WorldWideScience

Sample records for residual water content

  1. Effect of water content and organic carbon on remote sensing of crop residue cover

    Science.gov (United States)

    Serbin, G.; Hunt, E. R., Jr.; Daughtry, C. S. T.; McCarty, G. W.; Brown, D. J.; Doraiswamy, P. C.

    2009-04-01

    Crop residue cover is an important indicator of tillage method. Remote sensing of crop residue cover is an attractive and efficient method when compared with traditional ground-based methods, e.g., the line-point transect or windshield survey. A number of spectral indices have been devised for residue cover estimation. Of these, the most effective are those in the shortwave infrared portion of the spectrum, situated between 1950 and 2500 nm. These indices include the hyperspectral Cellulose Absorption Index (CAI), and advanced multispectral indices, i.e., the Lignin-Cellulose Absorption (LCA) index and the Shortwave Infrared Normalized Difference Residue Index (SINDRI), which were devised for the NASA Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor. Spectra of numerous soils from U.S. Corn Belt (Indiana and Iowa) were acquired under wetness conditions varying from saturation to oven-dry conditions. The behavior of soil reflectance with water content was also dependent on the soil organic carbon content (SOC) of the soils, and the location of the spectral bands relative to significant water absorptions. High-SOC soils showed the least change in spectral index values with increase in soil water content. Low-SOC soils, on the other hand, showed measurable difference. For CAI, low-SOC soils show an initial decrease in index value followed by an increase, due to the way that water content affects CAI spectral bands. Crop residue CAI values decrease with water content. For LCA, water content increases decrease crop residue index values and increase them for soils, resulting in decreased contrast. SINDRI is also affected by SOC and water content. As such, spatial information on the distribution of surface soil water content and SOC, when used in a geographic information system (GIS), will improve the accuracy of remotely-sensed crop residue cover estimates.

  2. Content Of 2,4-D-14C Herbicide Residue In Water And Soil Of Irrigated Rice Field System

    International Nuclear Information System (INIS)

    Chairul, Sofnie M.; Djabir, Elida; Magdalena, Nelly

    2000-01-01

    The investigation of 2,4-D exp.-14C herbicide residue in water and soil of irrigated rice field system was carried out. Rice plant and weeds (Monochoria vaginalis Burn. F. Presl) were planted in 101 buckets using two kinds of soil condition, I.e. normal soil and 30 % above normal compact soil. After one week planting, the plants were sprayed with 1 u Ci of 2,4-D exp.-14C and 0,4 mg non labeled 2,4-D. The herbicide residue content was determined 0, 2, 4, 8 and 10 weeks after spraying with 2,4-D herbicide. The analysis was done using Combustion Biological Oxidizer merk Harvey ox-400, and counted with Liquid Scintillation Counter merk Beckman model LS-1801. The results indicates that the herbicide contents in water and soil decrease from the first spraying with herbicide until harvest herbicide Residue content in water after harvest was 0.87 x 10 exp.-6 ppm for soil normal condition, and 0.59 x 10 exp.-6 pm for the soil 30 % up normal condition, while herbicide content in soil was 1.54 x 10 exp.-6 ppm for soil normal condition and 1.48 x 10 exp.-6 ppm for soil 30 % up normal. 2,4-D herbicide residue content in rice after harvest was 0.27 x 10 exp.-6 ppm for normal soil condition and 0.25 x 10 exp.-6 ppm for the soil 30 % up normal. 2,4-D herbicide residue content in roots and leaves of weeds after harvest were respectively 0.29 x 10 exp.-6 ppm and 0.18 x 10 exp.-6 for normal soil condition, while for 30 % up normal soil were 0.25 x 10 exp.-5 ppm and 0.63 x 10 exp.-7 ppm. This result indicates that there is no effect pollution to surrounding area, because the herbicide content is still bellow the allowed detection limit, 0.05 ppm

  3. Experimental design to monitor the influence of crop residue management on the dynamics of soil water content

    Science.gov (United States)

    Chélin, Marie; Hiel, Marie-Pierre; Parvin, Nargish; Bodson, Bernard; Degré, Aurore; Nguyen, Frédéric; Garré, Sarah

    2015-04-01

    Choices related to crop residue management affecting soil structure determine spatio-temporal dynamics of water content and eventually crop yields. In this contribution, we will discuss the experimental design we adopted to study the influence of agricultural management strategies (tillage and residue management) on the soil water dynamics under maize in a Cutanic Siltic Luvisol in Gembloux, Belgium. Three different treatments will be studied: a conventional ploughing realized either in December 2014 or just before sowing in April 2015, and a strip tillage in April 2015. A bare soil under conventional ploughing will also be monitored in order to better understand the influence of the plant over the growing season. In order to limit soil disturbance, we opted for the use of electrical resistivity tomography (ERT) and we use the bulk electrical conductivity as a proxy for soil moisture content. ERT will be collected every week on a surface of two square meters corresponding to three rows of seven maize plants through surface stainless steel electrodes. Five additional sticks with stainless steel electrodes will be vertically inserted into the soil up to 1.50 m to get more detailed information near to the central maize row. In each of the monitoring plots, two time-domain reflectometry (TDR) probes will be installed for data validation. In order to calibrate the relationship between electrical resistivity and soil water content under highly variable field conditions (changes in soil structure, variable weather conditions, plant growth, fertilization), a trench will be dug, in which a set of four electrodes, one TDR probe and one temperature sensor will be placed at four different depths. In addition, two suction cups will be installed in each of the plots to quantify changes in ion composition and electrical conductivity of the soil solution at two different depths. Within the framework of the multidisciplinary research platform AgricultureIsLife, regular assessment

  4. Assessment of a design to monitor the influence of crop residue management on the dynamics of soil water content with ERT

    Science.gov (United States)

    Chelin, Marie; Hiel, Marie-Pierre; Hermans, Thomas; Binley, Andrew; Garre, Sarah

    2016-04-01

    Choices related to crop residue management affect the soil structure. As a consequence, they may determine the spatio-temporal dynamics of water content and eventually the crop yields. In order to better understand the influence of these strategies on hydraulic processes occurring at the plot scale, we opted for the use electrical resistivity tomography (ERT). This approach presents the advantage to limit soil disturbance but is still faced to important challenges when applied in an agricultural field context. Especially changing soil-electrode contact has to be considered, as it can lead to bad quality data, especially for setups with small electrodes and small inter-electrode distance. The objective of this study was to test the efficiency of a high-resolution 3-D field measurement design to properly assess the dynamics of soil water content. ERT measurements were conducted in a Cutanic Siltic Luvisol in Gembloux, Belgium, on two plots of 2m2 ploughed in Oct 2014 at a depth of 25 cm and sown with maize in April 2015. The plants were removed on one of the plots in order to obtain a bare soil reference. A grid of 98 surface stainless steel electrodes was layed-out on each plot and four sticks supporting each eight stainless steel electrodes were vertically inserted into the soil up to 1.20 m to get more detailed information in depth. The experiments were performed between Jul and Oct 2015, in order to get measurements both in dry and wet periods. For surface and borehole monitoring, a dipole-dipole array configuration including in-line and cross-line measurements was adopted. Normal and reciprocal measurements were performed systematically to assess the data quality: only the datasets with a mean reciprocal error lower than 3% were considered for the data inversion. This contribution will show the first inverted results showing the complexity of experimental design and data analysis for high-resolution, timelapse ERT in field conditions. Based on these results, we

  5. Comment on the treatment of residual water content in “A consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface” by L. Luckner et al.

    Science.gov (United States)

    Nimmo, John R.

    1991-01-01

    Luckner et al. [1989] (hereinafter LVN) present a clear summary and generalization of popular formulations used for convenient representation of porous media fluid flow characteristics, including water content (θ) related to suction (h) and hydraulic conductivity (K) related to θ or h. One essential but problematic element in the LVN models is the concept of residual water content (θr; in LVN, θw,r). Most studies using θr determine its value as a fitted parameter and make the assumption that liquid flow processes are negligible at θ values less than θr. While the LVN paper contributes a valuable discussion of the nature of θr, it leaves several problems unresolved, including fundamental difficulties in associating a definite physical condition with θr, practical inadequacies of the models at low θ values, and difficulties in designating a main wetting curve.

  6. Residuals Management and Water Pollution Control Planning.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Public Affairs.

    This pamphlet addresses the problems associated with residuals and water quality especially as it relates to the National Water Pollution Control Program. The types of residuals and appropriate management systems are discussed. Additionally, one section is devoted to the role of citizen participation in developing management programs. (CS)

  7. Gastric residual volume (GRV) and gastric contents measurement by refractometry.

    Science.gov (United States)

    Chang, Wei-Kuo; McClave, Stephen A; Hsieh, Chung-Bao; Chao, You-Chen

    2007-01-01

    Traditional use of gastric residual volumes (GRVs), obtained by aspiration from a nasogastric tube, is inaccurate and cannot differentiate components of the gastric contents (gastric secretion vs delivered formula). The use of refractometry and 3 mathematical equations has been proposed as a method to calculate the formula concentration, GRV, and formula volume. In this paper, we have validated these mathematical equations so that they can be implemented in clinical practice. Each of 16 patients receiving a nasogastric tube had 50 mL of water followed by 100 mL of dietary formula (Osmolite HN, Abbott Laboratories, Columbus, OH) infused into the stomach. After mixing, gastric content was aspirated for the first Brix value (BV) measurement by refractometry. Then, 50 mL of water was infused into the stomach and a second BV was measured. The procedure of infusion of dietary formula (100 mL) and then water (50 mL) was repeated and followed by subsequent BV measurement. The same procedure was performed in an in vitro experiment. Formula concentration, GRV, and formula volume were calculated from the derived mathematical equations. The formula concentrations, GRVs, and formula volumes calculated by using refractometry and the mathematical equations were close to the true values obtained from both in vivo and in vitro validation experiments. Using this method, measurement of the BV of gastric contents is simple, reproducible, and inexpensive. Refractometry and the derived mathematical equations may be used to measure formula concentration, GRV, and formula volume, and also to serve as a tool for monitoring the gastric contents of patients receiving nasogastric feeding.

