WorldWideScience

Sample records for residue measurement system

  1. Automatic Gamma-Scanning System for Measurement of Residual Heat in Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Osifo, Otasowie

    2007-03-01

    In Sweden, spent nuclear fuel will be encapsulated and placed in a deep geological repository. In this procedure, reliable and accurate spent fuel data such as discharge burnup, cooling time and residual heat must be available. The gamma scanning method was proposed in earlier work as a fast and reliable method for the experimental determination of such spent fuel data. This thesis is focused on the recent achievements in the development of a pilot gamma scanning system and its application in measuring spent fuel residual heat. The achievements include the development of dedicated spectroscopic data-acquisition and analysis software and the use of a specially designed calorimeter for calibrating the gamma scanning system. The pilot system is described, including an evaluation of the performance of the spectrum analysis software. Also described are the gamma-scanning measurements on 31 spent PWR fuel assemblies performed using the pilot system. The results obtained for the determination of residual heat are presented, showing an agreement of (2-3) % with both calorimetric and calculated data. In addition, the ability to verify declared data such as discharge burnup and cooling time is demonstrated

  2. Measurement properties and usability of non-contact scanners for measuring transtibial residual limb volume.

    Science.gov (United States)

    Kofman, Rianne; Beekman, Anna M; Emmelot, Cornelis H; Geertzen, Jan H B; Dijkstra, Pieter U

    2018-06-01

    Non-contact scanners may have potential for measurement of residual limb volume. Different non-contact scanners have been introduced during the last decades. Reliability and usability (practicality and user friendliness) should be assessed before introducing these systems in clinical practice. The aim of this study was to analyze the measurement properties and usability of four non-contact scanners (TT Design, Omega Scanner, BioSculptor Bioscanner, and Rodin4D Scanner). Quasi experimental. Nine (geometric and residual limb) models were measured on two occasions, each consisting of two sessions, thus in total 4 sessions. In each session, four observers used the four systems for volume measurement. Mean for each model, repeatability coefficients for each system, variance components, and their two-way interactions of measurement conditions were calculated. User satisfaction was evaluated with the Post-Study System Usability Questionnaire. Systematic differences between the systems were found in volume measurements. Most of the variances were explained by the model (97%), while error variance was 3%. Measurement system and the interaction between system and model explained 44% of the error variance. Repeatability coefficient of the systems ranged from 0.101 (Omega Scanner) to 0.131 L (Rodin4D). Differences in Post-Study System Usability Questionnaire scores between the systems were small and not significant. The systems were reliable in determining residual limb volume. Measurement systems and the interaction between system and residual limb model explained most of the error variances. The differences in repeatability coefficient and usability between the four CAD/CAM systems were small. Clinical relevance If accurate measurements of residual limb volume are required (in case of research), modern non-contact scanners should be taken in consideration nowadays.

  3. Recent advances in residual stress measurement

    International Nuclear Information System (INIS)

    Withers, P.J.; Turski, M.; Edwards, L.; Bouchard, P.J.; Buttle, D.J.

    2008-01-01

    Until recently residual stresses have been included in structural integrity assessments of nuclear pressure vessels and piping in a very primitive manner due to the lack of reliable residual stress measurement or prediction tools. This situation is changing the capabilities of newly emerging destructive (i.e. the contour method) and non-destructive (i.e. magnetic and high-energy synchrotron X-ray strain mapping) residual stress measurement techniques for evaluating ferritic and austenitic pressure vessel components are contrasted against more well-established methods. These new approaches offer the potential for obtaining area maps of residual stress or strain in welded plants, mock-up components or generic test-pieces. The mapped field may be used directly in structural integrity calculations, or indirectly to validate finite element process/structural models on which safety cases for pressurised nuclear systems are founded. These measurement methods are complementary in terms of application to actual plant, cost effectiveness and measurements in thick sections. In each case an exemplar case study is used to illustrate the method and to highlight its particular capabilities

  4. Residual-stress measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ezeilo, A N; Webster, G A [Imperial College, London (United Kingdom); Webster, P J [Salford Univ. (United Kingdom)

    1997-04-01

    Because neutrons can penetrate distances of up to 50 mm in most engineering materials, this makes them unique for establishing residual-stress distributions non-destructively. D1A is particularly suited for through-surface measurements as it does not suffer from instrumental surface aberrations commonly found on multidetector instruments, while D20 is best for fast internal-strain scanning. Two examples for residual-stress measurements in a shot-peened material, and in a weld are presented to demonstrate the attractive features of both instruments. (author).

  5. Systems for harvesting and handling cotton plant residue

    Energy Technology Data Exchange (ETDEWEB)

    Coates, W. [Univ. of Arizona, Tucson, AZ (United States)

    1993-12-31

    In the warmer regions of the United States, cotton plant residue must be buried to prevent it from serving as an overwintering site for insect pests such as the pink bollworm. Most of the field operations used to bury the residue are high energy consumers and tend to degrade soil structure, thereby increasing the potential for erosion. The residue is of little value as a soil amendment and consequently is considered a negative value biomass. A commercial system to harvest cotton plant residue would be of both economic and environmental benefit to cotton producers. Research has been underway at the University of Arizona since the spring of 1991 to develop a commercially viable system for harvesting cotton plant residue. Equipment durability, degree of densification, energy required, cleanliness of the harvested material, and ease of product handling and transport are some of the performance variables which have been measured. Two systems have proven superior. In both, the plants are pulled from the ground using an implement developed specifically for the purpose. In one system, the stalks are baled using a large round baler, while in the other the stalks are chopped with a forage harvester, and then made into packages using a cotton module maker. Field capacities, energy requirements, package density and durability, and ease of handling with commercially available equipment have been measured for both systems. Selection of an optimum system for a specific operation depends upon end use of the product, and upon equipment availability.

  6. Residual gravimetric method to measure nebulizer output.

    Science.gov (United States)

    Vecellio None, Laurent; Grimbert, Daniel; Bordenave, Joelle; Benoit, Guy; Furet, Yves; Fauroux, Brigitte; Boissinot, Eric; De Monte, Michele; Lemarié, Etienne; Diot, Patrice

    2004-01-01

    The aim of this study was to assess a residual gravimetric method based on weighing dry filters to measure the aerosol output of nebulizers. This residual gravimetric method was compared to assay methods based on spectrophotometric measurement of terbutaline (Bricanyl, Astra Zeneca, France), high-performance liquid chromatography (HPLC) measurement of tobramycin (Tobi, Chiron, U.S.A.), and electrochemical measurements of NaF (as defined by the European standard). Two breath-enhanced jet nebulizers, one standard jet nebulizer, and one ultrasonic nebulizer were tested. Output produced by the residual gravimetric method was calculated by weighing the filters both before and after aerosol collection and by filter drying corrected by the proportion of drug contained in total solute mass. Output produced by the electrochemical, spectrophotometric, and HPLC methods was determined after assaying the drug extraction filter. The results demonstrated a strong correlation between the residual gravimetric method (x axis) and assay methods (y axis) in terms of drug mass output (y = 1.00 x -0.02, r(2) = 0.99, n = 27). We conclude that a residual gravimetric method based on dry filters, when validated for a particular agent, is an accurate way of measuring aerosol output.

  7. Measurement of residual stresses using fracture mechanics weight functions

    International Nuclear Information System (INIS)

    Fan, Y.

    2000-01-01

    A residual stress measurement method has been developed to quantify through-the-thickness residual stresses. Accurate measurement of residual stresses is crucial for many engineering structures. Fabrication processes such as welding and machining generate residual stresses that are difficult to predict. Residual stresses affect the integrity of structures through promoting failures due to brittle fracture, fatigue, stress corrosion cracking, and wear. In this work, the weight function theory of fracture mechanics is used to measure residual stresses. The weight function theory is an important development in computational fracture mechanics. Stress intensity factors for arbitrary stress distribution on the crack faces can be accurately and efficiently computed for predicting crack growth. This paper demonstrates that the weight functions are equally useful in measuring residual stresses. In this method, an artificial crack is created by a thin cut in a structure containing residual stresses. The cut relieves the residual stresses normal to the crack-face and allows the relieved residual stresses to deform the structure. Strain gages placed adjacent to the cut measure the relieved strains corresponding to incrementally increasing depths of the cut. The weight functions of the cracked body relate the measured strains to the residual stresses normal to the cut within the structure. The procedure details, such as numerical integration of the singular functions in applying the weight function method, will be discussed

  8. Measurement of residual stresses using fracture mechanics weight functions

    International Nuclear Information System (INIS)

    Fan, Y.

    2001-01-01

    A residual stress measurement method has been developed to quantify through-the-thickness residual stresses. Accurate measurement of residual stresses is crucial for many engineering structures. Fabrication processes such as welding and machining generate residual stresses that are difficult to predict. Residual stresses affect the integrity of structures through promoting failures due to brittle fracture, fatigue, stress corrosion cracking, and wear. In this work, the weight function theory of fracture mechanics is used to measure residual stresses. The weight function theory is an important development in computational fracture mechanics. Stress intensity factors for arbitrary stress distribution on the crack faces can be accurately and efficiently computed for predicting crack growth. This paper demonstrates that the weight functions are equally useful in measuring residual stresses. In this method, an artificial crack is created by a thin cut in a structure containing residual stresses. The cut relieves the residual stresses normal to the crack-face and allows the relieved residual stresses to deform the structure. Strain gages placed adjacent to the cut measure the relieved strains corresponding to incrementally increasing depths of the cut. The weight functions of the cracked body relate the measured strains to the residual stresses normal to the cut within the structure. The procedure details, such as numerical integration of the singular functions in applying the weight function method, will be discussed. (author)

  9. Neutron residual stress measurements in linepipe

    International Nuclear Information System (INIS)

    Law, Michael; Gnaepel-Herold, Thomas; Luzin, Vladimir; Bowie, Graham

    2006-01-01

    Residual stresses in gas pipelines are generated by manufacturing and construction processes and may affect the subsequent pipe integrity. In the present work, the residual stresses in eight samples of linepipe were measured by neutron diffraction. Residual stresses changed with some coating processes. This has special implications in understanding and mitigating stress corrosion cracking, a major safety and economic problem in some gas pipelines

  10. Development of an on-site measurement method for residual stress in primary system piping of nuclear power plants

    International Nuclear Information System (INIS)

    Maekawa, Akira; Takahashi, Shigeru; Fujiwara, Masaharu

    2014-01-01

    In residual stress measurement for large-scale pipes and vessels in high radiation areas and highly contaminated areas of nuclear plants, it is difficult to bring the radioactivated pipes and vessels out of the areas as they are. If they can brought out, it is very burdensome to handle them for the measurement. Development of an on-site measurement method of residual stress which can be quickly applied and has sufficient measurement accuracy is desirable. In this study, a new method combining an electric discharge skim-cut method with a microscopic strain measurement method using markers was proposed to realize the on-site residual stress measurement on pipes in high radiation areas and highly contaminated areas. In the electric discharge skim-cut method, a boat-type sample is skimmed out of a pipe outer/inner surface using electric discharge machining and released residual stress is measured. The on-site measurement of residual stress by the method can be done using a small, portable electric discharge machine. In the microscopic strain measurement method using markers, the residual stress is estimated by microscopic measurement of the distance between markers after the stress release. The combination of both methods can evaluate the residual stress with the same accuracy as conventional methods offer and it can achieve reduction of radiation exposure in the measurement because the work is done simply and rapidly. In this study, the applicability of the electric discharge skim-cut method was investigated because the applicability of the microscopic strain measurement method using markers was confirmed previously. The experimental examination clarified the applicable conditions for the residual stress measurement with the same accuracy as the conventional methods. Furthermore, the electric discharge machining conditions using pure water as the machining liquid was found to eliminate the amount of liquid radioactive waste completely. (author)

  11. Methods of measuring residual stresses in components

    International Nuclear Information System (INIS)

    Rossini, N.S.; Dassisti, M.; Benyounis, K.Y.; Olabi, A.G.

    2012-01-01

    Highlights: ► Defining the different methods of measuring residual stresses in manufactured components. ► Comprehensive study on the hole drilling, neutron diffraction and other techniques. ► Evaluating advantage and disadvantage of each method. ► Advising the reader with the appropriate method to use. -- Abstract: Residual stresses occur in many manufactured structures and components. Large number of investigations have been carried out to study this phenomenon and its effect on the mechanical characteristics of these components. Over the years, different methods have been developed to measure residual stress for different types of components in order to obtain reliable assessment. The various specific methods have evolved over several decades and their practical applications have greatly benefited from the development of complementary technologies, notably in material cutting, full-field deformation measurement techniques, numerical methods and computing power. These complementary technologies have stimulated advances not only in measurement accuracy and reliability, but also in range of application; much greater detail in residual stresses measurement is now available. This paper aims to classify the different residual stresses measurement methods and to provide an overview of some of the recent advances in this area to help researchers on selecting their techniques among destructive, semi destructive and non-destructive techniques depends on their application and the availabilities of those techniques. For each method scope, physical limitation, advantages and disadvantages are summarized. In the end this paper indicates some promising directions for future developments.

  12. X-ray measurement of residual stress on bolt threads

    International Nuclear Information System (INIS)

    Hagiwara, Masaya; Nakahara, Kanefumi; Yoshimoto, Isamu.

    1989-01-01

    This study deals with X-ray measurement of residual stress at the local area around the thread root of a bolt. Residual stress in the 0.5 mm x 5 mm area was measured using a method of stepped scanning and parabolic approximation. The conditions of measurement had been determined and evaluated through the preliminary measurement of compressive stress acting on the cylindrical surface. Furthermore, the fatigue strength estimated by applying the residual stress data to the previously presented hypothesis was compared with the experimental results. The main conclusions obtained were as follows: (1) The residual stress in a relatively small area on the cylindrical surface with large curvature can be measured by X-ray using a method of stepped scanning and parabolic approximation; (2) The compressive residual stress measured at the thread root was larger for the bolt manufactured by thread rolling after heat treatment than for one manufactured by thread rolling before heat treatment; (3) The distribution of residual stress along the axial direction from the thread root to the portion under crest did not represent remarkable change in its value; (4) The residual stress of a bolt was somewhat decreased by fatigue loading on the condition of low mean stress; (5) The fatigue strength estimated using residual stress data showed the tendency of experimental results well. (author)

  13. Stresses and residual stresses optical measurements systems evaluation; Avaliacao de sistemas opticos de medicao de tensoes e tensoes residuais em dutos

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto Filho, Flavio Tito; Goncalves Junior, Armando Albertazzi [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Lab. de Metrologia e Automatizacao (LABMETRO)

    2004-07-01

    There is always a constant concern about the pipelines' integrity. An important control parameter is the level of total mechanical stresses acting over the pipeline. However, the loading and residual stresses acting on a pipeline are not measured in the field as much as necessary. Technical difficulties and the high cost of the nowadays techniques and the hostile measurement conditions are the main reason for that. An alternative method has been developed at the Universidade Federal de Santa Catarina (UFSC) since 1992. A new optical measurement device is used to measure strains, mechanical stresses and residual stresses acting over the structure. A metrological and functional evaluation of this system is the main focus of this paper. (author)

  14. Residual stresses measurement by using ring-core method and 3D digital image correlation technique

    International Nuclear Information System (INIS)

    Hu, Zhenxing; Xie, Huimin; Zhu, Jianguo; Wang, Huaixi; Lu, Jian

    2013-01-01

    Ring-core method/three-dimensional digital image correlation (3D DIC) residual stresses measurement is proposed. Ring-core cutting is a mechanical stress relief method, and combining with 3D DIC system the deformation of the specimen surface can be measured. An optimization iteration method is proposed to obtain the residual stress and rigid-body motion. The method has the ability to cut an annular trench at a different location out of the field of view. A compression test is carried out to demonstrate how residual stress is determined by using 3D DIC system and outfield measurement. The results determined by the approach are in good agreement with the theoretical value. Ring-core/3D DIC has shown its robustness to determine residual stress and can be extended to application in the engineering field. (paper)

  15. Residual and Destroyed Accessible Information after Measurements

    Science.gov (United States)

    Han, Rui; Leuchs, Gerd; Grassl, Markus

    2018-04-01

    When quantum states are used to send classical information, the receiver performs a measurement on the signal states. The amount of information extracted is often not optimal due to the receiver's measurement scheme and experimental apparatus. For quantum nondemolition measurements, there is potentially some residual information in the postmeasurement state, while part of the information has been extracted and the rest is destroyed. Here, we propose a framework to characterize a quantum measurement by how much information it extracts and destroys, and how much information it leaves in the residual postmeasurement state. The concept is illustrated for several receivers discriminating coherent states.

  16. Residual stress measurement in a metal microdevice by micro Raman spectroscopy

    International Nuclear Information System (INIS)

    Song, Chang; Du, Liqun; Qi, Leijie; Li, Yu; Li, Xiaojun; Li, Yuanqi

    2017-01-01

    Large residual stress induced during the electroforming process cannot be ignored to fabricate reliable metal microdevices. Accurate measurement is the basis for studying the residual stress. Influenced by the topological feature size of micron scale in the metal microdevice, residual stress in it can hardly be measured by common methods. In this manuscript, a methodology is proposed to measure the residual stress in the metal microdevice using micro Raman spectroscopy (MRS). To estimate the residual stress in metal materials, micron sized β -SiC particles were mixed in the electroforming solution for codeposition. First, the calculated expression relating the Raman shifts to the induced biaxial stress for β -SiC was derived based on the theory of phonon deformation potentials and Hooke’s law. Corresponding micro electroforming experiments were performed and the residual stress in Ni–SiC composite layer was both measured by x-ray diffraction (XRD) and MRS methods. Then, the validity of the MRS measurements was verified by comparing with the residual stress measured by XRD method. The reliability of the MRS method was further validated by the statistical student’s t -test. The MRS measurements were found to have no systematic error in comparison with the XRD measurements, which confirm that the residual stresses measured by the MRS method are reliable. Besides that, the MRS method, by which the residual stress in a micro inertial switch was measured, has been confirmed to be a convincing experiment tool for estimating the residual stress in metal microdevice with micron order topological feature size. (paper)

  17. Residual stress measurement in a metal microdevice by micro Raman spectroscopy

    Science.gov (United States)

    Song, Chang; Du, Liqun; Qi, Leijie; Li, Yu; Li, Xiaojun; Li, Yuanqi

    2017-10-01

    Large residual stress induced during the electroforming process cannot be ignored to fabricate reliable metal microdevices. Accurate measurement is the basis for studying the residual stress. Influenced by the topological feature size of micron scale in the metal microdevice, residual stress in it can hardly be measured by common methods. In this manuscript, a methodology is proposed to measure the residual stress in the metal microdevice using micro Raman spectroscopy (MRS). To estimate the residual stress in metal materials, micron sized β-SiC particles were mixed in the electroforming solution for codeposition. First, the calculated expression relating the Raman shifts to the induced biaxial stress for β-SiC was derived based on the theory of phonon deformation potentials and Hooke’s law. Corresponding micro electroforming experiments were performed and the residual stress in Ni-SiC composite layer was both measured by x-ray diffraction (XRD) and MRS methods. Then, the validity of the MRS measurements was verified by comparing with the residual stress measured by XRD method. The reliability of the MRS method was further validated by the statistical student’s t-test. The MRS measurements were found to have no systematic error in comparison with the XRD measurements, which confirm that the residual stresses measured by the MRS method are reliable. Besides that, the MRS method, by which the residual stress in a micro inertial switch was measured, has been confirmed to be a convincing experiment tool for estimating the residual stress in metal microdevice with micron order topological feature size.

  18. Residual stress measurement in 304 stainless steel weld overlay pipes

    International Nuclear Information System (INIS)

    Yen, H.J.; Lin, M.C.C.; Chen, L.J.

    1996-01-01

    Welding overlay repair (WOR) is commonly employed to rebuild piping systems suffering from intergranular stress corrosion cracking (IGSCC). To understand the effects of this repair, it is necessary to investigate the distribution of residual stresses in the welding pipe. The overlay welding technique must induce compressive residual stress at the inner surface of the welded pipe to prevent IGSCC. To understand the bulk residual stress distribution, the stress profile as a function of location within wall is examined. In this study the full destructive residual stress measurement technique -- a cutting and sectioning method -- is used to determine the residual stress distribution. The sample is type 304 stainless steel weld overlay pipe with an outside diameter of 267 mm. A pipe segment is cut from the circular pipe; then a thin layer is removed axially from the inner to the outer surfaces until further sectioning is impractical. The total residual stress is calculated by adding the stress relieved by cutting the section away to the stress relieved by axially sectioning. The axial and hoop residual stresses are compressive at the inner surface of the weld overlay pipe. Compressive stress exists not only at the surface but is also distributed over most of the pipe's cross section. On the one hand, the maximum compressive hoop residual stress appears at the pipe's inner surface. The thermal-mechanical induced crack closure from significant compressive residual stress is discussed. This crack closure can thus prevent IGSCC very effectively

  19. Residual stress measurement with focused acoustic waves and direct comparison with X-ray diffraction stress measurements

    International Nuclear Information System (INIS)

    Sathish, Shamachary; Moran, Thomas J.; Martin, Richard W.; Reibel, Richard

    2005-01-01

    The technique of measuring small changes in acoustic wave velocity due to external or internal stress has been used for quantitative determination of residual stress in materials during the last decade. Application of similar methodology with focused acoustic waves leads to residual stress measurement with spatial resolution of a few millimeters to a few microns. The high spatial resolution residual stress measurement required development of new methodologies in both the design of acoustic lenses and the instrumentation for acoustic wave velocity determination. This paper presents two new methodologies developed for the measurement of residual stress with spatial resolution of a few millimeters. The design of new type of acoustic lens for achieving higher spatial resolution in residual stress measurement is introduced. Development of instrumentation for high precision local surface wave velocity measurement will be presented. Residual stresses measured around a crack tip in a sample of Ti-6A1-4V using a focused beam will be compared with X-ray diffraction measurements performed on the same region of the sample. Results of residual stress measurements along a direction perpendicular to the electron beam weld in a sample of Ti-6A1-4V, determined using focused acoustic waves and X-ray diffraction technique, are also presented. The spatial resolution and penetration depth of X-rays and focused acoustic beams with reference to residual stress measurements are discussed

  20. Health condition and residual life of deteriorating technical systems

    Energy Technology Data Exchange (ETDEWEB)

    Reinertsen, Rune

    1998-12-31

    Many offshore installations in the Norwegian Sector of the North Sea approach the end of their useful life. The same is true of many power plants and technical systems in general. This thesis describes the theory and improves the methods for the determination of the health condition and residual life of technical systems. Rather than developing new methods it discusses new ways of using existing statistical methods. The main contributions are: (1) A survey of the literature of diagnosis, prediction and life extension for deteriorating technical systems, (2) A discussion of some consequences of selecting the wrong life model, (3) A description of problems related to the determination of mean residual life of non-repairable technical systems, (4) Presentation of the concept of `technical health` to describe the soundness of a system exposed to failure mechanisms, (5) A model for predicting the technical health and residual life of a corroding system, (6) Recommends requirements and methods for using expert knowledge in safety and reliability analysis, (7) A general inspection strategy for system fault diagnosis by using Shannon entropy, (8) Points out weaknesses and strengths of risk measures used in the offshore industry today. 237 refs., 23 figs., 6 tabs.

  1. Health condition and residual life of deteriorating technical systems

    Energy Technology Data Exchange (ETDEWEB)

    Reinertsen, Rune

    1997-12-31

    Many offshore installations in the Norwegian Sector of the North Sea approach the end of their useful life. The same is true of many power plants and technical systems in general. This thesis describes the theory and improves the methods for the determination of the health condition and residual life of technical systems. Rather than developing new methods it discusses new ways of using existing statistical methods. The main contributions are: (1) A survey of the literature of diagnosis, prediction and life extension for deteriorating technical systems, (2) A discussion of some consequences of selecting the wrong life model, (3) A description of problems related to the determination of mean residual life of non-repairable technical systems, (4) Presentation of the concept of `technical health` to describe the soundness of a system exposed to failure mechanisms, (5) A model for predicting the technical health and residual life of a corroding system, (6) Recommends requirements and methods for using expert knowledge in safety and reliability analysis, (7) A general inspection strategy for system fault diagnosis by using Shannon entropy, (8) Points out weaknesses and strengths of risk measures used in the offshore industry today. 237 refs., 23 figs., 6 tabs.

  2. Residual strain in the Nb-H system measured by selected area diffraction (SAD)

    International Nuclear Information System (INIS)

    Bulhoes, I.A.M.; Akune, K.; Pinatti, Dyonisio G.

    1981-07-01

    Various specimens of Nb were annealed in vacuum of 10 -3 torr for four hours at 1770 0 K. These speciments were doped with hydrogen up to 1000 ppm by weight and then were analyzed selected area diffraction. The line resolution of the electron channelling pattern was meassured for the specimens with different hydrogen content. These measurements, combined with the measurement of density, permitted one to estimate the residual strain caused by hydrogen. (Author) [pt

  3. Measuring depth profiles of residual stress with Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Enloe, W.S.; Sparks, R.G.; Paesler, M.A.

    1988-12-01

    Knowledge of the variation of residual stress is a very important factor in understanding the properties of machined surfaces. The nature of the residual stress can determine a part`s susceptibility to wear deformation, and cracking. Raman spectroscopy is known to be a very useful technique for measuring residual stress in many materials. These measurements are routinely made with a lateral resolution of 1{mu}m and an accuracy of 0.1 kbar. The variation of stress with depth; however, has not received much attention in the past. A novel technique has been developed that allows quantitative measurement of the variation of the residual stress with depth with an accuracy of 10nm in the z direction. Qualitative techniques for determining whether the stress is varying with depth are presented. It is also demonstrated that when the stress is changing over the volume sampled, errors can be introduced if the variation of the stress with depth is ignored. Computer aided data analysis is used to determine the depth dependence of the residual stress.

  4. Optical residual stress measurement in TFT-LCD panels

    Science.gov (United States)

    Wang, Wei-Chung; Sung, Po-Chi

    2017-06-01

    The residual stress of the glass substrate might be one of causes to produce the non-uniform light distribution defect, i.e. Mura, in thin film transistor-liquid crystal display (TFT-LCD) panels. Glass is a birefringent material with very low birefringence. Furthermore, the thinner and thinner thickness request from the market makes the traditional photoelasticity almost impossible to measure the residual stresses produced in thin glass plates. Recently, a low-level stress measurement method called transmissivity extremities theory of photoelasticity (TEToP) was successfully developed to measure the residual stress in glass plate. Besides, to measure the stress of the glass plate in the TFT-LCD panel whose rear surface may has different kinds of coatings, an advanced reflection photoelasticity was also developed. In this paper, three commercially available glass plates with 0.33mm nominal thickness and three glass circular disks with different coatings were inspected to verify the feasibility of the TEToP and the advanced reflection photoelasticity, respectively.

  5. The method for measuring residual stress in stainless steel pipes

    International Nuclear Information System (INIS)

    Shimov, Georgy; Rozenbaum, Mikhail; Serebryakov, Alexandr; Serebryakov, Andrey

    2016-01-01

    The main reason of appearance and growth of corrosion damages of the nuclear steam generator heat exchanger tubes is the process of stress-corrosion cracking of metal under the influence of residual tensile stress. Methods used in the production for estimating residual stresses (such as a method of ring samples) allow measuring only the average tangential stress of the pipe wall. The method of ring samples does not allow to assess the level of residual stress in the surface layer of the pipe. This paper describes an experimental method for measuring the residual stresses on the pipe surface by etching a thin surface layer of the metal. The construction and working principle of a trial installation are described. The residual stresses in the wall of the tubes 16 × 1.5 mm (steel AISI 321) for nuclear steam generators is calculated. Keywords: heat exchange pipes, stress corrosion cracking, residual stresses, stress distribution, stress measurement.

  6. A Design of Portable Pesticide Residue Detection System Based on the Enzyme Electrode

    Directory of Open Access Journals (Sweden)

    Xia SUN

    2013-03-01

    Full Text Available In this paper, a portable detection system was designed based on amperometric acetylcholinesterase biosensor for rapidly detecting pesticide residues in fruits and vegetables. There were potentiostat, three electrode system, differential amplification circuit and double integral analog to digital (A/D circuit modules in this system. The measurement principle of this system was depended on the weak current from enzyme catalyzing substrate in acetylcholinesterase biosensor for detecting pesticide residues. The weak current generated by the enzyme biosensor was changed into 0-5 V standard voltage signal by this system as an output signal. The proposed system was investigated with eight kinds of standard pesticide of different concentrations, the results showed that the detection limits were all lower than 10 ng/kg. Thus, a new effective home-made system of detecting pesticide residues with portable, easy-to-use, fast response was developed. The pesticide residues rapid detection system can collect the weak current signal generated by electrochemical reaction and on-site detect the concentration of pesticide residues in real fruits and vegetables samples.

  7. Multi-rate cubature Kalman filter based data fusion method with residual compensation to adapt to sampling rate discrepancy in attitude measurement system.

    Science.gov (United States)

    Guo, Xiaoting; Sun, Changku; Wang, Peng

    2017-08-01

    This paper investigates the multi-rate inertial and vision data fusion problem in nonlinear attitude measurement systems, where the sampling rate of the inertial sensor is much faster than that of the vision sensor. To fully exploit the high frequency inertial data and obtain favorable fusion results, a multi-rate CKF (Cubature Kalman Filter) algorithm with estimated residual compensation is proposed in order to adapt to the problem of sampling rate discrepancy. During inter-sampling of slow observation data, observation noise can be regarded as infinite. The Kalman gain is unknown and approaches zero. The residual is also unknown. Therefore, the filter estimated state cannot be compensated. To obtain compensation at these moments, state error and residual formulas are modified when compared with the observation data available moments. Self-propagation equation of the state error is established to propagate the quantity from the moments with observation to the moments without observation. Besides, a multiplicative adjustment factor is introduced as Kalman gain, which acts on the residual. Then the filter estimated state can be compensated even when there are no visual observation data. The proposed method is tested and verified in a practical setup. Compared with multi-rate CKF without residual compensation and single-rate CKF, a significant improvement is obtained on attitude measurement by using the proposed multi-rate CKF with inter-sampling residual compensation. The experiment results with superior precision and reliability show the effectiveness of the proposed method.

  8. Measurement of residual stress in textured Al alloy by neutron diffraction method

    International Nuclear Information System (INIS)

    Okido, S.; Hayashi, M.; Tanaka, K.; Akiniwa, Y.; Minakawa, N.; Morii, Y.

    1999-01-01

    Residual stress generated in a shrunken aluminum alloy specimen, which was prepared for the round robin test conducted by VAMAS (Versailles Project on Advanced Materials and Standards) TWA-20 organized for the purpose of standardizing residual stress measurement methods, was evaluated by a neutron diffraction method. The main purpose of the round robin test was to assess the reproducibility of data obtained with the measurement facilities of the participants. The general standard of the Residual Stress Analyzer (RESA) constructed in the Japan Atomic Energy Research Institute was verified from the measured residual strains, which were equivalent to the values calculated by FEM and values measured by the research facilities in North America. Residual stress was calculated from residual strain in three perpendicular directions. The diffraction intensities were dependent on measurement directions since the prepared specimen possessed texture. Diffraction profiles in directions having a weak diffraction intensity caused an inaccurate evaluation of the residual stress. To solve this problem, a new method for evaluating residual stress with respect to diffraction plane dependency of the elastic constant was applied. The diffraction plane giving the highest intensity among 110, 200, and 220 diffraction was used to evaluate the residual strain in each of three directions. The residual strain obtained on the used diffraction plane was converted to the equivalent strain for the defined diffraction plane using the ratio of elastic constants of these two planes. The developed evaluation method achieved highly accurate measurement and remarkable efficiency in the measurement process. (author)

  9. Sustainable System for Residual Hazards Management

    International Nuclear Information System (INIS)

    Kevin M. Kostelnik; James H. Clarke; Jerry L. Harbour

    2004-01-01

    Hazardous, radioactive and other toxic substances have routinely been generated and subsequently disposed of in the shallow subsurface throughout the world. Many of today's waste management techniques do not eliminate the problem, but rather only concentrate or contain the hazardous contaminants. Residual hazards result from the presence of hazardous and/or contaminated material that remains on-site following active operations or the completion of remedial actions. Residual hazards pose continued risk to humans and the environment and represent a significant and chronic problem that require continuous long-term management (i.e. >1000 years). To protect human health and safeguard the natural environment, a sustainable system is required for the proper management of residual hazards. A sustainable system for the management of residual hazards will require the integration of engineered, institutional and land-use controls to isolate residual contaminants and thus minimize the associated hazards. Engineered controls are physical modifications to the natural setting and ecosystem, including the site, facility, and/or the residual materials themselves, in order to reduce or eliminate the potential for exposure to contaminants of concern (COCs). Institutional controls are processes, instruments, and mechanisms designed to influence human behavior and activity. System failure can involve hazardous material escaping from the confinement because of system degradation (i.e., chronic or acute degradation) or by external intrusion of the biosphere into the contaminated material because of the loss of institutional control. An ongoing analysis of contemporary and historic sites suggests that the significance of the loss of institutional controls is a critical pathway because decisions made during the operations/remedial action phase, as well as decisions made throughout the residual hazards management period, are key to the long-term success of the prescribed system. In fact

  10. A Study on Residual Stress Measurements by Using Laser Speckle Interferometry

    International Nuclear Information System (INIS)

    Rho, Kyung Wan; Kang, Young June; Hong, Seong Jin; Kang, Hyung Soo

    1999-01-01

    Residual stress is one of the causes which make defects in engineering components and materials. And interest in the measurement of residual stress exists in many industries. There are commonly used methods by which residual stresses are currently measured. But these methods have a little demerits: time consumption and other problems. Therefore we devised a new experimental technique to measure residual stress in materials with a combination of laser speckle pattern interferometry, finite element method and spot heating. The speckle pattern interferometer measures in-plane deformations while the heating provides for very localized stress relief. FEM is used for determining heat temperature and other parameters. The residual stresses are determined by the amount of strain that is measured subsequent to the heating and cool-down of the region being interrogated. A simple model is presented to provide a description of the method. In this paper, the ambiguity problem for the fringe patterns has solved by a phase shifting method

  11. Prediction of residual stress distribution in multi-stacked thin film by curvature measurement and iterative FEA

    International Nuclear Information System (INIS)

    Choi, Hyeon Chang; Park, Jun Hyub

    2005-01-01

    In this study, residual stress distribution in multi-stacked film by MEMS (Micro-Electro Mechanical System) process is predicted using Finite Element Method (FEM). We develop a finite element program for REsidual Stress Analysis (RESA) in multi-stacked film. The RESA predicts the distribution of residual stress field in multi-stacked film. Curvatures of multi-stacked film and single layers which consist of the multi-stacked film are used as the input to the RESA. To measure those curvatures is easier than to measure a distribution of residual stress. To verify the RESA, mean stresses and stress gradients of single and multilayers are measured. The mean stresses are calculated from curvatures of deposited wafer by using Stoney's equation. The stress gradients are calculated from the vertical deflection at the end of cantilever beam. To measure the mean stress of each layer in multi-stacked film, we measure the curvature of wafer with the film after etching layer by layer in multi-stacked film

  12. The measurement of residual stresses in claddings

    International Nuclear Information System (INIS)

    Hofer, G.; Bender, N.

    1978-01-01

    The ring core method, a variation of the hole drilling method for the measurement of biaxial residual stresses, has been extended to measure stresses from depths of about 5 to 25mm. It is now possible to measure the stress profiles of clad material. Examples of measured stress profiles are shown and compared with those obtained with a sectioning technique. (author)

  13. Convenient measurement of the residual stress using X-ray penetration depth

    International Nuclear Information System (INIS)

    Ukai, Takayoshi; Shibano, Junichi

    1994-01-01

    The residual stress measured with a characteristic X-ray is usually evaluated as a surface stress. However, it is a weighted mean value over all penetration depth of X-ray. Thus, the classical sin 2 Ψ method with the characteristic X-ray is difficult to use for measuring the steep gradient of residual stress that occurs along the depth direction in a subsurface layer of the material after cold rolling and grinding. This paper presents a convenient method of the residual stress measurement along the depth direction in a subsurface layer using the penetration depth depending on a characteristic X-ray. The residual stress distribution of JIS SKS51 steel plate was measured as an example of applying this method. As a result, it could be confirmed that a residual stress distribution along the depth direction in a subsurface layer could be evaluated nondestructively by this convenient method. (author)

  14. Residual stress measurement of EB-welded plates with contour method. Part 2: FEM analysis of contour profiles

    International Nuclear Information System (INIS)

    Romppanen, A.-J.; Immonen, E.

    2013-12-01

    The residual stresses formed as a result of Electronic Beam welding (EB-welding) in copper are investigated by Posiva. In the present study, residual stresses of EB-welded copper plates were studied with contour method. In the method eleven copper plates (X436 - X440 and X453 - X458) were cut in half with wire electric discharge machining (EDM) after which the deformation due to stress relaxation was measured with coordinate measurement system. The measured data was then used as boundary displacement data for the FEM analyses, in which the corresponding residual stresses were calculated. Before giving the corresponding displacement boundary conditions to the FE models, the deformation data was processed and smoothed appropriately. The residual stress levels of the copper plates were found to be around 40 - 55 MPa at maximum. This corresponds to other reported residual stress measurements and current state of knowledge with this material in Posiva. (orig.)

  15. Residual phase noise measurements of the input section in a receiver

    International Nuclear Information System (INIS)

    Mavric, Uros; Chase, Brian; Fermilab

    2007-01-01

    If not designed properly, the input section of an analog down-converter can introduce phase noise that can prevail over other noise sources in the system. In the paper we present residual phase noise measurements of a simplified input section of a classical receiver that is composed of various commercially available mixers and driven by an LO amplifier

  16. Application of x-ray residual stress measurement to products

    International Nuclear Information System (INIS)

    Goto, T.; Iwamura, T.

    1975-01-01

    The X-ray residual stress measuring method is the only nondestructive method for measuring residual stress in polycrystalline materials. It is capable of obtaining information not only on macroscopic stress but also microscopic stress. The authors are employing this method for the development of pre-service and in-service inspection methods and for the improvement of various manufacturing techniques. In this paper, the results of measurement of some products as examples of its application are described. The examples introduced concern the following: (1) Selection of optimum conditions in heat treatment and stress-relief treatment. (2) Residual stress produced by mechanical processes such as autofrettage and flow form. (3) Check of manufacturing processes of rotary shaft and welded parts. (4) Estimation of fatigue strength of shot-peened part. (5) Detection of fatigue damage of shot-peened part. (auth.)

  17. Diffraction measurements of residual stress in titanium matrix composites

    International Nuclear Information System (INIS)

    James, M.R.; Bourke, M.A.; Goldstone, J.A.; Lawson, A.C.

    1993-01-01

    Metal matrix composites develop residual strains after consolidation due to the thermal expansion mismatch between the reinforcement fiber and the matrix. X-ray and neutron diffraction measured values for the longitudinal residual stress in the matrix of four titanium MMCs are reported. For thick composites (> 6 plies) the surface stress measured by x-ray diffraction matches that determined by neutron diffraction and therefore represents the stress in the bulk region consisting of the fibers and matrix. For thin sheet composites, the surface values are lower than in the interior and increase as the outer rows of fibers are approached. While a rationale for the behavior in the thin sheet has yet to be developed, accounting for composite thickness is important when using x-ray measured values to validate analytic and finite element calculations of the residual stress state

  18. Measurements of three dimensional residual stress distribution on laser irradiated spot

    International Nuclear Information System (INIS)

    Tanaka, Hirotomo; Akita, Koichi; Ohya, Shin-ichi; Sano, Yuji; Naito, Hideki

    2004-01-01

    Three dimensional residual stress distributions on laser irradiated spots were measured using synchrotron radiation to study the basic mechanism of laser peening. A water-immersed sample of high tensile strength steel was irradiated with Q-switched and frequency-doubled Nd:YAG laser. The residual stress depth profile of the sample was obtained by alternately repeating the measurement and surface layer removal by electrolytic polishing. Tensile residual stresses were observed on the surface of all irradiated spots, whereas residual stress changed to compressive just beneath the surface. The depth of compressive residual stress imparted by laser irradiation and plastic deformation zone increased with increasing the number of laser pulses irradiated on the same spot. (author)

  19. A liquid crystalline medium for measuring residual dipolar couplings over a wide range of temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hong; Eberstadt, Matthias; Olejniczak, Edward T.; Meadows, Robert P.; Fesik, Stephen W. [Abbott Laboratories (United States)

    1998-10-15

    A mixture of dilauroyl phosphatidylcholine (DLPC) and 3-(cholamidopropyl)dimethylammonio-2-hydroxyl-1-propane sulfonate (CHAPSO) in water forms disc shaped bicelles that become ordered at high magnetic fields over a wide range of temperatures. As illustrated for the FK506 binding protein (FKBP), large residual dipolar couplings can be measured for proteins dissolved in low concentrations (5% w/v) of a DLPC/CHAPSO medium at a molar ratio of 4.2:1. This system is especially useful for measuring residual dipolar couplings for molecules that are only stable at low temperatures.

  20. Measurement of residual stress in quenched 1045 steel by the nanoindentation method

    International Nuclear Information System (INIS)

    Zhu Lina; Xu Binshi; Wang Haidou; Wang Chengbiao

    2010-01-01

    In this paper, the residual stress in quenched AISI 1045 steel was measured by a recently developed nanoindentation technique. Depth control mode was adopted to measure the residual stress. It was found that residual compressive stress was generated in the quenched steel. The material around nanoindents exhibits significant pile-up deformation. A new method was proposed to determine the real contact area for pile-up material on the basis of invariant pile-up morphology of the loaded or unloaded states. The results obtained by the new method were in good agreement with the residual stresses measured by the classical X-ray diffraction (XRD) method. - Research Highlights: → A new method was proposed to measure the real contact area for pile-up materials. → The real contact depth is defined as the sum of h max and the pile-up height h p . → The value of residual stress measured by the nanoindentation method was in good agreement with that by the XRD method.

  1. Measured residual stresses in overlay pipe weldments removed from service

    International Nuclear Information System (INIS)

    Shack, W.J.

    1985-02-01

    Surface and throughwall residual stresses were measured on an elbow-to-pipe weldment that had been removed from the Hatch-2 reactor about a year after the application of a weld overlay. The results were compared with experimental measurements on three mock-up weldments and with finite-element calculations. The comparison shows that there are significant differences in the form and magnitude of the residual stress distributions. However, even after more than a year of service, the residual stresses over most of the inner surface of the actual plant weldment with an overlay were strongly compressive. 3 refs., 7 figs

  2. Measuring the residual stress of transparent conductive oxide films on PET by the double-beam shadow Moiré interferometer

    Science.gov (United States)

    Chen, Hsi-Chao; Huang, Kuo-Ting; Lo, Yen-Ming; Chiu, Hsuan-Yi; Chen, Guan-Jhen

    2011-09-01

    The purpose of this research was to construct a measurement system which can fast and accurately analyze the residual stress of the flexible electronics. The transparent conductive oxide (TCO) films, tin-doped indium oxide (ITO), were deposited by radio frequency (RF) magnetron sputtering using corresponding oxide targets on PET substrate. As we know that the shadow Moiré interferometry is a useable way to measure the large deformation. So we set up a double beam shadow Moiré interferometer to measure and analyze the residual stress of TCO films on PET. The feature was to develop a mathematical model and combine the image processing software. By the LabVIEW graphical software, we could measure the distance which is between the left and right fringe on the pattern to solve the curvature of deformed surface. Hence, the residual stress could calculate by the Stoney correction formula for the flexible electronics. By combining phase shifting method with shadow Moiré, the measurement resolution and accuracy have been greatly improved. We also had done the error analysis for the system whose relative error could be about 2%. Therefore, shadow Moiré interferometer is a non-destructive, fast, and simple system for the residual stress on TCO/PET films.

  3. Measurement of plutonium and americium in molten salt residues

    International Nuclear Information System (INIS)

    Haas, F.X.; Lawless, J.L.; Herren, W.E.; Hughes, M.E.

    1979-01-01

    The measurement of plutonium and americium in molten salt residues using a segmented gamma-ray scanning device is described. This system was calibrated using artificially fabricated as well as process generated samples. All samples were calorimetered and the americium to plutonium content of the samples determined by gamma-ray spectroscopy. For the nine samples calorimetered thus far, no significant biases are present in the comparison of the segmented gamma-ray assay and the calorimetric assay. Estimated errors are of the order of 10 percent and is dependent on the americium to plutonium ratio determination

  4. A comparison of conventional and prototype nondestructive measurements on molten salt extraction residues

    International Nuclear Information System (INIS)

    Longmire, V.L.; Scarborough, A.M.

    1987-01-01

    Impure plutonium metal is routinely processed by molten salt extraction (MSE) to reduce the amount of americium in the metal product. Individuals form four technical groups at the Los Alamos National Laboratory (LANL) participated in a study designed to evaluate the accuracy of various nondestructive assay (NDA) techniques for measuring the plutonium content in MSE residues. This study was performed to improve in-house accountability of these items and to identify assay methods that would be acceptable for determining receiver's values for MSE salts from off-site sources. Recent upgrades have been made in a segmented gamma scan system, in a thermal neutron coincidence counter, and in the software of a gamma isotopic system that supports the calorimeters at LAPF. The authors evaluated the newer systems against the older systems versus destructive qualitative analyses. Fourteen containers of MSE residues were selected to be studied. Seven of these salts originated at LAPF and seven originated at Rockwell International Rocky Flats plant. Measurements have been performed on these items in their original containers, and the items have been repackaged into a different geometry and assayed again

  5. Diffraction grating strain gauge method: error analysis and its application for the residual stress measurement in thermal barrier coatings

    Science.gov (United States)

    Yin, Yuanjie; Fan, Bozhao; He, Wei; Dai, Xianglu; Guo, Baoqiao; Xie, Huimin

    2018-03-01

    Diffraction grating strain gauge (DGSG) is an optical strain measurement method. Based on this method, a six-spot diffraction grating strain gauge (S-DGSG) system has been developed with the advantages of high and adjustable sensitivity, compact structure, and non-contact measurement. In this study, this system is applied for the residual stress measurement in thermal barrier coatings (TBCs) combining the hole-drilling method. During the experiment, the specimen’s location is supposed to be reset accurately before and after the hole-drilling, however, it is found that the rigid body displacements from the resetting process could seriously influence the measurement accuracy. In order to understand and eliminate the effects from the rigid body displacements, such as the three-dimensional (3D) rotations and the out-of-plane displacement of the grating, the measurement error of this system is systematically analyzed, and an optimized method is proposed. Moreover, a numerical experiment and a verified tensile test are conducted, and the results verify the applicability of this optimized method successfully. Finally, combining this optimized method, a residual stress measurement experiment is conducted, and the results show that this method can be applied to measure the residual stress in TBCs.

  6. Functional residual capacity measurement by heptafluoropropane in ventilated newborn lungs

    OpenAIRE

    Kusztrich, Ariane

    2012-01-01

    Objective: Heptafluoropropane is an inert gas commercially used as propellant for inhalers. Since heptafluoropropane can be detected in low concentrations, it could also be used as a tracer gas to measure functional residual capacity. The aim of the present study was to validate functional residual capacity measurements by heptafluoropropane wash-in/wash-out (0.8%) during mechanical ventilation in small, surfactant-depleted lungs using a newborn piglet model. Design: Prospective laborato...

  7. X-ray measurement of residual stress in metals at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Winegar, J.E.

    1980-06-01

    X-ray diffraction is used at CRNL to measure residual stress in metals. This report summarizes the basic principles of stress measurement, and reviews factors affecting accuracy of measurement. The technique and equipment described were developed at CRNL to give reliable measurements. Accuracy of measurement is achieved by using fixed-count step-scanning and by computer analysis of intensity data using a cubic spline curve smoothing routine. Specific reference is made to the measurement of residual stress in Inconel-600 and Incoloy-800 boiler tubing. Because it measures stress in thin surface layers, the X-ray method can also be used to measure the depth profile of stresses. As there are no standardized procedures for measuring residual stress, this report will be useful both to those unfamiliar with the measurement of residual stress and to those already making such measurements in other laboratories. (auth)

  8. Neutron diffraction measurements of residual stress in a powder metallurgy component

    International Nuclear Information System (INIS)

    Schneider, L.C.R.; Hainsworth, S.V.; Cocks, A.C.F.; Fitzpatrick, M.E.

    2005-01-01

    Residual stresses in a typical industrial green component were determined using neutron diffraction. The measured residual stresses were found to correlate with cross-sectional variations. Residual stress at the edge of the compact in contact with the die wall during compaction reached up to +80 MPa (tension) and -100 MPa (compression)

  9. Residual generation with unknown input observer for linear systems in the presence of unmatched uncertainties

    International Nuclear Information System (INIS)

    Bagherpour, Esmaeel A.; HairiTazdi, Mohammad Reza; Mahjoob, Mohammad

    2014-01-01

    In this paper, we deal with residual vector generation for fault detection problems in linear systems via unknown input observer (UIO) when the so-called observer matching condition is not satisfied. Based on the relative degree between unknown input and output, a vector of the auxiliary output is introduced so that the observer matching condition is satisfied with respect to the vector. Auxiliary outputs are related to the derivatives of measured signals. However, differentiation leads to excessive amplification of measurement noise. A dynamically equivalent configuration of linear systems is developed using successive integrations to avoid differentiation. As such, auxiliary outputs are constructed without differentiation. Then, the equivalent dynamic system and its corresponding auxiliary outputs are used to generate the residual vector via an exponentially converging UIO. Fault detection in the generated residual vector is also investigated. Finally, the effectiveness of the proposed method is shown via numerical simulation.

  10. Non-Destructive Measurement of Residual Strain in Connecting Rods Using Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Tomohiro [Honda R& D; Bunn, Jeffrey R. [ORNL; Fancher, Christopher M. [ORNL; Seid, Alan [Honda R& D; Motani, Ryuta [Honda R& D; Matsuda, Hideki [Honda R& D; Okayama, Tatsuya [Honda R& D

    2018-04-01

    Increasing the strength of materials is effective in reducing weight and boosting structural part performance, but there are cases in where the residual strain generated during the process of manufacturing of high-strength materials results in a decline of durability. It is therefore important to understand how the residual strain in a manufactured component changes due to processing conditions. In the case of a connecting rod, because the strain load on the connecting rod rib sections is high, it is necessary to clearly understand the distribution of strain in the ribs. However, because residual strain is generally measured by using X-ray diffractometers or strain gauges, measurements are limited to the surface layer of the parts. Neutron beams, however, have a higher penetration depth than X-rays, allowing for strain measurement in the bulk material. The research discussed within this paper consists of non-destructive residual strain measurements in the interior of connecting rods using the 2nd Generation Neutron Residual Stress Mapping Facility (NRSF2) at Oak Ridge National Laboratory, measuring the Fe (211) diffraction peak position of the ferrite phase. The interior strain distribution of connecting rod, which prepared under different manufacturing processes, was revealed. By the visualization of interior strains, clear understandings of differences in various processing conditions were obtained. In addition, it is known that the peak width, which is also obtained during measurement, is suggestive of the size of crystallites in the structure; however the peak width can additionally be caused by microstresses and material dislocations.

  11. Soil and crop residue CO2-C emission under tillage systems in sugarcane-producing areas of southern Brazil

    Directory of Open Access Journals (Sweden)

    Luís Gustavo Teixeira

    2013-10-01

    Full Text Available Appropriate management of agricultural crop residues could result in increases on soil organic carbon (SOC and help to mitigate gas effect. To distinguish the contributions of SOC and sugarcane (Saccharum spp. residues to the short-term CO2-C loss, we studied the influence of several tillage systems: heavy offset disk harrow (HO, chisel plow (CP, rotary tiller (RT, and sugarcane mill tiller (SM in 2008, and CP, RT, SM, moldboard (MP, and subsoiler (SUB in 2009, with and without sugarcane residues relative to no-till (NT in the sugarcane producing region of Brazil. Soil CO2-C emissions were measured daily for two weeks after tillage using portable soil respiration systems. Daily CO2-C emissions declined after tillage regardless of tillage system. In 2008, total CO2-C from SOC and/or residue decomposition was greater for RT and lowest for CP. In 2009, emission was greatest for MP and CP with residues, and smallest for NT. SOC and residue contributed 47 % and 41 %, respectively, to total CO2-C emissions. Regarding the estimated emissions from sugarcane residue and SOC decomposition within the measurement period, CO2-C factor was similar to sugarcane residue and soil organic carbon decomposition, depending on the tillage system applied. Our approach may define new emission factors that are associated to tillage operations on bare or sugarcane-residue-covered soils to estimate the total carbon loss.

  12. Residual stress distribution in carbon steel pipe welded joint measured by neutron diffraction

    International Nuclear Information System (INIS)

    Hayashi, Makoto; Ishiwata, Masayuki; Morii, Yukio; Minakawa, Nobuaki

    2000-01-01

    In order to estimate crack growth behavior of fatigue and stress corrosion cracking in pipes, the residual stress distribution near the pipe weld region has to be measured through the wall thickness. Since the penetration depth of neutron is deep enough to pass through the thick pipe wall, the neutron diffraction technique for the residual stress measurement is effective for this purpose. At the first step the residual stress distribution near the weld region in a butt-welded carbon steel pipe was measured by the neutron diffraction. Significant stresses extended only to a distance of 30 mm from the center of the weld. The major tensile stresses occurred in the hoop direction in the fusion and heat affected zones of the weldment, and they attained a level greater than 200 MPa through the thickness. While the axial residual stress at the inside surface was 50 MPa, the stress at the outside surface was -100 MPa. The comparison of residual stress distributions measured by the neutron diffraction, the X-ray diffraction and the strain gauge method reveals that the neutron diffraction is the most effective for measuring the residual stress inside the structural components. (author)

  13. Uncertainty Quantification and Comparison of Weld Residual Stress Measurements and Predictions.

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brooks, Dusty Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    In pressurized water reactors, the prevention, detection, and repair of cracks within dissimilar metal welds is essential to ensure proper plant functionality and safety. Weld residual stresses, which are difficult to model and cannot be directly measured, contribute to the formation and growth of cracks due to primary water stress corrosion cracking. Additionally, the uncertainty in weld residual stress measurements and modeling predictions is not well understood, further complicating the prediction of crack evolution. The purpose of this document is to develop methodology to quantify the uncertainty associated with weld residual stress that can be applied to modeling predictions and experimental measurements. Ultimately, the results can be used to assess the current state of uncertainty and to build confidence in both modeling and experimental procedures. The methodology consists of statistically modeling the variation in the weld residual stress profiles using functional data analysis techniques. Uncertainty is quantified using statistical bounds (e.g. confidence and tolerance bounds) constructed with a semi-parametric bootstrap procedure. Such bounds describe the range in which quantities of interest, such as means, are expected to lie as evidenced by the data. The methodology is extended to provide direct comparisons between experimental measurements and modeling predictions by constructing statistical confidence bounds for the average difference between the two quantities. The statistical bounds on the average difference can be used to assess the level of agreement between measurements and predictions. The methodology is applied to experimental measurements of residual stress obtained using two strain relief measurement methods and predictions from seven finite element models developed by different organizations during a round robin study.

  14. Residual life estimation of electrical insulation system for rotating equipment

    International Nuclear Information System (INIS)

    Vashishtha, Y.D.; Gupta, A.K.; Bhattacharyya, A.K.; Verma, A.K.

    1994-01-01

    Residual life assessment gains significance towards the end of designed life for granting plant life extensions and resource planning for costly equipment replacement. A critical review of all the diagnostic techniques presently used to assess either health of insulation system or to infer qualitatively the remaining life for rotating machines is presented. However more emphasis is required on developing quantitative methods. This paper also formulates the experimental plan for progressively censored ageing tests, measurement of partial discharge parameters, micro-structural study for delamination and electrical tree growth and measurement of electrical breakdown strength. Partial discharge (PD) patterns, electrical tree growth and time to failure data shall be taken as training set for the neural network learning which can be useful to predict residual life with only one candidate parameter i.e. PD patterns. (author). 9 refs

  15. Ultrasonic measurements on residual stress in autofrettged thick walled petroleum pipes

    International Nuclear Information System (INIS)

    Woias, G.; Mizera, J.

    2008-01-01

    The residual stresses in a component or structure are caused by incompatible permanent deformation and related gradient of plastic/elastic strains. They may be generated or modified at every stage in the components life cycle, from original material production to final disposal. Residual stresses can be measured by non-destructive techniques, including X-ray and neutron diffraction, magnetic and ultrasonic methods. The selection of the optimum measurement technique should take account volumetric resolution, material, geometry and access to the component. For large metallic components neutron diffraction is of prime importance as it provides quantitative information on stresses in relatively large volume of methods disregarding its shape complexity. Residual stresses can play a significant role in explaining or preventing failure of components of industrial installations. One example of residual stresses preventing failure are the ones generated by shot peening, inducing surface compressive stresses that improve the fatigue life. Petroleum refinery piping is generally characterized by large-diameters, operated at elevated temperature and under high pressure. Pipelines of a polyethylene plant working in one of the Polish refineries are subjected to pressures exceeding 300 MPa at temperatures above 200 o C. The pipes considered here were pressurized with pressure of 600 MPa. The wall thickness of the pipes is 27 mm and pipe dimensions are 46 x 100 mm. The material is steel with Re=580 MPa. Due to pressurizing, the components retain compressive stresses at the internal surface. These stresses increase resistance to cracking of the pipes. Over the period of exploitation these stresses diminish due to temperature activated relaxation or creep. The purpose of the project is to verify kinetics of such a relaxation process and calibrate alternative methods of their measurements. To avoid stress relaxation, numerical analysis from Finite Element Modelling (FEM)gave an

  16. Residual stress measurement of large scaled welded pipe using neutron diffraction method. Effect of SCC crack propagation and repair weld on residual stress distribution

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Katsuyama, Jinya; Tobita, Tohru; Morii, Yukio

    2011-01-01

    The RESA-1 neutron engineering diffractometer in the JRR-3 (Japan Research Reactor No.3) at the Japan Atomic Energy Agency, which is used for stress measurements, was upgraded to realize residual stress measurements of large scaled mechanical components. A series of residual stress measurements was made to obtain through-thickness residual stress distributions in a Type 304 stainless steel butt-welded pipe of 500A-sch.80 using the upgraded RESA-1 diffractometer. We evaluated effects of crack propagation such as stress corrosion cracking (SCC) and a part-circumference repair weld on the residual stress distributions induced by girth welding. Measured residual stress distributions near original girth weld revealed good agreement with typical results shown in some previous works using finite element method, deep hole drilling as well as neutron diffraction. After introducing a mock crack with 10 mm depth in the heat affected zone on the inside wall of the pipe by electro discharge machining, the axial residual stresses were found to be released in the part of the mock crack. However, changes in the through-wall bending stress component and the self-equilibrated stress component were negligible and hence the axial residual stress distribution in the ligament was remained in the original residual stresses near girth weld without the mock crack. Furthermore, changes in hoop and radial residual stress were also small. The residual stress distributions after a part repair welding on the outer circumference of the girth weld were significantly different from residual stress distributions near the original girth weld. The through-thickness average axial residual stress was increased due to increase of the tensile membrane stress and mitigation of the bending stress after repair welding. Throughout above studies, we evidenced that the neutron diffraction technique is useful and powerful tool for measuring residual stress distributions in large as well as thick mechanical

  17. Neutron diffraction measurement of residual stress in NPP construction materials

    International Nuclear Information System (INIS)

    Hinca, R.; Bokuchava, G.

    2000-01-01

    The aim of the investigation is to study the level of residual stresses induced by the surfacing in the weld deposit zone and in the base metal, where considerable thermal gradients are present. Surfacing high-nickel filler on an austenitic base metal is one of techniques in repair of primary collector the primary circuit of nuclear power plant type VVER. The repair technology was developed at Welding Research Institute Bratislava. Measurements of residual stresses in the weld overlay and the base metal are necessary for approving the mechanical analysis and verifying of residual stresses determination on welded material by numerical weld g computer simulation. Investigations of residual stresses are important for developing optimal welding techniques. (authors)

  18. Biogas systems for sisal and other agro-industrial residues

    Energy Technology Data Exchange (ETDEWEB)

    Jungersen, G [Danish Technological Inst., Section for Biotechnology, Taastrup (Denmark)

    1998-12-31

    Most of the East-African agro-industries are generating very large quantities of organic residues from production and processing of different crops. In the East-African Region the most important of these crops are: Sisal, Sugar, Coffee, Cashew nuts and Pineapple. In other 3. world countries, Palm oil and Cassava (Tapioca starch) processing are main producers of organic waste products. Moreover, large quantities of organic residues are generated from other food processing activities like breweries, consumption of bananas etc. The following pages give examples of setups and system designs of anaerobic treatment systems for some of the residues mentioned above. When considering anaerobic treatment of sisal residues, which constitutes the main agro-industrial biomass resource in Tanzania, two major issues should be considered: Optimal reactor set-up and performance; And optionally, potential methods for pre-treatment of fibre fraction in order to increase the methane yield. The sisal liquid residues are degraded very fast and efficiently in UASB systems. At COD loading rates less than 11 kg COD/m{sup 3} x day, the reduction in organic matter is more than 90% and methane yields obtained are between 373 and 377 ml CH{sub 4}/g COD reduced. The treatment of sisal solid residues in CSTR systems has been examined both at mesophilic (37 deg. C) and thermophilic temperatures (55 deg. C.). (EG)

  19. Biogas systems for sisal and other agro-industrial residues

    Energy Technology Data Exchange (ETDEWEB)

    Jungersen, G. [Danish Technological Inst., Section for Biotechnology, Taastrup (Denmark)

    1997-12-31

    Most of the East-African agro-industries are generating very large quantities of organic residues from production and processing of different crops. In the East-African Region the most important of these crops are: Sisal, Sugar, Coffee, Cashew nuts and Pineapple. In other 3. world countries, Palm oil and Cassava (Tapioca starch) processing are main producers of organic waste products. Moreover, large quantities of organic residues are generated from other food processing activities like breweries, consumption of bananas etc. The following pages give examples of setups and system designs of anaerobic treatment systems for some of the residues mentioned above. When considering anaerobic treatment of sisal residues, which constitutes the main agro-industrial biomass resource in Tanzania, two major issues should be considered: Optimal reactor set-up and performance; And optionally, potential methods for pre-treatment of fibre fraction in order to increase the methane yield. The sisal liquid residues are degraded very fast and efficiently in UASB systems. At COD loading rates less than 11 kg COD/m{sup 3} x day, the reduction in organic matter is more than 90% and methane yields obtained are between 373 and 377 ml CH{sub 4}/g COD reduced. The treatment of sisal solid residues in CSTR systems has been examined both at mesophilic (37 deg. C) and thermophilic temperatures (55 deg. C.). (EG)

  20. Residual Stress Measurement of SiC tile/Al7075 Hybrid Composites by Neutron Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Bok; Lee, Jun Ho; Hong, Soon Hyung; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of); Lee, Sang Bok; Lee, Sang Kwan [Korea Institute of Materials Science, Changwon (Korea, Republic of); Muslihd, M. Rifai [Center for Advanced Materials Science and Technology, Tangerang (India)

    2016-05-15

    In this research, SiC which has low density, high compressive strength, and high elastic modulus was used to fabricate the armor plate. In addition, Al which has low density and high toughness was used for a metal matrix of the composites. If two materials are combined, the composite can be effective materials for light weight armor applications. However, the existence of a large difference in coefficients of thermal expansion (CTE) between SiC and Al matrix, SiC/Al composites can have residual stresses while cooled in the fabrication process. Previous research reported that residual stresses in the composites or microstructures have an effect on the fatigue life and their mechanical properties. Some researchers reported about the residual stresses in the SiCp/Al metal matrix composites by numerical simulation systems, X-ray diffraction, and destructive methods. In order to analyze the residual stress of SiC/Al composites, the neutron diffraction as the non-destructive method was performed in this research. The 50 vol.% SiC{sub p}/Al7075 composites and SiC tile inserted 50 vol.% SiC{sub p}/Al7075 hybrid composites were measured to analyze the residual stress of Al (111) and SiC (111). Both samples had the tensile residual stresses in the Al (111) and the compressive residual stresses in the SiC (111) due to the difference in CTE.

  1. Comparison of residual stress measurement in thin films using surface micromachining method

    International Nuclear Information System (INIS)

    He, Q.; Luo, Z.X.; Chen, X.Y.

    2008-01-01

    Conductive, dielectric, semiconducting, piezoelectric and ferroelectric thin films are extensively used for MEMS/NEMS applications. One of the important parameters of thin films is residual stress. The residual stress can seriously affect the properties, performance and long-term stability of the films. Excessive compressive or tensile stress results in buckling, cracking, splintering and sticking problems. Stress measurement techniques are therefore essential for both process development and process monitoring. Many suggestions for stress measurement in thin films have been made over the past several decades. This paper is concentrated on the in situ stress measurement using surface micromachining techniques to determine the residual stress. The authors review and compare several types of stress measurement methods including buckling technique, rotating technique, micro strain gauge and long-short beam strain sensor

  2. Effect of Young's modulus evolution on residual stress measurement of thermal barrier coatings by X-ray diffraction

    International Nuclear Information System (INIS)

    Chen, Q.; Mao, W.G.; Zhou, Y.C.; Lu, C.

    2010-01-01

    Subjected to thermal cycling, the apparent Young's modulus of air plasma-sprayed (APS) 8 wt.% Y 2 O 3 -stabilized ZrO 2 (8YSZ) thermal barrier coatings (TBCs) was measured by nanoindentation. Owing to the effects of sintering and porous microstructure, the apparent Young's modulus follows a Weibull distribution and changes from 50 to 93 GPa with an increase of thermal cycling. The evolution of residual stresses in the top coating of an 8YSZ TBC system was determined by X-ray diffraction (XRD). The residual stresses derived from the XRD data are well consistent with that obtained by the Vickers indention. It is shown that the evolution of Young's modulus plays an important role in improving the measurement precision of residual stresses in TBCs by XRD.

