WorldWideScience

Sample records for residue sludge tank

  1. Phase Chemistry of Tank Sludge Residual Components

    Energy Technology Data Exchange (ETDEWEB)

    J.L. Krumhansl

    2002-04-02

    The US Department of Energy (DOE) has millions of gallons of high level nuclear waste stored in underground tanks at Hanford, Washington and Savannah River, South Carolina. These tanks will eventually be emptied and decommissioned. This will leave a residue of sludge adhering to the interior tank surfaces that may contaminate nearby groundwaters with radionuclides and RCRA metals. Performance assessment (PA) calculations must be carried out prior to closing the tanks. This requires developing radionuclide release models from the sludges so that the PA calculations can be based on credible source terms. These efforts continued to be hindered by uncertainties regarding the actual nature of the tank contents and the distribution of radionuclides among the various phases. In particular, it is of vital importance to know what radionuclides are associated with solid sludge components. Experimentation on actual tank sludges can be difficult, dangerous and prohibitively expensive. The research funded under this grant for the past three years was intended to provide a cost-effective method for developing the needed radionuclide release models using non-radioactive artificial sludges. Insights gained from this work will also have more immediate applications in understanding the processes responsible for heel development in the tanks and in developing effective technologies for removing wastes from the tanks.

  2. 33 CFR 157.17 - Oil residue (sludge) tank.

    Science.gov (United States)

    2010-07-01

    ...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.17 Oil residue (sludge) tank. (a) A tank vessel of 400 gross... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Oil residue (sludge) tank. 157.17...

  3. Phase chemistry of tank sludge residual components. 1998 annual progress report

    International Nuclear Information System (INIS)

    Brady, P.V.; Krumhansl, J.L.; Liu, J.; Nagy, K.L.

    1998-01-01

    'The proposed research will provide a scientific basis for predicting the long-term fate of radionuclides remaining with the sludge in decommissioned waste tanks. Nuclear activities in the United States and elsewhere produce substantial volumes of highly radioactive semi-liquid slurries that traditionally are stored in large underground tanks while final waste disposal strategies are established. Although most of this waste will eventually be reprocessed a contaminated structure will remain which must either be removed or decommissioned in place. To accrue the substantial savings associated with in-place disposal will require a performance assessment which, in turn, means predicting the leach behavior of the radionuclides associated with the residual sludges. The phase chemistry of these materials is poorly known so a credible source term cannot presently be formulated. Further, handling of actual radioactive sludges is exceedingly cumbersome and expensive. This proposal is directed at: (1) developing synthetic nonradioactive sludges that match wastes produced by the various fuel processing steps, (2) monitoring the changes in phase chemistry of these sludges as they age, and (3) relating the mobility of trace amounts of radionuclides (or surrogates) in the sludge to the phase changes in the aging wastes. This report summarizes work carried out during the first year of a three year project. A prerequisite to performing a meaningful study was to learn in considerable detail about the chemistry of waste streams produced by fuel reprocessing. At Hanford this is not a simple task since over the last five decades four different reprocessing schemes were used: the early BiPO 4 separation for just Pu, the U recovery activity to further treat wastes left by the BiPO 4 activities, the REDOX process and most recently, the PUREX processes. Savannah River fuel reprocessing started later and only PUREX wastes were generated. It is the working premise of this proposal that most

  4. Geochemical Testing And Model Development - Residual Tank Waste Test Plan

    International Nuclear Information System (INIS)

    Cantrell, K.J.; Connelly, M.P.

    2010-01-01

    This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

  5. GEOCHEMICAL TESTING AND MODEL DEVELOPMENT - RESIDUAL TANK WASTE TEST PLAN

    Energy Technology Data Exchange (ETDEWEB)

    CANTRELL KJ; CONNELLY MP

    2010-03-09

    This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

  6. K Basins sludge removal temporary sludge storage tank system

    Energy Technology Data Exchange (ETDEWEB)

    Mclean, M.A.

    1997-06-12

    Shipment of sludge from the K Basins to a disposal site is now targeted for August 2000. The current path forward for sludge disposal is shipment to Tank AW-105 in the Tank Waste Remediation System (TWRS). Significant issues of the feasibility of this path exist primarily due to criticality concerns and the presence of polychlorinated biphenyls (PCBS) in the sludge at levels that trigger regulation under the Toxic Substance Control Act. Introduction of PCBs into the TWRS processes could potentially involve significant design and operational impacts to both the Spent Nuclear Fuel and TWRS projects if technical and regulatory issues related to PCB treatment cannot be satisfactorily resolved. Concerns of meeting the TWRS acceptance criteria have evolved such that new storage tanks for the K Basins sludge may be the best option for storage prior to vitrification of the sludge. A reconunendation for the final disposition of the sludge is scheduled for June 30, 1997. To support this decision process, this project was developed. This project provides a preconceptual design package including preconceptual designs and cost estimates for the temporary sludge storage tanks. Development of cost estimates for the design and construction of sludge storage systems is required to help evaluate a recommendation for the final disposition of the K Basin sludge.

  7. Solidification process for sludge residue

    International Nuclear Information System (INIS)

    Pearce, K.L.

    1998-01-01

    This report investigates the solidification process used at 100-N Basin to solidify the N Basin sediment and assesses the N Basin process for application to the K Basin sludge residue material. This report also includes a discussion of a solidification process for stabilizing filters. The solidified matrix must be compatible with the Environmental Remediation Disposal Facility acceptance criteria

  8. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Actual Waste Testing with SRS Tank 5F Sludge

    Energy Technology Data Exchange (ETDEWEB)

    King, William D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, Michael S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Solubility testing with actual High Level Waste tank sludge has been conducted in order to evaluate several alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge sluicing efforts. Tests were conducted with archived Savannah River Site (SRS) radioactive sludge solids that had been retrieved from Tank 5F in order to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent toward dissolving the bulk non-radioactive waste components. Solubility tests were performed by direct sludge contact with the oxalic/nitric acid reagent and with sludge that had been pretreated and acidified with dilute nitric acid. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid following current baseline tank chemical cleaning methods. One goal of testing with the optimized reagent was to compare the total amounts of oxalic acid and water required for sludge dissolution using the baseline and optimized cleaning methods. A second objective was to compare the two methods with regard to the dissolution of actinide species known to be drivers for SRS tank closure Performance Assessments (PA). Additionally, solubility tests were conducted with Tank 5 sludge using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species.

  9. Chemical dissolving of sludge from a high level waste tank at the Savannah River Plant

    International Nuclear Information System (INIS)

    Bradley, R.F.; Hill, A.J. Jr.

    1977-11-01

    The concept for decontamination and retirement of radioactive liquid waste tanks at the Savannah River Plant (SRP) involves hydraulic slurrying to remove most of the settled sludges followed by chemical dissolving of residual sludges. Dissolving tests were carried out with small samples of sludge from SRP Tank 16H. Over 95 percent of the sludge was dissolved by 8 wt percent oxalic acid at 85 0 C with agitation in a two-step dissolving process (50 hours per step) and an initial reagent-to-sludge volume of 20. Oxalic acid does not attack the waste tank material of construction, appears to be compatible with the existing waste farm processes and equipment after neutralization, and with future processes planned for fixation of the waste into a high-integrity solid for packaging and shipping

  10. Tank 241-Z-361 Sludge Retrieval and Treatment Alternatives

    International Nuclear Information System (INIS)

    HAMPTON, B.K.

    2000-01-01

    The Plutonium Finishing Plant (PFP) Tank 241-Z-361 (Z-361) contains legacy sludge resulting from waste discharges from past missions at PFP. A sketch of the tank is shown in Figure 1. In this view various risers and penetrations are shown along with the sludge level depicted by the horizontal line halfway up the tank, and the ground level depicted by the horizontal line above the tank. The HEPA filter installed for breathing is also shown on one of the risers

  11. Phase chemistry and radionuclide retention of high level radioactive waste tank sludges

    Energy Technology Data Exchange (ETDEWEB)

    KRUMHANSL,JAMES L.; BRADY,PATRICK V.; ZHANG,PENGCHU; ARTHUR,SARA E.; HUTCHERSON,SHEILA K.; LIU,J.; QIAN,M.; ANDERSON,HOWARD L.

    2000-05-19

    The US Department of Energy (DOE) has millions of gallons of high level nuclear waste stored in underground tanks at Hanford, Washington and Savannah River, South Carolina. These tanks will eventually be emptied and decommissioned. This will leave a residue of sludge adhering to the interior tank surfaces that may contaminate groundwaters with radionuclides and RCRA metals. Experimentation on such sludges is both dangerous and prohibitively expensive so there is a great advantage to developing artificial sludges. The US DOE Environmental Management Science Program (EMSP) has funded a program to investigate the feasibility of developing such materials. The following text reports on the success of this program, and suggests that much of the radioisotope inventory left in a tank will not move out into the surrounding environment. Ultimately, such studies may play a significant role in developing safe and cost effective tank closure strategies.

  12. Rheology of Savannah River site tank 42 HLW radioactive sludge

    International Nuclear Information System (INIS)

    Ha, B.C.

    1997-01-01

    Knowledge of the rheology of the radioactive sludge slurries at the Savannah River Site is necessary in order to ensure that they can be retrieved from waste tanks and processed for final disposal. At Savannah River Site, Tank 42 sludge represents on of the first HLW radioactive sludges to be vitrified in the Defense Waste Processing Facility. The rheological properties of unwashed Tank 42 sludge slurries at various solids concentrations were measured remotely in the Shielded Cells at the Savannah River Technology Center using a modified Haake Rotovisco viscometer

  13. Computer modeling of ORNL storage tank sludge mobilization and mixing

    Energy Technology Data Exchange (ETDEWEB)

    Terrones, G.; Eyler, L.L.

    1993-09-01

    This report presents and analyzes the results of the computer modeling of mixing and mobilization of sludge in horizontal, cylindrical storage tanks using submerged liquid jets. The computer modeling uses the TEMPEST computational fluid dynamics computer program. The horizontal, cylindrical storage tank configuration is similar to the Melton Valley Storage Tanks (MVST) at Oak Ridge National (ORNL). The MVST tank contents exhibit non-homogeneous, non-Newtonian rheology characteristics. The eventual goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents of the tanks.

  14. Computer modeling of ORNL storage tank sludge mobilization and mixing

    International Nuclear Information System (INIS)

    Terrones, G.; Eyler, L.L.

    1993-09-01

    This report presents and analyzes the results of the computer modeling of mixing and mobilization of sludge in horizontal, cylindrical storage tanks using submerged liquid jets. The computer modeling uses the TEMPEST computational fluid dynamics computer program. The horizontal, cylindrical storage tank configuration is similar to the Melton Valley Storage Tanks (MVST) at Oak Ridge National (ORNL). The MVST tank contents exhibit non-homogeneous, non-Newtonian rheology characteristics. The eventual goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents of the tanks

  15. Tank 12H residuals sample analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shine, E. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Diprete, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-06-11

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 12H final characterization samples to determine the residual tank inventory prior to grouting. Eleven Tank 12H floor and mound residual material samples and three cooling coil scrape samples were collected and delivered to SRNL between May and August of 2014.

  16. Rheology of Savannah River site tank 42 and tank 51 HLW radioactive sludges

    International Nuclear Information System (INIS)

    Ha, B.C.; Bibler, N.E.

    1996-01-01

    Knowledge of the rheology of the radioactive sludge slurries at the Savannah River Site (SRS) is necessary in order to ensure that they can be retrieved from waste tanks and processed for final disposal. The high activity radioactive wastes stored as caustic slurries at SRS result from the neutralization of acid waste generated from production of nuclear defense materials. During storage, the wastes separate into a supernate layer and a sludge layer. In the Defense Waste Processing Facility (DWPF) at SRS, the radionuclides from the sludge and supernate will be immobilized into borosilicate glass for long term storage and eventual disposal. Before transferring the waste from a storage tank to the DWPF, a portion of the aluminum in the waste sludge will be dissolved and the sludge will be extensively washed to remove sodium. Tank 51 and Tank 42 radioactive sludges represent the first batch of HLW sludge to be processed in the DWPF. This paper presents results of rheology measurements of Tank 51 and Tank 42 at various solids concentrations. The rheologies of Tank 51 and Tank 42 radioactive slurries were measured remotely in the Shielded Cells Operations (SCO) at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco RV-12 with an M150 measuring drive unit and TI sensor system. Rheological properties of the Tank 51 and Tank 42 radioactive sludges were measured as a function of weight percent solids. The weight percent solids of Tank 42 sludge was 27, as received. Tank 51 sludge had already been washed. The weight percent solids were adjusted by dilution with water or by concentration through drying. At 12, 15, and 18 weight percent solids, the yield stresses of Tank 51 sludge were 5, 11, and 14 dynes/cm2, respectively. The apparent viscosities were 6, 10, and 12 centipoises at 300 sec-1 shear rate, respectively

  17. Caustic Leaching of Sludges from Selected Hanford Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Chase, C.W.; Egan, B.Z.; Spencer, B.B.

    1998-08-01

    The objective of this project was to measure the caustic dissolution behavior of sludge components from selected Hanford waste tank sludge samples under different conditions. The dissolution of aluminum, chromium, and other constituents of actual sludge samples in aqueous sodium hydroxide solution was evaluated using various values of temperature, sodium hydroxide concentration, volume of caustic solution per unit mass of sludge (liquid:solids ratio), and leaching time.

  18. Stabilization of Mercury in High pH Tank Sludges

    Energy Technology Data Exchange (ETDEWEB)

    Spence, R.; Barton, J.

    2003-02-24

    DOE complex contains many tank sludges contaminated with mercury. The high pH of these tank sludges typically fails to stabilize the mercury, resulting in these radioactive wastes also being characteristically hazardous or mixed waste. The traditional treatment for soluble inorganic mercury species is precipitation as insoluble mercuric sulfide. Sulfide treatment and a commercial mercury-stabilizing product were tested on surrogate sludges at various alkaline pH values. Neither the sulfide nor the commercial product stabilized the mercury sufficiently at the high pH of the tank sludges to pass the Toxicity Characteristic Leach Procedure (TCLP) treatment standards of the Resource Conservation and Recovery Act (RCRA). The commercial product also failed to stabilize the mercury in samples of the actual tank sludges.

  19. SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J.; Click, D.; Lambert, D.; Reboul, S.

    2011-11-16

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest

  20. Sludge Batch 7B Qualification Activities With SRS Tank Farm Sludge

    International Nuclear Information System (INIS)

    Pareizs, J.; Click, D.; Lambert, D.; Reboul, S.

    2011-01-01

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest

  1. Tank 42 sludge-only process development for the Defense Waste Processing Facility (DWPF)

    International Nuclear Information System (INIS)

    Lambert, D.P.

    2000-01-01

    Defense Waste Processing Facility (DWPF) requested the development of a sludge-only process for Tank 42 sludge since at the current processing rate, the Tank 51 sludge has been projected to be depleted as early as August 1998. Testing was completed using a non-radioactive Tank 42 sludge simulant. The testing was completed under a range of operating conditions, including worst case conditions, to develop the processing conditions for radioactive Tank 42 sludge. The existing Tank 51 sludge-only process is adequate with the exception that 10 percent additional acid is recommended during sludge receipt and adjustment tank (SRAT) processing to ensure adequate destruction of nitrite during the SRAT cycle

  2. Washing and Caustic Leaching of Hanford Tank Sludge: Results of FY 1998 Studies

    Energy Technology Data Exchange (ETDEWEB)

    GJ Lumetta; BM Rapko; J Liu; DJ Temer; RD Hunt

    1998-12-11

    Sludge washing and parametric caustic leaching tests were performed on sludge samples tiom five Hanford tanks: B-101, BX-1 10, BX-112, C-102, and S-101. These studies examined the effects of both dilute hydroxide washing and caustic leaching on the composition of the residual sludge solids. ` Dilute hydroxide washing removed from <1 to 25% of the Al, -20 to 45% of the Cr, -25 to 97% of the P, and 63 to 99% of the Na from the Hdord tank sludge samples examined. The partial removal of these elements was likely due to the presence of water-soluble sodium salts of aluminate, chromate, hydroxide, nitrate, nitrite, and phosphate, either in the interstitial liquid or as dried salts.

  3. Development of Alkaline Oxidative Dissolution Methods for Chromium (III) Compounds Present in Hanford Site Tank Sludges

    International Nuclear Information System (INIS)

    Krot, N.N.; Shilov, V.P.; Fedoseev, A.M.; Budantseva, N.A.; Nikonov, M.V.; Yusov, A.B.; Garnov, A.Yu.; Charushnikova, I.A.; Perminov, V.P.; Astafurova, L.N.; Lapitskaya, T.S.; Makarenkov, V.I.

    1999-01-01

    The high-level radioactive waste sludge in the underground storage tanks at the Hanford Site contains various chromium(III)solid phases. Dissolution and removal of chromium from tank waste sludges is desirable prior to high-level waste vitrification because increased volume is required to incorporate the residual chromium. Unfortunately, dissolution of chromium from the sludge to form Cr(OH) 4 - through treatment with heated NaOH solution (also used to dissolve aluminum phases and metathesize phosphates to sodium salts) generally has been unsuccessful in tests with both simulated and genuine Hanford waste sludges. Oxidative dissolution of the Cr(III) compounds to form soluble chromate has been proposed as an alternative chromium solid phase dissolution method and results of limited prior testing have been reported

  4. Status Report on Phase Identification in Hanford Tank Sludges

    International Nuclear Information System (INIS)

    Rapko, B.M.; Lumetta, G.J.

    2000-01-01

    The US Department of Energy plans to vitrify Hanford's tank wastes. The vitrified wastes will be divided into low-activity and high-level fractions. There is an effort to reduce the quantity of high-activity wastes by removing nonradioactive components because of the high costs involved in treating high-level waste. Pretreatment options, such as caustic leaching, to selectively remove nonradioactive components are being investigated. The effectiveness of these proposed processes for removing nonradioactive components depends on the chemical phases in the tank sludges. This review summarizes the chemical phases identified to date in Hanford tank sludges

  5. Estimating Residual Solids Volume In Underground Storage Tanks

    International Nuclear Information System (INIS)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.; Tihey, John R.

    2014-01-01

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved and treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to

  6. Estimating Residual Solids Volume In Underground Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.; Tihey, John R.

    2014-01-08

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved and treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The

  7. Hanford Tank 241-C-106: Residual Waste Contaminant Release Model and Supporting Data

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2005-06-03

    CH2M HILL is producing risk/performance assessments to support the closure of single-shell tanks at the DOE's Hanford Site. As part of this effort, staff at PNNL were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. This report provides the information developed by PNNL.

  8. Hanford Tank 241-C-106: Residual Waste Contaminant Release Model and Supporting Data

    International Nuclear Information System (INIS)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2005-01-01

    CH2M HILL is producing risk/performance assessments to support the closure of single-shell tanks at the DOE's Hanford Site. As part of this effort, staff at PNNL were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. This report provides the information developed by PNNL

  9. Sludge mobilization with submerged nozzles in horizontal cylindrical tanks

    International Nuclear Information System (INIS)

    Hylton, T.D.; Cummins, R.L.; Youngblood, E.L.; Perona, J.J.

    1995-10-01

    The Melton Valley Storage Tanks (MVSTs) and the evaporator service tanks at the Oak Ridge National Laboratory (ORNL) are used for the collection and storage of liquid low-level waste (LLLW). Wastes collected in these tanks are typically acidic when generated and are neutralized with sodium hydroxide to protect the tanks from corrosion; however, the high pH of the solution causes the formation of insoluble compounds that precipitate. These precipitates formed a sludge layer approximately 0.6 to 1.2 m (2 to 4 ft) deep in the bottom of the tanks. The sludge in the MVSTs and the evaporator service tanks will eventually need to be removed from the tanks and treated for final disposal or transferred to another storage facility. The primary options for removing the sludge include single-point sluicing, use of a floating pump, robotic sluicing, and submerged-nozzle sluicing. The objectives of this study were to (1) evaluate the feasibility of submerged-nozzle sluicing in horizontal cylindrical tanks and (2) obtain experimental data to validate the TEMPEST (time-dependent, energy, momentun, pressure, equation solution in three dimensions) computer code

  10. Washing and caustic leaching of Hanford tank sludges

    International Nuclear Information System (INIS)

    Lumetta, G.J.; Rapko, B.M.; Colton, N.G.

    1994-01-01

    Methods are being developed to treat and dispose of large volumes of radioactive wastes stored in underground tanks at the U.S. Department of Energy's Hanford Site. The wastes will be partitioned into high-level waste (HLW) and low-level waste (LLW) fractions. The HLW will be vitrified into borosilicate glass and disposed of in a geologic repository, while the LLW will be immobilized in a glass matrix and will likely be disposed of by shallow burial at the Hanford Site. The wastes must be pretreated to reduce the volume of the HLW fraction, so that vitrification and disposal costs can be minimized. The current baseline process for pretreating Hanford tank sludges is to leach the sludge under caustic conditions, then remove the solubilized components of the sludge by water washing. Tests of this method have been performed with samples taken from several different tanks at Hanford. The results of these tests are presented in terms of the composition of the sludge before and after leaching. X-ray diffraction and scanning electron microscopy coupled with electron dispersive x-ray techniques have been used to identify the phases in the untreated and treated sludges

  11. Feasibility report on criticality issues associated with storage of K Basin sludge in tanks farms

    Energy Technology Data Exchange (ETDEWEB)

    Vail, T.S.

    1997-05-29

    This feasibility study provides the technical justification for conclusions about K Basin sludge storage options. The conclusions, solely based on criticality safety considerations, depend on the treatment of the sludge. The two primary conclusions are, (1) untreated sludge must be stored in a critically safe storage tank, and (2) treated sludge (dissolution, precipitation and added neutron absorbers) can be stored in a standard Double Contained Receiver Tank (DCRT) or 241-AW-105 without future restrictions on tank operations from a criticality safety perspective.

  12. Hanford Tank 241-C-106: Impact of Cement Reactions on Release of Contaminants from Residual Waste

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2006-09-01

    The CH2M HILL Hanford Group, Inc. (CH2M HILL) is producing risk/performance assessments to support the closure of single-shell tanks at the U.S. Department of Energy's Hanford Site. As part of this effort, staff at Pacific Northwest National Laboratory were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. Initial work to produce release models was conducted on residual tank sludge using pure water as the leaching agent. The results were reported in an earlier report. The decision has now been made to close the tanks after waste retrieval with a cementitious grout to minimize infiltration and maintain the physical integrity of the tanks. This report describes testing of the residual waste with a leaching solution that simulates the composition of water passing through the grout and contacting the residual waste at the bottom of the tank.

  13. Hanford Tank 241-C-106: Impact of Cement Reactions on Release of Contaminants from Residual Waste

    International Nuclear Information System (INIS)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2006-01-01

    The CH2M HILL Hanford Group, Inc. (CH2M HILL) is producing risk/performance assessments to support the closure of single-shell tanks at the U.S. Department of Energy's Hanford Site. As part of this effort, staff at Pacific Northwest National Laboratory were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. Initial work to produce release models was conducted on residual tank sludge using pure water as the leaching agent. The results were reported in an earlier report. The decision has now been made to close the tanks after waste retrieval with a cementitious grout to minimize infiltration and maintain the physical integrity of the tanks. This report describes testing of the residual waste with a leaching solution that simulates the composition of water passing through the grout and contacting the residual waste at the bottom of the tank.

  14. Hanford Tank 241-S-112 Residual Waste Composition and Leach Test Data

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Krupka, Kenneth M.; Geiszler, Keith N.; Lindberg, Michael J.; Arey, Bruce W.; Schaef, Herbert T.

    2008-08-29

    This report presents the results of laboratory characterization and testing of two samples (designated 20406 and 20407) of residual waste collected from tank S-112 after final waste retrieval. These studies were completed to characterize the residual waste and assess the leachability of contami¬nants from the solids. This is the first report from this PNNL project to describe the composition and leach test data for residual waste from a salt cake tank. All previous PNNL reports (Cantrell et al. 2008; Deutsch et al. 2006, 2007a, 2007b, 2007c) describing contaminant release models, and characterization and testing results for residual waste in single-shell tanks were based on samples from sludge tanks.

  15. Gas composition of sludge residue profiles in a sludge treatment reed bed between loadings

    DEFF Research Database (Denmark)

    Larsen, Julie Dam; Nielsen, Steen M; Scheutz, Charlotte

    2017-01-01

    Treatment of sludge in sludge treatment reed bed systems includes dewatering and mineralization. The mineralization process, which is driven by microorganisms, produces different gas species as by-products. The pore space composition of the gas species provides useful information on the biological...... processes occurring in the sludge residue. In this study, we measured the change in composition of gas species in the pore space at different depth levels in vertical sludge residue profiles during a resting period of 32 days. The gas composition of the pore space in the sludge residue changed during...... the resting period. As the resting period proceeded, atmospheric air re-entered the pore space at all depth levels. The methane (CH4) concentration was at its highest during the first part of the resting period, and then declined as the sludge residue became more dewatered and thereby aerated. In the pore...

  16. Correlation models for waste tank sludges and slurries

    International Nuclear Information System (INIS)

    Mahoney, L.A.; Trent, D.S.

    1995-07-01

    This report presents the results of work conducted to support the TEMPEST computer modeling under the Flammable Gas Program (FGP) and to further the comprehension of the physical processes occurring in the Hanford waste tanks. The end products of this task are correlation models (sets of algorithms) that can be added to the TEMPEST computer code to improve the reliability of its simulation of the physical processes that occur in Hanford tanks. The correlation models can be used to augment, not only the TEMPEST code, but other computer codes that can simulate sludge motion and flammable gas retention. This report presents the correlation models, also termed submodels, that have been developed to date. The submodel-development process is an ongoing effort designed to increase our understanding of sludge behavior and improve our ability to realistically simulate the sludge fluid characteristics that have an impact on safety analysis. The effort has employed both literature searches and data correlation to provide an encyclopedia of tank waste properties in forms that are relatively easy to use in modeling waste behavior. These properties submodels will be used in other tasks to simulate waste behavior in the tanks. Density, viscosity, yield strength, surface tension, heat capacity, thermal conductivity, salt solubility, and ammonia and water vapor pressures were compiled for solutions and suspensions of sodium nitrate and other salts (where data were available), and the data were correlated by linear regression. In addition, data for simulated Hanford waste tank supernatant were correlated to provide density, solubility, surface tension, and vapor pressure submodels for multi-component solutions containing sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate

  17. Correlation models for waste tank sludges and slurries

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, L.A.; Trent, D.S.

    1995-07-01

    This report presents the results of work conducted to support the TEMPEST computer modeling under the Flammable Gas Program (FGP) and to further the comprehension of the physical processes occurring in the Hanford waste tanks. The end products of this task are correlation models (sets of algorithms) that can be added to the TEMPEST computer code to improve the reliability of its simulation of the physical processes that occur in Hanford tanks. The correlation models can be used to augment, not only the TEMPEST code, but other computer codes that can simulate sludge motion and flammable gas retention. This report presents the correlation models, also termed submodels, that have been developed to date. The submodel-development process is an ongoing effort designed to increase our understanding of sludge behavior and improve our ability to realistically simulate the sludge fluid characteristics that have an impact on safety analysis. The effort has employed both literature searches and data correlation to provide an encyclopedia of tank waste properties in forms that are relatively easy to use in modeling waste behavior. These properties submodels will be used in other tasks to simulate waste behavior in the tanks. Density, viscosity, yield strength, surface tension, heat capacity, thermal conductivity, salt solubility, and ammonia and water vapor pressures were compiled for solutions and suspensions of sodium nitrate and other salts (where data were available), and the data were correlated by linear regression. In addition, data for simulated Hanford waste tank supernatant were correlated to provide density, solubility, surface tension, and vapor pressure submodels for multi-component solutions containing sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate.

  18. Contaminant Release from Residual Waste in Closed Single-Shell Tanks and Other Waste Forms Associated with the Tanks

    International Nuclear Information System (INIS)

    Deutsch, William J.

    2008-01-01

    This chapter describes the release of contaminants from the various waste forms that are anticipated to be associated with closure of the single-shell tanks. These waste forms include residual sludge or saltcake that will remain in the tanks after waste retrieval. Other waste forms include engineered glass and cementitious materials as well as contaminated soil impacted by previous tank leaks. This chapter also describes laboratory testing to quantify contaminant release and how the release data are used in performance/risk assessments for the tank waste management units and the onsite waste disposal facilities. The chapter ends with a discussion of the surprises and lessons learned to date from the testing of waste materials and the development of contaminant release models

  19. Grout and glass performance in support of stabilization/solidification of ORNL tank sludges

    International Nuclear Information System (INIS)

    Spence, R.D.; Mattus, C.H.; Mattus, A.J.

    1998-09-01

    Wastewater at Oak Ridge National Laboratory (ORNL) is collected, evaporated, and stored in the Melton Valley Storage Tanks (MVST) and Bethel Valley Evaporator Storage Tanks (BVEST) pending treatment for disposal. In addition, some sludges and supernatants also requiring treatment remain in two inactive tank systems: the gunite and associated tanks (GAAT) and the old hydrofracture (OHF) tank. The waste consists of two phases: sludge and supernatant. The sludges contain a high amount of radioactivity, and some are classified as TRU sludges. Some Resource Conservation and Recovery Act (RCRA) metal concentrations are high enough to be defined as RCRA hazardous; therefore, these sludges are presumed to be mixed TRU waste. Grouting and vitrification are currently two likely stabilization/solidification alternatives for mixed wastes. Grouting has been used to stabilize/solidify hazardous and low-level radioactive waste for decades. Vitrification has been developed as a high-level radioactive alternative for decades and has been under development recently as an alternative disposal technology for mixed waste. The objective of this project is to define an envelope, or operating window, for grout and glass formulations for ORNL tank sludges. Formulations will be defined for the average composition of each of the major tank farms (BVEST/MVST, GAAT, and OHF) and for an overall average composition of all tank farms. This objective is to be accomplished using surrogates of the tank sludges with hot testing of actual tank sludges to check the efficacy of the surrogates

  20. Grout and glass performance in support of stabilization/solidification of ORNL tank sludges

    Energy Technology Data Exchange (ETDEWEB)

    Spence, R.D.; Mattus, C.H.; Mattus, A.J.

    1998-09-01

    Wastewater at Oak Ridge National Laboratory (ORNL) is collected, evaporated, and stored in the Melton Valley Storage Tanks (MVST) and Bethel Valley Evaporator Storage Tanks (BVEST) pending treatment for disposal. In addition, some sludges and supernatants also requiring treatment remain in two inactive tank systems: the gunite and associated tanks (GAAT) and the old hydrofracture (OHF) tank. The waste consists of two phases: sludge and supernatant. The sludges contain a high amount of radioactivity, and some are classified as TRU sludges. Some Resource Conservation and Recovery Act (RCRA) metal concentrations are high enough to be defined as RCRA hazardous; therefore, these sludges are presumed to be mixed TRU waste. Grouting and vitrification are currently two likely stabilization/solidification alternatives for mixed wastes. Grouting has been used to stabilize/solidify hazardous and low-level radioactive waste for decades. Vitrification has been developed as a high-level radioactive alternative for decades and has been under development recently as an alternative disposal technology for mixed waste. The objective of this project is to define an envelope, or operating window, for grout and glass formulations for ORNL tank sludges. Formulations will be defined for the average composition of each of the major tank farms (BVEST/MVST, GAAT, and OHF) and for an overall average composition of all tank farms. This objective is to be accomplished using surrogates of the tank sludges with hot testing of actual tank sludges to check the efficacy of the surrogates.

  1. Rheology of Savannah River Site Tank 42 radioactive sludges. Revision 1

    International Nuclear Information System (INIS)

    Ha, B.C.; Bibler, N.E.

    1995-01-01

    Knowledge of the rheology of the radioactive sludge slurries at the Savannah River Site (SRS) is necessary in order to ensure that they can be retrieved from waste tanks and processed for final disposal. At Savannah River Site (SRS), Tank 42 sludge represents one of the first HLW radioactive sludges to be vitrified in the Defense Waste Processing Facility (DWPF). The rheological properties of unwashed Tank 42 sludge slurries at various solids concentrations were measured remotely in the Shielded Cells at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco viscometer. Rheological properties of Tank 42 radioactive sludge were measured as a function of weight percent total solids to ensure that the first DWPF radioactive sludge batch can be pumped and processed in the DWPF with the current design bases. The yield stress and consistency of the sludge slurries were determined by assuming a Bingham plastic fluid model

  2. Colloidal agglomerates in tank sludge: Impact on waste processing

    International Nuclear Information System (INIS)

    Bunker, B.C.; Martin, J.E.

    1998-01-01

    'Insoluble colloidal sludges in hazardous waste streams such as tank wastes can pose serious problems for waste processing, interfering with retrieval, transport, separation, and solidification procedures. Properties of sediment layers and sludge suspensions such as slurry viscosities, sedimentation rates, and final sediment densities can vary by orders of magnitude depending on the particle types present, the degree to which the particles agglomerate or stick to each other, and on a wide range of processing parameters such as solution shear rates, pH, salt content, and temperature. The objectives of this work are to: (1) understand the factors controlling the nature and extent of colloidal agglomeration under expected waste processing conditions; (2) determine how agglomeration phenomena influence physical properties relevant to waste processing including rheology, sedimentation, and filtration; and (3) develop strategies for optimizing processing conditions via control of agglomeration phenomena. Insoluble colloidal sludges in hazardous waste streams such as tank wastes can pose serious problems for waste processing, interfering with retrieval, transport, separation, and solidification procedures. Properties of sediment layers and sludge suspensions such as slurry viscosities, sedimentation rates, and final sediment densities can vary by orders of magnitude depending on the particle types present, the degree to which the particles agglomerate or stick to each other, and on a wide range of processing parameters such as solution shear rates, pH, salt content, and temperature. The objectives of this work are to: (1) understand the factors controlling the nature and extent of colloidal agglomeration under expected waste processing conditions; (2) determine how agglomeration phenomena influence physical properties relevant to waste processing including rheology, sedimentation, and filtration; and (3) develop strategies for optimizing processing conditions via control

  3. Chemical characterization of SRP waste tank sludges and supernates

    International Nuclear Information System (INIS)

    Gray, L.W.; Donnan, M.Y.; Okamoto, B.Y.

    1979-08-01

    Most high-level liquid wastes at the Savannah River Plant (SRP) are byproducts from plutonium and enriched uranium recovery processes. The high-level liquid wastes generated by these separations processes are stored in large, underground, carbon-steel tanks. The liquid wastes consist of: supernate (an aqueous solution containing sodium, nitrate, nitrite, hydroxyl, and aluminate ions), sludge (a gelatinous material containing insoluble components of the waste, such as ferric and aluminum hydroxides, and mercuric and manganese oxides), and salt cake (crystals, such as sodium nitrate, formed by evaporation of water from supernate). Analyses of SRP wastes by laser-Raman spectrometry, atomic absorption spectrometry, spark-source mass spectrometry, neutron activation analysis, colorimetry, ion chromatography, and various other wet-chemical and radiochemical methods are discussed. These analyses are useful in studies of waste tank corrosion and of forms for long-term waste storage

  4. HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT

    International Nuclear Information System (INIS)

    Jolly, R; Bruce Martin, B

    2008-01-01

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea

  5. HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Jolly, R; Bruce Martin, B

    2008-01-15

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple

  6. Characterization and decant of Tank 42H sludge sample ESP-200

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M.S.

    2000-04-25

    DWPF Engineering requested that the Savannah River Technology Center (SRTC) provide a demonstration of the DWPF flowsheet on sludge from Tank 42H in the Shielded Cell facility. A 5 liter sample of the Tank 42H sludge (ESP-200), obtained with the tank contents fully mixed, arrived at SRTC on January 20, 1998. This report details receipt of the 5 liter sample at SRTC, the decant of the sample, and the characterization of the pre- and post-decant Tank 42H sludge. Evaluation of the measured composition of the supernate indicates Sample ESP-200 became diluted approximately 20 percent by volume prior to receipt. This dilution complicates the relationship of the characterization of Post-Decant ESP-200 to the current contents of Tank 42H. For the purposes of modeling the current tank contents of Tank 42H, this report provides an estimated composition based on analytical data of recent samples from Tank 42H.

  7. Isolation and identification of oil sludge degrading bacteria from production tank Number 9 Masjed Soleiman

    Directory of Open Access Journals (Sweden)

    Yalda Sheyni

    2014-07-01

    Full Text Available   Introduction: “Bioremediation” is one of the most effective methods to remove petroleum contaminants. The aim of the present study is to isolate the indigenous bacteria from the waste petroleum in the Masjed Soleiman No. 9 production tank and to examine the effect of their application on the elimination of petroleum heavy chain hydrocarbons and converting them into light compounds .   Materials and methods: Two percent of petroleum sludge was inoculated to the mineral basal medium and after proliferation of its indigenous bacteria, they were inoculated into the mixture of oil sludge and sand at level of 5%, and the amount of total hydrocarbons and residual oil were measured and compared. The isolates were identified based on biochemical tests and 16S rRNA gene sequencing. Optimization of nitrogen and phosphate sources was done based on growth curves of selected isolates. Gas chromatography was used to determine degradation of sludge hydrocarbons.   Results: In this study, 10 bacterial isolates were isolated from petroleum sludge . Measurement of petroleum total hydrocarbons, using Soxhlet-extraction method, showed that two isolates named MIS1 and MIS2 are able to decompose oil sludge hydrocarbons within 7 days, with the yields of 62% and 72%, respectively. Furthermore, the two isolates reach the end of the logarithmic phase at 48 and 120 hrs, respectively. The best source of nitrogen and phosphate for both isolates was ammonium nitrate and potassium di ­hydrogen phosphate, respectively. The isolates were identified as Arthrobacter aurescens and Pseudomonas aeruginosa , respectively. In gas chromatography analysis it was revealed that Pseudomonas aeruginosa was more potent in degradation of heavy chain hydrocarbons and their conversion to light chain compounds.   Discussion and conclusion: Resident bacteria are present in the oil sludge and are able to degrade the heavy petroleum compounds and convert them into light compounds. These

  8. Tank 40 Final Sludge Batch 8 Chemical Characterization Results

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, Christopher J.

    2013-09-19

    A sample of Sludge Batch 8 (SB8) was pulled from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB8 WAPS sample was also analyzed for chemical composition, including noble metals, and fissile constituents, and these results are reported here. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is currently being fed to the Defense Waste Processing Facility (DWPF) as SB8. At SRNL, the 3-L Tank 40 SB8 sample was transferred from the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 553 g sub-sample was removed. This sub-sample was then utilized for all subsequent slurry sample preparations. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon(r) vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass - 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma - atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma - mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB8 supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH-/other base, total inorganic carbon/total organic

  9. TESTING OF ENHANCED CHEMICAL CLEANING OF SRS ACTUAL WASTE TANK 5F AND TANK 12H SLUDGES

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C.; King, W.

    2011-08-22

    Forty three of the High Level Waste (HLW) tanks at the Savannah River Site (SRS) have internal structures that hinder removal of the last approximately five thousand gallons of waste sludge solely by mechanical means. Chemical cleaning can be utilized to dissolve the sludge heel with oxalic acid (OA) and pump the material to a separate waste tank in preparation for final disposition. This dissolved sludge material is pH adjusted downstream of the dissolution process, precipitating the sludge components along with sodium oxalate solids. The large quantities of sodium oxalate and other metal oxalates formed impact downstream processes by requiring additional washing during sludge batch preparation and increase the amount of material that must be processed in the tank farm evaporator systems and the Saltstone Processing Facility. Enhanced Chemical Cleaning (ECC) was identified as a potential method for greatly reducing the impact of oxalate additions to the SRS Tank Farms without adding additional components to the waste that would extend processing or increase waste form volumes. In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate an alternative to the baseline 8 wt. % OA chemical cleaning technology for tank sludge heel removal. The baseline OA technology results in the addition of significant volumes of oxalate salts to the SRS tank farm and there is insufficient space to accommodate the neutralized streams resulting from the treatment of the multiple remaining waste tanks requiring closure. ECC is a promising alternative to bulk OA cleaning, which utilizes a more dilute OA (nominally 2 wt. % at a pH of around 2) and an oxalate destruction technology. The technology is being adapted by AREVA from their decontamination technology for Nuclear Power Plant secondary side scale removal. This report contains results from the SRNL small scale testing of the ECC process

  10. Grout performance in support of in situ stabilization/solidification of the GAAT tank sludges

    International Nuclear Information System (INIS)

    Spence, R.D.; Kauschinger, J.L.

    1997-05-01

    The Gunite trademark and associated tanks (GAATs) were constructed at ORNL between 1943 and 1951 and were used for many years to collect radioactive and chemical wastes. These tanks are currently inactive. Varying amounts of the sludge were removed and disposed of through the Hydrofracture Program. Thus, some tanks are virtually empty, while others still contain significant amounts of sludge and supernatant. In situ grouting of the sludges in the tanks using multi-point injection (MPI trademark), a patented, proprietary technique, is being investigated as a low-cost alternative to (1) moving the sludges to the Melton Valley Storage Tanks (MVSTs) for later solidification and disposal, (2) ex situ grouting of the sludges followed by either disposal back in the tanks or containerizing and disposal elsewhere, and (3) vitrification of the sludges. The paper discusses the chemical characteristics of the GAATs and the type of chemical surrogate that was used during the leachability tests. This is followed by the experimental work, which, consisted of scope testing and sensitivity testing. The scope testing explored the rheology of the proposed jetting slurries and the settling properties of the proposed grouts using sand-water mixes for the wet sludge. After establishing a jetting slurry and grout with an acceptable rheology and settling properties, the proposed in situ grout formulation was subjected to sensitivity testing for variations in the formulation

  11. Nondestructive assay of plutonium residue in horizontal storage tanks

    International Nuclear Information System (INIS)

    Marsh, S.F.

    1985-01-01

    Aqueous plutonium recovery and purification processes often involve the temporary storage of plutonium solutions in holding tanks. Because plutonium is known to precipitate from aqueous solutions under certain conditions, there is a continuing need to assay emptied tanks for plutonium residue. A portable gamma spectrometer system, specifically designed for this purpose, provides rapid assay of such plutonium residues in horizontal storage tanks. A means is thus available for the nondestructive analysis of these tanks on a regular schedule to ensure that significant deposits of plutonium are not allowed to accumulate. 5 figs

  12. Grout and Glass Performance in Support of Stabilization/Solidification of the MVST Tank Sludges

    Energy Technology Data Exchange (ETDEWEB)

    Gilliam, T.M.; Spence, R.D.

    1998-11-01

    Wastewater at Oak Ridge National Laboratory (ORNL) is collected, evaporated, and stored in the Melton Valley Storage Tanks (MVST) pending treatment for disposal. The waste separates into two phases: sludge and supematant. Some of the supematant from these tanks has been decanted, solidified into a grout, and stored for disposal as a solid low-level waste. The sludges in the tank bottoms have been accumulating ,for several years. Some of the sludges contain a high amount of gamma activity (e.g., `37CS concentration range of 0.01 3-11 MBq/g) and contain enough transuranic (TRU) radioisotopes to be classified as TRU wastes. Some Resource Conservation and Recovery Act (RCRA) metal concentrations are high enough in the available total constituent analysis for the MVST sludge to be classified as RCRA hazardous; therefore, these sludges are presumed to be mixed TRU waste.

  13. Characteristics of residues from thermally treated anaerobic sludges

    International Nuclear Information System (INIS)

    Friedman, A.A.; Smith, J.E.; De Santis, J.; Ptak, T.; Ganley, R.C.

    1988-01-01

    Sludge management and disposal are probably the most difficult and expensive operations involved in wastewater treatment today. To minimize final disposal costs many waste treatment facilities practice some form of anaerobic digestion and dewatering to reduce the volume and offensiveness of their by-product sludges. One potential alternative for reducing sludge volumes consists of high temperature, partial oxidation of these previously digested sludges (PDS) and subsequent anaerobic biological conversion of resulting soluble organics to methane. This paper describes solids destruction, residue characteristics and biodegradability factors that should be considered in the design of liquid thermal treatment processes for the management of anaerobic sludges. To date only very limited information is available concerning the suitability of thermally treated PDS to serve as a substrate for the generation of methane. The primary objective of this research was to determine the feasibility of producing methane efficiently from the residual VSS in anaerobically digested sludges. Secondary goals were to establish the ''best'' conditions for thermal treatment for solubilizing PDS, to observe the effect of the soluble products on methanogenesis and to evaluate process sidestreams for dewaterability and anaerobic biodegradability

  14. Characterization of Tank 51 Sludge Slurry Samples (HTF-51-17-67, -68, -69, -74, -75, and -76) in Support of Sludge Batch 10 Processing

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-09

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) Engineering (SRR-E) to provide sample characterization and analyses of Tank 51 sludge samples in support of Sludge Batch (SB) 10. The six Tank 51 sludge samples were sampled and delivered to SRNL in August of 2017. These six Tank 51 sludge samples, after undergoing physical characterizations which included rheology, weight percent total solid, dissolved solids and density measurements, were combined into one composite Tank 51 sample and analyzed for corrosion controls analytes, select radionuclides, chemical elements, density and weight percent total solids.

  15. Characterization, Leaching, and Filtrations Testing of Ferrocyanide Tank sludge (Group 8) Actual Waste Composite

    Energy Technology Data Exchange (ETDEWEB)

    Fiskum, Sandra K.; Billing, Justin M.; Crum, J. V.; Daniel, Richard C.; Edwards, Matthew K.; Shimskey, Rick W.; Peterson, Reid A.; MacFarlan, Paul J.; Buck, Edgar C.; Draper, Kathryn E.; Kozelisky, Anne E.

    2009-02-28

    This is the final report in a series of eight reports defining characterization, leach, and filtration testing of a wide variety of Hanford tank waste sludges. The information generated from this series is intended to supplement the Waste Treatment and Immobilization Plant (WTP) project understanding of actual waste behaviors associated with tank waste sludge processing through the pretreatment portion of the WTP. The work described in this report presents information on a high-iron waste form, specifically the ferrocyanide tank waste sludge. Iron hydroxide has been shown to pose technical challenges during filtration processing; the ferrocyanide tank waste sludge represented a good source of the high-iron matrix to test the filtration processing.

  16. Water washes and caustic leaches of sludge from Hanford Tank S-101 and water washes of sludge from Hanford Tank C-103

    International Nuclear Information System (INIS)

    Hunt, R.D.; Collins, J.L.; Chase, C.W.

    1998-07-01

    In 1993, the Department of Energy (DOE) selected the enhanced sludge washing (ESW) process as the baseline for pretreatment of Hanford tank sludges. The ESW process uses a series of water washes and caustic leaches to separate nonradioactive components such as aluminum, chromium, and phosphate from the high-level waste sludges. If the ESW process is successful, the volume of immobilized high-level waste will be significantly reduced. The tests on the sludge from Hanford Tank S-101 focused on the effects of process variables such as sodium hydroxide concentration (1 and 3 M), temperature (70 and 95 C), and leaching time (5, 24, 72, and 168 h) on the efficacy of the ESW process with realistic liquid-to-solid ratios. Another goal of this study was to evaluate the effectiveness of water washes on a sludge sample from hanford Tank C-103. The final objective of this study was to test potential process control monitors during the water washes and caustic leaches with actual sludge. Both 137 Cs activity and conductance were measured for each of the water washes and caustic leaches. Experimental procedures, a discussion of results, conclusions and recommendations are included in this report

  17. Case study to remove radioactive hazardous sludge from long horizontal storage tanks

    International Nuclear Information System (INIS)

    Hylton, T.D.; Youngblood, E.L.; Cummins, R.L.

    1995-01-01

    The removal of radioactive hazardous sludge from waste tanks is a significant problem at several US Department of Energy (DOE) sites. The use of submerged jets produced by mixing pumps lowered into the supernatant/sludge interface to produce a homogeneous slurry is being studied at several DOE facilities. The homogeneous slurry can be pumped from the tanks to a treatment facility or alternative storage location. Most of the previous and current studies with this method are for flat-bottom tanks with vertical walls. Because of the difference in geometry, the results of these studies are not directly applicable to long horizontal tanks such as those used at the Oak Ridge National Laboratory. Mobilization and mixing studies were conducted with a surrogate sludge (e.g., kaolin clay) using submerged jets in two sizes of horizontal tanks. The nominal capacities of these tanks were 0.87 m 3 (230 gal) and 95 m 3 (25,000 gal). Mobilization efficiencies and mixing times were determined for single and bidirectional jets in both tanks with the discharge nozzles positioned at two locations in the tanks. Approximately 80% of the surrogate sludge was mobilized in the 95-m 3 tank using a fixed bidirectional jet (inside diameter = 0.035 m) and a jet velocity of 6.4 m/s (21 ft/s)

  18. SLUDGE BATCH 6/TANK 51 SIMULANT CHEMICAL PROCESS CELL SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, David; Best, David

    2010-04-28

    Qualification simulant testing was completed to determine appropriate processing conditions and assumptions for the Sludge Batch 6 (SB6) Shielded Cells demonstration of the DWPF flowsheet using the qualification sample from Tank 51 for SB6 after SRNL washing. It was found that an acid addition window of 105-139% of the DWPF acid equation (100-133% of the Koopman minimum acid equation) gave acceptable Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) results for nitrite destruction and hydrogen generation. Hydrogen generation occurred continuously after acid addition in three of the four tests. The three runs at 117%, 133%, and 150% stoichiometry (Koopman) were all still producing around 0.1 lb hydrogen/hr at DWPF scale after 42 hours of boiling in the SRAT. The 150% acid run reached 110% of the DWPF SRAT limit of 0.65 lb H{sub 2}/hr, and the 133% acid run reached 75% of the DWPF SME limit of 0.223 lb H{sub 2}/hr. Conversely, nitrous oxide generation was subdued compared to previous sludge batches, staying below 25 lb/hr in all four tests or about a fourth as much as in comparable SB4 testing. Two other processing issues were noted. First, incomplete mercury suspension impacted mercury stripping from the SRAT slurry. This led to higher SRAT product mercury concentrations than targeted (>0.45 wt% in the total solids). Associated with this issue was a general difficulty in quantifying the mass of mercury in the SRAT vessel as a function of time, especially as acid stoichiometry increased. About ten times more mercury was found after drying the 150% acid SME product to powder than was indicated by the SME product sample results. Significantly more mercury was also found in the 133% acid SME product samples than was found during the SRAT cycle sampling. It appears that mercury is segregating from the bulk slurry in the SRAT vessel, as mercury amalgam deposits for example, and is not being resuspended by the agitators. The second processing issue

  19. Hanford Tank 241-C-106: Residual Waste Contaminant Release Model and Supporting Data

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2007-05-23

    This report was revised in May 2007 to correct values in Section 3.4.1.7, second paragraph, last sentence; 90Sr values in Tables 3.22 and 3.32; and 99Tc values Table 4.3 and in Chapter 5. In addition, the tables in Appendix F were updated to reflect corrections to the 90Sr values. The rest of the text remains unchanged from the original report issued in May 2005. CH2M HILL is producing risk/performance assessments to support the closure of single-shell tanks at the DOE's Hanford Site. As part of this effort, staff at PNNL were asked to develop release models for contam¬inants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. This report provides the information developed by PNNL.

  20. MOBILIZATION, POISONING, AND FILTRATION OF F-CANYON TANK 804 SLUDGE

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M; Thomas Peters, T; Samuel Fink, S

    2006-05-04

    The Savannah River Site (SRS) Deactivation and Decommissioning (SDD) Organization is evaluating options to disposition the F-Canyon 800 series underground tanks (including removal of the sludge heels from these tanks) and requested assistance from Savannah River National Laboratory (SRNL) personnel to develop methods to effectively mobilize the sludge from these tanks (i.e., Tanks 804, 808, and 809). Because of the high plutonium content in Tank 804 (estimated to be as much as 1500 g), SDD needs to add a neutron poison to the sludge. They considered manganese and boron as potential poisons. Because of the large amount of manganese needed and the very slow filtration rate of the sludge/manganese slurry, SDD requested that SRNL investigate the impact of using boron rather than manganese as the poison. SRNL performed a series of experiments to help determine the disposal pathway of the material currently located in Tank 804. The objectives of this work are: (1) Determine the mobility of Tank 804 sludge when mixed with 10-15 parts sodium hydroxide as a function of pH between 10 and 14. (2) Determine the solubility of boron in sodium hydroxide solution with a free hydroxide concentration between 1 x 10{sup -4} and 2.0 M. (3) Recommend a filter pore size for SDD such that the filtrate contains no visible solids. (4) Determine whether a precipitate forms when the filtrate pH is adjusted to 12, 7, or 2 with nitric acid.

  1. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford tank initiative: Applications to the AX Tank Farm

    International Nuclear Information System (INIS)

    Balsley, S.D.; Krumhansl, J.L.; Borns, D.J.; McKeen, R.G.

    1998-07-01

    A combined engineering and geochemistry approach is recommended for the stabilization of waste in decommissioned tanks and contaminated soils at the AX Tank Farm, Hanford, WA. A two-part strategy of desiccation and gettering is proposed for treatment of the in-tank residual wastes. Dry portland cement and/or fly ash are suggested as an effective and low-cost desiccant for wicking excess moisture from the upper waste layer. Getters work by either ion exchange or phase precipitation to reduce radionuclide concentrations in solution. The authors recommend the use of specific natural and man-made compounds, appropriately proportioned to the unique inventory of each tank. A filler design consisting of multilayered cementitous grout with interlayered sealant horizons should serve to maintain tank integrity and minimize fluid transport to the residual waste form. External tank soil contamination is best mitigated by placement of grouted skirts under and around each tank, together with installation of a cone-shaped permeable reactive barrier beneath the entire tank farm. Actinide release rates are calculated from four tank closure scenarios ranging from no action to a comprehensive stabilization treatment plan (desiccant/getters/grouting/RCRA cap). Although preliminary, these calculations indicate significant reductions in the potential for actinide transport as compared to the no-treatment option

  2. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford tank initiative: Applications to the AX Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Balsley, S.D.; Krumhansl, J.L.; Borns, D.J. [Sandia National Labs., Albuquerque, NM (United States); McKeen, R.G. [Alliance for Transportation Research, Albuquerque, NM (United States)

    1998-07-01

    A combined engineering and geochemistry approach is recommended for the stabilization of waste in decommissioned tanks and contaminated soils at the AX Tank Farm, Hanford, WA. A two-part strategy of desiccation and gettering is proposed for treatment of the in-tank residual wastes. Dry portland cement and/or fly ash are suggested as an effective and low-cost desiccant for wicking excess moisture from the upper waste layer. Getters work by either ion exchange or phase precipitation to reduce radionuclide concentrations in solution. The authors recommend the use of specific natural and man-made compounds, appropriately proportioned to the unique inventory of each tank. A filler design consisting of multilayered cementitous grout with interlayered sealant horizons should serve to maintain tank integrity and minimize fluid transport to the residual waste form. External tank soil contamination is best mitigated by placement of grouted skirts under and around each tank, together with installation of a cone-shaped permeable reactive barrier beneath the entire tank farm. Actinide release rates are calculated from four tank closure scenarios ranging from no action to a comprehensive stabilization treatment plan (desiccant/getters/grouting/RCRA cap). Although preliminary, these calculations indicate significant reductions in the potential for actinide transport as compared to the no-treatment option.

  3. Washing and caustic leaching of Hanford tank sludge: Results of FY 1997 studies

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, G.J.; Burgeson, I.E.; Wagner, M.J.; Liu, J.; Chen, Y.L.

    1997-08-01

    The current plan for remediating the Hanford tank farms consists of waste retrieval, pretreatment, treatment (immobilization), and disposal. The tank wastes will be partitioned into high-level and low-level fractions. The HLW will be immobilized in a borosilicate glass matrix; the resulting glass canisters will then be disposed of in a geologic repository. Because of the expected high cost of HLW vitrification and geologic disposal, pretreatment processes will be implemented to reduce the volume of immobilized high-level waste (IHLW). Caustic leaching (sometimes referred to as enhanced sludge washing or ESW) represents the baseline method for pretreating Hanford tank sludges. Caustic leaching is expected to remove a large fraction of the Al, which is present in large quantities in Hanford tank sludges. A significant portion of the P is also expected to be removed from the sludge by metathesis of water-insoluble metal phosphates to insoluble hydroxides and soluble Na{sub 3}PO{sub 4}. Similar metathesis reactions can occur for insoluble sulfate salts, allowing the removal of sulfate from the HLW stream. This report describes the sludge washing and caustic leaching tests performed at the Pacific Northwest National Laboratory in FY 1996. The sludges used in this study were taken from Hanford tanks AN-104, BY-108, S-101, and S-111.

  4. Characterization of tank 51 sludge samples (HTF-51-17-44/ HTF-51-17-48) in support of sludge batch 10 processing

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-17

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) Engineering (SRR-E) to provide sample characterization and analyses of Tank 51 sludge samples in support of Sludge Batch (SB) 10. The two Tank 51 sludge samples were sampled and delivered to SRNL in May of 2017. These two tank 51 sludge samples were combined into one composite sample and analyzed for corrosion controls analytes, select radionuclides, chemical elements, density and weight percent total solids and aluminum hydroxides (gibbsite and boehmite) by x-ray diffraction.

  5. Characterization and leaching study of sludge from Melton Valley Storage Tank W-25

    International Nuclear Information System (INIS)

    Collins, J.L.; Egan, B.Z.; Beahm, E.C.; Chase, C.W.; Anderson, K.K.

    1997-08-01

    One of the greatest challenges facing the Department of Energy (DOE) is the remediation of the 100 million gallons of high-level and low-level radioactive waste in the underground storage tanks at its Hanford, Savannah River, Oak Ridge, Idaho, and Fernald sites. Bench-scale batch tests have been conducted with sludge from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation processes for use in a comprehensive sludge-processing flow sheet for concentrating the radionuclides and reducing the volumes of storage tanks wastes for final disposal. This report discusses the hot cell apparatus, the characterization of the sludge, and the results obtained from a variety of basic and acidic leaching tests of samples of sludge. Approximately 5 L of sludge/supernate from MVST W-25 was retrieved and transferred to a stainless steel tank for mixing and storage in a hot cell. Samples were centrifuged to separate the sludge liquid and the sludge solids. Air-dried samples of sludge were analyzed to determine the concentrations of radionuclides, other metals, and anions. Based upon the air-dried weight, about 41% of the centrifuged, wet sludge solids was water. The major alpha-, gamma-, and beta-emitting radionuclides in the centrifuged, wet sludge solids were 137 Cs, 60 Co, 154 Eu, 241 Am, 244 Cm, 90 Sr, Pu, U, and Th. The other major metals (in addition to the U and Th) and the anions were Na, Ca, Al, K, Mg, NO 3 - , CO 3 2- , OH - , and O 2- . The organic carbon content was 3.0 ± 1.0%. The pH was 13

  6. Characterization and leaching study of sludge from Melton Valley Storage Tank W-25

    Energy Technology Data Exchange (ETDEWEB)

    Collins, J.L.; Egan, B.Z.; Beahm, E.C.; Chase, C.W.; Anderson, K.K.

    1997-08-01

    One of the greatest challenges facing the Department of Energy (DOE) is the remediation of the 100 million gallons of high-level and low-level radioactive waste in the underground storage tanks at its Hanford, Savannah River, Oak Ridge, Idaho, and Fernald sites. Bench-scale batch tests have been conducted with sludge from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation processes for use in a comprehensive sludge-processing flow sheet for concentrating the radionuclides and reducing the volumes of storage tanks wastes for final disposal. This report discusses the hot cell apparatus, the characterization of the sludge, and the results obtained from a variety of basic and acidic leaching tests of samples of sludge. Approximately 5 L of sludge/supernate from MVST W-25 was retrieved and transferred to a stainless steel tank for mixing and storage in a hot cell. Samples were centrifuged to separate the sludge liquid and the sludge solids. Air-dried samples of sludge were analyzed to determine the concentrations of radionuclides, other metals, and anions. Based upon the air-dried weight, about 41% of the centrifuged, wet sludge solids was water. The major alpha-, gamma-, and beta-emitting radionuclides in the centrifuged, wet sludge solids were {sup 137}Cs, {sup 60}Co, {sup 154}Eu, {sup 241}Am, {sup 244}Cm, {sup 90}Sr, Pu, U, and Th. The other major metals (in addition to the U and Th) and the anions were Na, Ca, Al, K, Mg, NO{sub 3}{sup {minus}}, CO{sub 3}{sup 2{minus}}, OH{sup {minus}}, and O{sub 2{minus}}. The organic carbon content was 3.0 {+-} 1.0%. The pH was 13.

  7. Hanford tank residual waste - Contaminant source terms and release models

    International Nuclear Information System (INIS)

    Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.; Lindberg, Michael L.; Jeffery Serne, R.

    2011-01-01

    Highlights: → Residual waste from five Hanford spent fuel process storage tanks was evaluated. → Gibbsite is a common mineral in tanks with high Al concentrations. → Non-crystalline U-Na-C-O-P ± H phases are common in the U-rich residual. → Iron oxides/hydroxides have been identified in all residual waste samples. → Uranium release is highly dependent on waste and leachant compositions. - Abstract: Residual waste is expected to be left in 177 underground storage tanks after closure at the US Department of Energy's Hanford Site in Washington State, USA. In the long term, the residual wastes may represent a potential source of contamination to the subsurface environment. Residual materials that cannot be completely removed during the tank closure process are being studied to identify and characterize the solid phases and estimate the release of contaminants from these solids to water that might enter the closed tanks in the future. As of the end of 2009, residual waste from five tanks has been evaluated. Residual wastes from adjacent tanks C-202 and C-203 have high U concentrations of 24 and 59 wt.%, respectively, while residual wastes from nearby tanks C-103 and C-106 have low U concentrations of 0.4 and 0.03 wt.%, respectively. Aluminum concentrations are high (8.2-29.1 wt.%) in some tanks (C-103, C-106, and S-112) and relatively low ( 2 -saturated solution, or a CaCO 3 -saturated water. Uranium release concentrations are highly dependent on waste and leachant compositions with dissolved U concentrations one or two orders of magnitude higher in the tests with high U residual wastes, and also higher when leached with the CaCO 3 -saturated solution than with the Ca(OH) 2 -saturated solution. Technetium leachability is not as strongly dependent on the concentration of Tc in the waste, and it appears to be slightly more leachable by the Ca(OH) 2 -saturated solution than by the CaCO 3 -saturated solution. In general, Tc is much less leachable (<10 wt.% of the

  8. Assessment of alternative management techniques of tank bottom petroleum sludge in Oman

    International Nuclear Information System (INIS)

    Al-Futaisi, Ahmed; Jamrah, Ahmad; Yaghi, Basma; Taha, Ramzi

    2007-01-01

    This paper investigated several options for environmentally acceptable management techniques of tank bottom oily sludge. In particular, we tested the applicability of managing the sludge by three options: (1) as a fuel supplement; (2) in solidification; (3) as a road material. Environmental testing included determination of heavy metals concentration; toxic organics concentration and radiological properties. The assessment of tank bottom sludge as a fuel supplement included various properties such as proximate analysis, ultimate analysis and energy content. Solidified sludge mixtures and road application sludge mixtures were subjected to leaching using the toxicity characteristic leaching procedure (TCLP). Tank bottom sludge was characterized as having higher concentrations of lead, zinc, and mercury, but lower concentrations of nickel, copper and chromium in comparison with values reported in the literature. Natural occurring radioactive minerals (NORM) activity values obtained on different sludge samples were very low or negligible compared to a NORM standard value of 100 Bq/g. The fuel assessment results indicate that the heating values, the carbon content and the ash content of the sludge samples are comparable with bituminous coal, sewage sludge, meat and bone meal and petroleum coke/coal mixture, but lower than those in car tyres and petroleum coke. The nitrogen content is lower than those fuels mentioned above, while the sulfur content seems comparable with bituminous coal, petroleum coke and a petroleum coke/coal mixture. The apparent lack of leachability of metals from solidification and road material sludge applications suggests that toxic metals and organics introduced to these applications are not readily attacked by weak acid solutions and would not be expected to migrate or dissolved into the water. Thus, in-terms of trace metals and organics, the suggested sludge applications would not be considered hazardous as defined by the TCLP leaching procedure

  9. STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PORJECT -9225

    International Nuclear Information System (INIS)

    Jolly, R.