  8. TENORM: Drinking Water Treatment Residuals

    Science.gov (United States)

    EPA has specific regulations under the Safe Drinking Water Act (SDWA) that limit the amount of radioactivity allowed in community water systems. Learn about methods used to treat these water supplies to remove radioactivity and manage wastes.

  9. Soil water evaporation and crop residues

    Science.gov (United States)

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  10. Analysis of lead content in automotive shredder residue (ASR)

    International Nuclear Information System (INIS)

    Gonzalez-Fernandez, Oscar; Pessanha, Sofia; Queralt, Ignacio; Carvalho, Maria Luisa

    2009-01-01

    Automotive shredder residue (ASR) is a very heterogeneous waste, which could have a very high metal content on finest fractions φ -1 in the fraction -1 in the fraction between 2 and 6 mm) and that such type of instrumentation enables a fast measurement with a limit of detection of 1.1 mg kg -1 for 1000 s measurement).

  11. Residual water treatment for gamma radiation

    International Nuclear Information System (INIS)

    Mendez, L.

    1990-01-01

    The treatment of residual water by means of gamma radiation for its use in agricultural irrigation is evaluated. Measurements of physical, chemical, biological and microbiological contamination indicators were performed. For that, samples from the treatment center of residual water of San Juan de Miraflores were irradiated up to a 52.5 kGy dose. The study concludes that gamma radiation is effective to remove parasites and bacteria, but not for removal of the organic and inorganic matter. (author). 15 refs., 3 tabs., 4 figs

  12. Short communication. Nitrogen content of residual alfalfa taproots under irrigation

    Directory of Open Access Journals (Sweden)

    S. Cela

    2013-04-01

    Full Text Available The decomposition of alfalfa (Medicago sativa L. residues can provide significant amounts of N to subsequent crops, but most of the data on this subject has been obtained from 1-2 year old alfalfa stands. The objective of this study was to determine the biomass of alfalfa taproots and their N content in irrigated alfalfa stands that are more than 2 years old. Twenty-two commercial irrigated alfalfa fields were evaluated in the Ebro Valley (Northeast Spain from 2006 to 2010. The taproot biomass in the arable layer (0 to 30 cm depth ranged from 1.8 to 10.1 Mg ha-1 and averaged 4.8 Mg ha-1. In contrast, the N concentration in alfalfa taproots was constant among fields and averaged 24.6 g N kg-1. The total amount of N contained in alfalfa taproots (0-30 cm depth ranged from 47 to 96 kg N ha-1 in 55% of the fields, ranged from 97 to 200 kg N ha-1 in 22% of the fields, and exceeded 200 kg N ha-1 in 23% of the fields. The N content of the irrigated alfalfa taproots studied here is in the upper range previously reported in other areas, mainly with younger alfalfa stands. Based on the current finding, a classification of the quality of irrigated alfalfa stands is proposed to improve the estimates of the residual-N effects of alfalfa on subsequent crops.

  13. Interactive effects of rice residue and water stress on growth and metabolism of wheat seedlings

    Directory of Open Access Journals (Sweden)

    Nimisha Amist

    2014-08-01

    Full Text Available In the present study effects of rice residue with and without water stress were studied on Triticum aestivum L. cv. Shatabadi. The mixture of residue and garden soil in 1:1 ratio was considered as 50% (R1 and only decomposed residue as 100% (R2. Garden soil was taken as control. Twenty five seeds were sown in each experimental trays filled with soil mixture according to the treatments. Trays were arranged in two groups. After 15 days one set was subjected to water stress (WS by withholding water supply for 3 days. Morphological and biochemical parameters of 18 days old seedlings were recorded. Seedling height decreased in all treatments. A gradual decrease in relative water content, pigment and protein contents of wheat seedlings were observed. Sugar and proline contents increased in treatments. An increase in malondialdehyde (MDA content and antioxidative enzyme activities was recorded. Elevation in catalase activity was observed in all treatments except in plants with water deficit. Ascorbate peroxidase (APX and guaiacol peroxidase (GPX activities increased when residue mixed with soil but decreased in seedlings under the combined influence of the residue and water stress. Higher amount of MDA and lower activities of APX and GPX reflected the oxidative damage in seedlings under combined treatments. Rice residue inhibited growth of wheat seedlings. Water stress intensified the effects of residue.

  14. Residual methyl methacrylate monomer, water sorption, and water solubility of hypoallergenic denture base materials.

    Science.gov (United States)

    Pfeiffer, Peter; Rosenbauer, Ernst-Ulrich

    2004-07-01

    Denture base materials have the potential to cause irritation and allergic reaction to the oral mucosa. Water sorption and water solubility of denture base resins affect dimensional behavior and denture stability. A correlation between residual monomer and water sorption exists. This in vitro study compared the amount of residual monomer, quantity of water sorption, and solubility of 4 denture base materials purported to be hypoallergenic with those of a polymethyl methacrylate-based (PMMA) heat-polymerizing acrylic resin. The denture base resins Sinomer (heat-polymerized, modified methacrylate), Polyan (thermoplastic, modified methacrylate), Promysan (thermoplastic, enterephthalate-based), and Microbase (microwave polymerized, polyurethane-based), which are purported to be hypoallergenic, and Paladon 65 (heat-polymerized, methacrylate, control group) were examined. Specimens of each material were tested for residual methyl methacrylate (MMA) monomer (% wt, n=3), amount of water sorption (microg/mm3, n=5) and water solubility (microg/mm3, n=5), according to ISO 1567:2000. The residual MMA monomer concentrations were determined by gas chromatography (GC). The data were analyzed with 1-way ANOVA and the Bonferroni-Dunn multiple comparisons post hoc analysis for each test variable (alpha=.05). Significantly lower residual MMA monomer was shown for Sinomer and Polyan compared to the PMMA control group (0.90 +/- 0.20% wt, Pdenture base materials (0.34-0.84 +/- 0.05-0.09 microg/mm3) was not significantly lower than the PMMA material (0.40 +/- 0.06 microg/mm3, P>.05). Except for Sinomer, the tested denture base resins passed the requirements of ISO 1567 regarding residual MMA monomer (denture base materials fulfilled the requirements regarding water sorption (denture base materials exhibited significantly lower residual monomer content than PMMA. Promysan and Microbase showed no detectable residual MMA.

  15. Residual monomer content determination in some acrylic denture base materials and possibilities of its reduction

    Directory of Open Access Journals (Sweden)

    Kostić Milena

    2009-01-01

    Full Text Available Background/Aim. Polymethyl methacrylate is used for producing a denture basis. It is a material made by the polymerization process of methyl methacrylate. Despite of the polymerization type, there is a certain amount of free methyl methacrylate (residual monomer incorporated in the denture, which can cause irritation of the oral mucosa. The aim of this study was to determine the amount of residual monomer in four different denture base acrylic resins by liquid chromatography and the possibility of its reduction. Methods. After the polymerization, a postpolymerization treatment was performed in three different ways: in boiling water for thirty minutes, with 500 W microwaves for three minutes and in steam bath at 22º C for one to thirty days. Results. The obtained results showed that the amount of residual monomer is significantly higher in cold polymerizing acrylates (9.1-11%. The amount of residual monomer after hot polymerization was in the tolerance range (0.59- 0.86%. Conclusion. The obtained results denote a low content of residual monomer in the samples which have undergone postpolymerization treatment. A lower percent of residual monomer is established in samples undergone a hot polymerization.

  16. Effect of Drying Medium on Residual Moisture Content and Viability of Freeze-Dried Lactic Acid Bacteria

    Science.gov (United States)

    de Valdez, Graciela F.; de Giori, Graciela S.; de Ruiz Holgado, Aida P.; Oliver, Guillermo

    1985-01-01

    The effect of various substances on the relationship between residual moisture content and the viability of freeze-dried lactic acid bacteria has been studied. Compounds such as polymers, which display considerable ability in displacing water, showed no protective action during freeze-drying. Adonitol, on the other hand, produced the smallest change in water content at various times during drying and allowed the highest rate of survival. PMID:16346728

  17. Residual stresses of water-jet peened austenitic stainless steel

    International Nuclear Information System (INIS)

    Suzuki, Kenji; Shobu, Takahisa; Shiro, Ayumi

    2013-01-01

    The specimen material was austenitic stainless steel, SUS316L. The residual stress was induced by water-jet peening. The residual stress was measured using the 311 diffraction with conventional X-rays. The measured residual stress showed the equi-biaxial stress state. To investigate thermal stability of the residual stress, the specimen was aged thermally at 773K in air to 1000h. The residual stress kept the equi-biaxial stress state against the thermal aging. Lattice plane dependency of the residual stress induced by water-jet peening was evaluated using hard synchrotron X-rays. The residual stress measured by the soft lattice plane showed the equi-biaxial stress state, but the residual stress measured by the hard lattice plane did not. In addition, the distributions of the residual stress in the depth direction were measured using a strain scanning method with hard synchrotron X-rays and neutrons. (author)

  18. Residue analysis of organochlorine pesticides in water and ...

    African Journals Online (AJOL)

    Residue analysis of organochlorine pesticides in water and sediments from Agboyi Creek, Lagos. AB Williams. Abstract. Microlayer water, mixed layer water, epipellic and benthic sediments were collected from Agboyi Creek, Lagos to analyse organochlorine pesticide residues. Sampling was conducted between December ...

  19. Water dynamics clue to key residues in protein folding

    International Nuclear Information System (INIS)

    Gao, Meng; Zhu, Huaiqiu; Yao, Xin-Qiu; She, Zhen-Su

    2010-01-01

    A computational method independent of experimental protein structure information is proposed to recognize key residues in protein folding, from the study of hydration water dynamics. Based on all-atom molecular dynamics simulation, two key residues are recognized with distinct water dynamical behavior in a folding process of the Trp-cage protein. The identified key residues are shown to play an essential role in both 3D structure and hydrophobic-induced collapse. With observations on hydration water dynamics around key residues, a dynamical pathway of folding can be interpreted.