  3. Standardized Approach to Quantitatively Measure Residual Limb Skin Health in Individuals with Lower Limb Amputation.

    Science.gov (United States)

    Rink, Cameron L; Wernke, Matthew M; Powell, Heather M; Tornero, Mark; Gnyawali, Surya C; Schroeder, Ryan M; Kim, Jayne Y; Denune, Jeffrey A; Albury, Alexander W; Gordillo, Gayle M; Colvin, James M; Sen, Chandan K

    2017-07-01

    Objective: (1) Develop a standardized approach to quantitatively measure residual limb skin health. (2) Report reference residual limb skin health values in people with transtibial and transfemoral amputation. Approach: Residual limb health outcomes in individuals with transtibial ( n  = 5) and transfemoral ( n  = 5) amputation were compared to able-limb controls ( n  = 4) using noninvasive imaging (hyperspectral imaging and laser speckle flowmetry) and probe-based approaches (laser doppler flowmetry, transcutaneous oxygen, transepidermal water loss, surface electrical capacitance). Results: A standardized methodology that employs noninvasive imaging and probe-based approaches to measure residual limb skin health are described. Compared to able-limb controls, individuals with transtibial and transfemoral amputation have significantly lower transcutaneous oxygen tension, higher transepidermal water loss, and higher surface electrical capacitance in the residual limb. Innovation: Residual limb health as a critical component of prosthesis rehabilitation for individuals with lower limb amputation is understudied in part due to a lack of clinical measures. Here, we present a standardized approach to measure residual limb health in people with transtibial and transfemoral amputation. Conclusion: Technology advances in noninvasive imaging and probe-based measures are leveraged to develop a standardized approach to quantitatively measure residual limb health in individuals with lower limb loss. Compared to able-limb controls, resting residual limb physiology in people that have had transfemoral or transtibial amputation is characterized by lower transcutaneous oxygen tension and poorer skin barrier function.

  4. X-ray diffraction and measurement of residual stresses

    International Nuclear Information System (INIS)

    Maeder, G.; Lebrun, J.L.; Corcaud, L.

    1977-01-01

    X-ray diffraction technique is a non destructive method for measuring the residual stresses in mechanical parts. This method, called sin 2 PSI method is investigated. It is applied to the measurement of elastic constants in different directions of crystals of Zr alloy (Zircaloy 4) and Ti alloy (TA6V). Stresses in TA6V sheets welded by TIG and electron beam processes are also studied [fr

  5. Development of an NPP residual lifetime evaluation system

    International Nuclear Information System (INIS)

    Regano, M.; Ibanez, M.; Hevia, F.

    1993-01-01

    Various reasons have given rise to the need for residual life management of Spain's nuclear power plants which lead to the a project for the development of a residual lifetime evaluation system managed by UNESA and supported by the owner groups. This project is described. 1 fig

  6. Predictions and measurements of residual stress in repair welds in plates

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.B. [Mitsui Babcock Energy Limited, Technology and Engineering, Porterfield Road, Renfrew, PA4 8DJ, Scotland (United Kingdom)]. E-mail: bbrown@mitsuibabcock.com; Dauda, T.A. [Mitsui Babcock Energy Limited, Technology and Engineering, Porterfield Road, Renfrew, PA4 8DJ, Scotland (United Kingdom); Truman, C.E. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, England (United Kingdom); Smith, D.J. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Memhard, D. [Fraunhofer-Institut fuer Werkstoffmechanik, Freiburg (Germany); Pfeiffer, W. [Fraunhofer-Institut fuer Werkstoffmechanik, Freiburg (Germany)

    2006-11-15

    This paper presents the work, from the European Union FP-5 project ELIXIR, on a series of rectangular repair welds in P275 and S690 steels to validate the numerical modelling techniques used in the determination of the residual stresses generated during the repair process. The plates were 1,000 mm by 800 mm with thicknesses of 50 and 100 mm. The repair welds were 50%, 75% and 100% through the plate thickness. The repair welds were modelled using the finite element method to make predictions of the as-welded residual stress distributions. These predictions were compared with surface-strain measurements made on the parent plates during welding and found to be in good agreement. Through-thickness residual stress measurements were obtained from the test plates through, and local to, the weld repairs using the deep hole drilling technique. Comparisons between the measurements and the finite element predictions generally showed good agreement, thus providing confidence in the method.

  7. Predictions and measurements of residual stress in repair welds in plates

    International Nuclear Information System (INIS)

    Brown, T.B.; Dauda, T.A.; Truman, C.E.; Smith, D.J.; Memhard, D.; Pfeiffer, W.

    2006-01-01

    This paper presents the work, from the European Union FP-5 project ELIXIR, on a series of rectangular repair welds in P275 and S690 steels to validate the numerical modelling techniques used in the determination of the residual stresses generated during the repair process. The plates were 1,000 mm by 800 mm with thicknesses of 50 and 100 mm. The repair welds were 50%, 75% and 100% through the plate thickness. The repair welds were modelled using the finite element method to make predictions of the as-welded residual stress distributions. These predictions were compared with surface-strain measurements made on the parent plates during welding and found to be in good agreement. Through-thickness residual stress measurements were obtained from the test plates through, and local to, the weld repairs using the deep hole drilling technique. Comparisons between the measurements and the finite element predictions generally showed good agreement, thus providing confidence in the method

  8. Residual stress measurement of the jacket material for ITER coil by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Nickel-Iron based super alloy INCOLOY 908 is used for the jacket of a central solenoid coil (CS coil) of the International Thermonuclear Experimental Reactor (ITER). INCOLOY 908, however, has a possibility of fracture due to Stress Accelerated Grain Boundary Oxidation (SAGBO) under a tensile residual stress beyond 200MPa. Therefore it is necessary to measure the residual stress of the jacket to avoid SAGBO. We performed residual stress measurement of the jacket by neutron diffraction using the neutron diffractometer for residual stress analysis (RESA) installed at JRR-3M in JAERI. A sample depth dependence of internal strain was obtained from the (111) plane spacing. A residual stress distribution was calculated from the strain using Young`s modulus and Poisson`s ratio that were evaluated by a tensile test with neutron diffraction. The result shows that the tensile residual stress exceeds 200MPa of the SAGBO condition in some regions inside the jacket. (author)

  9. Measurement of residual stress in materials using neutrons. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2005-06-01

    method has applications in engineering industries, including the nuclear industry. The special nature of neutron interaction with matter provides important complementary and supplementary data to other techniques. The location of hydrogen atoms in the presence of heavy elements, for example, can only be determined by means of neutron diffraction studies. Crystal structures of biological systems, like amino acids and polypeptides, have been elucidated using single-crystal neutron diffraction. The behaviour of magnetic materials can also be explored for both scientific and industrial applications. The large penetration depth and selective absorption of neutrons make them a powerful tool in NDT of materials. Residual stress formed in a material during manufacturing, welding, utilization or repairs can be measured by means of neutron diffraction. In fact neutron diffraction is the only NDT method, which can facilitate 3-D mapping of residual stress in a bulk component. Such studies can help to improve the manufacturing quality of engineering components and to optimise design criteria in applications. Anisotropies in thermal and electrical conductivities, for instance of fuel elements, and mechanical properties of materials depend on the textures developed during their preparation or thermal treatment. Textures can be studied using neutron diffraction techniques, which are developed and used in many research reactors. The experimental technique, determination of residual stress, improvements in the instruments and standardization methods are described

  10. Improvement in accuracy of the measurements of residual stresses due to circumferential welds in thin-walled pipe using Rayleigh wave method

    International Nuclear Information System (INIS)

    Akhshik, Siamak; Moharrami, Rasool

    2009-01-01

    To achieve an acceptable safety in many industrial applications such as nuclear power plants and power generation, it is extremely important to gain an understanding of the magnitudes and distributions of the residual stresses in a pipe formed by joining two sections with a girth butt weld. Most of the methods for high-accuracy measurement of residual stress are destructive. These destructive measurement methods cannot be applied to engineering systems and structures during actual operation. In this paper, we present a method based on the measurement of ultrasonic Rayleigh wave velocity variations versus the stress state for nondestructive evaluation of residual stress in dissimilar pipe welded joint. We show some residual stress profile obtained by this method. These are then compared with other profiles determined using a semi-destructive technique (hole-drilling) that makes it possible to check our results. According to the results, we also present a new method for adjusting the ultrasonic measurements to improve the agreement with the results obtained from other techniques.

  11. Measurements of residual deformations of steel-aluminum conductors in operating overhead lines

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.V.; Kesel' man, L.M.; Treiger, A.S.

    1982-12-01

    Experience in the operation of overhead power lines using steel-aluminum conductors is presented. Measurements were taken on the residual deformation of the steel-aluminum lines to determine the amount of sag increase and to forecast this increase for the entire period of operation. It is recommended that the work on measuring the residual deformation in the power lines be extended to a broader range of operating conditions such as conductors, spans, and climate conditions.

  12. Comparison of neutron and synchrotron diffraction measurements of residual stress in bead-on-plate weldments

    International Nuclear Information System (INIS)

    Paradowska, A.M.; Price, J.W.; Finlayson, T.R.; Lienert, U.; Ibrahim, R.

    2010-01-01

    This paper explores the use of neutron and synchrotron diffractions for the evaluation of residual stresses in welded components. It has been shown that it is possible to achieve very good agreement between the two independent diffraction techniques. This study shows the significance of the weld start and end sites on the residual strain/stress distribution. Quantitative evaluation of the residual stress development process for multibead weldments has been presented. Some measurements were also taken before and after postweld stress relieving to establish the reduction and redistribution of the residual stress. The detailed measurements of residual stress around the weld achieved in this work significantly improve the knowledge and understanding of residual stress in welded components.

  13. Residual stress measurement by X-ray diffraction with the Gaussian curve method and its automation

    International Nuclear Information System (INIS)

    Kurita, M.

    1987-01-01

    X-ray technique with the Gaussian curve method and its automation are described for rapid and nondestructive measurement of residual stress. A simplified equation for measuring the stress by the Gaussian curve method is derived because in its previous form this method required laborious calculation. The residual stress can be measured in a few minutes, depending on materials, using an automated X-ray stress analyzer with a microcomputer which was developed in the laboratory. The residual stress distribution of a partially induction hardened and tempered (at 280 0 C) steel bar was measured with the Gaussian curve method. A sharp residual tensile stress peak of 182 MPa appeared right outside the hardened region at which fatigue failure is liable to occur

  14. Neutron measurement of residual stresses in a used railway rail

    International Nuclear Information System (INIS)

    Webster, P.J.; Low, K.S.; Mills, G.; Webster, G.A.

    1990-01-01

    The high resolution neutron diffraction technique has been applied to determine, non-destructively, the residual stress distribution developed in the head of a railway rail after normal service. Measurements were made, using the neutron strain scanner at the Institute Laue Langevin, Grenoble, on a transverse slice of rail 12mm thick taken from a section of straight track. The rail head was scanned in the three principal orientations in a series of parallel traverses sufficiently close to enable a two-dimensional matrix of data to be accumulated and vertical, transverse and longitudinal residual stress contours to be drawn. The results demonstrate the effectiveness and unique characteristics of the neutron technique to determine nondestructively and continuously the residual stresses inside engineering components

  15. An automated x-ray stress measurement system using a microcomputer

    International Nuclear Information System (INIS)

    Kurita, Masanori; Miyagawa, Matsuo; Sato, Fumiyoshi; Sugiharai, Shigeru; Ishii, Masami; Sumiyoshi, Michio.

    1985-01-01

    An automated system for a rapid and precise X-ray stress measurement using a microcomputer has been developed. A block diagram of the system and a flowchart for the stress measurement method are shown. Of the various methods, the one most suitable for the material to be measured can be programmed in this system. The residual stress in a hardened steel having a broad diffraction profile (half-width of 7.2 deg ) could be measured in six minutes with a small standard deviation of 13 MPa by the Gaussian curve method using the sin 2 ψ method. Both the oscillation and the fixed ψ methods, using the Gaussian curve method, allow the X-ray stress measurement of coarse-grained steels; the sin 2 ψ diagram obtained by these methods had a good linearity. The residual stress measurement of an annealed chromium powder gave almost zero stress values, -3.2 to 2.9 MPa depending on the method used, showing a high accuracy of the system. (author)

  16. Measurement of the Residual Sodium and Reaction Compounds on a Cleaned Cold Trap

    International Nuclear Information System (INIS)

    Kim, Byung Ho; Jeong, Ji Young; Kim, Jong Man; Choi, Byung Hae; Nam, Ho Yun Nam

    2006-01-01

    The purpose of a cleaning process is to remove the residual sodium adhering to the component walls once it has been properly drained. It is necessary to clean and decontaminate a component, especially the large components of the primary coolant system; such as the intermediate heat exchangers and the primary pump. Improper and inadequate cleaning has in a number of cases resulted in problems in the storage, handling, and reuse of components. Inadequate and incomplete removal of sodium results in residues which may contain metallic sodium and alkaline compounds such as sodium hydroxide, sodium oxide, sodium carbonate, and various types of alcoholates. Reinsertion of components containing these compounds into a high-temperature sodium system can result in either a intergranular penetration characteristic of a high-oxygen sodium or an accelerated corrosion due to oxygen. Cleaning methods are needed that will avoid a deleterious local overheating, material surface degradation or deposits, a chemical, physical, or mechanical damage, and external effects. It is important to determine the levels of residual sodium that can be accepted so that those deleterious effects will not negate the reuse of the component. The purpose of this paper is to measure the amount of the sodium and the reaction compounds remaining on a component after a cleaning and prepare acceptable criteria for the reuse of components which have been subjected to a sodium cleaning

  17. Measurement of edge residual stresses in glass by the phase-shifting method

    Science.gov (United States)

    Ajovalasit, A.; Petrucci, G.; Scafidi, M.

    2011-05-01

    Control and measurement of residual stress in glass is of great importance in the industrial field. Since glass is a birefringent material, the residual stress analysis is based mainly on the photoelastic method. This paper considers two methods of automated analysis of membrane residual stress in glass sheets, based on the phase-shifting concept in monochromatic light. In particular these methods are the automated versions of goniometric compensation methods of Tardy and Sénarmont. The proposed methods can effectively replace manual methods of compensation (goniometric compensation of Tardy and Sénarmont, Babinet and Babinet-Soleil compensators) provided by current standards on the analysis of residual stresses in glasses.

  18. Measurement of adherence of residually stressed thin films by indentation. I. Mechanics of interface delamination

    International Nuclear Information System (INIS)

    Marshall, D.B.; Evans, A.G.

    1984-01-01

    A fracture analysis of indentation-induced delamination of thin films is presented. The analysis is based on a model system in which the section of film above the delaminating crack is treated as a rigidly clamped disc, and the crack extension force is derived from changes in strain energy of the system as the crack extends. Residual deposition stresses influence the cracking response by inducing buckling of the film above the crack and by providing an additional crack driving force once buckling occurs. A relation for the equilibrium crack length is derived in terms of the indenter load and geometry, the film thickness and mechanical properties, the residual stress level and the fracture toughness of the interface. The analysis provides a basis for using controlled indentation cracking as a quantitative measure of interface toughness and for evaluating contact-induced damage in thin films

  19. Residual stress measurement by x-ray under the consideration of its penetration depth

    International Nuclear Information System (INIS)

    Doi, Osamu; Ukai, Takayoshi

    1983-01-01

    The authors derived the fundamental relations between the measured stress by X-ray and the residual stress distribution from the consideration of the contribution of internal stress in definite subsurface layer of metal to X-ray diffraction and proposed the exact formulas and their applications of residual stress measurements by successive thin layer removal in a plate, a hollow cylinder and a hollow sphere. (author)

  20. Analysis and measurement of residual stress distribution of vanadium/ceramics joints for fusion reactor applications

    International Nuclear Information System (INIS)

    Nemoto, Y.; Ueda, K.

    1998-01-01

    Vanadium alloys are considered as candidate structural materials for fusion reactor system. When vanadium alloys are used in fusion reactor system, joining with ceramics for insulating is one of material issues to be solved to make component of fusion reactor. In the application of ceramics/metal jointing and coating, residual stress caused by difference of thermal expansion rate between ceramics and metals is an important factor in obtaining good bonding strength and soundness of coating. In this work, residual stress distribution in direct diffusion bonded vanadium/alumina joint (jointing temperature: 1400 C) was measured by small area X-ray diffraction method. And the comparison of finite element method (FEM) analysis and actual stress distribution was carried out. Tensile stress concentration at the edge of the boundary of the joint in alumina was observed. The residual stress concentration may cause cracks in alumina, or failure of bonding. Actually, cracks in alumina caused by thermal stress after bonding at 1500 C was observed. The stress concentration of the joint must be reduced to obtain good bonded joint. Lower bonding temperature or to devise the shape of the outer surface of the joint will reduce the stress concentration. (orig.)

  1. Residual life of technical systems; diagnosis, prediction and life extension

    International Nuclear Information System (INIS)

    Reinertsen, Rune

    1996-01-01

    The paper presents and discusses research related to residual life of non-repairable and repairable technical systems. Diagnosis of systems and extension of residual life of technical systems are also presented and discussed. This paper concludes that research published describing determination and extension of residual life as well as methods for diagnosis of non-repairable and repairable technical systems, is somewhat limited. Many papers have a rather pragmatic approach. The authors only describe special cases from their own plant and do not provide any explanation of a more academical nature. The other papers are mainly describing very specific applications of statistical models, leaving the more general case out of consideration. One of the main results of this paper is to point out these facts, and thereby identify the need for future research in this area

  2. Residual stress measurement in veneering ceramic by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2011-05-01

    Mismatch in thermal expansion properties between veneering ceramic and metallic or high-strength ceramic cores can induce residual stresses and initiate cracks when combined with functional stresses. Knowledge of the stress distribution within the veneering ceramic is a key factor for understanding and predicting chipping failures, which are well-known problems with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objectives of this study are to develop a method for measuring the stress profile in veneering ceramics and to compare ceramic-fused-to-metal compounds to veneered Yttria-tetragonal-zirconia-polycrystal ceramic. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. Because of the high sensitivity needed in comparison with industrial applications, a high sensitivity electrical measurement chain was developed. All samples exhibited the same type of stress vs. depth profile, starting with compressive at the ceramic surface, decreasing with depth and becoming tensile at 0.5-1.0mm from the surface, and then becoming slightly compressive again. The zirconia samples exhibited a stress depth profile of larger magnitude. The hole drilling method was shown be a practical tool for measuring residual stresses in veneering ceramics. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Residual stress measurements in thick structural weldments by means of neutron diffraction

    International Nuclear Information System (INIS)

    Ohms, C.; Youtsos, A.G.; Idsert, P. v.d.; Timke, T.

    2000-01-01

    Welding residual stresses in large structural components are a major concern with respect to their performance and lifetime. In large structures reasonable thermal stress relief treatment is usually impossible due to the component size. On the other hand, prediction of welding stresses by numerical modelling has not yet proven to be generally reliable, while the experimental determination of such stresses remains a demanding task. At the high flux reactor (HFR), Petten, a new residual stress diffractometer has been installed recently capable of handling of components up to 1000 kg - the large component neutron diffraction facility (LCNDF). It has facilitated residual stress measurements in two large welded components, of which results are presented here. The first component represents a bi-metallic weld in form of a pipe of 25 mm wall thickness. Three dimensional measurements of residual stress are discussed in detail. The second specimen is a 66 mm wall thickness austenitic steel nuclear piping weld. Results on relief of strain within the weld through post weld heat treatment (PWHT) are presented. Additionally results obtained earlier at former CRNL (CAN) on a section of a thick nuclear piping weld are presented in order to illustrate the variation in the reference lattice parameter trough the weld and the heat affected zone (HAZ). These results clearly show the necessity to determine the reference parameters for each location in all measurement directions by means of measurements in small coupons free of macro-stresses. (orig.)

  4. Residual stress measurements by means of neutron diffraction

    International Nuclear Information System (INIS)

    Pintschovius, L.; Jung, V.; Macherauch, E.; Voehringer, O.

    1983-01-01

    A new method for the analysis of multiaxial residual stress states is presented, which is based on high resolution neutron diffraction. It is analogous to X-ray stress analysis, but the use of neutrons instead of X-rays allows the analysis of the stress distributions also in the interior of technical components in a non-destructive way. To prove the feasibility of the method, investigations of the loading stress distributions of an aluminium bar subjected to purely elastic bending were performed. Limiting factors due to the volume of the internal probe region and the sample thickness are discussed. Complete neutron residual stress analyses were carried out for a plastically deformed bending bar and a transformation-free water-quenched steel cylinder. The results are in fairly good agreement with theoretical expectations and with X-ray control measurements at the surface of the objects. (Auth.)

  5. ABOUT COMPLEX OPERATIONS IN NON-POSITIONAL RESIDUE NUMBER SYSTEM

    Directory of Open Access Journals (Sweden)

    Yu. D. Polissky

    2016-04-01

    Full Text Available Purpose. The purpose of this work is the theoretical substantiation of methods for increased efficiency of execution of difficult, so-called not modular, operations in non-positional residue number system for which it is necessary to know operand digits for all grade levels. Methodology. To achieve the target the numbers are presented in odd module system, while the result of the operation is determined on the basis of establishing the operand parity. The parity is determined by finding the sum modulo for the values of the number positional characteristics for all of its modules. Algorithm of position characteristics includes two types of iteration. The first iteration is to move from this number to a smaller number, in which the remains of one or more modules are equal to zero. This is achieved by subtracting out of all the residues the value of one of them. The second iteration is to move from this number to a smaller number due to exclusion of modules, which residues are zero, by dividing this number by the product of these modules. Iterations are performed until the residues of one, some or all of the modules equal to zero and other modules are excluded. The proposed method is distinguished by its simplicity and allows you to obtain the result of the operation quickly. Findings. There are obtained rather simple solutions of not modular operations for definition of outputs beyond the range of the result of adding or subtracting pairs of numbers, comparing pairs of numbers, determining the number belonging to the specific half of the range, defining parity of numbers presented in non-positional residue number system. Originality. The work offered the new effective approaches to solve the non-modular operations of the non-positional residue number system. It seems appropriate to consider these approaches as research areas to enhance the effectiveness of the modular calculation. Practical value. The above solutions have high performance and can

  6. Residual stress measurement method in MEMS microbeams using frequency shift data

    International Nuclear Information System (INIS)

    Somà, Aurelio; Ballestra, Alberto

    2009-01-01

    The dynamical behaviour of a set of gold microbeams affected by residual stress has been studied. Experimental frequency shift curves were obtained by increasing the dc voltage applied to the specimens. Comparison with different analytical and numerical models has been carried out in order to identify both analytical and finite element models in the presence of residual stress. Residual strain and stress, due to the fabrication process, have been widely reported in the literature in both out-of-plane microcantilevers and clamped–clamped microbeams by using mainly the value of pull-in voltage and static deflection data. In the case of a microcantilever, an accurate modelling includes the effect of the initial curvature due to microfabrication. In double-clamped microbeams, a pre-load applied by tensile stress is considered. A good correspondence is pointed out between measurements and numerical models so that the residual stress effect can be evaluated for different geometrical configurations

  7. Measurement of the residual stress distribution in a thick pre-stretched aluminum plate

    Science.gov (United States)

    Yuan, S. X.; Li, X. Q.; M, S.; Zhang, Y. C.; Gong, Y. D.

    2008-12-01

    Thick pre-stretched aluminum alloy plates are widely used in aircraft, while machining distortion caused by initial residual stress release in thick plates is a common and serious problem. To reduce the distortion, the residual stress distribution in thick plate must be measured. According to the characteristics of the thick pre-stretched aluminum alloy plate, based the elastic mechanical theory, this article deduces the modified layer-removal strain method adapting two different strain situations, which are caused by tensile and compressive stress. To validate this method, the residual stresses distribution along the thick direction of plate 2D70T351 is measured by this method, it is shown that the new method deduced in this paper is simple and accurate, and is very useful in engineering.

  8. Principles of the measurement of residual stress by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Webster, G A; Ezeilo, A N [Imperial Coll. of Science and Technology, London (United Kingdom). Dept. of Mechanical Engineering

    1996-11-01

    The presence of residual stresses in engineering components can significantly affect their load carrying capacity and resistance to fracture. In order to quantify their effect it is necessary to know their magnitude and distribution. Neutron diffraction is the most suitable method of obtaining these stresses non-destructively in the interior of components. In this paper the principles of the technique are described. A monochromatic beam of neutrons, or time of flight measurements, can be employed. In each case, components of strain are determined directly from changes in the lattice spacings between crystals. Residual stresses can then be calculated from these strains. The experimental procedures for making the measurements are described and precautions for achieving reliable results discussed. These include choice of crystal planes on which to make measurements, extent of masking needed to identify a suitable sampling volume, type of detector and alignment procedure. Methods of achieving a stress free reference are also considered. A selection of practical examples is included to demonstrate the success of the technique. (author) 14 figs., 1 tab., 18 refs.

  9. Principles of the measurement of residual stress by neutron diffraction

    International Nuclear Information System (INIS)

    Webster, G.A.; Ezeilo, A.N.

    1996-01-01

    The presence of residual stresses in engineering components can significantly affect their load carrying capacity and resistance to fracture. In order to quantify their effect it is necessary to know their magnitude and distribution. Neutron diffraction is the most suitable method of obtaining these stresses non-destructively in the interior of components. In this paper the principles of the technique are described. A monochromatic beam of neutrons, or time of flight measurements, can be employed. In each case, components of strain are determined directly from changes in the lattice spacings between crystals. Residual stresses can then be calculated from these strains. The experimental procedures for making the measurements are described and precautions for achieving reliable results discussed. These include choice of crystal planes on which to make measurements, extent of masking needed to identify a suitable sampling volume, type of detector and alignment procedure. Methods of achieving a stress free reference are also considered. A selection of practical examples is included to demonstrate the success of the technique. (author) 14 figs., 1 tab., 18 refs

  10. Experimental stress analysis for determination of residual stresses and integrity monitoring of components and systems

    International Nuclear Information System (INIS)

    1993-01-01

    For an analysis of the safety-related significance of residual stresses, mechanical, magnetic as well as ultrasonic and diffraction methods can be applied as testing methods. The results of an interlaboratory test concerning the experimental determination of residual stresses in a railway track are included. Further, questions are analyzed concerning the in-service inspections of components and systems with regard to their operational safety and life. Measurement methods are explained by examples from power plant engineering, nuclear power plant engineering, construction and traffic engineering as well as aeronautics. (DG) [de

  11. Measurement of residual stress in plasma-sprayed metallic, ceramic and composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, O.; Suresh, S. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Matejicek, J.; Sampath, S. [State Univ. of New York, Stony Brook, NY (United States). Inst. for Mathematical Sciences; Gnaeupel-Herold, T.; Brand, P.C.; Prask, H.J. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1998-12-15

    Residual stresses in plasma-sprayed coatings were studied by three experimental techniques: curvature measurements, neutron diffraction and X-ray diffraction. Two distinct material classes were investigated: (1) single-material coatings (molybdenum) and (2) bi-material composites (nickel+alumina and NiCrAlY+yttria-stabilized zirconia), with and without graded layers. This paper deals with the effects of coating thickness and material properties on the evolution of residual stresses as a function of composition and thickness in both homogeneous and graded coatings. Mathematical analysis of the results allowed in some cases the separation of the quenching stress and thermal stress contributions to the final residual stress, as well as the determination of the through-thickness stress profile from measurements of different thickness specimens. In the ceramic-metal composites, it was found that the quenching stress plays a dominant role in the metallic phase, whereas the stress in the ceramic phase is mostly dominated by thermal mismatch. The respective thermal expansion coefficients and mechanical properties are the most important factors determining the stress sign and magnitude. The three residual stress measurement methods employed here were found to be complementary, in that each can provide unique information about the stress state. The most noteworthy outcomes are the determination of the through-thickness stress profile in graded coatings with high spatial resolution (curvature method) and determination of stress in each phase of a composite separately (neutron diffraction). (orig.) 25 refs.

  12. Residual stress measurement in socket welded joints by neutron diffraction

    International Nuclear Information System (INIS)

    Hayashi, Makoto; Ishiwata, Masayuki; Minakawa, Noriaki; Funahashi, Satoru.

    1995-01-01

    Neutron diffraction measurements of lattice spacings provide the spatial map of residual stress near welds in ferritic steel socket joints. The high tensile stress greater than 200 MPa was found in the fusion and heat-affected zones in the hoop direction. However, the highest tensile stress in the axial direction at the weld root was about 110 MPa relatively lower than the expected value from the fatigue test results. The balancing compressive stress was found near the surface of the socket weld fusion zone. Heat treatment at 625degC for 2 hours was sufficient for the relief of residual stress in socket welds. (author)

  13. Residual diesel measurement in sand columns after surfactant/alcohol washing

    International Nuclear Information System (INIS)

    Martel, R.; Gelinas, P.J.

    1996-01-01

    A new simple gravimetric technique has been designed to determine residual oil saturation of complex hydrocarbon mixtures (e.g., diesel) in sand column experiments because reliable methods are lacking. The He/N 2 technique is based on drying of sand columns by circulating helium gas to drag oil droplets in a cold trap (liquid nitrogen). With this technique, residual diesel measurement can be performed easily immediately after alcohol/surfactant washing and in the same lab. For high residual diesel content in Ottawa sand (25 to 30 g/kg), the technique is much more accurate (± 2% or 600 mg/kg) than the standard analytical methods for the determination of mineral oil and grease. The average relative error on partial diesel dissolution in sand column estimated after alcohol/surfactant flooding (residual saturation of 10 to 15 g/kg) is as low as 5%. The precision of the He/N 2 technique is adequate to compare relative efficiency of washing solutions when partial extraction of residual oil in Ottawa sand columns is performed. However, this technique is not adapted for determination of traces of oil in sediment or for environmental control of contaminated soils. Each diesel determination by the He/N 2 technique costs less than $8 in chemical products (helium and liquid nitrogen). A simple laboratory drying setup can be built for less than $400 which makes this technique valuable for diesel analyses when a large number of tests are required

  14. FIB-based measurement of local residual stresses on microsystems

    Science.gov (United States)

    Vogel, Dietmar; Sabate, Neus; Gollhardt, Astrid; Keller, Juergen; Auersperg, Juergen; Michel, Bernd

    2006-03-01

    The paper comprises research results obtained for stress determination on micro and nanotechnology components. It meets the concern of controlling stresses introduced to sensors, MEMS and electronics devices during different micromachining processes. The method bases on deformation measurement options made available inside focused ion beam equipment. Removing locally material by ion beam milling existing stresses / residual stresses lead to deformation fields around the milled feature. Digital image correlation techniques are used to extract deformation values from micrographs captured before and after milling. In the paper, two main milling features have been analyzed - through hole and through slit milling. Analytical solutions for stress release fields of in-plane stresses have been derived and compared to respective experimental findings. Their good agreement allows to settle a method for determination of residual stress values, which is demonstrated for thin membranes manufactured by silicon micro technology. Some emphasis is made on the elimination of main error sources for stress determination, like rigid body object displacements and rotations due to drifts of experimental conditions under FIB imaging. In order to illustrate potential application areas of the method residual stress suppression by ion implantation is evaluated by the method and reported here.

  15. Spin distribution of evaporation residues formed in complete and incomplete fusion in 16O+154Sm system

    Science.gov (United States)

    Singh, D.; Linda, Sneha B.; Giri, Pankaj K.; Mahato, Amritraj; Tripathi, R.; Kumar, Harish; Afzal Ansari, M.; Sathik, N. P. M.; Ali, Rahbar; Kumar, Rakesh; Muralithar, S.; Singh, R. P.

    2017-11-01

    Spin distributions for several evaporation residues populated in the 16O+154Sm system have been measured at projectile energy ≈ 6.2 MeV/A by using the charged particle-γ-coincidence technique. The measured spin distributions of the evaporation residues populated through incomplete fusion associated with 'fast' α and 2α-emission channels are found to be entirely different from fusion-evaporation channels. It is observed that the mean input angular momentum for the evaporation residues formed in incomplete fusion channel is relatively higher than that observed for evaporation residues in complete fusion channels. The feeding intensity profile of evaporation residues populated through complete fusion and incomplete fusion have also been studied. The incomplete fusion channels are found to have narrow range feeding only for high spin states, while complete fusion channels are strongly fed over a broad spin range and widely populated. Comparison of present results with earlier data suggests that the mean input angular momentum values are relatively smaller for spherical target than that of deformed target using the same projectile and incident energy highlighting the role of target deformation in incomplete fusion dynamics.

  16. Spin distribution of evaporation residues formed in complete and incomplete fusion in 16O+154Sm system

    Directory of Open Access Journals (Sweden)

    D. Singh

    2017-11-01

    Full Text Available Spin distributions for several evaporation residues populated in the 16O+154Sm system have been measured at projectile energy ≈ 6.2 MeV/A by using the charged particle–γ-coincidence technique. The measured spin distributions of the evaporation residues populated through incomplete fusion associated with ‘fast’ α and 2α-emission channels are found to be entirely different from fusion–evaporation channels. It is observed that the mean input angular momentum for the evaporation residues formed in incomplete fusion channel is relatively higher than that observed for evaporation residues in complete fusion channels. The feeding intensity profile of evaporation residues populated through complete fusion and incomplete fusion have also been studied. The incomplete fusion channels are found to have narrow range feeding only for high spin states, while complete fusion channels are strongly fed over a broad spin range and widely populated. Comparison of present results with earlier data suggests that the mean input angular momentum values are relatively smaller for spherical target than that of deformed target using the same projectile and incident energy highlighting the role of target deformation in incomplete fusion dynamics.

  17. Process for measuring residual stresses

    International Nuclear Information System (INIS)

    Elfinger, F.X.; Peiter, A.; Theiner, W.A.; Stuecker, E.

    1982-01-01

    No single process can at present solve all problems. The complete destructive processes only have a limited field of application, as the component cannot be reused. However, they are essential for the basic determination of stress distributions in the field of research and development. Destructive and non-destructive processes are mainly used if investigations have to be carried out on original components. With increasing component size, the part of destructive tests becomes smaller. The main applications are: quality assurance, testing of manufactured parts and characteristics of components. Among the non-destructive test procedures, X-raying has been developed most. It gives residual stresses on the surface and on surface layers near the edges. Further development is desirable - in assessment - in measuring techniques. Ultrasonic and magnetic crack detection processes are at present mainly used in research and development, and also in quality assurance. Because of the variable depth of penetration and the possibility of automation they are gaining in importance. (orig./RW) [de

  18. Measurement of residual stress in a sphere by x-ray under the consideration of its penetration depth

    International Nuclear Information System (INIS)

    Doi, Osamu; Ukai, Takayoshi

    1981-01-01

    It was pointed out in the case of a plate that when stress gradient is large, the use of the X-ray with large penetration depth caused large measurement error. In this paper, the theoretical equations for measuring the residual stress in a sphere with X-ray, taking penetration depth into account, are proposed, and the example of application is shown. As the method of measuring the residual stress in a hollow sphere with X-ray, only the method of combining external surface removal and external surface irradiation is practically in use. It was assumed that a sphere is isotropic, and that the residual stress is a function of the radius only. First, the theory of measuring the residual stress in a sphere with X-ray taking penetration depth into account is explained, and the equations for calculating the residual stresses in tangential and radial directions are derived. As the example of applying this theory, the distribution of the residual stress in a steel ball for a ball bearing was measured with Cr characteristic X-ray. The ball of 30 mm diameter was made of high-carbon chromium bearing steel, grade 2, (JIS SUJ2) and quenched and tempered. The removal of the thin layer was made by chemical etching and electrolysis. The measured values and the calculated values are shown. (Kako, I.)

  19. On the fractional systems fault detection: a comparison between fractional and rational residual sensitivity

    International Nuclear Information System (INIS)

    Aoun, M.; Aribi, A.; Najar, S.; Abdelkrim, M.N.

    2011-01-01

    This paper shows the interest of extending the dynamic parity space fault detection method for fractional systems. Accordingly, a comparison between fractional and rational residual generators using the later method is presented. An analysis of fractional and rational residuals sensitivity shows the merits of the fractional residual generators. A numerical example illustrating the advantage of using fractional residual generators for fractional systems diagnosis is given.

  20. Construction of a risk assessment system for chemical residues in agricultural products.

    Science.gov (United States)

    Choi, Shinai; Hong, Jiyeon; Lee, Dayeon; Paik, Minkyoung

    2014-01-01

    Continuous monitoring of chemical residues in agricultural and food products has been performed by various government bodies in South Korea. These bodies have made attempts to systematically manage this information by creating a monitoring database system as well as a system based on these data with which to assess the health risk of chemical residues in agricultural products. Meanwhile, a database system is being constructed consisting of information about monitoring and, following this, a demand for convenience has led to the need for an evaluation tool to be constructed with the data processing system. Also, in order to create a systematic and effective tool for the risk assessment of chemical residues in foods and agricultural products, various evaluation models are being developed, both domestically and abroad. Overseas, systems such as Dietary Exposure Evaluation Model: Food Commodity Intake Database and Cumulative and Aggregate Risk Evaluation System are being used; these use the US Environmental Protection Agency as a focus, while the EU has developed Pesticide Residue Intake Model for assessments of pesticide exposure through food intake. Following this, the National Academy of Agricultural Science (NAAS) created the Agricultural Products Risk Assessment System (APRAS) which supports the use and storage of monitoring information and risk assessments. APRAS efficiently manages the monitoring data produced by NAAS and creates an extraction feature included in the database system. Also, the database system in APRAS consists of a monitoring database system held by the NAAS and food consumption database system. Food consumption data is based on Korea National Health and Nutrition Examination Survey. This system is aimed at exposure and risk assessments for chemical residues in agricultural products with regards to different exposure scenarios.

  1. A simulation-based approach for evaluating logging residue handling systems.

    Science.gov (United States)

    B. Bruce Bare; Benjamin A. Jayne; Brian F. Anholt

    1976-01-01

    Describes a computer simulation model for evaluating logging residue handling systems. The flow of resources is traced through a prespecified combination of operations including yarding, chipping, sorting, loading, transporting, and unloading. The model was used to evaluate the feasibility of converting logging residues to chips that could be used, for example, to...

  2. Nuclear reactor with makeup water assist from residual heat removal system

    Science.gov (United States)

    Corletti, Michael M.; Schulz, Terry L.

    1993-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path.

  3. Nuclear reactor with makeup water assist from residual heat removal system

    International Nuclear Information System (INIS)

    Corletti, M.M.; Schulz, T.L.

    1993-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures

  4. Nuclear reactor with makeup water assist from residual heat removal system

    Science.gov (United States)

    Corletti, M.M.; Schulz, T.L.

    1993-12-07

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures.

  5. Measurement of residual stress in plasma-sprayed composite coatings with graded and uniform compositions

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, O.; Suresh, S. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Matejicek, J.; Sampath, S.

    1999-10-01

    Residual stresses in plasma sprayed composite coatings were studied experimentally by both curvature and neutron diffraction measurements. Graded and uniform composite coatings, consisting of nickel + alumina and NiCrAlY + yttria-stabilized zirconia, were investigated. This paper briefly summarizes our recent work dealing with the effects of coating thickness, composition, and material properties on the evolution of residual stresses in coatings. Analysis of the results allowed in some cases the separation of the quenching stress and thermal stress contributions to the final residual stress, as well as the determination of the through-thickness stress profile from measurements of different thickness specimens. In the ceramic-metal composites, it was found that the thermal mismatch stress plays a dominant role in the ceramic phase, whereas the stress in the metallic phase is mostly dominated by quenching stress. The residual stress measurement methods employed here were found to be complementary, in that each can provide unique information about the stress state. Through-thickness stress profiles in graded coatings were determined with high spatial resolution by the curvature method, and determination of the stress in each separate phase of a composite was made by neutron diffraction. (orig.) 14 refs.

  6. Neutron diffraction measurements of residual stresses in NPP construction materials

    International Nuclear Information System (INIS)

    Hinca, R.; Bokuchava, G.

    2001-01-01

    Neutron diffraction is one of the most powerful methods for condensed matter studies. This method is used for non-destructive determination of residual stresses in material. The fundamental aspects of neutron diffraction are discussed, together with a brief description of the experimental facility. The principal advantage of using neutrons rather than the more conventional X-rays is the fact that neutron can penetrate deeply (2-4 cm for steel and more than 10 cm for aluminium) into metals to determine internal parameters within the bulk of materials. We present results of measurements residual stresses in NPP construction material - austenitic stainless steel (Cr-18%, Ni-10%, Ti-1%) coated with high-nickel alloy. (authors)

  7. Residual stress measurement using the pulsed neutron source at LANSCE

    International Nuclear Information System (INIS)

    Bourke, M.A.M.; Goldstone, J.A.; Holden, T.M.

    1991-01-01

    The presence of residual stress in engineering components can effect their mechanical properties and structural integrity. Neutron diffraction is the only measuring technique which can make spatially resolved non-destructive strain measurements in the interior of components. By recording the change in the crystalline interplanar spacing, elastic strains can be measured for individual lattice reflections. Using a pulsed neutron source, all the lattice reflections are recorded in each measurement which allows anisotropic effects to be studied. Measurements made at the Manuel Lujan Jr Neutron Scattering Centre (LANSCE) demonstrate the potential for stress measurements on a pulsed source and indicate the advantages and disadvantages over measurements made on a reactor. 15 refs., 7 figs

  8. Characteristic of oil palm residue for energy conversion system

    International Nuclear Information System (INIS)

    Muharnif; Zainal, Z.A.

    2006-01-01

    Malaysia is the major producer of palm oil in the world. It produces 8.5 tones per year (8.5 x 10 6 ty -1 ) of palm oil from 38.6 x 10 6 ty - 1 of fresh fruit bunches. Palm oil production generates large amounts of process residue such as fiber (5.4 x 10 6 ty - 1 ), shell (2.3 x 10 6 ty - 1 ), and empty fruit bunches (8.8 x 10 6 ty - 1 ). A large fraction of the fiber and much of the shell are used as fuel to generate process steam and electricity. The appropriate energy conversion system depends on the characteristic of the oil palm residue. In this paper, a description of characteristic of the oil palm residue is presented. The types of the energy conversion system presented are stoker type combustor and gasified. The paper focuses on the pulverized biomass material and the use of fluidized bed gasified. In the fluidized bed gasified, the palm shell and fiber has to be pulverized before feeding into gasified. For downdraft gasified and furnace, the palm shell and fiber can be used directly into the reactor for energy conversion. The heating value, burning characteristic, ash and moisture content of the oil palm residue are other parameters of the study

  9. Total gamma activity measurements for determining the radioactivity of residual materials from nuclear power stations

    International Nuclear Information System (INIS)

    Auler, I.; Meyer, M.; Stickelmann, J.

    1995-01-01

    Large amounts of residual materials from retrofitting measures and from decommissioning of nuclear power stations shows such a weak level of radioactivity that they could be released after decision measurements. Expenses incurred with complex geometry cannot be taken with common methods. NIS developed a Release Measurement Facility (RMF) based on total gamma activity measurements especially for these kind of residual materials. The RMF has been applied for decision measurements in different nuclear power plants. Altogether about 2,000 Mg of various types of materials have been measured up to now. More than 90 % of these materials could be released 0 without any restriction after decision measurements

  10. Suitability of the charm HVS and a microbiological multiplate system for detection of residues in raw milk at EU maximum residue levels

    NARCIS (Netherlands)

    Nouws, J.F.M.; Egmond, van H.; Loeffen, G.; Schouten, J.; Keukens, H.; Smulders, I.; Stegeman, H.

    1999-01-01

    In this paper we assessed the suitability of the Charm HVS and a newly developed microbiological multiplate system as post-screening tests to confirm the presence of residues in raw milk at or near the maximum permissible residue level (MRL). The multiplate system is composed of Bacillus

  11. Management of municipal solid waste incineration residues

    International Nuclear Information System (INIS)

    Sabbas, T.; Polettini, A.; Pomi, R.; Astrup, T.; Hjelmar, O.; Mostbauer, P.; Cappai, G.; Magel, G.; Salhofer, S.; Speiser, C.; Heuss-Assbichler, S.; Klein, R.; Lechner, P.

    2003-01-01

    The management of residues from thermal waste treatment is an integral part of waste management systems. The primary goal of managing incineration residues is to prevent any impact on our health or environment caused by unacceptable particulate, gaseous and/or solute emissions. This paper provides insight into the most important measures for putting this requirement into practice. It also offers an overview of the factors and processes affecting these mitigating measures as well as the short- and long-term behavior of residues from thermal waste treatment under different scenarios. General conditions affecting the emission rate of salts and metals are shown as well as factors relevant to mitigating measures or sources of gaseous emissions

  12. Feasibility of ultrasonic and eddy current methods for measurement of residual stress in shot peened metals

    International Nuclear Information System (INIS)

    Lavrentyev, Anton I.; Stucky, Paul A.; Veronesi, William A.

    2000-01-01

    Shot peening is a well-known method for extending the fatigue life of metal components by introducing compressive residual stresses near their surfaces. The capability to nondestructively evaluate the near surface residual stress would greatly aid the assurance of proper fatigue life in shot-peened components. This paper presents preliminary results from a feasibility study examining the use of ultrasonic and eddy current NDE methods for residual stress measurement in components where the stress has been introduced by shot peening. With an ultrasonic method, a variation of ultrasonic surface wave speed with shot peening intensity was measured. Near surface conductivity was measured by eddy current methods. Since the effective penetration depth of both methods employed is inversely related to the excitation frequency, by making measurements at different frequencies, each method has the potential to provide the stress-depth profile. Experiments were conducted on aluminum specimens (alloy 7075-T7351) peened within the Almen peening intensity range of 4C to 16C. The experimental results obtained demonstrate a correlation between peening intensity and Rayleigh wave velocity and between peening intensity and conductivity. The data suggests either of the methods may be suitable, with limitations, for detecting unsatisfactory levels of shot peening. Several factors were found to contribute to the measured responses: surface roughness, near surface plastic deformation (cold work) and residual stress. The contribution of each factor was studied experimentally. The feasibility of residual stress determination from the measured data is discussed

  13. Measurements of fusion cross section for 12C +63,65 Cu systems

    International Nuclear Information System (INIS)

    Rocha, C.A. da.

    1987-01-01

    Cross-section measurements for nuclear fusion in the 12 C+ 63.65 Cu system, at 12 C energy range from 0.9 to 1.8 times the Coulomb barrier are presented. In order to detect and to obtain the mass identification of the evaporation residues following the fusion process, the time of flight method was adopted in conjunction with an eletrostatic deflector capable of separating the evaporation residues from the beam particles. The limitation and advantadges of this method of measurement are discussed. The excitation functions were analysed using the unidimensional barrier penetration model with different nuclear potentials. Theoretical fusion cross-section values obtained from this analysis were systematically smaller than our measured values, in the energy region below the Coulomb barrier. In order to discover which channel enhances the fusion cross-section in this region, a coupled channel calculation was performed, with the CCFUS code. The experimental data for the above reactions were compared with the systems 16.18 O+ 63.65 Cu, measured by our group. In this comparison, it was noted that the systems 12 C+ 63.65 Cu, have greater fusion cross section below the Coulomb barrier. The comparison of velocity spectra of the evaporated residues for the two systems shows that 12 C+ 63 Cu has a strong reaction channel that was not present in the 12 C+ 65 Cu system. (author) [pt

  14. Assessment of procurement systems for unutilized logging residues ...

    African Journals Online (AJOL)

    ... in the forest after clear-cutting operation with cutto- length harvesting method. ... as system-2 can be preferable for the initial supply chain configuration in Turkey. ... Key words: logging residue, forest biomass, chipping, supply cost, biomass ...

  15. DERMAL AND MOUTHING TRANSFERS OF SURFACE RESIDUES MEASURED USING FLUORESCENCE IMAGING

    Science.gov (United States)

    To reduce the uncertainty associated with current estimates of children's exposure to pesticides by dermal contact and non-dietary ingestion, residue transfer data are required. Prior to conducting exhaustive studies, a screening study to develop and test methods for measuring...

  16. Measurement and prediction of residual stress in a bead-on-plate weld benchmark specimen

    International Nuclear Information System (INIS)

    Ficquet, X.; Smith, D.J.; Truman, C.E.; Kingston, E.J.; Dennis, R.J.

    2009-01-01

    This paper presents measurements and predictions of the residual stresses generated by laying a single weld bead on a flat, austenitic stainless steel plate. The residual stress field that is created is strongly three-dimensional and is considered representative of that found in a repair weld. Through-thickness measurements are made using the deep hole drilling technique, and near-surface measurements are made using incremental centre hole drilling. Measurements are compared to predictions at the same locations made using finite element analysis incorporating an advanced, non-linear kinematic hardening model. The work was conducted as part of an European round robin exercise, coordinated as part of the NeT network. Overall, there was broad agreement between measurements and predictions, but there were notable differences

  17. Measuring multiple residual-stress components using the contour method and multiple cuts

    Energy Technology Data Exchange (ETDEWEB)

    Prime, Michael B [Los Alamos National Laboratory; Swenson, Hunter [Los Alamos National Laboratory; Pagliaro, Pierluigi [U. PALERMO; Zuccarello, Bernardo [U. PALERMO

    2009-01-01

    The conventional contour method determines one component of stress over the cross section of a part. The part is cut into two, the contour of the exposed surface is measured, and Bueckner's superposition principle is analytically applied to calculate stresses. In this paper, the contour method is extended to the measurement of multiple stress components by making multiple cuts with subsequent applications of superposition. The theory and limitations are described. The theory is experimentally tested on a 316L stainless steel disk with residual stresses induced by plastically indenting the central portion of the disk. The stress results are validated against independent measurements using neutron diffraction. The theory has implications beyond just multiple cuts. The contour method measurements and calculations for the first cut reveal how the residual stresses have changed throughout the part. Subsequent measurements of partially relaxed stresses by other techniques, such as laboratory x-rays, hole drilling, or neutron or synchrotron diffraction, can be superimposed back to the original state of the body.

  18. Measurement of residual stresses in welded sample of dissimilar materials

    International Nuclear Information System (INIS)

    Mansur, Tanius Rodrigues; Gomes, Paulo de Tarso Vida; Scaldaferri, Denis Henrique Bianchi; Martins, Geraldo Antonio Scoralick; Atanazio Filho, Nelson do Nascimento

    2008-01-01

    reactors, what can generate significant residual stresses due so much to the welding procedure as for the difference of the coefficients of thermal expansion of the involved materials. In this work, are shown the results of the measurement of residual tensions in welded sample of steel carbon SA 508 Cl 3 and stainless steel 316L. The Inconel 182 was used as weld metal. (author)

  19. Non-destructive residual pressure self-measurement method for the sensing chip of optical Fabry-Perot pressure sensor.

    Science.gov (United States)

    Wang, Xue; Wang, Shuang; Jiang, Junfeng; Liu, Kun; Zhang, Xuezhi; Xiao, Mengnan; Xiao, Hai; Liu, Tiegen

    2017-12-11

    We introduce a simple residual pressure self-measurement method for the Fabry-Perot (F-P) cavity of optical MEMS pressure sensor. No extra installation is required and the structure of the sensor is unchanged. In the method, the relationship between residual pressure and external pressure under the same diaphragm deflection condition at different temperatures is analyzed by using the deflection formula of the circular plate with clamped edges and the ideal gas law. Based on this, the residual pressure under the flat condition can be obtained by pressure scanning process and calculation process. We carried out the experiment to compare the residual pressures of two batches MEMS sensors fabricated by two kinds of bonding process. The measurement result indicates that our approach is reliable enough for the measurement.

  20. Finite element analysis and measurement for residual stress of dissimilar metal weld in pressurizer safety nozzle mockup

    International Nuclear Information System (INIS)

    Lee, Kyoung Soo; Kim, W.; Lee, Jeong Geun; Park, Chi Yong; Yang, Jun Seok; Kim, Tae Ryong; Park, Jai Hak

    2009-01-01

    Finite element (FE) analysis and experiment for weld residual stress (WRS) in the pressurizer safety nozzle mockup is described in various processes and results. Foremost of which is the dissimilar simulation metal welding (DMW) between carbon steel and austenitic stainless steel. Thermal and structural analyses were compared with actual residual stress, and actual measurements of. Magnitude and distribution of WRS in the nozzle mockup were assessed. Two measurement methods were used: hole-drilling method (HDM) with strain gauge for residual stress on the surface of the mockup, and block removal and splitting layer (BRSL) method for through-thickness. FE analysis and measurement data showed good agreement. In conclusion, the characteristics of weld residual stress of DMW could be well understood and the simplified FE analysis was verified as acceptable for estimating WRS

  1. Finite element analysis and measurement for residual stress of dissimilar metal weld in pressurizer safety nozzle mockup

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyoung Soo; Kim, W.; Lee, Jeong Geun; Park, Chi Yong; Yang, Jun Seok; Kim, Tae Ryong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Park, Jai Hak [Chungbuk University, Cheongju (Korea, Republic of)

    2009-11-15

    Finite element (FE) analysis and experiment for weld residual stress (WRS) in the pressurizer safety nozzle mockup is described in various processes and results. Foremost of which is the dissimilar simulation metal welding (DMW) between carbon steel and austenitic stainless steel. Thermal and structural analyses were compared with actual residual stress, and actual measurements of. Magnitude and distribution of WRS in the nozzle mockup were assessed. Two measurement methods were used: hole-drilling method (HDM) with strain gauge for residual stress on the surface of the mockup, and block removal and splitting layer (BRSL) method for through-thickness. FE analysis and measurement data showed good agreement. In conclusion, the characteristics of weld residual stress of DMW could be well understood and the simplified FE analysis was verified as acceptable for estimating WRS

  2. Measurement and analysis of cross-section for some residues produced in 16O + 27Al system

    International Nuclear Information System (INIS)

    Sharma, Manoj Kumar; Unnati; Singh, Devendra P.; Singh, Pushpendra P.; Singh, B.P.; Prasad, R.; Rakesh Kumar; Golda, K.S.; Bhardwaj, H.D.

    2006-01-01

    In the present work, the theoretical estimate of the cross-section for the evaporation residues has been determined using code ALICE-91 which is based on statistical approach and considers the population of the residues only through CF channels, including PE emission

  3. Characterization of roadway stormwater system residuals for reuse and disposal options

    International Nuclear Information System (INIS)

    Jang, Yong-Chul; Jain, Pradeep; Tolaymat, Thabet; Dubey, Brajesh; Singh, Shrawan; Townsend, Timothy

    2010-01-01

    The chemical characterization of sediments accumulated in catch basins and stormwater ponds provides important information for assessing risks associated with management of these residuals upon removal of accumulated deposits in stormwater systems. In this study, over a period of 15 months, more than 150 residual samples were collected from 77 catch basin units and 22 stormwater ponds from 16 municipalities throughout the state of Florida. Concentrations (mg/kg) of metals and metalloids (arsenic, barium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, and zinc) and trace organics (volatile organics, semi-volatile organics, herbicides, and pesticides) in the sediments were measured. In addition, the synthetic precipitation leaching procedure (SPLP) was utilized to evaluate pollutant leachability risk for a subset of the samples collected. Measured pollutant concentrations were compared to corresponding risk-based guidelines in Florida (i.e., Florida soil cleanup target levels) to assess potential human health risks of beneficial use of these residuals through land application. Leached concentrations were compared to risk-based water quality guidelines (i.e., Florida groundwater cleanup target levels) to examine the potential for groundwater contamination. Although several metals (arsenic, barium, chromium, copper, nickel, lead, and zinc) were routinely detected in the catch basin and stormwater pond sediments, their concentrations were generally lower than the Florida's risk-based cleanup target levels for soils. A small number of organochlorine compounds (e.g., 4,4'-DDE, 4,4'-DDT) were detected, but only in a limited number of the samples (less than 10%); leaching of trace organic pollutants above the Florida risk-based groundwater thresholds was rare. The results suggest that when land-applied or beneficially used, these residuals are not expected to pose a significant threat to human health or the environment and the results of this research

  4. Measurement and modeling of residual stress in a welded Haynes[reg] 25 cylinder

    International Nuclear Information System (INIS)

    Larsson, C.; Holden, T.M.; Bourke, M.A.M.; Stout, M.; Teague, J.; Lindgren, L.-E.

    2005-01-01

    An experimental and simulation study of residual stresses was made in the vicinity of a gas tungsten arc weld, used to join a hemispherical end cap to a cylinder. The capped cylinder is used in a satellite application and was fabricated from a Co-based Haynes[reg] 25 alloy. The cylinder was 34.7 mm in outer diameter and 3.3 mm in thickness. The experimental measurements were made by neutron diffraction and the simulation used the implicit Marc finite element code. The experimental resolution was limited to approximately 3 mm parallel to the axis of the cylinder (the weld was 6 mm in the same direction) and comparison over the same volume of the finite element prediction showed general agreement. Subject to the limited spatial resolution, the largest experimentally measured tensile residual stress was 180 MPa, located at the middle of the weld. However, the predictions suggest that there are regions in the weld where average tensile residual stresses as much as 400 MPa exist. One qualitative disparity between the model and the experiments was that the measurement included a larger degree of asymmetry on either side of the weld than predicted by the model

  5. Measurement and modeling of residual stress in a welded Haynes[reg] 25 cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, C. [Div. of Eng. Mat., Department of Mech. Eng., Linkoeping University, 58183 Linkoeping (Sweden)]. E-mail: clarsson@cfl.rr.com; Holden, T.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bourke, M.A.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Stout, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Teague, J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lindgren, L.-E. [Div. Comp. Aided Design, Lulea University of Technology and Dalarna University, 97187 Lulea (Sweden)

    2005-06-15

    An experimental and simulation study of residual stresses was made in the vicinity of a gas tungsten arc weld, used to join a hemispherical end cap to a cylinder. The capped cylinder is used in a satellite application and was fabricated from a Co-based Haynes[reg] 25 alloy. The cylinder was 34.7 mm in outer diameter and 3.3 mm in thickness. The experimental measurements were made by neutron diffraction and the simulation used the implicit Marc finite element code. The experimental resolution was limited to approximately 3 mm parallel to the axis of the cylinder (the weld was 6 mm in the same direction) and comparison over the same volume of the finite element prediction showed general agreement. Subject to the limited spatial resolution, the largest experimentally measured tensile residual stress was 180 MPa, located at the middle of the weld. However, the predictions suggest that there are regions in the weld where average tensile residual stresses as much as 400 MPa exist. One qualitative disparity between the model and the experiments was that the measurement included a larger degree of asymmetry on either side of the weld than predicted by the model.

  6. Residual stress measurement on propellant tank of 2219 aluminum alloy and study on its weak spot

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chaoqun; Li, Huan; Li, Jianxiong; Luo, Chuanguang; Ni, Yanbing [Tianjin University, Tianjin (China)

    2017-05-15

    This paper presented residual stress measurement on two circumferential Variable polarity plasma arc welding (VPPAW) joints and one circular closed Friction stir welding (FSW) joint on the propellant tank of 2219 aluminum alloy using the indentation strain-gauge method. Quite large tensile residual stresses were attached to the center and inner areas of the circular closed FSW joint. There were very large tensile stresses in some points of the two circumferential VPPAW joints, among these points, the maximum value was +253 MPa, which was about 63 % of the yield strength of 410 MPa measured in the base material. In addition, the peak of compressive residual stress was about -160 MPa. Above all, there were two typical peaks of residual stress in the circumferential VPPAW joints, one was located in the middle part while the other one was near the start/end position of the joints. Combining the result of residual stress measurement with the characteristics of the tank structure, it can be concluded that circular closed FSW joint around the flange was a weak spot on the propellant tank. And the most vulnerable point on the circular closed FSW joint has also been found.

  7. Crop residues as raw materials for biorefinery systems - A LCA case study

    International Nuclear Information System (INIS)

    Cherubini, Francesco; Ulgiati, Sergio

    2010-01-01

    Our strong dependence on fossil fuels results from the intensive use and consumption of petroleum derivatives which, combined with diminishing oil resources, causes environmental and political concerns. The utilization of agricultural residues as raw materials in a biorefinery is a promising alternative to fossil resources for production of energy carriers and chemicals, thus mitigating climate change and enhancing energy security. This paper focuses on a biorefinery concept which produces bioethanol, bioenergy and biochemicals from two types of agricultural residues, corn stover and wheat straw. These biorefinery systems are investigated using a Life Cycle Assessment (LCA) approach, which takes into account all the input and output flows occurring along the production chain. This approach can be applied to almost all the other patterns that convert lignocellulosic residues into bioenergy and biochemicals. The analysis elaborates on land use change aspects, i.e. the effects of crop residue removal (like decrease in grain yields, change in soil N 2 O emissions and decrease of soil organic carbon). The biorefinery systems are compared with the respective fossil reference systems producing the same amount of products/services from fossils instead of biomass. Since climate change mitigation and energy security are the two most important driving forces for biorefinery development, the assessment focuses on greenhouse gas (GHG) emissions and cumulative primary energy demand, but other environmental categories are evaluated as well. Results show that the use of crop residues in a biorefinery saves GHG emissions and reduces fossil energy demand. For instance, GHG emissions are reduced by about 50% and more than 80% of non-renewable energy is saved. Land use change effects have a strong influence in the final GHG balance (about 50%), and their uncertainty is discussed in a sensitivity analysis. Concerning the investigation of the other impact categories, biorefinery systems

  8. Some problems of residual activity measurements

    International Nuclear Information System (INIS)

    Katrik, P.; Mustafin, E.; Strasik, I.; Pavlovic, M.

    2013-01-01

    As a preparatory work for constructing the Facility for Antiproton and Ion Research (FAIR) at GSI Darmstadt, samples of copper were irradiated by 500 MeV/u 238 U ion beam and investigated by gamma-ray spectroscopy. The nuclides that contribute dominantly to the residual activity have been identified and their contributions have been quantified by two different methods: from the whole-target gamma spectra and by integration of depth-profiles of residual activity of individual nuclides. Results obtained by these two methods are compared and discussed in this paper. (authors)

  9. Systematic Review of Uit Parameters on Residual Stresses of Sensitized AA5456 and Field Based Residual Stress Measurements for Predicting and Mitigating Stress Corrosion Cracking

    Science.gov (United States)

    2014-03-01

    University Press, 2009, pp. 820–824. [30] S. Kou, Welding Metallurgy , 2nd ed. Hoboken, NJ: John Wiley and Sons, Inc., 2003. [31] M. N.James et al...around welds in aluminum ship structures both in the laboratory and in the field. Tensile residual stresses are often generated during welding and, in...mitigate and even reverse these tensile residual stresses. This research uses x-ray diffraction to measure residual stresses around welds in AA5456 before

  10. Evaluation of residual stresses in welded part using hard synchrotron x-rays

    International Nuclear Information System (INIS)

    Suzuki, Kenji; Shobu, Takahisa; Shiro, Ayumi; Zhang Shuoyuan

    2013-01-01

    The spiral slit-system and DSTM (diffraction spot trace method) are under development in order to evaluate internal stresses of materials with coarse grains. The spiral slit-system was improved so that the length of the gauge volume is independent of the diffraction angle. The bending stress in the specimen with coarse grains was measured in order to confirm performance of this advanced spiral slit-system. The distribution of the measured bending stress coincided with the applied bending stress. As a result, it was proved that the combination of the advanced spiral slit-system and the DSTM is useful for the internal stress measurement of materials with coarse grains. The welded specimen of a Mg-alloy plate was prepared by melt-run with TIG welding. The residual stress map in the cross-section of the specimen was made using the DSTM. On the other hand, the residual stresses of the welded specimen were simulated by a finite element method. Although the measured residual stresses were similar to the simulated results, the residual stresses due to extrusion were measured also using the DSTM. The DSTM is an excellent technique for the stress measurement of weld parts. (author)

  11. Residual stress measurements by X-ray and neutron diffractions in heat-treated SiCw/A2014 composites

    International Nuclear Information System (INIS)

    Ohnuki, Takahisa; Fujita, Motoo; Tomota, Yo; Ono, Masayoshi

    1998-01-01

    Residual stresses due to various heat treatments in a 22 volume percent SiC whisker/A2014 metal matrix composite (MMC) were measured by using X-ray and neutron diffractions. Micro residual stresses generated from the differences in thermal expansion coefficients of the constituents and macro residual stresses associated with different cooling rates in the outer and inner regions of an MMC specimen must be distinguished in X-ray stress measurements. The conventional sin 2 ψ method under an assumption of plane stress condition has been found not to be applicable to the present MMC, because interactions among whiskers in the X-ray penetrating area yields σ 33 where the x 3 -axis is normal with respect to specimen's surface. An average value of σ 33 can be measured by X-ray diffraction technique, but does not seem enough to evaluate micro residual stresses. It is found that neutron diffraction is the most powerful method to measure micro residual stresses in the constituents. Elastic residual strains obtained by neutron diffraction in solution treated or T6 heat treated samples show good agreements with predictions calculated by using Eshelby inclusion theory coupled with the Mori-Tanaka mean field concept, indicating that the influence of stress relaxation is negligible. In addition, internal stresses relaxations during holding at room temperature, slow cooling from solution treatment temperature, or subzero cooling are discussed. (author)

  12. Remarks on residual stress measurement by hole-drilling and electronic speckle pattern interferometry.

    Science.gov (United States)

    Barile, Claudia; Casavola, Caterina; Pappalettera, Giovanni; Pappalettere, Carmine

    2014-01-01

    Hole drilling is the most widespread method for measuring residual stress. It is based on the principle that drilling a hole in the material causes a local stress relaxation; the initial residual stress can be calculated by measuring strain in correspondence with each drill depth. Recently optical techniques were introduced to measure strain; in this case, the accuracy of the final results depends, among other factors, on the proper choice of the area of analysis. Deformations are in fact analyzed within an annulus determined by two parameters: the internal and the external radius. In this paper, the influence of the choice of the area of analysis was analysed. A known stress field was introduced on a Ti grade 5 sample and then the stress was measured in correspondence with different values of the internal and the external radius of analysis; results were finally compared with the expected theoretical value.

