330-400 C) compared to those prepared by asymmetric 2,3,3',4' -biphenyl dianhydride, (a-BPDA, Tg's = 320-370 C). These low-melt viscosity imide resins were fabricated into polyimide/T650-35 carbon fiber composites by a RTM process. Composites properties of a-BTDA resins, such as open-hole compression and short-beam shear strength, are compared to those of composites made from a-BPDA based resin at room temperature, 288 C and 315 C. These novel, high temperature RTM imide resins exhibit outstanding properties beyond the performance of conventional RTM resins, such as epoxy and BMI resins which have use-temperatures around 177 C and 232 C for aerospace applications.

  4. Determination of degradation conditions of exchange resins containing technetium; Determinacion de condiciones de degradacion de resinas de intercambio conteniendo tecnecio

    Energy Technology Data Exchange (ETDEWEB)

    Rivera S, A.; Monroy G, F.; Quintero P, E., E-mail: aa_1190@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    The quantification of Tc-99 in spent exchange resins, coming from nuclear power plants, is indispensable to define their administration. The Tc-99 is a pure beta emitter of 210000 years of half-life, volatile and of a high mobility in water and soil. For this reason, the objective of this work is to establish a digestion method of ionic exchange resins containing technetium that retains more than 95% of this radioisotope. Mineralization tests were carried out of a resin Amberlite IRN-150 by means of an oxidation heat, in acid medium, varying the resin mass, the medium volume, the media type, the temperature and the digestion time. The digested samples were analyzed by gas chromatography to estimate the grade of their degradation. The {sup 99m}Tc was used as tracer to determine the technetium percentage recovered after mineralizing the resin. The digestion process depends on the temperature and the resin mass. At higher temperature better mineralization of samples and to greater resin mass to a constant temperature, less degradation of the resin. The spectra beta of the {sup 99m}Tc and {sup 99}Tc are presented. (Author)

  5. Adsorption of heavy metal ions and azo dyes by crosslinked nanochelating resins based on poly(methylmethacrylate-co-maleic anhydride

    Directory of Open Access Journals (Sweden)

    M. Ghaemy

    2014-03-01

    Full Text Available Chelating resins are suitable materials for the removal of heavy metals in water treatments. A copolymer, Poly(MMA-co-MA, was synthesized by radical polymerization of maleic anhydride (MA and methyl methacrylate (MMA, characterized and transformed into multifunctional nanochelating resin beads (80–150 nm via hydrolysis, grafting and crosslink reactions. The resin beads were characterized by swelling studies, field emission scanning electron microscopy (FESEM and Fourier transform infrared spectroscopy (FTIR. The main purpose of this work was to determine the adsorption capacity of the prepared resins (swelling ratio ~55% towards metal ions such as Hg2+, Cd2+, Cu2+ from water at three different pH values (3, 6 and 9. Variations in pH and types of metal ions have not significantly affected the chelation capacity of these resins. The maximum chelation capacity of one of the prepared resin beads (Co-g-AP3 for Hg2+ was 63, 85.8 and 71.14 mg/g at pH 3, 6 and 9, respectively. Approximately 96% of the metal ions could be desorbed from the resin. Adsorption capacity of these resins towards three commercial synthetic azo dyes was also investigated. The maximum adsorption of dye AY42 was 91% for the resin Co-g-AP3 at room temperature. This insures the applicability of the synthesized resins for industrial applications.

  6. Epoxy Resins in Electron Microscopy

    Science.gov (United States)

    Finck, Henry

    1960-01-01

    A method of embedding biological specimens in araldite 502 (Ciba) has been developed for materials available in the United States. Araldite-embedded tissues are suitable for electron microscopy, but the cutting qualities of the resin necessitates more than routine attention during microtomy. The rather high viscosity of araldite 502 also seems to be an unnecessary handicap. The less viscous epoxy epon 812 (Shell) produces specimens with improved cutting qualities, and has several features—low shrinkage and absence of specimen damage during cure, minimal compression of sections, relative absence of electron beam-induced section damage, etc.—which recommends it as a routine embedding material. The hardness of the cured resin can be easily adjusted by several methods to suit the materials embedded in it. Several problems and advantages of working with sections of epoxy resins are also discussed. PMID:13822825

  7. 21 CFR 172.280 - Terpene resin.

    Science.gov (United States)

    2010-04-01

    ... CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Coatings, Films and Related Substances § 172.280 Terpene resin. The food additive terpene resin may be safely used...

  8. Action of ionizing radiation on epoxy resins

    Energy Technology Data Exchange (ETDEWEB)

    Van de Voorde, M. E.