  20. EFFECT OF DIFFERENT COVER CROP RESIDUES, MANAGEMENT PRACTICES ON SOIL MOISTURE CONTENT UNDER A TOMATO CROP (LYCOPERSICON ESCULENTUM

    Directory of Open Access Journals (Sweden)

    George Njomo Karuku

    2014-12-01

    Full Text Available SUMMARYThe soil water storage, soil water content, available water content and soil water balance under various cover crop residue management practices in a Nitisol were evaluated in a field experiment at the Kabete Field Station, University of Nairobi. The effects of surface mulching, above and below ground biomass and roots only incorporated of (mucuna pruriens, Tanzanian sunnhemp (Crotalaria ochroleuca and Vetch (Vicia benghalensis cover crops, fertilizer and non fertilized plots on soil water balance were studied. Tomato (Lycopersicon esculentum was used as the test crop. Since water content was close to field capacity, the drainage component at 100 cm soil depth was negligible and evapotranspiration was therefore derived from the change in soil moisture storage and precipitation. Residue management showed that above and below ground biomass incorporated optimized the partitioning of the water balance components, increasing moisture storage, leading to increased tomato yields and water use efficiency. Furthermore, vetch above and below ground biomass incorporated significantly improved the quantity and frequency of deep percolation. Soil fertilization (F and non fertilization (NF caused the most unfavourable partitioning of water balance, leading to the lowest yield and WUE. Tomato yields ranged from 4.1 in NF to 7.4 Mg ha-1 in Vetch treated plots. Vetch above and belowground biomass incorporated had significant (p ≤ 0.1 yields of 11.4 Mg ha-1 compared to all other residue management systems. Vetch residue treatment had the highest WUE (22.7 kg mm-1 ha-1 followed by mucuna treated plots (20.7 kg mm-1 ha-1 and both were significantly different (p ≤ 0.05 compared to the others irrespective of residue management practices.

  1. Naturally occuring radioactivity in residues of drinking water treatment

    International Nuclear Information System (INIS)

    Vornehm, C.; Mallick, R.

    2009-01-01

    In the course of a research project about 500 residues of drinking water treatment from approx. 400 water supply companies in Bavaria were investigated on naturally occurring radioactivity. For each residue the effective dose for workers was evaluated for each residue. The results show that increased activities, particularly of Radium-226, can be found in the material. The dose due to the exposure to the residues, which mostly result from the backwashing of filters, is below the reference value of 1 mSv/a, which can be used according to paragraph 97 of the German radiation protection standard. During the project the quantity of residues in Bavaria and the ways of their disposal were evaluated. In addition the relation between the amount of natural radioisotopes in the residues and the geological and hydrochemical conditions of the water catchment area was pointed out. (orig.)

  2. Estimation of soil clay content from hygroscopic water content measurements

    OpenAIRE

    Wuddivira, Mark N.; Robinson, David A.; Lebron, Inma; Brechet, Laëtitia; Atwell, Melissa; De Caires, Sunshine; Oatham, Michael; Jones, Scott B.; Abdu, Hiruy; Verma, Aditya K.; Tuller, Markus

    2012-01-01

    Soil texture and the soil water characteristic are key properties used to estimate flow and transport parameters. Determination of clay content is therefore critical for understanding of plot-scale soil heterogeneity. With increasing interest in proximal soil sensing, there is the need to relate obtained signals to soil properties of interest. Inference of soil texture, especially clay mineral content, from instrument response from electromagnetic induction and radiometric methods is of subst...

  3. Reducing radionuclide contents in drinking water

    International Nuclear Information System (INIS)

    Hanslik, E.; Horacek, P.

    1990-01-01

    The results of a cost-benefit analysis of reducing radiation hazards to the population due to radionuclides in drinking water and to nuclear power plants operation are presented. Two aeration methods are used to reduce the radon content in drinking water -aeration in a shallow layer and aeration towers. The radon content can be reduced more effectively by a two-step arrangement of the aeration facility. A reduction of the content of radium, uranium and their daughter products is possible with the use of a modification of the processes common in water-works practice. The analysis of economic efficiency showed that for reducing radiation hazards to the population, it is much more effective to reduce the radionuclide contents in drinking water sources than, for instance, to reduce the tritium content in liquid effluents from nuclear power plants further below the projected level. (J.J.). 2 figs

  4. Characterization of Cloud Water-Content Distribution

    Science.gov (United States)

    Lee, Seungwon

    2010-01-01

    The development of realistic cloud parameterizations for climate models requires accurate characterizations of subgrid distributions of thermodynamic variables. To this end, a software tool was developed to characterize cloud water-content distributions in climate-model sub-grid scales. This software characterizes distributions of cloud water content with respect to cloud phase, cloud type, precipitation occurrence, and geo-location using CloudSat radar measurements. It uses a statistical method called maximum likelihood estimation to estimate the probability density function of the cloud water content.

  5. Analysis of residue waters. Measurement of pollution

    International Nuclear Information System (INIS)

    Boeglin, J.C.

    1997-01-01

    The spectacular evolution of the urban and industrial environment formulates the water problem. To have drinkable or industrial waters it is necessary to turn to surface waters as rivers waters or lakes waters. But they are exposed to pollution in the form of industrial or domestic effluents releases and require a preliminary treatment. It is necessary to protect water resources and then to analyze the pollution of industrial and urban releases.That the purpose of this article. (N.C.)

  6. Anaerobia Treatments of the domestic residual waters. Limitations potentialities

    International Nuclear Information System (INIS)

    Giraldo Gomez, Eugenio

    1993-01-01

    The quick growth of the Latin American cities has prevented that an appropriate covering of public services is achieved for the whole population, One of the undesirable consequences of this situation is the indiscriminate discharge from the domestic and industrial residual waters to the nearest bodies of water with its consequent deterioration and with disastrous consequences about the ecology and the public health. The developed countries have controlled this situation using systems of purification of the residual waters previously to their discharge in the receptor source. The same as the technology of the evacuation of the served waters, they have become numerous efforts for the application of the purification systems used in the countries developed to the socioeconomic, climatic and cultural conditions of our means. One of the results obtained in these efforts is the economic inability of the municipalities to pay the high investment costs and of operation of the traditional systems for the treatment of the residual waters. Contrary to another type of public services, the treatment of the residual waters needs of appropriate technological solutions for the Climatic and socioeconomic means of the developing countries, One of the technological alternatives for the purification of the residual waters that has had a great development in the last decades has been that of the biological treatments in t anaerobia ambient. The objective of this contribution is to present, to author's trial, the limitations and potentialities of this technology type with special emphasis in the case of the domestic residual waters

  7. Predicting the residual aluminum level in water treatment process

    OpenAIRE

    J. Tomperi; M. Pelo; K. Leiviskä

    2013-01-01

    In water treatment processes, aluminum salts are widely used as coagulation chemical. High dose of aluminum has been proved to be at least a minor health risk and some evidence points out that aluminum could increase the risk of Alzheimer's disease. Thus it is important to minimize the amount of residual aluminum in drinking water and water used at food industry. In this study, the data of a water treatment plant (WTP) was analyzed and the residual aluminum in drinking water was predicted usi...

  8. Predicting the residual aluminum level in water treatment process

    OpenAIRE

    J. Tomperi; M. Pelo; K. Leiviskä

    2012-01-01

    In water treatment processes, aluminum salts are widely used as coagulation chemical. High dose of aluminum has been proved to be at least a minor health risk and some evidence points out that aluminum could increase the risk of Alzheimer's disease thus it is important to minimize the amount of residual aluminum in drinking water and water used at food industry. In this study, the data of a water treatment plant (WTP) was analyzed and the residual aluminum in drinking water was predicted usin...

  9. Increased cerebral water content in hemodialysis patients.

    Directory of Open Access Journals (Sweden)

    Kathrin Reetz

    Full Text Available Little information is available on the impact of hemodialysis on cerebral water homeostasis and its distribution in chronic kidney disease. We used a neuropsychological test battery, structural magnetic resonance imaging (MRI and a novel technique for quantitative measurement of localized water content using 3T MRI to investigate ten hemodialysis patients (HD on a dialysis-free day and after hemodialysis (2.4±2.2 hours, and a matched healthy control group with the same time interval. Neuropsychological testing revealed mainly attentional and executive cognitive dysfunction in HD. Voxel-based-morphometry showed only marginal alterations in the right inferior medial temporal lobe white matter in HD compared to controls. Marked increases in global brain water content were found in the white matter, specifically in parietal areas, in HD patients compared to controls. Although the global water content in the gray matter did not differ between the two groups, regional increases of brain water content in particular in parieto-temporal gray matter areas were observed in HD patients. No relevant brain hydration changes were revealed before and after hemodialysis. Whereas longer duration of dialysis vintage was associated with increased water content in parieto-temporal-occipital regions, lower intradialytic weight changes were negatively correlated with brain water content in these areas in HD patients. Worse cognitive performance on an attention task correlated with increased hydration in frontal white matter. In conclusion, long-term HD is associated with altered brain tissue water homeostasis mainly in parietal white matter regions, whereas the attentional domain in the cognitive dysfunction profile in HD could be linked to increased frontal white matter water content.

  10. Increased cerebral water content in hemodialysis patients.

    Science.gov (United States)

    Reetz, Kathrin; Abbas, Zaheer; Costa, Ana Sofia; Gras, Vincent; Tiffin-Richards, Frances; Mirzazade, Shahram; Holschbach, Bernhard; Frank, Rolf Dario; Vassiliadou, Athina; Krüger, Thilo; Eitner, Frank; Gross, Theresa; Schulz, Jörg Bernhard; Floege, Jürgen; Shah, Nadim Jon

    2015-01-01

    Little information is available on the impact of hemodialysis on cerebral water homeostasis and its distribution in chronic kidney disease. We used a neuropsychological test battery, structural magnetic resonance imaging (MRI) and a novel technique for quantitative measurement of localized water content using 3T MRI to investigate ten hemodialysis patients (HD) on a dialysis-free day and after hemodialysis (2.4±2.2 hours), and a matched healthy control group with the same time interval. Neuropsychological testing revealed mainly attentional and executive cognitive dysfunction in HD. Voxel-based-morphometry showed only marginal alterations in the right inferior medial temporal lobe white matter in HD compared to controls. Marked increases in global brain water content were found in the white matter, specifically in parietal areas, in HD patients compared to controls. Although the global water content in the gray matter did not differ between the two groups, regional increases of brain water content in particular in parieto-temporal gray matter areas were observed in HD patients. No relevant brain hydration changes were revealed before and after hemodialysis. Whereas longer duration of dialysis vintage was associated with increased water content in parieto-temporal-occipital regions, lower intradialytic weight changes were negatively correlated with brain water content in these areas in HD patients. Worse cognitive performance on an attention task correlated with increased hydration in frontal white matter. In conclusion, long-term HD is associated with altered brain tissue water homeostasis mainly in parietal white matter regions, whereas the attentional domain in the cognitive dysfunction profile in HD could be linked to increased frontal white matter water content.