  13. Residual volume measurements in CAPD patients with exogenous and endogenous solutes

    NARCIS (Netherlands)

    Imholz, A. L.; Koomen, G. C.; Struijk, D. G.; Arisz, L.; Krediet, R. T.

    1992-01-01

    Accurate residual volume (RV) measurements are needed in studies on fluid kinetics during CAPD. In this study 10 stable CAPD patients were examined twice within 1 week. On both occasions RV after drainage was calculated by the indicator dilution method. Exogenous (dextran 70, inulin) and endogenous

  14. Measurement of residual stress fields in FHPP welding: a comparison between DSPI combined with hole-drilling and neutron diffraction

    Science.gov (United States)

    Viotti, Matias R.; Albertazzi, Armando; Staron, Peter; Pisa, Marcelo

    2013-04-01

    This paper shows a portable device to measure mainly residual stress fields outside the optical bench. This system combines the traditional hole drilling technique with Digital Speckle Pattern Interferometry. The novel feature of this device is the high degree of compaction since only one base supports simultaneously the measurement module and the hole-drilling device. The portable device allows the measurement of non-uniform residual stresses in accordance with the ASTM standard. In oil and gas offshore industries, alternative welding procedures among them, the friction hydro pillar processing (FHPP) is highlighted and nowadays is an important maintenance tool since it has the capability to produce structure repairs without risk of explosions. In this process a hole is drilled and filled with a consumable rod of the same material. The rod, which could be cylindrical or conical, is rotated and pressed against the hole, leading to frictional heating. In order to assess features about the residual stress distribution generated by the weld into the rod as well as into the base material around the rod, welded samples were evaluated by neutron diffraction and by the hole drilling technique having a comparison between them. For the hole drilling technique some layers were removed by using electrical discharge machining (EDM) after diffraction measurements in order to assess the bulk stress distribution. Results have shown a good agreement between techniques.

  15. CAREM-25: Residual heat removal system

    International Nuclear Information System (INIS)

    Arvia, Roberto P.; Coppari, Norberto R.; Gomez de Soler, Susana M.; Ramilo, Lucia B.

    2000-01-01

    The objective of this work was the definition and consolidation of the residual heat removal system for the CAREM 25 reactor. The function of this system is cool down the primary circuit, removing the core decay heat from hot stand-by to cold shutdown and during refueling. In addition, this system heats the primary water from the cold shutdown condition to hot stand-by condition during the reactor start up previous to criticality. The system has been designed according to the requirements of the standards: ANSI/ANS 51.1 'Nuclear safety criteria for the design of stationary PWR plants'; ANSI/ANS 58.11 'Design criteria for safe shutdown following selected design basis events in light water reactors' and ANSI/ANS 58.9 'Single failure criteria for light water reactor safety-related fluid systems'. The suggested design fulfills the required functions and design criteria standards. (author)

  16. Measurement of residual radioactivity in cooper exposed to high energy heavy ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eunjoo; Nakamura, Takashi [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Uwamino, Yoshitomo; Ito, Sachiko; Fukumura, Akifumi

    1999-03-01

    The residual radioactivities produced by high energy heavy ions have been measured using the heavy ion beams of the Heavy Ion Medical Accelerator (HIMAC) at National Institute of Radiological Sciences. The spatial distribution of residual radioactivities in 3.5 cm, 5.5 cm and 10 cm thick copper targets of 10 cm x 10 cm size bombarded by 290 MeV/u, 400 MeV/u-{sup 12}C ion beams and 400 MeV/u-{sup 20}Ne ion beam, respectively, were obtained by measuring the gamma-ray activities of 0.5 mm thick copper foil inserted in the target with a high purity Ge detector after about 1 hour to 6 hours irradiation. (author)

  17. Measurement of the residual stresses in a PWR Control Rod Drive Mechanism nozzle

    OpenAIRE

    Coules, Harry; Smith, David

    2018-01-01

    Residual stress in the welds that attach Control Rod Drive Mechanism nozzles into the upper head of a PWR reactor vessel can influence the vessel's structural integrity and initiate Primary Water Stress Corrosion Cracking. PWSCC at Alloy 600 CRDM nozzles has caused primary coolant leakage in operating PWRs. We have used Deep Hole Drilling to characterise residual stresses in a PWR vessel head. Measurements of the internal cladding and nozzle attachment weld showed that although modest tensile...

  18. Impact of Vial Capping on Residual Seal Force and Container Closure Integrity.

    Science.gov (United States)

    Mathaes, Roman; Mahler, Hanns-Christian; Roggo, Yves; Ovadia, Robert; Lam, Philippe; Stauch, Oliver; Vogt, Martin; Roehl, Holger; Huwyler, Joerg; Mohl, Silke; Streubel, Alexander

    2016-01-01

    The vial capping process is a critical unit operation during drug product manufacturing, as it could possibly generate cosmetic defects or even affect container closure integrity. Yet there is significant variability in capping equipment and processes, and their relation to potential defects or container closure integrity has not been thoroughly studied. In this study we applied several methods-residual seal force tester, a self-developed system of a piezo force sensor measurement, and computed tomography-to characterize different container closure system combinations that had been sealed using different capping process parameter settings. Additionally, container closure integrity of these samples was measured using helium leakage (physical container closure integrity) and compared to characterization data. The different capping equipment settings lead to residual seal force values from 7 to 115 N. High residual seal force values were achieved with high capping pre-compression force and a short distance between the capping plate and plunge. The choice of container closure system influenced the obtained residual seal force values. The residual seal force tester and piezoelectric measurements showed similar trends. All vials passed physical container closure integrity testing, and no stopper rupture was seen with any of the settings applied, suggesting that container closure integrity was warranted for the studied container closure system with the chosen capping setting ranges. The vial capping process is a critical unit operation during drug product manufacturing, as it could possibly generate cosmetic defects or even affect container closure integrity. Yet there is significant variability in capping equipment and processes, and their relation to potential defects or container closure integrity has not been thoroughly studied. In this study we applied several methods-residual seal force tester, a self-developed system of a piezo force sensor measurement, and

  19. Evaluation of in-plant neutron coincidence counters for the measurement of molten salt extraction residues

    International Nuclear Information System (INIS)

    Langner, D.G.; Russo, P.A.; Wachter, J.R.

    1993-01-01

    Americium is extracted from plutonium by a molten salt extraction (MSE) process. The residual americium-laden salts are a significant waste stream in this pyrochemical purification process. Rapid assay of MSE residues is desirable to minimize the exposure of personnel to these often high-level emissions. However, the quantitative assay of plutonium in MSE residues is difficult. Variable, unknown (a,n) rates and variable emitted-neutron energy spectra preclude the use of standard neutron coincidence counting techniques with old-generation neutron coincidence counters. Gamma-ray assay methods have not been successful with some residues because of random lumps of plutonium metal. In this paper, we present measurements of MSE residues with two state-of-the-art neutron coincidence counters at the Los Alamos Plutonium Processing Facility: an in-line counter built for the assay of bulk waste material and the pyrochemical multiplicity counter that underwent test and evaluation at that facility. Both of these counters were designed to minimize the effects on measurements of variations in the sample geometry and variable energy spectra of emitted neutrons. These results are compared to measurements made with an HLNCII and with a 20-yr-old in-line well counter. The latter two counters are not optimized in ft sense. We conclude that the newer counters provide significantly improved assay results. The pyrochemical multiplicity counter operated in the conventional coincidence mode provided the best assays overall

  20. Influence of cooling rate on residual stress profile in veneering ceramic: measurement by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2011-09-01

    The manufacture of dental crowns and bridges generates residual stresses within the veneering ceramic and framework during the cooling process. Residual stress is an important factor that control the mechanical behavior of restorations. Knowing the stress distribution within the veneering ceramic as a function of depth can help the understanding of failures, particularly chipping, a well-known problem with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objective of this study is to investigate the cooling rate dependence of the stress profile in veneering ceramic layered on metal and zirconia frameworks. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. The stress profile was measured in bilayered disc samples 20 mm in diameter, with a 0.7 mm thick metal or Yttria-tetragonal-zirconia-polycrystal framework and a 1.5mm thick veneering ceramic. Three different cooling procedures were investigated. The magnitude of the stresses in the surface of the veneering ceramic was found to increase with cooling rate, while the interior stresses decreased. At the surface, compressive stresses were observed in all samples. In the interior, compressive stresses were observed in metal samples and tensile in zirconia samples. Cooling rate influences the magnitude of residual stresses. These can significantly influence the mechanical behavior of metal-and zirconia-based bilayered systems. The framework material influenced the nature of the interior stresses, with zirconia samples showing a less favorable stress profile than metal. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Residual Stresses in DC cast Aluminum Billet: Neutron Diffraction Measurements and Thermomechanical Modeling

    International Nuclear Information System (INIS)

    Drezet, J.-M.; Evans, A.; Pirling, T.

    2011-01-01

    Thermally-induced residual stresses, generated during the industrial Direct Chill casting process of aluminum alloys, can cause both significant safety concerns as well as the formation of defects during down-stream processing. Although these thermally induced strains can be partially relieved by permanent deformation, cracks will be generated either during solidification (hot tears) or post-solidification cooling (cold cracks) when stresses exceed the deformation limit of the alloy. Furthermore, the thermally induced strains result in the presence of large internal stresses within the billet before further processing steps. Although numerical models have been previously developed to compute these residual stresses, most of the computations have been validated only against measured surface distortions. In the present work, the variation in residual elastic strains and stresses in the steady state regime of casting has been measured as a function of radial position using neutron diffraction in an AA6063 grain-refined cylindrical billet. These measurements have been carried out on the same billet section at Poldi at PSI-Villigen and at Salsa at ILL-Grenoble and compare favorably. The results are used to validate a thermo-mechanical finite element casting model and to assess the level of stored elastic energy within the billet.

  2. Residual heat removal system diagnostic advisor

    International Nuclear Information System (INIS)

    Tripp, L.

    1991-01-01

    This paper reports on the Residual Heat Removal System (RHRS) Diagnostic Advisor which is an expert system designed to alert the operators to abnormal conditions that exits in the RHRS and offer advice about the cause of the abnormal conditions. The Advisor uses a combination of rule-based and model-based diagnostic techniques to perform its functions. This diagnostic approach leads to a deeper understanding of the RHRS by the Advisor and consequently makes it more robust to unexpected conditions. The main window of the interactive graphic display is a schematic diagram of the RHRS piping system. When a conclusion about a failed component can be reached, the operator can bring up windows that describe the failure mode of the component and a brief explanation about how the Advisor arrived at its conclusion

  3. Remarks on Residual Stress Measurement by Hole-Drilling and Electronic Speckle Pattern Interferometry

    Directory of Open Access Journals (Sweden)

    Claudia Barile

    2014-01-01

    Full Text Available Hole drilling is the most widespread method for measuring residual stress. It is based on the principle that drilling a hole in the material causes a local stress relaxation; the initial residual stress can be calculated by measuring strain in correspondence with each drill depth. Recently optical techniques were introduced to measure strain; in this case, the accuracy of the final results depends, among other factors, on the proper choice of the area of analysis. Deformations are in fact analyzed within an annulus determined by two parameters: the internal and the external radius. In this paper, the influence of the choice of the area of analysis was analysed. A known stress field was introduced on a Ti grade 5 sample and then the stress was measured in correspondence with different values of the internal and the external radius of analysis; results were finally compared with the expected theoretical value.

  4. Residue management practices and planter attachments for corn production in a conservation agriculture system

    Directory of Open Access Journals (Sweden)

    J. Nejadi

    2013-11-01

    Full Text Available Seed placement and failure to establish a uniform plant stand are critical problems associated with production of corn (Zea mays following wheat (Triticum aestivum in a conservation agriculture system in Iran. Our objectives were to evaluate the performance of a corn row- crop planter equipped with two planter attachments (smooth/toothed coulters at six wheat residue management systems (three tillage systems and two levels of surface residue at two forward speeds of 5 and 7 km h-1. Residue retained after planting, seeding depth, emergence rate index (ERI and seed spacing indices were determined. The baled residue plots tilled by chisel plow followed by disc harrow (BRCD resulted in minimum residue after planting as compared to other residue treatments. Furthermore, the maximum values of the ERI and uniformity of plant spacing pertained to this treatment. Other results showed that the ERI increased up to 18% for the toothed coulter as compared to the smooth coulter. The toothed coulter also established a deeper seed placement as compared to the smooth coulter. Planting at forward speed of 5 km h-1 resulted in deeper seeding depth as compared to a forward speed of 7 km h-1. However, lower values of miss and precision indices were obtained at forward speed of 7 km h-1, indicating a more uniformity of plant spacing. Results of this study showed that equipping the conventional planter with toothed coulter and planting in soil prepared under the BRCD residue management system can result in a satisfactory conservation crop production system.

  5. Neutron Diffraction Residual Strain Tensor Measurements Within The Phase IA Weld Mock-up Plate P-5

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Camden R [ORNL

    2011-09-01

    Oak Ridge National Laboratory (ORNL) has worked with NRC and EPRI to apply neutron and X-ray diffraction methods to characterize the residual stresses in a number of dissimilar metal weld mockups and samples. The design of the Phase IA specimens aimed to enable stress measurements by several methods and computational modeling of the weld residual stresses. The partial groove in the 304L stainless steel plate was filled with weld beads of Alloy 82. A summary of the weld conditions for each plate is provided in Table 1. The plates were constrained along the long edges during and after welding by bolts with spring-loaded washers attached to the 1-inch thick Al backing plate. The purpose was to avoid stress relief due to bending of the welded stainless steel plate. The neutron diffraction method was one of the methods selected by EPRI for non-destructive through thickness strain and stress measurement. Four different plates (P-3 to P-6) were studied by neutron diffraction strain mapping, representing four different welding conditions. Through thickness neutron diffraction strain mappings at NRSF2 for the four plates and associated strain-free d-zero specimens involved measurement along seven lines across the weld and at six to seven depths. The mountings of each plate for neutron diffraction measurements were such that the diffraction vector was parallel to each of the three primary orthogonal directions of the plate: two in-plane directions, longitudinal and transverse, and the direction normal to the plate (shown in left figure within Table 1). From the three orthogonal strains for each location, the residual stresses along the three plate directions were calculated. The principal axes of the strain and stress tensors, however, need not necessarily align with the plate coordinate system. To explore this, plate P-5 was selected for examination of the possibility that the principal axes of strain are not along the sample coordinate system axes. If adequate data could

  6. Residue number systems theory and applications

    CERN Document Server

    Mohan, P V Ananda

    2016-01-01

    This new and expanded monograph improves upon Mohan's earlier book, Residue Number Systems (Springer, 2002) with a state of the art treatment of the subject. Replete with detailed illustrations and helpful examples, this book covers a host of cutting edge topics such as the core function, the quotient function, new Chinese Remainder theorems, and large integer operations. It also features many significant applications to practical communication systems and cryptography such as FIR filters and elliptic curve cryptography. Starting with a comprehensive introduction to the basics and leading up to current research trends that are not yet widely distributed in other publications, this book will be of interest to both researchers and students alike.

  7. Valve arrangement for a nuclear plant residual heat removal system

    International Nuclear Information System (INIS)

    Fidler, G.L.; Hill, R.A.; Carrera, J.P.

    1978-01-01

    Disclosed is an improved valve arrangement for a two-train Residual Heat Removal System (RHRS) of a nuclear reactor plant which ensures operational integrity of the system under single failure circumstances including loss of one of two electrical power sources

  8. Testing for Distortions in Performance Measures: An Application to Residual Income Based Measures like Economic Value Added

    NARCIS (Netherlands)

    Sloof, R.; van Praag, M.

    2015-01-01

    Distorted performance measures in compensation contracts elicit suboptimal behavioral responses that may even prove to be dysfunctional (gaming). This paper applies the empirical test developed by Courty and Marschke (2008) to detect whether the widely used class of Residual Income based performance

  9. Comparison of Measured Residual Stress in an Extra Thick Multi-pass Weld Using Neutron Diffraction Method and Inherent Strain Method

    International Nuclear Information System (INIS)

    Park, JeongUng; An, GyuBaek; Woo, Wan Chuck

    2015-01-01

    With the increase of large-scale containership, a large amount of high-strength steels with extra thick plates is being extensively used. The welding stress existing in the extra thick welded plates has a significant effect on the integrity of the component in terms of brittle fracture and fatigue behavior. It has been reported that welding residual stress distribution in an extra thick plate can affect the propagation path of the crack. Therefore, it is important to measure the distribution of welding residual stresses for the reliable design of the welded structures. So far various researches have been carried out for the determination of residual stresses on the surface of steels. In this paper, the total residual stresses in the 70 mm thick multipass FACW butt joint were measured by integrating initial stress into ISM. Concretely, two methods named as initial stress integrated ISM and initial inherent strain integrated ISM were employed to determine the total residual stresses. Furthermore, the distributions of residual stresses were compared with the results of the Neutron Diffraction Method(NDM). In order to measure the three dimensional residual stresses in the welded joint with initial stresses existing before welding, initial stress integrated ISM and initial inherent strain integrated ISM were developed. The residual stresses in 70 mm-thick butt joint by flux cored arc welding were carried out with a good accuracy using the two developed methods. The residual stresses in welded joint using both initial stress integrated ISM and initial inherent strain integrated ISM agreed well with the results measured by Neutron Diffraction Method. This suggests that the integrated ISM is a reliable method for residual stress measurement if initial stress existed

  10. Measurement of residual stresses by the moire method

    Science.gov (United States)

    Sciammarella, C. A.; Albertazzi, A., Jr.

    Three different applications of the moire method to the determination of residual stresses and strains are presented. The three applications take advantage of the property of ratings to record the changes of the surface they are printed on. One of the applications deals with thermal residual stresses, another with contact residual stress and the third one is a generalization of the blind hole technique. This last application is based on a computer assisted moire technique and on the generalization of the quasi-heterodyne techniques of fringe pattern analysis.

  11. Validation of a Residual Stress Measurement Method by Swept High-Frequency Eddy Currents

    International Nuclear Information System (INIS)

    Lee, C.; Shen, Y.; Lo, C. C. H.; Nakagawa, N.

    2007-01-01

    This paper reports on a swept high-frequency eddy current (SHFEC) measurement method developed for electromagnetic nondestructive characterization of residual stresses in shot peened aerospace materials. In this approach, we regard shot-peened surfaces as modified surface layers of varying conductivity, and determine the conductivity deviation profile by inversion of the SHFEC data. The SHFEC measurement system consists of a pair of closely matched printed-circuit-board coils driven by laboratory instrument under software control. This provides improved sensitivity and high frequency performance compared to conventional coils, so that swept frequency EC measurements up to 50 MHz can be made to achieve the smallest skin depth of 80 μm for nickel-based superalloys. We devised a conductivity profile inversion procedure based on the laterally uniform multi-layer theory of Cheng, Dodd and Deeds. The main contribution of this paper is the methodology validation. Namely, the forward and inverse models were validated against measurements on artificial layer specimens consisting of metal films with different conductivities placed on a metallic substrate. The inversion determined the film conductivities which were found to agree with those measured using the direct current potential drop (DCPD) method

  12. Validation of a Residual Stress Measurement Method by Swept High-Frequency Eddy Currents

    Science.gov (United States)

    Lee, C.; Shen, Y.; Lo, C. C. H.; Nakagawa, N.

    2007-03-01

    This paper reports on a swept high-frequency eddy current (SHFEC) measurement method developed for electromagnetic nondestructive characterization of residual stresses in shot peened aerospace materials. In this approach, we regard shot-peened surfaces as modified surface layers of varying conductivity, and determine the conductivity deviation profile by inversion of the SHFEC data. The SHFEC measurement system consists of a pair of closely matched printed-circuit-board coils driven by laboratory instrument under software control. This provides improved sensitivity and high frequency performance compared to conventional coils, so that swept frequency EC measurements up to 50 MHz can be made to achieve the smallest skin depth of 80 μm for nickel-based superalloys. We devised a conductivity profile inversion procedure based on the laterally uniform multi-layer theory of Cheng, Dodd and Deeds. The main contribution of this paper is the methodology validation. Namely, the forward and inverse models were validated against measurements on artificial layer specimens consisting of metal films with different conductivities placed on a metallic substrate. The inversion determined the film conductivities which were found to agree with those measured using the direct current potential drop (DCPD) method.

  13. Tailoring diffraction technique Rietveld method on residual stress measurements of cold-can oiled 304 stainless steel plates

    International Nuclear Information System (INIS)

    Parikin; Killen, P.; Anis, M.

    2003-01-01

    Tailoring of diffraction technique-Rietveld method on residual stress measurements of cold-canailed stainless steel 304 plates assuming the material is isotopic, the residual stress measurements using X-ray powder diffraction is just performed for a plane lying in a large angle. For anisotropic materials, the real measurements will not be represented by the methods. By Utilizing of all diffraction peaks in the observation region, tailoring diffraction technique-Rietveld analysis is able to cover the limitations. The residual stress measurement using X-ray powder diffraction tailored by Rietveld method, in a series of cold-canailed stainless steel 304 plates deforming; 0, 34, 84, 152, 158, 175, and 196 % reduction in thickness, have been reported. The diffraction data were analyzed by using Rietveld structure refinement method. Also, for all cold-canailed stainless steel 304 plates cuplikans, the diffraction peaks are broader than the uncanailed one, indicating that the strains in these cuplikans are inhomogeneous. From an analysis of the refined peak shape parameters, the average root-mean square strain, which describes the distribution of the inhomogeneous strain field, was calculated. Finally, the average residual stresses in cold-canailed stainless steel 304 plates were shown to be a combination effect of hydrostatic stresses of martensite particles and austenite matrix. The average residual stresses were evaluated from the experimentally determined average lattice strains in each phase. It was found the tensile residual stress in a cuplikan was maximum, reaching 442 MPa, for a cuplikan reducing 34% in thickness and minimum for a 196% cuplikan

  14. Nuclear reactor with makeup water assist from residual heat removal system

    International Nuclear Information System (INIS)

    Schulz, T.L.; Corletti, M.M.

    1994-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit by pumping water from an in-containment refueling water storage tank during staged depressurization of the coolant circuit, the final stage including passive emergency cooling by gravity feed from the refueling water storage tank to the coolant circuit and to flood the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and avoids the final stage of depressurization with its flooding of the containment when such action is not necessary, but does not prevent the final stage when it is necessary. A high pressure makeup water storage tank coupled to the reactor coolant circuit holds makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal system can also be coupled in a loop with the refueling water supply tanks for cooling the tank. (Author)

  15. An Intercomparison Study of Two Proximate Damped Lyα Systems with Residual Flux upon the Lyα Absorption Trough toward Quasars

    Science.gov (United States)

    Xie, Xiaoyi; Zhou, Hongyan; Pan, Xiang; Jiang, Peng; Shi, Xiheng; Ji, Tuo; Zhang, Shaohua; Wu, Shengmiao; Zhong, Zhihao

    2018-05-01

    In this paper, we present an intercomparison study of two quasars, SDSS J145618.32+340037.2 and SDSS J215331.50–025514.1, which have proximate damped Lyα systems (PDLAs) with residual flux upon the Lyα absorption trough. Though they both have residual flux as luminous as 1043 erg s‑1, their PDLAs are quite different in, e.g., neutral hydrogen column density, metal line absorption strength, high-ionization absorption lines as well as residual flux strength. For J1456+3400, the H I column density is log(N H I /cm–2) = 20.6 ± 0.2, with z abs = 2.3138, nearly identical to the quasar redshift (z = 2.3142) determined from the [O III] emission line. The metallicity of this system is typical of DLAs and there is high ionization therein, suggesting that the PDLA system is multiphase, putting it in the quasar environment. For J2153–0255, we measure the H I column density to be log(N H I /cm–2) = 21.5 ± 0.1 at z abs = 3.511, slightly redshifted with respect to the quasar (z = 3.490) measured from C III]. The metallicity of this system is quite low and there is a lack of significant high-ionization absorption lines therein, suggesting that the system is beyond the quasar host galaxy. The residual flux is wide (∼1000 km s‑1) in J1456, with a significance of ∼8σ, while also wide (∼1500 km s‑1) but with a smaller significance of ∼3σ in J2153. Among many explanations, we find that Lyα fuzz or resonant scattering can be used to explain the residual flux in the two sources while partial coverage cannot be excluded for J1456. By comparing these two cases, together with a similar case reported previously, we suggest that the strength of the residual flux is related to properties such as metallicity and high-ionization absorption lines of PDLAs. The residual flux recorded upon the PDLA absorption trough opens a window for us to see the physical conditions and processes of the quasar environment, and their profile and strength further remind us of their

  16. Temperature measurement and control system for transtibial prostheses: Single subject clinical evaluation.

    Science.gov (United States)

    Ghoseiri, Kamiar; Zheng, Yong Ping; Leung, Aaron K L; Rahgozar, Mehdi; Aminian, Gholamreza; Masoumi, Mehdi; Safari, Mohammad Reza

    2018-01-01

    The snug fit of a prosthetic socket over the residual limb can disturb thermal balance and put skin integrity in jeopardy by providing an unpleasant and infectious environment. The prototype of a temperature measurement and control (TM&C) system was previously introduced to resolve thermal problems related to prostheses. This study evaluates its clinical application in a setting with reversal, single subject design. The TM&C system was installed on a fabricated prosthetic socket of a man with unilateral transtibial amputation. Skin temperature of the residual limb without prosthesis at baseline and with prosthesis during rest and walking was evaluated. The thermal sense and thermal comfort of the participant were also evaluated. The results showed different skin temperature around the residual limb with a temperature decrease tendency from proximal to distal. The TM&C system decreased skin temperature rise after prosthesis wearing. The same situation occurred during walking, but the thermal power of the TM&C system was insufficient to overcome heat build-up in some regions of the residual limb. The participant reported no significant change of thermal sense and thermal comfort. Further investigations are warranted to examine thermography pattern of the residual limb, thermal sense, and thermal comfort in people with amputation.

  17. Evaporation residue excitation function measurement for 19F + 194,198Pt reactions

    International Nuclear Information System (INIS)

    Singh, Varinderjit; Behera, B.R.; Kaur, Maninder

    2012-01-01

    Nuclear dissipation is one of the active fields in the present day nuclear physics research. Experimental signatures for dissipation are observed through large excess in pre-fission neutrons, γ-ray multiplicities from the compound nucleus, giant dipole resonance (GDR) γ-rays, light charged particles and evaporation residues in comparison to standard statistical model, for the heavy-ion induced fusion-fission or fusion-evaporation reactions (ERs). From the analysis of a large set of experimental data, it is well established that there exists a large dissipation at nuclear temperature above 1 MeV. But most of these probes are not sensitive to the dissipation within saddle. The ER cross-section is a probe which is sensitive to dissipation within the saddle point. Hence, the study of ER cross-section can be helpful in estimating the dissipation effects inside the saddle point. Also the other motivation for these measurements is to see the effect of shell closure on dissipation. With this motivation the evaporation cross-sections for 19 F + 194,198 Pt are measured at beam energy of 101 to 137.3 MeV. Of the above systems 19 F + 194 Pt populates 213 Fr (N = 126) shell closed compound nucleus (CN) whereas, other system populate 217 Fr (N = 130) non-shell closed CN

  18. Residual Stress Measurement of Coarse Crystal Grain in Aluminium Casting Alloy by Neutron Diffraction

    International Nuclear Information System (INIS)

    Nishida, Masayuki; Watanabe, Yoshitaka; Hanabusa, Takao

    2009-01-01

    Full text: Neutron stress measurement can detect strain and stress information in deep region because of large penetration ability of neutron beams. The present paper describes procedure and results in the residual stress measurement of aluminium casting alloy by neutron diffraction. Usually, the aluminium casting alloy includes the large crystal grains. The existence of large crystal grains makes it difficult to estimate the residual stresses in highly accuracy. In this study, the modified three axial method using Hook's equation was employed for neutron stress measurement. These stress measurements were performed under the two kinds of new techniques. One is a rocking curve method to calculate the principal strains in three directions. The peak profiles which appear discretely on rocking curves were translated to principle stresses by the Bragg law and the basic elastic theory. Another is the consideration of measurement positions and the edge effect in the neutron irradiated area (volume gage). The edge effect generates the errors of 2θ-peak position in the neutron stress measurement. In this study, the edge effect was investigated in detail by a small bit of copper single crystal. The copper bit was moved and scanned on three dimensionally within the gage volume. Furthermore, the average strains of symmetrical positions are measure by the sample turning at 180 degrees, because the error distributions of the 2θ-peak position followed to positions inside the gage volume. Form these results of this study, the residual stresses in aluminium casting alloy which includes the large crystal grains were possible to estimate by neutron stress measurement with the rocking curve method and the correction of the edge effect. (author)

  19. Determination of potassium concentration in salt water for residual beta radioactivity measurements

    International Nuclear Information System (INIS)

    Suarez-Navarro, J.A.; Pujol, Ll.

    2004-01-01

    High interferences may arise in the determination of potassium concentration in salt water. Several analytical methods were studied to determine which method provided the most accurate measurements of potassium concentration. This study is relevant for radiation protection because the exact amount of potassium in water samples must be known for determinations of residual beta activity concentration. The fitting algorithm of the calibration curve and estimation of uncertainty in potassium determinations were also studied. The reproducibility of the proposed analytical method was tested by internal and external validation. Furthermore, the residual beta activity concentration of several Spanish seawater and brackish river water samples was determined using the proposed method

  20. Residual stresses

    International Nuclear Information System (INIS)

    Sahotra, I.M.

    2006-01-01

    The principal effect of unloading a material strained into the plastic range is to create a permanent set (plastic deformation), which if restricted somehow, gives rise to a system of self-balancing within the same member or reaction balanced by other members of the structure., known as residual stresses. These stresses stay there as locked-in stresses, in the body or a part of it in the absence of any external loading. Residual stresses are induced during hot-rolling and welding differential cooling, cold-forming and extruding: cold straightening and spot heating, fabrication and forced fitting of components constraining the structure to a particular geometry. The areas which cool more quickly develop residual compressive stresses, while the slower cooling areas develop residual tensile stresses, and a self-balancing or reaction balanced system of residual stresses is formed. The phenomenon of residual stresses is the most challenging in its application in surface modification techniques determining endurance mechanism against fracture and fatigue failures. This paper discusses the mechanism of residual stresses, that how the residual stresses are fanned and what their behavior is under the action of external forces. Such as in the case of a circular bar under limit torque, rectangular beam under limt moment, reclaiming of shafts welds and peening etc. (author)

  1. Synchrotron measurements of local microstructure and residual strains in ductile cast iron

    DEFF Research Database (Denmark)

    Zhang, Yubin; Andriollo, Tito; Fæster, Søren

    2017-01-01

    The local microstructure and distribution of thermally induced residual strains in ferrite matrix grains around an individual spherical graphite nodule in ductile cast iron (DCI) were measured using a synchrotron X-ray micro-diffraction technique. It is found that the matrix grains are deformed...

  2. Residual strain dependence on the matrix structure in RHQ-Nb3Al wires by neutron diffraction measurement

    International Nuclear Information System (INIS)

    Jin Xinzhe; Nakamoto, Tatsushi; Tsuchiya, Kiyosumi; Ogitsu, Toru; Yamamoto, Akira; Ito, Takayoshi; Harjo, Stefanus; Kikuchi, Akihiro; Takeuchi, Takao; Hemmi, Tsutomu

    2012-01-01

    We prepared three types of non-Cu RHQ-Nb 3 Al wire sample with different matrix structures: an all-Ta matrix, a composite matrix of Nb and Ta with a Ta inter-filament, and an all-Nb matrix. Neutron diffraction patterns of the wire samples were measured at room temperature in the J-PARC ‘TAKUMI’. To obtain the residual strains of the materials, we estimated the lattice constant a by multi-peak analysis in the wires. A powder sample of each wire was measured, where the powder was considered to be strain free. The grain size of all the powder samples was below 0.02 mm. For the wire sample with the all-Nb matrix, we also obtained the lattice spacing d by a single-peak analysis. The residual strains of the Nb 3 Al filament were estimated from the two analysis results and were compared. The resulting residual strains obtained from the multi-peak analysis showed a good accuracy with small standard deviation. The multi-peak analysis results for the residual strains of the Nb 3 Al filaments in the three samples (without Cu plating) were all tensile residual strain in the axial direction, of 0.12%, 0.12%, and 0.05% for the all-Ta matrix, the composite matrix, and the all-Nb matrix, respectively. The difference in the residual strain of the Nb 3 Al filament between the composite and all-Nb matrix samples indicates that the type of inter-filament material shows a great effect on the residual strain. In this paper, we report the method of measurement, method of analysis, and results for the residual strain in the three types of non-Cu RHQ-Nb 3 Al wires. (paper)

  3. Residual currents in a multiple-inlet system and the conundrum of the tidal period

    Science.gov (United States)

    Duran-Matute, Matias; Gerkema, Theo

    2015-04-01

    In multiple-inlet systems, one may find that, on average, flood dominates in some inlets, while ebb dominates in others. In that case, there is a residual flow through the system, i.e. there is a net flow if one integrates over a tidal period. Conceptually, this seems straightforward. However, to measure such a residual flow presents several difficulties. First, one needs to cover the entire cross-sections of all the inlets over a year or longer to take into account the variability due to wind. Second, the residual flow is usually much smaller than the tidal prisms and hence more uncertain in view of error bars. Third, the duration of 'the' tidal period when calculating a tidally averaged flow is not well defined. Should one take the time between alternate slack tides, or between consecutive high (or low) waters, or other options? There appears to be a fundamental ambiguity in the duration of the tidal period; here we discuss its origins. The problem of defining the tidal period seems to have received little attention in the literature, or perhaps it has not been perceived as a problem at all. One reason for this neglect may be that the focus in tidal analysis is often on the (main) individual tidal constituents, whose periods are well-defined. Indeed, the harmonic method developed by Kelvin exploits this fact, making it possible to predict high and low waters precisely by adding up the different constituents after their amplitudes and phases have been determined empirically for the location in question. The period between subsequent high (or low) waters is then simply an outcome of this method. Another reason for neglecting this problem may be that the main interest was in computing a representative quantity such as the yearly average residual flow through the inlets. For such quantities, the definition of the tidal period is not as relevant since one integrates over a much longer period. Recently, however, it has been shown, for the Western Dutch Wadden Sea, that

  4. Residual stress measurements in a ferritic steel/In625 superalloy dissimilar metal weldment using neutron diffraction and deep-hole drilling

    International Nuclear Information System (INIS)

    Skouras, A.; Paradowska, A.; Peel, M.J.; Flewitt, P.E.J.; Pavier, M.J.

    2013-01-01

    This paper reports the use of non-invasive and semi-invasive techniques to measure the residual stresses in a large dissimilar weldment. This took the form of a butt weld between two sections of a P92 steel pipe, joined using an In625 welding consumable. Residual stress measurements have been carried out on the 30 mm thick welded pipe using the deep-hole drilling technique to characterise the through wall section residual stress distribution for the weld metal, HAZ and parent material. In addition, neutron diffraction measurements have been carried out within the weld zone. Diffraction patterns presented a high intensity and sharp peaks for the base P92 steel material. However measurements in the weld superalloy material were proven problematic as very weak diffraction patterns were observed. A thorough examination of the weld material suggested that the likely cause of this phenomenon was texture in the weld material created during the solidification phase of the welding procedure. This paper discusses the challenges in the execution and interpretation of the neutron diffraction results and demonstrates that realistic measurements of residual stresses can be achieved, in complex dissimilar metal weldments. Highlights: ► One of the few papers to measure residual stresses on dissimilar metal welds. ► Paper managed to provide realistic measurements of residual stresses using the DHD and ND technique. ► Results of this study have demonstrated the effect of texture during the ND measurements.

  5. On conditional residual lifetime and conditional inactivity time of k-out-of-n systems

    International Nuclear Information System (INIS)

    Tavangar, Mahdi; Bairamov, Ismihan

    2015-01-01

    In designing structures of technical systems, the reliability engineers often deal with the reliability analysis of coherent systems. Coherent system has monotone structure function and all components of the system are relevant. This paper considers some particular models of coherent systems having identical components with independent lifetimes. The main purpose of the paper is to study conditional residual lifetime of coherent system, given that at a fixed time certain number of components have failed but still there are some functioning components. Different aging and stochastic properties of variables connected with the conditional residual lifetimes of the coherent systems are obtained. An expression for the parent distribution in terms of conditional mean residual lifetime is provided. The similar result is obtained for the conditional mean inactivity time of the failed components of coherent system. The conditional mean inactivity time of failed components presents an interest in many engineering applications where the reliability of system structure is important for designing and constructing of systems. Some illustrative examples with given particular distributions are also presented. - Highlights: • Comparisons of conditional residual lifetime of k-out-of-n systems are derived. • The behavior of the coherent system is explored for IHR distributions. • The parent distribution is expressed in terms of conditional MRL and MIT. • Some illustrative examples are given to clarify the results of the paper.

  6. Type I and type II residual stress in iron meteorites determined by neutron diffraction measurements

    Science.gov (United States)

    Caporali, Stefano; Pratesi, Giovanni; Kabra, Saurabh; Grazzi, Francesco

    2018-04-01

    In this work we present a preliminary investigation by means of neutron diffraction experiment to determine the residual stress state in three different iron meteorites (Chinga, Sikhote Alin and Nantan). Because of the very peculiar microstructural characteristic of this class of samples, all the systematic effects related to the measuring procedure - such as crystallite size and composition - were taken into account and a clear differentiation in the statistical distribution of residual stress in coarse and fine grained meteorites were highlighted. Moreover, the residual stress state was statistically analysed in three orthogonal directions finding evidence of the existence of both type I and type II residual stress components. Finally, the application of von Mises approach allowed to determine the distribution of type II stress.

  7. Cellular bases of radiation-induced residual insufficiency in the haematopoietic system

    International Nuclear Information System (INIS)

    Wangenheim, K.H. v.; Peterson, H.P.; Feinendegen, L.E.

    1984-01-01

    Following radiation exposure, man's survival and further well-being largely depends on the degree of damage to his heamatopietic system. Stem cells are particualarly sensitive to radiation. Over and beyond acute radiation damge, residual radiation damage is of significance since it reduces the performance of the haematopietic system and enhances the risk of leukaemia. Knowledge concerning cellular bases may be important for preventive and therapeutic measures. The measurement method presented is based on the fact that stem cells from transfused bone marrow will settle in the spleen of highly irradiated mice and be able to reconstruct the haematopietic system. Initally individual colonies can be observed which originate from a single stem cell and the proliferation of its descendants. Counting these colonies will give the number of stem cells. The reduction of the proliferation factor measured in the stem-cell quality test apparently is not due to a shift in the age structure of the stem cell compartment but to a damage which is located within a more or less substantial proportion of the stem cells themselves. This damage is the cause of stem cell descendant growth retarded on an average. It is probable that recovery observed after irradiation is brought about by less-damaged or undamaged stem cells replacing damaged ones. Initial results point to the fact that this replacement can be influenced by treatment after irradiation. (orig./MG) [de

  8. Wide-band residual phase-noise measurements on 40-GHz monolithic mode-locked lasers

    DEFF Research Database (Denmark)

    Larsson, David; Hvam, Jørn Märcher

    2005-01-01

    We have performed wide-band residual phase-noise measurements on semiconductor 40-GHz mode-locked lasers by employing electrical waveguide components for the radio-frequency circuit. The intrinsic timing jitters of lasers with one, two, and three quantum wells (QW) are compared and our design......-QW laser. There is good agreement between the measured results and existing theory....

  9. Evaluation of residue-residue contact predictions in CASP9

    KAUST Repository

    Monastyrskyy, Bohdan; Fidelis, Krzysztof; Tramontano, Anna; Kryshtafovych, Andriy

    2011-01-01

    This work presents the results of the assessment of the intramolecular residue-residue contact predictions submitted to CASP9. The methodology for the assessment does not differ from that used in previous CASPs, with two basic evaluation measures

  10. Measurement of residual stress in a cylinder by x-ray under the consideration of its penetration depth

    International Nuclear Information System (INIS)

    Doi, Osamu; Ukai, Takayoshi

    1983-01-01

    The authors propose an exact theory of residual stress measurement by successive thin layer removal in a hollow cylinder under the consideration of the contribution of residual stress within a definite subsurface, and show an example of its application. (author)

  11. Long-term C-CO2 emissions and carbon crop residue mineralization in an oxisol under different tillage and crop rotation systems

    Directory of Open Access Journals (Sweden)

    Ben-Hur Costa de Campos

    2011-06-01

    Full Text Available Soil C-CO2 emissions are sensitive indicators of management system impacts on soil organic matter (SOM. The main soil C-CO2 sources at the soil-plant interface are the decomposition of crop residues, SOM turnover, and respiration of roots and soil biota. The objectives of this study were to evaluate the impacts of tillage and cropping systems on long-term soil C-CO2 emissions and their relationship with carbon (C mineralization of crop residues. A long-term experiment was conducted in a Red Oxisol in Cruz Alta, RS, Brazil, with subtropical climate Cfa (Köppen classification, mean annual precipitation of 1,774 mm and mean annual temperature of 19.2 ºC. Treatments consisted of two tillage systems: (a conventional tillage (CT and (b no tillage (NT in combination with three cropping systems: (a R0- monoculture system (soybean/wheat, (b R1- winter crop rotation (soybean/wheat/soybean/black oat, and (c R2- intensive crop rotation (soybean/ black oat/soybean/black oat + common vetch/maize/oilseed radish/wheat. The soil C-CO2 efflux was measured every 14 days for two years (48 measurements, by trapping the CO2 in an alkaline solution. The soil gravimetric moisture in the 0-0.05 m layer was determined concomitantly with the C-CO2 efflux measurements. The crop residue C mineralization was evaluated with the mesh-bag method, with sampling 14, 28, 56, 84, 112, and 140 days after the beginning of the evaluation period for C measurements. Four C conservation indexes were used to assess the relation between C-CO2 efflux and soil C stock and its compartments. The crop residue C mineralization fit an exponential model in time. For black oat, wheat and maize residues, C mineralization was higher in CT than NT, while for soybean it was similar. Soil moisture was higher in NT than CT, mainly in the second year of evaluation. There was no difference in tillage systems for annual average C-CO2 emissions, but in some individual evaluations, differences between

  12. Non-destructive measurement of residual stresses in U-0.8 wt.% Ti by neutron diffraction

    International Nuclear Information System (INIS)

    Salinas-Rodriguez, A.; Root, J.H.; Holden, T.M.; Macewen, S.R.; Ludtka, G.M.

    1990-01-01

    The macroscopic residual stress distribution in γ-quenched and stress levelled U-0.8wt% Ti alloy tubes was studied using neutron diffraction techniques. Residual strains were evaluated from the difference in d-spacings measured in the tubes and in small reference samples machined from each tube. Residual stresses were calculated with the isotropic bulk value of the elastic constraints for polycrystalline α-U. Quenching from the γ field resulted in a nearly equi-biaxial stress state at every point across the wall thickness of the tube. The magnitude of the radial stress was very small compared with that of the axial and hoop stresses which were compressive at the surfaces and tensile in the interior. Stress levelling relieved almost completely the hoop residual stress without affecting the radial stress. The axial residual stress becomes tensile through the wall thickness and remains constant at about 20% of its magnitude in the as-quenched condition

  13. Approaches for Modelling the Residual Service Life of Marine Concrete Structures

    Directory of Open Access Journals (Sweden)

    Amir Rahimi

    2014-01-01

    Full Text Available This paper deals with the service life design of existing reinforced concrete structures in a marine environment. The general procedure of condition assessment for estimating the residual service life of structures before a repair measure is illustrated. For assessment of the residual service life of structures which have undergone a repair measure a simplified mathematical model of chloride diffusion in a 2-layer system is presented. Preliminary probabilistic calculations demonstrate the effect of various conditions on the residual service life. First studies of the chloride diffusion in a 2-layer system have been conducted using the finite element method. Results of a long-term exposure test are presented to illustrate the performance of two different repair materials. The distribution of residual chlorides after application of a repair material is being studied in laboratory investigations. The residual chlorides migrate from the concrete layer into the new layer immediately after the repair material has been applied to the concrete member. The content and gradient of residual chlorides, along with the thickness and the chloride ingress resistance of both the remaining and the new layer of cover, will determine the residual service life of the repaired structures.

  14. Study on portable optical 3D coordinate measuring system

    Science.gov (United States)

    Ren, Tongqun; Zhu, Jigui; Guo, Yinbiao

    2009-05-01

    A portable optical 3D coordinate measuring system based on digital Close Range Photogrammetry (CRP) technology and binocular stereo vision theory is researched. Three ultra-red LED with high stability is set on a hand-hold target to provide measuring feature and establish target coordinate system. Ray intersection based field directional calibrating is done for the intersectant binocular measurement system composed of two cameras by a reference ruler. The hand-hold target controlled by Bluetooth wireless communication is free moved to implement contact measurement. The position of ceramic contact ball is pre-calibrated accurately. The coordinates of target feature points are obtained by binocular stereo vision model from the stereo images pair taken by cameras. Combining radius compensation for contact ball and residual error correction, object point can be resolved by transfer of axes using target coordinate system as intermediary. This system is suitable for on-field large-scale measurement because of its excellent portability, high precision, wide measuring volume, great adaptability and satisfying automatization. It is tested that the measuring precision is near to +/-0.1mm/m.

  15. Summary report of phase I residual holdup measurements for a mixed oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Woodsum, H.C.

    1978-03-01

    Metal surface-powder adherence tests showed that the average mean values for direct impingement was 60 to 80 g/ft 2 , whereas the average mean values of the colloidal samples were 0.2 to 2.5 g/ft 2 . Thus, it is advantageous to design powder processing equipment to reduce direct impingement wherever possible. Holdup of powder appears to be relatively independent of the surface material or finish, and it is reduced significantly by low-frequency vibration of the surface. Under colloidal conditions, ThO 2 produces more residual material than UO 2 and is preferentially deposited from a UO 2 --ThO 2 blend. Pure ThO 2 and high enrichment blends of ThO 2 in UO 2 are expected to produce a significant, persistent electrostatic charge, thus increasing residual holdup. Residual holdup in the clean scrap recovery system (CSRS) could be reduced by 25%. Comparison of CSRS holdup and powder adherence-metal surface data indicated that the areal density of residual material (40 g/ft 2 ) was considerably higher than for colloidal suspension ( 2 ). Steady-state residual holdup factor for sintered-metal filters was 13 g/ft 2 of filter surface area under optimum conditions. During the pellet grinding tests, residual material built up in the system at rate of about 100 g/h to an estimated limit of 1.4 kg, primarily within the particle collector shroud. During dry grinding, 97% of this residue was contained within the shroud, and during wet grinding only 50% was contained in the shroud owing to inertial effects of the rotating wheel and water coolant

  16. Evaluation of residue-residue contact predictions in CASP9

    KAUST Repository

    Monastyrskyy, Bohdan

    2011-01-01

    This work presents the results of the assessment of the intramolecular residue-residue contact predictions submitted to CASP9. The methodology for the assessment does not differ from that used in previous CASPs, with two basic evaluation measures being the precision in recognizing contacts and the difference between the distribution of distances in the subset of predicted contact pairs versus all pairs of residues in the structure. The emphasis is placed on the prediction of long-range contacts (i.e., contacts between residues separated by at least 24 residues along sequence) in target proteins that cannot be easily modeled by homology. Although there is considerable activity in the field, the current analysis reports no discernable progress since CASP8.

  17. Measurement of conformational constraints in an elastin-mimetic protein by residue-pair selected solid-state NMR

    International Nuclear Information System (INIS)

    Hong, Mei; McMillan, R. Andrew; Conticello, Vincent P.

    2002-01-01

    We introduce a solid-state NMR technique for selective detection of a residue pair in multiply labeled proteins to obtain site-specific structural constraints. The method exploits the frequency-offset dependence of cross polarization to achieve 13 CO i → 15 N i → 13 Cα i transfer between two residues. A 13 C, 15 N-labeled elastin mimetic protein (VPGVG) n is used to demonstrate the method. The technique selected the Gly3 Cα signal while suppressing the Gly5 Cα signal, and allowed the measurement of the Gly3 Cα chemical shift anisotropy to derive information on the protein conformation. This residue-pair selection technique should simplify the study of protein structure at specific residues

  18. Microbial System for Identification of Antibiotic Residues in Milk

    OpenAIRE

    Nagel, Orlando Guillermo; Molina Pons, Mª Pilar; Althaus, Rafael Lisandro

    2011-01-01

    [EN] The aim of this study was to evaluate the ResScreen (R) microbiological system for the identification of antibiotic residues in milk. This microbiological system consists of two methods, the BT (betalactams and tetracyclines) and BS (betalactams and sulfamides) bioassays, containing spores of G. stearothermophilus subsp. calidolactis, culture media and indicators (acid-base and redox). The detection limits of 29 antimicrobial agents were calculated using a logistic regression model. ...

  19. Residual stress measurement inside a dissimilar metal weld mock-up of the pressurizer safety and relief nozzle

    International Nuclear Information System (INIS)

    Campos, Wagner R.C.; Rabello, Emerson G.; Silva, Luiz L.; Mansur, Tanius R.; Martins, Ketsia S.

    2015-01-01

    Residual stresses are present in materials or structural component in the absence of external loads or changes in temperatures. The most common causes of residual stresses being present are the manufacturing or assembling processes. All manufacturing processes, such as casting, welding, machining, molding, heat treatment, among others, introduces residual stresses into the manufactured object. The residual stresses effects could be beneficial or detrimental, depending on its distribution related to the component or structure, its load service and if it is compressive or tensile. In this work, the residual strains and stresses inside a mock-up that simulates the safety and relief nozzle of Angra 1 Nuclear Power Plant pressurizer were studied. The current paper presents a blind hole-drilling method residual stress measurements both at the inner surface of dissimilar metal welds of dissimilar metal weld nozzle mock-up. (author)

  20. Residual stress measurement inside a dissimilar metal weld mock-up of the pressurizer safety and relief nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Wagner R.C.; Rabello, Emerson G.; Silva, Luiz L.; Mansur, Tanius R., E-mail: wrcc@cdtn.br, E-mail: egr@cdtn.br, E-mail: silvall@cdtn.br, E-mail: tanius@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte (Brazil). Servico de Integridade Estrutural; Martins, Ketsia S., E-mail: ketshinoda@hotmail.com [Universidade Federal de Minas Gerais (UFMG), Nelo Horizonte (Brazil). Departamento de Engenharia Metalurgica

    2015-07-01

    Residual stresses are present in materials or structural component in the absence of external loads or changes in temperatures. The most common causes of residual stresses being present are the manufacturing or assembling processes. All manufacturing processes, such as casting, welding, machining, molding, heat treatment, among others, introduces residual stresses into the manufactured object. The residual stresses effects could be beneficial or detrimental, depending on its distribution related to the component or structure, its load service and if it is compressive or tensile. In this work, the residual strains and stresses inside a mock-up that simulates the safety and relief nozzle of Angra 1 Nuclear Power Plant pressurizer were studied. The current paper presents a blind hole-drilling method residual stress measurements both at the inner surface of dissimilar metal welds of dissimilar metal weld nozzle mock-up. (author)

  1. Evaluation of the effectiveness of the three-dimensional residual stresses method based on the eigenstrain methodology via x-ray measurements

    International Nuclear Information System (INIS)

    Ogawa, Masaru; Ishii, Takehiro; Furusako, Seiji

    2015-01-01

    In order to prevent fractures caused by fatigue or stress corrosion cracking in welded structures, it is important to predict crack propagation for cracks observed during in-service inspections. However, it is difficult to evaluate three-dimensional welding residual stresses non-destructively. Today, it is possible to measure residual stresses just on surface by X-ray diffraction. Neutron diffraction makes it possible to measure welding residual stresses non-destructively even in the thickness direction but it is only available in special irradiation facilities. Therefore, it is impossible to use neutron diffraction as an on-site measurement technique. As non-destructive method of three-dimensional welding residual stresses based on the eigenstrain methodology, the bead flush method has been proposed. In this method, three-dimensional welding residual stresses are calculated by an elastic FEM (Finite Element Method) analysis from eigenstrain distributions which are estimated by an inverse analysis from released strains by strain gauges in the removal of the weld reinforcement. Here, the removal of the excess metal contributes inhibition of crack initiation. Therefore, the bead flush method is a non-destructive technique essentially. However, estimation accuracy of this method becomes relatively poor when processing strains are added on the machined surface. The first author has been developed the bead flush method to be free from the influence of the processing strains. In this method, eigenstrains are estimated not from released strains but from residual strains on surface by X-ray diffraction. In this study, welding residual stresses on the bottom surface in an actual welded plate are estimated from elastic strains measured on the top surface using this method. To evaluate estimation accuracy, estimated residual stresses on the bottom surface are compared with residual stresses measured by X-ray diffraction. Here, eigenstrain distributions not only in the welding

  2. A strategy for accommodating residual stresses in the assessment of repair weldments based upon measurement of near surface stresses

    International Nuclear Information System (INIS)

    Mcdonald, E.J.; Hallam, K.R.; Flewitt, P.E.J.

    2005-01-01

    On many occasions repairs are undertaken to ferritic steel weldments on plant either during construction or to remove service induced defects. These repaired weldments are subsequently put into service with or without a post-weld heat treatment. In either case, but particularly for the latter, there is a need to accommodate the associated residual stresses in structural integrity assessments such as those based upon the R6 failure avoidance procedure. Although in some circumstances the residual macro-stresses developed within weldments of components and structures can be calculated this is not so readily achieved in the case of residual stresses introduced by repair welds. There is a range of physical and mechanical techniques available to undertake the measurement of macro-residual stresses. Of these X-ray diffraction has the advantage that it is essentially non-destructive and offers the potential for evaluating stresses, which exist in the near surface layer. Although for many structural integrity assessments both the magnitude and distribution of residual stresses have to be accommodated it is not practical to make destructive measurements on weld repaired components and structures to establish the through section distribution of stresses. An approach is to derive a description of the appropriate macro-stresses by a combination of measurement and calculation on trial ferritic steel repair weldments. Surface measurements on the plant can then be made to establish the relationship between the repaired component or structure and the trial weld and thereby improve confidence in predicted stresses and their distribution from the near-surface measured values. Hence X-ray diffraction measurements at the near-surface of the plant weldment can be used to underwrite the quality of the repair by confirming the magnitude and distribution of residual stresses used for the integrity assessment to demonstrate continued safe operation

  3. A study for high accuracy measurement of residual stress by deep hole drilling technique

    Science.gov (United States)

    Kitano, Houichi; Okano, Shigetaka; Mochizuki, Masahito

    2012-08-01

    The deep hole drilling technique (DHD) received much attention in recent years as a method for measuring through-thickness residual stresses. However, some accuracy problems occur when residual stress evaluation is performed by the DHD technique. One of the reasons is that the traditional DHD evaluation formula applies to the plane stress condition. The second is that the effects of the plastic deformation produced in the drilling process and the deformation produced in the trepanning process are ignored. In this study, a modified evaluation formula, which is applied to the plane strain condition, is proposed. In addition, a new procedure is proposed which can consider the effects of the deformation produced in the DHD process by investigating the effects in detail by finite element (FE) analysis. Then, the evaluation results obtained by the new procedure are compared with that obtained by traditional DHD procedure by FE analysis. As a result, the new procedure evaluates the residual stress fields better than the traditional DHD procedure when the measuring object is thick enough that the stress condition can be assumed as the plane strain condition as in the model used in this study.

  4. Residual stress measurement in worked and heat treated steel by X-ray diffractometry

    International Nuclear Information System (INIS)

    Sinha, V.K.; Godaba, V.S.

    2008-01-01

    Investigations were made for residual stress measurement by X-ray diffractometry in the 1.14% C, 0.46% Mn, 0.16% Si, 0.11% S and 0.04% P steel samples subjected to inhomogeneous plastic deformation (cold upsetting in the range 7.7-21%), thermal gradient (quenching from 630 deg. C) and phase transformation (quenching from 850 deg. C), respectively. The results indicated that compressive residual stress at the surface increased in the samples with increasing deformation acquiring values in the range, -269.5 MPa to -374.7 MPa. In the samples quenched from 630 deg. C, the thermal stresses acquired increasing values in the range -83.9 MPa (compressive) to -188.1 MPa (compressive) with increased cooling rate. In the samples quenched from 850 deg. C, volume increase on account of austenite to martensite phase transformation ultimately dominated the thermal contraction resulting in residual stress at the surface from -329.3 MPa (compressive) to +61.7 MPa (tensile)

  5. Fractional momentum transfer in incomplete fusion reaction: measurement of recoil range distributions in 20Ne + 159Tb system

    International Nuclear Information System (INIS)

    Ali, R.; Singh, D.; Pachouri, Dipti; Afzal Ansari, M.; Rashid, M.H.

    2007-01-01

    The recoil range distribution (RRD) of several residues have been measured for the system 20 Ne + 159 Tb at 165 MeV beam energy by collecting the recoiling residues in the Al-catcher foils of varying thickness

  6. Residual generator for cardiovascular anomalies detection

    KAUST Repository

    Belkhatir, Zehor

    2014-06-01

    This paper discusses the possibility of using observer-based approaches for cardiovascular anomalies detection and isolation. We consider a lumped parameter model of the cardiovascular system that can be written in a form of nonlinear state-space representation. We show that residuals that are sensitive to variations in some cardiovascular parameters and to abnormal opening and closure of the valves, can be generated. Since the whole state is not easily available for measurement, we propose to associate the residual generator to a robust extended kalman filter. Numerical results performed on synthetic data are provided.

  7. Thermal treatment system of hazardous residuals in three heating zones based on a microprocessor

    International Nuclear Information System (INIS)

    Luna H, C.L.

    1997-01-01

    Thermal treatment system consists of a high power electric oven of three heating zones where each zone works up to 1200 Centigrades; it has the capacity of rising the central zone temperature up to 1000 Centigrades in 58 minutes approximately. This configuration of three zones could be programmed to different temperatures and they will be digitally controlled by a control microprocessor, which has been controlled by its own assembler language, in function of the PID control. There are also other important controls based on this microprocessor, as a signal amplification, starting and shutdown of high power step relays, activation and deactivation of both analogic/digital and digital/analogic convertors, port activation and basic data storage of the system. Two main characteristics were looked for this oven design; the first was the possibility of controlling the three zone temperature and the second was to reduce the rising and stabilization operation time and its digitized control. The principal function of the three zone oven is to accelerate the degradation of hazardous residuals by an oxidation instead combustion, through relatively high temperatures (minimum 800 Centigrades and maximum 1200 Centigrades); this process reduces the ash and volatile particulate production. The hazardous residuals will be pumped into the degradation system and after atomized through a packaged column; this step will avoid the direct contact of the residuals with the oven cores. These features make this system as closed process, which means that the residuals can not leak to the working area, reducing the exposure risk to the personnel. This three step oven system is the first stage of the complete hazardous residuals degradation system; after this, the flow will go into a cold plasma region where the process is completed, making a closed system. (Author)

  8. Cover crops and crop residue management under no-till systems improve soils and environmental quality

    Science.gov (United States)

    Kumar, Sandeep; Wegner, Brianna; Vahyala, Ibrahim; Osborne, Shannon; Schumacher, Thomas; Lehman, Michael

    2015-04-01

    Crop residue harvest is a common practice in the Midwestern USA for the ethanol production. However, excessive removal of crop residues from the soil surface contributes to the degradation of important soil quality indicators such as soil organic carbon (SOC). Addition of a cover crop may help to mitigate these negative effects. The present study was set up to assess the impacts of corn (Zea mays L.) residue removal and cover crops on various soil quality indicators and surface greenhouse gas (GHG) fluxes. The study was being conducted on plots located at the North Central Agricultural Research Laboratory (NCARL) in Brookings, South Dakota, USA. Three plots of a corn and soybean (Glycine max (L.) Merr.) rotation under a no-till (NT) system are being monitored for soils and surface gas fluxes. Each plot has three residue removal (high residue removal, HRR; medium residue removal, MRR; and low residue removal, LRR) treatments and two cover crops (cover crops and no cover crops) treatments. Both corn and soybean are represented every year. Gas flux measurements were taken weekly using a closed static chamber method. Data show that residue removal significantly impacted soil quality indicators while more time was needed for an affect from cover crop treatments to be noticed. The LRR treatment resulted in higher SOC concentrations, increased aggregate stability, and increased microbial activity. The LRR treatment also increased soil organic matter (SOM) and particulate organic matter (POM) concentrations. Cover crops used in HRR (high corn residue removal) improved SOC (27 g kg-1) by 6% compared to that without cover crops (25.4 g kg-1). Cover crops significantly impacted POM concentration directly after the residue removal treatments were applied in 2012. CO2 fluxes were observed to increase as temperature increased, while N2O fluxes increased as soil moisture increased. CH4 fluxes were responsive to both increases in temperature and moisture. On average, soils under

  9. Standard test method for determining the effective elastic parameter for X-ray diffraction measurements of residual stress

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1998-01-01

    1.1 This test method covers a procedure for experimentally determining the effective elastic parameter, Eeff, for the evaluation of residual and applied stresses by X-ray diffraction techniques. The effective elastic parameter relates macroscopic stress to the strain measured in a particular crystallographic direction in polycrystalline samples. Eeff should not be confused with E, the modulus of elasticity. Rather, it is nominally equivalent to E/(1 + ν) for the particular crystallographic direction, where ν is Poisson's ratio. The effective elastic parameter is influenced by elastic anisotropy and preferred orientation of the sample material. 1.2 This test method is applicable to all X-ray diffraction instruments intended for measurements of macroscopic residual stress that use measurements of the positions of the diffraction peaks in the high back-reflection region to determine changes in lattice spacing. 1.3 This test method is applicable to all X-ray diffraction techniques for residual stress measurem...

  10. Plastic deformation, residual stress, and crystalline texture measurements for in-process characterization of FCC metal alloys

    International Nuclear Information System (INIS)

    Ruud, C.O.; Jacobs, M.E.; Weedman, S.D.; Snoha, D.J.

    1989-01-01

    This paper describes the results of several on-going investigations on the measurement of plastic deformation, residual stress, and crystalline texture in nickel, copper, and aluminum base alloys by x-ray diffraction techniques. X-ray diffraction techniques have been shown to be effective in the measurement of plastic deformation, residual stress, and crystalline texture in FCC metals, from the breadth, position, and intensity of the x-ray diffraction peaks. The Ruud-Barrett position-sensitive scintillation detector has been demonstrated to be fast, non-contacting, and tolerant of detector to component distance variation -- necessary requirements for cost-effective in-process inspection of materials

  11. Measurement of heat treatment induced residual stresses by using ESPI combined with hole-drilling method

    Directory of Open Access Journals (Sweden)

    Jie Cheng

    2010-08-01

    Full Text Available In this study, residual stresses in heat treated specimen were measured by using ESPI (Electronic Speckle-Pattern Interferometry combined with the hole-drilling method. The specimen, made of SUS 304 austenitic stainless steel, was quenched and water cooled to room temperature. Numerical simulation using a hybrid FDM/FEM package was also carried out to simulate the heat treatment process. As a result, the thermal stress fields were obtained from both the experiment and the numerical simulation. By comparision of stress fields, results from the experimental method and numerical simulation well agreed to each other, therefore, it is proved that the presented experimental method is applicable and reliable for heat treatment induced residual stress measurement.

  12. A comparison of conventional and prototype nondestructive measurements on molten salt extraction residues

    International Nuclear Information System (INIS)

    Longmire, V.L.; Hurd, J.R.; Sedlacek, W.E.; Scarborough, A.M.

    1987-01-01

    Fourteen molten salt extraction residues were assayed by conventional and prototype nondestructive assay (NDA) techniques to be compared with destructive chemical analysis in an effort to identify acceptable NDA measurement methods for this matrix. NDA results on seven samples and destructive results on four samples are presented

  13. Residual stresses in as-sprayed and heat treated TBCs : measurements and FEM calculations

    NARCIS (Netherlands)

    Koolloos, M.F.J.; Houben, J.M.

    2000-01-01

    The first part of this paper concerns measurement of through-thickness residual stresses in TBCs by the hole-drilling method. The influences of top coat thickness and different thermal histories (furnace and burner rig) were determined. Low tensile stresses prevailed in the as-sprayed state, and low

  14. Measurement of conformational constraints in an elastin-mimetic protein by residue-pair selected solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Mei [Iowa State University, Department of Chemistry (United States)], E-mail: mhong@iastate.edu; McMillan, R. Andrew; Conticello, Vincent P. [Emory University, Department of Chemistry (United States)

    2002-02-15

    We introduce a solid-state NMR technique for selective detection of a residue pair in multiply labeled proteins to obtain site-specific structural constraints. The method exploits the frequency-offset dependence of cross polarization to achieve {sup 13}CO{sub i} {sup {yields}} {sup 15}N{sub i} {sup {yields}} {sup 13}C{alpha}{sub i} transfer between two residues. A {sup 13}C, {sup 15}N-labeled elastin mimetic protein (VPGVG){sub n} is used to demonstrate the method. The technique selected the Gly3 C{alpha} signal while suppressing the Gly5 C{alpha} signal, and allowed the measurement of the Gly3 C{alpha} chemical shift anisotropy to derive information on the protein conformation. This residue-pair selection technique should simplify the study of protein structure at specific residues.

