WorldWideScience

Sample records for residual-based variational multiscale

  1. The role of continuity in residual-based variational multiscale modeling of turbulence

    Science.gov (United States)

    Akkerman, I.; Bazilevs, Y.; Calo, V. M.; Hughes, T. J. R.; Hulshoff, S.

    2008-02-01

    This paper examines the role of continuity of the basis in the computation of turbulent flows. We compare standard finite elements and non-uniform rational B-splines (NURBS) discretizations that are employed in Isogeometric Analysis (Hughes et al. in Comput Methods Appl Mech Eng, 194:4135 4195, 2005). We make use of quadratic discretizations that are C 0-continuous across element boundaries in standard finite elements, and C 1-continuous in the case of NURBS. The variational multiscale residual-based method (Bazilevs in Isogeometric analysis of turbulence and fluid-structure interaction, PhD thesis, ICES, UT Austin, 2006; Bazilevs et al. in Comput Methods Appl Mech Eng, submitted, 2007; Calo in Residual-based multiscale turbulence modeling: finite volume simulation of bypass transition. PhD thesis, Department of Civil and Environmental Engineering, Stanford University, 2004; Hughes et al. in proceedings of the XXI international congress of theoretical and applied mechanics (IUTAM), Kluwer, 2004; Scovazzi in Multiscale methods in science and engineering, PhD thesis, Department of Mechanical Engineering, Stanford Universty, 2004) is employed as a turbulence modeling technique. We find that C 1-continuous discretizations outperform their C 0-continuous counterparts on a per-degree-of-freedom basis. We also find that the effect of continuity is greater for higher Reynolds number flows.

  2. Simulation of laminar and turbulent concentric pipe flows with the isogeometric variational multiscale method

    KAUST Repository

    Ghaffari Motlagh, Yousef

    2013-01-01

    We present an application of the residual-based variational multiscale modeling methodology to the computation of laminar and turbulent concentric annular pipe flows. Isogeometric analysis is utilized for higher-order approximation of the solution using Non-Uniform Rational B-Splines (NURBS). The ability of NURBS to exactly represent curved geometries makes NURBS-based isogeometric analysis attractive for the application to the flow through annular channels. We demonstrate the applicability of the methodology to both laminar and turbulent flow regimes. © 2012 Elsevier Ltd.

  3. A mathematical framework for multiscale science and engineering : the variational multiscale method and interscale transfer operators.

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Gregory John (Sandia National Laboratories, Livermore, CA); Collis, Samuel Scott; Templeton, Jeremy Alan (Sandia National Laboratories, Livermore, CA); Lehoucq, Richard B.; Parks, Michael L.; Jones, Reese E. (Sandia National Laboratories, Livermore, CA); Silling, Stewart Andrew; Scovazzi, Guglielmo; Bochev, Pavel B.

    2007-10-01

    This report is a collection of documents written as part of the Laboratory Directed Research and Development (LDRD) project A Mathematical Framework for Multiscale Science and Engineering: The Variational Multiscale Method and Interscale Transfer Operators. We present developments in two categories of multiscale mathematics and analysis. The first, continuum-to-continuum (CtC) multiscale, includes problems that allow application of the same continuum model at all scales with the primary barrier to simulation being computing resources. The second, atomistic-to-continuum (AtC) multiscale, represents applications where detailed physics at the atomistic or molecular level must be simulated to resolve the small scales, but the effect on and coupling to the continuum level is frequently unclear.

  4. The role of continuity in residual-based variational multiscale modeling of turbulence

    NARCIS (Netherlands)

    Akkerman, I.; Bazilevs, Y.; Calo, V.M.; Hughes, T.J.R.; Hulshoff, S.

    2007-01-01

    This paper examines the role of continuity of the basis in the computation of turbulent flows. We compare standard finite elements and non-uniform rational B-splines (NURBS) discretizations that are employed in Isogeometric Analysis (Hughes et al. in Comput Methods Appl Mech Eng, 194:4135–4195,

  5. An isogeometric variational multiscale method for large-eddy simulation of coupled multi-ion transport in turbulent flow

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Georg; Gamnitzer, Peter [Institute for Computational Mechanics, Technische Universität München, Boltzmannstr. 15, 85747 Garching (Germany); Gravemeier, Volker, E-mail: vgravem@lnm.mw.tum.de [Institute for Computational Mechanics, Technische Universität München, Boltzmannstr. 15, 85747 Garching (Germany); Emmy Noether Research Group “Computational Multiscale Methods for Turbulent Combustion”, Technische Universität München, Boltzmannstr. 15, 85747 Garching (Germany); Wall, Wolfgang A. [Institute for Computational Mechanics, Technische Universität München, Boltzmannstr. 15, 85747 Garching (Germany)

    2013-10-15

    Highlights: •We present a computational method for coupled multi-ion transport in turbulent flow. •The underlying formulation is a variational multiscale finite element method. •It is combined with the isogeometric concept for electrochemical systems. •Coupled multi-ion transport in fully turbulent Taylor–Couette flow is simulated. •This example is an important model problem for rotating cylinder electrodes. -- Abstract: Electrochemical processes, such as electroplating of large items in galvanic baths, are often coupled to turbulent flow. In this study, we propose an isogeometric residual-based variational multiscale finite element method for multi-ion transport in dilute electrolyte solutions under turbulent flow conditions. In other words, this means that the concepts of isogeometric discretization and variational multiscale methods are successfully combined for developing a method capable of simulating the challenging problem of coupled multi-ion transport in turbulent flow. We present a comprehensive three-dimensional computational method taking into account, among others, coupled convection–diffusion-migration equations subject to an electroneutrality constraint in combination with phenomenological electrode-kinetics modeling. The electrochemical subproblem is one-way coupled to turbulent incompressible flow via convection. Ionic mass transfer in turbulent Taylor–Couette flow is investigated, representing an important model problem for rotating-cylinder-electrode configurations. Multi-ion transport as considered here is an example for mass transport at high Schmidt number (Sc=1389). An isogeometric discretization is especially advantageous for the present problem, since (i) curved boundaries can be represented exactly, and (ii) it has been proven to provide very accurate solutions for flow quantities when being applied in combination with residual-based variational multiscale modeling. We demonstrate that the method is robust and provides

  6. Introduction and application of the multiscale coefficient of variation analysis.

    Science.gov (United States)

    Abney, Drew H; Kello, Christopher T; Balasubramaniam, Ramesh

    2017-10-01

    Quantifying how patterns of behavior relate across multiple levels of measurement typically requires long time series for reliable parameter estimation. We describe a novel analysis that estimates patterns of variability across multiple scales of analysis suitable for time series of short duration. The multiscale coefficient of variation (MSCV) measures the distance between local coefficient of variation estimates within particular time windows and the overall coefficient of variation across all time samples. We first describe the MSCV analysis and provide an example analytical protocol with corresponding MATLAB implementation and code. Next, we present a simulation study testing the new analysis using time series generated by ARFIMA models that span white noise, short-term and long-term correlations. The MSCV analysis was observed to be sensitive to specific parameters of ARFIMA models varying in the type of temporal structure and time series length. We then apply the MSCV analysis to short time series of speech phrases and musical themes to show commonalities in multiscale structure. The simulation and application studies provide evidence that the MSCV analysis can discriminate between time series varying in multiscale structure and length.

  7. Structure-Preserving Variational Multiscale Modeling of Turbulent Incompressible Flow with Subgrid Vortices

    Science.gov (United States)

    Evans, John; Coley, Christopher; Aronson, Ryan; Nelson, Corey

    2017-11-01

    In this talk, a large eddy simulation methodology for turbulent incompressible flow will be presented which combines the best features of divergence-conforming discretizations and the residual-based variational multiscale approach to large eddy simulation. In this method, the resolved motion is represented using a divergence-conforming discretization, that is, a discretization that preserves the incompressibility constraint in a pointwise manner, and the unresolved fluid motion is explicitly modeled by subgrid vortices that lie within individual grid cells. The evolution of the subgrid vortices is governed by dynamical model equations driven by the residual of the resolved motion. Consequently, the subgrid vortices appropriately vanish for laminar flow and fully resolved turbulent flow. As the resolved velocity field and subgrid vortices are both divergence-free, the methodology conserves mass in a pointwise sense and admits discrete balance laws for energy, enstrophy, and helicity. Numerical results demonstrate the methodology yields improved results versus state-of-the-art eddy viscosity models in the context of transitional, wall-bounded, and rotational flow when a divergence-conforming B-spline discretization is utilized to represent the resolved motion.

  8. A variational multiscale constitutive model for nanocrystalline materials

    KAUST Repository

    Gurses, Ercan

    2011-03-01

    This paper presents a variational multi-scale constitutive model in the finite deformation regime capable of capturing the mechanical behavior of nanocrystalline (nc) fcc metals. The nc-material is modeled as a two-phase material consisting of a grain interior phase and a grain boundary effected zone (GBAZ). A rate-independent isotropic porous plasticity model is employed to describe the GBAZ, whereas a crystal-plasticity model which accounts for the transition from partial dislocation to full dislocation mediated plasticity is employed for the grain interior. The constitutive models of both phases are formulated in a small strain framework and extended to finite deformation by use of logarithmic and exponential mappings. Assuming the rule of mixtures, the overall behavior of a given grain is obtained via volume averaging. The scale transition from a single grain to a polycrystal is achieved by Taylor-type homogenization where a log-normal grain size distribution is assumed. It is shown that the proposed model is able to capture the inverse HallPetch effect, i.e., loss of strength with grain size refinement. Finally, the predictive capability of the model is validated against experimental results on nanocrystalline copper and nickel. © 2010 Elsevier Ltd. All rights reserved.

  9. Numerical Modeling of Stokes Flow in a Circular Cavity by Variational Multiscale Element Free Galerkin Method

    Directory of Open Access Journals (Sweden)

    Ping Zhang

    2014-01-01

    Full Text Available The variational multiscale element free Galerkin method is extended to simulate the Stokes flow problems in a circular cavity as an irregular geometry. The method is combined with Hughes’s variational multiscale formulation and element free Galerkin method; thus it inherits the advantages of variational multiscale and meshless methods. Meanwhile, a simple technique is adopted to impose the essential boundary conditions which makes it easy to solve problems with complex area. Finally, two examples are solved and good results are obtained as compared with solutions of analytical and numerical methods, which demonstrates that the proposed method is an attractive approach for solving incompressible fluid flow problems in terms of accuracy and stability, even for complex irregular boundaries.

  10. Variational Multi-Scale method with spectral approximation of the sub-scales.

    KAUST Repository

    Dia, Ben Mansour

    2015-01-07

    A variational multi-scale method where the sub-grid scales are computed by spectral approximations is presented. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base of eigenfunctions which are orthonormal in weighted L2 spaces. We propose a feasible VMS-spectral method by truncation of this spectral expansion to a nite number of modes.

  11. Isogeometric variational multiscale large-eddy simulation of fully-developed turbulent flow over a wavy wall

    KAUST Repository

    Chang, Kyungsik

    2012-09-01

    We report on the isogeometric residual-based variational multiscale (VMS) large eddy simulation of a fully developed turbulent flow over a wavy wall. To assess the predictive capability of the VMS modeling framework, we compare its predictions against the results from direct numerical simulation (DNS) and large eddy simulation (LES) and, when available, against experimental measurements. We use C 1 quadratic B-spline basis functions to represent the smooth geometry of the sinusoidal lower wall and the solution variables. The Reynolds numbers of the flows considered are 6760 and 30,000 based on the bulk velocity and average channel height. The ratio of amplitude to wavelength (α/λ) of the sinusoidal wavy surface is set to 0.05. The computational domain is 2λ×1.05λ×λ in the streamwise, wall-normal and spanwise directions, respectively. For the Re=6760 case, mean averaged quantities, including velocity and pressure profiles, and the separation/reattachment points in the recirculation region, are compared with DNS and experimental data. The turbulent kinetic energy and Reynolds stress are in good agreement with benchmark data. Coherent structures over the wavy wall are observed in isosurfaces of the Q-criterion and show similar features to those previously reported in the literature. Comparable accuracy to DNS solutions is obtained with at least one order of magnitude fewer degrees of freedom. For the Re=30,000 case, good agreement was obtained for mean wall shear stress and velocity profiles compared with available LES results reported in the literature. © 2012 Elsevier Ltd.

  12. A phenomenological variational multiscale constitutive model for intergranular failure in nanocrystalline materials

    KAUST Repository

    Siddiq, A.

    2013-09-01

    We present a variational multiscale constitutive model that accounts for intergranular failure in nanocrystalline fcc metals due to void growth and coalescence in the grain boundary region. Following previous work by the authors, a nanocrystalline material is modeled as a two-phase material consisting of a grain interior phase and a grain boundary affected zone (GBAZ). A crystal plasticity model that accounts for the transition from partial dislocation to full dislocation mediated plasticity is used for the grain interior. Isotropic porous plasticity model with further extension to account for failure due to the void coalescence was used for the GBAZ. The extended model contains all the deformation phases, i.e. elastic deformation, plastic deformation including deviatoric and volumetric plasticity (void growth) followed by damage initiation and evolution due to void coalescence. Parametric studies have been performed to assess the model\\'s dependence on the different input parameters. The model is then validated against uniaxial loading experiments for different materials. Lastly we show the model\\'s ability to predict the damage and fracture of a dog-bone shaped specimen as observed experimentally. © 2013 Elsevier B.V.

  13. A note on variational multiscale methods for high-contrast heterogeneous porous media flows with rough source terms

    KAUST Repository

    Calo, Victor M.

    2011-09-01

    In this short note, we discuss variational multiscale methods for solving porous media flows in high-contrast heterogeneous media with rough source terms. Our objective is to separate, as much as possible, subgrid effects induced by the media properties from those due to heterogeneous source terms. For this reason, enriched coarse spaces designed for high-contrast multiscale problems are used to represent the effects of heterogeneities of the media. Furthermore, rough source terms are captured via auxiliary correction equations that appear in the formulation of variational multiscale methods [23]. These auxiliary equations are localized and one can use additive or multiplicative constructions for the subgrid corrections as discussed in the current paper. Our preliminary numerical results show that one can capture the effects due to both spatial heterogeneities in the coefficients (such as permeability field) and source terms (e.g., due to singular well terms) in one iteration. We test the cases for both smooth source terms and rough source terms and show that with the multiplicative correction, the numerical approximations are more accurate compared to the additive correction. © 2010 Elsevier Ltd.

  14. Modeling diffusion in random heterogeneous media: Data-driven models, stochastic collocation and the variational multiscale method

    International Nuclear Information System (INIS)

    Ganapathysubramanian, Baskar; Zabaras, Nicholas

    2007-01-01

    In recent years, there has been intense interest in understanding various physical phenomena in random heterogeneous media. Any accurate description/simulation of a process in such media has to satisfactorily account for the twin issues of randomness as well as the multilength scale variations in the material properties. An accurate model of the material property variation in the system is an important prerequisite towards complete characterization of the system response. We propose a general methodology to construct a data-driven, reduced-order model to describe property variations in realistic heterogeneous media. This reduced-order model then serves as the input to the stochastic partial differential equation describing thermal diffusion through random heterogeneous media. A decoupled scheme is used to tackle the problems of stochasticity and multilength scale variations in properties. A sparse-grid collocation strategy is utilized to reduce the solution of the stochastic partial differential equation to a set of deterministic problems. A variational multiscale method with explicit subgrid modeling is used to solve these deterministic problems. An illustrative example using experimental data is provided to showcase the effectiveness of the proposed methodology

  15. Multiscale variation-aware techniques for high-performance digital microfluidic lab-on-a-chip component placement.

    Science.gov (United States)

    Liao, Chen; Hu, Shiyan

    2011-03-01

    The invention of microfluidic lab-on-a-chip alleviates the burden of traditional biochemical laboratory procedures which are often very expensive. Device miniaturization and increasing design complexity have mandated a shift in digital microfluidic lab-on-a-chip design from traditional manual design to computer-aided design (CAD) methodologies. As an important procedure in the lab-on-a-chip layout CAD, the lab-on-a-chip component placement determines the physical location and the starting time of each operation such that the overall completion time is minimized while satisfying nonoverlapping constraint, resource constraint, and scheduling constraint. In this paper, a multiscale variation-aware optimization technique based on integer linear programming is proposed for the lab-on-a-chip component placement. The simulation results demonstrate that without considering variations, our technique always satisfies the design constraints and largely outperforms the state-of-the-art approach, with up to 65.9% reduction in completion time. When considering variations, the variation-unaware design has the average yield of 2%, while our variation-aware technique always satisfies the yield constraint with only 7.7% completion time increase.

  16. Identification of Nonstandard Multifractional Brownian Motions under White Noise by Multiscale Local Variations of Its Sample Paths

    Directory of Open Access Journals (Sweden)

    Kwang-Il Ahn

    2013-01-01

    Full Text Available The Hurst exponent and variance are two quantities that often characterize real-life, high-frequency observations. Such real-life signals are generally measured under noise environments. We develop a multiscale statistical method for simultaneous estimation of a time-changing Hurst exponent H(t and a variance parameter C in a multifractional Brownian motion model in the presence of white noise. The method is based on the asymptotic behavior of the local variation of its sample paths which applies to coarse scales of the sample paths. This work provides stable and simultaneous estimators of both parameters when independent white noise is present. We also discuss the accuracy of the simultaneous estimators compared with a few selected methods and the stability of computations with regard to adapted wavelet filters.

  17. Spatial variation and driving factors of soil moisture at multi-scales: a case study in Loess Plateau of China

    Science.gov (United States)

    Zhao, W.; Zhang, X.; Liu, Y.; Fang, X.

    2017-12-01

    Currently, the ecological restoration of the Loess Plateau has led to significant achievements such as increases in vegetation coverage, decreases in soil erosion, and enhancement of ecosystem services. Soil moisture shortages, however, commonly occur as a result of limited rainfall and strong evaporation in this semiarid region of China. Since soil moisture is critical in regulating plant growth in these semiarid regions, it is crucial to identify the spatial variation and factors affecting soil moisture at multi-scales in the Loess Plateau of China. In the last several years, extensive studies on soil moisture have been carried out by our research group at the plot, small watershed, watershed, and regional scale in the Loess Plateau, providing some information for vegetation restoration in the region. The main research results are as follows: (1) the highest soil moisture content was in the 0-0.1 m layer with a large coefficient of variation; (2) in the 0-0.1m layer, soil moisture content was negatively correlated with relative elevation, slope and vegetation cover, the correlations among slope, aspect and soil moisture increased with depth increased; (3) as for the deep soil moisture content, the higher spatial variation of deep SMC occurred at 1.2-1.4 m and 4.8-5.0m; (4) the deep soil moisture content in native grassland and farmland were significant higher than that of introduced vegetation; (5) at regional scale, the soil water content under different precipitation zones increased following the increase of precipitation, while, the influencing factors of deep SMC at watershed scale varied with land management types; (6) in the areas with multi-year precipitation of 370 - 440mm, natural grass is more suitable for restoration, and this should be treated as the key areas in vegetation restoration; (7) appropriate planting density and species selection should be taken into account for introduced vegetation management; (8) it is imperative to take the local

  18. Controls for multi-scale temporal variation in ecosystem methane exchange during the growing season of a permanently inundated fen

    Science.gov (United States)

    Koebsch, Franziska; Jurasinski, Gerald; Koch, Marian; Hofmann, Joachim; Glatzel, Stephan

    2014-05-01

    Temperature and phenology trigger seasonal variation of CH4 emissions in many ecosystems. However, ecosystem CH4 exchange varies also considerably on smaller temporal scales such as days or weeks. Indeed, we are aware of many processes that control CH4 emissions on the local soil-plant-atmosphere continuum, but their interaction on ecosystem level is not well understood yet. We used a quasi-continuous Eddy Covariance CH4 flux time series and wavelet analysis to describe the temporal variation of ecosystem CH4 exchange within the growing season of a permanently inundated temperate fen. Moreover, we assigned time scale-specific controls and investigated whether their impact changes during the course of the growing season. Water/soil temperature correlated with ecosystem CH4 exchange at time scales of 6-11 and 22 days which exceeds the time scales that are typically associated with the passage of weather fronts. The low response time might be due to the high heat capacity of the water column. On a daily scale, shear-induced turbulence (presented by friction velocity) and plant activity (presented by canopy photosynthesis) caused a diurnal variation of ecosystem CH4 exchange with peak time around noon. However, this pattern was apparent only at the beginning of the growing season (April/May). In the following, convective mixing of the water column (presented by the water temperature gradient) gradually gained importance and caused high night-time CH4 emissions, thereby levelling off the diurnal CH4 emission pattern. Our study highlights the need for multi-scale approaches that consider the non-stationarity of the underlying processes to adequately describe the complexity of ecosystem CH4 exchange. Moreover, we show that CH4 release processes such as convective mixing of the water column which has been mainly known from aquatic ecosystems until recently (Godwin et al. 2013), might be also of importance in shallowly flooded terrestrial ecosystems. Citation: Godwin CM, Mc

  19. Multiscale analysis of rainfall over France in a climate scenario: Importance of seasonal variations

    Science.gov (United States)

    Royer, Jean-François; Chauvin, Fabrice; Lovejoy, Shaun; Schertzer, Daniel; Tchiguirinskaia, Ioulia

    2010-05-01

    As a preliminary attempt to apply multifractal techniques to climate model simulations, Royer et al (2008) have analyzed the temporal scaling of daily rainfall time series over France simulated by the CNRM-CM3 coupled climate model in an IPCC scenario (SRES) A2 over the period 1860-2100. The scaling variability of the simulated daily rainfall, quantified with the "universal multifractal" formalism by means of a few relevant multifractal exponents characterizing the intermittency and multifractality of the field as determined by the Double Trace Moment (DTM), have shown a scaling range extending from one day to more than 16 days. Though opposite trends found in the evolution of the intermittency and multifractality exponents tend to have compensating effects on the evolution of rainfall extremes, the dominant effect of the increasing intermittency leads to expect an effective enhancement of rainfall extremes for the next hundred years. In this presentation, the analysis is extended by taking into consideration the seasonal effects. Comparison of the different periods shows that in winter there is rather little change in the two parameters, except in the southern part of France. In summer however, though the geographical patterns remain rather stable, a large and systematic evolution can be seen between the successive time spans, with an increase of multifractality and a decrease of intermittency over the 21st century. This new analysis shows that the overall trends found previously in analyzing the precipitation series over the whole year are mainly produced by the variations during the summer season. The very differentiated seasonal evolution in the response of precipitation to climate change, highligh that it is necessary to take into account a seasonal evolution of the multifractal parameters for characterizing the scaling properties of the rainfall fields. In particular the changes in the scaling properties of precipitation seem to be more prominent during

  20. An extended algebraic variational multiscale-multigrid-multifractal method (XAVM4) for large-eddy simulation of turbulent two-phase flow

    Science.gov (United States)

    Rasthofer, U.; Wall, W. A.; Gravemeier, V.

    2018-04-01

    A novel and comprehensive computational method, referred to as the eXtended Algebraic Variational Multiscale-Multigrid-Multifractal Method (XAVM4), is proposed for large-eddy simulation of the particularly challenging problem of turbulent two-phase flow. The XAVM4 involves multifractal subgrid-scale modeling as well as a Nitsche-type extended finite element method as an approach for two-phase flow. The application of an advanced structural subgrid-scale modeling approach in conjunction with a sharp representation of the discontinuities at the interface between two bulk fluids promise high-fidelity large-eddy simulation of turbulent two-phase flow. The high potential of the XAVM4 is demonstrated for large-eddy simulation of turbulent two-phase bubbly channel flow, that is, turbulent channel flow carrying a single large bubble of the size of the channel half-width in this particular application.

  1. A variational multi-scale method with spectral approximation of the sub-scales: Application to the 1D advection-diffusion equations

    KAUST Repository

    Chacón Rebollo, Tomás

    2015-03-01

    This paper introduces a variational multi-scale method where the sub-grid scales are computed by spectral approximations. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base of eigenfunctions which are orthonormal in weighted L2 spaces. This allows to element-wise calculate the sub-grid scales by means of the associated spectral expansion. We propose a feasible VMS-spectral method by truncation of this spectral expansion to a finite number of modes. We apply this general framework to the convection-diffusion equation, by analytically computing the family of eigenfunctions. We perform a convergence and error analysis. We also present some numerical tests that show the stability of the method for an odd number of spectral modes, and an improvement of accuracy in the large resolved scales, due to the adding of the sub-grid spectral scales.

  2. Multiscale Retinex

    Directory of Open Access Journals (Sweden)

    Ana Belén Petro

    2014-04-01

    Full Text Available While the retinex theory aimed at explaining human color perception, its derivations have led to efficient algorithms enhancing local image contrast, thus permitting among other features, to "see in the shadows". Among these derived algorithms, Multiscale Retinex is probably the most successful center-surround image filter. In this paper, we offer an analysis and implementation of Multiscale Retinex. We point out and resolve some ambiguities of the method. In particular, we show that the important color correction final step of the method can be seriously improved. This analysis permits to come up with an automatic implementation of Multiscale Retinex which is as faithful as possible to the one described in the original paper. Overall, this implementation delivers excellent results and confirms the validity of Multiscale Retinex for image color restoration and contrast enhancement. Nevertheless, while the method parameters can be fixed, we show that a crucial choice must be left to the user, depending on the lightning condition of the image: the method must either be applied to each color independently if a color balance is required, or to the luminance only if the goal is to achieve local contrast enhancement. Thus, we propose two slightly different algorithms to deal with both cases.

  3. Convergence of a residual based artificial viscosity finite element method

    KAUST Repository

    Nazarov, Murtazo

    2013-02-01

    We present a residual based artificial viscosity finite element method to solve conservation laws. The Galerkin approximation is stabilized by only residual based artificial viscosity, without any least-squares, SUPG, or streamline diffusion terms. We prove convergence of the method, applied to a scalar conservation law in two space dimensions, toward an unique entropy solution for implicit time stepping schemes. © 2012 Elsevier B.V. All rights reserved.

  4. Impacts of ENSO on multi-scale variations in sediment discharge from the Pearl River to the South China Sea

    Science.gov (United States)

    Liu, Feng; Chen, Hui; Cai, Huayang; Luo, Xiangxin; Ou, Suying; Yang, Qingshu

    2017-09-01

    Sediment load delivered by rivers is an important terrestrial factor in the evolution and productivity of coastal ecosystems and coastal morphology. As the strongest interannual climate signal, the El Niño Southern Oscillation (ENSO) is closely related to variations in the hydrological cycle at global and regional scales. However, the influence of ENSO on temporal variations in sediment discharge is poorly understood. In this paper, we examine periodic variations in sediment discharge to the South China Sea from the Pearl River since the 1950s using wavelet transform analysis (WT). Furthermore, we apply cross wavelet spectrum (XWT) and wavelet coherence (WTC) to investigate the linkages between ENSO and sediment variability. The WT results revealed that periodic oscillations in sediment discharge in the Pearl River occurred annually (1 yr) before the 2000s, interannually (2-8 yr) from 1960-2002, and decadally (10-16 yr) from 1975-1995. These periodic variations in the sediment load series had common spectrum power with the water discharge and precipitation series, indicating an important climatic control. The XWT and WTC results revealed significant impacts of ENSO on precipitation, water discharge and sediment load at interannual time scales of 2-4.6 yr from 1960-2002 with a shift of patterns of ENSO on sediment variability after the 1970s. In addition, an in-phase relation between sediment discharge and ENSO at time scales of 10-16 yr from 1975-1995 was detected, indicating that variations at decadal scales could be related to other climatic teleconnections such as the Pacific Decadal Oscillation. Compared with the spectrum structures of periodic variations in precipitation and water discharge and their relationship with ENSO, there was a loss of energy in the sediment load at annual time scales after 2002 that can be attributed to dam construction in the river basin. Our study provides perspectives on the connections between ENSO and sediment variability at

  5. Variations in Multiscale (nano to mm) Porosity in the Eagle Ford Shale as a Function of Maturity through the Oil Window

    Science.gov (United States)

    Anovitz, L. M.; Cole, D. R.; Swift, A.; Sheets, J.; Elston, H. W.; Gutierrez, M. A.; Cook, A.; Chipera, S.; Littrell, K. C.; Mildner, D. F.; Wasbrough, M.

    2013-12-01

    Porosity and permeability are key variables that link the thermal-hydrologic, geomechanical and geochemical behavior in rock systems and are thus important input parameters for transport models. Recent neutron scattering studies have indicated that the scales of pore sizes in rocks extend over many orders of magnitude from nanometer pores with huge amounts of total surface area to large open fracture systems (multiscale porosity, cf. Anovitz et al., 2009, 2011, 2013a,b). However, despite a considerable amount of effort combining conventional rock petrophysics with more sophisticated neutron scattering and electron microscopy studies, the quantitative nature of this porosity in tight gas shales, especially at smaller scales and over larger rock volumes, remains largely unknown (Clarkson, 2011). We lack a quantitative understanding of the multiscale porosity regime (i.e., pore size, shape, and volume, pore size distribution, pore connectivity, pore wall roughness) in rocks. Nor is it understood how porosity is affected by regional variation, thermal changes across the oil window, and, most critically, hydraulic fracturing operations. In order to begin to provide a quantitative understanding of porosity at nanometer to core scales in these shale formations and how it relates to gas storage and recovery we have used a combination of small and ultrasmall angle neutron scattering measurments made on the GP-SANS instrument at ORNL/HFIR, and the NG3-SANS and BT5-USANS instruments and NIST/NCNR, with SEM/BSE and X-ray Computed Tomographic imaging to analyze the pore structure of both clay and carbonate-rich samples of the Eagle Ford Shale. The Eagle Ford Shale is a late Cretaceous unit underlying much of southeast Texas and probably adjacent sections of Mexico. It outcrops in an arc from north of Austin, through San Antonio and then west towards Kinney County. It is hydrocarbon rich, and buried portions straddle the oil window. The Eagle Ford is currently one of the most

  6. Multiscale analysis and computation for flows in heterogeneous media

    Energy Technology Data Exchange (ETDEWEB)

    Efendiev, Yalchin [Texas A & M Univ., College Station, TX (United States); Hou, T. Y. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Durlofsky, L. J. [Stanford Univ., CA (United States); Tchelepi, H. [Stanford Univ., CA (United States)

    2016-08-04

    Our work in this project is aimed at making fundamental advances in multiscale methods for flow and transport in highly heterogeneous porous media. The main thrust of this research is to develop a systematic multiscale analysis and efficient coarse-scale models that can capture global effects and extend existing multiscale approaches to problems with additional physics and uncertainties. A key emphasis is on problems without an apparent scale separation. Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine-scale permeability variations through the calculation of specialized coarse-scale basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. Other challenging issues facing multiscale simulations are the extension of existing multiscale techniques to problems with additional physics, such as compressibility, capillary effects, etc. In our project, we explore the improvement of multiscale methods through the incorporation of additional (single-phase flow) information and the development of a general multiscale framework for flows in the presence of uncertainties, compressible flow and heterogeneous transport, and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multiscale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element methods for high contrast porous media and their generalizations, and (6) multiscale methods for geomechanics. Below, we present a brief overview of each of these contributions.

  7. Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Thomas [California Inst. of Technology (CalTech), Pasadena, CA (United States); Efendiev, Yalchin [Stanford Univ., CA (United States); Tchelepi, Hamdi [Texas A & M Univ., College Station, TX (United States); Durlofsky, Louis [Stanford Univ., CA (United States)

    2016-05-24

    Our work in this project is aimed at making fundamental advances in multiscale methods for flow and transport in highly heterogeneous porous media. The main thrust of this research is to develop a systematic multiscale analysis and efficient coarse-scale models that can capture global effects and extend existing multiscale approaches to problems with additional physics and uncertainties. A key emphasis is on problems without an apparent scale separation. Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine-scale permeability variations through the calculation of specialized coarse-scale basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. Other challenging issues facing multiscale simulations are the extension of existing multiscale techniques to problems with additional physics, such as compressibility, capillary effects, etc. In our project, we explore the improvement of multiscale methods through the incorporation of additional (single-phase flow) information and the development of a general multiscale framework for flows in the presence of uncertainties, compressible flow and heterogeneous transport, and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multiscale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element methods for high contrast porous media and their generalizations, and (6) multiscale methods for geomechanics.

  8. Batch mode generation of residue-based diagrams of proteins.

    NARCIS (Netherlands)

    Campagne, F.; Bettler, E.J.M.; Vriend, G.; Weinstein, H.C.

    2003-01-01

    SUMMARY: Residue-based diagrams of proteins are graphical representations that can be used in protein information systems. These diagrams make it possible to visually integrate different types of biological information. The approach has been used successfully for membrane proteins. We developed the

  9. Residual-based model diagnosis methods for mixture cure models.

    Science.gov (United States)

    Peng, Yingwei; Taylor, Jeremy M G

    2017-06-01

    Model diagnosis, an important issue in statistical modeling, has not yet been addressed adequately for cure models. We focus on mixture cure models in this work and propose some residual-based methods to examine the fit of the mixture cure model, particularly the fit of the latency part of the mixture cure model. The new methods extend the classical residual-based methods to the mixture cure model. Numerical work shows that the proposed methods are capable of detecting lack-of-fit of a mixture cure model, particularly in the latency part, such as outliers, improper covariate functional form, or nonproportionality in hazards if the proportional hazards assumption is employed in the latency part. The methods are illustrated with two real data sets that were previously analyzed with mixture cure models. © 2016, The International Biometric Society.

  10. CING: an integrated residue-based structure validation program suite

    International Nuclear Information System (INIS)

    Doreleijers, Jurgen F.; Sousa da Silva, Alan W.; Krieger, Elmar; Nabuurs, Sander B.; Spronk, Christian A. E. M.; Stevens, Tim J.; Vranken, Wim F.; Vriend, Gert; Vuister, Geerten W.

    2012-01-01

    We present a suite of programs, named CING for Common Interface for NMR Structure Generation that provides for a residue-based, integrated validation of the structural NMR ensemble in conjunction with the experimental restraints and other input data. External validation programs and new internal validation routines compare the NMR-derived models with empirical data, measured chemical shifts, distance- and dihedral restraints and the results are visualized in a dynamic Web 2.0 report. A red–orange–green score is used for residues and restraints to direct the user to those critiques that warrant further investigation. Overall green scores below ∼20 % accompanied by red scores over ∼50 % are strongly indicative of poorly modelled structures. The publically accessible, secure iCing webserver (https://nmr.le.ac.ukhttps://nmr.le.ac.uk) allows individual users to upload the NMR data and run a CING validation analysis.

  11. Pan-Arctic Climate and Land Cover Trends Derived from Multi-Variate and Multi-Scale Analyses (1981–2012

    Directory of Open Access Journals (Sweden)

    Marcel Urban

    2014-03-01

    Full Text Available Arctic ecosystems have been afflicted by vast changes in recent decades. Changes in temperature, as well as precipitation, are having an impact on snow cover, vegetation productivity and coverage, vegetation seasonality, surface albedo, and permafrost dynamics. The coupled climate-vegetation change in the arctic is thought to be a positive feedback in the Earth system, which can potentially further accelerate global warming. This study focuses on the co-occurrence of temperature, precipitation, snow cover, and vegetation greenness trends between 1981 and 2012 in the pan-arctic region based on coarse resolution climate and remote sensing data, as well as ground stations. Precipitation significantly increased during summer and fall. Temperature had the strongest increase during the winter months (twice than during the summer months. The snow water equivalent had the highest trends during the transition seasons of the year. Vegetation greenness trends are characterized by a constant increase during the vegetation-growing period. High spatial resolution remote sensing data were utilized to map structural vegetation changes between 1973 and 2012 for a selected test region in Northern Siberia. An intensification of woody vegetation cover at the taiga-tundra transition area was found. The observed co-occurrence of climatic and ecosystem changes is an example of the multi-scale feedbacks in the arctic ecosystems.

  12. Multiscale Cancer Modeling

    Science.gov (United States)

    Macklin, Paul; Cristini, Vittorio

    2013-01-01

    Simulating cancer behavior across multiple biological scales in space and time, i.e., multiscale cancer modeling, is increasingly being recognized as a powerful tool to refine hypotheses, focus experiments, and enable more accurate predictions. A growing number of examples illustrate the value of this approach in providing quantitative insight on the initiation, progression, and treatment of cancer. In this review, we introduce the most recent and important multiscale cancer modeling works that have successfully established a mechanistic link between different biological scales. Biophysical, biochemical, and biomechanical factors are considered in these models. We also discuss innovative, cutting-edge modeling methods that are moving predictive multiscale cancer modeling toward clinical application. Furthermore, because the development of multiscale cancer models requires a new level of collaboration among scientists from a variety of fields such as biology, medicine, physics, mathematics, engineering, and computer science, an innovative Web-based infrastructure is needed to support this growing community. PMID:21529163

  13. Towards distributed multiscale computing for the VPH

    NARCIS (Netherlands)

    Hoekstra, A.G.; Coveney, P.

    2010-01-01

    Multiscale modeling is fundamental to the Virtual Physiological Human (VPH) initiative. Most detailed three-dimensional multiscale models lead to prohibitive computational demands. As a possible solution we present MAPPER, a computational science infrastructure for Distributed Multiscale Computing

  14. Multiscale Simulations Using Particles

    DEFF Research Database (Denmark)

    Walther, Jens Honore

    We are developing particle methods as a general framework for large scale simulations of discrete and continuous systems in science and engineering. The specific application and research areas include: discrete element simulations of granular flow, smoothed particle hydrodynamics and particle...... vortex methods for problems in continuum fluid dynamics, dissipative particle dynamics for flow at the meso scale, and atomistic molecular dynamics simulations of nanofluidic systems. We employ multiscale techniques to breach the atomistic and continuum scales to study fundamental problems in fluid...

  15. Multiscale singularity trees

    DEFF Research Database (Denmark)

    Somchaipeng, Kerawit; Sporring, Jon; Johansen, Peter

    2007-01-01

    We propose MultiScale Singularity Trees (MSSTs) as a structure to represent images, and we propose an algorithm for image comparison based on comparing MSSTs. The algorithm is tested on 3 public image databases and compared to 2 state-of-theart methods. We conclude that the computational complexity...... of our algorithm only allows for the comparison of small trees, and that the results of our method are comparable with state-of-the-art using much fewer parameters for image representation....

  16. Multiscale modelling of nanostructures

    International Nuclear Information System (INIS)

    Vvedensky, Dimitri D

    2004-01-01

    Most materials phenomena are manifestations of processes that are operative over a vast range of length and time scales. A complete understanding of the behaviour of materials thereby requires theoretical and computational tools that span the atomic-scale detail of first-principles methods and the more coarse-grained description provided by continuum equations. Recent efforts have focused on combining traditional methodologies-density functional theory, molecular dynamics, Monte Carlo methods and continuum descriptions-within a unified multiscale framework. This review covers the techniques that have been developed to model various aspects of materials behaviour with the ultimate aim of systematically coupling the atomistic to the continuum descriptions. The approaches described typically have been motivated by particular applications but can often be applied in wider contexts. The self-assembly of quantum dot ensembles will be used as a case study for the issues that arise and the methods used for all nanostructures. Although quantum dots can be obtained with all the standard growth methods and for a variety of material systems, their appearance is a quite selective process, involving the competition between equilibrium and kinetic effects, and the interplay between atomistic and long-range interactions. Most theoretical models have addressed particular aspects of the ordering kinetics of quantum dot ensembles, with far fewer attempts at a comprehensive synthesis of this inherently multiscale phenomenon. We conclude with an assessment of the current status of multiscale modelling strategies and highlight the main outstanding issues. (topical review)

  17. Finite Dimensional Approximations for Continuum Multiscale Problems

    Energy Technology Data Exchange (ETDEWEB)

    Berlyand, Leonid [Pennsylvania State Univ., University Park, PA (United States)

    2017-01-24

    The completed research project concerns the development of novel computational techniques for modeling nonlinear multiscale physical and biological phenomena. Specifically, it addresses the theoretical development and applications of the homogenization theory (coarse graining) approach to calculation of the effective properties of highly heterogenous biological and bio-inspired materials with many spatial scales and nonlinear behavior. This theory studies properties of strongly heterogeneous media in problems arising in materials science, geoscience, biology, etc. Modeling of such media raises fundamental mathematical questions, primarily in partial differential equations (PDEs) and calculus of variations, the subject of the PI’s research. The focus of completed research was on mathematical models of biological and bio-inspired materials with the common theme of multiscale analysis and coarse grain computational techniques. Biological and bio-inspired materials offer the unique ability to create environmentally clean functional materials used for energy conversion and storage. These materials are intrinsically complex, with hierarchical organization occurring on many nested length and time scales. The potential to rationally design and tailor the properties of these materials for broad energy applications has been hampered by the lack of computational techniques, which are able to bridge from the molecular to the macroscopic scale. The project addressed the challenge of computational treatments of such complex materials by the development of a synergistic approach that combines innovative multiscale modeling/analysis techniques with high performance computing.

  18. Space-time multiscale methods for Large Eddy Simulation

    NARCIS (Netherlands)

    Munts, E.A.

    2006-01-01

    The Variational Multiscale (VMS) method has appeared as a promising new approach to the Large Eddy Simulation (LES) of turbulent flows. The key advantage of the VMS approach is that it allows different subgrid-scale (SGS) modeling assumptions to be made at different ranges of the resolved scales.

  19. Multiscale Signal Analysis and Modeling

    CERN Document Server

    Zayed, Ahmed

    2013-01-01

    Multiscale Signal Analysis and Modeling presents recent advances in multiscale analysis and modeling using wavelets and other systems. This book also presents applications in digital signal processing using sampling theory and techniques from various function spaces, filter design, feature extraction and classification, signal and image representation/transmission, coding, nonparametric statistical signal processing, and statistical learning theory. This book also: Discusses recently developed signal modeling techniques, such as the multiscale method for complex time series modeling, multiscale positive density estimations, Bayesian Shrinkage Strategies, and algorithms for data adaptive statistics Introduces new sampling algorithms for multidimensional signal processing Provides comprehensive coverage of wavelets with presentations on waveform design and modeling, wavelet analysis of ECG signals and wavelet filters Reviews features extraction and classification algorithms for multiscale signal and image proce...

  20. Multiscale computing in the exascale era

    NARCIS (Netherlands)

    Alowayyed, S.; Groen, D.; Coveney, P.V.; Hoekstra, A.G.

    We expect that multiscale simulations will be one of the main high performance computing workloads in the exascale era. We propose multiscale computing patterns as a generic vehicle to realise load balanced, fault tolerant and energy aware high performance multiscale computing. Multiscale computing

  1. Multiscale principal component analysis

    International Nuclear Information System (INIS)

    Akinduko, A A; Gorban, A N

    2014-01-01

    Principal component analysis (PCA) is an important tool in exploring data. The conventional approach to PCA leads to a solution which favours the structures with large variances. This is sensitive to outliers and could obfuscate interesting underlying structures. One of the equivalent definitions of PCA is that it seeks the subspaces that maximize the sum of squared pairwise distances between data projections. This definition opens up more flexibility in the analysis of principal components which is useful in enhancing PCA. In this paper we introduce scales into PCA by maximizing only the sum of pairwise distances between projections for pairs of datapoints with distances within a chosen interval of values [l,u]. The resulting principal component decompositions in Multiscale PCA depend on point (l,u) on the plane and for each point we define projectors onto principal components. Cluster analysis of these projectors reveals the structures in the data at various scales. Each structure is described by the eigenvectors at the medoid point of the cluster which represent the structure. We also use the distortion of projections as a criterion for choosing an appropriate scale especially for data with outliers. This method was tested on both artificial distribution of data and real data. For data with multiscale structures, the method was able to reveal the different structures of the data and also to reduce the effect of outliers in the principal component analysis

  2. A Multiscale, Nonlinear, Modeling Framework Enabling the Design and Analysis of Composite Materials and Structures

    Science.gov (United States)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2012-01-01

    A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.

  3. The Magnetospheric Multiscale Constellation

    Science.gov (United States)

    Tooley, C. R.; Black, R. K.; Robertson, B. P.; Stone, J. M.; Pope, S. E.; Davis, G. T.

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission is the fourth mission of the Solar Terrestrial Probe (STP) program of the National Aeronautics and Space Administration (NASA). The MMS mission was launched on March 12, 2015. The MMS mission consists of four identically instrumented spin-stabilized observatories which are flown in formation to perform the first definitive study of magnetic reconnection in space. The MMS mission was presented with numerous technical challenges, including the simultaneous construction and launch of four identical large spacecraft with 100 instruments total, stringent electromagnetic cleanliness requirements, closed-loop precision maneuvering and pointing of spinning flexible spacecraft, on-board GPS based orbit determination far above the GPS constellation, and a flight dynamics design that enables formation flying with separation distances as small as 10 km. This paper describes the overall mission design and presents an overview of the design, testing, and early on-orbit operation of the spacecraft systems and instrument suite.

  4. Hybrid continuum–molecular modelling of multiscale internal gas flows

    International Nuclear Information System (INIS)

    Patronis, Alexander; Lockerby, Duncan A.; Borg, Matthew K.; Reese, Jason M.

    2013-01-01

    We develop and apply an efficient multiscale method for simulating a large class of low-speed internal rarefied gas flows. The method is an extension of the hybrid atomistic–continuum approach proposed by Borg et al. (2013) [28] for the simulation of micro/nano flows of high-aspect ratio. The major new extensions are: (1) incorporation of fluid compressibility; (2) implementation using the direct simulation Monte Carlo (DSMC) method for dilute rarefied gas flows, and (3) application to a broader range of geometries, including periodic, non-periodic, pressure-driven, gravity-driven and shear-driven internal flows. The multiscale method is applied to micro-scale gas flows through a periodic converging–diverging channel (driven by an external acceleration) and a non-periodic channel with a bend (driven by a pressure difference), as well as the flow between two eccentric cylinders (with the inner rotating relative to the outer). In all these cases there exists a wide variation of Knudsen number within the geometries, as well as substantial compressibility despite the Mach number being very low. For validation purposes, our multiscale simulation results are compared to those obtained from full-scale DSMC simulations: very close agreement is obtained in all cases for all flow variables considered. Our multiscale simulation is an order of magnitude more computationally efficient than the full-scale DSMC for the first and second test cases, and two orders of magnitude more efficient for the third case

  5. Multiscale modeling in nanomaterials science

    Energy Technology Data Exchange (ETDEWEB)

    Karakasidis, T.E. [Department of Civil Engineering, University of Thessaly, Pedion Areos, GR-38834 Volos (Greece)], E-mail: thkarak@uth.gr; Charitidis, C.A. [National Technical University of Athens, School of Chemical Engineering, 9 Heroon, Polytechniou st., Zografos, GR-157 80 Athens (Greece)

    2007-09-15

    Nanoscience is an area with increasing interest both in the physicochemical phenomena involved and the potential applications such as silicon carbide films, carbon nanotubes, quantum dots, MEMS etc. These materials exhibit very interesting properties (electronic, optical, mechanical) at various length/time scales necessitating better insight. Modern fabrication techniques, such as CVD, also require better understanding in a wide range of length/time scales, in order to achieve better process control. Multiscale modeling is a new, fast developing and challenging scientific field with contributions from many scientific disciplines in an effort to assure materials simulation across length/time scales. In this paper we present a brief review of recent advances in multiscale materials modeling. First, a classification of existing simulation methods based on time and length scales is presented along with basic principles of the multiscale approach. More specifically, we focus on electronic structure calculations, classical atomistic simulation with molecular dynamics or monte carlo methods at the nano/micro scale, Kinetic Monte Carlo for larger system/time scales and finite elements for very large scales. Then, we present the hierarchical and the hybrid strategies of multiscale modeling to couple these methods. Finally, we deal with selected applications concerning thin film CVD deposition and mechanical behavior of carbon nanotubes and we conclude presenting an overview of future trends of multiscale modeling.

  6. Quantitative determination of pefloxacin mesylate by residual-base neutralisation method

    Directory of Open Access Journals (Sweden)

    HULIKALCHANDRA SHEKAR PRAMEELA

    2004-05-01

    Full Text Available This work describes two procedures based on residual base determination for the quantification of pefloxacin mesylate (PFM in bulk drug and in pharmaceutical products. In the first method involving titrimetry, the drug solution is treated with a measured excess of sodium hydroxide followed by back titration of the residual base with hydrochloric acid using a phenol red-bromothymol blue mixed indicator. The second spectrophotometrie method involves treatment of a fixed amount of sodium hydroxide – phenol red mixture with varying amounts of the drug, and measuring the decrease in the absorbance of the dye at 560 nm. In the titrimetric method, a reaction stoichiometry of 1:1 was found in the quantification range of 4–20 mg of drug. The spectrophotometric method allows the determination of PFM in the 5–40 mg ml-1 range. The molar absorptivity is 5.91¤103 l mol-1 cm-1 and the Sandell sensitivity is 56.37 ng cm-2. The methods were applied successfully to the determination of PFM in pharmaceutical preparations.

  7. Multiscale decomposition for heterogeneous land-atmosphere systems

    Science.gov (United States)

    Liu, Shaofeng; Shao, Yaping; Hintz, Michael; Lennartz-Sassinek, Sabine

    2015-02-01

    The land-atmosphere system is characterized by pronounced land surface heterogeneity and vigorous atmospheric turbulence both covering a wide range of scales. The multiscale surface heterogeneities and multiscale turbulent eddies interact nonlinearly with each other. Understanding these multiscale processes quantitatively is essential to the subgrid parameterizations for weather and climate models. In this paper, we propose a method for surface heterogeneity quantification and turbulence structure identification. The first part of the method is an orthogonal transform in the probability density function (PDF) domain, in contrast to the orthogonal wavelet transforms which are performed in the physical space. As the basis of the whole method, the orthogonal PDF transform (OPT) is used to asymptotically reconstruct the original signals by representing the signal values with multilevel approximations. The "patch" idea is then applied to these reconstructed fields in order to recognize areas at the land surface or in turbulent flows that are of the same characteristics. A patch here is a connected area with the same approximation. For each recognized patch, a length scale is then defined to build the energy spectrum. The OPT and related energy spectrum analysis, as a whole referred to as the orthogonal PDF decomposition (OPD), is applied to two-dimensional heterogeneous land surfaces and atmospheric turbulence fields for test. The results show that compared to the wavelet transforms, the OPD can reconstruct the original signal more effectively, and accordingly, its energy spectrum represents the signal's multiscale variation more accurately. The method we propose in this paper is of general nature and therefore can be of interest for problems of multiscale process description in other geophysical disciplines.

  8. Multiscale expansions in discrete world

    Indian Academy of Sciences (India)

    Multiscale expansions in discrete world. ÖMER ÜNSAL, FILIZ TASCAN. ∗ and MEHMET NACI ÖZER. Eskisehir Osmangazi University, Art-Science Faculty, Department of Mathematics and Computer. Sciences, Eskisehir-Türkiye. ∗. Corresponding author. E-mail: ftascan@ogu.edu.tr. MS received 12 April 2013; accepted 16 ...

  9. Multiscale expansions in discrete world

    Indian Academy of Sciences (India)

    ... multiscale expansions discretely. The power of this manageable method is confirmed by applying it to two selected nonlinear Schrödinger evolution equations. This approach can also be applied to other nonlinear discrete evolution equations. All the computations have been made with Maple computer packet program.

  10. Multiscale expansions in discrete world

    Indian Academy of Sciences (India)

    This approach can also be applied to other nonlinear discrete evolution equations. All the computations have been made with Maple computer packet program. Keywords. Multiscale expansion; discrete evolution equation; modified nonlinear Schrödinger equation; third-order nonlinear Schrödinger equation; KdV equation.

  11. Multiscale Thermohydrologic Model

    Energy Technology Data Exchange (ETDEWEB)

    T. Buscheck

    2004-10-12

    The purpose of the multiscale thermohydrologic model (MSTHM) is to predict the possible range of thermal-hydrologic conditions, resulting from uncertainty and variability, in the repository emplacement drifts, including the invert, and in the adjoining host rock for the repository at Yucca Mountain. Thus, the goal is to predict the range of possible thermal-hydrologic conditions across the repository; this is quite different from predicting a single expected thermal-hydrologic response. The MSTHM calculates the following thermal-hydrologic parameters: temperature, relative humidity, liquid-phase saturation, evaporation rate, air-mass fraction, gas-phase pressure, capillary pressure, and liquid- and gas-phase fluxes (Table 1-1). These thermal-hydrologic parameters are required to support ''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504]). The thermal-hydrologic parameters are determined as a function of position along each of the emplacement drifts and as a function of waste package type. These parameters are determined at various reference locations within the emplacement drifts, including the waste package and drip-shield surfaces and in the invert. The parameters are also determined at various defined locations in the adjoining host rock. The MSTHM uses data obtained from the data tracking numbers (DTNs) listed in Table 4.1-1. The majority of those DTNs were generated from the following analyses and model reports: (1) ''UZ Flow Model and Submodels'' (BSC 2004 [DIRS 169861]); (2) ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2004); (3) ''Calibrated Properties Model'' (BSC 2004 [DIRS 169857]); (4) ''Thermal Conductivity of the Potential Repository Horizon'' (BSC 2004 [DIRS 169854]); (5) ''Thermal Conductivity of the Non-Repository Lithostratigraphic Layers

  12. MULTISCALE THERMOHYDROLOGIC MODEL

    Energy Technology Data Exchange (ETDEWEB)

    T. Buscheck

    2005-07-07

    The intended purpose of the multiscale thermohydrologic model (MSTHM) is to predict the possible range of thermal-hydrologic conditions, resulting from uncertainty and variability, in the repository emplacement drifts, including the invert, and in the adjoining host rock for the repository at Yucca Mountain. The goal of the MSTHM is to predict a reasonable range of possible thermal-hydrologic conditions within the emplacement drift. To be reasonable, this range includes the influence of waste-package-to-waste-package heat output variability relevant to the license application design, as well as the influence of uncertainty and variability in the geologic and hydrologic conditions relevant to predicting the thermal-hydrologic response in emplacement drifts. This goal is quite different from the goal of a model to predict a single expected thermal-hydrologic response. As a result, the development and validation of the MSTHM and the associated analyses using this model are focused on the goal of predicting a reasonable range of thermal-hydrologic conditions resulting from parametric uncertainty and waste-package-to-waste-package heat-output variability. Thermal-hydrologic conditions within emplacement drifts depend primarily on thermal-hydrologic conditions in the host rock at the drift wall and on the temperature difference between the drift wall and the drip-shield and waste-package surfaces. Thus, the ability to predict a reasonable range of relevant in-drift MSTHM output parameters (e.g., temperature and relative humidity) is based on valid predictions of thermal-hydrologic processes in the host rock, as well as valid predictions of heat-transfer processes between the drift wall and the drip-shield and waste-package surfaces. Because the invert contains crushed gravel derived from the host rock, the invert is, in effect, an extension of the host rock, with thermal and hydrologic properties that have been modified by virtue of the crushing (and the resulting

  13. The Magnetospheric Multiscale Mission

    Science.gov (United States)

    Burch, James

    Magnetospheric Multiscale (MMS), a NASA four-spacecraft mission scheduled for launch in November 2014, will investigate magnetic reconnection in the boundary regions of the Earth’s magnetosphere, particularly along its dayside boundary with the solar wind and the neutral sheet in the magnetic tail. Among the important questions about reconnection that will be addressed are the following: Under what conditions can magnetic-field energy be converted to plasma energy by the annihilation of magnetic field through reconnection? How does reconnection vary with time, and what factors influence its temporal behavior? What microscale processes are responsible for reconnection? What determines the rate of reconnection? In order to accomplish its goals the MMS spacecraft must probe both those regions in which the magnetic fields are very nearly antiparallel and regions where a significant guide field exists. From previous missions we know the approximate speeds with which reconnection layers move through space to be from tens to hundreds of km/s. For electron skin depths of 5 to 10 km, the full 3D electron population (10 eV to above 20 keV) has to be sampled at rates greater than 10/s. The MMS Fast-Plasma Instrument (FPI) will sample electrons at greater than 30/s. Because the ion skin depth is larger, FPI will make full ion measurements at rates of greater than 6/s. 3D E-field measurements will be made by MMS once every ms. MMS will use an Active Spacecraft Potential Control device (ASPOC), which emits indium ions to neutralize the photoelectron current and keep the spacecraft from charging to more than +4 V. Because ion dynamics in Hall reconnection depend sensitively on ion mass, MMS includes a new-generation Hot Plasma Composition Analyzer (HPCA) that corrects problems with high proton fluxes that have prevented accurate ion-composition measurements near the dayside magnetospheric boundary. Finally, Energetic Particle Detector (EPD) measurements of electrons and

  14. Multiscale NTP Fuel Element Materials Simulation

    Data.gov (United States)

    National Aeronautics and Space Administration — Project will leverage a multiscale modeling approach pioneered for light water reactor (LWR) fuels to simulate performance in a prototypical environment. The...

  15. Numerical Analysis of Multiscale Computations

    CERN Document Server

    Engquist, Björn; Tsai, Yen-Hsi R

    2012-01-01

    This book is a snapshot of current research in multiscale modeling, computations and applications. It covers fundamental mathematical theory, numerical algorithms as well as practical computational advice for analysing single and multiphysics models containing a variety of scales in time and space. Complex fluids, porous media flow and oscillatory dynamical systems are treated in some extra depth, as well as tools like analytical and numerical homogenization, and fast multipole method.

  16. A Hypergraph and Arithmetic Residue-based Probabilistic Neural Network for classification in Intrusion Detection Systems.

    Science.gov (United States)

    Raman, M R Gauthama; Somu, Nivethitha; Kirthivasan, Kannan; Sriram, V S Shankar

    2017-08-01

    Over the past few decades, the design of an intelligent Intrusion Detection System (IDS) remains an open challenge to the research community. Continuous efforts by the researchers have resulted in the development of several learning models based on Artificial Neural Network (ANN) to improve the performance of the IDSs. However, there exists a tradeoff with respect to the stability of ANN architecture and the detection rate for less frequent attacks. This paper presents a novel approach based on Helly property of Hypergraph and Arithmetic Residue-based Probabilistic Neural Network (HG AR-PNN) to address the classification problem in IDS. The Helly property of Hypergraph was exploited for the identification of the optimal feature subset and the arithmetic residue of the optimal feature subset was used to train the PNN. The performance of HG AR-PNN was evaluated using KDD CUP 1999 intrusion dataset. Experimental results prove the dominance of HG AR-PNN classifier over the existing classifiers with respect to the stability and improved detection rate for less frequent attacks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Community effort endorsing multiscale modelling, multiscale data science and multiscale computing for systems medicine.

    Science.gov (United States)

    Zanin, Massimiliano; Chorbev, Ivan; Stres, Blaz; Stalidzans, Egils; Vera, Julio; Tieri, Paolo; Castiglione, Filippo; Groen, Derek; Zheng, Huiru; Baumbach, Jan; Schmid, Johannes A; Basilio, José; Klimek, Peter; Debeljak, Nataša; Rozman, Damjana; Schmidt, Harald H H W

    2017-12-05

    Systems medicine holds many promises, but has so far provided only a limited number of proofs of principle. To address this road block, possible barriers and challenges of translating systems medicine into clinical practice need to be identified and addressed. The members of the European Cooperation in Science and Technology (COST) Action CA15120 Open Multiscale Systems Medicine (OpenMultiMed) wish to engage the scientific community of systems medicine and multiscale modelling, data science and computing, to provide their feedback in a structured manner. This will result in follow-up white papers and open access resources to accelerate the clinical translation of systems medicine. © The Author 2017. Published by Oxford University Press.

  18. Examining the potential of forest residue-based amendments for post-wildfire rehabilitation in Colorado, USA

    Science.gov (United States)

    Charles C. Rhoades; Kerri L. Minatre; Derek N. Pierson; Timothy S. Fegel; M. Francesca Cotrufo; Eugene F. Kelly

    2017-01-01

    Wildfire is a natural disturbance, though elemental losses and changes that occur during combustion and post-fire erosion can have long-term impacts on soil properties, ecosystem productivity, and watershed condition. Here we evaluate the potential of forest residue-based materials to rehabilitate burned soils. We compare soil nutrient and water availability, and plant...

  19. Differential geometry based multiscale models.

    Science.gov (United States)

    Wei, Guo-Wei

    2010-08-01

    Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atomistic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier-Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson-Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson-Nernst-Planck equations that are

  20. Differential Geometry Based Multiscale Models

    Science.gov (United States)

    Wei, Guo-Wei

    2010-01-01

    Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that

  1. Multi-scale spatial controls of understory vegetation in Douglas-fir–western hemlock forests of western Oregon, USA

    Science.gov (United States)

    Julia I. Burton; Lisa M. Ganio; Klaus J. Puettmann

    2014-01-01

    Forest understory vegetation is influenced by broad-scale variation in climate, intermediate scale variation in topography, disturbance and neighborhood interactions. However, little is known about how these multi-scale controls interact to influence observed spatial patterns. We examined relationships between the aggregated cover of understory plant species (%...

  2. A multiscale approach to accelerate pore-scale simulation of porous electrodes

    Science.gov (United States)

    Zheng, Weibo; Kim, Seung Hyun

    2017-04-01

    A new method to accelerate pore-scale simulation of porous electrodes is presented. The method combines the macroscopic approach with pore-scale simulation by decomposing a physical quantity into macroscopic and local variations. The multiscale method is applied to the potential equation in pore-scale simulation of a Proton Exchange Membrane Fuel Cell (PEMFC) catalyst layer, and validated with the conventional approach for pore-scale simulation. Results show that the multiscale scheme substantially reduces the computational cost without sacrificing accuracy.

  3. Multivariate refined composite multiscale entropy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Humeau-Heurtier, Anne, E-mail: anne.humeau@univ-angers.fr

    2016-04-01

    Multiscale entropy (MSE) has become a prevailing method to quantify signals complexity. MSE relies on sample entropy. However, MSE may yield imprecise complexity estimation at large scales, because sample entropy does not give precise estimation of entropy when short signals are processed. A refined composite multiscale entropy (RCMSE) has therefore recently been proposed. Nevertheless, RCMSE is for univariate signals only. The simultaneous analysis of multi-channel (multivariate) data often over-performs studies based on univariate signals. We therefore introduce an extension of RCMSE to multivariate data. Applications of multivariate RCMSE to simulated processes reveal its better performances over the standard multivariate MSE. - Highlights: • Multiscale entropy quantifies data complexity but may be inaccurate at large scale. • A refined composite multiscale entropy (RCMSE) has therefore recently been proposed. • Nevertheless, RCMSE is adapted to univariate time series only. • We herein introduce an extension of RCMSE to multivariate data. • It shows better performances than the standard multivariate multiscale entropy.

  4. Quantum theory of multiscale coarse-graining

    Science.gov (United States)

    Han, Yining; Jin, Jaehyeok; Wagner, Jacob W.; Voth, Gregory A.

    2018-03-01

    Coarse-grained (CG) models serve as a powerful tool to simulate molecular systems at much longer temporal and spatial scales. Previously, CG models and methods have been built upon classical statistical mechanics. The present paper develops a theory and numerical methodology for coarse-graining in quantum statistical mechanics, by generalizing the multiscale coarse-graining (MS-CG) method to quantum Boltzmann statistics. A rigorous derivation of the sufficient thermodynamic consistency condition is first presented via imaginary time Feynman path integrals. It identifies the optimal choice of CG action functional and effective quantum CG (qCG) force field to generate a quantum MS-CG (qMS-CG) description of the equilibrium system that is consistent with the quantum fine-grained model projected onto the CG variables. A variational principle then provides a class of algorithms for optimally approximating the qMS-CG force fields. Specifically, a variational method based on force matching, which was also adopted in the classical MS-CG theory, is generalized to quantum Boltzmann statistics. The qMS-CG numerical algorithms and practical issues in implementing this variational minimization procedure are also discussed. Then, two numerical examples are presented to demonstrate the method. Finally, as an alternative strategy, a quasi-classical approximation for the thermal density matrix expressed in the CG variables is derived. This approach provides an interesting physical picture for coarse-graining in quantum Boltzmann statistical mechanics in which the consistency with the quantum particle delocalization is obviously manifest, and it opens up an avenue for using path integral centroid-based effective classical force fields in a coarse-graining methodology.

  5. Quantum theory of multiscale coarse-graining.

    Science.gov (United States)

    Han, Yining; Jin, Jaehyeok; Wagner, Jacob W; Voth, Gregory A

    2018-03-14

    Coarse-grained (CG) models serve as a powerful tool to simulate molecular systems at much longer temporal and spatial scales. Previously, CG models and methods have been built upon classical statistical mechanics. The present paper develops a theory and numerical methodology for coarse-graining in quantum statistical mechanics, by generalizing the multiscale coarse-graining (MS-CG) method to quantum Boltzmann statistics. A rigorous derivation of the sufficient thermodynamic consistency condition is first presented via imaginary time Feynman path integrals. It identifies the optimal choice of CG action functional and effective quantum CG (qCG) force field to generate a quantum MS-CG (qMS-CG) description of the equilibrium system that is consistent with the quantum fine-grained model projected onto the CG variables. A variational principle then provides a class of algorithms for optimally approximating the qMS-CG force fields. Specifically, a variational method based on force matching, which was also adopted in the classical MS-CG theory, is generalized to quantum Boltzmann statistics. The qMS-CG numerical algorithms and practical issues in implementing this variational minimization procedure are also discussed. Then, two numerical examples are presented to demonstrate the method. Finally, as an alternative strategy, a quasi-classical approximation for the thermal density matrix expressed in the CG variables is derived. This approach provides an interesting physical picture for coarse-graining in quantum Boltzmann statistical mechanics in which the consistency with the quantum particle delocalization is obviously manifest, and it opens up an avenue for using path integral centroid-based effective classical force fields in a coarse-graining methodology.