  11. Reduction of pesticide residues on fresh vegetables with electrolyzed water treatment.

    Science.gov (United States)

    Hao, Jianxiong; Wuyundalai; Liu, Haijie; Chen, Tianpeng; Zhou, Yanxin; Su, Yi-Cheng; Li, Lite

    2011-05-01

    Degradation of the 3 pesticides (acephate, omethoate, and dimethyl dichloroviny phosphate [DDVP]) by electrolyzed water was investigated. These pesticides were commonly used as broad-spectrum insecticides in pest control and high-residual levels had been detected in vegetables. Our research showed that the electrolyzed oxidizing (EO) water (pH 2.3, available chlorine concentration:70 ppm, oxidation-reduction potential [ORP]: 1170 mV) and the electrolyzed reducing (ER) water (pH 11.6, ORP: -860 mV) can reduce the pesticide residues effectively. Pesticide residues on fresh spinach after 30 min of immersion in electrolyzed water reduced acephate by 74% (EO) and 86% (ER), omethoate by 62% (EO) and 75% (ER), DDVP by 59% (EO) and 46% (ER), respectively. The efficacy of using EO water or ER water was found to be better than that of using tap water or detergent (both were reduced by more than 25%). Besides spinach, the cabbage and leek polluted by DDVP were also investigated and the degradation efficacies were similar to the spinach. Moreover, we found that the residual level of pesticide residue decreased with prolonged immersion time. Using EO or ER water to wash the vegetables did not affect the contents of Vitamin C, which inferred that the applications of EO or ER water to wash the vegetables would not result in loss of nutrition. © 2011 Institute of Food Technologists®

  12. Fresh water leaching of alkaline bauxite residue after sea water neutralization.

    Science.gov (United States)

    Menzies, Neal W; Fulton, Ian M; Kopittke, Rosemary A; Kopittke, Peter M

    2009-01-01

    Processing of bauxite to extract alumina produces a strongly alkaline waste, bauxite refining residue, which is commonly stored in engineered structures. Once full, these waste dumps must be revegetated. In many alumina refineries, the waste is separated into fine-textured red mud and coarse-textured residue sand (RS). The sand component has physical characteristics that make it a suitable plant growth medium, provided the adverse chemical characteristics can be addressed. Neutralization of the highly saline-sodic RS with sea water lowers pH, reduces Na saturation, and adds plant nutrients. However, sea water-neutralized RS remains saline sodic and needs fresh water leaching before use as a plant growth medium. Columns containing sea water-neutralized RS were leached with 30 m depth-equivalent of fresh water to evaluate the effects of rainfall on the RS and its leachate. Entrained cations were rapidly displaced by the fresh water, lowering salinity to non-plant-limiting levels (leaching increased pH (leachate pH increased from 8.0 to 10.1). This pH increase is attributed to the slow dissolution of the Na-containing mineral sodalite. Under the current experimental conditions, the application of 30 m depth-equivalent of leaching reduced the total RS sodalite content by <10%.

  13. The effect of sludge water treatment plant residuals on the properties of compressed brick

    Science.gov (United States)

    Shamsudin, Shamrul-Mar; Shahidan, S.; Azmi, M. A. M.; Ghaffar, S. A.; Ghani, M. B. Abdul; Saiful Bahari, N. A. A.; Zuki, S. S. M.

    2017-11-01

    The focus of this study is on the production of compressed bricks which contains sludge water treatment plant (SWTP) residuals obtained from SAJ. The main objective of this study is to utilise and incorporate discarded material (SWTP) in the form of residual solution to produce compressed bricks. This serves as one of the recycling efforts to conserve the environment. This study determined the optimum mix based on a mix ratio of 1:2:4 (cement: sand: soil) in the production of compressed bricks where 5 different mixes were investigated i. e. 0%, 5%, 10%, 20%, and 30% of water treatment plant residue solution. The production of the compressed bricks is in accordance with the Malaysian Standard MS 7.6: 1972 and British Standard BS 3921: 1985 - Compressive Strength & Water Absorption. After being moulded and air dried, the cured bricks were subjected to compression tests and water absorption tests. Based on the tests conducted, it was found that 20% of water treatment plant residue solution which is equivalent to 50% of soil content replacement with a mix composition of [10: cement] [20: sand] [20: soil] [20: water treatment plant residue solution] is the optimum mix. It was also observed that the bricks containing SWTP residuals were lighter in weight compared to the control specimens

  14. On quantification of residual ink content and deinking efficiency in recycling of mixed office waste paper

    Science.gov (United States)

    Bo Li; Gaosheng Wang; Kefu Chen; David W. Vahey; Junyong Zhu

    2011-01-01

    Although (flotation) deinking has been a common industry practice for several decades, true residual ink content and deinking efficiency have never been quantified. Paper brightness and ERIC (Effective Residual Ink Concentration), based on measurements of the absorption coefficient of deinked pulp, have been used to determine performance of flotation deinking processes...

  15. Radiation degradation of pharmaceutical residues in water. Chloramphenicol

    International Nuclear Information System (INIS)

    Csay, T.; Racz, G.; Takacs, E.; Wojnarovits, L.

    2011-01-01

    Complete text of publication follows. Traditional wastewater treatment systems primarily rely upon physical, chemical and biological processes. The conventional techniques cannot efficiently remove badly biodegradable pollutants like pesticides, herbicides and drugs from influents. Leaving 'polluted' water flowing freely out to environment may cause unwanted and sometimes unpredictable effects. Degradation or removal of residual organic contaminations from wastewater is an important task both for science and engineering to preserve environment and drinking water. Ionizing radiation treatment of liquid wastes is one of the so called advanced oxidation processes (AOP) leading to decomposition of pharmaceuticals in aqueous solutions. The radiolysis of chloramphenicol (CPL) a broad spectrum antibiotic was investigated under different conditions. Steady-state gamma radiolysis were used to generate various reactive species ( · H, · OH and e aq - ). Reactions were followed by steady state and time resolved UV-Vis spectrometry. Several degradation products were separated and identified by LC-MS/MS. Mineralization was followed by measuring chemical oxygen demand (COD) and total organic carbon content (TOC). The change in toxicity was followed by Microtox, a luminescent bacteria test. Results indicate that ionizing radiation is very effective in degradation of CPL. After irradiating 0.1 mM CPL solutions with 5.0-7.5 kGy doses, no products could be observed indicating that irradiation resulted in complete mineralization.

  16. Water Content of Lunar Alkali Fedlspar

    Science.gov (United States)

    Mills, R. D.; Simon, J. I.; Wang, J.; Alexander, C. M. O'D.; Hauri, E. H.

    2016-01-01

    Detection of indigenous hydrogen in a diversity of lunar materials, including volcanic glass, melt inclusions, apatite, and plagioclase suggests water may have played a role in the chemical differentiation of the Moon. Spectroscopic data from the Moon indicate a positive correlation between water and Th. Modeling of lunar magma ocean crystallization predicts a similar chemical differentiation with the highest levels of water in the K- and Th-rich melt residuum of the magma ocean (i.e. urKREEP). Until now, the only sample-based estimates of water content of KREEP-rich magmas come from measurements of OH, F, and Cl in lunar apatites, which suggest a water concentration of alkali feldspar, a common mineral in K-enriched rocks, can have approx. 20 ppm of water, which implies magmatic water contents of approx. 1 wt % in the high-silica magmas. This estimate is 2 to 3 orders of magnitude higher than that estimated from apatite in similar rocks. However, the Cl and F contents of apatite in chemically similar rocks suggest that these melts also had high Cl/F ratios, which leads to spuriously low water estimates from the apatite. We can only estimate the minimum water content of urKREEP (+ bulk Moon) from our alkali feldspar data because of the unknown amount of degassing that led to the formation of the granites. Assuming a reasonable 10 to 100 times enrichment of water from urKREEP into the granites produces an estimate of 100-1000 ppm of water for the urKREEP reservoir. Using the modeling of and the 100-1000 ppm of water in urKREEP suggests a minimum bulk silicate Moon water content between 2 and 20 ppm. However, hydrogen loss was likely very significant in the evolution of the lunar mantle. Conclusions: Lunar granites crystallized between 4.3-3.8 Ga from relatively wet melts that degassed upon crystallization. The formation of these granites likely removed significant amounts of water from some mantle source regions, e.g. later mare basalts predicting derivation from a

  17. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals

    Science.gov (United States)

    Water treatment plants are used to provide safe drinking water. In parallel, however, they also produce a wide variety of waste products which, in principle, could be possible candidates as resources for different applications. Calcium carbonate is one of such residual waste in ...

  18. Pesticide residues in water from TPC sugarcane plantations and ...

    African Journals Online (AJOL)

    We report herein, the analysis of water samples collected from TPC Sugarcane Plantation and its environs in Kilimanjaro region, which is the earliest intensive user of pesticides in Tanzania. A total of 50 water samples collected from 18 sampling sites between 2000 and 2001 were analyzed for pesticide residues.

  19. Characterisation of some South African water treatment residues ...

    African Journals Online (AJOL)

    Land application of water treatment residue (WTR) the by-product from the production of potable water, is becoming the preferred method of disposal, as there are environmental concerns and increasingly high costs associated with other disposal options. However, before WTR can be applied to land, consideration needs ...