  15. In-situ X-ray residual stress measurement on a peened alloy 600 weld metal at elevated temperature under tensile load

    International Nuclear Information System (INIS)

    Yunomura, Tomoaki; Maeguchi, Takaharu; Kurimura, Takayuki

    2014-01-01

    In order to verify stability of residual stress improvement effect of peeing for mitigation of stress corrosion cracking in components of PWR plant, relaxation behavior of residual stress induced by water jet peening (WJP) on surface of alloy 600 weld metal (alloy 132) was investigated by in-situ X-ray residual stress measurement under thermal aging and stress condition considered for actual plant operation. Surface residual stress change was observed at the early stage of thermal aging at 360°C, but no significant further stress relaxation was observed after that. Applied stress below yield stress does not significantly affect stress relaxation behavior of surface residual stress. For the X-ray residual stress measurement, X-ray stress constant at room temperature for alloy 600 was determined experimentally with several surface treatment and existence of applied strain. The X-ray stress constant at elevated temperatures were extrapolated theoretically based on the X-ray stress constant at room temperature for alloy 600. (author)

  16. Residual stress relaxation measurements across interfaces at macro-and micro-scales using slitting and DIC

    Energy Technology Data Exchange (ETDEWEB)

    Blair, A; Daynes, N; Hamilton, D; Horne, G; Hodgson, D Z L; Shterenlikht, A [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Heard, P J; Scott, T B, E-mail: mexas@bristol.ac.u [Interface Analysis Centre, University of Bristol, Bristol BS2 8BS (United Kingdom)

    2009-08-01

    In this paper digital image correlation is used to measure relaxation of residual stresses across an interface. On the macro scale the method is applied to a tri-layer bonded aluminium sample, where the middle layer is in tension and the top and the bottom layers are in compression. High contrast speckle pattern was sprayed onto the surface. The relaxation was done with the slitting saw. Three dimensional image correlation was used. On the micro scale the technique was applied to a heat treated large grain brass loaded in tension. Mechanical and electro polishing was used for surface preparation. A focused ion beam was used for slitting across a grain boundary and for imaging. Grain orientation was measured using electron back-scattering diffraction. Two dimensional image correlation was employed. In all macro- and micro-scale experiments the range of measured relaxation was sub-pixel, almost at the limit of the resolution of the image correlation algorithms. In the macro-scale experiments, the limiting factor was low residual stress, due to low shear strength of the Araldite glue used for bonding. Finite element simulation of the relaxation agreed only qualitatively with the experimental results at both size scales. The methodology is intended for use with inverse methods, i.e. the measured relaxation is applied as the boundary conditions to an appropriate FE model which produces stresses equal to the relaxed residual stresses, but with opposite sign. The main conclusion is that the digital image correlation method could be used to measure relaxation caused by slitting in heterogeneous materials and structures at both macro- and micro-scales. However, the repeatability of the techniques needs to be improved before residual stresses can be determined confidently. Acknowledgments The authors gratefully acknowledge Airbus UK for provision of materials. They thank Dr Richard Burguete, Airbus UK, and Prof Peter Flewitt, Department of Physics, University of Bristol, for

  17. Residual stress relaxation measurements across interfaces at macro-and micro-scales using slitting and DIC

    International Nuclear Information System (INIS)

    Blair, A; Daynes, N; Hamilton, D; Horne, G; Hodgson, D Z L; Shterenlikht, A; Heard, P J; Scott, T B

    2009-01-01

    In this paper digital image correlation is used to measure relaxation of residual stresses across an interface. On the macro scale the method is applied to a tri-layer bonded aluminium sample, where the middle layer is in tension and the top and the bottom layers are in compression. High contrast speckle pattern was sprayed onto the surface. The relaxation was done with the slitting saw. Three dimensional image correlation was used. On the micro scale the technique was applied to a heat treated large grain brass loaded in tension. Mechanical and electro polishing was used for surface preparation. A focused ion beam was used for slitting across a grain boundary and for imaging. Grain orientation was measured using electron back-scattering diffraction. Two dimensional image correlation was employed. In all macro- and micro-scale experiments the range of measured relaxation was sub-pixel, almost at the limit of the resolution of the image correlation algorithms. In the macro-scale experiments, the limiting factor was low residual stress, due to low shear strength of the Araldite glue used for bonding. Finite element simulation of the relaxation agreed only qualitatively with the experimental results at both size scales. The methodology is intended for use with inverse methods, i.e. the measured relaxation is applied as the boundary conditions to an appropriate FE model which produces stresses equal to the relaxed residual stresses, but with opposite sign. The main conclusion is that the digital image correlation method could be used to measure relaxation caused by slitting in heterogeneous materials and structures at both macro- and micro-scales. However, the repeatability of the techniques needs to be improved before residual stresses can be determined confidently. Acknowledgments The authors gratefully acknowledge Airbus UK for provision of materials. They thank Dr Richard Burguete, Airbus UK, and Prof Peter Flewitt, Department of Physics, University of Bristol, for

  18. Evaluation of cladding residual stresses in clad blocks by measurements and numerical simulations

    International Nuclear Information System (INIS)

    Dupas, P.; Moinereau, D.

    1996-01-01

    Reactor pressure vessels are internally clad with austenitic stainless steel. This welding operation generates residual stresses which can have an important role in integrity assessments. In order to evaluate these stresses, an experimental and numerical programme has been conducted. The experiments includes cladding operations, macrographic analyses, temperature and residual stresses measurements with different methods. According to these measurements, transversal stresses (perpendicular to the welding direction) and longitudinal stresses (parallel to the welding direction) are highly tensile in stainless steel and they are compressive in the HAZ. Finite element calculations were used to simulate both welding operations and post weld heat treatment. These calculations coupled the thermal, metallurgical and mechanical aspects in a 2D representation. Different models were studied including effect of generalised plane strain, transformation plasticity, creep and tempering. The transversal stresses calculated are similar to the measured ones, but the longitudinal stresses showed to be very sensitive to the model used. As expected because of the two-dimension model, the longitudinal stresses can't be well estimated. More work is needed to improve measurements of stresses in depth (important differences appeared between the different methods). A predictive model would be also very useful to determine the thermal loading which is at present dependant on measurements. A 3D calculation appears to be necessary to evaluate longitudinal stresses. (orig.)

  19. Consideration of microstructure evolution and residual stress measurement near severe worked surface using high energy x-ray

    International Nuclear Information System (INIS)

    Hashimoto, Tadafumi; Mochizuki, Masahito; Shobu, Takahisa

    2012-01-01

    It is necessary to establish a measurement method that can evaluate accurate stress on the surface. However, the microstructure evolution takes place near the surface due to severe plastic deformation, since structural members have been superpositioned a lot of working processes to complete. As well known, a plane stress can't be assumed on the severe worked surface. Therefore we have been proposed the measurement method that can be measured the in-depth distribution of residual stress components by using high energy X-ray from a synchrotron radiation source. There is the combination of the constant penetration depth method and tri-axial stress analysis. Measurements were performed by diffraction planes for the orientation parameter Γ=0.25 of which elastic constants are nearly equal to the mechanical one. The stress components obtained must be converted to the stress components in real space by using optimization technique, since it corresponds to the weighted average stress components associated with the attenuation of X-ray in materials. The predicted stress components distribution agrees very well with the corrected one which was measured by the conventional removal method. To verify the availability of the proposed method, thermal aging variation of residual stress components on the severe worked surface under elevated temperature was investigated using specimen superpositioned working processes (i.e., welding, machining, peening). It is clarified that the residual stress components increase with thermal aging, using the diffraction planes in hard elastic constants to the bulk. This result suggests that the thermal stability of residual stress has the dependence of the diffraction plane. (author)

  20. Standard test method for verifying the alignment of X-Ray diffraction instrumentation for residual stress measurement

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the preparation and use of a flat stress-free test specimen for the purpose of checking the systematic error caused by instrument misalignment or sample positioning in X-ray diffraction residual stress measurement, or both. 1.2 This test method is applicable to apparatus intended for X-ray diffraction macroscopic residual stress measurement in polycrystalline samples employing measurement of a diffraction peak position in the high-back reflection region, and in which the θ, 2θ, and ψ rotation axes can be made to coincide (see Fig. 1). 1.3 This test method describes the use of iron powder which has been investigated in round-robin studies for the purpose of verifying the alignment of instrumentation intended for stress measurement in ferritic or martensitic steels. To verify instrument alignment prior to stress measurement in other metallic alloys and ceramics, powder having the same or lower diffraction angle as the material to be measured should be prepared in similar fashion...

  1. A novel process for heavy residue hydroconversion using a recoverable pseudo-homogenous catalyst PHC system

    Energy Technology Data Exchange (ETDEWEB)

    Romocki, S.M.; Rhodey, W.G. [Mobis Energy Inc., Calgary, AB (Canada)

    2008-10-15

    This paper described a pseudo-homogenous catalyst (PHC) designed to refine heavy hydrocarbon residues containing sulfur, nitrogen, metals, and asphaltene impurities known to clog pores and deactivate traditional hydrocrackers. The heavy residue hydroconversion (HRH) process incorporated a single particle, chemically generated PHC uniformly distributed in the feed. Thermal decomposition within the reaction system of a water-in-oil emulsion containing ammonium paramolybdate was used to form molybdenum oxide, which was then sulfided within the feed in order to create an ultra-dispersed suspension of catalytically active molybdenum disulfide particles measuring between 2 and 9 nm. A proprietary online catalyst recovery and regeneration step was used to maintain high catalyst activity. The molybdenum was then recovered from a purge stream and then reintroduced to the catalyst preparation area as a catalyst precursor. After being conditioned, the feed was combined with hydrogen and a water-oil catalyst emulsion and introduced into a furnace. Heavy components were cracked, hydrogenated and converted to lighter products. The high performance catalyst system was able to convert 95 per cent of residues at pressures below 7.3 Mpa and at reaction temperatures ranging between 400 and 460 degrees C. The catalyst was tested at a pilot plant using Athabasca vacuum bottoms. It was concluded that the HRH process is now being successfully used to produce 200 barrels of heavy oil per day. Designs for commercial installations are now being prepared. 4 refs., 2 tabs., 2 figs.

  2. Cavity pressure/residual stress measurements from the Non-Proliferation Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Heinle, R.A.; Hudson, B.C. [Lawrence Livermore National Lab., CA (United States); Hatch, M.A. Jr.

    1994-12-31

    The Lawrence Livermore National Laboratory planned and conducted experiments on the Non-Proliferation Experiment to determine post-detonation gas pressure inside the explosive cavity and the residual rock stress in the region immediately outside the cavity. Before detonation there was significant concern that steam and detonation products would create very high temperatures and pressure in the blast cavity that would exist for weeks and months after firing. This could constitute a safety hazard to personnel re-entering the tunnel. Consequently the Lawrence Livermore National Laboratory was asked to field its Cavity Pressure/Residual stress monitor system on the Non-Proliferation Experiment. We obtained experimental data for the first 600 ms after the explosion and again several weeks after detonation upon tunnel re-entry. We recorded early-time cavity pressure of about 8.3 MPa. In addition we believe that the ends of our sensor hoses were subjected to an ambient driving pressure of about 0.5 MPa (absolute) that persisted until at least three weeks after zero time.

  3. A Residual Approach for Balanced Truncation Model Reduction (BTMR of Compartmental Systems

    Directory of Open Access Journals (Sweden)

    William La Cruz

    2014-05-01

    Full Text Available This paper presents a residual approach of the square root balanced truncation algorithm for model order reduction of continuous, linear and time-invariante compartmental systems. Specifically, the new approach uses a residual method to approximate the controllability and observability gramians, whose resolution is an essential step of the square root balanced truncation algorithm, that requires a great computational cost. Numerical experiences are included to highlight the efficacy of the proposed approach.

  4. A Design of Finite Memory Residual Generation Filter for Sensor Fault Detection

    Directory of Open Access Journals (Sweden)

    Kim Pyung Soo

    2017-04-01

    Full Text Available In the current paper, a residual generation filter with finite memory structure is proposed for sensor fault detection. The proposed finite memory residual generation filter provides the residual by real-time filtering of fault vector using only the most recent finite measurements and inputs on the window. It is shown that the residual given by the proposed residual generation filter provides the exact fault for noisefree systems. The proposed residual generation filter is specified to the digital filter structure for the amenability to hardware implementation. Finally, to illustrate the capability of the proposed residual generation filter, extensive simulations are performed for the discretized DC motor system with two types of sensor faults, incipient soft bias-type fault and abrupt bias-type fault. In particular, according to diverse noise levels and windows lengths, meaningful simulation results are given for the abrupt bias-type fault.

  5. Residual-stress distributions near stainless steel butt weldments

    International Nuclear Information System (INIS)

    Elligson, W.A.; Shack, W.J.

    1978-01-01

    Concern for the integrity of stainless steel butt-weldments in boiling-water-reactor (BWR) piping systems has stimulated study of the conditions that cause stress corrosion cracking (SCC) in the heat-affected zones (HAZ) of the weldments. It is generally agreed that a high stress exceeding the initial yield strength is one of the essential elements for crack initiation. Since design procedures usually ensure that load stresses are below initial yield, the source of the high stresses necessary to produce SCC is thought to be the residual stresses due to welding. To examine the level of residual stresses in the weldments of interest, bulk residual stresses were measured on 100 mm (4-in.) and 254 mm (10-in.) diameter Schedule 80 piping weldments using strain relief techniques. Both laboratory welded specimens and field welded specimens from reactors in service were studied. Axial bulk residual stress distributions were obtained at 45 0 intervals around the circumference. At each azimuthal position, the residual stresses were measured at seven axial positions: on the weld centerline and 13, 20, and 25 mm on either side of the weld centerline on both the inside and outside surfaces

  6. The influence of texture on residual stress measurements

    International Nuclear Information System (INIS)

    Lima, N.B. de.

    1991-01-01

    A computer program to calculate the orientation distribution function (ODF) from incomplete pole figures has been developed for rolled materials with a cubic structure. This program is based on Bunge's series expansion. The use of incomplete pole figures results in the loss of orthogonality among symmetric spherical harmonic functions and makes it necessary to explicitly evaluate the integrals. The ODF has been used to quantitatively evaluate the influence of texture in determining residual stresses. This has been done by calculating theoretically the strain undergone by each cell as a function of its orientation to residual stress relationship. To test the ODF program, cold rolled Cu and Al specimens were used and to evaluate residual stresses as a function of texture, cold rolled AISI 430 and 324 specimens were used. Simulations have also be presented based on the texture for each of the materials, to verify the nature of the curve d x sin 2 ψ as a function of each stress tensor components. (author)

  7. Process for measuring the helium residual gas pressure and circuit for carrying out the process

    International Nuclear Information System (INIS)

    Schmidt, C.; Cesnak, L.

    1983-01-01

    In cryotechnic devices, the quality of the thermal insulation can be monitored by checking the pressure of the residual gas. A process is proposed in which a thin super-conducting wire or a superconducting layer acting as vacuum sensor has a heating pulse reaching the critical current applied to it, which produces a local normal conduction zone. The vacuum sensor has a measuring current of constant amount applied to it, which causes a voltage drop on its resistance during the time in which the normal conduction zone exists, the cooling time. The pressure of the residual gas is a function of the integral of the voltage drop and is measured by integrating the voltage during the cooling time. (orig./HP) [de

  8. The MARS15-based FermiCORD code system for calculation of the accelerator-induced residual dose

    Energy Technology Data Exchange (ETDEWEB)

    Grebe, A.; Leveling, A.; Lu, T.; Mokhov, N.; Pronskikh, V.

    2018-01-01

    The FermiCORD code system, a set of codes based on MARS15 that calculates the accelerator-induced residual doses at experimental facilities of arbitrary configurations, has been developed. FermiCORD is written in C++ as an add-on to Fortran-based MARS15. The FermiCORD algorithm consists of two stages: 1) simulation of residual doses on contact with the surfaces surrounding the studied location and of radionuclide inventories in the structures surrounding those locations using MARS15, and 2) simulation of the emission of the nuclear decay gamma-quanta by the residuals in the activated structures and scoring the prompt doses of these gamma-quanta at arbitrary distances from those structures. The FermiCORD code system has been benchmarked against similar algorithms based on other code systems and showed a good agreement. The code system has been applied for calculation of the residual dose of the target station for the Mu2e experiment and the results have been compared to approximate dosimetric approaches.

  9. Analysis of residual chlorine in simple drinking water distribution system with intermittent water supply

    Science.gov (United States)

    Goyal, Roopali V.; Patel, H. M.

    2015-09-01

    Knowledge of residual chlorine concentration at various locations in drinking water distribution system is essential final check to the quality of water supplied to the consumers. This paper presents a methodology to find out the residual chlorine concentration at various locations in simple branch network by integrating the hydraulic and water quality model using first-order chlorine decay equation with booster chlorination nodes for intermittent water supply. The explicit equations are developed to compute the residual chlorine in network with a long distribution pipe line at critical nodes. These equations are applicable to Indian conditions where intermittent water supply is the most common system of water supply. It is observed that in intermittent water supply, the residual chlorine at farthest node is sensitive to water supply hours and travelling time of chlorine. Thus, the travelling time of chlorine can be considered to justify the requirement of booster chlorination for intermittent water supply.

  10. Residual stress measurements in coil, linepipe and girth welded pipe

    International Nuclear Information System (INIS)

    Law, M.; Prask, H.; Luzin, V.; Gnaeupel-Herold, T.

    2006-01-01

    Residual stresses in gas pipelines come from forming operations in producing the coil and pipe, seam welding the pipe, and girth welding pipes together to form a gas pipeline. Welding is used extensively in gas pipelines, the welds are made without post weld heat treatment. The three normal stresses were measured by neutron diffraction for three types of sample: coil, unwelded rings cut from the pipe made from this coil, and girth welded rings cut from linepipe. All three specimens came from three thicknesses of manufacture (5.4, 6.4, and 7.1 mm). The welds are manual metal arc cellulosic electrode welds made in X70 linepipe, these were measured at 5 through-thickness positions at 19 locations (from the center of the weld up to 35 mm away from the weld) with a spatial resolution of 1 mm 3 . The coil and unwelded rings were measured at the same five through-thickness positions

  11. Development of a micrometre-scale radiographic measuring method for residual stress analysis

    International Nuclear Information System (INIS)

    Moeller, D.

    1999-01-01

    The radiographic method described uses micrometre X-ray diffraction for high-resolution residual stress analysis in single crystals. The focus is on application of two x-ray optics (glass capillaries) for shaping a sufficiently fine and intensive primary beam. Due to application of a proper one-grain measuring and analysis method, the resolution results are applicable to the characteristic grain sizes of many materials. (orig.) [de

  12. Design and analysis of a new passive residual heat removal system

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Xing [Key Subject Laboratory of Nuclear Safety and Simulation Technology, Harbin Engineering University, Harbin, Heilongjiang 150001 (China); Peng, Minjun, E-mail: heupmj@163.com [Key Subject Laboratory of Nuclear Safety and Simulation Technology, Harbin Engineering University, Harbin, Heilongjiang 150001 (China); Yuan, Xiao [Guangxi Fangchenggang Nuclear Power Co., Ltd (China); Xia, Genglei [Key Subject Laboratory of Nuclear Safety and Simulation Technology, Harbin Engineering University, Harbin, Heilongjiang 150001 (China)

    2016-07-15

    Highlights: • An air cooling passive residual heat removal System (PRHRs) is designed. • Using RELAP5/MOD3.4 code to analyze the operation characteristics of the PRHRs. • Noncondensable gas is used to simulate the hydrodynamic behavior in the air cooling tower. • The natural circulations could respectively establish in the primary circuit and the PRHRs circuit. • The PRHRs could remove the residual heat effectively. - Abstract: The inherent safety functions will mitigate the consequences of the accidents, and it can be accomplished through the passive safety systems which employed in the typical pressurized water reactor (PWR). In this paper, a new passive residual heat removal system (PRHRS) is designed for a typical nuclear power plant. PRHRS consists of a steam generator (SG), a cooling tank with two groups of cooling pipes, an air-cooling heat exchanger (AHX), an air-cooling tower, corresponding pipes and valves. The cooling tank which works as an intermediate buffer device is used to transfer the core decay heat to the AHX, and then the core decay heat will be removed to the atmosphere finally. The RELAP5/MOD3.4 code is used to analyze the operation characteristics of PRHRS and the primary loop system. It shows PRHRS could remove the decay heat from the primary loop effectively, and the natural circulations can be established in the primary circuit and the PRHRS circuit respectively. Furthermore, the sensitivity study has also been done to research the effect of various factors on the heat removal capacity.

  13. On the Ground or in the Air? A Methodological Experiment on Crop Residue Cover Measurement in Ethiopia.

    Science.gov (United States)

    Kosmowski, Frédéric; Stevenson, James; Campbell, Jeff; Ambel, Alemayehu; Haile Tsegay, Asmelash

    2017-10-01

    Maintaining permanent coverage of the soil using crop residues is an important and commonly recommended practice in conservation agriculture. Measuring this practice is an essential step in improving knowledge about the adoption and impact of conservation agriculture. Different data collection methods can be implemented to capture the field level crop residue coverage for a given plot, each with its own implication on survey budget, implementation speed and respondent and interviewer burden. In this paper, six alternative methods of crop residue coverage measurement are tested among the same sample of rural households in Ethiopia. The relative accuracy of these methods are compared against a benchmark, the line-transect method. The alternative methods compared against the benchmark include: (i) interviewee (respondent) estimation; (ii) enumerator estimation visiting the field; (iii) interviewee with visual-aid without visiting the field; (iv) enumerator with visual-aid visiting the field; (v) field picture collected with a drone and analyzed with image-processing methods and (vi) satellite picture of the field analyzed with remote sensing methods. Results of the methodological experiment show that survey-based methods tend to underestimate field residue cover. When quantitative data on cover are needed, the best estimates are provided by visual-aid protocols. For categorical analysis (i.e., >30% cover or not), visual-aid protocols and remote sensing methods perform equally well. Among survey-based methods, the strongest correlates of measurement errors are total farm size, field size, distance, and slope. Results deliver a ranking of measurement options that can inform survey practitioners and researchers.

  14. On the Ground or in the Air? A Methodological Experiment on Crop Residue Cover Measurement in Ethiopia

    Science.gov (United States)

    Kosmowski, Frédéric; Stevenson, James; Campbell, Jeff; Ambel, Alemayehu; Haile Tsegay, Asmelash

    2017-10-01

    Maintaining permanent coverage of the soil using crop residues is an important and commonly recommended practice in conservation agriculture. Measuring this practice is an essential step in improving knowledge about the adoption and impact of conservation agriculture. Different data collection methods can be implemented to capture the field level crop residue coverage for a given plot, each with its own implication on survey budget, implementation speed and respondent and interviewer burden. In this paper, six alternative methods of crop residue coverage measurement are tested among the same sample of rural households in Ethiopia. The relative accuracy of these methods are compared against a benchmark, the line-transect method. The alternative methods compared against the benchmark include: (i) interviewee (respondent) estimation; (ii) enumerator estimation visiting the field; (iii) interviewee with visual-aid without visiting the field; (iv) enumerator with visual-aid visiting the field; (v) field picture collected with a drone and analyzed with image-processing methods and (vi) satellite picture of the field analyzed with remote sensing methods. Results of the methodological experiment show that survey-based methods tend to underestimate field residue cover. When quantitative data on cover are needed, the best estimates are provided by visual-aid protocols. For categorical analysis (i.e., >30% cover or not), visual-aid protocols and remote sensing methods perform equally well. Among survey-based methods, the strongest correlates of measurement errors are total farm size, field size, distance, and slope. Results deliver a ranking of measurement options that can inform survey practitioners and researchers.

  15. Discussion on accuracy of weld residual stress measurement by neutron diffraction. Influence of strain free reference

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Akita, Koichi

    2012-01-01

    It is required to evaluate a strain-free reference, α 0 , to perform accurate stress measurement using neutron diffraction. In this study, accuracy of neutron stress measurement was quantitatively discussed from α 0 evaluations on a dissimilar metal butt-weld between a type 304 austenitic stainless steel and an A533B low alloy ferritic steel. A strain-free standard specimen and a sliced specimen with 10 mm thickness taken from the dissimilar metal butt-weld were utilized. In the lattice constant evaluation using the standard specimen, average lattice constant derived from multiple hkl reflections was evaluated as the stress-free reference with cancelling out an intergranular strain. Comparing lattice constant distributions in each reflection with average lattice constant distribution in the standard specimen, αFe211 and γFe311 reflections were judged as a suitable reflection for neutron strain measurement to reduce intergranular strain effects. Residual stress distribution in the sliced specimen evaluated using α 0 measured here exhibited higher accuracy than that measured using strain gauges. On the other hand, α 0 distributions were evaluated using the sliced specimen under the plane-stress condition. Existence of slight longitudinal residual stresses near the weld center decreased accuracy of the α 0 evaluations, which means that it is required to optimize the thickness of the sliced specimen for accurate α 0 evaluation under plane strain condition. As a conclusion of this study, it was confirmed that procedures of accurate α 0 evaluation, optimization of the measurement condition, and multiple evaluations on the results play an important role to improve accuracy of the residual stress measurement using neutron diffraction. (author)

  16. A flexible method for residual stress measurement of spray coated layers by laser made hole drilling and SLM based beam steering

    Science.gov (United States)

    Osten, W.; Pedrini, G.; Weidmann, P.; Gadow, R.

    2015-08-01

    A minimum invasive but high resolution method for residual stress analysis of ceramic coatings made by thermal spraycoating using a pulsed laser for flexible hole drilling is described. The residual stresses are retrieved by applying the measured surface data for a model-based reconstruction procedure. While the 3D deformations and the profile of the machined area are measured with digital holography, the residual stresses are calculated by FE analysis. To improve the sensitivity of the method, a SLM is applied to control the distribution and the shape of the holes. The paper presents the complete measurement and reconstruction procedure and discusses the advantages and challenges of the new technology.

  17. Determination of the Ability to Measure Traces of Water in Dehydrated Residues of Waste Water by IR Diffuse Reflectance Spectra

    Science.gov (United States)

    Pratsenka, S. V.; Voropai, E. S.; Belkin, V. G.

    2018-01-01

    Rapid measurement of the moisture content of dehydrated residues is a critical problem, the solution of which will increase the efficiency of treatment facilities and optimize the process of applying flocculants. The ability to determine the moisture content of dehydrated residues using a meter operating on the IR reflectance principle was confirmed experimentally. The most suitable interference filters were selected based on an analysis of the obtained diffuse reflectance spectrum of the dehydrated residue in the range 1.0-2.7 μm. Calibration curves were constructed and compared for each filter set. A measuring filter with a transmittance maximum at 1.19 μm and a reference filter with a maximum at 1.3 μm gave the best agreement with the laboratory measurements.

  18. The MARS15-based FermiCORD code system for calculation of the accelerator-induced residual dose

    Science.gov (United States)

    Grebe, A.; Leveling, A.; Lu, T.; Mokhov, N.; Pronskikh, V.

    2018-01-01

    The FermiCORD code system, a set of codes based on MARS15 that calculates the accelerator-induced residual doses at experimental facilities of arbitrary configurations, has been developed. FermiCORD is written in C++ as an add-on to Fortran-based MARS15. The FermiCORD algorithm consists of two stages: 1) simulation of residual doses on contact with the surfaces surrounding the studied location and of radionuclide inventories in the structures surrounding those locations using MARS15, and 2) simulation of the emission of the nuclear decay γ-quanta by the residuals in the activated structures and scoring the prompt doses of these γ-quanta at arbitrary distances from those structures. The FermiCORD code system has been benchmarked against similar algorithms based on other code systems and against experimental data from the CERF facility at CERN, and FermiCORD showed reasonable agreement with these. The code system has been applied for calculation of the residual dose of the target station for the Mu2e experiment and the results have been compared to approximate dosimetric approaches.

  19. Study of evaporation residue cross-section for 48Ti + 140,142Ce systems

    International Nuclear Information System (INIS)

    Kaur, Devinder Pal; Behera, B.R.; Kaur, M.

    2017-01-01

    For understanding the reaction mechanism of heavy compound nucleus (CN), the study of evaporation residue (ER) cross-section plays a vital role. For heavier systems, the probability of formation of CN is strongly influenced by the properties of the di-nuclear system at contact configuration, where entrance channel plays a major role in reaction dynamics. Nuclear structure of the colliding nuclei also plays a key role, which influence the fusion probability. In some of the recent studies the dependence of the fusion reaction on the nuclear shell structure of projectile and target nuclei was also investigated and the importance of N = 82 in the heavy ion fusion reaction was proposed. It was reported that shell closure of one of the interacting nuclei can lead to the enhanced ER cross-section and helps in the synthesis of heavy nuclei. Keeping these points in mind, a systematic measurement of ER cross sections for 48 Ti + 140,142 Ce, 124 Sn systems was performed. Here, 140 Ce target is neutron shell closed (N T =82) but 142 Ce have 84 neutrons. By comparing the ER cross-sections of these systems, the effect of neutron shell closure on fusion probability can be examined. The ER excitation function for third system ( 48 Ti + 124 Sn) was also measured at few energy points to estimate the transmission efficiency of the spectrometer

  20. Study on the pelletizing of sulfate residue with magnetite concentrate in grate-kiln system

    Directory of Open Access Journals (Sweden)

    Shufeng Y.

    2010-01-01

    Full Text Available The experiment on the feasibility of pelletizing with magnetite concentrate and the wasted sulfate residue was carried out, to research the performance of pellet in grate-kiln system and simulate the grate-kiln pelletizing process in the micro-pellet roasting simulation system in laboratory, and the process experiments on preheating and roasting sections were conducted. The results show that in order to obtain pellet with good performance and the magnetite concentrate should be over 20 in mass percent, the suitable pelletizing time is about 10 min and moisture is around 12.5%. Also, according to the process parameters of drying and preheating sections obtained from experiment, it will be successful to use magnetite concentrate and the wasted sulfate residue for pelletizing, which exploits a new way for the use of sulfate residue.

  1. 77 FR 24671 - Compliance Guide for Residue Prevention and Agency Testing Policy for Residues

    Science.gov (United States)

    2012-04-25

    ... Hazard Analysis and Critical Control Points (HACCP) inspection system, another important component of the NRP is to provide verification of residue control in HACCP systems. As part of the HACCP regulation... guide, and FSIS finds violative residues, the establishment's HACCP system may be inadequate under 9 CFR...

  2. High Precision Infrared Temperature Measurement System Based on Distance Compensation

    Directory of Open Access Journals (Sweden)

    Chen Jing

    2017-01-01

    Full Text Available To meet the need of real-time remote monitoring of human body surface temperature for optical rehabilitation therapy, a non-contact high-precision real-time temperature measurement method based on distance compensation was proposed, and the system design was carried out. The microcontroller controls the infrared temperature measurement module and the laser range module to collect temperature and distance data. The compensation formula of temperature with distance wass fitted according to the least square method. Testing had been performed on different individuals to verify the accuracy of the system. The results indicate that the designed non-contact infrared temperature measurement system has a residual error of less than 0.2°C and the response time isless than 0.1s in the range of 0 to 60cm. This provides a reference for developing long-distance temperature measurement equipment in optical rehabilitation therapy.

  3. Numerical analysis of drilling hole work-hardening effects in hole-drilling residual stress measurement

    Science.gov (United States)

    Li, H.; Liu, Y. H.

    2008-11-01

    The hole-drilling strain gage method is an effective semi-destructive technique for determining residual stresses in the component. As a mechanical technique, a work-hardening layer will be formed on the surface of the hole after drilling, and affect the strain relaxation. By increasing Young's modulus of the material near the hole, the work-hardening layer is simplified as a heterogeneous annulus. As an example, two finite rectangular plates submitted to different initial stresses are treated, and the relieved strains are measured by finite element simulation. The accuracy of the measurement is estimated by comparing the simulated residual stresses with the given initial ones. The results are shown for various hardness of work-hardening layer. The influence of the relative position of the gages compared with the thickness of the work-hardening layer, and the effect of the ratio of hole diameter to work-hardening layer thickness are analyzed as well.

  4. Management of solid residues in waste-to-energy and biomass systems

    Energy Technology Data Exchange (ETDEWEB)

    Vehlow, J.; Bergfeldt, B. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Technische Chemie; Wilen, C.; Ranta, J. [VTT Technical Research Centre of Finland, Espoo (Finland); Schwaiger, H. [Forschungsgesellschaft Joanneum mbH, Graz (Austria); Visser, H.J.M. [ECN Energy Research Centre of the Netherlands, Petten (Netherlands); Gu, S.; Gyftopoulou, E.; Brammer, J. [Aston Univ., Birmingham (United Kingdom)

    2007-12-15

    A literature review has been performed for getting in-depth information about quality of residues from thermal processes for waste and biomass as well as their disposal or utilisation options and current practices. Residues from waste incineration have been subject to intense research programs for many years and it can be concluded that the quality of bottom ashes has meanwhile a high standard. The question whether an utilisation as secondary building material is accepted or not depends on the definition of acceptable economic impac. For filter ashes and gas cleaning residues the situation is more complex. Their quality is known: due to their high inventory of heavy metals and organic micro-pollutants they are classified as hazardous waste which means they require specific measures for their safe long-term disposal. A number of stabilisation and treatment processes for filter ashes and gas cleaning residues including the recovery of species out of these materials have been developed but none has been implemented in full scale due to economic constraints. There is reason to speculate that even recovery processes which are not profitable for private companies might point out economically useful if future and long-term costs which have to be covered of the society, e.g. for rehabilitation of contaminated sites, are taken into account. Their quality as well as that of residues from combustion of contaminated biomass is mainly depending on the quality of the fuel. The inventory of critical ingredients in fuel produced from waste or waste fractions, especially of halogens and heavy metals, is often rather high and shows typically a wide range of variation. A reliable quality control for such fuels is very difficult. Other residues can - like gas cleaning residues from waste incineration - be inertised in order to meet the criteria for the access to cheaper landfills than those for hazardous waste. A similar conclusion can be drawn for the quality and management of

  5. Relation between psi-splitting and microscopic residual shear stresses in x-ray stress measurement on uni-directionally deformed layers

    International Nuclear Information System (INIS)

    Hanabusa, Takao; Fujiwara, Haruo

    1982-01-01

    The psi-splitting behaviors were investigated for the ground and the milled surface layers of both iron and high speed steel in order to find out the relation among microscopic residual shear stresses. For the high speed steel, the X-ray elastic constants and the residual strains were measured on the carbide phase as well as on the matrix phase. It was clarified that the psi-splitting was caused by a combination of the selective nature of X-ray diffractions and the microscopic residual shear stresses within the interior of cells and the carbide particles. The volume fraction occupied by the cell walls and the residual shear stresses sustained by them were estimated from the equilibrium condition of the microscopic residual shear stresses. The distributions of residual stresses over the deformed layers indicate that the thermal effect is dominant in grinding and the mechanical effect is dominant in milling for forming residual stresses. (author)

  6. DEPENDENCIES TO DETERMINE THE MEASURE OF DAMAGE AND CALCULATION OF RESIDUAL LIFE OF REINFORCED CONCRETE SUPERSTRUCTURE, EXPOSED TO SALT CORROSION

    OpenAIRE

    SAATOVA NODIRA ZIYAYEVNA

    2016-01-01

    In this paper we consider the current method of determining the measure of damage of concrete and reinforcement. The proposed dependence measures of damage, convenient for use in predicting the life of structures superstructures.The practical method of calculation determination of residual resource of the exploited superstructures developed. The main source of data for calculating the residual life are the parameters defined by the technical diagnosis.

  7. Evaluation of residue-residue contact prediction in CASP10

    KAUST Repository

    Monastyrskyy, Bohdan

    2013-08-31

    We present the results of the assessment of the intramolecular residue-residue contact predictions from 26 prediction groups participating in the 10th round of the CASP experiment. The most recently developed direct coupling analysis methods did not take part in the experiment likely because they require a very deep sequence alignment not available for any of the 114 CASP10 targets. The performance of contact prediction methods was evaluated with the measures used in previous CASPs (i.e., prediction accuracy and the difference between the distribution of the predicted contacts and that of all pairs of residues in the target protein), as well as new measures, such as the Matthews correlation coefficient, the area under the precision-recall curve and the ranks of the first correctly and incorrectly predicted contact. We also evaluated the ability to detect interdomain contacts and tested whether the difficulty of predicting contacts depends upon the protein length and the depth of the family sequence alignment. The analyses were carried out on the target domains for which structural homologs did not exist or were difficult to identify. The evaluation was performed for all types of contacts (short, medium, and long-range), with emphasis placed on long-range contacts, i.e. those involving residues separated by at least 24 residues along the sequence. The assessment suggests that the best CASP10 contact prediction methods perform at approximately the same level, and comparably to those participating in CASP9.

  8. Calculating residual flows through a multiple-inlet system: the conundrum of the tidal period

    Science.gov (United States)

    Duran-Matute, Matias; Gerkema, Theo

    2015-11-01

    The concept of residual, i.e., tidally-averaged, flows through a multiple inlet system is reappraised. The evaluation of the residual through-flow depends on the time interval over which is integrated, in other words, on how one defines the tidal period. It is demonstrated that this definition is ambiguous and that different definitions (based on, e.g., high waters, slack tides, etc.) yield very different results for the residual, also in terms of their long-term statistical properties (median and standard deviation). A basin-wide applicable method of defining the tidal period, in terms of enclosed water volume, is analyzed. We compare the different methods on the basis of high-resolution model results for the Western Dutch Wadden Sea. The multitude of tidal constituents together with wind variability creates broad distributions for the residuals, with standard deviations much larger than the mean or median residual flows.

  9. Residual stresses in cold-coiled helical compression springs for automotive suspensions measured by neutron diffraction

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Brand, P. C.; Drews, A. R.; Krause, A.; Lowe-Ma, C.

    2004-01-01

    Roč. 367, 1-2 (2004), s. 306-311 ISSN 0921-5093 Institutional research plan: CEZ:AV0Z2043910 Keywords : residual stress, automotive springs, neutron diffraction Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.445, year: 2004

  10. Development of nondestructive hybrid measuring method for three-dimensional residual stress distribution of thick welded joint. Hybrid measuring method of inherent strain method and neutron diffraction method

    International Nuclear Information System (INIS)

    Nakacho, Keiji; Kasahara, Norifumi; Tamura, Ryota

    2012-01-01

    The measuring methods of the residual stress are classified into destructive one and nondestructive one. The inherent strain method (ISM) is destructive one. The neutron diffraction method (NDM) is nondestructive one. But the measurable depth is limited within about 20 mm and the method cannot measure the weld zone, without destruction of the object. So, in this study, the hybrid measuring method has been developed, by combining the ISM and the NDM. The theory of the hybrid method is the same as the ISM. In the analysis, the strains measured by the NDM without destruction are used. This hybrid measuring method is a true nondestructive measuring method for a thick welded joint. The applicability of the hybrid method has been verified by simulation, using a butt welded joint of thick pipes. In the simulation, the reliable order of the strains measured by the present NDM is very important, and was considered as 10 micro. The measurable regions by the present NDM were assumed. Under the above conditions, the data (the residual elastic strains assumed to be measured by the NDM) were made, and used in the ISM. As a result of such simulation, it has been cleared that the estimated residual stress has very high accuracy, if enough data are used. The required number of data is less than the ISM. (author)

  11. Residual gas analysis

    International Nuclear Information System (INIS)

    Berecz, I.

    1982-01-01

    Determination of the residual gas composition in vacuum systems by a special mass spectrometric method was presented. The quadrupole mass spectrometer (QMS) and its application in thin film technology was discussed. Results, partial pressure versus time curves as well as the line spectra of the residual gases in case of the vaporization of a Ti-Pd-Au alloy were demonstrated together with the possible construction schemes of QMS residual gas analysers. (Sz.J.)

  12. Measurements of the residual stresses in the welded steel columns based on the x-ray diffraction method, 2

    International Nuclear Information System (INIS)

    Kaneta, Kiyoshi; Nishizawa, Hidekazu; Arashiyama, Masaki.

    1982-01-01

    In order to evaluate the applicability of two kinds of techniques of the X-ray stress analysis, namely, the standard sin 2 psi method and the newly developed phi-sin 2 psi method, bending tests have been performed. The test results have proved that the values of the stresses measured by means of the mechanical devices and of those measured by the two kinds of the X-ray techniques coincide each other. Then, these two methods have been applied to measure the surface residual stresses of the box-typed, welded steel columns and the following conclusions have been drawn. 1. The principal stress of the surface residural stresses is, in most cases, oriented to the rolled directions at the center of the steel plates, and it tends to rotate in the neighborhood of the heat affected zones. 2. Tensile residual stresses of a large magnitude have been observed in the direction parallel to the beads of the weld, and the moderate compressive residual stresses can be detected in the direction normal to the beads. (author)

  13. Residual Resistivity Ratio (RRR) Measurements of LHC Superconducting NbTi Cable Strands

    CERN Document Server

    Charifoulline, Z

    2006-01-01

    The Rutherford-type superconducting NbTi cables of the LHC accelerator are currently manufactured by six industrial companies. As a part of the acceptance tests, the Residual Resistivity Ratio (RRR) of superconducting strands is systematically measured on virgin strands to qualify the strands before cabling and on extracted strands to qualify the cables and to check the final heat treatment (controlled oxidation to control interstrand resistance). More than 12000 samples of virgin and extracted strands have been measured during last five years. Results show good correlation with the measurements done by the companies and reflect well the technological process of cable production (strand annealing, cabling, cable heat treatment). This paper presents a description of the RRR-test station and the measurement procedure, the summary of the results over all suppliers and finally the correlation between RRR-values of the cables and the magnets.

  14. System Study: Residual Heat Removal 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-12-01

    This report presents an unreliability evaluation of the residual heat removal (RHR) system in two modes of operation (low-pressure injection in response to a large loss-of-coolant accident and post-trip shutdown-cooling) at 104 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing trends were identified in the RHR results. A highly statistically significant decreasing trend was observed for the RHR injection mode start-only unreliability. Statistically significant decreasing trends were observed for RHR shutdown cooling mode start-only unreliability and RHR shutdown cooling model 24-hour unreliability.

  15. Developing an Integrated Model Framework for the Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    Energy Technology Data Exchange (ETDEWEB)

    David Muth, Jr.; Jared Abodeely; Richard Nelson; Douglas McCorkle; Joshua Koch; Kenneth Bryden

    2011-08-01

    Agricultural residues have significant potential as a feedstock for bioenergy production, but removing these residues can have negative impacts on soil health. Models and datasets that can support decisions about sustainable agricultural residue removal are available; however, no tools currently exist capable of simultaneously addressing all environmental factors that can limit availability of residue. The VE-Suite model integration framework has been used to couple a set of environmental process models to support agricultural residue removal decisions. The RUSLE2, WEPS, and Soil Conditioning Index models have been integrated. A disparate set of databases providing the soils, climate, and management practice data required to run these models have also been integrated. The integrated system has been demonstrated for two example cases. First, an assessment using high spatial fidelity crop yield data has been run for a single farm. This analysis shows the significant variance in sustainably accessible residue across a single farm and crop year. A second example is an aggregate assessment of agricultural residues available in the state of Iowa. This implementation of the integrated systems model demonstrates the capability to run a vast range of scenarios required to represent a large geographic region.

  16. Reliability analyses to detect weak points in secondary-side residual heat removal systems of KWU PWR plants

    International Nuclear Information System (INIS)

    Schilling, R.

    1983-01-01

    Requirements made by Federal German licensing authorities called for the analysis of the secondary-side residual heat removal systems of new PWR plants with regard to availability, possible weak points and the balanced nature of the overall system for different incident sequences. Following a description of the generic concept and the process and safety-related systems for steam generator feed and main steam discharge, the reliability of the latter is analyzed for the small break LOCA and emergency power mode incidents, weak points in the process systems identified, remedial measures of a system-specific and test-strategic nature presented and their contribution to improving system availability quantified. A comparison with the results of the German Risk Study on Nuclear Power Plants (GRS) shows a distinct reduction in core meltdown frequency. (orig.)

  17. R6 validation exercise: through thickness residual stress measurements on an experiment test vessel ring

    International Nuclear Information System (INIS)

    Mitchell, D.H.

    1988-06-01

    A series of bursting tests on thick-walled pressure vessels has been carried out as part of a validation exercise for the CEGB R6 failure assessment procedure. The objective of these tests was the examination of the behaviour of typical PWR primary vessel material subject to residual stresses in addition to primary loading with particular reference to the R6 assessment procedure. To this end, a semi-elliptic part-through defect was sited in the vessel longitudinal seam, which was a submerged arc weld in the non stress-relieved condition; it was then pressure tested to failure. Prior to the final assembly of this vessel, a ring of material was cut from it to act as a test-piece on which a residual stress survey could be made. Surface measurements using the centre-hole technique were made by CERL personnel, and this has been followed by two through- thickness measurements at BNL using the deep-hole technique. This paper describes these deep-hole measurements and presents the results from them. (author)

  18. Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE

    Science.gov (United States)

    Cziczo, D. J.; Murphy, D. M.; Hudson, P. K.; Thomson, D. S.

    2004-02-01

    The first real-time, in situ, investigation of the chemical composition of the residue of cirrus ice crystals was performed during July 2002. This study was undertaken on a NASA WB-57F high-altitude research aircraft as part of CRYSTAL-FACE, a field campaign which sought to further our understanding of the relation of clouds, water vapor, and climate by characterizing, among other parameters, anvil cirrus formed about the Florida peninsula. A counter flow virtual impactor (CVI) was used to separate cirrus ice from the unactivated interstitial aerosol particles and evaporate condensed-phase water. Residual material, on a crystal-by-crystal basis, was subsequently analyzed using the NOAA Aeronomy Laboratory's Particle Analysis by Laser Mass Spectrometry (PALMS) instrument. Sampling was performed from 5 to 15 km altitude and from 12° to 28° north latitude within cirrus originating over land and ocean. Chemical composition measurements provided several important results. Sea salt was often incorporated into cirrus, consistent with homogeneous ice formation by aerosol particles from the marine boundary layer. Size measurements showed that large particles preferentially froze over smaller ones. Meteoritic material was found within ice crystals, indicative of a relation between stratospheric aerosol particles and tropospheric clouds. Mineral dust was the dominant residue observed in clouds formed during a dust transport event from the Sahara, consistent with a heterogeneous freezing mechanism. These results show that chemical composition and size are important determinants of which aerosol particles form cirrus ice crystals.

  19. Residual stress measurements in the dissimilar metal weld in pressurizer safety nozzle of nuclear power plant

    International Nuclear Information System (INIS)

    Campos, Wagner R.C.; Rabello, Emerson G.; Mansur, Tanius R.; Scaldaferri, Denis H.B.; Paula, Raphael G.; Souto, Joao P.R.S.; Carvalho Junior, Ideir T.

    2013-01-01

    Weld residual stresses have a large influence on the behavior of cracking that could possibly occur under normal operation of components. In case of an unfavorable environment, both stainless steel and nickel-based weld materials can be susceptible to stress-corrosion cracking (SCC). Stress corrosion cracks were found in dissimilar metal welds of some pressurized water reactor (PWR) nuclear plants. In the nuclear reactor primary circuit the presence of tensile residual stress and corrosive environment leads to so-called Primary Water Stress Corrosion Cracking (PWSCC). The PWSCC is a major safety concern in the nuclear power industry worldwide. PWSCC usually occurs on the inner surface of weld regions which come into contact with pressurized high temperature water coolant. However, it is very difficult to measure the residual stress on the inner surfaces of pipes or nozzles because of inaccessibility. A mock-up of weld parts of a pressurizer safety nozzle was fabricated. The mock-up was composed of three parts: an ASTM A508 C13 nozzle, an ASTM A276 F316L stainless steel safe-end, an AISI 316L stainless steel pipe and different filler metals of nickel alloy 82/182 and AISI 316L. This work presents the results of measurements of residual strain from the outer surface of the mock-up welded in base metals and filler metals by hole-drilling strain-gage method of stress relaxation. (author)

  20. Modeling crop residue burning experiments to evaluate smoke emissions and plume transport

    Science.gov (United States)

    Luxi Zhou; Kirk R. Baker; Sergey L. Napelenok; George Pouliot; Robert Elleman; Susan M. O' Neill; Shawn P. Urbanski; David C. Wong

    2018-01-01

    Crop residue burning is a common land management practice that results in emissions of a variety of pollutants with negative health impacts. Modeling systems are used to estimate air quality impacts of crop residue burning to support retrospective regulatory assessments and also for forecasting purposes. Ground and airborne measurements from a recent field experiment...

  1. Residual stress in ceramics and ceramic composites

    International Nuclear Information System (INIS)

    Oden, M.

    1992-01-01

    Residual stresses in Si 3 N 4 and SiC have been measured with X-ray diffraction after grinding and thermal shock. The produced surface stresses are compressive after both treatments. The stresses show a strong dependence on the quenching temperature up to a certain temperature when cracks relax the stresses. The influence of the amount of reinforcing phase on the residual stress state in a Al 2 O 3 /SiC whisker composite was investigated and correlated to a modified Eshelby model. The agreement is excellent. The composite was quenched in liquid He (4K) and the stress state measured after show no relaxation of stresses, indicating elastic behaviour. An in situ strain measurement as a function of temperature conducted on a Al 2 O 3 /SiC whisker composite and a SiC/TiB 2 particle composite show very good agreement with the Eshelby model for the Al 2 O 3 /SiC system but not agreement for the SiC/TiB 2 system. The reason is believed to be stress relaxation during sample preparation. (au) (53 refs., 24 figs., 14 tabs.)

  2. FEM Analysis and Measurement of Residual Stress by Neutron Diffraction on the Dissimilar Overlay Weld Pipe

    International Nuclear Information System (INIS)

    Kim, Kang Soo; Lee, Ho Jin; Woo, Wan Chuck; Seong, Baek Seok; Byeon, Jin Gwi; Park, Kwang Soo; Jung, In Chul

    2010-01-01

    Much research has been done to estimate the residual stress on a dissimilar metal weld. There are many methods to estimate the weld residual stress and FEM (Finite Element Method) is generally used due to the advantage of the parametric study. And the X-ray method and a Hole Drilling technique for an experimental method are also usually used. The aim of this paper is to develop the appropriate FEM model to estimate the residual stresses of the dissimilar overlay weld pipe. For this, firstly, the specimen of the dissimilar overlay weld pipe was manufactured. The SA 508 Gr3 nozzle, the SA 182 safe end and SA376 pipe were welded by the Alloy 182. And the overlay weld by the Alloy 52M was performed. The residual stress of this specimen was measured by using the Neutron Diffraction device in the HANARO (High-flux Advanced Neutron Application ReactOr) research reactor, KAERI (Korea Atomic Energy Research Institute). Secondly, FEM Model on the dissimilar overlay weld pipe was made and analyzed by the ABAQUS Code (ABAQUS, 2004). Thermal analysis and stress analysis were performed, and the residual stress was calculated. Thirdly, the results of the FEM analysis were compared with those of the experimental methods

  3. Improved structural integrity through advances in reliable residual stress measurement: the impact of ENGIN-X

    Science.gov (United States)

    Edwards, L.; Santisteban, J. R.

    The determination of accurate reliable residual stresses is critical to many fields of structural integrity. Neutron stress measurement is a non-destructive technique that uniquely provides insights into stress fields deep within engineering components and structures. As such, it has become an increasingly important tool within engineering, leading to improved manufacturing processes to reduce stress and distortion as well as to the definition of more precise lifing procedures. This paper describes the likely impact of the next generation of dedicated engineering stress diffractometers currently being constructed and the utility of the technique using examples of residual stresses both beneficial and detrimental to structural integrity.

  4. Managing woodwaste: Yield from residue

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, E. [LNS Services, Inc., North Vancouver, British Columbia (Canada); Rayner, S. [Pacific Waste Energy Inc., Burnaby, British Columbia (Canada)

    1993-12-31

    Historically, the majority of sawmill waste has been burned or buried for the sole purpose of disposal. In most jurisdictions, environmental legislation will prohibit, or render uneconomic, these practices. Many reports have been prepared to describe the forest industry`s residue and its environmental effect; although these help those looking for industry-wide or regional solutions, such as electricity generation, they have limited value for the mill manager, who has the on-hands responsibility for generation and disposal of the waste. If the mill manager can evaluate waste streams and break them down into their usable components, he can find niche market solutions for portions of the plant residue and redirect waste to poor/no-return, rather than disposal-cost, end uses. In the modern mill, residue is collected at the individual machine centre by waste conveyors that combine and mix sawdust, shavings, bark, etc. and send the result to the hog-fuel pile. The mill waste system should be analyzed to determine the measures that can improve the quality of residues and determine the volumes of any particular category before the mixing, mentioned above, occurs. After this analysis, the mill may find a niche market for a portion of its woodwaste.

  5. Synchrotron X-ray measurement of residual strain within the nose of a worn manganese steel railway crossing

    Science.gov (United States)

    Dhar, S.; Zhang, Y.; Xu, R.; Danielsen, HK; Jensen, D. Juul

    2017-07-01

    Switches and crossings are an integral part of any railway network. Plastic deformation associated with wear and rolling contact fatigue due to repeated passage of trains cause severe damage leading to the formation of surface and sub-surface cracks which ultimately may result in rail failure. Knowledge of the internal stress distribution adds to the understanding of crack propagation and may thus help to prevent catastrophic rail failures. In this work, the residual strains inside the bulk of a damaged nose of a manganese railway crossing that was in service for five years has been investigated by using differential aperture synchrotron X-ray diffraction. The main purpose of this paper is to describe how this method allows non-destructive measurement of residual strains in selected local volumes in the bulk of the rail. Measurements were conducted on the transverse surface at a position about 6.5 mm from the rail running surface of a crossing nose. The results revealed the presence of significant compressive residual strains along the running direction of the rail.

  6. Finding coevolving amino acid residues using row and column weighting of mutual information and multi-dimensional amino acid representation

    DEFF Research Database (Denmark)

    Oliveira, Rodrigo Gouveia; Pedersen, Anders Gorm

    2007-01-01

    ABSTRACT: BACKGROUND: Some amino acid residues functionally interact with each other. This interaction will result in an evolutionary co-variation between these residues - coevolution. Our goal is to find these coevolving residues. RESULTS: We present six new methods for detecting coevolving...... residues. Among other things, we suggest measures that are variants of Mutual Information, and measures that use a multidimensional representation of each residue in order to capture the physico-chemical similarities between amino acids. We created a benchmarking system, in silico, able to evaluate...

  7. TRU assay system and measurements

    International Nuclear Information System (INIS)

    Brodzinski, R.L.

    1984-02-01

    The measurement of the transuranic content of nuclear products or process residues has become increasingly important for the recovery of fissionable material from spent fuel elements, the identification of commercial fuel elements which have not yet reached full burnup, the measurement and recovery of transuranics from discarded or stored waste materials, the determination of the transuranic content in high gamma activity waste material scheduled for disposal, compliance with 10CFR61 by land burial operators/shippers, and the satisfaction of accountability requirements. Active neutron interrogation techniques measure either the prompt neutrons or the beta delayed neutrons from fission products following induced fission. These techniques normally only measure fissile transuranics ( 235 U, 239 Pu, and 241 Pu) and are commonly applied only to contact handleable waste. Passive neutron interrogation techniques, on the other hand, are capable of measuring all transuranics except 235 U with adequate sensitivity and will work on both contact handleable and high gamma activity wastes. Since the passive techniques are senstitive to a wider spectrum of transuranic isotopes than the active techniques, substantially less complex and less expensive than the active systems, and they have proven techniques for measuring small quantities of TRU in high gamma activity packages, the passive neutron TRU assay technology was chosen for development into the instruments discussed in this paper

  8. A neural measure of behavioral engagement: task-residual low-frequency blood oxygenation level-dependent activity in the precuneus.

    Science.gov (United States)

    Zhang, Sheng; Li, Chiang-Shan Ray

    2010-01-15

    Brain imaging has provided a useful tool to examine the neural processes underlying human cognition. A critical question is whether and how task engagement influences the observed regional brain activations. Here we highlighted this issue and derived a neural measure of task engagement from the task-residual low-frequency blood oxygenation level-dependent (BOLD) activity in the precuneus. Using independent component analysis, we identified brain regions in the default circuit - including the precuneus and medial prefrontal cortex (mPFC) - showing greater activation during resting as compared to task residuals in 33 individuals. Time series correlations with the posterior cingulate cortex as the seed region showed that connectivity with the precuneus was significantly stronger during resting as compared to task residuals. We hypothesized that if the task-residual BOLD activity in the precuneus reflects engagement, it should account for a certain amount of variance in task-related regional brain activation. In an additional experiment of 59 individuals performing a stop signal task, we observed that the fractional amplitude of low-frequency fluctuation (fALFF) of the precuneus but not the mPFC accounted for approximately 10% of the variance in prefrontal activation related to attentional monitoring and response inhibition. Taken together, these results suggest that task-residual fALFF in the precuneus may be a potential indicator of task engagement. This measurement may serve as a useful covariate in identifying motivation-independent neural processes that underlie the pathogenesis of a psychiatric or neurological condition.

  9. Assessment of residual life of fast breeder test reactor

    International Nuclear Information System (INIS)

    Srinivasan, G.

    2016-01-01

    The Fast Breeder Test Reactor (FBTR) is a loop type sodium cooled fast reactor and has been in operation since 1985. As a part of regulatory requirement for relicensing, residual life assessment had to be carried out. The systems are made of SS 316, and designed for creep and fatigue. The design life for creep is 100,000 h at 550°C. The design fatigue cycle for operation from shutdown to full power varies from component to component. In general, most of the components are designed for 2000 cycles. The reactor has operated mostly below the design temperatures. It is seen that enough creep-fatigue life is available for the non-replaceable, permanent components. The residual life was found to be governed by the residual ductility of the Grid Plate supporting the core after neutron irradiation. Fast flux measurements were carried out at the grid plate location. Samples were irradiated and tensile tested. Results indicate the allowable dpa for a 10% residual ductility criterion as 4.37. This gave a residual life of ~ 6 Effective Full Power Years for the reactor as of Feb 2012. Measures to reduce the neutron dose on the grid plate are being taken. (author)

  10. Experimental research on passive residual heat remove system for advanced PWR

    International Nuclear Information System (INIS)

    Huang Yanping; Zhuo Wenbin; Yang Zumao; Xiao Zejun; Chen Bingde

    2003-01-01

    The experimental and qualified results of MISAP in the research of passive residual heat remove system of advanced PWR performed in the Bubble physics and natural circulation laboratory in Nuclear Power Institute of China in the past ten years is overviewed. Further researches for engineering research and design are also suggested

  11. Residual Structures in Latent Growth Curve Modeling

    Science.gov (United States)

    Grimm, Kevin J.; Widaman, Keith F.

    2010-01-01

    Several alternatives are available for specifying the residual structure in latent growth curve modeling. Two specifications involve uncorrelated residuals and represent the most commonly used residual structures. The first, building on repeated measures analysis of variance and common specifications in multilevel models, forces residual variances…

  12. Relationship between ultrasonic Rayleigh waves and surface residual stress

    International Nuclear Information System (INIS)

    Adler, L.; Cook, K.V.; Dewey, B.R.; King, R.T.

    1977-01-01

    Local variations of Rayleigh (surface) circumferential ultrasonic wave velocity near a pipe-girth weld in large-diameter thin-wall type 316H stainless steel pipe were measured. The weldment was similar to those anticipated for the Liquid Metal Fast Breeder Reactor (LMFBR) piping systems. The residual stress distribution was estimated independently from shell theory for an elastic, infinite, thin shell with circumferential line loading. An upper bound on the magnitude of the residual stresses was estimated assuming the deformation of the shell was entirely elastic. The pattern of surface wave velocity variations matches the theoretical residual stress pattern closely. It is suggested that the monitoring of surface wave velocity variations might be used for characterizing residual stress patterns near critical welds in piping, aiding in design calculations, and for in-service monitoring of the state of stress of weldments

  13. Probabilistic reliability analyses to detect weak points in secondary-side residual heat removal systems of KWU PWR plants

    International Nuclear Information System (INIS)

    Schilling, R.

    1984-01-01

    Requirements made by Federal German licensing authorities called for the analysis of the second-side residual heat removal systems of new PWR plants with regard to availability, possible weak points and the balanced nature of the overall system for different incident sequences. Following a description of the generic concept and the process and safety-related systems for steam generator feed and main steam discharge, the reliability of the latter is analyzed for the small break LOCA and emergency power mode incidents, weak points in the process systems are identified, remedial measures of a system-specific and test-strategic nature are presented and their contribution to improving system availability is quantified. A comparison with the results of the German Risk Study on Nuclear Power Plants (GRS) shows a distinct reduction in core meltdown frequency. (orig.)

  14. Residual stress determination of rail tread using a laser ultrasonic technique

    International Nuclear Information System (INIS)

    Wang, Jing; Feng, Qibo

    2015-01-01

    A non-destructive method for measuring the residual stress on rail tread that uses a laser-generated ultrasonic technique is proposed. The residual stress distribution of different parts on both the new rail and used rail were examined. The surface acoustic waves (SAWs) are excited by a scanning line laser and detected by a laser ultrasonic detection system. A digital correlation method was used for calculating the changes in velocity of SAWs, which reflects the stress distribution. A wavelet de-noising technique and a least square fit were used for signal processing to improve the measurement accuracy. The effects of ultrasonic propagation distance and surface roughness on the determination of residual stress were analyzed and simulated. Results from the study demonstrate that the stress distribution results are accordant with the practical situation, and the laser-generated SAWs technique is a promising tool for the determination of residual stress in the railway inspection and other industrial testing fields. (paper)

  15. Design of specimen for weld residual stress simulation

    International Nuclear Information System (INIS)

    Kim, Jin Weon; Park, Jong Sun; Lee, Kyung Soo

    2008-01-01

    The objective of this study is to design a laboratory specimen for simulating residual stress of circumferential butt welding of pipe. Specimen type and method for residual stress generation were proposed based on the review of prior studies and parametric finite element simulation. To prove the proposed specimen type and loading method, the residual stress was generated using the designed specimen by applying proposed method and was measured. The measured residual stress using X-ray diffraction reasonably agreed with the results of finite element simulation considered in the specimen design. Comparison of residual strains measured at several locations of specimen and given by finite element simulation also showed good agreement. Therefore, it is indicated that the designed specimen can reasonably simulate the residual stress of circumferential butt welding of pipe

  16. Environmental insecticide residues from tsetse fly control measures in Uganda

    International Nuclear Information System (INIS)

    Sserunjoji-Sebalija, J.

    1976-01-01

    Up to June 1974 areas in Uganda totalling 8600km 2 have been successfully reclaimed from tsetse fly infestation by ground spray of 3% dieldrin water emulsions. A search for equally effective but less persistent and toxic compounds against tsetse flies has been unsuccessful. Fourteen insecticide formulations have been tested for their persistence on tree bark surfaces and, therefore, their availability and toxicity to the target tsetse flies. Only those compounds with a high immediate insecticidal activity (some higher than dieldrin) like endosulfan, Chlorfenvinphos and propoxur could merit further consideration in tsetse control. While some were toxic to tsetse as fresh deposits, they lacked sufficient persistence. A study of the environmental implication from the continued use of the highly persistent and toxic dieldrin has provided useful data on residues likely to be found both in terrestrial and aquatic fauna and flora. These are generally low. Moreover, there is evidence of degradation in some fish species (Protopterus aethiopicus and Clarias). Also, dilution factors and adsorption involving the muddy nature of water run-off, etc., and controlled burning of grasses after tsetse eradication would tend to inactivate the residual insecticide and protect aquatic systems. The general findings have indicated less risk than anticipated of the environmental contamination from tsetse control by application of persistent and toxic insecticides. (author)

  17. Review of Agricultural Plastic Mulching and Its Residual Pollution and Prevention Measures In China

    Directory of Open Access Journals (Sweden)

    YAN Chang-rong

    2014-04-01

    Full Text Available Agricultural plastic film mulching is one of important technologies, but the plastic film pollution has been a serious issue for agri-cultural sustainable development in China. System analysis of this technique and its residue pollution and control ways have vital practicalsignificance for rational application of agricultural plastil film. In this paper, on the basis of our previous work,agricultural plastic filmmulching, its residue pollution and control technologies were concluded. Some important conclusions were found that, the amount of plasticfilm and mulching area had kept increasing with annual increasing rate about 8% since the 80s of the 20th century. From 1991 to 2011, thedensity of plastic film utilized increased 3-10 times, but it has very sharply different spatial pattern in different province. In general, the northand west China has high value, and the increase rate is also huge in the past 20 years. The crops of utilized mulching plastic film have extendedfrom cash crops to grain crops, and the order of crop area is followed by maize, vegetable, cotton, tobacco and peanut. The main functions ofmulching plastic film are keeping soil moisture and increasing soil temperature, against weeds and insect. At the same time, its side effectsappear with continuous utilization. The main problems are residues left in soil to destroy soil structure, impress soil permeability, impede seedgermination as well as water and nutrients uptaking, and block crop root system development. It has very serious pollution for the field utilizedplastic mulching film for long term. The residual amount in soil is about 71.9-259.1 kg·hm-2, and has sharply spatial difference. The residualamount in soil. In Northwest China, is more serious than that in North China and Southwest China. Because of difference of tillage and appli-canon ways, there are great differences on the area and shape of the plastic film piece left in soil. The main types of shapes are flaky

  18. Measurement of the fluorescence of crop residues: A tool for controlling soil erosion

    Science.gov (United States)

    Daughtry, C. S. T.; Mcmurtrey, J. E., III; Chappelle, E. W.; Hunter, W. J.

    1994-01-01

    Management of crop residues, the portion of a crop left in the field after harvest, is an important conservation practice for minimizing soil erosion and for improving water quality. Quantification of crop residue cover is required to evaluate the effectiveness of conservation tillage practices. Methods are needed to quantify residue cover that are rapid, accurate, and objective. The fluorescence of crop residue was found to be a broadband phenomenon with emission maxima at 420 to 495 nm for excitations of 350 to 420 nm. Soils had low intensity broadband emissions over the 400 to 690 nm region for excitations of 300 to 600 nm. The range of relative fluorescence intensities for the crop residues was much greater than the fluorescence observed of the soils. As the crop residues decompose their blue fluorescence values approach the fluorescence of the soil. Fluorescence techniques are concluded to be less ambiguous and better suited for discriminating crop residues and soils than reflectance methods. If properly implemented, fluorescence techniques can be used to quantify, not only crop residue cover, but also photosynthetic efficiency in the field.