    2009-01-01

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal using the Waste on Wheels (WOW) system within two of its storage tanks. The Waste on Wheels (WOW) system is designed to be relatively mobile with the ability for many components to be redeployed to multiple tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2839 cubic meters (750,000 gallons) each. In addition, Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. DOE intends to remove from service and operationally close Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. After obtaining regulatory approval, the tanks and cooling coils will be isolated and filled with grout for long term stabilization. Mechanical Sludge Removal of the remaining sludge waste within Tank 6 removed ∼ 75% of the original 25,000 gallons in August 2007. Utilizing lessons learned from Tank 6, Tank 5 Mechanical Sludge Removal completed removal of ∼ 90% of the original 125 cubic meters (33,000 gallons) of sludge material in May 2008. The successful removal of sludge material meets the requirement of approximately 19 to 28 cubic meters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. The Chemical Cleaning Process will utilize 8 wt% oxalic acid to dissolve the remaining sludge heel. The flow sheet for Chemical Cleaning planned a 20:1 volume ratio of acid to sludge for the first strike with mixing provided by the submersible mixer pumps. The subsequent strikes will utilize a 13:1 volume ratio of acid to sludge with no mixing. The results of the Chemical Cleaning Process are detailed in the 'Status of Chemical

  10. STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PROJECT - 9225

    Energy Technology Data Exchange (ETDEWEB)

    Jolly, R

    2009-01-06

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal using the Waste on Wheels (WOW) system within two of its storage tanks. The Waste on Wheels (WOW) system is designed to be relatively mobile with the ability for many components to be redeployed to multiple tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2839 cubic meters (750,000 gallons) each. In addition, Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. DOE intends to remove from service and operationally close Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. After obtaining regulatory approval, the tanks and cooling coils will be isolated and filled with grout for long term stabilization. Mechanical Sludge Removal of the remaining sludge waste within Tank 6 removed {approx} 75% of the original 25,000 gallons in August 2007. Utilizing lessons learned from Tank 6, Tank 5 Mechanical Sludge Removal completed removal of {approx} 90% of the original 125 cubic meters (33,000 gallons) of sludge material in May 2008. The successful removal of sludge material meets the requirement of approximately 19 to 28 cubic meters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. The Chemical Cleaning Process will utilize 8 wt% oxalic acid to dissolve the remaining sludge heel. The flow sheet for Chemical Cleaning planned a 20:1 volume ratio of acid to sludge for the first strike with mixing provided by the submersible mixer pumps. The subsequent strikes will utilize a 13:1 volume ratio of acid to sludge with no mixing. The results of the Chemical Cleaning Process are detailed in the &apos

  11. SLUDGE BATCH 6/TANK 40 SIMULANT CHEMICAL PROCESS CELL SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, David

    2010-04-28

    Phase III simulant flowsheet testing was completed using the latest composition estimates for SB6/Tank 40 feed to DWPF. The goals of the testing were to determine reasonable operating conditions and assumptions for the startup of SB6 processing in the DWPF. Testing covered the region from 102-159% of the current DWPF stoichiometric acid equation. Nitrite ion concentration was reduced to 90 mg/kg in the SRAT product of the lowest acid run. The 159% acid run reached 60% of the DWPF Sludge Receipt and Adjustment Tank (SRAT) limit of 0.65 lb H2/hr, and then sporadically exceeded the DWPF Slurry Mix Evaporator (SME) limit of 0.223 lb H2/hr. Hydrogen generation rates peaked at 112% of the SME limit, but higher than targeted wt% total solids levels may have been partially responsible for rates seen. A stoichiometric factor of 120% met both objectives. A processing window for SB6 exists from 102% to something close to 159% based on the simulant results. An initial recommendation for SB6 processing is at 115-120% of the current DWPF stoichiometric acid equation. The addition of simulated Actinide Removal Process (ARP) and Modular Caustic Side Solvent Extraction Unit (MCU) streams to the SRAT cycle had no apparent impact on the preferred stoichiometric factor. Hydrogen generation occurred continuously after acid addition in three of the four tests. The three runs at 120%, 118.4% with ARP/MCU, and 159% stoichiometry were all still producing around 0.1 lb hydrogen/hr at DWPF scale after 36 hours of boiling in the SRAT. The 120% acid run reached 23% of the SRAT limit and 37% of the SME limit. Conversely, nitrous oxide generation was subdued compared to previous sludge batches, staying below 29 lb/hr in all four tests or about a fourth as much as in comparable SB4 testing. Two processing issues, identified during SB6 Phase II flowsheet testing and qualification simulant testing, were monitored during Phase III. Mercury material balance closure was impacted by acid stoichiometry

  12. Grout and vitrification formula development for immobilization of hazardous radioactive tank sludges at ORNL

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Spence, R.D.

    1997-01-01

    Stabilization/solidification (S/S) has been identified as the preferred treatment option for hazardous radioactive sludges, and currently grouting and vitrification are considered the leading candidate S/S technologies. Consequently, a project was initiated at Oak Ridge National Laboratory (ORNL) to define composition envelopes, or operating windows, for acceptable grout and glass formulations containing Melton Valley Storage Tank (MVST) sludges. The resulting data are intended to be used as guidance for the eventual treatment of the MVST sludges by the government and/or private sector. Wastewater at ORNL is collected, evaporated, and stored in the MVSTs pending treatment for disposal. The waste separates into two phases: sludge and supernate. The sludges in the tank bottoms have been accumulating for several years and contain a high amount of radioactivity, with some classified as transuranic (TRU) sludges. The available total constituent analysis for the MVST sludge indicates that the Resource and Conservation Recovery Act (RCRA) metal concentrations are high enough to be potentially RCRA hazardous; therefore, these sludges have the potential to be designated as mixed TRU waste. S/S treatment must be performed to remove free liquids and reduce the leach rate of RCRA metals. This paper focuses on initial results for the development of the operating window for vitrification. However, sufficient data on grouting are presented to allow a comparison of the two options

  13. Basis for Selection of a Residual Waste Retrieval System for Gunite and Associated Tank W-9 at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.E

    2000-10-23

    Waste retrieval and transfer operations at the Gunite{trademark} and Associated Tanks (GAATs) Remediation Project have been successfully accomplished using the Tank Waste Retrieval System. This system is composed of the Modified Light-Duty Utility Arm, Houdini Vehicle, Waste Dislodging and Conveyance System, Hose Management Arm, and Sludge Conditioning System. GAAT W-9 has been used as a waste-consolidation and batch-transfer tank during the retrieval of sludges and supernatants from the seven Gunite tanks in the North and South tank farms at Oak Ridge National Laboratory. Tank W-9 was used as a staging tank for the transfers to the Melton Valley Storage Tanks (MVSTs). A total of 18 waste transfers from W-9 occurred between May 25, 1999, and March 30, 2000. Most of these transfers were accomplished using the PulsAir Mixer to mobilize and mix the slurry and a submersible retrieval-transfer pump to transfer the slurry through the Sludge Conditioning System and the {approx}1-mile long, 2-in.-diam waste-transfer line to the MVSTs. The transfers from W-9 have consisted of low-solids-content slurries with solids contents ranging from {approx}2.8 to 6.8 mg/L. Of the initial {approx}88,000 gal of wet sludge estimated in the GAATs, a total of {approx}60,451 gal have been transferred to the MVSTs via tank W-9 as of March 30, 2000. Once the waste-consolidation operations and transfers from W-9 to the MVSTs are completed, the remaining material in W-9 will be mobilized and transferred to the active waste system, Bethel Valley Evaporator Service Tank W-23. Tank W-23 will serve as a batch tank for the final waste transfers from tank W-9 to the MVSTs. This report provides a summary of the requirements and recommendations for the final waste retrieval system for tank W-9, a compilation of the sample analysis data for the sludge in W-9, and brief descriptions of the various waste-retrieval system concepts that were considered for this task. The recommended residual waste retrieval

  14. Grout performance in support of in situ grouting of the TH4 tank sludge

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, R.D.; Kauschinger, J.L.; Spence, R.D.

    1999-04-01

    The cold demonstration test proved that less water was required to pump the in situ grout formulation than had been previously tested in the laboratory. The previous in situ grout formulation was restandardized with the same relative amounts of dry blend ingredients, albeit adding a fluidized admixture, but specifying less water for the slurry mix that must by pumped through the nozzles at high pressure. Also, the target GAAT tank for demonstrating this is situ grouting technique has been shifted to Tank TH4. A chemical surrogate sludge for TH4 was developed and tested in the laboratory, meeting expectations for leach resistance and strenght at 35 wt % sludge loading. It addition, a sample of hot TH4 sludge was also tested at 35 wt % sludge loading and proved to have superior strength and leach resistance compared with the surrogate test.

  15. Decision analysis for mobilizing and retrieving sludge from double-shell tanks

    International Nuclear Information System (INIS)

    Brothers, A.J.; Williams, N.C.; Dukelow, J.S.; Hansen, R.I.

    1997-09-01

    This decision analysis evaluates alternative technologies for the initial mobilization and retrieval of sludges in double-shell tanks (DSTs). The analysis is from the perspective of the need to move sludges from one DST to another for interim retrieval. It supports the more general decision of which technologies to use to retreive various types of DST waste. The initial analysis is from the perspective of a typical DST with 2 ft of sludge to mobilize. During the course of the analysis, it became clear that it was important to also consider sludge mobilization in support of the high-level waste (HLW) vitrification demonstration plant, and in particular the risks associated with failing to meeting the minimum order requirements for the vendor, as well as the cost of mobilization and retrieval from the HLW vitrification source tanks

  16. Hanford Tanks 241-C-203 and 241 C 204: Residual Waste Contaminant Release Model and Supporting Data

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2007-05-23

    This report was revised in May 2007 to correct 90Sr values in Chapter 3. The changes were made on page 3.9, paragraph two and Table 3.10; page 3.16, last paragraph on the page; and Tables 3.21 and 3.31. The rest of the text remains unchanged from the original report issued in October 2004. This report describes the development of release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. Key results from this work are (1) future releases from the tanks of the primary contaminants of concern (99Tc and 238U) can be represented by relatively simple solubility relationships between infiltrating water and solid phases containing the contaminants; and (2) high percentages of technetium-99 in the sludges (20 wt% in C-203 and 75 wt% in C-204) are not readily water leachable, and, in fact, are very recalcitrant. This is similar to results found in related studies of sludges from Tank AY-102. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for the U.S. Department of Energy.

  17. Hanford Tanks 241-C-203 and 241-C-204: Residual Waste Contaminant Release Model and Supporting Data

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2004-10-28

    This report describes the development of release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. Key results from this work are (1) future releases from the tanks of the primary contaminants of concern (99Tc and 238U) can be represented by relatively simple solubility relationships between infiltrating water and solid phases containing the contaminants; and (2) high percentages of technetium-99 in the sludges (20 wt% in C-203 and 75 wt% in C-204) are not readily water leachable, and, in fact, are very recalcitrant. This is similar to results found in related studies of sludges from Tank AY-102. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for the U.S. Department of Energy.

  18. Hanford Tanks 241-C-203 and 241-C-204: Residual Waste Contaminant Release Model and Supporting Data

    International Nuclear Information System (INIS)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2004-01-01

    This report describes the development of release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. Key results from this work are (1) future releases from the tanks of the primary contaminants of concern (99Tc and 238U) can be represented by relatively simple solubility relationships between infiltrating water and solid phases containing the contaminants; and (2) high percentages of technetium-99 in the sludges (20 wt% in C-203 and 75 wt% in C-204) are not readily water leachable, and, in fact, are very recalcitrant. This is similar to results found in related studies of sludges from Tank AY-102. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for the U.S. Department of Energy

  19. Characterization of the tank 51 alternate reductant sludge batch 9 slurry sample (HTF-51-15-130)

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-01

    Tank 51 slurry sample HTF-51-15-130 was collected following sludge washing at the Tank Farm. The sample was received at SRNL and then characterized in preparation for qualification of the alternate reductant Sludge Batch 9 (SB9) flowsheet. In this characterization, densities, solids distribution, elemental constituents, anionic constituents, carbon content, and select radioisotopes were quantified.

  20. CHEMICAL SLUDGE HEEL REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT 8183

    International Nuclear Information System (INIS)

    Thaxton, D; Timothy Baughman, T

    2008-01-01

    Chemical Sludge Removal (CSR) is the final waste removal activity planned for some of the oldest nuclear waste tanks located at the Savannah River Site (SRS) in Aiken, SC. In 2008, CSR will be used to empty two of these waste tanks in preparation for final closure. The two waste tanks chosen to undergo this process have previously leaked small amounts of nuclear waste from the primary tank into an underground secondary containment pan. CSR involves adding aqueous oxalic acid to the waste tank in order to dissolve the remaining sludge heel. The resultant acidic waste solution is then pumped to another waste tank where it will be neutralized and then stored awaiting further processing. The waste tanks to be cleaned have a storage capacity of 2.84E+06 liters (750,000 gallons) and a target sludge heel volume of 1.89E+04 liters (5,000 gallons) or less for the initiation of CSR. The purpose of this paper is to describe the CSR process and to discuss the most significant technical issues associated with the development of CSR

  1. CHEMICAL DIFFERENCES BETWEEN SLUDGE SOLIDS AT THE F AND H AREA TANK FARMS

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, S.

    2012-08-29

    and HTF samples indicated that the primary crystalline compounds of iron in sludge solids are Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4}, and FeO(OH), and the primary crystalline compounds of aluminum are Al(OH){sub 3} and AlO(OH). Also identified were carbonate compounds of calcium, magnesium, and sodium; a nitrated sodium aluminosilicate; and various uranium compounds. Consistent with expectations, oxalate compounds were identified in solids associated with oxalic acid cleaning operations. The most likely oxidation states and chemical forms of technetium are assessed in the context of solubility, since technetium-99 is a key risk driver from an environmental fate and transport perspective. The primary oxidation state of technetium in SRS sludge solids is expected to be Tc(IV). In salt waste, the primary oxidation state is expected to be Tc(VII). The primary form of technetium in sludge is expected to be a hydrated technetium dioxide, TcO{sub 2} {center_dot} xH{sub 2}O, which is relatively insoluble and likely co-precipitated with iron. In salt waste solutions, the primary form of technetium is expected to be the very soluble pertechnetate anion, TcO{sub 4}{sup -}. The relative differences between the F and H Tank Farm waste provide a basis for anticipating differences that will occur as constituents of FTF and HTF waste residue enter the environment over the long-term future. If a constituent is significantly more dominant in one of the Tank Farms, its long-term environmental contribution will likely be commensurately higher, assuming the environmental transport conditions of the two Tank Farms share some commonality. It is in this vein that the information cited in this document is provided - for use during the generation, assessment, and validation of Performance Assessment modeling results.

  2. Cone Penetrometer Shear Strength Measurements of Sludge Waste in Tanks 241-AN-101 and 241-AN-106

    Energy Technology Data Exchange (ETDEWEB)

    Follett, Jordan R.

    2014-03-06

    This document presents the resulting shear strength profiles for sludge waste in Tanks 241-AN-101 and 241-AN-106, as determined with a full-flow cone penetrometer. Full-flow penetrometer measurements indicate shear strength profiles that increase roughly uniformly with depth. For Tank 241-AN-101, the undrained shear strength was calculated to range from 500 Pa near the sludge surface to roughly 3,300 Pa at 15 inches above the tank bottom. For 241-AN-106, the undrained shear strength was calculated to range from 500 Pa near the sludge surface to roughly 5,000 Pa at 15 inches above the tank bottom.

  3. Residual waste from Hanford tanks 241-C-203 and 241-C-204. 1. Solids characterization.

    Science.gov (United States)

    Krupka, Kenneth M; Schaef, Herbert T; Arey, Bruce W; Heald, Steve M; Deutsch, William I; Lindberg, Michael J; Cantrell, Kirk J

    2006-06-15

    Bulk X-ray diffraction (XRD), synchrotron X-ray microdiffraction (microXRD), and scanning electron microscopy/ energy-dispersive X-ray spectroscopy (SEM/EDS) were used to characterize solids in residual sludge from single-shell underground waste tanks C-203 and C-204 at the U.S. Department of Energy's Hanford Site in southeastern Washington state. Cejkaite [Na4(UO2)(CO3)3] was the dominant crystalline phase in the C-203 and C-204 sludges. This is one of the few occurrences of cejkaite reported in the literature and may be the first documented occurrence of this phase in radioactive wastes from DOE sites. Characterization of residual solids from water leach and selective extraction tests indicates that cejkaite has a high solubility and a rapid rate of dissolution in water at ambient temperature and that these sludges may also contain poorly crystalline Na2U207 [or clarkeite Na[(UO2)O(OH)](H2O)0-1] as well as nitratine (soda niter, NaNO3), goethite [alpha-FeO(OH)], and maghemite (gamma-Fe2O3). Results of the SEM/EDS analyses indicate that the C-204 sludge also contains a solid that lacks crystalline form and is composed of Na, Al, P, O, and possibly C. Other identified solids include Fe oxides that often also contain Cr and Ni and occur as individual particles, coatings on particles, and botryoidal aggregates; a porous-looking material (or an aggregate of submicrometer particles) that typically contain Al, Cr, Fe, Na, Ni, Si, U, P, O, and C; Si oxide (probably quartz); and Na-Al silicate(s). The latter two solids probably represent minerals from the Hanford sediment, which were introduced into the tank during prior sampling campaigns or other tank operation activities. The surfaces of some Fe-oxide particles in residual solids from the water leach and selective extraction tests appear to have preferential dissolution cavities. If these Fe oxides contain contaminants of concern, then the release of these contaminants into infiltrating water would be limited by the

  4. SLUDGE PARTICLE SEPAPATION EFFICIENCIES DURING SETTLER TANK RETRIEVAL INTO SCS-CON-230

    Energy Technology Data Exchange (ETDEWEB)

    DEARING JI; EPSTEIN M; PLYS MG

    2009-07-16

    The purpose of this document is to release, into the Hanford Document Control System, FA1/0991, Sludge Particle Separation Efficiencies for the Rectangular SCS-CON-230 Container, by M. Epstein and M. G. Plys, Fauske & Associates, LLC, June 2009. The Sludge Treatment Project (STP) will retrieve sludge from the 105-K West Integrated Water Treatment System (IWTS) Settler Tanks and transfer it to container SCS-CON-230 using the Settler Tank Retrieval System (STRS). The sludge will enter the container through two distributors. The container will have a filtration system that is designed to minimize the overflow of sludge fines from the container to the basin. FAI/09-91 was performed to quantify the effect of the STRS on sludge distribution inside of and overflow out of SCS-CON-230. Selected results of the analysis and a system description are discussed. The principal result of the analysis is that the STRS filtration system reduces the overflow of sludge from SCS-CON-230 to the basin by roughly a factor of 10. Some turbidity can be expected in the center bay where the container is located. The exact amount of overflow and subsequent turbidity is dependent on the density of the sludge (which will vary with location in the Settler Tanks) and the thermal gradient between the SCS-CON-230 and the basin. Attachment A presents the full analytical results. These results are applicable specifically to SCS-CON-230 and the STRS filtration system's expected operating duty cycles.

  5. Sludge Particle Sepapation Efficiencies During Settler Tank Retrieval Into SCS-CON-230

    International Nuclear Information System (INIS)

    Dearing, J.I.; Epstein, M.; Plys, M.G.

    2009-01-01

    The purpose of this document is to release, into the Hanford Document Control System, FA1/0991, Sludge Particle Separation Efficiencies for the Rectangular SCS-CON-230 Container, by M. Epstein and M. G. Plys, Fauske and Associates, LLC, June 2009. The Sludge Treatment Project (STP) will retrieve sludge from the 105-K West Integrated Water Treatment System (IWTS) Settler Tanks and transfer it to container SCS-CON-230 using the Settler Tank Retrieval System (STRS). The sludge will enter the container through two distributors. The container will have a filtration system that is designed to minimize the overflow of sludge fines from the container to the basin. FAI/09-91 was performed to quantify the effect of the STRS on sludge distribution inside of and overflow out of SCS-CON-230. Selected results of the analysis and a system description are discussed. The principal result of the analysis is that the STRS filtration system reduces the overflow of sludge from SCS-CON-230 to the basin by roughly a factor of 10. Some turbidity can be expected in the center bay where the container is located. The exact amount of overflow and subsequent turbidity is dependent on the density of the sludge (which will vary with location in the Settler Tanks) and the thermal gradient between the SCS-CON-230 and the basin. Attachment A presents the full analytical results. These results are applicable specifically to SCS-CON-230 and the STRS filtration system's expected operating duty cycles.

  6. Technology study of Gunite tank sludge mobilization at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    DeVore, J.R.; Herrick, T.J.; Lott, K.E.

    1994-12-01

    The Oak Ridge National Laboratory (ORNL) Gunite Tank Sludge Mobilization Technology Study was initiated to support the Gunite Tank Treatability Study effort. The technology study surveyed the methods and technologies available for tank cleaning and sludge mobilization in a radioactive environment. Technologies were identified and considered for applicability to the Gunite and Associated Tanks (GAAT) problems. These were then either accepted for further study or rejected as not applicable. Technologies deemed applicable to the GAAT sludge removal project were grouped for evaluation according to (1) deployment method, (2) types of remotely operated end effector equipment applicable to removal of sludge, (3) methods for removing wastes from the tanks, and (4) methods for concrete removal. There were three major groups of deployment technologies: ''past practice'' technologies, mechanical arm-based technologies, and vehicle-based technologies. The different technologies were then combined into logical sequences of deployment platform, problem, end effector, conveyance, post-removal treatment required (if any), and disposition of the waste. Many waste removal options are available, but the best technology in one set of circumstances at one site might not be the best type to use at a different site. No single technology is capable of treating the entire spectrum of wastes that will be encountered in GAAT. None of the systems used in other industries appears to be suitable, primarily because of the nature of the sludges in the GAAT Operable Unit (OU), their radiation levels, and tank geometries. Other commercial technologies were investigated but rejected because the authors did not believe them to be applicable

  7. Technology study of Gunite tank sludge mobilization at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    DeVore, J.R.; Herrick, T.J.; Lott, K.E.

    1994-12-01

    The Oak Ridge National Laboratory (ORNL) Gunite Tank Sludge Mobilization Technology Study was initiated to support the Gunite Tank Treatability Study effort. The technology study surveyed the methods and technologies available for tank cleaning and sludge mobilization in a radioactive environment. Technologies were identified and considered for applicability to the Gunite and Associated Tanks (GAAT) problems. These were then either accepted for further study or rejected as not applicable. Technologies deemed applicable to the GAAT sludge removal project were grouped for evaluation according to (1) deployment method, (2) types of remotely operated end effector equipment applicable to removal of sludge, (3) methods for removing wastes from the tanks, and (4) methods for concrete removal. There were three major groups of deployment technologies: ``past practice`` technologies, mechanical arm-based technologies, and vehicle-based technologies. The different technologies were then combined into logical sequences of deployment platform, problem, end effector, conveyance, post-removal treatment required (if any), and disposition of the waste. Many waste removal options are available, but the best technology in one set of circumstances at one site might not be the best type to use at a different site. No single technology is capable of treating the entire spectrum of wastes that will be encountered in GAAT. None of the systems used in other industries appears to be suitable, primarily because of the nature of the sludges in the GAAT Operable Unit (OU), their radiation levels, and tank geometries. Other commercial technologies were investigated but rejected because the authors did not believe them to be applicable.

  8. Residual waste from Hanford tanks 241-C-203 and 241-C-204. 2. Contaminant release model.

    Science.gov (United States)

    Cantrell, Kirk J; Krupka, Kenneth M; Deutsch, William J; Lindberg, Michael J

    2006-06-15

    Release of U and 99Tc from residual sludge in Hanford waste tanks 241-C-203 and 241-C-204 atthe U.S. Department of Energy's (DOE) Hanford Site in southeastern Washington state was quantified by water-leaching, selective extractions, empirical solubility measurements, and thermodynamic modeling. A contaminant release model was developed based on these experimental results and solid-phase characterization results presented elsewhere. Uranium release was determined to be controlled by two phases and occurred in three stages. In the first stage, U release is controlled by the solubility of tejkaite, which is suppressed by high concentrations of sodium released from the dissolution of NaNO3 in the residual sludges. Equilibrium solubility calculations indicate the U released during this stage will have a maximum concentration of 0.021 M. When all the NaNO3 has dissolved from the sludge, the solubility of the remaining cejkaite will increase to 0.28 M. After cejkaite has completely dissolved, the majority of the remaining U is in the form of poorly crystalline Na2U2O7 [or clarkeite Na[(UO2)O(OH)](H20)0-1]. In contact with Hanford groundwater this phase is not stable, and becquerelite becomes the U solubility controlling phase, with a calculated equilibrium concentration of 1.2 x 10(-4) M. For Tc, a significant fraction of its concentration in the residual sludge was determined to be relatively insoluble (20 wt % for C-203 and 80 wt % for C-204). Because of the low concentrations of Tc in these sludge materials, the characterization studies did not identify any discrete Tc solids phases. Release of the soluble fraction of Tc was found to occur concomitantly with NO3-. It was postulated that a NaNO3-NaTcO4 solid solution could be responsible for this behavior. The Tc release concentrations for the soluble fraction were estimated to be 2.4 x 10-6 M for C-203 and 2.7 x 10(-5) M for C-204. Selective extraction results indicated that the recalcitrant fraction of Tc was

  9. Treatment aerobic conjugate of sludges of septic tanks and household organic solid wastes

    Directory of Open Access Journals (Sweden)

    Wanderson Barbosa da Silva Feitosa

    2009-12-01

    Full Text Available It was aimed at to evaluate the co-composting as technological alternative to the treatment of sludges of septic tanks with household organic solid wastes originating from cities of small and medium loads. The sludges and the domiciliary organic solid waste were collected in Cabaceiras, Caraúbas and Queimadas, state of Paraíba. The experiment consisted of four treatments with three repetitions, totaling 12 reactors, of cylindrical configuration in polyethylene of 100 L of capacity. Each reactor was fed with 50 kg substratum with variable composition in function of the sludge fraction: 0%, 10%, 20% and 30%. The manual turning was accomplished three times a week and the temperature was monitored daily. The total destruction of helminth eggs in period differentiated in function of the sludges fraction (14, 28, 35 and 63 days and the medium transformation of 54.1% of sludges in biosolids class A and class B, with favorable characteristics to the use in agricultural cultures in 91 days, expressed the viability of the treatment for co-composting of sludges of tanks septic multichamber of collective use for the cities of small and medium load.

  10. Candidate reagents and procedures for the dissolution of Hanford Site single-shell tank sludges

    International Nuclear Information System (INIS)

    Schulz, W.W.; Kupfer, M.J.

    1991-10-01

    At least some of the waste in the 149 single-shell tanks (SST) at the US Department of Energy (DOE) Hanford Site will be retrieved, treated, and disposed of. Although the importance of devising efficient and cost-effective sludge dissolution procedures has long been recognized, a concerted bench-scale effort to devise and test such procedures with actual solids representative of those in Hanford Site SSTs has not been performed. Reagents that might be used, either individually or serially, to dissolve sludges include HNO 3 , HNO 3 -oxalic acid, and HNO 3 -HF. This report consolidates and updates perspectives and recommendations concerning reagents and procedures for dissolving Hanford Site SST and selected double-shell tank (DST) sludges. The principal objectives of this report are as follows: (1) Compile and review existing experimental data on dissolution of actual Hanford Site SST and DST sludges. (2) Further inform Hanford Site engineers and scientists concerning the utility of combinations of thermally unstable complexants (TUCS) reagents and various reducing agents for dissolving SST and DST sludges. (This latter technology has recently been explored at the Argonne National Laboratory.) (3) Provide guidance in laying out a comprehensive experimental program to develop technology for dissolving all types of Hanford Site SST and DST sludges. 6 refs., 1 fig., 4 tabs

  11. Innovative tank emptying system for the retrieval of salt, sludge and IX resins from storage tanks of NPPs

    International Nuclear Information System (INIS)

    Karl Froschauer; Holger Witing; Bernhard Christ

    2006-01-01

    RWE NUKEM recently developed a new Tank Emptying System (TESY) for the extraction of stored radioactive boric acid/borate salt blocks, sludge and IX resin from NPP stainless steel tanks of several hundred cubic meters content in Russia. RWE NUKEM has chosen the emptying concept consisting of a tracked submersible vehicle ('Crawler'), with jet nozzles for solution, agitation and fluidization, and a suction head to pick up the generated solution or suspension respectively. With the employment of RWE NUKEM's TESY system, spent radioactive salt deposits, ion-exchange resins and sludge, can be emptied and transferred out of the tank. The sediment, crystallized and settled during storage, will be agitated with increased temperature and suitable pH value and then picked up in form of a suspension or solution directly at the point of mobilization. This new Tank Emptying System concept enables efficiently to retrieve stored salt and other sediment waste, reduces operating time, safes cost for spare parts, increases the safety of operation and minimizes radiation exposure to personnel. All emptying tasks are performed remotely from a panel board and TV monitor located in a central control room. The TESY system consists of the following main components: glove box, crawler, submersible pump, heater, TV camera and spot light, control panel and monitor, water separation and feed unit, sodium hydroxide dosing unit. The system is specially requested for the removal of more than 2,500 cubic meter salt solution generated from the dissolution of some 300 cubic meter crystallized salt deposit per tank and per year. The TESY system is able to dissolve efficiently the salts and retrieve solutions and other liquefied suspensions. TESY is adaptable to all liquid waste storage facilities and especially deployable for tanks with limited access openings (<550 mm)

  12. Characterization of Settler Tank, KW Container and KE Container Sludge Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Carolyn A.; Luna, Maria L.; Schmidt, Andrew J.

    2011-04-01

    The Sludge Treatment Project (STP), managed by CH2M Hill Plateau Remediation Company (CHPRC) has specified base formulations for non-radioactive sludge simulants for use in the development and testing of equipment for sludge sampling, retrieval, transport, and processing. In general, the simulant formulations are based on the average or design-basis physical and chemical properties obtained by characterizing sludge samples. The simulants include surrogates for uranium metal, uranium oxides (agglomerates and fine particulate), and the predominant chemical phases (iron and aluminum hydroxides, sand). Specific surrogate components were selected to match the nominal particle-size distribution and particle-density data obtained from sludge sample analysis. Under contract to CHPRC, Pacific Northwest National Laboratory (PNNL) has performed physical and rheological characterization of simulants, and the results are reported here. Two base simulant types (dry) were prepared by STP staff at the Maintenance and Storage Facility and received by PNNL in February 2009: Settler Tank Simulant and KW Container Sludge Simulant. A third simulant, KE Container Sludge Simulant was received by PNNL in December 2010. The objectives of this simulant characterization effort were to provide baseline characterization data on simulants being used by STP for process development and equipment testing and provide a high-level comparison of the simulant characteristics to the targets used to formulate the simulants.

  13. Selective Leaching of Chromium from Hanford Tank Sludge 241-U-108

    Energy Technology Data Exchange (ETDEWEB)

    Rapko, Brian M.; Vienna, John D.

    2002-09-09

    This study evaluated the oxidants permanganate, MnO4-, and peroxynitrite, ONOO-, as selective chromium-leaching agents from washed 241-U-108 tank sludge under varying conditions of hydroxide concentration, temperature, and time. The mass changes and final sludge compositions were evaluated using glass-property models to ascertain the relative impacts of the various oxidative alkaline leach conditions on the amount of borosilicate glass required to immobilize a given amount of washed 241-U-108 Hanford tank sludge. Only permanganate leaching removes sufficient chromium to make the chromium concentration in the oxidatively alkaline leached solids non-limiting. In the absence of added oxidants, continued washing or caustic leaching have no beneficial effects. Peroxynitrite addition reduces the amount of glass required to immobilize a given amount of washed 241-U-108 tank sludge by approximately a factor of two. Depending on the leach conditions and the exact chromium concentration limits, contact with alkaline permanganate solutions reduces the amount of immobilized high-level waste glass by a factor of 10 to 30.

  14. Increased CPC batch size study for Tank 42 sludge in the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Daniel, W.E.

    2000-01-01

    A series of experiments have been completed at TNX for the sludge-only REDOX adjusted flowsheet using Tank 42 sludge simulant in response to the Technical Task Request HLW/DWPT/TTR-980013 to increase CPC batch sizes. By increasing the initial SRAT batch size, a melter feed batch at greater waste solids concentration can be prepared and thus increase melter output per batch by about one canister. The increased throughput would allow DWPF to dispose of more waste in a given time period thus shortening the overall campaign

  15. Increased CPC batch size study for Tank 42 sludge in the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W.E.

    2000-01-06

    A series of experiments have been completed at TNX for the sludge-only REDOX adjusted flowsheet using Tank 42 sludge simulant in response to the Technical Task Request HLW/DWPT/TTR-980013 to increase CPC batch sizes. By increasing the initial SRAT batch size, a melter feed batch at greater waste solids concentration can be prepared and thus increase melter output per batch by about one canister. The increased throughput would allow DWPF to dispose of more waste in a given time period thus shortening the overall campaign.

  16. Research on jet mixing of settled sludges in nuclear waste tanks at Hanford and other DOE sites: A historical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Powell, M.R.; Onishi, Y.; Shekarriz, R.

    1997-09-01

    Jet mixer pumps will be used in the Hanford Site double-shell tanks to mobilize and mix the settled solids layer (sludge) with the tank supernatant liquid. Predicting the performance of the jet mixer pumps has been the subject of analysis and testing at Hanford and other U.S. Department of Energy (DOE) waste sites. One important aspect of mixer pump performance is sludge mobilization. The research that correlates mixer pump design and operation with the extent of sludge mobilization is the subject of this report. Sludge mobilization tests have been conducted in tanks ranging from 1/25-scale (3 ft-diameter) to full scale have been conducted at Hanford and other DOE sites over the past 20 years. These tests are described in Sections 3.0 and 4.0 of this report. The computational modeling of sludge mobilization and mixing that has been performed at Hanford is discussed in Section 5.0.

  17. Neutron diffraction analysis of residual stresses near unannealed welds in anhydrous ammonia nurse tanks.

    Science.gov (United States)

    Becker, A T; Chumbley, L S; Goettee, D; Russell, A M

    2014-01-01

    Neutron diffraction analysis was employed to measure residual stresses near welds in used anhydrous ammonia nurse tanks. Tensile residual stresses contribute to stress corrosion cracking of nurse tanks, which can cause tanks to release toxic ammonia vapor. The analysis showed that tensile residual stresses were present in the tanks measured, and the magnitudes of these stresses approached the yield strength of the steel. Implications for agricultural safety and health are discussed.

  18. Modeling water retention of sludge simulants and actual saltcake tank wastes

    International Nuclear Information System (INIS)

    Simmons, C.S.

    1996-07-01

    The Ferrocyanide Tanks Safety Program managed by Westinghouse hanford Company has been concerned with the potential combustion hazard of dry tank wastes containing ferrocyanide chemical in combination with nitrate salts. Pervious studies have shown that tank waste containing greater than 20 percent of weight as water could not be accidentally ignited. Moreover, a sustained combustion could not be propagated in such a wet waste even if it contained enough ferrocyanide to burn. Because moisture content is a key critical factor determining the safety of ferrocyanide-containing tank wastes, physical modeling was performed by Pacific Northwest National laboratory to evaluate the moisture-retaining behavior of typical tank wastes. The physical modeling reported here has quantified the mechanisms by which two main types of tank waste, sludge and saltcake, retain moisture in a tank profile under static conditions. Static conditions usually prevail after a tank profile has been stabilized by pumping out any excess interstitial liquid, which is not naturally retained by the waste as a result of physical forces such as capillarity

  19. 40 CFR 63.902 - Standards-Tank fixed roof.

    Science.gov (United States)

    2010-07-01

    ... tank. (ii) To remove accumulated sludge or other residues from the bottom of tank. (2) Opening of a... specifications: (1) The fixed roof and its closure devices shall be designed to form a continuous barrier over...

  20. Radiological assessment of worker doses during sludge mobilization and removal at the Melton Valley storage tanks

    International Nuclear Information System (INIS)

    Kerr, G.D.; Coleman, R.L.; Kocher, D.C.; Wynn, C.C.

    1996-01-01

    This report presents an assessment of potential radiation doses to workers during mobilization and removal of contaminated sludges from the Melton Valley Storage Tanks at Oak Ridge National Laboratory. The assessment is based on (1) measurements of radionuclide concentrations in sludge and supernatant liquid samples from the waste storage tanks, (2) measurements of gamma radiation levels in various areas that will be accessed by workers during normal activities, (3) calculations of gamma radiation levels for particular exposure situations, especially when the available measurements are not applicable, and (4) assumed scenarios for worker activities in radiation areas. Only doses from external exposure are estimated in this assessment. Doses from internal exposure are assumed to be controlled by containment of radioactive materials or respiratory protection of workers and are not estimated

  1. Final report for Tank 100 Sump sludge (KON332) for polychlorinated biphenyl's (PCB)

    International Nuclear Information System (INIS)

    Fuller, R.K.

    1998-01-01

    Final Report for Tank 100 Sump Sludge (KON332) for Polychlorinated Biphenyl's (PCB) Sample Receipt Sample KON332 was received from Tank 100-Sump (WESF) on May 18, 1998. The laboratory number issued for this sample is S98BOO0207 as shown on the Request for Sample Analysis (RSA) form (Attachment 4). The sample breakdown diagram (Attachment 3) provides a cross-reference of customer sample identification to the laboratory identification number. Attachment 4 provides copies of the Request for Sample Analysis (RSA) and Chain of Custody (COC) forms. The sample was received in the laboratory in a 125-ml polybottle. Breakdown and subsampling was performed on June 6, 1998. PCB analysis was performed on the wet sludge. A discussion of the results is presented in Attachment 2. The 222-S extraction bench sheets are presented in Attachment 5. The PCB raw data are presented in Attachment 6

  2. Radiological assessment of worker doses during sludge mobilization and removal at the Melton Valley storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, G.D.; Coleman, R.L.; Kocher, D.C.; Wynn, C.C.

    1996-12-17

    This report presents an assessment of potential radiation doses to workers during mobilization and removal of contaminated sludges from the Melton Valley Storage Tanks at Oak Ridge National Laboratory. The assessment is based on (1) measurements of radionuclide concentrations in sludge and supernatant liquid samples from the waste storage tanks, (2) measurements of gamma radiation levels in various areas that will be accessed by workers during normal activities, (3) calculations of gamma radiation levels for particular exposure situations, especially when the available measurements are not applicable, and (4) assumed scenarios for worker activities in radiation areas. Only doses from external exposure are estimated in this assessment. Doses from internal exposure are assumed to be controlled by containment of radioactive materials or respiratory protection of workers and are not estimated.

  3. Radioactive air emissions notice of construction 340-A building tank sludge clean out

    International Nuclear Information System (INIS)

    Hays, C.B.

    1997-01-01

    This document serves as a notice of construction pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060 and as a request for approval to construct pursuant to 40 Code of Federal Regulations (CFR) 61.96 for the removal of sludge from six storage tanks located inside the 340-A Building, which is located in the 300 Area of the Hanford Site

  4. Caustic leaching of composite AZ-101/AZ-102 Hanford tank sludge

    International Nuclear Information System (INIS)

    Rapko, B.M.; Wagner, M.J.

    1997-07-01

    To reduce the quantity (and hence the cost) of glass canisters needed for disposing of high-level radioactive wastes from the Hanford tank farms, pretreatment processes are needed to remove as much nonradioactive material as possible. This report describes the results of a laboratory-scale caustic leaching test performed on a composite derived from a combination of 241-AZ-101 and 241-AZ-102 Hanford Tank sludges. The goals of this FY 1996 test were to evaluate the effectiveness of caustic leaching on removing key components from the sludge and to evaluate the effectiveness of varying the free-hydroxide concentrations by incrementally increasing the free hydroxide concentration of the leach steps up to 3 M free hydroxide. Particle-size analysis of the treated and untreated sludge indicated that the size and range of the sludge particles remained essentially unchanged by the caustic leaching treatment. Both before and after caustic leaching, a particle range of 0.2 microm to 50 microm was observed, with mean particle diameters of 8.5 to 9 microm based on the volume distribution and mean particle diameters of 0.3 to 0.4 microm based on the number distribution

  5. Characterization Of Actinides In Simulated Alkaline Tank Waste Sludges And Leachates

    International Nuclear Information System (INIS)

    Nash, Kenneth L.

    2008-01-01

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

  6. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Kenneth L.

    2008-11-20

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

  7. Basic and Acidic Leaching of Sludge from Melton Valley Storage Tank W-25

    Energy Technology Data Exchange (ETDEWEB)

    Collins, J.L., Egan, B.Z., Beahm, E.C., Chase, C.W., Anderson, K.K.

    1997-10-01

    Bench-scale leaching tests were conducted with samples of tank waste sludge from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation technology processes for use in concentrating the radionuclides and reducing the volume of waste for final disposal. This paper discusses the hot cell apparatus, the characterization of the sludge, the leaching methodology, and the results obtained from a variety of basic and acidic leaching tests of samples of sludge at ambient temperature. Basic leaching tests were also conducted at 75 and 95 deg C. The major alpha-,gamma., and beta-emitting radionuclides in the centrifuged, wet sludge solids were {sup 137}Cs, {sup 60}Co, {sup 154}Eu, {sup 241}Am, {sup 244}Cm {sup 90}Sr, Pu, U, and Th. The other major metals (in addition to the U and Th) and anions were Na, Ca, Al, K, Mg, NO{sub 3}{sup -},CO{sub 3}{sup 2-}, OH{sup -}, and O{sup 2-} organic carbon content was 3.0 +/- 1.0%. The pH was 13. A surprising result was that about 93% of the {sup 137}Cs in the centrifuged, wet sludge solids was bound in the solids and could not be solubilized by basic leaching at ambient temperature and 75 deg C. However, the solubility of the {sup 137}Cs was enhanced by heating the sludge to 95 deg C. In one of the tests,about 42% of the {sup 137}Cs was removed by leaching with 6.3 M NaOH at 95 deg C.Removing {sup 137}Cs from the W-25 sludge with nitric acid was a slow process. About 13% of the {sup 137}Cs was removed in 16 h with 3.0 M HNO{sub 3}. Only 22% of the {sup 137}Cs was removed in 117 h usi 6.0 M HNO{sub 3}. Successive leaching of sludge solids with 0.5 M, 3.0 M, 3.0 M; and 6.0 M HNO{sub 3} for a total mixing time of 558 h removed 84% of the {sup 137}Cs. The use of caustic leaching prior to HNO{sub 3} leaching, and the use of HF with HNO{sub 3} in acidic leaching, increased the rate of {sup 137}Cs dissolution. Gel formation proved to be one of the biggest problems associated with HNO{sub 3

  8. Basic and Acidic Leaching of Sludge from Melton Valley Storage Tank W-25

    International Nuclear Information System (INIS)

    Collins, J.L.; Egan, B.Z.; Beahm, E.C.; Chase, C.W.; Anderson, K.K.

    1997-10-01

    Bench-scale leaching tests were conducted with samples of tank waste sludge from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation technology processes for use in concentrating the radionuclides and reducing the volume of waste for final disposal. This paper discusses the hot cell apparatus, the characterization of the sludge, the leaching methodology, and the results obtained from a variety of basic and acidic leaching tests of samples of sludge at ambient temperature. Basic leaching tests were also conducted at 75 and 95 deg C. The major alpha-,gamma., and beta-emitting radionuclides in the centrifuged, wet sludge solids were 137 Cs, 60 Co, 154 Eu, 241 Am, 244 Cm 90 Sr, Pu, U, and Th. The other major metals (in addition to the U and Th) and anions were Na, Ca, Al, K, Mg, NO 3 - ,CO 3 2- , OH - , and O 2- organic carbon content was 3.0 +/- 1.0%. The pH was 13. A surprising result was that about 93% of the 137 Cs in the centrifuged, wet sludge solids was bound in the solids and could not be solubilized by basic leaching at ambient temperature and 75 deg C. However, the solubility of the 137 Cs was enhanced by heating the sludge to 95 deg C. In one of the tests,about 42% of the 137 Cs was removed by leaching with 6.3 M NaOH at 95 deg C.Removing 137 Cs from the W-25 sludge with nitric acid was a slow process. About 13% of the 137 Cs was removed in 16 h with 3.0 M HNO 3 . Only 22% of the 137 Cs was removed in 117 h usi 6.0 M HNO 3 . Successive leaching of sludge solids with 0.5 M, 3.0 M, 3.0 M; and 6.0 M HNO 3 for a total mixing time of 558 h removed 84% of the 137 Cs. The use of caustic leaching prior to HNO 3 leaching, and the use of HF with HNO 3 in acidic leaching, increased the rate of 137 Cs dissolution. Gel formation proved to be one of the biggest problems associated with HNO 3 leaching of the W-25 sludge

  9. Hanford Tanks 241-C-202 and 241-C-203 Residual Waste Contaminant Release Models and Supporting Data

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Mattigod, Shas V.; Schaef, Herbert T.; Arey, Bruce W.

    2007-09-13

    As directed by Congress, the U. S. Department of Energy (DOE) established the Office of River Protection in 1998 to manage DOE's largest, most complex environmental cleanup project – retrieval of radioactive waste from Hanford tanks for treatment and eventual disposal. Sixty percent by volume of the nation's high-level radioactive waste is stored at Hanford in aging deteriorating tanks. If not cleaned up, this waste is a threat to the Columbia River and the Pacific Northwest. CH2M Hill Hanford Group, Inc., is the Office of River Protection's prime contractor responsible for the storage, retrieval, and disposal of Hanford's tank waste. As part of this effort, CH2M HILL Hanford Group, Inc. contracted with Pacific Northwest National Laboratory (PNNL) to develop release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for DOE.

  10. Characterization of underground storage tank sludge using fourier transform infrared photoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Luo, S.; Bajic, S.J.; Jones, R.W.

    1994-01-01

    Analysis of underground storage tank (UST) contents is critical for the determination of proper disposal protocols and storage procedures of nuclear waste materials. Tank volume reduction processes during the 1940's and 50's have produced a waste form that compositionally varies widely and has a consistency that ranges from paste like sludge to saltcake. The heterogeneity and chemical reactivity of the waste form makes analysis difficult by most conventional methods which require extensive sample preparation. In this paper, a method is presented to characterize nuclear waste from UST's at the Westinghouse Hanford Site in Washington State, using Fourier transform infrared-photoacoustic spectroscopy (FTIR-PAS). FTIR-PAS measurements on milligram amounts of surrogate sludge samples have been used to accurately identify phosphate, sulfate, nitrite, nitrate and ferrocyanide components. A simple sample preparation method was followed to provide a reproducible homogeneous sample for quantitative analysis. The sample preparation method involved freeze drying the sludge sample prior to analysis to prevent the migration of soluble species. Conventional drying (e.g., air or, oven) leads to the formation of crystals near the surface where evaporation occurs. Sample preparation as well as the analytical utility of this method will be discussed

  11. Revised cost savings estimate with uncertainty for enhanced sludge washing of underground storage tank waste

    Energy Technology Data Exchange (ETDEWEB)

    DeMuth, S.

    1998-09-01

    Enhanced Sludge Washing (ESW) has been selected to reduce the amount of sludge-based underground storage tank (UST) high-level waste at the Hanford site. During the past several years, studies have been conducted to determine the cost savings derived from the implementation of ESW. The tank waste inventory and ESW performance continues to be revised as characterization and development efforts advance. This study provides a new cost savings estimate based upon the most recent inventory and ESW performance revisions, and includes an estimate of the associated cost uncertainty. Whereas the author`s previous cost savings estimates for ESW were compared against no sludge washing, this study assumes the baseline to be simple water washing which more accurately reflects the retrieval activity along. The revised ESW cost savings estimate for all UST waste at Hanford is $6.1 B {+-} $1.3 B within 95% confidence. This is based upon capital and operating cost savings, but does not include development costs. The development costs are assumed negligible since they should be at least an order of magnitude less than the savings. The overall cost savings uncertainty was derived from process performance uncertainties and baseline remediation cost uncertainties, as determined by the author`s engineering judgment.

  12. Fabrication of a Sludge-Conditioning System for processing legacy wastes from the Gunite and Associated Tanks

    International Nuclear Information System (INIS)

    Randolph, J.D.; Lewis, B.E.; Farmer, J.R.; Johnson, M.A.

    2000-01-01

    The Sludge Conditioning System (SCS) for the Gunite and Associated Tanks (GAATs) is designed to receive, monitor, characterize and process legacy waste materials from the South Tank Farm tanks in preparation for final transfer of the wastes to the Melton Valley Storage Tanks (MVSTs), which are located at Oak Ridge National Laboratory. The SCS includes (1) a Primary Conditioning System (PCS) Enclosure for sampling and particle size classification, (2) a Solids Monitoring Test Loop (SMTL) for slurry characterization, (3) a Waste Transfer Pump to retrieve and transfer waste materials from GAAT consolidation tank W-9 to the MVSTs, (4) a PulsAir Mixing System to provide mixing of consolidated sludges for ease of retrieval, and (5) the interconnecting piping and valving. This report presents the design, fabrication, cost, and fabrication schedule information for the SCS

  13. Drying of residue and separation of nitrate salts in the sludge waste for the lagoon sludge treatment

    International Nuclear Information System (INIS)

    Hwang, D. S.; Lee, K. I.; Choi, Y. D.; Hwang, S. T.; Park, J. H.

    2003-01-01

    This study investigated the dissolution property of nitrate salts in the dissolution process by water and the drying property of residue after separating nitrates in a series of the processes for the sludge treatment. Desalination was carried out with the adding ratio of water and drying property was analyzed by TG/DTA, FTIR, and XRD. Nitrate salts involved in the sludge were separated over 97% at the water adding ratio of 2.5. But a small quantity of calcium and sodium nitrate remained in the residue These were decomposed over 600 .deg. C and calcium carbonate, which was consisted mainly of residue, was decomposed into calcium oxide over 750 .deg. C. The residue have to be decomposed over 800 .deg. C to converse uranyl nitrate of six value into the stable U 3 O 8 of four value. As a result of removing the nitrates at the water adding ratio of 2.5 and drying the residue over 900 .deg. C, volume of the sludge waste decreased over 80%

  14. Characterization of herb residue and high ash-containing paper sludge blends from fixed bed pyrolysis.

    Science.gov (United States)

    Li, Tiantao; Guo, Feiqiang; Li, Xiaolei; Liu, Yuan; Peng, Kuangye; Jiang, Xiaochen; Guo, Chenglong

    2018-04-10

    High ash-containing paper sludge which is rich in various metal oxides is employed in herb residue pyrolysis to enhance the yield of fuel gas and reduce tar yield in a drop tube fixed bed reactor. Effects of heat treatment temperature and blending ratio of paper sludge on the yields and composition of pyrolysis products (gas, tar and char) were investigated. Results indicate that paper sludge shows a significantly catalytic effect during the pyrolysis processes of herb residue, accelerating the pyrolysis reactions. The catalytic effect resulted in an increase in gas yield but a decrease in tar yield. The catalytic effect degree is affected by the paper sludge proportions, and the strongest catalytic effect of paper sludge is noted at its blending ratio of 50%. At temperature lower than 900 °C, the catalytic effect of paper sludge in the pyrolysis of herb residue promotes the formation of H 2 and CO 2 , inhibits the formation of CH 4 , but shows slight influence on the formations of CO, while the formation of the four gas components was all promoted at 900 °C. SEM results of residue char show that ash particles from paper sludge adhere to the surface of the herb residue char after pyrolysis, which may promote the pyrolysis process of herb residue for more gas releasing. FT-IR results indicate that most functional groups disappear after pyrolysis. The addition of paper sludge promotes deoxidisation and aromatization reactions of hetero atoms tars, forming heavier polycyclic aromatic hydrocarbons and leading to tar yield decrease. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Reuse of residual sludge from stone-processing: differences and similarities between sludge coming from carbonate and silicate stones

    Science.gov (United States)

    Careddu, Nicola; Antonella Dino, Giovanna

    2015-04-01

    Residual sludge coming from dimension stone working activities represents a serious environmental and economic problem both for Stone Industry and citizens. Indeed, most of time, residual sludge is landfilled because of the difficulties to recover it; such difficulties are mainly connected to local legislation and a lack of proper protocols. In general, it is possible to individuate two different categories of sludge: residual sludge coming from carbonate rocks (CS) and those coming from silicate rocks (SS). Both of them are characterised by a very fine size distribution. CS is composed mainly by the same compounds of the processed stones (marble, limestone, travertine). The reason of this is related to the very slow wear of diamond tools during processing which entails a negligible content of heavy metals. CS becomes very interesting, from an economic point of view, when it has a CaCO3 grade > 95 %. On the contrary, SS is characterised by high heavy metal and TPH content. Residual sludge from the processing of silicate rocks can be split in three different sub-categories, depending on the way they are produced, and in particular: sludge from gangsaw using abrasive steel shot (GSS), sludge from multi diamond-saw block cutter (DBC), and mixed sludge (MS) from gangsaw and block cutter. These three sub-categories show different problems connected to heavy metal content, indeed on the one hand GSS is characterised by a high percentage of Ni, Cr, Cu, etc., on the other hand DBC is characterised by Co and Cu high content. In general, sludge, management of which in Italy is administered in accordance with the Italian Legislative Decree 152/06, can be used as waste from for environmental restoration or for cement plants. Several researches investigate the possible reuse of these materials but, at present time, there is no evidence of its systematic recovery as "recycled product" or "by-product". On the basis of the results of these researches it is possible to highlight

  16. Development of an in situ method to define the rheological properties of slurries and sludges stored in underground tanks

    International Nuclear Information System (INIS)

    Heath, W.O.

    1987-04-01

    A method for measuring the in situ flow properties of high-level radioactive waste (HLW) sludges has been developed at Pacific Northwest Laboratory, along with a preconceptual design for a shear vane device that can be installed in underground HLW storage tanks and used to make those measurements remotely. The data obtained with this device will assist in the design of mixing equipment used to resuspend and remove HLW sludges from their storage tanks for downstream processing. This method is also suitable for remotely characterizing other types of waste sludges and slurries. Commonly available viscometric methods were adapted to allow characterization of sludge samples in the laboratory such that the laboratory and in-tank data can be directly compared (scaled up). Procedures for conducting measurements and analyzing the results in terms of useful mathematical models describing both start-up and steady-state flow behavior are presented, as is a brief tutorial on the types of flow behavior that can be exhibited by tank sludges. 30 refs., 36 figs., 14 tabs

  17. Exploratory tests of washing radioactive sludge samples from the Melton Valley and evaporator facility storage tanks at ORNL

    International Nuclear Information System (INIS)

    Sears, M.B.; Botts, J.L.; Keller, J.M.

    1991-09-01

    Exploratory tests were initiated to wash radioactive sludge samples from the waste storage tanks at the Oak Ridge National Laboratory (ORNL). The purpose was to provide preliminary information about (1) the anions in the sludge phase that are soluble in water or dilute acid (e.g., the anions in the interstitial liquid) and (2) the solubilities of sludge constituents in water under process conditions. The experiments were terminated before completion due to changing priorities by the Department of Energy (DOE). This memorandum was prepared primarily for documentation purposes and presents the incomplete data. 3 refs., 13 tabs

  18. Mechanism of Phosphorus Removal from Hanford Tank Sludge by Caustic Leaching

    International Nuclear Information System (INIS)

    Lumetta, Gregg J.

    2008-01-01

    Two experiments were conducted to explore the mechanism by which phosphorus is removed from Hanford tank sludge by caustic leaching. In the first experiment, a series of phosphate salts were treated with 3 M NaOH under conditions prototypic of the actual leaching process to be performed in the Waste Treatment and Immobilization Plant (WTP). The phosphates used were aluminum phosphate, bismuth phosphate, chromium(III) phosphate, and β-tri-calcium phosphate; all of these phases have previously been determined to exist in Hanford tank sludge. The leachate solution was sampled at selected time intervals and analyzed for the specific metal ion involved (Al, Bi, Ca, or Cr) and for P (total and as phosphate). The solids remaining after completion of the caustic leaching step were analyzed to determine the reaction product. In the second experiment, the dependence of P removal from bismuth phosphate was examined as a function of the hydroxide ion concentration. It was anticipated that a plot of log[phosphate] versus log[hydroxide] would provide insight into the phosphorus-removal mechanism. This report describes the test activities outlined in Section 6.3.2.1, Preliminary Investigation of Phosphate Dissolution, in Test Plan TP-RPP-WTP-467, Rev.1. The objectives, success criteria, and test conditions of Section 6.3.2.1 are summarized here

  19. Mechanism of Phosphorus Removal from Hanford Tank Sludge by Caustic Leaching

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2008-03-05

    Two experiments were conducted to explore the mechanism by which phosphorus is removed from Hanford tank sludge by caustic leaching. In the first experiment, a series of phosphate salts were treated with 3 M NaOH under conditions prototypic of the actual leaching process to be performed in the Waste Treatment and Immobilization Plant (WTP). The phosphates used were aluminum phosphate, bismuth phosphate, chromium(III) phosphate, and β-tri-calcium phosphate; all of these phases have previously been determined to exist in Hanford tank sludge. The leachate solution was sampled at selected time intervals and analyzed for the specific metal ion involved (Al, Bi, Ca, or Cr) and for P (total and as phosphate). The solids remaining after completion of the caustic leaching step were analyzed to determine the reaction product. In the second experiment, the dependence of P removal from bismuth phosphate was examined as a function of the hydroxide ion concentration. It was anticipated that a plot of log[phosphate] versus log[hydroxide] would provide insight into the phosphorus-removal mechanism. This report describes the test activities outlined in Section 6.3.2.1, Preliminary Investigation of Phosphate Dissolution, in Test Plan TP-RPP-WTP-467, Rev.1. The objectives, success criteria, and test conditions of Section 6.3.2.1 are summarized here.

  20. Colloidal agglomerates in tank sludge: Impact on waste processing. 1997 annual progress report

    International Nuclear Information System (INIS)

    Virden, J.W.

    1997-01-01

    'Disposal of millions of gallons of existing radioactive wastes is a major remediation problem for the Department of Energy (DOE). Although radionuclides are the most hazardous waste constituents. the components of greatest concern from a waste processing standpoint are insoluble sludges consisting of submicron colloidal particles. Depending on processing conditions, these colloidal particles can form agglomerate networks that could clog transfer lines or interfere with solid-liquid separations such as settle-decant operations. Under different conditions, the particles can be dispersed to form very fine suspended particles that will not create sediment in settle- decant steps and that can foul and contaminate downstream treatment components including ion exchangers or filtrations systems. Given the wide range of tank chemistries present at Hanford and other DOE sites, it is impractical to measure the properties of all potential processing conditions to design effective treatment procedures. Instead. a framework needs to be established to allow sludge property trends to be predicted on a sound scientific basis. The scientific principles of greatest utility in characterizing, understanding, and controlling the physical properties of sludge fall in the realm of colloid chemistry. The objectives of this work are to accomplish the following: understand the factors controlling the nature and extent of colloidal agglomeration under expected waste processing conditions determine how agglomeration phenomena influence physical properties relevant to waste processing including rheology, sedimentation. and filtration develop strategies for optimizing processing conditions via control of agglomeration phenomena.'

  1. Residual and cumulative effects of soil application of sewage sludge on corn productivity.

    Science.gov (United States)

    Vieira, Rosana Faria; Moriconi, Waldemore; Pazianotto, Ricardo Antônio Almeida

    2014-05-01

    The objective of this study was to evaluate the effect of frequent and periodic applications of sewage sludge to the soil, on corn productivity. The experiment was carried out as part of an experiment that has been underway since 1999, using two types of sludge. One came from the Barueri Sewage Treatment Station (BS, which receives both household and industrial sludge) and the other came from the Franca Sewage Treatment Station (FS, which receives only household sludge). The Barueri sludge was applied from 1999 up to the agricultural year of 2003/2004. With the exception of the agricultural years of 2004/2005 and 2005/2006, the Franca sludge was applied up to 2008/2009. All the applications were made in November, with the exception of the first one which was made in April 1999. After harvesting the corn, the soil remained fallow until the next cultivation. The experiment was set up as a completely randomized block design with three replications and the following treatments: control without chemical fertilization or sludge application, mineral fertilization, and dose 1 and dose 2 of sludge (Franca and Barueri). The sludges were applied individually. Dose 1 was calculated by considering the recommended N application for corn. Dose 2 was twice dose 1. It was evident from this work that the successive application of sludge to the soil in doses sufficient to reach the productivity desired with the use of nitrogen fertilizers could cause environmental problems due to N losses to the environment and that the residual and cumulative effects should be considered when calculating the application of sludge to soil.

  2. Estimation of pharmaceutical residues in primary and secondary sewage sludge based on quantities of use and fugacity modelling.

    Science.gov (United States)

    Khan, S J; Ongerth, J E

    2002-01-01

    A general procedure was developed for estimating the concentrations of pharmaceutical residues in fresh primary and secondary sewage sludge. Prescribed quantities coupled with information on the various excretion ratios of 20 pharmaceuticals and 2 of their metabolites enabled prediction of the overall rates of excretion into Australian sewage. Fugacity modelling was applied to predict concentrations of these residues in fresh primary and secondary sludge. Predicted concentrations ranged from 10(-3)-884 microg/L in primary sludge and 10(-4)-36 microg/L in secondary sludge. Overall rates of removal to sludges ranged from 1-39%. The accuracy of the model was verified by comparison to analytical data.

  3. Improving material and energy recovery from the sewage sludge and biomass residues

    International Nuclear Information System (INIS)

    Kliopova, Irina; Makarskienė, Kristina

    2015-01-01

    Highlights: • SRF production from 10–40 mm fraction of pre-composted sludge and biomass residues. • The material and energy balance of compost and SRF production. • Characteristics of raw materials and classification of produced SRF. • Results of the efficiency of energy recovery, comparison analysis with – sawdust. - Abstract: Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10–40 mm) of pre-composted materials – sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg −1 of the net calorific value, about 23% were composted, the rest – evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning

  4. Low-pressure, single-point grout injection for tank heel sludge mixing and in-situ immobilization

    International Nuclear Information System (INIS)

    Whyatt, G.A.; Hymas, C.R.

    1998-09-01

    This report describes tests conducted in an approximately 9-ft diameter test tank situated outside the 336 building in Hanford's 300 area. The tests were performed to measure the ability of jets of grout slurry to mobilize and mix simulated tank sludge. The technique is intended for in situ immobilization of tank waste heels. The current approach uses a single, rotated, larger-diameter nozzle driven at lower pressure. Due to the larger diameter, the potential for plugging is reduced and the effective radius around an injection point over which the jet is effective in mobilizing sludge from the tank bottom can be made larger. A total of three grout injection tests were conducted in a 9-ft diameter tank. In each case, a 2-in. layer of kaolin clay paste was placed on a dry tank floor to simulate a sludge heel. The clay was covered with 4 inches of water. The grout slurry, consisting of Portland cement, class F fly ash, and eater, was prepared and delivered by an offsite vendor. In the third test, the sludge in half of the tank was replaced by a layer of 20x50 mesh zeolite, and bentonite clay was added to the grout formulation. After injection, the grout was allowed to set and then the entire grout monolith was manually broken up and excavated using a jack hammer. Intact pieces of clay were visually apparent due to a sharp color contrast between the grout and clay. Remaining clay deposits were collected and weighed and suspended clay pieces within the monolith were photographed. The mobilization performance of the grout jets exceeded expectations

  5. Effect of Antifoam Agent on Oxidative Leaching of Hanford Tank Sludge Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Rapko, Brian M.; Jones, Susan A.; Lumetta, Gregg J.; Peterson, Reid A.