  6. Multiscale empirical interpolation for solving nonlinear PDEs

    KAUST Repository

    Calo, Victor M.

    2014-12-01

    In this paper, we propose a multiscale empirical interpolation method for solving nonlinear multiscale partial differential equations. The proposed method combines empirical interpolation techniques and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM). To solve nonlinear equations, the GMsFEM is used to represent the solution on a coarse grid with multiscale basis functions computed offline. Computing the GMsFEM solution involves calculating the system residuals and Jacobians on the fine grid. We use empirical interpolation concepts to evaluate these residuals and Jacobians of the multiscale system with a computational cost which is proportional to the size of the coarse-scale problem rather than the fully-resolved fine scale one. The empirical interpolation method uses basis functions which are built by sampling the nonlinear function we want to approximate a limited number of times. The coefficients needed for this approximation are computed in the offline stage by inverting an inexpensive linear system. The proposed multiscale empirical interpolation techniques: (1) divide computing the nonlinear function into coarse regions; (2) evaluate contributions of nonlinear functions in each coarse region taking advantage of a reduced-order representation of the solution; and (3) introduce multiscale proper-orthogonal-decomposition techniques to find appropriate interpolation vectors. We demonstrate the effectiveness of the proposed methods on several nonlinear multiscale PDEs that are solved with Newton\\'s methods and fully-implicit time marching schemes. Our numerical results show that the proposed methods provide a robust framework for solving nonlinear multiscale PDEs on a coarse grid with bounded error and significant computational cost reduction.

  7. Peridynamic Multiscale Finite Element Methods

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, Stan Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the

  8. Multiscale Clock Ensembling Using Wavelets

    Science.gov (United States)

    2010-11-01

    allows an energy decomposition of the signal as well, referred to as the wavelet variance. This variance is defined by ) var ()( 2 llX Wv  (11...and it can be shown that for a very wide class of signals and for an appropriately chosen wavelet that ) var ()( 1 2 Xv l lX     . One such...42 nd Annual Precise Time and Time Interval (PTTI) Meeting 527 MULTISCALE CLOCK ENSEMBLING USING WAVELETS Ken Senior Naval Center

  9. Multiscale geometric modeling of macromolecules I: Cartesian representation

    Science.gov (United States)

    Xia, Kelin; Feng, Xin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei

    2014-01-01

    This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace-Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the

  10. Multifunctional multiscale composites: Processing, modeling and characterization

    Science.gov (United States)

    Qiu, Jingjing

    Carbon nanotubes (CNTs) demonstrate extraordinary properties and show great promise in enhancing out-of-plane properties of traditional polymer/fiber composites and enabling functionality. However, current manufacturing challenges hinder the realization of their potential. In the dissertation research, both experimental and computational efforts have been conducted to investigate effective manufacturing techniques of CNT integrated multiscale composites. The fabricated composites demonstrated significant improvements in physical properties, such as tensile strength, tensile modulus, inter-laminar shear strength, thermal dimension stability and electrical conductivity. Such multiscale composites were truly multifunctional with the addition of CNTs. Furthermore, a novel hierarchical multiscale modeling method was developed in this research. Molecular dynamic (MD) simulation offered reasonable explanation of CNTs dispersion and their motion in polymer solution. Bi-mode finite-extensible-nonlinear-elastic (FENE) dumbbell simulation was used to analyze the influence of CNT length distribution on the stress tensor and shear-rate-dependent viscosity. Based on the simulated viscosity profile and empirical equations from experiments, a macroscale flow simulation model on the finite element method (FEM) method was developed and validated to predict resin flow behavior in the processing of CNT-enhanced multiscale composites. The proposed multiscale modeling method provided a comprehensive understanding of micro/nano flow in both atomistic details and mesoscale. The simulation model can be used to optimize process design and control of the mold-filling process in multiscale composite manufacturing. This research provided systematic investigations into the CNT-based multiscale composites. The results from this study may be used to leverage the benefits of CNTs and open up new application opportunities for high-performance multifunctional multiscale composites. Keywords. Carbon

  11. Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    KAUST Repository

    Gao, Kai

    2015-04-14

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both boundaries and the interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale medium property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.

  12. Multiscale soil-landscape process modeling

    NARCIS (Netherlands)

    Schoorl, J.M.; Veldkamp, A.

    2006-01-01

    The general objective of this chapter is to illustrate the role of soils and geomorphological processes in the multiscale soil-lanscape context. Included in this context is the fourth dimension (temporal dimension) and the human role (fifth dimension)

  13. Collaborating for Multi-Scale Chemical Science

    Energy Technology Data Exchange (ETDEWEB)

    William H. Green

    2006-07-14

    Advanced model reduction methods were developed and integrated into the CMCS multiscale chemical science simulation software. The new technologies were used to simulate HCCI engines and burner flames with exceptional fidelity.

  14. Multiscale Modeling of Hall Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — New multiscale modeling capability for analyzing advanced Hall thrusters is proposed. This technology offers NASA the ability to reduce development effort of new...

  15. Multiscale Modeling of Wear Degradation

    KAUST Repository

    Moraes, Alvaro

    2016-01-06

    Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict and avoid them. In this work [4], we model the wear process using a pure jump process. Therefore, the inference goal here is to estimate: the number of possible jumps, its sizes, the coefficients and the shapes of the jump intensities. We propose a multiscale approach for the inference problem that can be seen as an indirect inference scheme. We found that using a Gaussian approximation based on moment expansions, it is possible to accurately estimate the jump intensities and the jump amplitudes. We obtained results equivalent to the state of the art but using a simpler and less expensive approach.

  16. Multiscale Modeling of Wear Degradation

    KAUST Repository

    Moraes, Alvaro

    2015-01-07

    Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict and avoid them. In this work [4], we model the wear process using a pure jump process. Therefore, the inference goal here is to estimate: the number of possible jumps, its sizes, the coefficients and the shapes of the jump intensities. We propose a multiscale approach for the inference problem that can be seen as an indirect inference scheme. We found that using a Gaussian approximation based on moment expansions, it is possible to accurately estimate the jump intensities and the jump amplitudes. We obtained results equivalent to the state of the art but using a simpler and less expensive approach.

  17. Multiscale Modeling of Wear Degradation

    KAUST Repository

    Moraes, Alvaro

    2014-01-06

    Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict and avoid them. In this work [4], we model the wear process using a pure jump process. Therefore, the inference goal here is to estimate: the number of possible jumps, its sizes, the coefficients and the shapes of the jump intensities. We propose a multiscale approach for the inference problem that can be seen as an indirect inference scheme. We found that using a Gaussian approximation based on moment expansions, it is possible to accurately estimate the jump intensities and the jump amplitudes. We obtained results equivalent to the state of the art but using a simpler and less expensive approach.

  18. Multiscale modelling of DNA mechanics.

    Science.gov (United States)

    Dršata, Tomáš; Lankaš, Filip

    2015-08-19

    Mechanical properties of DNA are important not only in a wide range of biological processes but also in the emerging field of DNA nanotechnology. We review some of the recent developments in modeling these properties, emphasizing the multiscale nature of the problem. Modern atomic resolution, explicit solvent molecular dynamics simulations have contributed to our understanding of DNA fine structure and conformational polymorphism. These simulations may serve as data sources to parameterize rigid base models which themselves have undergone major development. A consistent buildup of larger entities involving multiple rigid bases enables us to describe DNA at more global scales. Free energy methods to impose large strains on DNA, as well as bead models and other approaches, are also briefly discussed.

  19. Wavelets and multiscale signal processing

    CERN Document Server

    Cohen, Albert

    1995-01-01

    Since their appearance in mid-1980s, wavelets and, more generally, multiscale methods have become powerful tools in mathematical analysis and in applications to numerical analysis and signal processing. This book is based on "Ondelettes et Traitement Numerique du Signal" by Albert Cohen. It has been translated from French by Robert D. Ryan and extensively updated by both Cohen and Ryan. It studies the existing relations between filter banks and wavelet decompositions and shows how these relations can be exploited in the context of digital signal processing. Throughout, the book concentrates on the fundamentals. It begins with a chapter on the concept of multiresolution analysis, which contains complete proofs of the basic results. The description of filter banks that are related to wavelet bases is elaborated in both the orthogonal case (Chapter 2), and in the biorthogonal case (Chapter 4). The regularity of wavelets, how this is related to the properties of the filters and the importance of regularity for t...

  20. Multiscale modeling of pedestrian dynamics

    CERN Document Server

    Cristiani, Emiliano; Tosin, Andrea

    2014-01-01

    This book presents mathematical models and numerical simulations of crowd dynamics. The core topic is the development of a new multiscale paradigm, which bridges the microscopic and macroscopic scales taking the most from each of them for capturing the relevant clues of complexity of crowds. The background idea is indeed that most of the complex trends exhibited by crowds are due to an intrinsic interplay between individual and collective behaviors. The modeling approach promoted in this book pursues actively this intuition and profits from it for designing general mathematical structures susceptible of application also in fields different from the inspiring original one. The book considers also the two most traditional points of view: the microscopic one, in which pedestrians are tracked individually, and the macroscopic one, in which pedestrians are assimilated to a continuum. Selected existing models are critically analyzed. The work is addressed to researchers and graduate students.

  1. Multiphysics/multiscale multifluid computations

    International Nuclear Information System (INIS)

    Yadigaroglu, George

    2014-01-01

    Regarding experimentation, interesting examples of multi-scale approaches are found: the small-scale experiments to understand the mechanisms of counter-current flow limitations (CCFL) such as the growth of instabilities on films, droplet entrainment, etc; meso-scale experiments to quantify the CCFL conditions in typical geometries such as tubes and gaps between parallel plates, and finally full-scale experimentation in a typical reactor geometry - the UPTF tests. Another example is the mixing of the atmosphere produced by plumes and jets in a reactor containment: one needs first basic turbulence information that can be obtained at the microscopic level; follow medium-scale experiments to understand the behaviour of jets and plumes; finally reactor-scale tests can be conducted in facilities such as PANDA at PSI, in Switzerland to study the phenomena at large scale

  2. Integrated multi-scale modelling and simulation of nuclear fuels

    International Nuclear Information System (INIS)

    Valot, C.; Bertolus, M.; Masson, R.; Malerba, L.; Rachid, J.; Besmann, T.; Phillpot, S.; Stan, M.

    2015-01-01

    This chapter aims at discussing the objectives, implementation and integration of multi-scale modelling approaches applied to nuclear fuel materials. We will first show why the multi-scale modelling approach is required, due to the nature of the materials and by the phenomena involved under irradiation. We will then present the multiple facets of multi-scale modelling approach, while giving some recommendations with regard to its application. We will also show that multi-scale modelling must be coupled with appropriate multi-scale experiments and characterisation. Finally, we will demonstrate how multi-scale modelling can contribute to solving technology issues. (authors)

  3. Carbon nanotube integrated multifunctional multiscale composites

    Science.gov (United States)

    Qiu, Jingjing; Zhang, Chuck; Wang, Ben; Liang, Richard

    2007-07-01

    Carbon nanotubes (CNTs) demonstrate extraordinary properties and show great promise in enhancing out-of-plane properties of traditional polymer composites and enabling functionality, but current manufacturing challenges hinder the realization of their potential. This paper presents a method to fabricate multifunctional multiscale composites through an effective infiltration-based vacuum-assisted resin transfer moulding (VARTM) process. Multi-walled carbon nanotubes (MWNTs) were infused through and between glass-fibre tows along the through-thickness direction. Both pristine and functionalized MWNTs were used in fabricating multiscale glass-fibre-reinforced epoxy composites. It was demonstrated that the mechanical properties of multiscale composites were remarkably enhanced, especially in the functionalized MWNT multiscale composites. With only 1 wt% loading of functionalized MWNTs, tensile strength was increased by 14% and Young's modulus by 20%, in comparison with conventional fibre-reinforced composites. Moreover, the shear strength and short-beam modulus were increased by 5% and 8%, respectively, indicating the improved inter-laminar properties. The strain-stress tests also suggested noticeable enhancement in toughness. Scanning electron microscopy (SEM) characterization confirmed an enhanced interfacial bonding when functionalized MWNTs were integrated into epoxy/glass-fibre composites. The coefficient thermal expansion (CTE) of functionalized nanocomposites indicated a reduction of 25.2% compared with epoxy/glass-fibre composites. The desired improvement of electrical conductivities was also achieved. The multiscale composites indicated a way to leverage the benefits of CNTs and opened up new opportunities for high-performance multifunctional multiscale composites.

  4. A concurrent multiscale micromorphic molecular dynamics

    International Nuclear Information System (INIS)

    Li, Shaofan; Tong, Qi

    2015-01-01

    In this work, we have derived a multiscale micromorphic molecular dynamics (MMMD) from first principle to extend the (Andersen)-Parrinello-Rahman molecular dynamics to mesoscale and continuum scale. The multiscale micromorphic molecular dynamics is a con-current three-scale dynamics that couples a fine scale molecular dynamics, a mesoscale micromorphic dynamics, and a macroscale nonlocal particle dynamics together. By choosing proper statistical closure conditions, we have shown that the original Andersen-Parrinello-Rahman molecular dynamics is the homogeneous and equilibrium case of the proposed multiscale micromorphic molecular dynamics. In specific, we have shown that the Andersen-Parrinello-Rahman molecular dynamics can be rigorously formulated and justified from first principle, and its general inhomogeneous case, i.e., the three scale con-current multiscale micromorphic molecular dynamics can take into account of macroscale continuum mechanics boundary condition without the limitation of atomistic boundary condition or periodic boundary conditions. The discovered multiscale scale structure and the corresponding multiscale dynamics reveal a seamless transition from atomistic scale to continuum scale and the intrinsic coupling mechanism among them based on first principle formulation

  5. Distributed multiscale computing with MUSCLE 2, the Multiscale Coupling Library and Environment

    NARCIS (Netherlands)

    Borgdorff, J.; Mamonski, M.; Bosak, B.; Kurowski, K.; Ben Belgacem, M.; Chopard, B.; Groen, D.; Coveney, P.V.; Hoekstra, A.G.

    2014-01-01

    We present the Multiscale Coupling Library and Environment: MUSCLE 2. This multiscale component-based execution environment has a simple to use Java, C++, C, Python and Fortran API, compatible with MPI, OpenMP and threading codes. We demonstrate its local and distributed computing capabilities and

  6. Multiscale Model Reduction with Generalized Multiscale Finite Element Methods in Geomathematics

    KAUST Repository

    Efendiev, Yalchin R.

    2015-09-02

    In this chapter, we discuss multiscale model reduction using Generalized Multiscale Finite Element Methods (GMsFEM) in a number of geomathematical applications. GMsFEM has been recently introduced (Efendiev et al. 2012) and applied to various problems. In the current chapter, we consider some of these applications and outline the basic methodological concepts.

  7. The Total Variation Regularized L1 Model for Multiscale Decomposition

    National Research Council Canada - National Science Library

    Yin, Wotao; Goldfarb, Donald; Osher, Stanley

    2006-01-01

    ...) for decomposing an image into features of different scales. We first show that the images produced by this model can be formed from the minimizers of a sequence of decoupled geometry sub-problems...

  8. Multiscale brain-machine interface decoders.

    Science.gov (United States)

    Han-Lin Hsieh; Shanechi, Maryam M

    2016-08-01

    Brain-machine interfaces (BMI) have vastly used a single scale of neural activity, e.g., spikes or electrocorticography (ECoG), as their control signal. New technology allows for simultaneous recording of multiple scales of neural activity, from spikes to local field potentials (LFP) and ECoG. These advances introduce the new challenge of modeling and decoding multiple scales of neural activity jointly. Such multi-scale decoding is challenging for two reasons. First, spikes are discrete-valued and ECoG/LFP are continuous-valued, resulting in fundamental differences in statistical characteristics. Second, the time-scales of these signals are different, with spikes having a millisecond time-scale and ECoG/LFP having much slower time-scales on the order of tens of milliseconds. Here we develop a new multiscale modeling and decoding framework that addresses these challenges. Our multiscale decoder extracts information from ECoG/LFP in addition to spikes, while operating at the fast time-scale of the spikes. The multiscale decoder specializes to a Kalman filter (KF) or to a point process filter (PPF) when no spikes or ECoG/LFP are available, respectively. Using closed-loop BMI simulations, we show that compared to PPF decoding of spikes alone or KF decoding of LFP/ECoG alone, the multiscale decoder significantly improves the accuracy and error performance of BMI control and runs at the fast millisecond time-scale of the spikes. This new multiscale modeling and decoding framework has the potential to improve BMI control using simultaneous multiscale neural activity.

  9. Multiscale Molecular Dynamics Approach to Energy Transfer in Nanomaterials.

    Science.gov (United States)

    Espinosa-Duran, John M; Sereda, Yuriy V; Abi-Mansour, Andrew; Ortoleva, Peter

    2018-02-13

    After local transient fluctuations are dissipated, in an energy transfer process, a system evolves to a state where the energy density field varies slowly in time relative to the dynamics of atomic collisions and vibrations. Furthermore, the energy density field remains strongly coupled to the atomic scale processes (collisions and vibrations), and it can serve as the basis of a multiscale theory of energy transfer. Here, a method is introduced to capture the long scale energy density variations as they coevolve with the atomistic state in a way that yields insights into the basic physics and implies an efficient algorithm for energy transfer simulations. The approach is developed based on the N-atom Liouville equation and an interatomic force field and avoids the need for conjectured phenomenological equations for energy transfer and other processes. The theory is demonstrated for sodium chloride and silicon dioxide nanoparticles immersed in a water bath via molecular dynamics simulations of the energy transfer between a nanoparticle and its aqueous host fluid. The energy density field is computed for different sets of symmetric grid densities, and the multiscale theory holds when slowly varying energy densities at the nodes are obtained. Results strongly depend on grid density and nanoparticle constituent material. A nonuniform temperature distribution, larger thermal fluctuations in the nanoparticle than in the bath, and enhancement of fluctuations at the surface, which are expressed due to the atomic nature of the systems, are captured by this method rather than by phenomenological continuum energy transfer models.

  10. Examining the Potential of Forest Residue-Based Amendments for Post-Wildfire Rehabilitation in Colorado, USA

    Directory of Open Access Journals (Sweden)

    Charles C. Rhoades

    2017-01-01

    Full Text Available Wildfire is a natural disturbance, though elemental losses and changes that occur during combustion and post-fire erosion can have long-term impacts on soil properties, ecosystem productivity, and watershed condition. Here we evaluate the potential of forest residue-based materials to rehabilitate burned soils. We compare soil nutrient and water availability, and plant recovery after application of 37 t ha−1 of wood mulch, 20 t ha−1 of biochar, and the combination of the two amendments with untreated, burned soils. We also conducted a greenhouse trial to examine how biochar influenced soil nutrient and water content under two wetting regimes. The effects of wood mulch on plant-available soil N and water content were significant and seasonally consistent during the three-year field study. Biochar applied alone had few effects under field conditions, but significantly increased soil pH, Ca, P, and water in the greenhouse. The mulched biochar treatment had the greatest effects on soil N and water availability and increased cover of the most abundant native plant. We found that rehabilitation treatments consisting of forest residue-based products have potential to enhance soil N and water dynamics and plant recovery following severe wildfire and may be justified where erosion risk or water supply protection are crucial.

  11. Hierarchical multiscale modeling for flows in fractured media using generalized multiscale finite element method

    KAUST Repository

    Efendiev, Yalchin R.

    2015-06-05

    In this paper, we develop a multiscale finite element method for solving flows in fractured media. Our approach is based on generalized multiscale finite element method (GMsFEM), where we represent the fracture effects on a coarse grid via multiscale basis functions. These multiscale basis functions are constructed in the offline stage via local spectral problems following GMsFEM. To represent the fractures on the fine grid, we consider two approaches (1) discrete fracture model (DFM) (2) embedded fracture model (EFM) and their combination. In DFM, the fractures are resolved via the fine grid, while in EFM the fracture and the fine grid block interaction is represented as a source term. In the proposed multiscale method, additional multiscale basis functions are used to represent the long fractures, while short-size fractures are collectively represented by a single basis functions. The procedure is automatically done via local spectral problems. In this regard, our approach shares common concepts with several approaches proposed in the literature as we discuss. We would like to emphasize that our goal is not to compare DFM with EFM, but rather to develop GMsFEM framework which uses these (DFM or EFM) fine-grid discretization techniques. Numerical results are presented, where we demonstrate how one can adaptively add basis functions in the regions of interest based on error indicators. We also discuss the use of randomized snapshots (Calo et al. Randomized oversampling for generalized multiscale finite element methods, 2014), which reduces the offline computational cost.

  12. Multiscale Modeling of Astrophysical Jets

    Directory of Open Access Journals (Sweden)

    James H. Beall

    2014-12-01

    Full Text Available We are developing the capability for a multi-scale code to model the energy deposition rate and momentum transfer rate of an astrophysical jet which generates strong plasma turbulence in its interaction with the ambient medium through which it propagates. We start with a highly parallelized version of the VH-1 Hydrodynamics Code (Coella and Wood 1984, and Saxton et al., 2005. We are also considering the PLUTO code (Mignone et al. 2007 to model the jet in the magnetohydrodynamic (MHD and relativistic, magnetohydrodynamic (RMHD regimes. Particle-in-Cell approaches are also being used to benchmark a wave-population models of the two-stream instability and associated plasma processes in order to determine energy deposition and momentum transfer rates for these modes of jet-ambient medium interactions. We show some elements of the modeling of these jets in this paper, including energy loss and heating via plasma processes, and large scale hydrodynamic and relativistic hydrodynamic simulations. A preliminary simulation of a jet from the galactic center region is used to lend credence to the jet as the source of the so-called the Fermi Bubble (see, e.g., Su, M. & Finkbeiner, D. P., 2012*It is with great sorrow that we acknowledge the loss of our colleague and friend of more than thirty years, Dr. John Ural Guillory, to his battle with cancer.

  13. Multiscale Processes in Magnetic Reconnection

    Science.gov (United States)

    Surjalal Sharma, A.; Jain, Neeraj

    The characteristic scales of the plasma processes in magnetic reconnection range from the elec-tron skin-depth to the magnetohydrodynamic (MHD) scale, and cross-scale coupling among them play a key role. Modeling these processes requires different physical models, viz. kinetic, electron-magnetohydrodynamics (EMHD), Hall-MHD, and MHD. The shortest scale processes are at the electron scale and these are modeled using an EMHD code, which provides many features of the multiscale behavior. In simulations using initial conditions consisting of pertur-bations with many scale sizes the reconnection takes place at many sites and the plasma flows from these interact with each other. This leads to thin current sheets with length less than 10 electron skin depths. The plasma flows also generate current sheets with multiple peaks, as observed by Cluster. The quadrupole structure of the magnetic field during reconnection starts on the electron scale and the interaction of inflow to the secondary sites and outflow from the dominant site generates a nested structure. In the outflow regions, the interaction of the electron outflows generated at the neighboring sites lead to the development of electron vortices. A signature of the nested structure of the Hall field is seen in Cluster observations, and more details of these features are expected from MMS.

  14. The center for multiscale plasma dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kevrekidis, Yannis G [Princeton Univ., Princeton, NJ (United States)

    2015-01-20

    This final report describes research performed in Princeton University, led by Professor Yannis G. Kevrekidis, over a period of six years (August 1, 2014 to July 31, 2010, including a one-year, no-cost extension) as part of the Center for Multiscale Plasma Dynamics led by the University of Maryland. The work resulted in the development and implementation of several multiscale algorithms based on the equation-free approach pioneered by the PI, including its applications in plasma dynamics problems. These algoriithms include coarse projective integration and coarse stability/bifurcation computations. In the later stages of the work, new links were made between this multiscale, coarse-graining approach and advances in data mining/machine learning algorithms.

  15. Multiscale modeling in biomechanics and mechanobiology

    CERN Document Server

    Hwang, Wonmuk; Kuhl, Ellen

    2015-01-01

    Presenting a state-of-the-art overview of theoretical and computational models that link characteristic biomechanical phenomena, this book provides guidelines and examples for creating multiscale models in representative systems and organisms. It develops the reader's understanding of and intuition for multiscale phenomena in biomechanics and mechanobiology, and introduces a mathematical framework and computational techniques paramount to creating predictive multiscale models.   Biomechanics involves the study of the interactions of physical forces with biological systems at all scales – including molecular, cellular, tissue and organ scales. The emerging field of mechanobiology focuses on the way that cells produce and respond to mechanical forces – bridging the science of mechanics with the disciplines of genetics and molecular biology. Linking disparate spatial and temporal scales using computational techniques is emerging as a key concept in investigating some of the complex problems underlying these...

  16. Uncertainty propagation in a multiscale model of nanocrystalline plasticity

    International Nuclear Information System (INIS)

    Koslowski, M.; Strachan, Alejandro

    2011-01-01

    We characterize how uncertainties propagate across spatial and temporal scales in a physics-based model of nanocrystalline plasticity of fcc metals. Our model combines molecular dynamics (MD) simulations to characterize atomic-level processes that govern dislocation-based-plastic deformation with a phase field approach to dislocation dynamics (PFDD) that describes how an ensemble of dislocations evolve and interact to determine the mechanical response of the material. We apply this approach to a nanocrystalline Ni specimen of interest in micro-electromechanical (MEMS) switches. Our approach enables us to quantify how internal stresses that result from the fabrication process affect the properties of dislocations (using MD) and how these properties, in turn, affect the yield stress of the metallic membrane (using the PFMM model). Our predictions show that, for a nanocrystalline sample with small grain size (4 nm), a variation in residual stress of 20 MPa (typical in today's microfabrication techniques) would result in a variation on the critical resolved shear yield stress of approximately 15 MPa, a very small fraction of the nominal value of approximately 9 GPa. - Highlights: → Quantify how fabrication uncertainties affect yield stress in a microswitch component. → Propagate uncertainties in a multiscale model of single crystal plasticity. → Molecular dynamics quantifies how fabrication variations affect dislocations. → Dislocation dynamics relate variations in dislocation properties to yield stress.

  17. Plant trait detection with multi-scale spectrometry

    Science.gov (United States)

    Gamon, J. A.; Wang, R.

    2017-12-01

    Proximal and remote sensing using imaging spectrometry offers new opportunities for detecting plant traits, with benefits for phenotyping, productivity estimation, stress detection, and biodiversity studies. Using proximal and airborne spectrometry, we evaluated variation in plant optical properties at various spatial and spectral scales with the goal of identifying optimal scales for distinguishing plant traits related to photosynthetic function. Using directed approaches based on physiological vegetation indices, and statistical approaches based on spectral information content, we explored alternate ways of distinguishing plant traits with imaging spectrometry. With both leaf traits and canopy structure contributing to the signals, results exhibit a strong scale dependence. Our results demonstrate the benefits of multi-scale experimental approaches within a clear conceptual framework when applying remote sensing methods to plant trait detection for phenotyping, productivity, and biodiversity studies.

  18. MULTISCALE SPARSE APPEARANCE MODELING AND SIMULATION OF PATHOLOGICAL DEFORMATIONS

    Directory of Open Access Journals (Sweden)

    Rami Zewail

    2017-08-01

    Full Text Available Machine learning and statistical modeling techniques has drawn much interest within the medical imaging research community. However, clinically-relevant modeling of anatomical structures continues to be a challenging task. This paper presents a novel method for multiscale sparse appearance modeling in medical images with application to simulation of pathological deformations in X-ray images of human spine. The proposed appearance model benefits from the non-linear approximation power of Contourlets and its ability to capture higher order singularities to achieve a sparse representation while preserving the accuracy of the statistical model. Independent Component Analysis is used to extract statistical independent modes of variations from the sparse Contourlet-based domain. The new model is then used to simulate clinically-relevant pathological deformations in radiographic images.

  19. Multiscale Methods for Nuclear Reactor Analysis

    Science.gov (United States)

    Collins, Benjamin S.

    The ability to accurately predict local pin powers in nuclear reactors is necessary to understand the mechanisms that cause fuel pin failure during steady state and transient operation. In the research presented here, methods are developed to improve the local solution using high order methods with boundary conditions from a low order global solution. Several different core configurations were tested to determine the improvement in the local pin powers compared to the standard techniques, that use diffusion theory and pin power reconstruction (PPR). Two different multiscale methods were developed and analyzed; the post-refinement multiscale method and the embedded multiscale method. The post-refinement multiscale methods use the global solution to determine boundary conditions for the local solution. The local solution is solved using either a fixed boundary source or an albedo boundary condition; this solution is "post-refinement" and thus has no impact on the global solution. The embedded multiscale method allows the local solver to change the global solution to provide an improved global and local solution. The post-refinement multiscale method is assessed using three core designs. When the local solution has more energy groups, the fixed source method has some difficulties near the interface: however the albedo method works well for all cases. In order to remedy the issue with boundary condition errors for the fixed source method, a buffer region is used to act as a filter, which decreases the sensitivity of the solution to the boundary condition. Both the albedo and fixed source methods benefit from the use of a buffer region. Unlike the post-refinement method, the embedded multiscale method alters the global solution. The ability to change the global solution allows for refinement in areas where the errors in the few group nodal diffusion are typically large. The embedded method is shown to improve the global solution when it is applied to a MOX/LEU assembly

  20. Multi-scale Regions from Edge Fragments

    DEFF Research Database (Denmark)

    Kazmi, Wajahat; Andersen, Hans Jørgen

    2014-01-01

    In this article we introduce a novel method for detecting multi-scale salient regions around edges using a graph based image compression algorithm. Images are recursively decomposed into triangles arranged into a binary tree using linear interpolation. The entropy of any local region of the image...... to estimate regions. Salient regions are thus formed as stable regions around edges. Tree hierarchy is then used to generate multi-scale regions. We evaluate our detector by performing image retrieval tests on our building database which shows that combined with Spin Images (Lazebnik et al., 2003...

  1. Multiscale phase inversion of seismic marine data

    KAUST Repository

    Fu, Lei

    2017-08-17

    We test the feasibility of applying multiscale phase inversion (MPI) to seismic marine data. To avoid cycle-skipping, the multiscale strategy temporally integrates the traces several times, i.e. high-order integration, to produce low-boost seismograms that are used as input data for the initial iterations of MPI. As the iterations proceed, higher frequencies in the data are boosted by using integrated traces of lower order as the input data. Results with synthetic data and field data from the Gulf of Mexico produce robust and accurate results if the model does not contain strong velocity contrasts such as salt-sediment interfaces.

  2. Deductive multiscale simulation using order parameters

    Science.gov (United States)

    Ortoleva, Peter J.

    2017-05-16

    Illustrative embodiments of systems and methods for the deductive multiscale simulation of macromolecules are disclosed. In one illustrative embodiment, a deductive multiscale simulation method may include (i) constructing a set of order parameters that model one or more structural characteristics of a macromolecule, (ii) simulating an ensemble of atomistic configurations for the macromolecule using instantaneous values of the set of order parameters, (iii) simulating thermal-average forces and diffusivities for the ensemble of atomistic configurations, and (iv) evolving the set of order parameters via Langevin dynamics using the thermal-average forces and diffusivities.

  3. Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    International Nuclear Information System (INIS)

    Gao, Kai; Fu, Shubin; Gibson, Richard L.; Chung, Eric T.; Efendiev, Yalchin

    2015-01-01

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale medium property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system

  4. Multiscale based adaptive contrast enhancement

    Science.gov (United States)

    Abir, Muhammad; Islam, Fahima; Wachs, Daniel; Lee, Hyoung

    2013-02-01

    A contrast enhancement algorithm is developed for enhancing the contrast of x-ray images. The algorithm is based on Laplacian pyramid image processing technique. The image is decomposed into three frequency sub-bands- low, medium, and high. Each sub-band contains different frequency information of the image. The detail structure of the image lies on the high frequency sub-band and the overall structure lies on the low frequency sub-band. Apparently it is difficult to extract detail structure from the high frequency sub-bands. Enhancement of the detail structures is necessary in order to find out the calcifications on the mammograms, cracks on any object such as fuel plate, etc. In our proposed method contrast enhancement is achieved from high and medium frequency sub-band images by decomposing the image based on multi-scale Laplacian pyramid and enhancing contrast by suitable image processing. Standard Deviation-based Modified Adaptive contrast enhancement (SDMACE) technique is applied to enhance the low-contrast information on the sub-bands without overshooting noise. An alpha-trimmed mean filter is used in SDMACE for sharpness enhancement. After modifying all sub-band images, the final image is derived from reconstruction of the sub-band images from lower resolution level to upper resolution level including the residual image. To demonstrate the effectiveness of the algorithm an x-ray of a fuel plate and two mammograms are analyzed. Subjective evaluation is performed to evaluate the effectiveness of the algorithm. The proposed algorithm is compared with the well-known contrast limited adaptive histogram equalization (CLAHE) algorithm. Experimental results prove that the proposed algorithm offers improved contrast of the x-ray images.

  5. A residual-based a posteriori error estimator for single-phase Darcy flow in fractured porous media

    KAUST Repository

    Chen, Huangxin

    2016-12-09

    In this paper we develop an a posteriori error estimator for a mixed finite element method for single-phase Darcy flow in a two-dimensional fractured porous media. The discrete fracture model is applied to model the fractures by one-dimensional fractures in a two-dimensional domain. We consider Raviart–Thomas mixed finite element method for the approximation of the coupled Darcy flows in the fractures and the surrounding porous media. We derive a robust residual-based a posteriori error estimator for the problem with non-intersecting fractures. The reliability and efficiency of the a posteriori error estimator are established for the error measured in an energy norm. Numerical results verifying the robustness of the proposed a posteriori error estimator are given. Moreover, our numerical results indicate that the a posteriori error estimator also works well for the problem with intersecting fractures.

  6. Fermentation quality and nutritive value of rice crop residue based silage ensiled with addition of epiphytic lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    B Santoso

    2011-03-01

    Full Text Available Silage is the feedstuff resulted from the preservation of forages through lactic acid fermentation. The aim of this study was to evaluate nutritive value, fermentation characteristics and nutrients digestibility of rice crop residue based silage ensiled with epiphytic lactic acid bacteria (LAB. The mixture of rice crop residue (RC, soybean curd residue (SC and cassava waste (CW in a 90: 5: 5 (on dry matter basis ratio was used as silage material. Three treatments silage were (A RC + SC + CW as a control; (B RC + SC + CW + LAB inoculums from rice crop residue; (C RC + SC + CW + LAB inoculums from king grass. Silage materials were packed into plastic silo (1.5 kg capacity and stored for 30 days. The results showed that crude protein content in B and C silage was higher than that of silage A, but NDF content in silages B and C was lower than that of silage A. Lactic acid concentration was higher (P < 0.01 in silage C compared to silage B and A, thus pH value of silage C was lower (P < 0.01 than silage B and A. Silage C had the highest Fleigh point than that of other silages. Dry matter and organic matter digestibilities were higher in silages B and C (P < 0.01 than that of control silage. It was concluded that the addition of LAB inoculums from king grass to rice crop residue based silage resulted a better fermentation quality compared to LAB inoculums from rice crop residue.

  7. Foundations for a multiscale collaborative Earth model

    KAUST Repository

    Afanasiev, M.

    2015-11-11

    We present a computational framework for the assimilation of local to global seismic data into a consistent model describing Earth structure on all seismically accessible scales. This Collaborative Seismic Earth Model (CSEM) is designed to meet the following requirements: (i) Flexible geometric parametrization, capable of capturing topography and bathymetry, as well as all aspects of potentially resolvable structure, including small-scale heterogeneities and deformations of internal discontinuities. (ii) Independence of any particular wave equation solver, in order to enable the combination of inversion techniques suitable for different types of seismic data. (iii) Physical parametrization that allows for full anisotropy and for variations in attenuation and density. While not all of these parameters are always resolvable, the assimilation of data that constrain any parameter subset should be possible. (iv) Ability to accommodate successive refinements through the incorporation of updates on any scale as new data or inversion techniques become available. (v) Enable collaborative Earth model construction. The structure of the initial CSEM is represented on a variable-resolution tetrahedral mesh. It is assembled from a long-wavelength 3-D global model into which several regional-scale tomographies are embedded. We illustrate the CSEM workflow of successive updating with two examples from Japan and the Western Mediterranean, where we constrain smaller scale structure using full-waveform inversion. Furthermore, we demonstrate the ability of the CSEM to act as a vehicle for the combination of different tomographic techniques with a joint full-waveform and traveltime ray tomography of Europe. This combination broadens the exploitable frequency range of the individual techniques, thereby improving resolution. We perform two iterations of a whole-Earth full-waveform inversion using a long-period reference data set from 225 globally recorded earthquakes. At this early stage

  8. Multiscale information modelling for heart morphogenesis

    International Nuclear Information System (INIS)

    Abdulla, T; Imms, R; Summers, R; Schleich, J M

    2010-01-01

    Science is made feasible by the adoption of common systems of units. As research has become more data intensive, especially in the biomedical domain, it requires the adoption of a common system of information models, to make explicit the relationship between one set of data and another, regardless of format. This is being realised through the OBO Foundry to develop a suite of reference ontologies, and NCBO Bioportal to provide services to integrate biomedical resources and functionality to visualise and create mappings between ontology terms. Biomedical experts tend to be focused at one level of spatial scale, be it biochemistry, cell biology, or anatomy. Likewise, the ontologies they use tend to be focused at a particular level of scale. There is increasing interest in a multiscale systems approach, which attempts to integrate between different levels of scale to gain understanding of emergent effects. This is a return to physiological medicine with a computational emphasis, exemplified by the worldwide Physiome initiative, and the European Union funded Network of Excellence in the Virtual Physiological Human. However, little work has been done on how information modelling itself may be tailored to a multiscale systems approach. We demonstrate how this can be done for the complex process of heart morphogenesis, which requires multiscale understanding in both time and spatial domains. Such an effort enables the integration of multiscale metrology.

  9. Multiscale phenomenology of the cosmic web

    NARCIS (Netherlands)

    Aragón-Calvo, Miguel A.; van de Weygaert, Rien; Jones, Bernard J. T.

    2010-01-01

    We analyse the structure and connectivity of the distinct morphologies that define the cosmic web. With the help of our multiscale morphology filter (MMF), we dissect the matter distribution of a cosmological Lambda cold dark matter N-body computer simulation into cluster, filaments and walls. The

  10. Multiscale information modelling for heart morphogenesis

    Science.gov (United States)

    Abdulla, T.; Imms, R.; Schleich, J. M.; Summers, R.

    2010-07-01

    Science is made feasible by the adoption of common systems of units. As research has become more data intensive, especially in the biomedical domain, it requires the adoption of a common system of information models, to make explicit the relationship between one set of data and another, regardless of format. This is being realised through the OBO Foundry to develop a suite of reference ontologies, and NCBO Bioportal to provide services to integrate biomedical resources and functionality to visualise and create mappings between ontology terms. Biomedical experts tend to be focused at one level of spatial scale, be it biochemistry, cell biology, or anatomy. Likewise, the ontologies they use tend to be focused at a particular level of scale. There is increasing interest in a multiscale systems approach, which attempts to integrate between different levels of scale to gain understanding of emergent effects. This is a return to physiological medicine with a computational emphasis, exemplified by the worldwide Physiome initiative, and the European Union funded Network of Excellence in the Virtual Physiological Human. However, little work has been done on how information modelling itself may be tailored to a multiscale systems approach. We demonstrate how this can be done for the complex process of heart morphogenesis, which requires multiscale understanding in both time and spatial domains. Such an effort enables the integration of multiscale metrology.

  11. Towards distributed multiscale simulation of biological processes

    NARCIS (Netherlands)

    Bernsdorf, J.; Berti, G.; Chopard, B.; Hegewald, J.; Krafczyk, M.; Wang, D.; Lorenz, E.; Hoekstra, A.

    2011-01-01

    The understanding of biological processes, e.g. related to cardio-vascular disease and treatment, can significantly be improved by numerical simulation. In this paper, we present an approach for a multiscale simulation environment, applied for the prediction of in-stent re-stenos is. Our focus is on

  12. Generalized multiscale finite element methods: Oversampling strategies

    KAUST Repository

    Efendiev, Yalchin R.

    2014-01-01

    In this paper, we propose oversampling strategies in the generalized multiscale finite element method (GMsFEM) framework. The GMsFEM, which has been recently introduced in Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], allows solving multiscale parameter-dependent problems at a reduced computational cost by constructing a reduced-order representation of the solution on a coarse grid. The main idea of the method consists of (1) the construction of snapshot space, (2) the construction of the offline space, and (3) construction of the online space (the latter for parameter-dependent problems). In Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], it was shown that the GMsFEM provides a flexible tool to solve multiscale problems with a complex input space by generating appropriate snapshot, offline, and online spaces. In this paper, we develop oversampling techniques to be used in this context (see Hou and Wu (1997) where oversampling is introduced for multiscale finite element methods). It is known (see Hou and Wu (1997)) that the oversampling can improve the accuracy of multiscale methods. In particular, the oversampling technique uses larger regions (larger than the target coarse block) in constructing local basis functions. Our motivation stems from the analysis presented in this paper, which shows that when using oversampling techniques in the construction of the snapshot space and offline space, GMsFEM will converge independent of small scales and high contrast under certain assumptions. We consider the use of a multiple eigenvalue problems to improve the convergence and discuss their relation to single spectral problems that use oversampled regions. The oversampling procedures proposed in this paper differ from those in Hou and Wu (1997). In particular, the oversampling domains are partially used in constructing local

  13. Rolling Element Bearing Fault Diagnosis Based on Multiscale General Fractal Features

    Directory of Open Access Journals (Sweden)

    Weigang Wen

    2015-01-01

    Full Text Available Nonlinear characteristics are ubiquitous in the vibration signals produced by rolling element bearings. Fractal dimensions are effective tools to illustrate nonlinearity. This paper proposes a new approach based on Multiscale General Fractal Dimensions (MGFDs to realize fault diagnosis of rolling element bearings, which are robust to the effects of variation in operating conditions. The vibration signals of bearing are analyzed to extract the general fractal dimensions in multiscales, which are in turn utilized to construct a feature space to identify fault pattern. Finally, bearing faults are revealed by pattern recognition. Case studies are carried out to evaluate the validity and accuracy of the approach. It is verified that this approach is effective for fault diagnosis of rolling element bearings under various operating conditions via experiment and data analysis.

  14. A Multiscale Time-Splitting Discrete Fracture Model of Nanoparticles Transport in Fractured Porous Media

    KAUST Repository

    El-Amin, Mohamed F.

    2017-06-06

    Recently, applications of nanoparticles have been considered in many branches of petroleum engineering, especially, enhanced oil recovery. The current paper is devoted to investigate the problem of nanoparticles transport in fractured porous media, numerically. We employed the discrete-fracture model (DFM) to represent the flow and transport in the fractured formations. The system of the governing equations consists of the mass conservation law, Darcy\\'s law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat. The variation of porosity and permeability due to the nanoparticles deposition/entrapment on/in the pores is also considered. We employ the multiscale time-splitting strategy to control different time-step sizes for different physics, such as pressure and concentration. The cell-centered finite difference (CCFD) method is used for the spatial discretization. Numerical examples are provided to demonstrate the efficiency of the proposed multiscale time splitting approach.

  15. Simulation of Left Atrial Function Using a Multi-Scale Model of the Cardiovascular System

    Science.gov (United States)

    Pironet, Antoine; Dauby, Pierre C.; Paeme, Sabine; Kosta, Sarah; Chase, J. Geoffrey; Desaive, Thomas

    2013-01-01

    During a full cardiac cycle, the left atrium successively behaves as a reservoir, a conduit and a pump. This complex behavior makes it unrealistic to apply the time-varying elastance theory to characterize the left atrium, first, because this theory has known limitations, and second, because it is still uncertain whether the load independence hypothesis holds. In this study, we aim to bypass this uncertainty by relying on another kind of mathematical model of the cardiac chambers. In the present work, we describe both the left atrium and the left ventricle with a multi-scale model. The multi-scale property of this model comes from the fact that pressure inside a cardiac chamber is derived from a model of the sarcomere behavior. Macroscopic model parameters are identified from reference dog hemodynamic data. The multi-scale model of the cardiovascular system including the left atrium is then simulated to show that the physiological roles of the left atrium are correctly reproduced. This include a biphasic pressure wave and an eight-shaped pressure-volume loop. We also test the validity of our model in non basal conditions by reproducing a preload reduction experiment by inferior vena cava occlusion with the model. We compute the variation of eight indices before and after this experiment and obtain the same variation as experimentally observed for seven out of the eight indices. In summary, the multi-scale mathematical model presented in this work is able to correctly account for the three roles of the left atrium and also exhibits a realistic left atrial pressure-volume loop. Furthermore, the model has been previously presented and validated for the left ventricle. This makes it a proper alternative to the time-varying elastance theory if the focus is set on precisely representing the left atrial and left ventricular behaviors. PMID:23755183

  16. Multiscale Data Fusion Regulated by a Mixture-of-Experts Network

    Science.gov (United States)

    Slatton, K. C.

    2003-12-01

    Laser altimetry (LIDAR) and interferometric synthetic aperture radar (InSAR) have emerged as important tools for remotely sensing topography at fine and medium scales, respectively. Strip-map InSAR provides large coverage areas, but at spatial resolutions that are often insufficient for many applications. Conversely, LIDAR provides higher resolution, but covering large areas can be impractical. Slatton, et al. (2001) demonstrated that digital elevation models (DEMs) derived from LIDAR and InSAR data could be fused to provide large coverage areas, while maintaining high resolution locally. A multiscale Kalman smoother (MKS) employing a fractional Brownian motion stochastic model allowed the estimation of fused elevations with uncertainty measures at every pixel. However, the standard MKS algorithm with a single stochastic model does not incorporate spatial variations in the elevation statistics. For example, rough undulating terrain yields an elevation surface with a shorter correlation length than flat smooth terrain. In this work, multiscale Kalman filters are defined in a multiple-model configuration that accommodates local variations in elevation statistics. Stochastic model realizations for long and short correlation length surfaces are blended together with a simple Mixture-of-Experts (ME) network. Implementing classical multiple-model approaches, such as a Magill filter bank, on multiscale data structures would require that a particular model be selected for every node in the quadtree. The selection of the best model at a parent node becomes potentially problematic if different models were selected as best at the children nodes. The need to explicitly map different stochastic models to the quadtree nodes of a multiscale estimator is obviated in the ME approach because the relative weighting of the individual Kalman estimates is automatically determined based on the innovation sequences to provide an adaptive estimate of the elevations.

  17. Simulation of left atrial function using a multi-scale model of the cardiovascular system.

    Directory of Open Access Journals (Sweden)

    Antoine Pironet

    Full Text Available During a full cardiac cycle, the left atrium successively behaves as a reservoir, a conduit and a pump. This complex behavior makes it unrealistic to apply the time-varying elastance theory to characterize the left atrium, first, because this theory has known limitations, and second, because it is still uncertain whether the load independence hypothesis holds. In this study, we aim to bypass this uncertainty by relying on another kind of mathematical model of the cardiac chambers. In the present work, we describe both the left atrium and the left ventricle with a multi-scale model. The multi-scale property of this model comes from the fact that pressure inside a cardiac chamber is derived from a model of the sarcomere behavior. Macroscopic model parameters are identified from reference dog hemodynamic data. The multi-scale model of the cardiovascular system including the left atrium is then simulated to show that the physiological roles of the left atrium are correctly reproduced. This include a biphasic pressure wave and an eight-shaped pressure-volume loop. We also test the validity of our model in non basal conditions by reproducing a preload reduction experiment by inferior vena cava occlusion with the model. We compute the variation of eight indices before and after this experiment and obtain the same variation as experimentally observed for seven out of the eight indices. In summary, the multi-scale mathematical model presented in this work is able to correctly account for the three roles of the left atrium and also exhibits a realistic left atrial pressure-volume loop. Furthermore, the model has been previously presented and validated for the left ventricle. This makes it a proper alternative to the time-varying elastance theory if the focus is set on precisely representing the left atrial and left ventricular behaviors.

  18. Multiscale Simulations for Coupled Flow and Transport Using the Generalized Multiscale Finite Element Method

    KAUST Repository

    Chung, Eric

    2015-12-11

    In this paper, we develop a mass conservative multiscale method for coupled flow and transport in heterogeneous porous media. We consider a coupled system consisting of a convection-dominated transport equation and a flow equation. We construct a coarse grid solver based on the Generalized Multiscale Finite Element Method (GMsFEM) for a coupled system. In particular, multiscale basis functions are constructed based on some snapshot spaces for the pressure and the concentration equations and some local spectral decompositions in the snapshot spaces. The resulting approach uses a few multiscale basis functions in each coarse block (for both the pressure and the concentration) to solve the coupled system. We use the mixed framework, which allows mass conservation. Our main contributions are: (1) the development of a mass conservative GMsFEM for the coupled flow and transport; (2) the development of a robust multiscale method for convection-dominated transport problems by choosing appropriate test and trial spaces within Petrov-Galerkin mixed formulation. We present numerical results and consider several heterogeneous permeability fields. Our numerical results show that with only a few basis functions per coarse block, we can achieve a good approximation.

  19. Application of data mining tools for classification of protein structural class from residue based averaged NMR chemical shifts.

    Science.gov (United States)

    Kumar, Arun V; Ali, Rehana F M; Cao, Yu; Krishnan, V V

    2015-10-01

    The number of protein sequences deriving from genome sequencing projects is outpacing our knowledge about the function of these proteins. With the gap between experimentally characterized and uncharacterized proteins continuing to widen, it is necessary to develop new computational methods and tools for protein structural information that is directly related to function. Nuclear magnetic resonance (NMR) provides powerful means to determine three-dimensional structures of proteins in the solution state. However, translation of the NMR spectral parameters to even low-resolution structural information such as protein class requires multiple time consuming steps. In this paper, we present an unorthodox method to predict the protein structural class directly by using the residue's averaged chemical shifts (ACS) based on machine learning algorithms. Experimental chemical shift information from 1491 proteins obtained from Biological Magnetic Resonance Bank (BMRB) and their respective protein structural classes derived from structural classification of proteins (SCOP) were used to construct a data set with 119 attributes and 5 different classes. Twenty four different classification schemes were evaluated using several performance measures. Overall the residue based ACS values can predict the protein structural classes with 80% accuracy measured by Matthew correlation coefficient. Specifically protein classes defined by mixed αβ or small proteins are classified with >90% correlation. Our results indicate that this NMR-based method can be utilized as a low-resolution tool for protein structural class identification without any prior chemical shift assignments. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Multiscale Object Recognition and Feature Extraction Using Wavelet Networks

    National Research Council Canada - National Science Library

    Jaggi, Seema; Karl, W. C; Krim, Hamid; Willsky, Alan S

    1995-01-01

    In this work we present a novel method of object recognition and feature generation based on multiscale object descriptions obtained using wavelet networks in combination with morphological filtering...

  1. Bayesian learning of sparse multiscale image representations.

    Science.gov (United States)

    Hughes, James Michael; Rockmore, Daniel N; Wang, Yang

    2013-12-01

    Multiscale representations of images have become a standard tool in image analysis. Such representations offer a number of advantages over fixed-scale methods, including the potential for improved performance in denoising, compression, and the ability to represent distinct but complementary information that exists at various scales. A variety of multiresolution transforms exist, including both orthogonal decompositions such as wavelets as well as nonorthogonal, overcomplete representations. Recently, techniques for finding adaptive, sparse representations have yielded state-of-the-art results when applied to traditional image processing problems. Attempts at developing multiscale versions of these so-called dictionary learning models have yielded modest but encouraging results. However, none of these techniques has sought to combine a rigorous statistical formulation of the multiscale dictionary learning problem and the ability to share atoms across scales. We present a model for multiscale dictionary learning that overcomes some of the drawbacks of previous approaches by first decomposing an input into a pyramid of distinct frequency bands using a recursive filtering scheme, after which we perform dictionary learning and sparse coding on the individual levels of the resulting pyramid. The associated image model allows us to use a single set of adapted dictionary atoms that is shared--and learned--across all scales in the model. The underlying statistical model of our proposed method is fully Bayesian and allows for efficient inference of parameters, including the level of additive noise for denoising applications. We apply the proposed model to several common image processing problems including non-Gaussian and nonstationary denoising of real-world color images.

  2. Multiscale Study of Currents Affected by Topography

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Multiscale Study of Currents Affected by Topography ...the effects of topography on the ocean general and regional circulation with a focus on the wide range of scales of interactions. The small-scale...details of the topography and the waves, eddies, drag, and turbulence it generates (at spatial scales ranging from meters to mesoscale) interact in the

  3. Multiscale simulation of microbe structure and dynamics.

    Science.gov (United States)

    Joshi, Harshad; Singharoy, Abhishek; Sereda, Yuriy V; Cheluvaraja, Srinath C; Ortoleva, Peter J

    2011-10-01

    A multiscale mathematical and computational approach is developed that captures the hierarchical organization of a microbe. It is found that a natural perspective for understanding a microbe is in terms of a hierarchy of variables at various levels of resolution. This hierarchy starts with the N -atom description and terminates with order parameters characterizing a whole microbe. This conceptual framework is used to guide the analysis of the Liouville equation for the probability density of the positions and momenta of the N atoms constituting the microbe and its environment. Using multiscale mathematical techniques, we derive equations for the co-evolution of the order parameters and the probability density of the N-atom state. This approach yields a rigorous way to transfer information between variables on different space-time scales. It elucidates the interplay between equilibrium and far-from-equilibrium processes underlying microbial behavior. It also provides framework for using coarse-grained nanocharacterization data to guide microbial simulation. It enables a methodical search for free-energy minimizing structures, many of which are typically supported by the set of macromolecules and membranes constituting a given microbe. This suite of capabilities provides a natural framework for arriving at a fundamental understanding of microbial behavior, the analysis of nanocharacterization data, and the computer-aided design of nanostructures for biotechnical and medical purposes. Selected features of the methodology are demonstrated using our multiscale bionanosystem simulator DeductiveMultiscaleSimulator. Systems used to demonstrate the approach are structural transitions in the cowpea chlorotic mosaic virus, RNA of satellite tobacco mosaic virus, virus-like particles related to human papillomavirus, and iron-binding protein lactoferrin. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Multiscale modeling of mucosal immune responses

    Science.gov (United States)

    2015-01-01

    Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut

  5. Acoustics of multiscale sorptive porous materials

    Science.gov (United States)

    Venegas, R.; Boutin, C.; Umnova, O.

    2017-08-01

    This paper investigates sound propagation in multiscale rigid-frame porous materials that support mass transfer processes, such as sorption and different types of diffusion, in addition to the usual visco-thermo-inertial interactions. The two-scale asymptotic method of homogenization for periodic media is successively used to derive the macroscopic equations describing sound propagation through the material. This allowed us to conclude that the macroscopic mass balance is significantly modified by sorption, inter-scale (micro- to/from nanopore scales) mass diffusion, and inter-scale (pore to/from micro- and nanopore scales) pressure diffusion. This modification is accounted for by the dynamic compressibility of the effective saturating fluid that presents atypical properties that lead to slower speed of sound and higher sound attenuation, particularly at low frequencies. In contrast, it is shown that the physical processes occurring at the micro-nano-scale do not affect the macroscopic fluid flow through the material. The developed theory is exemplified by introducing an analytical model for multiscale sorptive granular materials, which is experimentally validated by comparing its predictions with acoustic measurements on granular activated carbons. Furthermore, we provide empirical evidence supporting an alternative method for measuring sorption and mass diffusion properties of multiscale sorptive materials using sound waves.

  6. Control for Intelligent Manufacturing: A Multiscale Challenge

    Directory of Open Access Journals (Sweden)

    Han-Xiong Li

    2017-10-01

    Full Text Available The Made in China 2025 initiative will require full automation in all sectors, from customers to production. This will result in great challenges to manufacturing systems in all sectors. In the future of manufacturing, all devices and systems should have sensing and basic intelligence capabilities for control and adaptation. In this study, after discussing multiscale dynamics of the modern manufacturing system, a five-layer functional structure is proposed for uncertainties processing. Multiscale dynamics include: multi-time scale, space-time scale, and multi-level dynamics. Control action will differ at different scales, with more design being required at both fast and slow time scales. More quantitative action is required in low-level operations, while more qualitative action is needed regarding high-level supervision. Intelligent manufacturing systems should have the capabilities of flexibility, adaptability, and intelligence. These capabilities will require the control action to be distributed and integrated with different approaches, including smart sensing, optimal design, and intelligent learning. Finally, a typical jet dispensing system is taken as a real-world example for multiscale modeling and control.

  7. Multiscale Phase Inversion of Seismic Data

    KAUST Repository

    Fu, Lei

    2017-12-02

    We present a scheme for multiscale phase inversion (MPI) of seismic data that is less sensitive to the unmodeled physics of wave propagation and a poor starting model than standard full waveform inversion (FWI). To avoid cycle-skipping, the multiscale strategy temporally integrates the traces several times, i.e. high-order integration, to produce low-boost seismograms that are used as input data for the initial iterations of MPI. As the iterations proceed, higher frequencies in the data are boosted by using integrated traces of lower order as the input data. The input data are also filtered into different narrow frequency bands for the MPI implementation. At low frequencies, we show that MPI with windowed reflections approximates wave equation inversion of the reflection traveltimes, except no traveltime picking is needed. Numerical results with synthetic acoustic data show that MPI is more robust than conventional multiscale FWI when the initial model is far from the true model. Results from synthetic viscoacoustic and elastic data show that MPI is less sensitive than FWI to some of the unmodeled physics. Inversion of marine data shows that MPI is more robust and produces modestly more accurate results than FWI for this data set.

  8. Engineering Digestion: Multiscale Processes of Food Digestion.

    Science.gov (United States)

    Bornhorst, Gail M; Gouseti, Ourania; Wickham, Martin S J; Bakalis, Serafim

    2016-03-01

    Food digestion is a complex, multiscale process that has recently become of interest to the food industry due to the developing links between food and health or disease. Food digestion can be studied by using either in vitro or in vivo models, each having certain advantages or disadvantages. The recent interest in food digestion has resulted in a large number of studies in this area, yet few have provided an in-depth, quantitative description of digestion processes. To provide a framework to develop these quantitative comparisons, a summary is given here between digestion processes and parallel unit operations in the food and chemical industry. Characterization parameters and phenomena are suggested for each step of digestion. In addition to the quantitative characterization of digestion processes, the multiscale aspect of digestion must also be considered. In both food systems and the gastrointestinal tract, multiple length scales are involved in food breakdown, mixing, absorption. These different length scales influence digestion processes independently as well as through interrelated mechanisms. To facilitate optimized development of functional food products, a multiscale, engineering approach may be taken to describe food digestion processes. A framework for this approach is described in this review, as well as examples that demonstrate the importance of process characterization as well as the multiple, interrelated length scales in the digestion process. © 2016 Institute of Food Technologists®

  9. Multivariate multiscale entropy of financial markets

    Science.gov (United States)

    Lu, Yunfan; Wang, Jun

    2017-11-01

    In current process of quantifying the dynamical properties of the complex phenomena in financial market system, the multivariate financial time series are widely concerned. In this work, considering the shortcomings and limitations of univariate multiscale entropy in analyzing the multivariate time series, the multivariate multiscale sample entropy (MMSE), which can evaluate the complexity in multiple data channels over different timescales, is applied to quantify the complexity of financial markets. Its effectiveness and advantages have been detected with numerical simulations with two well-known synthetic noise signals. For the first time, the complexity of four generated trivariate return series for each stock trading hour in China stock markets is quantified thanks to the interdisciplinary application of this method. We find that the complexity of trivariate return series in each hour show a significant decreasing trend with the stock trading time progressing. Further, the shuffled multivariate return series and the absolute multivariate return series are also analyzed. As another new attempt, quantifying the complexity of global stock markets (Asia, Europe and America) is carried out by analyzing the multivariate returns from them. Finally we utilize the multivariate multiscale entropy to assess the relative complexity of normalized multivariate return volatility series with different degrees.

  10. Remote Sensing Images Super Resolution Reconstruction Based on Multi-scale Detail Enhancement

    Directory of Open Access Journals (Sweden)

    ZHU Hong

    2016-09-01

    Full Text Available The existing methods are hard to highlight the details after super resolution reconstruction, so it is proposed a super-resolution model frame to enhance the multi-scale details. Firstly, the sequence images are multi-scale deposed to keep the edge structure and the deposed multi-scale image information are differenced. Then, the smoothing information and detail information are interpolated, and a texture detail enhancement function is built to improve the scope of small details. Finally, the coarse-scale image information and small-medium-scale information are confused to get the premier super-resolution reconstruction result, and a local optimizing model is built to further promote the premier image quality. The experiments on the same period and different period remote sensing images show that the objective evaluation index are both largely improved comparing with the interpolation method, traditional total variation(TVmethod,and maximum a posterior(MAP method. The details of the reconstruction image are improved distinctly. The reconstruction image produced using the proposed method provides more high frequency details, and the method proves to be robust and universal for different kinds of satellite remote sensing images.

  11. Energy transfers and spectral eddy viscosity in large-eddy simulations of homogeneous isotropic turbulence : Comparison of dynamic Smagorinsky and multiscale models over a range of discretizations

    NARCIS (Netherlands)

    Hughes, T.J.R.; Wells, G.N.; Wray, A.A.

    2004-01-01

    Energy transfers within large-eddy simulation (LES) and direct numerical simulation (DNS) grids are studied. The spectral eddy viscosity for conventional dynamic Smagorinsky and variational multiscale LES methods are compared with DNS results. Both models underestimate the DNS results for a very

  12. Multiscale Persistent Functions for Biomolecular Structure Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Kelin [Nanyang Technological University (Singapore). Division of Mathematical Sciences, School of Physical, Mathematical Sciences and School of Biological Sciences; Li, Zhiming [Central China Normal University, Wuhan (China). Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics; Mu, Lin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division

    2017-11-02

    Here in this paper, we introduce multiscale persistent functions for biomolecular structure characterization. The essential idea is to combine our multiscale rigidity functions (MRFs) with persistent homology analysis, so as to construct a series of multiscale persistent functions, particularly multiscale persistent entropies, for structure characterization. To clarify the fundamental idea of our method, the multiscale persistent entropy (MPE) model is discussed in great detail. Mathematically, unlike the previous persistent entropy (Chintakunta et al. in Pattern Recognit 48(2):391–401, 2015; Merelli et al. in Entropy 17(10):6872–6892, 2015; Rucco et al. in: Proceedings of ECCS 2014, Springer, pp 117–128, 2016), a special resolution parameter is incorporated into our model. Various scales can be achieved by tuning its value. Physically, our MPE can be used in conformational entropy evaluation. More specifically, it is found that our method incorporates in it a natural classification scheme. This is achieved through a density filtration of an MRF built from angular distributions. To further validate our model, a systematical comparison with the traditional entropy evaluation model is done. Additionally, it is found that our model is able to preserve the intrinsic topological features of biomolecular data much better than traditional approaches, particularly for resolutions in the intermediate range. Moreover, by comparing with traditional entropies from various grid sizes, bond angle-based methods and a persistent homology-based support vector machine method (Cang et al. in Mol Based Math Biol 3:140–162, 2015), we find that our MPE method gives the best results in terms of average true positive rate in a classic protein structure classification test. More interestingly, all-alpha and all-beta protein classes can be clearly separated from each other with zero error only in our model. Finally, a special protein structure index (PSI) is proposed, for the first

  13. Coupling of solar-assisted advanced oxidative and biological treatment for degradation of agro-residue-based soda bleaching effluent.

    Science.gov (United States)

    Dhir, Amit; Prakash, Nagaraja Tejo; Sud, Dhiraj

    2012-11-01

    This study evaluates the effect of integrated solar-assisted advanced oxidation process (AOP) and biological treatment on the extent of degradation of effluents from chlorination (C) and first alkaline extraction (E(1)) stages of soda pulp bleaching in agro-residue-based pulp and paper mill. Biodegradation of the effluents was attempted in suspended mode using activated sludge from the functional pulp and paper industry effluent treatment plant acclimatized to effluents in question. The photocatalytic treatment was employed using zinc oxide (ZnO) in slurry mode for decontamination of effluents in a batch manner and the degradation was evaluated in terms of reduction in chemical oxygen demand. The biological treatment (24 h) of C and E(1) effluent resulted in 30 and 57 % of degradation, respectively. Solar-induced AOP of C and E(1) effluents resulted in 53 and 43 % degradation under optimized conditions (2.5 g L(-1) ZnO at pH 8.0) after 6 h of exposure. For C effluent, a short duration of solar/ZnO (1 h) prior to biological treatment reduced the time required at biological step from 24 to 12 h for almost same extent (92 %) of degradation. However, sequential biological treatment (24 h) followed by solar/ZnO (2 h) resulted in 85.5 % degradation. In contrast, in the case of E(1) effluent, sequential biological (24 h)-solar/ZnO (2 h) system effectively degrades effluent to 95.4 % as compared to 84.8 % degradation achieved in solar/ZnO (2 h)-biological treatment (24 h) system. In the present study, the sequencing of photocatalysis with the biological treatment is observably efficient and technically viable process for the complete mineralization of the effluents.