  19. A stochastic logical system approach to model and optimal control of cyclic variation of residual gas fraction in combustion engines

    International Nuclear Information System (INIS)

    Wu, Yuhu; Kumar, Madan; Shen, Tielong

    2016-01-01

    Highlights: • An in-cylinder pressure based measuring method for the RGF is derived. • A stochastic logical dynamical model is proposed to represent the transient behavior of the RGF. • The receding horizon controller is designed to reduce the variance of the RGF. • The effectiveness of the proposed model and control approach is validated by the experimental evidence. - Abstract: In four stroke internal combustion engines, residual gas from the previous cycle is an important factor influencing the combustion quality of the current cycle, and the residual gas fraction (RGF) is a popular index to monitor the influence of residual gas. This paper investigates the cycle-to-cycle transient behavior of the RGF in the view of systems theory and proposes a multi-valued logic-based control strategy for attenuation of RGF fluctuation. First, an in-cylinder pressure sensor-based method for measuring the RGF is provided by following the physics of the in-cylinder transient state of four-stroke internal combustion engines. Then, the stochastic property of the RGF is examined based on statistical data obtained by conducting experiments on a full-scale gasoline engine test bench. Based on the observation of the examination, a stochastic logical transient model is proposed to represent the cycle-to-cycle transient behavior of the RGF, and with the model an optimal feedback control law, which targets on rejection of the RGF fluctuation, is derived in the framework of stochastic logical system theory. Finally, experimental results are demonstrated to show the effectiveness of the proposed model and the control strategy.

  20. Simplified analysis of passive residual heat removal systems for small size PWR's

    International Nuclear Information System (INIS)

    Botelho, D.A.

    1992-02-01

    The function and general objectives of a passive residual heat removal system for small size PWR's are defined. The characteristic configuration, the components and the operation modes of this system are concisely described. A preliminary conceptual specification of this system, for a small size PWR of 400 MW thermal, is made analogous to the decay heat removal system of the AP-600 reactor. It is shown by analytic models that such passive systems can dissipate 2% of nominal power within the thermal limits allowed to the reactor fuel elements. (author)

  1. Aging assessment of Residual Heat Removal systems in Boiling Water Reactors

    International Nuclear Information System (INIS)

    Lofaro, R.J.; Aggarwal, S.

    1992-01-01

    The effects of aging on Residual Heat Removal systems in Boiling Water Reactors have been studied as part of the Nuclear Plant Aging Research Program. The aging phenomena has been characterized by analyzing operating experience from various national data bases. In addition, actual plant data was obtained to supplement and validate the data base findings

  2. Calculation of residual electricity mixes when accounting for the EECS (European Electricity Certificate System) - The need for a harmonised system

    International Nuclear Information System (INIS)

    Raadal, H. L.; Nyland, C. A.; Hanssen, O. J.

    2009-01-01

    According to the Electricity Directive, suppliers of electricity must disclose their electricity portfolio with regards to energy source and environmental impact. This paper gives some examples of disclosure systems and residual electricity mixes in Norway, Sweden and Finland, compared to an approach based on a common regional disclosure. Disclosures based on the E-TRACK standard are presented, as well as the variation in CO 2 emissions from different residual mixes. The results from this study clearly show that there is a need for a harmonised, transparent and reliable system for the accounting of electricity disclosure in Europe. (author)

  3. Residual soil nitrate content and profitability of five cropping systems in northwest Iowa.

    Science.gov (United States)

    De Haan, Robert L; Schuiteman, Matthew A; Vos, Ronald J

    2017-01-01

    Many communities in the Midwestern United States obtain their drinking water from shallow alluvial wells that are vulnerable to contamination by NO3-N from the surrounding agricultural landscape. The objective of this research was to assess cropping systems with the potential to produce a reasonable return for farmers while simultaneously reducing the risk of NO3-N movement into these shallow aquifers. From 2009 to 2013 we conducted a field experiment in northwest Iowa in which we evaluated five cropping systems for residual (late fall) soil NO3-N content and profitability. Soil samples were taken annually from the top 30 cm of the soil profile in June and August, and from the top 180 cm in November (late fall). The November samples were divided into 30 cm increments for analysis. Average residual NO3-N content in the top 180 cm of the soil profile following the 2010 to 2013 cropping years was 134 kg ha-1 for continuous maize (Zea mays L.) with a cereal rye (Secale cereale L.) cover crop, 18 kg ha-1 for perennial grass, 60 kg ha-1 for a three year oat (Avena sativa L.)-alfalfa (Medicago sativa L.)-maize rotation, 85 kg ha-1 for a two year oat/red clover (Trifolium pratense L.)-maize rotation, and 90 kg ha-1 for a three year soybean (Glycine max (L.) Merr.)-winter wheat (Triticum aestivum L.)-maize rotation. However, residual NO3-N in the 90 to 180 cm increment of the soil profile was not significantly higher in the oat-alfalfa-maize cropping system than the perennial grass system. For 2010 to 2013, average profit ($ ha-1 yr-1) was 531 for continuous corn, 347 for soybean-winter wheat-maize, 264 for oat-alfalfa-maize, 140 for oat/red clover-maize, and -384 (loss) for perennial grass. Considering both residual soil NO3-N and profitability data, the oat-alfalfa-maize rotation performed the best in this setting. However, given current economic pressures widespread adoption is likely to require changes in public policy.

  4. Residual energy applications program systems analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Yngve, P.W.

    1980-10-01

    Current DOE plans call for building an Energy Applied Systems Test (EAST) Facility at the Savannah River Plant in close proximity to the 140 to 150/sup 0/F waste heat from one of several operating nuclear reactors. The waste water flow from each reactor, approximately 165,000 gpm, provides a unique opportunity to test the performance and operating characteristics of large-scale waste heat power generation and heat pump system concepts. This report provides a preliminary description of the potential end-use market, parametric data on heat pump and the power generation system technology, a preliminary listing of EAST Facility requirements, and an example of an integrated industrial park utilizing the technology to maximize economic pay back. The parametric heat pump analysis concluded that dual-fluid Rankine cycle heat pumps with capacities as high as 400 x 10/sup 6/ Btu/h, can utilize large sources of low temperature residual heat to provide 300/sup 0/F saturatd steam for an industrial park. The before tax return on investment for this concept is 36.2%. The analysis also concluded that smaller modular heat pumps could fulfill the same objective while sacrificing only a moderate rate of return. The parametric power generation analysis concluded that multi-pressure Rankine cycle systems not only are superior to single pressure systems, but can also be developed for large systems (approx. = 17 MW/sub e/). This same technology is applicable to smaller systems at the sacrifice of higher investment per unit output.

  5. Residual entanglement and sudden death: A direct connection

    International Nuclear Information System (INIS)

    Oliveira, J.G.G. de; Peixoto de Faria, J.G.; Nemes, M.C.

    2011-01-01

    We explore the results of [V. Coffman, et al., Phys. Rev. A 61 (2000) 052306] derived for general tripartite states in a dynamical context. We study a class of physically motivated tripartite systems. We show that whenever entanglement sudden death occurs in one of the partitions residual entanglement will appear. For fourpartite systems however, the appearance of residual entanglement is not conditioned by sudden death of entanglement. We can only say that if sudden death of entanglement occurs in some partition there will certainly be residual entanglement. -- Highlights: ► For tripartite systems we show there exists residual entanglement if sudden death occurs. ► For fourpartite systems, the residual entanglement is not conditioned by sudden death. ► If sudden death of entanglement occurs there will certainly be residual entanglement.

  6. Selected emissions and efficiencies of energy systems based on logging and sawmill residues

    International Nuclear Information System (INIS)

    Maelkki, Helena; Virtanen, Yrjoe

    2003-01-01

    Bioenergy has an important role in the implementation of the Kyoto agreement in Finland. The main sources of wood residues for energy production are logging areas and sawmills. The use of forest chips can be of great significance in reducing carbon dioxide emissions by replacing fossil fuels. Increasing the use of forest chips has environmental benefits, but it also includes possible environmental disadvantages. Therefore, system research is needed to assess the forest chip utilisation prospects for their environmental quality to secure sustainable forest management. Life-cycle methodology was developed and applied to assess environmental burdens and impacts of the logging and sawmill residues throughout the whole fuel chain from the forest to energy production. According to the study, the energy efficiencies of the forest chip systems are quite high. Net CO 2 emissions of the systems are low owing to the low input of external primary energy required to operate the systems. Although wood energy is renewable, it has many similarities with fossil fuels, e.g. as the emissions of the conversion phase are significant

  7. Development of uranium reduction system for incineration residue generated at LWR nuclear fuel fabrication plants in Japan

    International Nuclear Information System (INIS)

    Sampei, T.; Sato, T.; Suzuki, N.; Kai, H.; Hirata, Y.

    1993-01-01

    The major portion of combustible solid wastes generated at LWR nuclear fuel fabrication plants in Japan is incinerated and stored in a warehouse. The uranium content in the incineration residue is higher compared with other categories of wastes, although only a small amount of incineration residue is generated. Hence, in the future uranium should be removed from incineration residues before they are reduced to a level appropriate for the final disposal. A system for processing the incineration residue for uranium removal has been developed and tested based on the information obtained through laboratory experiments and engineering scale tests

  8. Harvesting and handling agricultural residues for energy

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, B.M.; Summer, H.R.

    1986-05-01

    Significant progress in understanding the needs for design of agricultural residue collection and handling systems has been made but additional research is required. Recommendations are made for research to (a) integrate residue collection and handling systems into general agricultural practices through the development of multi-use equipment and total harvest systems; (b) improve methods for routine evaluation of agricultural residue resources, possibly through remote sensing and image processing; (c) analyze biomass properties to obtain detailed data relevant to engineering design and analysis; (d) evaluate long-term environmental, social, and agronomic impacts of residue collection; (e) develop improved equipment with higher capacities to reduce residue collection and handling costs, with emphasis on optimal design of complete systems including collection, transportation, processing, storage, and utilization; and (f) produce standard forms of biomass fuels or products to enhance material handling and expand biomass markets through improved reliability and automatic control of biomass conversion and other utilization systems. 118 references.

  9. Statistical properties of proportional residual energy intake as a new measure of energetic efficiency.

    Science.gov (United States)

    Zamani, Pouya

    2017-08-01

    Traditional ratio measures of efficiency, including feed conversion ratio (FCR), gross milk efficiency (GME), gross energy efficiency (GEE) and net energy efficiency (NEE) may have some statistical problems including high correlations with milk yield. Residual energy intake (REI) or residual feed intake (RFI) is another criterion, proposed to overcome the problems attributed to the traditional ratio criteria, but it does not account for production or intake levels. For example, the same REI value could be considerable for low producing and negligible for high producing cows. The aim of this study was to propose a new measure of efficiency to overcome the problems attributed to the previous criteria. A total of 1478 monthly records of 268 lactating Holstein cows were used for this study. In addition to FCR, GME, GEE, NEE and REI, a new criterion called proportional residual energy intake (PREI) was calculated as REI to net energy intake ratio and defined as proportion of net energy intake lost as REI. The PREI had an average of -0·02 and range of -0·36 to 0·27, meaning that the least efficient cow lost 0·27 of her net energy intake as REI, while the most efficient animal saved 0·36 of her net energy intake as less REI. Traditional ratio criteria (FCR, GME, GEE and NEE) had high correlations with milk and fat corrected milk yields (absolute values from 0·469 to 0·816), while the REI and PREI had low correlations (0·000 to 0·069) with milk production. The results showed that the traditional ratio criteria (FCR, GME, GEE and NEE) are highly influenced by production traits, while the REI and PREI are independent of production level. Moreover, the PREI adjusts the REI magnitude for intake level. It seems that the PREI could be considered as a worthwhile measure of efficiency for future studies.

  10. Financial cost-benefit analysis of investment possibilities in district heating system on wood residues

    Directory of Open Access Journals (Sweden)

    Stošić Ivan

    2017-01-01

    Full Text Available The purpose of this research is to provide feasibility analysis of a long-term sustainable development concept for district heating based on wood residues. In this paper, the experimental study has been conducted starting from the data collected by field researches in municipality of Trstenik (town in Serbia with district heating system currently based on heavy fuel oil and lignite. Using the method of Financial Cost-Benefit Analysis, this study evaluates financial efficiency of investment in district heating plant based on wood residues and energy savings in district heating system. Findings show that such investment could be profitable from the financial point of view: Net Present Value of investment is positive, Financial Rate of Return is high (30.69%, and the pay-back period is relatively favourable (7 years. Moreover, the presented SWOT indicates that there are realistic prospects of implementation of district heating based on wood residues. However, this does not mean everything will go smoothly and easily, keeping in mind a number of challenges that each new concept of district heating contains immanently. Nevertheless, the results of this research could provide useful inputs for the decision makers when selecting appropriate models for improving performance of municipal district heating systems.

  11. Concept Design of a Gravity Core Cooling Tank as a Passive Residual Heat Removal System for a Research Reactor

    International Nuclear Information System (INIS)

    Lee, Kwonyeong; Chi, Daeyoung; Kim, Seong Hoon; Seo, Kyoungwoo; Yoon, Juhyeon

    2014-01-01

    A core downward flow is considered to use a plate type fuel because it is benefit to install the fuel in the core. If a flow inversion from a downward to upward flow in the core by a natural circulation is introduced within a high heat flux region of residual heat, the fuel fails instantly due to zero flow. Therefore, the core downward flow should be sufficiently maintained until the residual heat is in a low heat flux region. In a small power research reactor, inertia generated by a flywheel of the PCP can maintain a downward flow shortly and resolve the problem of a flow inversion. However, a high power research reactor more than 10 MW should have an additional method to have a longer downward flow until a low heat flux. Usually, other research reactors have selected an active residual heat removal system as a safety class. But, an active safety system is difficult to design and expensive to construct. A Gravity Core Cooling Tank (GCCT) beside the reactor pool with a Residual Heat Removal Pipe connecting two pools was developed and designed preliminarily as a passive residual heat removal system for an open-pool type research reactor. It is very simple to design and cheap to construct. Additionally, a non-safety, but active residual heat removal system is applied with the GCCT. It is a Pool Water Cooling and Purification System. It can improve the usability of the research reactor by removing the thermal waves, and purify the reactor pool, the Primary Cooling System, and the GCCT. Moreover, it can reduce the pool top radiation level

  12. Study on grey theoretical model of passive residual heat removal system

    International Nuclear Information System (INIS)

    Zhou Tao; Yang Ruichang; Su, G.H.; Jia Dounan; Sugiyama, K.

    2004-01-01

    Natural Circulation Passive Residual Heat Removal System is treated as a Grey System by taking into account of its complexity and uncertainty of effect for factors each other. The magnitude and degree of some factors are confirmed by grey incidence analysis method; The one-one relationship of some variables is built by GM (1, 1) model; The relationship between key factor and other effect factors is built (1, 4) model. Grey model shows its more advantage of precision through comparing with multivariate model. (author)

  13. Low-power implementation of polyphase filters in Quadratic Residue Number System

    DEFF Research Database (Denmark)

    Cardarilli, Gian Carlo; Re, Andrea Del; Nannarelli, Alberto

    2004-01-01

    The aim of this work is the reduction of the power dissipated in digital filters, while maintaining the timing unchanged. A polyphase filter bank in the Quadratic Residue Number System (QRNS) has been implemented and then compared, in terms of performance, area, and power dissipation...... to the implementation of a polyphase filter bank in the traditional two's complement system (TCS). The resulting implementations, designed to have the same clock rates, show that the QRNS filter is smaller and consumes less power than the TCS one....

  14. Estimation of residual stress in cold rolled iron-disks from strain measurements on the high resolution Fourier diffractometer

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Balagurov, A.M.; Taran, Yu.V.

    1995-01-01

    The results of estimating residual stresses in cold rolled iron disks by measurements with the high resolution Fourier diffractometer (HRFD) at the IBR-2 pulsed reactor are presented. These measurements were made for calibration of magnetic and ultrasonic measurements carried out at the Fraunhofer-Institute for Nondestructive Testing in Saarbrucken (Germany). The tested objects were cold rolled steel disks of 2.5 mm thickness and diameter of about 500 mm used for forming small, gas pressure tanks. Neutron diffraction experiments were carried out at the scattering angle 2θ=+152 d eg with resolution Δd/d=1.5·10 -3 . The gauge volume was chosen according to the magnetic measurements lateral resolution 20x20 mm 2 . In the nearest future the neutron diffraction measurements with cold rolled iron disks at the scattering angle 2θ=±90 0 are planned. Also the texture analysis will be included in the Rietveld refinement procedure for more correct calculation of residual stress fields in the cold rolled materials. 8 refs., 10 figs., 1 tab

  15. Determination of crop residues and the physical and mechanical properties of soil in different tillage systems

    Directory of Open Access Journals (Sweden)

    P Ahmadi Moghaddam

    2016-04-01

    Full Text Available Introduction: Monitoring and management of soil quality is crucial for sustaining soil function in ecosystem. Tillage is one of the management operations that drastically affect soil physical quality. Conservation tillage methods are one of the efficient solutions in agriculture to reduce the soil erosion, air pollution, energy consumption, and the costs, if there is a proper management on the crop residues. One of the serious problems in agriculture is soil erosion which is rapidly increased in the recent decades as the intensity of tillage increases. This phenomenon occurs more in sloping lands or in the fields which are lacking from crop residues and organic materials. The conservation tillage has an important role in minimizing soil erosion and developing the quality of soil. Hence, it has attracted the attention of more researchers and farmers in the recent years. Materials and Methods: In this study, the effect of different tillage methods has been investigated on the crop residues, mechanical resistance of soil, and the stability of aggregates. This research was performed on the agricultural fields of Urmia University, located in Nazloo zone in 2012. Wheat and barley were planted in these fields, consecutively. The soil texture of these fields was loamy clay and the factorial experiments were done in a completely randomized block design. In this study, effect of three tillage systems including tillage with moldboard (conventional tillage, tillage with disk plow (reduced tillage, chisel plow (minimum tillage and control treatment on some soil physical properties was investigated. Depth is second factor that was investigated in three levels including 0-60, 60-140, and 140-200 mm. Moreover, the effect of different percentages of crop residues on the rolling resistance of non-driving wheels was studied in a soil bin. The contents of crop residues have been measured by using the linear transects and image processing methods. In the linear

  16. Analysis of plastic residues in maple sap and syrup collected from tubing systems sanitized with isopropyl alcohol

    Directory of Open Access Journals (Sweden)

    Luc Lagacé

    2017-05-01

    Full Text Available A plastic tubing system operated under vacuum is usually used to collect sap from maple trees during spring time to produce maple syrup. This system is commonly sanitized with isopropyl alcohol (IPA to remove microbial contamination colonizing the system during the sugar season. Questions have been raised whether IPA would contribute to the leaching of plastic residues in maple sap and syrup coming from sanitized systems. First, an extraction experiment was performed in the lab on commercial plastic tubing materials that were submitted to IPA under harsh conditions. The results of the GC-MS analysis revealed the presence of many compounds that served has target for further tests. Secondly, tests were done on early and mid-season maple sap and syrup coming from many sugarbushes using IPA or not to determine potential concentrations of plastic residues. Results obtained from sap and syrup samples showed that no quantifiable (< 1–75 μg/L concentration of any plastic molecules tested was determined in all samples coming from IPA treated or not treated systems. However, some samples of first sap run used as a rinse solution to be discarded before the season start and that were coming from non sanitized or IPA sanitized systems, showed quantifiable concentrations of chemical residue such as ultraviolet protector (octabenzone. These results show that IPA can be safely used to sanitize maple sap collection system in regards to the leaching of plastic residues in maple sap and syrup and reinforced the need to thoroughly rinse the tubing system at the beginning of the season for both sanitized and non sanitized systems. Keywords: Food science, Food safety, Materials chemistry

  17. Numerical simulation of residual stress in piping components at Framatome-ANP

    International Nuclear Information System (INIS)

    Gilies, P.; Franco, C.; Cipiere, M.-F.; Ould, P.

    2005-01-01

    Numerous manufacturing processes induce residual stresses and distortions in piping components and associated welds: quenching of cast pipings, machining and welding. In Pressurized Water Reactors, most of the components have a large thickness for sustaining pressure and distortions are a minor source of concern. This is not the case for residual stresses which may have a strong influence on several type of damage such as fatigue, corrosion, brittle fracture. In low toughness components, residual stress fields may contribute to ductile tearing initiation. These potential damages are mitigated after welding by stress relief heat treatment, which is applied in a systematic manner to ferritic components of the primary system in nuclear reactors. This treatment is not applied on austenitic piping for which the heat treatment temperature is limited due to the risk of sensitization and residual stresses are difficult to eliminate completely. Since on site measurements are costly and difficult to perform, numerical simulation appears to be an attractive tool for estimating residual stress distributions. Framatome-ANP is working on modelling manufacturing processes with that purpose in mind. This paper presents three kinds of applications illustrating efforts on welding, quenching and machining simulation. First a comparison is shown between computations and measurements of residual stress induced by welding of a dissimilar weld metal junction. Then numerical simulations of quenching of a cast stainless steel nozzle are presented. Finally quenching followed by machining and grinding of this cast component are considered in a full simulation of the manufacturing process. Computed distortions and residual stresses are compared with experimental measurements at different stages of the manufacturing process. (authors)

  18. Effect of residual stress on the integrity of a branch connection

    International Nuclear Information System (INIS)

    Law, M.; Kirstein, O.; Luzin, V.

    2012-01-01

    A new connection to an existing gas pipeline was made by hot-tapping, welding directly onto a pressurised pipeline. The welds were not post-weld heat treated, causing significant residual stresses. The critical weld had residual stresses determined by neutron diffraction using ANSTO's residual stress diffractometer, Kowari. The maximum measured residual stress (290 MPa) was 60% of the yield strength. The magnitudes of errors from a number of sources were estimated. An integrity assessment of the welded branch connection was performed with the measured residual stress values and with residual stress distributions from the BS 7910 and API 579 analysis codes. Analysis using estimates of residual stress from API 579 overestimated the critical crack size. Highlights: ► Residual stresses were measured by neutron diffraction in a thick section, non post-weld heat treated ferritic weld. ► There is little published data on these welds. ► The work compares the measured residual stresses with code-based residual stress distributions.

  19. Influence of organic waste and residue mud additions on chemical, physical and microbial properties of bauxite residue sand.

    Science.gov (United States)

    Jones, Benjamin E H; Haynes, Richard J; Phillips, Ian R

    2011-02-01

    In an alumina refinery, bauxite ore is treated with sodium hydroxide at high temperatures and pressures and for every tone of alumina produced, about 2 tones of alkaline, saline bauxite processing waste is also produced. At Alcoa, a dry stacking system of disposal is used, and it is the sand fraction of the processing waste that is rehabilitated. There is little information available regarding the most appropriate amendments to add to the processing sand to aid in revegetation. The purpose of this study was to investigate how the addition of organic wastes (biosolids and poultry manure), in the presence or absence of added residue mud, would affect the properties of the residue sand and its suitability for revegetation. Samples of freshly deposited residue sand were collected from Alcoa's Kwinana refinery. Samples were treated with phosphogypsum (2% v/v), incubated, and leached. A laboratory experiment was then set up in which the two organic wastes were applied at 0 or the equivalent to 60 tones ha(-1) in combination with residue mud added at rates of 0%, 10% and 20% v/v. Samples were incubated for 8 weeks, after which, key chemical, physical and microbial properties of the residue sand were measured along with seed germination. Additions of residue mud increased exchangeable Na(+), ESP and the pH, and HCO (3) (-) and Na(+) concentrations in saturation paste extracts. Additions of biosolids and poultry manure increased concentrations of extractable P, NH (4) (+) , K, Mg, Cu, Zn, Mn and Fe. Addition of residue mud, in combination with organic wastes, caused a marked decrease in macroporosity and a concomitant increase in mesoporosity, available water holding capacity and the quantity of water held at field capacity. With increasing residue mud additions, the percentage of sample present as sand particles (2 mm diameter) increased; greatest aggregation occurred where a combination of residue mud and poultry manure were added. Stability of aggregates, as measured by

  20. Residual stresses in a composite steel tube measured by neutron diffraction

    International Nuclear Information System (INIS)

    Taran, Yu.V.; Balagurov, A.M.; Zlokazov, V.B.; Schreiber, J.; Stuhr, U.; Kockelmann, H.

    2006-01-01

    The triaxial residual stresses in a composite tube from an austenitic stainless steel with a welded ferritic steel cladding were measured by the time-of-flight neutron diffraction method on the POLDI instrument at the PSI SINQ facility. The POLDI results are compared to the results obtained by the destructive turning out method and theoretical predictions of calculations by the finite element method. Only for the tangential component of the stress tensor the semiquantitative agreement of all used methods was observed. There is a clear discrepancy between the results of the different methods in the axial component. For the radial component all methods reveal quite small stresses, however, with some distinct differences in their distributions

  1. Gastric residual volume (GRV) and gastric contents measurement by refractometry.

    Science.gov (United States)

    Chang, Wei-Kuo; McClave, Stephen A; Hsieh, Chung-Bao; Chao, You-Chen

    2007-01-01

    Traditional use of gastric residual volumes (GRVs), obtained by aspiration from a nasogastric tube, is inaccurate and cannot differentiate components of the gastric contents (gastric secretion vs delivered formula). The use of refractometry and 3 mathematical equations has been proposed as a method to calculate the formula concentration, GRV, and formula volume. In this paper, we have validated these mathematical equations so that they can be implemented in clinical practice. Each of 16 patients receiving a nasogastric tube had 50 mL of water followed by 100 mL of dietary formula (Osmolite HN, Abbott Laboratories, Columbus, OH) infused into the stomach. After mixing, gastric content was aspirated for the first Brix value (BV) measurement by refractometry. Then, 50 mL of water was infused into the stomach and a second BV was measured. The procedure of infusion of dietary formula (100 mL) and then water (50 mL) was repeated and followed by subsequent BV measurement. The same procedure was performed in an in vitro experiment. Formula concentration, GRV, and formula volume were calculated from the derived mathematical equations. The formula concentrations, GRVs, and formula volumes calculated by using refractometry and the mathematical equations were close to the true values obtained from both in vivo and in vitro validation experiments. Using this method, measurement of the BV of gastric contents is simple, reproducible, and inexpensive. Refractometry and the derived mathematical equations may be used to measure formula concentration, GRV, and formula volume, and also to serve as a tool for monitoring the gastric contents of patients receiving nasogastric feeding.

  2. Calculation of Residual Electricity Mixes when Accounting for the EECS (European Electricity Certificate System — the Need for a Harmonised System

    Directory of Open Access Journals (Sweden)

    Ole Jørgen Hanssen

    2009-07-01

    Full Text Available According to the Electricity Directive, suppliers of electricity must disclose their electricity portfolio with regards to energy source and environmental impact. This paper gives some examples of disclosure systems and residual electricity mixes in Norway, Sweden and Finland, compared to an approach based on a common regional disclosure. Disclosures based on the E-TRACK standard are presented, as well as the variation in CO2 emissions from different residual mixes. The results from this study clearly show that there is a need for a harmonised, transparent and reliable system for the accounting of electricity disclosure in Europe.

  3. Allowable residual contamination levels: transuranic advanced disposal systems for defense waste

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Napier, B.A.

    1982-01-01

    An evaluation of advanced disposal systems for defense transuranic (TRU) wastes is being conducted using the Allowable Residual Contamination Level (ARCL) method. The ARCL method is based on compliance with a radiation dose rate limit through a site-specific analysis of the potential for radiation exposure to individuals. For defense TRU wastes at the Hanford Site near Richland, Washington, various advanced disposal techniques are being studied to determine their potential for application. This paper presents a discussion of the results of the first stage of the TRU advanced disposal systems project

  4. Residual Stress Analysis Based on Acoustic and Optical Methods

    Directory of Open Access Journals (Sweden)

    Sanichiro Yoshida

    2016-02-01

    Full Text Available Co-application of acoustoelasticity and optical interferometry to residual stress analysis is discussed. The underlying idea is to combine the advantages of both methods. Acoustoelasticity is capable of evaluating a residual stress absolutely but it is a single point measurement. Optical interferometry is able to measure deformation yielding two-dimensional, full-field data, but it is not suitable for absolute evaluation of residual stresses. By theoretically relating the deformation data to residual stresses, and calibrating it with absolute residual stress evaluated at a reference point, it is possible to measure residual stresses quantitatively, nondestructively and two-dimensionally. The feasibility of the idea has been tested with a butt-jointed dissimilar plate specimen. A steel plate 18.5 mm wide, 50 mm long and 3.37 mm thick is braze-jointed to a cemented carbide plate of the same dimension along the 18.5 mm-side. Acoustoelasticity evaluates the elastic modulus at reference points via acoustic velocity measurement. A tensile load is applied to the specimen at a constant pulling rate in a stress range substantially lower than the yield stress. Optical interferometry measures the resulting acceleration field. Based on the theory of harmonic oscillation, the acceleration field is correlated to compressive and tensile residual stresses qualitatively. The acoustic and optical results show reasonable agreement in the compressive and tensile residual stresses, indicating the feasibility of the idea.

  5. A comparison of residual stresses in built-up steel beams using hole-drilling method

    International Nuclear Information System (INIS)

    Nawafleh, M. A.; Hunaiti, Y. M.; Younes, R. M.

    2009-01-01

    Residual stresses have a significant effect on the stability resistance of metal building systems. An experimental program was conducted to measure these stresses in built-up steel beams using incremental hole-drilling method. The experimental results reveal that the predicted residual stress type of pattern for built-up I-sections with fillet welds on one side of the web is not the same as the pattern of residual stresses in built-up I-sections with fillet welds on both sides of the web

  6. Application of in-plane x-ray diffraction technique for residual stress measurement of TiN film/WC-Co alloy

    International Nuclear Information System (INIS)

    Takago, Shigeki; Yasui, Haruyuki; Awazu, Kaoru; Sasaki, Toshihiko; Hirose, Yukio; Sakurai, Kenji

    2006-01-01

    An in-plane X-ray diffraction technique was used to measure the residual stress of a CVD (chemical vapor deposition) TiN-coated WC-Co alloy. We could obtain the diffraction pattern from a thin film layer, eliminating that of the substrate. In the case of a conventional X-ray diffractometer, the X-ray penetration depth is about few μm. However, for a grazing incidence beam it is only 0.2μm. Depth profiles of residual stress in TiN film layer were evaluated by the present method and the conventional sin 2 ψ technique. We concluded that the in-plane diffraction technique enables us to determine the residual stress in a DVD-TiN film having an oriented texture. It was found that the residual tensile stress generated a mismatch of the coefficient of thermal expansion between the film and the substrate. (author)

  7. Application of in-plane x-ray diffraction technique for residual stress measurement of TiN film/WC-Co alloy

    Energy Technology Data Exchange (ETDEWEB)

    Takago, Shigeki; Yasui, Haruyuki; Awazu, Kaoru [Industrial Research Inst. of Ishikawa, Kanazawa, Ishikawa (Japan); Sasaki, Toshihiko; Hirose, Yukio [Kanazawa Univ., Dept. of Materials Science and Engineering, Kanazawa, Ishikawa (Japan); Sakurai, Kenji [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan)

    2006-06-15

    An in-plane X-ray diffraction technique was used to measure the residual stress of a CVD (chemical vapor deposition) TiN-coated WC-Co alloy. We could obtain the diffraction pattern from a thin film layer, eliminating that of the substrate. In the case of a conventional X-ray diffractometer, the X-ray penetration depth is about few {mu}m. However, for a grazing incidence beam it is only 0.2{mu}m. Depth profiles of residual stress in TiN film layer were evaluated by the present method and the conventional sin{sup 2}{psi} technique. We concluded that the in-plane diffraction technique enables us to determine the residual stress in a DVD-TiN film having an oriented texture. It was found that the residual tensile stress generated a mismatch of the coefficient of thermal expansion between the film and the substrate. (author)

  8. Fusion evaporation-residue cross sections for 28Si+40Ca at E(28Si)=309, 397, and 452 MeV

    International Nuclear Information System (INIS)

    Vineyard, M.F.; Bauer, J.S.; Crum, J.F.; Gosdin, C.H.; Trotter, R.S.; Kovar, D.G.; Beck, C.; Henderson, D.J.; Janssens, R.V.F.; Wilkins, B.D.; Maguire, C.F.; Mateja, J.F.; Prosser, F.W.; Stephans, G.S.F.

    1992-01-01

    Velocity distributions of mass-identified evaporation residues produced in the 28 Si+ 40 Ca reaction have been measured at bombarding energies of 309, 397, and 452 MeV using time-of-flight techniques. These distributions were used to identify evaporation residues and to separate the complete-fusion and incomplete-fusion components. Angular distributions and upper limits for the total evaporation-residue and complete-fusion evaporation-residue cross sections were extracted at all three bombarding energies. The complete-fusion evaporation-residue cross sections and the deduced critical angular momenta are compared with earlier measurements and the predictions of existing models. The ratios of the complete-fusion evaporation-residue cross section to the total evaporation-residue cross section, along with those measured for the 28 Si+ 12 C and 28 Si+ 28 Si systems at the same energies, support the entrance-channel mass-asymmetry dependence of the incomplete-fusion evaporation-residue process reported earlier

  9. Improvement of the Raman detection system for pesticide residues on/in fruits and vegetables

    Science.gov (United States)

    Li, Yan; Peng, Yankun; Zhai, Chen; Chao, Kuanglin; Qin, Jianwei

    2017-05-01

    Pesticide residue is one of the major challenges to fruits safety, while the traditional detection methods of pesticide residue on fruits and vegetables can't afford the demand of rapid detection in actual production because of timeconsuming. Thus rapid identification and detection methods for pesticide residue are urgently needed at present. While most Raman detection systems in the market are spot detection systems, which limits the range of application. In the study, our lab develops a Raman detection system to achieve area-scan thorough the self-developed spot detection Raman system with a control software and two devices. In the system, the scanning area is composed of many scanning spots, which means every spot needs to be detected and more time will be taken than area-scan Raman system. But lower detection limit will be achieved in this method. And some detection device is needed towards fruits and vegetables in different shape. Two detection devices are developed to detect spherical fruits and leaf vegetables. During the detection, the device will make spherical fruit rotate along its axis of symmetry, and leaf vegetables will be pressed in the test surface smoothly. The detection probe will be set to keep a proper distance to the surface of fruits and vegetables. It should make sure the laser shins on the surface of spherical fruit vertically. And two software are used to detect spherical fruits and leaf vegetables will be integrated to one, which make the operator easier to switch. Accordingly two detection devices for spherical fruits and leaf vegetables will also be portable devices to make it easier to change. In the study, a new way is developed to achieve area-scan result by spot-scan Raman detection system.

  10. Residual strains in girth-welded linepipe

    International Nuclear Information System (INIS)

    MacEwen, S.R.; Holden, T.M.; Powell, B.M.; Lazor, R.B.

    1987-07-01

    High resolution neutron diffraction has been used to measure the axial residual strains in and adjacent to a multipass girth weld in a complete section of 914 mm (36 inches) diameter, 16 mm (5/8 inch) wall, linepipe. The experiments were carried out at the NRU reactor, Chalk River using the L3 triple-axis spectrometer. The through-wall distribution of axial residual strain was measured at 0, 4, 8, 20 and 50 mm from the weld centerline; the axial variation was determined 1, 5, 8, and 13 mm from the inside surface of the pipe wall. The results have been compared with strain gauge measurements on the weld surface and with through-wall residual stress distributions determined using the block-layering and removal technique

  11. On-line measurement of residual monomer during polymerisation of acrylamide using ultrasonics

    International Nuclear Information System (INIS)

    Ponraju, D.; Sebastian, Letha; Viswanathan, S.; Natarajan, A.; Palanichamy, P.; Jayakumar, T.; Baldev Raj

    1996-01-01

    An ultrasonic technique for the estimation of residual acrylamide monomer during the polymerization of aqueous acrylamide solution has been investigated. Polyacrylamide gel medium serves as a sensitive medium for detection and dosimetry of fast and thermal neutrons. This technique is based on the fact that the velocity of ultrasonic wave increases with the increase in elasticity due to polymerization. The percentage of residual acrylamide monomer is estimated using ultraviolet spectrophotometric analysis. The ultrasonic velocity is correlated with the residual monomer concentration

  12. Residual soil nitrate content and profitability of five cropping systems in northwest Iowa.

    Directory of Open Access Journals (Sweden)

    Robert L De Haan

    Full Text Available Many communities in the Midwestern United States obtain their drinking water from shallow alluvial wells that are vulnerable to contamination by NO3-N from the surrounding agricultural landscape. The objective of this research was to assess cropping systems with the potential to produce a reasonable return for farmers while simultaneously reducing the risk of NO3-N movement into these shallow aquifers. From 2009 to 2013 we conducted a field experiment in northwest Iowa in which we evaluated five cropping systems for residual (late fall soil NO3-N content and profitability. Soil samples were taken annually from the top 30 cm of the soil profile in June and August, and from the top 180 cm in November (late fall. The November samples were divided into 30 cm increments for analysis. Average residual NO3-N content in the top 180 cm of the soil profile following the 2010 to 2013 cropping years was 134 kg ha-1 for continuous maize (Zea mays L. with a cereal rye (Secale cereale L. cover crop, 18 kg ha-1 for perennial grass, 60 kg ha-1 for a three year oat (Avena sativa L.-alfalfa (Medicago sativa L.-maize rotation, 85 kg ha-1 for a two year oat/red clover (Trifolium pratense L.-maize rotation, and 90 kg ha-1 for a three year soybean (Glycine max (L. Merr.-winter wheat (Triticum aestivum L.-maize rotation. However, residual NO3-N in the 90 to 180 cm increment of the soil profile was not significantly higher in the oat-alfalfa-maize cropping system than the perennial grass system. For 2010 to 2013, average profit ($ ha-1 yr-1 was 531 for continuous corn, 347 for soybean-winter wheat-maize, 264 for oat-alfalfa-maize, 140 for oat/red clover-maize, and -384 (loss for perennial grass. Considering both residual soil NO3-N and profitability data, the oat-alfalfa-maize rotation performed the best in this setting. However, given current economic pressures widespread adoption is likely to require changes in public policy.

  13. Fertilizer nitrogen recovery efficiencies in crop production systems of China with and without consideration of the residual effect of nitrogen

    International Nuclear Information System (INIS)

    Yan, Xiaoyuan; Ti, Chaopu; Zhu, Zhaoliang; Vitousek, Peter; Chen, Deli; Leip, Adrian; Cai, Zucong

    2014-01-01

    China is the world’s largest consumer of synthetic nitrogen (N), where very low rates of fertilizer N recovery in crops have been reported, raising discussion around whether fertilizer N use can be significantly reduced without yield penalties. However, using recovery rates as indicator ignores a possible residual effect of fertilizer N—a factor often unknown at large scales. Such residual effect might store N in the soil increasing N availability for subsequent crops. The objectives of the present study were therefore to quantify the residual effect of fertilizer N in China and to obtain more realistic rates of the accumulative fertilizer N recovery efficiency (RE) in crop production systems of China. Long-term spatially-extensive data on crop production, fertilizer N and other N inputs to croplands in China were used to analyze the relationship between crop N uptake and fertilizer N input (or total N input), and to estimate the amount of residual fertilizer N. Measurement results of cropland soil N content in two time periods were obtained to compare the change in the soil N pool. At the provincial scale, it was found that there is a linear relationship between crop N uptake and fertilizer N input or total N input. With the increase in fertilizer N input, annual direct fertilizer N RE decreased and was indeed low (below 30% in recent years), while its residual effect increased continuously, to the point that 40–68% of applied fertilizer was used for crop production sooner or later. The residual effect was evidenced by a buildup of soil N and a large difference between nitrogen use efficiencies of long-term and short-term experiments. (paper)

  14. A productivity and cost comparison of two systems for producing biomass fuel from roadside forest treatment residues

    Science.gov (United States)

    Nathaniel Anderson; Woodam Chung; Dan Loeffler; John Greg Jones

    2012-01-01

    Forest operations generate large quantities of forest biomass residues that can be used for production of bioenergy and bioproducts. However, a significant portion of recoverable residues are inaccessible to large chip vans, making use financially infeasible. New production systems must be developed to increase productivity and reduce costs to facilitate use of these...

  15. Tillage and residue management effect on soil properties, crop performance and energy relations in greengram (Vigna radiata L. under maize-based cropping systems

    Directory of Open Access Journals (Sweden)

    J.R. Meena

    2015-12-01

    Full Text Available Effect of tillage and crop residue management on soil properties, crop performance, energy relations and economics in greengram (Vigna radiata L. was evaluated under four maize-based cropping systems in an Inceptisol of Delhi, India. Soil bulk density, hydraulic conductivity and aggregation at 0–15 cm layer were significantly affected both by tillage and cropping systems, while zero tillage significantly increased the soil organic carbon content. Yields of greengram were significantly higher in maize–chickpea and maize–mustard systems, more so with residue addition. When no residue was added, conventional tillage required 20% higher energy inputs than the zero tillage, while the residue addition increased the energy output in both tillage practices. Maize–wheat–greengram cropping system involved the maximum energy requirement and the cost of production. However, the largest net return was obtained from the maize–chickpea–greengram system under the conventional tillage with residue incorporation. Although zero tillage resulted in better aggregation, C content and N availability in soil, and reduced the energy inputs, cultivation of summer greengram appeared to be profitable under conventional tillage system with residue incorporation.

  16. Measurement of residual stress by using focused ion beam and digital image correlation method in thin-sized wires used for steel cords

    International Nuclear Information System (INIS)

    Yang, Y S; Park, C G; Bae, J G

    2008-01-01

    Residual stress in the axial direction of the steel wires has been measured by using a method based on the combination of the focused ion beam (FIB) milling and digital image correlation software. That is, the residual stress was calculated from the measured displacement field before and after the introduction of a slot along the steel wires. The displacement was obtained by the digital correlation analysis of high-resolution scanning electron micrographs, while the slot was introduced by FIB milling with low energy beam. The fitting of the experimental results to an analytical model with the independent Young's modulus determined allows us to find the residual stress. The complete experimental procedures are described and its feasibilities are also evaluated for the thin-sized steel wires

  17. Residual stresses in plastic random systems

    NARCIS (Netherlands)

    Alava, M.J.; Karttunen, M.E.J.; Niskanen, K.J.

    1995-01-01

    We show that yielding in elastic plastic materials creates residual stresses when local disorder is present. The intensity of these stresses grows with the external stress and degree of initial disorder. The one-dimensional model we employ also yields a discontinuous transition to perfect plasticity

  18. Surface preparation for XRD residual stress measurements; Preparacao de superficie para medicao de tensoes residuais em soldagem por DRX

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, Andrii; Oliveira, Bruno Jose de; Scotti, Americo, E-mail: asmwelder@gmail.com, E-mail: brunojoliveira7@gmail.com, E-mail: ascotti@mecanica.ufu.br [Universidade Federal de Uberlandia (UFU), MG (Brazil)

    2016-10-15

    A characteristic feature of the X Ray Diffraction (XRD) method for stress determination is that measurements occur at a thin surface layer. Steel sheets come with surfaces modified by lamination, cleaning (sandblasting, grinding) and even corrosion, which induce residual stresses or roughness inherent to the material. Therefore, surface preparation prior to the residual stress measurement is essential, although no standard procedure seems to be available. A general recommendation is to remove a thin layer so that only residual stresses related to the welding process will be measured. In this study, the use of portable electrolytic equipment was evaluated for mechanized surface material removal. Chemical compositions of electrolytic solutions and the influence of current on the removed material, removal time and temperature during the process were studied. As a result, a suitable chemical solution for electro etching of low carbon steel was developed and a set of “soft” parameters that allowed the removal of about 300 um in a reasonable time was found. Higher currents reduce the removal time, yet increasing the consumption of the solution and plate temperature (which could adversely alter the microstructure or generate thermal stresses). Furthermore, the influence of these parameters on the operability of the process was demonstrated. (author)

  19. Vision-Inspection System for Residue Monitoring of Ready-Mixed Concrete Trucks

    Directory of Open Access Journals (Sweden)

    Deok-Seok Seo

    2015-01-01

    Full Text Available The objective of this study is to propose a vision-inspection system that improves the quality management for ready-mixed concrete (RMC. The proposed system can serve as an alternative to the current visual inspection method for the detection of residues in agitator drum of RMC truck. To propose the system, concept development and the system-level design should be executed. The design considerations of the system are derived from the hardware properties of RMC truck and the conditions of RMC factory, and then 6 major components of the system are selected in the stage of system level design. The prototype of system was applied to a real RMC plant and tested for verification of its utility and efficiency. It is expected that the proposed system can be employed as a practical means to increase the efficiency of quality management for RMC.

  20. Residual stress profiles in veneering ceramic on Y-TZP, alumina and ZTA frameworks: measurement by hole-drilling.

    Science.gov (United States)

    Fukushima, K A; Sadoun, M J; Cesar, P F; Mainjot, A K

    2014-02-01

    The residual stress profile developed within the veneering ceramic during the manufacturing process is an important predicting factor in chipping failures, which constitute a well-known problem with yttria-tetragonal-zirconia polycrystal (Y-TZP) based restorations. The objectives of this study are to measure and to compare the residual stress profile in the veneering ceramic layered on three different polycrystalline ceramic framework materials: Y-TZP, alumina polycrystal (AL) and zirconia toughened alumina (ZTA). The stress profile was measured with the hole-drilling method in bilayered disk samples of 19 mm diameter with a 0.7 mm thick Y-TZP, AL or ZTA framework and a 1.5mm thick layer of the corresponding veneering ceramic. The AL samples exhibited increasing compressive stresses with depth, while compressive stresses switching into interior tensile stresses were measured in Y-TZP samples. ZTA samples exhibited compressive stress at the ceramic surface, decreasing with depth up to 0.6mm from the surface, and then becoming compressive again near the framework. Y-TZP samples exhibited a less favorable stress profile than those of AL and ZTA samples. Results support the hypothesis of the occurrence of structural changes within the Y-TZP surface in contact with the veneering ceramic to explain the presence of tensile stresses. Even if the presence of Y-TZP in the alumina matrix seems to negatively affect the residual stress profiles in ZTA samples in comparison with AL samples, the registered profiles remain positive in terms of veneer fracture resistance. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Formation of toroidal pre-heat plasma without residual magnetic field for high-beta pinch experiments

    International Nuclear Information System (INIS)

    Ikeda, Nagayasu; Tamaru, Ken; Nagata, Akiyoshi.

    1979-01-01

    Formation of toroidal pre-heat plasma was studied. The pre-heat plasma without residual magnetic field was made by chopping the current for pre-heat, A small toroidal-pinch system was used for the experiment. The magnetic field was measured with a magnetic probe. One turn loop was used for the measurement of the toroidal one-turn electric field. A pair of Rogoski coil was used for the measurement of plasma current. The dependence of residual magnetic field on chopping time was measured. By fast chopping of the primary current in the pre-heating circuit, the poloidal magnetic field was reduced to several percent within 5 microsecond. After chopping, no instability was observed in the principal discharge plasma produced within several microsecond. As the conclusion, it can be said that the control of residual field can be made by current chopping. (Kato, T.)

  2. Discontinuous Residue and Theme in Higher-Order Semiotic: A Case for Interlocking Systems

    Directory of Open Access Journals (Sweden)

    Ali Akbar Farahani

    2008-11-01

    Full Text Available The fallacy persists in discourse analysis research to explore lexicogrammatical phenomena detached from any adjacent plane of the meaning potential. In an attempt to dispel this and toss out some preconceived notions about what a modern SFG vantage point should involve, this study homes in on one aspect of SFG within prose fiction in particular, which is very revealing in terms of how separate system networks are actually in synergistic simultaneity, and how SFG allows one , phenomenally well, to bring such synergies out, getting to the heart of the fact that language pervasively operates on multiple planes of textuality simultaneously. Thus, building upon Halliday’s 2004 work, the quest is if it is interpersonally significant when the Residue is split into two parts; more importantly, if it is also laced with some lexicogrammatical quality on the textual plane, in light of the fairly well-entrenched assumption that there is always Theme at work when the Residue is split. Halliday is the only scholar to touch upon the topic of Discontinuous Residue and its relationship to Marked Theme in the culmination of his groundbreaking career, i.e. his 2004 work. Having driven home the proposal to make into a watchword the ubiquity of interlocking macro-semantic system networks, some pedagogical and research implications and suggestions flowing from this are brought up.

  3. Influence of veneer thickness on residual stress profile in veneering ceramic: measurement by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2012-02-01

    The veneering process of frameworks induces residual stresses and can initiate cracks when combined with functional stresses. The stress distribution within the veneering ceramic as a function of depth is a key factor influencing failure by chipping. This is a well-known problem with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objective of this study is to investigate the influence of veneer thickness on the stress profile in zirconia- and metal-based structures. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. The stress profile was measured in bilayered disc samples of 20 mm diameter, with a 1 mm thick zirconia or metal framework. Different veneering ceramic thicknesses were performed: 1 mm, 1.5 mm, 2 mm, 2.5 mm and 3 mm. All samples exhibited the same type of stress vs. depth profile, starting with compressive at the ceramic surface, decreasing with depth up to 0.5-1.0 mm from the surface, and then becoming compressive again near the framework, except for the 1.5 mm-veneered zirconia samples which exhibited interior tensile stresses. Stresses in the surface of metal samples were not influenced by veneer thickness. Variation of interior stresses at 1.2 mm from the surface in function of veneer thickness was inverted for metal and zirconia samples. Veneer thickness influences in an opposite way the residual stress profile in metal- and in zirconia-based structures. A three-step approach and the hypothesis of the crystalline transformation are discussed to explain the less favorable residual stress development in zirconia samples. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Enzymatic activity measured by microcalorimetry in soil amended with organic residues

    Directory of Open Access Journals (Sweden)

    Karina Cenciani

    2011-08-01

    Full Text Available Enzymatic activity is an important property for soil quality evaluation. Two sequences of experiments were carried out in order to evaluate the enzymatic activity in a soil (Rhodic Eutrudox amended with cattle manure, earthworm casts, or sewage sludges from the municipalities of Barueri and Franca. The activity of commercial enzymes was measured by microcalorimetry in the same soil samples after sterilization. In the first experiment, the enzyme activities of cellulase, protease, and urease were determined in the soil samples during a three month period. In the second sequence of experiments, the thermal effect of the commercial enzymes cellulase, protease, and urease on sterilized soil samples under the same tretaments was monitored for a period of 46 days. The experimental design was randomized and arranged as factorial scheme in five treatments x seven samplings with five replications. The treatment effects were statistically evaluated by one-way analysis of variance. Tukey´s test was used to compare means at p < 0.05. The presence of different sources of organic residues increased the enzymatic activity in the sampling period. Cattle manure induced the highest enzymatic activity, followed by municipal sewage sludge, whereas earthworm casts induced the lowest activity, but differed from control treatment. The thermal effect on the enzyme activity of commercial cellulase, protease, and urease showed a variety of time peaks. These values probably oscillated due to soil physical-chemical factors affecting the enzyme activity on the residues.

  5. Western Canadian wood residue production and consumption trends

    International Nuclear Information System (INIS)

    McCloy, B.

    2006-01-01

    This presentation considered various trends in western Canadian wood residue production and consumption. Potential markets for wood residue products were also discussed. Trends were reviewed by province for the years 2000-2004. British Columbia (BC) is currently the largest producer of residue in the country, and also retains the largest surpluses of bark, sawdust and shavings. Wood residues in BC are used in pulp and plywood mill production, as well as in the creation of particleboard and MDF. Surplus mill wood residue production in the province has greatly increased due to the Mountain Pine Beetle (MPB) infestation, which has in turn spurred expansion of the BC interior sawmill industry. The infestation has also resulted in a glut of pulp chips. Current wood residue products in Alberta are mostly used in pulp mill combined heat and power (CHP) systems, as well as for wood pellet production and the creation of particleboard and MDF. It was noted that surplus residues are rapidly declining in the province. Saskatchewan's wood residue storage piles are estimated to contain 2,900,000 BDt, while Manitoba surpluses are relatively minor. It was suggested that high natural gas prices have increased the payback on wood energy systems to approximately 2 years. The value of wood residue is now greater than $100/BDt as a substitute for natural gas once the wood energy system has been fully depreciated. Sawmills may now wish to consider equipping themselves to sell wood residue products, as most sawmills only require 20 per cent of their residues for heating purposes. It was concluded that markets for hog fuel wood pellets should be developed in Canada and internationally. Future markets may also develop if natural gas currently used in pulp mill power boilers and lime kilns is replaced with wood residue energy systems. refs., tabs., figs

  6. REST: a computer system for estimating logging residue by using the line-intersect method

    Science.gov (United States)

    A. Jeff Martin

    1975-01-01

    A computer program was designed to accept logging-residue measurements obtained by line-intersect sampling and transform them into summaries useful for the land manager. The features of the program, along with inputs and outputs, are briefly described, with a note on machine compatibility.

  7. The Continuation Study of the Measurement of Residual Monomer from theDenture Base After Three Month Worn by Gas Chromatography on the Radiationand Non Radiation Worker

    International Nuclear Information System (INIS)

    Isyuniarto; Winoto

    2000-01-01

    Residual monomer measurement on the radiation and non radiation workerafter three month worn the denture has been done. The aim of the research isto investigated residual monomer concentration on after three month worn. Thedenture base material, made of resin acrylic, sometimes is cause mucosairritation in the mouth, and dental irritation or allergic reaction, becauseof residual monomer that left on the mouth cavity. In this research two groupwere needed there are the radiation and non radiation worker, the level ofthe residual monomer count by gas chromatography analysis. The result of thisresearch showed that the level of residual monomer of two group are same orthere have same level of the limit value. The measurement result is in therange of 0.1783 ± 0.011 mg/l to 0.1790 ± 0.004 mg/l. (author)

  8. Residue-based Coordinated Selection and Parameter Design of Multiple Power System Stabilizers (PSSs)

    DEFF Research Database (Denmark)

    Su, Chi; Hu, Weihao; Fang, Jiakun

    2013-01-01

    data from time domain simulations. Then a coordinated approach for multiple PSS selection and parameter design based on residue method is proposed and realized in MATLAB m-files. Particle swarm optimization (PSO) is adopted in the coordination process. The IEEE 39-bus New England system model...

  9. Evaluation of Residual Stresses using Ring Core Method

    Directory of Open Access Journals (Sweden)

    Holý S.

    2010-06-01

    Full Text Available The method for measuring residual stresses using ring-core method is described. Basic relations are given for residual stress measurement along the specimen depth and simplified method is described for average residual stress estimation in the drilled layer for known principal stress directions. The estimation of calculated coefficients using FEM is described. Comparison of method sensitivity is made with hole-drilling method. The device for method application is described and an example of experiment is introduced. The accuracy of method is discussed. The influence of strain gauge rosette misalignment to the evaluated residual stresses is performed using FEM.

  10. Residual tree damage during selection cuts using two skidding systems in the Missouri Ozarks

    Science.gov (United States)

    Robert L. Ficklin; John P. Dwyer; Bruce E. Cutter; Tom Draper

    1997-01-01

    Today, there is an interest in using alternative silvicultural systems like selection and two-aged management, because the public finds these systems more acceptable than clearcutting. However, repeated entries into forest stands to remove timber increase the risk of residual stand damage. Harvest techniques are desirable that (1) reduce the risk of stand damage and (2...

  11. Stress-free reference for neutron diffraction measurement of residual stress in butt-welded joints of austenitic stainless steel pipes

    International Nuclear Information System (INIS)

    Maekawa, Akira; Takahashi, Tsuneo; Tsuji, Takashi; Suzuki, Hiroshi; Moriai, Atsushi

    2012-01-01

    Stress-free lattice spacing d_0 has the most influence on reliability of neutron stress measurements made using an angle dispersive method. However, it is hard to evaluate the lattice spacing of welded structures and ductile materials such as stainless steel accurately. In this study, suitable measurement conditions for d_0 of welded pipe joints of austenitic stainless steel were discussed. The d_0 values derived from {311} and {111} reflections, which are often used in austenitic stainless steel for residual stress measurement, were examined. Comparison of the residual strains and stresses evaluated using the obtained d_0 and the finite element analysis showed that the way the d_0 values were chosen affected the measurement accuracy significantly. The stress measurement accuracy was remarkably improved when the {311} reflection was used and the proper d_0 value was chosen in the respective neutron diffraction measurements. For instance, for the axial diffraction measurements using the {311} reflection, it was recommended that only the axial d_0 value of the {311} reflection be used; the measurements using the {111} reflection were less accurate due to the large Young's modulus. Additionally, a lower diffraction angle was judged to be one of the factors leading to a decrease of the strain measurement accuracy. (author)

  12. Aging/Systems Interaction Study, Component Residual Lifetime Evaluation and Feasibility of Relicensing. Progress report, FY 1985

    International Nuclear Information System (INIS)

    Close, J.A.; Jacobs, P.T.; Korth, G.E.; Mudlin, J.M.; Server, W.L.; Spaletta, H.W.

    1985-10-01

    This report documents the work performed on four research tasks in Fiscal Year 1985 (FY-1985) which were part of the Aging/Systems Interaction Study, Component Residual Lifetime Evaluation and Feasibility of Relicensing Project. The technical and management/institutional objectives for the project are described, followed by a description of the results of each task. The work on Task 1 involved identifying and prioritizing new research activities for the Nuclear Regulatory Commission (NRC) Nuclear Plant Aging Research (NPAR) Program. A proposed methodology and plan for aging-system interaction studies was developed in Task 2. The description of Task 3 work comprises a summary of nuclear plant life extension activities in the US, the technical basis associated with the residual life of metallic materials and a proposed plan for research on residual life assessment. Task 4 describes the initial evaluation of selected Standard Review Plan (NUREG-0800) sections to investigate the feasibility of relicensing. 14 refs., 13 figs., 20 tabs

  13. Residual nitrogen-15 recovery by corn as influenced by tillage and fertilization method

    International Nuclear Information System (INIS)

    Timmons, D.R.; Cruse, R.M.

    1991-01-01

    Tillage systems that create different surface residue conditions may also affect the recovery of residual fertilizer N during subsequent growing seasons. This study evaluated the recovery of residual labeled N fertilizer in the soil by corn (Zea mays L.) for two tillage systems and two fertilization methods. Five atom % 15 N-enriched 28% urea-ammonium nitrate solution (UAN) at 224 kg N ha -1 was either surface-applied in the fall before any primary tillage or banded (knifed in) just before planting in the spring. Continuous corn was grown with either fall moldboard-plow (MP) or ridge-till (RT) systems. After the initial growing season, the recovery of residual labeled N in the soil by corn was determined for three consecutive growing seasons, and the soil profile was sampled periodically to measure residual 15 N in the organic and inorganic pools. One year after labeled UAN application, from 16 to 27% of the initial 15 N applied was found in the organic N pool and only 1% as inorganic N[NH 4 +(NO 2 +NO 3 )-N]. After four seasons, residual 15 N in the organic N pool ranged from 13 to 24%. Less than 0.5% remained as inorganic N. Regression analyses indicated that about 5 kg 15 N ha -1 year -1 became available for both MP and RT systems with banded N, so the amounts were small. Total residual 15 N recovery by corn grain plus stover for three seasons ranged from 1.7 to 3.5%, and was greatest for spring-banded fertilizer. Because the amounts of residual 15 N utilized were too small to affect corn growth, this N source appears to be negligible when considering corn-N needs

  14. Gas composition of sludge residue profiles in a sludge treatment reed bed between loadings

    DEFF Research Database (Denmark)

    Larsen, Julie Dam; Nielsen, Steen M; Scheutz, Charlotte

    2017-01-01

    Treatment of sludge in sludge treatment reed bed systems includes dewatering and mineralization. The mineralization process, which is driven by microorganisms, produces different gas species as by-products. The pore space composition of the gas species provides useful information on the biological...... processes occurring in the sludge residue. In this study, we measured the change in composition of gas species in the pore space at different depth levels in vertical sludge residue profiles during a resting period of 32 days. The gas composition of the pore space in the sludge residue changed during...

  15. Study of the location of testing area in residual stress measurement by Moiré interferometry combined with hole-drilling method

    Science.gov (United States)

    Qin, Le; Xie, HuiMin; Zhu, RongHua; Wu, Dan; Che, ZhiGang; Zou, ShiKun

    2014-04-01

    This paper investigates the effect of the location of testing area in residual stress measurement by Moiré interferometry combined with hole-drilling method. The selection of the location of the testing area is analyzed from theory and experiment. In the theoretical study, the factors which affect the surface released radial strain ɛ r were analyzed on the basis of the formulae of the hole-drilling method, and the relations between those factors and ɛ r were established. By combining Moiré interferometry with the hole-drilling method, the residual stress of interference-fit specimen was measured to verify the theoretical analysis. According to the analysis results, the testing area for minimizing the error of strain measurement is determined. Moreover, if the orientation of the maximum principal stress is known, the value of strain will be measured with higher precision by the Moiré interferometry method.

  16. Neutron diffraction measurements of residual stress in additively manufactured stainless steel

    International Nuclear Information System (INIS)

    Brown, D.W.; Bernardin, J.D.; Carpenter, J.S.; Clausen, B.; Spernjak, D.; Thompson, J.M.

    2016-01-01

    Charpy test specimens were additively manufactured (AM) on a single stainless steel plate from a 17–4 class stainless steel using a powder-bed, laser melting technique on an EOS M280 direct metal laser sintering (DMLS) machine. Cross-hatched mesh support structures for the Charpy test specimens were varied in strut width and density to parametrically study their influence on the build stability and accuracy as the DMLS process has been known to generate parts with large amounts of residual stress. Neutron diffraction was used to profile the residual stresses in several of the AM samples before and after the samples were removed from the support structure for the purpose of determining residual stresses. The residual stresses were found to depend very little on the properties of the support structure over the limited range studied here. The largest stress component was in the long direction of each of the samples studied and was roughly 2/3 of the yield stress of the material. The stress field was altered considerably when the specimen was removed from the support structure. It was noted in this study that a single Charpy specimen developed a significant tear between the growth plate and support structure. The presence of the tear in the support structure strongly affected the observed stress field: the asymmetric tear resulted in a significantly asymmetric stress field that propagated through removal of the sample from the base plate. The altered final residual stress state of the sample as well as its observed final shape indicates that the tear initiated during the build and developed without disrupting the fabrication process, suggesting a need for in-situ monitoring.

  17. Neutron diffraction measurements of residual stress in additively manufactured stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.W.; Bernardin, J.D.; Carpenter, J.S.; Clausen, B.; Spernjak, D.; Thompson, J.M.

    2016-12-15

    Charpy test specimens were additively manufactured (AM) on a single stainless steel plate from a 17–4 class stainless steel using a powder-bed, laser melting technique on an EOS M280 direct metal laser sintering (DMLS) machine. Cross-hatched mesh support structures for the Charpy test specimens were varied in strut width and density to parametrically study their influence on the build stability and accuracy as the DMLS process has been known to generate parts with large amounts of residual stress. Neutron diffraction was used to profile the residual stresses in several of the AM samples before and after the samples were removed from the support structure for the purpose of determining residual stresses. The residual stresses were found to depend very little on the properties of the support structure over the limited range studied here. The largest stress component was in the long direction of each of the samples studied and was roughly 2/3 of the yield stress of the material. The stress field was altered considerably when the specimen was removed from the support structure. It was noted in this study that a single Charpy specimen developed a significant tear between the growth plate and support structure. The presence of the tear in the support structure strongly affected the observed stress field: the asymmetric tear resulted in a significantly asymmetric stress field that propagated through removal of the sample from the base plate. The altered final residual stress state of the sample as well as its observed final shape indicates that the tear initiated during the build and developed without disrupting the fabrication process, suggesting a need for in-situ monitoring.

  18. Method for evaluationo of the 3D residual stress field from X-ray diffraction measurements on heavy weldments

    International Nuclear Information System (INIS)

    Larsson, L.E.; Sandstroem, R.

    1982-03-01

    A method for evaluation of the three dimensional residual 30 stress distribution in heavy weldmwents has been developed. The evaluation is based on measured stress data at a number of depth levels below the plate surface. The method has been applied to two measurements on heavy weldments of A 553 B steel. Comparison to a previous evaluation shows good agreement. (Authors)

  19. Unavailability of the residual system heat removal of Angra 1 by Bayesian networks considering dependent failures

    International Nuclear Information System (INIS)

    Gomes, Many R.S.; Melo, Paulo F.F.F. e

    2015-01-01

    This work models by Bayesian networks the residual heat removal system (SRCR) of Angra I nuclear power plant, using fault tree mapping for systematically identifying all possible modes of occurrence caused by a large loss of coolant accident (large LOCA). The focus is on dependent events, such as the bridge system structure of the residual heat removal system and the occurrence of common-cause failures. We used the Netica™ tool kit, Norsys Software Corporation and Python 2.7.5 for modeling Bayesian networks and Microsoft Excel for modeling fault trees. Working with dependent events using Bayesian networks is similar to the solutions proposed by other models, beyond simple understanding and ease of application and modification throughout the analysis. The results obtained for the unavailability of the system were satisfactory, showing that in most cases the system will be available to mitigate the effects of an accident as described above. (author)

  20. Unavailability of the residual system heat removal of Angra 1 by Bayesian networks considering dependent failures

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Many R.S.; Melo, Paulo F.F.F. e, E-mail: mgomes@con.ufrj.br, E-mail: frutuoso@nuclear.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Programa de Pos-Graduacao em Engenharia Nuclear

    2015-07-01

    This work models by Bayesian networks the residual heat removal system (SRCR) of Angra I nuclear power plant, using fault tree mapping for systematically identifying all possible modes of occurrence caused by a large loss of coolant accident (large LOCA). The focus is on dependent events, such as the bridge system structure of the residual heat removal system and the occurrence of common-cause failures. We used the Netica™ tool kit, Norsys Software Corporation and Python 2.7.5 for modeling Bayesian networks and Microsoft Excel for modeling fault trees. Working with dependent events using Bayesian networks is similar to the solutions proposed by other models, beyond simple understanding and ease of application and modification throughout the analysis. The results obtained for the unavailability of the system were satisfactory, showing that in most cases the system will be available to mitigate the effects of an accident as described above. (author)

  1. A multigene array for measurable residual disease detection in AML patients undergoing SCT

    Science.gov (United States)

    Goswami, M; McGowan, K S; Lu, K; Jain, N; Candia, J; Hensel, N F; Tang, J; Calvo, K R; Battiwalla, M; Barrett, A J; Hourigan, C S

    2015-01-01

    AML is a diagnosis encompassing a diverse group of myeloid malignancies. Heterogeneous genetic etiology, together with the potential for oligoclonality within the individual patient, have made the identification of a single high-sensitivity marker of disease burden challenging. We developed a multiple gene measurable residual disease (MG-MRD) RQ–PCR array for the high-sensitivity detection of AML, retrospectively tested on 74 patients who underwent allo-SCT at the NHLBI in the period 1994–2012. MG-MRD testing on peripheral blood samples prior to transplantation demonstrated excellent concordance with traditional BM-based evaluation and improved risk stratification for post-transplant relapse and OS outcomes. Pre-SCT assessment by MG-MRD predicted all clinical relapses occurring in the first 100 days after allo-SCT compared with 57% sensitivity using WT1 RQ–PCR alone. Nine patients who were negative for WT1 prior to transplantation were correctly reclassified into a high-risk MG-MRD-positive group, associated with 100% post-transplant mortality. This study provides proof of principle that a multiple gene approach may be superior to the use of WT1 expression alone for AML residual disease detection. PMID:25665046

  2. Residual nilpotence and residual solubility of groups

    International Nuclear Information System (INIS)

    Mikhailov, R V

    2005-01-01

    The properties of the residual nilpotence and the residual solubility of groups are studied. The main objects under investigation are the class of residually nilpotent groups such that each central extension of these groups is also residually nilpotent and the class of residually soluble groups such that each Abelian extension of these groups is residually soluble. Various examples of groups not belonging to these classes are constructed by homological methods and methods of the theory of modules over group rings. Several applications of the theory under consideration are presented and problems concerning the residual nilpotence of one-relator groups are considered.