    1970-12-01

    The resistance of classical and experimental epoxy resins to irradiation was studied. The resistance to irradiation of epoxy resins of diverse compositions as well as the development of resins having a radioresistance that approaches that of certain ceramics are discussed. Sources of irradiation and the techniques of dosimetry used are described. The structures of certain epoxy resins and of hardeners are given. The preparation of these resins and their physical properties is described. The effects of radiation on epoxy resins, as well as conditions of irradiation, and suggested mechanisms for degradation of the irradiated resins are discussed. The relationship between chemical structure of the resins and their physical properties is evaluated. (115 references) (JCB)

  9. Evaluation of ion exchange resins for iron control in copper electro-winning solutions; Evaluacion de resinas de intercambio ionico para el control de hierro en soluciones de electro-obtencion de cobre

    Energy Technology Data Exchange (ETDEWEB)

    Parada, F.; Dreisinger, D.; Wilkomirsky, I.

    2010-07-01

    Two commercial resins were evaluated for the extraction of iron from a copper electrowinning solution. Both resins efficiently extract iron. The Mono phosphonic resin has a greater charge capacity than the Diphonix resin and the Diphonix resin shows faster kinetics. Experimental results of the interrupted test and tests with different particle size of resins have demonstrated that extraction kinetics is controlled by diffusion into the particle in both resins. A good agreement with Fick's model for diffusion inside the particles confirms the proposed mechanism. Finally, temperature favors the process kinetics and its effect on the diffusion coefficient follows Arrhenius law, obtaining a value of 4,89 kcal/mol for the Mono phosphonic resin and 4,94 kcal/mol for the Diphenox resin. The aforementioned values are close to typical values for the proposed diffusional control which are 6 to 10 kcal/mol. (Author)

  10. Thermoset Blends of an Epoxy Resin and Polydicyclopentadiene

    Energy Technology Data Exchange (ETDEWEB)

    Rohde, Brian J.; Le, Kim Mai; Krishnamoorti, Ramanan; Robertson, Megan L.

    2016-12-13

    The mechanical properties of two chemically distinct and complementary thermoset polymers were manipulated through development of thermoset blends. The thermoset blend system was composed of an anhydride-cured diglycidyl ether of bisphenol A (DGEBA)-based epoxy resin, contributing high tensile strength and modulus, and polydicyclopentadiene (PDCPD), which has a higher toughness and impact strength as compared to other thermoset polymers. Ultra-small-angle and small-angle X-ray scattering analysis explored the morphology of concurrently cured thermoset blends, revealing a macroscopically phase separated system with a surface fractal structure across blended systems of varying composition. The epoxy resin rich and PDCPD rich phases exhibited distinct glass transitions (Tg’s): the Tg observed at higher temperature was associated with the epoxy resin rich phase and was largely unaffected by the presence of PDCPD, whereas the PDCPD rich phase Tg systematically decreased with increasing epoxy resin content due to inhibition of dicyclopentadiene ring-opening metathesis polymerization. The mechanical properties of these phase-separated blends were in reasonable agreement with predictions by the rule of mixtures for the blend tensile strength, modulus, and fracture toughness. Scanning electron microscopy analysis of the tensile and fracture specimen fracture surfaces showed an increase in energy dissipation mechanisms, such as crazing, shear banding, and surface roughness, as the fraction of the more ductile component, PDPCD, increased. These results present a facile method to tune the mechanical properties of a toughened thermoset network, in which the high modulus and tensile strength of the epoxy resin can be largely retained at high epoxy resin content in the blend, while increasing the fracture toughness.

  11. Investigation of the cytotoxicity of thermoplastic denture base resins

    Science.gov (United States)

    Jun, Soo-Kyung; Kim, Si-Chul; Okubo, Chikahiro

    2017-01-01

    PURPOSE The purpose of this study was to investigate the in vitro cytotoxicity of thermoplastic denture base resins and to identify the possible adverse effects of these resins on oral keratinocytes in response to hot water/food intake. MATERIALS AND METHODS Six dental thermoplastic resin materials were evaluated: three polyamide materials (Smile tone, ST; Valplast, VP; and Luciton FRS, LF), two acrylic materials (Acrytone, AT; and Acryshot, AS), and one polypropylene resin material (Unigum, UG). One heat-polymerized acrylic resin (Vertex RS, RS) was chosen for comparison. After obtaining extracts from specimens of the denture resin materials (Φ=10 mm and d=2 mm) under different extraction conditions (37℃ for 24 hours, 70℃ for 24 hours, and 121℃ for 1 hour), the extracts (50%) or serial dilutions (25%, 12.5%, and 6.25%) in distilled water were co-cultured for 24 hours with immortalized human oral keratinocytes (IHOKs) or mouse fibroblasts (L929s) for the cytotoxicity assay described in ISO 10993. RESULTS Greater than 70% viability was detected under all test conditions. Significantly lower IHOK and L929 viability was detected in the 50% extract from the VP (70℃) and AT (121℃) samples (P<.05), but only L929 showed reduced viability in the 50% and 25% extract from LF (37℃) (P<.05). CONCLUSION Extracts obtained from six materials under different extraction conditions (37℃, 70℃, and 121℃) did not exhibit severe cytotoxicity (less than 70% viability), although their potential risk to oral mucosa at high temperatures should not be ignored. PMID:29279765