  14. Classification of high-resolution remote sensing images based on multi-scale superposition

    Science.gov (United States)

    Wang, Jinliang; Gao, Wenjie; Liu, Guangjie

    2017-07-01

    Landscape structures and process on different scale show different characteristics. In the study of specific target landmarks, the most appropriate scale for images can be attained by scale conversion, which improves the accuracy and efficiency of feature identification and classification. In this paper, the authors carried out experiments on multi-scale classification by taking the Shangri-la area in the north-western Yunnan province as the research area and the images from SPOT5 HRG and GF-1 Satellite as date sources. Firstly, the authors upscaled the two images by cubic convolution, and calculated the optimal scale for different objects on the earth shown in images by variation functions. Then the authors conducted multi-scale superposition classification on it by Maximum Likelyhood, and evaluated the classification accuracy. The results indicates that: (1) for most of the object on the earth, the optimal scale appears in the bigger scale instead of the original one. To be specific, water has the biggest optimal scale, i.e. around 25-30m; farmland, grassland, brushwood, roads, settlement places and woodland follows with 20-24m. The optimal scale for shades and flood land is basically as the same as the original one, i.e. 8m and 10m respectively. (2) Regarding the classification of the multi-scale superposed images, the overall accuracy of the ones from SPOT5 HRG and GF-1 Satellite is 12.84% and 14.76% higher than that of the original multi-spectral images, respectively, and Kappa coefficient is 0.1306 and 0.1419 higher, respectively. Hence, the multi-scale superposition classification which was applied in the research area can enhance the classification accuracy of remote sensing images .

  15. Transitions of the Multi-Scale Singularity Trees

    DEFF Research Database (Denmark)

    Somchaipeng, Kerawit; Sporring, Jon; Kreiborg, Sven

    2005-01-01

    Multi-Scale Singularity Trees(MSSTs) [10] are multi-scale image descriptors aimed at representing the deep structures of images. Changes in images are directly translated to changes in the deep structures; therefore transitions in MSSTs. Because MSSTs can be used to represent the deep structure o...

  16. Weighted Local Intensity Fusion Method for Variational Optical Flow Estimation

    NARCIS (Netherlands)

    Tu, Z.; Poppe, R.W.; Veltkamp, R.C.

    2016-01-01

    Estimating a dense motion field of successive video frames is a fundamental problem in image processing. The multi-scale variational optical flow method is a critical technique that addresses this issue. Despite the considerable progress over the past decades, there are still some challenges such as

  17. Multi-Scale Validation of a Nanodiamond Drug Delivery System and Multi-Scale Engineering Education

    Science.gov (United States)

    Schwalbe, Michelle Kristin

    2010-01-01

    This dissertation has two primary concerns: (i) evaluating the uncertainty and prediction capabilities of a nanodiamond drug delivery model using Bayesian calibration and bias correction, and (ii) determining conceptual difficulties of multi-scale analysis from an engineering education perspective. A Bayesian uncertainty quantification scheme…

  18. Efficient algorithms for multiscale modeling in porous media

    KAUST Repository

    Wheeler, Mary F.

    2010-09-26

    We describe multiscale mortar mixed finite element discretizations for second-order elliptic and nonlinear parabolic equations modeling Darcy flow in porous media. The continuity of flux is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid scale. We discuss the construction of multiscale mortar basis and extend this concept to nonlinear interface operators. We present a multiscale preconditioning strategy to minimize the computational cost associated with construction of the multiscale mortar basis. We also discuss the use of appropriate quadrature rules and approximation spaces to reduce the saddle point system to a cell-centered pressure scheme. In particular, we focus on multiscale mortar multipoint flux approximation method for general hexahedral grids and full tensor permeabilities. Numerical results are presented to verify the accuracy and efficiency of these approaches. © 2010 John Wiley & Sons, Ltd.

  19. A complete categorization of multiscale models of infectious disease systems.

    Science.gov (United States)

    Garira, Winston

    2017-12-01

    Modelling of infectious disease systems has entered a new era in which disease modellers are increasingly turning to multiscale modelling to extend traditional modelling frameworks into new application areas and to achieve higher levels of detail and accuracy in characterizing infectious disease systems. In this paper we present a categorization framework for categorizing multiscale models of infectious disease systems. The categorization framework consists of five integration frameworks and five criteria. We use the categorization framework to give a complete categorization of host-level immuno-epidemiological models (HL-IEMs). This categorization framework is also shown to be applicable in categorizing other types of multiscale models of infectious diseases beyond HL-IEMs through modifying the initial categorization framework presented in this study. Categorization of multiscale models of infectious disease systems in this way is useful in bringing some order to the discussion on the structure of these multiscale models.

  20. Characterization of Aquifer Multiscale Properties by Generating Random Fractal Field with Truncated Power Variogram Model Using Karhunen–Loève Expansion

    Directory of Open Access Journals (Sweden)

    Liang Xue

    2017-01-01

    Full Text Available The traditional geostatistics to describe the spatial variation of hydrogeological properties is based on the assumption of stationarity or statistical homogeneity. However, growing evidences show and it has been widely recognized that the spatial distribution of many hydrogeological properties can be characterized as random fractals with multiscale feature, and spatial variation can be described by power variogram model. It is difficult to generate a multiscale random fractal field by directly using nonstationary power variogram model due to the lack of explicit covariance function. Here we adopt the stationary truncated power variogram model to avoid this difficulty and generate the multiscale random fractal field using Karhunen–Loève (KL expansion. The results show that either the unconditional or conditional (on measurements multiscale random fractal field can be generated by using truncated power variogram model and KL expansion when the upper limit of the integral scale is sufficiently large, and the main structure of the spatial variation can be described by using only the first few dominant KL expansion terms associated with large eigenvalues. The latter provides a foundation to perform dimensionality reduction and saves computational effort when analyzing the stochastic flow and transport problems.

  1. Multiscale approaches to high efficiency photovoltaics

    Directory of Open Access Journals (Sweden)

    Connolly James Patrick

    2016-01-01

    Full Text Available While renewable energies are achieving parity around the globe, efforts to reach higher solar cell efficiencies becomes ever more difficult as they approach the limiting efficiency. The so-called third generation concepts attempt to break this limit through a combination of novel physical processes and new materials and concepts in organic and inorganic systems. Some examples of semi-empirical modelling in the field are reviewed, in particular for multispectral solar cells on silicon (French ANR project MultiSolSi. Their achievements are outlined, and the limits of these approaches shown. This introduces the main topic of this contribution, which is the use of multiscale experimental and theoretical techniques to go beyond the semi-empirical understanding of these systems. This approach has already led to great advances at modelling which have led to modelling software, which is widely known. Yet, a survey of the topic reveals a fragmentation of efforts across disciplines, firstly, such as organic and inorganic fields, but also between the high efficiency concepts such as hot carrier cells and intermediate band concepts. We show how this obstacle to the resolution of practical research obstacles may be lifted by inter-disciplinary cooperation across length scales, and across experimental and theoretical fields, and finally across materials systems. We present a European COST Action “MultiscaleSolar” kicking off in early 2015, which brings together experimental and theoretical partners in order to develop multiscale research in organic and inorganic materials. The goal of this defragmentation and interdisciplinary collaboration is to develop understanding across length scales, which will enable the full potential of third generation concepts to be evaluated in practise, for societal and industrial applications.

  2. Entropic Approach to Multiscale Clustering Analysis

    Directory of Open Access Journals (Sweden)

    Antonio Insolia

    2012-05-01

    Full Text Available Recently, a novel method has been introduced to estimate the statistical significance of clustering in the direction distribution of objects. The method involves a multiscale procedure, based on the Kullback–Leibler divergence and the Gumbel statistics of extreme values, providing high discrimination power, even in presence of strong background isotropic contamination. It is shown that the method is: (i semi-analytical, drastically reducing computation time; (ii very sensitive to small, medium and large scale clustering; (iii not biased against the null hypothesis. Applications to the physics of ultra-high energy cosmic rays, as a cosmological probe, are presented and discussed.

  3. Structure and multiscale mechanics of carbon nanomaterials

    CERN Document Server

    2016-01-01

    This book aims at providing a broad overview on the relationship between structure and mechanical properties of carbon nanomaterials from world-leading scientists in the field. The main aim is to get an in-depth understanding of the broad range of mechanical properties of carbon materials based on their unique nanostructure and on defects of several types and at different length scales. Besides experimental work mainly based on the use of (in-situ) Raman and X-ray scattering and on nanoindentation, the book also covers some aspects of multiscale modeling of the mechanics of carbon nanomaterials.

  4. Multiscale analysis of MR-mammography data

    International Nuclear Information System (INIS)

    Lessmann, B.; Nattkemper, T.W.; Kessar, P.; Pointon, L.; Khazen, M.; Leach, M.O.; Degenhard, A.

    2007-01-01

    In this work we propose a method for automatically discriminating between different types of tissue in MR mammography datasets. This is accomplished by employing a wavelet-based multiscale analysis. After the data has been wavelet-transformed unsupervised machine learning methods are employed to identify typical patterns in the wavelet domain. To demonstrate the potential of the proposed approach we apply a filtering procedure that extracts the wavelet-based image information related to tumour tissue. In this way we obtain a robust segmentation of suspicious tissue in the MR image. (orig.)

  5. Launch Window Analysis for the Magnetospheric Multiscale Mission

    Science.gov (United States)

    Williams, Trevor W.

    2012-01-01

    The NASA Magnetospheric Multiscale (MMS) mission will fly four spinning spacecraft in formation in highly elliptical orbits to study the magnetosphere of the Earth. This paper describes the development of an MMS launch window tool that uses the orbitaveraged Variation of Parameter equations as the basis for a semi-analytic quantification of the dominant oblateness and lunisolar perturbation effects on the MMS orbit. This approach, coupled with a geometric interpretation of all of the MMS science and engineering constraints, allows a scan of 180(sup 2) = 32,400 different (RAAN, AOP) pairs to be carried out for a specified launch day in less than 10 s on a typical modern laptop. The resulting plot indicates the regions in (RAAN, AOP) space where each constraint is satisfied or violated: their intersection gives, in an easily interpreted graphical manner, the final solution space for the day considered. This tool, SWM76, is now used to provide launch conditions to the full fidelity (but far slower) MMS simulation code: very good agreement has been observed between the two methods.

  6. A Liver-Centric Multiscale Modeling Framework for Xenobiotics.

    Directory of Open Access Journals (Sweden)

    James P Sluka

    Full Text Available We describe a multi-scale, liver-centric in silico modeling framework for acetaminophen pharmacology and metabolism. We focus on a computational model to characterize whole body uptake and clearance, liver transport and phase I and phase II metabolism. We do this by incorporating sub-models that span three scales; Physiologically Based Pharmacokinetic (PBPK modeling of acetaminophen uptake and distribution at the whole body level, cell and blood flow modeling at the tissue/organ level and metabolism at the sub-cellular level. We have used standard modeling modalities at each of the three scales. In particular, we have used the Systems Biology Markup Language (SBML to create both the whole-body and sub-cellular scales. Our modeling approach allows us to run the individual sub-models separately and allows us to easily exchange models at a particular scale without the need to extensively rework the sub-models at other scales. In addition, the use of SBML greatly facilitates the inclusion of biological annotations directly in the model code. The model was calibrated using human in vivo data for acetaminophen and its sulfate and glucuronate metabolites. We then carried out extensive parameter sensitivity studies including the pairwise interaction of parameters. We also simulated population variation of exposure and sensitivity to acetaminophen. Our modeling framework can be extended to the prediction of liver toxicity following acetaminophen overdose, or used as a general purpose pharmacokinetic model for xenobiotics.

  7. Fluorescence Across Space and Time (2017 FAST Campaign): Investigating the multiscale links between fluorescence and photosynthesis

    Science.gov (United States)

    Porcar-Castell, A.; Atherton, J.; Rajewicz, P. A.; Riikonen, A.; Gebre, S.; Liu, W.; Aalto, J.; Bendoula, R.; Burkart, A.; Chen, H.; Erkkilä, K. M.; Feret, J. B.; Fernández-Marín, B.; García-Plazaola, J. I.; Hakala, T.; Hartikainen, S.; Honkavaara, E.; Ihalainen, J.; Julitta, T.; Kolari, P.; Kooijmans, L.; Levula, J.; Loponen, M.; Mac Arthur, A.; Magney, T.; Maseyk, K. S.; Mottus, M.; Neimane, S.; Oksa, E.; Osterman, G. B.; Robinson, I.; Robson, M. T.; Sabater, N.; Solanki, T.; Tikkanen, M.; Mäkipää, R.; Aro, E. M.; Rascher, U.; Frankenberg, C.; Kulmala, M. T.; Vesala, T.; Back, J. K.

    2017-12-01

    The use of solar-induced chlorophyll fluorescence (ChlF) as a tracer of photosynthesis is rapidly expanding with increasing numbers of measurements from towers, drones, aircrafts, or satellites. But how to integrate all the informative potential of these multiscale datasets? The connection between ChlF and photosynthesis takes place via multiple mechansisms that depend on the scale. At the leaf level, diurnal variations in ChlF may indicate changes in photochemical or non-photochemical quenching processes, whereas seasonal variations may indicate changes in the protein structure or pigment composition of the photosynthetic apparatus. At the canopy level, variations in ChlF may also reflect changes in total leaf area, canopy structure, species composition, changes in illumination or sun-target-sensor geometry, background properties, etc. At the pixel level, the dynamics of the atmosphere are also important. It is therefore essential to characterize the impact of factors that control ChlF and photosynthesis at each scale. A combination of multiscale and continuous experimentation and modelling is probably the best option to close the remaining knowledge gaps. The goal of the FAST campaign was to characterize the processes that control the ChlF signal dynamics at each scale, establishing a comprehensive dataset for multiscale hypothesis and model validation. The campaign took place in Hyytiälä (Southern Finland) and lasted for 6 months. Measurements expanded from the molecular to the satellite pixel level and from the picosecond to the seasonal scale, including multiple species, and providing a unique optical and phenomenological record of the multiscale spring recovery of photosynthesis in a boreal forest. Amongst others we measured and registered: leaf ChlF spectra, OJIP kinetics, PSI and PSII activity, photosynthetic gas exchange, carbonyl sulphide (COS), volatile organic compounds (VOCs), total leaf absorption, pigment concentrations, photosynthetic proteins

  8. Multiscale coherent structures in tokamak plasma turbulence

    International Nuclear Information System (INIS)

    Xu, G. S.; Wan, B. N.; Zhang, W.; Yang, Q. W.; Wang, L.; Wen, Y. Z.

    2006-01-01

    A 12-tip poloidal probe array is used on the HT-7 superconducting tokamak [Li, Wan, and Mao, Plasma Phys. Controlled Fusion 42, 135 (2000)] to measure plasma turbulence in the edge region. Some statistical analysis techniques are used to characterize the turbulence structures. It is found that the plasma turbulence is composed of multiscale coherent structures, i.e., turbulent eddies and there is self-similarity in a relative short scale range. The presence of the self-similarity is found due to the structural similarity of these eddies between different scales. These turbulent eddies constitute the basic convection cells, so the self-similar range is just the dominant scale range relevant to transport. The experimental results also indicate that the plasma turbulence is dominated by low-frequency and long-wavelength fluctuation components and its dispersion relation shows typical electron-drift-wave characteristics. Some large-scale coherent structures intermittently burst out and exhibit a very long poloidal extent, even longer than 6 cm. It is found that these large-scale coherent structures are mainly contributed by the low-frequency and long-wavelength fluctuating components and their presence is responsible for the observations of long-range correlations, i.e., the correlation in the scale range much longer than the turbulence decorrelation scale. These experimental observations suggest that the coexistence of multiscale coherent structures results in the self-similar turbulent state

  9. Institute for Multiscale Modeling of Biological Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Paulaitis, Michael E; Garcia-Moreno, Bertrand; Lenhoff, Abraham

    2009-12-26

    The Institute for Multiscale Modeling of Biological Interactions (IMMBI) has two primary goals: Foster interdisciplinary collaborations among faculty and their research laboratories that will lead to novel applications of multiscale simulation and modeling methods in the biological sciences and engineering; and Building on the unique biophysical/biology-based engineering foundations of the participating faculty, train scientists and engineers to apply computational methods that collectively span multiple time and length scales of biological organization. The success of IMMBI will be defined by the following: Size and quality of the applicant pool for pre-doctoral and post-doctoral fellows; Academic performance; Quality of the pre-doctoral and post-doctoral research; Impact of the research broadly and to the DOE (ASCR program) mission; Distinction of the next career step for pre-doctoral and post-doctoral fellows; and Faculty collaborations that result from IMMBI activities. Specific details about accomplishments during the three years of DOE support for IMMBI have been documented in Annual Progress Reports (April 2005, June 2006, and March 2007) and a Report for a National Academy of Sciences Review (October 2005) that were submitted to DOE on the dates indicated. An overview of these accomplishments is provided.

  10. Neural network based multiscale image restoration approach

    Science.gov (United States)

    de Castro, Ana Paula A.; da Silva, José D. S.

    2007-02-01

    This paper describes a neural network based multiscale image restoration approach. Multilayer perceptrons are trained with artificial images of degraded gray level circles, in an attempt to make the neural network learn inherent space relations of the degraded pixels. The present approach simulates the degradation by a low pass Gaussian filter blurring operation and the addition of noise to the pixels at pre-established rates. The training process considers the degraded image as input and the non-degraded image as output for the supervised learning process. The neural network thus performs an inverse operation by recovering a quasi non-degraded image in terms of least squared. The main difference of the approach to existing ones relies on the fact that the space relations are taken from different scales, thus providing relational space data to the neural network. The approach is an attempt to come up with a simple method that leads to an optimum solution to the problem. Considering different window sizes around a pixel simulates the multiscale operation. In the generalization phase the neural network is exposed to indoor, outdoor, and satellite degraded images following the same steps use for the artificial circle image.

  11. A Multiscale Model for Virus Capsid Dynamics

    Directory of Open Access Journals (Sweden)

    Changjun Chen

    2010-01-01

    Full Text Available Viruses are infectious agents that can cause epidemics and pandemics. The understanding of virus formation, evolution, stability, and interaction with host cells is of great importance to the scientific community and public health. Typically, a virus complex in association with its aquatic environment poses a fabulous challenge to theoretical description and prediction. In this work, we propose a differential geometry-based multiscale paradigm to model complex biomolecule systems. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum domain of the fluid mechanical description of the aquatic environment from the microscopic discrete domain of the atomistic description of the biomolecule. A multiscale action functional is constructed as a unified framework to derive the governing equations for the dynamics of different scales. We show that the classical Navier-Stokes equation for the fluid dynamics and Newton's equation for the molecular dynamics can be derived from the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows.

  12. Multi-scale biomedical systems: measurement challenges

    International Nuclear Information System (INIS)

    Summers, R

    2016-01-01

    Multi-scale biomedical systems are those that represent interactions in materials, sensors, and systems from a holistic perspective. It is possible to view such multi-scale activity using measurement of spatial scale or time scale, though in this paper only the former is considered. The biomedical application paradigm comprises interactions that range from quantum biological phenomena at scales of 10-12 for one individual to epidemiological studies of disease spread in populations that in a pandemic lead to measurement at a scale of 10+7. It is clear that there are measurement challenges at either end of this spatial scale, but those challenges that relate to the use of new technologies that deal with big data and health service delivery at the point of care are also considered. The measurement challenges lead to the use, in many cases, of model-based measurement and the adoption of virtual engineering. It is these measurement challenges that will be uncovered in this paper. (paper)

  13. A multiscale model for virus capsid dynamics.

    Science.gov (United States)

    Chen, Changjun; Saxena, Rishu; Wei, Guo-Wei

    2010-01-01

    Viruses are infectious agents that can cause epidemics and pandemics. The understanding of virus formation, evolution, stability, and interaction with host cells is of great importance to the scientific community and public health. Typically, a virus complex in association with its aquatic environment poses a fabulous challenge to theoretical description and prediction. In this work, we propose a differential geometry-based multiscale paradigm to model complex biomolecule systems. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum domain of the fluid mechanical description of the aquatic environment from the microscopic discrete domain of the atomistic description of the biomolecule. A multiscale action functional is constructed as a unified framework to derive the governing equations for the dynamics of different scales. We show that the classical Navier-Stokes equation for the fluid dynamics and Newton's equation for the molecular dynamics can be derived from the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows.

  14. Multiscale permutation entropy analysis of electrocardiogram

    Science.gov (United States)

    Liu, Tiebing; Yao, Wenpo; Wu, Min; Shi, Zhaorong; Wang, Jun; Ning, Xinbao

    2017-04-01

    To make a comprehensive nonlinear analysis to ECG, multiscale permutation entropy (MPE) was applied to ECG characteristics extraction to make a comprehensive nonlinear analysis of ECG. Three kinds of ECG from PhysioNet database, congestive heart failure (CHF) patients, healthy young and elderly subjects, are applied in this paper. We set embedding dimension to 4 and adjust scale factor from 2 to 100 with a step size of 2, and compare MPE with multiscale entropy (MSE). As increase of scale factor, MPE complexity of the three ECG signals are showing first-decrease and last-increase trends. When scale factor is between 10 and 32, complexities of the three ECG had biggest difference, entropy of the elderly is 0.146 less than the CHF patients and 0.025 larger than the healthy young in average, in line with normal physiological characteristics. Test results showed that MPE can effectively apply in ECG nonlinear analysis, and can effectively distinguish different ECG signals.

  15. Multiscale Convolutional Neural Networks for Hand Detection

    Directory of Open Access Journals (Sweden)

    Shiyang Yan

    2017-01-01

    Full Text Available Unconstrained hand detection in still images plays an important role in many hand-related vision problems, for example, hand tracking, gesture analysis, human action recognition and human-machine interaction, and sign language recognition. Although hand detection has been extensively studied for decades, it is still a challenging task with many problems to be tackled. The contributing factors for this complexity include heavy occlusion, low resolution, varying illumination conditions, different hand gestures, and the complex interactions between hands and objects or other hands. In this paper, we propose a multiscale deep learning model for unconstrained hand detection in still images. Deep learning models, and deep convolutional neural networks (CNNs in particular, have achieved state-of-the-art performances in many vision benchmarks. Developed from the region-based CNN (R-CNN model, we propose a hand detection scheme based on candidate regions generated by a generic region proposal algorithm, followed by multiscale information fusion from the popular VGG16 model. Two benchmark datasets were applied to validate the proposed method, namely, the Oxford Hand Detection Dataset and the VIVA Hand Detection Challenge. We achieved state-of-the-art results on the Oxford Hand Detection Dataset and had satisfactory performance in the VIVA Hand Detection Challenge.

  16. Residual-driven online generalized multiscale finite element methods

    KAUST Repository

    Chung, Eric T.

    2015-09-08

    The construction of local reduced-order models via multiscale basis functions has been an area of active research. In this paper, we propose online multiscale basis functions which are constructed using the offline space and the current residual. Online multiscale basis functions are constructed adaptively in some selected regions based on our error indicators. We derive an error estimator which shows that one needs to have an offline space with certain properties to guarantee that additional online multiscale basis function will decrease the error. This error decrease is independent of physical parameters, such as the contrast and multiple scales in the problem. The offline spaces are constructed using Generalized Multiscale Finite Element Methods (GMsFEM). We show that if one chooses a sufficient number of offline basis functions, one can guarantee that additional online multiscale basis functions will reduce the error independent of contrast. We note that the construction of online basis functions is motivated by the fact that the offline space construction does not take into account distant effects. Using the residual information, we can incorporate the distant information provided the offline approximation satisfies certain properties. In the paper, theoretical and numerical results are presented. Our numerical results show that if the offline space is sufficiently large (in terms of the dimension) such that the coarse space contains all multiscale spectral basis functions that correspond to small eigenvalues, then the error reduction by adding online multiscale basis function is independent of the contrast. We discuss various ways computing online multiscale basis functions which include a use of small dimensional offline spaces.

  17. Multi-scale salient feature extraction on mesh models

    KAUST Repository

    Yang, Yongliang

    2012-01-01

    We present a new method of extracting multi-scale salient features on meshes. It is based on robust estimation of curvature on multiple scales. The coincidence between salient feature and the scale of interest can be established straightforwardly, where detailed feature appears on small scale and feature with more global shape information shows up on large scale. We demonstrate this multi-scale description of features accords with human perception and can be further used for several applications as feature classification and viewpoint selection. Experiments exhibit that our method as a multi-scale analysis tool is very helpful for studying 3D shapes. © 2012 Springer-Verlag.

  18. Examining Multiscale Movement Coordination in Collaborative Problem Solving

    DEFF Research Database (Denmark)

    Wiltshire, Travis; Steffensen, Sune Vork

    2017-01-01

    During collaborative problem solving (CPS), coordination occurs at different spatial and temporal scales. This multiscale coordination should, at least on some scales, play a functional role in facilitating effective collaboration outcomes. To evaluate this, we conducted a study of computer...

  19. Multi-Scale Simulation of High Energy Density Ionic Liquids

    National Research Council Canada - National Science Library

    Voth, Gregory A

    2007-01-01

    The focus of this AFOSR project was the molecular dynamics (MD) simulation of ionic liquid structure, dynamics, and interfacial properties, as well as multi-scale descriptions of these novel liquids (e.g...

  20. Multiscale behaviour of volatility autocorrelations in a financial market

    OpenAIRE

    Pasquini, Michele; Serva, Maurizio

    1998-01-01

    We perform a scaling analysis on NYSE daily returns. We show that volatility correlations are power-laws on a time range from one day to one year and, more important, that they exhibit a multiscale behaviour.

  1. CPR-based next-generation multiscale simulators

    NARCIS (Netherlands)

    Cusini, M.; Lukyanov, A.; Natvig, J.; Hajibeygi, H.

    2014-01-01

    Unconventional Reservoir simulations involve several challenges not only arising from geological heterogeneities, but also from strong nonlinear physical coupling terms. All exiting upscaling and multiscale methods rely on a classical sequential formulation to treat the coupling between the

  2. HLA component based environment for distributed multiscale simulations

    NARCIS (Netherlands)

    Rycerz, K.; Bubak, M.; Sloot, P.M.A.; Getov, V.

    2008-01-01

    In this paper we present the Grid environment that supports application building basing on a High Level Architecture (HLA) component model. The proposed model is particularly suitable for distributed multiscale simulations. Original HLA partly supports interoperability and composability of

  3. Multiscale modelling of coupled problems in porous materials

    OpenAIRE

    Carmeliet, Jan; Derluyn, Hannelore; Mertens, Stijn; Moonen, Peter

    2008-01-01

    In this paper a multiscale approach for coupled mechanical and transport phenomena in porous media is presented. It is shown that monoscale approaches show different limitations: phenomena like nonlinear elasticity, hysteresis, stiffness recovery in compressive loading, preferential moisture uptake into cracks, changes of the permeability caused by changes in the pore structure due to chemical processes are not taken adequately into account. The multiscale mechanical model is b...

  4. Numerical methods and analysis of multiscale problems

    CERN Document Server

    Madureira, Alexandre L

    2017-01-01

    This book is about numerical modeling of multiscale problems, and introduces several asymptotic analysis and numerical techniques which are necessary for a proper approximation of equations that depend on different physical scales. Aimed at advanced undergraduate and graduate students in mathematics, engineering and physics – or researchers seeking a no-nonsense approach –, it discusses examples in their simplest possible settings, removing mathematical hurdles that might hinder a clear understanding of the methods. The problems considered are given by singular perturbed reaction advection diffusion equations in one and two-dimensional domains, partial differential equations in domains with rough boundaries, and equations with oscillatory coefficients. This work shows how asymptotic analysis can be used to develop and analyze models and numerical methods that are robust and work well for a wide range of parameters.

  5. Multi-scale simulation for plasma science

    Energy Technology Data Exchange (ETDEWEB)

    Ishiguro, S; Usami, S; Horiuchi, R; Ohtani, H; Maluckov, A; Skoric, M M, E-mail: ishiguro.seiji@nifs.ac.jp

    2010-11-01

    In order to perform a computer simulation of a large time and spatial scale system, such as a fusion plasma device and solar-terrestrial plasma, macro simulation model, where micro physics is modeled analytically or empirically, is usually used. However, kinetic effects such as wave-particle interaction play important roles in most of nonlinear plasma phenomena and result in anomalous behavior. This limits the applicability of macro simulation models. In a past few years several attempts have been performed to overcome this difficulty. Two types of multi-scale simulation method for nonlinear plasma science are presented. First one is the Micro-Macro Interconnected Simulation Method (MMIS), where micro model and macro model are connected dynamically through an interface and macro time and space simulation is performed. Second one is the Equation Free Projective Integration Method (EFPI), where macro space and time scale simulation is performed by using only a micro simulator and a sophisticated numerical algorithm.

  6. Multi-scale modeling of composites

    DEFF Research Database (Denmark)

    Azizi, Reza

    A general method to obtain the homogenized response of metal-matrix composites is developed. It is assumed that the microscopic scale is sufficiently small compared to the macroscopic scale such that the macro response does not affect the micromechanical model. Therefore, the microscopic scale...... is analyzed using a Representative Volume Element (RVE), while the homogenized data are saved and used as an input to the macro scale. The dependence of fiber size is analyzed using a higher order plasticity theory, where the free energy is stored due to plastic strain gradients at the micron scale. Hill...... to plastic deformation. The macroscopic operators found, can be used to model metal matrix composites on the macroscopic scale using a hierarchical multi-scale approach. Finally, decohesion under tension and shear loading is studied using a cohesive law for the interface between matrix and fiber....

  7. Multiscale simulation approach for battery production systems

    CERN Document Server

    Schönemann, Malte

    2017-01-01

    Addressing the challenge of improving battery quality while reducing high costs and environmental impacts of the production, this book presents a multiscale simulation approach for battery production systems along with a software environment and an application procedure. Battery systems are among the most important technologies of the 21st century since they are enablers for the market success of electric vehicles and stationary energy storage solutions. However, the performance of batteries so far has limited possible applications. Addressing this challenge requires an interdisciplinary understanding of dynamic cause-effect relationships between processes, equipment, materials, and environmental conditions. The approach in this book supports the integrated evaluation of improvement measures and is usable for different planning horizons. It is applied to an exemplary battery cell production and module assembly in order to demonstrate the effectiveness and potential benefits of the simulation.

  8. Multiscale reconstruction algorithm for compressed sensing.

    Science.gov (United States)

    Lei, Jing; Liu, Wenyi; Liu, Shi; Liu, Qibin

    2014-07-01

    Compressed sensing (CS) method has attracted increasing attention owing to providing a novel insight for signal and image processing technology. Acquiring high-quality reconstruction results plays a crucial role in successful applications of CS method. This paper presents a multiscale reconstruction model that simultaneously considers the inaccuracy properties on the measurement data and the measurement matrix. Based on the wavelet analysis method, the original inverse problem is decomposed into a sequence of inverse problems, which are solved successively from the largest scale to the original scale. An objective functional, that integrate the beneficial advantages of the least trimmed sum of absolute deviations (LTA) estimation and the combinational M-estimation, is proposed. An iteration scheme that incorporates the advantages of the homotopy method and the evolutionary programming (EP) algorithm is designed for solving the proposed objective functional. Numerical simulations are implemented to validate the feasibility of the proposed reconstruction method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  9. MUSIC: MUlti-Scale Initial Conditions

    Science.gov (United States)

    Hahn, Oliver; Abel, Tom

    2013-11-01

    MUSIC generates multi-scale initial conditions with multiple levels of refinements for cosmological ‘zoom-in’ simulations. The code uses an adaptive convolution of Gaussian white noise with a real-space transfer function kernel together with an adaptive multi-grid Poisson solver to generate displacements and velocities following first- (1LPT) or second-order Lagrangian perturbation theory (2LPT). MUSIC achieves rms relative errors of the order of 10-4 for displacements and velocities in the refinement region and thus improves in terms of errors by about two orders of magnitude over previous approaches. In addition, errors are localized at coarse-fine boundaries and do not suffer from Fourier space-induced interference ringing.

  10. Multiscale Multifunctional Progressive Fracture of Composite Structures

    Science.gov (United States)

    Chamis, C. C.; Minnetyan, L.

    2012-01-01

    A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells. Global fracture is enhanced when internal pressure is combined with shear loads. The old reference denotes that nothing has been added to this comprehensive report since then.

  11. MULTISCALE DYNAMICS OF SOLAR MAGNETIC STRUCTURES

    International Nuclear Information System (INIS)

    Uritsky, Vadim M.; Davila, Joseph M.

    2012-01-01

    Multiscale topological complexity of the solar magnetic field is among the primary factors controlling energy release in the corona, including associated processes in the photospheric and chromospheric boundaries. We present a new approach for analyzing multiscale behavior of the photospheric magnetic flux underlying these dynamics as depicted by a sequence of high-resolution solar magnetograms. The approach involves two basic processing steps: (1) identification of timing and location of magnetic flux origin and demise events (as defined by DeForest et al.) by tracking spatiotemporal evolution of unipolar and bipolar photospheric regions, and (2) analysis of collective behavior of the detected magnetic events using a generalized version of the Grassberger-Procaccia correlation integral algorithm. The scale-free nature of the developed algorithms makes it possible to characterize the dynamics of the photospheric network across a wide range of distances and relaxation times. Three types of photospheric conditions are considered to test the method: a quiet photosphere, a solar active region (NOAA 10365) in a quiescent non-flaring state, and the same active region during a period of M-class flares. The results obtained show (1) the presence of a topologically complex asymmetrically fragmented magnetic network in the quiet photosphere driven by meso- and supergranulation, (2) the formation of non-potential magnetic structures with complex polarity separation lines inside the active region, and (3) statistical signatures of canceling bipolar magnetic structures coinciding with flaring activity in the active region. Each of these effects can represent an unstable magnetic configuration acting as an energy source for coronal dissipation and heating.

  12. Hybrid stochastic simplifications for multiscale gene networks

    Directory of Open Access Journals (Sweden)

    Debussche Arnaud

    2009-09-01

    Full Text Available Abstract Background Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. Results We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion 123 which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Conclusion Hybrid simplifications can be used for onion-like (multi-layered approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach.

  13. Multiscale sampling model for motion integration.

    Science.gov (United States)

    Sherbakov, Lena; Yazdanbakhsh, Arash

    2013-09-30

    Biologically plausible strategies for visual scene integration across spatial and temporal domains continues to be a challenging topic. The fundamental question we address is whether classical problems in motion integration, such as the aperture problem, can be solved in a model that samples the visual scene at multiple spatial and temporal scales in parallel. We hypothesize that fast interareal connections that allow feedback of information between cortical layers are the key processes that disambiguate motion direction. We developed a neural model showing how the aperture problem can be solved using different spatial sampling scales between LGN, V1 layer 4, V1 layer 6, and area MT. Our results suggest that multiscale sampling, rather than feedback explicitly, is the key process that gives rise to end-stopped cells in V1 and enables area MT to solve the aperture problem without the need for calculating intersecting constraints or crafting intricate patterns of spatiotemporal receptive fields. Furthermore, the model explains why end-stopped cells no longer emerge in the absence of V1 layer 6 activity (Bolz & Gilbert, 1986), why V1 layer 4 cells are significantly more end-stopped than V1 layer 6 cells (Pack, Livingstone, Duffy, & Born, 2003), and how it is possible to have a solution to the aperture problem in area MT with no solution in V1 in the presence of driving feedback. In summary, while much research in the field focuses on how a laminar architecture can give rise to complicated spatiotemporal receptive fields to solve problems in the motion domain, we show that one can reframe motion integration as an emergent property of multiscale sampling achieved concurrently within lamina and across multiple visual areas.

  14. Multiscale modelling of nucleosome core particle aggregation

    Science.gov (United States)

    Lyubartsev, Alexander P.; Korolev, Nikolay; Fan, Yanping; Nordenskiöld, Lars

    2015-02-01

    The nucleosome core particle (NCP) is the basic building block of chromatin. Under the influence of multivalent cations, isolated mononucleosomes exhibit a rich phase behaviour forming various columnar phases with characteristic NCP-NCP stacking. NCP stacking is also a regular element of chromatin structure in vivo. Understanding the mechanism of nucleosome stacking and the conditions leading to self-assembly of NCPs is still incomplete. Due to the complexity of the system and the need to describe electrostatics properly by including the explicit mobile ions, novel modelling approaches based on coarse-grained (CG) methods at the multiscale level becomes a necessity. In this work we present a multiscale CG computer simulation approach to modelling interactions and self-assembly of solutions of NCPs induced by the presence of multivalent cations. Starting from continuum simulations including explicit three-valent cobalt(III)hexammine (CoHex3+) counterions and 20 NCPs, based on a previously developed advanced CG NCP model with one bead per amino acid and five beads per two DNA base pair unit (Fan et al 2013 PLoS One 8 e54228), we use the inverse Monte Carlo method to calculate effective interaction potentials for a ‘super-CG’ NCP model consisting of seven beads for each NCP. These interaction potentials are used in large-scale simulations of up to 5000 NCPs, modelling self-assembly induced by CoHex3+. The systems of ‘super-CG’ NCPs form a single large cluster of stacked NCPs without long-range order in agreement with experimental data for NCPs precipitated by the three-valent polyamine, spermidine3+.

  15. Experimental evaluation of multiscale tendon mechanics.

    Science.gov (United States)

    Fang, Fei; Lake, Spencer P

    2017-07-01

    Tendon's primary function is a mechanical link between muscle and bone. The hierarchical structure of tendon and specific compositional constituents are believed to be critical for proper mechanical function. With increased appreciation for tendon importance and the development of various technological advances, this review paper summarizes recent experimental approaches that have been used to study multiscale tendon mechanics, includes an overview of studies that have evaluated the role of specific tissue constituents, and also proposes challenges/opportunities facing tendon study. Tendon has been demonstrated to have specific structural characteristics (e.g., multi-level hierarchy, crimp pattern, helix) and complex mechanical properties (e.g., non-linearity, anisotropy, viscoelasticity). Physical mechanisms including uncrimping, fiber sliding, and collagen reorganization have been shown to govern tendon mechanical responses under both static and dynamic loading. Several tendon constituents with relatively small quantities have been suggested to play a role in its mechanics, although some results are conflicting. Further research should be performed to understand the interplay and communication of tendon mechanical properties across levels of the hierarchical structure, and further show how each of these components contribute to tendon mechanics. The studies summarized and discussed in this review have helped elucidate important aspects of multiscale tendon mechanics, which is a prerequisite for analyzing stress/strain transfer between multiple scales and identifying key principles of mechanotransduction. This information could further facilitate interpreting the functional diversity of tendons from different species, different locations, and even different developmental stages, and then better understand and identify fundamental concepts related to tendon degeneration, disease, and healing. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc

  16. Robust simplifications of multiscale biochemical networks

    Directory of Open Access Journals (Sweden)

    Zinovyev Andrei

    2008-10-01

    Full Text Available Abstract Background Cellular processes such as metabolism, decision making in development and differentiation, signalling, etc., can be modeled as large networks of biochemical reactions. In order to understand the functioning of these systems, there is a strong need for general model reduction techniques allowing to simplify models without loosing their main properties. In systems biology we also need to compare models or to couple them as parts of larger models. In these situations reduction to a common level of complexity is needed. Results We propose a systematic treatment of model reduction of multiscale biochemical networks. First, we consider linear kinetic models, which appear as "pseudo-monomolecular" subsystems of multiscale nonlinear reaction networks. For such linear models, we propose a reduction algorithm which is based on a generalized theory of the limiting step that we have developed in 1. Second, for non-linear systems we develop an algorithm based on dominant solutions of quasi-stationarity equations. For oscillating systems, quasi-stationarity and averaging are combined to eliminate time scales much faster and much slower than the period of the oscillations. In all cases, we obtain robust simplifications and also identify the critical parameters of the model. The methods are demonstrated for simple examples and for a more complex model of NF-κB pathway. Conclusion Our approach allows critical parameter identification and produces hierarchies of models. Hierarchical modeling is important in "middle-out" approaches when there is need to zoom in and out several levels of complexity. Critical parameter identification is an important issue in systems biology with potential applications to biological control and therapeutics. Our approach also deals naturally with the presence of multiple time scales, which is a general property of systems biology models.

  17. Dissecting the multi-scale spatial relationship of earthworm assemblages with soil environmental variability.

    Science.gov (United States)

    Jiménez, Juan J; Decaëns, Thibaud; Lavelle, Patrick; Rossi, Jean-Pierre

    2014-12-05

    Studying the drivers and determinants of species, population and community spatial patterns is central to ecology. The observed structure of community assemblages is the result of deterministic abiotic (environmental constraints) and biotic factors (positive and negative species interactions), as well as stochastic colonization events (historical contingency). We analyzed the role of multi-scale spatial component of soil environmental variability in structuring earthworm assemblages in a gallery forest from the Colombian "Llanos". We aimed to disentangle the spatial scales at which species assemblages are structured and determine whether these scales matched those expressed by soil environmental variables. We also tested the hypothesis of the "single tree effect" by exploring the spatial relationships between root-related variables and soil nutrient and physical variables in structuring earthworm assemblages. Multivariate ordination techniques and spatially explicit tools were used, namely cross-correlograms, Principal Coordinates of Neighbor Matrices (PCNM) and variation partitioning analyses. The relationship between the spatial organization of earthworm assemblages and soil environmental parameters revealed explicitly multi-scale responses. The soil environmental variables that explained nested population structures across the multi-spatial scale gradient differed for earthworms and assemblages at the very-fine- (30 m), fine (10-20 m) and very fine scales (<10 m). Variation partitioning analysis revealed that the soil environmental variability explained from less than 1% to as much as 48% of the observed earthworm spatial variation. A large proportion of the spatial variation did not depend on the soil environmental variability for certain species. This finding could indicate the influence of contagious biotic interactions, stochastic factors, or unmeasured relevant soil environmental variables.

  18. Assessing multiscale complexity of short heart rate variability series through a model-based linear approach

    Science.gov (United States)

    Porta, Alberto; Bari, Vlasta; Ranuzzi, Giovanni; De Maria, Beatrice; Baselli, Giuseppe

    2017-09-01

    We propose a multiscale complexity (MSC) method assessing irregularity in assigned frequency bands and being appropriate for analyzing the short time series. It is grounded on the identification of the coefficients of an autoregressive model, on the computation of the mean position of the poles generating the components of the power spectral density in an assigned frequency band, and on the assessment of its distance from the unit circle in the complex plane. The MSC method was tested on simulations and applied to the short heart period (HP) variability series recorded during graded head-up tilt in 17 subjects (age from 21 to 54 years, median = 28 years, 7 females) and during paced breathing protocols in 19 subjects (age from 27 to 35 years, median = 31 years, 11 females) to assess the contribution of time scales typical of the cardiac autonomic control, namely in low frequency (LF, from 0.04 to 0.15 Hz) and high frequency (HF, from 0.15 to 0.5 Hz) bands to the complexity of the cardiac regulation. The proposed MSC technique was compared to a traditional model-free multiscale method grounded on information theory, i.e., multiscale entropy (MSE). The approach suggests that the reduction of HP variability complexity observed during graded head-up tilt is due to a regularization of the HP fluctuations in LF band via a possible intervention of sympathetic control and the decrement of HP variability complexity observed during slow breathing is the result of the regularization of the HP variations in both LF and HF bands, thus implying the action of physiological mechanisms working at time scales even different from that of respiration. MSE did not distinguish experimental conditions at time scales larger than 1. Over a short time series MSC allows a more insightful association between cardiac control complexity and physiological mechanisms modulating cardiac rhythm compared to a more traditional tool such as MSE.

  19. Flexible feature-space-construction architecture and its VLSI implementation for multi-scale object detection

    Science.gov (United States)

    Luo, Aiwen; An, Fengwei; Zhang, Xiangyu; Chen, Lei; Huang, Zunkai; Jürgen Mattausch, Hans

    2018-04-01

    Feature extraction techniques are a cornerstone of object detection in computer-vision-based applications. The detection performance of vison-based detection systems is often degraded by, e.g., changes in the illumination intensity of the light source, foreground-background contrast variations or automatic gain control from the camera. In order to avoid such degradation effects, we present a block-based L1-norm-circuit architecture which is configurable for different image-cell sizes, cell-based feature descriptors and image resolutions according to customization parameters from the circuit input. The incorporated flexibility in both the image resolution and the cell size for multi-scale image pyramids leads to lower computational complexity and power consumption. Additionally, an object-detection prototype for performance evaluation in 65 nm CMOS implements the proposed L1-norm circuit together with a histogram of oriented gradients (HOG) descriptor and a support vector machine (SVM) classifier. The proposed parallel architecture with high hardware efficiency enables real-time processing, high detection robustness, small chip-core area as well as low power consumption for multi-scale object detection.

  20. Refined composite multiscale weighted-permutation entropy of financial time series

    Science.gov (United States)

    Zhang, Yongping; Shang, Pengjian

    2018-04-01

    For quantifying the complexity of nonlinear systems, multiscale weighted-permutation entropy (MWPE) has recently been proposed. MWPE has incorporated amplitude information and been applied to account for the multiple inherent dynamics of time series. However, MWPE may be unreliable, because its estimated values show large fluctuation for slight variation of the data locations, and a significant distinction only for the different length of time series. Therefore, we propose the refined composite multiscale weighted-permutation entropy (RCMWPE). By comparing the RCMWPE results with other methods' results on both synthetic data and financial time series, RCMWPE method shows not only the advantages inherited from MWPE but also lower sensitivity to the data locations, more stable and much less dependent on the length of time series. Moreover, we present and discuss the results of RCMWPE method on the daily price return series from Asian and European stock markets. There are significant differences between Asian markets and European markets, and the entropy values of Hang Seng Index (HSI) are close to but higher than those of European markets. The reliability of the proposed RCMWPE method has been supported by simulations on generated and real data. It could be applied to a variety of fields to quantify the complexity of the systems over multiple scales more accurately.

  1. Multiscale Modeling of Mesoscale and Interfacial Phenomena

    Science.gov (United States)

    Petsev, Nikolai Dimitrov

    we provide a novel and general framework for multiscale modeling of systems featuring one or more dissolved species. This makes it possible to retain molecular detail for parts of the problem that require it while using a simple, continuum description for parts where high detail is unnecessary, reducing the number of degrees of freedom (i.e. number of particles) dramatically. This opens the possibility for modeling ion transport in biological processes and biomolecule assembly in ionic solution, as well as electrokinetic phenomena at interfaces such as corrosion. The number of particles in the system is further reduced through an integrated boundary approach, which we apply to colloidal suspensions. In this thesis, we describe this general framework for multiscale modeling single- and multicomponent systems, provide several simple equilibrium and non-equilibrium case studies, and discuss future applications.

  2. Multi-scale approximation of Vlasov equation

    International Nuclear Information System (INIS)

    Mouton, A.

    2009-09-01

    One of the most important difficulties of numerical simulation of magnetized plasmas is the existence of multiple time and space scales, which can be very different. In order to produce good simulations of these multi-scale phenomena, it is recommended to develop some models and numerical methods which are adapted to these problems. Nowadays, the two-scale convergence theory introduced by G. Nguetseng and G. Allaire is one of the tools which can be used to rigorously derive multi-scale limits and to obtain new limit models which can be discretized with a usual numerical method: this procedure is so-called a two-scale numerical method. The purpose of this thesis is to develop a two-scale semi-Lagrangian method and to apply it on a gyrokinetic Vlasov-like model in order to simulate a plasma submitted to a large external magnetic field. However, the physical phenomena we have to simulate are quite complex and there are many questions without answers about the behaviour of a two-scale numerical method, especially when such a method is applied on a nonlinear model. In a first part, we develop a two-scale finite volume method and we apply it on the weakly compressible 1D isentropic Euler equations. Even if this mathematical context is far from a Vlasov-like model, it is a relatively simple framework in order to study the behaviour of a two-scale numerical method in front of a nonlinear model. In a second part, we develop a two-scale semi-Lagrangian method for the two-scale model developed by E. Frenod, F. Salvarani et E. Sonnendrucker in order to simulate axisymmetric charged particle beams. Even if the studied physical phenomena are quite different from magnetic fusion experiments, the mathematical context of the one-dimensional paraxial Vlasov-Poisson model is very simple for establishing the basis of a two-scale semi-Lagrangian method. In a third part, we use the two-scale convergence theory in order to improve M. Bostan's weak-* convergence results about the finite

  3. The Goddard multi-scale modeling system with unified physics

    Directory of Open Access Journals (Sweden)

    W.-K. Tao

    2009-08-01

    Full Text Available Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1 a cloud-resolving model (CRM, (2 a regional-scale model, the NASA unified Weather Research and Forecasting Model (WRF, and (3 a coupled CRM-GCM (general circulation model, known as the Goddard Multi-scale Modeling Framework or MMF. The same cloud-microphysical processes, long- and short-wave radiative transfer and land-surface processes are applied in all of the models to study explicit cloud-radiation and cloud-surface interactive processes in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator for comparison and validation with NASA high-resolution satellite data.

    This paper reviews the development and presents some applications of the multi-scale modeling system, including results from using the multi-scale modeling system to study the interactions between clouds, precipitation, and aerosols. In addition, use of the multi-satellite simulator to identify the strengths and weaknesses of the model-simulated precipitation processes will be discussed as well as future model developments and applications.

  4. Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Plechac, Petr [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Mathematics; Univ. of Delaware, Newark, DE (United States). Dept. of Mathematics; Vlachos, Dionisios [Univ. of Delaware, Newark, DE (United States). Dept. of Chemical and Biomolecular Engineering; Katsoulakis, Markos [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Mathematics

    2013-09-05

    The overall objective of this project is to develop multiscale models for understanding and eventually designing complex processes for renewables. To the best of our knowledge, our work is the first attempt at modeling complex reacting systems, whose performance relies on underlying multiscale mathematics. Our specific application lies at the heart of biofuels initiatives of DOE and entails modeling of catalytic systems, to enable economic, environmentally benign, and efficient conversion of biomass into either hydrogen or valuable chemicals. Specific goals include: (i) Development of rigorous spatio-temporal coarse-grained kinetic Monte Carlo (KMC) mathematics and simulation for microscopic processes encountered in biomass transformation. (ii) Development of hybrid multiscale simulation that links stochastic simulation to a deterministic partial differential equation (PDE) model for an entire reactor. (iii) Development of hybrid multiscale simulation that links KMC simulation with quantum density functional theory (DFT) calculations. (iv) Development of parallelization of models of (i)-(iii) to take advantage of Petaflop computing and enable real world applications of complex, multiscale models. In this NCE period, we continued addressing these objectives and completed the proposed work. Main initiatives, key results, and activities are outlined.

  5. Microphysics in Multi-scale Modeling System with Unified Physics

    Science.gov (United States)

    Tao, Wei-Kuo

    2012-01-01

    Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.

  6. Conformal-Based Surface Morphing and Multi-Scale Representation

    Directory of Open Access Journals (Sweden)

    Ka Chun Lam

    2014-05-01

    Full Text Available This paper presents two algorithms, based on conformal geometry, for the multi-scale representations of geometric shapes and surface morphing. A multi-scale surface representation aims to describe a 3D shape at different levels of geometric detail, which allows analyzing or editing surfaces at the global or local scales effectively. Surface morphing refers to the process of interpolating between two geometric shapes, which has been widely applied to estimate or analyze deformations in computer graphics, computer vision and medical imaging. In this work, we propose two geometric models for surface morphing and multi-scale representation for 3D surfaces. The basic idea is to represent a 3D surface by its mean curvature function, H, and conformal factor function λ, which uniquely determine the geometry of the surface according to Riemann surface theory. Once we have the (λ, H parameterization of the surface, post-processing of the surface can be done directly on the conformal parameter domain. In particular, the problem of multi-scale representations of shapes can be reduced to the signal filtering on the λ and H parameters. On the other hand, the surface morphing problem can be transformed to an interpolation process of two sets of (λ, H parameters. We test the proposed algorithms on 3D human face data and MRI-derived brain surfaces. Experimental results show that our proposed methods can effectively obtain multi-scale surface representations and give natural surface morphing results.

  7. Multiscale Modeling in the Clinic: Drug Design and Development

    Energy Technology Data Exchange (ETDEWEB)

    Clancy, Colleen E.; An, Gary; Cannon, William R.; Liu, Yaling; May, Elebeoba E.; Ortoleva, Peter; Popel, Aleksander S.; Sluka, James P.; Su, Jing; Vicini, Paolo; Zhou, Xiaobo; Eckmann, David M.

    2016-02-17

    A wide range of length and time scales are relevant to pharmacology, especially in drug development, drug design and drug delivery. Therefore, multi-scale computational modeling and simulation methods and paradigms that advance the linkage of phenomena occurring at these multiple scales have become increasingly important. Multi-scale approaches present in silico opportunities to advance laboratory research to bedside clinical applications in pharmaceuticals research. This is achievable through the capability of modeling to reveal phenomena occurring across multiple spatial and temporal scales, which are not otherwise readily accessible to experimentation. The resultant models, when validated, are capable of making testable predictions to guide drug design and delivery. In this review we describe the goals, methods, and opportunities of multi-scale modeling in drug design and development. We demonstrate the impact of multiple scales of modeling in this field. We indicate the common mathematical techniques employed for multi-scale modeling approaches used in pharmacology and present several examples illustrating the current state-of-the-art regarding drug development for: Excitable Systems (Heart); Cancer (Metastasis and Differentiation); Cancer (Angiogenesis and Drug Targeting); Metabolic Disorders; and Inflammation and Sepsis. We conclude with a focus on barriers to successful clinical translation of drug development, drug design and drug delivery multi-scale models.

  8. Unusual multiscale mechanics of biomimetic nanoparticle hydrogels.

    Science.gov (United States)

    Zhou, Yunlong; Damasceno, Pablo F; Somashekar, Bagganahalli S; Engel, Michael; Tian, Falin; Zhu, Jian; Huang, Rui; Johnson, Kyle; McIntyre, Carl; Sun, Kai; Yang, Ming; Green, Peter F; Ramamoorthy, Ayyalusamy; Glotzer, Sharon C; Kotov, Nicholas A

    2018-01-12

    Viscoelastic properties are central for gels and other materials. Simultaneously, high storage and loss moduli are difficult to attain due to their contrarian requirements to chemical structure. Biomimetic inorganic nanoparticles offer a promising toolbox for multiscale engineering of gel mechanics, but a conceptual framework for their molecular, nanoscale, mesoscale, and microscale engineering as viscoelastic materials is absent. Here we show nanoparticle gels with simultaneously high storage and loss moduli from CdTe nanoparticles. Viscoelastic figure of merit reaches 1.83 MPa exceeding that of comparable gels by 100-1000 times for glutathione-stabilized nanoparticles. The gels made from the smallest nanoparticles display the highest stiffness, which was attributed to the drastic change of GSH configurations when nanoparticles decrease in size. A computational model accounting for the difference in nanoparticle interactions for variable GSH configurations describes the unusual trends of nanoparticle gel viscoelasticity. These observations are generalizable to other NP gels interconnected by supramolecular interactions and lead to materials with high-load bearing abilities and energy dissipation needed for multiple technologies.

  9. Multiscale physics of rubber-ice friction

    Science.gov (United States)

    Tuononen, Ari J.; Kriston, András; Persson, Bo

    2016-09-01

    Ice friction plays an important role in many engineering applications, e.g., tires on icy roads, ice breaker ship motion, or winter sports equipment. Although numerous experiments have already been performed to understand the effect of various conditions on ice friction, to reveal the fundamental frictional mechanisms is still a challenging task. This study uses in situ white light interferometry to analyze ice surface topography during linear friction testing with a rubber slider. The method helps to provide an understanding of the link between changes in the surface topography and the friction coefficient through direct visualization and quantitative measurement of the morphologies of the ice surface at different length scales. Besides surface polishing and scratching, it was found that ice melts locally even after one sweep showing the refrozen droplets. A multi-scale rubber friction theory was also applied to study the contribution of viscoelasticity to the total friction coefficient, which showed a significant level with respect to the smoothness of the ice; furthermore, the theory also confirmed the possibility of local ice melting.

  10. Fast Plasma Investigation for Magnetospheric Multiscale

    Science.gov (United States)

    Pollock, C.; Moore, T.; Coffey, V.; Dorelli J.; Giles, B.; Adrian, M.; Chandler, M.; Duncan, C.; Figueroa-Vinas, A.; Garcia, K.; hide

    2016-01-01

    The Fast Plasma Investigation (FPI) was developed for flight on the Magnetospheric Multiscale (MMS) mission to measure the differential directional flux of magnetospheric electrons and ions with unprecedented time resolution to resolve kinetic-scale plasma dynamics. This increased resolution has been accomplished by placing four dual 180-degree top hat spectrometers for electrons and four dual 180-degree top hat spectrometers for ions around the periphery of each of four MMS spacecraft. Using electrostatic field-of-view deflection, the eight spectrometers for each species together provide 4pi-sr-field-of-view with, at worst, 11.25-degree sample spacing. Energy/charge sampling is provided by swept electrostatic energy/charge selection over the range from 10 eVq to 30000 eVq. The eight dual spectrometers on each spacecraft are controlled and interrogated by a single block redundant Instrument Data Processing Unit, which in turn interfaces to the observatory's Instrument Suite Central Instrument Data processor. This paper described the design of FPI, its ground and in-flight calibration, its operational concept, and its data products.

  11. Laser Writing of Multiscale Chiral Polymer Metamaterials

    Directory of Open Access Journals (Sweden)

    E. P. Furlani

    2012-01-01

    Full Text Available A new approach to metamaterials is presented that involves laser-based patterning of novel chiral polymer media, wherein chirality is realized at two distinct length scales, intrinsically at the molecular level and geometrically at a length scale on the order of the wavelength of the incident field. In this approach, femtosecond-pulsed laser-induced two-photon lithography (TPL is used to pattern a photoresist-chiral polymer mixture into planar chiral shapes. Enhanced bulk chirality can be realized by tuning the wavelength-dependent chiral response at both the molecular and geometric level to ensure an overlap of their respective spectra. The approach is demonstrated via the fabrication of a metamaterial consisting of a two-dimensional array of chiral polymer-based L-structures. The fabrication process is described and modeling is performed to demonstrate the distinction between molecular and planar geometric-based chirality and the effects of the enhanced multiscale chirality on the optical response of such media. This new approach to metamaterials holds promise for the development of tunable, polymer-based optical metamaterials with low loss.

  12. Multiscale Concrete Modeling of Aging Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Hammi, Yousseff [Mississippi State Univ., Mississippi State, MS (United States); Gullett, Philipp [Mississippi State Univ., Mississippi State, MS (United States); Horstemeyer, Mark F. [Mississippi State Univ., Mississippi State, MS (United States)

    2015-07-31

    In this work a numerical finite element framework is implemented to enable the integration of coupled multiscale and multiphysics transport processes. A User Element subroutine (UEL) in Abaqus is used to simultaneously solve stress equilibrium, heat conduction, and multiple diffusion equations for 2D and 3D linear and quadratic elements. Transport processes in concrete structures and their degradation mechanisms are presented along with the discretization of the governing equations. The multiphysics modeling framework is theoretically extended to the linear elastic fracture mechanics (LEFM) by introducing the eXtended Finite Element Method (XFEM) and based on the XFEM user element implementation of Giner et al. [2009]. A damage model that takes into account the damage contribution from the different degradation mechanisms is theoretically developed. The total contribution of damage is forwarded to a Multi-Stage Fatigue (MSF) model to enable the assessment of the fatigue life and the deterioration of reinforced concrete structures in a nuclear power plant. Finally, two examples are presented to illustrate the developed multiphysics user element implementation and the XFEM implementation of Giner et al. [2009].

  13. Navigation Operations for the Magnetospheric Multiscale Mission

    Science.gov (United States)

    Long, Anne; Farahmand, Mitra; Carpenter, Russell

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission employs four identical spinning spacecraft flying in highly elliptical Earth orbits. These spacecraft will fly in a series of tetrahedral formations with separations of less than 10 km. MMS navigation operations use onboard navigation to satisfy the mission definitive orbit and time determination requirements and in addition to minimize operations cost and complexity. The onboard navigation subsystem consists of the Navigator GPS receiver with Goddard Enhanced Onboard Navigation System (GEONS) software, and an Ultra-Stable Oscillator. The four MMS spacecraft are operated from a single Mission Operations Center, which includes a Flight Dynamics Operations Area (FDOA) that supports MMS navigation operations, as well as maneuver planning, conjunction assessment and attitude ground operations. The System Manager component of the FDOA automates routine operations processes. The GEONS Ground Support System component of the FDOA provides the tools needed to support MMS navigation operations. This paper provides an overview of the MMS mission and associated navigation requirements and constraints and discusses MMS navigation operations and the associated MMS ground system components built to support navigation-related operations.

  14. Multiscale wavelet representations for mammographic feature analysis

    Science.gov (United States)

    Laine, Andrew F.; Song, Shuwu

    1992-12-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet coefficients, enhanced by linear, exponential and constant weight functions localized in scale space. By improving the visualization of breast pathology we can improve the changes of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).

  15. Fast Plasma Investigation for Magnetospheric Multiscale

    Science.gov (United States)

    Pollock, C.; Moore, T.; Jacques, A.; Burch, J.; Gliese, U.; Saito, Y.; Omoto, T.; Avanov, L.; Barrie, A.; Coffey, V.; Dorelli, J.; Gershman, D.; Giles, B.; Rosnack, T.; Salo, C.; Yokota, S.; Adrian, M.; Aoustin, C.; Auletti, C.; Aung, S.; Bigio, V.; Cao, N.; Chandler, M.; Chornay, D.; Christian, K.; Clark, G.; Collinson, G.; Corris, T.; De Los Santos, A.; Devlin, R.; Diaz, T.; Dickerson, T.; Dickson, C.; Diekmann, A.; Diggs, F.; Duncan, C.; Figueroa-Vinas, A.; Firman, C.; Freeman, M.; Galassi, N.; Garcia, K.; Goodhart, G.; Guererro, D.; Hageman, J.; Hanley, J.; Hemminger, E.; Holland, M.; Hutchins, M.; James, T.; Jones, W.; Kreisler, S.; Kujawski, J.; Lavu, V.; Lobell, J.; LeCompte, E.; Lukemire, A.; MacDonald, E.; Mariano, A.; Mukai, T.; Narayanan, K.; Nguyan, Q.; Onizuka, M.; Paterson, W.; Persyn, S.; Piepgrass, B.; Cheney, F.; Rager, A.; Raghuram, T.; Ramil, A.; Reichenthal, L.; Rodriguez, H.; Rouzaud, J.; Rucker, A.; Saito, Y.; Samara, M.; Sauvaud, J.-A.; Schuster, D.; Shappirio, M.; Shelton, K.; Sher, D.; Smith, D.; Smith, K.; Smith, S.; Steinfeld, D.; Szymkiewicz, R.; Tanimoto, K.; Taylor, J.; Tucker, C.; Tull, K.; Uhl, A.; Vloet, J.; Walpole, P.; Weidner, S.; White, D.; Winkert, G.; Yeh, P.-S.; Zeuch, M.

    2016-03-01

    The Fast Plasma Investigation (FPI) was developed for flight on the Magnetospheric Multiscale (MMS) mission to measure the differential directional flux of magnetospheric electrons and ions with unprecedented time resolution to resolve kinetic-scale plasma dynamics. This increased resolution has been accomplished by placing four dual 180-degree top hat spectrometers for electrons and four dual 180-degree top hat spectrometers for ions around the periphery of each of four MMS spacecraft. Using electrostatic field-of-view deflection, the eight spectrometers for each species together provide 4pi-sr field-of-view with, at worst, 11.25-degree sample spacing. Energy/charge sampling is provided by swept electrostatic energy/charge selection over the range from 10 eV/q to 30000 eV/q. The eight dual spectrometers on each spacecraft are controlled and interrogated by a single block redundant Instrument Data Processing Unit, which in turn interfaces to the observatory's Instrument Suite Central Instrument Data Processor. This paper describes the design of FPI, its ground and in-flight calibration, its operational concept, and its data products.

  16. Multiscale Modeling of UHTC: Thermal Conductivity

    Science.gov (United States)

    Lawson, John W.; Murry, Daw; Squire, Thomas; Bauschlicher, Charles W.

    2012-01-01

    We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.