  3. Residual radioactivity of treated green diamonds.

    Science.gov (United States)

    Cassette, Philippe; Notari, Franck; Lépy, Marie-Christine; Caplan, Candice; Pierre, Sylvie; Hainschwang, Thomas; Fritsch, Emmanuel

    2017-08-01

    Treated green diamonds can show residual radioactivity, generally due to immersion in radium salts. We report various activity measurements on two radioactive diamonds. The activity was characterized by alpha and gamma ray spectrometry, and the radon emanation was measured by alpha counting of a frozen source. Even when no residual radium contamination can be identified, measurable alpha and high-energy beta emissions could be detected. The potential health impact of radioactive diamonds and their status with regard to the regulatory policy for radioactive products are discussed. Copyright © 2017. Published by Elsevier Ltd.

  4. Neutron diffraction measurements for the determination of residual stresses in MMC tensile and fatigue specimens

    DEFF Research Database (Denmark)

    Fiori, F.; Girardin, E.; Giuliani, A.

    2000-01-01

    have been performed at RISO (Roskilde, DK) and HMI-BENSC (Berlin, D), for the determination of residual stress in AA2124 + 17% SiCp and AA359 + 20% SiCp specimens, submitted to tensile and fatigue tests. For each of the investigated samples, the macrostress has been separated from the elastic......, residual stresses are present in both the matrix and the particles microstructure, prior to any macroscopic loading. They vary with the temperature and with the type and level of loading imposed to the material, having a strong influence on the mechanical behaviour of MMCs. Neutron diffraction measurements...... and thermal mismatch microstresses. The results show that, in general, the main contribution to the stress state of both matrix and reinforcement is given by the thermal microstresses, already existing due to heat treatment prior to mechanical tests. (C) 2000 Elsevier Science B.V. All rights reserved....

  5. Residual stresses in multilayer ceramic capacitors: measurement and computation

    NARCIS (Netherlands)

    Toonder, den J.M.J.; Rademaker, C.W.; Hu, C.L.

    2003-01-01

    In this paper, we present a combined experimental and computational study of the thermomechanical reliability of multilayer ceramic capacitors (MLCC's). We focus on residual stresses introduced into the components during the cooling down step of the sintering process. The technique of

  6. Cycling of grain legume residue nitrogen

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1995-01-01

    Symbiotic nitrogen fixation by legumes is the main input of nitrogen in ecological agriculture. The cycling of N-15-labelled mature pea (Pisum sativum L.) residues was studied during three years in small field plots and lysimeters. The residual organic labelled N declined rapidly during the initial...... management methods in order to conserve grain legume residue N sources within the soil-plant system....

  7. Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery.

    Directory of Open Access Journals (Sweden)

    Robert Kalescky

    2016-04-01

    Full Text Available Intra-protein information is transmitted over distances via allosteric processes. This ubiquitous protein process allows for protein function changes due to ligand binding events. Understanding protein allostery is essential to understanding protein functions. In this study, allostery in the second PDZ domain (PDZ2 in the human PTP1E protein is examined as model system to advance a recently developed rigid residue scan method combining with configurational entropy calculation and principal component analysis. The contributions from individual residues to whole-protein dynamics and allostery were systematically assessed via rigid body simulations of both unbound and ligand-bound states of the protein. The entropic contributions of individual residues to whole-protein dynamics were evaluated based on covariance-based correlation analysis of all simulations. The changes of overall protein entropy when individual residues being held rigid support that the rigidity/flexibility equilibrium in protein structure is governed by the La Châtelier's principle of chemical equilibrium. Key residues of PDZ2 allostery were identified with good agreement with NMR studies of the same protein bound to the same peptide. On the other hand, the change of entropic contribution from each residue upon perturbation revealed intrinsic differences among all the residues. The quasi-harmonic and principal component analyses of simulations without rigid residue perturbation showed a coherent allosteric mode from unbound and bound states, respectively. The projection of simulations with rigid residue perturbation onto coherent allosteric modes demonstrated the intrinsic shifting of ensemble distributions supporting the population-shift theory of protein allostery. Overall, the study presented here provides a robust and systematic approach to estimate the contribution of individual residue internal motion to overall protein dynamics and allostery.

  8. Rapid measurement of residual dipolar couplings for fast fold elucidation of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Rasia, Rodolfo M. [Jean-Pierre Ebel CNRS/CEA/UJF, Institut de Biologie Structurale (France); Lescop, Ewen [CNRS, Institut de Chimie des Substances Naturelles (France); Palatnik, Javier F. [Universidad Nacional de Rosario, Instituto de Biologia Molecular y Celular de Rosario, Facultad de Ciencias Bioquimicas y Farmaceuticas (Argentina); Boisbouvier, Jerome, E-mail: jerome.boisbouvier@ibs.fr; Brutscher, Bernhard, E-mail: Bernhard.brutscher@ibs.fr [Jean-Pierre Ebel CNRS/CEA/UJF, Institut de Biologie Structurale (France)

    2011-11-15

    It has been demonstrated that protein folds can be determined using appropriate computational protocols with NMR chemical shifts as the sole source of experimental restraints. While such approaches are very promising they still suffer from low convergence resulting in long computation times to achieve accurate results. Here we present a suite of time- and sensitivity optimized NMR experiments for rapid measurement of up to six RDCs per residue. Including such an RDC data set, measured in less than 24 h on a single aligned protein sample, greatly improves convergence of the Rosetta-NMR protocol, allowing for overnight fold calculation of small proteins. We demonstrate the performance of our fast fold calculation approach for ubiquitin as a test case, and for two RNA-binding domains of the plant protein HYL1. Structure calculations based on simulated RDC data highlight the importance of an accurate and precise set of several complementary RDCs as additional input restraints for high-quality de novo structure determination.

  9. Shutdown risk analysis for a BWR plant (residual heat removal systems)

    International Nuclear Information System (INIS)

    Rebollo Garcia, C.; Merino Teillet, A.; Cerezo, L.

    1994-01-01

    This report analyses the different risk situations which may arise during refuelling outage at Cofrentes NPP. The most critical situations are determined in terms of the small amount of coolant available and the lowest number of heat removal and water make-up systems available. The available times before the boiling point of the coolant is reached and the subsequent moment when the fuel elements are left uncovered in the event of the failure of the normal heat removal functions are determined. The analysis identifies the alternative systems which can be used besides those required by the technical specification and their capacity for residual heat removal and coolant make-up functions. (Author)

  10. Geometry of X-ray based measurement of residual strain at desired penetration depth

    Energy Technology Data Exchange (ETDEWEB)

    Morawiec, A. [Polish Academy of Sciences, Institute of Metallurgy and Materials Science, Krakow (Poland)

    2017-10-15

    X-ray based measurement of residual lattice strains at chosen penetration depth is one of the methods for investigating strain inhomogeneities in near-surface layers of polycrystalline materials. The measurement relies on determining shifts of Bragg peaks for various directions of the scattering vector with respect to the specimen. At each of these directions, to reach a given the penetration depth, a proper specimen orientation is required. The task of determining such orientations, albeit elementary, is quite intricate. The existing literature describes only partial solutions with unspecified domains of application, which fail if applied to beyond the domains. Therefore, geometric aspects of the measurement are analyzed in details. Explicit bounds on measurement parameters are given. The equation fundamental for the procedure is solved with respect to specimen orientations. For a given direction of the scattering vector, there are generally four different specimen orientations leading to the same penetration depth. This simple fact (overlooked in previous analyses) can be used for improving reliability of measurement results. Analytical formulas for goniometer angles representing these orientations are provided. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Robust fault detection of turbofan engines subject to adaptive controllers via a Total Measurable Fault Information Residual (ToMFIR) technique.

    Science.gov (United States)

    Chen, Wen; Chowdhury, Fahmida N; Djuric, Ana; Yeh, Chih-Ping

    2014-09-01

    This paper provides a new design of robust fault detection for turbofan engines with adaptive controllers. The critical issue is that the adaptive controllers can depress the faulty effects such that the actual system outputs remain the pre-specified values, making it difficult to detect faults/failures. To solve this problem, a Total Measurable Fault Information Residual (ToMFIR) technique with the aid of system transformation is adopted to detect faults in turbofan engines with adaptive controllers. This design is a ToMFIR-redundancy-based robust fault detection. The ToMFIR is first introduced and existing results are also summarized. The Detailed design process of the ToMFIRs is presented and a turbofan engine model is simulated to verify the effectiveness of the proposed ToMFIR-based fault-detection strategy. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Failure Modes and Effects Analysis (FMEA) of the Residual Heat Removal System

    International Nuclear Information System (INIS)

    Eggleston, F.T.

    1976-01-01

    The Residual Heat Removal System (RHRS) transfer heat from the Reactor Coolant System (RCS) to the reactor plant Component Cooling System (CCS) to reduce the temperature of the RCS at a controlled rate during the second part of normal plant cooldown and maintains the desired temperature until the plant is restarted. By the use of an analytic tool, the Failure Modes and Effects Analysis, it is shown that the RHRS, because of its redundant two train design, is able to accommodate any credible component single failure with the only effect being an extension in the required cooldown time, thus demonstrating the reliability of the RHRS to perform its intended function

  13. A Development of Advanced Rigorous 2 Step System for the High Resolution Residual Dose Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Hyun; Kim, Jong Woo; Kim, Jea Hyun; Lee, Jae Yong; Shin, Chang Ho [Hanyang Univ., Seoul (Korea, Republic of); Kim, Song Hyun [Kyoto University, Sennan (Japan)

    2016-10-15

    In these days, an activation problem such as residual radiation is one of the important issues. The activated devices and structures can emit the residual radiation. Therefore, the activation should be properly analyzed to make a plan for design, operation, and decontamination of nuclear facilities. For activation calculation, Rigorous 2 Step (R2S) method is introduced as following strategy: (1) the particle transport calculation is performed for an object geometry to get particle spectra and total fluxes; (2) inventories of each cell are calculated by using flux information according to irradiation and decay history; (3) the residual gamma distribution was evaluated by transport code, if needed. This scheme is based on cell calculation of used geometry. In this method, the particle spectra and total fluxes are obtained by mesh tally for activation calculation. It is useful to reduce the effects of gradient flux information. Nevertheless, several limitations are known as follows: Firstly, high relative error of spectra, when lots of meshes were used; secondly, different flux information from spectrum of void in mesh-tally. To calculate high resolution residual dose, several method are developed such as R2Smesh and MCR2S unstructured mesh. The R2Smesh method products better efficiency for obtaining neutron spectra by using fine/coarse mesh. Also, the MCR2S unstructured mesh can effectively separate void spectrum. In this study, the AR2S system was developed to combine the features of those mesh based R2S method. To confirm the AR2S system, the simple activation problem was evaluated and compared with R2S method using same division. Those results have good agreement within 0.83 %. Therefore, it is expected that the AR2S system can properly estimate an activation problem.

  14. Outgassing measurements and results used in designing the Doublet III Neutral Beam Injector System

    International Nuclear Information System (INIS)

    Yamamoto, R.M.; Harvey, J.

    1979-11-01

    Material vacuum properties played an important part in designing the Neutral Beam Injector System for General Atomic's Doublet III Tokamak. Low operating vacuum tank pressures were desired to keep re-ionization of the Neutral Beam to a minimum. Plasma contamination was also a major concern, hence stringent material impurity constraints were imposed. Outgassing Rate Measurement and Residual Gas Analyses were performed on different types of materials to determine if their vacuum properties were compatible with the Neutral Beam Injector System requirements

  15. Measurement of Water Quality Parameters for Before and After Maintenance Service in Water Filter System

    Directory of Open Access Journals (Sweden)

    Shaharudin Nuraida

    2017-01-01

    Full Text Available An adequate supply of safe drinking water is one of major ways to obtain healthy life. Water filter system is one way to improve the water quality. However, to maintain the performance of the system, it need to undergo the maintenance service. This study evaluate the requirement of maintenance service in water filter system. Water quality was measured before and after maintenance service. Parameters measured were pH, turbidity, residual chlorine, nitrate and heavy metals and these parameters were compared with National Drinking Water Quality Standards. Collection of data were involved three housing areas in Johor. The quality of drinking water from water filter system were analysed using pH meter, turbidity meter, DR6000 and Inductively Coupled Plasma-Mass Spectrometer. pH value was increased from 16.4% for before maintenance services to 30.7% for after maintenance service. Increment of removal percentage for turbidity, residual chlorine and nitrate after maintenance were 21.5, 13.6 and 26.7, respectively. This result shows that maintenance service enhance the performance of the system. However, less significant of maintenance service for enhance the removal of heavy metals which the increment of removal percentage in range 0.3 to 9.8. Only aluminium shows percentage removal for after maintenance with 92.8% lower compared to before maintenance service with 95.5%.

  16. Protein structure based prediction of catalytic residues.

    Science.gov (United States)

    Fajardo, J Eduardo; Fiser, Andras

    2013-02-22

    Worldwide structural genomics projects continue to release new protein structures at an unprecedented pace, so far nearly 6000, but only about 60% of these proteins have any sort of functional annotation. We explored a range of features that can be used for the prediction of functional residues given a known three-dimensional structure. These features include various centrality measures of nodes in graphs of interacting residues: closeness, betweenness and page-rank centrality. We also analyzed the distance of functional amino acids to the general center of mass (GCM) of the structure, relative solvent accessibility (RSA), and the use of relative entropy as a measure of sequence conservation. From the selected features, neural networks were trained to identify catalytic residues. We found that using distance to the GCM together with amino acid type provide a good discriminant function, when combined independently with sequence conservation. Using an independent test set of 29 annotated protein structures, the method returned 411 of the initial 9262 residues as the most likely to be involved in function. The output 411 residues contain 70 of the annotated 111 catalytic residues. This represents an approximately 14-fold enrichment of catalytic residues on the entire input set (corresponding to a sensitivity of 63% and a precision of 17%), a performance competitive with that of other state-of-the-art methods. We found that several of the graph based measures utilize the same underlying feature of protein structures, which can be simply and more effectively captured with the distance to GCM definition. This also has the added the advantage of simplicity and easy implementation. Meanwhile sequence conservation remains by far the most influential feature in identifying functional residues. We also found that due the rapid changes in size and composition of sequence databases, conservation calculations must be recalibrated for specific reference databases.

  17. Effects of residual stress on irradiation hardening in stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, N.; Kondo, K.; Kaji, Y. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Miwa, Y. [Nuclear Energy and Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Ibaraki-ken (Japan)

    2007-07-01

    Full text of publication follows: Structural materials in fusion reactor with water cooling system will undergo corrosion in aqueous environment and heavier irradiation than that in LWR. Irradiation assisted stress corrosion (IASCC) may be induced in stainless steels exposed in these environment for a long term of reactor operation. The IASCC is considered to be caused in a welding zone. It is difficult to predict and estimate the IASCC, because several irradiation effects (irradiation hardening, swelling, irradiation induced stress relaxation, etc) work intricately. Firstly, effects of residual stress on irradiation hardening were investigated in stainless steels. Specimens used in this study were SUS316 and SUS316L. By bending deformation, the specimens with several % plastic strain, which corresponds to weld residual stress, were prepared. Ion irradiations of 12 MeV Ni{sup 3+} were performed at 330, 400 and 550 deg. C to 45 dpa in TIARA facility at JAEA. No bent specimen was simultaneously irradiated with the bent specimen. The residual stress was estimated by X-ray residual stress measurements before and after the irradiation. The micro-hardness was measured by using nano-indenter. The irradiation hardening and the stress relaxation were changed by irradiation under bending deformation. The residual stress did not relax even for the case of the higher temperature aging at 500 deg. C for the same time of irradiation. The residual stress after ion irradiation, however, relaxed at these experimental temperatures in SUS316L. The hardness was obviously suppressed in bent SUS316L irradiated at 300 deg. C to 6 or 12 dpa. It was evident that irradiation induced stress relaxation occasionally suppressed the irradiation hardening in SUS316L. (authors)

  18. Statistical inference on residual life

    CERN Document Server

    Jeong, Jong-Hyeon

    2014-01-01

    This is a monograph on the concept of residual life, which is an alternative summary measure of time-to-event data, or survival data. The mean residual life has been used for many years under the name of life expectancy, so it is a natural concept for summarizing survival or reliability data. It is also more interpretable than the popular hazard function, especially for communications between patients and physicians regarding the efficacy of a new drug in the medical field. This book reviews existing statistical methods to infer the residual life distribution. The review and comparison includes existing inference methods for mean and median, or quantile, residual life analysis through medical data examples. The concept of the residual life is also extended to competing risks analysis. The targeted audience includes biostatisticians, graduate students, and PhD (bio)statisticians. Knowledge in survival analysis at an introductory graduate level is advisable prior to reading this book.

  19. Measurement of residual CO2 saturation at a geological storage site using hydraulic tests

    Science.gov (United States)

    Rötting, T. S.; Martinez-Landa, L.; Carrera, J.; Russian, A.; Dentz, M.; Cubillo, B.

    2012-12-01

    Estimating long term capillary trapping of CO2 in aquifers remains a key challenge for CO2 storage. Zhang et al. (2011) proposed a combination of thermal, tracer, and hydraulic experiments to estimate the amount of CO2 trapped in the formation after a CO2 push and pull test. Of these three types of experiments, hydraulic tests are the simplest to perform and possibly the most informative. However, their potential has not yet been fully exploited. Here, a methodology is presented to interpret these tests and analyze which parameters can be estimated. Numerical and analytical solutions are used to simulate a continuous injection in a porous medium where residual CO2 has caused a reduction in hydraulic conductivity and an increase in storativity over a finite thickness (a few meters) skin around the injection well. The model results are interpreted using conventional pressure build-up and diagnostic plots (a plot of the drawdown s and the logarithmic derivative d s / d ln t of the drawdown as a function of time). The methodology is applied using the hydraulic parameters estimated for the Hontomin site (Northern Spain) where a Technology Demonstration Plant (TDP) for geological CO2 storage is planned to be set up. The reduction of hydraulic conductivity causes an increase in observed drawdowns, the increased storativity in the CO2 zone causes a delay in the drawdown curve with respect to the reference curve measured before CO2 injection. The duration (characteristic time) of these effects can be used to estimate the radius of the CO2 zone. The effects of reduced permeability and increased storativity are well separated from wellbore storage and natural formation responses, even if the CO2-brine interface is inclined (i.e. the CO2 forms a cone around the well). We find that both skin hydraulic conductivity and storativity (and thus residual CO2 saturation) can be obtained from the water injection test provided that water flow rate is carefully controlled and head build

  20. MEASURING THE MASS OF SOLAR SYSTEM PLANETS USING PULSAR TIMING

    International Nuclear Information System (INIS)

    Champion, D. J.; Hobbs, G. B.; Manchester, R. N.; Edwards, R. T.; Burke-Spolaor, S.; Sarkissian, J. M.; Backer, D. C.; Bailes, M.; Bhat, N. D. R.; Van Straten, W.; Coles, W.; Demorest, P. B.; Ferdman, R. D.; Purver, M. B.; Folkner, W. M.; Hotan, A. W.; Kramer, M.; Lommen, A. N.; Nice, D. J.; Stairs, I. H.

    2010-01-01

    High-precision pulsar timing relies on a solar system ephemeris in order to convert times of arrival (TOAs) of pulses measured at an observatory to the solar system barycenter. Any error in the conversion to the barycentric TOAs leads to a systematic variation in the observed timing residuals; specifically, an incorrect planetary mass leads to a predominantly sinusoidal variation having a period and phase associated with the planet's orbital motion about the Sun. By using an array of pulsars (PSRs J0437-4715, J1744-1134, J1857+0943, J1909-3744), the masses of the planetary systems from Mercury to Saturn have been determined. These masses are consistent with the best-known masses determined by spacecraft observations, with the mass of the Jovian system, 9.547921(2) x10 -4 M sun , being significantly more accurate than the mass determined from the Pioneer and Voyager spacecraft, and consistent with but less accurate than the value from the Galileo spacecraft. While spacecraft are likely to produce the most accurate measurements for individual solar system bodies, the pulsar technique is sensitive to planetary system masses and has the potential to provide the most accurate values of these masses for some planets.

  1. Residual and Past Entropy for Concomitants of Ordered Random Variables of Morgenstern Family

    Directory of Open Access Journals (Sweden)

    M. M. Mohie EL-Din

    2015-01-01

    Full Text Available For a system, which is observed at time t, the residual and past entropies measure the uncertainty about the remaining and the past life of the distribution, respectively. In this paper, we have presented the residual and past entropy of Morgenstern family based on the concomitants of the different types of generalized order statistics (gos and give the linear transformation of such model. Characterization results for these dynamic entropies for concomitants of ordered random variables have been considered.

  2. Solow Residuals Without Capital Stocks

    DEFF Research Database (Denmark)

    Burda, Michael C.; Severgnini, Battista

    2014-01-01

    We use synthetic data generated by a prototypical stochastic growth model to assess the accuracy of the Solow residual (Solow, 1957) as a measure of total factor productivity (TFP) growth when the capital stock in use is measured with error. We propose two alternative measurements based on curren...

  3. Residual heat use generated by a 12 kW fuel cell in an electric vehicle heating system

    International Nuclear Information System (INIS)

    Colmenar-Santos, Antonio; Alberdi-Jiménez, Lucía; Nasarre-Cortés, Lorenzo; Mora-Larramona, Joaquín

    2014-01-01

    A diesel or gasoline vehicle heating is produced by the heat of the engine coolant liquid. Nevertheless, electric vehicles, due to the fact that electric motor transform directly electricity into mechanical energy through electromagnetic interactions, do not generate this heat so other method of providing it has to be developed. This study introduces the system developed in a fuel cell electric vehicle (lithium-ion battery – fuel cell) with residual heat use. The fuel cell electric vehicle is driven by a 12 kW PEM (proton exchange membrane) fuel cell. This fuel cell has an operating temperature around 50 °C. The residual heat generated was originally wasted by interaction with the environment. The new developed heating system designed integrates the heat generated by the fuel cell into the heating system of the vehicle, reducing the global energy consumption and improving the global efficiency as well. - Highlights: • Modification of heating system was done by introducing the residual heat from fuel cell. • Maximum heat achieved by the heating radiator of 9.27 kW. • Reduction of the heat dissipation by the fuel cell cooling system 1.5 kW. • Total efficiency improvement of 20% with an autonomy increase of 21 km

  4. Case study: Is the 'catch-all-plastics bin' useful in unlocking the hidden resource potential in the residual waste collection system?

    Science.gov (United States)

    Kranzinger, Lukas; Schopf, Kerstin; Pomberger, Roland; Punesch, Elisabeth

    2017-02-01

    Austria's performance in the collection of separated waste is adequate. However, the residual waste still contains substantial amounts of recyclable materials - for example, plastics, paper and board, glass and composite packaging. Plastics (lightweight packaging and similar non-packaging materials) are detected at an average mass content of 13% in residual waste. Despite this huge potential, only 3% of the total amount of residual waste (1,687,000 t y -1 ) is recycled. This implies that most of the recyclable materials contained in the residual waste are destined for thermal recovery and are lost for recycling. This pilot project, commissioned by the Land of Lower Austria, applied a holistic approach, unique in Europe, to the Lower Austrian waste management system. It aims to transfer excess quantities of plastic packaging and non-packaging recyclables from the residual waste system to the separately collected waste system by introducing a so-called 'catch-all-plastics bin'. A quantity flow model was constructed and the results showed a realistic increase in the amount of plastics collected of 33.9 wt%. This equals a calculated excess quantity of 19,638 t y -1 . The increased plastics collection resulted in a positive impact on the climate footprint (CO 2 equivalent) in line with the targets of EU Directive 94/62/EG (Circular Economy Package) and its Amendments. The new collection system involves only moderate additional costs.

  5. Soil water evaporation and crop residues

    Science.gov (United States)

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  6. Evaluation of residual stress in sputtered tantalum thin-film

    Energy Technology Data Exchange (ETDEWEB)

    Al-masha’al, Asa’ad, E-mail: asaad.al@ed.ac.uk; Bunting, Andrew; Cheung, Rebecca

    2016-05-15

    Highlights: • Tantalum thin-films have been deposited by DC magnetron sputtering system. • Thin-film stress is observed to be strongly influenced by sputtering pressure. • Transition towards the compressive stress is ascribed to the annealing at 300 °C. • Expose thin-film to air ambient or ion bombardment lead to a noticeable change in the residual stress. - Abstract: The influence of deposition conditions on the residual stress of sputtered tantalum thin-film has been evaluated in the present study. Films have been deposited by DC magnetron sputtering and curvature measurement method has been employed to calculate the residual stress of the films. Transitions of tantalum film stress from compressive to tensile state have been observed as the sputtering pressure increases. Also, the effect of annealing process at temperature range of 90–300 °C in oxygen ambient on the residual stress of the films has been studied. The results demonstrate that the residual stress of the films that have been deposited at lower sputtering pressure has become more compressive when annealed at 300 °C. Furthermore, the impact of exposure to atmospheric ambient on the tantalum film stress has been investigated by monitoring the variation of the residual stress of both annealed and unannealed films over time. The as-deposited films have been exposed to pure Argon energy bombardment and as result, a high compressive stress has been developed in the films.

  7. Financial performance of a mobile pyrolysis system used to produce biochar from sawmill residues

    Science.gov (United States)

    Dongyeob Kim; Nathaniel McLean Anderson; Woodam Chung

    2015-01-01

    Primary wood products manufacturers generate significant amounts of woody biomass residues that can be used as feedstocks for distributed-scale thermochemical conversion systems that produce valuable bioenergy and bioproducts. However, private investment in these technologies is driven primarily by financial performance, which is often unknown for new technologies with...

  8. Quadratic residues and non-residues selected topics

    CERN Document Server

    Wright, Steve

    2016-01-01

    This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.

  9. Focus on agricultural residues: Microstructure of almond hull (abstract)

    Science.gov (United States)

    Agricultural residues have historically been used as animal feed or burned for disposal. These residues, therefore, have little economic value and may end up becoming disposal problems because tighter air quality control measures may limit burning of the residues. Therefore, value-added products mad...

  10. Investigation of incomplete fusion dynamics by measurement of excitation functions in the 20Ne + 59Co system

    International Nuclear Information System (INIS)

    Singh, D.; Linda, Sneha Bharti; Giri, Pankaj K.; Singh, Smita Shree; Kumar, Harish; Afzal Ansari, M.; Ali, Rahbar; Rashid, M.H.; Guin, R.; Das, S.K.

    2015-01-01

    In the present work, an attempt has been made to address some important aspects of CF and ICF dynamics for the system 20 Ne + 59 Co in the projectile energy range ≈ 62–150 MeV by using recoil catcher activation technique with the following off-line γ-ray spectroscopy. Excitation Functions (EFs) for the following reactions: 59 Co(Ne, α p4n) 70 Ga, 59 Co(Ne, 3αp3n) 63 Zn, 59 Co (Ne, 3αp4n) 62 Zn and 59 Co (Ne, 4α3n) 60 Cu have been measured. No precursor decay contribution has been observed for these measured evaporation residues. The measured values of total fusion cross-sections of the above evaporation residues have been compared with the theoretical total complete fusion cross sections calculated by code PACE-2, which do not take into account ICF contribution

  11. Measurement of residual strain in composites by means of time-of- flight neutron diffraction

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Majumdar, S.; Richardson, J.; Saigal, A.

    1993-01-01

    Neutron diffraction time-of-flight measurements using the Intense Pulsed Neutron Source at Argonne National Laboratory have been employed to study strain in various metal- and ceramic-matrix composites. For example, measurements carried out to 900 C on a composite composed of a titanium alloy matrix and silicon carbide fibers have been used to validate theoretical assumptions in the prediction of fabrication-induced residual stress. Sapphire reinforced nickel aluminide composites have also been studied. Studies of a high-temperature ceramic superconducting composite consisting of yttrium barium copper oxide and silver with various volume fractions of silver have also been carried out. The results of these studies have provided information on the effect of Ag content on interface bonding. In addition, ceramic-matrix composites with randomly dispersed ceramic whiskers with varying fiber content have been investigated

  12. Quantification of Drive-Response Relationships Between Residues During Protein Folding.

    Science.gov (United States)

    Qi, Yifei; Im, Wonpil

    2013-08-13

    Mutual correlation and cooperativity are commonly used to describe residue-residue interactions in protein folding/function. However, these metrics do not provide any information on the causality relationships between residues. Such drive-response relationships are poorly studied in protein folding/function and difficult to measure experimentally due to technical limitations. In this study, using the information theory transfer entropy (TE) that provides a direct measurement of causality between two times series, we have quantified the drive-response relationships between residues in the folding/unfolding processes of four small proteins generated by molecular dynamics simulations. Instead of using a time-averaged single TE value, the time-dependent TE is measured with the Q-scores based on residue-residue contacts and with the statistical significance analysis along the folding/unfolding processes. The TE analysis is able to identify the driving and responding residues that are different from the highly correlated residues revealed by the mutual information analysis. In general, the driving residues have more regular secondary structures, are more buried, and show greater effects on the protein stability as well as folding and unfolding rates. In addition, the dominant driving and responding residues from the TE analysis on the whole trajectory agree with those on a single folding event, demonstrating that the drive-response relationships are preserved in the non-equilibrium process. Our study provides detailed insights into the protein folding process and has potential applications in protein engineering and interpretation of time-dependent residue-based experimental observables for protein function.

  13. Carbon balance and crop residue management in dynamic equilibrium under a no-till system in Campos Gerais

    Directory of Open Access Journals (Sweden)

    Ademir de Oliveira Ferreira

    2012-11-01

    Full Text Available The adoption of no-tillage systems (NT and the maintenance of crop residues on the soil surface result in the long-term increase of carbon (C in the system, promoting C sequestration and reducing C-CO2 emissions to the atmosphere. The purpose of this study was to evaluate the C sequestration rate and the minimum amount of crop residues required to maintain the dynamic C equilibrium (dC/dt = 0 of two soils (Typic Hapludox with different textural classes. The experiment was arranged in a 2 x 2 x 2 randomized block factorial design. The following factors were analyzed: (a two soil types: Typic Hapludox (Oxisol with medium texture (LVTM and Oxisol with clay texture (LVTA, (b two sampling layers (0-5 and 5-20 cm, and (c two sampling periods (P1 - October 2007; P2 - September 2008. Samples were collected from fields under a long-term (20 years NT system with the following crop rotations: wheat/soybean/black oat + vetch/maize (LVTM and wheat/maize/black oat + vetch/soybean (LVTA. The annual C sequestration rates were 0.83 and 0.76 Mg ha-1 for LVTM and LVTA, respectively. The estimates of the minimum amount of crop residues required to maintain a dynamic equilibrium (dC/dt = 0 were 7.13 and 6.53 Mg ha-1 year-1 for LVTM and LVTA, respectively. The C conversion rate in both studied soils was lower than that reported in other studies in the region, resulting in a greater amount of crop residues left on the soil surface.

  14. Residual dust charges in discharge afterglow

    International Nuclear Information System (INIS)

    Coueedel, L.; Mikikian, M.; Boufendi, L.; Samarian, A. A.

    2006-01-01

    An on-ground measurement of dust-particle residual charges in the afterglow of a dusty plasma was performed in a rf discharge. An upward thermophoretic force was used to balance the gravitational force. It was found that positively charged, negatively charged, and neutral dust particles coexisted for more than 1 min after the discharge was switched off. The mean residual charge for 200-nm-radius particles was measured. The dust particle mean charge is about -5e at a pressure of 1.2 mbar and about -3e at a pressure of 0.4 mbar

  15. Influence of turkey meat on residual nitrite in cured meat products.

    Science.gov (United States)

    Kilic, B; Cassens, R G; Borchert, L L

    2001-02-01

    A response surface experimental design was employed to estimate residual nitrite level at various initial nitrite concentrations, percent turkey meat in the formula, and heat quantity (F) values using a typical wiener as the test system. Pork and mechanically separated turkey were used as the meat ingredients. Residual nitrite and pH were measured at day 1, 7 days, 14 days, and 49 days after processing. Protein, fat, salt, moisture, and CIE (L*a*b*) color values were also determined. Results showed that the effect of turkey meat on residual nitrite level was significant (P meat in the formula resulted in lower residual nitrite levels at a fixed pH. The residual nitrite level was initially proportional to initial nitrite concentration, but it became a nonsignificant factor during longer storage time. Differences in heat quantity had a significant effect (P nitrite level initially. Greater heat quantity decreased residual nitrite level in finished cured meat products at a fixed pH. However, this effect became nonsignificant during longer storage. Reduction of residual nitrite in wieners because of turkey meat addition at a fixed pH was due to characteristics of the turkey tissue, but the mechanism of action remains unknown. It was also established that commercial wieners had a higher pH if poultry meat was included in the formulation.

  16. Design of A District Heating System Including The Upgrading of Residual Industrial Waste Heat

    NARCIS (Netherlands)

    Falcao, P.W.; Mesbah, A.; Suherman, M.V.; Wennekes, S.

    2005-01-01

    This study was aimed to evaluate the feasibility of using a waste heat stream from DSM for a District Heating System. A conceptual design was carried out with emphasis on the unit for upgrading the residual waste heat. Having reviewed heat pump technology, mechanical heat pump was found to be the

  17. Residual stresses around Vickers indents

    International Nuclear Information System (INIS)

    Pajares, A.; Guiberteau, F.; Steinbrech, R.W.

    1995-01-01

    The residual stresses generated by Vickers indentation in brittle materials and their changes due to annealing and surface removal were studied in 4 mol% yttria partially stabilized zirconia (4Y-PSZ). Three experimental methods to gain information about the residual stress field were applied: (i) crack profile measurements based on serial sectioning, (ii) controlled crack propagation in post indentation bending tests and (iii) double indentation tests with smaller secondary indents located around a larger primary impression. Three zones of different residual stress behavior are deduced from the experiments. Beneath the impression a crack free spherical zone of high hydrostatic stresses exists. This core zone is followed by a transition regime where indentation cracks develop but still experience hydrostatic stresses. Finally, in an outward third zone, the crack contour is entirely governed by the tensile residual stress intensity (elastically deformed region). Annealing and surface removal reduce this crack driving stress intensity. The specific changes of the residual stresses due to the post indentation treatments are described and discussed in detail for the three zones

  18. Residue and soil carbon sequestration in relation to crop yield as affected by irrigation, tillage, cropping system and nitrogen fertilization

    Science.gov (United States)

    Information on management practices is needed to increase surface residue and soil C sequestration to obtain farm C credit. The effects of irrigation, tillage, cropping system, and N fertilization were evaluated on the amount of crop biomass (stems and leaves) returned to the soil, surface residue C...

  19. Pneumatic transport system development: residuals and releases program at Westinghouse Cheswick site

    International Nuclear Information System (INIS)

    Larouere, P.J.; Shoulders, J.L.

    1979-01-01

    Plutonium oxide and uranium oxide powders are processed within glove boxes or within confinement systems during the fabrication of mixed oxide (MOX) pellets for recycle fuel. The release of these powders to the glove box or to the confinement results in some airborne material that is deposited in the enclosure or is carried in the air streams to the effluent air filtration system. Release tests on simulated leaks in pneumatic transport equipment and release tests on simulated failures with powder blending equipment were conducted. A task to develop pneumatic transport for the movement of powders within an MOX fabrication plant has been underway at the Westinghouse Research Laboratories. While testing and evaluating selected pneumatic transport components on a full scale were in progress, it was deemed necessary that final verification of the technology would have to be performed with plutonium-bearing powders because of the marked differences in certain properties of plutonium from those of uranium oxides. A smaller was designed and constructed for the planned installation in glove boxes at the Westinghouse Plutonium Fuel Development Laboratory. However, prior to use with plutonium it was agreed that this system be set up and tested with uranium oxide powder. The test program conducted at the Westinghouse Cheswick site was divided into two major parts. The first of these examined the residuals left as a result of the pneumatic transport of nuclear fuel powders and verified the operability of this one-third scale system. The second part of the program studied the amount of powder released to the air when off-standard process procedures or maintenance operations were conducted on the pneumatic transport system. Air samplers located within the walk-in box housing the transport loop were used to measure the solids concentration in the air. From this information, the total amount of airborne powder was determined

  20. X-ray diffraction residual stress measurement in the rolled-joint zone of Zr - 2.5 % Nb pressure tube

    International Nuclear Information System (INIS)

    Dinu, A.; Nedelcu, L.

    1995-01-01

    The in-service experience of Zr - 2.5 % Nb pressure tubes in CANDU-type nuclear reactors has demonstrated very good performance over a long period of time. However, analyses done by AECL specialists on most failure cases, showed that a big percentage of defects are manufacturing defects, which appear mostly at the beginning of the rolled-joint zone. It has been observed that a correct rolling ensures an acceptable distribution of residual stress, but an incorrect one leads to an accumulation of big values of residual stress. This determines a preferential radial orientation of hydrides, which during operation in the reactor can produce DHC. To ensure a suitable performance of the Zr - 2.5 % Nb pressure tubes in the CANDU reactor, it is very important to have a correct rolling as mentioned in the procedure. This work presents a methodology for the measurement of the stressing state in the surfaces layers of the rolled-joint zone. The X-ray diffraction method can also be used for establishing the residual stress distribution across the tub wall, in order to ensure a good performance at Cernavoda nuclear plant. The results obtained for the investigated tube have led to the conclusion that the rolling process was correctly applied in this case, the values obtained for the residual stress being in good agreement with those accepted in literature. (Author) 2 Figs., 2 Tabs

  1. Residual cognitive disability after completion of inpatient rehabilitation among injured children.

    Science.gov (United States)

    Zonfrillo, Mark R; Durbin, Dennis R; Winston, Flaura K; Zhang, Xuemei; Stineman, Margaret G

    2014-01-01

    To determine the prevalence and nature of residual cognitive disability after inpatient rehabilitation for children aged 7-18 years with traumatic injuries. This retrospective cohort study included children aged 7-18 years in the Uniform Data System for Medical Rehabilitation who underwent inpatient rehabilitation for traumatic injuries in 523 facilities from 2002-2011. Traumatic injuries were identified by standardized Medicare Inpatient Rehabilitation Facility-Patient Assessment Instrument codes. Cognitive outcomes were measured by the Functional Independence Measure instrument. A validated, categorical staging system derived from responses to the items in the cognitive domain of the functional independence measure was used and consisted of clinically relevant levels of cognitive achievement from stage 1 (total cognitive disability) to stage 7 (completely independent cognitive function). There were 13,798 injured children who completed inpatient rehabilitation during the 10-year period. On admission to inpatient rehabilitation, patients with traumatic brain injury (TBI) had more cognitive disability (median stage 2) than those with spinal cord injury or other injuries (median stage 5). Cognitive functioning improved for all patients, but children with TBI still tended to have significant residual cognitive disability (median stage on discharge, 4). Injured children gained cognitive functionality throughout inpatient rehabilitation. Those with TBI had more severe cognitive disability on admission and more residual disability on discharge. This is important not only for patient and family expectation setting but also for resource and service planning, as discharge from inpatient rehabilitation is a critical milestone for reintegration into society for children with serious injury. Copyright © 2014 Mosby, Inc. All rights reserved.

  2. Ball milled bauxite residue as a reinforcing filler in phosphate-based intumescent system

    Directory of Open Access Journals (Sweden)

    Adiat Ibironke Arogundade

    2018-01-01

    Full Text Available Bauxite residue (BR is an alumina refinery waste with a global disposal problem. Of the 120 MT generated annually, only 3 MT is disposed via utilization. One of the significant challenges to sustainable utilization has been found to be the cost of processing. In this work, using ball milling, we achieved material modification of bauxite residue. Spectrometric imaging with FESEM showed the transformation from an aggregate structure to nano, platy particulates, leading to particle size homogeneity. BET analysis showed surface area was increased by 23%, while pH was reduced from 10.8 to 9.1 due to collapsing of the hydroxyl surface by the fracturing action of the ball mill. Incorporation of this into a phosphate-based fire retardant, intumescent formulation led to improved material dispersion and the formation of reinforcing heat shielding char nodules. XRD revealed the formation of ceramic metal phosphates which acted as an additional heat sink to the intumescent system, thereby reducing char oxidation and heat transfer to the substrate. Steel substrate temperature from a Bunsen burner test reduced by 33%. Therefore, ball milling can serve as a simple, low-cost processing route for the reuse of bauxite residue in intumescent composites.

  3. Residual Stress Studies Using the Cairo Fourier Diffractometer Facility

    International Nuclear Information System (INIS)

    Maayouf, R.M.A.; El-Shaer, Y.H.

    2002-01-01

    The present paper deals with residual stress studies using the Cairo Fourier diffractometer facility CFDF. The CFDF is a reverse - time of -flight (RTOF) diffractometer; applies a Fourier chopper. The measurements were performed for copper samples in order to study the residual stress after welding. The maximum modulation of the Fourier chopper during the measurements was 136 khz; leading to a time resolution half-width of about 7 μ s. It has been found from the present measurements that, the resulting diffraction spectra could be successfully used for studying the residual stress; in the wavelength range between 0.7-2.9 A degree at ∼ 0.45 % relative resolution

  4. Comparison of destructive and nondestructive assay of heterogeneous salt residues

    International Nuclear Information System (INIS)

    Fleissner, J.G.; Hume, M.W.

    1986-01-01

    To study problems associated with nondestructive assay (NDA) measurements of molten salt residues, a joint study was conducted by the Rocky Flats Plant, Golden, CO and Mound Laboratories, Miamisburg, OH. Extensive NDA measurements were made on nine containers of molten salt residues by both Rocky Flats and Mound followed by dissolution and solution quantification at Rocky Flats. Results of this study verify that plutonium and americium can be measured in such salt residues by a new gamma-ray spectral analysis technique coupled with calorimetry. Biases with respect to the segmented gamma-scan technique were noted

  5. Residual stresses in a weldment of pressure vessel steel

    International Nuclear Information System (INIS)

    Gott, K.E.

    1978-01-01

    A study was made of the distribution of residual stresses around a typical weld from a light water reactor pressure vessel by an X-ray double-exposure camera technique. So that the magnitude, sign, and distribution of the residual stresses were as similar as possible to those found in practice, a wide, full-thickness specimen of A533B Cl 1 steel containing a submerged-arc weld was stress-relief annealed. To obtain a three-dimensional distribution of the stresses the specimen was examined at different levels through the thickness. Following the removal of material by milling, the specimen surface was electropolished to free it from cold work. Corrections have been made to take into account specimen relaxation. To completely define the original stress system it is desirable also to measure the change in curvature on removing a layer of material. Unless this is done assumptions must be made which complicate the calculations unnecessarily. This became apparent after the experimental work was completed. In the centre of the plate the methods of correction which can be used are sensitive to errors in the measurements. The corrected results show that the dominant residual stress is perpendicular to the weld. It is positive at the surfaces and negative in the centre of the plate. The maximum value can reach the yield stress. The residual stresses in the weld metal can locally vary considerably: from 100 to 350N/mm 2 over a distance of 5mm. Such large variations have been found to coincide with the heat-affected zones of the individual weld runs. (author)

  6. An overview of the NeT international round-robin programme: weld residual stress measurement and modelling in nuclear materials

    International Nuclear Information System (INIS)

    Reid, M.H.; Hamelin, C.J.

    2016-01-01

    This talk provides an overview of the European Network on Neutron Techniques Standardisation for Structural Integrity (NeT). The network involves some 35 organisations from industry and academia, whose goal is to identify best practice in the application of modern experimental and numerical techniques to problems related to the structural integrity of components, mainly relevant to nuclear applications. While the programme was originally built around neutron scattering techniques for residual stress measurement, it has grown considerably to include studies of X-ray diffraction, deep-hole drilling, the contour method and other measurement techniques. Significant efforts have also been made within NeT to understand and predict weld residual stresses, often employing commercially available finite element (FE) codes. Several Task Groups have been developed to address unique challenges found in nuclear applications, from stress development in multi-pass AISI 316LN austenitic steel welds to the effects of solid-state phase transformation on residual stress development in SA508 ferritic steel, which is often used for reactor pressure vessel (RPV) construction. Some current and future work performed under the auspices of NeT are provided, with a focus on work Conducted at ANSTO. The aim is to give the audience a comprehensive overview of the work undertaken in NeT, and to shed some light on the potential present in this kind of collaborative effort. (author)

  7. Application of laser interferometry for assessment of surface residual stress by determination of stress-free state

    International Nuclear Information System (INIS)

    Kim, Dong Won; Kwon, Dong Il; Lee, Nak Kyu; Choi, Tae Hoon; Na, Kyoung Hoan

    2003-01-01

    The total relaxed stress in annealing and the thermal strain/stress were obtained from the identification of the residual stress-free state using Electronic Speckle Pattern Interferometry (ESPI). The residual stress fields in case of both single and film/substrate systems were modeled using the thermo-elastic theory and the relationship between relaxed stresses and displacements. We mapped the surface residual stress fields on the indented bulk Cu and the 0.5 μm Au film by ESPI. In indented Cu, the normal and shear residual stress are distributed over -1.7 GPa to 700 MPa and -800 GPa to 600 MPa respectively around the indented point and in deposited Au film on Si wafer, the tensile residual stress is uniformly distributed on the Au film from 500 MPa to 800 MPa. Also we measured the residual stress by the X-Ray Diffractometer (XRD) for the verification of above residual stress results by ESPI

  8. Development of a SERS aptasensor for detection of medical residues

    DEFF Research Database (Denmark)

    Frøhling, Kasper Bayer

    Low levels of medical residues in environmental, industrial and domestic water systems is a growing concern. The biosensor industry is trying to accomodate the need of sensitive and specific sensor systems capable of ultra-low level detection of medical residues. In this PhD project a surface...... for sensitive and selective capture of medical residues....

  9. Estimation of average causal effect using the restricted mean residual lifetime as effect measure

    DEFF Research Database (Denmark)

    Mansourvar, Zahra; Martinussen, Torben

    2017-01-01

    with respect to their survival times. In observational studies where the factor of interest is not randomized, covariate adjustment is needed to take into account imbalances in confounding factors. In this article, we develop an estimator for the average causal treatment difference using the restricted mean...... residual lifetime as target parameter. We account for confounding factors using the Aalen additive hazards model. Large sample property of the proposed estimator is established and simulation studies are conducted in order to assess small sample performance of the resulting estimator. The method is also......Although mean residual lifetime is often of interest in biomedical studies, restricted mean residual lifetime must be considered in order to accommodate censoring. Differences in the restricted mean residual lifetime can be used as an appropriate quantity for comparing different treatment groups...

  10. Modeling long-term carbon residue in the ocean-atmosphere system following large CO2 emissions

    Science.gov (United States)

    Towles, N. J.; Olson, P.; Gnanadesikan, A.

    2013-12-01

    We use the LOSCAR carbon cycle model (Zeebe et al., 2009; Zeebe, 2012) to calculate the residual carbon in the ocean and atmosphere following large CO2 emissions. We consider the system response to CO2 emissions ranging from 100 to 20000 PgC, and emission durations from 100 yr to 100 kyr, subject to a wide range of system parameters such as the strengths of silicate weathering and the oceanic biological carbon pump. We define the carbon gain factor as the ratio of residual carbon in the ocean-atmosphere to the total emitted carbon. For moderate sized emissions shorter than about 50 kyr, we find that the carbon gain factor grows during the emission and peaks at about 1.7, primarily due to the erosion of carbonate marine sediments. In contrast, for longer emissions, the carbon gain factor peaks at a smaller value, and for very large emissions (more than 5000 PgC), the gain factor decreases with emission size due to carbonate sediment exhaustion. This gain factor is sensitive to model parameters such as low latitude efficiency of the biological pump. The timescale for removal of the residual carbon (reducing the carbon gain factor to zero) depends strongly on the assumed sensitivity of silicate weathering to atmospheric pCO2, and ranges from less than one million years to several million years.

  11. Quantifying the residual volume transport through a multiple-inlet system in response to wind forcing: The case of the western Dutch Wadden Sea

    NARCIS (Netherlands)

    Duran-Matute, M.; Gerkema, T.; Sassi, M.

    2016-01-01

    In multiple-inlet coastal systems like the western Dutch Wadden Sea, the tides (and their interaction with the bathymetry), the fresh water discharge, and the wind drive a residual flow through the system. In the current paper, we study the effect of the wind on the residual volume transport through

  12. Elicitin-induced distal systemic resistance in plants is mediated through the protein-protein interactions influenced by selected lysine residues

    Directory of Open Access Journals (Sweden)

    Hana eUhlíková

    2016-02-01

    Full Text Available Elicitins are a family of small proteins with sterol-binding activity that are secreted by Phytophthora and Pythium spp. classified as oomycete PAMPs. Although alfa- and beta-elicitins bind with the same affinity to one high affinity binding site on the plasma membrane, beta-elicitins (possessing 6-7 lysine residues are generally 50- to 100-fold more active at inducing distal HR and systemic resistance than the alfa-isoforms (with only 1-3 lysine residues.To examine the role of lysine residues in elicitin biological activity, we employed site-directed mutagenesis to prepare a series of beta-elicitin cryptogein variants with mutations on specific lysine residues. In contrast to direct infiltration of protein into leaves, application to the stem revealed a rough correlation between protein’s charge and biological activity, resulting in protection against Phytophthora parasitica. A detailed analysis of proteins’ movement in plants showed no substantial differences in distribution through phloem indicating differences in consequent apoplastic or symplastic transport. In this process, an important role of homodimer formation together with the ability to form a heterodimer with potential partner represented by endogenous plants LTPs is suggested. Our work demonstrates a key role of selected lysine residues in these interactions and stresses the importance of processes preceding elicitin recognition responsible for induction of distal systemic resistance.

  13. Preliminary measurements on the new TOF system installed at the AMS beamline of INFN-LABEC

    Energy Technology Data Exchange (ETDEWEB)

    Palla, L., E-mail: palla@fi.infn.it [Dipartimento di Fisica, Università di Pisa, e INFN Sezione di Pisa (Italy); Castelli, L. [INFN Sezione di Firenze (Italy); Czelusniak, C. [INFN Sezione di Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze (Italy); Fedi, M.E. [INFN Sezione di Firenze (Italy); Giuntini, L. [INFN Sezione di Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze (Italy); Liccioli, L. [INFN Sezione di Firenze (Italy); Dipartimento di Chimica Ugo Schiff, Università di Firenze (Italy); Mandò, P.A. [INFN Sezione di Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze (Italy); Martini, M. [Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, e INFN Sezione di Milano Bicocca, Milano (Italy); Mazzinghi, A. [INFN Sezione di Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze (Italy); Ruberto, C. [INFN Sezione di Firenze (Italy); Dipartimento di Chimica Ugo Schiff, Università di Firenze (Italy); Schiavulli, L. [Dipartimento di Fisica, Università di Bari, e INFN Sezione di Bari (Italy); Sibilia, E. [Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, e INFN Sezione di Milano Bicocca, Milano (Italy); Taccetti, F. [INFN Sezione di Firenze (Italy)

    2015-10-15

    A high resolution time of flight (TOF) system has been developed at LABEC, the 3 MV Tandem accelerator laboratory in Florence, in order to improve the sensitivity of AMS measurements on carbon samples with ultra-low concentration and also to measure other isotopes, such as {sup 129}I. The system can be employed to detect and identify residual interfering particles originated from the break-up of molecular isobars. The set-up has been specifically designed for low energy heavy ions: it consists of two identical time pick-off stations, each made up of a thin conductive foil and a Micro-Channel Plate (MCP) multiplier. The beamline is also equipped with a silicon detector, installed downstream the stop TOF station. In this paper the design of the new system and the implemented readout electronics are presented. The tests performed on the single time pick-off station are reported: they show that the maximum contribution to the timing resolution given by both the intrinsic MCP resolution and the electronics is ⩽500 ps (FWHM). For these tests, single particle pulsed beams of 2–5 MeV protons and 10 MeV {sup 12}C{sup 3+} ions, to simulate typical AMS conditions, were used. The preliminary TOF and TOF-E (TOF-energy) measurements performed with carbon beams after the installation of the new system on the AMS beam line are also discussed. These measurements were performed using the foil–MCP as the start stage and a silicon detector as the stop stage. The spectra acquired with carbon ions suggest the presence of a small residual background from neighboring masses reaching the end of the beamline with the same energy as the rare isotope.

  14. Preliminary measurements on the new TOF system installed at the AMS beamline of INFN-LABEC

    International Nuclear Information System (INIS)

    Palla, L.; Castelli, L.; Czelusniak, C.; Fedi, M.E.; Giuntini, L.; Liccioli, L.; Mandò, P.A.; Martini, M.; Mazzinghi, A.; Ruberto, C.; Schiavulli, L.; Sibilia, E.; Taccetti, F.

    2015-01-01

    A high resolution time of flight (TOF) system has been developed at LABEC, the 3 MV Tandem accelerator laboratory in Florence, in order to improve the sensitivity of AMS measurements on carbon samples with ultra-low concentration and also to measure other isotopes, such as "1"2"9I. The system can be employed to detect and identify residual interfering particles originated from the break-up of molecular isobars. The set-up has been specifically designed for low energy heavy ions: it consists of two identical time pick-off stations, each made up of a thin conductive foil and a Micro-Channel Plate (MCP) multiplier. The beamline is also equipped with a silicon detector, installed downstream the stop TOF station. In this paper the design of the new system and the implemented readout electronics are presented. The tests performed on the single time pick-off station are reported: they show that the maximum contribution to the timing resolution given by both the intrinsic MCP resolution and the electronics is ⩽500 ps (FWHM). For these tests, single particle pulsed beams of 2–5 MeV protons and 10 MeV "1"2C"3"+ ions, to simulate typical AMS conditions, were used. The preliminary TOF and TOF-E (TOF-energy) measurements performed with carbon beams after the installation of the new system on the AMS beam line are also discussed. These measurements were performed using the foil–MCP as the start stage and a silicon detector as the stop stage. The spectra acquired with carbon ions suggest the presence of a small residual background from neighboring masses reaching the end of the beamline with the same energy as the rare isotope.

  15. High-throughput mosquito and fly bioassay system for natural and artificial substrates treated with residual insecticides.

    Science.gov (United States)

    Aldridge, Robert L; Wynn, W Wayne; Britch, Seth C; Allan, Sandra A; Walker, Todd W; Geden, Christopher J; Hogsette, Jerome A; Linthicum, Kenneth J

    2013-03-01

    A high-throughput bioassay system to evaluate the efficacy of residual pesticides against mosquitoes and muscid flies with minimal insect handling was developed. The system consisted of 4 components made of readily available materials: 1) a CO2 anaesthetizing chamber, 2) a specialized aspirator, 3) a cylindrical flat-bottomed glass bioassay chamber assembly, and 4) a customized rack.

  16. Measurement of Young’s modulus and residual stress of atomic layer deposited Al2O3 and Pt thin films

    Science.gov (United States)

    Purkl, Fabian; Daus, Alwin; English, Timothy S.; Provine, J.; Feyh, Ando; Urban, Gerald; Kenny, Thomas W.

    2017-08-01

    The accurate measurement of mechanical properties of thin films is required for the design of reliable nano/micro-electromechanical devices but is increasingly challenging for thicknesses approaching a few nanometers. We apply a combination of resonant and static mechanical test structures to measure elastic constants and residual stresses of 8-27 nm thick Al2O3 and Pt layers which have been fabricated through atomic layer deposition. Young’s modulus of poly-crystalline Pt films was found to be reduced by less than 15% compared to the bulk value, whereas for amorphous Al2O3 it was reduced to about half of its bulk value. We observed no discernible dependence of the elastic constant on thickness or deposition method for Pt, but the use of plasma-enhanced atomic layer deposition was found to increase Young’s modulus of Al2O3 by 10% compared to a thermal atomic layer deposition. As deposited, the Al2O3 layers had an average tensile residual stress of 131 MPa. The stress was found to be higher for thinner layers and layers deposited without the help of a remote plasma. No residual stress values could be extracted for Pt due to insufficient adhesion of the film without an underlying layer to promote nucleation.

  17. Compared cycling in a soil-plant system of pea and barley residue nitrogen

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1996-01-01

    Field experiments were carried out on a temperate soil to determine the decline rate, the stabilization in soil organic matter and the plant uptake of N from N-15-labelled crop residues. The fate of N from field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) residues was followed...... mineralization of N was highly correlated to the concentrations of soluble C and N and the lignin:N ratio of residues. The contribution of residue-derived N to the inorganic N pool was at its maximum 30 DAI (10-55%) and declined to on average 5% after 3 years of decomposition. Residual organic labelled N...... in the top 10 cm soil declined rapidly during the initial 86 DAI for all residue types. Leaching of soluble organic materials may have contributed to this decline. At 216 DAI 72, 59 and 45% of the barley, mature pea and green pea residue N, respectively, were present in organic N-forms in the topsoil. During...

  18. A Next-Generation Automated Holdup Measurement System (HMS-5)

    International Nuclear Information System (INIS)

    Gariazzo, Claudio Andres; Smith, Steven E.; Solodov, Alexander A

    2007-01-01

    Holdup Measurement System 4 software (HMS4) has been in use at facilities to systematically measure and verify the amounts of uranium holdup in process facilities under safeguards since its release in 2004. It is a system for measuring uranium and plutonium and archiving holdup data (via barcoded locations with information) which is essential for any internationally safeguarded facility to monitor all amounts of residual special nuclear material (SNM). Additionally, HMS4 has been tested by sites in Russia, the United States, South Africa, and China for more effective application. Comments and lessons learned have been received over time and an updated version of the software would enable the international partners to use a wider variety of commercial equipment existing at these facilities. In June 2005, the Oak Ridge National Laboratory (ORNL) and Los Alamos National Laboratory conducted a holdup measurement training course on HMS4 for subject matter experts from the Ulba Metallurgical Facility at Ust-Kamenogorsk, Kazakhstan, which included an additional external software package for improved measurements of low-enriched uranium by using higher energy gamma-rays more readily found. Due to not being currently integrated into HMS4, it would be greatly beneficial to include this application in the next generation HMS software package (HMS-5). This software system upgrade would assist the International Atomic Energy Agency (IAEA) in having a more comprehensive software package and having it tested at several safeguarded locations. When released, HMS4 only supported AMETEK/ORTEC equipment despite many facilities currently utilizing Canberra Industries technology (detectors, multi-channel analyzers, other hardware, and software packages). For HMS-5 to support all available hardware systems and to benefit the majority of international partners and the IAEA, Canberra technology must be integrated because of such widespread use of its hardware. Furthermore, newly developed

  19. Residual Stress Induced Mechanical Property Enhancement in Steel Encapsulated Light Metal Matrix Composites

    Science.gov (United States)

    Fudger, Sean James

    paramount. X-ray Diffraction Residual Stress Analysis (XRD-RSA) or Neutron diffraction was performed on numerous systems in multiple steel shell thickness variations. The analysis shows variation in the measured strain and stress results due to outer steel thickness, difference in CTE between materials, and relative position within the composite. Improvements in mechanical properties, namely ductility and yield stress, are a direct result of these measured strains.

  20. Measurement of the mechanical properties of layered systems

    International Nuclear Information System (INIS)

    Blank, E.

    2002-01-01

    Thin films for integrated electronic circuitry, packaging and small structures in micro-electromechanical systems (MEMS) as well as protective coatings require mechanical testing to control fabrication processes, guarantee product quality and establish data bases for engineering purposes. They generally escape classical materials testing owing to their small size in at least one dimension and their incorporation into larger structures. The fact that material properties change in the micro- and nanometer range when sample dimensions reach the scale of defect structures, implies that sample and probe size become part of the property evaluation process. Although research into the mechanical behaviour of thin films and small structures now is established, the fundamentals of mechanical testing continue to be identified while there is a growing need for methods allowing to measure intrinsic material properties. This lecture will focus on the mechanics of thin film and small volume structures and review recently developed testing techniques for measuring materials properties, particularly indentation, bulge and bend testing. The effect of specimen and probe geometry on property evaluation will be discussed. The use of Raman spectroscopy for residual stress measurement will be illustrated. (Author)

  1. Measurement of residual stresses in deposited films of SOFC component materials

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T.; Momma, A.; Nagata, S.; Kasuga, Y. [Electrotechnical Lab., Ibaraki (Japan)

    1996-12-31

    The stress induced in Solid oxide fuel cells (SOFC)s has important influence on the lifetime of SOFC. But the data on stress in SOFC and mechanical properties of SOW component materials have not been accumulated enough to manufacture SOFC. Especially, the data of La{sub 1-x}Sr{sub x}MnO{sub 3} cathode and La{sub 1-x}Sr{sub x}CrO{sub 3} interconnection have been extremely limited. We have estimated numerically the dependences of residual stress in SOFC on the material properties, the cell structure and the fabrication temperatures of the components, but these unknown factors have caused obstruction to simulate the accurate behavior of residual stress. Therefore, the residual stresses in deposited La{sub 1-x}Sr{sub x}MnO{sub 3} and La{sub 1-x}Sr{sub x}CrO{sub 3} films are researched by the observation of the bending behavior of the substrate strips. The films of SOFC component materials were prepared by the RF sputtering method, because: (1) It can fabricate dense films of poor sinterable material such as La{sub 1-x}Sr{sub x}CrO{sub 3} compared with sintering or plasma spray method. (2) For the complicated material such as perovskite materials, the difference between the composition of a film and that of a target material is generally small. (3) It can fabricate a thick ceramics film by improving of the deposition rate. For example, Al{sub 2}O{sub 3} thick films of 50{mu}m can be fabricated with the deposition rate of approximately 5{mu}m/h industrially. In this paper, the dependence of residual stress on the deposition conditions is defined and mechanical properties of these materials are estimated from the results of the experiments.

  2. Influence of thermal expansion mismatch on residual stress profile in veneering ceramic layered on zirconia: Measurement by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Najjar, Achref; Jakubowicz-Kohen, Boris D; Sadoun, Michaël J

    2015-09-01

    Mismatch in thermal expansion coefficient between core and veneering ceramic (Δα=αcore-αveneer, ppm/°C) is reported as a crucial parameter influencing veneer fractures with Yttria-tetragonal-zirconia-polycrystal (Y-TZP) prostheses, which still constitutes a misunderstood problem. However, the common positive Δα concept remains empirical. The objective of this study is to investigate the Δα dependence of residual stress profiles in veneering ceramic layered on Y-TZP frameworks. The stress profile was measured with the hole-drilling method in bilayered disc samples of 20mm diameter with a 0.7mm thick Y-TZP framework and a 1.5mm thick veneer layer. 3 commercial and 4 experimental veneering ceramics (n=3 per group) were used to obtain different Δα varying from -1.3ppm/°C to +3.2ppm/°C, which were determined by dilatometric analyses. Veneer fractures were observed in samples with Δα≥+2.3 or ≤-0.3ppm/°C. Residual stress profiles measured in other groups showed compressive stresses in the surface, these stresses decreasing with depth and then becoming more compressive again near the interface. Small Δα variations were shown to induce significant changes in residual stress profiles. Compressive stress near the framework was found to decrease inversely to Δα. Veneer CTE close to Y-TZP (+0.2ppm/°C Δα) gived the most favorable stress profile. Yet, near the framework, Δα-induced residual stress varied inversely to predictions. This could be explained by the hypothesis of structural changes occurrence within the Y-TZP surface. Consequently, the optimum Δα value cannot be determined before understanding Y-TZP's particular behavior when veneered. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Management of NORM Residues

    International Nuclear Information System (INIS)

    2013-06-01

    The IAEA attaches great importance to the dissemination of information that can assist Member States in the development, implementation, maintenance and continuous improvement of systems, programmes and activities that support the nuclear fuel cycle and nuclear applications, and that address the legacy of past practices and accidents. However, radioactive residues are found not only in nuclear fuel cycle activities, but also in a range of other industrial activities, including: - Mining and milling of metalliferous and non-metallic ores; - Production of non-nuclear fuels, including coal, oil and gas; - Extraction and purification of water (e.g. in the generation of geothermal energy, as drinking and industrial process water; in paper and pulp manufacturing processes); - Production of industrial minerals, including phosphate, clay and building materials; - Use of radionuclides, such as thorium, for properties other than their radioactivity. Naturally occurring radioactive material (NORM) may lead to exposures at some stage of these processes and in the use or reuse of products, residues or wastes. Several IAEA publications address NORM issues with a special focus on some of the more relevant industrial operations. This publication attempts to provide guidance on managing residues arising from different NORM type industries, and on pertinent residue management strategies and technologies, to help Member States gain perspectives on the management of NORM residues

  4. Detection and measurement of gamma-ray self-attenuation in plutonium residues

    International Nuclear Information System (INIS)

    Prettyman, T.H.; Foster, L.A.; Estep, R.J.