  20. Water and deuterium content of chondrites

    International Nuclear Information System (INIS)

    Robert, Francois

    1978-01-01

    The main objective of this research thesis which deals with meteorite study, is to develop an experimental technique to measure the hydrogen isotopic rate in the case of very low quantities of hydrogen, notably in samples in which water content is hundred or thousand times less than in reported experiments, in order to study mechanisms of alteration of chondrites. The author reports an attempt to reconcile obtained results for isotopic rates as well as for water contents with those of the main existing models of chondrite formation. He proposes a detailed description of isotopic exchange mechanisms at low temperature, and shows that this mechanism is not in disagreement with literature published on chondrites

  1. Pesticide residues in air and water

    Energy Technology Data Exchange (ETDEWEB)

    Breidenbach, A.W.

    1965-06-01

    Current work in pesticide surveillance in surface waters is described. The methods used for sampling are briefly described. The sensitivity and specificity of the analytical techniques employed are discussed. The sampling difficulties and protocols for evaluating levels of pesticides in air pollution are briefly discussed. 17 references.

  2. Increased Cerebral Water Content in Hemodialysis Patients

    OpenAIRE

    Reetz, Kathrin; Abbas, Zaheer; Eitner, Frank; Gross, Theresa; Schulz, Jörg Bernhard; Floege, Jürgen; Shah, N. J.; Costa, Ana Sofia; Gras, Vincent; Tiffin-Richards, Frances; Mirzazade, Shahram; Holschbach, Bernhard; Frank, Rolf Dario; Vassiliadou, Athina; Krüger, Thilo

    2015-01-01

    Little information is available on the impact of hemodialysis on cerebral water homeostasis and its distribution in chronic kidney disease. We used a neuropsychological test battery, structural magnetic resonance imaging (MRI) and a novel technique for quantitative measurement of localized water content using 3T MRI to investigate ten hemodialysis patients (HD) on a dialysis-free day and after hemodialysis (2.4±2.2 hours), and a matched healthy control group with the same time interval. Neuro...

  3. Radio requestable passive SAW water content sensor

    NARCIS (Netherlands)

    Reindl, L.; Ruppel, C.C.W.; Kirmayr, A.; Stockhausen, N.; Hilhorst, M.A.; Balendonk, J.

    2001-01-01

    A new passive sensor for remote measurement of water content in sandy soil was designed, using a surface acoustic wave (SAW) reflective delay line. Information from this sensor can be obtained by an interrogation device via a radio link operating in the European 434-MHz industrial-scientific-medical

  4. Substrate water availability and seed water content on niger germination

    Directory of Open Access Journals (Sweden)

    Carla Regina Baptista Gordin

    2015-09-01

    Full Text Available Niger is an oleaginous species whose cultivation has been spreading, but there is not much information on the adverse conditions during its seedling establishment. This study aimed at evaluating the effects of substrate water availability and seed water content on niger germination. Seeds were moistened using the humid atmosphere method for 0; 24; 48; and 72 hours, obtaining the water contents of 7.0 %, 12.8 %, 16.8 % and 32.2 %. Then, they were sown in substrate moistened with PEG 6000 solutions with different osmotic potentials: 0.0 MPa (control, -0.1 MPa, -0.2 MPa, -0.3 MPa and -0.4 MPa. A completely randomized design, in a 4 x 5 factorial scheme (water content x osmotic potential, with four replications of 50 seeds, was used. First count and germination percentage, germination speed index and mean time, shoot and root length and seedlings dry weight were evaluated. The reduction in the substrate osmotic potential decreases the niger seed germination and seedling growth, regardless of water content, but with a higher evidence in seed water contents below 32.2 % and 12.8 %, respectively.

  5. Minimizing residual aluminum concentration in treated water by tailoring properties of polyaluminum coagulants.

    Science.gov (United States)

    Kimura, Masaoki; Matsui, Yoshihiko; Kondo, Kenta; Ishikawa, Tairyo B; Matsushita, Taku; Shirasaki, Nobutaka

    2013-04-15

    Aluminum coagulants are widely used in water treatment plants to remove turbidity and dissolved substances. However, because high aluminum concentrations in treated water are associated with increased turbidity and because aluminum exerts undeniable human health effects, its concentration should be controlled in water treatment plants, especially in plants that use aluminum coagulants. In this study, the effect of polyaluminum chloride (PACl) coagulant characteristics on dissolved residual aluminum concentrations after coagulation and filtration was investigated. The dissolved residual aluminum concentrations at a given coagulation pH differed among the PACls tested. Very-high-basicity PACl yielded low dissolved residual aluminum concentrations and higher natural organic matter (NOM) removal. The low residual aluminum concentrations were related to the low content of monomeric aluminum (Ala) in the PACl. Polymeric (Alb)/colloidal (Alc) ratio in PACl did not greatly influence residual aluminum concentration. The presence of sulfate in PACl contributed to lower residual aluminum concentration only when coagulation was performed at around pH 6.5 or lower. At a wide pH range (6.5-8.5), residual aluminum concentrations residual aluminum concentrations did not increase with increasing the dosage of high-basicity PACl, but did increase with increasing the dosage of normal-basicity PACl. We inferred that increasing the basicity of PACl afforded lower dissolved residual aluminum concentrations partly because the high-basicity PACls could have a small percentage of Ala, which tends to form soluble aluminum-NOM complexes with molecular weights of 100 kDa-0.45 μm. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Cold vacuum drying residual free water test description

    International Nuclear Information System (INIS)

    Pajunen, A.L.

    1997-01-01

    Residual free water expected to remain in a Multi-Canister Overpack (MCO) after processing in the Cold Vacuum Drying (CVD) Facility is investigated based on three alternative models of fuel crevices. Tests and operating conditions for the CVD process are defined based on the analysis of these models. The models consider water pockets constrained by cladding defects, water constrained in a pore or crack by flow through a porous bed, and water constrained in pores by diffusion. An analysis of comparative reaction rate constraints is also presented indicating that a pressure rise test can be used to show MCO's will be thermally stable at operating temperatures up to 75 C

  7. PESTICIDE RESIDUES IN THE WATER AND FISH (LAGOON ...

    African Journals Online (AJOL)

    Preferred Customer

    technique was employed to extract pesticide residues in water and fish samples, respectively, using 1:1 (v/v) ethyl acetate/dichloromethane .... species in the Chemu and Korle lagoons due to excessive pollution. The fish samples were ... reagents were of analytical (HPLC) grade supplied by BDH, London, UK. Extraction of ...

  8. Some techniques used in the treatment of phenolic waters residual

    International Nuclear Information System (INIS)

    Alzate S, Rafael A.; Botero, Carlos Andre

    2000-01-01

    The current state of the diverse processes of treatment of phenolic waters residual is presented, beginning with the methods traditionally employees, until finishing with those but recent innovations, which have been derived of the necessity of increasing the removal of these pollutants without increasing the costs of such processes in excessive form

  9. PESTICIDE RESIDUES IN THE WATER AND FISH (LAGOON ...

    African Journals Online (AJOL)

    Liquid-liquid and liquid-solid extraction technique was employed to extract pesticide residues in water and fish samples, respectively, using 1:1 (v/v) ethyl acetate/dichloromethane mixture before being analyzed by gas chromatography. The highest level of pesticide contaminations was recorded in the Chemu lagoon as ...

  10. NAMMA CVI CLOUD CONDENSED WATER CONTENT V1

    Data.gov (United States)

    National Aeronautics and Space Administration — In the NAMMA CVI Cloud Condensed Water Content dataset the counterflow virtual impactor (CVI) was used to measure condensed water content (liquid water or ice in...

  11. Modeling Residual NAPL in Water-Wet Porous Media

    Directory of Open Access Journals (Sweden)

    R.J. Lenhard

    2002-06-01

    Full Text Available A model is outlined that predicts NAPL which is held in pore wedges and as films or lenses on solid and water surfaces and contributes negligibly to NAPL advection. This is conceptually referred to as residual NAPL. Since residual NAPL is immobile, it remains in the vadose zone after all free NAPL has drained. Residual NAPL is very important because it is a long-term source for groundwater contamination. Recent laboratory experiments have demonstrated that current models for predicting subsurface NAPL behavior are inadequate because they do not correctly predict residual NAPL. The main reason for the failure is a deficiency in the current constitutive theories for multiphase flow that are used in numerical simulators. Multiphase constitutive theory governs the relations among relative permeability, saturation, and pressure for fluid systems (i.e., air, NAPL, water. In this paper, we outline a model describing relations between fluid saturations and pressures that can be combined with existing multiphase constitutive theory to predict residual NAPL. We test the revised constitutive theory by applying it to a scenario involving NAPL imbibition and drainage, as well as water imbibition and drainage. The results suggest that the revised constitutive theory is able to predict the distribution of residual NAPL in the vadose zone as a function of saturation-path history. The revised model describing relations between fluid saturation and pressures will help toward developing or improving numerical multiphase flow simulators.

  12. Treatment of mine water and solid residues (RS) in San Rafael mining and milling complex

    International Nuclear Information System (INIS)

    Asenjo, Armando R.; Perrino, Juan F.