  17. Magnetospheric MultiScale (MMS) System Manager

    Science.gov (United States)

    Schiff, Conrad; Maher, Francis Alfred; Henely, Sean Philip; Rand, David

    2014-01-01

    The Magnetospheric MultiScale (MMS) mission is an ambitious NASA space science mission in which 4 spacecraft are flown in tight formation about a highly elliptical orbit. Each spacecraft has multiple instruments that measure particle and field compositions in the Earths magnetosphere. By controlling the members relative motion, MMS can distinguish temporal and spatial fluctuations in a way that a single spacecraft cannot.To achieve this control, 2 sets of four maneuvers, distributed evenly across the spacecraft must be performed approximately every 14 days. Performing a single maneuver on an individual spacecraft is usually labor intensive and the complexity becomes clearly increases with four. As a result, the MMS flight dynamics team turned to the System Manager to put the routine or error-prone under machine control freeing the analysts for activities that require human judgment.The System Manager is an expert system that is capable of handling operations activities associated with performing MMS maneuvers. As an expert system, it can work off a known schedule, launching jobs based on a one-time occurrence or on a set reoccurring schedule. It is also able to detect situational changes and use event-driven programming to change schedules, adapt activities, or call for help.

  18. A multiscale modeling approach for biomolecular systems

    Energy Technology Data Exchange (ETDEWEB)

    Bowling, Alan, E-mail: bowling@uta.edu; Haghshenas-Jaryani, Mahdi, E-mail: mahdi.haghshenasjaryani@mavs.uta.edu [The University of Texas at Arlington, Department of Mechanical and Aerospace Engineering (United States)

    2015-04-15

    This paper presents a new multiscale molecular dynamic model for investigating the effects of external interactions, such as contact and impact, during stepping and docking of motor proteins and other biomolecular systems. The model retains the mass properties ensuring that the result satisfies Newton’s second law. This idea is presented using a simple particle model to facilitate discussion of the rigid body model; however, the particle model does provide insights into particle dynamics at the nanoscale. The resulting three-dimensional model predicts a significant decrease in the effect of the random forces associated with Brownian motion. This conclusion runs contrary to the widely accepted notion that the motor protein’s movements are primarily the result of thermal effects. This work focuses on the mechanical aspects of protein locomotion; the effect ATP hydrolysis is estimated as internal forces acting on the mechanical model. In addition, the proposed model can be numerically integrated in a reasonable amount of time. Herein, the differences between the motion predicted by the old and new modeling approaches are compared using a simplified model of myosin V.

  19. Multiscale modeling of integrated CCS systems

    Science.gov (United States)

    Alhajaj, Ahmed; Shah, Nilay

    2015-01-01

    The world will continue consuming fossil fuel within the coming decades to meet its growing energy demand; however, this source must be cleaner through implementation of carbon capture, transport and storage (CCTS). This process is complex and involves multiple phases, owned by different operational companies and stakeholders with different business models and regulatory framework. The objective of this work is to develop a multiscale modeling approach to link process models, post-combustion capture plant model and network design models under an optimization framework in order to design and analyse the cost optimal CO2 infrastructure that match CO2 sources and sinks in capacity and time. The network comprises a number of CO2 sources at fixed locations and a number of potential CO2 storage sites. The decisions to be determined include from which sources it is appropriate to capture CO2 and the cost-optimal degree-of-capture (DOC) for a given source and the infrastructural layout of the CO2 transmission network.

  20. Generalized multiscale finite element method. Symmetric interior penalty coupling

    KAUST Repository

    Efendiev, Yalchin R.

    2013-12-01

    Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L2-norm and a boundary weighted L2-norm for computing the "mass" matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples. © 2013 Elsevier Inc.

  1. A Micromechanics-Based Method for Multiscale Fatigue Prediction

    Science.gov (United States)

    Moore, John Allan

    An estimated 80% of all structural failures are due to mechanical fatigue, often resulting in catastrophic, dangerous and costly failure events. However, an accurate model to predict fatigue remains an elusive goal. One of the major challenges is that fatigue is intrinsically a multiscale process, which is dependent on a structure's geometric design as well as its material's microscale morphology. The following work begins with a microscale study of fatigue nucleation around non- metallic inclusions. Based on this analysis, a novel multiscale method for fatigue predictions is developed. This method simulates macroscale geometries explicitly while concurrently calculating the simplified response of microscale inclusions. Thus, providing adequate detail on multiple scales for accurate fatigue life predictions. The methods herein provide insight into the multiscale nature of fatigue, while also developing a tool to aid in geometric design and material optimization for fatigue critical devices such as biomedical stents and artificial heart valves.

  2. Algorithmic foundation of multi-scale spatial representation

    CERN Document Server

    Li, Zhilin

    2006-01-01

    With the widespread use of GIS, multi-scale representation has become an important issue in the realm of spatial data handling. However, no book to date has systematically tackled the different aspects of this discipline. Emphasizing map generalization, Algorithmic Foundation of Multi-Scale Spatial Representation addresses the mathematical basis of multi-scale representation, specifically, the algorithmic foundation.Using easy-to-understand language, the author focuses on geometric transformations, with each chapter surveying a particular spatial feature. After an introduction to the essential operations required for geometric transformations as well as some mathematical and theoretical background, the book describes algorithms for a class of point features/clusters. It then examines algorithms for individual line features, such as the reduction of data points, smoothing (filtering), and scale-driven generalization, followed by a discussion of algorithms for a class of line features including contours, hydrog...

  3. Exploration of a mechanism for the production of highly unsaturated fatty acids in Scenedesmus sp. at low temperature grown on oil crop residue based medium.

    Science.gov (United States)

    Lu, Qian; Li, Jun; Wang, Jinghan; Li, Kun; Li, Jingjing; Han, Pei; Chen, Paul; Zhou, Wenguang

    2017-11-01

    The ability of algae to produce lipids comprising of unsaturated fatty acids varies with strains and culture conditions. This study investigates the effect of temperature on the production of unsaturated fatty acids in Scenedesmus sp. grown on oil crop residue based medium. At low temperature (10°C), synthesis of lipids compromising of high contents of unsaturated fatty acids took place primarily in the early stage while protein accumulation mainly occurred in the late stage. This stepwise lipid-protein synthesis process was found to be associated with the contents of acetyl-CoA and α-KG in the algal cells. A mechanism was proposed and tested through simulation experiments which quantified the carbon flux allocation in algal cells at different cultivation stages. It is concluded that low culture temperature such as 10°C is suitable for the production of lipids comprising of unsaturated fatty acids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Multiscale Finite Element Methods for Flows on Rough Surfaces

    KAUST Repository

    Efendiev, Yalchin

    2013-01-01

    In this paper, we present the Multiscale Finite Element Method (MsFEM) for problems on rough heterogeneous surfaces. We consider the diffusion equation on oscillatory surfaces. Our objective is to represent small-scale features of the solution via multiscale basis functions described on a coarse grid. This problem arises in many applications where processes occur on surfaces or thin layers. We present a unified multiscale finite element framework that entails the use of transformations that map the reference surface to the deformed surface. The main ingredients of MsFEM are (1) the construction of multiscale basis functions and (2) a global coupling of these basis functions. For the construction of multiscale basis functions, our approach uses the transformation of the reference surface to a deformed surface. On the deformed surface, multiscale basis functions are defined where reduced (1D) problems are solved along the edges of coarse-grid blocks to calculate nodalmultiscale basis functions. Furthermore, these basis functions are transformed back to the reference configuration. We discuss the use of appropriate transformation operators that improve the accuracy of the method. The method has an optimal convergence if the transformed surface is smooth and the image of the coarse partition in the reference configuration forms a quasiuniform partition. In this paper, we consider such transformations based on harmonic coordinates (following H. Owhadi and L. Zhang [Comm. Pure and Applied Math., LX(2007), pp. 675-723]) and discuss gridding issues in the reference configuration. Numerical results are presented where we compare the MsFEM when two types of deformations are used formultiscale basis construction. The first deformation employs local information and the second deformation employs a global information. Our numerical results showthat one can improve the accuracy of the simulations when a global information is used. © 2013 Global-Science Press.

  5. Generalized multiscale finite element methods (GMsFEM)

    KAUST Repository

    Efendiev, Yalchin R.

    2013-10-01

    In this paper, we propose a general approach called Generalized Multiscale Finite Element Method (GMsFEM) for performing multiscale simulations for problems without scale separation over a complex input space. As in multiscale finite element methods (MsFEMs), the main idea of the proposed approach is to construct a small dimensional local solution space that can be used to generate an efficient and accurate approximation to the multiscale solution with a potentially high dimensional input parameter space. In the proposed approach, we present a general procedure to construct the offline space that is used for a systematic enrichment of the coarse solution space in the online stage. The enrichment in the online stage is performed based on a spectral decomposition of the offline space. In the online stage, for any input parameter, a multiscale space is constructed to solve the global problem on a coarse grid. The online space is constructed via a spectral decomposition of the offline space and by choosing the eigenvectors corresponding to the largest eigenvalues. The computational saving is due to the fact that the construction of the online multiscale space for any input parameter is fast and this space can be re-used for solving the forward problem with any forcing and boundary condition. Compared with the other approaches where global snapshots are used, the local approach that we present in this paper allows us to eliminate unnecessary degrees of freedom on a coarse-grid level. We present various examples in the paper and some numerical results to demonstrate the effectiveness of our method. © 2013 Elsevier Inc.

  6. Rough Set Approach to Incomplete Multiscale Information System

    Science.gov (United States)

    Yang, Xibei; Qi, Yong; Yu, Dongjun; Yu, Hualong; Song, Xiaoning; Yang, Jingyu

    2014-01-01

    Multiscale information system is a new knowledge representation system for expressing the knowledge with different levels of granulations. In this paper, by considering the unknown values, which can be seen everywhere in real world applications, the incomplete multiscale information system is firstly investigated. The descriptor technique is employed to construct rough sets at different scales for analyzing the hierarchically structured data. The problem of unravelling decision rules at different scales is also addressed. Finally, the reduct descriptors are formulated to simplify decision rules, which can be derived from different scales. Some numerical examples are employed to substantiate the conceptual arguments. PMID:25276852

  7. Multiscale Shannon entropy and its application in the stock market

    Science.gov (United States)

    Gu, Rongbao

    2017-10-01

    In this paper, we perform a multiscale entropy analysis on the Dow Jones Industrial Average Index using the Shannon entropy. The stock index shows the characteristic of multi-scale entropy that caused by noise in the market. The entropy is demonstrated to have significant predictive ability for the stock index in both long-term and short-term, and empirical results verify that noise does exist in the market and can affect stock price. It has important implications on market participants such as noise traders.

  8. Multiscale analysis and nonlinear dynamics from genes to the brain

    CERN Document Server

    Schuster, Heinz Georg

    2013-01-01

    Since modeling multiscale phenomena in systems biology and neuroscience is a highly interdisciplinary task, the editor of the book invited experts in bio-engineering, chemistry, cardiology, neuroscience, computer science, and applied mathematics, to provide their perspectives. Each chapter is a window into the current state of the art in the areas of research discussed and the book is intended for advanced researchers interested in recent developments in these fields. While multiscale analysis is the major integrating theme of the book, its subtitle does not call for bridging the scales from g

  9. Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Plechac, Petr [Univ. of Delaware, Newark, DE (United States). Dept. of Mathematical Sciences

    2016-03-01

    The overall objective of this project was to develop multiscale models for understanding and eventually designing complex processes for renewables. To the best of our knowledge, our work is the first attempt at modeling complex reacting systems, whose performance relies on underlying multiscale mathematics and developing rigorous mathematical techniques and computational algorithms to study such models. Our specific application lies at the heart of biofuels initiatives of DOE and entails modeling of catalytic systems, to enable economic, environmentally benign, and efficient conversion of biomass into either hydrogen or valuable chemicals.

  10. Modeling Temporal Evolution and Multiscale Structure in Networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2013-01-01

    Many real-world networks exhibit both temporal evolution and multiscale structure. We propose a model for temporally correlated multifurcating hierarchies in complex networks which jointly capture both effects. We use the Gibbs fragmentation tree as prior over multifurcating trees and a change......-point model to account for the temporal evolution of each vertex. We demonstrate that our model is able to infer time-varying multiscale structure in synthetic as well as three real world time-evolving complex networks. Our modeling of the temporal evolution of hierarchies brings new insights...

  11. Multiscale integration schemes for jump-diffusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Givon, D.; Kevrekidis, I.G.

    2008-12-09

    We study a two-time-scale system of jump-diffusion stochastic differential equations. We analyze a class of multiscale integration methods for these systems, which, in the spirit of [1], consist of a hybridization between a standard solver for the slow components and short runs for the fast dynamics, which are used to estimate the effect that the fast components have on the slow ones. We obtain explicit bounds for the discrepancy between the results of the multiscale integration method and the slow components of the original system.

  12. Multiscale modeling of complex materials phenomenological, theoretical and computational aspects

    CERN Document Server

    Trovalusci, Patrizia

    2014-01-01

    The papers in this volume deal with materials science, theoretical mechanics and experimental and computational techniques at multiple scales, providing a sound base and a framework for many applications which are hitherto treated in a phenomenological sense. The basic principles are formulated of multiscale modeling strategies towards modern complex multiphase materials subjected to various types of mechanical, thermal loadings and environmental effects. The focus is on problems where mechanics is highly coupled with other concurrent physical phenomena. Attention is also focused on the historical origins of multiscale modeling and foundations of continuum mechanics currently adopted to model non-classical continua with substructure, for which internal length scales play a crucial role.

  13. Multi-scale magnetic field intermittence in the plasma sheet

    Directory of Open Access Journals (Sweden)

    Z. Vörös

    2003-09-01

    Full Text Available This paper demonstrates that intermittent magnetic field fluctuations in the plasma sheet exhibit transitory, localized, and multi-scale features. We propose a multifractal-based algorithm, which quantifies intermittence on the basis of the statistical distribution of the "strength of burstiness", estimated within a sliding window. Interesting multi-scale phenomena observed by the Cluster spacecraft include large-scale motion of the current sheet and bursty bulk flow associated turbulence, interpreted as a cross-scale coupling (CSC process.Key words. Magnetospheric physics (magnetotail; plasma sheet – Space plasma physics (turbulence

  14. First results from the Magnetospheric Multiscale mission

    Science.gov (United States)

    Lavraud, B.

    2017-12-01

    Since its launch in March 2015, NASA's Magnetospheric Multiscale mission (MMS) provides a wealth of unprecedented high resolution measurements of space plasma properties and dynamics in the near-Earth environment. MMS was designed in the first place to study the fundamental process of collision-less magnetic reconnection. The two first results reviewed here pertain to this topic and highlight how the extremely high resolution MMS data (electrons, in particular, with full three dimensional measurements at 30 ms in burst mode) have permitted to tackle electron dynamics in unprecedented details. The first result demonstrates how electrons become demagnetized and scattered near the magnetic reconnection X line as a result of increased magnetic field curvature, together with a decrease in its magnitude. The second result demonstrates that electrons form crescent-shaped, agyrotropic distribution functions very near the X line, suggestive of the existence of a perpendicular current aligned with the local electric field and consistent with the energy conversion expected in magnetic reconnection (such that J\\cdot E > 0). Aside from magnetic reconnection, we show how MMS contributes to topics such as wave properties and their interaction with particles. Thanks again to extremely high resolution measurements, the lossless and periodical energy exchange between wave electromagnetic fields and particles, as expected in the case of kinetic Alfvén waves, was confirmed. Although not discussed, MMS has the potential to solve many other outstanding issues in collision-less plasma physics, for example regarding shock or turbulence acceleration, with obvious broader impacts in astrophysics in general.

  15. A multiscale problem in thermal science

    Directory of Open Access Journals (Sweden)

    Casenave Fabien

    2013-01-01

    Full Text Available We consider a multiscale heat problem in civil aviation: determine the temperature field in a plane in flying conditions, with air conditioning. Ventilated electronic components in the bay bring a heat source, introducing a second scale in the problem. First, we present three levels of modelling for the physical phenomena, which are applied to the two sub-problems: the plane and the electronic component. Then, having reduced the complexity of the problem to a linear non-symmetric coercive PDE, we will use the reduced basis method for the electronic component problem. Nous considérons un problème multi-échelle d’aérothermie en aviation civile. Nous souhai- tons déterminer le champ de température dans un avion en conditions de vol, avec présence d’une climatisation. Des composants électroniques ventilés sont présents dans la soute, et constituent une source de chaleur, introduisant une deuxième échelle dans notre problème. Dans un premier temps, nous présentons trois niveaux de modélisation pour le phénomène d’aérothermie, que nous appliquerons aux deux sous-problèmes : l’avion et le composant électronique. Ensuite, nous appliquons la méthode des bases réduites au problème du composant électronique, en considérant des simplifications de modélisation amenant à la résolution numérique d’une EDP elliptique linéaire coercive non-symétrique.

  16. Fast Particle Methods for Multiscale Phenomena Simulations

    Science.gov (United States)

    Koumoutsakos, P.; Wray, A.; Shariff, K.; Pohorille, Andrew

    2000-01-01

    We are developing particle methods oriented at improving computational modeling capabilities of multiscale physical phenomena in : (i) high Reynolds number unsteady vortical flows, (ii) particle laden and interfacial flows, (iii)molecular dynamics studies of nanoscale droplets and studies of the structure, functions, and evolution of the earliest living cell. The unifying computational approach involves particle methods implemented in parallel computer architectures. The inherent adaptivity, robustness and efficiency of particle methods makes them a multidisciplinary computational tool capable of bridging the gap of micro-scale and continuum flow simulations. Using efficient tree data structures, multipole expansion algorithms, and improved particle-grid interpolation, particle methods allow for simulations using millions of computational elements, making possible the resolution of a wide range of length and time scales of these important physical phenomena.The current challenges in these simulations are in : [i] the proper formulation of particle methods in the molecular and continuous level for the discretization of the governing equations [ii] the resolution of the wide range of time and length scales governing the phenomena under investigation. [iii] the minimization of numerical artifacts that may interfere with the physics of the systems under consideration. [iv] the parallelization of processes such as tree traversal and grid-particle interpolations We are conducting simulations using vortex methods, molecular dynamics and smooth particle hydrodynamics, exploiting their unifying concepts such as : the solution of the N-body problem in parallel computers, highly accurate particle-particle and grid-particle interpolations, parallel FFT's and the formulation of processes such as diffusion in the context of particle methods. This approach enables us to transcend among seemingly unrelated areas of research.

  17. Multiscale mechanical modeling of soft biological tissues

    Science.gov (United States)

    Stylianopoulos, Triantafyllos

    2008-10-01

    Soft biological tissues include both native and artificial tissues. In the human body, tissues like the articular cartilage, arterial wall, and heart valve leaflets are examples of structures composed of an underlying network of collagen fibers, cells, proteins and molecules. Artificial tissues are less complex than native tissues and mainly consist of a fiber polymer network with the intent of replacing lost or damaged tissue. Understanding of the mechanical function of these materials is essential for many clinical treatments (e.g. arterial clamping, angioplasty), diseases (e.g. arteriosclerosis) and tissue engineering applications (e.g. engineered blood vessels or heart valves). This thesis presents the derivation and application of a multiscale methodology to describe the macroscopic mechanical function of soft biological tissues incorporating directly their structural architecture. The model, which is based on volume averaging theory, accounts for structural parameters such as the network volume fraction and orientation, the realignment of the fibers in response to strain, the interactions among the fibers and the interactions between the fibers and the interstitial fluid in order to predict the overall tissue behavior. Therefore, instead of using a constitutive equation to relate strain to stress, the tissue microstructure is modeled within a representative volume element (RVE) and the macroscopic response at any point in the tissue is determined by solving a micromechanics problem in the RVE. The model was applied successfully to acellular collagen gels, native blood vessels, and electrospun polyurethane scaffolds and provided accurate predictions for permeability calculations in isotropic and oriented fiber networks. The agreement of model predictions with experimentally determined mechanical properties provided insights into the mechanics of tissues and tissue constructs, while discrepancies revealed limitations of the model framework.

  18. Front-end vision and multi-scale image analysis multi-scale computer vision theory and applications, written in Mathematica

    CERN Document Server

    Romeny, Bart M Haar

    2008-01-01

    Front-End Vision and Multi-Scale Image Analysis is a tutorial in multi-scale methods for computer vision and image processing. It builds on the cross fertilization between human visual perception and multi-scale computer vision (`scale-space') theory and applications. The multi-scale strategies recognized in the first stages of the human visual system are carefully examined, and taken as inspiration for the many geometric methods discussed. All chapters are written in Mathematica, a spectacular high-level language for symbolic and numerical manipulations. The book presents a new and effective

  19. Multiscale Drivers of Global Environmental Health

    Science.gov (United States)

    Desai, Manish Anil

    In this dissertation, I motivate, develop, and demonstrate three such approaches for investigating multiscale drivers of global environmental health: (1) a metric for analyzing contributions and responses to climate change from global to sectoral scales, (2) a framework for unraveling the influence of environmental change on infectious diseases at regional to local scales, and (3) a model for informing the design and evaluation of clean cooking interventions at community to household scales. The full utility of climate debt as an analytical perspective will remain untapped without tools that can be manipulated by a wide range of analysts, including global environmental health researchers. Chapter 2 explains how international natural debt (IND) apportions global radiative forcing from fossil fuel carbon dioxide and methane, the two most significant climate altering pollutants, to individual entities -- primarily countries but also subnational states and economic sectors, with even finer scales possible -- as a function of unique trajectories of historical emissions, taking into account the quite different radiative efficiencies and atmospheric lifetimes of each pollutant. Owing to its straightforward and transparent derivation, IND can readily operationalize climate debt to consider issues of equity and efficiency and drive scenario exercises that explore the response to climate change at multiple scales. Collectively, the analyses presented in this chapter demonstrate how IND can inform a range of key question on climate change mitigation at multiple scales, compelling environmental health towards an appraisal of the causes and not just the consequences of climate change. The environmental change and infectious disease (EnvID) conceptual framework of Chapter 3 builds on a rich history of prior efforts in epidemiologic theory, environmental science, and mathematical modeling by: (1) articulating a flexible and logical system specification; (2) incorporating

  20. Analysing and Correcting the Differences between Multi-Source and Multi-Scale Spatial Remote Sensing Observations

    Science.gov (United States)

    Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun

    2014-01-01

    Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding

  1. Analysing and correcting the differences between multi-source and multi-scale spatial remote sensing observations.

    Science.gov (United States)

    Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun

    2014-01-01

    Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding

  2. Multiscale Hy3S: Hybrid stochastic simulation for supercomputers

    Directory of Open Access Journals (Sweden)

    Kaznessis Yiannis N

    2006-02-01

    Full Text Available Abstract Background Stochastic simulation has become a useful tool to both study natural biological systems and design new synthetic ones. By capturing the intrinsic molecular fluctuations of "small" systems, these simulations produce a more accurate picture of single cell dynamics, including interesting phenomena missed by deterministic methods, such as noise-induced oscillations and transitions between stable states. However, the computational cost of the original stochastic simulation algorithm can be high, motivating the use of hybrid stochastic methods. Hybrid stochastic methods partition the system into multiple subsets and describe each subset as a different representation, such as a jump Markov, Poisson, continuous Markov, or deterministic process. By applying valid approximations and self-consistently merging disparate descriptions, a method can be considerably faster, while retaining accuracy. In this paper, we describe Hy3S, a collection of multiscale simulation programs. Results Building on our previous work on developing novel hybrid stochastic algorithms, we have created the Hy3S software package to enable scientists and engineers to both study and design extremely large well-mixed biological systems with many thousands of reactions and chemical species. We have added adaptive stochastic numerical integrators to permit the robust simulation of dynamically stiff biological systems. In addition, Hy3S has many useful features, including embarrassingly parallelized simulations with MPI; special discrete events, such as transcriptional and translation elongation and cell division; mid-simulation perturbations in both the number of molecules of species and reaction kinetic parameters; combinatorial variation of both initial conditions and kinetic parameters to enable sensitivity analysis; use of NetCDF optimized binary format to quickly read and write large datasets; and a simple graphical user interface, written in Matlab, to help users

  3. Multiscale multiphysics and multidomain models—Flexibility and rigidity

    International Nuclear Information System (INIS)

    Xia, Kelin; Opron, Kristopher; Wei, Guo-Wei

    2013-01-01

    The emerging complexity of large macromolecules has led to challenges in their full scale theoretical description and computer simulation. Multiscale multiphysics and multidomain models have been introduced to reduce the number of degrees of freedom while maintaining modeling accuracy and achieving computational efficiency. A total energy functional is constructed to put energies for polar and nonpolar solvation, chemical potential, fluid flow, molecular mechanics, and elastic dynamics on an equal footing. The variational principle is utilized to derive coupled governing equations for the above mentioned multiphysical descriptions. Among these governing equations is the Poisson-Boltzmann equation which describes continuum electrostatics with atomic charges. The present work introduces the theory of continuum elasticity with atomic rigidity (CEWAR). The essence of CEWAR is to formulate the shear modulus as a continuous function of atomic rigidity. As a result, the dynamics complexity of a macromolecular system is separated from its static complexity so that the more time-consuming dynamics is handled with continuum elasticity theory, while the less time-consuming static analysis is pursued with atomic approaches. We propose a simple method, flexibility-rigidity index (FRI), to analyze macromolecular flexibility and rigidity in atomic detail. The construction of FRI relies on the fundamental assumption that protein functions, such as flexibility, rigidity, and energy, are entirely determined by the structure of the protein and its environment, although the structure is in turn determined by all the interactions. As such, the FRI measures the topological connectivity of protein atoms or residues and characterizes the geometric compactness of the protein structure. As a consequence, the FRI does not resort to the interaction Hamiltonian and bypasses matrix diagonalization, which underpins most other flexibility analysis methods. FRI's computational complexity is of O

  4. Multiscale modeling and simulation of brain blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Perdikaris, Paris, E-mail: parisp@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Grinberg, Leopold, E-mail: leopoldgrinberg@us.ibm.com [IBM T.J Watson Research Center, 1 Rogers St, Cambridge, Massachusetts 02142 (United States); Karniadakis, George Em, E-mail: george-karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912 (United States)

    2016-02-15

    The aim of this work is to present an overview of recent advances in multi-scale modeling of brain blood flow. In particular, we present some approaches that enable the in silico study of multi-scale and multi-physics phenomena in the cerebral vasculature. We discuss the formulation of continuum and atomistic modeling approaches, present a consistent framework for their concurrent coupling, and list some of the challenges that one needs to overcome in achieving a seamless and scalable integration of heterogeneous numerical solvers. The effectiveness of the proposed framework is demonstrated in a realistic case involving modeling the thrombus formation process taking place on the wall of a patient-specific cerebral aneurysm. This highlights the ability of multi-scale algorithms to resolve important biophysical processes that span several spatial and temporal scales, potentially yielding new insight into the key aspects of brain blood flow in health and disease. Finally, we discuss open questions in multi-scale modeling and emerging topics of future research.

  5. Multi-scale modeling strategies in materials science—The ...

    Indian Academy of Sciences (India)

    Unknown

    will review the recently developed quasicontinuum method which is an attempt to bridge the length scales in a single seamless model with the aid of the finite element method. Attempts to generalize this method to finite temperatures will be outlined. Keywords. Multi-scale models; quasicontinuum method; finite elements. 1.

  6. Computer-Aided Multiscale Modelling for Chemical Process Engineering

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Gani, Rafiqul

    2007-01-01

    Chemical processes are generally modeled through monoscale approaches, which, while not adequate, satisfy a useful role in product-process design. In this case, use of a multi-dimensional and multi-scale model-based approach has importance in product-process development. A computer-aided framewor...

  7. Randomized Oversampling for Generalized Multiscale Finite Element Methods

    KAUST Repository

    Calo, Victor M.

    2016-03-23

    In this paper, we develop efficient multiscale methods for flows in heterogeneous media. We use the generalized multiscale finite element (GMsFEM) framework. GMsFEM approximates the solution space locally using a few multiscale basis functions. This approximation selects an appropriate snapshot space and a local spectral decomposition, e.g., the use of oversampled regions, in order to achieve an efficient model reduction. However, the successful construction of snapshot spaces may be costly if too many local problems need to be solved in order to obtain these spaces. We use a moderate quantity of local solutions (or snapshot vectors) with random boundary conditions on oversampled regions with zero forcing to deliver an efficient methodology. Motivated by the randomized algorithm presented in [P. G. Martinsson, V. Rokhlin, and M. Tygert, A Randomized Algorithm for the approximation of Matrices, YALEU/DCS/TR-1361, Yale University, 2006], we consider a snapshot space which consists of harmonic extensions of random boundary conditions defined in a domain larger than the target region. Furthermore, we perform an eigenvalue decomposition in this small space. We study the application of randomized sampling for GMsFEM in conjunction with adaptivity, where local multiscale spaces are adaptively enriched. Convergence analysis is provided. We present representative numerical results to validate the method proposed.

  8. Riparian ecosystems and buffers - multiscale structure, function, and management: introduction

    Science.gov (United States)

    Kathleen A. Dwire; Richard R. Lowrance

    2006-01-01

    Given the importance of issues related to improved understanding and management of riparian ecosystems and buffers, the American Water Resources Association (AWRA) sponsored a Summer Specialty Conference in June 2004 at Olympic Valley, California, entitled 'Riparian Ecosystems and Buffers: Multiscale Structure, Function, and Management.' The primary objective...

  9. A multiphysics and multiscale software environment for modeling astrophysical systems

    NARCIS (Netherlands)

    Portegies Zwart, S.; McMillan, S.; Harfst, S.; Groen, D.; Fujii, M.; Ó Nualláin, B.; Glebbeek, E.; Heggie, D.; Lombardi, J.; Hut, P.; Angelou, V.; Banerjee, S.; Belkus, H.; Fragos, T.; Fregeau, J.; Gaburov, E.; Izzard, R.; Jurić, M.; Justham, S.; Sottoriva, A.; Teuben, P.; van Bever, J.; Yaron, O.; Zemp, M.

    2009-01-01

    We present MUSE, a software framework for combining existing computational tools for different astrophysical domains into a single multiphysics, multiscale application. MUSE facilitates the coupling of existing codes written in different languages by providing inter-language tools and by specifying

  10. Multiscale Fractal Characterization of Hierarchical Heterogeneity in Sandstone Reservoirs

    Science.gov (United States)

    Liu, Yanfeng; Liu, Yuetian; Sun, Lu; Liu, Jian

    2016-07-01

    Heterogeneities affecting reservoirs often develop at different scales. Previous studies have described these heterogeneities using different parameters depending on their size, and there is no one comprehensive method of reservoir evaluation that considers every scale. This paper introduces a multiscale fractal approach to quantify consistently the hierarchical heterogeneities of sandstone reservoirs. Materials taken from typical depositional pattern and aerial photography are used to represent three main types of sandstone reservoir: turbidite, braided, and meandering river system. Subsequent multiscale fractal dimension analysis using the Bouligand-Minkowski method characterizes well the hierarchical heterogeneity of the sandstone reservoirs. The multiscale fractal dimension provides a curve function that describes the heterogeneity at different scales. The heterogeneity of a reservoir’s internal structure decreases as the observational scale increases. The shape of a deposit’s facies is vital for quantitative determination of the sedimentation type, and thus enhanced oil recovery. Characterization of hierarchical heterogeneity by multiscale fractal dimension can assist reservoir evaluation, geological modeling, and even the design of well patterns.

  11. A Liver-centric Multiscale Modeling Framework for Xenobiotics

    Science.gov (United States)

    We describe a multi-scale framework for modeling acetaminophen-induced liver toxicity. Acetaminophen is a widely used analgesic. Overdose of acetaminophen can result in liver injury via its biotransformation into toxic product, which further induce massive necrosis. Our study foc...

  12. Covariance, correlation matrix, and the multiscale community structure of networks.

    Science.gov (United States)

    Shen, Hua-Wei; Cheng, Xue-Qi; Fang, Bin-Xing

    2010-07-01

    Empirical studies show that real world networks often exhibit multiple scales of topological descriptions. However, it is still an open problem how to identify the intrinsic multiple scales of networks. In this paper, we consider detecting the multiscale community structure of network from the perspective of dimension reduction. According to this perspective, a covariance matrix of network is defined to uncover the multiscale community structure through the translation and rotation transformations. It is proved that the covariance matrix is the unbiased version of the well-known modularity matrix. We then point out that the translation and rotation transformations fail to deal with the heterogeneous network, which is very common in nature and society. To address this problem, a correlation matrix is proposed through introducing the rescaling transformation into the covariance matrix. Extensive tests on real world and artificial networks demonstrate that the correlation matrix significantly outperforms the covariance matrix, identically the modularity matrix, as regards identifying the multiscale community structure of network. This work provides a novel perspective to the identification of community structure and thus various dimension reduction methods might be used for the identification of community structure. Through introducing the correlation matrix, we further conclude that the rescaling transformation is crucial to identify the multiscale community structure of network, as well as the translation and rotation transformations.

  13. Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Tchelepi, Hamdi

    2014-11-14

    A multiscale linear-solver framework for the pressure equation associated with flow in highly heterogeneous porous formations was developed. The multiscale based approach is cast in a general algebraic form, which facilitates integration of the new scalable linear solver in existing flow simulators. The Algebraic Multiscale Solver (AMS) is employed as a preconditioner within a multi-stage strategy. The formulations investigated include the standard MultiScale Finite-Element (MSFE) andMultiScale Finite-Volume (MSFV) methods. The local-stage solvers include incomplete factorization and the so-called Correction Functions (CF) associated with the MSFV approach. Extensive testing of AMS, as an iterative linear solver, indicate excellent convergence rates and computational scalability. AMS compares favorably with advanced Algebraic MultiGrid (AMG) solvers for highly detailed three-dimensional heterogeneous models. Moreover, AMS is expected to be especially beneficial in solving time-dependent problems of coupled multiphase flow and transport in large-scale subsurface formations.

  14. Multi-Scale Pattern Recognition for Image Classification and Segmentation

    NARCIS (Netherlands)

    Li, Y.

    2013-01-01

    Scale is an important parameter of images. Different objects or image structures (e.g. edges and corners) can appear at different scales and each is meaningful only over a limited range of scales. Multi-scale analysis has been widely used in image processing and computer vision, serving as the basis

  15. On a multiscale approach for filter efficiency simulations

    KAUST Repository

    Iliev, Oleg

    2014-07-01

    Filtration in general, and the dead end depth filtration of solid particles out of fluid in particular, is intrinsic multiscale problem. The deposition (capturing of particles) essentially depends on local velocity, on microgeometry (pore scale geometry) of the filtering medium and on the diameter distribution of the particles. The deposited (captured) particles change the microstructure of the porous media what leads to change of permeability. The changed permeability directly influences the velocity field and pressure distribution inside the filter element. To close the loop, we mention that the velocity influences the transport and deposition of particles. In certain cases one can evaluate the filtration efficiency considering only microscale or only macroscale models, but in general an accurate prediction of the filtration efficiency requires multiscale models and algorithms. This paper discusses the single scale and the multiscale models, and presents a fractional time step discretization algorithm for the multiscale problem. The velocity within the filter element is computed at macroscale, and is used as input for the solution of microscale problems at selected locations of the porous medium. The microscale problem is solved with respect to transport and capturing of individual particles, and its solution is postprocessed to provide permeability values for macroscale computations. Results from computational experiments with an oil filter are presented and discussed.

  16. Fast 2D Simulation of Superconductors: a Multiscale Approach

    DEFF Research Database (Denmark)

    Rodriguez Zermeno, Victor Manuel; Sørensen, Mads Peter; Pedersen, Niels Falsig

    2009-01-01

    This work presents a method to calculate AC losses in thin conductors such as the commercially available second generation superconducting wires through a multiscale meshing technique. The main idea is to use large aspect ratio elements to accurately simulate thin material layers. For a single th...

  17. Multiscale analysis of structure development in expanded starch snacks

    Science.gov (United States)

    van der Sman, R. G. M.; Broeze, J.

    2014-11-01

    In this paper we perform a multiscale analysis of the food structuring process of the expansion of starchy snack foods like keropok, which obtains a solid foam structure. In particular, we want to investigate the validity of the hypothesis of Kokini and coworkers, that expansion is optimal at the moisture content, where the glass transition and the boiling line intersect. In our analysis we make use of several tools, (1) time scale analysis from the field of physical transport phenomena, (2) the scale separation map (SSM) developed within a multiscale simulation framework of complex automata, (3) the supplemented state diagram (SSD), depicting phase transition and glass transition lines, and (4) a multiscale simulation model for the bubble expansion. Results of the time scale analysis are plotted in the SSD, and give insight into the dominant physical processes involved in expansion. Furthermore, the results of the time scale analysis are used to construct the SSM, which has aided us in the construction of the multiscale simulation model. Simulation results are plotted in the SSD. This clearly shows that the hypothesis of Kokini is qualitatively true, but has to be refined. Our results show that bubble expansion is optimal for moisture content, where the boiling line for gas pressure of 4 bars intersects the isoviscosity line of the critical viscosity 106 Pa.s, which runs parallel to the glass transition line.

  18. The Multiscale Robin Coupled Method for flows in porous media

    Science.gov (United States)

    Guiraldello, Rafael T.; Ausas, Roberto F.; Sousa, Fabricio S.; Pereira, Felipe; Buscaglia, Gustavo C.

    2018-02-01

    A multiscale mixed method aiming at the accurate approximation of velocity and pressure fields in heterogeneous porous media is proposed. The procedure is based on a new domain decomposition method in which the local problems are subject to Robin boundary conditions. The domain decomposition procedure is defined in terms of two independent spaces on the skeleton of the decomposition, corresponding to interface pressures and fluxes, that can be chosen with great flexibility to accommodate local features of the underlying permeability fields. The well-posedness of the new domain decomposition procedure is established and its connection with the method of Douglas et al. (1993) [12], is identified, also allowing us to reinterpret the known procedure as an optimized Schwarz (or Two-Lagrange-Multiplier) method. The multiscale property of the new domain decomposition method is indicated, and its relation with the Multiscale Mortar Mixed Finite Element Method (MMMFEM) and the Multiscale Hybrid-Mixed (MHM) Finite Element Method is discussed. Numerical simulations are presented aiming at illustrating several features of the new method. Initially we illustrate the possibility of switching from MMMFEM to MHM by suitably varying the Robin condition parameter in the new multiscale method. Then we turn our attention to realistic flows in high-contrast, channelized porous formations. We show that for a range of values of the Robin condition parameter our method provides better approximations for pressure and velocity than those computed with either the MMMFEM and the MHM. This is an indication that our method has the potential to produce more accurate velocity fields in the presence of rough, realistic permeability fields of petroleum reservoirs.

  19. Multiscale model reduction for shale gas transport in fractured media

    KAUST Repository

    Akkutlu, I. Y.

    2016-05-18

    In this paper, we develop a multiscale model reduction technique that describes shale gas transport in fractured media. Due to the pore-scale heterogeneities and processes, we use upscaled models to describe the matrix. We follow our previous work (Akkutlu et al. Transp. Porous Media 107(1), 235–260, 2015), where we derived an upscaled model in the form of generalized nonlinear diffusion model to describe the effects of kerogen. To model the interaction between the matrix and the fractures, we use Generalized Multiscale Finite Element Method (Efendiev et al. J. Comput. Phys. 251, 116–135, 2013, 2015). In this approach, the matrix and the fracture interaction is modeled via local multiscale basis functions. In Efendiev et al. (2015), we developed the GMsFEM and applied for linear flows with horizontal or vertical fracture orientations aligned with a Cartesian fine grid. The approach in Efendiev et al. (2015) does not allow handling arbitrary fracture distributions. In this paper, we (1) consider arbitrary fracture distributions on an unstructured grid; (2) develop GMsFEM for nonlinear flows; and (3) develop online basis function strategies to adaptively improve the convergence. The number of multiscale basis functions in each coarse region represents the degrees of freedom needed to achieve a certain error threshold. Our approach is adaptive in a sense that the multiscale basis functions can be added in the regions of interest. Numerical results for two-dimensional problem are presented to demonstrate the efficiency of proposed approach. © 2016 Springer International Publishing Switzerland

  20. Multiscale stabilization for convection-dominated diffusion in heterogeneous media

    KAUST Repository

    Calo, Victor M.

    2016-02-23

    We develop a Petrov-Galerkin stabilization method for multiscale convection-diffusion transport systems. Existing stabilization techniques add a limited number of degrees of freedom in the form of bubble functions or a modified diffusion, which may not be sufficient to stabilize multiscale systems. We seek a local reduced-order model for this kind of multiscale transport problems and thus, develop a systematic approach for finding reduced-order approximations of the solution. We start from a Petrov-Galerkin framework using optimal weighting functions. We introduce an auxiliary variable to a mixed formulation of the problem. The auxiliary variable stands for the optimal weighting function. The problem reduces to finding a test space (a dimensionally reduced space for this auxiliary variable), which guarantees that the error in the primal variable (representing the solution) is close to the projection error of the full solution on the dimensionally reduced space that approximates the solution. To find the test space, we reformulate some recent mixed Generalized Multiscale Finite Element Methods. We introduce snapshots and local spectral problems that appropriately define local weight and trial spaces. In particular, we use energy minimizing snapshots and local spectral decompositions in the natural norm associated with the auxiliary variable. The resulting spectral decomposition adaptively identifies and builds the optimal multiscale space to stabilize the system. We discuss the stability and its relation to the approximation property of the test space. We design online basis functions, which accelerate convergence in the test space, and consequently, improve stability. We present several numerical examples and show that one needs a few test functions to achieve an error similar to the projection error in the primal variable irrespective of the Peclet number.

  1. Multiscale, finite-frequency P and S tomography of the upper mantle in the southwestern Fennoscandian Shield

    Science.gov (United States)

    Kolstrup, Marianne L.; Hung, Shu-Huei; Maupin, Valerie

    2015-07-01

    We image the P- and S-wave structure of the upper mantle in southwestern Scandinavia using a wavelet-based, multiscale parametrization and finite-frequency theory to model wave propagation. Relative traveltime residuals of direct P and S waves are measured in a high- and low-frequency band and are corrected for crustal structure using a detailed model for the study area. A range of resolution tests are used to find optimal damping values not only for variations in VP and VS separately, but also for perturbations in their ratio VP/VS. The tests show that features down to a size of 100 (150) km can be well resolved in the P (S) tomography. To ease comparison with previous studies we also perform ray-theoretical multiscale tomographies, and to test the degree of vertical smearing we evaluate different parametrizations in the vertical direction (wavelet-based multiscale and convolutional quelling). Our finite-frequency, multiscale images of variations in VP and VS confirm the existence of low velocities below southern Norway and Denmark and high velocities beneath the shield proper in Sweden, as seen in previous studies, but add more details to this simplified picture. The low velocities below southern Norway and Denmark are confined to a channel-like structure at about 100-200 km depth, and the lateral transition from low to high velocities follows zones of Carboniferous-Permian extension and magmatism very closely. A deeper low-velocity anomaly below central southern Norway emerges from the channel at 150 km depth and extends to a depth of 350 km. In the Swedish area we infer high-velocity anomalies in VP and VS, and negative anomalies in VP/VS that indicate a strongly depleted mantle. We propose that the episodic erosion and convective removal of an originally thick mantle lithosphere below southern Norway to its current thickness of about 100 km could have been a trigger for episodic uplift in the Mesozoic and Cenozoic.

  2. Unifying Variational Methods for Simulating Quantum Many-Body Systems

    International Nuclear Information System (INIS)

    Dawson, C. M.; Eisert, J.; Osborne, T. J.

    2008-01-01

    We introduce a unified formulation of variational methods for simulating ground state properties of quantum many-body systems. The key feature is a novel variational method over quantum circuits via infinitesimal unitary transformations, inspired by flow equation methods. Variational classes are represented as efficiently contractible unitary networks, including the matrix-product states of density matrix renormalization, multiscale entanglement renormalization (MERA) states, weighted graph states, and quantum cellular automata. In particular, this provides a tool for varying over classes of states, such as MERA, for which so far no efficient way of variation has been known. The scheme is flexible when it comes to hybridizing methods or formulating new ones. We demonstrate the functioning by numerical implementations of MERA, matrix-product states, and a new variational set on benchmarks

  3. Multiscale deep drawing analysis of dual-phase steels using grain cluster-based RGC scheme

    International Nuclear Information System (INIS)

    Tjahjanto, D D; Eisenlohr, P; Roters, F

    2015-01-01

    Multiscale modelling and simulation play an important role in sheet metal forming analysis, since the overall material responses at macroscopic engineering scales, e.g. formability and anisotropy, are strongly influenced by microstructural properties, such as grain size and crystal orientations (texture). In the present report, multiscale analysis on deep drawing of dual-phase steels is performed using an efficient grain cluster-based homogenization scheme.The homogenization scheme, called relaxed grain cluster (RGC), is based on a generalization of the grain cluster concept, where a (representative) volume element consists of p  ×  q  ×  r (hexahedral) grains. In this scheme, variation of the strain or deformation of individual grains is taken into account through the, so-called, interface relaxation, which is formulated within an energy minimization framework. An interfacial penalty term is introduced into the energy minimization framework in order to account for the effects of grain boundaries.The grain cluster-based homogenization scheme has been implemented and incorporated into the advanced material simulation platform DAMASK, which purposes to bridge the macroscale boundary value problems associated with deep drawing analysis to the micromechanical constitutive law, e.g. crystal plasticity model. Standard Lankford anisotropy tests are performed to validate the model parameters prior to the deep drawing analysis. Model predictions for the deep drawing simulations are analyzed and compared to the corresponding experimental data. The result shows that the predictions of the model are in a very good agreement with the experimental measurement. (paper)

  4. Mathematical and Numerical Analyses of Peridynamics for Multiscale Materials Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Du, Qiang [Pennsylvania State Univ., State College, PA (United States)

    2014-11-12

    The rational design of materials, the development of accurate and efficient material simulation algorithms, and the determination of the response of materials to environments and loads occurring in practice all require an understanding of mechanics at disparate spatial and temporal scales. The project addresses mathematical and numerical analyses for material problems for which relevant scales range from those usually treated by molecular dynamics all the way up to those most often treated by classical elasticity. The prevalent approach towards developing a multiscale material model couples two or more well known models, e.g., molecular dynamics and classical elasticity, each of which is useful at a different scale, creating a multiscale multi-model. However, the challenges behind such a coupling are formidable and largely arise because the atomistic and continuum models employ nonlocal and local models of force, respectively. The project focuses on a multiscale analysis of the peridynamics materials model. Peridynamics can be used as a transition between molecular dynamics and classical elasticity so that the difficulties encountered when directly coupling those two models are mitigated. In addition, in some situations, peridynamics can be used all by itself as a material model that accurately and efficiently captures the behavior of materials over a wide range of spatial and temporal scales. Peridynamics is well suited to these purposes because it employs a nonlocal model of force, analogous to that of molecular dynamics; furthermore, at sufficiently large length scales and assuming smooth deformation, peridynamics can be approximated by classical elasticity. The project will extend the emerging mathematical and numerical analysis of peridynamics. One goal is to develop a peridynamics-enabled multiscale multi-model that potentially provides a new and more extensive mathematical basis for coupling classical elasticity and molecular dynamics, thus enabling next

  5. Multiscale interpretation of taut string estimation and its connection to Unbalanced Haar wavelets

    OpenAIRE

    Cho, Haeran; Fryzlewicz, Piotr

    2016-01-01

    We compare two state-of-the-art non-linear techniques for nonparametric function estimation via piecewise constant approximation: the taut string and the Unbalanced Haar methods. While it is well-known that the latter is multiscale, it is not obvious that the former can also be interpreted as multiscale. We provide a unified multiscale representation for both methods, which offers an insight into the relationship between them as well as suggesting lessons both methods can learn from each other.

  6. A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system

    OpenAIRE

    Li, Xin; Liu, Shaomin; Xiao, Qin; Ma, Mingguo; Jin, Rui; Che, Tao; Wang, Weizhen; Hu, Xiaoli; Xu, Ziwei; Wen, Jianguang; Wang, Liangxu

    2017-01-01

    We introduce a multiscale dataset obtained from Heihe Watershed Allied Telemetry Experimental Research (HiWATER) in an oasis-desert area in 2012. Upscaling of eco-hydrological processes on a heterogeneous surface is a grand challenge. Progress in this field is hindered by the poor availability of multiscale observations. HiWATER is an experiment designed to address this challenge through instrumentation on hierarchically nested scales to obtain multiscale and multidisciplinary data. The HiWAT...

  7. Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions.

    Science.gov (United States)

    Cheung, Daniel Y; Duan, Bin; Butcher, Jonathan T

    2015-01-01

    Heart valve disease is an increasingly prevalent and clinically serious condition. There are no clinically effective biological diagnostics or treatment strategies. The only recourse available is replacement with a prosthetic valve, but the inability of these devices to grow or respond biologically to their environments necessitates multiple resizing surgeries and life-long coagulation treatment, especially in children. Tissue engineering has a unique opportunity to impact heart valve disease by providing a living valve conduit, capable of growth and biological integration. This review will cover current tissue engineering strategies in fabricating heart valves and their progress towards the clinic, including molded scaffolds using naturally derived or synthetic polymers, decellularization, electrospinning, 3D bioprinting, hybrid techniques, and in vivo engineering. Whereas much progress has been made to create functional living heart valves, a clinically viable product is not yet realized. The next leap in engineered living heart valves will require a deeper understanding of how the natural multi-scale structural and biological heterogeneity of the tissue ensures its efficient function. Related, improved fabrication strategies must be developed that can replicate this de novo complexity, which is likely instructive for appropriate cell differentiation and remodeling whether seeded with autologous stem cells in vitro or endogenously recruited cells.

  8. Dual-Tree Complex Wavelet Transform and Image Block Residual-Based Multi-Focus Image Fusion in Visual Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2014-11-01

    Full Text Available This paper presents a novel framework for the fusion of multi-focus images explicitly designed for visual sensor network (VSN environments. Multi-scale based fusion methods can often obtain fused images with good visual effect. However, because of the defects of the fusion rules, it is almost impossible to completely avoid the loss of useful information in the thus obtained fused images. The proposed fusion scheme can be divided into two processes: initial fusion and final fusion. The initial fusion is based on a dual-tree complex wavelet transform (DTCWT. The Sum-Modified-Laplacian (SML-based visual contrast and SML are employed to fuse the low- and high-frequency coefficients, respectively, and an initial composited image is obtained. In the final fusion process, the image block residuals technique and consistency verification are used to detect the focusing areas and then a decision map is obtained. The map is used to guide how to achieve the final fused image. The performance of the proposed method was extensively tested on a number of multi-focus images, including no-referenced images, referenced images, and images with different noise levels. The experimental results clearly indicate that the proposed method outperformed various state-of-the-art fusion methods, in terms of both subjective and objective evaluations, and is more suitable for VSNs.

  9. Reducing the computational requirements for simulating tunnel fires by combining multiscale modelling and multiple processor calculation

    DEFF Research Database (Denmark)

    Vermesi, Izabella; Rein, Guillermo; Colella, Francesco

    2017-01-01

    in FDS version 6.0, a widely used fire-specific, open source CFD software. Furthermore, it compares the reduction in simulation time given by multiscale modelling with the one given by the use of multiple processor calculation. This was done using a 1200m long tunnel with a rectangular cross...... processor calculation (97% faster when using a single mesh and multiscale modelling; only 46% faster when using the full tunnel and multiple meshes). In summary, it was found that multiscale modelling with FDS v.6.0 is feasible, and the combination of multiple meshes and multiscale modelling was established...

  10. OBJECT-ORIENTED CHANGE DETECTION BASED ON MULTI-SCALE APPROACH

    Directory of Open Access Journals (Sweden)

    Y. Jia

    2016-06-01

    Full Text Available The change detection of remote sensing images means analysing the change information quantitatively and recognizing the change types of the surface coverage data in different time phases. With the appearance of high resolution remote sensing image, object-oriented change detection method arises at this historic moment. In this paper, we research multi-scale approach for high resolution images, which includes multi-scale segmentation, multi-scale feature selection and multi-scale classification. Experimental results show that this method has a stronger advantage than the traditional single-scale method of high resolution remote sensing image change detection.

  11. Guided extracellular matrix formation from fibroblast cells cultured on bio-inspired configurable multiscale substrata

    Directory of Open Access Journals (Sweden)

    Won-Gyu Bae

    2015-12-01

    Full Text Available Engineering complex extracellular matrix (ECM is an important challenge for cell and tissue engineering applications as well as for understanding fundamental cell biology. We developed the methodology for fabrication of precisely controllable multiscale hierarchical structures using capillary force lithography in combination with original wrinkling technique for the generation of well-defined native ECM-like platforms by culturing fibroblast cells on the multiscale substrata [1]. This paper provides information on detailed characteristics of polyethylene glycol-diacrylate multiscale substrata. In addition, a possible model for guided extracellular matrix formation from fibroblast cells cultured on bio-inspired configurable multiscale substrata is proposed.

  12. Multiscale Modeling of Composites: Toward Virtual Testing … and Beyond

    Science.gov (United States)

    LLorca, J.; González, C.; Molina-Aldareguía, J. M.; Lópes, C. S.

    2013-02-01

    Recent developments in the area of multiscale modeling of fiber-reinforced polymers are presented. The overall strategy takes advantage of the separation of length scales between different entities (ply, laminate, and component) found in composite structures. This allows us to carry out multiscale modeling by computing the properties of one entity (e.g., individual plies) at the relevant length scale, homogenizing the results into a constitutive model, and passing this information to the next length scale to determine the mechanical behavior of the larger entity (e.g., laminate). As a result, high-fidelity numerical simulations of the mechanical behavior of composite coupons and small components are nowadays feasible starting from the matrix, fiber, and interface properties and spatial distribution. Finally, the roadmap is outlined for extending the current strategy to include functional properties and processing into the simulation scheme.

  13. Multiscale High-Level Feature Fusion for Histopathological Image Classification

    Directory of Open Access Journals (Sweden)

    ZhiFei Lai

    2017-01-01

    Full Text Available Histopathological image classification is one of the most important steps for disease diagnosis. We proposed a method for multiclass histopathological image classification based on deep convolutional neural network referred to as coding network. It can gain better representation for the histopathological image than only using coding network. The main process is that training a deep convolutional neural network is to extract high-level feature and fuse two convolutional layers’ high-level feature as multiscale high-level feature. In order to gain better performance and high efficiency, we would employ sparse autoencoder (SAE and principal components analysis (PCA to reduce the dimensionality of multiscale high-level feature. We evaluate the proposed method on a real histopathological image dataset. Our results suggest that the proposed method is effective and outperforms the coding network.

  14. Hierarchical multiscale model for biomechanics analysis of microfilament networks

    Science.gov (United States)

    Li, Tong; Gu, Y. T.; Feng, Xi-Qiao; Yarlagadda, Prasad K. D. V.; Oloyede, Adekunle

    2013-05-01

    The mechanisms of force generation and transference via microfilament networks are crucial to the understandings of mechanobiology of cellular processes in living cells. However, there exists an enormous challenge for all-atom physics simulation of real size microfilament networks due to scale limitation of molecular simulation techniques. Following biophysical investigations of constitutive relations between adjacent globular actin monomers on filamentous actin, a hierarchical multiscale model was developed to investigate the biomechanical properties of microfilament networks. This model was validated by previous experimental studies of axial tension and transverse vibration of single F-actin. The biomechanics of microfilament networks can be investigated at the scale of real eukaryotic cell size (10 μm). This multiscale approach provides a powerful modeling tool which can contribute to the understandings of actin-related cellular processes in living cells.

  15. Multiscale analysis of surface morphologies by curvelet and contourlet transforms

    International Nuclear Information System (INIS)

    Li, Linfu; Zhang, Xiangchao; Zhang, Hao; He, Xiaoying; Xu, Min

    2015-01-01

    The surface topographies of precision components are critical to their functionalities. However, it is challenging to characterize the topographies of complex surfaces, especially for structured surfaces. The wavelet families are promising for the multiscale geometry analysis of nonstochastic surfaces. The second-generation curvelet transform provides a sparse representation and good multiscale decomposition for curve singularities. However, the contourlet expansion, composed of bases oriented along various directions in multiple scales with smaller redundancy rates, has a remarkable capability of representing borderlines. In this paper they are both adopted for the characterization of surface topographies. Different components can be extracted according to their scales and morphological characteristics; as a result, the corresponding manufacturing processes and functionalities can be analyzed specifically. Numerical experiments are given to demonstrate the capabilities of these methods in sparse representation and effective extraction of geometry features of different nonstochastic surfaces. (paper)

  16. Multi-scale atmospheric environment modelling for urban areas

    Directory of Open Access Journals (Sweden)

    A. A. Baklanov

    2009-04-01

    Full Text Available Modern supercomputers allow realising multi-scale systems for assessment and forecasting of urban meteorology, air pollution and emergency preparedness and considering nesting with obstacle-resolved models. A multi-scale modelling system with downscaling from regional to city-scale with the Environment – HIgh Resolution Limited Area Model (Enviro-HIRLAM and to micro-scale with the obstacle-resolved Micro-scale Model for Urban Environment (M2UE is suggested and demonstrated. The M2UE validation results versus the Mock Urban Setting Trial (MUST experiment indicate satisfactory quality of the model. Necessary conditions for the choice of nested models, building descriptions, areas and resolutions of nested models are analysed. Two-way nesting (up- and down-scaling, when scale effects both directions (from the meso-scale on the micro-scale and from the micro-scale on the meso-scale, is also discussed.

  17. RBF Multiscale Collocation for Second Order Elliptic Boundary Value Problems

    KAUST Repository

    Farrell, Patricio

    2013-01-01

    In this paper, we discuss multiscale radial basis function collocation methods for solving elliptic partial differential equations on bounded domains. The approximate solution is constructed in a multilevel fashion, each level using compactly supported radial basis functions of smaller scale on an increasingly fine mesh. On each level, standard symmetric collocation is employed. A convergence theory is given, which builds on recent theoretical advances for multiscale approximation using compactly supported radial basis functions. We are able to show that the convergence is linear in the number of levels. We also discuss the condition numbers of the arising systems and the effect of simple, diagonal preconditioners, now proving rigorously previous numerical observations. © 2013 Society for Industrial and Applied Mathematics.

  18. Global sensitivity analysis of multiscale properties of porous materials

    Science.gov (United States)

    Um, Kimoon; Zhang, Xuan; Katsoulakis, Markos; Plechac, Petr; Tartakovsky, Daniel M.

    2018-02-01

    Ubiquitous uncertainty about pore geometry inevitably undermines the veracity of pore- and multi-scale simulations of transport phenomena in porous media. It raises two fundamental issues: sensitivity of effective material properties to pore-scale parameters and statistical parameterization of Darcy-scale models that accounts for pore-scale uncertainty. Homogenization-based maps of pore-scale parameters onto their Darcy-scale counterparts facilitate both sensitivity analysis (SA) and uncertainty quantification. We treat uncertain geometric characteristics of a hierarchical porous medium as random variables to conduct global SA and to derive probabilistic descriptors of effective diffusion coefficients and effective sorption rate. Our analysis is formulated in terms of solute transport diffusing through a fluid-filled pore space, while sorbing to the solid matrix. Yet it is sufficiently general to be applied to other multiscale porous media phenomena that are amenable to homogenization.

  19. Multiscale singular value manifold for rotating machinery fault diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yi; Lu, BaoChun; Zhang, Deng Feng [School of Mechanical Engineering, Nanjing University of Science and Technology,Nanjing (United States)

    2017-01-15

    Time-frequency distribution of vibration signal can be considered as an image that contains more information than signal in time domain. Manifold learning is a novel theory for image recognition that can be also applied to rotating machinery fault pattern recognition based on time-frequency distributions. However, the vibration signal of rotating machinery in fault condition contains cyclical transient impulses with different phrases which are detrimental to image recognition for time-frequency distribution. To eliminate the effects of phase differences and extract the inherent features of time-frequency distributions, a multiscale singular value manifold method is proposed. The obtained low-dimensional multiscale singular value manifold features can reveal the differences of different fault patterns and they are applicable to classification and diagnosis. Experimental verification proves that the performance of the proposed method is superior in rotating machinery fault diagnosis.

  20. Multiscale correlations in highly resolved Large Eddy Simulations

    Science.gov (United States)

    Biferale, Luca; Buzzicotti, Michele; Linkmann, Moritz

    2017-11-01

    Understanding multiscale turbulent statistics is one of the key challenges for many modern applied and fundamental problems in fluid dynamics. One of the main obstacles is the existence of anomalously strong non Gaussian fluctuations, which become more and more important with increasing Reynolds number. In order to assess the performance of LES models in reproducing these extreme events with reasonable accuracy, it is helpful to further understand the statistical properties of the coupling between the resolved and the subgrid scales. We present analytical and numerical results focussing on the multiscale correlations between the subgrid stress and the resolved velocity field obtained both from LES and filtered DNS data. Furthermore, a comparison is carried out between LES and DNS results concerning the scaling behaviour of higher-order structure functions using both Smagorinsky or self-similar Fourier sub-grid models. ERC AdG Grant No 339032 NewTURB.

  1. Information theory and stochastics for multiscale nonlinear systems

    CERN Document Server

    Majda, Andrew J; Grote, Marcus J

    2005-01-01

    This book introduces mathematicians to the fascinating emerging mathematical interplay between ideas from stochastics and information theory and important practical issues in studying complex multiscale nonlinear systems. It emphasizes the serendipity between modern applied mathematics and applications where rigorous analysis, the development of qualitative and/or asymptotic models, and numerical modeling all interact to explain complex phenomena. After a brief introduction to the emerging issues in multiscale modeling, the book has three main chapters. The first chapter is an introduction to information theory with novel applications to statistical mechanics, predictability, and Jupiter's Red Spot for geophysical flows. The second chapter discusses new mathematical issues regarding fluctuation-dissipation theorems for complex nonlinear systems including information flow, various approximations, and illustrates applications to various mathematical models. The third chapter discusses stochastic modeling of com...

  2. Multiscale Modeling and Uncertainty Quantification for Nuclear Fuel Performance

    Energy Technology Data Exchange (ETDEWEB)

    Estep, Donald [Colorado State Univ., Fort Collins, CO (United States); El-Azab, Anter [Florida State Univ., Tallahassee, FL (United States); Pernice, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Peterson, John W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Polyakov, Peter [Univ. of Wyoming, Laramie, WY (United States); Tavener, Simon [Colorado State Univ., Fort Collins, CO (United States); Xiu, Dongbin [Purdue Univ., West Lafayette, IN (United States); Univ. of Utah, Salt Lake City, UT (United States)

    2017-03-23

    In this project, we will address the challenges associated with constructing high fidelity multiscale models of nuclear fuel performance. We (*) propose a novel approach for coupling mesoscale and macroscale models, (*) devise efficient numerical methods for simulating the coupled system, and (*) devise and analyze effective numerical approaches for error and uncertainty quantification for the coupled multiscale system. As an integral part of the project, we will carry out analysis of the effects of upscaling and downscaling, investigate efficient methods for stochastic sensitivity analysis of the individual macroscale and mesoscale models, and carry out a posteriori error analysis for computed results. We will pursue development and implementation of solutions in software used at Idaho National Laboratories on models of interest to the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program.

  3. Multiscale Methods for Accurate, Efficient, and Scale-Aware Models

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Vincent [Univ. of Wisconsin, Milwaukee, WI (United States)

    2017-07-14

    The goal of UWM’s portion of the Multiscale project was to develop a unified cloud parameterization that could simulate all cloud types --- including stratocumulus, shallow cumulus, and deep cumulus --- using the single equation set implemented in CLUBB. An advantage of a unified parameterization methodology is that it avoids the difficult task of interfacing different cloud parameterizations for different cloud types. To interface CLUBB’s clouds to the microphysics, a Monte Carlo interface, SILHS, was further developed.

  4. Lifetime statistics of quantum chaos studied by a multiscale analysis

    KAUST Repository

    Di Falco, A.

    2012-04-30

    In a series of pump and probe experiments, we study the lifetime statistics of a quantum chaotic resonator when the number of open channels is greater than one. Our design embeds a stadium billiard into a two dimensional photonic crystal realized on a silicon-on-insulator substrate. We calculate resonances through a multiscale procedure that combines energy landscape analysis and wavelet transforms. Experimental data is found to follow the universal predictions arising from random matrix theory with an excellent level of agreement.

  5. Final Technical Report "Multiscale Simulation Algorithms for Biochemical Systems"

    Energy Technology Data Exchange (ETDEWEB)

    Petzold, Linda R.