    2010-02-26

    Oxidative leaching of simulant tank waste containing an antifoam agent (AFA) to reduce the chromium content of the sludge was tested using permanganate as the oxidant in 0.25 M NaOH solutions. AFA is added to the waste treatment process to prevent foaming. The AFA, Dow Corning Q2-3183A, is a surface-active polymer that consists of polypropylene glycol, polydimethylsiloxane, octylphenoxy polyethoxy ethanol, treated silica, and polyether polyol. Some of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste slurries contain high concentrations of undissolved solids that would exhibit undesirable behavior without AFA addition. These tests were conducted to determine the effect of the AFA on oxidative leaching of Cr(III) in waste by permanganate. It has not previously been determined what effect AFA has on the permanganate reaction. This study was conducted to determine the effect AFA has on the oxidation of the chromium, plus plutonium and other criticality-related elements, specifically Fe, Ni and Mn. During the oxidative leaching process, Mn is added as liquid permanganate solution and is converted to an insoluble solid that precipitates as MnO2 and becomes part of the solid waste. Caustic leaching was performed followed by an oxidative leach at either 25°C or 45°C. Samples of the leachate and solids were collected at each step of the process. Initially, Battelle-Pacific Northwest Division (PNWD) was contracted by Bechtel National, Inc. to perform these further scoping studies on oxidative alkaline leaching. The data obtained from the testing will be used by the WTP operations to develop procedures for permanganate dosing of Hanford tank sludge solids during oxidative leaching. Work was initially conducted under contract number 24590-101-TSA-W000-00004. In February 2007, the contract mechanism was switched to Pacific Northwest National Laboratory (PNNL) operating Contract DE-AC05-76RL01830. In summary, this report describes work focused on

  6. Caustic Leaching of SRS Tank 12H Sludge With and Without Chelating Agents

    International Nuclear Information System (INIS)

    Spencer, B.B.

    2003-01-01

    The primary objective of this study was to measure the effect of adding triethanolamine (TEA) to caustic leaching solutions to improve the solubility of aluminum in actual tank-waste sludge. High-level radioactive waste sludge that had a high aluminum assay was used for the tests. This waste, which originated with the processing of aluminum-clad/aluminum-alloy fuels, generates high levels of heat because of the high 90 Sr concentration and contains hard-to-dissolve boehmite phases. In concept, a chelating agent, such as TEA, can both improve the dissolution rate and increase the concentration in the liquid phase. For this reason, TEA could also increase the solubility of other sludge components that are potentially problematic to downstream processing. Tests were conducted to determine if this were the case. Because of its relatively high vapor pressure, process design should include methods to minimize losses of the TEA. Sludge was retrieved from tank 12H at the Savannah River Site by on-site personnel, and then shipped to Oak Ridge National Laboratory for the study. The sludge contained a small quantity of rocky debris. One slate-like flat piece, which had approximate dimensions of 1 1/4 x 1/2 x 1/8 in., was recovered. Additional gravel-like fragments with approximate diameters ranging from 1/8 to 1/4 in. were also recovered by sieving the sludge slurry through a 1.4-mm square-pitch stainless steel mesh. These particles ranged from a yellow quartz-like material to grey-colored gravel. Of the 32.50 g of sludge received, the mass of the debris was only 0.89 g, and the finely divided sludge comprised ∼97% of the mass. The sludge was successfully subdivided into uniform aliquots during hot-cell operations. Analytical measurements confirmed the uniformity of the samples. The smaller sludge samples were then used as needed for leaching experiments conducted in a glove box. Six tests were performed with leachate concentrations ranging from 0.1 to 3.0 m NaOH, 0 to 3

  7. Caustic Leaching of SRS Tank 12H Sludge With and Without Chelating Agents

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B.B.

    2003-04-30

    The primary objective of this study was to measure the effect of adding triethanolamine (TEA) to caustic leaching solutions to improve the solubility of aluminum in actual tank-waste sludge. High-level radioactive waste sludge that had a high aluminum assay was used for the tests. This waste, which originated with the processing of aluminum-clad/aluminum-alloy fuels, generates high levels of heat because of the high {sup 90}Sr concentration and contains hard-to-dissolve boehmite phases. In concept, a chelating agent, such as TEA, can both improve the dissolution rate and increase the concentration in the liquid phase. For this reason, TEA could also increase the solubility of other sludge components that are potentially problematic to downstream processing. Tests were conducted to determine if this were the case. Because of its relatively high vapor pressure, process design should include methods to minimize losses of the TEA. Sludge was retrieved from tank 12H at the Savannah River Site by on-site personnel, and then shipped to Oak Ridge National Laboratory for the study. The sludge contained a small quantity of rocky debris. One slate-like flat piece, which had approximate dimensions of 1 1/4 x 1/2 x 1/8 in., was recovered. Additional gravel-like fragments with approximate diameters ranging from 1/8 to 1/4 in. were also recovered by sieving the sludge slurry through a 1.4-mm square-pitch stainless steel mesh. These particles ranged from a yellow quartz-like material to grey-colored gravel. Of the 32.50 g of sludge received, the mass of the debris was only 0.89 g, and the finely divided sludge comprised {approx}97% of the mass. The sludge was successfully subdivided into uniform aliquots during hot-cell operations. Analytical measurements confirmed the uniformity of the samples. The smaller sludge samples were then used as needed for leaching experiments conducted in a glove box. Six tests were performed with leachate concentrations ranging from 0.1 to 3.0 m Na

  8. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford Tank Initiative: Applications to the AX tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Becker, D.L.

    1997-11-03

    This report investigates five technical areas for stabilization of decommissioned waste tanks and contaminated soils at the Hanford Site AX Farm. The investigations are part of a preliminary evacuation of end-state options for closure of the AX Tanks. The five technical areas investigated are: (1) emplacement of cementations grouts and/or other materials; (2) injection of chemicals into contaminated soils surrounding tanks (soil mixing); (3) emplacement of grout barriers under and around the tanks; (4) the explicit recognition that natural attenuation processes do occur; and (5) combined geochemical and hydrological modeling. Research topics are identified in support of key areas of technical uncertainty, in each of the five areas. Detailed cost-benefit analyses of the technologies are not provided. This investigation was conducted by Sandia National Laboratories, Albuquerque, New Mexico, during FY 1997 by tank Focus Area (EM-50) funding.

  9. The reduction of oil pollutants of petroleum products storage-tanks sludge using low-cost adsorbents

    Directory of Open Access Journals (Sweden)

    Mokhtari-Hosseini Zahra Beagom

    2017-01-01

    Full Text Available Disposal of storage tank sludge in oil depots is a major environmental concern due to the high concentration of hydrocarbons involved. This paper investigates the reduction of the sludge oil pollutants with initial oil and grease concentration of about 50 mass% using low cost adsorbents. Among the examined adsorbents, sawdust indicated the maximum removal of oil and grease. The screening and optimizing of process parameters were evaluated employing Plackett-Burman design and response surface method. For the optimized conditions, more than 60 mass% of oil and grease from the sludge was removed. Moreover, it was found that sawdust adsorption of the oil and grease approximately followed the Freundlich isotherm. The results indicated that oil pollutants of sludge could be reduced using sawdust as a low-cost, available and flammable adsorbent so that thus saturated adsorbents could be used as fuel in certain industries.

  10. Tank 40 final sludge batch 9 chemical and fissile radionuclide characterization results

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kubilius, W. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-26

    A sample of Sludge Batch (SB) 9 was pulled from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS)i. The SB9 WAPS sample was also analyzed for chemical composition, including noble metals, and fissile constituents, and these results are reported here. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is fed to the Defense Waste Processing Facility (DWPF) as SB9. At the Savannah River National Laboratory (SRNL), the 3-L Tank 40 SB9 sample was transferred from the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 547 g sub-sample was removed. This sub-sample was then utilized for all subsequent slurry sample preparations. Eight separate aliquots of the slurry were digested, four with HNO3/HCl (aqua regiaii) in sealed Teflon® vessels and four with NaOH/Na2O2 (alkali or peroxide fusioniii) using Zr crucibles. Three Analytical Reference Glass – 1iv (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma – atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma – mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB9 supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH-/other base, total inorganic

  11. TANK FARM CLOSURE - A NEW TWIST ON REGULATORY STRATEGIES FOR CLOSURE OF WASTE TANK RESIDUALS FOLLOWING NUREG

    International Nuclear Information System (INIS)

    LEHMAN LL

    2008-01-01

    Waste from a number of single-shell tanks (SST) at the U.S. Department of Energy's (DOE) Hanford Site has been retrieved by CH2M HILL Hanford Group to fulfill the requirements of the 'Hanford Federal Facility Agreement and Consent Order (HFFACO) [1]. Laboratory analyses of the Hanford tank residual wastes have provided concentration data which will be used to determine waste classification and disposal options for tank residuals. The closure of tank farm facilities remains one of the most challenging activities faced by the DOE. This is due in part to the complicated regulatory structures that have developed. These regulatory structures are different at each of the DOE sites, making it difficult to apply lessons learned from one site to the next. During the past two years with the passage of the Section 3116 of the 'Ronald Reagan Defense Authorization Act of 2005' (NDAA) [2] some standardization has emerged for Savannah River Site and the Idaho National Laboratory tank residuals. Recently, with the issuance of 'NRC Staff Guidance for Activities Related to US. Department of Energy Waste Determinations' (NUREG-1854) [3] more explicit options may be considered for Hanford tank residuals than are presently available under DOE Orders. NUREG-1854, issued in August 2007, contains several key pieces of information that if utilized by the DOE in the tank closure process, could simplify waste classification and streamline the NRC review process by providing information to the NRC in their preferred format. Other provisions of this NUREG allow different methods to be applied in determining when waste retrieval is complete by incorporating actual project costs and health risks into the calculation of 'technically and economically practical'. Additionally, the NUREG requires a strong understanding of the uncertainties of the analyses, which given the desire of some NRC/DOE staff may increase the likelihood of using probabilistic approaches to uncertainty analysis. The purpose

  12. Electrochemical probing of high-level radioactive waste tanks containing washed sludge and precipitates

    International Nuclear Information System (INIS)

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1986-12-01

    At the US Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assess the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition. Transition metal hydroxide sludge contains strong passivating species for carbon steel. Washed precipitate contains organic species that lower solution pH and tend to reduce passivating films, requiring higher inhibitor concentrations than the 0.01 molar nitrite required for reactor fuel reprocessing wastes. Periodic agitation, to keep the organic phase suspended, or cathodic protection are possible alternatives to higher nitrite inhibitor concentrations

  13. Stabilization of in-tank residuals and external-tank soil contamination: FY 1997 interim report

    International Nuclear Information System (INIS)

    Becker, D.L.

    1997-01-01

    This interim report evaluates various ways to stabilize decommissioned waste tanks and contaminated soils at the AX Tank Farm as part of a preliminary evaluation of end-state options for the Hanford tanks. Five technical areas were considered: (1) emplacement of smart grouts and/or other materials, (2) injection of chemical-getters into contaminated soils surrounding tanks (soil mixing), (3) emplacement of grout barriers under and around the tanks, (4) the use of engineered barriers over the tanks, and (5) the explicit recognition that natural attenuation processes do occur. Research topics are identified in support of key areas of technical uncertainty, in each of the five technical areas. Detailed cost/benefit analyses of the recommended technologies are not provided in this evaluation, performed by Sandia National Laboratories, Albuquerque, New Mexico

  14. Stabilization of in-tank residuals and external-tank soil contamination: FY 1997 interim report

    Energy Technology Data Exchange (ETDEWEB)

    Becker, D.L.

    1997-10-09

    This interim report evaluates various ways to stabilize decommissioned waste tanks and contaminated soils at the AX Tank Farm as part of a preliminary evaluation of end-state options for the Hanford tanks. Five technical areas were considered: (1) emplacement of smart grouts and/or other materials, (2) injection of chemical-getters into contaminated soils surrounding tanks (soil mixing), (3) emplacement of grout barriers under and around the tanks, (4) the use of engineered barriers over the tanks, and (5) the explicit recognition that natural attenuation processes do occur. Research topics are identified in support of key areas of technical uncertainty, in each of the five technical areas. Detailed cost/benefit analyses of the recommended technologies are not provided in this evaluation, performed by Sandia National Laboratories, Albuquerque, New Mexico.

  15. Transuranic Waste Processing Center (TWPC) Legacy Tank RH-TRU Sludge Processing and Compliance Strategy - 13255

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Ben C.; Heacker, Fred K.; Shannon, Christopher [Wastren Advantage, Inc., Transuranic Waste Processing Center, 100 WIPP Road, Lenoir City, Tennessee 37771 (United States); and others

    2013-07-01

    The U.S. Department of Energy (DOE) needs to safely and efficiently treat its 'legacy' transuranic (TRU) waste and mixed low-level waste (LLW) from past research and defense activities at the Oak Ridge National Laboratory (ORNL) so that the waste is prepared for safe and secure disposal. The TWPC operates an Environmental Management (EM) waste processing facility on the Oak Ridge Reservation (ORR). The TWPC is classified as a Hazard Category 2, non-reactor nuclear facility. This facility receives, treats, and packages low-level waste and TRU waste stored at various facilities on the ORR for eventual off-site disposal at various DOE sites and commercial facilities. The Remote Handled TRU Waste Sludge held in the Melton Valley Storage Tanks (MVSTs) was produced as a result of the collection, treatment, and storage of liquid radioactive waste originating from the ORNL radiochemical processing and radioisotope production programs. The MVSTs contain most of the associated waste from the Gunite and Associated Tanks (GAAT) in the ORNL's Tank Farms in Bethel Valley and the sludge (SL) and associated waste from the Old Hydro-fracture Facility tanks and other Federal Facility Agreement (FFA) tanks. The SL Processing Facility Build-outs (SL-PFB) Project is integral to the EM cleanup mission at ORNL and is being accelerated by DOE to meet updated regulatory commitments in the Site Treatment Plan. To meet these commitments a Baseline (BL) Change Proposal (BCP) is being submitted to provide continued spending authority as the project re-initiation extends across fiscal year 2012 (FY2012) into fiscal year 2013. Future waste from the ORNL Building 3019 U-233 Disposition project, in the form of U-233 dissolved in nitric acid and water, down-blended with depleted uranyl nitrate solution is also expected to be transferred to the 7856 MVST Annex Facility (formally the Capacity Increase Project (CIP) Tanks) for co-processing with the SL. The SL-PFB project will construct

  16. Transuranic Waste Processing Center (TWPC) Legacy Tank RH-TRU Sludge Processing and Compliance Strategy - 13255

    International Nuclear Information System (INIS)

    Rogers, Ben C.; Heacker, Fred K.; Shannon, Christopher

    2013-01-01

    The U.S. Department of Energy (DOE) needs to safely and efficiently treat its 'legacy' transuranic (TRU) waste and mixed low-level waste (LLW) from past research and defense activities at the Oak Ridge National Laboratory (ORNL) so that the waste is prepared for safe and secure disposal. The TWPC operates an Environmental Management (EM) waste processing facility on the Oak Ridge Reservation (ORR). The TWPC is classified as a Hazard Category 2, non-reactor nuclear facility. This facility receives, treats, and packages low-level waste and TRU waste stored at various facilities on the ORR for eventual off-site disposal at various DOE sites and commercial facilities. The Remote Handled TRU Waste Sludge held in the Melton Valley Storage Tanks (MVSTs) was produced as a result of the collection, treatment, and storage of liquid radioactive waste originating from the ORNL radiochemical processing and radioisotope production programs. The MVSTs contain most of the associated waste from the Gunite and Associated Tanks (GAAT) in the ORNL's Tank Farms in Bethel Valley and the sludge (SL) and associated waste from the Old Hydro-fracture Facility tanks and other Federal Facility Agreement (FFA) tanks. The SL Processing Facility Build-outs (SL-PFB) Project is integral to the EM cleanup mission at ORNL and is being accelerated by DOE to meet updated regulatory commitments in the Site Treatment Plan. To meet these commitments a Baseline (BL) Change Proposal (BCP) is being submitted to provide continued spending authority as the project re-initiation extends across fiscal year 2012 (FY2012) into fiscal year 2013. Future waste from the ORNL Building 3019 U-233 Disposition project, in the form of U-233 dissolved in nitric acid and water, down-blended with depleted uranyl nitrate solution is also expected to be transferred to the 7856 MVST Annex Facility (formally the Capacity Increase Project (CIP) Tanks) for co-processing with the SL. The SL-PFB project will construct and install

  17. Residue characteristics of sludge from a chemical industrial plant by microwave heating pyrolysis.

    Science.gov (United States)

    Lin, Kuo-Hsiung; Lai, Nina; Zeng, Jun-Yan; Chiang, Hung-Lung

    2018-03-01

    Sludge from biological wastewater treatment procedures was treated using microwave heating pyrolysis to reduce the environmental impact of a chemical plant. In this study, major elements, trace elements, PAHs and nitro-PAHs in raw sludge, and pyrolysis residues were investigated. The contents of major element from raw sludge were carbon 46.7 ± 5.9%, hydrogen 5.80 ± 0.58%, nitrogen 6.81 ± 0.59%, and sulfur 1.34 ± 0.27%. Trace elemental concentrations including Zn, Mn, Cr, Cd, As, and Sn were 0.410 ± 0.050, 0.338 ± 0.008, 0.063 ± 0.006, 0.019 ± 0.001, 0.004 ± 0.001, and 0.003 ± 0.002 mg/g, respectively. For various pyrolysis temperatures, Ca, Fe, Sr, Cr, and Sn contents remained at almost the same level as those in raw sludge. Results indicated that these elements did not easily volatilize. The content of 16 PAH species was about 4.78 μg/g in the raw sludge and 23-65 μg/g for pyrolysis residues associated with various temperatures. The content of ten nitro-PAHs was about 58 ng/g for the raw sludge and 141-744 ng/g for pyrolysis residues. The total nitro-PAH content was highest at 600 °C and then decreased when the temperature was over 600 °C. Total nitro-PAH content was about 247 ng/g at 800 °C.

  18. Effects of wastewater irrigation and sewage sludge application on soil residues of chiral fungicide benalaxyl.

    Science.gov (United States)

    Jing, Xu; Yao, Guojun; Liu, Donghui; Liang, Yiran; Luo, Mai; Zhou, Zhiqiang; Wang, Peng

    2017-05-01

    The effects of wastewater irrigation and sewage sludge on the dissipation behavior of the fungicide benalaxyl and its primary metabolite benalaxyl acid in soil were studied on an enantiomeric level during a 148-day exposure experiment. Chiral separation and analysis of the two pairs of enantiomers were achieved using HPLC-MS/MS with a chiralpak IC chiral column. Benalaxyl decreased with half-life of 16.1 days in soil under tap water irrigation with preferential residue of S-benalaxyl. Benalaxyl acid was formed with great preference of R-enantiomer before 21 days while enriched in S-enantiomer afterwards. The degradation of benalaxyl was restrained by both wastewater and treated wastewater irrigation, but the enantioselectivity in S-benalaxyl residue was enhanced. Benalaxyl acid was also formed with similar enantioselectivity as in tap water irrigation. Sewage sludge could accelerate benalaxyl degradation with shorter half-life. Surprisingly, the enantioselectivity with preference degradation of S-enantiomer in sewage sludge was opposite to that in soil. More benalaxyl acid was generated with EF values always lower than 0.5 and remained longer in sewage sludge than in soil. A sterilization experiment indicated that the conversion of benalaxyl to benalaxyl acid and the enantioselectivity were determined by the microorganisms in soil or sewage sludge. Farming practices like wastewater irrigation and sewage sludge application might not only influence the fate of pesticide, but also the enantioselectivity of chiral pesticide enantiomers and thus the risks of pesticide residues posed to the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Improving material and energy recovery from the sewage sludge and biomass residues.

    Science.gov (United States)

    Kliopova, Irina; Makarskienė, Kristina

    2015-02-01

    Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10-40 mm) of pre-composted materials--sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg(-1) of the net calorific value, about 23% were composted, the rest--evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning, comparison analysis with widely used bio-fuel-sawdust and conclusions made are presented. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Biological treatment of sewage treatment plant sludge by pure bacterial culture with optimum process conditions in a stirred tank bioreactor.

    Science.gov (United States)

    Alam, M Z; Muyibi, Suleyman A; Jamal, P

    2007-09-01

    Biological treatment of sewage treatment plant (STP) sludge by potential pure bacterial culture (Bacillus sp.) with optimum process conditions for effective biodegradation and bioseparation was carried out in the laboratory. The effective and efficient bioconversion was evaluated with the treatment of pure bacterial culture and existing microbes (uninnoculated) in sludge. The optimum process conditions i.e., temperature, 40 degrees C; pH, 6; inoculum, 5% (v/v); aeration, 1 vvm; agitation speed, 50 rpm obtained from the previous studies with chemical oxygen demand COD at 30 mgL(-1) were applied for the biological treatment of sludge. The results indicated that pure bacterial culture (Bacillus sp.) showed higher degradation and separation of treated sludge compared to treatment with the existing mixed microbes in a stirred tank bioreactor. The treated STP sludge by potential pure bacterial culture and existing microbes gave 30% and 11%; 91.2% and 59.1; 88.5% and 52.3%; 98.4% and 51.3%; 96.1% and 75.2%; 99.4% and 72.8% reduction of total suspended solids (TSS, biosolids), COD, soluble protein, turbidity, total dissolved solids (TDS) and specific resistance to filtration (SRF), respectively within 7 days of treatment. The pH was observed at 6.5 and 4 during the treatment of sludge by pure culture and existing microbes, respectively.

  1. Study and utilization of residual sludges rich in alumina from an anodizing process

    International Nuclear Information System (INIS)

    Carranza, Carlos; Montero, Mavis L.; Rodriguez, Ventura

    2006-01-01

    Residual sludges from a process of anodizing were studied by x-ray diffraction as part of research into alternative materials for the chemical industry. The sludge containing mainly bayerite Al(OH) 3 and bohemite AlO(OH). The phases of α and β alumina were identified at 700 degrees, corundum phase is present at 850 degrees. Zeolite A is synthesized from these and by means of hydrothermal, which was identified by X-ray diffraction. Scanning microscopy of zeolite A shows a high degree of crystallinity. (author) [es

  2. Contaminant Release from Residual Waste in Single Shell Tanks at the Hanford Site, Washington, USA - 9276

    International Nuclear Information System (INIS)

    Cantrell, Kirk J.; Krupka, Kenneth M.; Deutsch, William J.; Lindberg, Michael J.

    2009-01-01

    Determinations of elemental and solid-phase compositions, and contaminant release studies have been applied in an ongoing study of residual tank wastes (i.e., waste remaining after final retrieval operations) from five of 149 underground single-shell storage tanks (241-C-103, 241-C-106, 241-C-202, 241-C-203, and 241-S-112) at the U.S. Department of Energy's Hanford Site in Washington State. This work is being conducted to support performance assessments that will be required to evaluate long-term health and safety risks associated with tank site closure. The results of studies completed to date show significant variability in the compositions, solid phase properties, and contaminant release characteristics from these residual tank wastes. This variability is the result of differences in waste chemistry/composition of wastes produced from several different spent fuel reprocessing schemes, subsequent waste reprocessing to remove certain target constituents, tank farm operations that concentrated wastes and mixed wastes between tanks, and differences in retrieval processes used to remove the wastes from the tanks. Release models were developed based upon results of chemical characterization of the bulk residual waste, solid-phase characterization (see companion paper 9277 by Krupka et al.), leaching and extraction experiments, and geochemical modeling. In most cases empirical release models were required to describe contaminant release from these wastes. Release of contaminants from residual waste was frequently found to be controlled by the solubility of phases that could not be identified and/or for which thermodynamic data and/or dissolution rates have not been measured. For example, significant fractions of Tc-99, I-129, and Cr appear to be coprecipitated at trace concentrations in metal oxide phases that could not be identified unambiguously. In the case of U release from tank 241-C-103 residual waste, geochemical calculations indicated that leachate

  3. Contaminant Leach Testing of Hanford Tank 241-C-104 Residual Waste

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle M.V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Buck, Edgar C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-01

    Leach testing of Tank C-104 residual waste was completed using batch and column experiments. Tank C-104 residual waste contains exceptionally high concentrations of uranium (i.e., as high as 115 mg/g or 11.5 wt.%). This study was conducted to provide data to develop contaminant release models for Tank C-104 residual waste and Tank C-104 residual waste that has been treated with lime to transform uranium in the waste to a highly insoluble calcium uranate (CaUO4) or similar phase. Three column leaching cases were investigated. In the first case, C-104 residual waste was leached with deionized water. In the second case, crushed grout was added to the column so that deionized water contacted the grout prior to contacting the waste. In the third case, lime was mixed in with the grout. Results of the column experiments demonstrate that addition of lime dramatically reduces the leachability of uranium from Tank C-104 residual waste. Initial indications suggest that CaUO4 or a similar highly insoluble calcium rich uranium phase forms as a result of the lime addition. Additional work is needed to definitively identify the uranium phases that occur in the as received waste and the waste after the lime treatment.

  4. Prediction of Peak Hydrogen Concentrations for Deep Sludge Retrieval in Tanks AN-101 and AN-106 from Historical Data of Spontaneous Gas Release Events

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Cooley, Scott K.; Meacham, Joseph E.

    2013-10-21

    Radioactive and chemical wastes from nuclear fuel processing are stored in large underground storage tanks at the Hanford Site. The Tank Operations Contractor is continuing a program of moving solid wastes from single-shell tanks (SSTs) to double-shell tanks (DSTs) and preparing for waste feed delivery (WFD). A new mechanism for a large spontaneous gas release event (GRE) in deep sludge sediments has been postulated. The creation of this potential new GRE hazard, deep sludge gas release events (DSGREs), is the retrieval of sludge waste into a single DST that results in a sediment depth greater than operating experience has demonstrated is safe. The Tank Operations Contractor program of moving solid wastes from SSTs to DSTs and preparing for WFD is being negatively impacted by this sediment depth limit.

  5. An adsorbent with a high adsorption capacity obtained from the cellulose sludge of industrial residues.

    Science.gov (United States)

    Orlandi, Géssica; Cavasotto, Jéssica; Machado, Francisco R S; Colpani, Gustavo L; Magro, Jacir Dal; Dalcanton, Francieli; Mello, Josiane M M; Fiori, Márcio A

    2017-02-01

    One of the major problems in effluent treatment plants of the cellulose and paper industry is the large amount of residual sludge generated. Therefore, this industry is trying to develop new methods to treat such residues and to use them as new products, such as adsorbents. In this regard, the objective of this work was to develop an adsorbent using the raw activated sludge generated by the cellulose and paper industry. The activated cellulose sludge, after being dried, was chemically activated with 42.5% (v/v) phosphoric acid at 85 °C for 1 h and was charred at 500 °C, 600 °C and 700 °C for 2 h. The efficiency of the obtained adsorbent materials was evaluated using kinetic tests with methylene blue solutions. Using the adsorption kinetics, it was verified that the three adsorbents showed the capacity to adsorb dye, and the adsorbent obtained at a temperature of 600 °C showed the highest adsorption capacity of 107.1 mg g -1 . The kinetic model that best fit the experimental data was pseudo-second order. The Langmuir-Freudlich isotherm adequately described the experimental data. As a result, the cellulose sludge generated by the cellulose and paper industries could be used as an adsorbent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Activated sludge mass reduction and biodegradability of the endogenous residues by digestion under different aerobic to anaerobic conditions: Comparison and modeling.

    Science.gov (United States)

    Martínez-García, C G; Fall, C; Olguín, M T

    2016-03-01

    This study was performed to identify suitable conditions for the in-situ reduction of excess sludge production by intercalated digesters in recycle-activated sludge (RAS) flow. The objective was to compare and model biological sludge mass reduction and the biodegradation of endogenous residues (XP) by digestion under hypoxic, aerobic, anaerobic, and five intermittent-aeration conditions. A mathematical model based on the heterotrophic endogenous decay constant (bH) and including the biodegradation of XP was used to fit the long-term data from the digesters to identify and estimate the parameters. Both the bH constant (0.02-0.05 d(-1)) and the endogenous residue biodegradation constant (bP, 0.001-0.004 d(-1)) were determined across the different mediums. The digesters with intermittent aeration cycles of 12 h-12 h and 5 min-3 h (ON/OFF) were the fastest, compared to the aerobic reactor. The study provides a basis for rating RAS-digester volumes to avoid the accumulation of XP in aeration tanks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Nuclear reactor equipped with a flooding tank and a residual heat removal and emergency cooling system

    International Nuclear Information System (INIS)

    Schabert, H.P.; Winkler, F.

    1975-01-01

    A description is given of a nuclear reactor such as a pressurized-water reactor or the like which is equipped with a flooding tank and a residual heat removal and emergency cooling system. The flooding tank is arranged within the containment shell at an elevation above the upper edge of the reactor core and contains a liquid for flooding the reactor core in the event of a loss of coolant

  8. Examination of Uranium(VI) Leaching During Ligand Promoted Dissolution of Waste Tank Sludge Surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Brian; Powell, Brian A.; Rao, Linfeng; Nash, Kenneth. L.

    2008-06-10

    The dissolution of synthetic boehmite (?-AlOOH) by 1-hydroxyethane-1,1-diphosphonic acid (HEDPA) was examined in a series of batch adsorption/dissolution experiments. Additionally, the leaching behavior of {sup 233}U(VI) from boehmite was examined as a function of pH and HEDPA concentration. The results are discussed in terms of sludge washing procedures that may be utilized during underground tank waste remediation. In the pH range 4 to 10, complexation of Al(III) by HEDPA significantly enhanced dissolution of boehmite. This phenomenon was especially pronounced in the neutral pH region where the solubility of aluminum, in the absence of complexants, is limited by the formation of sparsely soluble aluminum hydroxides. At pH higher than 10, dissolution of synthetic boehmite was inhibited by HEDPA, likely due to sorption of Al(III):HEDPA complexes. Addition of HEDPA to equilibrated U(VI)-synthetic boehmite suspensions yielded an increase in the aqueous phase uranium concentration. Partitioning of uranium between the solid and aqueous phase is described in terms of U(VI):HEDPA speciation and dissolution of the boehmite solid phase.

  9. Influences of model structure and calibration data size on predicting chlorine residuals in water storage tanks.

    Science.gov (United States)

    Hua, Pei; de Oliveira, Keila Roberta Ferreira; Cheung, Peter; Gonçalves, Fábio Veríssimo; Zhang, Jin

    2018-04-09

    This study evaluated the influences of model structure and calibration data size on the modelling performance for the prediction of chlorine residuals in household drinking water storage tanks. The tank models, which consisted of two modules, i.e., hydraulic mixing and water quality modelling processes, were evaluated under identical calibration conditions. The hydraulic mixing modelling processes investigated included the continuously stirred tank reactor (CSTR) and multi-compartment (MC) methods, and the water quality modelling processes included first order (FO), single-reactant second order (SRSO), and variable reaction rate coefficients (VRRC) second order chlorine decay kinetics. Different combinations of these hydraulic mixing and water quality methods formed six tank models. Results show that by applying the same calibration datasets, the tank models that included the MC method for modelling the hydraulic mixing provided better predictions compared to the CSTR method. In terms of water quality modelling, VRRC kinetics showed better predictive abilities compared to FO and SRSO kinetics. It was also found that the overall tank model performance could be substantially improved when a proper method was chosen for the simulation of hydraulic mixing, i.e., the accuracy of the hydraulic mixing modelling plays a critical role in the accuracy of the tank model. Advances in water quality modelling improve the calibration process, i.e., the size of the datasets used for calibration could be reduced when a suitable kinetics method was applied. Although the accuracies of all six models increased with increasing calibration dataset size, the tank model that consisted of the MC and VRRC methods was the most suitable of the tank models as it could satisfactorily predict chlorine residuals in household tanks by using invariant parameters calibrated against the minimum dataset size. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Milk quality parameters associated with the occurrence of veterinary drug residues in bulk tank milk

    Directory of Open Access Journals (Sweden)

    Lidia Cristina Almeida Picinin

    Full Text Available ABSTRACT Veterinary drug residues in bulk tank milk are important to all sectors of the dairy chain because they are one of the major factors which determine the safety of the final product. This study attempted to identify milk quality parameters that are associated with the occurrence of veterinary drug residues using multivariate principal component analysis (PCA. A total of 132 raw milk samples were collected from 45 dairy farms in the state of Minas Gerais - Brazil and analyzed for 42 analytes, including pyrethroids, macrocyclic lactones and antibacterials, using liquid chromatography coupled with mass spectrometry in tandem mode and gas chromatography with electron capture detection. Out of the 132 milk samples, 40 samples tested positive for at least one analyte (above the detection limit. The milk parameters associated with the antimicrobial residues by confirmatory tests were lactose and nonfat concentrations, as revealed by PCA. This analysis showed that fat and total solid concentrations, as well as the somatic cell and total bacteria counts were associated with macrocyclic lactone residues in bulk tank milk. A PCA assessing pyrethroid residues in bulk tank milk revealed that the lactose and nonfat solid concentrations and titratable acidity were inversely associated with these residues. Thus, the data analysis indicated that the veterinary drug residues were associated with certain milk quality parameters that can be used to target farms at higher risk of veterinary drug residue contamination for testing programs in combination with incentives, education and training programs to improve mammary health, milk hygiene and safety.

  11. Radionuclide Leaching from Residual Solids Remaining after Acid Dissolution of K East Area Sludge Composite

    International Nuclear Information System (INIS)

    Delegard, C.H.; Rinehart, D.E.; Carlson, C.D.; Soderquist, C.Z.; Fadeff, S.K.

    1998-01-01

    Laboratory tests were performed to examine the efficacy of various leach treatments for decontaminating dissolver residual solids (KEACRESID1) produced during a 24-hour dissolution of K East Basin floor and Weasel Pit sludge composite in boiling 6 M HNO 3 . The scope of this testing has been described in Section 4.5 of ''Testing Strategy to Support the Development of K Basin Sludge Treatment Process'' (Flament 1998). Radionuclides sorbed or associated with the residual solids generated in the K Basin sludge treatment process can restrict disposal of this solid to the Environmental Restoration Disposal Facility (ERDF). The starting dissolver residual solid for this testing, KEACRESID1, is a visibly heterogeneous material. This material contains radionuclides at concentrations above the ERDF Waste Acceptance Criteria for transuranics (TRU) by about a factor of 3, for 239 Pu by a factor of 10, and for 241 Am by a factor of 1.6. It meets the ERDF criterion for 137 Cs by a factor of 4 and for uranium by a factor of 10. Therefore, the radionuclides of greatest interest in this leaching study are first 239 Pu, and then 241 Am, 137 Cs, and uranium

  12. Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by bacterial community from propylene oxide saponification wastewater residual sludge.

    Science.gov (United States)

    Wang, Yiwei; Zhu, Ying; Gu, Pengfei; Li, Yumei; Fan, Xiangyu; Song, Dongxue; Ji, Yan; Li, Qiang

    2017-05-01

    The saponification wastewater from the process of propylene oxide (PO) production is contaminated with high chemical oxygen demand (COD) and chlorine contents. Although the activated sludge process could treat the PO saponification wastewater effectively, the residual sludge was difficult to be disposed properly. In this research, microbes in PO saponification wastewater residual sludge were acclimated to produce poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from volatile fatty acids. Through Miseq Illumina highthroughput sequencing, the bacterial community discrepancy between the original and the acclimated sludge samples were analyzed. The proportions of Bacillus, Acinetobacter, Brevundimonas and Pseudomonas, the potential PHBV-producers in the residual sludge, were all obviously increased. In the batch fermentation, the production of PHBV could achieve 4.262g/L at 300min, with the content increased from 0.04% to 23.67% of mixed liquor suspended solid (MLSS) in the acclimated sludge, and the COD of the PO saponification wastewater was also decreased in the fermentation. This work would provide an effective solution for the utilization of PO saponification wastewater residual sludge. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Co-digestion of sewage sludge and dewatered residues from enzymatic hydrolysis of sugar beet pulp.

    Science.gov (United States)

    Borowski, Sebastian; Kucner, Marcin

    2015-11-01

    Sugar beet pulp residues (SBPR) from hydrolysis and dewatering of beet pulp were co-digested with municipal sewage sludge (MSS). The highest biogas yields of nearly 512 dm(3)/kg VSfed (volatile solids fed) were achieved for SBPR, treated both as the monosubstrate and as a mixture with MSS (1 : 1 by weight). Simultaneously, the highest methane production of 348 dm(3) CH4/kg VSfed was determined when the sewage sludge was co-digested with 35% SBPR. The analysis of digestate showed that neither ammonia nor volatile fatty acids destabilized the biogas production. Processing of sugar beet pulp into bioethanol via enzymatic hydrolysis and microbial fermentation has become increasingly attractive. However, in this process, only the liquid fraction derived from hydrolysis is subjected into alcoholic fermentation, whereas the remaining solid fraction needs to be utilized. This study demonstrated that sugar beet pulp residues after bioethanol production can successfully be co-digested with sewage sludge to increase biogas productivity of anaerobic digesters located at wastewater treatment plants.

  14. Tank Vapor Sampling and Analysis Data Package for Tank 241-Z-361 Sampled 09/22/1999 and 09/271999 During Sludge Core Removal

    Energy Technology Data Exchange (ETDEWEB)

    VISWANATH, R.S.

    1999-12-29

    This data package presents sampling data and analytical results from the September 22 and 27, 1999, headspace vapor sampling of Hanford Site Tank 241-2-361 during sludge core removal. The Lockheed Martin Hanford Corporation (LMHC) sampling team collected the samples and Waste Management Laboratory (WML) analyzed the samples in accordance with the requirements specified in the 241-2361 Sludge Characterization Sampling and Analysis Plan, (SAP), HNF-4371, Rev. 1, (Babcock and Wilcox Hanford Corporation, 1999). Six SUMMA{trademark} canister samples were collected on each day (1 ambient field blank and 5 tank vapor samples collected when each core segment was removed). The samples were radiologically released on September 28 and October 4, 1999, and received at the laboratory on September 29 and October 6, 1999. Target analytes were not detected at concentrations greater than their notification limits as specified in the SAP. Analytical results for the target analytes and tentatively identified compounds (TICs) are presented in Section 2.2.2 starting on page 2B-7. Three compounds identified for analysis in the SAP were analyzed as TICs. The discussion of this modification is presented in Section 2.2.1.2.

  15. Tank Vapor Sampling and Analysis Data Package for Tank 241-Z-361 Sampled 09/22/1999 and 09/27/1999, During Sludge Core Removal

    International Nuclear Information System (INIS)

    VISWANATH, R.S.

    1999-01-01

    This data package presents sampling data and analytical results from the September 22 and 27, 1999, headspace vapor sampling of Hanford Site Tank 241-2-361 during sludge core removal. The Lockheed Martin Hanford Corporation (LMHC) sampling team collected the samples and Waste Management Laboratory (WML) analyzed the samples in accordance with the requirements specified in the 241-2361 Sludge Characterization Sampling and Analysis Plan, (SAP), HNF-4371/Rev. 1, (Babcock and Wilcox Hanford Corporation, 1999). Six SUMMA(trademark) canister samples were collected on each day (1 ambient field blank and 5 tank vapor samples collected when each core segment was removed). The samples were radiologically released on September 28 and October 4, 1999, and received at the laboratory on September 29 and October 6, 1999. Target analytes were not detected at concentrations greater than their notification limits as specified in the SAP. Analytical results for the target analytes and tentatively identified compounds (TICs) are presented in Section 2.2.2 starting on page 2B-7. Three compounds identified for analysis in the SAP were analyzed as TICs. The discussion of this modification is presented in Section 2.2.1.2

  16. Residual sludge from dimensional stones: characterisation for their exploitation in civil and environmental applications

    Science.gov (United States)

    Antonella Dino, Giovanna; Clemente, Paolo; De Luca, Domenico Antonio; Lasagna, Manuela

    2013-04-01

    Residual sludge coming from dimensional stones working plants (diamond framesaw and ganguesaw with abrasive shots processes) represents a problem for Stone Industries. In fact the cost connected to their landfilling amounts to more than 3% of operating costs of dimensional stone working plants. Furthermore their strict feature as waste to dump (CER code 010413) contrasts the EU principles of "resource preservation" and "waste recovery". The main problems related to their management are: size distribution (fine materials, potentially asphyxial), presence of heavy metals (due to the working processes) and TPH content (due to oil machines losses). Residual sludge, considered according to Italian Legislative Decree n.152/06, can be used, as waste, for environmental restoration of derelict land or in cement plants. It is also possible to think about their systematic treatment in consortium plats for the production of Secondary Raw Materials (SRM) or "New Products" (NP, eg. artificial loam, waterproofing materials, ....). The research evidences that, on the basis of a correct sludge management, treatment and characterization, economic and environmental benefits are possible (NP or SRM in spite of waste to dump). To individuate different applications of residual sludge in civil and environmental contexts, a geotechnical (size distribution, permeability, Atterberg limits, cohesion and friction angle evaluation, Proctor soil test) characterization was foreseen. The geotechnical tests were conducted on sludge as such and on three different mixes: - Mix 1 - Bentonite clay (5-10%) added to sludge a.s (90-95%); - Mix 2 - Sludge a.s. (90-80-70%) added to coarse materials coming from crushed dimensional stones (10-20-30%); - Mix 3 - Sludge a.s. (50-70%) mixed with sand, compost, natural loam (50-30% mixture of sand, compost, natural loam). The results obtained from the four sets of tests were fundamental to evaluate: - the characteristics of the original materials; - the chance

  17. Characterization of the heterotrophic biomass and the endogenous residue of activated sludge.

    Science.gov (United States)

    Ramdani, Abdellah; Dold, Peter; Gadbois, Alain; Déléris, Stéphane; Houweling, Dwight; Comeau, Yves

    2012-03-01

    The activated sludge process generates an endogenous residue (X(E)) as a result of heterotrophic biomass decay (X(H)). A literature review yielded limited information on the differences between X(E) and X(H) in terms of chemical composition and content of extracellular polymeric substances (EPS). The objective of this project was to characterize the chemical composition (x, y, z, a, b and c in C(x)H(y)O(z)N(a)P(b)S(c)) of the endogenous and the active fractions and EPS of activated sludge from well designed experiments. To isolate X(H) and X(E) in this study, activated sludge was generated in a 200L pilot-scale aerobic membrane bioreactor (MBR) fed with a soluble and completely biodegradable synthetic influent of sodium acetate as the sole carbon source. This influent, which contained no influent unbiodegradable organic or inorganic particulate matter, allowed the generation of a sludge composed essentially of two fractions: heterotrophic biomass X(H) and an endogenous residue X(E), the nitrifying biomass being negligible. The endogenous decay rate and the active biomass fraction of the MBR sludge were determined in 21-day aerobic digestion batch tests by monitoring the VSS and OUR responses. Fractions of X(H) and X(E) were respectively 68% and 32% in run 1 (MBR at 5.2 day SRT) and 59% and 41% in run 2 (MBR at 10.4 day SRT). The endogenous residue was isolated by subjecting the MBR sludge to prolonged aerobic batch digestion for 3 weeks, and was characterized in terms of (a) elemental analysis for carbon, nitrogen, phosphorus and sulphur; and (b) content of EPS. The MBR sludge was characterized using the same procedures (a and b). Knowing the proportions of X(H) and X(E) in this sludge, it was possible to characterize X(H) by back calculation. Results from this investigation showed that the endogenous residue had a chemical composition different from that of the active biomass with a lower content of inorganic matter (1:4.2), of nitrogen (1:2.9), of phosphorus (1

  18. Characteristics and aluminum reuse of textile sludge incineration residues after acidification.

    Science.gov (United States)

    Huang, Manhong; Chen, Liang; Chen, Donghui; Zhou, Saijie

    2011-01-01

    The chemical composition and aluminum speciation of sludge incineration residue (SIR) were determined. Cementation of aluminum from sulfuric acid solution using SIR was studied. The results showed that acid-soluble inorganic aluminum was the predominant component in the sludge, and the total leached aluminum increased from 62.2% to 92.9% after incineration. Sulfuric acid dosage and reaction time were found to affect aluminum recovery positively. Conversely, the increase in temperature significantly inhibited recovery reactions. The optimized leaching condition was 1.66 g sulfuric acid per gram of SIR with a reaction time of 3 hr at 20 degrees C, resulting in the highest aluminum leaching rate of 96.7%. Compared to commercial aluminum sulfate solution coagulants, the leaching solution demonstrated higher COD(Cr), turbidity and color removal efficiency for textile wastewater.

  19. Residual stress measurement on propellant tank of 2219 aluminum alloy and study on its weak spot

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chaoqun; Li, Huan; Li, Jianxiong; Luo, Chuanguang; Ni, Yanbing [Tianjin University, Tianjin (China)

    2017-05-15

    This paper presented residual stress measurement on two circumferential Variable polarity plasma arc welding (VPPAW) joints and one circular closed Friction stir welding (FSW) joint on the propellant tank of 2219 aluminum alloy using the indentation strain-gauge method. Quite large tensile residual stresses were attached to the center and inner areas of the circular closed FSW joint. There were very large tensile stresses in some points of the two circumferential VPPAW joints, among these points, the maximum value was +253 MPa, which was about 63 % of the yield strength of 410 MPa measured in the base material. In addition, the peak of compressive residual stress was about -160 MPa. Above all, there were two typical peaks of residual stress in the circumferential VPPAW joints, one was located in the middle part while the other one was near the start/end position of the joints. Combining the result of residual stress measurement with the characteristics of the tank structure, it can be concluded that circular closed FSW joint around the flange was a weak spot on the propellant tank. And the most vulnerable point on the circular closed FSW joint has also been found.

  20. Effect of Sewage Sludge Addition on the Completion of Aerobic Composting of Thermally Hydrolyzed Kitchen Biogas Residue

    OpenAIRE

    Hong-tao Liu; Lu Cai

    2014-01-01

    The composting of thermal-hydrolyzed kitchen biogas residue, either with or without sewage sludge, was compared in this study. The addition of sewage sludge increased and prolonged the temperature to a sufficient level that met the requirements for aerobic composting. Moreover, after mixing the compost materials, oxygen, ammonia, and carbon dioxide levels reverted to those typical of aerobic composting. Finally, increased dewatering, organic matter degradation, and similar mature compost prod...

  1. Derivation of residual radionuclide inventory guidelines for implace closure of high-level waste tanks

    International Nuclear Information System (INIS)

    Yuan, L.; Yuan, Y.

    1999-01-01

    Residual radionuclide inventory guidelines were derived for the high-level waste tanks at a vitrification facility. The decommissioning scenario assumed for this derivation was that the tanks were to be stabilized at the present locations and the site is released for unrestricted use following a 100-year institutional control period. It was assumed that loss of institutional control would occur at 100-years following tank closure. The derivation of the residual radionuclide inventory guidelines was based on the requirement that the effective dose equivalent (EDE) to a hypothetical individual who lives in the vicinity of the site should not exceed a dose of 0.15 mSv/yr off-site and 5 mSv/yr on-site following closure of the tanks. The RESRAD computer code, modified for exposure scenarios specific for the site, was used for this evaluation. The results of the derivation indicate that the allowable off-site dose limit will not be exceeded. The estimated potential doses to individuals using water offsite from a creek are negligibly small fractions of the 0.15 mSv/yr allowable dose limit. With an assumed 3% heel remaining in the tanks, the estimated peak dose rate for the future offsite water user is about 0.00025 mSv/yr. The residual radionuclide inventory guidelines derived based on potential doses to the on-site resident farmer indicate that, with the exception of Tc-99 and C-14, a 3% heel remaining in the tanks would not result in doses exceeding the 5 mSv/yr allowable dose limit. For this on-site exposure scenario, the peak dose rates occur at about 2000 years after tank closure. The peak dose rate is calculated to be 25 mSv/yr, with greater than 99% produced by four radionuclides: C-14, Tc-99, Np-237, and Am-241. Ingestion of contaminated vegetation contributes most (90%) of the peak dose. Since the inventories used for the derivation are mostly estimated from fuel depletion calculations. There is a need to determine further the actual inventories of these

  2. The effect of sludge water treatment plant residuals on the properties of compressed brick

    Science.gov (United States)

    Shamsudin, Shamrul-Mar; Shahidan, S.; Azmi, M. A. M.; Ghaffar, S. A.; Ghani, M. B. Abdul; Saiful Bahari, N. A. A.; Zuki, S. S. M.

    2017-11-01

    The focus of this study is on the production of compressed bricks which contains sludge water treatment plant (SWTP) residuals obtained from SAJ. The main objective of this study is to utilise and incorporate discarded material (SWTP) in the form of residual solution to produce compressed bricks. This serves as one of the recycling efforts to conserve the environment. This study determined the optimum mix based on a mix ratio of 1:2:4 (cement: sand: soil) in the production of compressed bricks where 5 different mixes were investigated i. e. 0%, 5%, 10%, 20%, and 30% of water treatment plant residue solution. The production of the compressed bricks is in accordance with the Malaysian Standard MS 7.6: 1972 and British Standard BS 3921: 1985 - Compressive Strength & Water Absorption. After being moulded and air dried, the cured bricks were subjected to compression tests and water absorption tests. Based on the tests conducted, it was found that 20% of water treatment plant residue solution which is equivalent to 50% of soil content replacement with a mix composition of [10: cement] [20: sand] [20: soil] [20: water treatment plant residue solution] is the optimum mix. It was also observed that the bricks containing SWTP residuals were lighter in weight compared to the control specimens

  3. Glass-ceramics from vitrified sewage sludge pyrolysis residues and recycled glasses.

    Science.gov (United States)

    Bernardo, E; Dal Maschio, R

    2011-11-01

    Pyrolysis of urban plant sewage sludge has been demonstrated to be an effective way to produce fuel gas. However, a complete disposal of this particular waste is not achieved if the solid residues from the treatment are not considered. In this paper we discuss the feasibility an integrated pyrolysis/vitrification/sintering approach, aimed at a "full" disposal: the pyrolysis residues are first converted into a glass, then transformed into glass-ceramics, by simple viscous flow sintering treatments, with or without additions of inexpensive recycled glasses and kaolin clay. The obtained products were demonstrated to constitute an alternative to natural stones, in terms of both mechanical strength and chemical stability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Study of radionuclide leaching from the residues of K Basin sludge dissolution

    International Nuclear Information System (INIS)

    Bechtold, D.B.

    1998-01-01

    The sludges remaining in the K Basins after removal of the spent N Reactor nuclear fuel will be conditioned for disposal. After conditioning, an acid-insoluble residue will remain that may require further leaching to properly condition it for disposal. This document presents a literature study to identify and recommend one or more chemical leaching treatments for laboratory testing, based on the likely compositions of the residues. The processes identified are a nitric acid cerate leach, a silver-catalyzed persulfate leach, a nitric hydrofluoric acid leach, an oxalic citric acid reactor decontamination leach, a nitric hydrochloric acid leach, a ammonium fluoride nitrate leach, and a HEOPA formate dehydesulfoxylate leach. All processes except the last two are recommended for testing in that order

  5. Comparison between different models for rheological characterization of sludge from settling tank

    Directory of Open Access Journals (Sweden)

    Malczewska Beata

    2017-09-01

    Full Text Available The municipal sludge characterized non-Newtonian behaviour, therefore the viscosity of the sewage sludge is not a constant value. The laboratory investigation was made using coaxial cylinder with rotating torque and gravimetric concentration of the investigated sludge ranged from 4.40% to 2.09%. This paper presents the investigation on the effect of concentration of rheological sludge behaviour. The three different rheological models: Bingham (plastic model, Ostwald-de Waele (power-law, Hershel-Bulkley’s were calculated by fitting the experimental data of shear stress as a function of shear rate to these models. In this study, the 3-parameter Herschel- Bulkley’s model fits the experimental data best.

  6. Hanford Site Tank 241-C-108 Residual Waste Contaminant Release Models and Supporting Data

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Krupka, Kenneth M.; Geiszler, Keith N.; Arey, Bruce W.; Schaef, Herbert T.

    2010-06-18

    This report presents the results of laboratory characterization, testing, and analysis for a composite sample (designated 20578) of residual waste collected from single-shell tank C-108 during the waste retrieval process after modified sluicing. These studies were completed to characterize concentration and form of contaminant of interest in the residual waste; assess the leachability of contaminants from the solids; and develop release models for contaminants of interest. Because modified sluicing did not achieve 99% removal of the waste, it is expected that additional retrieval processing will take place. As a result, the sample analyzed here is not expected to represent final retrieval sample.

  7. Tank 16 Annulus Cleanout Analysis Doses at Seepline from Transport of Residual Tc-99 Wastes

    International Nuclear Information System (INIS)

    Collard, L.B.

    1999-01-01

    An analysis of residual Tc-99 in the Tank 16 annulus was conducted to assess the potential benefit from cleaning the annulus. One analysis was performed for the as-is case to determine seepline doses if no clean out occurs. Another analysis was performed assuming that ninety percent of existing contaminants are removed. Characterization data for samples retrieved from the annulus were used in the analysis. Only Tc-99 was analyzed because preliminary modeling identified it as the highest dose contributor. The effect of residual waste in piping was not analyzed

  8. Effects of Sludge Dry Solid Content and Residual Bulking Agents on Volatile Solids Reduction Using Eisenia foetida

    Directory of Open Access Journals (Sweden)

    Mohammad ali Abdoli

    2009-06-01

    Full Text Available In the first stage of this study, the compound effects of sludge dry solid content and residual bulking agent type (paper, saw dust, straw mixed with activated sludge (10, 15, and 20% dry solids on volatile solids (V.S. reduction were investigated using Eisenia foetida in pilot scale experiments with batches of fifty earthworms in each of the 10 experimental treatments over a period of 10 weeks. The maximum V.S. reduction was attained in the mixture of sludge and paper, with a D.S. of 15% (0.42 ± 0.03 % day-1 while the minimum V.S. reduction was achieved in the mixture of sludge and straw, with a D.S. of 10% (0.26 ± 0.01 % day-1. In the second stage, the survival of Eisenia foetida in the anaerobic sewage sludge was investigated. In the unmixed raw anaerobic sludge, all the earthworms died during the first 9 weeks of the study period due to acute toxicity. From week 10, however, their survival rate improved so that by week 12 when toxicity reduced to 25.40%, they completely survived. This is while in the mixture of anaerobic sludge with paper (D.S. 15%, 100% of the earthworms survived from week 8 after the volatile solids reduced to 20.42% and 17.40%.

  9. Determining the release of radionuclides from tank waste residual solids. FY2015 report

    Energy Technology Data Exchange (ETDEWEB)

    King, William D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hobbs, David T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-11

    Methodology development for pore water leaching studies has been continued to support Savannah River Site High Level Waste tank closure efforts. For FY2015, the primary goal of this testing was the achievement of target pH and Eh values for pore water solutions representative of local groundwater in the presence of grout or grout-representative (CaCO3 or FeS) solids as well as waste surrogate solids representative of residual solids expected to be present in a closed tank. For oxidizing conditions representative of a closed tank after aging, a focus was placed on using solid phases believed to be controlling pH and Eh at equilibrium conditions. For three pore water conditions (shown below), the target pH values were achieved to within 0.5 pH units. Tank 18 residual surrogate solids leaching studies were conducted over an Eh range of approximately 630 mV. Significantly higher Eh values were achieved for the oxidizing conditions (ORII and ORIII) than were previously observed. For the ORII condition, the target Eh value was nearly achieved (within 50 mV). However, Eh values observed for the ORIII condition were approximately 160 mV less positive than the target. Eh values observed for the RRII condition were approximately 370 mV less negative than the target. Achievement of more positive and more negative Eh values is believed to require the addition of non-representative oxidants and reductants, respectively. Plutonium and uranium concentrations measured during Tank 18 residual surrogate solids leaching studies under these conditions (shown below) followed the general trends predicted for plutonium and uranium oxide phases, assuming equilibrium with dissolved oxygen. The highest plutonium and uranium concentrations were observed for the ORIII condition and the lowest concentrations were observed for the RRII condition. Based on these results, it is recommended that these test methodologies be used to

  10. Regulatory Closure Options for the Residue in the Hanford Site Single-Shell Tanks

    International Nuclear Information System (INIS)

    Cochran, J.R.; Shyr, L.J.

    1998-01-01

    Liquid, mixed, high-level radioactive waste (HLW) has been stored in 149 single-shell tanks (SSTS) located in tank farms on the U.S. Department of Energy's (DOE's) Hanford Site. The DOE is developing technologies to retrieve as much remaining HLW as technically possible prior to physically closing the tank farms. In support of the Hanford Tanks Initiative, Sandia National Laboratories has addressed the requirements for the regulatory closure of the radioactive component of any SST residue that may remain after physical closure. There is significant uncertainty about the end state of each of the 149 SSTS; that is, the nature and amount of wastes remaining in the SSTS after retrieval is uncertain. As a means of proceeding in the face of these uncertainties, this report links possible end-states with associated closure options. Requirements for disposal of HLW and low-level radioactive waste (LLW) are reviewed in detail. Incidental waste, which is radioactive waste produced incidental to the further processing of HLW, is then discussed. If the low activity waste (LAW) fraction from the further processing of HLW is determined to be incidental waste, then DOE can dispose of that incidental waste onsite without a license from the U.S. Nuclear Regulatory Commissions (NRC). The NRC has proposed three Incidental Waste Criteria for determining if a LAW fraction is incidental waste. One of the three Criteria is that the LAW fraction should not exceed the NRC's Class C limits

  11. Regulatory Closure Options for the Residue in the Hanford Site Single-Shell Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J.R. Shyr, L.J.

    1998-10-05

    Liquid, mixed, high-level radioactive waste (HLW) has been stored in 149 single-shell tanks (SSTS) located in tank farms on the U.S. Department of Energy's (DOE's) Hanford Site. The DOE is developing technologies to retrieve as much remaining HLW as technically possible prior to physically closing the tank farms. In support of the Hanford Tanks Initiative, Sandia National Laboratories has addressed the requirements for the regulatory closure of the radioactive component of any SST residue that may remain after physical closure. There is significant uncertainty about the end state of each of the 149 SSTS; that is, the nature and amount of wastes remaining in the SSTS after retrieval is uncertain. As a means of proceeding in the face of these uncertainties, this report links possible end-states with associated closure options. Requirements for disposal of HLW and low-level radioactive waste (LLW) are reviewed in detail. Incidental waste, which is radioactive waste produced incidental to the further processing of HLW, is then discussed. If the low activity waste (LAW) fraction from the further processing of HLW is determined to be incidental waste, then DOE can dispose of that incidental waste onsite without a license from the U.S. Nuclear Regulatory Commissions (NRC). The NRC has proposed three Incidental Waste Criteria for determining if a LAW fraction is incidental waste. One of the three Criteria is that the LAW fraction should not exceed the NRC's Class C limits.

  12. Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China

    International Nuclear Information System (INIS)

    Niu Dongjie; Huang Hui; Dai Xiaohu; Zhao Youcai

    2013-01-01

    Highlights: ► GHGs emissions from sludge digestion + residue land use in China were calculated. ► The AD unit contributes more than 97% of total biogenic GHGs emissions. ► AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO 2 , biogenic CO 2 , CH 4, and avoided CO 2 as the main objects is discussed respectively. The results show that the total CO 2 -eq is about 1133 kg/t DM (including the biogenic CO 2 ), while the net CO 2 -eq is about 372 kg/t DM (excluding the biogenic CO 2 ). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO 2 -eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO 2 -eq reduction.

  13. Fate of antibiotic and metal resistance genes during two-phase anaerobic digestion of residue sludge revealed by metagenomic approach.

    Science.gov (United States)

    Wu, Ying; Cui, Erping; Zuo, Yiru; Cheng, Weixiao; Chen, Hong

    2018-03-07

    The prevalence and persistence of antibiotic resistance genes in wastewater treatment plants (WWTPs) is of growing interest, and residual sludge is among the main sources for the release of antibiotic resistance genes (ARGs). Moreover, heavy metals concentrated in dense microbial communities of sludge could potentially favor co-selection of ARGs and metal resistance genes (MRGs). Residual sludge treatment is needed to limit the spread of resistance from WWTPs into the environment. This study aimed to explore the fate of ARGs and MRGs during thermophilic two-phase (acidogenic/methanogenic phase) anaerobic digestion by metagenomic analysis. The occurrence and abundance of mobile genetic elements were also determined based on the SEED database. Among the 27 major ARG subtypes detected in feed sludge, large reductions (> 50%) in 6 ARG subtypes were achieved by acidogenic phase (AP), while 63.0% of the ARG subtypes proliferated in the following methanogenic phase (MP). In contrast, a 2.8-fold increase in total MRG abundance was found in AP, while the total abundance during MP decreased to the same order of magnitude as in feed sludge. The distinct dynamics of ARGs and MRGs during the two-phase anaerobic digestion are noteworthy, and more specific treatments are required to limit their proliferation in the environment.

  14. Fate of Ah receptor agonists during biological treatment of an industrial sludge containing explosives and pharmaceutical residues.

    Science.gov (United States)

    Gustavsson, Lillemor K; Klee, Nina; Olsman, Helena; Hollert, Henner; Engwall, Magnus

    2004-01-01

    Sweden is meeting prohibition for deposition of organic waste from 2005. Since 1 million tons of sludge is produced every year in Sweden and the capacity for incineration does not fill the demands, other methods of sludge management have to be introduced to a higher degree. Two biological treatment alternatives are anaerobic digestion and composting. Different oxygen concentrations result in different microbial degradation pathways and, consequently, in a different quality of the digestion or composting residue, It is therefore necessary to study sludge treatment during different oxygen regimes in order to follow both degradation of compounds and change in toxicity. In this study, an industrial sludge containing explosives and pharmaceutical residues was treated with anaerobic digestion or composting, and the change in toxicity was studied. Nitroaromatic compounds, which are the main ingredients of both pharmaceutical and explosives, are well known to cause cytotoxicity and genotoxicity. However, little data are available concerning sludge with nitroaromatics and any associated dioxin-like activity. Therefore, we studied the sludge before and after the treatments in order to detect any changes in levels of Ah receptor (AhR) agonists using two bioassays for dioxin-like compounds. An industrial sludge was treated with anaerobic digestion or composting in small reactors in a semi-continuous manner. The same volume as the feeding volume was taken out daily and stored at -20 degrees C. Sample preparation for the bioassays was done by extraction using organic solvents, followed by clean up with silica gel or sulphuric acid, yielding two fractions. The fractions were dissolved in DMSO and tested in the bioassays. The dioxin-like activity was measured using the DR-CALUX assay with transfected H4IIE rat hepatoma pGudluc cells and an EROD induction assay with RTL-W1 rainbow trout liver cells. The bioassays showed that the sludge contained AhR agonists at levels of TCDD

  15. Determining the Release of Radionuclides from Tank 18F Waste Residual Solids: FY2016 Report

    Energy Technology Data Exchange (ETDEWEB)

    King, William D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hobbs, David T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-12

    Pore water leaching studies were conducted on actual Savannah River Site (SRS) Tank 18F residual waste solids to support Liquid Waste tank closure efforts. A test methodology was developed during previous simulant testing to produce slurries of tank residual solids and grout-representative solids in grout pore water solutions (based on SRS groundwater compositions) with pH and Eh values expected during the aging of the closed waste tank. The target conditions are provided below where the initial pore water has a reducing potential and a relatively high pH (Reducing Region II). The pore water is expected to become increasingly oxidizing with time (Oxidizing Region II) and during the latter stages of aging (Oxidizing Region III) the pH is expected to decrease. For the reducing case, tests were conducted with both unwashed and washed Tank 18F residual solids. For the oxidizing cases (Oxidizing Regions II and III), all samples were washed with simulated grout pore water solutions prior to testing, since it is expected that these conditions will occur after considerable pore water solution has passed through the system. For the reducing case, separate tests were conducted with representative ground grout solids and with calcium carbonate reagent, which is the grout phase believed to be controlling the pH. Ferrous sulfide (FeS) solids were also added to the reducing samples to lower the slurry Eh value. Calcium carbonate solids were used as the grout-representative solid phase for each of the oxidizing cases. Air purge-gas with and without CO2 removed was transferred through the oxidizing test samples and nitrogen purge-gas was transferred through the reducing test samples during leach testing. The target pH values were achieved to within 0.5 pH units for all samples. Leaching studies were conducted over an Eh range of approximately 0.7 V. However, the highest and lowest Eh values achieved of ~+0.5 V and ~-0.2 V were

  16. Bidet toilet seats with warm-water tanks: residual chlorine, microbial community, and structural analyses.

    Science.gov (United States)

    Iyo, Toru; Asakura, Keiko; Nakano, Makiko; Yamada, Mutsuko; Omae, Kazuyuki

    2016-02-01

    Despite the reported health-related advantages of the use of warm water in bidets, there are health-related disadvantages associated with the use of these toilet seats, and the bacterial research is sparse. We conducted a survey on the hygienic conditions of 127 warm-water bidet toilet seats in restrooms on a university campus. The spray water from the toilet seats had less residual chlorine than their tap water sources. However, the total viable microbial count was below the water-quality standard for tap water. In addition, the heat of the toilet seats' warm-water tanks caused heterotrophic bacteria in the source tap water to proliferate inside the nozzle pipes and the warm-water tanks. Escherichia coli was detected on the spray nozzles of about 5% of the toilet seats, indicating that the self-cleaning mechanism of the spray nozzles was largely functioning properly. However, Pseudomonas aeruginosa was detected on about 2% of the toilet seats. P. aeruginosa was found to remain for long durations in biofilms that formed inside warm-water tanks. Infection-prevention measures aimed at P. aeruginosa should receive full consideration when managing warm-water bidet toilet seats in hospitals in order to prevent opportunistic infections in intensive care units, hematology wards, and other hospital locations.