  12. Radiation resistance of epoxy resins and their composistes

    International Nuclear Information System (INIS)

    Sonoda, Katsumi; Hayashi, Osamu; Tanaka, Takao; Hirabayashi, Shoji; Amakawa, Tadashi.

    1984-01-01

    In the electric equipment installed inside containment vessels in nuclear power plants, many epoxy resins have been employed as insulating materials. However, there are very few reports on the investigation of their properties in such environment, specifically under LOCA (Loss-of-Coolant Accident) conditions. This paper investigates on the electrical and mechanical properties of the epoxy resins supposed to be applicable to the actual equipment, by LOCA simulation. The epoxy resins used for the experiment were the following three types: (1) typical epoxy resin, bisphenol A group; (2) novolak group epoxy resins in consideration of improving humidity resistance; and (3) triazine group epoxy resins for the purpose of giving radiation, humidity and heat resistances. The last one includes the composites with Nomex and with laminated mica. After LOCA simulation which is composed of up to 2 MGy irradiation of 60 Co γ-ray at the dose rate of 10 4 Gy/h and the exposure to high temperature saturated steam, the electrical properties of dielectric tangent, insulation breakdown voltage (BDV) and conductivity and the mechanical properties of bending strength and viscoelasticity were measured. In the paper, the experimental results are described in detail. Of these, the triazine group epoxy/Nomex composite did not show swelling, but demonstrated stable radiation resistance. It is excellent in the electrical and mechanical properties, and also shows good dimension-stability. In LOCA simulation, its bending strength was reduced than that for only γ-irradiation of 2 MGy, but still had the residual strength of about 80 %. (Wakatsuki, Y.)

  13. Uranium sorption by tannin resins

    International Nuclear Information System (INIS)

    Olivares Rieumont, S.; Martinez Luzardo, J.; Torres Hernandez, J.; Lima Cazorla, D. de la Rosa.

    1998-01-01

    The sorption of uranium by immobilised Eucalyptus Saligna Sm. and Lysiloma latisiliqua L tannins was investigated. Immobilization condition were analyzed. These resins resulted suitable adsorbent for the concentration of uranium from aqueous systems. The sorption of uranium is pH dependent. At pH 5.5 maximum in sorption capacity is registered. The presence of appreciable amount of sodium chloride do not have any effect on uranium removal. Carbonate and calcium ions in concentrations similar to these that could be found in sea water and other natural water do not decrease the uranium uptake. Tannin resins can be used several times without an appreciable decay of their sorption capacity

  14. Silver nanoparticle incorporation effect on mechanical and thermal properties of denture base acrylic resins.

    Science.gov (United States)

    Köroğlu, Ayşegül; Şahin, Onur; Kürkçüoğlu, Işın; Dede, Doğu Ömür; Özdemir, Tonguç; Hazer, Baki

    2016-01-01

    The aim of the present study was to evaluate the mechanical and thermal characteristics of two denture base acrylic resins containing silver nanoparticles (AgNPs). Two different acrylic denture base resins (heat-polymerized and microwave polymerized) containing 0.3, 0.8 and 1.6 wt% AgNPs were evaluated for flexural strength, elastic modulus and impact strength. The glass transition temperature (Tg) and relative heat capacity (Cp) of the samples were determined from the Differential Scanning Calorimetry (DSC) results. For statistical analysis, two-way ANOVA and Tukey-HSD tests were performed. Addition of 0.8% and 1.6% AgNPs in microwave-polymerized resin significantly decreased the transverse strength and elastic modulus. In terms of impact strength, the addition of AgNPs has no effect on both resin groups. Glass transition temperature (Tg) was decreased with the addition of AgNPs for both denture base resins. The incorporation of AgNPs, generally used for antimicrobial efficiency, affected the transverse strength of the denture base acrylic resins depending on the concentration of nanoparticles. Tg was decreased with the addition of AgNPs for both denture base resins.

  15. Characterization of Composite Fan Case Resins

    Science.gov (United States)

    Dvoracek, Charlene M.