    2012-10-25

    Biochemical systems are inherently multiscale and stochastic. In microscopic systems formed by living cells, the small numbers of reactant molecules can result in dynamical behavior that is discrete and stochastic rather than continuous and deterministic. An analysis tool that respects these dynamical characteristics is the stochastic simulation algorithm (SSA, Gillespie, 1976), a numerical simulation procedure that is essentially exact for chemical systems that are spatially homogeneous or well stirred. Despite recent improvements, as a procedure that simulates every reaction event, the SSA is necessarily inefficient for most realistic problems. There are two main reasons for this, both arising from the multiscale nature of the underlying problem: (1) stiffness, i.e. the presence of multiple timescales, the fastest of which are stable; and (2) the need to include in the simulation both species that are present in relatively small quantities and should be modeled by a discrete stochastic process, and species that are present in larger quantities and are more efficiently modeled by a deterministic differential equation (or at some scale in between). This project has focused on the development of fast and adaptive algorithms, and the fun- damental theory upon which they must be based, for the multiscale simulation of biochemical systems. Areas addressed by this project include: (1) Theoretical and practical foundations for ac- celerated discrete stochastic simulation (tau-leaping); (2) Dealing with stiffness (fast reactions) in an efficient and well-justified manner in discrete stochastic simulation; (3) Development of adaptive multiscale algorithms for spatially homogeneous discrete stochastic simulation; (4) Development of high-performance SSA algorithms.

  6. Multiscale Monte Carlo equilibration: Pure Yang-Mills theory

    Science.gov (United States)

    Endres, Michael G.; Brower, Richard C.; Detmold, William; Orginos, Kostas; Pochinsky, Andrew V.

    2015-12-01

    We present a multiscale thermalization algorithm for lattice gauge theory, which enables efficient parallel generation of uncorrelated gauge field configurations. The algorithm combines standard Monte Carlo techniques with ideas drawn from real space renormalization group and multigrid methods. We demonstrate the viability of the algorithm for pure Yang-Mills gauge theory for both heat bath and hybrid Monte Carlo evolution, and show that it ameliorates the problem of topological freezing up to controllable lattice spacing artifacts.

  7. Hybrid multiscale simulation of a mixing-controlled reaction

    Science.gov (United States)

    Scheibe, Timothy D.; Schuchardt, Karen; Agarwal, Khushbu; Chase, Jared; Yang, Xiaofan; Palmer, Bruce J.; Tartakovsky, Alexandre M.; Elsethagen, Todd; Redden, George

    2015-09-01

    Continuum-scale models, which employ a porous medium conceptualization to represent properties and processes averaged over a large number of solid grains and pore spaces, are widely used to study subsurface flow and reactive transport. Recently, pore-scale models, which explicitly resolve individual soil grains and pores, have been developed to more accurately model and study pore-scale phenomena, such as mineral precipitation and dissolution reactions, microbially-mediated surface reactions, and other complex processes. However, these highly-resolved models are prohibitively expensive for modeling domains of sizes relevant to practical problems. To broaden the utility of pore-scale models for larger domains, we developed a hybrid multiscale model that initially simulates the full domain at the continuum scale and applies a pore-scale model only to areas of high reactivity. Since the location and number of pore-scale model regions in the model varies as the reactions proceed, an adaptive script defines the number and location of pore regions within each continuum iteration and initializes pore-scale simulations from macroscale information. Another script communicates information from the pore-scale simulation results back to the continuum scale. These components provide loose coupling between the pore- and continuum-scale codes into a single hybrid multiscale model implemented within the SWIFT workflow environment. In this paper, we consider an irreversible homogeneous bimolecular reaction (two solutes reacting to form a third solute) in a 2D test problem. This paper is focused on the approach used for multiscale coupling between pore- and continuum-scale models, application to a realistic test problem, and implications of the results for predictive simulation of mixing-controlled reactions in porous media. Our results and analysis demonstrate that the hybrid multiscale method provides a feasible approach for increasing the accuracy of subsurface reactive transport

  8. Multiscale modelling of trabecular bone: from micro to macroscale

    OpenAIRE

    Levrero Florencio, Francesc

    2017-01-01

    Trabecular bone has a complex and porous microstructure. This study develops approaches to determine the mechanical behaviour of this material at the macroscopic level through the use of homogenisation-based multiscale methods using micro-finite element simulations. In homogenisation-based finite element methods, a simulation involving a representative volume element of the microstructure of the considered material is performed with a specific set of boundary conditions. The ma...

  9. An empirical analysis of dynamic multiscale hedging using wavelet decomposition

    OpenAIRE

    Conlon, Thomas; Cotter, John

    2011-01-01

    This paper investigates the hedging effectiveness of a dynamic moving window OLS hedging model, formed using wavelet decomposed time-series. The wavelet transform is applied to calculate the appropriate dynamic minimum-variance hedge ratio for various hedging horizons for a number of assets. The effectiveness of the dynamic multiscale hedging strategy is then tested, both in- and out-of-sample, using standard variance reduction and expanded to include a downside risk metric, the time horizon ...

  10. Evaluation of the Community Multiscale Air Quality (CMAQ) ...

    Science.gov (United States)

    This work evaluates particle size-composition distributions simulated by the Community Multiscale Air Quality (CMAQ) model using Micro-Orifice Uniform Deposit Impactor (MOUDI) measurements at 18 sites across North America. Size-resolved measurements of particulate SO4+, with the model ranging from an underestimation to overestimation of both the peak diameter and peak particle concentration across the sites. Computing PM2.5 from the modeled size distribution parameters rather than by summing the masses in the Aitken and a

  11. Hybrid multiscale modeling and prediction of cancer cell behavior.

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Zangooei

    Full Text Available Understanding cancer development crossing several spatial-temporal scales is of great practical significance to better understand and treat cancers. It is difficult to tackle this challenge with pure biological means. Moreover, hybrid modeling techniques have been proposed that combine the advantages of the continuum and the discrete methods to model multiscale problems.In light of these problems, we have proposed a new hybrid vascular model to facilitate the multiscale modeling and simulation of cancer development with respect to the agent-based, cellular automata and machine learning methods. The purpose of this simulation is to create a dataset that can be used for prediction of cell phenotypes. By using a proposed Q-learning based on SVR-NSGA-II method, the cells have the capability to predict their phenotypes autonomously that is, to act on its own without external direction in response to situations it encounters.Computational simulations of the model were performed in order to analyze its performance. The most striking feature of our results is that each cell can select its phenotype at each time step according to its condition. We provide evidence that the prediction of cell phenotypes is reliable.Our proposed model, which we term a hybrid multiscale modeling of cancer cell behavior, has the potential to combine the best features of both continuum and discrete models. The in silico results indicate that the 3D model can represent key features of cancer growth, angiogenesis, and its related micro-environment and show that the findings are in good agreement with biological tumor behavior. To the best of our knowledge, this paper is the first hybrid vascular multiscale modeling of cancer cell behavior that has the capability to predict cell phenotypes individually by a self-generated dataset.

  12. Multiscale eddy simulation for moist atmospheric convection: Preliminary investigation

    International Nuclear Information System (INIS)

    Stechmann, Samuel N.

    2014-01-01

    A multiscale computational framework is designed for simulating atmospheric convection and clouds. In this multiscale framework, large eddy simulation (LES) is used to model the coarse scales of 100 m and larger, and a stochastic, one-dimensional turbulence (ODT) model is used to represent the fine scales of 100 m and smaller. Coupled and evolving together, these two components provide a multiscale eddy simulation (MES). Through its fine-scale turbulence and moist thermodynamics, MES allows coarse grid cells to be partially cloudy and to encompass cloudy–clear air mixing on scales down to 1 m; in contrast, in typical LES such fine-scale processes are not represented or are parameterized using bulk deterministic closures. To illustrate MES and investigate its multiscale dynamics, a shallow cumulus cloud field is simulated. The fine-scale variability is seen to take a plausible form, with partially cloudy grid cells prominent near cloud edges and cloud top. From earlier theoretical work, this mixing of cloudy and clear air is believed to have an important impact on buoyancy. However, contrary to expectations based on earlier theoretical studies, the mean statistics of the bulk cloud field are essentially the same in MES and LES; possible reasons for this are discussed, including possible limitations in the present formulation of MES. One difference between LES and MES is seen in the coarse-scale turbulent kinetic energy, which appears to grow slowly in time due to incoherent stochastic fluctuations in the buoyancy. This and other considerations suggest the need for some type of spatial and/or temporal filtering to attenuate undersampling of the stochastic fine-scale processes

  13. Generalization of mixed multiscale finite element methods with applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C S [Texas A & M Univ., College Station, TX (United States)

    2016-08-01

    Many science and engineering problems exhibit scale disparity and high contrast. The small scale features cannot be omitted in the physical models because they can affect the macroscopic behavior of the problems. However, resolving all the scales in these problems can be prohibitively expensive. As a consequence, some types of model reduction techniques are required to design efficient solution algorithms. For practical purpose, we are interested in mixed finite element problems as they produce solutions with certain conservative properties. Existing multiscale methods for such problems include the mixed multiscale finite element methods. We show that for complicated problems, the mixed multiscale finite element methods may not be able to produce reliable approximations. This motivates the need of enrichment for coarse spaces. Two enrichment approaches are proposed, one is based on generalized multiscale finte element metthods (GMsFEM), while the other is based on spectral element-based algebraic multigrid (rAMGe). The former one, which is called mixed GMsFEM, is developed for both Darcy’s flow and linear elasticity. Application of the algorithm in two-phase flow simulations are demonstrated. For linear elasticity, the algorithm is subtly modified due to the symmetry requirement of the stress tensor. The latter enrichment approach is based on rAMGe. The algorithm differs from GMsFEM in that both of the velocity and pressure spaces are coarsened. Due the multigrid nature of the algorithm, recursive application is available, which results in an efficient multilevel construction of the coarse spaces. Stability, convergence analysis, and exhaustive numerical experiments are carried out to validate the proposed enrichment approaches. iii

  14. Multiscale Universal Interface: A concurrent framework for coupling heterogeneous solvers

    Science.gov (United States)

    Tang, Yu-Hang; Kudo, Shuhei; Bian, Xin; Li, Zhen; Karniadakis, George Em

    2015-09-01

    Concurrently coupled numerical simulations using heterogeneous solvers are powerful tools for modeling multiscale phenomena. However, major modifications to existing codes are often required to enable such simulations, posing significant difficulties in practice. In this paper we present a C++ library, i.e. the Multiscale Universal Interface (MUI), which is capable of facilitating the coupling effort for a wide range of multiscale simulations. The library adopts a header-only form with minimal external dependency and hence can be easily dropped into existing codes. A data sampler concept is introduced, combined with a hybrid dynamic/static typing mechanism, to create an easily customizable framework for solver-independent data interpretation. The library integrates MPI MPMD support and an asynchronous communication protocol to handle inter-solver information exchange irrespective of the solvers' own MPI awareness. Template metaprogramming is heavily employed to simultaneously improve runtime performance and code flexibility. We validated the library by solving three different multiscale problems, which also serve to demonstrate the flexibility of the framework in handling heterogeneous models and solvers. In the first example, a Couette flow was simulated using two concurrently coupled Smoothed Particle Hydrodynamics (SPH) simulations of different spatial resolutions. In the second example, we coupled the deterministic SPH method with the stochastic Dissipative Particle Dynamics (DPD) method to study the effect of surface grafting on the hydrodynamics properties on the surface. In the third example, we consider conjugate heat transfer between a solid domain and a fluid domain by coupling the particle-based energy-conserving DPD (eDPD) method with the Finite Element Method (FEM).

  15. Multiscale computer modeling in biomechanics and biomedical engineering

    CERN Document Server

    2013-01-01

    This book reviews the state-of-the-art in multiscale computer modeling, in terms of both accomplishments and challenges. The information in the book is particularly useful for biomedical engineers, medical physicists and researchers in systems biology, mathematical biology, micro-biomechanics and biomaterials who are interested in how to bridge between traditional biomedical engineering work at the organ and tissue scales, and the newer arenas of cellular and molecular bioengineering.

  16. Non-stationary Bias Correction of Monthly CMIP5 Temperature Projections over China using a Residual-based Bagging Tree Model

    Science.gov (United States)

    Yang, T.; Lee, C.

    2017-12-01

    The biases in the Global Circulation Models (GCMs) are crucial for understanding future climate changes. Currently, most bias correction methodologies suffer from the assumption that model bias is stationary. This paper provides a non-stationary bias correction model, termed Residual-based Bagging Tree (RBT) model, to reduce simulation biases and to quantify the contributions of single models. Specifically, the proposed model estimates the residuals between individual models and observations, and takes the differences between observations and the ensemble mean into consideration during the model training process. A case study is conducted for 10 major river basins in Mainland China during different seasons. Results show that the proposed model is capable of providing accurate and stable predictions while including the non-stationarities into the modeling framework. Significant reductions in both bias and root mean squared error are achieved with the proposed RBT model, especially for the central and western parts of China. The proposed RBT model has consistently better performance in reducing biases when compared to the raw ensemble mean, the ensemble mean with simple additive bias correction, and the single best model for different seasons. Furthermore, the contribution of each single GCM in reducing the overall bias is quantified. The single model importance varies between 3.1% and 7.2%. For different future scenarios (RCP 2.6, RCP 4.5, and RCP 8.5), the results from RBT model suggest temperature increases of 1.44 ºC, 2.59 ºC, and 4.71 ºC by the end of the century, respectively, when compared to the average temperature during 1970 - 1999.

  17. Variational principles

    CERN Document Server

    Moiseiwitsch, B L

    2004-01-01

    This graduate-level text's primary objective is to demonstrate the expression of the equations of the various branches of mathematical physics in the succinct and elegant form of variational principles (and thereby illuminate their interrelationship). Its related intentions are to show how variational principles may be employed to determine the discrete eigenvalues for stationary state problems and to illustrate how to find the values of quantities (such as the phase shifts) that arise in the theory of scattering. Chapter-by-chapter treatment consists of analytical dynamics; optics, wave mecha

  18. A multiscale mortar multipoint flux mixed finite element method

    KAUST Repository

    Wheeler, Mary Fanett

    2012-02-03

    In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid scale. With an appropriate choice of polynomial degree of the mortar space, we derive optimal order convergence on the fine scale for both the multiscale pressure and velocity, as well as the coarse scale mortar pressure. Some superconvergence results are also derived. The algebraic system is reduced via a non-overlapping domain decomposition to a coarse scale mortar interface problem that is solved using a multiscale flux basis. Numerical experiments are presented to confirm the theory and illustrate the efficiency and flexibility of the method. © EDP Sciences, SMAI, 2012.

  19. Multiscale methods in turbulent combustion: strategies and computational challenges

    International Nuclear Information System (INIS)

    Echekki, Tarek

    2009-01-01

    A principal challenge in modeling turbulent combustion flows is associated with their complex, multiscale nature. Traditional paradigms in the modeling of these flows have attempted to address this nature through different strategies, including exploiting the separation of turbulence and combustion scales and a reduced description of the composition space. The resulting moment-based methods often yield reasonable predictions of flow and reactive scalars' statistics under certain conditions. However, these methods must constantly evolve to address combustion at different regimes, modes or with dominant chemistries. In recent years, alternative multiscale strategies have emerged, which although in part inspired by the traditional approaches, also draw upon basic tools from computational science, applied mathematics and the increasing availability of powerful computational resources. This review presents a general overview of different strategies adopted for multiscale solutions of turbulent combustion flows. Within these strategies, some specific models are discussed or outlined to illustrate their capabilities and underlying assumptions. These strategies may be classified under four different classes, including (i) closure models for atomistic processes, (ii) multigrid and multiresolution strategies, (iii) flame-embedding strategies and (iv) hybrid large-eddy simulation-low-dimensional strategies. A combination of these strategies and models can potentially represent a robust alternative strategy to moment-based models; but a significant challenge remains in the development of computational frameworks for these approaches as well as their underlying theories. (topical review)

  20. Integrated Multiscale Latent Variable Regression and Application to Distillation Columns

    Directory of Open Access Journals (Sweden)

    Muddu Madakyaru

    2013-01-01

    Full Text Available Proper control of distillation columns requires estimating some key variables that are challenging to measure online (such as compositions, which are usually estimated using inferential models. Commonly used inferential models include latent variable regression (LVR techniques, such as principal component regression (PCR, partial least squares (PLS, and regularized canonical correlation analysis (RCCA. Unfortunately, measured practical data are usually contaminated with errors, which degrade the prediction abilities of inferential models. Therefore, noisy measurements need to be filtered to enhance the prediction accuracy of these models. Multiscale filtering has been shown to be a powerful feature extraction tool. In this work, the advantages of multiscale filtering are utilized to enhance the prediction accuracy of LVR models by developing an integrated multiscale LVR (IMSLVR modeling algorithm that integrates modeling and feature extraction. The idea behind the IMSLVR modeling algorithm is to filter the process data at different decomposition levels, model the filtered data from each level, and then select the LVR model that optimizes a model selection criterion. The performance of the developed IMSLVR algorithm is illustrated using three examples, one using synthetic data, one using simulated distillation column data, and one using experimental packed bed distillation column data. All examples clearly demonstrate the effectiveness of the IMSLVR algorithm over the conventional methods.

  1. Generalized multiscale finite element method for elasticity equations

    KAUST Repository

    Chung, Eric T.

    2014-10-05

    In this paper, we discuss the application of generalized multiscale finite element method (GMsFEM) to elasticity equation in heterogeneous media. We consider steady state elasticity equations though some of our applications are motivated by elastic wave propagation in subsurface where the subsurface properties can be highly heterogeneous and have high contrast. We present the construction of main ingredients for GMsFEM such as the snapshot space and offline spaces. The latter is constructed using local spectral decomposition in the snapshot space. The spectral decomposition is based on the analysis which is provided in the paper. We consider both continuous Galerkin and discontinuous Galerkin coupling of basis functions. Both approaches have their cons and pros. Continuous Galerkin methods allow avoiding penalty parameters though they involve partition of unity functions which can alter the properties of multiscale basis functions. On the other hand, discontinuous Galerkin techniques allow gluing multiscale basis functions without any modifications. Because basis functions are constructed independently from each other, this approach provides an advantage. We discuss the use of oversampling techniques that use snapshots in larger regions to construct the offline space. We provide numerical results to show that one can accurately approximate the solution using reduced number of degrees of freedom.

  2. Multi-scale simulation for homogenization of cement media

    International Nuclear Information System (INIS)

    Abballe, T.

    2011-01-01

    To solve diffusion problems on cement media, two scales must be taken into account: a fine scale, which describes the micrometers wide microstructures present in the media, and a work scale, which is usually a few meters long. Direct numerical simulations are almost impossible because of the huge computational resources (memory, CPU time) required to assess both scales at the same time. To overcome this problem, we present in this thesis multi-scale resolution methods using both Finite Volumes and Finite Elements, along with their efficient implementations. More precisely, we developed a multi-scale simulation tool which uses the SALOME platform to mesh domains and post-process data, and the parallel calculation code MPCube to solve problems. This SALOME/MPCube tool can solve automatically and efficiently multi-scale simulations. Parallel structure of computer clusters can be use to dispatch the more time-consuming tasks. We optimized most functions to account for cement media specificities. We presents numerical experiments on various cement media samples, e.g. mortar and cement paste. From these results, we manage to compute a numerical effective diffusivity of our cement media and to reconstruct a fine scale solution. (author) [fr

  3. A Multiscale Enrichment Procedure for Nonlinear Monotone Operators

    KAUST Repository

    Efendiev, Yalchin R.

    2014-03-11

    In this paper, multiscale finite element methods (MsFEMs) and domain decomposition techniques are developed for a class of nonlinear elliptic problems with high-contrast coefficients. In the process, existing work on linear problems [Y. Efendiev, J. Galvis, R. Lazarov, S. Margenov and J. Ren, Robust two-level domain decomposition preconditioners for high-contrast anisotropic flows in multiscale media. Submitted.; Y. Efendiev, J. Galvis and X. Wu, J. Comput. Phys. 230 (2011) 937–955; J. Galvis and Y. Efendiev, SIAM Multiscale Model. Simul. 8 (2010) 1461–1483.] is extended to treat a class of nonlinear elliptic operators. The proposed method requires the solutions of (small dimension and local) nonlinear eigenvalue problems in order to systematically enrich the coarse solution space. Convergence of the method is shown to relate to the dimension of the coarse space (due to the enrichment procedure) as well as the coarse mesh size. In addition, it is shown that the coarse mesh spaces can be effectively used in two-level domain decomposition preconditioners. A number of numerical results are presented to complement the analysis.

  4. Mixed Generalized Multiscale Finite Element Methods and Applications

    KAUST Repository

    Chung, Eric T.

    2015-03-03

    In this paper, we present a mixed generalized multiscale finite element method (GMsFEM) for solving flow in heterogeneous media. Our approach constructs multiscale basis functions following a GMsFEM framework and couples these basis functions using a mixed finite element method, which allows us to obtain a mass conservative velocity field. To construct multiscale basis functions for each coarse edge, we design a snapshot space that consists of fine-scale velocity fields supported in a union of two coarse regions that share the common interface. The snapshot vectors have zero Neumann boundary conditions on the outer boundaries, and we prescribe their values on the common interface. We describe several spectral decompositions in the snapshot space motivated by the analysis. In the paper, we also study oversampling approaches that enhance the accuracy of mixed GMsFEM. A main idea of oversampling techniques is to introduce a small dimensional snapshot space. We present numerical results for two-phase flow and transport, without updating basis functions in time. Our numerical results show that one can achieve good accuracy with a few basis functions per coarse edge if one selects appropriate offline spaces. © 2015 Society for Industrial and Applied Mathematics.

  5. Standard Model in multiscale theories and observational constraints

    Science.gov (United States)

    Calcagni, Gianluca; Nardelli, Giuseppe; Rodríguez-Fernández, David

    2016-08-01

    We construct and analyze the Standard Model of electroweak and strong interactions in multiscale spacetimes with (i) weighted derivatives and (ii) q -derivatives. Both theories can be formulated in two different frames, called fractional and integer picture. By definition, the fractional picture is where physical predictions should be made. (i) In the theory with weighted derivatives, it is shown that gauge invariance and the requirement of having constant masses in all reference frames make the Standard Model in the integer picture indistinguishable from the ordinary one. Experiments involving only weak and strong forces are insensitive to a change of spacetime dimensionality also in the fractional picture, and only the electromagnetic and gravitational sectors can break the degeneracy. For the simplest multiscale measures with only one characteristic time, length and energy scale t*, ℓ* and E*, we compute the Lamb shift in the hydrogen atom and constrain the multiscale correction to the ordinary result, getting the absolute upper bound t*28 TeV . Stronger bounds are obtained from the measurement of the fine-structure constant. (ii) In the theory with q -derivatives, considering the muon decay rate and the Lamb shift in light atoms, we obtain the independent absolute upper bounds t*35 MeV . For α0=1 /2 , the Lamb shift alone yields t*450 GeV .

  6. Multi-scale symbolic transfer entropy analysis of EEG

    Science.gov (United States)

    Yao, Wenpo; Wang, Jun

    2017-10-01

    From both global and local perspectives, we symbolize two kinds of EEG and analyze their dynamic and asymmetrical information using multi-scale transfer entropy. Multi-scale process with scale factor from 1 to 199 and step size of 2 is applied to EEG of healthy people and epileptic patients, and then the permutation with embedding dimension of 3 and global approach are used to symbolize the sequences. The forward and reverse symbol sequences are taken as the inputs of transfer entropy. Scale factor intervals of permutation and global way are (37, 57) and (65, 85) where the two kinds of EEG have satisfied entropy distinctions. When scale factor is 67, transfer entropy of the healthy and epileptic subjects of permutation, 0.1137 and 0.1028, have biggest difference. And the corresponding values of the global symbolization is 0.0641 and 0.0601 which lies in the scale factor of 165. Research results show that permutation which takes contribution of local information has better distinction and is more effectively applied to our multi-scale transfer entropy analysis of EEG.

  7. Multiscale modeling for materials design: Molecular square catalysts

    Science.gov (United States)

    Majumder, Debarshi

    In a wide variety of materials, including a number of heterogeneous catalysts, the properties manifested at the process scale are a consequence of phenomena that occur at different time and length scales. Recent experimental developments allow materials to be designed precisely at the nanometer scale. However, the optimum design of such materials requires capabilities to predict the properties at the process scale based on the phenomena occurring at the relevant scales. The thesis research reported here addresses this need to develop multiscale modeling strategies for the design of new materials. As a model system, a new system of materials called molecular squares was studied in this research. Both serial and parallel multiscale strategies and their components were developed as parts of this work. As a serial component, a parameter estimation tool was developed that uses a hierarchical protocol and consists of two different search elements: a global search method implemented using a genetic algorithm that is capable of exploring large parametric space, and a local search method using gradient search techniques that accurately finds the optimum in a localized space. As an essential component of parallel multiscale modeling, different standard as well as specialized computational fluid dynamics (CFD) techniques were explored and developed in order to identify a technique that is best suited to solve a membrane reactor model employing layered films of molecular squares as the heterogeneous catalyst. The coupled set of non-linear partial differential equations (PDEs) representing the continuum model was solved numerically using three different classes of methods: a split-step method using finite difference (FD); domain decomposition in two different forms, one involving three overlapping subdomains and the other involving a gap-tooth scheme; and the multiple-timestep method that was developed in this research. The parallel multiscale approach coupled continuum

  8. Multiscale time-splitting strategy for multiscale multiphysics processes of two-phase flow in fractured media

    KAUST Repository

    Sun, S.

    2011-01-01

    The temporal discretization scheme is one important ingredient of efficient simulator for two-phase flow in the fractured porous media. The application of single-scale temporal scheme is restricted by the rapid changes of the pressure and saturation in the fractured system with capillarity. In this paper, we propose a multi-scale time splitting strategy to simulate multi-scale multi-physics processes of two-phase flow in fractured porous media. We use the multi-scale time schemes for both the pressure and saturation equations; that is, a large time-step size is employed for the matrix domain, along with a small time-step size being applied in the fractures. The total time interval is partitioned into four temporal levels: the first level is used for the pressure in the entire domain, the second level matching rapid changes of the pressure in the fractures, the third level treating the response gap between the pressure and the saturation, and the fourth level applied for the saturation in the fractures. This method can reduce the computational cost arisen from the implicit solution of the pressure equation. Numerical examples are provided to demonstrate the efficiency of the proposed method.

  9. Engineering the propagation of high-k bulk plasmonic waves in multilayer hyperbolic metamaterials by multiscale structuring

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Lavrinenko, Andrei; Sipe, J. E.

    2013-01-01

    are demonstrated in multiscale HMMs with periodic superstructures. More complicated, aperiodically ordered superstructures are also considered, with fractal Cantor-like multiscale HMMs exhibiting characteristic self-similar spectral signatures in the high-k band. The multiscale HMM concept is shown...

  10. Variational Multiscale Finite Element Method for Flows in Highly Porous Media

    KAUST Repository

    Iliev, O.

    2011-10-01

    We present a two-scale finite element method (FEM) for solving Brinkman\\'s and Darcy\\'s equations. These systems of equations model fluid flows in highly porous and porous media, respectively. The method uses a recently proposed discontinuous Galerkin FEM for Stokes\\' equations by Wang and Ye and the concept of subgrid approximation developed by Arbogast for Darcy\\'s equations. In order to reduce the "resonance error" and to ensure convergence to the global fine solution, the algorithm is put in the framework of alternating Schwarz iterations using subdomains around the coarse-grid boundaries. The discussed algorithms are implemented using the Deal.II finite element library and are tested on a number of model problems. © 2011 Society for Industrial and Applied Mathematics.

  11. Fatigue of multiscale composites with secondary nanoplatelet reinforcement: 3D computational analysis

    DEFF Research Database (Denmark)

    Dai, Gaoming; Mishnaevsky, Leon, Jr.

    2014-01-01

    3D numerical simulations of fatigue damage of multiscale fiber reinforced polymer composites with secondary nanoclay reinforcement are carried out. Macro–micro FE models of the multiscale composites are generated automatically using Python based software. The effect of the nanoclay reinforcement...

  12. Multiscale finite element methods for high-contrast problems using local spectral basis functions

    KAUST Repository

    Efendiev, Yalchin

    2011-02-01

    In this paper we study multiscale finite element methods (MsFEMs) using spectral multiscale basis functions that are designed for high-contrast problems. Multiscale basis functions are constructed using eigenvectors of a carefully selected local spectral problem. This local spectral problem strongly depends on the choice of initial partition of unity functions. The resulting space enriches the initial multiscale space using eigenvectors of local spectral problem. The eigenvectors corresponding to small, asymptotically vanishing, eigenvalues detect important features of the solutions that are not captured by initial multiscale basis functions. Multiscale basis functions are constructed such that they span these eigenfunctions that correspond to small, asymptotically vanishing, eigenvalues. We present a convergence study that shows that the convergence rate (in energy norm) is proportional to (H/Λ*)1/2, where Λ* is proportional to the minimum of the eigenvalues that the corresponding eigenvectors are not included in the coarse space. Thus, we would like to reach to a larger eigenvalue with a smaller coarse space. This is accomplished with a careful choice of initial multiscale basis functions and the setup of the eigenvalue problems. Numerical results are presented to back-up our theoretical results and to show higher accuracy of MsFEMs with spectral multiscale basis functions. We also present a hierarchical construction of the eigenvectors that provides CPU savings. © 2010.

  13. Multiscale analysis of damage using dual and primal domain decomposition techniques

    NARCIS (Netherlands)

    Lloberas-Valls, O.; Everdij, F.P.X.; Rixen, D.J.; Simone, A.; Sluys, L.J.

    2014-01-01

    In this contribution, dual and primal domain decomposition techniques are studied for the multiscale analysis of failure in quasi-brittle materials. The multiscale strategy essentially consists in decomposing the structure into a number of nonoverlapping domains and considering a refined spatial

  14. On micro-to-macro connections in strong coupling multiscale modeling of softening materials

    NARCIS (Netherlands)

    Lloberas Valls, O.; Rixen, D.J.; Simone, A.; Sluys, L.J.

    2011-01-01

    In this contribution we describe a methodology for the multiscale analysis of heterogeneous quasi-brittle materials. The algorithm is based on the finite element tearing and interconnecting FETI [1] method cast in a non-linear setting. Adaptive multiscale analysis is accounted for with the use of

  15. Analysis of global multiscale finite element methods for wave equations with continuum spatial scales

    KAUST Repository

    Jiang, Lijian

    2010-08-01

    In this paper, we discuss a numerical multiscale approach for solving wave equations with heterogeneous coefficients. Our interest comes from geophysics applications and we assume that there is no scale separation with respect to spatial variables. To obtain the solution of these multiscale problems on a coarse grid, we compute global fields such that the solution smoothly depends on these fields. We present a Galerkin multiscale finite element method using the global information and provide a convergence analysis when applied to solve the wave equations. We investigate the relation between the smoothness of the global fields and convergence rates of the global Galerkin multiscale finite element method for the wave equations. Numerical examples demonstrate that the use of global information renders better accuracy for wave equations with heterogeneous coefficients than the local multiscale finite element method. © 2010 IMACS.

  16. Multiscale Pigment Analysis of Medieval Illuminated Manuscripts

    Science.gov (United States)

    Sestak, Erica; Manukyan, Khachatur; Wiescher, Michael; Gura, David

    2017-09-01

    Three medieval illuminated manuscripts (codd. Lat. b. 1; Lat. b. 2; Lat. e. 4), housed at the University of Notre Dame's Hesburgh Library, vary in style, pigments, scribes, and regions, despite all three being Psalters used in the Late Middle Ages. XRF and Raman spectroscopy, which provided the elemental and molecular composition of the pigments, respectively, were used to analyze the pigments' compositions in an attempt to narrow further the manuscripts' possible origins. This experimental investigation emphasizes the importance of understanding the history of the manuscript through their pigments. Codd. Lat. b. 1 and Lat. b. 2 are Latinate German Psalters from the fifteenth century likely used in Katharinenkloster in Nuremberg. While there are visible differences in style within each Psalter, the variations in some of the pigment compositions, such as the inconstant presence of zinc, suggest different admixtures. Cod. Lat. e. 4 is a Latinate English Psalter from the fourteenth century, and it was written by two scribes and illuminated by two distinct painters. It is currently being tested to determine whether there are any correlations between the scribes and painters. These physical analyses will clarify the origins and provenances of the manuscripts.

  17. The Effect of Fiber Strength Stochastics and Local Fiber Volume Fraction on Multiscale Progressive Failure of Composites

    Science.gov (United States)

    Ricks, Trenton M.; Lacy, Jr., Thomas E.; Bednarcyk, Brett A.; Arnold, Steven M.

    2013-01-01

    Continuous fiber unidirectional polymer matrix composites (PMCs) can exhibit significant local variations in fiber volume fraction as a result of processing conditions that can lead to further local differences in material properties and failure behavior. In this work, the coupled effects of both local variations in fiber volume fraction and the empirically-based statistical distribution of fiber strengths on the predicted longitudinal modulus and local tensile strength of a unidirectional AS4 carbon fiber/ Hercules 3502 epoxy composite were investigated using the special purpose NASA Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC); local effective composite properties were obtained by homogenizing the material behavior over repeating units cells (RUCs). The predicted effective longitudinal modulus was relatively insensitive to small (8%) variations in local fiber volume fraction. The composite tensile strength, however, was highly dependent on the local distribution in fiber strengths. The RUC-averaged constitutive response can be used to characterize lower length scale material behavior within a multiscale analysis framework that couples the NASA code FEAMAC and the ABAQUS finite element solver. Such an approach can be effectively used to analyze the progressive failure of PMC structures whose failure initiates at the RUC level. Consideration of the effect of local variations in constituent properties and morphologies on progressive failure of PMCs is a central aspect of the application of Integrated Computational Materials Engineering (ICME) principles for composite materials.

  18. VARIATIONAL APPROACH IN WAVELET FRAMEWORK TO POLYNOMIAL APPROXIMATIONS OF NONLINEAR ACCELERATOR PROBLEMS

    Energy Technology Data Exchange (ETDEWEB)

    FEDOROVA,A.; ZEITLIN,M.; PARSA,Z.

    2000-03-31

    In this paper the authors present applications of methods from wavelet analysis to polynomial approximations for a number of accelerator physics problems. According to a variational approach in the general case they have the solution as a multiresolution (multiscales) expansion on the base of compactly supported wavelet basis. They give an extension of their results to the cases of periodic orbital particle motion and arbitrary variable coefficients. Then they consider more flexible variational method which is based on a biorthogonal wavelet approach. Also they consider a different variational approach, which is applied to each scale.

  19. Gradient design for liquid chromatography using multi-scale optimization.

    Science.gov (United States)

    López-Ureña, S; Torres-Lapasió, J R; Donat, R; García-Alvarez-Coque, M C

    2018-01-26

    In reversed phase-liquid chromatography, the usual solution to the "general elution problem" is the application of gradient elution with programmed changes of organic solvent (or other properties). A correct quantification of chromatographic peaks in liquid chromatography requires well resolved signals in a proper analysis time. When the complexity of the sample is high, the gradient program should be accommodated to the local resolution needs of each analyte. This makes the optimization of such situations rather troublesome, since enhancing the resolution for a given analyte may imply a collateral worsening of the resolution of other analytes. The aim of this work is to design multi-linear gradients that maximize the resolution, while fulfilling some restrictions: all peaks should be eluted before a given maximal time, the gradient should be flat or increasing, and sudden changes close to eluting peaks are penalized. Consequently, an equilibrated baseline resolution for all compounds is sought. This goal is achieved by splitting the optimization problem in a multi-scale framework. In each scale κ, an optimization problem is solved with N κ  ≈ 2 κ variables that are used to build the gradients. The N κ variables define cubic splines written in terms of a B-spline basis. This allows expressing gradients as polygonals of M points approximating the splines. The cubic splines are built using subdivision schemes, a technique of fast generation of smooth curves, compatible with the multi-scale framework. Owing to the nature of the problem and the presence of multiple local maxima, the algorithm used in the optimization problem of each scale κ should be "global", such as the pattern-search algorithm. The multi-scale optimization approach is successfully applied to find the best multi-linear gradient for resolving a mixture of amino acid derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. An efficient multi-scale Green's function reaction dynamics scheme

    Science.gov (United States)

    Sbailò, Luigi; Noé, Frank

    2017-11-01

    Molecular Dynamics-Green's Function Reaction Dynamics (MD-GFRD) is a multiscale simulation method for particle dynamics or particle-based reaction-diffusion dynamics that is suited for systems involving low particle densities. Particles in a low-density region are just diffusing and not interacting. In this case, one can avoid the costly integration of microscopic equations of motion, such as molecular dynamics (MD), and instead turn to an event-based scheme in which the times to the next particle interaction and the new particle positions at that time can be sampled. At high (local) concentrations, however, e.g., when particles are interacting in a nontrivial way, particle positions must still be updated with small time steps of the microscopic dynamical equations. The efficiency of a multi-scale simulation that uses these two schemes largely depends on the coupling between them and the decisions when to switch between the two scales. Here we present an efficient scheme for multi-scale MD-GFRD simulations. It has been shown that MD-GFRD schemes are more efficient than brute-force molecular dynamics simulations up to a molar concentration of 102 μM. In this paper, we show that the choice of the propagation domains has a relevant impact on the computational performance. Domains are constructed using a local optimization of their sizes and a minimal domain size is proposed. The algorithm is shown to be more efficient than brute-force Brownian dynamics simulations up to a molar concentration of 103 μM and is up to an order of magnitude more efficient compared with previous MD-GFRD schemes.

  1. Multiscale Currents Observed by MMS in the Flow Braking Region

    Science.gov (United States)

    Nakamura, Rumi; Varsani, Ali; Genestreti, Kevin J.; Le Contel, Olivier; Nakamura, Takuma; Baumjohann, Wolfgang; Nagai, Tsugunobu; Artemyev, Anton; Birn, Joachim; Sergeev, Victor A.; Apatenkov, Sergey; Ergun, Robert E.; Fuselier, Stephen A.; Gershman, Daniel J.; Giles, Barbara J.; Khotyaintsev, Yuri V.; Lindqvist, Per-Arne; Magnes, Werner; Mauk, Barry; Petrukovich, Anatoli; Russell, Christopher T.; Stawarz, Julia; Strangeway, Robert J.; Anderson, Brian; Burch, James L.; Bromund, Ken R.; Cohen, Ian; Fischer, David; Jaynes, Allison; Kepko, Laurence; Le, Guan; Plaschke, Ferdinand; Reeves, Geoff; Singer, Howard J.; Slavin, James A.; Torbert, Roy B.; Turner, Drew L.

    2018-02-01

    We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold E × B drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.

  2. Multiscale Embedded Gene Co-expression Network Analysis.

    Directory of Open Access Journals (Sweden)

    Won-Min Song

    2015-11-01

    Full Text Available Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3, the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA by: i introducing quality control of co-expression similarities, ii parallelizing embedded network construction, and iii developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs. We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA. MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.

  3. Multiscale Embedded Gene Co-expression Network Analysis.

    Science.gov (United States)

    Song, Won-Min; Zhang, Bin

    2015-11-01

    Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.

  4. Multiscale simulation of ion beam impacts on a graphene surface

    International Nuclear Information System (INIS)

    Dybyspayeva, K B; Zhuldassov, A; Ainabayev, A; Insepov, Z; Vyatkin, A F; Alekseev, K

    2016-01-01

    Multiscale study of single and multilayer graphene irradiation is presented in this paper. Ab-initio density-functional theory (DFT) was used to study point defects, and a large scale parallel molecular-dynamics (MD) simulations were used for studying formation of gas cluster ion impacts. Moreover, Raman spectra of pure and defect graphene samples were studied from DFT calculations. Threshold energies for creating craters on the surface of graphene were obtained from MD and compared with published papers. The results of simulations were also compared with experimental craters and surface shape. (paper)

  5. Multi-scale structural similarity index for motion detection

    Directory of Open Access Journals (Sweden)

    M. Abdel-Salam Nasr

    2017-07-01

    Full Text Available The most recent approach for measuring the image quality is the structural similarity index (SSI. This paper presents a novel algorithm based on the multi-scale structural similarity index for motion detection (MS-SSIM in videos. The MS-SSIM approach is based on modeling of image luminance, contrast and structure at multiple scales. The MS-SSIM has resulted in much better performance than the single scale SSI approach but at the cost of relatively lower processing speed. The major advantages of the presented algorithm are both: the higher detection accuracy and the quasi real-time processing speed.

  6. Modelling galaxy formation with multi-scale techniques

    International Nuclear Information System (INIS)

    Hobbs, A.

    2011-01-01

    Full text: Galaxy formation and evolution depends on a wide variety of physical processes - star formation, gas cooling, supernovae explosions and stellar winds etc. - that span an enormous range of physical scales. We present a novel technique for modelling such massively multiscale systems. This has two key new elements: Lagrangian re simulation, and convergent 'sub-grid' physics. The former allows us to hone in on interesting simulation regions with very high resolution. The latter allows us to increase resolution for the physics that we can resolve, without unresolved physics spoiling convergence. We illustrate the power of our new approach by showing some new results for star formation in the Milky Way. (author)

  7. Multiscale Modeling of Red Blood Cells Squeezing through Submicron Slits

    Science.gov (United States)

    Peng, Zhangli; Lu, Huijie

    2016-11-01

    A multiscale model is applied to study the dynamics of healthy red blood cells (RBCs), RBCs in hereditary spherocytosis, and sickle cell disease squeezing through submicron slits. This study is motivated by the mechanical filtration of RBCs by inter-endothelial slits in the spleen. First, the model is validated by comparing the simulation results with experiments. Secondly, the deformation of the cytoskeleton in healthy RBCs is investigated. Thirdly, the mechanisms of damage in hereditary spherocytosis are investigated. Finally, the effects of cytoplasm and membrane viscosities, especially in sickle cell disease, are examined. The simulations results provided guidance for future experiments to explore the dynamics of RBCs under extreme deformation.

  8. Analysis of the Spatial Distribution of Galaxies by Multiscale Methods

    Directory of Open Access Journals (Sweden)

    E. Saar

    2005-09-01

    Full Text Available Galaxies are arranged in interconnected walls and filaments forming a cosmic web encompassing huge, nearly empty, regions between the structures. Many statistical methods have been proposed in the past in order to describe the galaxy distribution and discriminate the different cosmological models. We present in this paper multiscale geometric transforms sensitive to clusters, sheets, and walls: the 3D isotropic undecimated wavelet transform, the 3D ridgelet transform, and the 3D beamlet transform. We show that statistical properties of transform coefficients measure in a coherent and statistically reliable way, the degree of clustering, filamentarity, sheetedness, and voidedness of a data set.

  9. Multiscale physics of ion-induced radiation damage.

    Science.gov (United States)

    Surdutovich, Eugene; Solov'yov, A V

    2014-01-01

    This is a review of a multiscale approach to the physics of ion-beam cancer therapy, an approach suggested in order to understand the interplay of a large number of phenomena involved in the radiation damage scenario occurring on a range of temporal, spatial, and energy scales. We describe different effects that take place on different scales and play major roles in the scenario of interaction of ions with tissue. The understanding of these effects allows an assessment of relative biological effectiveness that relates the physical quantities, such as dose, to the biological values, such as the probability of cell survival. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Hypoglycemia-Related Electroencephalogram Changes Assessed by Multiscale Entropy

    DEFF Research Database (Denmark)

    Fabris, C.; Sparacino, G.; Sejling, A. S.

    2014-01-01

    physiopathological conditions have never been assessed in hypoglycemia. The present study investigates if properties of the EEG signal measured by nonlinear entropy-based algorithms are altered in a significant manner when a state of hypoglycemia is entered. Subjects and Methods: EEG was acquired from 19 patients...... derivation in the two glycemic intervals was assessed using the multiscale entropy (MSE) approach, obtaining measures of sample entropy (SampEn) at various temporal scales. The comparison of how signal irregularity measured by SampEn varies as the temporal scale increases in the two glycemic states provides...

  11. Engineering Complex Systems: Multiscale Analysis and Evolutionary Engineering

    Science.gov (United States)

    Bar-Yam, Yaneer

    We describe an analytic approach, multiscale analysis, that can demonstrate the fundamental limitations of decomposition based engineering for the development of highly complex systems. The interdependence of components and communication between design teams limits any planning based process. Recognizing this limitation, we found that a new strategy for constructing many highly complex systems should be modeled after biological evolution, or market economies, where multiple design efforts compete in parallel for adoption through testing in actual use. Evolution is the only process that is known to create highly complex systems.

  12. Expected Navigation Flight Performance for the Magnetospheric Multiscale (MMS) Mission

    Science.gov (United States)

    Olson, Corwin; Wright, Cinnamon; Long, Anne

    2012-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four formation-flying spacecraft placed in highly eccentric elliptical orbits about the Earth. The primary scientific mission objective is to study magnetic reconnection within the Earth s magnetosphere. The baseline navigation concept is the independent estimation of each spacecraft state using GPS pseudorange measurements (referenced to an onboard Ultra Stable Oscillator) and accelerometer measurements during maneuvers. State estimation for the MMS spacecraft is performed onboard each vehicle using the Goddard Enhanced Onboard Navigation System, which is embedded in the Navigator GPS receiver. This paper describes the latest efforts to characterize expected navigation flight performance using upgraded simulation models derived from recent analyses.

  13. The set of prime numbers: Multiscale analysis and numeric accelerators

    International Nuclear Information System (INIS)

    Iovane, Gerardo

    2009-01-01

    In this work, we show that the prime numbers follow a multiscale distribution. Indeed they can be classified thanks to tree structures, which are expressed in terms of two maximal subsets of N and using multilayer selection rules, acting on these sets of prime candidates. Consequently, the prime numbers follow a specific deterministic rules. Indeed, a numeric accelerator for generating primes can be realized in terms of the above mentioned specific rules. From the comparison with the Fibonacci numbers a beautiful harmony comes in terms of the Golden Mean which is relevant to high energy physics and E-Infinity theory too.

  14. 3D Multiscale Modelling of Angiogenesis and Vascular Tumour Growth

    KAUST Repository

    Perfahl, H.

    2012-11-01

    We present a three-dimensional, multiscale model of vascular tumour growth, which couples nutrient/growth factor transport, blood flow, angiogenesis, vascular remodelling, movement of and interactions between normal and tumour cells, and nutrient-dependent cell cycle dynamics within each cell. We present computational simulations which show how a vascular network may evolve and interact with tumour and healthy cells. We also demonstrate how our model may be combined with experimental data, to predict the spatio-temporal evolution of a vascular tumour.

  15. An automated vessel segmentation of retinal images using multiscale vesselness

    International Nuclear Information System (INIS)

    Ben Abdallah, M.; Malek, J.; Tourki, R.; Krissian, K.

    2011-01-01

    The ocular fundus image can provide information on pathological changes caused by local ocular diseases and early signs of certain systemic diseases, such as diabetes and hypertension. Automated analysis and interpretation of fundus images has become a necessary and important diagnostic procedure in ophthalmology. The extraction of blood vessels from retinal images is an important and challenging task in medical analysis and diagnosis. In this paper, we introduce an implementation of the anisotropic diffusion which allows reducing the noise and better preserving small structures like vessels in 2D images. A vessel detection filter, based on a multi-scale vesselness function, is then applied to enhance vascular structures.

  16. Multiscale evolution of surface air temperature in the arid region of Northwest China and its linkages to ocean oscillations

    Science.gov (United States)

    Chen, Zhongsheng; Chen, Yaning; Bai, Ling; Xu, Jianhua

    2017-05-01

    The global climate has experienced unprecedented warming in the past century. The multiscale evolution of the warming is studied to better understand the spatial and temporal variation patterns of temperature. In this study, based on the yearly surface air temperature from the gridded CRU TS 3.22 dataset and the ensemble empirical mode decomposition method (EEMD), we investigated the multiscale evolution of temperature variability in the arid region of Northwest China (ARNC) from 1901 to 2013. Furthermore, the possible influences on the ARNC temperature change from the Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), and dipole mode index (DMI) were also discussed. The results indicated that in the past century, the overall temperature in the ARNC has showed a significant non-linear upward trend, and its changes have clearly exhibited an interannual scale (quasi-2-3 and quasi-6-7-year) and an interdecadal scale (quasi-14, quasi-24, and quasi-70-year). Compared with the reconstructed interannual variation, the reconstructed interdecadal variability plays a decisive role in the ARNC warming and reveals the climatic pattern transformation from the cold period to the warm period before and after 1987. Additionally, there were also regional differences in the spatial patterns of change trend in the ARNC temperature at a given time. We also found that the AMO and PDO had significant impacts on the ARNC temperature fluctuation at an interdecadal scale, whereas the DMI had a more important role in warming at the annual scale, which suggests that the importance of oceans cannot be ignored when considering climate change. Our findings deepen the understanding of the temperature changes all over the ARNC in the context of global warming.

  17. Multi-scale simulation for terahertz wave emission from the intrinsic Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, T; Matsumoto, H [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Machida, M; Ota, Y [CREST (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2011-08-15

    A numerical method applicable to the analysis of the multi-scale electromagnetic (EM) excitations in intrinsic Josephson junctions (IJJs) is presented. Using this method, we investigate the EM wave emission from the IJJs observed in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} mesas. The IJJs have three length scales that are greatly different in magnitude, i.e. the distance between superconducting layers (d {approx} 10{sup -3} {mu}m), the Josephson length ({lambda}{sub J} {approx} 1 {mu}m) and the c-axis penetration depth ({lambda}{sub c} {approx} 10{sup 2} {mu}m). The EM field excited in the IJJs generally shows spatial variation of these three length scales at the same time. In our numerical method the coupled dynamical equations for the phase differences and the EM field can be solved simultaneously in all the scales in the whole space composed of the IJJs and the surrounding vacuum. We clarify that the spatial symmetry of the EM field excited at the resonance with the {pi}-cavity-mode is different from that with the 2{pi}-cavity-mode. The strong EM wave emission originating from the {pi}-cavity-mode resonance takes place in the region where the uniform branch becomes unstable in the I-V characteristics.

  18. Multiscale Investigation on Biofilm Distribution and Its Impact on Macroscopic Biogeochemical Reaction Rates

    Science.gov (United States)

    Yan, Zhifeng; Liu, Chongxuan; Liu, Yuanyuan; Bailey, Vanessa L.

    2017-11-01

    Biofilms are critical locations for biogeochemical reactions in the subsurface environment. The occurrence and distribution of biofilms at microscale as well as their impacts on macroscopic biogeochemical reaction rates are still poorly understood. This paper investigated the formation and distributions of biofilms in heterogeneous sediments using multiscale models and evaluated the effects of biofilm heterogeneity on local and macroscopic biogeochemical reaction rates. Sediment pore structures derived from X-ray computed tomography were used to simulate the microscale flow dynamics and biofilm distribution in the sediment column. The response of biofilm formation and distribution to the variations in hydraulic and chemical properties was first examined. One representative biofilm distribution was then utilized to evaluate its effects on macroscopic reaction rates using nitrate reduction as an example. The results revealed that microorganisms primarily grew on the surfaces of grains and aggregates near preferential flow paths where both electron donor and acceptor were readily accessible, leading to the heterogeneous distribution of biofilms in the sediments. The heterogeneous biofilm distribution decreased the macroscopic rate of biogeochemical reactions as compared with those in homogeneous cases. Operationally considering the heterogeneous biofilm distribution in macroscopic reactive transport models such as using dual porosity domain concept can significantly improve the prediction of biogeochemical reaction rates. Overall, this study provided important insights into the biofilm formation and distribution in soils and sediments as well as their impacts on the macroscopic manifestation of reaction rates.

  19. Magnetospheric Multiscale Observations of Magnetic Reconnection Associated with Kelvin-Helmholtz Waves

    Science.gov (United States)

    Eriksson, S.; Lavraud, B.; Wilder, F. D.; Stawarz, J. E.; Giles, B. L.; Burch, J. L.; Baumjohann, W.; Ergun, R. E.; Lindqvist, P.-A.; Magnes, W.; hide

    2016-01-01

    The four Magnetospheric Multiscale (MMS) spacecraft recorded the first direct evidence of reconnection exhausts associated with Kelvln-Helmholtz (KH) waves at the duskside magnetopause on 8 September 2015 which allows for local mass and energy transport across the flank magnetopause. Pressure anisotropy-weighted Walen analyses confirmed in-plane exhausts across 22 of 42 KH-related trailing magnetopause current sheets (CSs). Twenty-one jets were observed by all spacecraft, with small variations in ion velocity, along the same sunward or antisunward direction with nearly equal probability. One exhaust was only observed by the MMS-1,2 pair, while MMS-3,4 traversed a narrow CS (1.5 ion inertial length) in the vicinity of an electron diffusion region. The exhausts were locally 2-D planar in nature as MMS-1, 2 observed almost identical signatures separated along the guide-field. Asymmetric magnetic and electric Hall fields are reported in agreement with a strong guide-field and a weak plasma density asymmetry across the magnetopause CS.

  20. A Multiscale Computational Model of the Response of Swine Epidermis After Acute Irradiation

    Science.gov (United States)

    Hu, Shaowen; Cucinotta, Francis A.

    2012-01-01

    Radiation exposure from Solar Particle Events can lead to very high skin dose for astronauts on exploration missions outside the protection of the Earth s magnetic field [1]. Assessing the detrimental effects to human skin under such adverse conditions could be predicted by conducting territorial experiments on animal models. In this study we apply a computational approach to simulate the experimental data of the radiation response of swine epidermis, which is closely similar to human epidermis [2]. Incorporating experimentally measured histological and cell kinetic parameters into a multiscale tissue modeling framework, we obtain results of population kinetics and proliferation index comparable to unirradiated and acutely irradiated swine experiments [3]. It is noted the basal cell doubling time is 10 to 16 days in the intact population, but drops to 13.6 hr in the regenerating populations surviving irradiation. This complex 30-fold variation is proposed to be attributed to the shortening of the G1 phase duration. We investigate this radiation induced effect by considering at the sub-cellular level the expression and signaling of TGF-beta, as it is recognized as a key regulatory factor of tissue formation and wound healing [4]. This integrated model will allow us to test the validity of various basic biological rules at the cellular level and sub-cellular mechanisms by qualitatively comparing simulation results with published research, and should lead to a fuller understanding of the pathophysiological effects of ionizing radiation on the skin.

  1. Domain Decomposition Preconditioners for Multiscale Flows in High-Contrast Media

    KAUST Repository

    Galvis, Juan

    2010-01-01

    In this paper, we study domain decomposition preconditioners for multiscale flows in high-contrast media. We consider flow equations governed by elliptic equations in heterogeneous media with a large contrast in the coefficients. Our main goal is to develop domain decomposition preconditioners with the condition number that is independent of the contrast when there are variations within coarse regions. This is accomplished by designing coarse-scale spaces and interpolators that represent important features of the solution within each coarse region. The important features are characterized by the connectivities of high-conductivity regions. To detect these connectivities, we introduce an eigenvalue problem that automatically detects high-conductivity regions via a large gap in the spectrum. A main observation is that this eigenvalue problem has a few small, asymptotically vanishing eigenvalues. The number of these small eigenvalues is the same as the number of connected high-conductivity regions. The coarse spaces are constructed such that they span eigenfunctions corresponding to these small eigenvalues. These spaces are used within two-level additive Schwarz preconditioners as well as overlapping methods for the Schur complement to design preconditioners. We show that the condition number of the preconditioned systems is independent of the contrast. More detailed studies are performed for the case when the high-conductivity region is connected within coarse block neighborhoods. Our numerical experiments confirm the theoretical results presented in this paper. © 2010 Society for Industrial and Applied Mathematics.

  2. Bayesian Uncertainty Quantification for Subsurface Inversion Using a Multiscale Hierarchical Model

    KAUST Repository

    Mondal, Anirban

    2014-07-03

    We consider a Bayesian approach to nonlinear inverse problems in which the unknown quantity is a random field (spatial or temporal). The Bayesian approach contains a natural mechanism for regularization in the form of prior information, can incorporate information from heterogeneous sources and provide a quantitative assessment of uncertainty in the inverse solution. The Bayesian setting casts the inverse solution as a posterior probability distribution over the model parameters. The Karhunen-Loeve expansion is used for dimension reduction of the random field. Furthermore, we use a hierarchical Bayes model to inject multiscale data in the modeling framework. In this Bayesian framework, we show that this inverse problem is well-posed by proving that the posterior measure is Lipschitz continuous with respect to the data in total variation norm. Computational challenges in this construction arise from the need for repeated evaluations of the forward model (e.g., in the context of MCMC) and are compounded by high dimensionality of the posterior. We develop two-stage reversible jump MCMC that has the ability to screen the bad proposals in the first inexpensive stage. Numerical results are presented by analyzing simulated as well as real data from hydrocarbon reservoir. This article has supplementary material available online. © 2014 American Statistical Association and the American Society for Quality.

  3. Integrating multi-scale data to create a virtual physiological mouse heart.

    Science.gov (United States)

    Land, Sander; Niederer, Steven A; Louch, William E; Sejersted, Ole M; Smith, Nicolas P

    2013-04-06

    While the virtual physiological human (VPH) project has made great advances in human modelling, many of the tools and insights developed as part of this initiative are also applicable for facilitating mechanistic understanding of the physiology of a range of other species. This process, in turn, has the potential to provide human relevant insights via a different scientific path. Specifically, the increasing use of mice in experimental research, not yet fully complemented by a similar increase in computational modelling, is currently missing an important opportunity for using and interpreting this growing body of experimental data to improve our understanding of cardiac function. This overview describes our work to address this issue by creating a virtual physiological mouse model of the heart. We describe the similarities between human- and mouse-focused modelling, including the reuse of VPH tools, and the development of methods for investigating parameter sensitivity that are applicable across species. We show how previous results using this approach have already provided important biological insights, and how these can also be used to advance VPH heart models. Finally, we show an example application of this approach to test competing multi-scale hypotheses by investigating variations in length-dependent properties of cardiac muscle.

  4. Magnetospheric Multiscale Observations of Electron Vortex Magnetic Hole in the Turbulent Magnetosheath Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Huang, S. Y.; Yuan, Z. G.; Wang, D. D.; Yu, X. D. [School of Electronic Information, Wuhan University, Wuhan (China); Sahraoui, F.; Contel, O. Le [Laboratoire de Physique des Plasmas, CNRS-Ecole Polytechnique-UPMC, Palaiseau (France); He, J. S. [School of Earth and Space Sciences, Peking University, Beijing (China); Zhao, J. S. [Key Laboratory of Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing (China); Deng, X. H.; Pang, Y.; Li, H. M. [Institute of Space Science and Technology, Nanchang University, Nanchang (China); Zhou, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA (United States); Fu, H. S.; Yang, J. [School of Space and Environment, Beihang University, Beijing (China); Shi, Q. Q. [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai (China); Lavraud, B. [Institut de Recherche and Astrophysique et Planétologie, Université de Toulouse (UPS), Toulouse (France); Pollock, C. J.; Giles, B. L. [NASA, Goddard Space Flight Center, Greenbelt, MD (United States); Torbert, R. B. [University of New Hampshire, Durham, NH (United States); Russell, C. T., E-mail: shiyonghuang@whu.edu.cn [Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA (United States); and others

    2017-02-20

    We report on the observations of an electron vortex magnetic hole corresponding to a new type of coherent structure in the turbulent magnetosheath plasma using the Magnetospheric Multiscale mission data. The magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region and a peak in the outer region of the magnetic hole. The estimated size of the magnetic hole is about 0.23 ρ {sub i} (∼30 ρ {sub e}) in the quasi-circular cross-section perpendicular to its axis, where ρ {sub i} and ρ {sub e} are respectively the proton and electron gyroradius. There are no clear enhancements seen in high-energy electron fluxes. However, there is an enhancement in the perpendicular electron fluxes at 90° pitch angle inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components V {sub em} and V {sub en} suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the cross-section in the M – N plane. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations.

  5. eXtended variational quasicontinuum methodology for lattice networks with damage and crack propagation

    Czech Academy of Sciences Publication Activity Database

    Rokoš, O.; Peerlings, R. H. J.; Zeman, Jan

    2017-01-01

    Roč. 320, č. 1 (2017), s. 769-792 ISSN 0045-7825 R&D Projects: GA ČR(CZ) GF16-34894L Institutional support: RVO:67985556 Keywords : Lattice networks * Quasicontinuum method * Damage * Extended finite element method * Multiscale modelling * Variational formulation Subject RIV: JJ - Other Materials OBOR OECD: Materials engineering Impact factor: 3.949, year: 2016 http://library.utia.cas.cz/separaty/2017/AS/zeman-0475349.pdf

  6. Diffusion Filters for Variational Data Assimilation of Sea Surface Temperature in an Intermediate Climate Model

    Science.gov (United States)

    2015-01-01

    state estimation and forecast in real applica- tions using general circulation models (GCMs). In addition, other spatial multiscale variational analysis...Journal of Geophysical Research C: Oceans, vol. 102, no. 3, pp. 5655–5667, 1997. [15] P. C. Chu, W. Guihua, and Y. Chen, “Japan Sea thermohaline ...structure and circulation . Part III: autocorrelation functions,” Journal of Physical Oceanography, vol. 32, no. 12, pp. 3596–3615, 2002. [16] K.-A. Park and J

  7. Generalized multiscale finite element methods for problems in perforated heterogeneous domains

    KAUST Repository

    Chung, Eric T.

    2015-06-08

    Complex processes in perforated domains occur in many real-world applications. These problems are typically characterized by physical processes in domains with multiple scales. Moreover, these problems are intrinsically multiscale and their discretizations can yield very large linear or nonlinear systems. In this paper, we investigate multiscale approaches that attempt to solve such problems on a coarse grid by constructing multiscale basis functions in each coarse grid, where the coarse grid can contain many perforations. In particular, we are interested in cases when there is no scale separation and the perforations can have different sizes. In this regard, we mention some earlier pioneering works, where the authors develop multiscale finite element methods. In our paper, we follow Generalized Multiscale Finite Element Method (GMsFEM) and develop a multiscale procedure where we identify multiscale basis functions in each coarse block using snapshot space and local spectral problems. We show that with a few basis functions in each coarse block, one can approximate the solution, where each coarse block can contain many small inclusions. We apply our general concept to (1) Laplace equation in perforated domains; (2) elasticity equation in perforated domains; and (3) Stokes equations in perforated domains. Numerical results are presented for these problems using two types of heterogeneous perforated domains. The analysis of the proposed methods will be presented elsewhere. © 2015 Taylor & Francis

  8. Multi-scale window specification over streaming trajectories

    Directory of Open Access Journals (Sweden)

    Kostas Patroumpas

    2013-12-01

    Full Text Available Enormous amounts of positional information are collected by monitoring applications in domains such as fleet management, cargo transport, wildlife protection, etc. With the advent of modern location-based services, processing such data mostly focuses on providing real-time response to a variety of user requests in continuous and scalable fashion. An important class of such queries concerns evolving trajectories that continuously trace the streaming locations of moving objects, like GPS-equipped vehicles, commodities with RFID's, people with smartphones etc. In this work, we propose an advanced windowing operator that enables online, incremental examination of recent motion paths at multiple resolutions for numerous point entities. When applied against incoming positions, this window can abstract trajectories at coarser representations towards the past, while retaining progressively finer features closer to the present. We explain the semantics of such multi-scale sliding windows through parameterized functions that reflect the sequential nature of trajectories and can effectively capture their spatiotemporal properties. Such window specification goes beyond its usual role for non-blocking processing of multiple concurrent queries. Actually, it can offer concrete subsequences from each trajectory, thus preserving continuity in time and contiguity in space along the respective segments. Further, we suggest language extensions in order to express characteristic spatiotemporal queries using windows. Finally, we discuss algorithms for nested maintenance of multi-scale windows and evaluate their efficiency against streaming positional data, offering empirical evidence of their benefits to online trajectory processing.

  9. Multiscale modeling and computation of optically manipulated nano devices

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Gang, E-mail: baog@zju.edu.cn [Department of Mathematics, Zhejiang University, Hangzhou 310027 (China); Liu, Di, E-mail: richardl@math.msu.edu [Department of Mathematics, Michigan State University, East Lansing, MI 48824 (United States); Luo, Songting, E-mail: luos@iastate.edu [Department of Mathematics, Iowa State University, Ames, IA 50011 (United States)

    2016-07-01

    We present a multiscale modeling and computational scheme for optical-mechanical responses of nanostructures. The multi-physical nature of the problem is a result of the interaction between the electromagnetic (EM) field, the molecular motion, and the electronic excitation. To balance accuracy and complexity, we adopt the semi-classical approach that the EM field is described classically by the Maxwell equations, and the charged particles follow the Schrödinger equations quantum mechanically. To overcome the numerical challenge of solving the high dimensional multi-component many-body Schrödinger equations, we further simplify the model with the Ehrenfest molecular dynamics to determine the motion of the nuclei, and use the Time-Dependent Current Density Functional Theory (TD-CDFT) to calculate the excitation of the electrons. This leads to a system of coupled equations that computes the electromagnetic field, the nuclear positions, and the electronic current and charge densities simultaneously. In the regime of linear responses, the resonant frequencies initiating the out-of-equilibrium optical-mechanical responses can be formulated as an eigenvalue problem. A self-consistent multiscale method is designed to deal with the well separated space scales. The isomerization of azobenzene is presented as a numerical example.