    2006-01-01

    San Rafael Mining and Milling Complex is located in Mendoza Province, in San Rafael Department, 38 km West from San Rafael city and 240 km south from Mendoza city, capital of the province. Activities related with yellow cake production were performed from 1979 to 1999. Nowadays the mine and the plant are in stand by. At the moment technical, economic and environmental studies are being done in order to restart the activities. Different kind of residues are accumulated in the site: a) Tailing; b) Sludges; c) Low grade ores; e) Waste rock; f) Mine water; g) Solid residues (RS). In this paper methodology to treat mine water and solid residues (RS) will be informed. a) Mine water: 800.000 m 3 of mine water are accumulated in different open pit. Uranium, radium and arsenic are the main ions to take into account to treat the water. Several laboratory and pilot test have been performed in order to define the treatment of the water, according with the regulatory requirement. A methodology using anion exchange resin to fix uranium and precipitation using barium chloride and iron sulfate to separate radium and arsenic has been developed. b) Solid residues (RS): these residues (precipitates) have been produced by neutralization of effluents in a nuclear purification process (TBP process). They are accumulated in drums. These residues come from Cordoba plant, a factory which produces UO 2 powder. The total content of uranium in the precipitate is 14.249 kg with an average uranium concentration of 1,33%. A methodology using sulfuric acid dissolution of the precipitates and anion exchange resin to recovery the uranium has been developed. (author) [es

  13. Hair Water Content and Water Holding Capacity Measurements

    OpenAIRE

    Xiao, P; Bontozoglou, C; Ciortea, LI; Imhof, RE

    2016-01-01

    We present our latest study on human hair water content and water holding capacity measurements by using capacitive contact imaging and condense-TEWL method. Previous studies showed that capacitive contact imaging based fingerprint sensors, originally designed for biometric applications, can be used for skin hydration imaging, skin surface analysis, 3D skin surface profiles, skin micro-relief as well as solvent penetration measurements. Through calibration, we can also measure the absolute di...

  14. High residue contents indebted by platinum and silica synergistic action during the pyrolysis of silicone formulations.

    Science.gov (United States)

    Delebecq, Etienne; Hamdani-Devarennes, Siska; Raeke, Julia; Lopez Cuesta, José-Marie; Ganachaud, François

    2011-03-01

    The synergistic role of platinum and silica as a way to increase the final residue of pyrolized silicone was investigated and explained, giving new interpretations. Conditions were first set to study the thermal degradation of silicones in the presence of platinum based on the simplest silicone/silica/platinum formulation. Numerous parameters, e.g., platinum and silica content or silica surface modifications, were varied to track their influences on the final residues. A thorough DSC study, together with SEM/EDX and Pyrolysis/GC-MS analyses, led us to propose a three-stage process. The key parameter governing thermal stability and final content of the residue is the conjugated actions of immobilizing/cross-linking PDMS chains. Silica particles tether silicone chains through physical interactions, i.e., hydrogen bonding, facilitating a platinum radically catalyzed cross-linking reaction. Practical implications and possible improvements on LSR formulations are finally given.

  15. The MODIS Vegetation Canopy Water Content product

    Science.gov (United States)

    Ustin, S. L.; Riano, D.; Trombetti, M.

    2008-12-01

    Vegetation water stress drives wildfire behavior and risk, having important implications for biogeochemical cycling in natural ecosystems, agriculture, and forestry. Water stress limits plant transpiration and carbon gain. The regulation of photosynthesis creates close linkages between the carbon, water, and energy cycles and through metabolism to the nitrogen cycle. We generated systematic weekly CWC estimated for the USA from 2000-2006. MODIS measures the sunlit reflectance of the vegetation in the visible, near-infrared, and shortwave infrared. Radiative transfer models, such as PROSPECT-SAILH, determine how sunlight interacts with plant and soil materials. These models can be applied over a range of scales and ecosystem types. Artificial Neural Networks (ANN) were used to optimize the inversion of these models to determine vegetation water content. We carried out multi-scale validation of the product using field data, airborne and satellite cross-calibration. An Algorithm Theoretical Basis Document (ATBD) of the product is under evaluation by NASA. The CWC product inputs are 1) The MODIS Terra/Aqua surface reflectance product (MOD09A1/MYD09A1) 2) The MODIS land cover map product (MOD12Q1) reclassified to grassland, shrub-land and forest canopies; 3) An ANN trained with PROSPECT-SAILH; 4) A calibration file for each land cover type. The output is an ENVI file with the CWC values. The code is written in Matlab environment and is being adapted to read not only the 8 day MODIS composites, but also daily surface reflectance data. We plan to incorporate the cloud and snow mask and generate as output a geotiff file. Vegetation water content estimates will help predicting linkages between biogeochemical cycles, which will enable further understanding of feedbacks to atmospheric concentrations of greenhouse gases. It will also serve to estimate primary productivity of the biosphere; monitor/assess natural vegetation health related to drought, pollution or diseases

  16. Bread Water Content Measurement Based on Hyperspectral Imaging

    DEFF Research Database (Denmark)

    Liu, Zhi; Møller, Flemming

    2011-01-01

    for bread quality based on near-infrared hyperspectral imaging against the conventional manual loss-in-weight method. For this purpose, the hyperspectral components unmixing technology is used for measuring the water content quantitatively. And the definition on bread water content index is presented......Water content is one of the most important properties of the bread for tasting assesment or store monitoring. Traditional bread water content measurement methods mostly are processed manually, which is destructive and time consuming. This paper proposes an automated water content measurement...

  17. Water contents and OH speciation in pyroxenes

    Science.gov (United States)

    Bégaudeau, K.; Morizet, Y.; Mercier, J.

    2010-12-01

    Nominally anhydrous minerals such as pyroxene contain trace amounts of hydrogen which reside in structural defects. Dissolved water (hydroxyls species OH) plays a crucial role in modifying the physical and chemical properties of the Earth’s mantle and attests a significant water reservoir inside. For a series of natural clino- and orthopyroxenes (cpx and opx) from large suite mantle xenoliths, we investigated the total water (H2Otot) in pyroxenes using micro-FTIR so as to constrain the OH dissolution mechanisms. Samples studied have been brought up either by 1) alkaline basalts magmas, Mont Briançon, Maar de Borée , Barges (France), Dreiser Weiher (Germany), San Carlos (Arizona), Black Rock Sumitt (Nevada), Kilbourne Hole (New Mexico), or by 2) kimberlite magmas, Letseng-la-Terae (South Africa). Crystal chemistry from the different xenoliths was determined by microprobe analyses. Pyroxenes have high Mg number (about 0.9) and spinels contain 0.19 Fe3+/Fetot. Equilibrium P, T conditions were determined by geothermobarometry. P-T conditions were estimated between 700 and 1400°C and between 0.5 and 6.3 GPa. Polarized FTIR spectra acquired on natural cpx and opx are consistent with previous studies, showing the main absorption bands attributed to OH species in the region between 3000-3800 cm-1. H2Otot was estimated by the Beer-Lambert law using the calibration of Libowitzky and Rossman (1997) and gives about 300 ppm and 100 ppm H2O for cpx and opx, respectively. Partionning coefficient between cpx and opx is estimated to 2.1, similar to those from literature data on pyroxenes of alkali-basalt and kimberlitic xenoliths. The H2Otot does not show significant correlation with crystal chemistry, therefore contrasting with previous studies. However, we observe a good linear correlation between the cpx/opx water content and the physical conditions (P, T and fO2 determined from Fe3+/Fetot in spinel) recorded by the mantle xenoliths: ppm H2Ocpx=522.89-119.38*P-0.195*T+484

  18. Aging of aluminum/iron-based drinking water treatment residuals in lake water and their association with phosphorus immobilization capability.

    Science.gov (United States)

    Wang, Changhui; Yuan, Nannan; Pei, Yuansheng; Jiang, He-Long

    2015-08-15

    Aluminum and Fe-based drinking water treatment residuals (DWTRs) have shown a high potential for use by geoengineers in internal P loading control in lakes. In this study, aging of Al/Fe-based DWTRs in lake water under different pH and redox conditions associated with their P immobilization capability was investigated based on a 180-day incubation test. The results showed that the DWTRs before and after incubation under different conditions have similar structures, but their specific surface area and pore volume, especially mesopores with radius at 2.1-5.0 nm drastically decreased. The oxalate extractable Al contents changed little although a small amount of Al transformed from oxidizable to residual forms. The oxalate extractable Fe contents also decreased by a small amount, but the transformation from oxidizable to residual forms were remarkable, approximately by 14.6%. However, the DWTRs before and after incubation had similar P immobilization capabilities in solutions and lake sediments. Even the maximum P adsorption capacity estimated by the Langmuir model increased after incubation. Therefore, it was not necessary to give special attention to the impact of Al and Fe aging on the effectiveness of DWTRs for geoengineering in lakes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. [Estimation of vegetation water content from Landsat 8 OLI data].

    Science.gov (United States)

    Zheng, Xing-ming; Ding, Yan-ling; Zhao, Kai; Jiang, Tao; Li, Xiao-feng; Zhang, Shi-yi; Li, Yang-yang; Wu, Li-li; Sun, Jian; Ren, Jian-hua; Zhang, Xuan-xuan

    2014-12-01

    The present paper aims to analyze the capabilities and limitations for retrieving vegetation water content from Landsat8 OLI (Operational Land Imager) sensor-new generation of earth observation program. First, the effect of soil background on canopy reflectance and the sensitive band to vegetation water content were analyzed based on simulated dataset from ProSail model. Then, based on vegetation water indices from Landsat8 OLI and field vegetation water content during June 1 2013 to August 14 2013, the best vegetation water index for estimating vegetation water content was found through comparing 12 different indices. The results show that: (1) red, near infrared and two shortwave infrared bands of OLI sensor are sensitive to the change in vegetation water content, and near infrared band is the most sensitive one; (2) At low vegetation coverage, solar radiation reflected by soil background will reach to spectral sensor and influence the relationship between vegetation water index and vegetation water content, and simulation results from ProSail model also show that soil background reflectance has a significant impact on vegetation canopy reflectance in both wet and dry soil conditions, so the optimized soil adjusted vegetation index (OSAVI) was used in this paper to remove the effect of soil background on vegetation water index and improve its relationship with vegetation water content; (3) for the 12 vegetation water indices, the relationship between MSI2 and vegetation water content is the best with the R-square of 0.948 and the average error of vegetation water content is 0.52 kg · m(-2); (4) it is difficult to estimate vegetation water content from vegetation water indices when vegetation water content is larger than 2 kg · m(-2) due to spectral saturation of these indices.

  20. Bread Water Content Measurement Based on Hyperspectral Imaging

    OpenAIRE

    Liu, Zhi; Møller, Flemming

    2011-01-01

    Water content is one of the most important properties of the bread for tasting assesment or store monitoring. Traditional bread water content measurement methods mostly are processed manually, which is destructive and time consuming. This paper proposes an automated water content measurement for bread quality based on near-infrared hyperspectral imaging against the conventional manual loss-in-weight method. For this purpose, the hyperspectral components unmixing technology is used for measuri...