  17. Carbon sequestration and greenhouse gases emissions in soil under sewage sludge residual effects

    Directory of Open Access Journals (Sweden)

    Leonardo Machado Pitombo

    2015-02-01

    Full Text Available The large volume of sewage sludge (SS generated with high carbon (C and nutrient content suggests that its agricultural use may represent an important alternative to soil carbon sequestration and provides a potential substitute for synthetic fertilizers. However, emissions of CH4 and N2O could neutralize benefits with increases in soil C or saving fertilizer production because these gases have a Global Warming Potential (GWP 25 and 298 times greater than CO2, respectively. Thus, this study aimed to determine C and N content as well as greenhouse gases (GHG fluxes from soils historically amended with SS. Sewage sludge was applied between 2001 and 2007, and maize (Zea mays L. was sowed in every year between 2001 and 2009. We evaluated three treatments: Control (mineral fertilizer, 1SS (recommended rate and 2SS (double rate. Carbon stocks (0-40 cm were 58.8, 72.5 and 83.1 Mg ha–1in the Control, 1SS and 2SS, respectively, whereas N stocks after two years without SS treatment were 4.8, 5.8, and 6.8 Mg ha–1, respectively. Soil CO2 flux was highly responsive to soil temperature in SS treatments, and soil water content greatly impacted gas flux in the Control. Soil N2O flux increased under the residual effects of SS, but in 1SS, the flux was similar to that found in moist tropical forests. Soil remained as a CH4sink. Large stores of carbon following historical SS application indicate that its use could be used as a method for carbon sequestration, even under tropical conditions.

  18. SLUDGE BATCH 4 (SB4) AFTER A TANK 40 DECANT: CANDIDATE FRITS, MAR ASSESSMENTS, AND GLASSES FOR A VARIABILITY STUDY

    International Nuclear Information System (INIS)

    Fox, K; Tommy Edwards, T; David Peeler, D

    2006-01-01

    In early October 2006, the Liquid Waste Organization (LWO) began to consider decanting Tank 40 at the end of Sludge Batch 3 (SB3) processing and transferring the aqueous phase from the decant to Tank 51. This transfer would be done to decrease Tank 51 yield stress and facilitate the transfer of the contents of Tank 51 to Tank 40. The projected composition of Sludge Batch 4 (SB4) was adjusted by LWO to reflect the impact of the Tank 40 decant leading to new projected compositions for SB4, designated as the 10-04-06 and the 10-10-06 compositions. A comparison between these SB4 compositions and those provided in June 2006 indicates that the new compositions are slightly higher in Al2O3, Fe2O3, and U3O8 and slightly lower in SiO2. The most dramatic change, however, is the new projection's Na2O concentration, which is more than 4.5 wt% lower than the June 2006 projection. This is a significant change due to the frit development team's approach of aligning the Na2O concentration in a candidate frit to the Na2O content of the sludge. This approach enhances the projected operating window and the waste throughput potential for the resulting glass system while eliminating the potential for nepheline crystallization. Nepheline can have a detrimental impact on durability. Questions surfaced regarding the applicability of Frit 503 to these revised compositions since the Savannah River National Laboratory (SRNL) recommended Frit 503 for use with SB4 based on the June 2006 compositional projection without the Tank 40 decant. Based on the paper study assessments, the change in SB4's expected Na2O content had a significant, negative impact on the projected operating window for the Frit 503/SB4 glass system. While Frit 418 had slightly smaller waste loading (WL) intervals for the June 2006 SB4 projections as compared to Frit 503 and the Frit 418 glass systems were nepheline limited, Frit 418 had a slightly larger operating window for the 10-04-06 projection (as compared to Frit 503

  19. Efeito residual do lodo de esgoto na produtividade do milho safrinha Residual effect of sewage sludge on off-season corn yield

    Directory of Open Access Journals (Sweden)

    Graziela Moraes de Cesare Barbosa

    2007-06-01

    Full Text Available Das opções de disposição final do lodo de esgoto, a reciclagem agrícola tem sido uma das mais utilizadas em diversos países desenvolvidos, sendo considerada a forma mais adequada em termos técnicos, econômicos e ambientais. Este trabalho teve por objetivo avaliar o efeito residual do lodo de esgoto na produtividade do milho safrinha, após dois anos de aplicação consecutiva desse resíduo em um Latossolo Vermelho eutroférrico. O experimento foi realizado em campo, em delineamento em blocos ao acaso com três repetições, e os tratamentos foram os seguintes: testemunha e adubações com lodo de esgoto nas doses de 6, 12, 24 e 36 t ha-1 (peso de matéria seca. Houve efeito residual do uso do lodo de esgoto caleado na produtividade de milho safrinha; a dose de 36 t ha-1 foi estatisticamente superior às doses de 6 e 12 t ha-1.Among the possibilities of final disposal of sewage sludge, agricultural recycling has become one of the most widely used in several developed countries, and is considered the most appropriate in technical, economical and environmental terms. This study aimed at evaluating the sewage sludge residual effect on off-season corn yield on an Eutroferric Red Latossol (Oxisol. The field experiment was in a randomized block design with three replications, with treatments consisting of increasing doses of sewage sludge (0, 6, 12, 24 and 36 t ha-1, on a dry weight basis, applied in the two previous cropping seasons.. The residual effect of the application of lime-stabilized sewage sludge increased the yield of off-season corn; the grain yield under a rate of 36 t ha-1 was statistically higher than those under 6 and 12 t ha-1.

  20. Temperature influence on product distribution and characteristics of derived residue and oil in wet sludge pyrolysis using microwave heating.

    Science.gov (United States)

    Lin, Kuo-Hsiung; Lai, Nina; Zeng, Jun-Yan; Chiang, Hung-Lung

    2017-04-15

    Sludge taken from a wastewater treatment plant of the petrochemical industry was dewatered and pyrolyzed to produce liquid oil as an alternative fuel via microwave heating. Element contents of dried sludge were 45.9±3.85wt.% carbon, 7.70±1.43wt.% hydrogen, 4.30±0.77wt.% nitrogen and 3.89±0.52wt.% sulfur. Two major thermal degradation peaks of sludge were determined during the microwave pyrolysis process, one at 325-498K (most of the water was vaporized, and the weight loss was over 85wt.%) and the other at 548-898K for sludge constituent decomposition. Zn content was high in the dried raw material and residues. Other toxic elements such as Ni, Cr, Pb, As and Cd contents were 0.61-0.99, 0.18-0.46, 0.15-0.25, 0.018-0.034, and 0.006-0.017mg/g, respectively. About 14-20wt.% of oil was produced based on the dried sludge cake, and the oil major elements were C (69-72wt.%), H (5.7-6.7wt.%), N (1.9-2.2wt.%), and S (0.58-0.82wt.%). The heat values of liquid oils were 8700-9200kcal/kg at 400-800°C. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Partitioning of Tank Waste Sludge in a 5-cm Centrifugal Contactor Under Caustic-Side Solvent Extraction Conditions

    International Nuclear Information System (INIS)

    Birdwell, Jr. J.F.

    2001-01-01

    A test program has been performed to evaluate the effect of solids on the hydraulic performance of a 5-cm centrifugal contactor under conditions present in the extraction section of the Caustic-Side Solvent Extraction (CSSX) process. In addition to determining if the ability to separate the aqueous and organic phases is affected by the presence of solids in a feed solution, the extent to which solids are accumulated in the contactor was also assessed. The reported task was motivated by the need to determine if removal of cesium from Savannah River Site tank waste can be performed using a contactor-based CSSX process without first removing sludge that is suspended in the feed solution. The ability to pass solids through the CSSX process could facilitate placement of CSSX upstream of a process in which alpha-decaying actinides and strontium are removed from the waste stream by precipitation with monosodium titanate (MST). This relative placement of the CSSX and MST processes is desirable because removal of cesium would greatly reduce the activity level of the feed stream to the MST process, thereby reducing the level of shielding needed and mitigating remote maintenance design features of MST equipment. Both results would significantly reduce the cost of the Salt Processing Project. Test results indicate conclusively that a large fraction of suspended sludge that enters the centrifugal contactor remains inside. It is expected that extended operation would result in continued accumulation of solids and that hydraulic performance would be adversely affected. Results also indicate that a fraction of the solids partitions to the phase boundary and could affect phase separation as contactor operations progress

  2. Effect of the rearing tank residue of fish farms on the production of passion fruit tree seedlings

    Directory of Open Access Journals (Sweden)

    F. O. R. Silva

    2017-03-01

    Full Text Available The objective of this study was to evaluate the initial growth of seedlings and biomass production of blue and yellow passion fruit trees (round cultivar produced from residue of the rearing tanks of fish farms. The experiment was conducted in a greenhouse using residue obtained from fish farming tanks. Ravine soil (RS, fish tank residue (FR and Tropstrato (TR were used as substrate. The treatments were: T1 = control consisting of Tropstrato substrate; T2 = 25% FR + 75% RS; T3 = 50% FR + 50% RS; T4 = 25% RS + 75% FR; T5 = 100% FR. A completely randomized block design consisting of 5 treatments, 4 replicates and 11 plants per plot was used. Treatment T5 (100% fish farming residue resulted in the largest average number of leaves, highest dry matter production of the aerial part, and highest dry matter accumulation in the root (P<0.05. The worst results were obtained for the treatment using 25% FR (T2, which resulted in less uniformity of the variables studied. Stem height of the passion fruit tree was greater for the treatments that included FR, with the greatest mean height being observed for T5. In conclusion, the treatment using the residue of fish farming tanks was found to be beneficial to produce yellow passion fruit seedlings (round cultivar, representing a good alternative for the reutilization of this residue.

  3. Electrochemical probing of high-level radioactive waste tanks containing washed sludge and precipitates

    International Nuclear Information System (INIS)

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1987-01-01

    At the U.S. Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assess the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition

  4. Recovering metals from sewage sludge, waste incineration residues and similar substances with hyperaccumulative plants

    Science.gov (United States)

    Kisser, Johannes; Gattringer, Heinz; Iordanopoulos-Kisser, Monika

    2015-04-01

    observed in so-called hyperaccumulating metalophytes, which are studied for its suitability to be incorporated in metal recovery processes of elements that diffusely occur in different waste streams. In a systematic series of tests under laboratory conditions the accumulation behaviour for many different elements including rare earth metals of a selection of candidate plants growing on sewage sludge, incineration residues and industrial leftovers was assessed (quantitavely and qualitatively). Growth performance of these plants as well as the most suitable substrate properties were evaluated. The results of this project provided the groundwork for further research and development steps that might bring to practical implementation a technological option with potentially huge benefits: The recovery of valuable metal resources from sewage sludge, incineration ashes and metal rich wastewaters by environmentally friendly and low energy means. Simultaneous decontamination of the input substrates from heavy metals, opening the possibility for these nutrient streams to be redirected to biological regeneration processes (for example use as fertilizers in agriculture) without fear of polluting soils with heavy metal loads. Generation of biomass on contaminated substrates can yield usable energy surplus through incineration during or after processing.

  5. Concentrations and environmental fate of Ra in cation-exchange regeneration brine waste disposed to septic tanks and accumulation in sludge, New Jersey Coastal Plain, USA

    International Nuclear Information System (INIS)

    Szabo, Zoltan; Jacobsen, Eric; Kraemer, Thomas F.; Parsa, Bahman

    2008-01-01

    Concentrations of Ra in liquid and solid wastes generated from 15 softeners treating domestic well waters from New Jersey Coastal Plain aquifers (where combined Ra ( 226 Ra plus 228 Ra) concentrations commonly exceed 0.185 Bq L -1 ) were determined. Softeners, when maintained, reduced combined Ra about 10-fold ( -1 ). Combined Ra exceeded 0.185 Bq L -1 at 1 non-maintained system. Combined Ra was enriched in regeneration brine waste (maximum, 81.2 Bq L -1 ), but concentrations in septic-tank effluents receiving brine waste were less than in the untreated ground waters. The maximum combined Ra concentration in aquifer sands (40.7 Bq kg -1 dry weight) was less than that in sludge from the septic tanks (range, 84-363 Bq kg -1 ), indicating Ra accumulation in sludge from effluent. The combined Ra concentration in sludge from the homeowners' septic systems falls within the range reported for sludge samples from publicly owned treatment works within the region

  6. Energy consumption of agitators in activated sludge tanks - actual state and optimization potential.

    Science.gov (United States)

    Füreder, K; Svardal, K; Frey, W; Kroiss, H; Krampe, J

    2018-02-01

    Depending on design capacity, agitators consume about 5 to 20% of the total energy consumption of a wastewater treatment plant. Based on inhabitant-specific energy consumption (kWh PE 120 -1 a -1 ; PE 120 is population equivalent, assuming 120 g chemical oxygen demand per PE per day), power density (W m -3 ) and volume-specific energy consumption (Wh m -3 d -1 ) as evaluation indicators, this paper provides a sound contribution to understanding energy consumption and energy optimization potentials of agitators. Basically, there are two ways to optimize agitator operation: the reduction of the power density and the reduction of the daily operating time. Energy saving options range from continuous mixing with low power densities of 1 W m -3 to mixing by means of short, intense energy pulses (impulse aeration, impulse stirring). However, the following correlation applies: the shorter the duration of energy input, the higher the power density on the respective volume-specific energy consumption isoline. Under favourable conditions with respect to tank volume, tank geometry, aeration and agitator position, mixing energy can be reduced to 24 Wh m -3 d -1 and below. Additionally, it could be verified that power density of agitators stands in inverse relation to tank volume.

  7. Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Huang, S.-C. [Department of Atomic Science, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu 300, Taiwan (China); Chang, F.-C. [Research Center for Environmental Pollution Prevention and Control Technology, Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Road, Taipei 106, Taiwan (China)]. E-mail: d90541003@ntu.edu.tw; Lo, S.-L. [Research Center for Environmental Pollution Prevention and Control Technology, Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Road, Taipei 106, Taiwan (China); Lee, M.-Y. [Department of Civil Engineering, National Central University, 300 Jhongda Road, Jhongli 320, Taiwan (China); Wang, C.-F. [Department of Atomic Science, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu 300, Taiwan (China); Lin, J.-D. [Department of Civil Engineering, National Central University, 300 Jhongda Road, Jhongli 320, Taiwan (China)

    2007-06-01

    In this study, artificial lightweight aggregate (LWA) manufactured from recycled resources was investigated. Residues from mining, fly ash from an incinerator and heavy metal sludge from an electronic waste water plant were mixed into raw aggregate pellets and fed into a tunnel kiln to be sintered and finally cooled rapidly. Various feeding and sintering temperatures were employed to examine their impact on the extent of vitrification on the aggregate surface. Microstructural analysis and toxicity characteristic leaching procedure (TCLP) were also performed. The results show that the optimum condition of LWA fabrication is sintering at 1150 deg. C for 15 min with raw aggregate pellets fed at 750 deg. C. The rapidly vitrified surface envelops the gas produced with the increase in internal temperature and cooling by spraying water prevents the aggregates from binding together, thus forming LWA with specific gravity of 0.6. LWA produced by sintering in tunnel kiln shows good vitrified surface, low water absorption rate below 5%, and low cylindrical compressive strength of 4.3 MPa. In addition, only trace amounts of heavy metals were detected, making the LWA non-hazardous for construction use.

  8. Recycling potential of air pollution control residue from sewage sludge thermal treatment as artificial lightweight aggregates.

    Science.gov (United States)

    Bialowiec, Andrzej; Janczukowicz, Wojciech; Gusiatin, Zygmunt M; Thornton, Arthur; Rodziewicz, Joanna; Zielinska, Magdalena

    2014-03-01

    Thermal treatment of sewage sludge produces fly ash, also known as the air pollution control residue (APCR), which may be recycled as a component of artificial lightweight aggregates (ALWA). Properties of APCR are typical: high content of Ca, Mg, P2O5, as well as potential to induce alkaline reactions. These properties indicate that ALWA prepared with a high content of APCR may remove heavy metals, phosphorus, and ammonium nitrogen from wastewater with high efficiency. The aim of this preliminary study was to determine the optimal composition of ALWA for potential use as a filter media in wastewater treatment systems. Five kinds of ALWA were produced, with different proportions of ash (shown as percentages in subscripts) in mixture with bentonite: ALWA0 (reference), ALWA12.5, ALWA25, ALWA50, and ALWA100. The following parameters of ALWA were determined: density, bulk density, compressive strength, hydraulic conductivity, and removal efficiency of ions Zn(2+), NH4 (+), and PO4 (3-). Tests showed that ALWA had good mechanical and hydraulic properties, and might be used in wastewater filtering systems. Phosphates and zinc ions were removed with high efficiency (80-96%) by ALWA25-100 in static (batch) conditions. The efficiency of ammonium nitrogen removal was low, <18%. Artificial wastewater treatment performance in dynamic conditions (through-flow), showed increasing removal efficiency of Zn(2+), PO4 (3-) with a decrease in flow rate.

  9. Development of an efficient process for the treatment of residual sludge discharged from an anaerobic digester in a sewage treatment plant.

    Science.gov (United States)

    Abe, Naoki; Tang, Yue-Qin; Iwamura, Makoto; Ohta, Hiroto; Morimura, Shigeru; Kida, Kenji

    2011-09-01

    In order to reduce the discharge of residual sludge from an anaerobic digester, pre-treatment methods including low-pressure wet-oxidation, Fenton oxidation, alkali treatment, ozone oxidation, mechanical destruction and enzymatic treatment were evaluated and compared. VSS removal efficiencies of greater than 50% were achieved in cases of low-pressure wet-oxidation, Fenton oxidation and alkali treatment. Residual sludge from an anaerobic digester was pre-treated and subjected to thermophilic anaerobic digestion. As a result, the process of low-pressure wet-oxidation followed by anaerobic digestion achieved the highest VSS removal efficiency of 83%. The total efficiency of VSS removal of sewage sludge consisting of primary and surplus sludge would be approximately 92%, assuming that the VSS removal efficiency of sewage sludge is 50% in the anaerobic digester of the sewage treatment plant. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Computer simulation of laboratory leaching and washing of tank waste sludges

    International Nuclear Information System (INIS)

    Meng, C.D.; MacLean, G.T.; Landeene, B.C.

    1994-01-01

    The process simulator ESP (Environmental Simulation Program) was used to simulate laboratory caustic leaching and washing of core samples from Tanks B-110, C-109, and C-112. The results of the laboratory tests and the computer simulations are compared. The results from both, agreed reasonably well for elements contained in solid phases included in the ESP Public data bank. The use of the GEOCHEM data bank and/or a custom Hanford Data bank should improve the agreement, making ESP a useful process simulator for aqueous based processing

  11. WWTP Process Tank Modelling

    DEFF Research Database (Denmark)

    Laursen, Jesper

    solution of the Navier-Stokes equations in a multiphase scheme. After a general introduction to the activated sludge tank as a system, the activated sludge tank model is gradually setup in separate stages. The individual sub-processes that are often occurring in activated sludge tanks are initially......-process models, the last part of the thesis, where the integrated process tank model is tested on three examples of activated sludge systems, is initiated. The three case studies are introduced with an increasing degree of model complexity. All three cases are take basis in Danish municipal wastewater treatment...... plants. The first case study involves the modeling of an activated sludge tank undergoing a special controlling strategy with the intention minimizing the sludge loading on the subsequent secondary settlers during storm events. The applied model is a two-phase model, where the sedimentation of sludge...

  12. Effect of steam and oil sludge ash additive on the products of oil sludge pyrolysis

    International Nuclear Information System (INIS)

    Cheng, Shuo; Wang, Yuhua; Fumitake, Takahashi; Kouji, Tokimatsu; Li, Aimin; Kunio, Yoshikawa

    2017-01-01

    Highlights: • Pyrolysis of oil sludge with steam or/and oil sludge ash was carried out. • Oil product yield was increased by steam and oil sludge ash presence. • Steam injection and oil sludge ash addition improved the oil product quality. • Synergetic effect of steam and oil sludge ash on the oil product was reported. • A possible catalytic mechanism was proposed. - Abstract: In this study, a strategy of combining steam injection with oil sludge ash addition to improve the yield and quality of the oil products of oil sludge pyrolysis process is proposed. Oil sludge pyrolysis with the addition of different amounts of steam and oil sludge ash was conducted under inert conditions at 450 °C by employing a stirred tank reactor. This procedure was performed to investigate the effect of steam injection and oil sludge ash addition on the distribution and quality of the oil products. The possible catalytic mechanism occurring during the pyrolysis process was proposed. The quality of the oil product was determined based on the results of the boiling point distribution, the carbon residue, the ultimate analysis, the Saturates, Asphaltenes, Resins and Aromatics (SARA) composition and the Nuclear Magnetic Resonance (NMR) analysis. The results indicate that both steam injection and oil sludge ash addition caused the oil yield to increase. Steam injection increased the proportions of the heavy and middle fractions in the oil product and reduced the carbon residue by improving the stability of the oil system. Oil sludge ash addition reduced the carbon residue and lessened the decrease in the light oil/heavy oil ratio by converting the heavy fraction or coke precursors to lighter fractions. The synergetic effect of steam injection and oil sludge ash addition can further reduce the carbon residue of the oil product. The presence of oil sludge ash significantly reduced the S, N, and O mobilities from the oil sludge feedstock to the oil product. These performances can be

  13. Metals accumulations during thermal processing of sewage sludge - characterization of bottom ash and air pollution control (APC) residues

    Science.gov (United States)

    Kasina, Monika; Kowalski, Piotr R.; Michalik, Marek

    2016-04-01

    Due to increasing mass of sewage sludge, problems in its management have appeared. Over years sewage sludge was landfilled, however due to EU directives concerning environmental issues this option is no longer possible. This type of material is considered hazardous due to highly concentrated metals and harmful elements, toxic organic substances and biological components (e.g. parasites, microbes). Currently in Europe, incineration is considered to be the most reasonable method for sewage sludge treatment. As a result of sludge incineration significant amount of energy is recovered due to high calorific value of sewage sludge but bottom ash and APC residues are being produced. In this study we show the preliminary results of chemical and mineral analyses of both bottom ash and APC residues produced in fluidized bed boiler in sewage sludge incineration plant in Poland, with a special emphasis on metals which, as a part of incombustible fraction can accumulate in the residual materials after thermal processing. The bottom ash was a SiO2-P2O5-Fe2O3-CaO-Al2O3 dominated material. Main mineral phases identified in X-ray diffraction patterns were: quartz, feldspar, hematite, and phosphates (apatite and scholzite). The bottom ash was characterized by high content of Zn - 4472 mg kg-1, Cu - 665.5 mg kg-1, Pb - 138 mg kg-1, Ni - 119.5 mg kg-1, and interestingly high content of Au - 0.858 mg kg-1 The APC residues composition was dominated by soluble phases which represent more than 90% of the material. The XRD patterns indicated thenardite, halite, anhydrite, calcite and apatite as main mineral phases. The removal of soluble phases by dissolution in deionised water caused a significant mass reduction (ca. 3% of material remained on the filters). Calcite, apatite and quartz were main identified phases. The content of metals in insoluble material is relatively high: Zn - 6326 mg kg-1, Pb - 514.3 mg kg-1, Cu - 476.6 mg kg-1, Ni - 43.3 mg kg-1. The content of Cd, As, Se and Hg was

  14. Biotreatment of hydrocarbons from petroleum tank bottom sludges in soil slurries

    International Nuclear Information System (INIS)

    Ferrari, M.D.; Neirotti, E.; Albornoz, C.; Mostazo, M.R.; Cozzo, M.

    1996-01-01

    Biotreatment of oil wastes in aqueous slurries prepared with sandy loam soil and inoculated with selected soil cultures was evaluated. After 90 days, oil removal was 47%. Removal of each hydrocarbon class was 84% for saturates, 20% for aromatics, and 44% for asphaltenes. Resins increased by 68%. The use of a soil with a lower level of fine particles or minor organic matter content, or reinoculation with fresh culture did not improve oil elimination. Residual oil recovered from slurries was biotreated. Oil removal was 22%. Slurry-phase biotreatment showed less variability and faster oil removal than solid-phase biotreatment. (author)

  15. Impact of storage duration on the gaseous emissions during convective drying of urban residual sludges

    Energy Technology Data Exchange (ETDEWEB)

    Fraikin, L.; Salmon, T.; Crine, M.; Leonard, A. [University of Liege, Laboratory of Chemical Engineering, Liege (Belgium); Herbreteau, B.; Nicol, F. [VEOLIA Environnement Recherche et Innovation, Limay (France); Levasseur, J.P. [VEOLIA Water, Technical Direction, Saint-Maurice (France)

    2011-07-15

    Drying has become an important step within the context of sludge management. Sometimes, sludges from several wastewater treatment plants are centralized in order to dry them at an acceptable cost. Depending on sludge supply, there can be a delay between delivery and feeding into the dryer. The impact of sludge storage duration on the drying kinetics and on the exhaust emissions of volatile organic compounds (VOCs), and ammonia is investigated. Results show that, after 20 days of storage, the drying time is multiplied by 1.5, and the emissions of VOCs and NH{sub 3} are multiplied by 5 and 40, respectively. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Development of an efficient anaerobic co-digestion process for garbage, excreta, and septic tank sludge to create a resource recycling-oriented society.

    Science.gov (United States)

    Sun, Zhao-Yong; Liu, Kai; Tan, Li; Tang, Yue-Qin; Kida, Kenji

    2017-03-01

    In order to develop a resource recycling-oriented society, an efficient anaerobic co-digestion process for garbage, excreta and septic tank sludge was studied based on the quantity of each biomass waste type discharged in Ooki machi, Japan. The anaerobic digestion characteristics of garbage, excreta and 5-fold condensed septic tank sludge (hereafter called condensed sludge) were determined separately. In single-stage mesophilic digestion, the excreta with lower C/N ratios yielded lower biogas volumes and accumulated higher volumes of volatile fatty acid (VFA). On the other hand, garbage allowed for a significantly larger volatile total solid (VTS) digestion efficiency as well as biogas yield by thermophilic digestion. Thus, a two-stage anaerobic co-digestion process consisting of thermophilic liquefaction and mesophilic digestion phases was proposed. In the thermophilic liquefaction of mixed condensed sludge and household garbage (wet mass ratio of 2.2:1), a maximum VTS loading rate of 24g/L/d was achieved. In the mesophilic digestion of mixed liquefied material and excreta (wet mass ratio of 1:1), biogas yield reached approximately 570ml/g-VTS fed with a methane content of 55% at a VTS loading rate of 1.0g/L/d. The performance of the two-stage process was evaluated by comparing it with a single-stage process in which biomass wastes were treated separately. Biogas production by the two-stage process was found to increase by approximately 22.9%. These results demonstrate the effectiveness of a two-stage anaerobic co-digestion process in enhancement of biogas production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Investigation on the fast co-pyrolysis of sewage sludge with biomass and the combustion reactivity of residual char.

    Science.gov (United States)

    Deng, Shuanghui; Tan, Houzhang; Wang, Xuebin; Yang, Fuxin; Cao, Ruijie; Wang, Zhao; Ruan, Renhui

    2017-09-01

    Gaining the valuable fuels from sewage sludge is a promising method. In this work, the fast pyrolysis characteristics of sewage sludge (SS), wheat straw (WS) and their mixtures in different proportions were carried out in a drop-tube reactor. The combustion reactivity of the residual char obtained was investigated in a thermogravimetric analyzer (TGA). Results indicate that SS and WS at different pyrolysis temperatures yielded different characteristic gas compositions and product distributions. The co-pyrolysis of SS with WS showed that there existed a synergistic effect in terms of higher gas and bio-oil yields and lower char yield, especially at the WS adding percentage of 80wt%. The addition of WS to SS increased the carbon content in the SS char and improved char porous structures, resulting in an improvement in the combustion reactivity of the SS char. The research results can be used to promote co-utilization of sewage sludge and biomass. Copyright © 2017. Published by Elsevier Ltd.

  18. Determination of the Removal Efficiency of Linear Alkyl Benzene Sulphonate Acids (LAS in Fixed Bed Aeration Tank and Conventional Activated Sludge

    Directory of Open Access Journals (Sweden)

    Asghar Ebrahimi

    2011-03-01

    Full Text Available Linear Alkyl Benzene Sulphonate Acids (LAS are one of the anionic surfactants that are produced and used in large quantities in different countries and find their way into the natural environment through sewer systems. These compounds may potentially cause environmental hazards in such surface waters as rivers. It is, therefore, necessary to remove as much of these compounds as possible by biological processes in wastewater treatment plants. For this purpose, four parallel biological reactors were constructed that used the conventional activated sludge and aeration tanks with fixed bed on the bench scale in order to evaluate the removal efficiency of LAS. The reactors were operated under conditions similar to domestic wastewater treatment plants. Parameters of interest were measured according to standard methods and ANOVA and T-test were used for the statistical analysis of the data. The results showed that aeration tanks with fixed beds yielded higher values of LAS and COD removal and air consumption compared to the conventional activated sludge system. It was shown that the two systems studied achieved LAS removal efficiencies of 96% and 94% for an influent LAS concentration of 5 mg/L. Further, it was found that the effluents from both systems satisfied water quality standards for discharge into surface waters (

  19. Characterization using XRD of puzzolanic materials from residual sludge from water treatment

    Science.gov (United States)

    Barón, G.; Montaño, A. M.; González, C. P.

    2017-12-01

    The goal of this work is to do mechanical and chemical characterization of puzzolanic materials using compressive strength measurements and X-Ray Diffraction (XRD). These materials are composed of red clay and aluminous sludge produced by the treatment of potable water at Planta Algodonal, Ocaña, Norte de Santander, Colombia. Ceramic bricks were sintered to 1100°C and ten were characterized in their physically, mechanically and chemically properties. The results showed that the relationships with which the Colombian standards according to NTC 4017 (100KGF/cm2) for non-structural bricks are maintained for those containing 10% (105Kgf/cm2) and 20% (102.9Kgf/cm2) of sludge with respect to clay.

  20. The use of sewage sludge as additive to avoid operational problems at combustion of shredder residues

    International Nuclear Information System (INIS)

    Gyllenhammar, Marianne

    2010-01-01

    When shredder light fraction (SLF) from recovery of metal scrap is energy recovered it is usually mixed with more than 90% of other wastes. SLF is a fuel with high energy content but also with relatively high chlorine and metal content and could cause deposit and corrosion problems in incineration plants. Sewage sludge has previously been shown to reduce deposition and corrosion problems in combustion of alkali and chlorine containing biomass. In this work 20 % SLF (by energy content) has been combusted together with municipal solid waste and industrial wastes, with and without addition of 3 % (by energy content) sewage sludge. The initial fireside corrosion rate was then compared to the corrosion rate during combustion of the normal fuel mix, i.e. only municipal solid waste and industrial wastes. The tests were done at the 20 MW fluidized bed boiler of Lidkoping heat production plant. During the tests air-cooled corrosion and deposit probes were exposed for 24 hours. Deposit probes were placed at three different flue gas temperatures - in the combustion chamber, upstream and downstream the convection pass. The corrosion probes were placed upstream the convection pass and on the probes there were three different materials at three different water temperatures (280, 350 and 420 degree Celsius). The tests showed that sewage sludge could help avoiding deposition and corrosion problems when incinerating SLF. The amount of deposits was reduced and the content of the deposits was less corrosive when sewage sludge was added. The project was financed by Waste Refinery as a collaboration project between Stena Metall AB, Metso AB, High Temperature Corrosion Center at Chalmers University of Technology, SP Technical Research Institute of Sweden and Lidkopings Varmeverk. (author)

  1. USE OF AN EQUILIBRIUM MODEL TO FORECAST DISSOLUTION EFFECTIVENESS, SAFETY IMPACTS, AND DOWNSTREAM PROCESSABILITY FROM OXALIC ACID AIDED SLUDGE REMOVAL IN SAVANNAH RIVER SITE HIGH LEVEL WASTE TANKS 1-15

    Energy Technology Data Exchange (ETDEWEB)

    KETUSKY, EDWARD

    2005-10-31

    This thesis details a graduate research effort written to fulfill the Magister of Technologiae in Chemical Engineering requirements at the University of South Africa. The research evaluates the ability of equilibrium based software to forecast dissolution, evaluate safety impacts, and determine downstream processability changes associated with using oxalic acid solutions to dissolve sludge heels in Savannah River Site High Level Waste (HLW) Tanks 1-15. First, a dissolution model is constructed and validated. Coupled with a model, a material balance determines the fate of hypothetical worst-case sludge in the treatment and neutralization tanks during each chemical adjustment. Although sludge is dissolved, after neutralization more is created within HLW. An energy balance determines overpressurization and overheating to be unlikely. Corrosion induced hydrogen may overwhelm the purge ventilation. Limiting the heel volume treated/acid added and processing the solids through vitrification is preferred and should not significantly increase the number of glass canisters.

  2. Co-digestion of food and garden waste with mixed sludge from wastewater treatment in continuously stirred tank reactors

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Boldrin, Alessio; Boe, Kanokwan

    2016-01-01

    Co-digestions of urban organic waste were conducted to investigate the effect of the mixing ratio between sludge, food waste, grass clippings and green waste at different hydraulic retention times (HRTs). Compared to the digestion of 100% sludge, the methane yield increased by 48% and 35%, when co......-digesting sludge with food waste, grass clippings and garden waste with a corresponding % VS of 10:67.5:15.75:6.75 (R1) and 10:45:31.5:13.5 (R2), respectively. The methane yield remained constant at around 425 and 385 NmL CH4/g VS in R1 and R2, respectively, when the reactors were operated at HRTs of 15, 20 and 30...

  3. Best-basis estimates of solubility of selected radionuclides in sludges in Hanford single-shell tanks

    International Nuclear Information System (INIS)

    HARMSEN, R.W.

    1999-01-01

    The Hanford Defined Waste (HDW) model (Rev. 4) (Agnew et al. 1997) projects inventories (as of January 1, 1994) of 46 radionuclides in the Hanford Site underground waste storage tanks. To model the distribution of the 46 radionuclides among the 177 tanks, it was necessary for Agnew et al. to estimate the solubility of each radionuclide in the various waste types originally added to the single-shell tanks. Previous editions of the HDW model used single-point solubility estimates. The work described in this report was undertaken to provide more accurate estimates of the solubility of all 46 radionuclides in the various wastes

  4. Best-basis estimates of solubility of selected radionuclides in sludges in Hanford single-shell tanks

    Energy Technology Data Exchange (ETDEWEB)

    HARMSEN, R.W.

    1999-02-24

    The Hanford Defined Waste (HDW) model (Rev. 4) (Agnew et al. 1997) projects inventories (as of January 1, 1994) of 46 radionuclides in the Hanford Site underground waste storage tanks. To model the distribution of the 46 radionuclides among the 177 tanks, it was necessary for Agnew et al. to estimate the solubility of each radionuclide in the various waste types originally added to the single-shell tanks. Previous editions of the HDW model used single-point solubility estimates. The work described in this report was undertaken to provide more accurate estimates of the solubility of all 46 radionuclides in the various wastes.

  5. Distributions of 14 elements on 60 selected absorbers from two simulant solutions (acid-dissolved sludge and alkaline supernate) for Hanford HLW Tank 102-SY

    International Nuclear Information System (INIS)

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1993-10-01

    Sixty commercially available or experimental absorber materials were evaluated for partitioning high-level radioactive waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, and a series of liquid extractants sorbed on porous support-beads. The distributions of 14 elements onto each absorber were measured from simulated solutions that represent acid-dissolved sludge and alkaline supernate solutions from Hanford high-level waste (HLW) Tank 102-SY. The selected elements, which represent fission products (Ce, Cs, Sr, Tc, and Y); actinides (U, Pu, and Am); and matrix elements (Cr, Co, Fe, Mn, Zn, and Zr), were traced by radionuclides and assayed by gamma spectrometry. Distribution coefficients for each of the 1680 element/absorber/solution combinations were measured for dynamic contact periods of 30 min, 2 h, and 6 h to provide sorption kinetics information for the specified elements from these complex media. More than 5000 measured distribution coefficients are tabulated

  6. Distributions of 14 elements on 60 selected absorbers from two simulant solutions (acid-dissolved sludge and alkaline supernate) for Hanford HLW Tank 102-SY

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1993-10-01

    Sixty commercially available or experimental absorber materials were evaluated for partitioning high-level radioactive waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, and a series of liquid extractants sorbed on porous support-beads. The distributions of 14 elements onto each absorber were measured from simulated solutions that represent acid-dissolved sludge and alkaline supernate solutions from Hanford high-level waste (HLW) Tank 102-SY. The selected elements, which represent fission products (Ce, Cs, Sr, Tc, and Y); actinides (U, Pu, and Am); and matrix elements (Cr, Co, Fe, Mn, Zn, and Zr), were traced by radionuclides and assayed by gamma spectrometry. Distribution coefficients for each of the 1680 element/absorber/solution combinations were measured for dynamic contact periods of 30 min, 2 h, and 6 h to provide sorption kinetics information for the specified elements from these complex media. More than 5000 measured distribution coefficients are tabulated.

  7. Survey of pyrethroid, macrocyclic lactone and antibacterial residues in bulk milk tank from Minas Gerais State, Brazil

    Directory of Open Access Journals (Sweden)

    Lidia C.A. Picinin

    Full Text Available ABSTRACT: A survey of veterinary drug residues in bulk milk tank from Minas Gerais State, Brazil, was carried out through a broad scope analysis. Here, 132 raw milk samples were collected at 45 dairy farms in Minas Gerais from August 2009 to February 2010, and analyzed for 42 analytes, comprising pyrethroids, macrocyclic lactones and antibacterials, using liquid chromatography coupled with mass spectrometry in tandem mode and gas chromatography with electron capture detection. Within all milk samples, at least one veterinary drug residue was identified in 40 milk samples (30.30% by confirmatory tests, whereas 16 samples (12.12% showed the presence of at least two residues. With regard to the Brazilian maximum residue levels, 11 milk samples (8.33% were non-compliant according to Brazilian Legislation. The veterinary drugs detected in the non-compliant milk samples include penicillin V (one sample, abamectin (one sample and cypermethrin (nine samples. Furthermore, the antibacterial screening methods failed to identify most of the positive samples that were detected by confirmatory tests, leading to a large discrepancy between the screening and confirmatory antimicrobial tests. Thus, the present study indicated that the veterinary drugs residues still represents a great concern for the milk production chain.

  8. Composting of solid and sludge residues from agricultural and food industries. Bioindicators of monitoring and compost maturity.

    Science.gov (United States)

    Ranalli, G; Bottura, G; Taddei, P; Garavani, M; Marchetti, R; Sorlini, C

    2001-01-01

    A study to monitor the composting process, to evaluate the effectiveness of bioindicators for the quality and maturity of cured compost obtained by a mixture of winery residues, sludges from dairies and solid residues from food processing (grape-stalks, grape-dregs, rice husks), was conducted. Composting process lasting five months was monitored by chemico-physical, spectroscopic (FTIR, DTG and DSC), microbiological and enzymatic analyses. Biological activities (ATP, DHA contents and several enzymatic activities), impedance variations (DT) of mixed cultures during growth and potential pathogens (E. coli and Salmonella sp.), were determined. The phytotoxicity tests gave a germination index higher than 90% and no significant genotoxic differences between controls and the compost samples were evidenced. Pathogens were not found on the cured compost that can therefore be satisfactorily used as amendment for agricultural crops. However, no single measurement of a composting process factor, biological, chemical or physical, gave a comprehensive view of the quality of a specific composting. We proposed a tool of bioindicators of potential activity and markers in combination for integrated evaluation of monitoring of composting process and compost quality. The responses of several enzymatic activities were positive and indicative of their favorable use capable to reveal even very small changes within microbial population and activity in test and monitoring of compost programmes.

  9. Does residual H2O2 result in inhibitory effect on enhanced anaerobic digestion of sludge pretreated by microwave-H2O2 pretreatment process?

    Science.gov (United States)

    Liu, Jibao; Jia, Ruilai; Wang, Yawei; Wei, Yuansong; Zhang, Junya; Wang, Rui; Cai, Xing

    2017-04-01

    This study investigated the effects of residual H 2 O 2 on hydrolysis-acidification and methanogenesis stages of anaerobic digestion after microwave-H 2 O 2 (MW-H 2 O 2 ) pretreatment of waste activated sludge (WAS). Results showed that high sludge solubilization at 35-45 % was achieved after pretreatment, while large amounts of residual H 2 O 2 remained and refractory compounds were thus generated with high dosage of H 2 O 2 (0.6 g H 2 O 2 /g total solids (TS), 1.0 g H 2 O 2 /g TS) pretreatment. The residual H 2 O 2 not only inhibited hydrolysis-acidification stage mildly, such as hydrolase activity, but also had acute toxic effect on methanogens, resulting in long lag phase, low methane yield rate, and no increase of cumulative methane production during the 30-day BMP tests. When the low dosage of H 2 O 2 at 0.2 g H 2 O 2 /g TS was used in MW-H 2 O 2 pretreatment, sludge anaerobic digestion was significantly enhanced. The cumulative methane production increased by 29.02 %, but still with a lag phase of 1.0 day. With removing the residual H 2 O 2 by catalase, the initial lag phase of hydrolysis-acidification stage decreased from 1.0 to 0.5 day.

  10. Concept Design of a Gravity Core Cooling Tank as a Passive Residual Heat Removal System for a Research Reactor

    International Nuclear Information System (INIS)

    Lee, Kwonyeong; Chi, Daeyoung; Kim, Seong Hoon; Seo, Kyoungwoo; Yoon, Juhyeon

    2014-01-01

    A core downward flow is considered to use a plate type fuel because it is benefit to install the fuel in the core. If a flow inversion from a downward to upward flow in the core by a natural circulation is introduced within a high heat flux region of residual heat, the fuel fails instantly due to zero flow. Therefore, the core downward flow should be sufficiently maintained until the residual heat is in a low heat flux region. In a small power research reactor, inertia generated by a flywheel of the PCP can maintain a downward flow shortly and resolve the problem of a flow inversion. However, a high power research reactor more than 10 MW should have an additional method to have a longer downward flow until a low heat flux. Usually, other research reactors have selected an active residual heat removal system as a safety class. But, an active safety system is difficult to design and expensive to construct. A Gravity Core Cooling Tank (GCCT) beside the reactor pool with a Residual Heat Removal Pipe connecting two pools was developed and designed preliminarily as a passive residual heat removal system for an open-pool type research reactor. It is very simple to design and cheap to construct. Additionally, a non-safety, but active residual heat removal system is applied with the GCCT. It is a Pool Water Cooling and Purification System. It can improve the usability of the research reactor by removing the thermal waves, and purify the reactor pool, the Primary Cooling System, and the GCCT. Moreover, it can reduce the pool top radiation level

  11. Co-digestion of food and garden waste with mixed sludge from wastewater treatment in continuously stirred tank reactors

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Boldrin, Alessio; Boe, Kanokwan

    2016-01-01

    Co-digestions of urban organic waste were conducted to investigate the effect of the mixing ratio between sludge, food waste, grass clippings and green waste at different hydraulic retention times (HRTs). Compared to the digestion of 100% sludge, the methane yield increased by 48% and 35%, when co......-digesting sludge with food waste, grass clippings and garden waste with a corresponding % VS of 10:67.5:15.75:6.75 (R1) and 10:45:31.5:13.5 (R2), respectively. The methane yield remained constant at around 425 and 385 NmL CH4/g VS in R1 and R2, respectively, when the reactors were operated at HRTs of 15, 20 and 30...... days. However, the methane yield dropped significantly to 356 (R1) and 315 (R2) NmL CH4/g VS when reducing the HRT to 10 days, indicating that the process was stressed. Since the methane production rate improved significantly with decreasing HRT, the trade-off between yield and productivity...

  12. Isolation and Characterization of PHA-Producing Bacteria from Propylene Oxide Saponification Wastewater Residual Sludge.

    Science.gov (United States)

    Li, Ruirui; Gu, Pengfei; Fan, Xiangyu; Shen, Junyu; Wu, Yulian; Huang, Lixuan; Li, Qiang

    2018-03-21

    A polyhydroxyalkanoate (PHA)-producing strain was isolated from propylene oxide (PO) saponification wastewater activated sludge and was identified as Brevundimonas vesicularis UJN1 through 16S rDNA sequencing and Biolog microbiological identification. Single-factor and response surface methodology experiments were used to optimize the culture medium and conditions. The optimal C/N ratio was 100/1.04, and the optimal carbon and nitrogen sources were sucrose (10 g/L) and NH 4 Cl (0.104 g/L) respectively. The optimal culture conditions consisted of initial pH of 6.7 and an incubation temperature of 33.4 °C for 48 h, with 15% inoculum and 100 mL medium at an agitation rate of 180 rpm. The PHA concentration reached 34.1% of the cell dry weight and increased three times compared with that before optimization. The only report of PHA-producing bacteria by Brevundimonas vesicularis showed that the conversion rate of PHAs using glucose as the optimal carbon source was 1.67%. In our research, the conversion rate of PHAs with sucrose as the optimal carbon source was 3.05%, and PHA production using sucrose as the carbon source was much cheaper than that using glucose as the carbon source.

  13. Thermal Screening Of Residues From Acidification And Copper-Catalyzed Peroxide Oxidation Of Tank 48H Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F. F.; Newell, J. D.; Peters, T. B.; Fink, S. D.

    2012-10-04

    This study evaluated the residues generated from copper-catalyzed peroxide oxidation (CCPO) of Tank 48H simulant. The first step of the CCPO calls for pH adjustment of the simulant, and early testing used either 15wt% or 50wt % nitric acid to reach a slurry pH of between 12 and 5. Residues obtained by ambient temperature pH adjustment with 50wt % nitric acid followed by oxidation with 50 wt % hydrogen peroxide at 35, 50, and 65°C (from a recently conducted Copper Catalyzed Peroxide Oxidation or CCPO) were also analyzed. Slurry samples at pH 7 or lower especially made from adding nitric acid at the process equivalent of one gallon per minute had the largest enthalpy of decomposition. The thermogravimetric characteristics of some samples from the CCPO test generated at pH 9 or lower exhibited rapid weight loss. Taken together, residues generated at pH 9 or lower may be classified as energetic upon decomposition in confined spaces or under adiabatic conditions. Therefore, additional testing is recommended with larger (up to 50mL) samples in an adiabatic calorimeter. To minimize risk of formation of energetic byproducts, an intermediate slurry pH of 9 or greater is recommended following the acidification step in the CCPO and prior to start of peroxide addition. In practice, process temperature needs to reach 150°C or greater to decompose residues obtained a pH 9 or lower which is unlikely. Oxidation temperature had no significant effect on the thermal characteristics of the final residues generated.

  14. Phosphorus Sorption Capacity of Concrete Waste, Natural Sorbents, Alum Residuals from Water Supply Sludge, and Ceramic Material for Tertiary Treatment in Onsite Systems

    Directory of Open Access Journals (Sweden)

    Siriporn Larpkiattaworn

    2013-01-01

    Full Text Available The phosphorus (P sorption capacity was determined for concrete waste, alum residuals from water treatment sludge, and natural sorbents (shells, clay, kaolin, and mordenite from various parts of Thailand. The material showing the best P sorption capacity (shells was selected for preparing a ceramic material to support the growth of nitrifying bacteria. The ceramic material, consisting of shells (50% by weight, alum residuals sludge (40% by weight and a soil (10% by weight heat at 750°C for about one hour, was studied for its P sorption capacity. Langmuir and Freundlich sorption isotherms yielded similar relative maximum P sorption capacities for the sorbents. The results from the Langmuir calculations showed the following maximum P sorption capacities: 32.26 g P/Kg shells, 31.25 g P/Kg concrete waste, 7.19 g P/Kg alum residuals sludge, 290 mg P/Kg clay, 80 mg P/Kg kaolin, and 30 mg P/Kg mordenite. The P sorption capacity for the prepared ceramic material at grain size 12 mm was 4.85 g P/kg. This result suggests that the ceramic material could be used for P sorption while providing growth support for nitrifying bacteria, similar to the well documented a popular P sorption material: light expanded clay aggregate (LECA from Sweden.

  15. F-Canyon Sludge Physical Properties

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R.; Hansen, P. R.; Fink, S. D.

    2005-08-22

    The Site Deactivation and Decommissioning (SDD) Organization is evaluating options to disposition the 800 underground tanks (including removal of the sludge heels from these tanks). To support this effort, D&D requested assistance from Savannah River National Laboratory (SRNL) personnel to determine the pertinent physical properties to effectively mobilize the sludge from these tanks (Tanks 804, 808, and 809). SDD provided SRNL with samples of the sludge from Tanks 804, 808, and 809. The authors measured the following physical properties for each tank: particle settling rate, shear strength (i.e., settled solids yield stress), slurry rheology (i.e., yield stress and consistency), total solids concentration in the sludge, soluble solids concentration of the sludge, sludge density, and particle size distribution.

  16. EFFECTIVENESS OF USING DILUTE OXALIC ACID TO DISSOLVE HIGH LEVEL WASTE IRON BASED SLUDGE SIMULANT

    International Nuclear Information System (INIS)

    Ketusky, E

    2008-01-01

    At the Savannah River Site (SRS), near Aiken South Carolina, there is a crucial need to remove residual quantities of highly radioactive iron-based sludge from large select underground storage tanks (e.g., 19,000 liters of sludge per tank), in order to support tank closure. The use of oxalic acid is planned to dissolve the residual sludge, hence, helping in the removal. Based on rigorous testing, primarily using 4 and 8 wt% oxalic acid solutions, it was concluded that the more concentrated the acid, the greater the amount of residual sludge that would be dissolved; hence, a baseline technology on using 8 wt% oxalic acid was developed. In stark contrast to the baseline technology, reports from other industries suggest that the dissolution will most effectively occur at 1 wt% oxalic acid (i.e., maintaining the pH near 2). The driver for using less oxalic acid is that less (i.e., moles) would decrease the severity of the downstream impacts (i.e., required oxalate solids removal efforts). To determine the initial feasibility of using 1 wt% acid to dissolve > 90% of the sludge solids, about 19,000 liters of representative sludge was modeled using about 530,000 liters of 0 to 8 wt% oxalic acid solutions. With the chemical thermodynamic equilibrium based software results showing that 1 wt% oxalic acid could theoretically work, simulant dissolution testing was initiated. For the dissolution testing, existing simulant was obtained, and an approximate 20 liter test rig was built. Multiple batch dissolutions of both wet and air-dried simulant were performed. Overall, the testing showed that dilute oxalic acid dissolved a greater fraction of the stimulant and resulted in a significantly larger acid effectiveness (i.e., grams of sludge dissolved/mole of acid) than the baseline technology. With the potential effectiveness confirmed via simulant testing, additional testing, including radioactive sludge testing, is planned

  17. A modified oxic-settling-anaerobic activated sludge process using gravity thickening for excess sludge reduction

    Science.gov (United States)

    Wang, Jun; Li, Shi-Yu; Jiang, Feng; Wu, Ke; Liu, Guang-Li; Lu, Hui; Chen, Guang-Hao

    2015-01-01

    Oxic-settling-anaerobic process (OSA) was known as a cost-effective way to reduce the excess sludge production with simple upgrade of conventional activated sludge process (CAS). A low oxidation-reduction potential (ORP) level was the key factor to sludge decay and lysis in the sludge holding tank of the OSA process. However, the ORP control with nitrogen purge or chemical dosing in the OSA process would induce extra expense and complicate the operation. Hence, in this study, a sludge holding tank using gravity thickening was applied to OSA process to reduce the excess sludge production without any ORP control. Results showed that the modified OSA process not only reduced the excess sludge production effectively but also improved the sludge settleability without affected the treatment capacity. The reduction of the excess sludge production in the modified OSA process resulted from interactions among lots of factors. The key element of the process was the gravity thickening sludge holding tank. PMID:26350761

  18. RECENT PROGRESS IN DOE WASTE TANK CLOSURE

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C

    2008-02-01

    The USDOE complex currently has over 330 underground storage tanks that have been used to process and store radioactive waste generated from the production of weapons materials. These tanks contain over 380 million liters of high-level and low-level radioactive waste. The waste consists of radioactively contaminated sludge, supernate, salt cake or calcine. Most of the waste exists at four USDOE locations, the Hanford Site, the Savannah River Site, the Idaho Nuclear Technology and Engineering Center and the West Valley Demonstration Project. A summary of the DOE tank closure activities was first issued in 2001. Since then, regulatory changes have taken place that affect some of the sites and considerable progress has been made in closing tanks. This paper presents an overview of the current regulatory changes and drivers and a summary of the progress in tank closures at the various sites over the intervening six years. A number of areas are addressed including closure strategies, characterization of bulk waste and residual heel material, waste removal technologies for bulk waste, heel residuals and annuli, tank fill materials, closure system modeling and performance assessment programs, lessons learned, and external reviews.

  19. Filtration of sludge residue from chamber 804 during production of primary bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Pfirrmann

    1942-02-23

    The filtration experiments and three common types of filter in use in coal liquefaction plants are described. The types of filter were the Kerzenfilter (candle filter), the Dorr filter, and the Scholven filter. The process for production of bitumen operated at 300 atm. pressure 25.5 millivolts temperature, and throughput of 0.5 kg/liter of reaction space/hr. The residue was thinned with middle oil and tested for filterability in a small pressure filter (2-kg samples) which gave results agreeing with the results obtained in industrial-size filter installations. The Kerzenfilter operated under 5 atm. nitrogen pressure and alternated between periods of filtration and of blowing off acumulated filter cake by 8 to 10 atm. reverse nitrogen pressure. The disadvantages of this type were that the yield of filtrate diminished greatly through time because of clogging up of the stone filter plate, rips in the plate often let excessive amounts of ash through, and the blowing off of filter cake caused losses of oil and damage to workers and surroundings. The Dorr filter was an almost continuously-operating filter which used Kieselgur (diatomaceous earth) suspended in middle oil over an asbestos cloth base as the filter. It worked very well, but had the disadvantages of operating under vacuum instead of under pressure (greater oil losses to vaporization) and the expense of the Kieselgur; experiments were underway to minimize both disadvantages. The Scholven filter was not satisfactory because its metal filter plate stopped up almost completely.

  20. A three-phase centrifuge to minimize waste from production tank bottoms and sludges: An economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Polston, C.E.; Parkinson, W.J.; Graham, A.L.; Steele, R.D. [Los Alamos National Lab., NM (United States); Bretz, R.E. [New Mexico Tech., Albuquerque, NM (United States)

    1995-03-01

    The performance of a three-phase centrifuge process in separating tank bottoms into salable oil, brine and solids was scaled using the sigma method. The profitability was analyzed for a range of processed volumes for three business scenarios: producer owned, service company and a disposal facility. Centrifuge processes operated at full capacity in these situations may be very profitable investments but any investment decision should be heavily influenced by the annual volume to be processed, the quality of the feed and the price received for separated oil.

  1. Effect of organic loading rate on dark fermentative hydrogen production in the continuous stirred tank reactor and continuous mixed immobilized sludge reactor from waste pastry hydrolysate.

    Science.gov (United States)

    Han, Wei; Hu, Yunyi; Li, Shiyi; Nie, Qiulin; Zhao, Hongting; Tang, Junhong

    2016-12-01

    Waste pastry (6%, w/v) was hydrolyzed by the produced glucoamylase and protease to obtain the glucose (19.8g/L) and free amino nitrogen (179mg/L) solution. Then, the effect of organic loading rate (OLR) (8-40kgCOD/(m 3 d)) on dark fermentative hydrogen production in the continuous stirred tank reactor (CSTR) and continuous mixed immobilized sludge reactor (CMISR) from waste pastry hydrolysate was investigated and compared. The maximum hydrogen production rate of CSTR (277.76mL/(hL)) and CMISR (320.2mL/(hL)) were achieved at OLR of 24kgCOD/(m 3 d) and 32kgCOD/(m 3 d), respectively. Carbon recovery ranged from 75.2-84.1% in the CSTR and CMISR with the balance assumed to be converted to biomass. One gram waste pastry could produce 0.33g (1.83mmol) glucose which could be further converted to 79.24mL (3.54mmol) hydrogen in the CMISR or 91.66mL (4.09mmol) hydrogen in the CSTR. This is the first study which reports dark fermentative hydrogen production from waste pastry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Fiscal year 1994 1/25-scale sludge mobilization testing

    International Nuclear Information System (INIS)

    Powell, M.R.; Gates, C.M.; Hymas, C.R.; Sprecher, M.A.; Morter, N.J.

    1995-07-01

    There are 28 one-million-gallon double-shell radioactive waste tanks on the Hanford Reservation in southeastern Washington State. The waste in these tanks was generated during processing of nuclear materials. Solids-laden slurries were placed into many of the tanks. Over time, the waste solids have settled to form a layer of sludge in the bottom of these tanks. The sludge layer thickness varies from tank to tank with some having only a few centimeters or no sludge up to some tanks which have about 4.5 m (15 ft) of sludge. It is planned that the waste will be removed from these tanks as part of the overall Hanford site cleanup efforts. Jet mixer pumps are to be placed into the tanks to stir up (mobilize) the sludge and form a uniform slurry suitable for pumping to downstream processing facilities. These mixer pumps use powerful jets of tank fluid directed horizontally out of two, diametrically opposed nozzles near the tank bottom. These fluid jets impinge upon the sludge and stir it up. The amount of sludge mobilized by the mixer pump jets depends not only on the jet properties, but also on the ability of the sludge to resist the jets. It is the goal of the work described in this document to develop the ability to predict how much sludge will be mobilized by the mixer pumps based on the size and velocity of the mixer pump jets and the physical and chemical properties of the tank sludge

  3. Minimization of Excess Sludge in Activated Sludge Systems

    Directory of Open Access Journals (Sweden)

    Sayed Ali Reza Momeni

    2006-01-01

    Full Text Available The disposal of excess sludge from wastewater treatment plant represents a rising challenge in activated sludge processes. Hence, the minimization of excess sludge production was investigated by increasing the dissolved oxygen in aeration basin. Units of the pilot include: Primary sedimentation tank, aeration basin, secondary sedimentation tank, and return sludge tank. Volume of aeration basin is 360 l and influent flow rate is 90 L/h. Influent of pilot is taken from effluent of grit chamber of Isfahan's North Wastewater treatment plant. The experiments were done on different parts of pilot during the 5 month of study. Results show that increase of dissolved oxygen in aeration tank affect on decrease of excess sludge. Increase of dissolved oxygen from 0.5 to 4.5 mg/L resulted in 25% decrease of excess sludge. Variation of dissolved oxygen affect on settleability of sludge too. By increase of dissolved oxygen, SVI decreased and then increased. Value of 1-3 mg/L was the adequate range of dissolved oxygen by settleability of sludge and optimum range was 2-2.5 mg/L. It could be concluded by increasing of dissolved oxygen up to of 3 mg/L, sludge settleability significant decreased.

  4. SOLIDIFICATION OF THE HANFORD LAW WASTE STREAM PRODUCED AS A RESULT OF NEAR-TANK CONTINUOUS SLUDGE LEACHING AND SODIUM HYDROXIDE RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M.; Johnson, F.; Crawford, C.; Jantzen, C.

    2011-09-20

    The U.S. Department of Energy (DOE), Office of River Protection (ORP), is responsible for the remediation and stabilization of the Hanford Site tank farms, including 53 million gallons of highly radioactive mixed wasted waste contained in 177 underground tanks. The plan calls for all waste retrieved from the tanks to be transferred to the Waste Treatment Plant (WTP). The WTP will consist of three primary facilities including pretreatment facilities for Low Activity Waste (LAW) to remove aluminum, chromium and other solids and radioisotopes that are undesirable in the High Level Waste (HLW) stream. Removal of aluminum from HLW sludge can be accomplished through continuous sludge leaching of the aluminum from the HLW sludge as sodium aluminate; however, this process will introduce a significant amount of sodium hydroxide into the waste stream and consequently will increase the volume of waste to be dispositioned. A sodium recovery process is needed to remove the sodium hydroxide and recycle it back to the aluminum dissolution process. The resulting LAW waste stream has a high concentration of aluminum and sodium and will require alternative immobilization methods. Five waste forms were evaluated for immobilization of LAW at Hanford after the sodium recovery process. The waste forms considered for these two waste streams include low temperature processes (Saltstone/Cast stone and geopolymers), intermediate temperature processes (steam reforming and phosphate glasses) and high temperature processes (vitrification). These immobilization methods and the waste forms produced were evaluated for (1) compliance with the Performance Assessment (PA) requirements for disposal at the IDF, (2) waste form volume (waste loading), and (3) compatibility with the tank farms and systems. The iron phosphate glasses tested using the product consistency test had normalized release rates lower than the waste form requirements although the CCC glasses had higher release rates than the

  5. Solidification Of The Hanford Law Waste Stream Produced As A Result Of Near-Tank Continuous Sludge Leaching And Sodium Hydroxide Recovery

    International Nuclear Information System (INIS)

    Reigel, M.; Johnson, F.; Crawford, C.; Jantzen, C.