  10. Dynamics of a neural system with a multiscale architecture

    Science.gov (United States)

    Breakspear, Michael; Stam, Cornelis J

    2005-01-01

    The architecture of the brain is characterized by a modular organization repeated across a hierarchy of spatial scales—neurons, minicolumns, cortical columns, functional brain regions, and so on. It is important to consider that the processes governing neural dynamics at any given scale are not only determined by the behaviour of other neural structures at that scale, but also by the emergent behaviour of smaller scales, and the constraining influence of activity at larger scales. In this paper, we introduce a theoretical framework for neural systems in which the dynamics are nested within a multiscale architecture. In essence, the dynamics at each scale are determined by a coupled ensemble of nonlinear oscillators, which embody the principle scale-specific neurobiological processes. The dynamics at larger scales are ‘slaved’ to the emergent behaviour of smaller scales through a coupling function that depends on a multiscale wavelet decomposition. The approach is first explicated mathematically. Numerical examples are then given to illustrate phenomena such as between-scale bifurcations, and how synchronization in small-scale structures influences the dynamics in larger structures in an intuitive manner that cannot be captured by existing modelling approaches. A framework for relating the dynamical behaviour of the system to measured observables is presented and further extensions to capture wave phenomena and mode coupling are suggested. PMID:16087448

  11. Multi-scale modeling for sustainable chemical production.

    Science.gov (United States)

    Zhuang, Kai; Bakshi, Bhavik R; Herrgård, Markus J

    2013-09-01

    With recent advances in metabolic engineering, it is now technically possible to produce a wide portfolio of existing petrochemical products from biomass feedstock. In recent years, a number of modeling approaches have been developed to support the engineering and decision-making processes associated with the development and implementation of a sustainable biochemical industry. The temporal and spatial scales of modeling approaches for sustainable chemical production vary greatly, ranging from metabolic models that aid the design of fermentative microbial strains to material and monetary flow models that explore the ecological impacts of all economic activities. Research efforts that attempt to connect the models at different scales have been limited. Here, we review a number of existing modeling approaches and their applications at the scales of metabolism, bioreactor, overall process, chemical industry, economy, and ecosystem. In addition, we propose a multi-scale approach for integrating the existing models into a cohesive framework. The major benefit of this proposed framework is that the design and decision-making at each scale can be informed, guided, and constrained by simulations and predictions at every other scale. In addition, the development of this multi-scale framework would promote cohesive collaborations across multiple traditionally disconnected modeling disciplines to achieve sustainable chemical production. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Multiscale modeling of composites subjected to high speed impact

    Science.gov (United States)

    Lee, Minhyung; Cha, Myung S.; Shang, Shu; Kim, Nam H.

    2015-06-01

    The simulation of high speed impact into composite panels is a challenging task. This is partly due to the fact macro-scale simulation requires integrating the local response at various locations, i.e. integration points. If a huge number of integration points exist for enhanced accuracy, it is often suggested to calculate the micro-scale simulation using massive parallel processing. In this paper, multiscale modeling methodology has been applied to simulate the relatively thick composite panels subjected to high speed local impact loading. Instead of massive parallel processing, we propose to use surrogate modeling to bridge micro-scale and macro-scale. Multiscale modeling of fracture phenomena of composite materials will consist of (1) micro-scale modeling of fiber-matrix structure using the unit-volume-element technique; (2) macro-scale simulation of composite panels under high strain-rate impact using material response calculated from micro-scale modeling; and (3) surrogate modeling to integrate the two scales. In order to validate the predictions, first we did the material level lab experiment such as tension test. And later we also did the field test of bullet impact into composite panels made of 4 ply and 8 ply fibers. The impact velocity ranges from 300 ~ 600 m/s. Special Thanks to grants (UD120053GD).

  13. Refined generalized multiscale entropy analysis for physiological signals

    Science.gov (United States)

    Liu, Yunxiao; Lin, Youfang; Wang, Jing; Shang, Pengjian

    2018-01-01

    Multiscale entropy analysis has become a prevalent complexity measurement and been successfully applied in various fields. However, it only takes into account the information of mean values (first moment) in coarse-graining procedure. Then generalized multiscale entropy (MSEn) considering higher moments to coarse-grain a time series was proposed and MSEσ2 has been implemented. However, the MSEσ2 sometimes may yield an imprecise estimation of entropy or undefined entropy, and reduce statistical reliability of sample entropy estimation as scale factor increases. For this purpose, we developed the refined model, RMSEσ2, to improve MSEσ2. Simulations on both white noise and 1 / f noise show that RMSEσ2 provides higher entropy reliability and reduces the occurrence of undefined entropy, especially suitable for short time series. Besides, we discuss the effect on RMSEσ2 analysis from outliers, data loss and other concepts in signal processing. We apply the proposed model to evaluate the complexity of heartbeat interval time series derived from healthy young and elderly subjects, patients with congestive heart failure and patients with atrial fibrillation respectively, compared to several popular complexity metrics. The results demonstrate that RMSEσ2 measured complexity (a) decreases with aging and diseases, and (b) gives significant discrimination between different physiological/pathological states, which may facilitate clinical application.

  14. Multiscale functions, scale dynamics, and applications to partial differential equations

    Science.gov (United States)

    Cresson, Jacky; Pierret, Frédéric

    2016-05-01

    Modeling phenomena from experimental data always begins with a choice of hypothesis on the observed dynamics such as determinism, randomness, and differentiability. Depending on these choices, different behaviors can be observed. The natural question associated to the modeling problem is the following: "With a finite set of data concerning a phenomenon, can we recover its underlying nature? From this problem, we introduce in this paper the definition of multi-scale functions, scale calculus, and scale dynamics based on the time scale calculus [see Bohner, M. and Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications (Springer Science & Business Media, 2001)] which is used to introduce the notion of scale equations. These definitions will be illustrated on the multi-scale Okamoto's functions. Scale equations are analysed using scale regimes and the notion of asymptotic model for a scale equation under a particular scale regime. The introduced formalism explains why a single scale equation can produce distinct continuous models even if the equation is scale invariant. Typical examples of such equations are given by the scale Euler-Lagrange equation. We illustrate our results using the scale Newton's equation which gives rise to a non-linear diffusion equation or a non-linear Schrödinger equation as asymptotic continuous models depending on the particular fractional scale regime which is considered.

  15. Parallel algorithm for multiscale atomistic/continuum simulations using LAMMPS

    Science.gov (United States)

    Pavia, F.; Curtin, W. A.

    2015-07-01

    Deformation and fracture processes in engineering materials often require simultaneous descriptions over a range of length and time scales, with each scale using a different computational technique. Here we present a high-performance parallel 3D computing framework for executing large multiscale studies that couple an atomic domain, modeled using molecular dynamics and a continuum domain, modeled using explicit finite elements. We use the robust Coupled Atomistic/Discrete-Dislocation (CADD) displacement-coupling method, but without the transfer of dislocations between atoms and continuum. The main purpose of the work is to provide a multiscale implementation within an existing large-scale parallel molecular dynamics code (LAMMPS) that enables use of all the tools associated with this popular open-source code, while extending CADD-type coupling to 3D. Validation of the implementation includes the demonstration of (i) stability in finite-temperature dynamics using Langevin dynamics, (ii) elimination of wave reflections due to large dynamic events occurring in the MD region and (iii) the absence of spurious forces acting on dislocations due to the MD/FE coupling, for dislocations further than 10 Å from the coupling boundary. A first non-trivial example application of dislocation glide and bowing around obstacles is shown, for dislocation lengths of ∼50 nm using fewer than 1 000 000 atoms but reproducing results of extremely large atomistic simulations at much lower computational cost.

  16. Thermal nanostructure: An order parameter multiscale ensemble approach

    Science.gov (United States)

    Cheluvaraja, S.; Ortoleva, P.

    2010-02-01

    Deductive all-atom multiscale techniques imply that many nanosystems can be understood in terms of the slow dynamics of order parameters that coevolve with the quasiequilibrium probability density for rapidly fluctuating atomic configurations. The result of this multiscale analysis is a set of stochastic equations for the order parameters whose dynamics is driven by thermal-average forces. We present an efficient algorithm for sampling atomistic configurations in viruses and other supramillion atom nanosystems. This algorithm allows for sampling of a wide range of configurations without creating an excess of high-energy, improbable ones. It is implemented and used to calculate thermal-average forces. These forces are then used to search the free-energy landscape of a nanosystem for deep minima. The methodology is applied to thermal structures of Cowpea chlorotic mottle virus capsid. The method has wide applicability to other nanosystems whose properties are described by the CHARMM or other interatomic force field. Our implementation, denoted SIMNANOWORLD™, achieves calibration-free nanosystem modeling. Essential atomic-scale detail is preserved via a quasiequilibrium probability density while overall character is provided via predicted values of order parameters. Applications from virology to the computer-aided design of nanocapsules for delivery of therapeutic agents and of vaccines for nonenveloped viruses are envisioned.

  17. Multi-scale structural community organisation of the human genome.

    Science.gov (United States)

    Boulos, Rasha E; Tremblay, Nicolas; Arneodo, Alain; Borgnat, Pierre; Audit, Benjamin

    2017-04-11

    Structural interaction frequency matrices between all genome loci are now experimentally achievable thanks to high-throughput chromosome conformation capture technologies. This ensues a new methodological challenge for computational biology which consists in objectively extracting from these data the structural motifs characteristic of genome organisation. We deployed the fast multi-scale community mining algorithm based on spectral graph wavelets to characterise the networks of intra-chromosomal interactions in human cell lines. We observed that there exist structural domains of all sizes up to chromosome length and demonstrated that the set of structural communities forms a hierarchy of chromosome segments. Hence, at all scales, chromosome folding predominantly involves interactions between neighbouring sites rather than the formation of links between distant loci. Multi-scale structural decomposition of human chromosomes provides an original framework to question structural organisation and its relationship to functional regulation across the scales. By construction the proposed methodology is independent of the precise assembly of the reference genome and is thus directly applicable to genomes whose assembly is not fully determined.

  18. Multiscale recurrence analysis of spatio-temporal data

    Science.gov (United States)

    Riedl, M.; Marwan, N.; Kurths, J.

    2015-12-01

    The description and analysis of spatio-temporal dynamics is a crucial task in many scientific disciplines. In this work, we propose a method which uses the mapogram as a similarity measure between spatially distributed data instances at different time points. The resulting similarity values of the pairwise comparison are used to construct a recurrence plot in order to benefit from established tools of recurrence quantification analysis and recurrence network analysis. In contrast to other recurrence tools for this purpose, the mapogram approach allows the specific focus on different spatial scales that can be used in a multi-scale analysis of spatio-temporal dynamics. We illustrate this approach by application on mixed dynamics, such as traveling parallel wave fronts with additive noise, as well as more complicate examples, pseudo-random numbers and coupled map lattices with a semi-logistic mapping rule. Especially the complicate examples show the usefulness of the multi-scale consideration in order to take spatial pattern of different scales and with different rhythms into account. So, this mapogram approach promises new insights in problems of climatology, ecology, or medicine.

  19. A multiscale quantum mechanics/electromagnetics method for device simulations.

    Science.gov (United States)

    Yam, ChiYung; Meng, Lingyi; Zhang, Yu; Chen, GuanHua

    2015-04-07

    Multiscale modeling has become a popular tool for research applying to different areas including materials science, microelectronics, biology, chemistry, etc. In this tutorial review, we describe a newly developed multiscale computational method, incorporating quantum mechanics into electronic device modeling with the electromagnetic environment included through classical electrodynamics. In the quantum mechanics/electromagnetics (QM/EM) method, the regions of the system where active electron scattering processes take place are treated quantum mechanically, while the surroundings are described by Maxwell's equations and a semiclassical drift-diffusion model. The QM model and the EM model are solved, respectively, in different regions of the system in a self-consistent manner. Potential distributions and current densities at the interface between QM and EM regions are employed as the boundary conditions for the quantum mechanical and electromagnetic simulations, respectively. The method is illustrated in the simulation of several realistic systems. In the case of junctionless field-effect transistors, transfer characteristics are obtained and a good agreement between experiments and simulations is achieved. Optical properties of a tandem photovoltaic cell are studied and the simulations demonstrate that multiple QM regions are coupled through the classical EM model. Finally, the study of a carbon nanotube-based molecular device shows the accuracy and efficiency of the QM/EM method.

  20. Multiscale CNNs for Brain Tumor Segmentation and Diagnosis

    Directory of Open Access Journals (Sweden)

    Liya Zhao

    2016-01-01

    Full Text Available Early brain tumor detection and diagnosis are critical to clinics. Thus segmentation of focused tumor area needs to be accurate, efficient, and robust. In this paper, we propose an automatic brain tumor segmentation method based on Convolutional Neural Networks (CNNs. Traditional CNNs focus only on local features and ignore global region features, which are both important for pixel classification and recognition. Besides, brain tumor can appear in any place of the brain and be any size and shape in patients. We design a three-stream framework named as multiscale CNNs which could automatically detect the optimum top-three scales of the image sizes and combine information from different scales of the regions around that pixel. Datasets provided by Multimodal Brain Tumor Image Segmentation Benchmark (BRATS organized by MICCAI 2013 are utilized for both training and testing. The designed multiscale CNNs framework also combines multimodal features from T1, T1-enhanced, T2, and FLAIR MRI images. By comparison with traditional CNNs and the best two methods in BRATS 2012 and 2013, our framework shows advances in brain tumor segmentation accuracy and robustness.

  1. Multiscale CNNs for Brain Tumor Segmentation and Diagnosis.

    Science.gov (United States)

    Zhao, Liya; Jia, Kebin

    2016-01-01

    Early brain tumor detection and diagnosis are critical to clinics. Thus segmentation of focused tumor area needs to be accurate, efficient, and robust. In this paper, we propose an automatic brain tumor segmentation method based on Convolutional Neural Networks (CNNs). Traditional CNNs focus only on local features and ignore global region features, which are both important for pixel classification and recognition. Besides, brain tumor can appear in any place of the brain and be any size and shape in patients. We design a three-stream framework named as multiscale CNNs which could automatically detect the optimum top-three scales of the image sizes and combine information from different scales of the regions around that pixel. Datasets provided by Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized by MICCAI 2013 are utilized for both training and testing. The designed multiscale CNNs framework also combines multimodal features from T1, T1-enhanced, T2, and FLAIR MRI images. By comparison with traditional CNNs and the best two methods in BRATS 2012 and 2013, our framework shows advances in brain tumor segmentation accuracy and robustness.

  2. PREFACE: 12th International Symposium on Multiscale, Multifunctional and Functionally Graded Materials (FGM 2012)

    Science.gov (United States)

    Zhou, Zhangjian; Li, Jingfeng; Zhang, Lianmeng; Ge, Changchun

    2013-03-01

    The 12th International Symposium on Multiscale, Multifunctional and Functionally Graded Materials (FGM-2012) was held in Beijing, China, from 22-36 October 2012. This was part of a series of conferences organized every two years endorsed by International Advisory Committee for FGM's, which serves as a forum for scientists, educators, engineers and young students interested in the development of functionally graded materials (FGM). The series continues from the previous international symposium on FGM held in Sendai, Japan (1990), San Francisco, USA (1992), Lausanne, Switzerland (1994), Tsukuba, Japan (1996), Dresden, Germany (1998), Estes Park, USA (2000), Beijing, China (2002), Leuven, Belgium (2004), Hawaii, USA (2006), Sendai, Japan (2008) and Guimaraes, Portugal (2010). Functionally graded materials are non-uniform materials which are designed with embodied continuous spatial variations in composition and microstructure for the specific purpose of adjusting their thermal, structural, mechanical, biological or functional response to specific application conditions. Such multi-phase materials cover a range of space and time scales, and are best understood by means of a comprehensive multiscale, multiphysics approach. These kinds of materials are presently in the forefront of materials research, receiving worldwide attention. They have a broad range of applications including for example, biomedical, biomechanical, automotive, aerospace, mechanical, civil, nuclear, and naval engineering. New applications are continuously being discovered and developed. The objective of the FGM-2012 intends to provide opportunities for exchanging ideas and discussing state-of-the-art theories, techniques and applications in the fields of multiscale, multifunctional and FGM, through invited lectures, oral and poster presentations. FGM-2012 was organized and hosted by University of Science and Technology Beijing, China, together with Tsing-hua University and Wuhan University of

  3. Assessing the role of urban developments on storm runoff response through multi-scale catchment experiments

    Science.gov (United States)

    Wilkinson, Mark; Owen, Gareth; Geris, Josie; Soulsby, Chris; Quinn, Paul

    2015-04-01

    Many communities across the world face the increasing challenge of balancing water quantity and quality issues with accommodating new growth and urban development. Urbanisation is typically associated with detrimental changes in water quality, sediment delivery, and effects on water storage and flow pathways (e.g. increases in flooding). In particular for mixed rural and urban catchments where the spatio-temporal variability of hydrological responses is high, there remains a key research challenge in evaluating the timing and magnitude of storage and flow pathways at multiple scales. This is of crucial importance for appropriate catchment management, for example to aid the design of Green Infrastructure (GI) to mitigate the risk of flooding, among other multiple benefits. The aim of this work was to (i) explore spatio-temporal storm runoff generation characteristics in multi-scale catchment experiments that contain rural and urban land use zones, and (ii) assess the (preliminary) impact of Sustainable Drainage (SuDs) as GI on high flow and flood characteristics. Our key research catchment, the Ouseburn in Northern England (55km2), has rural headwaters (15%) and an urban zone (45%) concentrated in the lower catchment area. There is an intermediate and increasingly expanding peri-urban zone (currently 40%), which is defined here as areas where rural and urban features coexist, alongside GIs. Such a structure is typical for most catchments with urban developments. We monitored spatial precipitation and multiscale nested (five gauges) runoff response, in addition to the storage dynamics in GIs for a period of 6 years (2007-2013). For a range of events, we examined the multiscale nested runoff characteristics (lag time and magnitude) of the rural and urban flow components, assessed how these integrated with changing land use and increasing scale, and discussed the implications for flood management in the catchment. The analyses indicated three distinctly different

  4. Multiscale cartilage biomechanics: technical challenges in realizing a high-throughput modelling and simulation workflow.

    Science.gov (United States)

    Erdemir, Ahmet; Bennetts, Craig; Davis, Sean; Reddy, Akhil; Sibole, Scott

    2015-04-06

    Understanding the mechanical environment of articular cartilage and chondrocytes is of the utmost importance in evaluating tissue damage which is often related to failure of the fibre architecture and mechanical injury to the cells. This knowledge also has significant implications for understanding the mechanobiological response in healthy and diseased cartilage and can drive the development of intervention strategies, ranging from the design of tissue-engineered constructs to the establishment of rehabilitation protocols. Spanning multiple spatial scales, a wide range of biomechanical factors dictate this mechanical environment. Computational modelling and simulation provide descriptive and predictive tools to identify multiscale interactions, and can lead towards a greater comprehension of healthy and diseased cartilage function, possibly in an individualized manner. Cartilage and chondrocyte mechanics can be examined in silico, through post-processing or feed-forward approaches. First, joint-tissue level simulations, typically using the finite-element method, solve boundary value problems representing the joint articulation and underlying tissue, which can differentiate the role of compartmental joint loading in cartilage contact mechanics and macroscale cartilage field mechanics. Subsequently, tissue-cell scale simulations, driven by the macroscale cartilage mechanical field information, can predict chondrocyte deformation metrics along with the mechanics of the surrounding pericellular and extracellular matrices. A high-throughput modelling and simulation framework is necessary to develop models representative of regional and population-wide variations in cartilage and chondrocyte anatomy and mechanical properties, and to conduct large-scale analysis accommodating a multitude of loading scenarios. However, realization of such a framework is a daunting task, with technical difficulties hindering the processes of model development, scale coupling, simulation and

  5. Multiscale study on stochastic reconstructions of shale samples

    Science.gov (United States)

    Lili, J.; Lin, M.; Jiang, W. B.

    2016-12-01

    Shales are known to have multiscale pore systems, composed of macroscale fractures, micropores, and nanoscale pores within gas or oil-producing organic material. Also, shales are fissile and laminated, and the heterogeneity in horizontal is quite different from that in vertical. Stochastic reconstructions are extremely useful in situations where three-dimensional information is costly and time consuming. Thus the purpose of our paper is to reconstruct stochastically equiprobable 3D models containing information from several scales. In this paper, macroscale and microscale images of shale structure in the Lower Silurian Longmaxi are obtained by X-ray microtomography and nanoscale images are obtained by scanning electron microscopy. Each image is representative for all given scales and phases. Especially, the macroscale is four times coarser than the microscale, which in turn is four times lower in resolution than the nanoscale image. Secondly, the cross correlation-based simulation method (CCSIM) and the three-step sampling method are combined together to generate stochastic reconstructions for each scale. It is important to point out that the boundary points of pore and matrix are selected based on multiple-point connectivity function in the sampling process, and thus the characteristics of the reconstructed image can be controlled indirectly. Thirdly, all images with the same resolution are developed through downscaling and upscaling by interpolation, and then we merge multiscale categorical spatial data into a single 3D image with predefined resolution (the microscale image). 30 realizations using the given images and the proposed method are generated. The result reveals that the proposed method is capable of preserving the multiscale pore structure, both vertically and horizontally, which is necessary for accurate permeability prediction. The variogram curves and pore-size distribution for both original 3D sample and the generated 3D realizations are compared

  6. Adaptive Multiscale Modeling of Geochemical Impacts on Fracture Evolution

    Science.gov (United States)

    Molins, S.; Trebotich, D.; Steefel, C. I.; Deng, H.

    2016-12-01

    Understanding fracture evolution is essential for many subsurface energy applications, including subsurface storage, shale gas production, fracking, CO2 sequestration, and geothermal energy extraction. Geochemical processes in particular play a significant role in the evolution of fractures through dissolution-driven widening, fines migration, and/or fracture sealing due to precipitation. One obstacle to understanding and exploiting geochemical fracture evolution is that it is a multiscale process. However, current geochemical modeling of fractures cannot capture this multi-scale nature of geochemical and mechanical impacts on fracture evolution, and is limited to either a continuum or pore-scale representation. Conventional continuum-scale models treat fractures as preferential flow paths, with their permeability evolving as a function (often, a cubic law) of the fracture aperture. This approach has the limitation that it oversimplifies flow within the fracture in its omission of pore scale effects while also assuming well-mixed conditions. More recently, pore-scale models along with advanced characterization techniques have allowed for accurate simulations of flow and reactive transport within the pore space (Molins et al., 2014, 2015). However, these models, even with high performance computing, are currently limited in their ability to treat tractable domain sizes (Steefel et al., 2013). Thus, there is a critical need to develop an adaptive modeling capability that can account for separate properties and processes, emergent and otherwise, in the fracture and the rock matrix at different spatial scales. Here we present an adaptive modeling capability that treats geochemical impacts on fracture evolution within a single multiscale framework. Model development makes use of the high performance simulation capability, Chombo-Crunch, leveraged by high resolution characterization and experiments. The modeling framework is based on the adaptive capability in Chombo

  7. Multiscale mechanics of graphene oxide and graphene based composite films

    Science.gov (United States)

    Cao, Changhong

    The mechanical behavior of graphene oxide is length scale dependent: orders of magnitude different between the bulk forms and monolayer counterparts. Understanding the underlying mechanisms plays a significant role in their versatile application. A systematic multiscale mechanical study from monolayer to multilayer, including the interactions between layers of GO, can provide fundamental support for material engineering. In this thesis, an experimental coupled with simulation approach was used to study the multiscale mechanics of graphene oxide (GO) and the methods developed for GO study are proved to be applicable also to mechanical study of graphene based composites. GO is a layered nanomaterial comprised of hierarchical units whose characteristic dimension lies between monolayer GO (0.7 nm - 1.2 nm) and bulk GO papers (≥ 1 mum). Mechanical behaviors of monolayer GO and GO nanosheets (10 nm- 100 nm) were comprehensively studied this work. Monolayer GO was measured to have an average strength of 24.7 GPa,, orders of magnitude higher than previously reported values for GO paper and approximately 50% of the 2D intrinsic strength of pristine graphene. The huge discrepancy between the strength of monolayer GO and that of bulk GO paper motivated the study of GO at the intermediate length scale (GO nanosheets). Experimental results showed that GO nanosheets possess high strength in the gigapascal range. Molecular Dynamic simulations showed that the transition in the failure behavior from interplanar fracture to intraplanar fracture was responsible for the huge strength discrepancy between nanometer scale GO and bulk GO papers. Additionally, the interfacial shear strength between GO layers was found to be a key contributing factor to the distinct mechanical behavior among hierarchical units of GO. The understanding of the multiscale mechanics of GO is transferrable in heterogeneous layered nanomaterials, such as graphene-metal oxide based anode materials in Li

  8. A Bidirectional Coupling Procedure Applied to Multiscale Respiratory Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kuprat, Andrew P.; Kabilan, Senthil; Carson, James P.; Corley, Richard A.; Einstein, Daniel R.

    2013-07-01

    In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFD) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the Modified Newton’s Method with nonlinear Krylov accelerator developed by Carlson and Miller [1, 2, 3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a “pressure-drop” residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD-ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural pressure applied to the multiple

  9. A bidirectional coupling procedure applied to multiscale respiratory modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kuprat, A.P., E-mail: andrew.kuprat@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA (United States); Kabilan, S., E-mail: senthil.kabilan@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA (United States); Carson, J.P., E-mail: james.carson@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA (United States); Corley, R.A., E-mail: rick.corley@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA (United States); Einstein, D.R., E-mail: daniel.einstein@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA (United States)

    2013-07-01

    In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFDs) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the modified Newton’s method with nonlinear Krylov accelerator developed by Carlson and Miller [1], Miller [2] and Scott and Fenves [3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a “pressure-drop” residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD–ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural

  10. A bidirectional coupling procedure applied to multiscale respiratory modeling

    International Nuclear Information System (INIS)

    Kuprat, A.P.; Kabilan, S.; Carson, J.P.; Corley, R.A.; Einstein, D.R.

    2013-01-01

    In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFDs) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the modified Newton’s method with nonlinear Krylov accelerator developed by Carlson and Miller [1], Miller [2] and Scott and Fenves [3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a “pressure-drop” residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD–ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural

  11. Predictive Multiscale Modeling of Nanocellulose Based Materials and Systems

    International Nuclear Information System (INIS)

    Kovalenko, Andriy

    2014-01-01

    Cellulose Nanocrysals (CNC) is a renewable biodegradable biopolymer with outstanding mechanical properties made from highly abundant natural source, and therefore is very attractive as reinforcing additive to replace petroleum-based plastics in biocomposite materials, foams, and gels. Large-scale applications of CNC are currently limited due to its low solubility in non-polar organic solvents used in existing polymerization technologies. The solvation properties of CNC can be improved by chemical modification of its surface. Development of effective surface modifications has been rather slow because extensive chemical modifications destabilize the hydrogen bonding network of cellulose and deteriorate the mechanical properties of CNC. We employ predictive multiscale theory, modeling, and simulation to gain a fundamental insight into the effect of CNC surface modifications on hydrogen bonding, CNC crystallinity, solvation thermodynamics, and CNC compatibilization with the existing polymerization technologies, so as to rationally design green nanomaterials with improved solubility in non-polar solvents, controlled liquid crystal ordering and optimized extrusion properties. An essential part of this multiscale modeling approach is the statistical- mechanical 3D-RISM-KH molecular theory of solvation, coupled with quantum mechanics, molecular mechanics, and multistep molecular dynamics simulation. The 3D-RISM-KH theory provides predictive modeling of both polar and non-polar solvents, solvent mixtures, and electrolyte solutions in a wide range of concentrations and thermodynamic states. It properly accounts for effective interactions in solution such as steric effects, hydrophobicity and hydrophilicity, hydrogen bonding, salt bridges, buffer, co-solvent, and successfully predicts solvation effects and processes in bulk liquids, solvation layers at solid surface, and in pockets and other inner spaces of macromolecules and supramolecular assemblies. This methodology

  12. Predictive Multiscale Modeling of Nanocellulose Based Materials and Systems

    Science.gov (United States)

    Kovalenko, Andriy

    2014-08-01

    Cellulose Nanocrysals (CNC) is a renewable biodegradable biopolymer with outstanding mechanical properties made from highly abundant natural source, and therefore is very attractive as reinforcing additive to replace petroleum-based plastics in biocomposite materials, foams, and gels. Large-scale applications of CNC are currently limited due to its low solubility in non-polar organic solvents used in existing polymerization technologies. The solvation properties of CNC can be improved by chemical modification of its surface. Development of effective surface modifications has been rather slow because extensive chemical modifications destabilize the hydrogen bonding network of cellulose and deteriorate the mechanical properties of CNC. We employ predictive multiscale theory, modeling, and simulation to gain a fundamental insight into the effect of CNC surface modifications on hydrogen bonding, CNC crystallinity, solvation thermodynamics, and CNC compatibilization with the existing polymerization technologies, so as to rationally design green nanomaterials with improved solubility in non-polar solvents, controlled liquid crystal ordering and optimized extrusion properties. An essential part of this multiscale modeling approach is the statistical- mechanical 3D-RISM-KH molecular theory of solvation, coupled with quantum mechanics, molecular mechanics, and multistep molecular dynamics simulation. The 3D-RISM-KH theory provides predictive modeling of both polar and non-polar solvents, solvent mixtures, and electrolyte solutions in a wide range of concentrations and thermodynamic states. It properly accounts for effective interactions in solution such as steric effects, hydrophobicity and hydrophilicity, hydrogen bonding, salt bridges, buffer, co-solvent, and successfully predicts solvation effects and processes in bulk liquids, solvation layers at solid surface, and in pockets and other inner spaces of macromolecules and supramolecular assemblies. This methodology

  13. Multi-scale random sets: from morphology to effective properties and to fracture statistics

    Energy Technology Data Exchange (ETDEWEB)

    Jeulin, Dominique, E-mail: dominique.jeulin@mines-paristech.fr [Centre de Morphologie Mathematique, Mathematiques et Systemes, Mines ParisTech 35 rue Saint-Honore, F77300 Fontainebleau (France)

    2011-09-15

    Complex microstructures in materials often involve multi-scale heterogeneous textures, modelled by random sets derived from Mathematical Morphology. Starting from 2D or 3D images, a complete morphological characterization by image analysis is performed, and used for the identification of a model of random structure. From morphological models, simulations of realistic microstructures are introduced in a numerical solver to compute appropriate fields (electric, elastic stress or strain, ...) and to estimate the effective properties by numerical homogenization, accounting for scale dependent statistical fluctuations of the fields. Our approach is illustrated by various examples of multi-scale models: Boolean random sets based on Cox point processes and various random grains (spheres, cylinders), showing a very low percolation threshold, and therefore a high conductivity or high elastic moduli for a low volume fraction of a second phase. Multiscale Cox point processes are also a source of instructive models of fracture statistics, such as multiscale weakest link models.

  14. Multiscale GasKinetics/Particle (MGP) Simulation for Rocket Plume/Lunar Dust Interactions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A Multiscale GasKinetic/Particle (MGP) computational method is proposed to simulate the plume-crater-interaction/dust-impingement(PCIDI) problem. The MGP method...

  15. Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network.

    Science.gov (United States)

    Du, Xiaofeng; Qu, Xiaobo; He, Yifan; Guo, Di

    2018-03-06

    Deep convolutional neural networks (CNNs) are successful in single-image super-resolution. Traditional CNNs are limited to exploit multi-scale contextual information for image reconstruction due to the fixed convolutional kernel in their building modules. To restore various scales of image details, we enhance the multi-scale inference capability of CNNs by introducing competition among multi-scale convolutional filters, and build up a shallow network under limited computational resources. The proposed network has the following two advantages: (1) the multi-scale convolutional kernel provides the multi-context for image super-resolution, and (2) the maximum competitive strategy adaptively chooses the optimal scale of information for image reconstruction. Our experimental results on image super-resolution show that the performance of the proposed network outperforms the state-of-the-art methods.

  16. A spectral multiscale hybridizable discontinuous Galerkin method for second order elliptic problems

    KAUST Repository

    Efendiev, Yalchin R.

    2015-08-01

    We design a multiscale model reduction framework within the hybridizable discontinuous Galerkin finite element method. Our approach uses local snapshot spaces and local spectral decomposition following the concept of Generalized Multiscale Finite Element Methods. We propose several multiscale finite element spaces on the coarse edges that provide a reduced dimensional approximation for numerical traces within the HDG framework. We provide a general framework for systematic construction of multiscale trace spaces. Using local snapshots, we avoid high dimensional representation of trace spaces and use some local features of the solution space in constructing a low dimensional trace space. We investigate the solvability and numerically study the performance of the proposed method on a representative number of numerical examples.

  17. University of Maryland component of the Center for Multiscale Plasma Dynamics: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dorland, William [University of Maryland

    2014-11-18

    The Center for Multiscale Plasma Dynamics (CMPD) was a five-year Fusion Science Center. The University of Maryland (UMD) and UCLA were the host universities. This final technical report describes the physics results from the UMD CMPD.

  18. Multi-scale filling simulation of micro-injection molding process

    International Nuclear Information System (INIS)

    Choi, Sung Joo; Kim, Sun Kyoung

    2011-01-01

    This work proposes a multi-scale simulation method that can simulate filling during the micro-injection molding process. The multiscale simulation is comprised of two steps. In the first step, the macro-scale flow is analyzed using the conventional method. In the second step, the micro-scale simulation is conducted taking the slip and surface tension into consideration to investigate the filling of microcavity. Moreover, a conservative level set method is employed to accurately track the flow front. First, numerical tests have been done for circular micro-channels. The results show that slip and surface tension play important roles in the micro-regime. Second, to verify the multi-scale method, filling of a thin plate with micro-channel patterns has been simulated. The results show that the proposed multi-scale method is promising for micro-injection molding simulations

  19. Heat and mass transfer intensification and shape optimization a multi-scale approach

    CERN Document Server

    2013-01-01

    Is the heat and mass transfer intensification defined as a new paradigm of process engineering, or is it just a common and old idea, renamed and given the current taste? Where might intensification occur? How to achieve intensification? How the shape optimization of thermal and fluidic devices leads to intensified heat and mass transfers? To answer these questions, Heat & Mass Transfer Intensification and Shape Optimization: A Multi-scale Approach clarifies  the definition of the intensification by highlighting the potential role of the multi-scale structures, the specific interfacial area, the distribution of driving force, the modes of energy supply and the temporal aspects of processes.   A reflection on the methods of process intensification or heat and mass transfer enhancement in multi-scale structures is provided, including porous media, heat exchangers, fluid distributors, mixers and reactors. A multi-scale approach to achieve intensification and shape optimization is developed and clearly expla...

  20. Multiscale GasKinetics/Particle (MGP) Simulation for Rocket Plume/Lunar Dust Interactions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An efficient and accurate software package named ZMGP (ZONA Multi-scale Gaskinetic/Particle simulation package) is proposed as a 3D tool to predict the lunar dust...

  1. Multiscale registration of medical images based on edge preserving scale space with application in image-guided radiation therapy

    Science.gov (United States)

    Li, Dengwang; Li, Hongsheng; Wan, Honglin; Chen, Jinhu; Gong, Guanzhong; Wang, Hongjun; Wang, Liming; Yin, Yong

    2012-08-01

    Mutual information (MI) is a well-accepted similarity measure for image registration in medical systems. However, MI-based registration faces the challenges of high computational complexity and a high likelihood of being trapped into local optima due to an absence of spatial information. In order to solve these problems, multi-scale frameworks can be used to accelerate registration and improve robustness. Traditional Gaussian pyramid representation is one such technique but it suffers from contour diffusion at coarse levels which may lead to unsatisfactory registration results. In this work, a new multi-scale registration framework called edge preserving multiscale registration (EPMR) was proposed based upon an edge preserving total variation L1 norm (TV-L1) scale space representation. TV-L1 scale space is constructed by selecting edges and contours of images according to their size rather than the intensity values of the image features. This ensures more meaningful spatial information with an EPMR framework for MI-based registration. Furthermore, we design an optimal estimation of the TV-L1 parameter in the EPMR framework by training and minimizing the transformation offset between the registered pairs for automated registration in medical systems. We validated our EPMR method on both simulated mono- and multi-modal medical datasets with ground truth and clinical studies from a combined positron emission tomography/computed tomography (PET/CT) scanner. We compared our registration framework with other traditional registration approaches. Our experimental results demonstrated that our method outperformed other methods in terms of the accuracy and robustness for medical images. EPMR can always achieve a small offset value, which is closer to the ground truth both for mono-modality and multi-modality, and the speed can be increased 5-8% for mono-modality and 10-14% for multi-modality registration under the same condition. Furthermore, clinical application by adaptive

  2. Multiscale registration of medical images based on edge preserving scale space with application in image-guided radiation therapy

    International Nuclear Information System (INIS)

    Li Dengwang; Wan Honglin; Li Hongsheng; Chen Jinhu; Gong Guanzhong; Yin Yong; Wang Hongjun; Wang Liming

    2012-01-01

    Mutual information (MI) is a well-accepted similarity measure for image registration in medical systems. However, MI-based registration faces the challenges of high computational complexity and a high likelihood of being trapped into local optima due to an absence of spatial information. In order to solve these problems, multi-scale frameworks can be used to accelerate registration and improve robustness. Traditional Gaussian pyramid representation is one such technique but it suffers from contour diffusion at coarse levels which may lead to unsatisfactory registration results. In this work, a new multi-scale registration framework called edge preserving multiscale registration (EPMR) was proposed based upon an edge preserving total variation L1 norm (TV-L1) scale space representation. TV-L1 scale space is constructed by selecting edges and contours of images according to their size rather than the intensity values of the image features. This ensures more meaningful spatial information with an EPMR framework for MI-based registration. Furthermore, we design an optimal estimation of the TV-L1 parameter in the EPMR framework by training and minimizing the transformation offset between the registered pairs for automated registration in medical systems. We validated our EPMR method on both simulated mono- and multi-modal medical datasets with ground truth and clinical studies from a combined positron emission tomography/computed tomography (PET/CT) scanner. We compared our registration framework with other traditional registration approaches. Our experimental results demonstrated that our method outperformed other methods in terms of the accuracy and robustness for medical images. EPMR can always achieve a small offset value, which is closer to the ground truth both for mono-modality and multi-modality, and the speed can be increased 5–8% for mono-modality and 10–14% for multi-modality registration under the same condition. Furthermore, clinical application by

  3. Multi-scale modelling of rubber-like materials and soft tissues: an appraisal

    OpenAIRE

    Puglisi, G.; Saccomandi, G.

    2016-01-01

    We survey, in a partial way, multi-scale approaches for the modelling of rubber-like and soft tissues and compare them with classical macroscopic phenomenological models. Our aim is to show how it is possible to obtain practical mathematical models for the mechanical behaviour of these materials incorporating mesoscopic (network scale) information. Multi-scale approaches are crucial for the theoretical comprehension and prediction of the complex mechanical response of these materials. Moreove...

  4. A Generalized Hybrid Multiscale Modeling Approach for Flow and Reactive Transport in Porous Media

    Science.gov (United States)

    Yang, X.; Meng, X.; Tang, Y. H.; Guo, Z.; Karniadakis, G. E.

    2017-12-01

    Using emerging understanding of biological and environmental processes at fundamental scales to advance predictions of the larger system behavior requires the development of multiscale approaches, and there is strong interest in coupling models at different scales together in a hybrid multiscale simulation framework. A limited number of hybrid multiscale simulation methods have been developed for subsurface applications, mostly using application-specific approaches for model coupling. The proposed generalized hybrid multiscale approach is designed with minimal intrusiveness to the at-scale simulators (pre-selected) and provides a set of lightweight C++ scripts to manage a complex multiscale workflow utilizing a concurrent coupling approach. The workflow includes at-scale simulators (using the lattice-Boltzmann method, LBM, at the pore and Darcy scale, respectively), scripts for boundary treatment (coupling and kriging), and a multiscale universal interface (MUI) for data exchange. The current study aims to apply the generalized hybrid multiscale modeling approach to couple pore- and Darcy-scale models for flow and mixing-controlled reaction with precipitation/dissolution in heterogeneous porous media. The model domain is packed heterogeneously that the mixing front geometry is more complex and not known a priori. To address those challenges, the generalized hybrid multiscale modeling approach is further developed to 1) adaptively define the locations of pore-scale subdomains, 2) provide a suite of physical boundary coupling schemes and 3) consider the dynamic change of the pore structures due to mineral precipitation/dissolution. The results are validated and evaluated by comparing with single-scale simulations in terms of velocities, reactive concentrations and computing cost.

  5. Multiscale 3D characterization with dark-field x-ray microscopy

    DEFF Research Database (Denmark)

    Simons, Hugh; Jakobsen, Anders Clemen; Ahl, Sonja Rosenlund

    2016-01-01

    Dark-field x-ray microscopy is a new way to three-dimensionally map lattice strain and orientation in crystalline matter. It is analogous to dark-field electron microscopy in that an objective lens magnifies diffracting features of the sample; however, the use of high-energy synchrotron x......, multiscale phenomena in situ is a key step toward formulating and validating multiscale models that account for the entire heterogeneity of materials....

  6. Definability and stability of multiscale decompositions for manifold-valued data

    KAUST Repository

    Grohs, Philipp

    2012-06-01

    We discuss multiscale representations of discrete manifold-valued data. As it turns out that we cannot expect general manifold analogs of biorthogonal wavelets to possess perfect reconstruction, we focus our attention on those constructions which are based on upscaling operators which are either interpolating or midpoint-interpolating. For definable multiscale decompositions we obtain a stability result. © 2012 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

  7. Multiscale Computation. Needs and Opportunities for BER Science

    Energy Technology Data Exchange (ETDEWEB)

    Scheibe, Timothy D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Jeremy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-01

    The Environmental Molecular Sciences Laboratory (EMSL), a scientific user facility managed by Pacific Northwest National Laboratory for the U.S. Department of Energy, Office of Biological and Environmental Research (BER), conducted a one-day workshop on August 26, 2014 on the topic of “Multiscale Computation: Needs and Opportunities for BER Science.” Twenty invited participants, from various computational disciplines within the BER program research areas, were charged with the following objectives; Identify BER-relevant models and their potential cross-scale linkages that could be exploited to better connect molecular-scale research to BER research at larger scales and; Identify critical science directions that will motivate EMSL decisions regarding future computational (hardware and software) architectures.

  8. Chinese license plate character segmentation using multiscale template matching

    Science.gov (United States)

    Tian, Jiangmin; Wang, Guoyou; Liu, Jianguo; Xia, Yuanchun

    2016-09-01

    Character segmentation (CS) plays an important role in automatic license plate recognition and has been studied for decades. A method using multiscale template matching is proposed to settle the problem of CS for Chinese license plates. It is carried out on a binary image integrated from maximally stable extremal region detection and Otsu thresholding. Afterward, a uniform harrow-shaped template with variable length is designed, by virtue of which a three-dimensional matching space is constructed for searching of candidate segmentations. These segmentations are detected at matches with local minimum responses. Finally, the vertical boundaries of each single character are located for subsequent recognition. Experiments on a data set including 2349 license plate images of different quality levels show that the proposed method can achieve a higher accuracy at comparable time cost and is robust to images in poor conditions.

  9. A multiscale transport model for non-classical nanochannel electroosmosis

    Science.gov (United States)

    Bhadauria, Ravi; Aluru, N. R.

    2017-12-01

    We present a multiscale model describing the electroosmotic flow (EOF) in nanoscale channels involving high surface charge liquid-solid interfaces. The departure of the EOF velocity profiles from classical predictions is explained by the non-classical charge distribution in the confined direction including charge inversion, reduced mobility of interfacial counter-ions, and subsequent enhancement of the local viscosity. The excess component of the local solvent viscosity is modeled by the local application of the Fuoss-Onsager theory and the Hubbard-Onsager electro-hydrodynamic equation based dielectric friction theory. The electroosmotic slip velocity is estimated from the interfacial friction coefficient, which in turn is calculated using a generalized Langevin equation based dynamical framework. The proposed model for local viscosity enhancement and EOF velocity shows good agreement of corresponding physical quantities against relevant molecular dynamics simulation results, including the cases of anomalous transport such as EOF reversal.

  10. Multiscale deconstruction of molecular architecture in corn stover

    Science.gov (United States)

    Inouye, Hideyo; Zhang, Yan; Yang, Lin; Venugopalan, Nagarajan; Fischetti, Robert F.; Gleber, S. Charlotte; Vogt, Stefan; Fowle, W.; Makowski, Bryan; Tucker, Melvin; Ciesielski, Peter; Donohoe, Bryon; Matthews, James; Himmel, Michael E.; Makowski, Lee

    2014-01-01

    Lignocellulosic composite in corn stover is a candidate biofuel feedstock of substantial abundance and sustainability. Its utilization is hampered by resistance of constituent cellulose fibrils to deconstruction. Here we use multi-scale studies of pretreated corn stover to elucidate the molecular mechanism of deconstruction and investigate the basis of recalcitrance. Dilute acid pretreatment has modest impact on fibrillar bundles at 0.1 micron length scales while leading to significant disorientation of individual fibrils. It disintegrates many fibrils into monomeric cellulose chains or small side-by-side aggregates. Residual crystalline fibrils lose amorphous surface material, change twist and where still cross-linked, coil around one another. Yields from enzymatic digestion are largely due to hydrolysis of individual cellulose chains and fragments generated during pretreatments. Fibrils that remain intact after pretreatment display substantial resistance to enzymatic digestion. Optimization of yield will require strategies that maximize generation of fragments and minimize preservation of intact cellulosic fibrils.

  11. OHMMS: a framework for multi-scale materials simulations

    Science.gov (United States)

    Hazzard, Kaden R. A.; Kim, Jeongnim

    2002-08-01

    To maintain the rapid growth of computational materials science requires both the development of algorithms implementing theoretical developments and their rapid deployment on evolving high-performance computers. OHMMS provides Object-oriented High-performance solutions for Multi-scale Materials Simulations to meet such challenges. OHMMS achieves i) high flexibility and re-usability by applying object-oriented programming practice, such as design patterns, and ii) performance by utilizing advanced abstractions, such as expression templates for low-level components. Examples include: (a) easy inclusion of both new potential types/parameters and new local minimization methods and (b) sophisticated data compression and infrequent event detection (starting with Fortran code and progressing easily to bit arithmetic C++ coding). OHMMS designs for classical and quantum atomistic simulations are overviewed together with performance of core routines for OHMMS applications on several architectures.

  12. A Multi-Scale Settlement Matching Algorithm Based on ARG

    Directory of Open Access Journals (Sweden)

    H. Yue

    2016-06-01

    Full Text Available Homonymous entity matching is an important part of multi-source spatial data integration, automatic updating and change detection. Considering the low accuracy of existing matching methods in dealing with matching multi-scale settlement data, an algorithm based on Attributed Relational Graph (ARG is proposed. The algorithm firstly divides two settlement scenes at different scales into blocks by small-scale road network and constructs local ARGs in each block. Then, ascertains candidate sets by merging procedures and obtains the optimal matching pairs by comparing the similarity of ARGs iteratively. Finally, the corresponding relations between settlements at large and small scales are identified. At the end of this article, a demonstration is presented and the results indicate that the proposed algorithm is capable of handling sophisticated cases.

  13. Multiscale topology optimization of solid and fluid structures

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe

    This thesis considers the application of the topology optimization method to multiscale problems, specifically the fluid-structure interaction problem. By multiple-scale methods the governing equations, the Navier-Cauchy and the incompressible Navier-Stokes equations are expanded and separated...... leaving a set of micro- and macroscale equations for the interaction modeling. The topology optimization method is applied to the material design in order to optimize the pressure coupling properties of porous materials. Furthermore, by combining both the material design and the macroscopic modeling......, it is shown that the material microstructure can be optimized with respect to application scale properties. A poroelastic actuator consisting of two saturated porous materials is optimized using this approach. Based on the homogenization of a fixed microstructure topology, material design interpolation...

  14. Multi-scale evaluations of submarine groundwater discharge

    Directory of Open Access Journals (Sweden)

    M. Taniguchi

    2015-03-01

    Full Text Available Multi-scale evaluations of submarine groundwater discharge (SGD have been made in Saijo, Ehime Prefecture, Shikoku Island, Japan, by using seepage meters for point scale, 222Rn tracer for point and coastal scales, and a numerical groundwater model (SEAWAT for coastal and basin scales. Daily basis temporal changes in SGD are evaluated by continuous seepage meter and 222Rn mooring measurements, and depend on sea level changes. Spatial evaluations of SGD were also made by 222Rn along the coast in July 2010 and November 2011. The area with larger 222Rn concentration during both seasons agreed well with the area with larger SGD calculated by 3D groundwater numerical simulations.

  15. A multilevel multiscale mimetic method for an anisotropic infiltration problem

    Energy Technology Data Exchange (ETDEWEB)

    Lipnikov, Konstantin [Los Alamos National Laboratory; Moulton, David [Los Alamos National Laboratory; Svyatskiy, Daniil [Los Alamos National Laboratory

    2009-01-01

    Modeling of multiphase flow and transport in highly heterogeneous porous media must capture a broad range of coupled spatial and temporal scales. Recently, a hierarchical approach dubbed the Multilevel Multiscale Mimetic (M3) method, was developed to simulate two-phase flow in porous media. The M{sup 3} method is locally mass conserving at all levels in its hierarchy, it supports unstructured polygonal grids and full tensor permeabilities, and it can achieve large coarsening factors. In this work we consider infiltration of water into a two-dimensional layered medium. The grid is aligned with the layers but not the coordinate axes. We demonstrate that with an efficient temporal updating strategy for the coarsening parameters, fine-scale accuracy of prominent features in the flow is maintained by the M{sup 3} method.

  16. Multiscale Multiphysics Developments for Accident Tolerant Fuel Concepts

    International Nuclear Information System (INIS)

    Gamble, K. A.; Hales, J. D.; Yu, J.; Zhang, Y.; Bai, X.; Andersson, D.; Patra, A.; Wen, W.; Tome, C.; Baskes, M.; Martinez, E.; Stanek, C. R.; Miao, Y.; Ye, B.; Hofman, G. L.; Yacout, A. M.; Liu, W.

    2015-01-01

    U 3 Si 2 and iron-chromium-aluminum (Fe-Cr-Al) alloys are two of many proposed accident-tolerant fuel concepts for the fuel and cladding, respectively. The behavior of these materials under normal operating and accident reactor conditions is not well known. As part of the Department of Energy's Accident Tolerant Fuel High Impact Problem program significant work has been conducted to investigate the U 3 Si 2 and FeCrAl behavior under reactor conditions. This report presents the multiscale and multiphysics effort completed in fiscal year 2015. The report is split into four major categories including Density Functional Theory Developments, Molecular Dynamics Developments, Mesoscale Developments, and Engineering Scale Developments. The work shown here is a compilation of a collaborative effort between Idaho National Laboratory, Los Alamos National Laboratory, Argonne National Laboratory and Anatech Corp.

  17. Multiscale electrical contact resistance in clustered contact distribution

    Science.gov (United States)

    Lee, Sangyoung; Cho, Hyun; Jang, Yong Hoon

    2009-08-01

    For contact between rough surfaces of conductors in which a clustered contact spot distribution is dominant through a multiscale process, electrical contact resistance (ECR) is analysed using a smoothed version of Greenwood's model (Jang and Barber 2003 J. Appl. Phys. 94 7215), which is extended to estimate the statistical distribution of contact spots considering the size and the location simultaneously. The application of this statistical method to a contact spot distribution, generated by the finite element method using a fractal surface defined by the random midpoint displacement algorithm, identifies the effect of the clustered contact distribution on ECR, showing that including a finer scale in the fractal contact surface causes the predicted resistance to approach a finite limit. It is also confirmed that the results are close to that of Barber's analogy (Barber 2003 Proc. R. Soc. Lond. A 459 53) regarding incremental stiffness and conductance for elastic contact.

  18. Multi-scale modeling for sustainable chemical production

    DEFF Research Database (Denmark)

    Zhuang, Kai; Bakshi, Bhavik R.; Herrgard, Markus

    2013-01-01

    associated with the development and implementation of a su stainable biochemical industry. The temporal and spatial scales of modeling approaches for sustainable chemical production vary greatly, ranging from metabolic models that aid the design of fermentative microbial strains to material and monetary flow...... and predictions at every other scale. In addition, the development of this multi-scale framework would promote cohesive collaborations across multiple traditionally disconnected modeling disciplines to achieve sustainable chemical production.......With recent advances in metabolic engineering, it is now technically possible to produce a wide portfolio of existing petrochemical products from biomass feedstock. In recent years, a number of modeling approaches have been developed to support the engineering and decision-making processes...

  19. Multi-Scale Dissemination of Time Series Data

    DEFF Research Database (Denmark)

    Guo, Qingsong; Zhou, Yongluan; Su, Li

    2013-01-01

    In this paper, we consider the problem of continuous dissemination of time series data, such as sensor measurements, to a large number of subscribers. These subscribers fall into multiple subscription levels, where each subscription level is specified by the bandwidth constraint of a subscriber......, which is an abstract indicator for both the physical limits and the amount of data that the subscriber would like to handle. To handle this problem, we propose a system framework for multi-scale time series data dissemination that employs a typical tree-based dissemination network and existing time...... to optimize the average accuracies of the data received by all subscribers within the dissemination network. Finally, we have conducted extensive experiments to study the performance of the algorithms....

  20. Elimination of intermediate species in multiscale stochastic reaction networks

    DEFF Research Database (Denmark)

    Cappelletti, Daniele; Wiuf, Carsten

    2016-01-01

    We study networks of biochemical reactions modelled by continuoustime Markov processes. Such networks typically contain many molecular species and reactions and are hard to study analytically as well as by simulation. Particularly, we are interested in reaction networks with intermediate species...... such as the substrate-enzyme complex in the Michaelis-Menten mechanism. Such species are virtually in all real-world networks, they are typically short-lived, degraded at a fast rate and hard to observe experimentally. We provide conditions under which the Markov process of a multiscale reaction network...... with intermediate species is approximated by the Markov process of a simpler reduced reaction network without intermediate species. We do so by embedding the Markov processes into a one-parameter family of processes, where reaction rates and species abundances are scaled in the parameter. Further, we show...

  1. A tantalum strength model using a multiscale approach: version 2

    Energy Technology Data Exchange (ETDEWEB)

    Becker, R; Arsenlis, A; Hommes, G; Marian, J; Rhee, M; Yang, L H

    2009-09-21

    A continuum strength model for tantalum was developed in 2007 using a multiscale approach. This was our first attempt at connecting simulation results from atomistic to continuum length scales, and much was learned that we were not able to incorporate into the model at that time. The tantalum model described in this report represents a second cut at pulling together multiscale simulation results into a continuum model. Insight gained in creating previous multiscale models for tantalum and vanadium was used to guide the model construction and functional relations for the present model. While the basic approach follows that of the vanadium model, there are significant departures. Some of the recommendations from the vanadium report were followed, but not all. Results from several new analysis techniques have not yet been incorporated due to technical difficulties. Molecular dynamics simulations of single dislocation motion at several temperatures suggested that the thermal activation barrier was temperature dependent. This dependency required additional temperature functions be included within the assumed Arrhenius relation. The combination of temperature dependent functions created a complex model with a non unique parameterization and extra model constants. The added complexity had no tangible benefits. The recommendation was to abandon the strict Arrhenius form and create a simpler curve fit to the molecular dynamics data for shear stress versus dislocation velocity. Functions relating dislocation velocity and applied shear stress were constructed vor vanadium for both edge and screw dislocations. However, an attempt to formulate a robust continuum constitutive model for vanadium using both dislocation populations was unsuccessful; the level of coupling achieved was inadequate to constrain the dislocation evolution properly. Since the behavior of BCC materials is typically assumed to be dominated by screw dislocations, the constitutive relations were ultimately

  2. Pricing perpetual American options under multiscale stochastic elasticity of variance

    International Nuclear Information System (INIS)

    Yoon, Ji-Hun

    2015-01-01

    Highlights: • We study the effects of the stochastic elasticity of variance on perpetual American option. • Our SEV model consists of a fast mean-reverting factor and a slow mean-revering factor. • A slow scale factor has a very significant impact on the option price. • We analyze option price structures through the market prices of elasticity risk. - Abstract: This paper studies pricing the perpetual American options under a constant elasticity of variance type of underlying asset price model where the constant elasticity is replaced by a fast mean-reverting Ornstein–Ulenbeck process and a slowly varying diffusion process. By using a multiscale asymptotic analysis, we find the impact of the stochastic elasticity of variance on the option prices and the optimal exercise prices with respect to model parameters. Our results enhance the existing option price structures in view of flexibility and applicability through the market prices of elasticity risk

  3. Generalized multiscale finite element methods. nonlinear elliptic equations

    KAUST Repository

    Efendiev, Yalchin R.

    2013-01-01

    In this paper we use the Generalized Multiscale Finite Element Method (GMsFEM) framework, introduced in [26], in order to solve nonlinear elliptic equations with high-contrast coefficients. The proposed solution method involves linearizing the equation so that coarse-grid quantities of previous solution iterates can be regarded as auxiliary parameters within the problem formulation. With this convention, we systematically construct respective coarse solution spaces that lend themselves to either continuous Galerkin (CG) or discontinuous Galerkin (DG) global formulations. Here, we use Symmetric Interior Penalty Discontinuous Galerkin approach. Both methods yield a predictable error decline that depends on the respective coarse space dimension, and we illustrate the effectiveness of the CG and DG formulations by offering a variety of numerical examples. © 2014 Global-Science Press.

  4. Multiscale Design of Nanostructured Thermoelectric Coolers: Effects of Contact Resistances

    Science.gov (United States)

    Sharmin, Afsana; Rashid, Mohammad; Gaddipati, Vamsi; Sadeque, Abu; Ahmed, Shaikh

    2015-06-01

    Our objective is to develop a multiscale simulator for thermoelectric cooler devices, in which the material parameters are obtained atomistically using a combination of molecular dynamics and tight-binding simulations and then used in the system level design. After benchmarking the simulator against a recent experimental work, we carry out a detailed numerical investigation of the performance of Bi2Te3 nanowire-based thermoelectric devices for hot-spot cooling. The results suggest that active hotspot cooling of as much as 23°C with a high heat flux is achievable using such low-dimensionality structures. However, it has been observed that thermal and electrical contact resistances, which are quite large in nanostructures, play a critical role in determining the cooling range and lead to significant performance degradation that must be addressed before these devices can be deployed in such applications.

  5. Education and Communication for the Magnetospheric Multiscale Mission

    Science.gov (United States)

    Reiff, Patricia H.; Cline, Troy D.

    2016-03-01

    The Magnetospheric Multiscale mission (MMS) proposed a balanced portfolio of education and communication activities and products, including broadly distributed materials for the general public, special programs and materials for teachers, targeted activities and materials for underserved groups, and intensive experiences for future scientists and engineers. Our plan includes creation and dissemination of educational software, podcasts and vodcasts, planetarium shows, teacher and student activities, 3D models, social media and smartphone apps. We have surveyed users of NASA data to determine which modes of learning were effective in their youth and which are the most effective now, and use those results to inform our education and communication plans. All materials will be reviewed and placed in NASA online educational archives for broad dissemination.

  6. Gaussian Multiscale Aggregation Applied to Segmentation in Hand Biometrics

    Directory of Open Access Journals (Sweden)

    Gonzalo Bailador del Pozo

    2011-11-01

    Full Text Available This paper presents an image segmentation algorithm based on Gaussian multiscale aggregation oriented to hand biometric applications. The method is able to isolate the hand from a wide variety of background textures such as carpets, fabric, glass, grass, soil or stones. The evaluation was carried out by using a publicly available synthetic database with 408,000 hand images in different backgrounds, comparing the performance in terms of accuracy and computational cost to two competitive segmentation methods existing in literature, namely Lossy Data Compression (LDC and Normalized Cuts (NCuts. The results highlight that the proposed method outperforms current competitive segmentation methods with regard to computational cost, time performance, accuracy and memory usage.

  7. Adaptive Multi-scale PHM for Robotic Assembly Processes.

    Science.gov (United States)

    Choo, Benjamin Y; Beling, Peter A; LaViers, Amy E; Marvel, Jeremy A; Weiss, Brian A

    2015-01-01

    Adaptive multiscale prognostics and health management (AM-PHM) is a methodology designed to support PHM in smart manufacturing systems. As a rule, PHM information is not used in high-level decision-making in manufacturing systems. AM-PHM leverages and integrates component-level PHM information with hierarchical relationships across the component, machine, work cell, and production line levels in a manufacturing system. The AM-PHM methodology enables the creation of actionable prognostic and diagnostic intelligence up and down the manufacturing process hierarchy. Decisions are made with the knowledge of the current and projected health state of the system at decision points along the nodes of the hierarchical structure. A description of the AM-PHM methodology with a simulated canonical robotic assembly process is presented.

  8. Cellular potts models multiscale extensions and biological applications

    CERN Document Server

    Scianna, Marco

    2013-01-01

    A flexible, cell-level, and lattice-based technique, the cellular Potts model accurately describes the phenomenological mechanisms involved in many biological processes. Cellular Potts Models: Multiscale Extensions and Biological Applications gives an interdisciplinary, accessible treatment of these models, from the original methodologies to the latest developments. The book first explains the biophysical bases, main merits, and limitations of the cellular Potts model. It then proposes several innovative extensions, focusing on ways to integrate and interface the basic cellular Potts model at the mesoscopic scale with approaches that accurately model microscopic dynamics. These extensions are designed to create a nested and hybrid environment, where the evolution of a biological system is realistically driven by the constant interplay and flux of information between the different levels of description. Through several biological examples, the authors demonstrate a qualitative and quantitative agreement with t...

  9. Multi-scale Dynamical Processes in Space and Astrophysical Plasmas

    CERN Document Server

    Vörös, Zoltán; IAFA 2011 - International Astrophysics Forum 2011 : Frontiers in Space Environment Research

    2012-01-01

    Magnetized plasmas in the universe exhibit complex dynamical behavior over a huge range of scales. The fundamental mechanisms of energy transport, redistribution and conversion occur at multiple scales. The driving mechanisms often include energy accumulation, free-energy-excited relaxation processes, dissipation and self-organization. The plasma processes associated with energy conversion, transport and self-organization, such as magnetic reconnection, instabilities, linear and nonlinear waves, wave-particle interactions, dynamo processes, turbulence, heating, diffusion and convection represent fundamental physical effects. They demonstrate similar dynamical behavior in near-Earth space, on the Sun, in the heliosphere and in astrophysical environments. 'Multi-scale Dynamical Processes in Space and Astrophysical Plasmas' presents the proceedings of the International Astrophysics Forum Alpbach 2011. The contributions discuss the latest advances in the exploration of dynamical behavior in space plasmas environm...

  10. Multiscale modelling of hydrogen behaviour on beryllium (0001 surface

    Directory of Open Access Journals (Sweden)

    Ch. Stihl

    2016-12-01

    Full Text Available Beryllium is proposed to be a neutron multiplier and plasma facing material in future fusion devices. Therefore, it is crucial to acquire an understanding of the microscopic mechanisms of tritium accumulation and release as a result of transmutation processes that Be undergoes under neutron irradiation. A multiscale simulation of ad- and desorption of hydrogen isotopes on the beryllium (0001 surface is developed. It consists of ab initio calculations of certain H adsorption configurations, a suitable cluster expansion approximating the energies of arbitrary configurations, and a kinetic Monte Carlo method for dynamic simulations of adsorption and desorption. The processes implemented in the kinetic Monte Carlo simulation are deduced from further ab initio calculations comprising both, static relaxation as well as molecular dynamics runs. The simulation is used to reproduce experimental data and the results are compared and discussed. Based on the observed results, proposals for a refined model are made.

  11. Model-to-model interface for multiscale materials modeling

    Energy Technology Data Exchange (ETDEWEB)

    Antonelli, Perry Edward [Iowa State Univ., Ames, IA (United States)

    2017-12-17

    A low-level model-to-model interface is presented that will enable independent models to be linked into an integrated system of models. The interface is based on a standard set of functions that contain appropriate export and import schemas that enable models to be linked with no changes to the models themselves. These ideas are presented in the context of a specific multiscale material problem that couples atomistic-based molecular dynamics calculations to continuum calculations of fluid ow. These simulations will be used to examine the influence of interactions of the fluid with an adjacent solid on the fluid ow. The interface will also be examined by adding it to an already existing modeling code, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and comparing it with our own molecular dynamics code.

  12. Multiscale Multiphysics Developments for Accident Tolerant Fuel Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, K. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hales, J. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yu, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, X. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Andersson, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Patra, A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wen, W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baskes, M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, C. R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miao, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Ye, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Hofman, G. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Yacout, A. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Liu, W. [ANATECH Corp., San Diego, CA (United States)

    2015-09-01

    U3Si2 and iron-chromium-aluminum (Fe-Cr-Al) alloys are two of many proposed accident-tolerant fuel concepts for the fuel and cladding, respectively. The behavior of these materials under normal operating and accident reactor conditions is not well known. As part of the Department of Energy’s Accident Tolerant Fuel High Impact Problem program significant work has been conducted to investigate the U3Si2 and FeCrAl behavior under reactor conditions. This report presents the multiscale and multiphysics effort completed in fiscal year 2015. The report is split into four major categories including Density Functional Theory Developments, Molecular Dynamics Developments, Mesoscale Developments, and Engineering Scale Developments. The work shown here is a compilation of a collaborative effort between Idaho National Laboratory, Los Alamos National Laboratory, Argonne National Laboratory and Anatech Corp.