  1. SMAPVEX12 Vegetation Water Content Map V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the vegetation water content map derived by calculating Normalized Difference Water Index (NDWI) from SPOT and RapidEye satellite imagery as...

  2. CAMEX-4 CVI CLOUD CONDENSED WATER CONTENT V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The counterflow virtual impactor (CVI) was used to measure condensed water content (liquid water or ice in particles about 8 microns in diameter and up) and cloud...

  3. NAMMA CVI CLOUD CONDENSED WATER CONTENT V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The counterflow virtual impactor (CVI) was used to measure condensed water content (liquid water or ice in particles about 8 microns in diameter and up) and cloud...

  4. Testing of residual monomer content reduction possibility on acrilic resins quality

    Directory of Open Access Journals (Sweden)

    Kostić Milena

    2011-01-01

    Full Text Available Poly (methyl methacrylate (PMMA is material widely used in dentistry. Despite the various methods used to initiate the polymerization of acrylic resins, the conversion of monomer to polymer is not complete thus leaving some unreacted methyl methacrylate (MMA, known as residual monomer (RM, in denture structure. RM in dental acrylic resins has deleterious effects on their mechanical properties and their biocompatibility. The objective of the work was to test the residual monomer reduction possibility by applying the appropriate postpolymerization treatment as well as to determine the effects of this reduction on pressure yields stress and surface structure characteristics of the acrylic resins. Postpolymerization treatments and water storage induced reduction of RM amount in cold-polymerized acrylic resins improved their mechanical properties and the homogenized surface structure. After the polymerization of heat-polymerized acrylic resins the post-polymerization treatments for improving the quality of this material type are not necessary.

  5. DETERMINATION OF WATER CONTENT IN PYROLYTIC TARS USING COULOMETRIC KARL-FISHER TITRATION

    Directory of Open Access Journals (Sweden)

    Lenka Jílková

    2017-02-01

    Full Text Available The liquid organic fraction of pyrolytic tar has a high energy value which makes possible its utilization as an energy source. However, before utilization, it is crucial to remove water from the liquid fraction. The presence of water reduces the energy value of pyrolytic tars. Water separation from the organic tar fraction is a complex process, since an emulsion can be readily formed. Therefore, after phase separation, it is important to know the residual water content in the organic phase and whether it is necessary to further dry it. The results presented in this manuscript focus on a water determination in liquid products from coal and biomass pyrolysis by a coulometric Karl‑Fischer titration. The Coulometric Karl‑Fischer titration is often used for a water content determination in gaseous, liquid and solid samples. However, to date, this titration method has not been used for a water determination in tars. A new water determination method, which has been tested on different types of tar, has been developed. The Coulometric Karl‑Fischer titration is suitable for tar samples with a water content not greater than 5 wt. %. The obtained experimental results indicate that the new introduced method can be used with a very good repeatability for a water content determination in tars.

  6. Drinking water treatment residuals: a review of recent uses.

    Science.gov (United States)

    Ippolito, J A; Barbarick, K A; Elliott, H A

    2011-01-01

    Coagulants such as alum [Al2(SO4)3 x 14H2O], FeCl3, or Fe2(SO4)3 are commonly used to remove particulate and dissolved constituents from water supplies in the production of drinking water. The resulting waste product, called water-treatment residuals (WTR), contains precipitated Al and Fe oxyhydroxides, resulting in a strong affinity for anionic species. Recent research has focused on using WTR as cost-effective materials to reduce soluble phosphorus (P) in soils, runoff, and land-applied organic wastes (manures and biosolids). Studies show P adsorption by WTR to be fast and nearly irreversible, suggesting long-term stable immobilization of WTR-bound P. Because excessive WTR application can induce P deficiency in crops, effective application rates and methods remain an area of intense research. Removal of other potential environmental contaminants [ClO4-, Se(+IV and +VI), As(+III and +V), and Hg] by WTR has been documented, suggesting potential use of WTR in environmental remediation. Although the creation of Al plant toxicity and enhanced Al leaching are concerns expressed by researchers, these effects are minimal at circumneutral soil pH conditions. Radioactivity, trace element levels, and enhanced Mn leaching have also been cited as potential problems in WTR usage as a soil supplement. However, these issues can be managed so as not to limit the beneficial use of WTR in controlling off-site P losses to sensitive water bodies or reducing soil-extractable P concentrations.

  7. Gasification of fruit wastes and agro-food residues in supercritical water

    International Nuclear Information System (INIS)

    Nanda, Sonil; Isen, Jamie; Dalai, Ajay K.; Kozinski, Janusz A.

    2016-01-01

    Highlights: • Supercritical water gasification of various fruit wastes and agro-food residues. • Coconut shell had superior carbon content and calorific value due to high lignin. • Maximum H 2 yields at 600 °C with 1:10 biomass-to-water ratio, 45 min and 23–25 MPa. • High H 2 yields from coconut shell, bagasse and aloe vera rind with 2 wt% K 2 CO 3 . • High CH 4 yields from coconut shell with 2 wt% NaOH due to methanation reaction. - Abstract: Considerable amounts of fruit wastes and agro-food residues are generated worldwide as a result of food processing. Converting the bioactive components (e.g., carbohydrates, lipids, fats, cellulose, hemicellulose and lignin) in food wastes to biofuels is a potential remediation approach. This study highlights the characterization and hydrothermal conversion of several fruit wastes and agro-food residues such as aloe vera rind, banana peel, coconut shell, lemon peel, orange peel, pineapple peel and sugarcane bagasse to hydrogen-rich syngas through supercritical water gasification. The agro-food wastes were gasified in supercritical water to study the impacts of temperature (400–600 °C), biomass-to-water ratio (1:5 and 1:10) and reaction time (15–45 min) at a pressure range of 23–25 MPa. The catalytic effects of NaOH and K 2 CO 3 were also investigated to maximize the hydrogen yields and selectivity. The elevated temperature (600 °C), longer reaction time (45 min) and lower feed concentration (1:10 biomass-to-water ratio) were optimal for higher hydrogen yield (0.91 mmol/g) and total gas yield (5.5 mmol/g) from orange peel. However, coconut shell with 2 wt% K 2 CO 3 at 600 °C and 1:10 biomass-to-water ratio for 45 min revealed superior hydrogen yield (4.8 mmol/g), hydrogen selectivity (45.8%) and total gas yield (15 mmol/g) with enhanced lower heating value of the gas product (1595 kJ/Nm 3 ). The overall findings suggest that supercritical water gasification of fruit wastes and agro-food residues could

  8. Control of the residual aluminum in drinking water by optimization of the coagulation process

    International Nuclear Information System (INIS)

    Jaouadi, Mouna; Amdouni, Noureddine; Chaouchi, Mohamed

    2009-01-01

    Coagulation-Flocculation is an unavoidable stage in water treatment. It permits to reduce the color and the turbidity, normally caused by the organic and inorganic contaminants to acceptable levels for drinking water or for wastewater. The used coagulants can be organic or inorganic nature. The main goal of this work is to make the follow-up of water quality parameters and the optimization of the clarification stages in the drinking waters treatment station, by determination of the break point in the stage of the prechloration and optimization of the coagulant (aluminum sulphate) proportion. The determination of the anions concentration by means of the ionic chromatography before and after coagulation-flocculation shows that the stability and the solubility of the aluminum species are strongly affected by the presence of these anions. Consequently, the content of the anions affects the process of coagulation and must be taken into account in the optimization of this process. We present in this communication, the results of the pH, concentration of the coagulant, time of coagulation effect on the coagulation process .These factors show optimum values. The research of residual aluminum in the two water studied during this work shows that the aluminum content is lower than 200 g/L at the pH optimum.

  9. Removal of coagulant aluminum from water treatment residuals by acid.

    Science.gov (United States)

    Okuda, Tetsuji; Nishijima, Wataru; Sugimoto, Mayo; Saka, Naoyuki; Nakai, Satoshi; Tanabe, Kazuyasu; Ito, Junki; Takenaka, Kenji; Okada, Mitsumasa

    2014-09-01

    Sediment sludge during coagulation and sedimentation in drinking water treatment is called "water treatment residuals (WTR)". Polyaluminum chloride (PAC) is mainly used as a coagulant in Japan. The recycling of WTR has been desired; one method for its reuse is as plowed soil. However, WTR reuse in this way is inhibited by the aluminum from the added PAC, because of its high adsorption capacity for phosphate and other fertilizer components. The removal of such aluminum from WTR would therefore be advantageous for its reuse as plowed soil; this research clarified the effect of acid washing on aluminum removal from WTR and on plant growth in the treated soil. The percentage of aluminum removal from raw WTR by sulphuric acid solution was around 90% at pH 3, the percentage decreasing to 40% in the case of a sun-dried sample. The maximum phosphate adsorption capacity was decreased and the available phosphorus was increased by acid washing, with 90% of aluminum removal. The enhancement of Japanese mustard spinach growth and the increased in plant uptake of phosphates following acid washing were observed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Field, laboratory and estimated soil-water content limits

    African Journals Online (AJOL)

    2005-01-21

    Jan 21, 2005 ... For the purpose of irrigation scheduling, estimates of soil-water content limits are determined using field or laboratory meas- urements or empirically-based regression equations. In this study the field method involved measuring simultaneously the soil-water content (using a frequency domain reflectometer ...

  11. Field, laboratory and estimated soil-water content limits ...

    African Journals Online (AJOL)

    For the purpose of irrigation scheduling, estimates of soil-water content limits are determined using field or laboratory measurements or empirically-based regression equations. In this study the field method involved measuring simultaneously the soil-water content (using a frequency domain reflectometer with the PR1 ...