    2011-01-01

    The U.S. Department of Energy (DOE), Office of River Protection (ORP), is responsible for the remediation and stabilization of the Hanford Site tank farms, including 53 million gallons of highly radioactive mixed wasted waste contained in 177 underground tanks. The plan calls for all waste retrieved from the tanks to be transferred to the Waste Treatment Plant (WTP). The WTP will consist of three primary facilities including pretreatment facilities for Low Activity Waste (LAW) to remove aluminum, chromium and other solids and radioisotopes that are undesirable in the High Level Waste (HLW) stream. Removal of aluminum from HLW sludge can be accomplished through continuous sludge leaching of the aluminum from the HLW sludge as sodium aluminate; however, this process will introduce a significant amount of sodium hydroxide into the waste stream and consequently will increase the volume of waste to be dispositioned. A sodium recovery process is needed to remove the sodium hydroxide and recycle it back to the aluminum dissolution process. The resulting LAW waste stream has a high concentration of aluminum and sodium and will require alternative immobilization methods. Five waste forms were evaluated for immobilization of LAW at Hanford after the sodium recovery process. The waste forms considered for these two waste streams include low temperature processes (Saltstone/Cast stone and geopolymers), intermediate temperature processes (steam reforming and phosphate glasses) and high temperature processes (vitrification). These immobilization methods and the waste forms produced were evaluated for (1) compliance with the Performance Assessment (PA) requirements for disposal at the IDF, (2) waste form volume (waste loading), and (3) compatibility with the tank farms and systems. The iron phosphate glasses tested using the product consistency test had normalized release rates lower than the waste form requirements although the CCC glasses had higher release rates than the

  6. Sludge Washing and Demonstration of the DWPF Nitric/Formic Flowsheet in the SRNL Shielded Cells for Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-11-01

    Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to qualify the next batch of sludgeSludge Batch 9 (SB9). Current practice is to prepare sludge batches in Tank 51 by transferring sludge to Tank 51 from other tanks. The sludge is washed and transferred to Tank 40, the current Defense Waste Process Facility (DWPF) feed tank. Prior to sludge transfer from Tank 51 to Tank 40, the Tank 51 sludge must be qualified. SRNL qualifies the sludge in multiple steps. First, a Tank 51 sample is received, then characterized, washed, and again characterized. SRNL then demonstrates the DWPF Chemical Process Cell (CPC) flowsheet with the sludge. The final step of qualification involves chemical durability measurements of glass fabricated in the DWPF CPC demonstrations. In past sludge batches, SRNL had completed the DWPF demonstration with Tank 51 sludge. For SB9, SRNL has been requested to process a blend of Tank 51 and Tank 40 at a targeted ratio of 44% Tank 51 and 56% Tank 40 on an insoluble solids basis.

  7. Residual effect of applying composted sewage sludge to the majority nutrients in an alive grove soil; Efecto residual de la aplicacion de un lodo de depuradora compostado sobre los nutrientes mayoritarios de un suelo de olivar

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez Fernandez, R.; Aguilar Torres, M. A.; Gonzalez Fernandez, P.

    2002-07-01

    The agricultural reuse of sewage sludge is an excellent management option because in addition to the elimination of the residue, from the environment an appreciable amount of nitrogen, phosphorus and some micronutrients are added to the soil. During two successive years 20 Mgha-1of composted sewage sludge was applied to a clay soil of the Campina de Cordoba cropped with olive trees. The concentrations of some of the main nutrients like phosphorus and potassium increased after the amendment. The phosphorus content in the surface soil horizon increased from 2.3 to 9.3 ppm whereas the potassium content increased from 239 to 320 ppm in the same horizon for the same two years period. These results are encouraging for the organic amendment use. (Author)

  8. Return of phosphorus in agricultural residues and urban sewage sludge to soil using biochar from low-temperature gasification as fertilizer product

    DEFF Research Database (Denmark)

    Müller-Stöver, Dorette Sophie; Jensen, Lars Stoumann; Grønlund, Mette

    The return of residual products from bioenergy generation to soils is a step towards closing nutrient cycles, which is especially important for nutrients produced from non-renewable resources such as phosphorus (P). Low-temperature gasification is an innovative process efficiently generating ener...... from different biomass fuels, such as agricultural residues and waste streams, and at the same time producing a biochar product potentially valuable for soil amendment. In pot experiments, different residual products originating from low-temperature gasification were tested for their P......-fertilizing potential with spring barley as a test crop. Biochar resulting from gasification of pure wheat straw showed the best P fertilizer value, however, because of the low P content, extremely high amounts had to be applied when crop P demand should be met, which came along with an over-fertilization of potassium...... (K). Gasification of pure sewage sludge with a high Fe and Al content practically eliminated its P fertilizer value, while co-gasification of sludge lower in Fe and Al together with wheat straw resulted in a biochar product with only somewhat reduced P availability and improved P/K ratio...

  9. Residues of pharmaceutical products in recycled organic manure produced from sewage sludge and solid waste from livestock and relationship to their fermentation level.

    Science.gov (United States)

    Motoyama, Miki; Nakagawa, Shuhei; Tanoue, Rumi; Sato, Yuri; Nomiyama, Kei; Shinohara, Ryota

    2011-07-01

    In recent years, sludge generated in sewage treatment plants (STPs) and solid waste from livestock being utilized is useful for circulation of nourishment in farmlands as recycled organic manure (ROM). In this study, we determined the residue levels and patterns of 12 pharmaceutical products generated by human activity in the ROMs produced from human waste sludge (HWS), sewage sludge (SS), cattle manure (CM), poultry manure (PM), swine manure (SM) and horse manure (HM). The kind and number of pharmaceutical products detected in ROMs were different. Fluoroquinolones (FQs) were detected at high levels in HWS and SS samples. In addition, the detection frequency and concentration levels of sulfonamides (SAs) in PM and SM were high. Moreover, high concentrations of chlortetracycline (CTC) were found in only SM. These differences reflect specific adherence adsorption of the pharmaceutical products to different livestock and humans. Moreover, it was found that the concentrations of pharmaceutical products and fermentation levels of ROMs had significant positive correlation (r=0.41, p=0.024). When the fermentation test of ROM was conducted in a rotary fermentor in a lab scale test, the residue levels of pharmaceutical products decreased effectively except carbamazepine (CBZ). The rates of decrease were in the case of tetracyclines (TCs): 85-92%, FQs: 81-100%, erythromycine: 67%, SAs: 79-95%, trimethoprim: 86% and CBZ: 37% by 30 d. Pharmaceutical products that can be decomposed by fermentation process at the lowest impact of residual antibiotic activities may therefore be considered as environmentally friendly medicines. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Sewage sludge treatment system

    Science.gov (United States)

    Kalvinskas, John J. (Inventor); Mueller, William A. (Inventor)

    1976-01-01

    Raw sewage may be presently treated by mixing screened raw sewage with activated carbon. The mixture is then allowed to stand in a first tank for a period required to settle the suspended matter to the bottom of the tank as a sludge. Thereafter, the remaining liquid is again mixed with activated carbon and the mixture is transferred to a secondary settling tank, where it is permitted to stand for a period required for the remaining floating material to settle as sludge and for adsorption of sewage carbon as well as other impurities to take place. The sludge from the bottom of both tanks is removed and pyrolyzed to form activated carbon and ash, which is mixed with the incoming raw sewage and also mixed with the liquid being transferred from the primary to the secondary settling tank. It has been found that the output obtained by the pyrolysis process contains an excess amount of ash. Removal of this excess amount of ash usually also results in removing an excess amount of carbon thereby requiring adding carbon to maintain the treatment process. By separately pyrolyzing the respective sludges from the first and second settling tanks, and returning the separately obtained pyrolyzed material to the respective first and second tanks from which they came, it has been found that the adverse effects of the excessive ash buildup is minimized, the carbon yield is increased, and the sludge from the secondary tank can be pyrolyzed into activated carbon to be used as indicated many more times than was done before exhaustion occurs.

  11. Sludge Heel Removal By Aluminum Dissolution At Savannah River Site 12390

    International Nuclear Information System (INIS)

    Keefer, M.

    2012-01-01

    High Level Waste (HLW) at the Savannah River Site (SRS) is currently stored in aging underground storage tanks. This waste is a complex mixture of insoluble solids, referred to as sludge, and soluble salts. Continued long-term storage of these radioactive wastes poses an environmental risk. Operations are underway to remove and disposition the waste, clean the tanks and fill with grout for permanent closure. Heel removal is the intermediate phase of the waste retrieval and tank cleaning process at SRS, which is intended to reduce the volume of waste prior to treatment with oxalic acid. The goal of heel removal is to reduce the residual amount of radioactive sludge wastes to less than 37,900 liters (10,000 gallons) of wet solids. Reducing the quantity of residual waste solids in the tank prior to acid cleaning reduces the amount of acid required and reduces the amount of excess acid that could impact ongoing waste management processes. Mechanical heel removal campaigns in Tank 12 have relied solely on the use of mixing pumps that have not been effective at reducing the volume of remaining solids. The remaining waste in Tank 12 is known to have a high aluminum concentration. Aluminum dissolution by caustic leaching was identified as a treatment step to reduce the volume of remaining solids and prepare the tank for acid cleaning. Dissolution was performed in Tank 12 over a two month period in July and August, 2011. Sample results indicated that 16,440 kg of aluminum oxide (boehmite) had been dissolved representing 60% of the starting inventory. The evolution resulted in reducing the sludge solids volume by 22,300 liters (5900 gallons), preparing the tank for chemical cleaning with oxalic acid.

  12. SLUDGE HEEL REMOVAL BY ALUMINUM DISSOLUTION AT SAVANNAH RIVER SITE 12390

    Energy Technology Data Exchange (ETDEWEB)

    Keefer, M.

    2012-01-12

    High Level Waste (HLW) at the Savannah River Site (SRS) is currently stored in aging underground storage tanks. This waste is a complex mixture of insoluble solids, referred to as sludge, and soluble salts. Continued long-term storage of these radioactive wastes poses an environmental risk. Operations are underway to remove and disposition the waste, clean the tanks and fill with grout for permanent closure. Heel removal is the intermediate phase of the waste retrieval and tank cleaning process at SRS, which is intended to reduce the volume of waste prior to treatment with oxalic acid. The goal of heel removal is to reduce the residual amount of radioactive sludge wastes to less than 37,900 liters (10,000 gallons) of wet solids. Reducing the quantity of residual waste solids in the tank prior to acid cleaning reduces the amount of acid required and reduces the amount of excess acid that could impact ongoing waste management processes. Mechanical heel removal campaigns in Tank 12 have relied solely on the use of mixing pumps that have not been effective at reducing the volume of remaining solids. The remaining waste in Tank 12 is known to have a high aluminum concentration. Aluminum dissolution by caustic leaching was identified as a treatment step to reduce the volume of remaining solids and prepare the tank for acid cleaning. Dissolution was performed in Tank 12 over a two month period in July and August, 2011. Sample results indicated that 16,440 kg of aluminum oxide (boehmite) had been dissolved representing 60% of the starting inventory. The evolution resulted in reducing the sludge solids volume by 22,300 liters (5900 gallons), preparing the tank for chemical cleaning with oxalic acid.

  13. 33 CFR 157.15 - Slop tanks in tank vessels.

    Science.gov (United States)

    2010-07-01

    ... OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A... tanks must have the total capacity to retain oily mixtures from cargo tank washings, oil residue, and... washing water. (c) Design. A slop tank required in this section: (1) Must minimize turbulence, entrainment...

  14. Sludge pumping in water treatment

    International Nuclear Information System (INIS)

    Solar Manuel, M. A.

    2010-01-01

    In water treatment processes is frequent to separate residual solids, with sludge shape, and minimize its volume in a later management. the technologies to applicate include pumping across pipelines, even to long distance. In wastewater treatment plants (WWTP), the management of these sludges is very important because their characteristics affect load losses calculation. Pumping sludge can modify its behavior and pumping frequency can concern treatment process. This paper explains advantages and disadvantages of different pumps to realize transportation sludge operations. (Author) 11 refs.

  15. Microbial community response to a release of neat ethanol onto residual hydrocarbons in a pilot-scale aquifer tank.

    Science.gov (United States)

    Cápiro, Natalie L; Da Silva, Marcio L B; Stafford, Brent P; Rixey, William G; Alvarez, Pedro J J

    2008-09-01

    The microbial community response to a neat ethanol release (E100, 76 l) onto residual hydrocarbons in sandy soil was evaluated in a continuous-flow 8 m(3) pilot-scale aquifer tank, simulating a release at a bulk fuel terminal. Microbial genotypic shifts were assessed using quantitative real-time PCR analysis. High ethanol concentrations in the capillary fringe at potentially toxic levels, exceeding 100,000 mg l(-1), were tolerated by the microbial community. The high biochemical oxygen demand exerted by ethanol rapidly induced anaerobic conditions, and both methane production (up to 1.2 mg l(-1)) and growth of putative methanogenic Archaea (up to 10(6) gene copies per g of soil) were observed in shallow groundwater and soil samples 75 cm down gradient from the source. Aerobic conditions returned after ethanol was flushed out of the system, approximately 45 days after the spill (less than 7.5 pore volumes flushed). Total Bacteria growth coincided with ethanol migration and availability, which was restricted to a relatively thin layer at the capillary fringe and water table interface. The concentrations of bacteria harbouring the aerobic catabolic genes dmpN (coding for phenol hydroxylase) and to dC1 (coding for toluene dioxygenase) increased (up to 100x) down gradient from the source, likely as a result of both fortuitous growth on ethanol and on aromatic hydrocarbons mobilized by ethanol. Growth of hydrocarbon degraders was corroborated by denaturing gradient gel electrophoresis analysis showing proliferation of Azospirillum and Brevundimonas spp., which are bacteria commonly associated with microaerophilic hydrocarbon degradation. Nevertheless, the relative abundance of hydrocarbon-specific degraders (as a fraction of total Bacteria) decreased as other bacteria grew to a higher extent. Overall, the observed growth of hydrocarbon degraders suggests a potential enhancement in aerobic natural attenuation in shallow aquifers after ethanol and its degradation by

  16. Activated Sludge. Student Manual. Biological Treatment Process Control.

    Science.gov (United States)

    Boe, Owen K.; Klopping, Paul H.

    This student manual contains the textual material for a seven-lesson unit on activated sludge. Topic areas addressed in the lessons include: (1) activated sludge concepts and components (including aeration tanks, aeration systems, clarifiers, and sludge pumping systems); (2) activated sludge variations and modes; (3) biological nature of activated…

  17. Performances in Tank Cleaning

    Directory of Open Access Journals (Sweden)

    Fanel-Viorel Panaitescu

    2018-03-01

    Full Text Available There are several operations which must do to maximize the performance of tank cleaning. The new advanced technologies in tank cleaning have raised the standards in marine areas. There are many ways to realise optimal cleaning efficiency for different tanks. The evaluation of tank cleaning options means to start with audit of operations: how many tanks require cleaning, are there obstructions in tanks (e.g. agitators, mixers, what residue needs to be removed, are cleaning agents required or is water sufficient, what methods can used for tank cleaning. After these steps, must be verify the results and ensure that the best cleaning values can be achieved in terms of accuracy and reliability. Technology advancements have made it easier to remove stubborn residues, shorten cleaning cycle times and achieve higher levels of automation. In this paper are presented the performances in tank cleaning in accordance with legislation in force. If tank cleaning technologies are effective, then operating costs are minimal.

  18. Potential radiological exposure rates resulting from hypothetical dome failure at Tank W-10

    International Nuclear Information System (INIS)

    1994-07-01

    The main plant area at Oak Ridge National Laboratory (ORNL) contains 12 buried Gunite tanks that were used for the storage and transfer of liquid radioactive waste. Although the tanks are no longer in use, they are known to contain some residual contaminated sludges and liquids. In the event of an accidental tank dome failure, however unlikely, the liquids, sludges, and radioactive contaminants within the tank walls themselves could create radiation fields and result in above-background exposures to workers nearby. This Technical Memorandum documents a series of calculations to estimate potential radiological exposure rates and total exposures to workers in the event of a hypothetical collapse of a Gunite tank dome. Calculations were performed specifically for tank W-10 because it contains the largest radioactivity inventory (approximately half of the total activity) of all the Gunite tanks. These calculations focus only on external, direct gamma exposures for prescribed, hypothetical exposure scenarios and do not address other possible tank failure modes or routes of exposure. The calculations were performed with established, point-kernel gamma ray modeling codes

  19. Extraction of toxic and valuable metals from wastewater sludge and ash arising from RECICLAGUA, a treatment plant for residual waters applying the leaching technique

    International Nuclear Information System (INIS)

    Guerrero D, J.J.

    2004-01-01

    Presently work, the technique is applied of having leached using coupled thermostatted columns, the X-ray diffraction for the identification of the atomic and molecular structure of the metals toxic that are present in the residual muds of a treatment plant of water located in the municipality of the Estado de Mexico, RECICLAGUA, likewise the techniques is used of Inductively Coupled Plasma Mass Spectroscopy and X-ray fluorescence analysis for the qualitative analysis. We took samples of residual sludge and incinerated ash of a treatment plant waste water from the industrial corridor Toluca-Lerma RECICLAGUA, located in Lerma, Estado de Mexico. For this study 100 g. of residual of sludge mixed with a solution to 10% of mineral acid or sodium hydroxide according to the case, to adjust the one p H at 2, 5, 7 and 10, bisulfite was added, of 0.3-1.5 g of dodecyl sulfate of sodium and 3.93 g of DTPA (triple V). Diethylene triamine penta acetate. These sludges and ashes were extracted from toxic and valuable metals by means of the leaching technique using coupled thermostated columns that which were designed by Dr. Jaime Vite Torres, it is necessary to make mention that so much the process as the apparatus with those that one worked was patented by him same. With the extraction of these metals, benefits are obtained, mainly of economic type, achieving the decrease of the volume of those wastes that have been generated; as well as the so much use of those residuals, once the metals have been eliminated, as of those residuals, once the metals have been eliminated, as of those liquors, the heavy metals were extracted. It was carried out a quantitative analysis using Icp mass spectroscopy, this way to be able to know the one content of the present metals in the samples before and after of leaching them, these results reported a great quantity of elements. Another of the techniques employees was the analysis by X-ray diffraction that provides an elementary content of the

  20. HANFORD WASTE TANK BUMP ACCIDENT & CONSEQUENCE ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    MEACHAM, J.E.

    2005-02-22

    Postulated physical scenarios leading to tank bumps were examined. A combination of a substantial supernatant layer depth, supernatant temperatures close to saturation, and high sludge temperatures are required for a tank bump to occur. Scenarios postulated at various times for sludge layers lacking substantial supernatant, such as superheat within the layer and fumarole formation leading to a bump were ruled out.

  1. Aeration tank odour by dimethyl sulphoxide (DMSO) waste in sewage.

    Science.gov (United States)

    Glindemann, D; Novak, J T; Witherspoon, J

    2007-01-01

    Sewage plants can experience dimethyl sulphide (DMS) odour problems by at least one mg/L dimethylsulphoxide (DMSO) waste residue in plant influent, through a DMSO/DMS reduction mechanism. This bench-scale batch study simulates in bottles the role of poor aeration in wastewater treatment on the DMSO/DMS and sulphate/H2S reduction. The study compares headspace concentrations of sulphide odorants developed by activated sludge (closed bottles, half full) after six hours under anoxic versus anaerobic conditions, with 0 versus 2 mg/L DMSO addition. Anoxic sludge (0.1 - 2 mg/L dissolved oxygen, DO) with DMSO resulted in about 50 ppmv DMS and no other sulphide, while DMSO-free sludge was free of detectable sulphides. Anaerobic sludge (no measurable DO to the point of sulphate reduction) with DMSO resulted in 22/4/37 ppmv of H2S/methanethiol (MT)/DMS, while DMSO-free sludge resulted in 44/8/2 ppmv of H2S/MT/DMS. It is concluded that common "anoxic" aeration tank zones with measurable DO in bulk water but immeasurable DO inside sludge flocs (nitrate reducing) experience DMSO reduction to DMS that is oxidation resistant and becomes the most important odorant. Under anaerobic conditions, H2S from sulphate reduction becomes an additional important odorant. A strategy is developed that allows operators to determine from the quantity of different sulphides whether the DMSO/DMS mechanism is important at their wastewater plant.

  2. AX Tank Farm tank removal study

    International Nuclear Information System (INIS)

    SKELLY, W.A.

    1998-01-01

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft 3 of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms

  3. History of waste tank 13, 1956 through 1974

    International Nuclear Information System (INIS)

    Davis, T.L.; Tharin, D.W.; Lohr, D.R.

    1978-06-01

    Tank 13 was placed in service as a receiver of LW from the Building 221-H Purex process in December 1956. Five years later, the supernate was decanted to evaporator feed tank 21. It has since served as a transfer tank for HW supernate being sent to tank 21 and has received sludge removed from other tanks four times. The tank annulus has been inspected with an optical periscope and a lead-shielded camera. No indication of tank leakage had been seen through December 1974. However, subsequent to this report (on April 14, 1977), an arrested leak was discovered, making tank 13 the last of the four type II tanks to leak. Analytical samples of supernate and sludge have been taken. Tank 13 has had no cooling coil failures. Primary tank wall thicknesses, sludge level determinations, and temperature profiles have been obtained. Tank 13 has been included in various tests. Equipment modifications and various equipment repairs were made. 11 figures, 2 tables

  4. Interaction between digestion conditions and sludge physical characteristics and behaviour for anaerobically digested primary sludge

    NARCIS (Netherlands)

    Mahmoud, N.; Zeeman, G.; Gijzen, H.; Lettinga, G.

    2006-01-01

    The interaction between digestion conditions and the sludge physical characteristics and behaviour was investigated for anaerobically digested primary sludge in completely stirred tank reactors (CSTRs). The CSTRs were operated to maintain sludge retention times (SRTs) of 10, 15, 20 and 30 days and

  5. Characteristics and metal leachability of incinerated sewage sludge ash and air pollution control residues from Hong Kong evaluated by different methods.

    Science.gov (United States)

    Li, Jiang-Shan; Xue, Qiang; Fang, Le; Poon, Chi Sun

    2017-06-01

    The improper disposal of incinerated sewage sludge ash (ISSA) and air pollution control residues (APCR) from sewage sludge incinerators has become an environmental concern. The physicochemical, morphological and mineralogical characteristics of ISSA and APCR from Hong Kong, and the leachability and risk of heavy metals, are presented in this paper. The results showed that a low hydraulic and pozzolanic potential was associated with the ISSA and APCR due to the presence of low contents of SiO 2 , Al 2 O 3 and CaO and high contents of P, S and Cl (especially for APCR). Although high concentrations of Zn and Cu (especially for ISSA) followed by Ni, Pb and As, Se were detected, a low leaching rate of these metals (especially at neutral and alkaline pH) rendered them classifiable as non-hazardous according to the U.S. EPA and Chinese national regulatory limits. The leached metals concentrations from ISSA and APCR were mainly pH dependent, and metals solubilization occurred mainly at low pH. Different leaching tests should be adopted based on the simulated different environmental conditions and exposure scenarios for assessing the leachability as contrasting results could be obtained due to the differences in complexing abilities and final pH of the leaching solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. ENHANCED CHEMICAL CLEANING OF SRS WASTE TANKS TO IMPROVE ACTINIDE SOLUBILITY

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T.; Thompson, M.

    2011-09-20

    Processes for the removal of residual sludge from SRS waste tanks have historically used solutions containing up to 0.9 M oxalic acid to dissolve the remaining material following sludge removal. The selection of this process was based on a comparison of a number of studies performed to evaluate the dissolution of residual sludge. In contrast, the dissolution of the actinide mass, which represents a very small fraction of the waste, has not been extensively studied. The Pu, Np, and Am in the sludge is reported to be present as hydrated and crystalline oxides. To identify aqueous solutions which have the potential to increase the solubility of the actinides, the alkaline and mildly acidic test solutions shown below were selected as candidates for use in a series of solubility experiments. The efficiency of the solutions in solubilizing the actinides was evaluated using a simulated sludge prepared by neutralizing a HNO{sub 3} solution containing Pu, Np, and Am. The hydroxide concentration was adjusted to a 1.2 M excess and the solids were allowed to age for several weeks prior to starting the experiments. The sludge was washed with 0.01 M NaOH to prepare the solids for use. Following the addition of an equal portion of the solids to each test solution, the concentrations of Pu, Np, and Am were measured as a function of time over a 792 h (33 day) period to provide a direct comparison of the efficiency of each solution in solubilizing the actinide elements. Although the composition of the sludge was limited to the hydrated actinide oxides (and did not contain other components of demonstrated importance), the results of the study provides guidance for the selection of solutions which should be evaluated in subsequent tests with a more realistic surrogate sludge and actual tank waste.

  7. ANALYSIS OF SAMPLES FROM TANK 5F CHEMICAL CLEANING

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Fink, S.

    2011-03-07

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. The conclusions from this work are: (1) With the exception of iron, the dissolution of sludge components from Tank 5F agreed with results from the actual waste demonstration performed in 2007. The fraction of iron removed from Tank 5F by chemical cleaning was significantly less than the fraction removed in the SRNL demonstrations. The likely cause of this difference is the high pH following the first oxalic acid strike. (2) Most of the sludge mass remaining in the tank is iron and nickel. (3) The remaining sludge contains approximately 26 kg of barium, 37 kg of chromium, and 37 kg of mercury. (4) Most of the radioactivity remaining in the residual material is beta emitters and {sup 90}Sr. (5) The chemical cleaning removed more than {approx} 90% of the uranium isotopes and {sup 137}Cs. (6) The chemical cleaning removed {approx} 70% of the neptunium, {approx} 83% of the {sup 90}Sr, and {approx} 21% of the {sup 60}Co. (7) The chemical cleaning removed less than 10% of the plutonium, americium, and curium isotopes. (8) The chemical cleaning removed more than 90% of the aluminium, calcium, and sodium from the tank. (9) The cleaning operations removed 61% of lithium, 88% of non-radioactive strontium, and 65% of zirconium. The {sup 90}Sr and non-radioactive strontium were

  8. Lipid profiling in sewage sludge.

    Science.gov (United States)

    Zhu, Fenfen; Wu, Xuemin; Zhao, Luyao; Liu, Xiaohui; Qi, Juanjuan; Wang, Xueying; Wang, Jiawei

    2017-06-01

    High value-added reutilization of sewage sludge from wastewater treatment plants (WWTPs) is essential in sustainable development in WWTPs. However, despite the advantage of high value reutilization, this process must be based on a detailed study of organics in sludge. We used the methods employed in life sciences to determine the profile of lipids (cellular lipids, free fatty acids (FFAs), and wax/gum) in five sludge samples obtained from three typical WWTPs in Beijing; these samples include one sludge sample from a primary sedimentation tank, two activated sludge samples from two Anaerobic-Anoxic-Oxic (A2/O) tanks, and two activated sludge samples from two membrane bioreactor tanks. The percentage of total raw lipids varied from 2.90% to 12.3%. Sludge from the primary sedimentation tank showed the highest concentrations of lipid, FFA, and wax/gum and the second highest concentration of cellular lipids. All activated sludge contained an abundance of cellular lipids (>54%). Cells in sludge can from plants, animals, microbes and so on in wastewater. Approximately 14 species of cellular lipids were identified, including considerable high value-potential ceramide (9567-38774 mg/kg), coenzyme (937-3897 mg/kg), and some phosphatidylcholine (75-548 mg/kg). The presence of those lipid constituents would thus require a wider range of recovery methods for sludge. Both cellular lipids and FFAs contain an abundance of C16-C18 lipids at high saturation level, and they serve as good resources for biodiesel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Boosting biogas production from sewage sludge by adding small amount of agro-industrial by-products and food waste residues.

    Science.gov (United States)

    Maragkaki, A E; Fountoulakis, M; Kyriakou, A; Lasaridi, K; Manios, T

    2018-01-01

    In Greece, in many cities, wastewater treatment plants (WWTPs) operate their own anaerobic digestion (AD) facility in order to treat sewage sludge rather than achieve optimum biogas production. Nowadays, there is a growing interest regarding the addition of other co-substrates in these existing facilities in order to increase gas yield from the biomass. This practice may be possible by adding small amount of co-substrates which will not affect significantly in the designed hydraulic retention time. Nonetheless, the lack of experimental data regarding this option is a serious obstacle. In this study, the effect of co-digestion sewage sludge, with small amount of agro-industrial by-products and food wastes is examined in lab-scale experiments. Specifically, co-digestion of SS and food waste (FW), grape residues (GR), crude glycerol (CG), cheese whey (CW) and sheep manure (SM), in a small ratio of 5-10% (v/v) was investigated. The effect of agro-industrial by-products and food waste residues on biogas production was investigated using one 1L and three 3L lab-scale reactors under mesophilic conditions at a 24-day hydraulic retention time. The biogas production rate reached 223, 259, 406, 572, 682 and 1751 mlbiogas/lreactor/d for 100% SS, 5% SM & 95% SS, 10% CW & 90% SS, 5% FW & 95% SS, 5% FW & 5% CG & 90% SS and 5% CG & 95% SS respectively. Depending on the co-digestion material, the average removal of total chemical oxygen demand (TCOD) ranged between 20% (5% SM & 95% SS) and 76% (5% FW & 5% CG & 90% SS). Reduction in the volatile solids ranged between 26% (5% SM & 95% SS) and 62% (5% FW & 5% CG & 90% SS) for organic loading rates between 0.8kgVSm -3 d -1 and 2.0kgVSm -3 d -1 . Moreover, co-digestion improved biogas production from 14% (5% SM & 95% SS) to 674% (5% CG & 95% SS). This work suggests that WWTPs in Greece can increase biogas production by adding other wastes to the sewage sludge without affecting the operation of existing digesters and without requiring

  10. Sewage sludge additive

    Science.gov (United States)

    Kalvinskas, J. J.; Mueller, W. A.; Ingham, J. D. (Inventor)

    1980-01-01

    The additive is for a raw sewage treatment process of the type where settling tanks are used for the purpose of permitting the suspended matter in the raw sewage to be settled as well as to permit adsorption of the dissolved contaminants in the water of the sewage. The sludge, which settles down to the bottom of the settling tank is extracted, pyrolyzed and activated to form activated carbon and ash which is mixed with the sewage prior to its introduction into the settling tank. The sludge does not provide all of the activated carbon and ash required for adequate treatment of the raw sewage. It is necessary to add carbon to the process and instead of expensive commercial carbon, coal is used to provide the carbon supplement.

  11. Sludge Washing And Demonstration Of The DWPF Flowsheet In The SRNL Shielded Cells For Sludge Batch 8 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. M.; Crawford, C. L.

    2013-04-26

    The current Waste Solidification Engineering (WSE) practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks to Tank 51. Tank 51 sludge is washed and transferred to Tank 40, the current Defense Waste Processing Facility (DWPF) feed tank. Prior to transfer of Tank 51 to Tank 40, the Savannah River National Laboratory (SRNL) typically simulates the Tank Farm and DWPF processes using a Tank 51 sample (referred to as the qualification sample). WSE requested the SRNL to perform characterization on a Sludge Batch 8 (SB8) sample and demonstrate the DWPF flowsheet in the SRNL shielded cells for SB8 as the final qualification process required prior to SB8 transfer from Tank 51 to Tank 40. A 3-L sample from Tank 51 (the SB8 qualification sample; Tank Farm sample HTF-51-12-80) was received by SRNL on September 20, 2012. The as-received sample was characterized prior to being washed. The washed material was further characterized and used as the material for the DWPF process simulation including a Sludge Receipt and Adjustment Tank (SRAT) cycle, a Slurry Mix Evaporator (SME) cycle, and glass fabrication and chemical durability measurements.

  12. Treatment of radioactive wastes from DOE underground storage tanks

    International Nuclear Information System (INIS)

    Collins, J.L.; Egan, B.Z.; Spencer, B.B.; Chase, C.W.; Anderson, K.K.; Bell, J.T.

    1994-01-01

    Bench-scale batch tests have been conducted with sludge and supernate tank waste from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation technology process for use in a comprehensive sludge processing flow sheet as a means of concentrating the radionuclides and reducing the volumes of storage tank waste at national sites for final disposal. This paper discusses the separation of the sludge solids and supernate, the basic washing of the sludge solids, the acidic dissolution of the sludge solids, and the removal of the radionuclides from the supernate

  13. Enhanced sludge washing evaluation plan

    International Nuclear Information System (INIS)

    Jensen, R.D.

    1994-09-01

    The Tank Waste Remediation System (TWRS) Program mission is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and the strontium/cesium capsules) in an environmentally sound, safe, and cost-effective manner. The scope of the TWRS Waste Pretreatment Program is to treat tank waste and separate that waste into HLW and LLW fractions and provide additional treatment as required to feed LLW and HLW immobilization facilities. Enhanced sludge washing was chosen as the baseline process for separating Hanford tank waste sludge. Section 1.0 briefly discusses the purpose of the evaluation plan and provides the background that led to the choice of enhanced sludge washing as the baseline process. Section 2.0 provides a brief summary of the evaluation plan details. Section 3.0 discusses, in some detail, the technical work planned to support the evaluation of enhanced sludge washing. Section 4.0 briefly discusses the potential important of policy issues to the evaluation. Section 5.0 discusses the methodology to be used in the evaluation process. Section 6.0 summarizes the milestones that have been defined to complete the enhanced sludge washing evaluation and provides a summary schedule to evaluate the performance of enhanced sludge washing. References are identified in Section 7.0, and additional schedule and milestone information is provided in the appendices

  14. Heavy metal water pollution associated with the use of sewage sludge compost and limestone outcrop residue for soil restoration: effect of saline irrigation.

    Science.gov (United States)

    Pérez-Gimeno, Ana; Navarro-Pedreño, Jose; Gómez, Ignacio; Belén Almedro-Candel, María; Jordán, Manuel M.; Bech, Jaume

    2015-04-01

    The use of composted sewage sludge and limestone outcrop residue in soil restoration and technosol making can influence the mobility of heavy metals into groundwater. The use of compost from organic residues is a common practice in soil and land rehabilitation, technosol making, and quarry restoration (Jordán et al. 2008). Compost amendments may improve the physical, chemical, and biological properties of soils (Jordão et al. 2006; Iovieno et al. 2009). However, the use of compost and biosolids may have some negative effects on the environment (Karaca 2004; Navarro-Pedreño et al. 2004). This experiment analyzed the water pollution under an experimental design based on the use of columns (0-30 cm) formed by both wastes. Two waters of different quality (saline and non-saline) were used for irrigation. The presence of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in the leachates was checked under controlled conditions inside a greenhouse (mean values: 20°±5°C and around 60% relative humidity). Sixteen 30-cm tall columns made of PVC pipe with internal diameters of 10.5 cm were prepared. The columns were filled with one of these materials: either sewage sludge compost (SW) or limestone outcrop residue (LR), fraction (<4 mm). The columns were irrigated with 2000 mL/week (230 mm) for twelve weeks (April to July). Half of them were irrigated with non-saline water (NS) and the others were so with saline water (S) from the beginning of the experiment. Four treatments combining the quality of the irrigation water (saline and non-saline) and wastes were studied: SW-NS, SW-S, LR-NS, and LR-S. After 24 hours of irrigation on the first day of each week, the leachates were taken and analyzed the heavy metal content (AAS-ES espectometer). The environmental risk due to the presence of heavy metals associated with the use of these materials was very low in general (under 0.1 mg/L). The use of sewage sludge favoured the presence of these metals in the lecheates and no effect

  15. Hydrogen generation during melter feed preparation of Tank 42 sludge and salt washed loaded CST in the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Daniel, W.E.

    1999-01-01

    The main objective of these scoping tests was to measure the rate of hydrogen generation in a series of experiments designed to duplicate the expected SRAT and SME processing conditions in laboratory scale vessels. This document details the testing performed to determine the maximum hydrogen generation expected with a coupled flowsheet of sludge, loaded CST [crystalline silicotitanate], and frit

  16. SLUDGE BATCH 6 PHASE II FLOWSHEET SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.; Best, D.

    2010-03-30

    Two Sludge Receipt and Adjustment Tank (SRAT) runs were used to demonstrate that a fairly wide window of acid stoichiometry was available for processing SB6 Phase II flowsheet simulant (Tank 40 simulant) while still meeting the dual goals of acceptable nitrate destruction and controlled hydrogen generation. Phase II was an intermediate flowsheet study for the projected composition of Tank 40 after transfer of SB6/Tank 51 sludge to the heel of SB5. The composition was based on August 2009 projections. A window of about 50% in total acid was found between acceptable nitrite destruction and excessive hydrogen generation.

  17. Co-pyrolysis characteristics of municipal sewage sludge and hazelnut shell by TG-DTG-MS and residue analysis.

    Science.gov (United States)

    Xu, Xinyang; Zhao, Bing; Sun, Manli; Chen, Xi; Zhang, Mingchuan; Li, Haibo; Xu, Shucong

    2017-04-01

    Co-pyrolysis characteristics of municipal sewage sludge and hazelnut shell blend have been studied in this work. The behavior of co-pyrolysis was researched by a method of multi-heating rates and different blend ratios to analyze thermal decomposition stages. The experimental data of the blended samples in TG-DTG plots were compared with calculated data to investigate the interactions during co-pyrolysis. The bio-chars investigated by SEM and FTIR spectra were used to examine the physical and chemical changes. The results showed there are four thermal decomposition stages during co-pyrolysis, with hydrocarbon transforming to gas evolution in the second and the third stages. The inhibitive interaction occurred between 260 and 400°C and the accelerative interaction occurred between 450 and 900°C during co-pyrolysis. The activation energy of the blended sample was 51.97-178.84kJ/mol in the second stage and 207.04-630.73kJ/mol in the third stage calculated by DAEM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Uptake of Heavy Metal Residues from Sewerage Sludge in the Milk of Goat and Cattle during Summer Season

    Directory of Open Access Journals (Sweden)

    Bilal Aslam, Ijaz Javed*, Faqir Hussain Khan and Zia-ur-Rahman

    2011-01-01

    Full Text Available Uptake of different heavy metal residues including cadmium (Cd, chromium (Cr, nickel (Ni, led (Pb, arsenic (As, and mercury (Hg were determined in goat and cattle milk collected from two areas, each consisted of three sites. Area 1 was selected in the North-East and Area 2 in the North-West of Faisalabad city along the main sewerage drains. Levels of Cd, Cr, Ni, Pb, As and Hg in the milk of goat and cattle were higher than the most reported values in the literature. The levels of heavy metal residues in the milk of cattle from Area 1 were higher than those present in cattle milk from Area 2. However, in case of goat milk the residual values from Area 1 and Area 2 were non-significantly different. It was concluded that the levels of Cd, Cr, Ni, Pb, As and Hg in the milk of goat and cattle were higher than reported values in the literature.

  19. Seasonal changes in chemical and mineralogical composition of sewage sludge incineration residues and their potential for metallic elements and valuable components recovery

    Science.gov (United States)

    Kasina, Monika; Kowalski, Piotr R.; Michalik, Marek

    2017-04-01

    Increasing energy needs, the implementation of the circular economy principles and rising environmental awareness caused that waste management is becoming a major social and economic issue. The EU Member States have committed to a significant reduction in the amount of waste produced and landfilled and to use their inherent energy and raw materials potential. One of the most reasonable option to fulfil these commitments is waste incineration. The aim of the waste incineration is to reduce their volume and toxicity by disinfection and detoxification at high temperatures. Thermal process and reduction of volume allows the recovery of minerals and metallic elements from residues as well as the energy production (waste-to-energy strategy) during incineration. As a result of waste incineration a variety of solid residues (bottom ash, fly ash, air pollution control residues) and technological waste (gas waste, wastewater) are produced. The goal of this study is to characterize fly ash and air pollution control (APC) residues formed as a result of municipal sewage sludge incineration in terms of their chemical and mineral composition and their extractive potential. Residues were sampled quarterly to study their seasonal changes in composition. The fly ash was a Si-P-C-Fe-Al dominated material, whereas the APC residues composition was dominated by Na-rich soluble phases. The removal of soluble phase ( 98% of the material) from the APC residues by dissolution in deionised water caused significant mass reduction and concentration of non-soluble elements. The main mineral phases in fly ash were quartz, hematite, Fe-PO4, whitlockite and feldspar, while in APC thenardite, and in lower amount calcite, apatite and quartz were present. The chemical composition of fly ash was practically invariable in different seasons, but significant differences were observed in APC residues. The lowest concentrations of all elements and the highest TOC content were measured in the samples

  20. Evolution Of Chemical Conditions And Estimated Plutonium Solubility In The Residual Waste Layer During Post-Closure Aging Of Tank 18

    International Nuclear Information System (INIS)

    Denham, M.

    2012-01-01

    This document updates the Eh-pH transitions from grout aging simulations and the plutonium waste release model of Denham (2007, Rev. 1) based on new data. New thermodynamic data for cementitious minerals are used for the grout simulations. Newer thermodynamic data, recommended by plutonium experts (Plutonium Solubility Peer Review Report, LA-UR-12-00079), are used to estimate solubilities of plutonium at various pore water compositions expected during grout aging. In addition, a new grout formula is used in the grout aging simulations and apparent solubilities of coprecipitated plutonium are estimated using data from analysis of Tank 18 residual waste. The conceptual model of waste release and the grout aging simulations are done in a manner similar to that of Denham (2007, Rev. 1). It is assumed that the pore fluid composition passing from the tank grout into the residual waste layer controls the solubility, and hence the waste release concentration of plutonium. Pore volumes of infiltrating fluid of an assumed composition are reacted with a hypothetical grout block using The Geochemist's Workbench(reg s ign) and changes in pore fluid chemistry correspond to the number of pore fluid volumes reacted. As in the earlier document, this results in three states of grout pore fluid composition throughout the simulation period that are termed Reduced Region II, Oxidized Region II, and Oxidized Region III. The one major difference from the earlier document is that pyrite is used to account for reducing capacity of the tank grout rather than pyrrhotite. This poises Eh at -0.47 volts during Reduced Region II. The major transitions in pore fluid composition are shown. Plutonium solubilities are estimated for discrete PuO2(am,hyd) particles and for plutonium coprecipitated with iron phases in the residual waste. Thermodynamic data for plutonium from the Nuclear Energy Agency are used to estimate the solubilities of the discrete particles for the three stages of pore fluid

  1. Treatment of radioactive sludge

    International Nuclear Information System (INIS)

    Allison, W.; Payne, B.J.; Pegler, G.E.

    1979-01-01

    Radioactive sludge e.g. that which may accumulate in irradiated nuclear fuel element storage ponds, is treated by pumping it from a settling tank to a particle separator, conveniently a hydrocyclone and a sloping plate separator, the liquid being returned to the settling tank and the solids being metered into a drum pre-lined with dry cement. The drums are in a containment box in which they are transferred to a mixing station where the particles and cement are mixed and thence to a curing station. After curing the drums are embedded in cement in outer containers for transport to a long-term storage site. (author)

  2. Composting of sewage sludge irradiated

    International Nuclear Information System (INIS)

    Hashimoto, Shoji; Watanabe, Hiromasa; Nishimura, Koichi; Kawakami, Waichiro

    1981-01-01

    Recently, the development of the techniques to return sewage sludge to forests and farm lands has been actively made, but it is necessary to assure its hygienic condition lest the sludge is contaminated by pathogenic bacteria. The research to treat sewage sludge by irradiation and utilize it as fertilizer or soil-improving material has been carried out from early on in Europe and America. The effects of the irradiation of sludge are sterilization, to kill parasites and their eggs, the inactivation of weed seeds and the improvement of dehydration. In Japan, agriculture is carried out in the vicinity of cities, therefore it is not realistic to use irradiated sludge for farm lands as it is. The composting treatment of sludge by aerobic fermentation is noticed to eliminate the harms when the sludge is returned to forests and farm lands. It is desirable to treat sludge as quickly as possible from the standpoint of sewage treatment, accordingly, the speed of composting is a problem. The isothermal fermentation experiment on irradiated sludge was carried out using a small-scale fermentation tank and strictly controlling fermentation conditions, and the effects of various factors on the fermentation speed were studied. The experimental setup and method are described. The speed of composting reached the maximum at 50 deg C and at neutral or weak alkaline pH. The speed increased with the increase of irradiation dose up to 30 Mrad. (Kako, I.)

  3. Tank 241-AZ-101 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, A revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process. Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information''. This document satisfies that requirement for Tank 241-AZ-101 (AZ-101) sampling activities. Tank AZ-101 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The contents of Tank AZ-101, as of October 31, 1994, consisted of 3,630 kL (960 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-101 is expected to have two primary layers. The bottom layer is composed of 132 kL of sludge, and the top layer is composed of 3,500 kL of supernatant, with a total tank waste depth of approximately 8.87 meters

  4. Tank 241-AZ-102 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, a revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process ... Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information''. This document satisfies that requirement for tank 241-AZ-102 (AZ-102) sampling activities. Tank AZ-102 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The current contents of Tank AZ-102, as of October 31, 1994, consisted of 3,600 kL (950 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-102 is expected to have two primary layers. The bottom layer is composed of 360 kL of sludge, and the top layer is composed of 3,240 kL of supernatant, with a total tank waste depth of approximately 8.9 meters

  5. Experience with Stabilization of SGHWR Sludge in a Commercial Plant in the United Kingdom

    International Nuclear Information System (INIS)

    Hagan, M.; Cornell, R.M.; Riley, B.; Ware, B.

    2009-01-01

    buffer store to hold the completed drums. After completion, drums are moved in a shielded overpack to the Treated Radwaste Store located on a different part of the Winfrith site. More than 300 m 3 of active sludge, held in four adjacent concrete tanks, has now been stabilised into 978 drums that have been placed into the dedicated store. The process of recovery and homogenization of the residual sludge in the bottom of each tank to the required specification will be described together with the means of recovery and disposal options for a quantity of unexpected materials found at the bottom of each unit. The means of dealing with the final quantities of sludge and water from the last two concrete tanks by recovering it into a tall steel filtration vessel located within one concrete tank will also be described. The final aspects of the paper will briefly describe the approach to be adopted for the final decontamination and demolition of both the EAST facility and WETP plant. The WETP plant is now in the latter stages of commercial operation leading to a second programme of stabilisation of a quantity of thorium metal for UKAEA ahead of its final decommissioning and demolition. (authors)

  6. Optimal conditions and operational parameters for conversion of Robusta coffee residues in a continuous stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Msambichaka, B.L.; Kivaisi, A.K.; Rubindamayugi, M.S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    This experiment studied the possibility of optimizing anaerobic degradation, developing microbial adaptation and establishing long term process stability in a Continuous Stirred Tank Reactor (CSTR) running on Robusta coffee hulls as feed substrate. Decrease in lag phase and increase in methane production rate in batch culture experiment conducted before and after process stabilization of each operational phase in the CSTR clearly suggested that microbial adaptation to increasing coffee percentage composition was attained. Through gradual increase of coffee percentage composition, from 10% coffee, 2% VS, 20 days HRT and a 1 g VS/1/day loading rate to 80% coffee, 4.5% VS, 12 days HRT and a loading rate of 3 g VS/1/day the CSTR system was optimized at a maximum methane yield of 535 ml/g VS. Again it was possible to attain long term process stability at the above mentioned optimal operational parameters for a further 3 month period. (au)

  7. Qualidade química da água residual da criação de peixes para cultivo de alface em hidroponia Chemical quality of residual water from fish breeding tanks for cultivation of hydroponic lettuce

    Directory of Open Access Journals (Sweden)

    Glauco E. P. Cortez

    2009-08-01

    Full Text Available Com o objetivo de avaliar a associação do cultivo de alface em hidroponia com utilização dos resíduos do sistema de criação intensiva de peixe, desenvolveu-se um trabalho no Centro de Aqüicultura, na FCAV-UNESP, Campus de Jaboticabal, SP. A integração foi projetada para que a água circulasse de maneira fechada entre os sistemas, passando pelos tanques de criação de peixes, por um decantador, para remo��ão dos resíduos por um reservatório para conversão biológica da amônia em nitrato e pelo sistema hidropônico, retornando aos tanques de criação dos peixes. Foram avaliadas três cultivares de alface, que constituíram os tratamentos com quatro repetições. Os resultados da análise química da água residual da criação indicaram a presença da maioria dos nutrientes minerais necessários ao desenvolvimento vegetal, em concentração próxima aos valores encontrados em soluções nutritivas utilizadas para o cultivo da alface em hidroponia, exceto potássio e magnésio. A baixa concentração de magnésio na água não impediu o desenvolvimento da alface; entretanto, as plantas indicaram sintomas visuais de deficiência deste nutriente. Não houve diferenças entre as cultivares quanto à produtividade e ao peso fresco de plantas.Aiming to evaluate the association of hydroponic lettuce cultivation with residues from a fish intensive breeding system, a project was carried out in the Aquaculture Center in the FCAV-UNESP at Jaboticabal, SP, Brazil. A closed system was designed in order to allow the water to circulate through the fish tanks, a clarifier tank for removal of residues, a reservoir for biological conversion of ammonia into nitrate, and the hydroponic system. After this process, water returned back to the fish tanks. Three varieties of lettuce, constituting the treatments with four repetitions were evaluated. The results of the chemical analysis of the residual water from the fish tanks indicated the presence of

  8. Characterization of sludges of La Golondrina WWTP: sludges as final containers of the domestic wastewater pollution; Caracterizacion de fangos de la EDAR La Golondrina (EMACSA-Cordoba): su funcion como receptores finales de la contaminacion del agua residual urbana

    Energy Technology Data Exchange (ETDEWEB)

    Marin Galvin, R.; Alonso Perez de siles, L.; Rojas Moreno, F. J.

    2005-07-01

    Treatment of wastewater is to concentrate the original pollution in a by-product: the wastewater sludge or bio-solid. As example, La Golondrina WWTP (Cordoba-spain) promotes the production of 1,3 kg of sludge per m''3 of wastewater, yielding logically a treated water according to laws. Furthermore, the treatment process there applied reduces the levels of nine majority metals (Cu, Fe, Mn, Pb, Cd, Ni, Cr, Zn, Hg) from 2,72 mg/l to 1.42 mg/l in the treated water, generating almost, a sludge agrees with the spanish normative to sludge intended to agricultural use (its main fate). Summarizing, the treatment of wastewater supposes the concentration of the original biodegradable load into the sludge around 340 times, while metals exhibited a different concentration degree for each one (from 10.000 times for Fe, u pto 1-2 times for Cd and Hg). Finally, the concentration degree of a metal in the sludge is mainly led by the removed concentration of metal in the treatment process, and after, by the original concentration of metal in the influent wastewater. (Author) 24 refs.

  9. Compostagem aeróbia conjugada de lodo de tanque séptico e resíduos sólidos vegetais Conjugated aerobic composting of septic tank sludge and vegetable solid waste

    Directory of Open Access Journals (Sweden)

    André Gustavo da Silva

    2008-12-01

    Full Text Available O lodo sanitário, principal subproduto do tratamento de esgotos, constitui um dos maiores problemas ambientais urbanos da atualidade. Em meio a este contexto, objetivou-se nesse estudo avaliar o processo da compostagem conjugada de lodo de tanque séptico (LS e resíduos sólidos vegetais (RV e determinar a importância da temperatura para o processo de sanitização do substrato tratado. O experimento, inteiramente casualizado com três tratamentos e três repetições, consistiu de nove reatores aeróbios com 100 litros de capacidade. Os resíduos foram utilizados nas seguintes proporções - T1: 100% RV; T2: 5% LS + 95% RV; T3: 10% LS + 90% RV. A compostagem aeróbia conjugada mostrou ser uma alternativa viável para destruição de ovos de helminto e estabilização dos resíduos, sendo fundamentais para tal, a temperatura, o pH e as relações ecológicas presentes nos reatores.The sanitary sludge, principal byproduct of sewage treatment, constitutes one of the major municipal environmental problems of the present time. The present study was aimed to evaluate the composting of septic tank sludge (SS and vegetable solid waste (VW and to determine the importance of the temperature for the process of sanitization of the treated substrate. The experiment, entirely randomized with three treatments and three repetitions, constituted of nine aerobic reactors with 100 L capacity. The proportions of the wastes utilized were T1: 100%VW; T2: 5%SS + 95%VW; T3: 10%SS + 90%VW. The conjugated composting showed to be a feasible alternative for destruction of helminth eggs and stabilization of the wastes. The temperature, pH and ecological relations present in the reactors were fundamental for this purpose.

  10. Evolution of chemical conditions and estimated solubility controls on radionuclides in the residual waste layer during post-closure aging of high-level waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Denham, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Millings, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2012-08-28

    in a flow and transport model were estimated for 27 elements in each of the chemical stages generated in the grout simulations plus local groundwater. The grout simulations were run with the initial infiltrating fluid in equilibrium with atmospheric oxygen to account for degradation of the reduction capacity of the grout. However, a lower Eh was used in pore fluids in the oxidizing conditions used to estimate solubilities to be more consistent with measured Eh values and natural systems. Solubilities of plutonium are affected by this decision, but those of other elements are not. In addition, the baseline for H-Area tanks is that they will be washed with oxalic acid prior to being filled with grout. Hence, oxalate was included in the pore fluids by assuming equilibrium with calcium oxalate. Solubility estimates were done by equilibrating a solubility controlling phase for each element with the pore fluid compositions using The Geochemist’s Workbench®. Condition B pore fluids are similar to Condition D. Therefore, solubilities for Condition B were not estimated, but assumed to be the same as in Condition D. In general solubility controlling phases were selected to bias solubilities to higher values. Several elements had no solubility controls and solubility estimates for other elements were omitted because the elements had short half-lives or were present in residual waste in very low amounts. For these it is recommended that release from the tank be instantaneous when the tank liner is breached. There is considerable uncertainty in this approach to enabling a flow and transport model to account for variable waste release. Yet, it is also flexible and requires much less computing time than a fully coupled reactive transport model. This allows some of the uncertainty to be addressed by multiple flow and transport sensitivity cases. Some of the uncertainties are addressed within this document. These include uncertainty in infiltrate composition, grout mineralogy, and

  11. Basic Study on Sludge Concentration and Dehydration with Ultrasonic Exposure

    Science.gov (United States)

    Sawada, Yuta; Nagashima, Satoshi; Uchida, Takeyoshi; Kawashima, Norimichi; Takeuchi, Shinichi; Akita, Masashi; Nagaoka, Hiroshi

    2005-06-01

    We study the condensation of sludge and the improvement of the dehydration efficiency of sludge by acoustic cavitation for efficiency improvement and cost reduction in water treatment. An ultrasound wave was irradiated into activated sludge in the water tank of our ultrasound exposure system and a standing wave acoustic field was formed using a vibrating disk driven by a Langevin-type transducer. The vibrating disk was mounted on the bottom of the water tank. Acoustic cavitation was generated in the activated sludge suspension and the sludge was floated to the water surface by ultrasound exposure with this system. We observed B-mode ultrasound images of the activated sludge suspension before ultrasound exposure and that of the floated sludge and treated water after ultrasound exposure. The ultrasound diagnostic equipment was used for the observation of the B-mode ultrasound images of the sludge. It was found that the sludge floated to the water surface because of adhesion of microbubbles generated by acoustic cavitation to the sludge particles, which decreased the sludge density. It can be expected that the drifting sludge in water can be recovered by the flotation thickening method of sludge as an application of the results of this study. It is difficult to recover the drifting sludge in water by the conventional gravity thickening method.

  12. Design characteristics of the Sludge Mobilization System

    International Nuclear Information System (INIS)

    McMahon, C.L.

    1990-01-01

    Radioactive waste stored in underground tanks at the West Valley Demonstration Project is being processed into low-level waste and solidified in cement. High-level waste also stored underground will be vitrified and solidified into canistered glass logs. To move the waste from where it resides at the Waste Tank Farm to the Vitrification Facility requires equipment to prepare the storage tanks for low-level and high-level waste processing, equipment to mobilize and mix the radioactive sludge into a homogeneous slurry, and equipment to transfer the slurry for vitrification. The design of the Sludge Mobilization System has incorporated the necessary components to effect the preparation and transfer of waste in five operational phases. The first phase of the Sludge Mobilization System, which began in 1987, prepared the waste tanks to process radioactive liquid for delivery to the Cement Solidification System and to support the mobilization equipment. The second phase, beginning in 1991, will wash the sludge that remains after the liquid supernatant is decanted to prepare it for mobilization operations. The third phase will combine the contents of various waste tanks into one tank. The fourth phase will resuspend and mix the contents of the high-level waste tank. The fifth and final phase of the Sludge Mobilization System will entail transferring the waste mixture to the Vitrification Facility for processing into glass logs. Provisions for recycling the waste streams or slurries within the tank farm or for returning process streams to the Waste Tank Farm from the Vitrification Facility are also included in the final phase. This document addresses the Sludge Mobilization System equipment design characteristics in terms of its use in each of the five operational phases listed above

  13. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-11-19

    Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions during tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.

  14. Recovery of resources for advanced life support space applications: effect of retention time on biodegradation of two crop residues in a fed-batch, continuous stirred tank reactor

    Science.gov (United States)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.; Cook, K.; Garland, J. L.

    2002-01-01

    Bioreactor retention time is a key process variable that will influence costs that are relevant to long distance space travel or long duration space habitation. However. little is known about the effects of this parameter on the microbiological treatment options that are being proposed for Advanced Life Support (ALS) systems. Two bioreactor studies were designed to examine this variable. In the first one, six retention times ranging from 1.3 to 21.3 days--were run in duplicate, 81 working-volume continuous stirred tank reactors (CSTR) that were fed ALS wheat residues. Ash-free dry weight loss, carbon mineralization, soluble TOC reduction, changes in fiber content (cellulose, hemicellulose, and lignin), bacterial numbers, and mineral recoveries were monitored. At short retention times--1.33 days--biodegradation was poor (total: 16-20%, cellulose - 12%, hemicellulose - 28%) but soluble TOC was decreased by 75-80% and recovery of major crop inorganic nutrients was adequate, except for phosphorus. A high proportion of the total bacteria (ca. 83%) was actively respiring. At the longest retention time tested, 21.3 days, biodegradation was good (total: 55-60%, cellulose ca. 70%, hemicellulose - ca. 55%) and soluble TOC was decreased by 80%. Recovery of major nutrients, except phosphorus, remained adequate. A very low proportion of total bacteria was actively respiring (ca. 16%). The second bioreactor study used potato residue to determine if even shorter retention times could be used (range 0.25-2.0 days). Although overall biodegradation deteriorated, the degradation of soluble TOC continued to be ca. 75%. We conclude that if the goal of ALS bioprocessing is maximal degradation of crop residues, including cellulose, then retention times of 10 days or longer will be needed. If the goal is to provide inorganic nutrients with the smallest volume/weight bioreactor possible, then a retention time of 1 day (or less) is sufficient.

  15. Evaluation of a treatment system type septic tank - filter anaerobic of upward flow for the residual waters of the ecological benefit of the coffee

    International Nuclear Information System (INIS)

    Sanchez C, Jose Alejandro

    1997-01-01

    Colombia is the first country in the production of soft coffee in the world. The benefit for humid way it makes that this quality of coffee is obtained; however, the high consumption of water in the process and the later discharge to the superficial or underground sources, they have generated an environmental problem of great magnitude. Also, the sources of water that they have been contaminated with the discharges of the liquid waste that come from benefit of coffee they present, among other, serious inconveniences to be used as supplying sources of drinkable water. In time of crop, the coffee areas and their superficial sources of water usually register high indexes of contamination like consequence of the discharges of residual waters that come from the benefit of the coffee. In the Departments of Quindio, Valle, Caldas, Antioquia, etc., they have been come executing investigations of the residuals treatment that are derived of the pulp removal of the coffee (via humid), for anaerobic methods with satisfactory results. This project had the collaboration of the Departmental Committee of Coffee of Antioquia and the Environmental Engineering of the Antioquia University and it is formulated toward the evaluation of a Anaerobic filter of Ascendant flow, FAFA, preceded of a septic tank (biological sedimentation), as a treatment system of the coffee residual waters, with a waste native of a ecological benefit area. The obtained results were satisfactory although the generated waste is very intermittent and in times that are not of coffee crop it doesn't take place; what hinders more the application of biological systems for its treatment

  16. Nitrogen mineralisation and greenhouse gas emission from the soil application of sludge from reed bed mineralisation systems

    DEFF Research Database (Denmark)

    Gómez-Muñoz, B; Larsen, Julie Dam; Bekiaris, G

    2017-01-01

    A sludge treatment reed bed system (STRB) is a technology used for dewatering and stabilising sewage sludge via assisted biological mineralisation, which creates a sludge residue suitable for use as fertiliser on agricultural land. We evaluated the effect of sludge residue storage time (stabilisa......A sludge treatment reed bed system (STRB) is a technology used for dewatering and stabilising sewage sludge via assisted biological mineralisation, which creates a sludge residue suitable for use as fertiliser on agricultural land. We evaluated the effect of sludge residue storage time...

  17. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 5 QUALIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J; Cj Bannochie, C; Damon Click, D; Dan Lambert, D; Michael Stone, M; Bradley Pickenheim, B; Amanda Billings, A; Ned Bibler, N

    2008-11-10

    Sludge Batch 5 (SB5) is predominantly a combination of H-modified (HM) sludge from Tank 11 that underwent aluminum dissolution in late 2007 to reduce the total mass of sludge solids and aluminum being fed to the Defense Waste Processing Facility (DWPF) and Purex sludge transferred from Tank 7. Following aluminum dissolution, the addition of Tank 7 sludge and excess Pu to Tank 51, Liquid Waste Operations (LWO) provided the Savannah River National Laboratory (SRNL) a 3-L sample of Tank 51 sludge for SB5 qualification. SB5 qualification included washing the sample per LWO plans/projections (including the addition of a Pu/Be stream from H Canyon), DWPF Chemical Process Cell (CPC) simulations, waste glass fabrication (vitrification), and waste glass chemical durability evaluation. This report documents: (1) The washing (addition of water to dilute the sludge supernatant) and concentration (decanting of supernatant) of the Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF CPC simulation using the washed Tank 51 sample. This includes a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid is added to the sludge to destroy nitrite and remove mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit is added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters for the CPC processing were based on work with a non radioactive simulant. (3) Vitrification of a portion of the SME product and Product Consistency Test (PCT) evaluation of the resulting glass. (4) Rheology measurements of the initial slurry samples and samples after each phase of CPC processing. This work is controlled by a Task Technical and Quality Assurance Plan (TTQAP) , and analyses are guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R

  18. Sludge treatment facility preliminary siting study for the sludge treatment project (A-13B)

    International Nuclear Information System (INIS)

    WESTRA, A.G.

    1999-01-01

    This study evaluates various sites in the 100 K area and 200 areas of Hanford for locating a treatment facility for sludge from the K Basins. Both existing facilities and a new standalone facility were evaluated. A standalone facility adjacent to the AW Tank Farm in the 200 East area of Hanford is recommended as the best location for a sludge treatment facility

  19. Distribution of 14 elements from two solutions simulating Hanford HLW Tank 102-SY (acid-dissolved sludge and acidified supernate) on four cation exchange resins and five anion exchange resins having different functional groups

    International Nuclear Information System (INIS)

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1995-01-01

    As part of the Tank Waste Remediation System program at Los Alamos, we evaluated a series of cation exchange and anion exchange resins for their ability to remove hazardous components from radioactive high-level waste (HLW). The anion exchangers were Reillex TM HPQ, a polyvinyl pyridine resin, and four strong-base polystyrene resins having trimethyl, tri ethyl, tri propyl, and tributyl amine as their respective functional groups. The cation exchange resins included Amberlyst TM 15 and Amberlyst tM XN-1010 with sulfonic acid functionality, Duolite TM C-467 with phosphonic acid functionality, and poly functional Diphonix TM with di phosphonic acid, sulfonic acid, and carboxylic acid functionalities. We measured the distributions of 14 elements on these resins from solutions simulating acid-dissolved sludge (pH 0.6) and acidified supernate (pH 3.5) from underground storage tank 102-SY at the Hanford Reservation near Richland, Washington, USA. To these simulants, we added the appropriate radionuclides and used gamma spectrometry to measure fission products (Ce, Cs, Sr, Tc, and Y), actinides (U, Pu, and Am), and matrix elements (Cr, Co, Fe, Mn, Zn, and Zr). For each of the 252 element/resin/solution combinations, distribution coefficients (Kds) were measured for dynamic contact periods of 30 minutes, 2 hours, and 6 hours to obtain information about sorption kinetics from these complex media. Because we measured the sorption of many different elements, the tabulated results indicate which unwanted elements are most likely to interfere with the sorption of elements of special interest. On the basis of these 756 measured Kd values, we conclude that some of the tested resins appear suitable for partitioning hazardous components from Hanford HLW. (author). 10 refs., 11 tabs

  20. Tank characterization report for Single-Shell Tank 241-BX-107

    International Nuclear Information System (INIS)

    Raphael, G.F.