  13. Control algorithm for multiscale flow simulations of water

    DEFF Research Database (Denmark)

    Kotsalis, E. M.; Walther, Jens Honore; Kaxiras, E.

    2009-01-01

    . The use of a mass conserving specular wall results in turn to spurious oscillations in the density profile of the atomistic description of water. These oscillations can be eliminated by using an external boundary force that effectively accounts for the virial component of the pressure. In this Rapid......We present a multiscale algorithm to couple atomistic water models with continuum incompressible flow simulations via a Schwarz domain decomposition approach. The coupling introduces an inhomogeneity in the description of the atomistic domain and prevents the use of periodic boundary conditions...... Communication, we extend a control algorithm, previously introduced for monatomic molecules, to the case of atomistic water and demonstrate the effectiveness of this approach. The proposed computational method is validated for the cases of equilibrium and Couette flow of water....

  14. Multi-scale response of runoff to climate fluctuation in the headwater region of Kaidu River in Xinjiang of China

    Science.gov (United States)

    Bai, Ling; Chen, Zhongsheng; Xu, Jianhua; Li, Weihong

    2016-08-01

    Based on the hydrological and meteorological data in the headwater region of the Kaidu River during 1960-2009, the multi-scale characteristics of runoff variability were analyzed using the ensemble empirical mode decomposition method (EEMD), and the aim is to investigate the oscillation mode structure characteristics of runoff change and its response to climate fluctuation at different time scales. Results indicated that in the past 50 years, the overall runoff of Kaidu River in Xinjiang has showed a significant nonlinear upward trend, and its changes have obviously exhibited an inter-annual scale (quasi-3 and quasi-6-year) and inter-decadal scale (quasi-10 and quasi-25-year). Variance contribution rates of each component manifested that the inter-decadal change had been playing a more important role in the overall runoff change for Kaidu River, and the reconstructed inter-annual variation trend could describe the fluctuation state of the original runoff anomaly during the study period. The reconstructed inter-decadal variability effectively revealed that the runoff for Kaidu River changed over the years, namely the states of abundance and low water period appear alternately. In addition, we found that runoff has a positive correlation to precipitation and temperature at different time scales, but they are most significant and relevant at inter-decadal scale, indicating the inter-decadal scale is most suitable for investigating the responses of runoff dynamics to climate fluctuation. At the same time, the results also suggested that EEMD is an effective method to analyze the multi-scale characteristics of nonlinear and non-stationary signal.

  15. Fast Multiscale Reservoir Simulations using POD-DEIM Model Reduction

    KAUST Repository

    Ghasemi, Mohammadreza

    2015-02-23

    In this paper, we present a global-local model reduction for fast multiscale reservoir simulations in highly heterogeneous porous media with applications to optimization and history matching. Our proposed approach identifies a low dimensional structure of the solution space. We introduce an auxiliary variable (the velocity field) in our model reduction that allows achieving a high degree of model reduction. The latter is due to the fact that the velocity field is conservative for any low-order reduced model in our framework. Because a typical global model reduction based on POD is a Galerkin finite element method, and thus it can not guarantee local mass conservation. This can be observed in numerical simulations that use finite volume based approaches. Discrete Empirical Interpolation Method (DEIM) is used to approximate the nonlinear functions of fine-grid functions in Newton iterations. This approach allows achieving the computational cost that is independent of the fine grid dimension. POD snapshots are inexpensively computed using local model reduction techniques based on Generalized Multiscale Finite Element Method (GMsFEM) which provides (1) a hierarchical approximation of snapshot vectors (2) adaptive computations by using coarse grids (3) inexpensive global POD operations in a small dimensional spaces on a coarse grid. By balancing the errors of the global and local reduced-order models, our new methodology can provide an error bound in simulations. Our numerical results, utilizing a two-phase immiscible flow, show a substantial speed-up and we compare our results to the standard POD-DEIM in finite volume setup.

  16. A multiscale systems perspective on cancer, immunotherapy, and Interleukin-12

    Directory of Open Access Journals (Sweden)

    Klinke David J

    2010-09-01

    Full Text Available Abstract Monoclonal antibodies represent some of the most promising molecular targeted immunotherapies. However, understanding mechanisms by which tumors evade elimination by the immune system of the host presents a significant challenge for developing effective cancer immunotherapies. The interaction of cancer cells with the host is a complex process that is distributed across a variety of time and length scales. The time scales range from the dynamics of protein refolding (i.e., microseconds to the dynamics of disease progression (i.e., years. The length scales span the farthest reaches of the human body (i.e., meters down to the range of molecular interactions (i.e., nanometers. Limited ranges of time and length scales are used experimentally to observe and quantify changes in physiology due to cancer. Translating knowledge obtained from the limited scales observed experimentally to predict patient response is an essential prerequisite for the rational design of cancer immunotherapies that improve clinical outcomes. In studying multiscale systems, engineers use systems analysis and design to identify important components in a complex system and to test conceptual understanding of the integrated system behavior using simulation. The objective of this review is to summarize interactions between the tumor and cell-mediated immunity from a multiscale perspective. Interleukin-12 and its role in coordinating antibody-dependent cell-mediated cytotoxicity is used illustrate the different time and length scale that underpin cancer immunoediting. An underlying theme in this review is the potential role that simulation can play in translating knowledge across scales.

  17. Multiscale modeling of PVDF matrix carbon fiber composites

    Science.gov (United States)

    Greminger, Michael; Haghiashtiani, Ghazaleh

    2017-06-01

    Self-sensing carbon fiber reinforced composites have the potential to enable structural health monitoring that is inherent to the composite material rather than requiring external or embedded sensors. It has been demonstrated that a self-sensing carbon fiber reinforced polymer composite can be created by using the piezoelectric polymer polyvinylidene difluoride (PVDF) as the matrix material and using a Kevlar layer to separate two carbon fiber layers. In this configuration, the electrically conductive carbon fiber layers act as electrodes and the Kevlar layer acts as a dielectric to prevent the electrical shorting of the carbon fiber layers. This composite material has been characterized experimentally for its effective d 33 and d 31 piezoelectric coefficients. However, for design purposes, it is desirable to obtain a predictive model of the effective piezoelectric coefficients for the final smart composite material. Also, the inverse problem can be solved to determine the degree of polarization obtained in the PVDF material during polarization by comparing the effective d 33 and d 31 values obtained in experiment to those predicted by the finite element model. In this study, a multiscale micromechanics and coupled piezoelectric-mechanical finite element modeling approach is introduced to predict the mechanical and piezoelectric performance of a plain weave carbon fiber reinforced PVDF composite. The modeling results show good agreement with the experimental results for the mechanical and electrical properties of the composite. In addition, the degree of polarization of the PVDF component of the composite is predicted using this multiscale modeling approach and shows that there is opportunity to drastically improve the smart composite’s performance by improving the polarization procedure.

  18. Multiscale experimental mechanics of hierarchical carbon-based materials.

    Science.gov (United States)

    Espinosa, Horacio D; Filleter, Tobin; Naraghi, Mohammad

    2012-06-05

    Investigation of the mechanics of natural materials, such as spider silk, abalone shells, and bone, has provided great insight into the design of materials that can simultaneously achieve high specific strength and toughness. Research has shown that their emergent mechanical properties are owed in part to their specific self-organization in hierarchical molecular structures, from nanoscale to macroscale, as well as their mixing and bonding. To apply these findings to manmade materials, researchers have devoted significant efforts in developing a fundamental understanding of multiscale mechanics of materials and its application to the design of novel materials with superior mechanical performance. These efforts included the utilization of some of the most promising carbon-based nanomaterials, such as carbon nanotubes, carbon nanofibers, and graphene, together with a variety of matrix materials. At the core of these efforts lies the need to characterize material mechanical behavior across multiple length scales starting from nanoscale characterization of constituents and their interactions to emerging micro- and macroscale properties. In this report, progress made in experimental tools and methods currently used for material characterization across multiple length scales is reviewed, as well as a discussion of how they have impacted our current understanding of the mechanics of hierarchical carbon-based materials. In addition, insight is provided into strategies for bridging experiments across length scales, which are essential in establishing a multiscale characterization approach. While the focus of this progress report is in experimental methods, their concerted use with theoretical-computational approaches towards the establishment of a robust material by design methodology is also discussed, which can pave the way for the development of novel materials possessing unprecedented mechanical properties. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Hybrid numerical methods for multiscale simulations of subsurface biogeochemical processes

    International Nuclear Information System (INIS)

    Scheibe, T D; Tartakovsky, A M; Tartakovsky, D M; Redden, G D; Meakin, P

    2007-01-01

    Many subsurface flow and transport problems of importance today involve coupled non-linear flow, transport, and reaction in media exhibiting complex heterogeneity. In particular, problems involving biological mediation of reactions fall into this class of problems. Recent experimental research has revealed important details about the physical, chemical, and biological mechanisms involved in these processes at a variety of scales ranging from molecular to laboratory scales. However, it has not been practical or possible to translate detailed knowledge at small scales into reliable predictions of field-scale phenomena important for environmental management applications. A large assortment of numerical simulation tools have been developed, each with its own characteristic scale. Important examples include 1. molecular simulations (e.g., molecular dynamics); 2. simulation of microbial processes at the cell level (e.g., cellular automata or particle individual-based models); 3. pore-scale simulations (e.g., lattice-Boltzmann, pore network models, and discrete particle methods such as smoothed particle hydrodynamics); and 4. macroscopic continuum-scale simulations (e.g., traditional partial differential equations solved by finite difference or finite element methods). While many problems can be effectively addressed by one of these models at a single scale, some problems may require explicit integration of models across multiple scales. We are developing a hybrid multi-scale subsurface reactive transport modeling framework that integrates models with diverse representations of physics, chemistry and biology at different scales (sub-pore, pore and continuum). The modeling framework is being designed to take advantage of advanced computational technologies including parallel code components using the Common Component Architecture, parallel solvers, gridding, data and workflow management, and visualization. This paper describes the specific methods/codes being used at each

  20. A theoretical foundation for multi-scale regular vegetation patterns.

    Science.gov (United States)

    Tarnita, Corina E; Bonachela, Juan A; Sheffer, Efrat; Guyton, Jennifer A; Coverdale, Tyler C; Long, Ryan A; Pringle, Robert M

    2017-01-18

    Self-organized regular vegetation patterns are widespread and thought to mediate ecosystem functions such as productivity and robustness, but the mechanisms underlying their origin and maintenance remain disputed. Particularly controversial are landscapes of overdispersed (evenly spaced) elements, such as North American Mima mounds, Brazilian murundus, South African heuweltjies, and, famously, Namibian fairy circles. Two competing hypotheses are currently debated. On the one hand, models of scale-dependent feedbacks, whereby plants facilitate neighbours while competing with distant individuals, can reproduce various regular patterns identified in satellite imagery. Owing to deep theoretical roots and apparent generality, scale-dependent feedbacks are widely viewed as a unifying and near-universal principle of regular-pattern formation despite scant empirical evidence. On the other hand, many overdispersed vegetation patterns worldwide have been attributed to subterranean ecosystem engineers such as termites, ants, and rodents. Although potentially consistent with territorial competition, this interpretation has been challenged theoretically and empirically and (unlike scale-dependent feedbacks) lacks a unifying dynamical theory, fuelling scepticism about its plausibility and generality. Here we provide a general theoretical foundation for self-organization of social-insect colonies, validated using data from four continents, which demonstrates that intraspecific competition between territorial animals can generate the large-scale hexagonal regularity of these patterns. However, this mechanism is not mutually exclusive with scale-dependent feedbacks. Using Namib Desert fairy circles as a case study, we present field data showing that these landscapes exhibit multi-scale patterning-previously undocumented in this system-that cannot be explained by either mechanism in isolation. These multi-scale patterns and other emergent properties, such as enhanced resistance to

  1. ANALYSIS/MODEL COVER SHEET, MULTISCALE THERMOHYDROLOGIC MODEL

    International Nuclear Information System (INIS)

    Buscheck, T.A.

    2001-01-01

    The purpose of the Multiscale Thermohydrologic Model (MSTHM) is to describe the thermohydrologic evolution of the near-field environment (NFE) and engineered barrier system (EBS) throughout the potential high-level nuclear waste repository at Yucca Mountain for a particular engineering design (CRWMS M andO 2000c). The process-level model will provide thermohydrologic (TH) information and data (such as in-drift temperature, relative humidity, liquid saturation, etc.) for use in other technical products. This data is provided throughout the entire repository area as a function of time. The MSTHM couples the Smeared-heat-source Drift-scale Thermal-conduction (SDT), Line-average-heat-source Drift-scale Thermohydrologic (LDTH), Discrete-heat-source Drift-scale Thermal-conduction (DDT), and Smeared-heat-source Mountain-scale Thermal-conduction (SMT) submodels such that the flow of water and water vapor through partially-saturated fractured rock is considered. The MSTHM accounts for 3-D drift-scale and mountain-scale heat flow, repository-scale variability of stratigraphy and infiltration flux, and waste package (WP)-to-WP variability in heat output from WPs. All submodels use the nonisothermal unsaturated-saturated flow and transport (NUFT) simulation code. The MSTHM is implemented in several data-processing steps. The four major steps are: (1) submodel input-file preparation, (2) execution of the four submodel families with the use of the NUFT code, (3) execution of the multiscale thermohydrologic abstraction code (MSTHAC), and (4) binning and post-processing (i.e., graphics preparation) of the output from MSTHAC. Section 6 describes the MSTHM in detail. The objectives of this Analyses and Model Report (AMR) are to investigate near field (NF) and EBS thermohydrologic environments throughout the repository area at various evolution periods, and to provide TH data that may be used in other process model reports

  2. Multiscale modeling of alloy solidification using a database approach

    Science.gov (United States)

    Tan, Lijian; Zabaras, Nicholas

    2007-11-01

    sample problems. The efficiency of the proposed multiscale framework is demonstrated with numerical examples that consider a large number of crystals. A computationally intensive fully-resolved microscale analysis is also performed to evaluate the accuracy of the multiscale framework.

  3. Bubbles in Non-Newtonian Fluids: A Multiscale Modeling

    Directory of Open Access Journals (Sweden)

    Frank X.

    2013-06-01

    Full Text Available In this paper, the concept of a multiscale modeling approach is highlighted with which physical phenomena at different scales can be studied. The work reports a multiscale approach to describe the dynamics of a chain of bubbles rising in non-Newtonian fluids. By means of the Particle Image Velocimetry (PIV and the Lattice Boltzmann (LB simulation, a deep understanding of the complex flow pattern around a single bubble is gained at microscale. The interactions and coalescences between bubbles rising in non-Newtonian fluids are experimentally investigated by the PIV measurements, birefringence and rheological characterization for both an isolated bubble and a chain of bubbles formed from a submerged orifice. Two aspects are identified as central to interactions and coalescence: the stress creation by the passage of bubbles and their relaxation due to the fluid’s memory. This competition between the creation and relaxation of stresses displays non-linear complex dynamics. Along with the detailed knowledge around a single bubble, these fundamental mechanisms governing bubbles’ collective behavior in a train of bubbles at mesoscale lead to a cognitive modeling based on behavioral rules. By simulating bubbles as adaptive agents with the surround fluid via residual stresses, model predictions for consecutive coalescence between a great number of bubbles compare very satisfactorily with the experimental investigation at macroscale. Obviously this new approach captures important quantitative and qualitative features of the collective behaviors of bubbles at macroscale level which are predicted by the mesoscopic cognitive modeling approach of the interactions rules which are deduced from the understanding of the microscopic mechanism of the flow around a single bubble.

  4. Toward a global multi-scale heliophysics observatory

    Science.gov (United States)

    Semeter, J. L.

    2017-12-01

    We live within the only known stellar-planetary system that supports life. What we learn about this system is not only relevant to human society and its expanding reach beyond Earth's surface, but also to our understanding of the origins and evolution of life in the universe. Heliophysics is focused on solar-terrestrial interactions mediated by the magnetic and plasma environment surrounding the planet. A defining feature of energy flow through this environment is interaction across physical scales. A solar disturbance aimed at Earth can excite geospace variability on scales ranging from thousands of kilometers (e.g., global convection, region 1 and 2 currents, electrojet intensifications) to 10's of meters (e.g., equatorial spread-F, dispersive Alfven waves, plasma instabilities). Most "geospace observatory" concepts are focused on a single modality (e.g., HF/UHF radar, magnetometer, optical) providing a limited parameter set over a particular spatiotemporal resolution. Data assimilation methods have been developed to couple heterogeneous and distributed observations, but resolution has typically been prescribed a-priori and according to physical assumptions. This paper develops a conceptual framework for the next generation multi-scale heliophysics observatory, capable of revealing and quantifying the complete spectrum of cross-scale interactions occurring globally within the geospace system. The envisioned concept leverages existing assets, enlists citizen scientists, and exploits low-cost access to the geospace environment. Examples are presented where distributed multi-scale observations have resulted in substantial new insight into the inner workings of our stellar-planetary system.

  5. Multiscale decoding for reliable brain-machine interface performance over time.

    Science.gov (United States)

    Han-Lin Hsieh; Wong, Yan T; Pesaran, Bijan; Shanechi, Maryam M

    2017-07-01

    Recordings from invasive implants can degrade over time, resulting in a loss of spiking activity for some electrodes. For brain-machine interfaces (BMI), such a signal degradation lowers control performance. Achieving reliable performance over time is critical for BMI clinical viability. One approach to improve BMI longevity is to simultaneously use spikes and other recording modalities such as local field potentials (LFP), which are more robust to signal degradation over time. We have developed a multiscale decoder that can simultaneously model the different statistical profiles of multi-scale spike/LFP activity (discrete spikes vs. continuous LFP). This decoder can also run at multiple time-scales (millisecond for spikes vs. tens of milliseconds for LFP). Here, we validate the multiscale decoder for estimating the movement of 7 major upper-arm joint angles in a non-human primate (NHP) during a 3D reach-to-grasp task. The multiscale decoder uses motor cortical spike/LFP recordings as its input. We show that the multiscale decoder can improve decoding accuracy by adding information from LFP to spikes, while running at the fast millisecond time-scale of the spiking activity. Moreover, this improvement is achieved using relatively few LFP channels, demonstrating the robustness of the approach. These results suggest that using multiscale decoders has the potential to improve the reliability and longevity of BMIs.

  6. Physics-based hybrid method for multiscale transport in porous media

    Science.gov (United States)

    Yousefzadeh, Mehrdad; Battiato, Ilenia

    2017-09-01

    Despite advancements in the development of multiscale models for flow and reactive transport in porous media, the accurate, efficient and physics-based coupling of multiple scales in hybrid models remains a major theoretical and computational challenge. Improving the predictivity of macroscale predictions by means of multiscale algorithms relative to classical at-scale models is the primary motivation for the development of multiscale simulators. Yet, very few are the quantitative studies that explicitly address the predictive capability of multiscale coupling algorithms as it is still generally not possible to have a priori estimates of the errors that are present when complex flow processes are modeled. We develop a nonintrusive pore-/continuum-scale hybrid model whose coupling error is bounded by the upscaling error, i.e. we build a predictive tightly coupled multiscale scheme. This is accomplished by slightly enlarging the subdomain where continuum-scale equations are locally invalid and analytically defining physics-based coupling conditions at the interfaces separating the two computational sub-domains, while enforcing state variable and flux continuity. The proposed multiscale coupling approach retains the advantages of domain decomposition approaches, including the use of existing solvers for each subdomain, while it gains flexibility in the choice of the numerical discretization method and maintains the coupling errors bounded by the upscaling error. We implement the coupling in finite volumes and test the proposed method by modeling flow and transport through a reactive channel and past an array of heterogeneously reactive cylinders.

  7. Toward combining thematic information with hierarchical multiscale segmentations using tree Markov random field model

    Science.gov (United States)

    Zhang, Xueliang; Xiao, Pengfeng; Feng, Xuezhi

    2017-09-01

    It has been a common idea to produce multiscale segmentations to represent the various geographic objects in high-spatial resolution remote sensing (HR) images. However, it remains a great challenge to automatically select the proper segmentation scale(s) just according to the image information. In this study, we propose a novel way of information fusion at object level by combining hierarchical multiscale segmentations with existed thematic information produced by classification or recognition. The tree Markov random field (T-MRF) model is designed for the multiscale combination framework, through which the object type is determined as close as the existed thematic information. At the same time, the object boundary is jointly determined by the thematic labels and the multiscale segments through the minimization of the energy function. The benefits of the proposed T-MRF combination model include: (1) reducing the dependence of segmentation scale selection when utilizing multiscale segmentations; (2) exploring the hierarchical context naturally imbedded in the multiscale segmentations. The HR images in both urban and rural areas are used in the experiments to show the effectiveness of the proposed combination framework on these two aspects.

  8. Multiscale Numerical Study of 3D Polymer Crystallization during Cooling Stage

    Directory of Open Access Journals (Sweden)

    Chunlei Ruan

    2012-01-01

    Full Text Available We aim to study the behavior of polymer crystallization during cooling stage in injection molding more accurately, the multiscale model and multiscale algorithm proposed in our previous work (Ruan et al., 2012 have been extended to the 3D polymer crystallization case. Our multiscale model incorporates two distinct length scales: a coarse grid for the heat diffusion and a fine grid for the crystal morphology evolution (nucleation, growth, and impingement. Our multiscale algorithm couples the different methods on different length scales, namely, the finite volume method (FVM on the coarse grid and the pixel coloring method on the fine grid. By using these multiscale model and multiscale algorithm, simulations for 3D polymer crystallization are carried out. Macroscopic variables, for example, temperature, relative crystallinity, as well as the microscopic structural characters, for example, crystal morphology development, and mean size of spherulites, are investigated at various cooling conditions. We also show the importance of coupling heat transfer with crystallization as well as 3D numerical studies.

  9. A Weighted Difference of Anisotropic and Isotropic Total Variation for Relaxed Mumford-Shah Image Segmentation

    Science.gov (United States)

    2016-05-01

    Imaging Sciences, vol. 8, no. 3, pp. 1798–1823, 2015. [10] Tao Pham-Dinh and Hoai An Le-Thi, “Convex analysis approach to dc programming: Theory ...dual hybrid gradient algorithm for total variation image restoration ,” UCLA CAM Report, pp. 08–34, 2008. [17] Antonin Chambolle and Thomas Pock, “A first...Jinjun Xu, and Wotao Yin, “An iterative regularization method for total variation-based image restoration ,” Multiscale Modeling & Simulation, vol. 4

  10. Patterns and multi-scale drivers of phytoplankton species richness in temperate peri-urban lakes

    Energy Technology Data Exchange (ETDEWEB)

    Catherine, Arnaud, E-mail: arnocat@mnhn.fr [UMR7245 MCAM MNHN-CNRS, Muséum National d' Histoire Naturelle, CC 39, 12 rue Buffon, F-75231 Paris, Cedex 05 (France); Selma, Maloufi, E-mail: maloufi@mnhn.fr [UMR7245 MCAM MNHN-CNRS, Muséum National d' Histoire Naturelle, CC 39, 12 rue Buffon, F-75231 Paris, Cedex 05 (France); Mouillot, David, E-mail: david.mouillot@univ-montp2.fr [UMR 9190 MARBEC UM2-CNRS-IRD-UM1-IFREMER, CC 93, Place Eugène Bataillon, Université de Montpellier 2, F-34095 Montpellier (France); Troussellier, Marc, E-mail: troussel@univ-montp2.fr [UMR 9190 MARBEC UM2-CNRS-IRD-UM1-IFREMER, CC 93, Place Eugène Bataillon, Université de Montpellier 2, F-34095 Montpellier (France); Bernard, Cécile, E-mail: cbernard@mnhn.fr [UMR7245 MCAM MNHN-CNRS, Muséum National d' Histoire Naturelle, CC 39, 12 rue Buffon, F-75231 Paris, Cedex 05 (France)

    2016-07-15

    species richness in temperate lakes. This approach may prove useful and cost-effective for the management and conservation of aquatic ecosystems. - Highlights: • We studied phytoplankton communities in 50 peri-urban lakes. • We assessed the impact of multi-scale drivers of phytoplankton richness. • Local- and catchment-scale predictive models performed similarly. • Seasonal temperature variation and resource availability strongly modulate species richness. • This approach may be used for the management and conservation of aquatic ecosystems.

  11. Multi-scale structures and pasting characteristics of starch in whole-wheat flour treated by superfine grinding.

    Science.gov (United States)

    Niu, Meng; Zhang, Binjia; Jia, Caihua; Zhao, Siming

    2017-11-01

    The multi-scale structures and pasting properties of starch in WWF were investigated after superfine grinding. Five particle size distributions of WWF and their corresponding starch were obtained. The grinding process reduced the particle size of WWF and starch. However, a slight increase of fragments from starch granules was observed with enhanced grinding strength because of the small decrease in starch particle size and the existence of other WWF components that undertook some of shearing force and friction during grinding. A prominent reduction in starch crystallinity was resulted due to the destruction of crystalline structure by grinding. Small-angle X-ray scattering analyses indicated the disordering in starch semi-crystalline lamellae with thinner lamellae thickness. Additionally, the 13 C Nuclear Magnetic Resonance spectra demonstrated the alterations in starch chain conformation by varying peak areas of starch carbons (C1 and C4). Along with these structural changes, Starch pasting characteristics showed substantial variations, indicating decreased viscosities and higher pasting stability. The results suggest that the grinding treatments influenced the structures and pasting properties of starch even at a non-separated state, the changes in starch structures were related to the variations in starch gelatinization characteristics. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Sparsity-based acoustic inversion in cross-sectional multiscale optoacoustic imaging

    International Nuclear Information System (INIS)

    Han, Yiyong; Tzoumas, Stratis; Nunes, Antonio; Ntziachristos, Vasilis; Rosenthal, Amir

    2015-01-01

    Purpose: With recent advancement in hardware of optoacoustic imaging systems, highly detailed cross-sectional images may be acquired at a single laser shot, thus eliminating motion artifacts. Nonetheless, other sources of artifacts remain due to signal distortion or out-of-plane signals. The purpose of image reconstruction algorithms is to obtain the most accurate images from noisy, distorted projection data. Methods: In this paper, the authors use the model-based approach for acoustic inversion, combined with a sparsity-based inversion procedure. Specifically, a cost function is used that includes the L1 norm of the image in sparse representation and a total variation (TV) term. The optimization problem is solved by a numerically efficient implementation of a nonlinear gradient descent algorithm. TV–L1 model-based inversion is tested in the cross section geometry for numerically generated data as well as for in vivo experimental data from an adult mouse. Results: In all cases, model-based TV–L1 inversion showed a better performance over the conventional Tikhonov regularization, TV inversion, and L1 inversion. In the numerical examples, the images reconstructed with TV–L1 inversion were quantitatively more similar to the originating images. In the experimental examples, TV–L1 inversion yielded sharper images and weaker streak artifact. Conclusions: The results herein show that TV–L1 inversion is capable of improving the quality of highly detailed, multiscale optoacoustic images obtained in vivo using cross-sectional imaging systems. As a result of its high fidelity, model-based TV–L1 inversion may be considered as the new standard for image reconstruction in cross-sectional imaging

  13. Automatic vertebral bodies detection of x-ray images using invariant multiscale template matching

    Science.gov (United States)

    Sharifi Sarabi, Mona; Villaroman, Diane; Beckett, Joel; Attiah, Mark; Marcus, Logan; Ahn, Christine; Babayan, Diana; Gaonkar, Bilwaj; Macyszyn, Luke; Raghavendra, Cauligi

    2017-03-01

    Lower back pain and pathologies related to it are one of the most common results for a referral to a neurosurgical clinic in the developed and the developing world. Quantitative evaluation of these pathologies is a challenge. Image based measurements of angles/vertebral heights and disks could provide a potential quantitative biomarker for tracking and measuring these pathologies. Detection of vertebral bodies is a key element and is the focus of the current work. From the variety of medical imaging techniques, MRI and CT scans have been typically used for developing image segmentation methods. However, CT scans are known to give a large dose of x-rays, increasing cancer risk [8]. MRI can be substituted for CTs when the risk is high [8] but are difficult to obtain in smaller facilities due to cost and lack of expertise in the field [2]. X-rays provide another option with its ability to control the x-ray dosage, especially for young people, and its accessibility for smaller facilities. Hence, the ability to create quantitative biomarkers from x-ray data is especially valuable. Here, we develop a multiscale template matching, inspired by [9], to detect centers of vertebral bodies from x-ray data. The immediate application of such detection lies in developing quantitative biomarkers and in querying similar images in a database. Previously, shape similarity classification methods have been used to address this problem, but these are challenging to use in the presence of variation due to gross pathology and even subtle effects [1].

  14. Multi-scale Gaussian representation and outline-learning based cell image segmentation.

    Science.gov (United States)

    Farhan, Muhammad; Ruusuvuori, Pekka; Emmenlauer, Mario; Rämö, Pauli; Dehio, Christoph; Yli-Harja, Olli

    2013-01-01

    High-throughput genome-wide screening to study gene-specific functions, e.g. for drug discovery, demands fast automated image analysis methods to assist in unraveling the full potential of such studies. Image segmentation is typically at the forefront of such analysis as the performance of the subsequent steps, for example, cell classification, cell tracking etc., often relies on the results of segmentation. We present a cell cytoplasm segmentation framework which first separates cell cytoplasm from image background using novel approach of image enhancement and coefficient of variation of multi-scale Gaussian scale-space representation. A novel outline-learning based classification method is developed using regularized logistic regression with embedded feature selection which classifies image pixels as outline/non-outline to give cytoplasm outlines. Refinement of the detected outlines to separate cells from each other is performed in a post-processing step where the nuclei segmentation is used as contextual information. We evaluate the proposed segmentation methodology using two challenging test cases, presenting images with completely different characteristics, with cells of varying size, shape, texture and degrees of overlap. The feature selection and classification framework for outline detection produces very simple sparse models which use only a small subset of the large, generic feature set, that is, only 7 and 5 features for the two cases. Quantitative comparison of the results for the two test cases against state-of-the-art methods show that our methodology outperforms them with an increase of 4-9% in segmentation accuracy with maximum accuracy of 93%. Finally, the results obtained for diverse datasets demonstrate that our framework not only produces accurate segmentation but also generalizes well to different segmentation tasks.

  15. Multiscale mapping of species diversity under changed land use using imaging spectroscopy.

    Science.gov (United States)

    Paz-Kagan, Tarin; Caras, Tamir; Herrmann, Ittai; Shachak, Moshe; Karnieli, Arnon

    2017-07-01

    Land use changes are one of the most important factors causing environmental transformations and species diversity alterations. The aim of the current study was to develop a geoinformatics-based framework to quantify alpha and beta diversity indices in two sites in Israel with different land uses, i.e., an agricultural system of fruit orchards, an afforestation system of planted groves, and an unmanaged system of groves. The framework comprises four scaling steps: (1) classification of a tree species distribution (SD) map using imaging spectroscopy (IS) at a pixel size of 1 m; (2) estimation of local species richness by calculating the alpha diversity index for 30-m grid cells; (3) calculation of beta diversity for different land use categories and sub-categories at different sizes; and (4) calculation of the beta diversity difference between the two sites. The SD was classified based on a hyperspectral image with 448 bands within the 380-2500 nm spectral range and a spatial resolution of 1 m. Twenty-three tree species were classified with high overall accuracy values of 82.57% and 86.93% for the two sites. Significantly high values of the alpha index characterize the unmanaged land use, and the lowest values were calculated for the agricultural land use. In addition, high values of alpha indices were found at the borders between the polygons related to the "edge-effect" phenomenon, whereas low alpha indices were found in areas with high invasion species rates. The beta index value, calculated for 58 polygons, was significantly lower in the agricultural land use. The suggested framework of this study succeeded in quantifying land use effects on tree species distribution, evenness, and richness. IS and spatial statistics techniques offer an opportunity to study woody plant species variation with a multiscale approach that is useful for managing land use, especially under increasing environmental changes. © 2017 by the Ecological Society of America.

  16. Multi-scale Gaussian representation and outline-learning based cell image segmentation

    Science.gov (United States)

    2013-01-01

    Background High-throughput genome-wide screening to study gene-specific functions, e.g. for drug discovery, demands fast automated image analysis methods to assist in unraveling the full potential of such studies. Image segmentation is typically at the forefront of such analysis as the performance of the subsequent steps, for example, cell classification, cell tracking etc., often relies on the results of segmentation. Methods We present a cell cytoplasm segmentation framework which first separates cell cytoplasm from image background using novel approach of image enhancement and coefficient of variation of multi-scale Gaussian scale-space representation. A novel outline-learning based classification method is developed using regularized logistic regression with embedded feature selection which classifies image pixels as outline/non-outline to give cytoplasm outlines. Refinement of the detected outlines to separate cells from each other is performed in a post-processing step where the nuclei segmentation is used as contextual information. Results and conclusions We evaluate the proposed segmentation methodology using two challenging test cases, presenting images with completely different characteristics, with cells of varying size, shape, texture and degrees of overlap. The feature selection and classification framework for outline detection produces very simple sparse models which use only a small subset of the large, generic feature set, that is, only 7 and 5 features for the two cases. Quantitative comparison of the results for the two test cases against state-of-the-art methods show that our methodology outperforms them with an increase of 4-9% in segmentation accuracy with maximum accuracy of 93%. Finally, the results obtained for diverse datasets demonstrate that our framework not only produces accurate segmentation but also generalizes well to different segmentation tasks. PMID:24267488

  17. Multiscale and Multiphysics Modeling of Additive Manufacturing of Advanced Materials

    Science.gov (United States)

    Liou, Frank; Newkirk, Joseph; Fan, Zhiqiang; Sparks, Todd; Chen, Xueyang; Fletcher, Kenneth; Zhang, Jingwei; Zhang, Yunlu; Kumar, Kannan Suresh; Karnati, Sreekar

    2015-01-01

    The objective of this proposed project is to research and develop a prediction tool for advanced additive manufacturing (AAM) processes for advanced materials and develop experimental methods to provide fundamental properties and establish validation data. Aircraft structures and engines demand materials that are stronger, useable at much higher temperatures, provide less acoustic transmission, and enable more aeroelastic tailoring than those currently used. Significant improvements in properties can only be achieved by processing the materials under nonequilibrium conditions, such as AAM processes. AAM processes encompass a class of processes that use a focused heat source to create a melt pool on a substrate. Examples include Electron Beam Freeform Fabrication and Direct Metal Deposition. These types of additive processes enable fabrication of parts directly from CAD drawings. To achieve the desired material properties and geometries of the final structure, assessing the impact of process parameters and predicting optimized conditions with numerical modeling as an effective prediction tool is necessary. The targets for the processing are multiple and at different spatial scales, and the physical phenomena associated occur in multiphysics and multiscale. In this project, the research work has been developed to model AAM processes in a multiscale and multiphysics approach. A macroscale model was developed to investigate the residual stresses and distortion in AAM processes. A sequentially coupled, thermomechanical, finite element model was developed and validated experimentally. The results showed the temperature distribution, residual stress, and deformation within the formed deposits and substrates. A mesoscale model was developed to include heat transfer, phase change with mushy zone, incompressible free surface flow, solute redistribution, and surface tension. Because of excessive computing time needed, a parallel computing approach was also tested. In addition

  18. Multiscale Seismic Inversion in the Data and Image Domains

    KAUST Repository

    Zhang, Sanzong

    2015-12-01

    I present a general methodology for inverting seismic data in either the data or image domains. It partially overcomes one of the most serious problems with current waveform inversion methods, which is the tendency to converge to models far from the actual one. The key idea is to develop a multiscale misfit function that is composed of both a simplified version of the data and one associated with the complex part of the data. Misfit functions based on simple data are characterized by many fewer local minima so that a gradient optimization method can make quick progress in getting to the general vicinity of the actual model. Once we are near the actual model, we then use the gradient based on the more complex data. Below, we describe two implementations of this multiscale strategy: wave equation traveltime inversion in the data domain and generalized differential semblance optimization in the image domain. • Wave Equation Traveltime Inversion in the Data Domain (WT): The main difficulty with iterative waveform inversion is that it tends to get stuck in local minima associated with the waveform misfit function. To mitigate this problem and avoid the need to fit amplitudes in the data, we present a waveequation method that inverts the traveltimes of reflection events, and so is less prone to the local minima problem. Instead of a waveform misfit function, the penalty function is a crosscorrelation of the downgoing direct wave and the upgoing reflection wave at the trial image point. The time lag which maximizes the crosscorrelation amplitude represents the reflection-traveltime residual that is back-projected along the reflection wavepath to update the velocity. Shot- and angle-domain crosscorrelation functions are introduced to estimate the reflection-traveltime residual by semblance analysis and scanning. In theory, only the traveltime information is inverted and there is no need to precisely fit the amplitudes or assume a high-frequency approximation. Results

  19. Impact of model complexity and multi-scale data integration on the estimation of hydrogeological parameters in a dual-porosity aquifer

    Science.gov (United States)

    Tamayo-Mas, Elena; Bianchi, Marco; Mansour, Majdi

    2018-03-01

    This study investigates the impact of model complexity and multi-scale prior hydrogeological data on the interpretation of pumping test data in a dual-porosity aquifer (the Chalk aquifer in England, UK). In order to characterize the hydrogeological properties, different approaches ranging from a traditional analytical solution (Theis approach) to more sophisticated numerical models with automatically calibrated input parameters are applied. Comparisons of results from the different approaches show that neither traditional analytical solutions nor a numerical model assuming a homogenous and isotropic aquifer can adequately explain the observed drawdowns. A better reproduction of the observed drawdowns in all seven monitoring locations is instead achieved when medium and local-scale prior information about the vertical hydraulic conductivity (K) distribution is used to constrain the model calibration process. In particular, the integration of medium-scale vertical K variations based on flowmeter measurements lead to an improvement in the goodness-of-fit of the simulated drawdowns of about 30%. Further improvements (up to 70%) were observed when a simple upscaling approach was used to integrate small-scale K data to constrain the automatic calibration process of the numerical model. Although the analysis focuses on a specific case study, these results provide insights about the representativeness of the estimates of hydrogeological properties based on different interpretations of pumping test data, and promote the integration of multi-scale data for the characterization of heterogeneous aquifers in complex hydrogeological settings.

  20. Software Integration in Multi-scale Simulations: the PUPIL System

    Science.gov (United States)

    Torras, J.; Deumens, E.; Trickey, S. B.

    2006-10-01

    The state of the art for computational tools in both computational chemistry and computational materials physics includes many algorithms and functionalities which are implemented again and again. Several projects aim to reduce, eliminate, or avoid this problem. Most such efforts seem to be focused within a particular specialty, either quantum chemistry or materials physics. Multi-scale simulations, by their very nature however, cannot respect that specialization. In simulation of fracture, for example, the energy gradients that drive the molecular dynamics (MD) come from a quantum mechanical treatment that most often derives from quantum chemistry. That “QM” region is linked to a surrounding “CM” region in which potentials yield the forces. The approach therefore requires the integration or at least inter-operation of quantum chemistry and materials physics algorithms. The same problem occurs in “QM/MM” simulations in computational biology. The challenge grows if pattern recognition or other analysis codes of some kind must be used as well. The most common mode of inter-operation is user intervention: codes are modified as needed and data files are managed “by hand” by the user (interactively and via shell scripts). User intervention is however inefficient by nature, difficult to transfer to the community, and prone to error. Some progress (e.g Sethna’s work at Cornell [C.R. Myers et al., Mat. Res. Soc. Symp. Proc., 538(1999) 509, C.-S. Chen et al., Poster presented at the Material Research Society Meeting (2000)]) has been made on using Python scripts to achieve a more efficient level of interoperation. In this communication we present an alternative approach to merging current working packages without the necessity of major recoding and with only a relatively light wrapper interface. The scheme supports communication among the different components required for a given multi-scale calculation and access to the functionalities of those components

  1. Multiscale forward electromagnetic model of uterine contractions during pregnancy

    International Nuclear Information System (INIS)

    La Rosa, Patricio S; Eswaran, Hari; Preissl, Hubert; Nehorai, Arye

    2012-01-01

    Analyzing and monitoring uterine contractions during pregnancy is relevant to the field of reproductive health assessment. Its clinical importance is grounded in the need to reliably predict the onset of labor at term and pre-term. Preterm births can cause health problems or even be fatal for the fetus. Currently, there are no objective methods for consistently predicting the onset of labor based on sensing of the mechanical or electrophysiological aspects of uterine contractions. Therefore, modeling uterine contractions could help to better interpret such measurements and to develop more accurate methods for predicting labor. In this work, we develop a multiscale forward electromagnetic model of myometrial contractions during pregnancy. In particular, we introduce a model of myometrial current source densities and compute its magnetic field and action potential at the abdominal surface, using Maxwell’s equations and a four-compartment volume conductor geometry. To model the current source density at the myometrium we use a bidomain approach. We consider a modified version of the Fitzhugh-Nagumo (FHN) equation for modeling ionic currents in each myocyte, assuming a plateau-type transmembrane potential, and we incorporate the anisotropic nature of the uterus by designing conductivity-tensor fields. We illustrate our modeling approach considering a spherical uterus and one pacemaker located in the fundus. We obtained a travelling transmembrane potential depolarizing from −56 mV to −16 mV and an average potential in the plateau area of −25 mV with a duration, before hyperpolarization, of 35 s, which is a good approximation with respect to the average recorded transmembrane potentials at term reported in the technical literature. Similarly, the percentage of myometrial cells contracting as a function of time had the same symmetric properties and duration as the intrauterine pressure waveforms of a pregnant human myometrium at term. We introduced a multiscale

  2. Multiscale study on hydrogen mobility in metallic fusion divertor material

    International Nuclear Information System (INIS)

    Heinola, K.

    2010-01-01

    For achieving efficient fusion energy production, the plasma-facing wall materials of the fusion reactor should ensure long time operation. In the next step fusion device, ITER, the first wall region facing the highest heat and particle load, i.e. the divertor area, will mainly consist of tiles based on tungsten. During the reactor operation, the tungsten material is slowly but inevitably saturated with tritium. Tritium is the relatively short-lived hydrogen isotope used in the fusion reaction. The amount of tritium retained in the wall materials should be minimized and its recycling back to the plasma must be unrestrained, otherwise it cannot be used for fueling the plasma. A very expensive and thus economically not viable solution is to replace the first walls quite often. A better solution is to heat the walls to temperatures where tritium is released. Unfortunately, the exact mechanisms of hydrogen release in tungsten are not known. In this thesis both experimental and computational methods have been used for studying the release and retention of hydrogen in tungsten. The experimental work consists of hydrogen implantations into pure polycrystalline tungsten, the determination of the hydrogen concentrations using ion beam analyses (IBA) and monitoring the out-diffused hydrogen gas with thermodesorption spectrometry (TDS) as the tungsten samples are heated at elevated temperatures. Combining IBA methods with TDS, the retained amount of hydrogen is obtained as well as the temperatures needed for the hydrogen release. With computational methods the hydrogen-defect interactions and implantation-induced irradiation damage can be examined at the atomic level. The method of multiscale modelling combines the results obtained from computational methodologies applicable at different length and time scales. Electron density functional theory calculations were used for determining the energetics of the elementary processes of hydrogen in tungsten, such as diffusivity and

  3. Multi-scale nonlinear constitutive models using artificial neural networks

    Science.gov (United States)

    Kim, Hoan-Kee

    This study presents a new approach for nonlinear multi-scale constitutive models using artificial neural networks (ANNs). Three ANN classes are proposed to characterize the nonlinear multi-axial stress-strain behavior of metallic, polymeric, and fiber reinforced polymeric (FRP) materials, respectively. Load-displacement responses from nanoindentation of metallic and polymeric materials are used to train new generation of dimensionless ANN models with different micro-structural properties as additional variables to the load-deflection. The proposed ANN models are effective in inverse-problems set to back-calculate in-situ material parameters from given overall nanoindentation test data with/without time-dependent material behavior. Towards that goal, nanoindentation tests have been performed for silicon (Si) substrate with/without a copper (Cu) film. Nanoindentation creep test data, available in the literature for Polycarbonate substrate, are used in these inverse problems. The predicted properties from the ANN models can also be used to calibrate classical constitutive parameters. The third class of ANN models is used to generate the effective multi-axial stress-strain behavior of FRP composites under plane-stress conditions. The training data are obtained from coupon tests performed in this study using off-axis tension/compression and pure shear tests for pultruded FRP E-glass/polyester composite systems. It is shown that the trained nonlinear ANN model can be directly coupled with finite-element (FE) formulation as a material model at the Gaussian integration points of each layered-shell element. This FE-ANN modeling approach is applied to simulate an FRP plate with an open-hole and compared with experimental results. Micromechanical nonlinear ANN models with damage formulation are also formulated and trained using simulated FE modeling of the periodic microstructure. These new multi-scale ANN constitutive models are effective and can be extended by including

  4. Intercomparison of Multiscale Modeling Approaches in Simulating Subsurface Flow and Transport

    Science.gov (United States)

    Yang, X.; Mehmani, Y.; Barajas-Solano, D. A.; Song, H. S.; Balhoff, M.; Tartakovsky, A. M.; Scheibe, T. D.

    2016-12-01

    Hybrid multiscale simulations that couple models across scales are critical to advance predictions of the larger system behavior using understanding of fundamental processes. In the current study, three hybrid multiscale methods are intercompared: multiscale loose-coupling method, multiscale finite volume (MsFV) method and multiscale mortar method. The loose-coupling method enables a parallel workflow structure based on the Swift scripting environment that manages the complex process of executing coupled micro- and macro-scale models without being intrusive to the at-scale simulators. The MsFV method applies microscale and macroscale models over overlapping subdomains of the modeling domain and enforces continuity of concentration and transport fluxes between models via restriction and prolongation operators. The mortar method is a non-overlapping domain decomposition approach capable of coupling all permutations of pore- and continuum-scale models with each other. In doing so, Lagrange multipliers are used at interfaces shared between the subdomains so as to establish continuity of species/fluid mass flux. Subdomain computations can be performed either concurrently or non-concurrently depending on the algorithm used. All the above methods have been proven to be accurate and efficient in studying flow and transport in porous media. However, there has not been any field-scale applications and benchmarking among various hybrid multiscale approaches. To address this challenge, we apply all three hybrid multiscale methods to simulate water flow and transport in a conceptualized 2D modeling domain of the hyporheic zone, where strong interactions between groundwater and surface water exist across multiple scales. In all three multiscale methods, fine-scale simulations are applied to a thin layer of riverbed alluvial sediments while the macroscopic simulations are used for the larger subsurface aquifer domain. Different numerical coupling methods are then applied between

  5. msBP: An R Package to Perform Bayesian Nonparametric Inference Using Multiscale Bernstein Polynomials Mixtures

    Directory of Open Access Journals (Sweden)

    Antonio Canale

    2017-06-01

    Full Text Available msBP is an R package that implements a new method to perform Bayesian multiscale nonparametric inference introduced by Canale and Dunson (2016. The method, based on mixtures of multiscale beta dictionary densities, overcomes the drawbacks of Pólya trees and inherits many of the advantages of Dirichlet process mixture models. The key idea is that an infinitely-deep binary tree is introduced, with a beta dictionary density assigned to each node of the tree. Using a multiscale stick-breaking characterization, stochastically decreasing weights are assigned to each node. The result is an infinite mixture model. The package msBP implements a series of basic functions to deal with this family of priors such as random densities and numbers generation, creation and manipulation of binary tree objects, and generic functions to plot and print the results. In addition, it implements the Gibbs samplers for posterior computation to perform multiscale density estimation and multiscale testing of group differences described in Canale and Dunson (2016.

  6. An optimized algorithm for multiscale wideband deconvolution of radio astronomical images

    Science.gov (United States)

    Offringa, A. R.; Smirnov, O.

    2017-10-01

    We describe a new multiscale deconvolution algorithm that can also be used in a multifrequency mode. The algorithm only affects the minor clean loop. In single-frequency mode, the minor loop of our improved multiscale algorithm is over an order of magnitude faster than the casa multiscale algorithm, and produces results of similar quality. For multifrequency deconvolution, a technique named joined-channel cleaning is used. In this mode, the minor loop of our algorithm is two to three orders of magnitude faster than casa msmfs. We extend the multiscale mode with automated scale-dependent masking, which allows structures to be cleaned below the noise. We describe a new scale-bias function for use in multiscale cleaning. We test a second deconvolution method that is a variant of the moresane deconvolution technique, and uses a convex optimization technique with isotropic undecimated wavelets as dictionary. On simple well-calibrated data, the convex optimization algorithm produces visually more representative models. On complex or imperfect data, the convex optimization algorithm has stability issues.

  7. Fast online generalized multiscale finite element method using constraint energy minimization

    Science.gov (United States)

    Chung, Eric T.; Efendiev, Yalchin; Leung, Wing Tat

    2018-02-01

    Local multiscale methods often construct multiscale basis functions in the offline stage without taking into account input parameters, such as source terms, boundary conditions, and so on. These basis functions are then used in the online stage with a specific input parameter to solve the global problem at a reduced computational cost. Recently, online approaches have been introduced, where multiscale basis functions are adaptively constructed in some regions to reduce the error significantly. In multiscale methods, it is desired to have only 1-2 iterations to reduce the error to a desired threshold. Using Generalized Multiscale Finite Element Framework [10], it was shown that by choosing sufficient number of offline basis functions, the error reduction can be made independent of physical parameters, such as scales and contrast. In this paper, our goal is to improve this. Using our recently proposed approach [4] and special online basis construction in oversampled regions, we show that the error reduction can be made sufficiently large by appropriately selecting oversampling regions. Our numerical results show that one can achieve a three order of magnitude error reduction, which is better than our previous methods. We also develop an adaptive algorithm and enrich in selected regions with large residuals. In our adaptive method, we show that the convergence rate can be determined by a user-defined parameter and we confirm this by numerical simulations. The analysis of the method is presented.

  8. A Tensor-Product-Kernel Framework for Multiscale Neural Activity Decoding and Control

    Science.gov (United States)

    Li, Lin; Brockmeier, Austin J.; Choi, John S.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.

    2014-01-01

    Brain machine interfaces (BMIs) have attracted intense attention as a promising technology for directly interfacing computers or prostheses with the brain's motor and sensory areas, thereby bypassing the body. The availability of multiscale neural recordings including spike trains and local field potentials (LFPs) brings potential opportunities to enhance computational modeling by enriching the characterization of the neural system state. However, heterogeneity on data type (spike timing versus continuous amplitude signals) and spatiotemporal scale complicates the model integration of multiscale neural activity. In this paper, we propose a tensor-product-kernel-based framework to integrate the multiscale activity and exploit the complementary information available in multiscale neural activity. This provides a common mathematical framework for incorporating signals from different domains. The approach is applied to the problem of neural decoding and control. For neural decoding, the framework is able to identify the nonlinear functional relationship between the multiscale neural responses and the stimuli using general purpose kernel adaptive filtering. In a sensory stimulation experiment, the tensor-product-kernel decoder outperforms decoders that use only a single neural data type. In addition, an adaptive inverse controller for delivering electrical microstimulation patterns that utilizes the tensor-product kernel achieves promising results in emulating the responses to natural stimulation. PMID:24829569

  9. A generalized multiscale finite element method for elastic wave propagation in fractured media

    KAUST Repository

    Chung, Eric T.

    2016-02-26

    In this paper, we consider elastic wave propagation in fractured media applying a linear-slip model to represent the effects of fractures on the wavefield. Fractured media, typically, are highly heterogeneous due to multiple length scales. Direct numerical simulations for wave propagation in highly heterogeneous fractured media can be computationally expensive and require some type of model reduction. We develop a multiscale model reduction technique that captures the complex nature of the media (heterogeneities and fractures) in the coarse scale system. The proposed method is based on the generalized multiscale finite element method, where the multiscale basis functions are constructed to capture the fine-scale information of the heterogeneous, fractured media and effectively reduce the degrees of freedom. These multiscale basis functions are coupled via the interior penalty discontinuous Galerkin method, which provides a block-diagonal mass matrix. The latter is needed for fast computation in an explicit time discretization, which is used in our simulations. Numerical results are presented to show the performance of the presented multiscale method for fractured media. We consider several cases where fractured media contain fractures of multiple lengths. Our numerical results show that the proposed reduced-order models can provide accurate approximations for the fine-scale solution.

  10. Implementation of Grid-computing Framework for Simulation in Multi-scale Structural Analysis

    Directory of Open Access Journals (Sweden)

    Data Iranata

    2010-05-01

    Full Text Available A new grid-computing framework for simulation in multi-scale structural analysis is presented. Two levels of parallel processing will be involved in this framework: multiple local distributed computing environments connected by local network to form a grid-based cluster-to-cluster distributed computing environment. To successfully perform the simulation, a large-scale structural system task is decomposed into the simulations of a simplified global model and several detailed component models using various scales. These correlated multi-scale structural system tasks are distributed among clusters and connected together in a multi-level hierarchy and then coordinated over the internet. The software framework for supporting the multi-scale structural simulation approach is also presented. The program architecture design allows the integration of several multi-scale models as clients and servers under a single platform. To check its feasibility, a prototype software system has been designed and implemented to perform the proposed concept. The simulation results show that the software framework can increase the speedup performance of the structural analysis. Based on this result, the proposed grid-computing framework is suitable to perform the simulation of the multi-scale structural analysis.

  11. Multiscale Pressure-Balanced Structures in Three-dimensional Magnetohydrodynamic Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liping; Zhang, Lei; Feng, Xueshang [SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences, 100190, Beijing (China); He, Jiansen; Tu, Chuanyi; Wang, Linghua [School of Earth and Space Sciences, Peking University, 100871 Beijing (China); Li, Shengtai [Theoretical Division, MS B284, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian Albrechts University at Kiel, D-24118 Kiel (Germany); Wang, Xin, E-mail: jshept@gmail.com [School of Space and Environment, Beihang University, 100191 Beijing (China)

    2017-02-10

    Observations of solar wind turbulence indicate the existence of multiscale pressure-balanced structures (PBSs) in the solar wind. In this work, we conduct a numerical simulation to investigate multiscale PBSs and in particular their formation in compressive magnetohydrodynamic turbulence. By the use of the higher-order Godunov code Athena, a driven compressible turbulence with an imposed uniform guide field is simulated. The simulation results show that both the magnetic pressure and the thermal pressure exhibit a turbulent spectrum with a Kolmogorov-like power law, and that in many regions of the simulation domain they are anticorrelated. The computed wavelet cross-coherence spectra of the magnetic pressure and the thermal pressure, as well as their space series, indicate the existence of multiscale PBSs, with the small PBSs being embedded in the large ones. These multiscale PBSs are likely to be related to the highly oblique-propagating slow-mode waves, as the traced multiscale PBS is found to be traveling in a certain direction at a speed consistent with that predicted theoretically for a slow-mode wave propagating in the same direction.

  12. A Posteriori Analysis of Adaptive Multiscale Operator Decomposition Methods for Multiphysics Problems

    Energy Technology Data Exchange (ETDEWEB)

    Donald Estep; Michael Holst; Simon Tavener

    2010-02-08

    This project was concerned with the accurate computational error estimation for numerical solutions of multiphysics, multiscale systems that couple different physical processes acting across a large range of scales relevant to the interests of the DOE. Multiscale, multiphysics models are characterized by intimate interactions between different physics across a wide range of scales. This poses significant computational challenges addressed by the proposal, including: (1) Accurate and efficient computation; (2) Complex stability; and (3) Linking different physics. The research in this project focused on Multiscale Operator Decomposition methods for solving multiphysics problems. The general approach is to decompose a multiphysics problem into components involving simpler physics over a relatively limited range of scales, and then to seek the solution of the entire system through some sort of iterative procedure involving solutions of the individual components. MOD is a very widely used technique for solving multiphysics, multiscale problems; it is heavily used throughout the DOE computational landscape. This project made a major advance in the analysis of the solution of multiscale, multiphysics problems.

  13. Multi-scale surface topography to minimize adherence and viability of nosocomial drug-resistant bacteria.

    Science.gov (United States)

    Hasan, Jafar; Jain, Shubham; Padmarajan, Rinsha; Purighalla, Swathi; Sambandamurthy, Vasan K; Chatterjee, Kaushik

    2018-02-15

    Toward minimizing bacterial colonization of surfaces, we present a one-step etching technique that renders aluminum alloys with micro- and nano-scale roughness. Such a multi-scale surface topography exhibited enhanced antibacterial effect against a wide range of pathogens. Multi-scale topography of commercially grade pure aluminum killed 97% of Escherichia coli and 28% of Staphylococcus aureus cells in comparison to 7% and 3%, respectively, on the smooth surfaces. Multi-scale topography on Al 5052 surface was shown to kill 94% of adhered E . coli cells. The microscale features on the etched Al 1200 alloy were not found to be significantly bactericidal, but shown to decrease the adherence of S . aureus cells by one-third. The fabrication method is easily scalable for industrial applications. Analysis of roughness parameters determined by atomic force microscopy revealed a set of significant parameters that can yield a highly bactericidal surface; thereby providing the design to make any surface bactericidal irrespective of the method of fabrication. The multi-scale roughness of Al 5052 alloy was also highly bactericidal to nosocomial isolates of E . coli , K . pneumoniae and P . aeruginosa . We envisage the potential application of engineered surfaces with multi-scale topography to minimize the spread of nosocomial infections.

  14. Revisiting drought impact on tropical forest photosynthesis: a novel multi-scale integrated approach reveals new insights

    Science.gov (United States)

    Detto, M.; Wu, J.; Xu, X.; Serbin, S.; Rogers, A.

    2017-12-01

    A fundamental unanswered question for global change ecology is to determine the vulnerability of tropical forests to climate change, particularly with increasing intensity and frequency of drought events. This question, despite its apparent simplicity, remains difficult for earth system models to answer, and is controversial in remote sensing literature. Here, we leverage unique multi-scale remote sensing measurements (from leaf to crown) in conjunction with four-continuous-year (2013-2017) eddy covariance measurements of ecosystem carbon fluxes in a tropical forest in Panama to revisit this question. We hypothesize that drought impacts tropical forest photosynthesis through variation in abiotic drivers (solar radiation, diffuse light fraction, and vapor pressure deficit) that interact with physiological traits that govern photosynthesis, and biotic variation in ecosystem photosynthetic capacity associated with changes in the traits themselves. Our study site, located in a seasonal tropical forest on Barro Colorado Island (BCI), Panama, experienced a significant drought in 2015. Local eddy covariance derived photosynthesis shows an abrupt increase during the drought year. Our specific goal here is to assess the relative impact of abiotic and biotic drivers of such photosynthesis response to interannual drought. To this goal, we derived abiotic drivers from eddy tower-based meteorological measurements. We will derive the biotic drivers using a recently developed leaf demography-ontogeny model, where ecosystem photosynthetic capacity can be described as the product of field measured, age-dependent leaf photosynthetic capacity and local tower-camera derived ecosystem-scale inter-annual variability in leaf age demography of the same time period (2013-2017). Lastly, we will use a process-based model to assess the separate and joint effects of abiotic and biotic drivers on eddy covariance derive photosynthetic interannual variability. Collectively, this novel multi-scale

  15. Part I: Steady States in Two-Species Particle Aggregation. Part II: Sparse Representations for Multiscale PDE

    Science.gov (United States)

    2015-03-01

    penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE MAR 2015...for adaptive multiscale methods for elliptic problems. Multiscale Modeling & Simulation, 7(1):171–196, 2008. 100 [67] Bruno A Olshausen and David J

  16. Multiscale approach to nematic liquid crystals via statistical field theory.

    Science.gov (United States)

    Lu, Bing-Sui

    2017-08-01

    We propose an approach to a multiscale problem in the theory of thermotropic uniaxial nematics based on the method of statistical field theory. This approach enables us to relate the coefficients A, B, C, L_{1}, and L_{2} of the Landau-de Gennes free energy for the isotropic-nematic phase transition to the parameters of a molecular model of uniaxial nematics, which we take to be a lattice gas model of nematogenic molecules interacting via a short-ranged potential. We obtain general constraints on the temperature and volume fraction of nematogens for the Landau-de Gennes theory to be stable against molecular orientation fluctuations at quartic order. In particular, for the case of a fully occupied lattice, we compute the values of the isotropic-nematic transition temperature and the order parameter discontinuity predicted by (i) a continuum approximation of the nearest-neighbor Lebwohl-Lasher model and (ii) a Lebwohl-Lasher-type model with a nematogenic interaction of finite range. We find that the predictions of (i) are in reasonably good agreement with known results of Monte Carlo simulation.

  17. Improving NASA's Multiscale Modeling Framework for Tropical Cyclone Climate Study

    Science.gov (United States)

    Shen, Bo-Wen; Nelson, Bron; Cheung, Samson; Tao, Wei-Kuo

    2013-01-01

    One of the current challenges in tropical cyclone (TC) research is how to improve our understanding of TC interannual variability and the impact of climate change on TCs. Recent advances in global modeling, visualization, and supercomputing technologies at NASA show potential for such studies. In this article, the authors discuss recent scalability improvement to the multiscale modeling framework (MMF) that makes it feasible to perform long-term TC-resolving simulations. The MMF consists of the finite-volume general circulation model (fvGCM), supplemented by a copy of the Goddard cumulus ensemble model (GCE) at each of the fvGCM grid points, giving 13,104 GCE copies. The original fvGCM implementation has a 1D data decomposition; the revised MMF implementation retains the 1D decomposition for most of the code, but uses a 2D decomposition for the massive copies of GCEs. Because the vast majority of computation time in the MMF is spent computing the GCEs, this approach can achieve excellent speedup without incurring the cost of modifying the entire code. Intelligent process mapping allows differing numbers of processes to be assigned to each domain for load balancing. The revised parallel implementation shows highly promising scalability, obtaining a nearly 80-fold speedup by increasing the number of cores from 30 to 3,335.

  18. Multiscale model for pedestrian and infection dynamics during air travel

    Science.gov (United States)

    Namilae, Sirish; Derjany, Pierrot; Mubayi, Anuj; Scotch, Mathew; Srinivasan, Ashok

    2017-05-01

    In this paper we develop a multiscale model combining social-force-based pedestrian movement with a population level stochastic infection transmission dynamics framework. The model is then applied to study the infection transmission within airplanes and the transmission of the Ebola virus through casual contacts. Drastic limitations on air-travel during epidemics, such as during the 2014 Ebola outbreak in West Africa, carry considerable economic and human costs. We use the computational model to evaluate the effects of passenger movement within airplanes and air-travel policies on the geospatial spread of infectious diseases. We find that boarding policy by an airline is more critical for infection propagation compared to deplaning policy. Enplaning in two sections resulted in fewer infections than the currently followed strategy with multiple zones. In addition, we found that small commercial airplanes are better than larger ones at reducing the number of new infections in a flight. Aggregated results indicate that passenger movement strategies and airplane size predicted through these network models can have significant impact on an event like the 2014 Ebola epidemic. The methodology developed here is generic and can be readily modified to incorporate the impact from the outbreak of other directly transmitted infectious diseases.

  19. Fast Proton Titration Scheme for Multiscale Modeling of Protein Solutions.

    Science.gov (United States)

    Teixeira, Andre Azevedo Reis; Lund, Mikael; da Silva, Fernando Luís Barroso

    2010-10-12

    Proton exchange between titratable amino acid residues and the surrounding solution gives rise to exciting electric processes in proteins. We present a proton titration scheme for studying acid-base equilibria in Metropolis Monte Carlo simulations where salt is treated at the Debye-Hückel level. The method, rooted in the Kirkwood model of impenetrable spheres, is applied on the three milk proteins α-lactalbumin, β-lactoglobulin, and lactoferrin, for which we investigate the net-charge, molecular dipole moment, and charge capacitance. Over a wide range of pH and salt conditions, excellent agreement is found with more elaborate simulations where salt is explicitly included. The implicit salt scheme is orders of magnitude faster than the explicit analog and allows for transparent interpretation of physical mechanisms. It is shown how the method can be expanded to multiscale modeling of aqueous salt solutions of many biomolecules with nonstatic charge distributions. Important examples are protein-protein aggregation, protein-polyelectrolyte complexation, and protein-membrane association.

  20. Multiscale coarse-graining of the protein energy landscape.

    Directory of Open Access Journals (Sweden)

    Ronald D Hills

    2010-06-01

    Full Text Available A variety of coarse-grained (CG models exists for simulation of proteins. An outstanding problem is the construction of a CG model with physically accurate conformational energetics rivaling all-atom force fields. In the present work, atomistic simulations of peptide folding and aggregation equilibria are force-matched using multiscale coarse-graining to develop and test a CG interaction potential of general utility for the simulation of proteins of arbitrary sequence. The reduced representation relies on multiple interaction sites to maintain the anisotropic packing and polarity of individual sidechains. CG energy landscapes computed from replica exchange simulations of the folding of Trpzip, Trp-cage and adenylate kinase resemble those of other reduced representations; non-native structures are observed with energies similar to those of the native state. The artifactual stabilization of misfolded states implies that non-native interactions play a deciding role in deviations from ideal funnel-like cooperative folding. The role of surface tension, backbone hydrogen bonding and the smooth pairwise CG landscape is discussed. Ab initio folding aside, the improved treatment of sidechain rotamers results in stability of the native state in constant temperature simulations of Trpzip, Trp-cage, and the open to closed conformational transition of adenylate kinase, illustrating the potential value of the CG force field for simulating protein complexes and transitions between well-defined structural states.