    1996-01-01

    A new method to correct for self-attenuation in gamma-ray assays of plutonium is presented. The underlying assumptions of the technique are based on a simple but accurate physical model of plutonium residues, particularly pyrochemical salts, in which it is assumed that the plutonium is divided into two portions, each of which can be treated separately from the standpoint of gamma-ray analysis: a portion that is in the form of plutonium metal shot; and a dilute portion that is mixed with the matrix. The performance of the technique is evaluated using assays of plutonium residues by tomographic gamma scanning at the Los Alamos Plutonium Facility. The ability of the method to detect saturation conditions is examined

  5. Residual heat deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 microm.

    Science.gov (United States)

    Fried, D; Ragadio, J; Champion, A

    2001-01-01

    The principal factor limiting the rate of laser ablation of dental hard tissue is the risk of excessive heat accumulation in the tooth. Excessive heat deposition or accumulation may result in unacceptable damage to the pulp. The objective of this study was to measure the residual heat deposition during the laser ablation of dental enamel at those IR laser wavelengths well suited for the removal of dental caries. Optimal laser ablation systems minimize the residual heat deposition in the tooth by efficiently transferring the deposited laser energy to kinetic and internal energy of ejected tissue components. The residual heat deposition in dental enamel was measured at laser wavelengths of 2.79, 2.94, 9.6, and 10.6 microm and pulse widths of 150 nsec -150 microsec using bovine block "calorimeters." Water droplets were applied to the surface before ablation with 150 microsec Er:YAG laser pulses to determine the influence of an optically thick water layer on reducing heat deposition. The residual heat was at a minimum for fluences well above the ablation threshold where measured values ranged from 25-70% depending on pulse duration and wavelength for the systems investigated. The lowest values of the residual heat were measured for short (heat deposition during ablation with 150 microsec Er:YAG laser pulses. Residual heat deposition can be markedly reduced by using CO(2) laser pulses of less than 20 microsec duration and shorter Q-switched Er:YAG and Er:YSGG laser pulses for enamel ablation. Copyright 2001 Wiley-Liss, Inc.

  6. Statistically generated weighted curve fit of residual functions for modal analysis of structures

    Science.gov (United States)

    Bookout, P. S.

    1995-01-01

    A statistically generated weighting function for a second-order polynomial curve fit of residual functions has been developed. The residual flexibility test method, from which a residual function is generated, is a procedure for modal testing large structures in an external constraint-free environment to measure the effects of higher order modes and interface stiffness. This test method is applicable to structures with distinct degree-of-freedom interfaces to other system components. A theoretical residual function in the displacement/force domain has the characteristics of a relatively flat line in the lower frequencies and a slight upward curvature in the higher frequency range. In the test residual function, the above-mentioned characteristics can be seen in the data, but due to the present limitations in the modal parameter evaluation (natural frequencies and mode shapes) of test data, the residual function has regions of ragged data. A second order polynomial curve fit is required to obtain the residual flexibility term. A weighting function of the data is generated by examining the variances between neighboring data points. From a weighted second-order polynomial curve fit, an accurate residual flexibility value can be obtained. The residual flexibility value and free-free modes from testing are used to improve a mathematical model of the structure. The residual flexibility modal test method is applied to a straight beam with a trunnion appendage and a space shuttle payload pallet simulator.

  7. Application of environmental management system for a energetic plant with oil residual biomass; Aplicacion de un sistema de gestion medio ambiental a una planta generadora de energia que utiliza la biomasa residual del olivar

    Energy Technology Data Exchange (ETDEWEB)

    Linan Veganzones, M.J.; Soca Olazabal, N.; Pizarro Camacho, D

    1998-12-01

    Being the alpechin one of the most contaminant residues by the mediterranean agrarian industry, as of today there is no integral depuration procedure. In this paper we show the innovative approach being used to eliminate the alpechin along with the oil miller residual biomass. What it more, the only agroindustrial complex which has introduced such approach is using an EMAS so that actual achievements could be realistically measured. (Author) 12 refs.

  8. Residual stress measurement of PMMA by combining drilling-hole with digital speckle correlation method

    Science.gov (United States)

    Yao, X. F.; Xiong, T. C.; Xu, H. M.; Wan, J. P.; Long, G. R.

    2008-11-01

    The residual stresses of the PMMA (polymethyl methacrylate) specimens after being drilled, reamed and polished respectively are investigated using the digital speckle correlation experimental method,. According to the displacement fields around the correlated calculated region, the polynomial curve fitting method is used to obtain the continuous displacement fields, and the strain fields can be obtained from the derivative of the displacement fields. Considering the constitutive equation of the material, the expression of the residual stress can be presented. During the data processing, according to the fitting effect of the data, the calculation region of the correlated speckles and the degree of the polynomial fitting curve is decided. These results show that the maximum stress is at the hole-wall of the drilling hole specimen and with the increasing of the diameter of the drilled hole, the residual stress resulting from the hole drilling increases, whereas the process of reaming and polishing hole can reduce the residual stress. The relative large discrete degree of the residual stress is due to the chip removal ability of the drill bit, the cutting feed of the drill and other various reasons.

  9. Radiation effects on residual voltage of polyethylene films

    International Nuclear Information System (INIS)

    Kyokane, Jun; Park, Dae-Hee; Yoshino, Katsumi.

    1986-01-01

    It has recently been pointed out that diagnosis of deterioration in insulating materials for electric cables used in nuclear power plants and outer space (communications satellite in particular) can be effectively performed based on measurements of residual voltage. In the present study, polyethylene films are irradiated with γ-rays or electron beam to examine the changes in residual voltage characteristics. Irradiation of electron beam and γ-rays are carried out to a dose of 0 - 90 Mrad and 0 - 100 Mrad, respectively. Measurements are made of the dependence of residual voltage on applied voltage, electron beam and γ-ray irradiation, annealing temperature and annealing time. Results show that carriers, which are once trapped after being released from the electrode, move within the material after the opening of the circuit to produce resiual voltage. The residual voltage increases with increasing dose of electron beam or γ-ray and levels off at high dose. Residual voltage is increased about several times by either electron beam or γ-rays, but electron beam tends to cause greater residual voltage than γ-ray. Polyethylene films irradiated with electron beam can recover upon annealing. It is concluded from observations made that residual voltage has close relations with defects in molecular structures caused by radiations, particularly the breaking of backbone chains and alteration in superstructures. (Nogami, K.)

  10. Heat transfer properties of organic coolants containing high boiling residues

    International Nuclear Information System (INIS)

    Debbage, A.G.; Driver, M.; Waller, P.R.

    1964-01-01

    Heat transfer measurements were made in forced convection with Santowax R, mixtures of Santowax R and pyrolytic high boiling residue, mixtures of Santowax R and CMRE Radiolytic high boiling residue, and OMRE coolant, in the range of Reynolds number 10 4 to 10 5 . The data was correlated with the equation Nu = 0.015 Re b 0.85 Pr b 0.4 with an r.m.s. error of ± 8.5%. The total maximum error arising from the experimental method and inherent errors in the physical property data has been estimated to be less than ± 8.5%. From the correlation and physical property data, the decrease in heat transfer coefficient with increasing high boiling residue concentration has been determined. It has been shown that subcooled boiling in organic coolants containing high boiling residues is a complex phenomenon and the advantages to be gained by operating a reactor in this region may be marginal. Gas bearing pumps used initially in these experiments were found to be unsuitable; a re-designed ball bearing system lubricated with a terphenyl mixture was found to operate successfully. (author)

  11. Application of industrial wood residues for combined heat and power production

    International Nuclear Information System (INIS)

    Majchrzycka, A.

    2015-01-01

    The paper discusses combined production of heat and power (CHP) from industrial wood residues. The system will be powered by wood residues generated during manufacturing process of wooden floor panels. Based on power and heat demands of the plant and wood residues potential, the CHP system was selected. Preliminary analysis of biomass conversion in CHP system and environmental impact was performed.

  12. Eviromental Economic and Technological Residues Management Demands: An Optimization Tool.

    Directory of Open Access Journals (Sweden)

    Marisa Soares Borges

    2012-12-01

    Full Text Available Industrial residues management is a very demanding task since many different goals must be achieved. The combination of different approaches used by people from different stuff is very challenging activity that can misuse the residues potential value and applicability. An interactive WEB base tool, to integrate different sectors and overcome residues management difficulties will be presented. The system must be loaded with all data concerning the residue life cycle, and through data integration and modeling routine will give the best alternative as output. As wider and complete the system data becomes, by information loading from differen t segment, more efficient the residues management becomes. The user friendly tool will encourage the participation of industries, labs and research institutions to obtain qualified information about industrial residues inventory, raw materials recovery, characteristics, treatment and alternative uses, to achieve residues management sustainability.

  13. A synchrotron X-ray diffraction deconvolution method for the measurement of residual stress in thermal barrier coatings as a function of depth.

    Science.gov (United States)

    Li, C; Jacques, S D M; Chen, Y; Daisenberger, D; Xiao, P; Markocsan, N; Nylen, P; Cernik, R J

    2016-12-01

    The average residual stress distribution as a function of depth in an air plasma-sprayed yttria stabilized zirconia top coat used in thermal barrier coating (TBC) systems was measured using synchrotron radiation X-ray diffraction in reflection geometry on station I15 at Diamond Light Source, UK, employing a series of incidence angles. The stress values were calculated from data deconvoluted from diffraction patterns collected at increasing depths. The stress was found to be compressive through the thickness of the TBC and a fluctuation in the trend of the stress profile was indicated in some samples. Typically this fluctuation was observed to increase from the surface to the middle of the coating, decrease a little and then increase again towards the interface. The stress at the interface region was observed to be around 300 MPa, which agrees well with the reported values. The trend of the observed residual stress was found to be related to the crack distribution in the samples, in particular a large crack propagating from the middle of the coating. The method shows promise for the development of a nondestructive test for as-manufactured samples.

  14. Energy dependence of isotopic spectra from spallation residues

    International Nuclear Information System (INIS)

    Audouin, L.

    2003-09-01

    Spallation reactions are collisions between heavy nuclei and light particle with an energy of a few hundreds MeV. The y are considered as a suitable way to create high- flux neutrons sources, which may used for example for the transmutation of nuclear wastes (hybrid reactors). The study of the residues from such reactions is both a way to understand the physics of the spallation and to provide information required for the design of industrial targets. The residues from the spallation of lead by proton at 500 MeV have been measured using the inverse kinematics technique in the FRS (fragments recoil separator). spectrometer from GSI (Barmstadt). This low energy required the use of new technique, for the experimental setup as well as during the analysis. The fragments were identified in-flight, prior to β decay. Complete isotopic distributions are obtained with an accuracy ranging between 10 and 30%. Detailed information on the reaction kinematics are also obtained. Data are in excellent agreement with radio-chemical measurements, and bring new insights about the spallation process. The comparison with data measured on the same system with an incident energy of 1 GeV allows to discuss the influence of the projectile energy on the residues formation. It is concluded that the independence of the shape of the isobaric production cross sections regarding mass and energy of the projectile is preserved at low incident energies. The behaviour of Monte-Carlo codes is discussed with respect to those sets of data. The calculations show an improving agreement with decreasing energy, indicating that high-energy phenomena, for which some common assumptions become questionable, are the main reason for the observed discrepancies. (author)

  15. Fluorescence imaging to quantify crop residue cover

    Science.gov (United States)

    Daughtry, C. S. T.; Mcmurtrey, J. E., III; Chappelle, E. W.

    1994-01-01

    Crop residues, the portion of the crop left in the field after harvest, can be an important management factor in controlling soil erosion. Methods to quantify residue cover are needed that are rapid, accurate, and objective. Scenes with known amounts of crop residue were illuminated with long wave ultraviolet (UV) radiation and fluorescence images were recorded with an intensified video camera fitted with a 453 to 488 nm band pass filter. A light colored soil and a dark colored soil were used as background for the weathered soybean stems. Residue cover was determined by counting the proportion of the pixels in the image with fluorescence values greater than a threshold. Soil pixels had the lowest gray levels in the images. The values of the soybean residue pixels spanned nearly the full range of the 8-bit video data. Classification accuracies typically were within 3(absolute units) of measured cover values. Video imaging can provide an intuitive understanding of the fraction of the soil covered by residue.

  16. FM-to-AM modulations induced by a weak residual reflection stack of sine-modulated pulses in inertial confinement fusion laser systems

    Science.gov (United States)

    Huang, Xiaoxia; Deng, Xuewei; Zhou, Wei; Hu, Dongxia; Guo, Huaiwen; Wang, Yuancheng; Zhao, Bowang; Zhong, Wei; Deng, Wu

    2018-02-01

    We report on frequency to amplitude modulation (FM-to-AM) conversion induced by a weak residual reflection stack of sine-modulated pulses in a complex laser system. Theoretical and experimental investigations reveal that when weak residual reflected pulses stack on the main pulse, the spectral intensity changes in the stacked region, which then converts to obvious AM. This kind of FM-to-AM effect often occurs in the tail of the pulse and cannot be eliminated by common compensation methods, which even enhance the modulation depth. Furthermore, the actual intensity modulation frequency and depth induced by the residual reflection stack are much higher and deeper than observed on the oscilloscope, which is harmful for safe operation of the laser facility and the driving power balance during inertial confinement fusion. To eliminate this kind of FM-to-AM effect, any possible on-axis and near-axis residual reflection in laser systems must be avoided.

  17. Alternate switching between MFC and MEC for H2O2 synthesis and residual removal in Bioelectro-Fenton system

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2016-01-01

    Sustainable H2O2 supply and elimination of residual H2O2 are two key challenges to the Fenton processes treating recalcitrant contaminants. In this study, an innovative Bioelectro-Fenton system capable of alternate switching between microbial electrolysis cell (MEC) and microbial fuel cell (MFC......) mode of operation was developed to meet the challenges. In the MEC mode, H2O2 was electrochemically produced which reacts with Fenton’s reagent (Fe II) to form hydroxyradical. The residual H2O2 (unused H2O2) is removed as electron acceptor by switching the system to MFC mode. Complete decolorization...

  18. Residual stress in spin-cast polyurethane thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hong; Zhang, Li, E-mail: lizhang@mae.cuhk.edu.hk [Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T., Hong Kong (China); Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong (China)

    2015-01-19

    Residual stress is inevitable during spin-casting. Herein, we report a straightforward method to evaluate the residual stress in as-cast polyurethane thin films using area shrinkage measurement of films in floating state, which shows that the residual stress is independent of radial location on the substrate and decreased with decreasing film thickness below a critical value. We demonstrate that the residual stress is developed due to the solvent evaporation after vitrification during spin-casting and the polymer chains in thin films may undergo vitrification at an increased concentration. The buildup of residual stress in spin-cast polymer films provides an insight into the size effects on the nature of polymer thin films.

  19. Residual stress studies of austenitic and ferritic steels

    International Nuclear Information System (INIS)

    Chrenko, R.M.

    1978-01-01

    Residual studies have been made on austenitic and ferritic steels of the types used as structural materials. The residual stress results presented here will include residual stress measurements in the heat-affected zone on butt welded Type 304 stainless steel pipes, and the stresses induced in Type 304 austenitic stainless steel and Type A508 ferritic steel by several surface preparations. Such surface preparation procedures as machining and grinding can induce large directionality effects in the residual stresses determined by X-ray techniques and some typical data will be presented. A brief description is given of the mobile X-ray residual stress apparatus used to obtain most of the data in these studies. (author)

  20. Polynomic nonlinear dynamical systems - A residual sensitivity method for model reduction

    Science.gov (United States)

    Yurkovich, S.; Bugajski, D.; Sain, M.

    1985-01-01

    The motivation for using polynomic combinations of system states and inputs to model nonlinear dynamics systems is founded upon the classical theories of analysis and function representation. A feature of such representations is the need to make available all possible monomials in these variables, up to the degree specified, so as to provide for the description of widely varying functions within a broad class. For a particular application, however, certain monomials may be quite superfluous. This paper examines the possibility of removing monomials from the model in accordance with the level of sensitivity displayed by the residuals to their absence. Critical in these studies is the effect of system input excitation, and the effect of discarding monomial terms, upon the model parameter set. Therefore, model reduction is approached iteratively, with inputs redesigned at each iteration to ensure sufficient excitation of remaining monomials for parameter approximation. Examples are reported to illustrate the performance of such model reduction approaches.

  1. Determine metrics and set targets for soil quality on agriculture residue and energy crop pathways

    Energy Technology Data Exchange (ETDEWEB)

    Ian Bonner; David Muth

    2013-09-01

    There are three objectives for this project: 1) support OBP in meeting MYPP stated performance goals for the Sustainability Platform, 2) develop integrated feedstock production system designs that increase total productivity of the land, decrease delivered feedstock cost to the conversion facilities, and increase environmental performance of the production system, and 3) deliver to the bioenergy community robust datasets and flexible analysis tools for establishing sustainable and viable use of agricultural residues and dedicated energy crops. The key project outcome to date has been the development and deployment of a sustainable agricultural residue removal decision support framework. The modeling framework has been used to produce a revised national assessment of sustainable residue removal potential. The national assessment datasets are being used to update national resource assessment supply curves using POLYSIS. The residue removal modeling framework has also been enhanced to support high fidelity sub-field scale sustainable removal analyses. The framework has been deployed through a web application and a mobile application. The mobile application is being used extensively in the field with industry, research, and USDA NRCS partners to support and validate sustainable residue removal decisions. The results detailed in this report have set targets for increasing soil sustainability by focusing on primary soil quality indicators (total organic carbon and erosion) in two agricultural residue management pathways and a dedicated energy crop pathway. The two residue pathway targets were set to, 1) increase residue removal by 50% while maintaining soil quality, and 2) increase soil quality by 5% as measured by Soil Management Assessment Framework indicators. The energy crop pathway was set to increase soil quality by 10% using these same indicators. To demonstrate the feasibility and impact of each of these targets, seven case studies spanning the US are presented

  2. Nutrient retention capabilities of Nile tilapia ( Oreochromis niloticus) fed bio-regenerative life support system (BLSS) waste residues

    Science.gov (United States)

    Gonzales, John M.; Brown, Paul B.

    Nile tilapia were evaluated as a bio-regenerative sub-process for reducing solid waste potentially encountered in bio-regenerative life support systems. Ten juvenile Nile tilapia (mean weight = 2.05 g) were stocked into triplicate aquaria and fed one of seven experimental diets consisting of vegetable, bacterial, or food waste for a period of seven weeks. Weight gain (g), specific growth rate (mg/d), and daily consumption (g) was significantly higher ( p diet (37.99 and 68.54, respectively) followed by fish fed the wheat bran/wheat germ diet (23.19 and 63.67, respectively). Nitrogen, sulfur, and crude protein retention was significantly higher ( p diet (23.68, 21.89, and 23.68, respectively). A general loss of minerals was observed among all groups. Strong associations were observed between crude lipid retention and sulfur retention ( r2 = 0.94), crude lipid retention and carbon retention ( r2 = 0.92), WG and fiber content of dietary treatments ( r2 = 0.92), WG and carbon retention and ( r2 = 0.88), WG and lysine content of waste residues ( r2 = 0.86), crude protein retention and carbon retention ( r2 = 0.84), sulfur retention and crude protein retention ( r2 = 0.84), and total sulfur amino acid (TSAA) content of residues and WG ( r2 = 0.81). Weaker associations existed between WG and crude lipid retention ( r2 = 0.77), crude fiber content and carbon retention ( r2 = 0.76), and WG and methionine content of waste residues ( r2 = 0.75). Additional research is needed to improve the nutritional quality of fibrous residues as a means to improve tilapia's ability to utilize these residues as a food source in bio-regenerative support systems.

  3. Compressive residual stresses as a preventive measure against stress corrosion cracking on turbine components

    International Nuclear Information System (INIS)

    Berger, C.; Ewald, J.; Fischer, K.; Gruendler, O.; Potthast, E.; Stuecker, E.; Winzen, G.

    1987-01-01

    Disk type low pressure turbine rotors have been designed for a large variety of power plant applications. Developing disk type rotors required a concerted effort to design a shaft/disk shrink fit with a minimum of tensile stress concentrations in order to aim for the lowest possible susceptibility to corrosive attack, i.e. stress corrosion cracking. As a result of stresses, the regions of greatest concern are the shrink fit boundaries and the keyways of turbine disks. These stresses are caused by service loading, i.e. centrifugal and shrinkage stresses and by manufacturing procedure, i.e. residual stresses. The compressive residual stresses partly compensate the tensile service stresses so that an increase of compressive residual stresses decreases the whole stress state of the component. Special manufacturing procedures, e.g. accelerated cooling after tempering can induce compressive residual stresses up to about 400 MPa in the hub bore region of turbine disk

  4. Validity and reliability of a novel 3D scanner for assessment of the shape and volume of amputees' residual limb models.

    Directory of Open Access Journals (Sweden)

    Elena Seminati

    Full Text Available Objective assessment methods to monitor residual limb volume following lower-limb amputation are required to enhance practitioner-led prosthetic fitting. Computer aided systems, including 3D scanners, present numerous advantages and the recent Artec Eva scanner, based on laser free technology, could potentially be an effective solution for monitoring residual limb volumes.The aim of this study was to assess the validity and reliability of the Artec Eva scanner (practical measurement against a high precision laser 3D scanner (criterion measurement for the determination of residual limb model shape and volume.Three observers completed three repeat assessments of ten residual limb models, using both the scanners. Validity of the Artec Eva scanner was assessed (mean percentage error <2% and Bland-Altman statistics were adopted to assess the agreement between the two scanners. Intra and inter-rater reliability (repeatability coefficient <5% of the Artec Eva scanner was calculated for measuring indices of residual limb model volume and shape (i.e. residual limb cross sectional areas and perimeters.Residual limb model volumes ranged from 885 to 4399 ml. Mean percentage error of the Artec Eva scanner (validity was 1.4% of the criterion volumes. Correlation coefficients between the Artec Eva and the Romer determined variables were higher than 0.9. Volume intra-rater and inter-rater reliability coefficients were 0.5% and 0.7%, respectively. Shape percentage maximal error was 2% at the distal end of the residual limb, with intra-rater reliability coefficients presenting the lowest errors (0.2%, both for cross sectional areas and perimeters of the residual limb models.The Artec Eva scanner is a valid and reliable method for assessing residual limb model shapes and volumes. While the method needs to be tested on human residual limbs and the results compared with the current system used in clinical practice, it has the potential to quantify shape and volume

  5. Improvement and Validation of Weld Residual Stress Modelling Procedure

    International Nuclear Information System (INIS)

    Zang, Weilin; Gunnars, Jens; Dong, Pingsha; Hong, Jeong K.

    2009-06-01

    The objective of this work is to identify and evaluate improvements for the residual stress modelling procedure currently used in Sweden. There is a growing demand to eliminate any unnecessary conservatism involved in residual stress assumptions. The study was focused on the development and validation of an improved weld residual stress modelling procedure, by taking advantage of the recent advances in residual stress modelling and stress measurement techniques. The major changes applied in the new weld residual stress modelling procedure are: - Improved procedure for heat source calibration based on use of analytical solutions. - Use of an isotropic hardening model where mixed hardening data is not available. - Use of an annealing model for improved simulation of strain relaxation in re-heated material. The new modelling procedure is demonstrated to capture the main characteristics of the through thickness stress distributions by validation to experimental measurements. Three austenitic stainless steel butt-welds cases are analysed, covering a large range of pipe geometries. From the cases it is evident that there can be large differences between the residual stresses predicted using the new procedure, and the earlier procedure or handbook recommendations. Previously recommended profiles could give misleading fracture assessment results. The stress profiles according to the new procedure agree well with the measured data. If data is available then a mixed hardening model should be used

  6. Improvement and Validation of Weld Residual Stress Modelling Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Zang, Weilin; Gunnars, Jens (Inspecta Technology AB, Stockholm (Sweden)); Dong, Pingsha; Hong, Jeong K. (Center for Welded Structures Research, Battelle, Columbus, OH (United States))

    2009-06-15

    The objective of this work is to identify and evaluate improvements for the residual stress modelling procedure currently used in Sweden. There is a growing demand to eliminate any unnecessary conservatism involved in residual stress assumptions. The study was focused on the development and validation of an improved weld residual stress modelling procedure, by taking advantage of the recent advances in residual stress modelling and stress measurement techniques. The major changes applied in the new weld residual stress modelling procedure are: - Improved procedure for heat source calibration based on use of analytical solutions. - Use of an isotropic hardening model where mixed hardening data is not available. - Use of an annealing model for improved simulation of strain relaxation in re-heated material. The new modelling procedure is demonstrated to capture the main characteristics of the through thickness stress distributions by validation to experimental measurements. Three austenitic stainless steel butt-welds cases are analysed, covering a large range of pipe geometries. From the cases it is evident that there can be large differences between the residual stresses predicted using the new procedure, and the earlier procedure or handbook recommendations. Previously recommended profiles could give misleading fracture assessment results. The stress profiles according to the new procedure agree well with the measured data. If data is available then a mixed hardening model should be used

  7. Cyolane residues in milk of lactating goats

    International Nuclear Information System (INIS)

    Zayed, S.M.A.D.; Osman, A.; Fakhr, I.M.I.

    1981-01-01

    Consecutive feeding of lactating goats with 14 C-alkyl labelled cyolane for 5 days at dietary levels 8 and 16 ppm resulted in the appearance of measurable insecticide residues in milk (0.02-0.04 mg/kg). The residue levels were markedly reduced after a withdrawal period of 7 days. Analysis of urine and milk residues showed the presence of similar metabolites in addition to the parent compound. The major part of the residue consisted of mono-, diethyl phosphate and 2 hydrophilic unknown metabolites. The erythrocyte cholinesterase activity was reduced to about 50% after 24 hours whereas the plasma enzyme was only slightly affected. The animals remained symptom-free during the experimental period. (author)

  8. Residual energy deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 μm

    Science.gov (United States)

    Ragadio, Jerome N.; Lee, Christian K.; Fried, Daniel

    2000-03-01

    The objective of this study was to measure the residual heat deposition during laser ablation at those IR laser wavelengths best suited for the removal of dental caries. The principal factor limiting the rate of laser ablation of dental hard tissue is the risk of excessive heat accumulation in the tooth, which has the potential for causing damage to the pulp. Optimal laser ablation systems minimize the residual energy deposition in the tooth by transferring deposited laser energy to kinetic and internal energy of ejected tissue components. The residual heat deposition in the tooth was measured at laser wavelengths of 2.79, 2.94, 9.6 and 10.6 micrometer and pulse widths of 150 ns - 150 microsecond(s) . The residual energy was at a minimum for fluences well above the ablation threshold where it saturates at values from 25 - 70% depending on pulse duration and wavelength for the systems investigated. The lowest values of the residual energy were measured for short (less than 20 microseconds) CO2 laser pulses at 9.6 micrometer and for Q-switched erbium laser pulses. This work was supported by NIH/NIDCR R29DE12091 and the Center for Laser Applications in Medicine, DOE DEFG0398ER62576.

  9. Analysis of Residual Nuclide in a ACM and ACCT of 100-MeV proton beamline By measurement X-ray Spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong-Min; Yun, Sang-Pil; Kim, Han-Sung; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2015-10-15

    The proton beam is provides to users as various energy range from 20 MeV to 100 MeV. After protons generated from the ion source are accelerated to 100 MeV and irradiated to target through bending magnet and AC magnet. At this time, relatively high dose X-ray is emitted due to collision of proton and components of beamline. The generated X-ray is remaining after the accelerator is turned off and analyzing residual nuclides through the measurement of X-ray spectrum. Then identify the components that are the primary cause of residual nuclides are detected form the AC magnet(ACM) and associated components (ACCT). Analysis of the X-ray spectrum generated form the AC magnet(ACM) and AC current transformer(ACCT) of 100 MeV beamline according to the proton beam irradiation, most of the residual nuclides are identified it can be seen that emission in the stainless steel by beam loss.

  10. Hydroponic Crop Production using Recycled Nutrients from Inedible Crop Residues

    Science.gov (United States)

    Garland, Jay L.; Mackowiak, Cheryl L.; Sager, John C.

    1993-01-01

    The coupling of plant growth and waste recycling systems is an important step toward the development of bioregenerative life support systems. This research examined the effectiveness of two alternative methods for recycling nutrients from the inedible fraction (residue) of candidate crops in a bioregenerative system as follows: (1) extraction in water, or leaching, and (2) combustion at 550 C, with subsequent reconstitution of the ash in acid. The effectiveness of the different methods was evaluated by (1) comparing the percent recovery of nutrients, and (2) measuring short- and long-term plant growth in hydroponic solutions, based on recycled nutrients.

  11. Residual magnetic field in rotary machines; Campo magnetico residual en maquinas rotatorias

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez V, Esteban A; Apanco R, Marcelino [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2007-07-01

    The residual magnetism is a phenomenon in which the magnetic dipoles of a substance are oriented in a certain degree. On the other hand, when internal forces exist capable of aligning elementary magnetic dipoles of a material, a permanent magnet is obtained. Just as in a conductor or in a material, in the elements of a rotary electrical machine magnetic fields can be induced that produce a residual magnetism or magnetization. In the rotary electrical machines, the magnetization phenomenon causes serious problems, such as the generation of induced currents that propitiate the mechanical wear in bearings, collars, trunnions and inclusive in the shaft, by effects known as pitting, frosting and spark tracks, as well as erroneous readings in vibration and temperature sensors, that in some cases can cause the shut down of the machine. In this article are presented the general concepts on the residual magnetism in rotary electrical machines, the causes that originate it and the problems that arises, as well as the demagnetization of the components that have residual magnetic field. The results obtained by the area of Electrical Equipment of the Instituto de Investigaciones Electricas are revised, during the execution of activities related to the measurement and elimination of the residual magnetic field in rotary electrical machines. [Spanish] El magnetismo residual es un fenomeno en el que los dipolos magneticos de una sustancia se encuentran orientados en un grado determinado. Por otro lado, cuando existen fuerzas internas capaces de alinear los dipolos magneticos elementales de un material, se tiene un iman permanente. Al igual que en un conductor o un material, en los elementos de una maquina electrica rotatoria se pueden inducir campos magneticos que producen un magnetismo residual o magnetizacion. En las maquinas electricas rotatorias, el fenomeno de magnetizacion causa graves problemas, como la generacion de corrientes inducidas que propician el desgaste mecanico

  12. An absolute calibration system for millimeter-accuracy APOLLO measurements

    Science.gov (United States)

    Adelberger, E. G.; Battat, J. B. R.; Birkmeier, K. J.; Colmenares, N. R.; Davis, R.; Hoyle, C. D.; Huang, L. R.; McMillan, R. J.; Murphy, T. W., Jr.; Schlerman, E.; Skrobol, C.; Stubbs, C. W.; Zach, A.

    2017-12-01

    Lunar laser ranging provides a number of leading experimental tests of gravitation—important in our quest to unify general relativity and the standard model of physics. The apache point observatory lunar laser-ranging operation (APOLLO) has for years achieved median range precision at the  ∼2 mm level. Yet residuals in model-measurement comparisons are an order-of-magnitude larger, raising the question of whether the ranging data are not nearly as accurate as they are precise, or if the models are incomplete or ill-conditioned. This paper describes a new absolute calibration system (ACS) intended both as a tool for exposing and eliminating sources of systematic error, and also as a means to directly calibrate ranging data in situ. The system consists of a high-repetition-rate (80 MHz) laser emitting short (motivating continued work on model capabilities. The ACS provides the means to deliver APOLLO data both accurate and precise below the 2 mm level.

  13. On the Generation of a Robust Residual for Closed-loopControl systems that Exhibit Sensor Faults

    DEFF Research Database (Denmark)

    Alavi, Seyed Mohammad Mahdi; Izadi-Zamanabadi, Roozbeh; Hayes, Martin J.

    2007-01-01

    This paper presents a novel design methodology, based on shaping the system frequency response, for the generation of an appropriate residual signal that is sensitive to sensor faults in the presence of model uncertainty and exogenous unknown (unmeasured) disturbances. An integrated feedback cont...

  14. Linking Energy- and Land-Use Systems: Energy Potentials and Environmental Risks of Using Agricultural Residues in Tanzania

    Directory of Open Access Journals (Sweden)

    Julia C. Terrapon-Pfaff

    2012-02-01

    Full Text Available This paper attempts to assess whether renewable energy self-sufficiency can be achieved in the crop production and processing sector in Tanzania and if this could be accomplished in an environmentally sustainable manner. In order to answer these questions the theoretical energy potential of process residues from commercially produced agricultural crops in Tanzania is evaluated. Furthermore, a set of sustainability indicators with focus on environmental criteria is applied to identify risks and opportunities of using these residues for energy generation. In particular, the positive and negative effects on the land-use-system (soil fertility, water use and quality, biodiversity, etc. are evaluated. The results show that energy generation with certain agricultural process residues could not only improve and secure the energy supply but could also improve the sustainability of current land-use practices.

  15. Viscoelastic finite element analysis of residual stresses in porcelain-veneered zirconia dental crowns.

    Science.gov (United States)

    Kim, Jeongho; Dhital, Sukirti; Zhivago, Paul; Kaizer, Marina R; Zhang, Yu

    2018-06-01

    The main problem of porcelain-veneered zirconia (PVZ) dental restorations is chipping and delamination of veneering porcelain owing to the development of deleterious residual stresses during the cooling phase of veneer firing. The aim of this study is to elucidate the effects of cooling rate, thermal contraction coefficient and elastic modulus on residual stresses developed in PVZ dental crowns using viscoelastic finite element methods (VFEM). A three-dimensional VFEM model has been developed to predict residual stresses in PVZ structures using ABAQUS finite element software and user subroutines. First, the newly established model was validated with experimentally measured residual stress profiles using Vickers indentation on flat PVZ specimens. An excellent agreement between the model prediction and experimental data was found. Then, the model was used to predict residual stresses in more complex anatomically-correct crown systems. Two PVZ crown systems with different thermal contraction coefficients and porcelain moduli were studied: VM9/Y-TZP and LAVA/Y-TZP. A sequential dual-step finite element analysis was performed: heat transfer analysis and viscoelastic stress analysis. Controlled and bench convection cooling rates were simulated by applying different convective heat transfer coefficients 1.7E-5 W/mm 2 °C (controlled cooling) and 0.6E-4 W/mm 2 °C (bench cooling) on the crown surfaces exposed to the air. Rigorous viscoelastic finite element analysis revealed that controlled cooling results in lower maximum stresses in both veneer and core layers for the two PVZ systems relative to bench cooling. Better compatibility of thermal contraction coefficients between porcelain and zirconia and a lower porcelain modulus reduce residual stresses in both layers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Thermal residual stress evaluation based on phase-shift lateral shearing interferometry

    Science.gov (United States)

    Dai, Xiangjun; Yun, Hai; Shao, Xinxing; Wang, Yanxia; Zhang, Donghuan; Yang, Fujun; He, Xiaoyuan

    2018-06-01

    An interesting phase-shift lateral shearing interferometry system was proposed to evaluate the thermal residual stress distribution in transparent specimen. The phase-shift interferograms was generated by moving a parallel plane plate. Based on analyzing the fringes deflected by deformation and refractive index change, the stress distribution can be obtained. To verify the validity of the proposed method, a typical experiment was elaborately designed to determine thermal residual stresses of a transparent PMMA plate subjected to the flame of a lighter. The sum of in-plane stress distribution was demonstrated. The experimental data were compared with values measured by digital gradient sensing method. Comparison of the results reveals the effectiveness and feasibility of the proposed method.

  17. Analyses of edge effects on residual stresses in film strip/substrate systems

    International Nuclear Information System (INIS)

    Hsueh, Chun-Hway

    2000-01-01

    The residual stress distribution in a thin-film strip overlaid on a substrate is influenced by the edges of the strip. An analytical model is developed to derive a closed-form solution for the stress distribution along the film width. Because the film is much thinner than the substrate, the stress variation through the film thickness is ignored; however, the stress variation through the substrate thickness is considered in the analysis. Compared to the existing analytical models, the present model is more rigorous and the analytical results agree better with both finite element results and experimental measurements. (c) 2000 American Institute of Physics

  18. Dependence of magnetic permeability on residual stresses in alloyed steels

    Directory of Open Access Journals (Sweden)

    E. Hristoforou

    2018-04-01

    Full Text Available A method for the monitoring of residual stress distribution in steels has been developed based on non-destructive surface magnetic permeability measurements. In order to investigate the potential utilization of the magnetic method in evaluating residual stresses, the magnetic calibration curves of various ferromagnetic alloyed steels’ grade (AISI 4140, TRIP and Duplex were examined. X-Ray diffraction technique was used for determining surface residual stress values. The overall measurement results have shown that the residual stress determined by the magnetic method was in good agreement with the diffraction results. Further experimental investigations are required to validate the preliminary results and to verify the presence of a unique normalized magnetic stress calibration curve.

  19. Dependence of magnetic permeability on residual stresses in alloyed steels

    Science.gov (United States)

    Hristoforou, E.; Ktena, A.; Vourna, P.; Argiris, K.

    2018-04-01

    A method for the monitoring of residual stress distribution in steels has been developed based on non-destructive surface magnetic permeability measurements. In order to investigate the potential utilization of the magnetic method in evaluating residual stresses, the magnetic calibration curves of various ferromagnetic alloyed steels' grade (AISI 4140, TRIP and Duplex) were examined. X-Ray diffraction technique was used for determining surface residual stress values. The overall measurement results have shown that the residual stress determined by the magnetic method was in good agreement with the diffraction results. Further experimental investigations are required to validate the preliminary results and to verify the presence of a unique normalized magnetic stress calibration curve.

  20. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soils

    OpenAIRE

    Chivenge, P.P.; Murwira, H.K.; Giller, K.E.; Mapfumo, P.; Six, J.

    2007-01-01

    Metadata only record The long-term effects of tillage system and residue management on soil organic carbon stabilization are studied in two tropical soils in Zimbabwe, a red clay and a sandy soil. The four tillage systems evaluated were conventional tillage (CT), mulch ripping (MR), clean ripping (CR) and tied ridging (TR). Soil organic carbon (SOC) content was measured for each size fraction as well as total SOC. Based on the findings, the authors conclude that residue management - mainta...

  1. Influence of residual stress on the adhesion and surface morphology of PECVD-coated polypropylene

    Science.gov (United States)

    Jaritz, Montgomery; Hopmann, Christian; Behm, Henrik; Kirchheim, Dennis; Wilski, Stefan; Grochla, Dario; Banko, Lars; Ludwig, Alfred; Böke, Marc; Winter, Jörg; Bahre, Hendrik; Dahlmann, Rainer

    2017-11-01

    The properties of plasma-enhanced chemical vapour deposition (PECVD) coatings on polymer materials depend to some extent on the surface and material properties of the substrate. Here, isotactic polypropylene (PP) substrates are coated with silicon oxide (SiO x ) films. Plasmas for the deposition of SiO x are energetic and oxidative due to the high amount of oxygen in the gas mixture. Residual stress measurements using single Si cantilever stress sensors showed that these coatings contain high compressive stress. To investigate the influence of the plasma and the coatings, residual stress, silicon organic (SiOCH) coatings with different thicknesses between the PP and the SiO x coating are used as a means to protect the substrate from the oxidative SiO x coating process. Pull-off tests are performed to analyse differences in the adhesion of these coating systems. It could be shown that the adhesion of the PECVD coatings on PP depends on the coatings’ residual stress. In a PP/SiOCH/SiO x -multilayer system the residual stress can be significantly reduced by increasing the thickness of the SiOCH coating, resulting in enhanced adhesion.

  2. Residuals Management and Water Pollution Control Planning.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Public Affairs.

    This pamphlet addresses the problems associated with residuals and water quality especially as it relates to the National Water Pollution Control Program. The types of residuals and appropriate management systems are discussed. Additionally, one section is devoted to the role of citizen participation in developing management programs. (CS)

  3. Electrodialytic remediation of air pollution control residues

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland

    Air pollution control (APC) residue from municipal solid waste incineration (MSWI) consists of the fly ash, and, in dry and semi-dry systems, also the reaction products from the flue gas cleaning process. APC residue is considered a hazardous waste due to its high alkalinity, high content of salt...

  4. Performance, body measurements, carcass and cut yields, and meat quality in lambs fed residues from processing agroindustry of fruits

    Directory of Open Access Journals (Sweden)

    Darcilene Maria de Figueiredo

    2015-02-01

    Full Text Available This research was conducted with the objective to evaluate the use of residue dry matter (DM from pineapple (Ananas comosus L., banana (Musa sp., mango (Mangifera indica and passion fruit (Passiflora spp. in feeding of the feedlot on productive performance, carcass yield and qualitative and quantitative characteristics of meat. Twenty-five crossbred lamps with Santa Inês breed and mixed breed were used. The treatments consisted of the replacement of 75% of sorghum silage by respective residue DM, whereas in the control treatment forage had only sorghum silage the diets had a houghageto- concentrate ratio of 40:60 interns of DM being isonitrogenous and isoenergetics. The animals were slaughtered at 32 kg liveweight. Before slaughter were obtained biometric measurements, after the same, was performed the hot carcasses weight and morphometric measurements. After 24 hours in a cold chamber at 4 ° C, was determined the cold carcass weight and yield calculation. The left half carcass was divided into five sections: neck, shoulder, shank, rib and loin, by performing the calculation of income cuts. Analyses meat quality such as pH, color (L, a, b, chroma and Ho, by cooking weight loss, water retention capacity and shear strength were carried out in the Longissimus dorsi sample. The completely randomized design was adapted. The data were interpreted using analysis of variance with the test a Tukey 5% probability. There was no effect of diet (P> 0.05 according to the parameters: growth performance, body measurements, and meat quality of lambs. There was also no effect of the diets (P> 0.05 on the loin eye area assuming that carcasses remained similar muscularity important fact to market acceptance standard. It is concluded that replacing up to 75% of sorghum silage by residues fruit (pineapple, banana, mango and passion fruit in lambs feeding becomes feasible not to change the productive performance, body measurements, yields carcass and cuts and meat

  5. Pesticide residue quantification analysis by hyperspectral imaging sensors

    Science.gov (United States)

    Liao, Yuan-Hsun; Lo, Wei-Sheng; Guo, Horng-Yuh; Kao, Ching-Hua; Chou, Tau-Meu; Chen, Junne-Jih; Wen, Chia-Hsien; Lin, Chinsu; Chen, Hsian-Min; Ouyang, Yen-Chieh; Wu, Chao-Cheng; Chen, Shih-Yu; Chang, Chein-I.

    2015-05-01

    Pesticide residue detection in agriculture crops is a challenging issue and is even more difficult to quantify pesticide residue resident in agriculture produces and fruits. This paper conducts a series of base-line experiments which are particularly designed for three specific pesticides commonly used in Taiwan. The materials used for experiments are single leaves of vegetable produces which are being contaminated by various amount of concentration of pesticides. Two sensors are used to collected data. One is Fourier Transform Infrared (FTIR) spectroscopy. The other is a hyperspectral sensor, called Geophysical and Environmental Research (GER) 2600 spectroradiometer which is a batteryoperated field portable spectroradiometer with full real-time data acquisition from 350 nm to 2500 nm. In order to quantify data with different levels of pesticide residue concentration, several measures for spectral discrimination are developed. Mores specifically, new measures for calculating relative power between two sensors are particularly designed to be able to evaluate effectiveness of each of sensors in quantifying the used pesticide residues. The experimental results show that the GER is a better sensor than FTIR in the sense of pesticide residue quantification.

  6. Implementation and Development of the Incremental Hole Drilling Method for the Measurement of Residual Stress in Thermal Spray Coatings

    Science.gov (United States)

    Valente, T.; Bartuli, C.; Sebastiani, M.; Loreto, A.

    2005-12-01

    The experimental measurement of residual stresses originating within thick coatings deposited by thermal spray on solid substrates plays a role of fundamental relevance in the preliminary stages of coating design and process parameters optimization. The hole-drilling method is a versatile and widely used technique for the experimental determination of residual stress in the most superficial layers of a solid body. The consolidated procedure, however, can only be implemented for metallic bulk materials or for homogeneous, linear elastic, and isotropic materials. The main objective of the present investigation was to adapt the experimental method to the measurement of stress fields built up in ceramic coatings/metallic bonding layers structures manufactured by plasma spray deposition. A finite element calculation procedure was implemented to identify the calibration coefficients necessary to take into account the elastic modulus discontinuities that characterize the layered structure through its thickness. Experimental adjustments were then proposed to overcome problems related to the low thermal conductivity of the coatings. The number of calculation steps and experimental drilling steps were finally optimized.

  7. Determination of Pesticides Residues in Cucumbers Grown in Greenhouse and the Effect of Some Procedures on Their Residues.

    Science.gov (United States)

    Leili, Mostafa; Pirmoghani, Amin; Samadi, Mohammad Taghi; Shokoohi, Reza; Roshanaei, Ghodratollah; Poormohammadi, Ali

    2016-11-01

    The objective of this study was to determine the residual concentrations of ethion and imidacloprid in cucumbers grown in greenhouse. The effect of some simple processing procedures on both ethion and imidacloprid residues were also studied. Ten active greenhouses that produce cucumber were randomly selected. Ethion and imidacloprid as the most widely used pesticides were measured in cucumber samples of studied greenhouses. Moreover, the effect of storing, washing, and peeling as simple processing procedures on both ethion and imidacloprid residues were investigated. One hour after pesticide application; the maximum residue levels (MRLs) of ethion and imidacloprid were higher than that of Codex standard level. One day after pesticide application, the levels of pesticides were decreased about 35 and 31% for ethion and imidacloprid, respectively, which still were higher than the MRL. Washing procedure led to about 51 and 42.5% loss in ethion and imidacloprid residues, respectively. Peeling procedure also led to highest loss of 93.4 and 63.7% in ethion and imidacloprid residues, respectively. The recovery for both target analytes was in the range between 88 and 102%. The residue values in collected samples one hour after pesticides application were higher than standard value. The storing, washing, and peeling procedures lead to the decrease of pesticide residues in greenhouse cucumbers. Among them, the peeling procedure has the greatest impact on residual reduction. Therefore, these procedures can be used as simple and effective processing techniques for reducing and removing pesticides from greenhouse products before their consumption.

  8. An analytical method on the surface residual stress for the cutting tool orientation

    Science.gov (United States)

    Li, Yueen; Zhao, Jun; Wang, Wei

    2010-03-01

    The residual stress is measured by choosing 8 kinds orientations on cutting the H13 dies steel on the HSM in the experiment of this paper. The measured data shows on that the residual stress exists periodicity for the different rake angle (β) and side rake angle (θ) parameters, further study find that the cutting tool orientations have closed relationship with the residual stresses, and for the original of the machined residual stress on the surface from the cutting force and the axial force, it can be gained the simply model of tool-workpiece force, using the model it can be deduced the residual stress model, which is feasible to calculate the size of residual stress. And for almost all the measured residual stresses are compressed stress, the compressed stress size and the direction could be confirmed by the input data for the H13 on HSM. As the result, the residual stress model is the key for optimization of rake angle (β) and side rake angle (θ) in theory, using the theory the more cutting mechanism can be expressed.

  9. Comparison of Some Mechanical and Physical Methods for Measurement of Residual Stresses in Brush-Plated Nickel Hardened Gold and Silver Coatings

    Directory of Open Access Journals (Sweden)

    Harri LILLE

    2016-05-01

    Full Text Available Hard gold and silver are applied in coating owing to their high hardness, good wear and corrosion resistance for engineering application (e.g. on generators slip rings, sliding contacts and small machine parts and are typically plated on copper (mostly, brass and bronze. The studied nickel-hardened gold and silver coatings were brush plated on open thin-walled copper ring substrates. Residual stresses in the coatings were calculated from the curvature changes of the substrates. Biaxial intrinsic residual stresses were also determined by nanoindentation testing and by the X-ray technique. The values of the residual stresses represented tensile stresses and when determined by the techniques used they were comparable within a maximum limit of measurement uncertainty. These stresses relax; the dependence of relaxation time was approximated by a linear-fractional function.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7439

  10. Formation of non-extractable pesticide residues: observations on compound differences, measurement and regulatory issues

    Energy Technology Data Exchange (ETDEWEB)

    Mordaunt, Catriona J.; Gevao, Bondi; Jones, Kevin C.; Semple, Kirk T

    2005-01-01

    Six major use pesticides (Atrazine, Dicamba, Isoproturon, Lindane, Paraquat and Trifluralin) with differing physico-chemical properties were evaluated for the significance of 'bound' or non extractable residue formation. Investigations were carried out in purpose-built microcosms where mineralization, volatilisation, 'soil water' extractable and organic solvent extractable residues could be quantified. Extractable residues were defined as those accessible by sequential extraction where the solvent used became increasingly non-polar. Dichloromethane was the 'harshest' solvent used at the end of the sequential extraction procedure. {sup 14}C-labelled volatilised and {sup 14}CO{sub 2} fractions were trapped on exit from the microcosm. The pesticides were categorised into 3 classes based on their behaviour. (i) Type A (Atrazine, Lindane and Trifluralin) in which ring degradation was limited as was the formation of non-extractable residues; the remainder of the {sup 14}C-activity was found in the extractable fraction. (ii) Type B (Dicamba and Isoproturon) in which approximately 25% of the {sup 14}C-activity was mineralised and a large portion was found in the non-extractable fraction after 91 days. Finally, Type C (Paraquat) in which almost all of the {sup 14}C-activity was quickly incorporated into the non-extractable fraction. The implications of the data are discussed, with respect to the variability and significance of regulatory aspects of non-extractable residues.

  11. Formation of non-extractable pesticide residues: observations on compound differences, measurement and regulatory issues

    International Nuclear Information System (INIS)

    Mordaunt, Catriona J.; Gevao, Bondi; Jones, Kevin C.; Semple, Kirk T.

    2005-01-01

    Six major use pesticides (Atrazine, Dicamba, Isoproturon, Lindane, Paraquat and Trifluralin) with differing physico-chemical properties were evaluated for the significance of 'bound' or non extractable residue formation. Investigations were carried out in purpose-built microcosms where mineralization, volatilisation, 'soil water' extractable and organic solvent extractable residues could be quantified. Extractable residues were defined as those accessible by sequential extraction where the solvent used became increasingly non-polar. Dichloromethane was the 'harshest' solvent used at the end of the sequential extraction procedure. 14 C-labelled volatilised and 14 CO 2 fractions were trapped on exit from the microcosm. The pesticides were categorised into 3 classes based on their behaviour. (i) Type A (Atrazine, Lindane and Trifluralin) in which ring degradation was limited as was the formation of non-extractable residues; the remainder of the 14 C-activity was found in the extractable fraction. (ii) Type B (Dicamba and Isoproturon) in which approximately 25% of the 14 C-activity was mineralised and a large portion was found in the non-extractable fraction after 91 days. Finally, Type C (Paraquat) in which almost all of the 14 C-activity was quickly incorporated into the non-extractable fraction. The implications of the data are discussed, with respect to the variability and significance of regulatory aspects of non-extractable residues

  12. Nitrogen mineralization and denitrification as influenced by crop residue particle size

    DEFF Research Database (Denmark)

    Ambus, P.; Jensen, E.S.

    1997-01-01

    1: N-15-labelled ground (less than or equal to 3 mm) and cut (25 mm) barley residue, and microcrystalline cellulose+glucose were mixed into a sandy loam soil with additional inorganic N. Experiment 2: inorganic N-15 and C2H2 were added to soils with barley and pea material after 3, 26, and 109 days......Managing the crop residue particle size has the potential to affect N conservation in agricultural systems. We investigated the influence of barley (Hordeum vulgare) and pea (Pisum sativum) crop residue particle size on N mineralization and denitrification in two laboratory experiments. Experiment...... for measuring gross N mineralization and denitrification. Net N immobilization over 60 days in Experiment 1 cumulated to 63 mg N kg(-1) soil (ground barley), 42 (cut barley), and 122 (cellulose+glucose). More N was seemingly net mineralized from ground barley (3.3 mg N kg(-1) soil) than from cut barley (2.7 mg...

  13. Residual stresses in a cast iron automotive brake disc rotor

    International Nuclear Information System (INIS)

    Ripley, Maurice I.; Kirstein, Oliver

    2006-01-01

    Runout, and consequent juddering and pulsation through the brake pedal, is a multi-million dollar per year warranty problem for car manufacturers. There is some suspicion that the runout can be caused by relaxation of residual casting stresses when the disc is overheated during severe-braking episodes. We report here neutron-diffraction measurements of the levels and distribution of residual strains in a used cast iron brake disc rotor. The difficulties of measuring stresses in grey cast iron are outlined and three-dimensional residual-strain distributions are presented and their possible effects discussed

  14. Evaluation of certain crop residues for carbohydrate and protein fractions by cornell net carbohydrate and protein system

    Directory of Open Access Journals (Sweden)

    Venkateswarulu Swarna

    2015-06-01

    Full Text Available Four locally available crop residues viz., jowar stover (JS, maize stover (MS, red gram straw (RGS and black gram straw (BGS were evaluated for carbohydrate and protein fractions using Cornell Net Carbohydrate and Protein (CNCP system. Lignin (% NDF was higher in legume straws as compared to cereal stovers while Non-structural carbohydrates (NSC (% DM followed the reverse trend. The carbohydrate fractions A and B1 were higher in BGS while B2 was higher in MS as compared to other crop residues. The unavailable cell wall fraction (C was higher in legume straws when compared to cereal stovers. Among protein fractions, B1 was higher in legume straws when compared to cereal stovers while B2 was higher in cereal stovers as compared to legume straws. Fraction B3 largely, bypass protein was highest in MS as compared to other crop residues. Acid detergent insoluble crude protein (ADICP (% CP or unavailable protein fraction C was lowest in MS and highest in BGS. It is concluded that MS is superior in nutritional value for feeding ruminants as compared to other crop residues.

  15. Evaporation residue corss sections for {sup 32}S + {sup 184}W

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.B.; Blumenthal, D.J.; Davids, C.N. [and others

    1995-08-01

    We recently measured evaporation residue cross sections for the {sup 32}S + {sup 184}W system over a range of beam energies using the Argonne Fragment Mass Analyzer (FMA). Absolute cross sections were obtained on the basis of the recent determination of the transmission probability through the FMA of heavy, slow-moving reaction products. The measurements were carried out using {sup 32}S-beams from the ATLAS superconducting linac at Argonne. Beam energies of 165, 174, 185, 195, 205, 215, 225, 236, 246, and 257 MeV were used. The sliding-seal target chamber is used to allow for measurements at finite angles.

  16. Correlation of beam loss to residual activation in the AGS

    International Nuclear Information System (INIS)

    Brown, K.A.

    1991-01-01

    Studies of beam loss and activation at the AGS have provided a better understanding of measurements of beam loss and how they may be used to predict activation. Studies have been done in which first order correlations have been made between measured beam losses on the distributed ionization chamber system in the AGS and the health physics recorded residual activation. These studies have provided important insight into the ionization chamber system, its limitations, and its usefulness in the prediction of activation based on monitored beam loss. In recent years the AGS has run high intensity protons primarily for rare kaon decay experiments. In this mode of running the AGS typically accelerates beam from an injection momentum of 0.644 GeV/c up to a slow extracted beam (SEB) momentum of 24.2 GeV/c. The beam intensities are on the order of 4.5 x 10 13 protons per AGS cycle at injection to as high as 1.9 x 10 13 protons per AGS cycle at extraction. Residual activation varies around the AGS ring from the order of 5 mR/hour to levels of the order at 5 R/hour. The highest levels occur around the AGS beam catcher and the extraction equipment

  17. Crop residue management in arable cropping systems under a temperate climate. Part 2: Soil physical properties and crop production. A review

    Directory of Open Access Journals (Sweden)

    Hiel, MP.

    2016-01-01

    Full Text Available Introduction. Residues of previous crops provide a valuable amount of organic matter that can be used either to restore soil fertility or for external use. A better understanding of the impact of crop residue management on the soil-water-plant system is needed in order to manage agricultural land sustainably. This review focuses on soil physical aspects related to crop residue management, and specifically on the link between soil structure and hydraulic properties and its impact on crop production. Literature. Conservation practices, including crop residue retention and non-conventional tillage, can enhance soil health by improving aggregate stability. In this case, water infiltration is facilitated, resulting in an increase in plant water availability. Conservation practices, however, do not systematically lead to higher water availability for the plant. The influence of crop residue management on crop production is still unclear; in some cases, crop production is enhanced by residue retention, but in others crop residues can reduce crop yield. Conclusions. In this review we discuss the diverse and contrasting effects of crop residue management on soil physical properties and crop production under a temperate climate. The review highlights the importance of environmental factors such as soil type and local climatic conditions, highlighting the need to perform field studies on crop residue management and relate them to specific pedo-climatic contexts.

  18. [Effect of reduced N application on soil N residue and N loss in maize-soybean relay strip intercropping system].

    Science.gov (United States)

    Liu, Xiao-Ming; Yong, Tai-Wen; Liu, Wen-Yu; Su, Ben-Ying; Song, Chun; Yang, Feng; Wang, Xiao-Chun; Yang, Wen-Yu

    2014-08-01

    A field experiment was conducted in 2012, including three planting pattern (maize-soybean relay strip intercropping, mono-cultured maize and soybean) and three nitrogen application level [0 kg N x hm(-2), 180 kg N x hm(-2) (reduced N) and 240 kg N x hm(-2) (normal N)]. Fields were assigned to different treatments in a randomized block design with three replicates. The objective of this work was to analyze the effects of planting patterns and nitrogen application rates on plant N uptake, soil N residue and N loss. After fertilization applications, NH4(+)-N and NO3(-)-N levels increased in the soil of intercropped maize but decreased in the soil of intercropped soybean. Compared with mono-crops, the soil N residue and loss of intercropped soybean were reduced, while those of intercropped maize were increased and decreased, respectively. With the reduced rate of N application, N residue rate, N loss rate and ammonia volatilization loss rate of the maize-soybean intercropping relay strip system were decreased by 17.7%, 21.5% and 0.4% compared to mono-cultured maize, but increased by 2.0%, 19.8% and 0.1% compared to mono-cultured soybean, respectively. Likewise, the reduced N application resulted in reductions in N residue, N loss, and the N loss via ammonia volatilization in the maize-soybean relay strip intercropping system compared with the conventional rate of N application adopted by local farmers, and the N residue rate, N loss rate and ammonia volatilization loss rate reduced by 12.0%, 15.4% and 1.2%, respectively.

  19. Preparation of gaseous CRMs from the primary system for "2"2"2Rn activity measurement

    International Nuclear Information System (INIS)

    Kim, B.J.; Kim, B.C.; Lee, K.B.; Lee, J.M.; Park, T.S.

    2016-01-01

    For disseminating the gaseous radon standard traceable to the KRISS primary system based on the defined solid angle counting method, two kinds of radon CRM (a glass ampule type and a stainless steel cylinder type) were developed. The activity of the CRM was certified by subtracting a residual activity from the measured activity by the primary system. After certification, the ampule CRM was used to calibrate a radon-monitoring instrument and the cylinder CRM to calibrate an HPGe system. We also improved the measurement procedure of the radon primary system. In a typical radon energy spectrum, the radon peak overlaps with the polonium peak. For more reliable and accurate measurement of radon activity, a fitting method was adopted for the evaluation of radon area in the alpha energy spectrum. The result of radon activity evaluated by using the fitting method is in good agreement with that by the previous integration method. - Highlights: • Preparation of gaseous Rn-222 CRMs from primary measurement system. • Convolution of 3 left-handed exponentials with a Gaussian function to count radon. • Calibration of continuous radon monitor using glass ampoule CRM. • Calibration of HPGe system as secondary standard for stainless steel cylinder CRM.

  20. A System for Measuring Defect Induced Beam Modulation on Inertial Confinement Fusion-class Laser Optics

    International Nuclear Information System (INIS)

    Runkel, M; Hawley-Fedder, R; Widmayer, C; Williams, W; Weinzapfel, C; Roberts, D

    2005-01-01

    A multi-wavelength laser based system has been constructed to measure defect induced beam modulation (diffraction) from ICF class laser optics. The Nd:YLF-based modulation measurement system (MMS) uses simple beam collimation and imaging to capture diffraction patterns from optical defects onto an 8-bit digital camera at 1053, 527 and 351 nm. The imaging system has a field of view of 4.5 x 2.8 mm 2 and is capable of imaging any plane from 0 to 30 cm downstream from the defect. The system is calibrated using a 477 micron chromium dot on glass for which the downstream diffraction patterns were calculated numerically. Under nominal conditions the system can measure maximum peak modulations of approximately 7:1. An image division algorithm is used to calculate the peak modulation from the diffracted and empty field images after the baseline residual light background is subtracted from both. The peak modulation can then be plotted versus downstream position. The system includes a stage capable of holding optics up to 50 pounds with x and y translation of 40 cm and has been used to measure beam modulation due to solgel coating defects, surface digs on KDP crystals, lenslets in bulk fused silica and laser damage sites mitigated with CO 2 lasers

  1. A System for Measuring Defect Induced Beam Modulation on Inertial Confinement Fusion-class Laser Optics

    Energy Technology Data Exchange (ETDEWEB)

    Runkel, M; Hawley-Fedder, R; Widmayer, C; Williams, W; Weinzapfel, C; Roberts, D

    2005-10-18

    A multi-wavelength laser based system has been constructed to measure defect induced beam modulation (diffraction) from ICF class laser optics. The Nd:YLF-based modulation measurement system (MMS) uses simple beam collimation and imaging to capture diffraction patterns from optical defects onto an 8-bit digital camera at 1053, 527 and 351 nm. The imaging system has a field of view of 4.5 x 2.8 mm{sup 2} and is capable of imaging any plane from 0 to 30 cm downstream from the defect. The system is calibrated using a 477 micron chromium dot on glass for which the downstream diffraction patterns were calculated numerically. Under nominal conditions the system can measure maximum peak modulations of approximately 7:1. An image division algorithm is used to calculate the peak modulation from the diffracted and empty field images after the baseline residual light background is subtracted from both. The peak modulation can then be plotted versus downstream position. The system includes a stage capable of holding optics up to 50 pounds with x and y translation of 40 cm and has been used to measure beam modulation due to solgel coating defects, surface digs on KDP crystals, lenslets in bulk fused silica and laser damage sites mitigated with CO{sub 2} lasers.

  2. Pressure Measurement Systems

    Science.gov (United States)

    1990-01-01

    System 8400 is an advanced system for measurement of gas and liquid pressure, along with a variety of other parameters, including voltage, frequency and digital inputs. System 8400 offers exceptionally high speed data acquisition through parallel processing, and its modular design allows expansion from a relatively inexpensive entry level system by the addition of modular Input Units that can be installed or removed in minutes. Douglas Juanarena was on the team of engineers that developed a new technology known as ESP (electronically scanned pressure). The Langley ESP measurement system was based on miniature integrated circuit pressure-sensing transducers that communicated pressure information to a minicomputer. In 1977, Juanarena formed PSI to exploit the NASA technology. In 1978 he left Langley, obtained a NASA license for the technology, introduced the first commercial product, the 780B pressure measurement system. PSI developed a pressure scanner for automation of industrial processes. Now in its second design generation, the DPT-6400 is capable of making 2,000 measurements a second and has 64 channels by addition of slave units. New system 8400 represents PSI's bid to further exploit the 600 million U.S. industrial pressure measurement market. It is geared to provide a turnkey solution to physical measurement.

  3. In situ chemical composition measurement of individual cloud residue particles at a mountain site, southern China

    Directory of Open Access Journals (Sweden)

    Q. Lin

    2017-07-01

    Full Text Available To investigate how atmospheric aerosol particles interact with chemical composition of cloud droplets, a ground-based counterflow virtual impactor (GCVI coupled with a real-time single-particle aerosol mass spectrometer (SPAMS was used to assess the chemical composition and mixing state of individual cloud residue particles in the Nanling Mountains (1690 m a. s. l. , southern China, in January 2016. The cloud residues were classified into nine particle types: aged elemental carbon (EC, potassium-rich (K-rich, amine, dust, Pb, Fe, organic carbon (OC, sodium-rich (Na-rich and Other. The largest fraction of the total cloud residues was the aged EC type (49.3 %, followed by the K-rich type (33.9 %. Abundant aged EC cloud residues that mixed internally with inorganic salts were found in air masses from northerly polluted areas. The number fraction (NF of the K-rich cloud residues increased within southwesterly air masses from fire activities in Southeast Asia. When air masses changed from northerly polluted areas to southwesterly ocean and livestock areas, the amine particles increased from 0.2 to 15.1 % of the total cloud residues. The dust, Fe, Pb, Na-rich and OC particle types had a low contribution (0.5–4.1 % to the total cloud residues. Higher fraction of nitrate (88–89 % was found in the dust and Na-rich cloud residues relative to sulfate (41–42 % and ammonium (15–23 %. Higher intensity of nitrate was found in the cloud residues relative to the ambient particles. Compared with nonactivated particles, nitrate intensity decreased in all cloud residues except for dust type. To our knowledge, this study is the first report on in situ observation of the chemical composition and mixing state of individual cloud residue particles in China.