    1994-09-01

    This study examined and assessed the status, safety issues, composition, and distribution of the wastes contained in the tank 241-BX-107. Historical and most recent information, ranging from engineering structural assessment experiments, process history, monitoring and remediation activities, to analytical core sample data, were compiled and interpreted in an effort to develop a realistic, contemporary profile for the tank BX-107 contents. The results of this is study revealed that tank BX-107, a 2,006,050 L (530,000 gal) cylindrical single-shell, dished-bottom carbon-steel tank in the 200 East Area of the Hanford Site, was classified as sound. It has been interim stabilized and thus contains less than 189,250 L (50,000 gal) of interstitial liquid, and less than 18,925 L (5,000 gal) of supernatant. It has also been partially interim isolated, whereby all inlets to the tank are sealed to prevent inadvertent addition of liquid. At a residual waste level of ∼3.07 m (120.7 ± 2 in. from sidewall bottom or ∼132.9 in. from center bottom), it is estimated that the tank BX-107 contents are equivalent to 1,305,825 L (345,000 gal). The vapor space pressure is at atmospheric. The latest temperature readings, which were taken in July 1994, show a moderate temperature value of 19 degrees C (66 degrees F). Two supernatant samples were collected in 1974 and 1990, prior to interim stabilization. Sludge core samples were obtained in 1979 and 1992

  1. Treating an aged pentachlorophenol- (PCP-) contaminated soil through three sludge handling processes, anaerobic sludge digestion, post-sludge digestion and sludge land application.

    Science.gov (United States)

    Chen, S T; Berthouex, P M

    2001-01-01

    The extensive pentachlorophenol (PCP) contamination and its increasing treatment costs motivate the search for a more competitive treatment alternative. In a municipal wastewater treatment plant, anaerobic sludge-handling processes comprises three bio-processes, namely the anaerobic sludge digestion, post-sludge digestion and sludge land application, which reduce sludge organic content and make sludge a good fertilizer for land application. Availability and effectiveness make the anaerobic sludge handling processes potential technologies to treat PCP-contaminated soil. The technical feasibility of using anaerobic sludge bioprocesses was studied by treating PCP soil in two pilot digesters to simulate the primary sludge digestion, in serum bottles to mimic the post-sludge digestion, and in glass pans to represent the on-site sludge application. For primary digestion, the results showed that up to 0.98 and 0.6 mM of chemical and soil PCP, respectively, were treated at nearly 100% and 97.5% efficiencies. The PCP was transformed 95% to 3-MCP, 4.5% to 3,4-DCP, and 0.5% to 3,5-DCP. For post-digestion, 100% pure chemical PCP and greater than 95% soil PCP were removed in less than 6 months with no chlorophenol residues of any kind. Complete removal of PCP by-products makes this process a good soil cleanup method. For on-site treatment, PCP was efficiently treated by multiple sludge application; however, the PCP residue was observed due to the high initial PCP content in soil. Overall, more mass PCP per unit sludge per day was processed using the primary sludge digestion than the on-site soil treatment or post-sludge digestion. And, sludge acclimation resulted in better PCP treatment efficiencies with all three processes.

  2. Sludge dewatering and disposal practices for small activated sludge wastewater treatment plants.

    Science.gov (United States)

    Hatziconstantinou, G J; Efstathiou, H

    2003-01-01

    Sludge dewatering is a decisive step in the reduction of waste sludge volume, thus considerably affecting total sludge treatment and disposal costs. The construction of sludge dewatering facilities in small WwTPs though, is generally not cost effective. In this paper some experimental evidence is presented, that waste sludge dewatering in small WwTPs of the activated sludge extended aeration type, can be effectively achieved by a centrifuge type of equipment withdrawing sludge directly from the aeration tank; an economic evaluation of the possibility to employ a transportable type of similar equipment mounted on a truck, to serve a number of small WwTPs located in remote or isolated areas is also presented and discussed.

  3. Effects of alkali types on waste activated sludge (WAS) fermentation and microbial communities.

    Science.gov (United States)

    Li, Xiaoling; Peng, Yongzhen; Li, Baikun; Wu, Changyong; Zhang, Liang; Zhao, Yaqian

    2017-11-01

    The effects of two alkali agents, NaOH and Ca(OH) 2 , on enhancing waste activated sludge (WAS) fermentation and short chain fatty acids (SCFAs) accumulation were studied in semi-continuous stirred tank reactors (semi-CSTR) at different sludge retention time (SRT) (2-10 d). The optimum SRT for SCFAs accumulation of NaOH and Ca(OH) 2 adding system was 8 d and 10 d, respectively. Results showed that the average organics yields including soluble chemical oxygen demand (SCOD), protein, and carbohydrate in the NaOH system were as almost twice as that in the Ca(OH) 2 system. For Ca(OH) 2 system, sludge hydrolysis and protein acidification efficiencies were negatively affected by Ca 2+ precipitation, which was revealed by the decrease of Ca 2+ concentration, the rise of zeta potential and better sludge dewaterability in Ca(OH) 2 system. In addition, Firmicutes, Proteobacteria and Actinobacteria were the main microbial functional groups in both types of alkali systems. NaOH system obtained higher microbial quantities which led to better acidification. For application, however, Ca(OH) 2 was more economically feasible owning to its lower price and better dewaterability of residual sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. TANK 32 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    International Nuclear Information System (INIS)

    Tamburello, D.; Dimenna, Richard; Lee, Si

    2009-01-01

    The transfer of liquid salt solution from Tank 32 to an evaporator is to be accomplished by activating the evaporator feed pump, with the supernate surface at a minimum height of approximately 74.4 inches above the sludge layer, while simultaneously turning on the downcomer with a flow rate of 110 gpm. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics (CFD) methods to determine the amount of entrained sludge solids pumped out of the tank toward the evaporator with the downcomer turned on. The analysis results shows that, for the minimum tank liquid level of 105 inches above the tank bottom (which corresponds to a liquid depth of 74.4 inches above the sludge layer), the evaporator feed pump will contain less than 0.1 wt% sludge solids in the discharge stream, which is an order of magnitude less than the 1.0 wt% undissolved solids (UDS) loading criteria to feed the evaporator. Lower liquid levels with respect to the sludge layer will result in higher amounts of sludge entrainment due to the increased plunging jet velocity from the downcomer disturbing the sludge layer

  5. Safety evaluation of the ESP sludge washing baselines runs. Revision 2

    International Nuclear Information System (INIS)

    Gupta, M.K.

    1993-01-01

    Purpose is to provide the technical basis for evaluation of unreviewed safety question for the Extended Sludge Processing (ESP) Sludge Washing Baseline Runs, which are necessary to resolve technical questions associated with process control (sludge suspension, sludge settling, heat transfer, temperature control). The sludge is currently stored in below-ground tanks and will be prepared for processing at the Defense Waste Processing Facility as part of the Integrated Waste Removal Program for Savannah River Site

  6. Alkaline Leaching of Key, Non-Radioactive Components from Simulants and Hanford Tank Sludge 241-S-110: Results of FY01 Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rapko, Brian M.; Vienna, John D.; Sinkov, Serguei I.; Kim, Jinseong; Cisar, Alan J.

    2002-09-10

    This study addressed three aspects in selected alkaline leaching: first, the use of oxidants persulfate, permanganate, and ferrate as selective chromium-leaching agents from washed Hanford Tank S-110 solids under varying conditions of hydroxide concentration, temperature, and time was investigated. Second, the selective dissolution of solids containing mercury(II) oxide under alkaline conditions was examined. Various compounds were studied for their effectiveness in dissolving mercury under varying conditions of time, temperature, and hydroxide concentration in the leachate. Three compounds were studied: cysteine, iodide, and diethyldithiophosphoric acid (DEDTPA). Finally, the possibility of whether an oxidant bound to an anion-exchange resin can be used to effectively oxidize chromium(III) in alkaline solutions was addressed. The experimental results remain ambiguous to date; further work is required to reach any definitive conclusions as to the effectiveness of this approach.

  7. 241-Z-361 Sludge Characterization Sampling and Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    BANNING, D.L.

    1999-08-05

    This sampling and analysis plan (SAP) identifies the type, quantity, and quality of data needed to support characterization of the sludge that remains in Tank 241-2-361. The procedures described in this SAP are based on the results of the 241-2-361 Sludge Characterization Data Quality Objectives (DQO) (BWHC 1999) process for the tank. The primary objectives of this project are to evaluate the contents of Tank 241-2-361 in order to resolve safety and safeguards issues and to assess alternatives for sludge removal and disposal.

  8. 241-Z-361 Sludge Characterization Sampling and Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    BANNING, D.L.

    1999-07-29

    This sampling and analysis plan (SAP) identifies the type, quantity, and quality of data needed to support characterization of the sludge that remains in Tank 241-2-361. The procedures described in this SAP are based on the results of the 241-2-361 Sludge Characterization Data Quality Objectives (DQO) (BWHC 1999) process for the tank. The primary objectives of this project are to evaluate the contents of Tank 241-2-361 in order to resolve safety and safeguards issues and to assess alternatives for sludge removal and disposal.

  9. TANK FARM RETRIEVAL LESSONS LEARNED AT THE HANFORD SITE

    International Nuclear Information System (INIS)

    DODD RA

    2008-01-01

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST saltcake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the TriParty Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U. S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 fe in 530,000 gallon or larger tanks; 30 fe in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and EPA approval of an

  10. Level trend analysis summary report for Oak Ridge National Laboratory inactive liquid low-level waste tanks

    International Nuclear Information System (INIS)

    1994-09-01

    Oak Ridge National Laboratory facilities have produced liquid low-level waste (LLLW) that is radioactive and/or hazardous. Storage tanks have been used to collect and store these wastes. Most of the collection system, including the tanks, is located below the ground surface. Many of the systems have been removed from service (i.e., are not inactive) but contain residual amounts of waste liquid and sludges. A plan of action has been developed by DOE to ensure that environmental impacts from the waste remaining in the inactive tanks system are minimized. The Federal Facility Agreement (FFA) does not require any type of testing or monitoring for the inactive LLLW tanks that are removed from service but does require waste characterization of tanks contents, risk characterization of tanks removed from service, and remediation of the inactive tanks and their contents. This report is form information only and is not required by the FFA. It includes a description of the methodology and results of level trend analyses for the Category D tanks listed in the FFA that currently belong to the Environmental Restoration Program

  11. Criteria: waste tank isolation and stabilization

    International Nuclear Information System (INIS)

    Metz, W.P.; Ogren, W.E.

    1976-09-01

    The crystallized Hanford high-level wastes stored in single-shell underground tanks consist of sludges and salt cakes covered with supernatural liquor. Purpose of stabilization and isolation is to reduce the releases and losses as a result of a loss of tank integrity. The tanks will be modified so that no inadvertent liquid additions can be made. Criteria for the isolation and stabilization are given and discussed briefly

  12. Criteria: waste tank isolation and stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Metz, W.P.; Ogren, W.E.

    1976-09-01

    The crystallized Hanford high-level wastes stored in single-shell underground tanks consist of sludges and salt cakes covered with supernatural liquor. Purpose of stabilization and isolation is to reduce the releases and losses as a result of a loss of tank integrity. The tanks will be modified so that no inadvertent liquid additions can be made. Criteria for the isolation and stabilization are given and discussed briefly. (DLC)

  13. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 7A QUALIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J.; Billings, A.; Click, D.

    2011-07-08

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry (Sludge Batch 7a*) be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). Sludge Batch 7a (SB7a) is composed of portions of Tanks 4, 7, and 12; the Sludge Batch 6 heel in Tank 51; and a plutonium stream from H Canyon. SRNL received the Tank 51 qualification sample (sample ID HTF-51-10-125) following sludge additions to Tank 51. This report documents: (1) The washing (addition of water to dilute the sludge supernate) and concentration (decanting of supernate) of the SB7a - Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the washed Tank 51 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a non

  14. K Basin sludge dissolution engineering study

    International Nuclear Information System (INIS)

    Westra, A.G.

    1998-01-01

    The purpose of this engineering study is to investigate the available technology related to dissolution of the K Basin sludge in nitric acid. The conclusion of this study along with laboratory and hot cell tests with actual sludge samples will provide the basis for beginning conceptual design of the sludge dissolver. The K Basin sludge contains uranium oxides, fragments of metallic U, and some U hydride as well as ferric oxyhydroxide, aluminum oxides and hydroxides, windblown sand that infiltrated the basin enclosure, ion exchange resin, and miscellaneous materials. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be conditioned so that it meets Tank Waste Remediation System waste acceptance criteria and can be sent to one of the underground storage tanks. Sludge conditioning will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and then reacting the solution with caustic to co-precipitate the uranium and plutonium. There will be five distinct feed streams to the sludge conditioning process two from the K East (KE) Basin and three from the K West (KW) Basin. The composition of the floor and pit sludges which contain more iron oxides and sand than uranium is much different than the canister sludges which are composed of mostly uranium oxides. The sludge conditioning equipment will be designed to process all of the sludge streams, but some of the operating parameters will be adjusted as necessary to handle the different sludge stream compositions. The volume of chemical additions and the amount of undissolved solids will be much different for floor and pit sludge than for canister sludge. Dissolution of uranium metal and uranium dioxide has been studied quite thoroughly and much information is available. Both uranium metal and uranium dioxide have been dissolved on a large scale in nuclear fuel

  15. Old hydrofracture facility tanks contents removal action operations plan at the Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Text. Volume 2: Checklists and work instructions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    This Operations Plan summarizes the operating activities for transferring contents of five low-level (radioactive) liquid waste storage tanks associated with the Old Hydrofracture Facility (OHF) to the Melton Valley Storage Tanks (MVST) for secure storage. The transfer will be accomplished through sluicing and pumping operations which are designed to pump the slurry in a closed circuit system using a sluicing nozzle to resuspend the sludge. Once resuspended, the slurry will be transferred to the MVST. The report documenting the material transfer will be prepared after transfer of the tank materials has been completed. The OBF tanks contain approximately 52,600 gal (199,000 L) of low-level radioactive waste consisting of both sludge and supernatant. This material is residual from the now-abandoned grout injection operations conducted from 1964 to 1980. Total curie content is approximately 30,000 Ci. A sluicing and pumping system has been specifically designed for the OHF tanks contents transfer operations. This system is remotely operated and incorporates a sluicing nozzle and arm (Borehole Miner) originally designed for use in the mining industry. The Borehole Miner is an in-tank device designed to deliver a high pressure jet spray via an extendable nozzle. In addition to removing the waste from the tanks, the use of this equipment will demonstrate applicability for additional underground storage tank cleaning throughout the U.S. Department of Energy complex. Additional components of the complete sluicing and pumping system consist of a high pressure pumping system for transfer to the MVST, a low pressure pumping system for transfer to the recycle tank, a ventilation system for providing negative pressure on tanks, and instrumentation and control systems for remote operation and monitoring.

  16. Deep Sludge Gas Release Event Analytical Evaluation

    International Nuclear Information System (INIS)

    Sams, Terry L.

    2013-01-01

    Long Abstract. Full Text. The purpose of the Deep Sludge Gas Release Event Analytical Evaluation (DSGRE-AE) is to evaluate the postulated hypothesis that a hydrogen GRE may occur in Hanford tanks containing waste sludges at levels greater than previously experienced. There is a need to understand gas retention and release hazards in sludge beds which are 200 -300 inches deep. These sludge beds are deeper than historical Hanford sludge waste beds, and are created when waste is retrieved from older single-shell tanks (SST) and transferred to newer double-shell tanks (DST).Retrieval of waste from SSTs reduces the risk to the environment from leakage or potential leakage of waste into the ground from these tanks. However, the possibility of an energetic event (flammable gas accident) in the retrieval receiver DST is worse than slow leakage. Lines of inquiry, therefore, are (1) can sludge waste be stored safely in deep beds; (2) can gas release events (GRE) be prevented by periodically degassing the sludge (e.g., mixer pump); or (3) does the retrieval strategy need to be altered to limit sludge bed height by retrieving into additional DSTs? The scope of this effort is to provide expert advice on whether or not to move forward with the generation of deep beds of sludge through retrieval of C-Farm tanks. Evaluation of possible mitigation methods (e.g., using mixer pumps to release gas, retrieving into an additional DST) are being evaluated by a second team and are not discussed in this report. While available data and engineering judgment indicate that increased gas retention (retained gas fraction) in DST sludge at depths resulting from the completion of SST 241-C Tank Farm retrievals is not expected and, even if gas releases were to occur, they would be small and local, a positive USQ was declared (Occurrence Report EM-RP--WRPS-TANKFARM-2012-0014, 'Potential Exists for a Large Spontaneous Gas Release Event in Deep Settled Waste Sludge'). The purpose of this technical

  17. GKSS-workshop: contaminated sludges. Treatment and utilization fine graned residues; GKSS-Workshop: Kontaminierte Schlaemme. Behandlung und Nutzungsmoeglichkeiten feinkoerniger Reststoffe

    Energy Technology Data Exchange (ETDEWEB)

    Alvermann, G.; Luther, G.; Niemeyer, B. [eds.] [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Zentralabteilung Technikum

    2000-07-01

    New regulations, such as the materials recycling act, soil protection act and unsolved problems related to the treatment of contaminated sludges, the utilisation of the gained products demand the development of innovative techniques for industrial, dredged or drilling sludges. The workshop offered a platform for intensive discussions between representatives of industry, research institutions, associations, and authorities. The main aim of the workshop was the presentation of fundamental background of sludge processing and advanced technical solutions. The available proceedings contain 21 lectures held on the workshop with the following ranges of topics of the sludge treatment: legislation, R and D-funding, technological bases, decontamination processes, dewatering and drying processes, recycling and immobilization. (orig.) [German] Neue Gesetze wie das Kreislaufwirtschafts- oder das Bundes-Bodenschutzgesetz und anstehende Probleme bei der Beseitigung belasteter Schlaemme - zum Beispiel Industrie-, Bohr- und Baggergutschlaemme - erfordern die Entwicklung innovativer Techniken zu ihrer Aufbereitung, Reinigung bzw. Verwertung. Der Workshop bot ein Formung zur intensiven Diskussion zwischen Industrie, Forschung, Verbaenden und Behoerden. Ziel war es, unterschiedliche Methoden der Schlammbehandlung zu eroertern, Loesungswege aufzuzeigen und Moeglichkeiten fuer Kooperationen zu erarbeiten. Der vorliegende Band enthaelt Beitraege der Referenten, die sich auf folgende Themenbereiche der Schlammbehandlung konzentrieren: juristische Aspekte, Foerdermoeglichkeiten, Grundlagen, Aufbereitung von Schlaemmen, Entwaesserung und Trocknung von Schlaemmen, Verwertung und Immobilisierung. (orig.)

  18. High Level Waste System Impacts from Acid Dissolution of Sludge

    Energy Technology Data Exchange (ETDEWEB)

    KETUSKY, EDWARD

    2006-04-20

    This research evaluates the ability of OLI{copyright} equilibrium based software to forecast Savannah River Site High Level Waste system impacts from oxalic acid dissolution of Tank 1-15 sludge heels. Without further laboratory and field testing, only the use of oxalic acid can be considered plausible to support sludge heel dissolution on multiple tanks. Using OLI{copyright} and available test results, a dissolution model is constructed and validated. Material and energy balances, coupled with the model, identify potential safety concerns. Overpressurization and overheating are shown to be unlikely. Corrosion induced hydrogen could, however, overwhelm the tank ventilation. While pH adjustment can restore the minimal hydrogen generation, resultant precipitates will notably increase the sludge volume. OLI{copyright} is used to develop a flowsheet such that additional sludge vitrification canisters and other negative system impacts are minimized. Sensitivity analyses are used to assess the processability impacts from variations in the sludge/quantities of acids.

  19. TANK 26 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    International Nuclear Information System (INIS)

    Tamburello, D; Si Lee, S; Richard Dimenna, R

    2008-01-01

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.05 and 0.1 wt% sludge solids weight fraction into the eductor, respectively. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth

  20. Vendor Testing of Sensitive Compounds in Simulated Dry Sludge

    International Nuclear Information System (INIS)

    Dworjanyn, L.O.

    1999-01-01

    This assessment covers thermal screening, differential scanning calorimetry, and impact sensitivity testing on Mercury Fulminate, and mixtures of the fulminate in dry inorganic sludge, which is present in large quantities in a number of storage tanks at Westinghouse Savannah River

  1. K Basin sludge treatment process description

    Energy Technology Data Exchange (ETDEWEB)

    Westra, A.G.

    1998-08-28

    The K East (KE) and K West (KW) fuel storage basins at the 100 K Area of the Hanford Site contain sludge on the floor, in pits, and inside fuel storage canisters. The major sources of the sludge are corrosion of the fuel elements and steel structures in the basin, sand intrusion from outside the buildings, and degradation of the structural concrete that forms the basins. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be treated so that it meets Tank Waste Remediation System (TWRS) acceptance criteria and can be sent to one of the double-shell waste tanks. The US Department of Energy, Richland Operations Office accepted a recommendation by Fluor Daniel Hanford, Inc., to chemically treat the sludge. Sludge treatment will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and reacting the solution with caustic to co-precipitate the uranium and plutonium. A truck will transport the resulting slurry to an underground storage tank (most likely tank 241-AW-105). The undissolved solids will be treated to reduce the transuranic (TRU) and content, stabilized in grout, and transferred to the Environmental Restoration Disposal Facility (ERDF) for disposal. This document describes a process for dissolving the sludge to produce waste streams that meet the TWRS acceptance criteria for disposal to an underground waste tank and the ERDF acceptance criteria for disposal of solid waste. The process described is based on a series of engineering studies and laboratory tests outlined in the testing strategy document (Flament 1998).

  2. Industrial mixing techniques for Hanford double-shell tanks

    International Nuclear Information System (INIS)

    Daymo, E.A.

    1997-09-01

    Jet mixer pumps are currently the baseline technology for sludge mobilization and mixing in one-million gallon double-shell tanks at the Hanford and Savannah River Sites. Improvements to the baseline jet mixer pump technology are sought because jet mixer pumps have moving parts that may fail or require maintenance. Moreover, jet mixers are relatively expensive, they heat the waste, and, in some cases, may not mobilize enough of the sludge. This report documents a thorough literature search for commercially available applicable mixing technologies that could be used for double-shell tank sludge mobilization and mixing. Textbooks, research articles, conference proceedings, mixing experts, and the Thomas Register were consulted to identify applicable technologies. While there are many commercial methods that could be used to mobilize sludge or mix the contents of a one-million gallon tank, few will work given the geometrical constraints (e.g., the mixer must fit through a 1.07-m-diameter riser) or the tank waste properties (e.g., the sludge has such a high yield stress that it generally does not flow under its own weight). Pulsed fluid jets and submersible Flygt mixers have already been identified at Hanford and Savannah River Sites for double-shell tank mixing applications. While these mixing technologies may not be applicable for double-shell tanks that have a thick sludge layer at the bottom (since too many of these mixers would need to be installed to mobilize most of the sludge), they may have applications in tanks that do not have a settled solids layer. Retrieval projects at Hanford and other U.S. Department of Energy sites are currently evaluating the effectiveness of these mixing techniques for tank waste applications. The literature search did not reveal any previously unknown technologies that should be considered for sludge mobilization and mixing in one-million gallon double-shell tanks

  3. Effects of palm oil mill effluent (POME) anaerobic sludge from 500 m ...

    African Journals Online (AJOL)

    In this study, co-composting of pressed-shredded empty fruit bunches (EFB) and palm oil mill effluent (POME) anaerobic sludge from 500 m3 closed anaerobic methane digested tank was carried out. High nitrogen and nutrients content were observed in the POME anaerobic sludge. The sludge was subjected to the ...

  4. Methods for Converter Sludge Dehydration Intensification

    Science.gov (United States)

    Vakhromeev, M. I.; Moreva, Y. A.; Starkova, L. G.

    2017-11-01

    The article considers the intensification methods for converter sludge dehydration exemplified by the sludges of the Oxygen Converter Workshop (OCW) of the Open Joint-Stock Company “Magnitogorsk Iron and Steel Works” (MMK, OJSC), one of the largest metallurgical companies in the Southern Urals. Converter sludges can contain up to 45-70% of ferrum [21] which is interesting in terms of their use as an addition to a sinter-feed mixture. Sludge intensifies the sintering process. It positively influences pelletizing and fusion mixture melting dynamics at sintering. Over the period of the converter sludge dehydration complex operation at the OCW, MMK, OJSC, it was revealed that processing results in obtaining of high humidity sludge. It causes sludge freezing during the winter period, thus, its transportation involves extra costs for sludge warming up. To resolve the above-mentioned problem, the following works were performed in 2016: - experimental studies of how the application of the low-molecular anionic flocculate “SEURVEY” FL-3 influences sludge humidity reduction. - experimental studies of how the filtering press process operation parameters influence sludge humidity reduction. The new flocculate application didn't lower the dehydrated sludge humidity (the objective was the humidity of not more than 15%). Basing upon the conducted research results, we can make a conclusion that putting into operation the sewage water reactant treatment technology with the use of “SEURVEY”, FL-3 (H-10) is not recommended. The research of the influence the filtering press process parameters have on the dehydration process intensification demonstrated that reaching of the obtained residue humidity value lower than 15% is possible under the reduction of the filtering press chamber depths to 30 mm and with the application of additional operation “Residue drying” with compressed air. This way of the sludge dehydration problem resolving at filtering presses of the

  5. History of waste tank 11, 1955 through 1974

    International Nuclear Information System (INIS)

    Davis, T.L.; Tharin, D.W.; Lohr, D.R.

    1978-10-01

    Tank 11 was placed in service as a receiver of low heat waste (LW) in July 1955. In November 1961, the supernate was decanted from the sludge to prepare tank 11 for receipt of frame waste. In July 1962, the supernate was again decanted and tank 11 was used to receive fresh high heat waste (HW) from the enriched uranium process in Building 221-H. Again, the supernate was decanted in June 1965 and July 1967 to allow the tank to be reused for waste receipt. In order to use tank 11 for solid salt storage, a sludge removal operation was conducted in October 1969. The operation was unsuccessful. Tank 11 consequently received hot concentrated supernate from tank 10 blended with dilute waste and was later returned to service as a receiver of HW. A small, apparently inactive leak site was found in April 1974. Inspections have been made of the annulus and the interior of the tank both visually and with an optical periscope. Samples of the sludge, supernate, and tank vapor have been analyzed. Top-to-bottom profiles of radiation and temperature in the tank have been taken and measurements were made of deflections in the bottom knuckle plate due to changing liquid level. One horizontal and seventeen vertical cooling coils have failed, all within one month following the sludge removal operation. Several equipment modifications and various equipment repairs were made. 14 figures, 3 tables

  6. Natural radioactivity in petroleum residues

    International Nuclear Information System (INIS)

    Gazineu, M.H.P.; Gazineu, M.H.P.; Hazin, C.A.; Hazin, C.A.

    2006-01-01

    The oil extraction and production industry generates several types of solid and liquid wastes. Scales, sludge and water are typical residues that can be found in such facilities and that can be contaminated with Naturally Occurring Radioactive Material (N.O.R.M.). As a result of oil processing, the natural radionuclides can be concentrated in such residues, forming the so called Technologically Enhanced Naturally Occurring Radioactive Material, or T.E.N.O.R.M.. Most of the radionuclides that appear in oil and gas streams belong to the 238 U and 232 Th natural series, besides 40 K. The present work was developed to determine the radionuclide content of scales and sludge generated during oil extraction and production operations. Emphasis was given to the quantification of 226 Ra, 228 Ra and 40 K since these radionuclides,are responsible for most of the external exposure in such facilities. Samples were taken from the P.E.T.R.O.B.R.A.S. unity in the State of Sergipe, in Northeastern Brazil. They were collected directly from the inner surface of water pipes and storage tanks, or from barrels stored in the waste storage area of the E and P unit. The activity concentrations for 226 Ra, 228 Ra and 40 K were determined by using an HP Ge gamma spectrometric system. The results showed concentrations ranging from 42.7 to 2,110.0 kBq/kg for 226 Ra, 40.5 to 1,550.0 kBq/kg for 228 Ra, and 20.6 to 186.6 kBq/kg for 40 K. The results highlight the importance of determining the activity concentration of those radionuclides in oil residues before deciding whether they should be stored or discarded to the environment. (authors)

  7. Natural radioactivity in petroleum residues

    Energy Technology Data Exchange (ETDEWEB)

    Gazineu, M.H.P. [UNICAP, Dept. de Quimica, Recife (Brazil); Gazineu, M.H.P.; Hazin, C.A. [UFPE, Dept. de Energia Nuclear, Recife (Brazil); Hazin, C.A. [Centro Regional de Ciencias Nucleares/ CNEN, Recife (Brazil)

    2006-07-01

    The oil extraction and production industry generates several types of solid and liquid wastes. Scales, sludge and water are typical residues that can be found in such facilities and that can be contaminated with Naturally Occurring Radioactive Material (N.O.R.M.). As a result of oil processing, the natural radionuclides can be concentrated in such residues, forming the so called Technologically Enhanced Naturally Occurring Radioactive Material, or T.E.N.O.R.M.. Most of the radionuclides that appear in oil and gas streams belong to the {sup 238}U and {sup 232}Th natural series, besides 40 K. The present work was developed to determine the radionuclide content of scales and sludge generated during oil extraction and production operations. Emphasis was given to the quantification of {sup 226}Ra, {sup 228}Ra and 40 K since these radionuclides,are responsible for most of the external exposure in such facilities. Samples were taken from the P.E.T.R.O.B.R.A.S. unity in the State of Sergipe, in Northeastern Brazil. They were collected directly from the inner surface of water pipes and storage tanks, or from barrels stored in the waste storage area of the E and P unit. The activity concentrations for {sup 226}Ra, {sup 228}Ra and 40 K were determined by using an HP Ge gamma spectrometric system. The results showed concentrations ranging from 42.7 to 2,110.0 kBq/kg for {sup 226}Ra, 40.5 to 1,550.0 kBq/kg for {sup 228}Ra, and 20.6 to 186.6 kBq/kg for 40 K. The results highlight the importance of determining the activity concentration of those radionuclides in oil residues before deciding whether they should be stored or discarded to the environment. (authors)

  8. History of waste tank 14, 1957 through 1974

    International Nuclear Information System (INIS)

    Davis, T.L.; Tharin, D.W.; Jones, D.W.; Lohr, D.R.

    1977-08-01

    Tank 14 was placed in service as a receiver of fresh high heat waste (HW) in September 1957. Annulus leakage was discovered in April 1959 and continued until annulus ventilation was increased in January 1965. Practically all of the approximately 40 leak sites that have been identified on the tank wall are located at or below the bottom horizontal weld. Tank supernate was removed from the tank in preparation for a sludge removal operation which was performed in December 1968. The tank was then filled to its present level with blended supernate from tanks 10 and 13. In December 1972, supernate was inadvertently siphoned into the annulus through a dewatering jet, filling the annulus pan to a level of 33 in. The waste was promptly returned to the tank. Inspections of the tank interior and annulus were performed by direct observation, with a 40-ft optical periscope, and with photography and closed circuit television. Radioactive waste was first found in the annulus during visual inspection in May 1959. Samples of sludge, supernate, tank vapors, and leaked material in the annulus were analyzed, and numerous tank temperature profiles were taken. Soil and tank wall temperatures were measured in a study of tank nil ductility transition temperature. Six cooling coils failed, five of which occurred within 7 months after sludge removal. Several modifications to equipment and various equipment repairs were made. 14 figures, 3 tables

  9. Chemical modeling of waste sludges

    International Nuclear Information System (INIS)

    Weber, C.F.; Beahm, E.C.

    1996-10-01

    The processing of waste from underground storage tanks at the Oak Ridge National Laboratory (ORNL) and other facilities will require an understanding of the chemical interactions of the waste with process chemicals. Two aspects of sludge treatment should be well delineated and predictable: (1) the distribution of chemical species between aqueous solutions and solids, and (2) potential problems due to chemical interactions that could result in process difficulties or safety concerns. It is likely that the treatment of waste tank sludge will begin with washing, followed by basic or acidic leaching. The dissolved materials will be in a solution that has a high ionic strength where activity coefficients are far from unity. Activity coefficients are needed in order to calculate solubilities. Several techniques are available for calculating these values, and each technique has its advantages and disadvantages. The techniques adopted and described here is the Pitzer method. Like any of the methods, prudent use of this approach requires that it be applied within concentration ranges where the experimental data were fit, and its use in large systems should be preceded by evaluating subsystems. While much attention must be given to the development of activity coefficients, other factors such as coprecipitation of species and Ostwald ripening must also be considered when one aims to interpret results of sludge tests or to predict results of treatment strategies. An understanding of sludge treatment processes begins with the sludge tests themselves and proceeds to a general interpretation with the aid of modeling. One could stop with only data from the sludge tests, in which case the table of data would become an implicit model. However, this would be a perilous approach in situations where processing difficulties could be costly or result in concerns for the environment or health and safety

  10. The Savannah River Site Accelerated Cleanup Mission: Sludge Retrieval and Immobilization

    International Nuclear Information System (INIS)

    Marra, S.L.

    2003-01-01

    steps to minimize the volume of wash water (ultimately treated by the high-level waste evaporators) without compromising processability, product quality, or waste throughput goals. In order for DWPF to process the waste faster, retrieval of sludge from the waste tanks must be accelerated. Acceleration of sludge retrieval will focus on developing technologies to reduce the time and cost to retrieve the bulk of the sludge waste from tanks, retrieve residual heels, and retrieve waste from the annulus of tanks that have leaked. Much of the cost for the retrieval infrastructure can be attributed to the elaborate support structure that must be built, spanning the tank top, to support the four mixing pumps and the transfer pump. Previous work has shown through testing of a high capacity Advanced Design Mixer Pump (ADMP) that the number of mixer pumps necessary to mobilize the waste could be reduced by half

  11. Processed wastewater sludge for improvement of mechanical properties of concretes

    International Nuclear Information System (INIS)

    Barrera-Diaz, Carlos; Martinez-Barrera, Gonzalo; Gencel, Osman; Bernal-Martinez, Lina A.; Brostow, Witold

    2011-01-01

    Highlights: → Electrochemical methods produce less amount of residual sludge as compared with chemical procedures. → Wastewater sludge contains a large amount of water. → The residual sludge is used to prepare cylinder specimen concrete. → There are improvements in the elastic modulus of the concrete when is prepared with residual sludge. - Abstract: Two problems are addressed simultaneously. One is the utilisation of sludge from the treatment of wastewater. The other is the modification of the mechanical properties of concrete. The sludge was subjected to two series of treatments. In one series, coagulants were used, including ferrous sulphate, aluminium sulphate or aluminium polyhydroxychloride. In the other series, an electrochemical treatment was applied with several starting values of pH. Then, concretes consisting of a cement matrix, silica sand, marble and one of the sludges were developed. Specimens without sludge were prepared for comparison. Curing times and aggregate concentrations were varied. The compressive strength, compressive strain at yield point, and static and dynamic elastic moduli were determined. Diagrams of the compressive strength and compressive strain at the yield point as a function of time passed through the minima as a function of time for concretes containing sludge; therefore, the presence of sludge has beneficial effects on the long term properties. Some morphological changes caused by the presence of sludge are seen in scanning electron microscopy. A way of utilising sludge is thus provided together with a way to improve the compressive strain at yield point of concrete.

  12. Processed wastewater sludge for improvement of mechanical properties of concretes

    Energy Technology Data Exchange (ETDEWEB)

    Barrera-Diaz, Carlos, E-mail: cbd0044@yahoo.com [Centro Conjunto de Investigacion en Quimica Sustentable, Universidad Autonoma del Estado de Mexico - Universidad Nacional Autonoma de Mexico (UAEM-UNAM), Carretera Toluca-Atlacomulco, km 14.5, Unidad El Rosedal, C.P. 50200, Toluca, Edo. de Mexico (Mexico); Martinez-Barrera, Gonzalo [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados (LIDMA), Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Carretera Toluca-Atlacomulco, Km.12, San Cayetano C.P. 50200, Toluca, Edo. de Mexico (Mexico); Gencel, Osman [Civil Engineering Department, Faculty of Engineering, Bartin University, 74100 Bartin (Turkey); Bernal-Martinez, Lina A. [Centro Conjunto de Investigacion en Quimica Sustentable, Universidad Autonoma del Estado de Mexico - Universidad Nacional Autonoma de Mexico (UAEM-UNAM), Carretera Toluca-Atlacomulco, km 14.5, Unidad El Rosedal, C.P. 50200, Toluca, Edo. de Mexico (Mexico); Brostow, Witold [Laboratory of Advanced Polymers and Optimized Materials (LAPOM), Department of Materials Science and Engineering and Center for Advanced Research and Technology (CART), University of North Texas, 1150 Union Circle 305310, Denton, TX 76203-5017 (United States)

    2011-08-15

    Highlights: {yields} Electrochemical methods produce less amount of residual sludge as compared with chemical procedures. {yields} Wastewater sludge contains a large amount of water. {yields} The residual sludge is used to prepare cylinder specimen concrete. {yields} There are improvements in the elastic modulus of the concrete when is prepared with residual sludge. - Abstract: Two problems are addressed simultaneously. One is the utilisation of sludge from the treatment of wastewater. The other is the modification of the mechanical properties of concrete. The sludge was subjected to two series of treatments. In one series, coagulants were used, including ferrous sulphate, aluminium sulphate or aluminium polyhydroxychloride. In the other series, an electrochemical treatment was applied with several starting values of pH. Then, concretes consisting of a cement matrix, silica sand, marble and one of the sludges were developed. Specimens without sludge were prepared for comparison. Curing times and aggregate concentrations were varied. The compressive strength, compressive strain at yield point, and static and dynamic elastic moduli were determined. Diagrams of the compressive strength and compressive strain at the yield point as a function of time passed through the minima as a function of time for concretes containing sludge; therefore, the presence of sludge has beneficial effects on the long term properties. Some morphological changes caused by the presence of sludge are seen in scanning electron microscopy. A way of utilising sludge is thus provided together with a way to improve the compressive strain at yield point of concrete.

  13. TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.; Leishear, R.; Poirier, M.

    2012-05-31

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks were evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion (<1200 mg/l). (4) Experimental tests with sludge batch 6 simulant and field turbidity data from a recent Tank 21 mixing evolution suggest the solid

  14. Tank waste treatment science task quarterly report, April 1995--June 1995

    International Nuclear Information System (INIS)

    LaFemina, J.P.

    1995-07-01

    This report describes the work performed by the Pacific Northwest Laboratory (PNL) during the third quarter of FY 1995 under the Tank Waste Treatment Science Task of the Tank Waste Remediation System (TWRS) Pretreatment Technology Development Project. Work was performed in the following areas: (1) analytical methods development, (2) sludge dissolution modeling, (3) sludge characterization studies, (4) sludge component speciation, (5) pretreatment chemistry evaluation, and (6) colloidal studies for solid-liquid separations

  15. Sludge Treatment and Extraction Technology Development: Results of FY 1993 studies

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, G.J.; Wagner, M.J.; Barrington, R.J.; Rapko, B.M.; Carlson, C.D.

    1994-03-01

    This report describes experimental results from work conducted in FY 1993 under the Sludge Treatment and Extraction Technology Development Task of the Tank Waste Remediation System (TWRS) Pretreatment Technology Development Project at Pacific Northwest Laboratory (PNL). Experiments were conducted in the following six general areas: (1) sludge washing, (2) sludge leaching, (3) sludge dissolution, (4) actinide separation by solvent extraction and extraction chromatography, (5) Sr separation by solvent extraction, and (6) extraction of Cs from acidic solution.

  16. ESTIMATION OF THE TEMPERATURE RISE OF A MCU ACID STREAM PIPE IN NEAR PROXIMITY TO A SLUDGE STREAM PIPE

    International Nuclear Information System (INIS)

    Fondeur, F; Michael Poirier, M; Samuel Fink, S

    2007-01-01

    Effluent streams from the Modular Caustic-Side Solvent Extraction Unit (MCU) will transfer to the tank farms and to the Defense Waste Processing Facility (DWPF). These streams will contain entrained solvent. A significant portion of the Strip Effluent (SE) pipeline (i.e., acid stream containing Isopar(reg s ign) L residues) length is within one inch of a sludge stream. Personnel envisioned the sludge stream temperature may reach 100 C during operation. The nearby SE stream may receive heat from the sludge stream and reach temperatures that may lead to flammability issues once the contents of the SE stream discharge into a larger reservoir. To this end, personnel used correlations from the literature to estimate the maximum temperature rise the SE stream may experience if the nearby sludge stream reaches boiling temperature. Several calculation methods were used to determine the temperature rise of the SE stream. One method considered a heat balance equation under steady state that employed correlation functions to estimate heat transfer rate. This method showed the maximum temperature of the acid stream (SE) may exceed 45 C when the nearby sludge stream is 80 C or higher. A second method used an effectiveness calculation used to predict the heat transfer rate in single pass heat exchanger. By envisioning the acid and sludge pipes as a parallel flow pipe-to-pipe heat exchanger, this method provides a conservative estimation of the maximum temperature rise. Assuming the contact area (i.e., the area over which the heat transfer occurs) is the whole pipe area, the results found by this method nearly matched the results found with the previous calculation method. It is recommended that the sludge stream be maintained below 80 C to minimize a flammable vapor hazard from occurring

  17. Pesticides residues in water treatment plant sludge: validation of analytical methodology using liquid chromatography coupled to Tandem mass spectrometry (LC-MS/MS)

    International Nuclear Information System (INIS)

    Moracci, Luiz Fernando Soares

    2008-01-01

    The evolving scenario of Brazilian agriculture brings benefits to the population and demands technological advances to this field. Constantly, new pesticides are introduced encouraging scientific studies with the aim of determine and evaluate impacts on the population and on environment. In this work, the evaluated sample was the sludge resulted from water treatment plant located in the Vale do Ribeira, Sao Paulo, Brazil. The technique used was the reversed phase liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Compounds were previously liquid extracted from the matrix. The development of the methodology demanded data processing in order to be transformed into reliable information. The processes involved concepts of validation of chemical analysis. The evaluated parameters were selectivity, linearity, range, sensitivity, accuracy, precision, limit of detection, limit of quantification and robustness. The obtained qualitative and quantitative results were statistically treated and presented. The developed and validated methodology is simple. As results, even exploring the sensitivity of the analytical technique, the work compounds were not detected in the sludge of the WTP. One can explain that these compounds can be present in a very low concentration, can be degraded under the conditions of the water treatment process or are not completely retained by the WTP. (author)

  18. Sewage sludge as additive to reduce the initial fireside corrosion caused by combustion of shredder residues in a waste-fired BFB boiler

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, T.; Pettersson, J.; Johansson, L.G.; Svensson, J.E. [Chalmers Univ. of Technology, Goeteborg (Sweden). Environmental Inorganic Chemistry; Davidsson, K. [SP Technical Research Institute of Sweden, Boraas (Sweden)

    2010-07-01

    Corrosion/deposition field tests have been carried out in a commercial waste-fired BFB boiler using air-cooled probes. The influence of 20% shredder light fraction (SLF), from recovery of metal scrap material, mixed with waste was studied at different material temperatures (280-420 C). In addition, 3% sewage sludge was added to the 20% SLF/waste mixture. The initial deposit and corrosion products were compared to when the normal waste (municipal solid waste and industrial wastes) fuel was used. After 24 hours exposure, the deposits were analyzed as for elemental composition while the corrosion products were characterised by ESEM/EDX and XRD. The results show that combustion of 20% SLF increased the amount of deposition, which in addition contains a larger fraction chlorine. This causes a higher initial corrosion rate. Adding 3% sewage sludge removes the effect of the SLF and deposits and corrosion products were comparable with the ones formed during the reference exposure. The results indicate that the initial fireside corrosion is chlorine induced and no signs of low-melting heavy metals salts were observed in the corrosion products. (orig.)

  19. Genotoxic and mutagenic effects of sewage sludge on higher plants.

    Science.gov (United States)

    Corrêa Martins, Maria Nilza; de Souza, Victor Ventura; Souza, Tatiana da Silva

    2016-02-01

    Sewage treatment yields sludge, which is often used as a soil amendment in agriculture and crop production. Although the sludge contains elevated concentrations of macro and micronutrients, high levels of inorganic and organic compounds with genotoxic and mutagenic properties are present in sludge. Application of sludge in agriculture is a pathway for direct contact of crops to toxic chemicals. The objective of this study was to compile information related to the genotoxic and mutagenic effects of sewage sludge in different plant species. In addition, data are presented on toxicological effects in animals fed with plants grown in soils supplemented with sewage sludge. Despite the benefits of using sewage sludge as organic fertilizer, the data showcased in this review suggest that this residue can induce genetic damage in plants. This review alerts potential risks to health outcomes after the intake of food cultivated in sewage sludge-amended soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Hanford Sludge Simulant Selection for Soil Mechanics Property Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Russell, Renee L.; Mahoney, Lenna A.; Brown, Garrett N.; Rinehart, Donald E.; Buchmiller, William C.; Golovich, Elizabeth C.; Crum, Jarrod V.

    2010-03-23

    The current System Plan for the Hanford Tank Farms uses relaxed buoyant displacement gas release event (BDGRE) controls for deep sludge (i.e., high level waste [HLW]) tanks, which allows the tank farms to use more storage space, i.e., increase the sediment depth, in some of the double-shell tanks (DSTs). The relaxed BDGRE controls are based on preliminary analysis of a gas release model from van Kessel and van Kesteren. Application of the van Kessel and van Kesteren model requires parametric information for the sediment, including the lateral earth pressure at rest and shear modulus. No lateral earth pressure at rest and shear modulus in situ measurements for Hanford sludge are currently available. The two chemical sludge simulants will be used in follow-on work to experimentally measure the van Kessel and van Kesteren model parameters, lateral earth pressure at rest, and shear modulus.

  1. Study of the gem residue (sludge) addition in bulk red ceramics; Estudo da adicao de residuo (lodo) de gemas na massa ceramica vermelha

    Energy Technology Data Exchange (ETDEWEB)

    Bruxel, F.R.; Oliveira, E.C.; Stulp, S.; Muller, C.S.; Etchepare, H.D., E-mail: eniz@univates.br [Univates - Centro Universitario, Lajeado, RS (Brazil)

    2012-04-15

    This work aims to incorporate gems waste (sludge saw cutting of gems), produced in an amethyst and agate firm cut, in the red ceramic body used for the production of solid bricks. The raw materials were tested by X-ray fluorescence, X-ray diffraction and granulometric distribution analysis, for characterize the mineralogy and physical chemistry of materials. Samples were prepared with 0%, 5%, 9%, 13% and 17% waste added to the ceramic body by mass. The physical properties studied were compressive strength, linear shrinkage, water absorption and density in accordance with current technical standard. The results showed that it is possible to incorporate up to 5% of waste in bulk ceramics. (author)

  2. PCB extraction from ORNL tank WC-14 using a unique solvent

    International Nuclear Information System (INIS)

    Bloom, G.A.; Lucero, A.J.; Koran, L.J.; Turner, E.N.

    1995-09-01

    This report summarizes the development work of the Engineering Development Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) for an organic extraction method for removing polychlorinated biphenyls (PCBs) from tank WC-14. Tank WC-14 is part of the ORNL liquid low-level radioactive tank waste system and does not meet new secondary containment and leak detection regulations. These regulations require the tank to be taken out of service, and remediated before tank removal. To remediate the tank, the PCBs must be removed; the tank contents can then be transferred to the Melton Valley Storage Tanks before final disposal. The solvent being used for the PCB extraction experiments is triethylamine, an aliphatic amine that is soluble in water below 60 degrees F but insoluble in water above 90 degrees F. This property will allow the extraction to be carried out under fully miscible conditions within the tank; then, after tank conditions have been changed, the solvent will not be miscible with water and phase separation will occur. Phase separation between sludge, water, and solvent will allow solvent (loaded with PCBs) to be removed from the tank for disposal. After removing the PCBs from the sludge and removing the sludge from the tank, administrative control of the tank can be transferred to ORNL's Environmental Restoration Program, where priorities will be set for tank removal. Experiments with WC-14 sludge show that greater than 90% extraction efficiencies can be achieved with one extraction stage and that PCB concentration in the sludge can be reduced to below 2 ppm in three extractions. It is anticipated that three extractions will be necessary to reduce the PCB concentration to below 2 ppm during field applications. The experiments conducted with tank WC-14 sludge transferred less than 0.03% of the original alpha contamination and less than 0.002% of the original beta contamination

  3. Sewage sludge as a biomass energy source

    Directory of Open Access Journals (Sweden)

    Pavel Kolat

    2013-01-01

    Full Text Available The major part of the dry matter content of sewage sludge consists of nontoxic organic compounds, in general a combination of primary sludge and secondary microbiological sludge. The sludge also contains a substantive amount of inorganic material and a small amount of toxic components. There are many sludge-management options in which production of energy is one of the key treatment steps. The most important options are anaerobic digestion, co-digestion, incineration in combination with energy recovery and co-incineration in coal-fired power plants. The goal of our applied research is to verify, if the sludge from waste water treatment plants may be used as a biomass energy source in respect of the EU legislation, which would comply with emission limits or the proposal of energy process optimizing the preparation of coal/sludge mixture for combustion in the existing fluid bed boilers in the Czech Republic. The paper discusses the questions of thermal usage of mechanically drained stabilized sewage sludge from the waste water treatment plants in the boiler with circulated fluid layer. The paper describes methods of thermal analysis of coal, sewage sludge and its mixtures, mud transport to the circulating fluidised bed boiler, effects on efficiency, operational reliability of the combustion equipment, emissions and solid combustion residues.

  4. Activated Sludge.

    Science.gov (United States)

    Saunders, F. Michael

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) activated sludge process; (2) process control; (3) oxygen uptake and transfer; (4) phosphorus removal; (5) nitrification; (6) industrial wastewater; and (7) aerobic digestion. A list of 136 references is also presented. (HM)

  5. Solidification Tests for LLW sludges at ORNL

    International Nuclear Information System (INIS)

    Taylor, P.; Bickford, J.; Foote, M.; Jessop, D.; Gagel, D.

    2009-01-01

    The Oak Ridge Transuranic Waste Processing Center (TWPC), operated by EnergX TN, LLC, must process about 350,000 gallons of remote-handled (RH) sludge from ten liquid low-level waste (LLLW) tanks at Oak Ridge National Laboratory (ORNL). In order to solidify and stabilize the waste to meet the Waste Acceptance Criteria for the Nevada Test Site (NTS), the waste must be mixed with solidification/stabilization agents, remain flowable during mixing, be self leveling in the waste disposal container, and produce a solid waste form that is not hazardous and has no free liquids, suitable for transportation and disposal at the NTS. Lab-scale tests using a surrogate sludge were performed at MSE Technology Applications, Inc. (MSETA) to evaluate a range of grouting recipes, using Portland cement, fly ash and ground blast furnace slag, plus other additives. The viscosity of the wet grout and the amount of free water, if any, after various time intervals, was measured. EnergX personnel supplied the initial grout recipe, based on testing with a simplified sludge surrogate (calcium nitrate and diatomaceous earth). The tests at MSE-TA showed that ratios of dry blend ingredients to surrogate of from 0.75:1 to 1:1 would produce flowable grouts with viscosities of 1300 to 2200 cP that had no free water at any time during curing. The recipe for a surrogate sludge slurry was developed at ORNL, which matches the primary constituents of the average tank waste sludge composition, including, in decreasing concentrations, calcium, aluminum, magnesium, uranium, iron, and thorium. The target total suspended solids (TSS ) concentration in the surrogate is 5.0 wt%, which is the planned concentration for sluicing the sludge from the tanks for solidification. Soluble ions in the surrogate include nitrate, nitrite, carbonate, chloride, sulfate, sodium and potassium. The surrogate was prepared by adding soluble salts of the metals to water, and then precipitating the sludge by adding calcium

  6. History of waste tank 1, 1954 through 1974

    International Nuclear Information System (INIS)

    McNatt, F.G.; Stevens, W.E.

    1978-10-01

    Tank 1 was placed in service as a receiver of high heat waste (HW) in October 1954. The supernate was removed from the tank in October 1961 and the tank began receiving low heat waste (LW) in January 1962. The LW supernate was decanted in October 1962 and prior to beginning a second HW filling in April 1963. The supernate from this HW filling was decanted twice in 1969. Sludge removal operations were conducted in May and August 1969 in order to use tank 1 for salt storage. The first evaporator concentrate receipt was in September 1969 and tank 1 has only been used as a salt storage tank since. Leakage from the tank into the annulus was discovered in February 1969. Deposits less than 1/4 inch deep of leaked waste were found on the pan floor. However, no leak sites have been found. Inspections of the tank interior and annulus were made by direct observation and by using a 40-ft optical periscope. Samples of sludge, supernate, tank vapors, and leaked material into the annulus were analyzed and tank temperature profiles were taken. Deflection measurements were made of the primary tank bottom knuckle plate while filling the tank with salt. Two vertical cooling coils have failed. Several equipment modifications and various equipment repairs were made. 18 figures, 2 tables

  7. Radiochemical determination of 210 Pb and 226Ra in petroleum sludges and scales

    International Nuclear Information System (INIS)

    Araujo, Andressa Arruda de

    2005-01-01

    The oil extraction and production, both onshore and offshore, can generate different types of residues, such as sludge, that is deposited in the water/oil separators, valves and storage tanks and scales, which form i the inner surface of ducts and equipment. Analyses already carried out through gamma spectrometry indicated the existence of high radioisotope concentration. However, radionuclides emitting low-energy gamma-rays, such as 210 Pb, are hardly detected by that technique. Consequently, there is a need to test alternative techniques to determine this and other radionuclides from the 238 U series. This work, therefore, focuses on the radiochemical determination of the concentration of 210 Pb, and 226 Ra in samples of sludge and scale from the oil processing stations of the UN-SEAL, a PETROBRAS unit responsible for the exploration and production of petroleum in Sergipe and Alagoas. The sludge and scale samples went through a preliminary process of extraction of oil, in order to separate the solid phase, where the largest fraction of the radioactivity is concentrated. After oil removal, the samples were digested using alkaline fusion as an option for dissolution. Finally, their activity concentration was determined for the samples of sludge and scales, using and alternative radiochemical method, which is based on ionic exchange. The activity concentration found for 210 Pb varied from 1,14 to 507,3 kBq kg -1 . The values for 226 Ra were higher, varying from 4,36 to 3.445 kBq kg -1 . The results for 226 Ra were then compared with the ones found for the same samples of sludge and scales using gamma spectrometry. The results of the comparison confirm the efficiency of the methodology used int hi work, that is, radiochemical determination by means of ionic exchange. (author)

  8. Computer modeling of jet mixing in INEL waste tanks

    International Nuclear Information System (INIS)

    Meyer, P.A.

    1994-01-01

    The objective of this study is to examine the feasibility of using submerged jet mixing pumps to mobilize and suspend settled sludge materials in INEL High Level Radioactive Waste Tanks. Scenarios include removing the heel (a shallow liquid and sludge layer remaining after tank emptying processes) and mobilizing and suspending solids in full or partially full tanks. The approach used was to (1) briefly review jet mixing theory, (2) review erosion literature in order to identify and estimate important sludge characterization parameters (3) perform computer modeling of submerged liquid mixing jets in INEL tank geometries, (4) develop analytical models from which pump operating conditions and mixing times can be estimated, and (5) analyze model results to determine overall feasibility of using jet mixing pumps and make design recommendations

  9. Sludge busters

    International Nuclear Information System (INIS)

    Pichon, Max

    2010-01-01

    Full text: A few years ago, For Earth developed low energy sub-surface aeration systems to increase the biological activity in the wastewater sludge ponds. Then came the idea to introduce probiotic bacteria to really ramp up the process, which promises massive time and cost savings in sludge management. Increasing the volumes of specific bacteria reactivates the sludge, accelerating biological nutrient removal in general and, by tailoring the bacteria, targeting specific organic waste types. The technology is already running at more than 30 councils across NSW and in some commercial settings, such as dairy farms. Shane McKibbin, GM of For Earth, said the 'Probiotic, Low Energy Aeration System' offers considerable upside. “The cost savings have been enormous with some councils, including the work done at Woolgoolga Water Reclamation Plant at Coffs Harbour,” he said. Sludge settling in wastewater treatment plant lagoons is typically pumped out, centrifuged to remove water and then landfilled. In Woolgoolga's case that process was costing Coffs Harbour Water $150 a cubic metre; McKibbin said they've slashed that to a measly $5 a cubic metre. An array of 'industrial air stones' is dropped 1m below the surface to create an oxygenated blanket across the surface, overcoming the tendency of sludge ponds to stagnate. The key though is floating probiotic dosing lines across the surface, which kick-starts the probiotics process. “Previously, some operators just wanted to throw it on with a bucket, so the bacteria would get thrown into one corner of the pond. But since we introduced the dosing system it has really improved the overall performance,” said McKibbin.The dosing pump system automatically applies the bacteria into the dosing line according to a specified program, ensuring the probiotics are spread out across the pond and across the week. “I would say it improves and accelerates the result by 30 per cent,” he adds.

  10. Effect of sludge solids to mono-sodium titanate (MST) ratio on MST-treated sludge

    International Nuclear Information System (INIS)

    Saito, H.H.

    1999-01-01

    The Salt Disposition Systems Engineering Team has selected two cesium removal technologies for further development to replace the In-Tank Precipitation process: small tank tetraphenylborate (TPB) precipitation and crystalline silicotitanate (CST) ion exchange. In the CST ion exchange process, incoming salt solution from storage tanks containing entrained sludge solids is pretreated with monosodium titanate (MST) to adsorb strontium and plutonium. The resulting slurry is filtered using a cross-flow filter, with the permeate sent forward to CST ion exchange columns for cesium removal prior to conversion into Class A grout at the Saltstone Facility. The MST and sludge solids are to be sent for vitrification at the Defense Waste Processing Facility (DWPF). The High Level Waste Division (HLWD) requested that the Waste Processing Technology Section (WPTS) study varying the insoluble sludge solids to MST ratio to determine the relative impact of sludge and MST on filter performance. The purpose of this study was not for an exhaustive comprehensive search for an optimized insoluble sludge solids to monosodium titanate (MST) ratio, but as a scoping study to identify any effects of having an excess of either material. This document reports the results obtained

  11. INTEC SBW Solid Sludge Surrogate Recipe and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Maio, Vince; Janikowski, Stuart; Johnson, Jim; Maio, Vince; Pao, Jenn-Hai

    2004-06-01

    A nonhazardous INTEC tank farm sludge surrogate that incorporated metathesis reactions to generate solids from solutions of known elements present in the radioactive INTEC tank farm sodium-bearing waste sludges was formulated. Elemental analyses, physical property analyses, and filtration testing were performed on waste surrogate and tank farm waste samples, and the results were compared. For testing physical systems associated with moving the tank farm solids, the surrogate described in this report is the best currently available choice. No other available surrogate exhibits the noted similarities in behavior to the sludges. The chemical morphology, particle size distribution, and settling and flow characteristics of the surrogate were similar to those exhibited by the waste sludges. Nonetheless, there is a difference in chemical makeup of the surrogate and the tank farm waste. If a chemical treatment process were to be evaluated for final treatment and disposition of the waste sludges, the surrogate synthesis process would likely require modification to yield a surrogate with a closer matching chemical composition.

  12. History of waste tank 16, 1959 through 1974

    International Nuclear Information System (INIS)

    Davis, T.L.; Tharin, D.W.; Jones, D.W.; Lohr, D.R.

    1977-07-01

    Tank 16 was placed in service as a receiver of fresh high heat waste (HW) on May 9, 1959, and was filled to capacity in May 1960. Approximately half the tank contents were transferred to tanks 14 and 15 during September and October 1960 because of leakage into the annulus. Use of tank 16 was resumed in October 1967 when authorization (TA 2-603) was obtained to receive LW, and the tank was filled to capacity by June 1968. Subsequently, supernate was removed from the tank, and a blend of fresh LW and evaporator bottoms was added. In March 1972, the supernate was transferred to tank 13 because leakage had resumed. The sludge was left in the tank bottom and the use of tank 16 for any additional waste storage was discontinued. In September 1960 liquid waste overflowed the annulus pan. Leakage essentially stopped after the tank liquid level was lowered below the middle horizontal weld. After exhaustive study, tank cracking and resultant leakage was concluded to have been caused by stress corrosion due to the action of NaOH or NaNO 3 on areas of high local stress in the steel plate such as welds. Samples of sludge, supernate, tank vapors, and leaked material in the annulus were analyzed, and tank temperature and radiation profiles were taken. Two disk samples were cut from the primary tank wall for metallurgical examination. Test coupons of various metals were exposed to tank 16 waste to aid new tank design and to study stress corrosion and hydrogen embrittlement. In addition, samples of SRP bedrock were placed in tank 16 to study reactions between bedrock and HW. 18 figures, 2 tables

  13. Development of radioactive laundry drain treatment system by activated sludge reactor

    International Nuclear Information System (INIS)

    Sagawa, Hiroshi; Kinugasa, Atsushi; Ogawa, Naoki; Yoshimi, Masaharu; Kinoshita, Kouki; Kamiyoshi, Hideki

    2003-01-01

    A membrane separation activated sludge method was developed for radioactive laundry drain treatment. The laundry drain passes through the film in the aeration tank. There is no need the precipitation tank. It makes compact reactor, keeping higher concentration of sludge, higher treatment activity and perfect elimination of floating suspended solids in the treatment water. The test reactor consists of receiving tank of laundry drain, purification tank, treatment water tank, sludge tank, blow and pump. The demonstration test was carried out by the actual laundry drain in the nuclear power plant for about 550 hours. The results obtained showed treatment water COD 3 /y radioactive laundry drain is treated, the second waste products become about 1/5 and 1/15 of the evaporation and active carbon filtration method, respectively. There are no problems about waste water treatment activity and radioactive materials elimination capacity. (S.Y.)

  14. TEMPEST code modifications and testing for erosion-resisting sludge simulations

    International Nuclear Information System (INIS)

    Onishi, Y.; Trent, D.S.

    1998-01-01

    The TEMPEST computer code has been used to address many waste retrieval operational and safety questions regarding waste mobilization, mixing, and gas retention. Because the amount of sludge retrieved from the tank is directly related to the sludge yield strength and the shear stress acting upon it, it is important to incorporate the sludge yield strength into simulations of erosion-resisting tank waste retrieval operations. This report describes current efforts to modify the TEMPEST code to simulate pump jet mixing of erosion-resisting tank wastes and the models used to test for erosion of waste sludge with yield strength. Test results for solid deposition and diluent/slurry jet injection into sludge layers in simplified tank conditions show that the modified TEMPEST code has a basic ability to simulate both the mobility and immobility of the sludges with yield strength. Further testing, modification, calibration, and verification of the sludge mobilization/immobilization model are planned using erosion data as they apply to waste tank sludges

  15. Laboratory stabilization/solidification of surrogate and actual mixed-waste sludge in glass and grout

    International Nuclear Information System (INIS)

    Spence, R.D.; Gilliam, T.M.; Mattus, C.H.; Mattus, A.J.