  1. Theory and Modeling for the Magnetospheric Multiscale Mission

    Science.gov (United States)

    Hesse, M.; Aunai, N.; Birn, J.; Cassak, P.; Denton, R. E.; Drake, J. F.; Gombosi, T.; Hoshino, M.; Matthaeus, W.; Sibeck, D.; Zenitani, S.

    2016-03-01

    The Magnetospheric Multiscale (MMS) mission will provide measurement capabilities, which will exceed those of earlier and even contemporary missions by orders of magnitude. MMS will, for the first time, be able to measure directly and with sufficient resolution key features of the magnetic reconnection process, down to the critical electron scales, which need to be resolved to understand how reconnection works. Owing to the complexity and extremely high spatial resolution required, no prior measurements exist, which could be employed to guide the definition of measurement requirements, and consequently set essential parameters for mission planning and execution. Insight into expected details of the reconnection process could hence only been obtained from theory and modern kinetic modeling. This situation was recognized early on by MMS leadership, which supported the formation of a fully integrated Theory and Modeling Team (TMT). The TMT participated in all aspects of mission planning, from the proposal stage to individual aspects of instrument performance characteristics. It provided and continues to provide to the mission the latest insights regarding the kinetic physics of magnetic reconnection, as well as associated particle acceleration and turbulence, assuring that, to the best of modern knowledge, the mission is prepared to resolve the inner workings of the magnetic reconnection process. The present paper provides a summary of key recent results or reconnection research by TMT members.

  2. Proximity graphs based multi-scale image segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Skurikhin, Alexei N [Los Alamos National Laboratory

    2008-01-01

    We present a novel multi-scale image segmentation approach based on irregular triangular and polygonal tessellations produced by proximity graphs. Our approach consists of two separate stages: polygonal seeds generation followed by an iterative bottom-up polygon agglomeration into larger chunks. We employ constrained Delaunay triangulation combined with the principles known from the visual perception to extract an initial ,irregular polygonal tessellation of the image. These initial polygons are built upon a triangular mesh composed of irregular sized triangles and their shapes are ad'apted to the image content. We then represent the image as a graph with vertices corresponding to the polygons and edges reflecting polygon relations. The segmentation problem is then formulated as Minimum Spanning Tree extraction. We build a successive fine-to-coarse hierarchy of irregular polygonal grids by an iterative graph contraction constructing Minimum Spanning Tree. The contraction uses local information and merges the polygons bottom-up based on local region-and edge-based characteristics.

  3. Image Retrieval Method for Multiscale Objects from Optical Colonoscopy Images

    Directory of Open Access Journals (Sweden)

    Hirokazu Nosato

    2017-01-01

    Full Text Available Optical colonoscopy is the most common approach to diagnosing bowel diseases through direct colon and rectum inspections. Periodic optical colonoscopy examinations are particularly important for detecting cancers at early stages while still treatable. However, diagnostic accuracy is highly dependent on both the experience and knowledge of the medical doctor. Moreover, it is extremely difficult, even for specialist doctors, to detect the early stages of cancer when obscured by inflammations of the colonic mucosa due to intractable inflammatory bowel diseases, such as ulcerative colitis. Thus, to assist the UC diagnosis, it is necessary to develop a new technology that can retrieve similar cases of diagnostic target image from cases in the past that stored the diagnosed images with various symptoms of colonic mucosa. In order to assist diagnoses with optical colonoscopy, this paper proposes a retrieval method for colonoscopy images that can cope with multiscale objects. The proposed method can retrieve similar colonoscopy images despite varying visible sizes of the target objects. Through three experiments conducted with real clinical colonoscopy images, we demonstrate that the method is able to retrieve objects of any visible size and any location at a high level of accuracy.

  4. Multiscale Symbolic Phase Transfer Entropy in Financial Time Series Classification

    Science.gov (United States)

    Zhang, Ningning; Lin, Aijing; Shang, Pengjian

    We address the challenge of classifying financial time series via a newly proposed multiscale symbolic phase transfer entropy (MSPTE). Using MSPTE method, we succeed to quantify the strength and direction of information flow between financial systems and classify financial time series, which are the stock indices from Europe, America and China during the period from 2006 to 2016 and the stocks of banking, aviation industry and pharmacy during the period from 2007 to 2016, simultaneously. The MSPTE analysis shows that the value of symbolic phase transfer entropy (SPTE) among stocks decreases with the increasing scale factor. It is demonstrated that MSPTE method can well divide stocks into groups by areas and industries. In addition, it can be concluded that the MSPTE analysis quantify the similarity among the stock markets. The symbolic phase transfer entropy (SPTE) between the two stocks from the same area is far less than the SPTE between stocks from different areas. The results also indicate that four stocks from America and Europe have relatively high degree of similarity and the stocks of banking and pharmaceutical industry have higher similarity for CA. It is worth mentioning that the pharmaceutical industry has weaker particular market mechanism than banking and aviation industry.

  5. Multi-scale modeling of the CD8 immune response

    Science.gov (United States)

    Barbarroux, Loic; Michel, Philippe; Adimy, Mostafa; Crauste, Fabien

    2016-06-01

    During the primary CD8 T-Cell immune response to an intracellular pathogen, CD8 T-Cells undergo exponential proliferation and continuous differentiation, acquiring cytotoxic capabilities to address the infection and memorize the corresponding antigen. After cleaning the organism, the only CD8 T-Cells left are antigen-specific memory cells whose role is to respond stronger and faster in case they are presented this very same antigen again. That is how vaccines work: a small quantity of a weakened pathogen is introduced in the organism to trigger the primary response, generating corresponding memory cells in the process, giving the organism a way to defend himself in case it encounters the same pathogen again. To investigate this process, we propose a non linear, multi-scale mathematical model of the CD8 T-Cells immune response due to vaccination using a maturity structured partial differential equation. At the intracellular scale, the level of expression of key proteins is modeled by a delay differential equation system, which gives the speeds of maturation for each cell. The population of cells is modeled by a maturity structured equation whose speeds are given by the intracellular model. We focus here on building the model, as well as its asymptotic study. Finally, we display numerical simulations showing the model can reproduce the biological dynamics of the cell population for both the primary response and the secondary responses.

  6. Numerical study of multiscale compaction-initiated detonation

    Science.gov (United States)

    Gambino, J. R.; Schwendeman, D. W.; Kapila, A. K.

    2018-02-01

    A multiscale model of heterogeneous condensed-phase explosives is examined computationally to determine the course of transient events following the application of a piston-driven stimulus. The model is a modified version of that introduced by Gonthier (Combust Sci Technol 175(9):1679-1709, 2003. https://doi.org/10.1080/00102200302373) in which the explosive is treated as a porous, compacting medium at the macro-scale and a collection of closely packed spherical grains capable of undergoing reaction and diffusive heat transfer at the meso-scale. A separate continuum description is ascribed to each scale, and the two scales are coupled together in an energetically consistent manner. Following piston-induced compaction, localized energy deposition at the sites of intergranular contact creates hot spots where reaction begins preferentially. Reaction progress at the macro-scale is determined by the spatial average of that at the grain scale. A parametric study shows that combustion at the macro-scale produces an unsteady detonation with a cyclical character, in which the lead shock loses strength and is overtaken by a stronger secondary shock generated in the partially reacted material behind it. The secondary shock in turn becomes the new lead shock and the process repeats itself.

  7. Multi-Scale Investigation of Sheared Flows In Magnetized Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Edward, Jr., Thomas [Auburn Univ., Auburn, AL (United States)

    2014-09-19

    Flows parallel and perpendicular to magnetic fields in a plasma are important phenomena in many areas of plasma science research. The presence of these spatially inhomogeneous flows is often associated with the stability of the plasma. In fusion plasmas, these sheared flows can be stabilizing while in space plasmas, these sheared flows can be destabilizing. Because of this, there is broad interest in understanding the coupling between plasma stability and plasma flows. This research project has engaged in a study of the plasma response to spatially inhomogeneous plasma flows using three different experimental devices: the Auburn Linear Experiment for Instability Studies (ALEXIS) and the Compact Toroidal Hybrid (CTH) stellarator devices at Auburn University, and the Space Plasma Simulation Chamber (SPSC) at the Naval Research Laboratory. This work has shown that there is a commonality of the plasma response to sheared flows across a wide range of plasma parameters and magnetic field geometries. The goal of this multi-device, multi-scale project is to understand how sheared flows established by the same underlying physical mechanisms lead to different plasma responses in fusion, laboratory, and space plasmas.

  8. Multi-scale Modeling of Chromosomal DNA in Living Cells

    Science.gov (United States)

    Spakowitz, Andrew

    The organization and dynamics of chromosomal DNA play a pivotal role in a range of biological processes, including gene regulation, homologous recombination, replication, and segregation. Establishing a quantitative theoretical model of DNA organization and dynamics would be valuable in bridging the gap between the molecular-level packaging of DNA and genome-scale chromosomal processes. Our research group utilizes analytical theory and computational modeling to establish a predictive theoretical model of chromosomal organization and dynamics. In this talk, I will discuss our efforts to develop multi-scale polymer models of chromosomal DNA that are both sufficiently detailed to address specific protein-DNA interactions while capturing experimentally relevant time and length scales. I will demonstrate how these modeling efforts are capable of quantitatively capturing aspects of behavior of chromosomal DNA in both prokaryotic and eukaryotic cells. This talk will illustrate that capturing dynamical behavior of chromosomal DNA at various length scales necessitates a range of theoretical treatments that accommodate the critical physical contributions that are relevant to in vivo behavior at these disparate length and time scales. National Science Foundation, Physics of Living Systems Program (PHY-1305516).

  9. Evaluation of the Community Multi-scale Air Quality (CMAQ) ...

    Science.gov (United States)

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Computational Exposure Division (CED) of the U.S. Environmental Protection Agency develops the CMAQ model and periodically releases new versions of the model that include bug fixes and various other improvements to the modeling system. In the fall of 2015, CMAQ version 5.1 was released. This new version of CMAQ will contain important bug fixes to several issues that were identified in CMAQv5.0.2 and additionally include updates to other portions of the code. Several annual, and numerous episodic, CMAQv5.1 simulations were performed to assess the impact of these improvements on the model results. These results will be presented, along with a base evaluation of the performance of the CMAQv5.1 modeling system against available surface and upper-air measurements available during the time period simulated. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, proces

  10. Time-step coupling for hybrid simulations of multiscale flows

    Science.gov (United States)

    Lockerby, Duncan A.; Duque-Daza, Carlos A.; Borg, Matthew K.; Reese, Jason M.

    2013-03-01

    A new method is presented for the exploitation of time-scale separation in hybrid continuum-molecular models of multiscale flows. Our method is a generalisation of existing approaches, and is evaluated in terms of computational efficiency and physical/numerical error. Comparison with existing schemes demonstrates comparable, or much improved, physical accuracy, at comparable, or far greater, efficiency (in terms of the number of time-step operations required to cover the same physical time). A leapfrog coupling is proposed between the 'macro' and 'micro' components of the hybrid model and demonstrates potential for improved numerical accuracy over a standard simultaneous approach. A general algorithm for a coupled time step is presented. Three test cases are considered where the degree of time-scale separation naturally varies during the course of the simulation. First, the step response of a second-order system composed of two linearly-coupled ODEs. Second, a micro-jet actuator combining a kinetic treatment in a small flow region where rarefaction is important with a simple ODE enforcing mass conservation in a much larger spatial region. Finally, the transient start-up flow of a journal bearing with a cylindrical rarefied gas layer. Our new time-stepping method consistently demonstrates as good as or better performance than existing schemes. This superior overall performance is due to an adaptability inherent in the method, which allows the most-desirable aspects of existing schemes to be applied only in the appropriate conditions.

  11. Optimal Selection of Threshold Value 'r' for Refined Multiscale Entropy.

    Science.gov (United States)

    Marwaha, Puneeta; Sunkaria, Ramesh Kumar

    2015-12-01

    Refined multiscale entropy (RMSE) technique was introduced to evaluate complexity of a time series over multiple scale factors 't'. Here threshold value 'r' is updated as 0.15 times SD of filtered scaled time series. The use of fixed threshold value 'r' in RMSE sometimes assigns very close resembling entropy values to certain time series at certain temporal scale factors and is unable to distinguish different time series optimally. The present study aims to evaluate RMSE technique by varying threshold value 'r' from 0.05 to 0.25 times SD of filtered scaled time series and finding optimal 'r' values for each scale factor at which different time series can be distinguished more effectively. The proposed RMSE was used to evaluate over HRV time series of normal sinus rhythm subjects, patients suffering from sudden cardiac death, congestive heart failure, healthy adult male, healthy adult female and mid-aged female groups as well as over synthetic simulated database for different datalengths 'N' of 3000, 3500 and 4000. The proposed RMSE results in improved discrimination among different time series. To enhance the computational capability, empirical mathematical equations have been formulated for optimal selection of threshold values 'r' as a function of SD of filtered scaled time series and datalength 'N' for each scale factor 't'.

  12. Multiscale molecular dynamics using the matched interface and boundary method

    International Nuclear Information System (INIS)

    Geng Weihua; Wei, G.W.

    2011-01-01

    The Poisson-Boltzmann (PB) equation is an established multiscale model for electrostatic analysis of biomolecules and other dielectric systems. PB based molecular dynamics (MD) approach has a potential to tackle large biological systems. Obstacles that hinder the current development of PB based MD methods are concerns in accuracy, stability, efficiency and reliability. The presence of complex solvent-solute interface, geometric singularities and charge singularities leads to challenges in the numerical solution of the PB equation and electrostatic force evaluation in PB based MD methods. Recently, the matched interface and boundary (MIB) method has been utilized to develop the first second order accurate PB solver that is numerically stable in dealing with discontinuous dielectric coefficients, complex geometric singularities and singular source charges. The present work develops the PB based MD approach using the MIB method. New formulation of electrostatic forces is derived to allow the use of sharp molecular surfaces. Accurate reaction field forces are obtained by directly differentiating the electrostatic potential. Dielectric boundary forces are evaluated at the solvent-solute interface using an accurate Cartesian-grid surface integration method. The electrostatic forces located at reentrant surfaces are appropriately assigned to related atoms. Extensive numerical tests are carried out to validate the accuracy and stability of the present electrostatic force calculation. The new PB based MD method is implemented in conjunction with the AMBER package. MIB based MD simulations of biomolecules are demonstrated via a few example systems.

  13. A Bayesian statistics approach to multiscale coarse graining

    Science.gov (United States)

    Liu, Pu; Shi, Qiang; Daumé, Hal; Voth, Gregory A.

    2008-12-01

    Coarse-grained (CG) modeling provides a promising way to investigate many important physical and biological phenomena over large spatial and temporal scales. The multiscale coarse-graining (MS-CG) method has been proven to be a thermodynamically consistent way to systematically derive a CG model from atomistic force information, as shown in a variety of systems, ranging from simple liquids to proteins embedded in lipid bilayers. In the present work, Bayes' theorem, an advanced statistical tool widely used in signal processing and pattern recognition, is adopted to further improve the MS-CG force field obtained from the CG modeling. This approach can regularize the linear equation resulting from the underlying force-matching methodology, therefore substantially improving the quality of the MS-CG force field, especially for the regions with limited sampling. Moreover, this Bayesian approach can naturally provide an error estimation for each force field parameter, from which one can know the extent the results can be trusted. The robustness and accuracy of the Bayesian MS-CG algorithm is demonstrated for three different systems, including simple liquid methanol, polyalanine peptide solvated in explicit water, and a much more complicated peptide assembly with 32 NNQQNY hexapeptides.

  14. Multiscale thermohydrologic model: addressing variability and uncertainty at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T; Rosenberg, N D; Gansemer, J D; Sun, Y

    2000-01-01

    Performance assessment and design evaluation require a modeling tool that simultaneously accounts for processes occurring at a scale of a few tens of centimeters around individual waste packages and emplacement drifts, and also on behavior at the scale of the mountain. Many processes and features must be considered, including non-isothermal, multiphase-flow in rock of variable saturation and thermal radiation in open cavities. Also, given the nature of the fractured rock at Yucca Mountain, a dual-permeability approach is needed to represent permeability. A monolithic numerical model with all these features requires too large a computational cost to be an effective simulation tool, one that is used to examine sensitivity to key model assumptions and parameters. We have developed a multi-scale modeling approach that effectively simulates 3D discrete-heat-source, mountain-scale thermohydrologic behavior at Yucca Mountain and captures the natural variability of the site consistent with what we know from site characterization and waste-package-to-waste-package variability in heat output. We describe this approach and present results examining the role of infiltration flux, the most important natural-system parameter with respect to how thermohydrologic behavior influences the performance of the repository

  15. Multi-scale modelling of uranyl chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thanh-Nghi; Duvail, Magali, E-mail: magali.duvail@icsm.fr; Villard, Arnaud; Dufrêche, Jean-François, E-mail: jean-francois.dufreche@univ-montp2.fr [Institut de Chimie Séparative de Marcoule (ICSM), UMR 5257, CEA-CNRS-Université Montpellier 2-ENSCM, Site de Marcoule, Bâtiment 426, BP 17171, F-30207 Bagnols-sur-Cèze Cedex (France); Molina, John Jairo [Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishihiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103 (Japan); Guilbaud, Philippe [CEA/DEN/DRCP/SMCS/LILA, Marcoule, F-30207 Bagnols-sur-Cèze Cedex (France)

    2015-01-14

    Classical molecular dynamics simulations with explicit polarization have been successfully used to determine the structural and thermodynamic properties of binary aqueous solutions of uranyl chloride (UO{sub 2}Cl{sub 2}). Concentrated aqueous solutions of uranyl chloride have been studied to determine the hydration properties and the ion-ion interactions. The bond distances and the coordination number of the hydrated uranyl are in good agreement with available experimental data. Two stable positions of chloride in the second hydration shell of uranyl have been identified. The UO{sub 2}{sup 2+}-Cl{sup −} association constants have also been calculated using a multi-scale approach. First, the ion-ion potential averaged over the solvent configurations at infinite dilution (McMillan-Mayer potential) was calculated to establish the dissociation/association processes of UO{sub 2}{sup 2+}-Cl{sup −} ion pairs in aqueous solution. Then, the association constant was calculated from this potential. The value we obtained for the association constant is in good agreement with the experimental result (K{sub UO{sub 2Cl{sup +}}} = 1.48 l mol{sup −1}), but the resulting activity coefficient appears to be too low at molar concentration.

  16. Multiscale probability distribution of pressure fluctuations in fluidized beds

    International Nuclear Information System (INIS)

    Ghasemi, Fatemeh; Sahimi, Muhammad; Reza Rahimi Tabar, M; Peinke, Joachim

    2012-01-01

    Analysis of flow in fluidized beds, a common chemical reactor, is of much current interest due to its fundamental as well as industrial importance. Experimental data for the successive increments of the pressure fluctuations time series in a fluidized bed are analyzed by computing a multiscale probability density function (PDF) of the increments. The results demonstrate the evolution of the shape of the PDF from the short to long time scales. The deformation of the PDF across time scales may be modeled by the log-normal cascade model. The results are also in contrast to the previously proposed PDFs for the pressure fluctuations that include a Gaussian distribution and a PDF with a power-law tail. To understand better the properties of the pressure fluctuations, we also construct the shuffled and surrogate time series for the data and analyze them with the same method. It turns out that long-range correlations play an important role in the structure of the time series that represent the pressure fluctuation. (paper)

  17. Multiscale Analysis of the Predictability of Stock Returns

    Directory of Open Access Journals (Sweden)

    Paweł Fiedor

    2015-06-01

    Full Text Available Due to the strong complexity of financial markets, economics does not have a unified theory of price formation in financial markets. The most common assumption is the Efficient-Market Hypothesis, which has been attacked by a number of researchers, using different tools. There were varying degrees to which these tools complied with the formal definitions of efficiency and predictability. In our earlier work, we analysed the predictability of stock returns at two time scales using the entropy rate, which can be directly linked to the mathematical definition of predictability. Nonetheless, none of the above-mentioned studies allow any general understanding of how the financial markets work, beyond disproving the Efficient-Market Hypothesis. In our previous study, we proposed the Maximum Entropy Production Principle, which uses the entropy rate to create a general principle underlying the price formation processes. Both of these studies show that the predictability of price changes is higher at the transaction level intraday scale than the scale of daily returns, but ignore all scales in between. In this study we extend these ideas using the multiscale entropy analysis framework to enhance our understanding of the predictability of price formation processes at various time scales.

  18. Multiscale Multilevel Approach to Solution of Nanotechnology Problems

    Science.gov (United States)

    Polyakov, Sergey; Podryga, Viktoriia

    2018-02-01

    The paper is devoted to a multiscale multilevel approach for the solution of nanotechnology problems on supercomputer systems. The approach uses the combination of continuum mechanics models and the Newton dynamics for individual particles. This combination includes three scale levels: macroscopic, mesoscopic and microscopic. For gas-metal technical systems the following models are used. The quasihydrodynamic system of equations is used as a mathematical model at the macrolevel for gas and solid states. The system of Newton equations is used as a mathematical model at the mesoand microlevels; it is written for nanoparticles of the medium and larger particles moving in the medium. The numerical implementation of the approach is based on the method of splitting into physical processes. The quasihydrodynamic equations are solved by the finite volume method on grids of different types. The Newton equations of motion are solved by Verlet integration in each cell of the grid independently or in groups of connected cells. In the framework of the general methodology, four classes of algorithms and methods of their parallelization are provided. The parallelization uses the principles of geometric parallelism and the efficient partitioning of the computational domain. A special dynamic algorithm is used for load balancing the solvers. The testing of the developed approach was made by the example of the nitrogen outflow from a balloon with high pressure to a vacuum chamber through a micronozzle and a microchannel. The obtained results confirm the high efficiency of the developed methodology.

  19. Multiscale Structural Analysis of Plant ER-PM Contact Sites.

    Science.gov (United States)

    McFarlane, Heather E; Lee, Eun Kyoung; van Bezouwen, Laura S; Ross, Bradford; Rosado, Abel; Samuels, A Lacey

    2017-03-01

    Membrane contact sites are recognized across eukaryotic systems as important nanostructures. Endoplasmic reticulum (ER)-plasma membrane (PM) contact sites (EPCS) are involved in excitation-contraction coupling, signaling, and plant responses to stress. In this report, we perform a multiscale structural analysis of Arabidopsis EPCS that combines live cell imaging, quantitative transmission electron microscopy (TEM) and electron tomography over a developmental gradient. To place EPCS in the context of the entire cortical ER, we examined green fluorescent protein (GFP)-HDEL in living cells over a developmental gradient, then Synaptotagmin1 (SYT1)-GFP was used as a specific marker of EPCS. In all tissues examined, young, rapidly elongating cells showed lamellar cortical ER and higher density of SYT1-GFP puncta, while in mature cells the cortical ER network was tubular, highly dynamic and had fewer SYT1-labeled puncta. The higher density of EPCS in young cells was verified by quantitative TEM of cryo-fixed tissues. For all cell types, the size of each EPCS had a consistent range in length along the PM from 50 to 300 nm, with microtubules and ribosomes excluded from the EPCS. The structural characterization of EPCS in different plant tissues, and the correlation of EPCS densities over developmental gradients illustrate how ER-PM communication evolves in response to cellular expansion. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Multiscale Humidity Visualization by Environmentally Sensitive Fluorescent Molecular Rotors.

    Science.gov (United States)

    Cheng, Yanhua; Wang, Jianguo; Qiu, Zijie; Zheng, Xiaoyan; Leung, Nelson L C; Lam, Jacky W Y; Tang, Ben Zhong

    2017-12-01

    Building humidity sensors possessing the features of diverse-configuration compatibility, and capability of measurement of spatial and temporal humidity gradients is of great interest for highly integrated electronics and wearable monitoring systems. Herein, a visual sensing approach based on fluorescent imaging is presented, by assembling aggregation-induced-emission (AIE)-active molecular rotors into a moisture-captured network; the resulting AIE humidity sensors are compatible with diverse applications, having tunable geometries and desirable architectures. The invisible information of relative humidity (RH) is transformed into different fluorescence colors that enable direct observation by the naked eyes based on the twisted intramolecular charge-transfer effect of the AIE-active molecular rotors. The resulting AIE humidity sensors show excellent performance in terms of good sensitivity, precise quantitative measurement, high spatial-temporal resolution, and fast response/recovery time. Their multiscale applications, such as regional environmental RH detection, internal humidity mapping, and sensitive human-body humidity sensing are demonstrated. The proposed humidity visualization strategy may provide a new insight to develop humidity sensors for various applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Multiscale modeling and simulation of microtubule-motor-protein assemblies

    Science.gov (United States)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.

    2015-12-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  2. Enhanced water repellency of surfaces coated with multiscale carbon structures

    Science.gov (United States)

    Marchalot, Julien; Ramos, Stella. M. M.; Pirat, Christophe; Journet, Catherine

    2018-01-01

    Low cost and well characterized superhydrophobic surfaces are frequently required for industrial applications. Materials are commonly structured at the micro or nano scale. Surfaces decorated with nanotube derivatives synthesized by plasma enhanced chemical vapor deposition (PECVD) are of particular interest, since suitable modifications in the growth parameters can lead to numerous designs. In this article, we present surfaces that are selected for their specific wetting features with patterns ranging from dense forests to jungles with concave (re-entrant) surface such as flake-like multiscale roughness. Once these surfaces are functionalized adequately, their wetting properties are investigated. Their ability to sustain a superhydrophobic state for sessile water drops is examined. Finally, we propose a design to achieve a robust so-called ;Fakir; state, even for micrometer-sized drops, whereas with classic nanotubes forests it is not achievable. Thus, the drop remains on the apex of the protrusions with a high contact angle and a low contact angle hysteresis, while the surface features demonstrate good mechanical resistance against capillary forces.

  3. Common themes, methods, and applications in multiscale science

    Energy Technology Data Exchange (ETDEWEB)

    Baker, G.A. Jr.

    1997-10-01

    In 1993, under the leadership of Richard Slansky, the T-Division Director, an initiative was started to facilitate cross communications and interactions between a large number of different workers who were, from their own perspectives and with regard to their own challenges, in fact working on very difficult problems which involved multiple size and time scales. The realization of this common element had the potential for valuable mutual interaction. His initiative led initially to a competency development initiative and subsequently to a broadening recognition of the importance of multiscale science and a broadening application of it to problems and concerns inherent in significant fields of endeavor at the Los Alamos National Laboratory. One of the aspects of this effort was a series of meetings which emphasizes cross communication between the workers. It was realized early on that this cross communication would be fare more effective, considering the difficult technical nature and that the range of the material was well outside the area of specialization of individual members of the group, if notes were taken, written up, and disseminated. This report represents the collection of these notes.

  4. Multiscale Modeling of Wear Degradation in Cylinder Liners

    KAUST Repository

    Moraes, Alvaro

    2014-03-20

    Every mechanical system is naturally subjected to some kind of wear process that, at some point, will cause failure in the system if no monitoring or treatment process is applied. Since failures often lead to high economical costs, it is essential both to predict and to avoid them. To achieve this, a monitoring system of the wear level should be implemented to decrease the risk of failure. In this work, we take a first step into the development of a multiscale indirect inference methodology for state-dependent Markovian pure jump processes. This allows us to model the evolution of the wear level and to identify when the system reaches some critical level that triggers a maintenance response. Since the likelihood function of a discretely observed pure jump process does not have an expression that is simple enough for standard nonsampling optimization methods, we approximate this likelihood by expressions from upscaled models of the data. We use the Master Equation (ME) to assess the goodness-of-fit and to compute the distribution of the hitting time to the critical level.

  5. Dynamical glucometry: Use of multiscale entropy analysis in diabetes

    Science.gov (United States)

    Costa, Madalena D.; Henriques, Teresa; Munshi, Medha N.; Segal, Alissa R.; Goldberger, Ary L.

    2014-09-01

    Diabetes mellitus (DM) is one of the world's most prevalent medical conditions. Contemporary management focuses on lowering mean blood glucose values toward a normal range, but largely ignores the dynamics of glucose fluctuations. We probed analyte time series obtained from continuous glucose monitor (CGM) sensors. We show that the fluctuations in CGM values sampled every 5 min are not uncorrelated noise. Next, using multiscale entropy analysis, we quantified the complexity of the temporal structure of the CGM time series from a group of elderly subjects with type 2 DM and age-matched controls. We further probed the structure of these CGM time series using detrended fluctuation analysis. Our findings indicate that the dynamics of glucose fluctuations from control subjects are more complex than those of subjects with type 2 DM over time scales ranging from about 5 min to 5 h. These findings support consideration of a new framework, dynamical glucometry, to guide mechanistic research and to help assess and compare therapeutic interventions, which should enhance complexity of glucose fluctuations and not just lower mean and variance of blood glucose levels.

  6. Magnetic Multi-Scale Mapping to Characterize Anthropogenic Targets

    Science.gov (United States)

    Le Maire, P.; Munschy, M.

    2017-12-01

    The discovery of buried anthropic objects on construction sites can cause delays and/or dangers for workers and for the public. Indeed, every year 500 tons of Unexploded-ordnance are discovered in France. Magnetic measurements are useful to localize magnetized objects. Moreover, it is the cheapest geophysical method which does not impact environment and which is relatively fast to perform. Fluxgate magnetometers (three components) are used to measure magnetic properties bellow the ground. These magnetic sensors are not absolute, so they need to be calibrated before the onset of the measurements. The advantage is that they allow magnetic compensation of the equipment attached to the sensor. So the choice of this kind sensor gives the opportunity to install the equipment aboard different magnetized supports: boat, quad bike, unmanned aerial vehicle, aircraft,... Indeed, this methodology permits to perform magnetic mapping with different scale and different elevation above ground level. An old French aerial military plant was chosen to perform this multi-scale approach. The advantage of the site is that it contains a lot of different targets with variable sizes and depth, e.g. buildings, unexploded-ordnances of the two world wars, trenches, pipes,… By comparison between the different magnetic anomaly maps at different elevations some of the geometric parameters of the magnetic sources can be characterized. The comparison between measured maps at different elevations and the prolonged map highlights the maximum distance for the target's detection (figure).

  7. A MULTISCALE, CELL-BASED FRAMEWORK FOR MODELING CANCER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    JIANG, YI [Los Alamos National Laboratory

    2007-01-16

    Cancer remains to be one of the leading causes of death due to diseases. We use a systems approach that combines mathematical modeling, numerical simulation, in vivo and in vitro experiments, to develop a predictive model that medical researchers can use to study and treat cancerous tumors. The multiscale, cell-based model includes intracellular regulations, cellular level dynamics and intercellular interactions, and extracellular level chemical dynamics. The intracellular level protein regulations and signaling pathways are described by Boolean networks. The cellular level growth and division dynamics, cellular adhesion and interaction with the extracellular matrix is described by a lattice Monte Carlo model (the Cellular Potts Model). The extracellular dynamics of the signaling molecules and metabolites are described by a system of reaction-diffusion equations. All three levels of the model are integrated through a hybrid parallel scheme into a high-performance simulation tool. The simulation results reproduce experimental data in both avasular tumors and tumor angiogenesis. By combining the model with experimental data to construct biologically accurate simulations of tumors and their vascular systems, this model will enable medical researchers to gain a deeper understanding of the cellular and molecular interactions associated with cancer progression and treatment.

  8. Multiscale Simulation of Gas Film Lubrication During Liquid Droplet Collision

    Science.gov (United States)

    Chen, Xiaodong; Khare, Prashant; Ma, Dongjun; Yang, Vigor

    2012-02-01

    Droplet collision plays an elementary role in dense spray combustion process. When two droplets approach each other, a gas film forms in between. The pressure generated within the film prevents motion of approaching droplets. This fluid mechanics is fluid film lubrication that occurs when opposing bearing surfaces are completely separated by fluid film. The lubrication flow in gas film decides the collision outcome, coalescence or bouncing. Present study focuses on gas film drainage process over a wide range of Weber numbers during equal- and unequal-sized droplet collision. The formulation is based on complete set of conservation equations for both liquid and surrounding gas phases. An improved volume-of-fluid technique, augmented by an adaptive mesh refinement algorithm, is used to track liquid/gas interfaces. A unique thickness-based refinement algorithm based on topology of interfacial flow is developed and implemented to efficiently resolve the multiscale problem. The grid size on interface is up O(10-4) of droplet size with a max resolution of 0.015 μm. An advanced visualization technique using the Ray-tracing methodology is used to gain direct insights to detailed physics. Theories are established by analyzing the characteristics of shape changing and flow evolution.

  9. Multi-scale elastic graph matching for face detection

    Science.gov (United States)

    Sato, Yasuomi D.; Kuriya, Yasutaka

    2013-12-01

    We propose a multi-scale elastic graph matching (MS-EGM) algorithm for face detection, in which the conventional EGM is improved with two simple image processing techniques of the Gabor wavelet-based pyramid and the weak Gabor feature elimination. It is expected to solve difficulties of the real-time process in the conventional EGM. The Gabor wavelet-based pyramid effectively reduces not only the computational cost of the Gabor filtering but also the computational complexity of feature representation of a model face, preserving the facial information. The elimination of the weak Gabor feature extracted from an input image facilitates an accuracy of the Gabor feature similarity computations as unexpected. We then test that the MS-EGM can be capable of rapid face detection processing while achieving a high correct detection rate, comparable to the AdaBoost Haar-like (HL) feature cascade. We also show that the MS-EGM has strong robustness to the image of a face occluded with sunglasses and scarfs because of topologically preserved feature representations.

  10. Multiscale Permutation Entropy Based Rolling Bearing Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Jinde Zheng

    2014-01-01

    Full Text Available A new rolling bearing fault diagnosis approach based on multiscale permutation entropy (MPE, Laplacian score (LS, and support vector machines (SVMs is proposed in this paper. Permutation entropy (PE was recently proposed and defined to measure the randomicity and detect dynamical changes of time series. However, for the complexity of mechanical systems, the randomicity and dynamic changes of the vibration signal will exist in different scales. Thus, the definition of MPE is introduced and employed to extract the nonlinear fault characteristics from the bearing vibration signal in different scales. Besides, the SVM is utilized to accomplish the fault feature classification to fulfill diagnostic procedure automatically. Meanwhile, in order to avoid a high dimension of features, the Laplacian score (LS is used to refine the feature vector by ranking the features according to their importance and correlations with the main fault information. Finally, the rolling bearing fault diagnosis method based on MPE, LS, and SVM is proposed and applied to the experimental data. The experimental data analysis results indicate that the proposed method could identify the fault categories effectively.

  11. Multiscale Models for the Two-Stream Instability

    Science.gov (United States)

    Joseph, Ilon; Dimits, Andris; Banks, Jeffrey; Berger, Richard; Brunner, Stephan; Chapman, Thomas

    2017-10-01

    Interpenetrating streams of plasma found in many important scenarios in nature and in the laboratory can develop kinetic two-stream instabilities that exchange momentum and energy between the streams. A quasilinear model for the electrostatic two-stream instability is under development as a component of a multiscale model that couples fluid simulations to kinetic theory. Parameters of the model will be validated with comparison to full kinetic simulations using LOKI and efficient strategies for numerical solution of the quasilinear model and for coupling to the fluid model will be discussed. Extending the kinetic models into the collisional regime requires an efficient treatment of the collision operator. Useful reductions of the collision operator relative to the full multi-species Landau-Fokker-Plank operator are being explored. These are further motivated both by careful consideration of the parameter orderings relevant to two-stream scenarios and by the particular 2D+2V phase space used in the LOKI code. Prepared for US DOE by LLNL under Contract DE-AC52-07NA27344 and LDRD project 17- ERD-081.

  12. Multi-scale modeling of the CD8 immune response

    Energy Technology Data Exchange (ETDEWEB)

    Barbarroux, Loic, E-mail: loic.barbarroux@doctorant.ec-lyon.fr [Inria, Université de Lyon, UMR 5208, Institut Camille Jordan (France); Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Michel, Philippe, E-mail: philippe.michel@ec-lyon.fr [Inria, Université de Lyon, UMR 5208, Institut Camille Jordan (France); Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Adimy, Mostafa, E-mail: mostafa.adimy@inria.fr [Inria, Université de Lyon, UMR 5208, Université Lyon 1, Institut Camille Jordan, 43 Bd. du 11 novembre 1918, F-69200 Villeurbanne Cedex (France); Crauste, Fabien, E-mail: crauste@math.univ-lyon1.fr [Inria, Université de Lyon, UMR 5208, Université Lyon 1, Institut Camille Jordan, 43 Bd. du 11 novembre 1918, F-69200 Villeurbanne Cedex (France)

    2016-06-08

    During the primary CD8 T-Cell immune response to an intracellular pathogen, CD8 T-Cells undergo exponential proliferation and continuous differentiation, acquiring cytotoxic capabilities to address the infection and memorize the corresponding antigen. After cleaning the organism, the only CD8 T-Cells left are antigen-specific memory cells whose role is to respond stronger and faster in case they are presented this very same antigen again. That is how vaccines work: a small quantity of a weakened pathogen is introduced in the organism to trigger the primary response, generating corresponding memory cells in the process, giving the organism a way to defend himself in case it encounters the same pathogen again. To investigate this process, we propose a non linear, multi-scale mathematical model of the CD8 T-Cells immune response due to vaccination using a maturity structured partial differential equation. At the intracellular scale, the level of expression of key proteins is modeled by a delay differential equation system, which gives the speeds of maturation for each cell. The population of cells is modeled by a maturity structured equation whose speeds are given by the intracellular model. We focus here on building the model, as well as its asymptotic study. Finally, we display numerical simulations showing the model can reproduce the biological dynamics of the cell population for both the primary response and the secondary responses.

  13. Magnetospheric Multiscale (MMS) Mission Commissioning Phase Orbit Determination Error Analysis

    Science.gov (United States)

    Chung, Lauren R.; Novak, Stefan; Long, Anne; Gramling, Cheryl

    2009-01-01

    The Magnetospheric MultiScale (MMS) mission commissioning phase starts in a 185 km altitude x 12 Earth radii (RE) injection orbit and lasts until the Phase 1 mission orbits and orientation to the Earth-Sun li ne are achieved. During a limited time period in the early part of co mmissioning, five maneuvers are performed to raise the perigee radius to 1.2 R E, with a maneuver every other apogee. The current baseline is for the Goddard Space Flight Center Flight Dynamics Facility to p rovide MMS orbit determination support during the early commissioning phase using all available two-way range and Doppler tracking from bo th the Deep Space Network and Space Network. This paper summarizes th e results from a linear covariance analysis to determine the type and amount of tracking data required to accurately estimate the spacecraf t state, plan each perigee raising maneuver, and support thruster cal ibration during this phase. The primary focus of this study is the na vigation accuracy required to plan the first and the final perigee ra ising maneuvers. Absolute and relative position and velocity error hi stories are generated for all cases and summarized in terms of the ma ximum root-sum-square consider and measurement noise error contributi ons over the definitive and predictive arcs and at discrete times inc luding the maneuver planning and execution times. Details of the meth odology, orbital characteristics, maneuver timeline, error models, and error sensitivities are provided.

  14. Magnetospheric Multiscale Mission (MMS) Phase 2B Navigation Performance

    Science.gov (United States)

    Scaperoth, Paige Thomas; Long, Anne; Carpenter, Russell

    2009-01-01

    The Magnetospheric Multiscale (MMS) formation flying mission, which consists of four spacecraft flying in a tetrahedral formation, has challenging navigation requirements associated with determining and maintaining the relative separations required to meet the science requirements. The baseline navigation concept for MMS is for each spacecraft to independently estimate its position, velocity and clock states using GPS pseudorange data provided by the Goddard Space Flight Center-developed Navigator receiver and maneuver acceleration measurements provided by the spacecraft's attitude control subsystem. State estimation is performed onboard in real-time using the Goddard Enhanced Onboard Navigation System flight software, which is embedded in the Navigator receiver. The current concept of operations for formation maintenance consists of a sequence of two maintenance maneuvers that is performed every 2 weeks. Phase 2b of the MMS mission, in which the spacecraft are in 1.2 x 25 Earth radii orbits with nominal separations at apogee ranging from 30 km to 400 km, has the most challenging navigation requirements because, during this phase, GPS signal acquisition is restricted to less than one day of the 2.8-day orbit. This paper summarizes the results from high-fidelity simulations to determine if the MMS navigation requirements can be met between and immediately following the maintenance maneuver sequence in Phase 2b.

  15. Integrating cellular metabolism into a multiscale whole-body model.

    Directory of Open Access Journals (Sweden)

    Markus Krauss

    Full Text Available Cellular metabolism continuously processes an enormous range of external compounds into endogenous metabolites and is as such a key element in human physiology. The multifaceted physiological role of the metabolic network fulfilling the catalytic conversions can only be fully understood from a whole-body perspective where the causal interplay of the metabolic states of individual cells, the surrounding tissue and the whole organism are simultaneously considered. We here present an approach relying on dynamic flux balance analysis that allows the integration of metabolic networks at the cellular scale into standardized physiologically-based pharmacokinetic models at the whole-body level. To evaluate our approach we integrated a genome-scale network reconstruction of a human hepatocyte into the liver tissue of a physiologically-based pharmacokinetic model of a human adult. The resulting multiscale model was used to investigate hyperuricemia therapy, ammonia detoxification and paracetamol-induced toxication at a systems level. The specific models simultaneously integrate multiple layers of biological organization and offer mechanistic insights into pathology and medication. The approach presented may in future support a mechanistic understanding in diagnostics and drug development.

  16. Multi-scale analysis for random quantum systems with interaction

    CERN Document Server

    Chulaevsky, Victor

    2014-01-01

    The study of quantum disorder has generated considerable research activity in mathematics and physics over past 40 years. While single-particle models have been extensively studied at a rigorous mathematical level, little was known about systems of several interacting particles, let alone systems with positive spatial particle density. Creating a consistent theory of disorder in multi-particle quantum systems is an important and challenging problem that largely remains open. Multi-scale Analysis for Random Quantum Systems with Interaction  presents the progress that had been recently achieved in this area.   The main focus of the book is on a rigorous derivation of the multi-particle localization in a strong random external potential field. To make the presentation accessible to a wider audience, the authors restrict attention to a relatively simple tight-binding Anderson model on a cubic lattice Zd.   This book includes the following cutting-edge features: * an introduction to the state-of-the-art single-...

  17. Robust visual tracking via multiscale deep sparse networks

    Science.gov (United States)

    Wang, Xin; Hou, Zhiqiang; Yu, Wangsheng; Xue, Yang; Jin, Zefenfen; Dai, Bo

    2017-04-01

    In visual tracking, deep learning with offline pretraining can extract more intrinsic and robust features. It has significant success solving the tracking drift in a complicated environment. However, offline pretraining requires numerous auxiliary training datasets and is considerably time-consuming for tracking tasks. To solve these problems, a multiscale sparse networks-based tracker (MSNT) under the particle filter framework is proposed. Based on the stacked sparse autoencoders and rectifier linear unit, the tracker has a flexible and adjustable architecture without the offline pretraining process and exploits the robust and powerful features effectively only through online training of limited labeled data. Meanwhile, the tracker builds four deep sparse networks of different scales, according to the target's profile type. During tracking, the tracker selects the matched tracking network adaptively in accordance with the initial target's profile type. It preserves the inherent structural information more efficiently than the single-scale networks. Additionally, a corresponding update strategy is proposed to improve the robustness of the tracker. Extensive experimental results on a large scale benchmark dataset show that the proposed method performs favorably against state-of-the-art methods in challenging environments.

  18. Multiscale Analysis of Head Impacts in Contact Sports

    Science.gov (United States)

    Guttag, Mark; Sett, Subham; Franck, Jennifer; McNamara, Kyle; Bar-Kochba, Eyal; Crisco, Joseph; Blume, Janet; Franck, Christian

    2012-02-01

    Traumatic brain injury (TBI) is one of the world's major causes of death and disability. To aid companies in designing safer and improved protective gear and to aid the medical community in producing improved quantitative TBI diagnosis and assessment tools, a multiscale finite element model of the human brain, head and neck is being developed. Recorded impact data from football and hockey helmets instrumented with accelerometers are compared to simulated impact data in the laboratory. Using data from these carefully constructed laboratory experiments, we can quantify impact location, magnitude, and linear and angular accelerations of the head. The resultant forces and accelerations are applied to a fully meshed head-form created from MRI data by Simpleware. With appropriate material properties for each region of the head-form, the Abaqus finite element model can determine the stresses, strains, and deformations in the brain. Simultaneously, an in-vitro cellular TBI criterion is being developed to be incorporated into Abaqus models for the brain. The cell-based injury criterion functions the same way that damage criteria for metals and other materials are used to predict failure in structural materials.

  19. Variational principles for locally variational forms

    International Nuclear Information System (INIS)

    Brajercik, J.; Krupka, D.

    2005-01-01

    We present the theory of higher order local variational principles in fibered manifolds, in which the fundamental global concept is a locally variational dynamical form. Any two Lepage forms, defining a local variational principle for this form, differ on intersection of their domains, by a variationally trivial form. In this sense, but in a different geometric setting, the local variational principles satisfy analogous properties as the variational functionals of the Chern-Simons type. The resulting theory of extremals and symmetries extends the first order theories of the Lagrange-Souriau form, presented by Grigore and Popp, and closed equivalents of the first order Euler-Lagrange forms of Hakova and Krupkova. Conceptually, our approach differs from Prieto, who uses the Poincare-Cartan forms, which do not have higher order global analogues

  20. A second gradient theoretical framework for hierarchical multiscale modeling of materials

    Energy Technology Data Exchange (ETDEWEB)

    Luscher, Darby J [Los Alamos National Laboratory; Bronkhorst, Curt A [Los Alamos National Laboratory; Mc Dowell, David L [GEORGIA TECH

    2009-01-01

    A theoretical framework for the hierarchical multiscale modeling of inelastic response of heterogeneous materials has been presented. Within this multiscale framework, the second gradient is used as a non local kinematic link between the response of a material point at the coarse scale and the response of a neighborhood of material points at the fine scale. Kinematic consistency between these scales results in specific requirements for constraints on the fluctuation field. The wryness tensor serves as a second-order measure of strain. The nature of the second-order strain induces anti-symmetry in the first order stress at the coarse scale. The multiscale ISV constitutive theory is couched in the coarse scale intermediate configuration, from which an important new concept in scale transitions emerges, namely scale invariance of dissipation. Finally, a strategy for developing meaningful kinematic ISVs and the proper free energy functions and evolution kinetics is presented.

  1. Mechanical Properties of Graphene Nanoplatelet Carbon Fiber Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    Science.gov (United States)

    Hadden, Cameron M.; Klimek-McDonald, Danielle R.; Pineda, Evan J.; King, Julie A.; Reichanadter, Alex M.; Miskioglu, Ibrahim; Gowtham, S.; Odegard, Gregory M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  2. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    Science.gov (United States)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  3. Globalization impacts on local commons: multiscale strategies for socioeconomic and ecological resilience

    Directory of Open Access Journals (Sweden)

    Timothy O. Randhir

    2016-02-01

    Full Text Available Globalization can have substantial impact on local commons byreducing sustainability of ecosystems and their vital services. Without effectivelocal institutions, these resources are at high risk of exploitation, especially tofeed global markets. This study proposes a multiscale ecosystem framework(MEF that incorporates information on ecosystem components, socioeconomicprocesses, and their interactions. This includes inter and intra commoninteractions and multi-scale processes to evaluate inter and intra scale changesin socioeconomic and ecological processes of commons. Local participationand multi-disciplinary information are critical in achieving sustainability. Usinga global dataset of selected indicators, a general decline is observable in localcommons that face globalization. The need for increasing resilience of commonsthrough multi-scale adaptation strategies can inform decisions at the national,state and local levels. Increased resilience through ecosystem-based approach canminimize impacts of globalization using information on multiattribute processes,equity considerations, development of robust institutions, and effective strategiesfor adaptation.

  4. State-of-the-Art Report on Multi-scale Modelling of Nuclear Fuels

    International Nuclear Information System (INIS)

    Bartel, T.J.; Dingreville, R.; Littlewood, D.; Tikare, V.; Bertolus, M.; Blanc, V.; Bouineau, V.; Carlot, G.; Desgranges, C.; Dorado, B.; Dumas, J.C.; Freyss, M.; Garcia, P.; Gatt, J.M.; Gueneau, C.; Julien, J.; Maillard, S.; Martin, G.; Masson, R.; Michel, B.; Piron, J.P.; Sabathier, C.; Skorek, R.; Toffolon, C.; Valot, C.; Van Brutzel, L.; Besmann, Theodore M.; Chernatynskiy, A.; Clarno, K.; Gorti, S.B.; Radhakrishnan, B.; Devanathan, R.; Dumont, M.; Maugis, P.; El-Azab, A.; Iglesias, F.C.; Lewis, B.J.; Krack, M.; Yun, Y.; Kurata, M.; Kurosaki, K.; Largenton, R.; Lebensohn, R.A.; Malerba, L.; Oh, J.Y.; Phillpot, S.R.; Tulenko, J. S.; Rachid, J.; Stan, M.; Sundman, B.; Tonks, M.R.; Williamson, R.; Van Uffelen, P.; Welland, M.J.; Valot, Carole; Stan, Marius; Massara, Simone; Tarsi, Reka

    2015-10-01

    The Nuclear Science Committee (NSC) of the Nuclear Energy Agency (NEA) has undertaken an ambitious programme to document state-of-the-art of modelling for nuclear fuels and structural materials. The project is being performed under the Working Party on Multi-Scale Modelling of Fuels and Structural Material for Nuclear Systems (WPMM), which has been established to assess the scientific and engineering aspects of fuels and structural materials, describing multi-scale models and simulations as validated predictive tools for the design of nuclear systems, fuel fabrication and performance. The WPMM's objective is to promote the exchange of information on models and simulations of nuclear materials, theoretical and computational methods, experimental validation and related topics. It also provides member countries with up-to-date information, shared data, models, and expertise. The goal is also to assess needs for improvement and address them by initiating joint efforts. The WPMM reviews and evaluates multi-scale modelling and simulation techniques currently employed in the selection of materials used in nuclear systems. It serves to provide advice to the nuclear community on the developments needed to meet the requirements of modelling for the design of different nuclear systems. The original WPMM mandate had three components (Figure 1), with the first component currently completed, delivering a report on the state-of-the-art of modelling of structural materials. The work on modelling was performed by three expert groups, one each on Multi-Scale Modelling Methods (M3), Multi-Scale Modelling of Fuels (M2F) and Structural Materials Modelling (SMM). WPMM is now composed of three expert groups and two task forces providing contributions on multi-scale methods, modelling of fuels and modelling of structural materials. This structure will be retained, with the addition of task forces as new topics are developed. The mandate of the Expert Group on Multi-Scale Modelling of

  5. Flows in polymers, reinforced polymers and composites a multi-scale approach

    CERN Document Server

    Binetruy, Christophe; Keunings, Roland

    2015-01-01

    This book gives a detailed and practical introduction to complex flows of polymers and reinforced polymers as well as the flow of simple fluids in complex microstructures. Over the last decades, an increasing number of functional and structural parts, made so far with metals, has been progressively reengineered by replacing metallic materials by polymers, reinforced polymers and composites. The motivation for this substitution may be the weight reduction, the simpler, cheaper or faster forming process, or the ability to exploit additional functionalities. The present Brief surveys modern developments related to the multi-scale modeling and simulation of polymers, reinforced polymers, that involve a flowing microstructure and continuous fiber-reinforced composites, wherein the fluid flows inside a nearly stationary multi-scale microstructure. These developments concern both multi-scale modeling, defining bridges between the micro and macro scales - with special emphasis on the mesoscopic scale at which kinetic...

  6. Multi-scale calculation based on dual domain material point method combined with molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dhakal, Tilak Raj [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-27

    This dissertation combines the dual domain material point method (DDMP) with molecular dynamics (MD) in an attempt to create a multi-scale numerical method to simulate materials undergoing large deformations with high strain rates. In these types of problems, the material is often in a thermodynamically non-equilibrium state, and conventional constitutive relations are often not available. In this method, the closure quantities, such as stress, at each material point are calculated from a MD simulation of a group of atoms surrounding the material point. Rather than restricting the multi-scale simulation in a small spatial region, such as phase interfaces, or crack tips, this multi-scale method can be used to consider non-equilibrium thermodynamic e ects in a macroscopic domain. This method takes advantage that the material points only communicate with mesh nodes, not among themselves; therefore MD simulations for material points can be performed independently in parallel. First, using a one-dimensional shock problem as an example, the numerical properties of the original material point method (MPM), the generalized interpolation material point (GIMP) method, the convected particle domain interpolation (CPDI) method, and the DDMP method are investigated. Among these methods, only the DDMP method converges as the number of particles increases, but the large number of particles needed for convergence makes the method very expensive especially in our multi-scale method where we calculate stress in each material point using MD simulation. To improve DDMP, the sub-point method is introduced in this dissertation, which provides high quality numerical solutions with a very small number of particles. The multi-scale method based on DDMP with sub-points is successfully implemented for a one dimensional problem of shock wave propagation in a cerium crystal. The MD simulation to calculate stress in each material point is performed in GPU using CUDA to accelerate the

  7. Correlations of stock price fluctuations under multi-scale and multi-threshold scenarios

    Science.gov (United States)

    Sui, Guo; Li, Huajiao; Feng, Sida; Liu, Xueyong; Jiang, Meihui

    2018-01-01

    The multi-scale method is widely used in analyzing time series of financial markets and it can provide market information for different economic entities who focus on different periods. Through constructing multi-scale networks of price fluctuation correlation in the stock market, we can detect the topological relationship between each time series. Previous research has not addressed the problem that the original fluctuation correlation networks are fully connected networks and more information exists within these networks that is currently being utilized. Here we use listed coal companies as a case study. First, we decompose the original stock price fluctuation series into different time scales. Second, we construct the stock price fluctuation correlation networks at different time scales. Third, we delete the edges of the network based on thresholds and analyze the network indicators. Through combining the multi-scale method with the multi-threshold method, we bring to light the implicit information of fully connected networks.

  8. RESEARCH ON FEATURE POINTS EXTRACTION METHOD FOR BINARY MULTISCALE AND ROTATION INVARIANT LOCAL FEATURE DESCRIPTOR

    Directory of Open Access Journals (Sweden)

    Hongwei Ying

    2014-08-01

    Full Text Available An extreme point of scale space extraction method for binary multiscale and rotation invariant local feature descriptor is studied in this paper in order to obtain a robust and fast method for local image feature descriptor. Classic local feature description algorithms often select neighborhood information of feature points which are extremes of image scale space, obtained by constructing the image pyramid using certain signal transform method. But build the image pyramid always consumes a large amount of computing and storage resources, is not conducive to the actual applications development. This paper presents a dual multiscale FAST algorithm, it does not need to build the image pyramid, but can extract feature points of scale extreme quickly. Feature points extracted by proposed method have the characteristic of multiscale and rotation Invariant and are fit to construct the local feature descriptor.

  9. Transition between inverse and direct energy cascades in multiscale optical turbulence

    Science.gov (United States)

    Malkin, V. M.; Fisch, N. J.

    2018-03-01

    Multiscale turbulence naturally develops and plays an important role in many fluid, gas, and plasma phenomena. Statistical models of multiscale turbulence usually employ Kolmogorov hypotheses of spectral locality of interactions (meaning that interactions primarily occur between pulsations of comparable scales) and scale-invariance of turbulent pulsations. However, optical turbulence described by the nonlinear Schrodinger equation exhibits breaking of both the Kolmogorov locality and scale-invariance. A weaker form of spectral locality that holds for multi-scale optical turbulence enables a derivation of simplified evolution equations that reduce the problem to a single scale modeling. We present the derivation of these equations for Kerr media with random inhomogeneities. Then, we find the analytical solution that exhibits a transition between inverse and direct energy cascades in optical turbulence.

  10. Color Image Enhancement Using Multiscale Retinex Based on Particle Swarm Optimization Method

    Science.gov (United States)

    Matin, F.; Jeong, Y.; Kim, K.; Park, K.

    2018-01-01

    This paper introduces, a novel method for the image enhancement using multiscale retinex and practical swarm optimization. Multiscale retinex is widely used image enhancement technique which intemperately pertains on parameters such as Gaussian scales, gain and offset, etc. To achieve the privileged effect, the parameters need to be tuned manually according to the image. In order to handle this matter, a developed retinex algorithm based on PSO has been used. The PSO method adjusted the parameters for multiscale retinex with chromaticity preservation (MSRCP) attains better outcome to compare with other existing methods. The experimental result indicates that the proposed algorithm is an efficient one and not only provides true color loyalty in low light conditions but also avoid color distortion at the same time.

  11. An Online Generalized Multiscale Discontinuous Galerkin Method (GMsDGM) for Flows in Heterogeneous Media

    KAUST Repository

    Chung, Eric T.

    2017-02-07

    Offline computation is an essential component in most multiscale model reduction techniques. However, there are multiscale problems in which offline procedure is insufficient to give accurate representations of solutions, due to the fact that offline computations are typically performed locally and global information is missing in these offline information. To tackle this difficulty, we develop an online local adaptivity technique for local multiscale model reduction problems. We design new online basis functions within Discontinuous Galerkin method based on local residuals and some optimally estimates. The resulting basis functions are able to capture the solution efficiently and accurately, and are added to the approximation iteratively. Moreover, we show that the iterative procedure is convergent with a rate independent of physical scales if the initial space is chosen carefully. Our analysis also gives a guideline on how to choose the initial space. We present some numerical examples to show the performance of the proposed method.

  12. Modified multiscale sample entropy computation of laser speckle contrast images and comparison with the original multiscale entropy algorithm

    Science.gov (United States)

    Humeau-Heurtier, Anne; Mahé, Guillaume; Abraham, Pierre

    2015-12-01

    Laser speckle contrast imaging (LSCI) enables a noninvasive monitoring of microvascular perfusion. Some studies have proposed to extract information from LSCI data through their multiscale entropy (MSE). However, for reaching a large range of scales, the original MSE algorithm may require long recordings for reliability. Recently, a novel approach to compute MSE with shorter data sets has been proposed: the short-time MSE (sMSE). Our goal is to apply, for the first time, the sMSE algorithm in LSCI data and to compare results with those given by the original MSE. Moreover, we apply the original MSE algorithm on data of different lengths and compare results with those given by longer recordings. For this purpose, synthetic signals and 192 LSCI regions of interest (ROIs) of different sizes are processed. Our results show that the sMSE algorithm is valid to compute the MSE of LSCI data. Moreover, with time series shorter than those initially proposed, the sMSE and original MSE algorithms give results with no statistical difference from those of the original MSE algorithm with longer data sets. The minimal acceptable length depends on the ROI size. Comparisons of MSE from healthy and pathological subjects can be performed with shorter data sets than those proposed until now.

  13. Bearing Fault Diagnosis Based on Multiscale Permutation Entropy and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Jian-Jiun Ding

    2012-07-01

    Full Text Available Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, multiscale permutation entropy (MPE was introduced for feature extraction from faulty bearing vibration signals. After extracting feature vectors by MPE, the support vector machine (SVM was applied to automate the fault diagnosis procedure. Simulation results demonstrated that the proposed method is a very powerful algorithm for bearing fault diagnosis and has much better performance than the methods based on single scale permutation entropy (PE and multiscale entropy (MSE.

  14. 2nd International Conference on Multiscale Computational Methods for Solids and Fluids

    CERN Document Server

    2016-01-01

    This volume contains the best papers presented at the 2nd ECCOMAS International Conference on Multiscale Computations for Solids and Fluids, held June 10-12, 2015. Topics dealt with include multiscale strategy for efficient development of scientific software for large-scale computations, coupled probability-nonlinear-mechanics problems and solution methods, and modern mathematical and computational setting for multi-phase flows and fluid-structure interaction. The papers consist of contributions by six experts who taught short courses prior to the conference, along with several selected articles from other participants dealing with complementary issues, covering both solid mechanics and applied mathematics. .

  15. An Overview of the State of the Art in Atomistic and Multiscale Simulation of Fracture

    Science.gov (United States)

    Saether, Erik; Yamakov, Vesselin; Phillips, Dawn R.; Glaessgen, Edward H.

    2009-01-01

    The emerging field of nanomechanics is providing a new focus in the study of the mechanics of materials, particularly in simulating fundamental atomic mechanisms involved in the initiation and evolution of damage. Simulating fundamental material processes using first principles in physics strongly motivates the formulation of computational multiscale methods to link macroscopic failure to the underlying atomic processes from which all material behavior originates. This report gives an overview of the state of the art in applying concurrent and sequential multiscale methods to analyze damage and failure mechanisms across length scales.

  16. Multiscale Modeling using Molecular Dynamics and Dual Domain Material Point Method

    Energy Technology Data Exchange (ETDEWEB)

    Dhakal, Tilak Raj [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division. Fluid Dynamics and Solid Mechanics Group, T-3; Rice Univ., Houston, TX (United States)

    2016-07-07

    For problems involving large material deformation rate, the material deformation time scale can be shorter than the material takes to reach a thermodynamical equilibrium. For such problems, it is difficult to obtain a constitutive relation. History dependency become important because of thermodynamic non-equilibrium. Our goal is to build a multi-scale numerical method which can bypass the need for a constitutive relation. In conclusion, multi-scale simulation method is developed based on the dual domain material point (DDMP). Molecular dynamics (MD) simulation is performed to calculate stress. Since the communication among material points is not necessary, the computation can be done embarrassingly parallel in CPU-GPU platform.

  17. Multi-scale modelling of rubber-like materials and soft tissues: an appraisal

    Science.gov (United States)

    Puglisi, G.

    2016-01-01

    We survey, in a partial way, multi-scale approaches for the modelling of rubber-like and soft tissues and compare them with classical macroscopic phenomenological models. Our aim is to show how it is possible to obtain practical mathematical models for the mechanical behaviour of these materials incorporating mesoscopic (network scale) information. Multi-scale approaches are crucial for the theoretical comprehension and prediction of the complex mechanical response of these materials. Moreover, such models are fundamental in the perspective of the design, through manipulation at the micro- and nano-scales, of new polymeric and bioinspired materials with exceptional macroscopic properties. PMID:27118927

  18. A MULTISCALE FRAMEWORK FOR THE STOCHASTIC ASSIMILATION AND MODELING OF UNCERTAINTY ASSOCIATED NCF COMPOSITE MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Mehrez, Loujaine [University of Southern California; Ghanem, Roger [University of Southern California; McAuliffe, Colin [Altair Engineering, Inc.; Aitharaju, Venkat [General Motors; Rodgers, William [General Motors

    2016-06-06

    multiscale framework to construct stochastic macroscopic constitutive material models is proposed. A spectral projection approach, specifically polynomial chaos expansion, has been used to construct explicit functional relationships between the homogenized properties and input parameters from finer scales. A homogenization engine embedded in Multiscale Designer, software for composite materials, has been used for the upscaling process. The framework is demonstrated using non-crimp fabric composite materials by constructing probabilistic models of the homogenized properties of a non-crimp fabric laminate in terms of the input parameters together with the homogenized properties from finer scales.

  19. Multiscale Design of Advanced Materials based on Hybrid Ab Initio and Quasicontinuum Methods

    Energy Technology Data Exchange (ETDEWEB)

    Luskin, Mitchell [Univ. of Minnesota, Minneapolis, MN (United States). School of Mathematics; James, Richard [Univ. of Minnesota, Minneapolis, MN (United States). School of Mathematics; Tadmor, Ellad [Univ. of Minnesota, Minneapolis, MN (United States)

    2014-03-12

    This project united researchers from mathematics, chemistry, computer science, and engineering for the development of new multiscale methods for the design of materials. Our approach was highly interdisciplinary, but it had two unifying themes: first, we utilized modern mathematical ideas about change-of-scale and state-of-the-art numerical analysis to develop computational methods and codes to solve real multiscale problems of DOE interest; and, second, we took very seriously the need for quantum mechanics-based atomistic forces, and based our methods on fast solvers of chemically accurate methods.

  20. Biomimic design of multi-scale fabric with efficient heat transfer property

    Directory of Open Access Journals (Sweden)

    Fan Jie

    2012-01-01

    Full Text Available Wool fiber has a complex hierarchic structure. The multi-scale fibrils are assembled to form a tree-like channel net in wool fiber, providing an efficient heat transfer property. The optimal inner configuration of wool fiber can also be invited to biomimic design of textile fabrics to improve the thermal comfort of cloth. A heat transfer model of biomimic multi-scale fabric using the fractal derivative is established. Theoretical analysis indicates that the heat flux efficiency in the biomimic fabric can be 2 orders of magnitude comparing with that of the continuous medium.