  4. Plant Residual Management in different Crop Rotations System on Potato Tuber Yield Loss Affected by Wireworms

    Directory of Open Access Journals (Sweden)

    A. Zarea Feizabadi

    2016-07-01

    Full Text Available Introduction: Selection a proper crop rotation based on environmental conservation rules is a key factor for increasing long term productivity. On the other hand, the major problem in reaching agricultural sustainability is lack of soil organic matter. Recently, a new viewpoint has emerged based on efficient use of inputs, environmental protection, ecological economy, food supply and security. Crop rotation cannot supply and restore plant needed nutrients, so gradually the productivity of rotation system tends to be decreased. Returning the plant residues to the soil helps to increase its organic matter and fertility in long-term period. Wireworms are multi host pests and we can see them in wheat and barley too. The logic way for their control is agronomic practices like as crop rotation. Wireworms’ population and damages are increased with using grasses and small seed gramineas in mild winters, variation in cropping pattern, reduced chemical control, and cover crops in winter. In return soil cultivation, crop rotation, planting date, fertilizing, irrigation and field health are the examples for the effective factors in reducing wireworms’ damage. Materials and Methods: In order to study the effect of crop rotations, residue management and yield damage because of wireworms’ population in soil, this experiment was conducted using four rotation systems for five years in Jolgeh- Rokh agricultural research station. Crop rotations were included, 1 Wheat monoculture for the whole period (WWWWW, 2 Wheat- wheat- wheat- canola- wheat (WWWCW, 3 Wheat- sugar beet- wheat- potato- wheat (WSWPW, 4 Wheat- maize- wheat- potato- wheat (WMWPW as main plots and three levels of returning crop residues to soil (returning 0, 50 and 100% produced crop residues to soil were allocated as sub plots. This experiment was designed as split plot based on RCBD design with three replications. After ending each rotation treatment, the field was sowed with potato cv. Agria

  5. Geophysical exploration of historical mine dumps for the estimation of valuable residuals

    Science.gov (United States)

    Martin, Tina; Knieß, Rudolf; Noell, Ursula; Hupfer, Sarah; Kuhn, Kerstin; Günther, Thomas

    2015-04-01

    Within the project ROBEHA, funded by the German Federal Ministry of Education and Research (033R105) the economic potential of different abandoned dump sites for mine waste in the Harz Mountains was investigated. Two different mining dumps were geophysically and mineralogically analysed in order to characterize the mine dump structure and to estimate the volume of the potential recycling material. The geophysical methods comprised geoelectrics, radar, and spectral induced polarization (SIP). One about 100-year old mining dump containing residues from density separated Ag- and Sb-rich Pb (Zn)-gangue ores was investigated in detail. Like most small-scale mining waste disposal sites this investigated dump is very heterogeneously structured. Therefore, 27 geoelectrical profiles, more than 50 radar profiles, and several SIP profiles were measured and analysed. The results from the radar measurements, registered with the GSSI system and a shielded 200 MHz antenna, show the near surface boundary layer (down to 3-4 m beneath surface) of the waste residuals. These results can be used as pre-information for the inversion process of the geoelectrical data. The geoelectrical results reveal the mineral residues as layers with higher resistivities (> 300 Ohm*m) than the surrounding material. The SIP method found low phase signals (mine dump and other parameters we get a first estimate for the volume of the residues but the economical viability and the environmental impact of the reworking of the dump still needs to be evaluated in detail. The results of the second mine dump, an abandoned Cu and Zn-rich slag heap, show that the slag residues are characterized by higher resistivities and higher phases. A localization of the slag residues which are covered by organic material could be realized applying these geophysical methods.

  6. Control system of an anaerobia reactor used in the treatment of the Industrial residual waters

    International Nuclear Information System (INIS)

    Duque, Mauricio; Giraldo, Eugenio; Bello Frank

    1995-01-01

    The technology of the anaerobia digestion, has had a wide acceptance in the Colombian means for the treatment of industrial residual waters, especially for the economic advantages that it present and the good purification results. The technology of the anaerobia digestion for the treatment of residual waters, is based in the conversion of the organic matter present in the polluted waters, in methane and carbon dioxide. These two gases are removed of the reactor by means of special structures of gathering. Microorganisms that are sensitive to the changes of the pH mediate the conversion of the organic matter to CH4 and CO2. Therefore, the control on the pH is necessary for a correct behavior of the reactor. At the moment many industries are implementing plans of contamination control, that involve treatment of residual waters for means anaerobia. The present investigation is part of a wide work program in the technology of the anaerobia digestion. It is looked for to develop a monitored system and automatic control of reactors discharge anaerobia appraises, in a combined effort among the departments of Civil and Electric Engineering of the Andes University

  7. Residual stress analysis in carbon fiber-reinforced SiC ceramics

    International Nuclear Information System (INIS)

    Broda, M.

    1998-01-01

    Systematic residual stress analyses are reported, carried out in long-fiber reinforced SiC ceramics. The laminated C fiber /SiC matrix specimens used were prepared by polymer pyrolysis, and the structural component specimens used are industrial products. Various diffraction methods have been applied for non-destructive evaluation of residual stress fields, so as to completely detect the residual stresses and their distribution in the specimens. The residual stress fields at the surface (μm) have been measured using characteristic X-radiation and applying the sin 2 ψ method as well as the scatter vector method. For residual stress field analysis in the mass volume (cm), neutron diffraction has been applied. The stress fields in the fiber layers (approx. 250μm) have been measured as a function of their location within the laminated composite by using an energy-dispersive method and synchrotron radiation. By means of the systematic, process-accompanying residual stress and phase analyses, conclusions can be drawn as to possible approaches for optimization of fabrication parameters. (orig./CB) [de

  8. Isotopic tracer aided studies of fenvalerate residues in stored rice

    International Nuclear Information System (INIS)

    Varca, L.M.; Sanchez, T.E.; Magallona, E.D.

    1990-01-01

    Following application of 14 C-fenvalerate to milled rice and paddy rice at a concentration of 0.33 mg/kg, only insignificant losses were measured after 9 months. Distribution patterns in surface, methanol extractable and bound residues were studied. Paddy rice contained less extractable residues than milled rice, with the major part being found in the husk. Bound residues in both milled and paddy rice decreased also with length of storage; as much as 30% was found as bound residues after nine months. Cooking reduced the insecticide residues in milled rice by 33-40% and residues in paddy rice by 58%. (author). 8 refs, 1 fig., 4 tabs

  9. Florfenicol residues in Rainbow Trout after oral dosing in recirculating and flow-through culture systems

    Science.gov (United States)

    Meinertz, Jeffery R.; Hess, Karina R.; Bernady, Jeffry A.; Gaikowski, M. P.; Whitsel, Melissa; Endris, R. G.

    2014-01-01

    Aquaflor is a feed premix for fish containing the broad spectrum antibacterial agent florfenicol (FFC) incorporated at a ratio of 50% (w/w). To enhance the effectiveness of FFC for salmonids infected with certain isolates of Flavobacterium psychrophilum causing coldwater disease, the FFC dose must be increased from the standard 10 mg·kg−1 body weight (BW)·d−1 for 10 consecutive days. A residue depletion study was conducted to determine whether FFC residues remaining in the fillet tissue after treating fish at an increased dose would be safe for human consumption. Groups of Rainbow Trout Oncorhynchus mykiss (total n = 144; weight range, 126–617 g) were treated with FFC at 20 mg·kg−1 BW·d−1 for 10 d in a flow-through system (FTS) and a recirculating aquaculture system (RAS) each with a water temperature of ∼13°C. The two-tank RAS included a nontreated tank containing 77 fish. Fish were taken from each tank (treated tank, n = 16; nontreated tank, n = 8) at 6, 12, 24, 48, 72, 120, 240, 360, and 480 h posttreatment. Florfenicol amine (FFA) concentrations (the FFC marker residue) in skin-on fillets from treated fish were greatest at 12 h posttreatment (11.58 μg/g) in the RAS and were greatest at 6 h posttreatment (11.09 μg/g) in the FTS. The half-lives for FFA in skin-on fillets from the RAS and FTS were 20.3 and 19.7 h, respectively. Assimilation of FFC residues in the fillets of nontreated fish sharing the RAS with FFC-treated fish was minimal. Florfenicol water concentrations peaked in the RAS-treated tank and nontreated tanks at 10 h (453 μg/L) and 11 h (442 μg/L) posttreatment, respectively. Monitoring of nitrite concentrations throughout the study indicated the nitrogen oxidation efficiency of the RAS biofilter was minimally impacted by the FFC treatment.

  10. A set of constitutive relationships accounting for residual NAPL in the unsaturated zone.

    Science.gov (United States)

    Wipfler, E L; van der Zee, S E

    2001-07-01

    Although laboratory experiments show that non-aqueous phase liquid (NAPL) is retained in the unsaturated zone, no existing multiphase flow model has been developed to account for residual NAPL after NAPL drainage in the unsaturated zone. We developed a static constitutive set of saturation-capillary pressure relationships for water, NAPL and air that accounts for both this residual NAPL and entrapped NAPL. The set of constitutive relationships is formulated similarly to the set of scaled relationships that is frequently applied in continuum models. The new set consists of three fluid-phase systems: a three-phase system and a two-phase system, that both comply with the original constitutive model, and a newly introduced residual NAPL system. The new system can be added relatively easily to the original two- and three-phase systems. Entrapment is included in the model. The constitutive relationships of the non-drainable residual NAPL system are based on qualitative fluid behavior derived from a pore scale model. The pore scale model reveals that the amount of residual NAPL depends on the spreading coefficient and the water saturation. Furthermore, residual NAPL is history-dependent. At the continuum scale, a critical NAPL pressure head defines the transition from free, mobile NAPL to residual NAPL. Although the Pc-S relationships for water and total liquid are not independent in case of residual NAPL, two two-phase Pc-S relations can represent a three-phase residual system of Pc-S relations. A newly introduced parameter, referred to as the residual oil pressure head, reflects the mutual dependency of water and oil. Example calculations show consistent behavior of the constitutive model. Entrapment and retention in the unsaturated zone cooperate to retain NAPL. Moreover, the results of our constitutive model are in agreement with experimental observations.

  11. Residual stress analysis of drive shafts after induction hardening

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Guilherme Vieira Braga; Rocha, Alexandre da Silva; Nunes, Rafael Menezes, E-mail: lemos_gl@yahoo.com.br [Universidade Federal do Rio Grande do Sul (UFRS), Porto Algre, RS (Brazil); Hirsch, Thomas Karl [Stiftung Institut für Werkstofftechnik (IWT), Bremen (Germany)

    2014-08-15

    Typically, for automotive shafts, shape distortion manifests itself in most cases after the induction hardening by an effect known as bending. The distortion results in a boost of costs, especially due to machining parts in the hardened state to fabricate its final tolerances. In the present study, residual stress measurements were carried out on automotive drive shafts made of DIN 38B3 steel. The samples were selected in consequence of their different distortion properties by an industrial manufacturing line. One tested shaft was straightened, because of the considerable dimensional variation and the other one not. Firstly, the residual stress measurements were carried out by using a portable diffractometer, in order to avoid cutting the shafts and evaluate the original state of the stresses, and afterwards a more detailed analysis was realized by a conventional stationary diffractometer. The obtained results presented an overview of the surface residual stress profiles after induction hardening and displayed the influence of the straightening process on the redistribution of residual stresses. They also indicated that the effects of the straightening in the residual stresses cannot be neglected. (author)

  12. Enteric methane emissions from low- and high-residual feed intake beef heifers measured using GreenFeed and respiration chamber techniques.

    Science.gov (United States)

    Alemu, A W; Vyas, D; Manafiazar, G; Basarab, J A; Beauchemin, K A

    2017-08-01

    The objectives of this study were to evaluate the relationship between residual feed intake (RFI; g/d) and enteric methane (CH) production (g/kg DM) and to compare CH and carbon dioxide (CO) emissions measured using respiration chambers (RC) and the GreenFeed emission monitoring (GEM) system (C-Lock Inc., Rapid City, SD). A total of 98 crossbred replacement heifers were group housed in 2 pens and fed barley silage ad libitum and their individual feed intakes were recorded by 16 automated feeding bunks (GrowSafe, Airdrie, AB, Canada) for a period of 72 d to determine their phenotypic RFI. Heifers were ranked on the basis of phenotypic RFI, and 16 heifers (8 with low RFI and 8 with high RFI) were randomly selected for enteric CH and CO emissions measurement. Enteric CH and CO emissions of individual animals were measured over two 25-d periods using RC (2 d/period) and GEM systems (all days when not in chambers). During gas measurements metabolic BW tended to be greater ( ≤ 0.09) for high-RFI heifers but ADG tended ( = 0.09) to be greater for low-RFI heifers. As expected, high-RFI heifers consumed 6.9% more feed ( = 0.03) compared to their more efficient counterparts (7.1 vs. 6.6 kg DM/d). Average CH emissions were 202 and 222 g/d ( = 0.02) with the GEM system and 156 and 164 g/d ( = 0.40) with RC for the low- and high-RFI heifers, respectively. When adjusted for feed intake, CH yield (g/kg DMI) was similar for high- and low-RFI heifers (GEM: 27.7 and 28.5, = 0.25; RC: 26.5 and 26.5, = 0.99). However, CH yield differed between the 2 measurement techniques only for the high-RFI group ( = 0.01). Estimates of CO yield (g/kg DMI) also differed between the 2 techniques ( ≤ 0.03). Our study found that high- and low-efficiency cattle produce similar CH yield but different daily CH emissions. The 2 measurement techniques differ in estimating CH and CO emissions, partially because of differences in conditions (lower feed intakes of cattle while in chambers, fewer days

  13. A process for treatment of residues from dry/semidry APC systems at municipal solid waste incinerators. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hjelmar, O. [VKI, Hoersholm (Denmark)] Holland, D. [FLS miljoe a/s, Valby (Denmark)] Poulsen, B. [KARA, Roskilde (Denmark)

    1997-08-01

    The main objective of the project has been to establish and test a process for treatment of residues from the semidry (and dry) lime injection based APC processes at MSWIs, which will ensure that the residues can be managed in an environmentally safe manner. In pursuit of this goal, the following activities have been carried out: Performance of pilot scale extractions (approximately 50 kg of residue per batch) at the KARA MSWI in Roskilde of semidry APC system residues in order to establish and optimize process conditions. The optimization includes consideration of the possibilities for subsequent treatment/stabilization of the extracted solid phase as well as the possibility of treatment and safe discharge/utilization of the extract; Performance of chemical characterization, hydrogeochemical model calculations and experimental work in order to improve the understanding of the mechanisms and factors which for several contaminants control the equilibrium between the solid and liquid phases, both in the short and the long germ, and to use this information to obtain an environmentally acceptable method for stabilization/treatment of the extracted residues while at the same time minimizing the necessary amount of additives; production of treated residues and performance of leaching tests on these to assess and demonstrate the effectiveness of the entire process (extraction + stabilization/treatment); Evaluation of the technical, economical and environmental consequences of full scale implementation of the process. (EG) EFP-94. 19 refs.

  14. Eddy current spectroscopy for near-surface residual stress profiling in surface treated nonmagnetic engine alloys

    Science.gov (United States)

    Abu-Nabah, Bassam A.

    Recent research results indicated that eddy current conductivity measurements can be exploited for nondestructive evaluation of near-surface residual stresses in surface-treated nickel-base superalloy components. Most of the previous experimental studies were conducted on highly peened (Almen 10-16A) specimens that exhibit harmful cold work in excess of 30% plastic strain. Such high level of cold work causes thermo-mechanical relaxation at relatively modest operational temperatures; therefore the obtained results were not directly relevant to engine manufacturers and end users. The main reason for choosing peening intensities in excess of recommended normal levels was that in low-conductivity engine alloys the eddy current penetration depth could not be forced below 0.2 mm without expanding the measurements above 10 MHz which is beyond the operational range of most commercial eddy current instruments. As for shot-peened components, it was initially felt that the residual stress effect was more difficult to separate from cold work, texture, and inhomogeneity effects in titanium alloys than in nickel-base superalloys. In addition, titanium alloys have almost 50% lower electric conductivity than nickel-base superalloys; therefore require proportionally higher inspection frequencies, which was not feasible until our recent breakthrough in instrument development. Our work has been focused on six main aspects of this continuing research, namely, (i) the development of an iterative inversion technique to better retrieve the depth-dependent conductivity profile from the measured frequency-dependent apparent eddy current conductivity (AECC), (ii) the extension of the frequency range up to 80 MHz to better capture the peak compressive residual stress in nickel-base superalloys using a new eddy current conductivity measuring system, which offers better reproducibility, accuracy and measurement speed than the previously used conventional systems, (iii) the lift-off effect on

  15. Assessment of the Local Residual Stresses of 7050-T7452 Aluminum Alloy in Microzones by the Instrumented Indentation with the Berkovich Indenter

    Science.gov (United States)

    He, M.; Huang, C. H.; Wang, X. X.; Yang, F.; Zhang, N.; Li, F. G.

    2017-10-01

    The local residual stresses in microzones are investigated by the instrumented indentation method with the Berkovich indenter. The parameters required for determination of residual stresses are obtained from indentation load-penetration depth curves constructed during instrumented indentation tests on flat square 7050-T7452 aluminum alloy specimens with a central hole containing the compressive residual stresses generated by the cold extrusion process. The force balance system with account of the tensile and compressive residual stresses is used to explain the phenomenon of different contact areas produced by the same indentation load. The effect of strain-hardening exponent on the residual stress is tuned-off by application of the representative stress σ_{0.033} in the average contact pressure assessment using the Π theorem, while the yield stress value is obtained from the constitutive function. Finally, the residual stresses are calculated according to the proposed equations of the force balance system, and their feasibility is corroborated by the XRD measurements.

  16. Assessing microbiological water quality in drinking water distribution systems with disinfectant residual using flow cytometry.

    Science.gov (United States)

    Gillespie, Simon; Lipphaus, Patrick; Green, James; Parsons, Simon; Weir, Paul; Juskowiak, Kes; Jefferson, Bruce; Jarvis, Peter; Nocker, Andreas

    2014-11-15

    Flow cytometry (FCM) as a diagnostic tool for enumeration and characterization of microorganisms is rapidly gaining popularity and is increasingly applied in the water industry. In this study we applied the method to obtain a better understanding of total and intact cell concentrations in three different drinking water distribution systems (one using chlorine and two using chloramines as secondary disinfectants). Chloramine tended to result in lower proportions of intact cells than chlorine over a wider residual range, in agreement with existing knowledge that chloramine suppresses regrowth more efficiently. For chlorinated systems, free chlorine concentrations above 0.5 mg L(-1) were found to be associated with relatively low proportions of intact cells, whereas lower disinfectant levels could result in substantially higher percentages of intact cells. The threshold for chlorinated systems is in good agreement with guidelines from the World Health Organization. The fact that the vast majority of samples failing the regulatory coliform standard also showed elevated proportions of intact cells suggests that this parameter might be useful for evaluating risk of failure. Another interesting parameter for judging the microbiological status of water, the biological regrowth potential, greatly varied among different finished waters providing potential help for investment decisions. For its measurement, a simple method was introduced that can easily be performed by water utilities with FCM capability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Investigating the Composite Step Biconjugate A-Orthogonal Residual Method for Non-Hermitian Dense Linear Systems in Electromagnetics

    NARCIS (Netherlands)

    Jing, Yan-Fei; Huang, Ting-Zhu; Carpentieri, Bruno; Duan, Yong

    An interesting stabilizing variant of the biconjugate A-orthogonal residual (BiCOR) method is investigated for solving dense complex non-Hermitian systems of linear equations arising from the Galerlcin discretization of surface integral equations in electromagnetics. The novel variant is naturally

  18. [Development of residual voltage testing equipment].

    Science.gov (United States)

    Zeng, Xiaohui; Wu, Mingjun; Cao, Li; He, Jinyi; Deng, Zhensheng

    2014-07-01

    For the existing measurement methods of residual voltage which can't turn the power off at peak voltage exactly and simultaneously display waveforms, a new residual voltage detection method is put forward in this paper. First, the zero point of the power supply is detected with zero cross detection circuit and is inputted to a single-chip microcomputer in the form of pulse signal. Secend, when the zero point delays to the peak voltage, the single-chip microcomputer sends control signal to power off the relay. At last, the waveform of the residual voltage is displayed on a principal computer or oscilloscope. The experimental results show that the device designed in this paper can turn the power off at peak voltage and is able to accurately display the voltage waveform immediately after power off and the standard deviation of the residual voltage is less than 0.2 V at exactly one second and later.

  19. Combinatorial construction of toric residues

    OpenAIRE

    Khetan, Amit; Soprounov, Ivan

    2004-01-01

    The toric residue is a map depending on n+1 semi-ample divisors on a complete toric variety of dimension n. It appears in a variety of contexts such as sparse polynomial systems, mirror symmetry, and GKZ hypergeometric functions. In this paper we investigate the problem of finding an explicit element whose toric residue is equal to one. Such an element is shown to exist if and only if the associated polytopes are essential. We reduce the problem to finding a collection of partitions of the la...

  20. Effectiveness of stress release geometries on reducing residual stress in electroforming metal microstructure

    Science.gov (United States)

    Song, Chang; Du, Liqun; Zhao, Wenjun; Zhu, Heqing; Zhao, Wen; Wang, Weitai

    2018-04-01

    Micro electroforming, as a mature micromachining technology, is widely used to fabricate metal microdevices in micro electro mechanical systems (MEMS). However, large residual stress in the local positions of the micro electroforming layer often leads to non-uniform residual stress distributions, dimension accuracy defects and reliability issues during fabrication of the metal microdevice. To solve this problem, a novel design method of presetting stress release geometries in the topological structure of the metal microstructure is proposed in this paper. First, the effect of stress release geometries (circular shape, annular groove shape and rivet shape) on the residual stress in the metal microstructure was investigated by finite element modeling (FEM) analysis. Two evaluation parameters, stress concentration factor K T and stress non-uniformity factor δ were calculated. The simulation results show that presetting stress release geometries can effectively reduce and homogenize the residual stress in the metal microstructures were measured metal microstructure. By combined use with stress release geometries of annular groove shape and rivet shape, the stress concentration factor K T and the stress non-uniformity factor δ both decreased at a maximum of 49% and 53%, respectively. Meanwhile, the average residual stress σ avg decreased at a maximum of 20% from  -292.4 MPa to  -232.6 MPa. Then, micro electroforming experiments were carried out corresponding to the simulation models. The residual stresses in the metal microstructures were measured by micro Raman spectroscopy (MRS) method. The results of the experiment proved that the stress non-uniformity factor δ and the average residual stress σ avg also decreased at a maximum with the combination use of annular groove shape and rivet shape stress release geometries, which is in agreement with the results of FEM analysis. The stress non-uniformity factor δ has a maximum decrease of 49% and the

  1. Recent results of measurements of evaporation residue excitation functions for 19F+194,196,198Pt and 16,18O+198Pt systems with HYRA spectrometer at IUAC

    Directory of Open Access Journals (Sweden)

    Behera B.R.

    2015-01-01

    Full Text Available In this talk results of the evaporation residue (ER cross sections for the 19F+194,196,198Pt (forming compound nuclei 213,215,217Fr and 16,18O+198Pt (forming compound nuclei 214,216Rn systems measured at Hybrid Recoil mass Analyzer (HYRA spectrometer installed at the Pelletron+LINAC accelerator facility of the Inter University Accelerator Center (IUAC, New Delhi are reported. The survival probabilities of 215Fr and 217Fr with neutron numbers N = 126 are found to be lower than the survival probabilities of 215Fr and 217Fr with neutron numbers N = 128 and 130 respectively. Statistical model analysis of the ER cross sections show that an excitation energy dependent scaling factor of the finite-range rotating liquid drop model fission barrier is necessary to fit the experimental data. For the case of 214,216Rn, the experimental ER cross sections are compared with the predictions from the statistical model calculations of compound nuclear decay where Kramer’s fission width is used. The strength of nuclear dissipation is treated as a free parameter in the calculations to fit the experimental data.

  2. Recent results of measurements of evaporation residue excitation functions for 19F+194,196,198Pt and 16,18O+198Pt systems with HYRA spectrometer at IUAC

    Science.gov (United States)

    Behera, B. R.

    2015-01-01

    In this talk results of the evaporation residue (ER) cross sections for the 19F+194,196,198Pt (forming compound nuclei 213,215,217Fr) and 16,18O+198Pt (forming compound nuclei 214,216Rn) systems measured at Hybrid Recoil mass Analyzer (HYRA) spectrometer installed at the Pelletron+LINAC accelerator facility of the Inter University Accelerator Center (IUAC), New Delhi are reported. The survival probabilities of 215Fr and 217Fr with neutron numbers N = 126 are found to be lower than the survival probabilities of 215Fr and 217Fr with neutron numbers N = 128 and 130 respectively. Statistical model analysis of the ER cross sections show that an excitation energy dependent scaling factor of the finite-range rotating liquid drop model fission barrier is necessary to fit the experimental data. For the case of 214,216Rn, the experimental ER cross sections are compared with the predictions from the statistical model calculations of compound nuclear decay where Kramer's fission width is used. The strength of nuclear dissipation is treated as a free parameter in the calculations to fit the experimental data.

  3. Development project for a residual life evaluation system in LWR NPPs

    International Nuclear Information System (INIS)

    Hervia, F.; Francia, L.

    1995-01-01

    Economic and safety factors have stimulated the interest of Spanish NPPs towards the optimisation of NPP Residual Life Management, and consequently the need to have access to tools to support such management. This requirement has been the subject of a project, the main objectives of which are the identification of the most significant ageing factors in NPPs and their corresponding parameters, and the development of an associated integrated monitoring system. Work on the project was started by UNESA in September 1992 and is partly financed from PIE funds. This paper gives a general description of the objectives and activities of Phase 1, the Definition of the Core Project, which is nearing completion, and Phase 2, the Application of the Integrated System in a Pilot Plant. Phase 1 has confirmed the technical feasibility of the system and its suitability as a tool for the continuous evaluation of the plant condition. Furthermore, it has raised issues of great interest to NPPs. The results and conclusions of Phase 1 are currently being used to define the most suitable scope for the development and implementation of the system in the pilot plant (Phase 2), so that all the main functions of the system are tested without incurring unnecessary costs

  4. Residual volume on land and when immersed in water: effect on percent body fat.

    Science.gov (United States)

    Demura, Shinichi; Yamaji, Shunsuke; Kitabayashi, Tamotsu

    2006-08-01

    There is a large residual volume (RV) error when assessing percent body fat by means of hydrostatic weighing. It has generally been measured before hydrostatic weighing. However, an individual's maximal exhalations on land and in the water may not be identical. The aims of this study were to compare residual volumes and vital capacities on land and when immersed to the neck in water, and to examine the influence of the measurement error on percent body fat. The participants were 20 healthy Japanese males and 20 healthy Japanese females. To assess the influence of the RV error on percent body fat in both conditions and to evaluate the cross-validity of the prediction equation, another 20 males and 20 females were measured using hydrostatic weighing. Residual volume was measured on land and in the water using a nitrogen wash-out technique based on an open-circuit approach. In water, residual volume was measured with the participant sitting on a chair while the whole body, except the head, was submerged . The trial-to-trial reliabilities of residual volume in both conditions were very good (intraclass correlation coefficient > 0.98). Although residual volume measured under the two conditions did not agree completely, they showed a high correlation (males: 0.880; females: 0.853; P body fat computed using residual volume measured in both conditions was very good for both sexes (males: r = 0.902; females: r = 0.869, P body fat: -3.4 to 2.2% for males; -6.3 to 4.4% for females). We conclude that if these errors are of no importance, residual volume measured on land can be used when assessing body composition.

  5. Residual stresses evaluation in a gas-pipeline crossing

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Maria Cindra [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Almeida, Manoel Messias [COMPAGAS, Curitiba, PR (Brazil); Rebello, Joao Marcos Alcoforado [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Souza Filho, Byron Goncalves de [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The X-rays diffraction technique is a well established and effectiveness method in the determination of the residual and applied stresses in fine grained crystalline materials. It allows to characterize and to quantify the magnitude and direction of the existing surface stresses in the studied point of the material. The objective of this work is the evaluation of the surface stresses in a 10 in diameter Natural Gas Distribution Pipeline manufactured from API 5 L Gr B steel of COMPAGAS company, in a crossing with a Natural Gas Transportation Pipeline, in Araucaria-PR. This kind of evaluation is important to establish weather you have to perform a repositioning of one of the pipeline or not. The measurements had been made in two transversal sections of the pipe, the one upstream (170 mm of the external wall of the pipeline) and another one downstream (840 mm of the external wall of the pipeline). Each transversal section measurements where carried out in 3 points: 9 hours, 12 hours and 3 hours. In each measured point of the pipe surface, the longitudinal and transversal stresses had been measured. The magnitude of the surface residual stresses in the pipe varied of +180 MPa at the -210 MPa. The residual stress state on the surface of the points 12 hours region is characterized by tensile stresses and by compressive stresses in the points of 3 and 9 hours region. The surface residual stresses in gas-pipeline have been measured using X-ray diffraction method, by double exposure technique, using a portable apparatus, with Cr-K-alpha radiation. (author)

  6. The Role of Cold Work in Eddy Current Residual Stress Measurements in Shot-Peened Nickel-Base Superalloys

    International Nuclear Information System (INIS)

    Yu, F.; Nagy, P. B.

    2006-01-01

    Recently, it was shown that eddy current methods can be adapted to residual stress measurement in shot-peened nickel-base superalloys. However, experimental evidence indicates that the piezoresistivity effect is simply not high enough to account for the observed apparent eddy current conductivity (AECC) increase. At the same time, X-ray diffraction data indicates that 'cold work' lingers even when the residual stress is fully relaxed and the excess AECC is completely gone. It is impossible to account for both observations with a single coherent explanation unless we assume that instead of a single 'cold work' effect, there are two varieties of cold work; type-A and type-B. Type-A cold work (e.g., changes in the microscopic homogeneity of the material) is not detected by X-ray diffraction as it does not significantly affect the beam width, but causes substantial conductivity change and exhibits strong thermal relaxation. Type-B cold work (e.g., dislocations) is detected by X-ray, but causes little or no conductivity change and exhibits weak thermal relaxation. Based on the assumption of two separate cold-work variables and that X-ray diffraction results indicate the presence of type-B, but not type-A, all observed phenomena can be explained. If this working hypothesis is proven right, the separation of residual stress and type-A cold work is less critical because they both relax much earlier and much faster than type-B cold work

  7. Residual stresses

    International Nuclear Information System (INIS)

    Macherauch, E.

    1978-01-01

    Residual stresses are stresses which exist in a material without the influence of external powers and moments. They come into existence when the volume of a material constantly changes its form as a consequence of mechanical, thermal, and/or chemical processes and is hindered by neighbouring volumes. Bodies with residual stress are in mechanical balance. These residual stresses can be manifested by means of all mechanical interventions disturbing this balance. Acoustical, optical, radiological, and magnetical methods involving material changes caused by residual stress can also serve for determining residual stress. Residual stresses have an ambivalent character. In technical practice, they are feared and liked at the same time. They cause trouble because they can be the cause for unexpected behaviour of construction elements. They are feared since they can cause failure, in the worst case with catastrophical consequences. They are appreciated, on the other hand, because, in many cases, they can contribute to improvements of the material behaviour under certain circumstances. But they are especially liked for their giving convenient and (this is most important) mostly uncontrollable explanations. For only in very few cases we have enough knowledge and possibilities for the objective evaluation of residual stresses. (orig.) [de

  8. RESIDUAL GAS MOTIONS IN THE INTRACLUSTER MEDIUM AND BIAS IN HYDROSTATIC MEASUREMENTS OF MASS PROFILES OF CLUSTERS

    International Nuclear Information System (INIS)

    Lau, Erwin T.; Kravtsov, Andrey V.; Nagai, Daisuke

    2009-01-01

    We present analysis of bulk and random gas motions in the intracluster medium using high-resolution Eulerian cosmological simulations of 16 simulated clusters, including both very relaxed and unrelaxed systems and spanning a virial mass range of 5 x 10 13 - 2 x 10 15 h -1 M-odot. We investigate effects of the residual subsonic gas motions on the hydrostatic estimates of mass profiles and concentrations of galaxy clusters. In agreement with previous studies, we find that the gas motions contribute up to ∼5%-15% of the total pressure support in relaxed clusters with contribution increasing with the cluster-centric radius. The fractional pressure support is higher in unrelaxed systems. This contribution would not be accounted for in hydrostatic estimates of the total mass profile and would lead to systematic underestimate of mass. We demonstrate that total mass can be recovered accurately if pressure due to gas motions measured in simulations is explicitly taken into account in the equation of hydrostatic equilibrium. Given that the underestimate of mass is increasing at larger radii, where gas is less relaxed and contribution of gas motions to pressure is larger, the total density profile derived from hydrostatic analysis is more concentrated than the true profile. This may at least partially explain some high values of concentrations of clusters estimated from hydrostatic analysis of X-ray data.

  9. Environmental dredging residual generation and management.

    Science.gov (United States)

    Patmont, Clay; LaRosa, Paul; Narayanan, Raghav; Forrest, Casey

    2018-05-01

    The presence and magnitude of sediment contamination remaining in a completed dredge area can often dictate the success of an environmental dredging project. The need to better understand and manage this remaining contamination, referred to as "postdredging residuals," has increasingly been recognized by practitioners and investigators. Based on recent dredging projects with robust characterization programs, it is now understood that the residual contamination layer in the postdredging sediment comprises a mixture of contaminated sediments that originate from throughout the dredge cut. This mixture of contaminated sediments initially exhibits fluid mud properties that can contribute to sediment transport and contamination risk outside of the dredge area. This article reviews robust dredging residual evaluations recently performed in the United States and Canada, including the Hudson River, Lower Fox River, Ashtabula River, and Esquimalt Harbour, along with other projects. These data better inform the understanding of residuals generation, leading to improved models of dredging residual formation to inform remedy evaluation, selection, design, and implementation. Data from these projects confirm that the magnitude of dredging residuals is largely determined by site conditions, primarily in situ sediment fluidity or liquidity as measured by dry bulk density. While the generation of dredging residuals cannot be avoided, residuals can be successfully and efficiently managed through careful development and implementation of site-specific management plans. Integr Environ Assess Manag 2018;14:335-343. © 2018 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2018 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  10. Residual stress analysis in thick uranium films

    International Nuclear Information System (INIS)

    Hodge, A.M.; Foreman, R.J.; Gallegos, G.F.

    2005-01-01

    Residual stress analysis was performed on thick, 1-25 μm, depleted uranium (DU) films deposited on an Al substrate by magnetron sputtering. Two distinct characterization techniques were used to measure substrate curvature before and after deposition. Stress evaluation was performed using the Benabdi/Roche equation, which is based on beam theory of a bi-layer material. The residual stress evolution was studied as a function of coating thickness and applied negative bias voltage (0, -200, -300 V). The stresses developed were always compressive; however, increasing the coating thickness and applying a bias voltage presented a trend towards more tensile stresses and thus an overall reduction of residual stresses

  11. Radioisotope measurement system

    International Nuclear Information System (INIS)

    Villanueva Ruibal, Jose

    2007-01-01

    A radioisotope measurement system installed at L.M.R. (Ezeiza Atomic Center of CNEA) allows the measurement of nuclear activity from a wide range of radioisotopes. It permits to characterize a broad range of radioisotopes at several activity levels. The measurement hardware as well as the driving software have been developed and constructed at the Dept. of Instrumentation and Control. The work outlines the system's conformation and its operating concept, describes design characteristics, construction and the error treatment, comments assay results and supplies use advices. Measuring tests carried out employing different radionuclides confirmed the system performing satisfactorily and with friendly operation. (author) [es

  12. Application of grey model on analyzing the passive natural circulation residual heat removal system of HTR-10

    Institute of Scientific and Technical Information of China (English)

    ZHOU Tao; PENG Changhong; WANG Zenghui; WANG Ruosu

    2008-01-01

    Using the grey correlation analysis, it can be concluded that the reactor pressure vessel wall temperature has the strongest effect on the passive residual heat removal system in HTR (High Temperature gas-cooled Reactor),the chimney height takes the second place, and the influence of inlet air temperature of the chimney is the least. This conclusion is the same as that analyzed by the traditional method. According to the grey model theory, the GM(1,1) and GM(1, 3) model are built based on the inlet air temperature of chimney, pressure vessel temperature and the chimney height. Then the effect of three factors on the heat removal power is studied in this paper. The model plays an important role on data prediction, and is a new method for studying the heat removal power. The method can provide a new theoretical analysis to the passive residual heat removal system of HTR.

  13. Distortion and residual stresses in structures reinforced with titanium straps for improved damage tolerance

    International Nuclear Information System (INIS)

    Liljedahl, C.D.M.; Fitzpatrick, M.E.; Edwards, L.

    2008-01-01

    Distortion and residual stresses induced during the manufacturing process of bonded crack retarders have been investigated. Titanium alloy straps were adhesively bonded to an aluminium alloy SENT specimen to promote fatigue crack growth retardation. The effect of three different strap dimensions was investigated. The spring-back of a component when released from the autoclave and the residual stresses are important factors to take into account when designing a selective reinforcement, as this may alter the local aerodynamic characteristics and reduce the crack bridging effect of the strap. The principal problem with residual stresses is that the tensile nature of the residual stresses in the primary aluminium structure has a negative impact on the crack initiation and crack propagation behaviour in the aluminium. The residual stresses were measured with neutron diffraction and the distortion of the specimens was measured with a contour measurement machine. The bonding process was simulated with a three-dimensional FE model. The residual stresses were found to be tensile close to the strap and slightly compressive on the un-bonded side. Both the distortion and the residual stresses increased with the thickness and the width of the strap. Very good agreement between the measured stresses and the measured distortion and the FE simulation was found

  14. Residual CO2 trapping in Indiana limestone.

    Science.gov (United States)

    El-Maghraby, Rehab M; Blunt, Martin J

    2013-01-02

    We performed core flooding experiments on Indiana limestone using the porous plate method to measure the amount of trapped CO(2) at a temperature of 50 °C and two pressures: 4.2 and 9 MPa. Brine was mixed with CO(2) for equilibration, then the mixture was circulated through a sacrificial core. Porosity and permeability tests conducted before and after 884 h of continuous core flooding confirmed negligible dissolution. A trapping curve for supercritical (sc)CO(2) in Indiana showing the relationship between the initial and residual CO(2) saturations was measured and compared with that of gaseous CO(2). The results were also compared with scCO(2) trapping in Berea sandstone at the same conditions. A scCO(2) residual trapping end point of 23.7% was observed, indicating slightly less trapping of scCO(2) in Indiana carbonates than in Berea sandstone. There is less trapping for gaseous CO(2) (end point of 18.8%). The system appears to be more water-wet under scCO(2) conditions, which is different from the trend observed in Berea; we hypothesize that this is due to the greater concentration of Ca(2+) in brine at higher pressure. Our work indicates that capillary trapping could contribute to the immobilization of CO(2) in carbonate aquifers.

  15. Investigation of residual stress in laser welding dissimilar materials

    International Nuclear Information System (INIS)

    Mirim, Denilson de Camargo; Oliveira, Rene Ramos de; Berretta, Jose Roberto; Rossi, Wagner de; Lima, Nelson Batista de; Delijaicov, Sergio; Gomes, Diego Oliva

    2010-01-01

    One of the most critical problems found in the different materials welding is the residual stress formation, that happens mainly for the fact of those materials they possess coefficients of thermal expansion and different thermal conductivities. Like this in this work the residual tension was evaluated in the technique of welding laser among the steel low carbon, AISI 1010 and AISI 304. The materials were united for it welds autogenous of top with a laser of continuous Nd:YAG in that they were varied the potency, speed and the focus of the laser stayed constant in relation to surface of the sample. The main objective of the study went identification and to analysis of the residual stress in HAZ on both sides of seem. Um planning factorial of two factors at two levels each it was executed for optimization the combination of the factors potency and speed. The obtained answers were the residual stress in different depths in HAZ. In the surface of the sample measures of residual stress were accomplished by the technique of X-ray diffraction. The hole drilling strain gage method it was applied to measure the residual stress on both sides of the union. The results were analyzed using the variance analysis and the statistical regression based on the different influences of the entrance and combination of the factors in the residual stress generated in that union. The results indicate that the development of models can foresee the answers satisfactorily. (author)

  16. finite element model for predicting residual stresses in shielded

    African Journals Online (AJOL)

    eobe

    This paper investigates the prediction of residual stresses developed ... steel plates through Finite Element Model simulation and experiments. ... The experimental values as measured by the X-Ray diffractometer were of ... Based on this, it can be concluded that Finite Element .... Comparison of Residual Stresses from X.

  17. Numerical simulation of flow field in cooling tower of passive residual heat removal system of HTGR

    International Nuclear Information System (INIS)

    Li Xiaowei; Zhang Li; Wu Xinxin; He Shuyan

    2011-01-01

    Environmental wind will influence the working conditions of natural convection cooling tower. The velocity and temperature fields in the natural convection cooling tower of the HTGR residual heat removal system at different environmental wind velocities were numerically simulated. The results show that, if there is no wind baffle, the flow in the cooling tower is blocked when environmental wind velocity is higher than 6 m/s, residual heat can hardly be removed, and when wind velocity is higher than 9 m/s, the air even flow downwards in the tower, so wind baffle is very necessary. With the wind baffle installed, the cooling tower works well at the wind speed even higher than 9 m/s. The optimum baffle size and positions are also analyzed. (authors)

  18. Residual water treatment for gamma radiation

    International Nuclear Information System (INIS)

    Mendez, L.

    1990-01-01

    The treatment of residual water by means of gamma radiation for its use in agricultural irrigation is evaluated. Measurements of physical, chemical, biological and microbiological contamination indicators were performed. For that, samples from the treatment center of residual water of San Juan de Miraflores were irradiated up to a 52.5 kGy dose. The study concludes that gamma radiation is effective to remove parasites and bacteria, but not for removal of the organic and inorganic matter. (author). 15 refs., 3 tabs., 4 figs

  19. Assays of residual antibiotics after treatment of γ-ray and UV irradiation

    International Nuclear Information System (INIS)

    Shin, Ji Hye; Nam, Ji Hyun; Lee, Dong Hun; Yu, Seung Ho; Lee, Myun Joo

    2010-01-01

    The pollution of antibiotics is a major cause of spreading antibiotics resistant bacteria in the environment. Applications of ozonation, UV, and γ-ray irradiations have been introduced to remove antibiotics in the effluents from wastewater treatment system. In this study, we compared the chemical (HPLC) and biological (antimicrobial susceptibility test, AMS) assays in measuring of the concentrations of residual antibiotics after γ-ray and UV irradiation. Most samples were degraded by γ-ray irradiation (1 ∼ 2 kGy). However, lincomycin and tetracycline were not degraded by UV irradiation. The concentration of residual antibiotics, that was treated with γ-ray and UV irradiation, measuring by bioassay was similar to HPLC. The concentrations of γ-ray irradiated cephradine measured by AMS test were 2 times higher than of HPLC assay, indicating AMS test is more sensitive than HPLC assay. These results indicate that γ-ray irradiation technique is more useful than UV irradiation, and biological assay is more useful to detect the antibiotics and toxic intermediates in antibiotics degradation

  20. A residual Monte Carlo method for discrete thermal radiative diffusion

    International Nuclear Information System (INIS)

    Evans, T.M.; Urbatsch, T.J.; Lichtenstein, H.; Morel, J.E.

    2003-01-01

    Residual Monte Carlo methods reduce statistical error at a rate of exp(-bN), where b is a positive constant and N is the number of particle histories. Contrast this convergence rate with 1/√N, which is the rate of statistical error reduction for conventional Monte Carlo methods. Thus, residual Monte Carlo methods hold great promise for increased efficiency relative to conventional Monte Carlo methods. Previous research has shown that the application of residual Monte Carlo methods to the solution of continuum equations, such as the radiation transport equation, is problematic for all but the simplest of cases. However, the residual method readily applies to discrete systems as long as those systems are monotone, i.e., they produce positive solutions given positive sources. We develop a residual Monte Carlo method for solving a discrete 1D non-linear thermal radiative equilibrium diffusion equation, and we compare its performance with that of the discrete conventional Monte Carlo method upon which it is based. We find that the residual method provides efficiency gains of many orders of magnitude. Part of the residual gain is due to the fact that we begin each timestep with an initial guess equal to the solution from the previous timestep. Moreover, fully consistent non-linear solutions can be obtained in a reasonable amount of time because of the effective lack of statistical noise. We conclude that the residual approach has great potential and that further research into such methods should be pursued for more general discrete and continuum systems

  1. Effect of residual stresses on hydrogen permeation in iron

    International Nuclear Information System (INIS)

    Mouanga, M.; Bercot, P.; Takadoum, J.

    2010-01-01

    The effect of residual stresses on electrochemical permeation in iron membrane was investigated. Four thermal and mechanical treatments were chosen to obtain different surface states in relation to the residual stresses. Residual stresses were determined by X-ray diffraction (XRD) using the Macherauch and Mueller method. The results were completed by the microhardness measurements. For all iron membranes, compressive residual stresses were obtained. Electrochemical permeation experiments using a Devanathan and Stachurski cell were employed to determine the hydrogen permeation behaviour of the various iron membranes. The latter was charged with hydrogen by galvanostatic cathodic polarization in 0.1 M NaOH at 25 deg. C. The experimental results revealed that hydrogen permeation rate increases with increasing residual stresses introduced in iron membranes.

  2. Verification and Validation of Residual Stresses in Bi-Material Composite Rings

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Stacy Michelle [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hanson, Alexander Anthony [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Briggs, Timothy [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Werner, Brian T. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-07-01

    Process-induced residual stresses commonly occur in composite structures composed of dissimilar materials. These residual stresses form due to differences in the composite materials’ coefficients of thermal expansion and the shrinkage upon cure exhibited by polymer matrix materials. Depending upon the specific geometric details of the composite structure and the materials’ curing parameters, it is possible that these residual stresses could result in interlaminar delamination or fracture within the composite. Therefore, the consideration of potential residual stresses is important when designing composite parts and their manufacturing processes. However, the experimental determination of residual stresses in prototype parts can be time and cost prohibitive. As an alternative to physical measurement, it is possible for computational tools to be used to quantify potential residual stresses in composite prototype parts. Therefore, the objectives of the presented work are to demonstrate a simplistic method for simulating residual stresses in composite parts, as well as the potential value of sensitivity and uncertainty quantification techniques during analyses for which material property parameters are unknown. Specifically, a simplified residual stress modeling approach, which accounts for coefficient of thermal expansion mismatch and polymer shrinkage, is implemented within the Sandia National Laboratories’ developed SIERRA/SolidMechanics code. Concurrent with the model development, two simple, bi-material structures composed of a carbon fiber/epoxy composite and aluminum, a flat plate and a cylinder, are fabricated and the residual stresses are quantified through the measurement of deformation. Then, in the process of validating the developed modeling approach with the experimental residual stress data, manufacturing process simulations of the two simple structures are developed and undergo a formal verification and validation process, including a mesh

  3. Residual Stress Analysis of Aircraft Part using Neutron Beam

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Eun Joo; Seong, Baek Seok; Sim, Cheul Muu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    A precise measurement of the residual stress magnitude and distribution is an important factor to evaluate the lifetime or safety of the materials, because the residual stress affects the material properties, such as the strength, fatigue, etc. In the case of a fighter jet, the lifetime and safety of the parts of the landing gear are more important than that of a passenger airplane because of its frequent take offs and landings. In particular in the case of training a fighter jet, a precise evaluation of life time for the parts of the landing gear is strongly required for economic reason. In this study, the residual stress of a part of the landing gear of the training fighter jet which is used to fix the landing gear to the aircraft body was investigated. The part was used for 2000 hours of flight, which corresponds to 10 years. During this period, the fighter jet normally takes off and lands more than 2000 times. These frequent take off and landing can generate residual stress and cause a crack in the part. By measuring the neutron diffraction peaks, we evaluated the residual stress of the landing gear part

  4. Gas composition of sludge residue profiles in a sludge treatment reed bed between loadings.

    Science.gov (United States)

    Larsen, Julie D; Nielsen, Steen M; Scheutz, Charlotte

    2017-11-01

    Treatment of sludge in sludge treatment reed bed systems includes dewatering and mineralization. The mineralization process, which is driven by microorganisms, produces different gas species as by-products. The pore space composition of the gas species provides useful information on the biological processes occurring in the sludge residue. In this study, we measured the change in composition of gas species in the pore space at different depth levels in vertical sludge residue profiles during a resting period of 32 days. The gas composition of the pore space in the sludge residue changed during the resting period. As the resting period proceeded, atmospheric air re-entered the pore space at all depth levels. The methane (CH 4 ) concentration was at its highest during the first part of the resting period, and then declined as the sludge residue became more dewatered and thereby aerated. In the pore space, the concentration of CH 4 often exceeded the concentration of carbon dioxide (CO 2 ). However, the total emission of CO 2 from the surface of the sludge residue exceeded the total emission of CH 4 , suggesting that CO 2 was mainly produced in the layer of newly applied sludge and/or that CO 2 was emitted from the sludge residue more readily compared to CH 4 .

  5. Total and occluded residual gas content inside the nuclear fuel pellets

    International Nuclear Information System (INIS)

    Moura, Sergio C.; Fernandes, Carlos E.; Oliveira, Justine R.; Machado, Joyce F.; Guglielmo, Luisa M.; Bustillos, Oscar V.

    2009-01-01

    This work describes three techniques available to measure total and occluded residual gases inside the UO 2 nuclear fuel pellets. Hydrogen is the major gas compound inside these pellets, due to sintering fabrication process but Nitrogen is present as well, due to storage atmosphere fuel. The total and occluded residual gas content inside these pellets is a mandatory requirement in a quality control to assure the well function of the pellets inside the nuclear reactor. This work describes the Gas Extractor System coupled with mass spectrometry GES/MS, the Gas Extractor System coupled with gas chromatography GES/GC and the total Hydrogen / Nitrogen H/N analyzer as well. In the GES, occlude gases in the UO 2 pellets is determinate using a high temperature vacuum extraction system, in which the minimum limit of detection is in the range 0.002 cc/g. The qualitative and quantitative determination of the amount of gaseous components employs a mass spectrometry or a gas chromatography technique. The total Hydrogen / Nitrogen analyzer employ a thermal conductivity gas detector linked to a gaseous extractor furnace which has a detection limit is in the range 0.005 cc/g. The specification for the residual gas analyses in the nuclear fuel pellets is 0.03 cc/g, all techniques satisfy the requirement but not the nature of the gases due to reaction with the reactor cladding. The present work details the chemical reaction among Hydrogen / Nitrogen and nuclear reactor cladding. (author)

  6. Hydrogen bond strengths in phosphorylated and sulfated amino acid residues.

    Directory of Open Access Journals (Sweden)

    Chaya Rapp

    Full Text Available Post-translational modification by the addition of an oxoanion functional group, usually a phosphate group and less commonly a sulfate group, leads to diverse structural and functional consequences in protein systems. Building upon previous studies of the phosphoserine residue (pSer, we address the distinct nature of hydrogen bonding interactions in phosphotyrosine (pTyr and sulfotyrosine (sTyr residues. We derive partial charges for these modified residues and then study them in the context of molecular dynamics simulation of model tripeptides and sulfated protein complexes, potentials of mean force for interacting residue pairs, and a survey of the interactions of modified residues among experimental protein structures. Overall, our findings show that for pTyr, bidentate interactions with Arg are particularly dominant, as has been previously demonstrated for pSer. sTyr interactions with Arg are significantly weaker, even as compared to the same interactions made by the Glu residue. Our work sheds light on the distinct nature of these modified tyrosine residues, and provides a physical-chemical foundation for future studies with the goal of understanding their roles in systems of biological interest.

  7. Obtention of ceramic pigments with residue from electroplating

    International Nuclear Information System (INIS)

    Boss, A.; Kniess, C.T.; Aguiar, B.M. de; Prates, P.B.; Milanez, K.

    2011-01-01

    The incorporation of industrial residues in industrial processes opens up new business opportunities and reduces the volume of extraction of raw materials, preserving natural resources, which are limited. An important residue is the mud from galvanic industry, consisting of alkali and transition metals. According to NBR 10004/2004, this residue can be classified as Class I (hazardous), depending on the concentration of metals present in the mud. This paper proposes a method for reusing the residue from electroplating in ceramic pigments. The characterization of residual plating was obtained by chemical analysis, mineralogical analysis and pH measurements. The electroplating waste was incorporated in different percentages on a standard pigment formula of industrial ceramic, consisting mainly of Zn, Fe and Cr. The obtained pigments were applied in ceramic glazes to colorimetric and visual analysis, which showed good results with the addition of up to 15% of industrial waste. (author)

  8. An application of residual current protective device at electrical installation

    International Nuclear Information System (INIS)

    Firman Silitonga

    2008-01-01

    In an electrical installation, a protection for overload and short circuit are always to be installed. In addition to the installation, it is necessary to be installed a protection device for residual current because both the short circuit and the overload device protection will not work for the residual current. The quantity of the residual current must be defined first at any electrical installation to define an appropriate residual current protection so that not every residual current will break the circuit down. This paper will explain a method how to install a residual protection device for 3500 VA or more at TN and TT of earthing system. (author)

  9. Residual stress in a thick section high strength T-butt weld

    International Nuclear Information System (INIS)

    Pearce, S.V.; Linton, V.M.; Oliver, E.C.

    2008-01-01

    Residual stresses in a structure are generated as a result of the various fabrication and welding processes used to make the component. Being able to quantify these residual stresses is a key step in determining the continuing integrity of a structure in service. In this work, the residual stresses around a high strength, quenched and tempered steel T-butt web to curved plate weld have been measured using neutron strain scanning. The results show that the residual stresses near the weld were dominated by the welding residual stresses, while the stresses further from the weld were dominated by the bending residual stresses. The results suggest that the combination of welding-induced residual stress and significant pre-welding residual stress, as in the case of a thick bent section of plate can significantly alter the residual stress profile from that in a flat plate

  10. Coking of residue hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gray, M.R.; Zhao, Y.X. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical Engineering; McKnight, C.A. [Syncrude Canada Ltd., Edmonton, AB (Canada); Komar, D.A.; Carruthers, J.D. [Cytec Industries Inc., Stamford, CT (United States)

    1997-11-01

    One of the major causes of deactivation of Ni/Mo and Co/Mo sulfide catalysts for hydroprocessing of heavy petroleum and bitumen fractions is coke deposition. The composition and amount of coke deposited on residue hydroprocessing catalysts depends on the composition of the liquid phase of the reactor. In the Athabasca bitumen, the high molecular weight components encourage coke deposition at temperatures of 430 to 440 degrees C and at pressures of 10 to 20 MPa hydrogen pressure. A study was conducted to determine which components in the heavy residual oil fraction were responsible for coking of catalysts. Seven samples of Athabasca vacuum residue were prepared by supercritical fluid extraction with pentane before being placed in the reactor. Carbon content and hydrodesulfurization activity was measured. It was concluded that the deposition of coke depended on the presence of asphaltenes and not on other compositional variables such as content of nitrogen, aromatic carbon or vanadium.

  11. Dermal insecticide residues from birds inhabiting an orchard

    Science.gov (United States)

    Vyas, N.B.; Spann, J.W.; Hulse, C.S.; Gentry, S.; Borges, S.L.

    2007-01-01

    The US Environmental Protection Agency conducts risk assessments of insecticide applications to wild birds using a model that is limited to the dietary route of exposure. However, free-flying birds are also exposed to insecticides via the inhalation and dermal routes. We measured azinphos-methyl residues on the skin plus feathers and the feet of brown-headed cowbirds (Molothrus ater) in order to quantify dermal exposure to songbirds that entered and inhabited an apple (Malus x domestica) orchard following an insecticide application. Exposure to azinphos-methyl was measured by sampling birds from an aviary that was built around an apple tree. Birds sampled at 36 h and 7-day post-application were placed in the aviary within 1 h after the application whereas birds exposed for 3 days were released into the aviary 4-day post-application. Residues on vegetation and soil were also measured. Azinphos-methyl residues were detected from the skin plus feathers and the feet from all exposure periods. Our results underscore the importance of incorporating dermal exposure into avian pesticide risk assessments.

  12. Thermal Aging Effects on Residual Stress and Residual Strain Distribution on Heat Affected Zone of Alloy 600 in Dissimilar Metal Weld

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Junhyuk; Choi, Kyoung Joon; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    Dissimilar metal weld (DMW), consisting of Alloy 600, Alloy 182, and A508 Gr.3, has been widely used as a joining material of the reactor pressure vessel penetration nozzle and the steam generator tubing for pressurized water reactors (PWR) because of its good mechanical strength, thermal conductivity, and corrosion resistance. Residual tensile stress is mainly nominated as a cause of SCC in light water reactors by IAEA report. So, to relax the residual stress, post-weld heat treatment is required after manufacturing process such as welding. However, thermal treatment has a great effect on the microstructure and the chromium depletion profile on Alloy 600, so called sensitization. By this reason, HAZ on Alloy 600 is critical to crack. According to G.A. Young et al., Crack growth rates (CGR) in the Alloy 600 HAZ were about 30 times faster than those in the Alloy 600 base metal tested under the same conditions. And according to Z.P. Lu et al., CGR in the Alloy 600 HAZ can be more than 20 times higher than that in its base metal. There are some methods to measure the exact value of residual stress on the material surface. The most common way is X-ray diffraction method (XRD). The principle of XRD is based on lattice strains and depends on the changes in the spacing of the atomic planes in material. And there is a computer simulation method to estimate residual stress distribution which is called ANSYS. This study was conducted to investigate how thermal aging affects residual stress and residual strain distribution of Alloy 600 HAZ. Following conclusions can be drawn from this study. According to preceding researches and this study, both the relaxation of residual stress and the change of residual strain follow as similar way, spreading out from concentrated region. The result of Vickers micro-hardness tester shows that tensile residual stresses are distributed broadly on the material aged by 15 years. Therefore, HT400{sub Y}15 material is weakest state for PWSCC. The

  13. Harvest time residues of pendimethalin and oxyfluorfen in vegetables and soil in sugarcane-based intercropping systems.

    Science.gov (United States)

    Kaur, Navneet; Bhullar, Makhan S

    2015-05-01

    Terminal residues of pendimethalin and oxyfluorfen applied in autumn sugarcane- and vegetables-based intercropping systems were analyzed in peas (Pisum sativum), cabbage (Brassica oleracea), garlic (Allium sativum), gobhi sarson (Brassica napus), and raya (Brassica juncea). The study was conducted in winter season in 2010-2011 and in 2011-2012 at Ludhiana, India. Pendimethalin at 0.56 kg and 0.75 kg ha(-1) was applied immediately after sowing of gobhi sarson, raya, peas, garlic, and 2 days before transplanting of cabbage seedlings. Oxyfluorfen at 0.17 kg and 0.23 kg ha(-1) was applied immediately after sowing of peas and garlic and 2 days before transplanting of cabbage seedlings intercropped in autumn sugarcane. Representative samples of these vegetables were collected at 75, 90, 100, and 165 days after application of herbicides and analyzed by high-performance liquid chromatograph (HPLC) with diode array detector for residues. The residue level of pendimethalin and oxyfluorfen in mature vegetables was found to be below the limit of quantification which is 0.05 mg kg(-1) for both the herbicides. The soil samples were collected at 0, 7, 15, 30, 45, and 60 days after the application of their herbicides. The residues of herbicides in soil samples were found to be below the detectability limit of 0.05 mg kg(-1) after 60 days in case of pendimethalin and after 45 days in case of oxyfluorfen.

  14. Residual stress analysis for engineering applications by means of neutron diffraction

    International Nuclear Information System (INIS)

    Gnaeupel-Herold, T.; Brand, P.C.; Prask, H.J.

    1999-01-01

    Residual stresses originate from spatial differences in plastic deformation, temperature, or phase distribution, introduced by manufacturing processes or during service. Engineering parts and materials experience mechanical, thermal, and chemical loads during their service, and most of these loads introduce stresses that are superimposed on the already existing residual stresses. Residual stresses can therefore limit or improve life and strength of engineering parts; knowledge and understanding of these stresses is therefore critical for optimizing strength and durability. The economic and scientific importance of neutron diffraction residual stress analysis has led to an increasing number of suitable instruments worldwide. All of the major sources due in the next several years will have instruments for the sole purpose of performing residual stress and texture measurements. Recently, a dedicated, state-of-the-art diffractometer has been installed at the National Institute of Standards and Technology reactor. It has been used for a variety of measurements on basic and engineering stress problems. Among the most prominent examples that have been investigated in collaboration with industrial and academic partners are residual stresses in rails, weldments, and plasma-sprayed coatings

  15. Relationship between spirituality/religiousness and coping in patients with residual schizophrenia.

    Science.gov (United States)

    Shah, Ruchita; Kulhara, Parmanand; Grover, Sandeep; Kumar, Suresh; Malhotra, Rama; Tyagi, Shikha

    2011-09-01

    To measure spirituality/religiousness and its relation to coping skills in patients with residual schizophrenia. Using a cross-sectional design, 103 persons with residual schizophrenia were assessed on Positive and Negative Syndrome Scale [PANSS] and Ways of Coping Checklist [WCC] to assess the repertoire of coping skills and WHO Quality of Life-Spirituality, Religiousness and Personal Belief scale [WHOQOL-SRPB] to assess religiousness and spirituality. Positive reappraisal as a coping strategy had significant positive correlation with all the facets of WHOQOL-SRPB and SRPB total domain scores. The coping subscales of accepting responsibility, planful problem solving, distancing, confrontive coping, and self-controlling also had significant positive correlations with different facets of WHOQOL-SRPB and total SRPB domain score. Seeking social support and escape-avoidance as coping mechanisms had no correlations with any of the WHOQOL-SRPB facets. A sound spiritual, religious, or personal belief system is associated with active and adaptive coping skills in subjects with residual schizophrenia. Understanding and assessing the spirituality and religiousness of subjects with schizophrenia can help in better management of the disorder.

  16. Forest residues management guidelines for the Pacific Northwest.

    Science.gov (United States)

    John M. Pierovich; Edward H. Clarke; Stewart G. Pickford; Franklin R. Ward

    1975-01-01

    Forest residues often require treatment to meet land management objectives. Guideline statements for managing forest residues are presented to provide direction for achieving these objectives. The latest research information and the best knowledge of experts in various land management disciplines were used to formulate these statements. A unique keying system is...

  17. X-ray residual stress measurement and its variation during plane bending fatigue and sliding wear processes in TiC, TiN, TiB2 and Al2O3 coated carbon steels

    International Nuclear Information System (INIS)

    Endoh, Takashi; Idemitsu, Kohji; Kawakami, Mamoru

    1993-01-01

    The development of ceramic coating to metals was stimulated by the need for high temperature, wear and corrosion resistant materials. Recently TiC, TiN, TiB 2 and Al 2 O 3 are used as ceramic coating materials. In the present study, the X-ray method was successfully applied to measure the residual stress distribution in their ceramics coated steels. The X-ray elastic constants were determined and compared with the mechanically measured values. And plane bending and sliding wear tests were carried out. The X-ray method was successfully applied to measure the residual stress changes during fatigue and wear processes. The relationship between the change of residual stress and damage accumulation was investigated. (author)

  18. Characterization of the Young's modulus and residual stresses for a sputtered silicon oxynitride film using micro-structures

    International Nuclear Information System (INIS)

    Dong, Jian; Du, Ping; Zhang, Xin

    2013-01-01

    Silicon oxynitride (SiON) is an important material to fabricate micro-electro-mechanical system (MEMS) devices due to its composition-dependent tunability in electronic and mechanical properties. In this work, the SiON film with 41.45% silicon, 32.77% oxygen and 25.78% nitrogen content was deposited by RF magnetron sputtering. Two types of optimized micro-structures including micro-cantilevers and micro-rotating-fingers were designed and fabricated using MEMS surface micromachining technology. The micro-cantilever bending tests were conducted using a nanoindenter to characterize the Young's modulus of the SiON film. Owing to the elimination of the residual stress effect on the micro-cantilever structure, higher accuracy in the Young's modulus was achieved from this technique. With the information of Young's modulus of the film, the residual stresses were characterized from the deflection of the micro-rotating-fingers. This structure was able to locally measure a large range of tensile or compressive residual stresses in a thin film with sufficient sensitivities. The results showed that the Young's modulus of the SiON film was 122 GPa and the residual stresses of the SiON film were 327 MPa in the crystallographic orientation of the wafer and 334 MPa in the direction perpendicular to the crystallographic orientation, both in compression. This work presents a comprehensive methodology to measure the Young's modulus and residual stresses of a thin film with improved accuracy, which is promising for applications in mechanical characterization of MEMS devices. - Highlight: • We measured the Young's modulus and residual stress of SiON film by microstructure. • Micro cantilever structure improved the Young's modulus' measurement accuracy. • We explored the reason for the deviations of residual stress value of SiON film

  19. Aging of residual surface resistance of superconducting lead cavities

    DEFF Research Database (Denmark)

    Danielsen, M.

    1972-01-01

    Measurements of the residual surface resistance of superconducting lead cavities as a function of time during a period of a month showed an oscillating variation. An explanation of the ageing curves is proposed. ©1972 The American Institute of Physics......Measurements of the residual surface resistance of superconducting lead cavities as a function of time during a period of a month showed an oscillating variation. An explanation of the ageing curves is proposed. ©1972 The American Institute of Physics...

  20. Experimental investigation of wettability alteration on residual oil saturation using nonionic surfactants: Capillary pressure measurement

    Directory of Open Access Journals (Sweden)

    Masoud Amirpour

    2015-12-01

    Full Text Available Introducing the novel technique for enhancing oil recovery from available petroleum reservoirs is one of the important issues in future energy demands. Among of all operative factors, wettability may be the foremost parameter affecting residual oil saturation in all stage of oil recovery. Although wettability alteration is one of the methods which enhance oil recovery from the petroleum reservoir. Recently, the studies which focused on this subject were more than the past and many contributions have been made on this area. The main objective of the current study is experimentally investigation of the two nonionic surfactants effects on altering wettability of reservoir rocks. Purpose of this work is to change the wettability to preferentially the water-wet condition. Also reducing the residual oil saturation (Sor is the other purpose of this work. The wettability alteration of reservoir rock is measured by two main quantitative methods namely contact angle and the USBM methods. Results of this study showed that surfactant flooding is more effective in oil-wet rocks to change their wettability and consequently reducing Sor to a low value. Cedar (Zizyphus Spina Christi is low priced, absolutely natural, and abundantly accessible in the Middle East and Central Asia. Based on the results, this material can be used as a chemical surfactant in field for enhancing oil recovery.