    2004-01-01

    . The ARES Instrument analyzed the material through torsion. The second machine, TA Instruments apparatus, applied a bending force to the specimen. These experiments were used to explore the effects of temperature and strain rate on the stiffness and strength of the resins. The two different types of loading allowed us to verify our results. An axial-torsional load frame, manufactured by MTS Systems, Inc., was used to conduct the tensile, compression, and torsional testing. These tests were used to determine the stress-strain curves for the resins. The elastic and plastic deformation data was provided to another team member for characterization of high fidelity material property predictions. This information was useful in having a better understanding of the polymers so that the fan cases could be as sturdy as possible. Deformation studies are the foundation for the computational modeling that provides the structural design of a composite engine case as well as detailed analysis of the blade impact event.

  16. Phosphorus-modified poly(styrene-co-divinylbenzene)–PAMAM chelating resin for the adsorption of uranium(VI) in aqueous

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qiong [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Liu, Yaochi, E-mail: liuyaochi72@163.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Wang, Chunzhi [Baling Company, China Petroleum and Chemical Corporation (China); Cheng, Jiashun [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2013-12-15

    Highlights: • A series of phosphorus-modified poly(styrene-co-divinylbenzene)–PAMAM chelating resins were synthesized. • The materials were commercially available and economic. • The new resins were high effective and selective adsorbents. • U(VI) adsorption is fitted with pseudo-second-order equation and Langmuir model. • The new resins can be regenerated. -- Abstract: Polyamidoamine (PAMAM) modified poly(styrene-co-divinylbenzene) absorbents carrying phosphorus functional groups (PS-PAMAM-PPA) were prepared and used as adsorbents for the adsorption of uranium(VI) from aqueous solution. Different generations of PAMAM were used for obtaining different chelating resins, PS-PPA, PS-1.0G PAMAM-PPA, PS-2.0G PAMAM-PPA, PS-3.0G PAMAM-PPA and PS-4.0G PAMAM-PPA. The synthesized resins were characterized by FTIR and XPS. The effects of many physio-chemical properties on metal ion adsorption to adsorbent phase, such as solution pH, kinetic studies, initial uranium concentration, temperature, were investigated using batch method. The results showed that the maximum adsorption capacity (99.89 mg/g) was observed at the pH 5.0 and 25 °C with initial U(VI) concentration 100 mg/L and adsorbent dose 1 g/L. PS-1.0G PAMAM-PPA had the largest adsorption capacity for U(VI) compared with other prepared adsorbents. The adsorption kinetics of U(VI) onto PS-1.0G PAMAM-PPA followed the mechanism of the pseudo-second-order equation, indicating that the chemical adsorption was a rate-limiting step. The calculated thermodynamic parameters (ΔG, ΔH, ΔS) stated that the adsorption of U(VI) onto PS-1.0G PAMAM-PPA were spontaneous, endothermic and feasible. The adsorption isotherms obeyed the Langmuir isotherm models. The desorption studies showed that PS-1.0G PAMAM-PPA could be used repeatedly and adsorption and desorption percentage did not have any noticeable loss after 27 cycles in a fixed bed.

  17. Method of removing contaminants from plastic resins

    Energy Technology Data Exchange (ETDEWEB)

    Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee' s Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

    2008-11-18

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  18. Method of removing contaminants from plastic resins

    Energy Technology Data Exchange (ETDEWEB)

    Bohnert,George W. (Harrisonville, MO); Hand,Thomas E. (Lee' s Summit, MO); Delaurentiis,Gary M. (Jamestown, CA)

    2007-08-07

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  19. Method for removing contaminants from plastic resin

    Science.gov (United States)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-30

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  20. Use of the 2-chlorotrityl chloride resin for microwave-assisted solid phase peptide synthesis.

    Science.gov (United States)

    Ieronymaki, Matthaia; Androutsou, Maria Eleni; Pantelia, Anna; Friligou, Irene; Crisp, Molly; High, Kirsty; Penkman, Kirsty; Gatos, Dimitrios; Tselios, Theodore

    2015-09-01

    A fast and efficient microwave (MW)-assisted solid-phase peptide synthesis protocol using the 2-chlorotrityl chloride resin and the Fmoc/tBu methodology, has been developed. The established protocol combines the advantages of MW irradiation and the acid labile 2-chlorotrityl chloride resin. The effect of temperature during the MW irradiation, the degree of resin substitution during the coupling of the first amino acids and the rate of racemization for each amino acid were evaluated. The suggested solid phase methodology is applicable for orthogonal peptide synthesis and for the synthesis of cyclic peptides. © 2015 Wiley Periodicals, Inc.