    1998-01-01

    Grouting and vitrification are currently the most likely stabilization/solidification technologies for mixed wastes. Grouting has been used to stabilize and solidify hazardous and low-level waste for decades. Vitrification has long been developed as a high-level-waste alternative and has been under development recently as an alternative treatment technology for low-level mixed waste. Laboratory testing has been performed to develop grout and vitrification formulas for mixed-waste sludges currently stored in underground tanks at Oak Ridge National Laboratory (ORNL) and to compare these waste forms. Envelopes, or operating windows, for both grout and soda-lime-silica glass formulations for a surrogate sludge were developed. One formulation within each envelope was selected for testing the sensitivity of performance to variations (±10 wt%) in the waste form composition and variations in the surrogate sludge composition over the range previously characterized in the sludges. In addition, one sludge sample of an actual mixed-waste tank was obtained, a surrogate was developed for this sludge sample, and grout and glass samples were prepared and tested in the laboratory using both surrogate and the actual sludge. The sensitivity testing of a surrogate tank sludge in selected glass and grout formulations is discussed in this paper, along with the hot-cell testing of an actual tank sludge sample

  16. Radioactive tank waste remediation focus area

    International Nuclear Information System (INIS)

    1996-08-01

    EM's Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form

  17. High-level waste tank modifications, installation of mobilization equipment/check out

    International Nuclear Information System (INIS)

    Schiffhauer, M.A.; Thompson, S.C.

    1992-01-01

    PUREX high-level waste (HLW) is contained at the West Valley Demonstration Project (WVDP) in an underground carbon-steel storage tank. The HLW consists of a precipitated sludge and an alkaline supernate. This report describes the system that the WVDP has developed and implemented to resuspend and wash the HLW sludge from the tank. The report discusses Sludge Mobilization and Wash System (SMWS) equipment design, installation, and testing. The storage tank required modifications to accommodate the SMWS. These modifications are discussed as well

  18. Application of vibration milling for advanced wastewater treatment and excess sludge reduction.

    Science.gov (United States)

    Sano, Akira; Senga, Akira; Yamazaki, Hiroshi; Inoue, Hiroki; Xu, Kai-Qin; Inamori, Yuhei

    2012-01-01

    As a new sludge reduction technology with a phosphorus removal mechanism, a vibration milling technology that uses iron balls have been applied to the wastewater treatment process. Three anaerobic-aerobic cyclic activated sludge processes: one without sludge disintegration; one disintegrated sludge by ozonation; and the other disintegrated sludge with the vibrating ball mill were compared. Ozonation achieved the best sludge reduction performance, but milling had the best phosphorus removal. This is because iron was mixed into the wastewater treatment tank due to abrasion of the iron balls, leading to settling of iron phosphates. Thus, the simple means of using iron balls as the medium in a vibrating ball mill can achieve both a sludge reduction of half and excellent phosphorus removal. Material balances in the processes were calculated and it was found that carbon components in disintegrated sludge were more resistant to biological treatment than nitrogen.

  19. FLOWSHEET FOR ALUMINUM REMOVAL FROM SLUDGE BATCH 6

    International Nuclear Information System (INIS)

    Pike, J.; Gillam, J.

    2008-01-01

    Samples of Tank 12 sludge slurry show a substantially larger fraction of aluminum than originally identified in sludge batch planning. The Liquid Waste Organization (LWO) plans to formulate Sludge Batch 6 (SB6) with about one half of the sludge slurry in Tank 12 and one half of the sludge slurry in Tank 4. LWO identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days and dissolved nearly 80% of the aluminum in the sludge slurry. In 2008, LWO successfully dissolved 64% of the aluminum at approximately 60 C in 46 days with minimal tank modifications and using only slurry pumps as a heat source. This report establishes the technical basis and flowsheet for performing an aluminum removal process in Tank 51 for SB6 that incorporates the lessons learned from previous aluminum dissolution evolutions. For SB6, aluminum dissolution process temperature will be held at a minimum of 65 C for at least 24 days, but as long as practical or until as much as 80% of the aluminum is dissolved. As planned, an aluminum removal process can reduce the aluminum in SB6 from about 84,500 kg to as little as 17,900 kg with a corresponding reduction of total insoluble solids in the batch from 246,000 kg to 131,000 kg. The extent of the reduction may be limited by the time available to maintain Tank 51 at dissolution temperature. The range of dissolution in four weeks based on the known variability in dissolution kinetics can range from 44 to more than 80%. At 44% of the aluminum dissolved, the mass reduction is approximately 1/2 of the mass noted above, i.e., 33,300 kg of aluminum instead of 66,600 kg. Planning to reach 80% of the aluminum dissolved should allow a maximum of 81 days for dissolution and reduce the allowance if test data shows faster kinetics. 47,800 kg of the dissolved

  20. Separation, Characterization and Fouling Potential of Sludge Waters from Different Biological Wastewater Treatment Processes

    KAUST Repository

    Xue, Jinkai

    2011-07-01

    The major limitation, which hinders the wider application of membrane technology and increases the operating costs of membranes involved in wastewater treatment plants, is membrane fouling induced by organic matter. Extracellular polymeric products (EPS) and soluble microbial products (SMP) are the two most mentioned major foulants in publications, for which the debate on precise definitions seems to be endless. Therefore, a concept of sludge water, which conceptually covers both EPS and SMP, has been developed in this research. A standard procedure of sludge water separation, which is centrifugation at 4000g for 15 min followed by 1.2μm glass fiber filter filtration, was established based on separation experiments with membrane tank sludge from the KAUST MBR wastewater treatment plant. Afterwards, sludge waters from the KAUST MBR WWTP anoxic tank, aerobic tank and membrane tank as well as sludge waters from the Jeddah WWTP anoxic tank, aerobic tank and secondary effluent were produced through the previously developed standard procedure. The obtained sludge water samples were thereafter characterized with TOC/COD, LC-­‐OCD and F-­‐EEM, which showed that KAUST anoxic/ aerobic /membrane tank sludge waters had similar characteristics for all investigated parameters, yet the influent naturally had a higher DOC and biopolymer concentration. Moreover, lower TOC/COD, negligible biopolymers and low levels of humics were found in KAUST effluent. Compared with the KAUST MBR WWTP, the Jeddah WWTP’s sludge waters generally had higher DOC and biopolymer concentrations. To investigate sludge water fouling potential, the KAUST membrane tank sludge water as well as the Jeddah secondary effluent were filtrated through a membrane array consisting of an ultrafiltration (UF) Millipore RC10kDa at the first step followed by a nanofiltration (NF) KOCH Acid/Base stable NF200 at the second step. It was found that cake layer and standard blocking occurred simultaneously during both

  1. Fluidic Sampler. Tanks Focus Area. OST Reference No. 2007

    International Nuclear Information System (INIS)

    1999-01-01

    Problem Definition; Millions of gallons of radioactive and hazardous wastes are stored in underground tanks across the U.S. Department of Energy (DOE) complex. To manage this waste, tank operators need safe, cost-effective methods for mixing tank material, transferring tank waste between tanks, and collecting samples. Samples must be collected at different depths within storage tanks containing various kinds of waste including salt, sludge, and supernatant. With current or baseline methods, a grab sampler or a core sampler is inserted into the tank, waste is maneuvered into the sample chamber, and the sample is withdrawn from the tank. The mixing pumps in the tank, which are required to keep the contents homogeneous, must be shut down before and during sampling to prevent airborne releases. These methods are expensive, require substantial hands-on labor, increase the risk of worker exposure to radiation, and often produce nonrepresentative and unreproducible samples. How It Works: The Fluidic Sampler manufactured by AEA Technology Engineering Services, Inc., enables tank sampling to be done remotely with the mixing pumps in operation. Remote operation minimizes the risk of exposure to personnel and the possibility of spills, reducing associated costs. Sampling while the tank contents are being agitated yields consistently homogeneous, representative samples and facilitates more efficient feed preparation and evaluation of the tank contents. The above-tank portion of the Fluidic Sampler and the replacement plug and pipework that insert through the tank top are shown.

  2. Validation Testing of the Nitric Acid Dissolution Step Within the K Basin Sludge Pretreatment Process

    International Nuclear Information System (INIS)

    AJ Schmidt; CH Delegard; KL Silvers; PR Bredt; CD Carlson; EW Hoppe; JC Hayes; DE Rinehart; SR Gano; BM Thornton

    1999-01-01

    The work described in this report involved comprehensive bench-scale testing of nitric acid (HNO 3 ) dissolution of actual sludge materials from the Hanford K East (KE) Basin to confirm the baseline chemical pretreatment process. In addition, process monitoring and material balance information was collected to support the development and refinement of process flow diagrams. The testing was performed by Pacific Northwest National Laboratory (PNNL)for the US Department of Energy's Office of Spent Fuel Stabilization (EM-67) and Numatec Hanford Corporation (NHC) to assist in the development of the K Basin Sludge Pretreatment Process. The baseline chemical pretreatment process for K Basin sludge is nitric acid dissolution of all particulate material passing a 1/4-in. screen. The acid-insoluble fraction (residual solids) will be stabilized (possibly by chemical leaching/rinsing and grouting), packaged, and transferred to the Hanford Environmental Restoration Disposal Facility (ERDF). The liquid fraction is to be diluted with depleted uranium for uranium criticality safety and iron nitrate for plutonium criticality safety, and neutralized with sodium hydroxide. The liquid fraction and associated precipitates are to be stored in the Hanford Tank Waste Remediation Systems (TWRS) pending vitrification. It is expected that most of the polychlorinated biphenyls (PCBs), associated with some K Basin sludges, will remain with the residual solids for ultimate disposal to ERDF. Filtration and precipitation during the neutralization step will further remove trace quantities of PCBs within the liquid fraction. The purpose of the work discussed in this report was to examine the dissolution behavior of actual KE Basin sludge materials at baseline flowsheet conditions and validate the.dissolution process step through bench-scale testing. The progress of the dissolution was evaluated by measuring the solution electrical conductivity and concentrations of key species in the dissolver

  3. Validation Testing of the Nitric Acid Dissolution Step Within the K Basin Sludge Pretreatment Process

    Energy Technology Data Exchange (ETDEWEB)

    AJ Schmidt; CH Delegard; KL Silvers; PR Bredt; CD Carlson; EW Hoppe; JC Hayes; DE Rinehart; SR Gano; BM Thornton

    1999-03-24

    The work described in this report involved comprehensive bench-scale testing of nitric acid (HNO{sub 3}) dissolution of actual sludge materials from the Hanford K East (KE) Basin to confirm the baseline chemical pretreatment process. In addition, process monitoring and material balance information was collected to support the development and refinement of process flow diagrams. The testing was performed by Pacific Northwest National Laboratory (PNNL)for the US Department of Energy's Office of Spent Fuel Stabilization (EM-67) and Numatec Hanford Corporation (NHC) to assist in the development of the K Basin Sludge Pretreatment Process. The baseline chemical pretreatment process for K Basin sludge is nitric acid dissolution of all particulate material passing a 1/4-in. screen. The acid-insoluble fraction (residual solids) will be stabilized (possibly by chemical leaching/rinsing and grouting), packaged, and transferred to the Hanford Environmental Restoration Disposal Facility (ERDF). The liquid fraction is to be diluted with depleted uranium for uranium criticality safety and iron nitrate for plutonium criticality safety, and neutralized with sodium hydroxide. The liquid fraction and associated precipitates are to be stored in the Hanford Tank Waste Remediation Systems (TWRS) pending vitrification. It is expected that most of the polychlorinated biphenyls (PCBs), associated with some K Basin sludges, will remain with the residual solids for ultimate disposal to ERDF. Filtration and precipitation during the neutralization step will further remove trace quantities of PCBs within the liquid fraction. The purpose of the work discussed in this report was to examine the dissolution behavior of actual KE Basin sludge materials at baseline flowsheet conditions and validate the.dissolution process step through bench-scale testing. The progress of the dissolution was evaluated by measuring the solution electrical conductivity and concentrations of key species in the

  4. Actinides in Hanford Tank Waste Simulants: Chemistry of Selected Species in Oxidizing Alkaline Solutions

    International Nuclear Information System (INIS)

    Nash, Kenneth L.; Laszak, Ivan; Borkowski, Marian; Hancock, Melissa; Rao, Linfeng; Reed, Wendy

    2004-01-01

    To enhance removal of selected troublesome nonradioactive matrix elements (P, Cr, Al, S) from the sludges in radioactive waste tanks at the Hanford site, various chemical washing procedures have been evaluated. It is intended that leaching should leave the actinides in the residual sludge phase for direct vitrification. Oxidative treatment with strongly alkaline solutions has emerged as the best approach to accomplishing this feat. However, because the most important actinide ions in the sludge can exist in multiple oxidation states, it is conceivable that changes in actinide oxidation state speciation could interfere with hopes and plans for actinide insolubility. In this presentation, we discuss both the impact of oxidative alkaline leachants on actinide oxidation state speciation and the chemistry of oxidized actinide species in the solution phase. Actinide oxidation does occur during leaching, but the solubility behavior is complex. Mixed ligand complexes may dominate solution phase speciation of actinides under some circumstances. This work was supported by the U.S. Department of Energy, Offices of Science and Waste Management, Environmental Management Science Program under Contract DEAC03- 76SF0098 at Lawrence Berkeley National Laboratory and Contract W-31-109- ENG-38 at Argonne National Laboratory

  5. Analysis of petroleum oily sludge producing in petroleum field of Rio Grande do Norte, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Cicero de Souza; Lima, Regineide Oliveira; Silva, Edjane Fabiula Buriti da; Castro, Kesia Kelly Vieira de; Chiavone Filho, Osvaldo; Araujo, Antonio Souza de [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil)

    2012-07-01

    In exploration and production of petroleum is generated solid waste different and components other. The petroleum oily sludge is a complex mix of components different (water, oil and solid). The petroleum oily sludge generally has other residues and is formed during production and operations, transport, storage and petroleum refining (atmospheric residue, vacuum residue and catalytic cracking residue). However, according to its origin, the compositions can be found quite varied for sludge. Observing the process steps production and refining is possible to locate its main sources and percentage contributions in terms of waste generation. The elemental analysis was performed with oily sludge from region and it showed different composition. For carbon element and hydrogen, small differences was observed, but for was observed greater differences for Oxygen element. The sludge has different inorganic and organic composition. The sludge from oil water separator (OWS) 2 showed a greater amount of oil (94.88%), this may indicate a residue of aggregate high for petroleum industry. In analysis of Saturates, Aromatics, Resins and Asphaltenes (SARA), the sludge from unloading showed amount high of saturates. The inorganic material separated from sludge was characterized and sludge from OWS 2 had high amount sulfur (41.57%). The sludge analyzed showed organic components high values, so it can be treated and reprocessed in process units petroleum industry. The analysis thermal degradation had a better setting for treated oily sludge. (author)

  6. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

    2009-04-29

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  7. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS. ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    International Nuclear Information System (INIS)

    Rutherford, W.W.; Geuther, W.J.; Strankman, M.R.; Conrad, E.A.; Rhoadarmer, D.D.; Black, D.M.; Pottmeyer, J.A.

    2009-01-01

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  8. Origin of Wastes in Single Shell Tanks [SST] 241-B-110 & 241B-111

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON, M.E.

    2003-05-02

    A review of waste transfer documents was conducted to identify the origin of wastes present in tanks B-110 and B-111. These tanks initially received second decontamination cycle (2C) waste from the 221-B Bismuth Phosphate Plant, which separated into 2C sludge and supernatant. The supernatant was discharged to cribs. 242-B Evaporator bottoms were briefly stored in these tanks. Later, these tanks received waste from fission product separations conducted at the 221-B Plant.

  9. Nitrogen tank

    CERN Multimedia

    2006-01-01

    Wanted The technical file about the pressure vessel RP-270 It concerns the Nitrogen tank, 60m3, 22 bars, built in 1979, and installed at Point-2 for the former L3 experiment. If you are in possession of this file, or have any files about an equivalent tank (probably between registered No. RP-260 and -272), please contact Marc Tavlet, the ALICE Glimos.

  10. K Basin Sludge Conditioning Process Testing Fate of PCBs During K Basin Sludge Dissolution in Nitric Acid and with Hydrogen Peroxide Addition

    International Nuclear Information System (INIS)

    Schmidt, A.J.; Thornton, B.M.; Hoppe, E.W.; Mong, G.M.; Pool, K.H.; Silvers, K.L.

    1999-01-01

    The work described in this report is part of the studies being performed to address the fate of polychlorinated biphenyls (PCBs) in K Basin sludge before the sludge can be transferred to the Tank Waste Remediation System (TWRS) double shell tanks. One set of tests examined the effect of hydrogen peroxide on the disposition of PCBs in a simulated K Basin dissolver solution containing 0.5 M nitric acid/1 M Fe(NO 3 ) 3 . A second series of tests examined the disposition of PCBs in a much stronger (∼10 M) nitric acid solution, similar to that likely to be encountered in the dissolution of the sludge

  11. Improving Settling Dynamics of Activated Sludge by Adding Fine Talc Powder

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Larsen, Torben; Clauss, F.

    1996-01-01

    The effect of adding varying mixtures of talc and chlorite powder to activated sludge in order to improve the settling characteristic has been studied. The powder is found to improve the settling velocity of the sludge, strictly by increasing the average density of the sludge floc aggregate. The ....... The settling velocity was measured with a recirculated settling column under different concentrations and turbulence levels. Numerical simulation of a secondary settling tank indicates that adding fine powder will improve the overall performance considerably....

  12. Identification of rheological parameters describing the physico-chemical properties of anaerobic sulphidogenic sludge suspensions

    NARCIS (Netherlands)

    Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.

    2007-01-01

    This work determined rheological parameters able to describe the rheological properties of the flocculant sludge presents in sulphidogenic anaerobic bioreactors, i.e. a MBR (membrane bioreactor) and a CSTR (continuous stirred tank reactor). Both sludges displayed a non-Newtonian rheological

  13. Modeling and analysis of ORNL horizontal storage tank mobilization and mixing

    International Nuclear Information System (INIS)

    Mahoney, L.A.; Terrones, G.; Eyler, L.L.

    1994-06-01

    The retrieval and treatment of radioactive sludges that are stored in tanks constitute a prevalent problem at several US Department of Energy sites. The tanks typically contain a settled sludge layer with non-Newtonian rheological characteristics covered by a layer of supernatant. The first step in retrieval is the mobilization and mixing of the supernatant and sludge in the storage tanks. Submerged jets have been proposed to achieve sludge mobilization in tanks, including the 189 m 3 (50,000 gallon) Melton Valley Storage tanks (MVST) at Oak Ridge National Laboratory (ORNL) and the planned 378 m 3 (100,000 gallon) tanks being designed as part of the MVST Capacity Increase Project (MVST-CIP). This report focuses on the modeling of mixing and mobilization in horizontal cylindrical tanks like those of the MVST design using submerged, recirculating liquid jets. The computer modeling of the mobilization and mixing processes uses the TEMPEST computational fluid dynamics program (Trend and Eyler 1992). The goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents

  14. Description of double-shell tank selection criteria for inspection

    International Nuclear Information System (INIS)

    Schwenk, E.B.; Scott, K.V.

    1996-01-01

    Technical criteria for selecting double-shelf tanks's (DST's) for inspection are presented. Inspection of DST's is planned to non-destructively determine the general condition of their inner wall and bottom knuckle. Inspection of representative tanks will provide a basis for evaluating the integrity of all the DST's and provide a basis for estimating remaining life. The selection criteria recommended are tank age based on date-of-first fluid entry, waste temperature, corrosion inhibitor levels, deviations from normal behavior - involving sludge levels, hydrogen release and waste transfers - least waste depth fluctuation, tank steel type, other chemical species that could activate stress-corrosion cracking, and waste types

  15. Iraq liquid radioactive waste tanks maintenance and monitoring program plan.

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad (Iraq Ministry of Science and Technology)

    2011-10-01

    The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tank inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.

  16. An Innovative Passive Residual Heat Removal System of an Open-Pool Type Research Reactor with Pump Flywheel and Gravity Core Cooling Tank

    Directory of Open Access Journals (Sweden)

    Kwon-Yeong Lee

    2015-01-01

    Full Text Available In an open-pool type research reactor, the primary cooling system can be designed to have a downward flow inside the core during normal operation because of the plate type fuel geometry. There is a flow inversion inside the core from the downward flow by the inertia force of the primary coolant to the upward flow by the natural circulation when the pump is turned off. To delay the flow inversion time, an innovative passive system with pump flywheel and GCCT is developed to remove the residual heat. Before the primary cooling pump starts up, the water level of the GCCT is the same as that of the reactor pool. During the primary cooling pump operation, the water in the GCCT is moved into the reactor pool because of the pump suction head. After the pump stops, the potential head generates a downward flow inside the core by moving the water from the reactor pool to the GCCT and removes the residual heat. When the water levels of the two pools are the same again, the core flow has an inversion of the flow direction, and natural circulation is developed through the flap valves.

  17. Tanks Focus Area annual report FY2000

    International Nuclear Information System (INIS)

    2000-01-01

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation effort with tanks containing hazardous and radioactive waste resulting from the production of nuclear materials. With some 90 million gallons of waste in the form of solid, sludge, liquid, and gas stored in 287 tanks across the DOE complex, containing approximately 650 million curies, radioactive waste storage tank remediation is the nation's highest cleanup priority. Differing waste types and unique technical issues require specialized science and technology to achieve tank cleanup in an environmentally acceptable manner. Some of the waste has been stored for over 50 years in tanks that have exceeded their design lives. The challenge is to characterize and maintain these contents in a safe condition and continue to remediate and close each tank to minimize the risks of waste migration and exposure to workers, the public, and the environment. In 1994, the DOE's Office of Environmental Management (EM) created a group of integrated, multiorganizational teams focusing on specific areas of the EM cleanup mission. These teams have evolved into five focus areas managed within EM's Office of Science and Technology (OST): Tanks Focus Area (TFA); Deactivation and Decommissioning Focus Area; Nuclear Materials Focus Area; Subsurface Contaminants Focus Area; and Transuranic and Mixed Waste Focus Area

  18. Robotic cleaning of radwaste tank nozzles

    International Nuclear Information System (INIS)

    Boughman, G.; Jones, S.L.

    1992-01-01

    The Susquehanna radwaste processing system includes two reactor water cleanup phase separator tanks and one waste sludge phase separator tank. A system of educator nozzles and associated piping is used to provide mixing in the tanks. The mixture pumped through the nozzles is a dense resin-and-water slurry, and the nozzles tend to plug up during processing. The previous method for clearing the nozzles had been for a worker to enter the tanks and manually insert a hydrolaser into each nozzle, one at a time. The significant radiation exposure and concern for worker safety in the tank led the utility to investigate alternate means for completing this task. The typical tank configuration is shown in a figure. The initial approach investigated was to insert a manipulator arm in the tank. This arm would be installed by workers and then teleoperated from a remote control station. This approach was abandoned because of several considerations including educator location and orientation, excessive installation time, and cost. The next approach was to use a mobile platform that would operate on the tank floor. This approach was selected as being the most feasible solution. After a competitive selection process, REMOTEC was selected to provide the mobile platform. Their proposal was based on the commercial ANDROS Mark 5 platform

  19. Tanks Focus Area annual report FY2000

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-12-01

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation effort with tanks containing hazardous and radioactive waste resulting from the production of nuclear materials. With some 90 million gallons of waste in the form of solid, sludge, liquid, and gas stored in 287 tanks across the DOE complex, containing approximately 650 million curies, radioactive waste storage tank remediation is the nation's highest cleanup priority. Differing waste types and unique technical issues require specialized science and technology to achieve tank cleanup in an environmentally acceptable manner. Some of the waste has been stored for over 50 years in tanks that have exceeded their design lives. The challenge is to characterize and maintain these contents in a safe condition and continue to remediate and close each tank to minimize the risks of waste migration and exposure to workers, the public, and the environment. In 1994, the DOE's Office of Environmental Management (EM) created a group of integrated, multiorganizational teams focusing on specific areas of the EM cleanup mission. These teams have evolved into five focus areas managed within EM's Office of Science and Technology (OST): Tanks Focus Area (TFA); Deactivation and Decommissioning Focus Area; Nuclear Materials Focus Area; Subsurface Contaminants Focus Area; and Transuranic and Mixed Waste Focus Area.

  20. ELECTROCHEMICAL CORROSION STUDIES CORE 308 SEGMENTS 14R1 & 14R2 TANK 241-AY-102

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN JB; COOKE GA

    2003-10-30

    This document reports the results of electrochemical corrosion tests on AS1S Grade 60 carbon steel coupons exposed to tank 241-AY-102 sludge under conditions similar to those near the bottom of the tank. The tests were performed to evaluate the corrosive behavior of the waste in contact with sludge that does not meet the chemistry control limits of Administrative Control (AC) 5.15, Corrosion Mitigation Program.

  1. Co-combustion of automotive shredder residue (ASR) and sewage sludge with a mixture of industrial and household waste in an 20MW fluidized bed combustor; Samfoerbraenning av bilfluff, roetslam och avfall i en 20 MW fluidbaeddpanna - Studier av braenslesammansaettningens paaverkan paa belaeggningsbildning

    Energy Technology Data Exchange (ETDEWEB)

    Eskilsson, David; Johansson, Andreas; Johansson, Linda; Wikstroem-Blomqvist, Evalena

    2007-07-01

    In order to prevent a further increased use of resources and to decrease the environmental impact from landfills, organic wastes are today diverted towards material and energy recovery. This creates a waste market with an increasing number of waste fractions that needs to be treated properly. As an example, in Sweden it has recently been prohibited to landfill source separated combustible waste (2002) and organic waste (2005). Wastes as automotive shredder residue (ASR) and sewage sludge can no longer be landfilled and needs to be either material or energy recovered, which challenge the waste treatment sector. This work investigates the effects of ASR and sewage sludge co-combustion in a 20 MW Energy-from-Waste plant (bubbling fluidised bed). The long term objective of the work is to increase the fuel flexibility, the boiler availability and the power production. This report focus on boiler operation and combustion performance in terms of agglomeration, deposit rates and emissions. In addition to the tests with ASR and sewage sludge, repeated measurements were performed during normal load as a reference. The results show that the co-combusted fractions of ASR and sewage sludge, which on mass basis constituted 6 % and 15 % respectively, did not increase the risk for agglomeration or deposits on heat-exchanging surfaces. Instead, compared to the two reference cases, the deposit rates decreased when sewage sludge was added. Only minor variation in the emissions was seen between the different cases. The levels of I-TEQs were far below the legislated values in all cases

  2. Co-gasification of sewage sludge and woody biomass in a fixed-bed downdraft gasifier: toxicity assessment of solid residues.

    Science.gov (United States)

    Rong, Le; Maneerung, Thawatchai; Ng, Jingwen Charmaine; Neoh, Koon Gee; Bay, Boon Huat; Tong, Yen Wah; Dai, Yanjun; Wang, Chi-Hwa

    2015-02-01

    As the demand for fossil fuels and biofuels increases, the volume of ash generated will correspondingly increase. Even though ash disposal is now strictly regulated in many countries, the increasing volume of ash puts pressure on landfill sites with regard to cost, capacity and maintenance. In addition, the probability of environmental pollution from leakage of bottom ash leachate also increases. The main aim of this research is to investigate the toxicity of bottom ash, which is an unavoidable solid residue arising from biomass gasification, on human cells in vitro. Two human cell lines i.e. HepG2 (liver cell) and MRC-5 (lung fibroblast) were used to study the toxicity of the bottom ash as the toxins in the bottom ash may enter blood circulation by drinking the contaminated water or eating the food grown in bottom ash-contaminated water/soil and the toxic compounds may be carried all over the human body including to important organs such as lung, liver, kidney, and heart. It was found that the bottom ash extract has a high basicity (pH = 9.8-12.2) and a high ionic strength, due to the presence of alkali and alkaline earth metals e.g. K, Na, Ca and Mg. Moreover, it also contains concentrations of heavy metals (e.g. Zn, Co, Cu, Fe, Mn, Ni and Mo) and non-toxic organic compounds. Although human beings require these trace elements, excessive levels can be damaging to the body. From the analyses of cell viability (using MTS assay) and morphology (using fluorescence microscope), the high toxicity of the gasification bottom ash extract could be related to effects of high ionic strength, heavy metals or a combination of these two effects. Therefore, our results suggest that the improper disposal of the bottom ash wastes arising from gasification can create potential risks to human health and, thus, it has become a matter of urgency to find alternative options for the disposal of bottom ash wastes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Tank Focus Area pretreatment activities

    International Nuclear Information System (INIS)

    McGinnis, C.P.; Welch, T.D.; Manke, K.L.

    1997-01-01

    Plans call for the high-level wastes to be retrieved from the tanks and immobilized in a stable waste form suitable for long-term isolation. Chemistry and chemical engineering operations are required to retrieve the wastes, to condition the wastes for subsequent steps, and to reduce the costs of the waste management enterprise. Pretreatment includes those processes between retrieval and immobilization, and includes preparation of suitable feed material for immobilization and separations to partition the waste into streams that yield lower life-cycle costs. Some of the technologies being developed by the Tank Focus Area (TFA) to process these wastes are described. These technologies fall roughly into three areas: (1) solid/liquid separation (SLS), (2) sludge pretreatment, and (3) supernate pretreatment

  4. Dimethyl sulfoxide (DMSO) waste residues and municipal waste water odor by dimethyl sulfide (DMS): the north-east WPCP plant of Philadelphia.

    Science.gov (United States)

    Glindemann, Dietmar; Novak, John; Witherspoon, Jay

    2006-01-01

    This study shows for the first time that overlooked mg/L concentrations of industrial dimethyl sulfoxide (DMSO) waste residues in sewage can cause "rotten cabbage" odor problems bydimethyl sulfide (DMS) in conventional municipal wastewater treatment. In laboratory studies, incubation of activated sludge with 1-10 mg/L DMSO in bottles produced dimethyl sulfide (DMS) at concentrations that exceeded the odor threshold by approximately 4 orders of magnitude in the headspace gas. Aeration at a rate of 6 m3 air/m3 sludge resulted in emission of the DMS into the exhaust air in a manner analogous to that of an activated sludge aeration tank. A field study atthe NEWPCP sewage treatment plant in Philadelphia found DMSO levels intermittently peaking as high as 2400 mg/L in sewage near an industrial discharger. After 3 h, the DMSO concentration in the influent to the aeration tank rose from a baseline level of less than 0.01 mg/L to a level of 5.6 mg/L and the DMS concentration in the mixed liquor rose from less than 0.01 to 0.2 mg/L. Finding this link between the intermittent occurrence of DMSO residues in influent of the treatment plant and the odorant DMS in the aeration tank was the keyto understanding and eliminating the intermittent "canned corn" or "rotten cabbage" odor emissions from the aeration tank that had randomly plagued this plant and its city neighborhood for two decades. Sewage authorities should consider having wastewater samples analyzed for DMSO and DMS to check for this possible odor problem and to determine whether DMSO emission thresholds should be established to limit odor generation at sewage treatment plants.

  5. Numerical Modelling and Measurement in a Test Secondary Settling Tank

    DEFF Research Database (Denmark)

    Dahl, C.; Larsen, Torben; Petersen, O.

    1994-01-01

    sludge. Phenomena as free and hindered settling and the Bingham plastic characteristic of activated sludge suspensions are included in the numerical model. Further characterisation and test tank experiments are described. The characterisation experiments were designed to measure calibration parameters...... and for comparing measured and calculated result. The numerical model could, fairly accuratly, predict the measured results and both the measured and the calculated results showed a flow field pattern identical to flow fields in full-scale secondary setling tanks. A specific calibration of the Bingham plastic...

  6. Underground Storage Tanks - Storage Tank Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  7. Dual Tank Fuel System

    Science.gov (United States)

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  8. History of waste tank 12, 1956 through 1974

    International Nuclear Information System (INIS)

    Davis, T.L.; Tharin, D.W.; Lohr, D.R.

    1978-09-01

    Tank 12 was placed in service as a receiver for high heat waste (HW) in September 1956 and continued in this service through 1974. From August 1963 through December 1974, the supernate was decanted (leaving the sludge) five times to allow the tank to be refilled with HW. Inspections have been made and photographs taken in the annular space with an optical periscope and a lead-shielded camera. A salt-encrusted leak site was discovered in May 1974. No other leak sites have been found. Analytical samples have been taken of sludge, supernate, and vapor. Primary tank wall thickness, heat transfer coefficient measurements, and profiles of tank temperature differences have been obtained. Several modifications to equipment and various equipment repairs were made

  9. SAFETY EVALUATION OF OXALIC ACID WASTE RETRIEVAL IN SINGLE SHELL TANK (SST) 241-C-106

    International Nuclear Information System (INIS)

    SHULTZ, M.V.

    2003-01-01

    This report documents the safety evaluation of the process of retrieving sludge waste from single-shell tank 241-C-106 using oxalic acid. The results of the HAZOP, safety evaluation, and control allocation/decision are part of the report. This safety evaluation considers the use of oxalic acid to recover residual waste in single-shell tank (SST) 241-C-106. This is an activity not addressed in the current tank farm safety basis. This evaluation has five specific purposes: (1) Identifying the key configuration and operating assumptions needed to evaluate oxalic acid dissolution in SST 241-C-106. (2) Documenting the hazardous conditions identified during the oxalic acid dissolution hazard and operability study (HAZOP). (3) Documenting the comparison of the HAZOP results to the hazardous conditions and associated analyzed accident currently included in the safety basis, as documented in HNF-SD-WM-TI-764, Hazard Analysis Database Report. (4) Documenting the evaluation of the oxalic acid dissolution activity with respect to: (A) Accident analyses described in HNF-SD-WM-SAR-067, Tank Farms Final Safety Analysis Report (FSAR), and (B) Controls specified in HNF-SD-WM-TSR-006, Tank Farms Technical Safety Requirements (TSR). (5) Documenting the process and results of control decisions as well as the applicability of preventive and/or mitigative controls to each oxalic acid addition hazardous condition. This safety evaluation is not intended to be a request to authorize the activity. Authorization issues are addressed by the unreviewed safety question (USQ) evaluation process. This report constitutes an accident analysis

  10. Method of Dehydration of Sewage Sludge Using Elements of GEOTUBE Technology at Bortnichy’s Aeration Station

    Directory of Open Access Journals (Sweden)

    Kashkovsky, V.I.

    2014-01-01

    Full Text Available The work is dedicated to major environmental and social problem — dehydration of sewage sludge with the help of GeoTube technology elements. The process of dehydration dynamics for different sludge origin has developed. The pilot installation has worked out — filter module placed in the tank of Bortnichy’s sewage treatment plant, where the aerobically-stabilized sludge processed with flocculant Praestol 859 BS and water from filtration fields are delivered to. Installation can be used to reduce the workload on sludge fields, for purification of undersludge returning water and de hydration of accumulated sludge.

  11. Aerobic granular sludge : Scaling up a new technology

    NARCIS (Netherlands)

    De Kreuk, M.K.

    2006-01-01

    Most conventional wastewater treatment plants need a large surface area for the treatment of their sewage. This is due to the open structure of the biomass used to convert the polluting components in wastewater. Because of the flocculated growth, sludge concentrations in reaction tanks are low and

  12. Investigation of the organic matter in inactive nuclear tank liquids

    International Nuclear Information System (INIS)

    Schenley, R.L.; Griest, W.H.

    1990-08-01

    Environmental Protection Agency (EPA) methodology for regulatory organics fails to account for the organic matter that is suggested by total organic carbon (TOC) analysis in the Oak Ridge National Laboratory (ORNL) inactive nuclear waste-tank liquids and sludges. Identification and measurement of the total organics are needed to select appropriate waste treatment technologies. An initial investigation was made of the nature of the organics in several waste-tank liquids. This report details the analysis of ORNL wastes

  13. Laboratory study on the bioremediation of petrochemical sludge-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Morelli, I.S.; Del Panno, M.T.; De Antoni, G.L.; Painceira, M.T. [Universidad Nacional de La Plata, Buenos Aires (Argentina). Facultad de Ciencia Exactas, Laboratorio de Biodegradacion Microbiologica de Hidrocarburos

    2005-06-01

    This study evaluated by biological and chemical analyses the effectiveness of bioremediation of sludge from the petrochemical industry in systems containing artificially contaminated soil. The sludge-soil systems were prepared with three different initial concentrations of sludge, and during bioremediation 86-95% of the hydrocarbons was eliminated. Simultaneously, soil bacterial populations and inhibition of seed germination by aqueous extracts increased in all sludge-soil systems during the first 180 days of treatment. After 1 year of bioremediation, a loss in the catabolic capacity of the Gram-negative bacterial population was observed, but was not dependent on the initial sludge concentration. Furthermore, residual levels of hydrocarbons and seed germination inhibitory effect decreased sharply, but some level of toxicity remained in the systems containing the highest initial sludge concentration. Independent of the initial sludge concentration, the contaminated soils did not re-establish their original features even when residual hydrocarbon concentrations suggested the end of the process. (author)

  14. Evaluating the stabilisation degree of digested sewage sludge: investigations at four municipal wastewater treatment plants.

    Science.gov (United States)

    Parravicini, V; Smidt, E; Svardal, K; Kroiss, H

    2006-01-01

    Further reduction of volatile suspended solids (VSS) during a post-stabilisation step was applied to evaluate the stabilisation degree of digested sewage sludge. For this purpose digested sludge was collected at four municipal wastewater treatment plants (WWTPs) and further stabilised in lab-scale chemostat reactors either under anaerobic or aerobic conditions. Experimental results showed that even in adequately digested sludge a consistent amount of VSS was degraded during aerobic post-stabilisation. It seems that aerobic conditions play a significant role during degradation of residual VSS. Additionally, specific VSS production (gVSS/peCOD110.d) as well as specific oxygen uptake rate were shown to be suitable parameters to assess the degree of sludge stabilisation at WWTPs. Fourier transform infrared spectroscopy was used to reveal changes in the sludge composition. Spectra of treated and untreated sludge samples indicated that the major component of residual VSS in stabilised sludge for instance consisted of biomass, while cellulose was absent.

  15. Pretreatment of microbial sludges

    Science.gov (United States)

    Rivard, Christopher J.; Nagle, Nicholas J.

    1995-01-01

    Methods are described for pretreating microbial sludges to break cells and disrupt organic matter. One method involves the use of sonication, and another method involves the use of shear forces. The pretreatment of sludge enhances bioconversion of the organic fraction. This allows for efficient dewatering of the sludge and reduces the cost for final disposal of the waste.

  16. Advanced purification of carbonization wastewater by activated sludge treatment

    Energy Technology Data Exchange (ETDEWEB)

    Moerman, W.H.; Bamelis, D.R.; Vanholle, P.M.; Vergote, H.L.; Verstraete, W.H. [State University of Ghent, Ghent (Belgium)

    1995-12-31

    A full scale activated sludge plant has been developed treating 960 m{sup 3} of carbonization wastewater daily. Results and process parameters from the first three years of operation are described. In spite of intense physical-chemical pretreatment, the carbonization wastewater must still be diluted by 50% prior to biological processing due to the presence of inhibitory organic compounds. The activated sludge plant consists of four serially connected aeration tanks. The influent is distributed following a step load regime. Other specific process characteristics are: pure oxygen aeration, high mixed liquor volatile suspended soils (MLVSS) levels of 10-15 kg MLVSS/m{sup 3}, and a high sludge age of 100-150 days. The first aeration tank is kept anoxic, making it possible to implement combined nitrification and denitrification.

  17. Anaerobic treatment of sludge: focusing on reduction of LAS concentration in sludge

    DEFF Research Database (Denmark)

    Haagensen, Frank; Mogensen, Anders Skibsted; Angelidaki, Irini

    2002-01-01

    of transformation varied between 14% and 25%. HPLC analysis showed that disappearance of LAS12 was followed by the formation of a metabolite. The experiments indicated that there is a clear correlation between degradation of organic matter contained in sludge and transformation of LAS12. When the reduction degree......Anaerobic degradation of linear alkylbenzene sulfonates (LAS) was tested in continuous stirred tank reactors (CSTR). LAS12 was used as a model compound and was spiked on sewage sludge. The experiments clearly showed that transformation of LAS12 occurred under anaerobic conditions. The degree...... of the organic matter increased from 22% to 28%, the transformation degree of LAS12 also increased, from 14% to 20%. Decreasing the total solids concentration of the influent sludge or increasing the spiked concentration of LAS12 did not alter the degree of LAS12 transformation significantly. A clear correlation...

  18. Selected heavy metals speciation in chemically stabilised sewage sludge

    Science.gov (United States)

    Wiśniowska, Ewa; Włodarczyk-Makuła, Marła

    2017-11-01

    Selected heavy metals (Pb, Ni, Cd) were analysed in soil, digested sewage sludge as well as in the sludge stabilised with CaO or Fenton's reagent. The dose of Fenton's reagent was as follows: Fe2+ = 1g.L-1, Fe2+/H2O2=1:100; stabilisation lasted for 2 h. Dose of CaO was equal to 1 g CaO.g d.m.-1 Total concentration of all metals in the digested sewage sludge was higher than in the soil. Chemical stabilisation of sludge with Fenton's reagent increased total metal content in the sludge as a result of total solids removal. Opposite effect was stated when the sludge was mixed with CaO. Also chemical fractions of heavy metals were identified (exchangeable, carbonate bound, iron oxides bound, organic and residual). The results indicate that stabilisation of the sludge with Fenton's reagent increased mobility of heavy metals compared to the digested sludge. Amendment of CaO increased percent share of examined metals in residual fraction, thus immobilised them and decreased their bioavailability.

  19. STP-ECRTS - THERMAL AND GAS ANALYSES FOR SLUDGE TRANSPORT AND STORAGE CONTAINER (STSC) STORAGE AT T PLANT

    Energy Technology Data Exchange (ETDEWEB)

    CROWE RD; APTHORPE R; LEE SJ; PLYS MG

    2010-04-29

    The Sludge Treatment Project (STP) is responsible for the disposition of sludge contained in the six engineered containers and Settler tank within the 105-K West (KW) Basin. The STP is retrieving and transferring sludge from the Settler tank into engineered container SCS-CON-230. Then, the STP will retrieve and transfer sludge from the six engineered containers in the KW Basin directly into a Sludge Transport and Storage Containers (STSC) contained in a Sludge Transport System (STS) cask. The STSC/STS cask will be transported to T Plant for interim storage of the STSC. The STS cask will be loaded with an empty STSC and returned to the KW Basin for loading of additional sludge for transportation and interim storage at T Plant. CH2MHILL Plateau Remediation Company (CHPRC) contracted with Fauske & Associates, LLC (FAI) to perform thermal and gas generation analyses for interim storage of STP sludge in the Sludge Transport and Storage Container (STSCs) at T Plant. The sludge types considered are settler sludge and sludge originating from the floor of the KW Basin and stored in containers 210 and 220, which are bounding compositions. The conditions specified by CHPRC for analysis are provided in Section 5. The FAI report (FAI/10-83, Thermal and Gas Analyses for a Sludge Transport and Storage Container (STSC) at T Plant) (refer to Attachment 1) documents the analyses. The process considered was passive, interim storage of sludge in various cells at T Plant. The FATE{trademark} code is used for the calculation. The results are shown in terms of the peak sludge temperature and hydrogen concentrations in the STSC and the T Plant cell. In particular, the concerns addressed were the thermal stability of the sludge and the potential for flammable gas mixtures. This work was performed with preliminary design information and a preliminary software configuration.

  20. A Rational Approach to Septic Tank Design | Nnaji | Nigerian ...

    African Journals Online (AJOL)

    A new approach to the design of septic tanks was developed based on a number of critical parameters, namely: residual detention time, minimum residual detention time, residual depth and minimum residual depth. This method involved rst specifying a desired desludging interval. This interval was then substituted in a ...

  1. TANK 7 CHARACTERIZATION AND WASHING STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Pareizs, J.; Click, D.

    2010-02-04

    A 3-L PUREX sludge sample from Tank 7 was characterized and then processed through a series of inhibited water washes to remove oxalate, sodium, and other soluble ions. Current plans use Tank 7 as one of the feed sources for Sludge Batch 7 (SB7). Tank 7 is high in oxalate due to the oxalic acid cleaning of the sludge heels from Tanks 5 and 6 and subsequent transfer to Tank 7. Ten decant and nine wash cycles were performed over a 47 day period at ambient temperature. Initially, seven decants and seven washes were completed based on preliminary estimates of the number of wash cycles required to remove the oxalate in the sludge. After reviewing the composition data, SRNL recommended the completion of 2 or 3 more decant/wash cycles to ensure all of the sodium oxalate had redissolved. In the first 7 washes, the slurry oxalate concentration was 12,300 mg/kg (69.6% oxalate removal compared to 96.1% removal of the other soluble ions). After all ten decants were complete, the slurry oxalate concentration was 3,080 mg/kg (89.2% oxalate removal compared to 99.0% of the other soluble ions). The rate of dissolution of oxalate increased significantly with subsequent washes until all of the sodium oxalate had been redissolved after seven decant/wash cycles. The measured oxalate concentrations agreed very well with LWO predictions for washing of the Tank 7 sample. Highlights of the analysis and washing of the Tank 7 sample include: (1) Sodium oxalate was detected in the as-received filtered solids. 95% of the oxalate was insoluble (undissolved) in the as-received slurry. (2) No sodium oxalate was detected in the post-wash filtered solids. (3) Sodium oxalate is the last soluble species that redissolves during washing with inhibited water. In order to significantly reduce the sodium oxalate concentration, the sludge must be highly washed, leaving the other soluble anions and cations (including sodium) very low in concentration. (4) The post-wash slurry had 1% of the soluble anions

  2. Salt removal from tanks containing high-level radioactive waste

    International Nuclear Information System (INIS)

    Kiser, D.L.

    1981-01-01

    At the Savannah River Plant (SRP), there are 23 waste storage tanks containing high-level radioactive wastes that are to be retired. These tanks contain about 23 million liters of salt and about 10 million liters of sludge, that are to be relocated to new Type III, fully stress-relieved tanks with complete secondary containment. About 19 million liters of salt cake are to be dissolved. Steam jet circulators were originally proposed for the salt dissolution program. However, use of steam jet circulators raised the temperature of the tank contents and caused operating problems. These included increased corrosion risk and required long cooldown periods prior to transfer. Alternative dissolution concepts were investigated. Examination of mechanisms affecting salt dissolution showed that the ability of fresh water to contact the cake surface was the most significant factor influencing dissolution rate. Density driven and mechanical agitation techniques were developed on a bench scale and then were demonstrated in an actual waste tank. Actual waste tank demonstrations were in good agreement with bench-scale experiments at 1/85 scale. The density driven method utilizes simple equipment, but leaves a cake heel in the tank and is hindered by the presence of sludge or Zeolite in the salt cake. Mechanical agitation overcomes the problems found with both steam jet circulators and the density driven technique and is the best method for future waste tank salt removal

  3. Characterization Of The As-Received Sludge Batch 9 Qualification Sample (Htf-51-15-81)

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    Savannah River National Laboratory (SRNL) personnel have been requested to qualify the next sludge batch (Sludge Batch 9 – SB9) for processing at the Defense Waste Processing Facility (DWPF). To accomplish this task, Savannah River Remediation (SRR) has sent SRNL a 3-L slurried sample of Tank 51H (HTF-51-15-81) to be characterized, washed, and then used in a lab-scale demonstration of the DWPF flowsheet (potentially after combining with Tank 40H sludge). This report documents the first steps of the qualification process – characterization of the as-received Tank 51H qualification sample. These results will be used to support a reprojection of SB9 by SRR from which final Tank 51H washing, frit development, and Chemical Processing Cell (CPC) activities will be based.

  4. Glass Science tutorial lecture No. 5: Historical review of USDOE tank waste management

    International Nuclear Information System (INIS)

    McDaniel, E.W.

    1995-02-01

    This is a two day course whose objective is to present an unbiased historical overview of the DOE tank waste activities. World events which impacted the US nuclear program (or vise versa) will be presented. Liquid, mostly tank waste, and sludge are the primary concerns of this course

  5. Effect of temperature on anaerobic treatment of black water in UASB-septic tank systems

    NARCIS (Netherlands)

    Luostarinen, S.; Sanders, W.T.M.; Kujawa-Roeleveld, K.; Zeeman, G.

    2007-01-01

    The effect of northern European seasonal temperature changes and low temperature on the performance of upflow anaerobic sludge blanket (UASB)-septic tanks treating black water was studied. Three UASB-septic tanks were monitored with different operational parameters and at different temperatures. The

  6. Large underground radioactive waste storage tanks successfully cleaned at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Billingsley, K.; Burks, B.L.; Johnson, M.; Mims, C.; Powell, J.; Hoesen, D. van

    1998-05-01

    Waste retrieval operations were successfully completed in two large underground radioactive waste storage tanks in 1997. The US Department of Energy (DOE) and the Gunite Tanks Team worked cooperatively during two 10-week waste removal campaigns and removed approximately 58,300 gallons of waste from the tanks. About 100 gallons of a sludge and liquid heel remain in each of the 42,500 gallon tanks. These tanks are 25 ft. in diameter and 11 ft. deep, and are located in the North Tank Farm in the center of Oak Ridge National Laboratory. Less than 2% of the radioactive contaminants remain in the tanks, proving the effectiveness of the Radioactive Tank Cleaning System, and accomplishing the first field-scale cleaning of contaminated underground storage tanks with a robotic system in the DOE complex

  7. Potential for criticality in Hanford tanks resulting from retrieval of tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Whyatt, G.A.; Sterne, R.J.; Mattigod, S.V. [and others

    1996-09-01

    This report assesses the potential during retrieval operations for segregation and concentration of fissile material to result in a criticality. The sluicing retrieval of C-106 sludge to AY-102 and the operation of mixer pumps in SY-102 are examined in some detail. These two tanks (C-106, SY-102) were selected because of the near term plans for retrieval of these tanks and their high plutonium inventories relative to other tanks. Although all underground storage tanks are subcritical by a wide margin if assumed to be uniform in composition, the possibility retrieval operations could preferentially segregate the plutonium and locally concentrate it sufficiently to result in criticality was a concern. This report examines the potential for this segregation to occur.

  8. Potential for criticality in Hanford tanks resulting from retrieval of tank waste

    International Nuclear Information System (INIS)

    Whyatt, G.A.; Sterne, R.J.; Mattigod, S.V.

    1996-09-01

    This report assesses the potential during retrieval operations for segregation and concentration of fissile material to result in a criticality. The sluicing retrieval of C-106 sludge to AY-102 and the operation of mixer pumps in SY-102 are examined in some detail. These two tanks (C-106, SY-102) were selected because of the near term plans for retrieval of these tanks and their high plutonium inventories relative to other tanks. Although all underground storage tanks are subcritical by a wide margin if assumed to be uniform in composition, the possibility retrieval operations could preferentially segregate the plutonium and locally concentrate it sufficiently to result in criticality was a concern. This report examines the potential for this segregation to occur

  9. Properties of wastepaper sludge in geopolymer mortars for masonry applications.

    Science.gov (United States)

    Yan, Shiqin; Sagoe-Crentsil, Kwesi

    2012-12-15

    This paper presents the results of an investigation into the use of wastepaper sludge in geopolymer mortar systems for manufacturing construction products. The investigation was driven by the increasing demand for reuse options in paper-recycling industry. Both fresh and hardened geopolymer mortar properties are evaluated for samples incorporating dry wastepaper sludge, and the results indicate potential end-use benefits in building product manufacture. Addition of wastepaper sludge to geopolymer mortar reduces flow properties, primarily due to dry sludge absorbing water from the binder mix. The average 91-day compressive strength of mortar samples incorporating 2.5 wt% and 10 wt% wastepaper sludge respectively retained 92% and 52% of the reference mortar strength. However, contrary to the normal trend of increasing drying shrinkage with increasing paper sludge addition to Portland cement matrices, the corresponding geopolymer drying shrinkage decreased by 34% and 64%. Equally important, the water absorption of hardened geopolymer mortar decreased with increasing paper sludge content at ambient temperatures, providing good prospects of overall potential for wastepaper sludge incorporation in the production of building and masonry elements. The results indicate that, despite its high moisture absorbance due to the organic matter and residual cellulose fibre content, wastepaper sludge appears compatible with geopolymer chemistry, and hence serves as a potential supplementary additive to geopolymer cementitious masonry products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Energy and resource utilization of deinking sludge pyrolysis

    International Nuclear Information System (INIS)

    Lou, Rui; Wu, Shubin; Lv, Gaojin; Yang, Qing

    2012-01-01

    The thermochemical conversion technique was applied in deinking sludge from the pulp and papermaking industrial to indagate the utilization of sludge biomass to energy, and the pyrolysis characteristics and pyrolytic products of deinking sludge were studied with thermogravimetric analysis (TGA) and pyrolysis coupled with gas chromatograph–mass spectrometer (Py-GC/MS). The static tubular furnace as an applied industrial research was used to study deinking sludge pyrolysis. The solid, gas and liquid of products was characterized by electron probe microanalysis (EPMA), gas chromatograph (GC) and gas chromatograph–mass (GC/MS), respectively. The results revealed that the weight-loss process of deinking sludge was a non-isothermal reaction and composed of four stages, i.e. dewater stage, volatile releasing stage, carbon burnout stage and some calcium carbonate decomposition. Pyrolytic products from deinking sludge in the static tubular furnace were comprised of the gaseous (29.78%), condensed liquid (bio-oil, 24.41%) and solid residues (45.81%). The volatiles from deinking sludge pyrolyzing were almost aromatic hydrocarbons, i.e. styrene, toluene and benzene and few acids and the solid was calcium carbonate (CaCO 3 ) that can be reused as paper filler. Deinking sludge was converted into high-grade fuel and chemicals by means of thermochemical conversion techniques, hence, pyrolysis of paper deinking sludge had a promising development on the comprehensive utilization.

  11. Feed tank transfer requirements

    Energy Technology Data Exchange (ETDEWEB)

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented.

  12. Ferrocyanide safety program: An assessment of the possibility of ferrocyanide sludge dryout

    International Nuclear Information System (INIS)

    Epstein, M.; Fauske, H.K.; Dickinson, D.R.; Crippen, M.D.; McCormack, J.D.; Cash, R.J.; Meacham, J.E.; Simmons, C.S.

    1994-09-01

    Much attention has been focused on the Hanford Site radioactive waste storage tanks as a results of problems that have been envisioned for them. One problem is the potential chemical reaction between ferrocyanide precipitate particles and nitrates in the absence of water. This report addresses the question of whether dryout of a portion of ferrocyanide sludge would render it potentially reactive. Various sludge dryout mechanisms were examined to determine if any of them could occur. The mechanisms are: (1) bulk heating of the entire sludge inventory to its boiling point; (2) loss of liquid to the atmosphere via sludge surface evaporation; (3) local drying by boiling in a hot spot region; (4) sludge drainage through a leak in the tank wall; and (5) local drying by evaporation from a warm segment of surface sludge. From the simple analyses presented in this report and more detailed published analyses, it is evident that global loss of water from bulk heating of the sludge to its boiling point or from surface evaporation and vapor transport to the outside air is not credible. Also, from the analyses presented in this report and experimental and analytical work presented elsewhere, it is evident that formation of a dry local or global region of sludge as a result of tank leakage (draining of interstitial liquid) is not possible. Finally, and most importantly, it is concluded that formation of dry local regions in the ferrocyanide sludge by local hot spots or warm surface regions is not possible. The conclusion that local or global dryout is incredible is consistent with four decades of waste storage history, during which sludge temperature have gradually decreased or remained constant and the sludge moisture content has been retained. 54 refs

  13. Tank characterization report for single-shell tank 241-BY-104

    Energy Technology Data Exchange (ETDEWEB)

    Benar, C.J.

    1996-09-26

    contains an estimated 1,234 kL of noncomplexed waste. Of this total volume, 568 kL are estimated to be sludge and 666 kL are estimated to be saltcake. The Hanlon values are not used because they are inconsistent with waste surface level measurements, and they will not be updated until the tank level stabilizes and the new surface photos are taken. This report summarizes the collection and analysis of two rotary-mode core samples obtained in October and November 1995 and reported in the Final Report for Tank 241-BY-104, Rotary Mode Cores 116 and 117. Cores 116 and 117 were obtained from risers 5 and IIA, respectively. The sampling event was performed to satisfy the requirements listed in the following documents: Tank Safety Screening Data Quality Objective , Data Requirements for the Ferrocyanide Safety Issue Developed through the Data Quality Objective Process, Data Quality Objective to Support Resolution of the Organic Fuel Rich Tank Safety Issue, Test Plan for Samples from Hanford Waste Tanks 241-BY-103, BY-104, BY-105, BY-106, BY-108, BY-110, YY-103, U-105, U-107, U-108, and U-109.

  14. REEMISSION OF MERCURY COMPOUNDS FROM SEWAGE SLUDGE DISPOSAL

    Directory of Open Access Journals (Sweden)

    Beata Janowska

    2016-12-01

    Full Text Available The sewage sludge disposal and cultivation methods consist in storage, agricultural use, compost production, biogas production or heat treatment. The sewage sludge production in municipal sewage sludge treatment plants in year 2013 in Poland amounted to 540.3 thousand Mg d.m. The sewage sludge for agricultural or natural use must satisfy chemical, sanitary and environmental safety requirements. The heavy metal content, including the mercury content, determines the sewage sludge disposal method. Mercury has a high chemical activity and biological form compounds with different properties. The properties of the mercury present in sewage sludge or composts, its potential bioavailability depend on its physicochemical forms. Different forms of mercury, which are found in soil and sediments and sewage sludge, may be determined using various techniques sequential extraction. In order to assess the bioavailability the analysis of fractional of mercury in samples of sewage sludge and composts was made. For this purpose the analytical procedure based on a four sequential extraction process was applied. Mercury fractions were classified as exchangeable (EX, base soluble (BS, acids soluble (AS and oxidizable (OX. This article presents the research results on the mercury compounds contents in sewage sludge subjected to drying process, combustion and in composted sewage sludge. During drying and combustion process of the sewage sludge, mercury transforms into volatile forms that could be emitted into the atmosphere. The mercury fractionation in composted sewage sludge proved that mercury in compost occurs mainly in an organic fraction and in a residual fraction that are scarce in the environment.

  15. Influence of chemical sprinkle on the processes in activated tank of wastewater treatment

    Directory of Open Access Journals (Sweden)

    Milan Búgel

    2012-12-01

    Full Text Available The research deals with processes occurring in the activation tank during the snow-melt inflow of chemical component of roadsalt. Chemical composition of the suspension in the activation tank is changing following the metabolism of organisms and chemicalcomposition of the influent wastewater. Sludge and wastewater in nitrification tail of the activation tank has higher conductivity, highercontents of chloride, higher sludge index and other characteristics are changing during snow – melt. The amount of the inflow road saltis a determining factor of lyses of microorganism cells.

  16. Evaluation of Flygt Propeller Xixers for Double Shell Tank (DST) High Level Waste Auxiliary Solids Mobilization

    Energy Technology Data Exchange (ETDEWEB)

    PACQUET, E.A.

    2000-07-20

    The River Protection Project (RPP) is planning to retrieve radioactive waste from the single-shell tanks (SST) and double-shell tanks (DST) underground at the Hanford Site. This waste will then be transferred to a waste treatment plant to be immobilized (vitrified) in a stable glass form. Over the years, the waste solids in many of the tanks have settled to form a layer of sludge at the bottom. The thickness of the sludge layer varies from tank to tank, from no sludge or a few inches of sludge to about 15 ft of sludge. The purpose of this technology and engineering case study is to evaluate the Flygt{trademark} submersible propeller mixer as a potential technology for auxiliary mobilization of DST HLW solids. Considering the usage and development to date by other sites in the development of this technology, this study also has the objective of expanding the knowledge base of the Flygt{trademark} mixer concept with the broader perspective of Hanford Site tank waste retrieval. More specifically, the objectives of this study delineated from the work plan are described.

  17. The biological treatment of petroleum tank draw waters

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Jose L. [Envirosystems Supply, Inc., Hollywood, FL (United States); Stephens, Greg [Plantation Pipeline, Atlanta, GA (United States)

    1993-12-31

    This work reviews and summarizes the performance of a biological process (followed by the state-of-the-art) for the removal of organic compounds in petroleum tank draw waters. Trickling filter and the extended aeration modification of activated sludge were selected as the biological processes tested in pilot units. 4 refs., 2 figs., 3 tabs.

  18. Tank Farm Contractor Operation and Utilization Plan [SEC 1 Thru 3

    Energy Technology Data Exchange (ETDEWEB)

    KIRKBRIDE, R.A.

    1999-05-04

    The Tank Waste Remediation System Operation and Utilization Plan updates the operating scenario and plans for the delivery of feed to BNFL Inc., retrieval of waste from single-shell tanks, and the overall process flowsheets for Phases I and II of the privatization of the Tank Waste Remediation System. The plans and flowsheets are updated with the most recent tank-by-tank inventory and sludge washing data. Sensitivity cases were run to evaluate the impact or benefits of proposed changes to the BNFL Inc. contract and to evaluate a risk-based SST retrieval strategy.

  19. Microbial dynamics in anaerobic digestion reactors for treating organic urban residues during the start-up process.

    Science.gov (United States)

    Alcántara-Hernández, R J; Taş, N; Carlos-Pinedo, S; Durán-Moreno, A; Falcón, L I

    2017-06-01

    Anaerobic digestion of organic residues offers economic benefits via biogas production, still methane (CH 4 ) yield relies on the development of a robust microbial consortia for adequate substrate degradation, among other factors. In this study, we monitor biogas production and changes in the microbial community composition in two semi-continuous stirred tank reactors during the setting process under mesophilic conditions (35°C) using a 16S rDNA high-throughput sequencing method. Reactors were initially inoculated with anaerobic granular sludge from a brewery wastewater treatment plant, and gradually fed organic urban residues (4·0 kg VS m -3  day -1 ) . The inocula and biomass samples showed changes related to adaptations of the community to urban organic wastes including a higher relative proportion of Clostridiales, with Ruminococcus spp. and Syntrophomonas spp. as recurrent species. Candidatus Cloacamonas spp. (Spirochaetes) also increased from ~2·2% in the inoculum to >10% in the reactor biomass. The new community consolidated the cellulose degradation and the propionate and amino acids fermentation processes. Acetoclastic methanogens were more abundant in the reactor, where Methanosaeta spp. was found as a key player. This study demonstrates a successful use of brewery treatment plant granular sludge to obtain a robust consortium for methane production from urban organic solid waste in Mexico. This study describes the selection of relevant bacteria and archaea in anaerobic digesters inoculated with anaerobic granular sludge from a brewery wastewater treatment plant. Generally, these sludge granules are used to inoculate reactors digesting organic urban wastes. Though, it is still not clearly understood how micro-organisms respond to substrate variations during the reactor start-up process. After feeding two reactors with organic urban residues, it was found that a broader potential for cellulose degradation was developed including Bacteroidetes

  20. Waste Tank Organic Safety Project organic concentration mechanisms task. FY 1994 progress report

    International Nuclear Information System (INIS)

    Gerber, M.A.

    1994-09-01

    The Pacific Northwest Laboratory (PNL), Waste Tank Organic Safety Project is conducting research to support Westinghouse Hanford Company's (WHC) Waste Tank Safety Program, sponsored by the U.S. Department of Energy's Tank Farm Project Office. The goal of PNL's program is to provide a scientific basis for analyzing organics in Hanford's underground storage tanks (USTs) and for determining whether they are at concentrations that pose a potentially unsafe condition. Part of this research is directed toward determining what organic concentrations are safe by conducting research on organic aging mechanisms and waste energetics to assess the conditions necessary to produce an uncontrolled energy release in tanks due to reactions between the organics and the nitrate and nitrate salts in the tank wastes. The objective of the Organic Concentration Mechanisms Task is to assess the degree of localized enrichment of organics to be expected in the USTs due to concentration mechanisms. This report describes the progress of research conducted in FY 1994 on two concentration mechanisms of interest to the tank safety project: (1) permeation of a separate organic liquid phase into the interstitial spaces of the tank solids during the draining of free liquid from the tanks; and (2) concentration of organics on the surfaces of the solids due to adsorption. Three experiments were conducted to investigate permeation of air and solvent into a sludge simulant that is representative of single-shell tank sludge. The permeation behavior of air and solvent into the sludge simulant can be explained by the properties of the fluid pairs (air/supernate and solvent supernate) and the sludge. One important fluid property is the interfacial tension between the supernate and either the solvent or air. In general, the greater the interfacial tension between two fluids, the more difficult it will be for the air or solvent to displace the supernate during dewatering of the sludge

  1. Preliminary assessment of blending Hanford tank wastes

    Energy Technology Data Exchange (ETDEWEB)

    Geeting, J.G.H.; Kurath, D.E.

    1993-03-01

    A parametric study of blending Hanford tank wastes identified possible benefits from blending wastes prior to immobilization as a high level or low level waste form. Track Radioactive Components data were used as the basis for the single-shell tank (SST) waste composition, while analytical data were used for the double-shell tank (DST) composition. Limiting components were determined using the existing feed criteria for the Hanford Waste Vitrification Plant (HWVP) and the Grout Treatment Facility (GTF). Results have shown that blending can significantly increase waste loading and that the baseline quantities of immobilized waste projected for the sludge-wash pretreatment case may have been drastically underestimated, because critical components were not considered. Alternatively, the results suggest further review of the grout feed specifications and the solubility of minor components in HWVP borosilicate glass. Future immobilized waste estimates might be decreased substantially upon a thorough review of the appropriate feed specifications.

  2. Analysis of sludge from Hanford K East Basin canisters

    Energy Technology Data Exchange (ETDEWEB)

    Makenas, B.J. [ed.] [comp.] [DE and S Hanford, Inc., Richland, WA (United States); Welsh, T.L. [B and W Protec, Inc. (United States); Baker, R.B. [DE and S Hanford, Inc., Richland, WA (United States); Hoppe, E.W.; Schmidt, A.J.; Abrefah, J.; Tingey, J.M.; Bredt, P.R.; Golcar, G.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-09-12

    Sludge samples from the canisters in the Hanford K East Basin fuel storage pool have been retrieved and analyzed. Both chemical and physical properties have been determined. The results are to be used to determine the disposition of the bulk of the sludge and to assess the impact of residual sludge on dry storage of the associated intact metallic uranium fuel elements. This report is a summary and review of the data provided by various laboratories. Although raw chemistry data were originally reported on various bases (compositions for as-settled, centrifuged, or dry sludge) this report places all of the data on a common comparable basis. Data were evaluated for internal consistency and consistency with respect to the governing sample analysis plan. Conclusions applicable to sludge disposition and spent fuel storage are drawn where possible.

  3. Assessment of performing an MST strike in Tank 21H

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, Michael R.

    2014-09-29

    Previous Savannah River National Laboratory (SRNL) tank mixing studies performed for the Small Column Ion Exchange (SCIX) project have shown that 3 Submersible Mixer Pumps (SMPs) installed in Tank 41 are sufficient to support actinide removal by MST sorption as well as subsequent resuspension and removal of settled solids. Savannah River Remediation (SRR) is pursuing MST addition into Tank 21 as part of the Large Tank Strike (LTS) project. The preliminary scope for LTS involves the use of three standard slurry pumps (installed in N, SE, and SW risers) in a Type IV tank. Due to the differences in tank size, internal interferences, and pump design, a separate mixing evaluation is required to determine if the proposed configuration will allow for MST suspension and strontium and actinide sorption. The author performed the analysis by reviewing drawings for Tank 21 [W231023] and determining the required cleaning radius or zone of influence for the pumps. This requirement was compared with previous pilot-scale MST suspension data collected for SCIX that determined the cleaning radius, or zone of influence, as a function of pump operating parameters. The author also reviewed a previous Tank 50 mixing analysis that examined the ability of standard slurry pumps to suspend sludge particles. Based on a review of the pilot-scale SCIX mixing tests and Tank 50 pump operating experience, three standard slurry pumps should be able to suspend sludge and MST to effectively sorb strontium and actinides onto the MST. Using the SCIX data requires an assumption about the impact of cooling coils on slurry pump mixing. The basis for this assumption is described in this report. Using the Tank 50 operating experience shows three standard slurry pumps should be able to suspend solids if the shear strength of the settled solids is less than 160 Pa. Because Tank 21 does not contain cooling coils, the shear strength could be larger.

  4. Determining organic pollutants in automotive industry sludge.

    Science.gov (United States)

    Munaretto, Juliana S; Wonghon, Audrey L; von Mühlen, Carin

    2012-12-01

    In Brazil, the policy for disposing industrial sludge is changing from an emphasis on using controlled landfills to other treatment or co-processing methods; however, the monitoring of organic pollutants is not mandatory. The present study evaluated two general screening methods for organic pollutants in sludge generated in an automotive industrial complex in southern Brazil. The screening was performed using Soxhlet and sonication extractions and Gas Chromatograph coupled with Quadrupole Mass Spectrometry (GC/qMS). It was concluded that both techniques were effective and that most of the compounds identified were alkanes, phenols and esters. Important pollutants were detected in the sludge, which confirms the necessity of monitoring this type of residue.

  5. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  6. Radium 226 in filter sludges from ground water treatment

    International Nuclear Information System (INIS)

    Haberer, K.

    1999-01-01

    Sludge waters from 80 different water works in Germany have been investigated on the content of radium 226, which appears wide-spread in ground water in very low concentrations, but heavily enriched in treatment sludges. The radium 226 contents of the sludge waters from treatment facilities for iron and manganese removal and in some cases for softening and flocculation were related to the dry residues separately determined. The specific Ra 226-activities of the dry residues fit to a log-norm distribution with a median value of 500 Bq/kg and a deviation of 1.7. 90% of the values were below 1200 Bq/kg. Radium 226 is strongly fixed to the sludges and will not be washed out, as elution experiments showed. Further investigations and calculations of the radium 226 content in the treated ground water proved the plausibility of the results. (orig.) [de

  7. Determination of ring correction factors for leaded gloves used in grab sampling activities at Hanford tank farms

    International Nuclear Information System (INIS)

    RATHBONE, B.A.

    1999-01-01

    This study evaluates the effectiveness of lead lined gloves in reducing extremity dose from two sources specific to tank waste sampling activities: (1) sludge inside glass sample jars and (2) sludge as thin layer contamination on the exterior surface of sample jars. The response of past and present Hanford Extremity Dosimeters (ring) designs under these conditions is also evaluated

  8. Determination of ring correction factors for leaded gloves used in grab sampling activities at Hanford tank farms

    Energy Technology Data Exchange (ETDEWEB)

    RATHBONE, B.A.

    1999-06-24

    This study evaluates the effectiveness of lead lined gloves in reducing extremity dose from two sources specific to tank waste sampling activities: (1) sludge inside glass sample jars and (2) sludge as thin layer contamination on the exterior surface of sample jars. The response of past and present Hanford Extremity Dosimeters (ring) designs under these conditions is also evaluated.

  9. Heat pipe cooling system for underground, radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Cooper, K.C.; Prenger, F.C.

    1980-02-01

    An array of 37 heat pipes inserted through the central hole at the top of a radioactive waste storage tank will remove 100,000 Btu/h with a heat sink of 70 0 F atmospheric air. Heat transfer inside the tank to the heat pipe is by natural convection. Heat rejection to outside air utilizes a blower to force air past the heat pipe condenser. The heat pipe evaporator section is axially finned, and is constructed of stainless steel. The working fluid is ammonia. The finned pipes are individually shrouded and extend 35 ft down into the tank air space. The hot tank air enters the shroud at the top of the tank and flows downward as it is cooled, with the resulting increased density furnishing the pressure difference for circulation. The cooled air discharges at the center of the tank above the sludge surface, flows radially outward, and picks up heat from the radioactive sludge. At the tank wall the heated air rises and then flows inward to comple the cycle

  10. Postconstruction report for the mercury tanks interim action at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Voskuil, T.L.

    1993-09-01

    Three underground concrete settling tanks (tanks 2101-U, 2104-U, and 2100-U) at the Y-12 Plant on the Oak Ridge Reservation in Oak Ridge, Tennessee, contained contaminated sludges contributing mercury to the Upper East Fork Poplar Creek (UEFPC). These tanks were cleaned out as an interim action under the Comprehensive Environmental Response, Compensation, and Liability Act as part of the Reduction of Mercury in Plant Effluent subproject. Cleaning out these tanks prevented the sludge that had settled in the bottom from resuspending and carrying mercury into UEFPC. Tanks 2104-U and 2100-U were returned to service and will continue to receive effluent from buildings 9201-4 and 9201-5. Tank 2101-U had been abandoned and its effluent redirected to Tank 2100-U during previous activities. This interim action permanently sealed Tank 2101-U from the storm sewer system. Upon removal of materials and completion of cleanup, inspections determined that the project's cleanup criteria had been met. The structural integrity of the tanks was also inspected, and minor cracks identified in tanks 2101-U and 2104-U were repaired. This project is considered to have been completed successfully because it met its performance objectives as addressed in the Interim Record of Decision and the work plan: to remove the waste from the three storage tanks; to ensure that the tanks were cleaned to the levels specified; to return tanks 2100-U and 2104-U to service; to isolate Tank 2101-U permanently; and to manage the wastes in an appropriate fashion

  11. Safety analysis report for the North Tank Farm, Tank W-11, and the Gunite and Associated Tanks -- Treatability Study, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Platfoot, J.H.

    1997-02-01

    The North Tank Farm (NTF) tanks consist of eight underground storage tanks which have been removed from service because of age and changes in liquid waste system needs and requirements. Tank W-11, which was constructed in 1943, has been removed from service, and contains several hundred gallons of liquid low-level waste (LLLW). The Gunite and Associated Tanks (GAAT) Treatability Study involves the demonstration of sludge removal techniques and equipment for use in other waste storage tanks throughout the Department of Energy (DOE) complex. The hazards associated with the NTF, Tank W-11, and the Treatability Study are identified in hazard identification table in Appendixes A, B, and C. The hazards identified for the NTF, Tank W-11, and the Treatability Study were analyzed in the preliminary hazards analyses (PHA) included as Appendices D and E. The PHA identifies potential accident scenarios and qualitatively estimates the consequences. Because of the limited quantities of materials present in the tanks and the types of energy sources that may result in release of the materials, none of the accidents identified are anticipated to result in significant adverse health effects to on-site or off-site personnel.

  12. Safety analysis report for the North Tank Farm, Tank W-11, and the Gunite and Associated Tanks -- Treatability Study, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Platfoot, J.H.

    1997-02-01

    The North Tank Farm (NTF) tanks consist of eight underground storage tanks which have been removed from service because of age and changes in liquid waste system needs and requirements. Tank W-11, which was constructed in 1943, has been removed from service, and contains several hundred gallons of liquid low-level waste (LLLW). The Gunite and Associated Tanks (GAAT) Treatability Study involves the demonstration of sludge removal techniques and equipment for use in other waste storage tanks throughout the Department of Energy (DOE) complex. The hazards associated with the NTF, Tank W-11, and the Treatability Study are identified in hazard identification table in Appendixes A, B, and C. The hazards identified for the NTF, Tank W-11, and the Treatability Study were analyzed in the preliminary hazards analyses (PHA) included as Appendices D and E. The PHA identifies potential accident scenarios and qualitatively estimates the consequences. Because of the limited quantities of materials present in the tanks and the types of energy sources that may result in release of the materials, none of the accidents identified are anticipated to result in significant adverse health effects to on-site or off-site personnel

  13. Robust control of the activated sludge process.

    Science.gov (United States)

    David, R; Vande Wouwer, A; Vasel, J-L; Queinnec, I

    2009-01-01

    In this work, a robust control strategy is proposed for maintaining the oxygen concentration in the aerobic tank and the pollutant, i.e., ammonium, nitrate, nitrite, concentrations at acceptable levels in the effluent water at the outlet of the activated sludge process. To this end, the Activated Sludge Model no. 1 (ASM1) is first reduced using biological arguments and a singular perturbation method, and a simplified model of the secondary settler is included. In contrast with previous studies that make use of piecewise linear models, an average operating point is evaluated using available data (here data from the COST Action 624) and the reduced-order model is linearized around it using standard techniques. Finally, a H(2) robust control strategy acting on the oxygen injection and the recirculated flow rate is designed and tested in simulation. 2009 American Institute of Chemical Engineers

  14. Biodegradation studies of oil sludge containing high hydrocarbons concentration

    International Nuclear Information System (INIS)

    Olguin-Lora, P.; Munoz-Colunga, A.; Castorena-Cortes, G.; Roldan-Carrillo, T.; Quej Ake, L.; Reyes-Avila, J.; Zapata-Penasco, I.; Marin-Cruz, J.

    2009-01-01

    Oil industry has a significant impact on environment due to the emission of, dust, gases, waste water and solids generated during oil production all the way to basic petrochemical product manufacturing stages. the aim of this work was to evaluate the biodegradation of sludge containing high hydrocarbon concentration originated by a petroleum facility. A sludge sampling was done at the oil residuals pool (ORP) on a gas processing center. (Author)

  15. Sludge recovery apparatus

    International Nuclear Information System (INIS)

    Marmo, A.R.

    1979-01-01

    An improved design of a sludge recovery apparatus used in the fabrication of nuclear fuel is described. This apparatus provides for automatic separation of sludge from the grinder coolant, drying of the sludge into a flowable powder and transfer of the dry powder to a salvage container. It can be constructed to comply with criticality-safe-geometry requirements and to obviate need for operating personnel in its immediate vicinity. (UK)

  16. Extraction of toxic and valuable metals from wastewater sludge and ash arising from RECICLAGUA, a treatment plant for residual waters applying the leaching technique; Extraccion de metales toxicos y valiosos de los desechos de lodos y cenizas provenientes de la planta tratadora de aguas residuales RECICLAGUA aplicando la tecnica de lixiviado

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero D, J.J

    2004-07-01

    Presently work, the technique is applied of having leached using coupled thermostatted columns, the X-ray diffraction for the identification of the atomic and molecular structure of the metals toxic that are present in the residual muds of a treatment plant of water located in the municipality of the Estado de Mexico, RECICLAGUA, likewise the techniques is used of Inductively Coupled Plasma Mass Spectroscopy and X-ray fluorescence analysis for the qualitative analysis. We took samples of residual sludge and incinerated ash of a treatment plant waste water from the industrial corridor Toluca-Lerma RECICLAGUA, located in Lerma, Estado de Mexico. For this study 100 g. of residual of sludge mixed with a solution to 10% of mineral acid or sodium hydroxide according to the case, to adjust the one p H at 2, 5, 7 and 10, bisulfite was added, of 0.3-1.5 g of dodecyl sulfate of sodium and 3.93 g of DTPA (triple V). Diethylene triamine penta acetate. These sludges and ashes were extracted from toxic and valuable metals by means of the leaching technique using coupled thermostated columns that which were designed by Dr. Jaime Vite Torres, it is necessary to make mention that so much the process as the apparatus with those that one worked was patented by him same. With the extraction of these metals, benefits are obtained, mainly of economic type, achieving the decrease of the volume of those wastes that have been generated; as well as the so much use of those residuals, once the metals have been eliminated, as of those residuals, once the metals have been eliminated, as of those liquors, the heavy metals were extracted. It was carried out a quantitative analysis using Icp mass spectroscopy, this way to be able to know the one content of the present metals in the samples before and after of leaching them, these results reported a great quantity of elements. Another of the techniques employees was the analysis by X-ray diffraction that provides an elementary content of the

  17. DOWNSTREAM IMPACTS OF SLUDGE MASS REDUCTION VIA ALUMINUM DISSOLUTION ON DWPF PROCESSING OF SAVANNAH RIVER SITE HIGH LEVEL WASTE - 9382

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J; Cj Bannochie, C; Michael Hay, M; Daniel McCabe, D

    2009-01-14

    The SRS sludge that was to become a major fraction of Sludge Batch 5 (SB5) for the Defense Waste Processing Facility (DWPF) contained a large fraction of H-Modified PUREX (HM) sludge, containing a large fraction of aluminum compounds that could adversely impact the processing and increase the vitrified waste volume. It is beneficial to reduce the non-radioactive fraction of the sludge to minimize the number of glass waste canisters that must be sent to a Federal Repository. Removal of aluminum compounds, such as boehmite and gibbsite, from sludge can be performed with the addition of NaOH solution and heating the sludge for several days. Preparation of SB5 involved adding sodium hydroxide directly to the waste tank and heating the contents to a moderate temperature through slurry pump operation to remove a fraction of this aluminum. The Savannah River National Laboratory (SRNL) was tasked with demonstrating this process on actual tank waste sludge in our Shielded Cells Facility. This paper evaluates some of the impacts of aluminum dissolution on sludge washing and DWPF processing by comparing sludge processing with and without aluminum dissolution. It was necessary to demonstrate these steps to ensure that the aluminum removal process would not adversely impact the chemical and physical properties of the sludge which could result in slower processing or process upsets in the DWPF.

  18. History of waste tank 15, 1959 through 1974

    International Nuclear Information System (INIS)

    Davis, T.L.; Tharin, D.W.; Lohr, D.R.

    1978-06-01

    Tank 15 was put into service as a receiver of high heat waste (HW) supernate from leaking tank 16 on October 15, 1960, after which it also became the active receiver for fresh HW. Between June 1964 and November 1972, the supernate was decanted (leaving the sludge) five times to allow the tank to be refilled with HW. Inspections and photographs have been made in the annular space using an optical periscope. In April 1972, periscopic inspection revealed salt accumulation at two arrested leak sites on the primary tank wall. Through December 1974, fifteen leak sites had been discovered. Analytical samples of supernate and vapor have been taken. Wall thicknesses and profiles of tank temperature differences have been obtained. Several tests, primarily concerning general corrosion, have been run. Equipment modifications and various equipment repairs were made. 14 figures

  19. Preparation of biochar from sewage sludge

    Science.gov (United States)

    Nieto, Aurora; María Méndez, Ana; Gascó, Gabriel

    2013-04-01

    Biomass waste materials appropriate for biochar production include crop residues (both field residues and processing residues such as nut shells, fruit pits, bagasse, etc), as well as yard, food and forestry wastes, and animal manures. Biochar can and should be made from biomass waste materials and must not contain unacceptable levels of toxins such as heavy metals which can be found in sewage sludge and industrial or landfill waste. Making biochar from biomass waste materials should create no competition for land with any other land use option—such as food production or leaving the land in its pristine state. Large amounts of agricultural, municipal and forestry biomass are currently burned or left to decompose and release CO2 and methane back into the atmosphere. They also can pollute local ground and surface waters—a large issue for livestock wastes. Using these materials to make biochar not only removes them from a pollution cycle, but biochar can be obtained as a by-product of producing energy from this biomass. Sewage sludge is a by-product from wastewater treatment plants, and contains significant amounts of heavy metals, organic toxins and pathogenic microorganisms, which are considered to be harmful to the environment and all living organisms. Agricultural use, land filling and incineration are commonly used as disposal methods. It was, however, reported that sewage sludge applications in agriculture gives rise to an accumulation of harmful components (heavy metals and organic compounds) in soil. For this reason, pyrolysis can be considered as a promising technique to treat the sewage sludge including the production of fuels. The objective of this work is to study the advantages of the biochar prepared from sewage sludge.

  20. AX Tank farm process impacts study

    Energy Technology Data Exchange (ETDEWEB)

    SKELLY, W.A.

    1999-03-18

    This study provides facility and process concepts and costs for partial decontamination of the most heavily contaminated debris from the demolition of the four AX tanks and ancillary equipment items. This debris would likely be classified as high-level and/or remote handle TRU waste based on source and radiological inventory. A process flow sheet was developed to treat contaminated metal wastes such as pipes and tank liners as well as contaminated concrete and the residual waste and grout left in the tanks after final waste retrieval. The treated solid waste is prepared for delivery to either the ERDF or the Low-Level waste burial grounds. Liquid waste products are delivered to the private vitrification contractor for further treatment and storage. This is one of several reports prepared for use by the Hanford Tanks Initiative Project to develop retrieval performance criteria for tank farms.

  1. AX Tank Farm tank removal study

    Energy Technology Data Exchange (ETDEWEB)

    SKELLY, W.A.

    1999-02-24

    This report examines the feasibility of remediating ancillary equipment associated with the 241-AX Tank Farm at the Hanford Site. Ancillary equipment includes surface structures and equipment, process waste piping, ventilation components, wells, and pits, boxes, sumps, and tanks used to make waste transfers to/from the AX tanks and adjoining tank farms. Two remedial alternatives are considered: (1) excavation and removal of all ancillary equipment items, and (2) in-situ stabilization by grout filling, the 241-AX Tank Farm is being employed as a strawman in engineering studies evaluating clean and landfill closure options for Hanford single-shell tanks. This is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  2. Stabilization of heavy metals in fired clay brick incorporated with wastewater treatment plant sludge: Leaching analysis

    Science.gov (United States)

    Kadir, A. A.; Hassan, M. I. H.; Salim, N. S. A.; Sarani, N. A.; Ahmad, S.; Rahmat, N. A. I.

    2018-04-01

    Wastewater treatment sludge or known as sewage sludge is regarded as the residue and produced by the sedimentation of the suspended solid during treatment at the wastewater treatment plant. As such, this sludge was gained from the separation process of the liquids and solids. This sludge wastes has becomes national issues in recent years due to the increasing amount caused by population and industrialization growth in Malaysia. This research was conducted to fully utilize the sludge that rich in dangerous heavy metals and at the same time act as low cost alternative materials in brick manufacturing. The investigation includes determination of heavy metal concentration and chemical composition of the sludge, physical and mechanical properties. Wastewater treatment sludge samples were collected from wastewater treatment plant located in Johor, Malaysia. X-Ray Fluorescence was conducted to determine the heavy metals concentration of wastewater treatment sludge. Different percentage of sludges which are 0%, 1%, 5%, 10%, and 20%, has been incorporated into fired clay brick. The leachability of heavy metals in fired clay brick that incorporated with sludge were determined by using Toxicity Characteristic Leaching Procedure (TCLP) and Synthetic Precipitation Leachability Procedure (SPLP) that has been analyzed by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results show a possibility to stabilize the heavy metals in fired clay brick incorporated with wastewater treatment sludge. 20% of the sludge incorporated into the brick is the most suitable for building materials as it leached less heavy metals concentration and complying with USEPA standard.

  3. ROBOTIC TANK INSPECTION END EFFECTOR

    International Nuclear Information System (INIS)

    Rachel Landry

    1999-01-01

    The objective of this contract between Oceaneering Space Systems (OSS) and the Department of Energy (DOE) was to provide a tool for the DOE to inspect the inside tank walls of underground radioactive waste storage tanks in their tank farms. Some of these tanks are suspected to have leaks, but the harsh nature of the environment within the tanks precludes human inspection of tank walls. As a result of these conditions only a few inspection methods can fulfill this task. Of the methods available, OSS chose to pursue Alternating Current Field Measurement (ACFM), because it does not require clean surfaces for inspection, nor any contact with the Surface being inspected, and introduces no extra by-products in the inspection process (no coupling fluids or residues are left behind). The tool produced by OSS is the Robotic Tank Inspection End Effector (RTIEE), which is initially deployed on the tip of the Light Duty Utility Arm (LDUA). The RTEE combines ACFM with a color video camera for both electromagnetic and visual inspection The complete package consists of an end effector, its corresponding electronics and software, and a user's manual to guide the operator through an inspection. The system has both coarse and fine inspection modes and allows the user to catalog defects and suspected areas of leakage in a database for further examination, which may lead to emptying the tank for repair, decommissioning, etc.. The following is an updated report to OSS document OSS-21100-7002, which was submitted in 1995. During the course of the contract, two related sub-tasks arose, the Wall and Coating Thickness Sensor and the Vacuum Scarifying and Sampling Tool Assembly. The first of these sub-tasks was intended to evaluate the corrosion and wall thinning of 55-gallon steel drums. The second was retrieved and characterized the waste material trapped inside the annulus region of the underground tanks on the DOE's tank farms. While these sub-tasks were derived from the original intent

  4. ROBOTIC TANK INSPECTION END EFFECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Landry

    1999-10-01

    The objective of this contract between Oceaneering Space Systems (OSS) and the Department of Energy (DOE) was to provide a tool for the DOE to inspect the inside tank walls of underground radioactive waste storage tanks in their tank farms. Some of these tanks are suspected to have leaks, but the harsh nature of the environment within the tanks precludes human inspection of tank walls. As a result of these conditions only a few inspection methods can fulfill this task. Of the methods available, OSS chose to pursue Alternating Current Field Measurement (ACFM), because it does not require clean surfaces for inspection, nor any contact with the Surface being inspected, and introduces no extra by-products in the inspection process (no coupling fluids or residues are left behind). The tool produced by OSS is the Robotic Tank Inspection End Effector (RTIEE), which is initially deployed on the tip of the Light Duty Utility Arm (LDUA). The RTEE combines ACFM with a color video camera for both electromagnetic and visual inspection The complete package consists of an end effector, its corresponding electronics and software, and a user's manual to guide the operator through an inspection. The system has both coarse and fine inspection modes and allows the user to catalog defects and suspected areas of leakage in a database for further examination, which may lead to emptying the tank for repair, decommissioning, etc.. The following is an updated report to OSS document OSS-21100-7002, which was submitted in 1995. During the course of the contract, two related subtasks arose, the Wall and Coating Thickness Sensor and the Vacuum Scarifying and Sampling Tool Assembly. The first of these subtasks was intended to evaluate the corrosion and wall thinning of 55-gallon steel drums. The second was retrieved and characterized the waste material trapped inside the annulus region of the underground tanks on the DOE's tank farms. While these subtasks were derived from the original

  5. Batchwise mesophilic anaerobic co-digestion of secondary sludge from pulp and paper industry and municipal sewage sludge.

    Science.gov (United States)

    Hagelqvist, Alina

    2013-04-01

    Residues from forest-industry wastewater-treatment systems are treated as waste at many pulp and paper mills. These organic substances have previously been shown to have potential for production of large quantities of biogas. There is concern, however, that the process would require expensive equipment because of the slow degradation of these substances. Pure non-fibrous sludge from forest industry showed lower specific methane production during mesophilic digestion for 19days, 53±26 Nml/g of volatile solids as compared to municipal sewage sludge, 84±24 Nml/g of volatile solids. This paper explores the possibility of using anaerobic co-digestion with municipal sewage sludge to enhance the potential of methane production from secondary sludge from a pulp and paper mill. It was seen in a batch anaerobic-digestion operation of 19 days that the specific methane production remained largely the same for municipal sewage sludge when up to 50% of the volatile solids were replaced with forest-industry secondary sludge. It was also shown that the solid residue from anaerobic digestion of the forest-industry sludge should be of suitable quality to use for improving soil quality on lands that are not used for food production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Tank 241-U-203: Tank Characterization Plan

    International Nuclear Information System (INIS)

    Sathyanarayana, P.

    1995-01-01

    The revised Federal Facility Agreement and Consent Order states that a tank characterization plan will be developed for each double-shell tank and single-shell tank using the data quality objective process. The plans are intended to allow users and regulators to ensure their needs will be met and resources are devoted to gaining only necessary information. This document satisfies that requirement for Tank 241-U-203 sampling activities

  7. RECOMMENDATIONS FOR SAMPLING OF TANK 18 IN F TANK FARM

    Energy Technology Data Exchange (ETDEWEB)

    Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual floor material in Tank 18 prior to operational closure. Tank 18 is an 85-foot diameter, 34-foot high carbon steel tank with nominal operating volume of 1,300,000 gallons. It is a Type IV tank, and has been in service storing radioactive materials since 1959. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual material, Huff and Thaxton [2009] developed a plan to sample the material during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual floor material separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 18 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 18. The procedure computes the uncertainty in analyte concentration as a function of the number of samples, and the final number of samples is determined when the reduction in the uncertainty from an additional sample no longer has a practical impact on results. The characterization of the full suite of analytes in the North hemisphere is currently supported by a single Mantis rover sample obtained from a compact region near the center riser. A floor

  8. Characterization and constructive utilization of sludge produced in clari-flocculation unit of water treatment plant

    Science.gov (United States)

    Ahmad, Tarique; Ahmad, Kafeel; Alam, Mehtab

    2018-03-01

    All water treatment plants produce waste/residue amid the treatment of raw water. This study selectively investigates the clariflocculator sludge for its physicochemical characteristics and potential reuse options. Sieve analysis, XRF, SEM, XRD, FTIR, and TG-DTA instrumental techniques have been used to characterize the sludge sample. Results show that clariflocculator sludge contains about 78% fine sand having grain size range 150-75 μm. SiO2, Al2O3, Fe2O3 and CaO constitute the maximum percentage of chemical compounds present in the sludge and quartz is the main crystalline phase of the sludge. Recycling and reuse of this sludge, especially, as fine sand in preparing mortar, concrete mix and other civil engineering products would pave the way for constructive utilization with safe and sustainable sludge management strategies.

  9. Potential gas releases from the bottom sludge layer

    International Nuclear Information System (INIS)

    Stewart, C.W.

    1994-04-01

    A layer of sludge about 50 inches deep may exist at the bottom of the tank that has not been mixed by the pump. This bottom sludge layer may be accumulating gas at a rate of 23 SCF/day, resulting in a basal level rise of 0.025 inches/day. At some point sufficient gas may accumulate to release spontaneously. Using reasonable assumptions about gas generation, waste properties and the mechanics of the release process, this may result in gas releases on the order of 1, 000 SCF

  10. Sludge Treatment Project Engineered Container Retrieval And Transfer System Prelminary Design Hazard And Operability Study

    International Nuclear Information System (INIS)

    Carro, C.A.

    2011-01-01

    This Hazard and Operability (HAZOP) study addresses the Sludge Treatment Project (STP) Engineered Container Retrieval and Transfer System (ECRTS) preliminary design for retrieving sludge from underwater engineered containers located in the 105-K West (KW) Basin, transferring the sludge as a sludge-water slurry (hereafter referred to as 'slurry') to a Sludge Transport and Storage Container (STSC) located in a Modified KW Basin Annex, and preparing the STSC for transport to T Plant using the Sludge Transport System (STS). There are six, underwater engineered containers located in the KW Basin that, at the time of sludge retrieval, will contain an estimated volume of 5.2 m 3 of KW Basin floor and pit sludge, 18.4 m 3 of 105-K East (KE) Basin floor, pit, and canister sludge, and 3.5 m 3 of settler tank sludge. The KE and KW Basin sludge consists of fuel corrosion products (including metallic uranium, and fission and activation products), small fuel fragments, iron and aluminum oxide, sand, dirt, operational debris, and biological debris. The settler tank sludge consists of sludge generated by the washing of KE and KW Basin fuel in the Primary Clean Machine. A detailed description of the origin of sludge and its chemical and physical characteristics can be found in HNF-41051, Preliminary STP Container and Settler Sludge Process System Description and Material Balance. In summary, the ECRTS retrieves sludge from the engineered containers and hydraulically transfers it as a slurry into an STSC positioned within a trailer-mounted STS cask located in a Modified KW Basin Annex. The slurry is allowed to settle within the STSC to concentrate the solids and clarify the supernate. After a prescribed settling period the supernate is decanted. The decanted supernate is filtered through a sand filter and returned to the basin. Subsequent batches of slurry are added to the STSC, settled, and excess supernate removed until the prescribed quantity of sludge is collected. The sand

  11. SLUDGE TREATMENT PROJECT ENGINEERED CONTAINER RETRIEVAL AND TRANSFER SYSTEM PRELMINARY DESIGN HAZARD AND OPERABILITY STUDY

    Energy Technology Data Exchange (ETDEWEB)

    CARRO CA

    2011-07-15

    This Hazard and Operability (HAZOP) study addresses the Sludge Treatment Project (STP) Engineered Container Retrieval and Transfer System (ECRTS) preliminary design for retrieving sludge from underwater engineered containers located in the 105-K West (KW) Basin, transferring the sludge as a sludge-water slurry (hereafter referred to as 'slurry') to a Sludge Transport and Storage Container (STSC) located in a Modified KW Basin Annex, and preparing the STSC for transport to T Plant using the Sludge Transport System (STS). There are six, underwater engineered containers located in the KW Basin that, at the time of sludge retrieval, will contain an estimated volume of 5.2 m{sup 3} of KW Basin floor and pit sludge, 18.4 m{sup 3} of 105-K East (KE) Basin floor, pit, and canister sludge, and 3.5 m{sup 3} of settler tank sludge. The KE and KW Basin sludge consists of fuel corrosion products (including metallic uranium, and fission and activation products), small fuel fragments, iron and aluminum oxide, sand, dirt, operational debris, and biological debris. The settler tank sludge consists of sludge generated by the washing of KE and KW Basin fuel in the Primary Clean Machine. A detailed description of the origin of sludge and its chemical and physical characteristics can be found in HNF-41051, Preliminary STP Container and Settler Sludge Process System Description and Material Balance. In summary, the ECRTS retrieves sludge from the engineered containers and hydraulically transfers it as a slurry into an STSC positioned within a trailer-mounted STS cask located in a Modified KW Basin Annex. The slurry is allowed to settle within the STSC to concentrate the solids and clarify the supernate. After a prescribed settling period the supernate is decanted. The decanted supernate is filtered through a sand filter and returned to the basin. Subsequent batches of slurry are added to the STSC, settled, and excess supernate removed until the prescribed quantity of sludge is

  12. Fiscal year 1993 1/25-scale sludge mobilization testing

    International Nuclear Information System (INIS)

    Powell, M.R.; Golcar, G.R.; Hymas, C.R.; McKay, R.L.

    1995-04-01

    Sixteen 1/25-scale sludge mobilization experiments were conducted in fiscal year (FY) 1993. The results of this testing are presented in this document. The ability of a single, centrally-located, scale model mixer pump to resuspend a layer of simulated tank sludge was evaluated for five different simulant types. The resistance of these simulants to the mobilizing action of the mixer pump jets was not found to adequately correlate with simulant vane shear strength. The data indicate that the simulant cohesion, as quantified by tensile strength, may provide a good measure of mobilization resistance. A single test was done to evaluate whether indexed mixer pump rotation is significantly more effective than the planned continuous oscillation. No significant difference was found in the sludge mobilization caused by these two modes of operation. Two tests were conducted using a clay-based sludge simulant that contained approximately 5 wt% soluble solids. The distance to which the mixer pump jets were effective for this simulant was approximately 50% greater than on similar simulants that did not contain soluble solids. The implication is that sludge dissolution effects may significantly enhance the performance of mixer pumps in some tanks. The development of a means to correlate the magnitude of this effect with waste properties is a direction for future work. Two tests were performed with the goal of determining whether the 1/25-scale sludge mobilization data can be scaled linearly to 1/12-scale. The two 1/25-scale tests were conducted using the same simulant recipe as had been used in previous 1/12-scale tests. The difficulty of matching the 1/25-scale simulants, with those used previously is thought to have adversely affected the results. Further tests are needed to determine whether the data from sludge mobilization tests can be linearly scaled

  13. Hanford tank initiative vehicle/based waste retrieval demonstration report phase II, track 2

    International Nuclear Information System (INIS)

    Berglin, E.J.

    1997-01-01

    Using the versatile TracPUMpTm, Environmental Specialties Group, LLC (ES) performed a successful Phase 11 demonstration of a Vehicle- Based Waste Retrieval System (VWRS) for removal of waste material and residual liquid found in the Hanford Underground Storage Tanks (ousts). The purpose of this demonstration was to address issues pertaining to the use of a VWRS in OUSTS. The demonstration also revealed the waste removal capabilities of the TracPumpTm and the most effective techniques and equipment to safely and effectively remove waste simulants. ES successfully addressed the following primary issues: I . Dislodge and convey the waste forms present in the Hanford OUSTS; 2. Access the UST through tank openings as small as twenty-four inches in diameter; 3. Traverse a variety of terrains including slopes, sludges, rocks and hard, slippery surfaces without becoming mired; 4. Dislodge and convey waste within the confinement of the Decontamination Containment Capture Vessel (DCCV) and with minimal personnel exposure; 5. Decontaminate equipment to acceptable limits during retrieval from the UST; 6. Perform any required maintenance within the confinement of the DCCV; and 7. Maintain contaminate levels ''as low as reasonably achievable'' (ALARA) within the DCCV due to its crevice and comer-free design. The following materials were used to simulate the physical characteristics of wastes found in Hanford's OUSTS: (1) Hardpan: a clay-type material that has high shear strength; (2) Saltcake: a fertilizer-based material that has high compressive strength; and (3) Wet Sludge.- a sticky, peanut- butter- like material with low shear strength. Four test beds were constructed of plywood and filled with a different simulant to a depth of eight to ten inches. Three of the test beds were of homogenous simulant material, while the fourth bed consisted of a mixture of all three simulant types

  14. Turbidez e cloro residual livre na monitoração de ETE tipo tanque séptico seguido de filtro anaeróbio - doi: 10.4025/actascitechnol.v33i4.9603 Turbidity and free residual chlorine for monitoring plants comprised by septic tank followed by anaerobic filter

    Directory of Open Access Journals (Sweden)

    Raimundo Oliveira de Souza

    2011-09-01

    Full Text Available A avaliação dos dados agrupados da monitoração de 16 ETEs do tipo tanque séptico (TSEP seguido por filtro anaeróbio (FAN mostrou remoção média global de 55% para DQO e SST. O desempenho alcançado foi abaixo do sugerido pela literatura, porém compatível com o de estudos recentes sobre sistemas em escala real no país. A remoção média global de bactérias do grupo coliforme, após desinfecção com solução de hipoclorito de sódio, foi de 3,0 unidades de log. Remoção mais elevada ocorreu com Escherichia coli como indicador (3,5 logs. Em geral, as maiores remoções de coliformes foram alcançadas com concentrações de cloro residual livre (CRL variando de 2,0 a 2,5 mg L-1. Os resultados mostraram a aplicabilidade da turbidez para estimar concentrações de SST e DQO no efluente tratado. Observou-se também que a concentração de CRL é útil para estimar as concentrações de bactérias do grupo coliforme.Grouped monitoring data of 16 wastewater treatment plants was investigated. The plants were comprised by septic tanks followed by anaerobic filters and effluent disinfection with sodium hypochlorite. Removal of COD and total suspended solids was about 55%. This number was below values observed by the literature. However, the results were in accordance with recent findings in Brazilian full-scale plants. Coliform removal was about 3.0 log units with better results for Escherichia coli (3.5 logs. Best results were achieved with free residual chorine concentrations ranging from 2.0 to 2.5 mg L-1. Findings showed that turbidity is a useful parameter to estimate COD and TSS concentrations in the treated effluent. Free residual chlorine may also be applied to estimate coliform numbers.

  15. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  16. Activated Sludge Rheology

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Horn, Willi; Helmus, Frank

    2013-01-01

    Rheological behaviour is an important fluid property that severely impacts its flow behaviour and many aspects related to this. In the case of activated sludge, the apparent viscosity has an influence on e.g. pumping, hydrodynamics, mass transfer rates, sludge-water separation (settling and filtr...

  17. Respirometry in activated sludge

    NARCIS (Netherlands)

    Spanjers, H.

    1993-01-01

    The purpose of the study was (1) to develop a respiration meter capable of continuously measuring, using different procedures, the oxygen uptake rate of activated sludge and (2) to expand knowledge about respiration related characteristics of wastewater and activated sludge.

    A

  18. Anaerobic sludge granulation

    NARCIS (Netherlands)

    Hulshoff Pol, L.W.; Castro Lopes, de S.I.; Lettinga, G.; Lens, P.N.L.

    2004-01-01

    This paper reviews different theories on anaerobic sludge granulation in UASB-reactors that have been proposed during the past two decades
    This paper reviews different theories on anaerobic sludge granulation in UASB-reactors that have been proposed during the past two decades. The initial

  19. Impact of composting strategies on the degradation of nonylphenol in sewage sludge.

    Science.gov (United States)

    Zheng, Guodi; Chen, Tongbin; Yu, Jie; Gao, Ding; Shen, Yujun; Niu, Mingjie; Liu, Hongtao

    2015-12-01

    Nonylphenol can be present in sewage sludge, and this can limit the use of the sewage sludge to amend soil. Composting is one of the most efficient and economical methods of making sewage sludge stable and harmless. The nonylphenol degradation rates during composting with added bulking agents and with aeration applied were studied. Three organic bulking agents (sawdust, corn stalk, and mushroom residue) were added to sewage sludge, and the effects of the bulking agents used and the amount added on nonylphenol degradation were determined. The highest apparent nonylphenol degradation rate (71.6%) was found for sewage sludge containing 20% mushroom residue. The lowest apparent nonylphenol degradation rate (22.5%) was found for sewage sludge containing 20% sawdust. The temperature of the composting pile of sewage sludge containing 20% sawdust became too high for nonylphenol to be efficiently degraded, and the apparent nonylphenol degradation rate was lower than was found for sewage sludge containing 10% sawdust. Increasing the ventilating time from 5 to 15 min increased the apparent nonylphenol degradation rate from 19.7 to 41.6%. Using appropriate aerobic conditions facilitates the degradation of nonylphenol in sewage sludge, decreasing the risks posed by sewage sludge applied to land. Adding too much of a bulking agent can decrease the amount of the nonylphenol degraded. Increasing the ventilating time and the amount of air supplied can increase the amount of nonylphenol degraded even if doing so causes the composting pile temperature to remain low.

  20. Toxicity evaluation of sewage sludges in Hong Kong.

    Science.gov (United States)

    Wong, J W; Li, K; Fang, M; Su, D C

    2001-11-01

    Anaerobically digested sewage sludges collected from four wastewater treatment plants located in Sha Tin, Tai Po, Yuen Long, and Shek Wu Hui in Hong Kong were subjected to chemical characterization and toxicity testing to provide preliminary assessment of their suitability for land application. All sewage sludges were slightly alkaline with pH range of 8.3-8.7. Electrical conductivity (EC; 0.69 dS m(-1)) and soluble NH4-N content (996 mg kg(-1)) of sewage sludge from Yuen Long were lower than that of other plants. Concentrations of heavy metals were determined as total, extractable, and water-soluble fraction using mixed acid digestion, DTPA (pH 7.3), and distilled water, respectively. Yuen Long sludge was most polluted with Zn and Cr higher than the pollutant concentration limits listed in Part 503 of USEPA, owing to the effluent coming from the tannery industry. High concentration of Ni was found in sludge from Sha Tin that originated mainly from the electroplating industry. DTPA-extractable Zn contents were high in sludges from Yuen Long (1247 mg kg(-1)) and Shek Wu Hui (892 mg kg(-1)), while 3.7 mg kg(-1) of DTPA-extractable Cr was found in Yuen Long sludge. Metal speciation of sludges showed that Pb was major in residual phase while Cu, Cr, and Ni in organic and residual phases, and Zn did not show any dominant chemical phase. The sludge extracts did not exert significant adverse effect on seed germination of Brassica chinensis (Chinese cabbage), but Yuen Long sludge caused a reduction in root growth. In view of its lower EC and soluble ammonia contents, the high concentration of Zn and Cr in Yuen Long sludge would likely be responsible for this adverse effect on root growth. Therefore, Yuen Long sludge would likely have a more serious impact on soil quality and plant growth as compared to other sludges. This would require further verification from greenhouse and field experiments.

  1. Mathematical model of the Savannah River Site waste tank farm

    International Nuclear Information System (INIS)

    Smith, F.G. III.

    1991-01-01

    A mathematical model has been developed to simulate operation of the waste tank farm and the associated evaporator systems at the Savannah River Site. The model solves material balance equations to predict the volumes of liquid waste, salt, and sludge for all of the tanks within each of the evaporator systems. Additional logic is included to model the behavior of waste tanks not directly associated with the evaporators. Input parameters include the Material Management Plan forecast of canyon operations, specification of other waste sources for the evaporator systems, evaporator operating characteristics, and salt and sludge removal schedules. The model determines how the evaporators will operate, when waste transfers can be made, and waste accumulation rates. Output from the model includes waste tank contents, summaries of systems operations, and reports of space gain and the remaining capacity to store waste materials within the tank farm. Model simulations can be made to predict waste tank capacities on a daily basis for up to 20 years. The model is coded as a set of three computer programs designed to run on either IBM compatible or Apple Macintosh II personal computers

  2. Co-pyrolysis of sewage sludge and manure.

    Science.gov (United States)

    Ruiz-Gómez, Nadia; Quispe, Violeta; Ábrego, Javier; Atienza-Martínez, María; Murillo, María Benita; Gea, Gloria

    2017-01-01

    The management and valorization of residual organic matter, such as sewage sludge and manure, is gaining interest because of the increasing volume of these residues, their localized generation and the related problems. The anaerobic digestion of mixtures of sewage sludge and manure could be performed due to the similarities between both residues. The purpose of this study is to evaluate the feasibility of the co-pyrolysis of sewage sludge (SS) and digested manure (DM) as a potential management technology for these residues. Pyrolysis of a sewage sludge/manure blend (50:50%) was performed at 525°C in a stirred batch reactor under N 2 atmosphere. The product yields and some characteristics of the product were analyzed and compared to the results obtained in the pyrolysis of pure residues. Potential synergetic and antagonist effects during the co-pyrolysis process were evaluated. Although sewage sludge and manure seem similar in nature, there are differences in their pyrolysis product properties and distribution due to their distinct ash and organic matter composition. For the co-pyrolysis of SS and DM, the product yields did not show noticeable synergistic effects with the exception of the yields of organic compounds, being slightly higher than the predicted average, and the H 2 yield, being lower than expected. Co-pyrolysis of SS and DM could be a feasible management alternative for these residues in locations where both residues are generated, since the benefits and the drawbacks of the co-pyrolysis are similar to those of the pyrolysis of each residue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Activated sludge model No. 3

    DEFF Research Database (Denmark)

    Gujer, W.; Henze, M.; Mino, T.

    1999-01-01

    The Activated Sludge Model No. 3 (ASM3) can predict oxygen consumption, sludge production, nitrification and denitrification of activated sludge systems. It relates to the Activated Sludge Model No. 1 (ASM1) and corrects for some defects of ASM I. In addition to ASM1, ASM3 includes storage...

  4. Hanford Tank Cleanup Update

    International Nuclear Information System (INIS)

    Berriochoa, M.V.

    2011-01-01

    Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

  5. Sludge minimization technologies - an overview

    Energy Technology Data Exchange (ETDEWEB)

    Oedegaard, Hallvard

    2003-07-01

    The management of wastewater sludge from wastewater treatment plants represents one of the major challenges in wastewater treatment today. The cost of the sludge treatment amounts to more that the cost of the liquid in many cases. Therefore the focus on and interest in sludge minimization is steadily increasing. In the paper an overview is given for sludge minimization (sludge mass reduction) options. It is demonstrated that sludge minimization may be a result of reduced production of sludge and/or disintegration processes that may take place both in the wastewater treatment stage and in the sludge stage. Various sludge disintegration technologies for sludge minimization are discussed, including mechanical methods (focusing on stirred ball-mill, high-pressure homogenizer, ultrasonic disintegrator), chemical methods (focusing on the use of ozone), physical methods (focusing on thermal and thermal/chemical hydrolysis) and biological methods (focusing on enzymatic processes). (author)

  6. Tank 241-AW-101 tank characterization plan

    International Nuclear Information System (INIS)

    Sathyanarayana, P.

    1994-01-01

    The first section gives a summary of the available information for Tank AW-101. Included in the discussion are the process history and recent sampling events for the tank, as well as general information about the tank such as its age and the risers to be used for sampling. Tank 241-AW-101 is one of the 25 tanks on the Flammable Gas Watch List. To resolve the Flammable Gas safety issue, characterization of the tanks, including intrusive tank sampling, must be performed. Prior to sampling, however, the potential for the following scenarios must be evaluated: the potential for ignition of flammable gases such as hydrogen-air and/or hydrogen-nitrous oxide; and the potential for secondary ignition of organic-nitrate/nitrate mixtures in crust layer initiated by the burning of flammable gases or by a mechanical in-tank energy source. The characterization effort applicable to this Tank Characterization Plan is focused on the resolution of the crust burn flammable gas safety issue of Tank AW-101. To evaluate the potential for a crust burn of the waste material, calorimetry tests will be performed on the waste. Differential Scanning Calorimetry (DSC) will be used to determine whether an exothermic reaction exists

  7. Tank 241-C-103 tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, R.D. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-10-06

    The data quality objective (DQO) process was chosen as a tool to be used to identify the sampling analytical needs for the resolution of safety issues. A Tank Characterization Plant (TCP) will be developed for each double shell tank (DST) and single-shell tank (SST) using the DQO process. There are four Watch list tank classifications (ferrocyanide, organic salts, hydrogen/flammable gas, and high heat load). These classifications cover the six safety issues related to public and worker health that have been associated with the Hanford Site underground storage tanks. These safety issues are as follows: ferrocyanide, flammable gas, organic, criticality, high heat, and vapor safety issues. Tank C-103 is one of the twenty tanks currently on the Organic Salts Watch List. This TCP will identify characterization objectives pertaining to sample collection, hot cell sample isolation, and laboratory analytical evaluation and reporting requirements in accordance with the appropriate DQO documents. In addition, the current contents and status of the tank are projected from historical information. The relevant safety issues that are of concern for tanks on the Organic Salts Watch List are: the potential for an exothermic reaction occurring from the flammable mixture of organic materials and nitrate/nitrite salts that could result in a release of radioactive material and the possibility that other safety issues may exist for the tank.

  8. Characterization of the BVEST waste tanks located at ORNL

    International Nuclear Information System (INIS)

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1997-01-01

    During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns dealing with the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report discusses the analytical characterization data for the supernatant and sludge in the BVEST waste tanks W-21, W-22, and W-23. The isotopic data presented in this report supports the position that fissile isotopes of uranium and plutonium were denatured as required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). In general, the BVEST sludge was found to be hazardous based on RCRA characteristics and the transuranic alpha activity was well above the 100 nCi/g limit for TRU waste. The characteristics of the BVEST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP

  9. Radioactive and hazardous wastewater treatment and sludge stabilization by filtration

    International Nuclear Information System (INIS)

    Martin, H.L.; Pickett, J.B.; Langton, C.A.

    1991-01-01

    Concentrated effluents from batch discharges of spent process solutions are mixed with filter cake from treatment of the dilute effluents and stored in a large tank at the optimum high pH for hydroxide precipitation of heavy metals. Supernate is decanted from the storage tanks and mixed with the dilute effluents before treatment. A filtration and stabilization process has been developed to treat and stored sludge as well as the concentrated wastewater slurry as it is generated. A 94% waste volume reduction over conventional technology can be achieved. Furthermore, leachate from the solidified waste filter cake meets the EPA land disposal restrictions

  10. Tank 241-C-106 waste retrieval sluicing system process control plan

    International Nuclear Information System (INIS)

    Carothers, K.G.

    1998-01-01

    Project W-320 has installed the Waste Retrieval Sluicing System at the 200 East Area on the Hanford Site to retrieve the sludge from single-shell tank 241-C-106 and transfer it into double-shell tank 241-AY-102. Operation of the WRSS process will resolve the high-heat safety issue for tank 241-C-106 and demonstrate a technology for the retrieval of single-shell tank wastes. This process control plan coordinates the technical operating requirements (primarily mass transfer, temperature, and flammable gas) for the sluicing operation and provides overall technical guidance for the retrieval activity

  11. Tank 241-C-106 waste retrieval sluicing system process control plan

    Energy Technology Data Exchange (ETDEWEB)

    Carothers, K.G.

    1998-07-25

    Project W-320 has installed the Waste Retrieval Sluicing System at the 200 East Area on the Hanford Site to retrieve the sludge from single-shell tank 241-C-106 and transfer it into double-shell tank 241-AY-102. Operation of the WRSS process will resolve the high-heat safety issue for tank 241-C-106 and demonstrate a technology for the retrieval of single-shell tank wastes. This process control plan coordinates the technical operating requirements (primarily mass transfer, temperature, and flammable gas) for the sluicing operation and provides overall technical guidance for the retrieval activity.

  12. Decontamination Study for Mixed Waste Storage Tanks RCRA Closure

    International Nuclear Information System (INIS)

    Leaphart, D.M.; Reed, S.R.; Rankin, W.N.

    1995-01-01

    The Savannah River Site (SRS) plans to close six underground tanks storing mixed waste under RCRA regulations. In support of this closure effort, a study was performed to determine the optimal method of decontaminating these tanks to meet the closure requirements. Items consaidered in the evaluation of the decontamination methods included effectiveness, compatibility with existing waste residues, possible cleaning solution disposal methods, and cost

  13. Evaluation of Flygt Propeller Mixers for Double-Shell Tank (DST) High Level Waste Auxiliary Solids Mobilization

    International Nuclear Information System (INIS)

    PACQUET, E.A.

    2000-01-01

    The River Protection Project (RPP) is planning to retrieve radioactive waste from the single-shell tanks (SST) and double-shell tanks (DST) underground at the Hanford Site. This waste will then be transferred to a waste treatment plant to be immobilized (vitrified) in a stable glass form. Over the years, the waste solids in many of the tanks have settled to form a layer of sludge at the bottom. The thickness of the sludge layer varies from tank to tank, from no sludge or a few inches of sludge to about 15 ft of sludge. The purpose of this technology and engineering case study is to evaluate the Flygt(trademark) submersible propeller mixer as a potential technology for auxiliary mobilization of DST HLW solids. Considering the usage and development to date by other sites in the development of this technology, this study also has the objective of expanding the knowledge base of the Flygt(trademark) mixer concept with the broader perspective of Hanford Site tank waste retrieval. More specifically, the objectives of this study delineated from the work plan are described

  14. Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102

    International Nuclear Information System (INIS)

    Onishi, Y.; Recknagle, K.P.; Wells, B.E.

    2000-01-01

    The authors evaluated how well two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102 (AZ-102) and confirmed the adequacy of a three-inch (7.6-cm) pipeline system to transfer the resulting mixed waste slurry to the AP Tank Farm and a planned waste treatment (vitrification) plant on the Hanford Site. Tank AZ-102 contains 854,000 gallons (3,230 m 3 ) of supernatant liquid and 95,000 gallons (360 m 3 ) of sludge made up of aging waste (or neutralized current acid waste). The study comprises three assessments: waste chemistry, pump jet mixing, and pipeline transfer. The waste chemical modeling assessment indicates that the sludge, consisting of the solids and interstitial solution, and the supernatant liquid are basically in an equilibrium condition. Thus, pump jet mixing would not cause much solids precipitation and dissolution, only 1.5% or less of the total AZ-102 sludge. The pump jet mixing modeling indicates that two 300-hp mixer pumps would mobilize up to about 23 ft (7.0 m) of the sludge nearest the pump but would not erode the waste within seven inches (0.18 m) of the tank bottom. This results in about half of the sludge being uniformly mixed in the tank and the other half being unmixed (not eroded) at the tank bottom

  15. Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102

    Energy Technology Data Exchange (ETDEWEB)

    Y Onishi; KP Recknagle; BE Wells

    2000-08-09

    The authors evaluated how well two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102 (AZ-102) and confirmed the adequacy of a three-inch (7.6-cm) pipeline system to transfer the resulting mixed waste slurry to the AP Tank Farm and a planned waste treatment (vitrification) plant on the Hanford Site. Tank AZ-102 contains 854,000 gallons (3,230 m{sup 3}) of supernatant liquid and 95,000 gallons (360 m{sup 3}) of sludge made up of aging waste (or neutralized current acid waste). The study comprises three assessments: waste chemistry, pump jet mixing, and pipeline transfer. The waste chemical modeling assessment indicates that the sludge, consisting of the solids and interstitial solution, and the supernatant liquid are basically in an equilibrium condition. Thus, pump jet mixing would not cause much solids precipitation and dissolution, only 1.5% or less of the total AZ-102 sludge. The pump jet mixing modeling indicates that two 300-hp mixer pumps would mobilize up to about 23 ft (7.0 m) of the sludge nearest the pump but would not erode the waste within seven inches (0.18 m) of the tank bottom. This results in about half of the sludge being uniformly mixed in the tank and the other half being unmixed (not eroded) at the tank bottom.

  16. Sludge reduction in a small wastewater treatment plant by electro-kinetic disintegration.

    Science.gov (United States)

    Chiavola, Agostina; Ridolfi, Alessandra; D'Amato, Emilio; Bongirolami, Simona; Cima, Ennio; Sirini, Piero; Gavasci, Renato

    2015-01-01

    Sludge reduction in a wastewater treatment plant (WWTP) has recently become a key issue for the managing companies, due to the increasing constraints on the disposal alternatives. Therefore, all the solutions proposed with the aim of minimizing sludge production are receiving increasing attention and are tested either at laboratory or full-scale to evaluate their real effectiveness. In the present paper, electro-kinetic disintegration has been applied at full-scale in the recycle loop of the sludge drawn from the secondary settlement tank of a small WWTP for domestic sewage. After the disintegration stage, the treated sludge was returned to the biological reactor. Three different percentages (50, 75 and 100%) of the return sludge flow rate were subjected to disintegration and the effects on the sludge production and the WWTP operation efficiency evaluated. The long-term observations showed that the electro-kinetic disintegration was able to drastically reduce the amount of biological sludge produced by the plant, without affecting its treatment efficiency. The highest reduction was achieved when 100% return sludge flow rate was subjected to the disintegration process. The reduced sludge production gave rise to a considerable net cost saving for the company which manages the plant.

  17. Beneficial reuse of precast concrete industry sludge to produce alkaline stabilized biosolids.

    Science.gov (United States)

    Gowda, C; Seth, R; Biswas, N

    2008-01-01

    The precast concrete industry generates waste called concrete sludge during routine mixer tank washing. It is highly alkaline and hazardous, and typically disposed of by landfilling. This study examined the stabilization of municipal sewage sludge using concrete sludge as an alkaline agent. Sewage sludge was amended with 10 to 40% of concrete sludge by wet weight, and 10 and 20% of lime by dry weight of the sludge mix. Mixes containing 30 and 40% of concrete sludge with 20% lime fulfilled the primary requirements of Category 1 and 2 (Canada) biosolids of maintaining a pH of 12 for at least 72 hours. The heavy metals were below Category 1 regulatory limits. The 40% concrete sludge mix was incubated at 52 degrees C for 12 of the 72 hours to achieve the Category 1 and 2 regulations of less than 1000 fecal coliform/g solids. The nutrient content of the biosolids was 8.2, 10 and 0.6 g/kg of nitrogen, phosphorus and potassium respectively. It can be used as a top soil or augmented with potassium for use as fertilizer. The study demonstrates that concrete sludge waste can be beneficially reused to produce biosolids, providing a long-term sustainable waste management solution for the concrete industry.

  18. Aerobic storage under dynamic conditions in activated sludge processes

    DEFF Research Database (Denmark)

    Majone, M.; Dircks, K.

    1999-01-01

    In activated sludge processes, several plant configurations (like plug-flow configuration of the aeration tanks, systems with selectors, contact-stabilization processes or SBR processes) impose a concentration gradient of the carbon sources to the biomass. As a consequence, the biomass grows under...... mechanisms can also contribute to substrate removal, depending on the microbial composition and the previous "history" of the biomass. In this paper the type and the extent of this dynamic response is discussed by review of experimental studies on pure cultures, mixed cultures and activated sludges...... and with main reference to its relevance on population dynamics in the activated sludge. Possible conceptual approaches to storage modelling are also presented, including both structured and unstructured modelling. (C) 1999 IAWQ Published by Elsevier Science Ltd. All rights reserved....

  19. Kneader/dryer for sludges of distillation wastes; Secador-amasador para lodos de la clarificacion, lodos de barnices y residuos de la destilacion

    Energy Technology Data Exchange (ETDEWEB)

    Schwenk, W.

    2001-07-01

    The evaporation and indirect drying of industrial and biological sludges requires equipment of heavy mechanical design that is capable to cope with sticky, pasty matter. LIST-DISCOTHERM B y LIST-ORP kneaders/dryers of closed design are able to dry difficult sludges in a single-step continuous operation without recycling of dry product. Drying of sewage sludge, paint sludges and other process wastes including solvent recovery is an important step for an ecologically safe processing of these residuals. (Author)

  20. Metal fractionation in sludge from sewage UASB treatment.

    Science.gov (United States)

    Braga, A F M; Zaiat, M; Silva, G H R; Fermoso, F G

    2017-05-15

    This study evaluates the trace metal composition and fractionation in sludge samples from anaerobic sewage treatment plants from six cities in Brazil. Ten metals were evaluated: Ni, Mn, Se, Co, Fe, Zn, K, Cu, Pb and Cr. Specific methanogenic activity of the sludge was also evaluated using acetic acid as the substrate. Among the essential trace metals for anaerobic digestion, Se, Zn, Ni and Fe were found at a high percentage in the organic matter/sulfide fraction in all sludge samples analyzed. These metals are less available for microorganisms than other metals, i.e., Co and K, which were present in significant amounts in the exchangeable and carbonate fractions. Cu is not typically reported as an essential metal but as a possible inhibitor. One of the samples showed a total Cu concentration close to the maximal amount allowed for reuse as fertilizer. Among the non-essential trace metals, Pb was present in all sludge samples at similar low concentrations and was primarily present in the residual fraction, demonstrating very low availability. Cr was found at low concentrations in all sludge samples, except for the sludge from STP5; interestingly, this sludge presented the lowest specific methanogenic activity, indicating possible Cr toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Application of radiation technology to sewage sludge processing: A review

    International Nuclear Information System (INIS)

    Wang Jianlong; Wang Jiazhuo

    2007-01-01

    Sewage sludge is unwanted residual solid wastes generated in wastewater treatment and its management is one of the most critical environmental issues of today. The treatment and disposal of sludge contribute a considerable proportion of the cost for running a wastewater treatment plant. The increasing amount of swage sludge and more and more legislative regulation of its disposal have stimulated the need for developing new technologies to process sewage sludge efficiently and economically. One ideal consideration is to recycle it after proper treatment. Radiation technology is regarded to be a promising alternative for its high efficiency in pathogen inactivation, organic pollutants oxidation, odor nuisance elimination and some other characteristics enhancement, which will facilitate the down-stream process of sludge treatment and disposal. Here we present a brief review of application of radiation technology on sewage sludge processing. Some basic information of two currently available irradiation systems and fundamental radiation chemistry are introduced firstly; then the world-wide application of this promising technology is reviewed; various effects of radiation on sludge is discussed in detail; and some concluding remarks are given and some future directions are also proposed

  2. Assessment of a Danish sludge treatment reed bed system and a stockpile area, using substance flow analysis

    DEFF Research Database (Denmark)

    Larsen, Julie Dam; Nielsen, Steen M; Scheutz, Charlotte

    2017-01-01

    of substances in an STRB system over a 12-year treatment period, followed by three months' post-treatment in a stockpile area (SPA). Samples of sludge, reject water and sludge residue of different ages were collected at two Danish STRB system facilities and analysed for content of relevant substances....... Concentrations of carbon and nitrogen in the sludge residue residing in an STRB system changed as a function of treatment time, mainly due to mineralisation; only a negligible part was lost to reject water. Considering metals and phosphorus, the main share was accumulated in the sludge residue; only minor...... fractions were lost to mineralisation or reject water. Post-treatment in an SPA resulted in an increase in dry matter content from 24% to 32%. After treatment, the concentrations of heavy metals (lead, cadmium, nickel, zinc, copper and chromium) in the sludge residue met the threshold values stated...

  3. Tank characterization report: Tank 241-C-109

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.; Borshiem, G.L.; Jensen, L.

    1993-09-01

    Single-shell tank 241-C-109 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in September 1992. Analyses of materials obtained from tank 241-C-109 were conducted to support the resolution of the ferrocyanide unreviewed safety question (USQ) and to support Hanford Federal Facility Agreement and consent Order (Tri- Party Agreement) Milestone M-10-00. This report describes this analysis.

  4. Tank characterization report: Tank 241-C-109

    International Nuclear Information System (INIS)

    Simpson, B.C.; Borshiem, G.L.; Jensen, L.

    1993-09-01

    Single-shell tank 241-C-109 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in September 1992. Analyses of materials obtained from tank 241-C-109 were conducted to support the resolution of the ferrocyanide unreviewed safety question (USQ) and t