  12. Human health effects of residual carbon nanotubes and traditional water treatment chemicals in drinking water.

    Science.gov (United States)

    Simate, Geoffrey S; Iyuke, Sunny E; Ndlovu, Sehliselo; Heydenrych, Mike; Walubita, Lubinda F

    2012-02-01

    The volume of industrial and domestic wastewater is increasing significantly year by year with the change in the lifestyle based on mass consumption and mass disposal brought about by the dramatic development of economies and industries. Therefore, effective advanced wastewater treatment is required because wastewater contains a variety of constituents such as particles, organic materials, and emulsion depending on the resource. However, residual chemicals that remain during the treatment of wastewaters form a variety of known and unknown by-products through reactions between the chemicals and some pollutants. Chronic exposure to these by-products or residual chemicals through the ingestion of drinking water, inhalation and dermal contact during regular indoor activities (e.g., showering, bathing, cooking) may pose cancer and non-cancer risks to human health. For example, residual aluminium salts in treated water may cause Alzheimer's disease (AD). As for carbon nanotubes (CNTs), despite their potential impacts on human health and the environment having been receiving more and more attention in the recent past, existing information on the toxicity of CNTs in drinking water is limited with many open questions. Furthermore, though general topics on the human health impacts of traditional water treatment chemicals have been studied, no comparative analysis has been done. Therefore, a qualitative comparison of the human health effects of both residual CNTs and traditional water treatment chemicals is given in this paper. In addition, it is also important to cover and compare the human health effects of CNTs to those of traditional water treatment chemicals together in one review because they are both used for water treatment and purification. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Iodine content in drinking water and other beverages in Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Lone Banke; Larsen, Erik Huusfeldt; Ovesen, L.

    2000-01-01

    Objective: To investigate the variation in iodine content in drinking water in Denmark and to determine the difference in iodine content between organic and non-organic milk. Further, to analyse the iodine content in other beverages. Design and setting: Tap water samples were collected from 41...... geographical (and seasonal) variations in iodine concentrations were found in different beverages supplying an appreciable part of the iodine in the Danish diet. This knowledge is important when calculating the iodine intake from dietary intake studies....

  14. shoot water content and reference evapotranspiration

    African Journals Online (AJOL)

    ACSS

    Determination of water requirement for crops in resource limited areas is challenging, yet worsened by the common assumption that all crop varieties within a species have similar water requirements. The objective of the study was to indirectly determine crop evapotranspiration of soybean varieties, using reference ...

  15. Impacts of alum residues from Morton Jaffray Water Works on water quality and fish, Harare, Zimbabwe

    Science.gov (United States)

    Muisa, Norah; Hoko, Zvikomborero; Chifamba, Portia

    Metal pollution of freshwater due to human activities is a major problem confronting most urban centres in developing countries. This study determined the extent to which aluminium in the residues from Morton Jaffray Water Works in Harare were affecting the water quality of Manyame River and Lake Manyame. The study also measured aluminium bioaccumulation in Nile Tilapia ( Oreochromis niloticus) which is of importance to the commercial fisheries industry in Zimbabwe. Depth integrated water, and sediment grab samples and adult fish were collected per site in January and March, 2010. A total of six sites were selected on the Manyame River and in Lake Manyame. The levels of Total Aluminium (Al) were determined in sediments, water and fish tissues (liver, kidney, gill and muscle). Total solids, total dissolved solids, conductivity, pH, dissolved oxygen and temperature were also determined in water and residues. The texture of the sediments was also assessed. Aluminium concentration in water ranged from 2.19 mg/L to 68.93 mg/L during both sampling campaigns surpassing permissible maximum concentration limits of 0.087 to 0.75 mg/L suggested by the Environmental Protection Agency and African Union. The site upstream of the discharge point of the residues always had the lowest levels though it was higher than acceptable levels indicated above, thus suggesting the existence of other sources of aluminium in the catchment besides Morton Jaffray Water Works. However, there was a 10-fold and 100-fold increase in levels of aluminium in water and sediments, respectively, at the site 100 m downstream of the discharge point on the Manyame River. Mean aluminium concentrations in water and sediments at this site averaged 68.93 ± 61.74 mg/L and 38.18 ± 21.54 mg/L in water and 103.79 ± 55.96 mg/L and 131.84 ± 16.48 mg/L in sediments in sampling campaigns 1 and 2, respectively. These levels were significantly higher than levels obtained from all the other sites during both sampling

  16. Welding residual stress distributions for dissimilar metal nozzle butt welds in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Soo; Kim, Ju Hee; Bae, Hong Yeol; OH, Chang Young; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of); Lee, Kyungsoo [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Song, Tae Kwang [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-02-15

    In pressurized water nuclear reactors, dissimilar metal welds are susceptible to primary water stress corrosion cracking. To access this problem, accurate estimation of welding residual stresses is important. This paper provides general welding residual stress profiles in dissimilar metal nozzle butt welds using finite element analysis. By introducing a simplified shape for dissimilar metal nozzle butt welds, changes in the welding residual stress distribution can be seen using a geometry variable. Based on the results, a welding residual stress profile for dissimilar metal nozzle butt welds is proposed that modifies the existing welding residual stress profile for austenitic pipe butt welds.

  17. Cadmium and lead content of packaged water and water boreholes ...

    African Journals Online (AJOL)

    The lead and cadmium concentrations of borehole water samples were significantly (P < 0.01) higher than those from packaged water. The mean cadmium and lead concentrations of packaged water samples were below the WHO drinking water guidelines limits whereas those from boreholes were higher. Packaged water ...

  18. DEHYDRATION OF LOW WATER CONTENT ETHANOL

    Science.gov (United States)

    Pervaporation has emerged as an economically viable alternative technology for the dehydration of organic solvents, removal of organic compounds from water and organic/organic separations. Development of a membrane system with suitable flux and selectivity characteristics plays a...

  19. Determination of antibiotic residues in manure, soil, and surface waters

    Science.gov (United States)

    Christian, T.; Schneider, R.J.; Farber, H.A.; Skutlarek, D.; Meyer, M.T.; Goldbach, H.E.

    2003-01-01

    In the last years more and more often detections of antimicrobially active compounds ("antibiotics") in surface waters have been reported. As a possible input pathway in most cases municipal sewage has been discussed. But as an input from the realm of agriculture is conceivable as well, in this study it should be investigated if an input can occur via the pathway application of liquid manure on fields with the subsequent mechanisms surface run-off/interflow, leaching, and drift. For this purpose a series of surface waters, soils, and liquid manures from North Rhine-Westphalia (Northwestern Germany) were sampled and analyzed for up to 29 compounds by HPLC-MS/MS. In each of the surface waters antibiotics could be detected. The highest concentrations were found in samples from spring (300 ng/L of erythromycin). Some of the substances detected (e.g., tylosin), as well as characteristics in the landscape suggest an input from agriculture in some particular cases. In the investigation of different liquid manure samples by a fast immunoassay method sulfadimidine could be detected in the range of 1...2 mg/kg. Soil that had been fertilized with this liquid manure showed a content of sulfadimidine extractable by accelerated solvent extraction (ASE) of 15 ??g/kg dry weight even 7 months after the application. This indicates the high stability of some antibiotics in manure and soil.

  20. High-risk residual gastric content in fasted patients undergoing gastrointestinal endoscopy: a prospective cohort study of prevalence and predictors.

    Science.gov (United States)

    Phillips, S; Liang, S S; Formaz-Preston, A; Stewart, P A

    2015-11-01

    In this prospective cohort study, we examined the residual gastric contents of 255 fasted patients undergoing gastrointestinal endoscopy. The volume and pH of residual gastric contents collected by suction under direct visualisation during gastroscopy were accurately quantified. All patients completed the minimum two-hour fast for clear fluids and 97.2% of patients completed the minimum six-hour fast for solids. High-risk residual gastric content, defined as volume >25 ml and pH fasting, males presenting for endoscopy are more likely to have high-risk gastric content than females, and that the incidence appears to be reduced with increasing age, and by the use of proton pump inhibitors or histamine type 2 receptor antagonists, we were unable to confirm or exclude an effect of body mass index, peptic pathology, diabetes or other clinical or demographic factors in our study population.

  1. Adsorption of Roxarsone onto Drinking Water Treatment Residuals: Preliminary Studies

    Science.gov (United States)

    Salazar, J.; Sarkar, D.; Datta, R.; Sharma, S.

    2006-05-01

    Roxarsone (3-nitro-4-hydroxyphenyl-arsonic acid) is an organo-arsenical compound, commonly used as a feed additive in the broiler poultry industry to control coccidial intestinal parasites. Roxarsone is not toxic to the birds not only because of the low dose, and also because it most likely does not convert to toxic inorganic arsenic (As) in their systems. However, upon excretion, roxarsone may undergo transformation to inorganic As, posing a serious risk of contaminating the agricultural land and water bodies via surface runoff or leaching. The use of poultry litter as fertilizer results in As accumulation rates of up to 50 metric tons per year in agricultural lands. The immediate challenge, as identified by the various regulatory bodies in recent years is to develop an efficient, yet cost-effective and environmentally sound approach to cleaning up such As- contaminated soils. Recent studies conducted by our group have suggested that the drinking water treatment residuals (WTRs) can effectively retain As, thereby decreasing its mobility in the environment. The WTRs are byproducts of drinking water treatment processes and are typically composed of amorphous Fe/Al oxides, activated C and cationic polymers. They can be obtained free-of-cost from water treatment plants. It is well demonstrated that the environmental mobility of As is controlled by adsorption/desorption reactions onto mineral surfaces. Hence, knowledge of adsorption and desorption of As onto the WTRs is of environmental relevance. The reported study examined the adsorption and desorption characteristics of As using two types of WTRs, namely the Fe-WTRs (byproduct of Fe salt treatment), and the Al-WTRs (byproduct of Al salt treatment). All adsorption experiments were carried out in batch and As retention on the WTRs was investigated as a function of solid/solution ratio (1:5, 1:10, 1:25 and 1:50), equilibration time (10 min - 48 hr), pH (2 - 10) and initial As load (100, 500, 1000 and 2000 mg As/L). The

  2. Treatment of residual waters of slaughterhouses with filters

    International Nuclear Information System (INIS)

    Ortiz A, Jesus Mario

    1995-01-01

    For studying the anaerobic treatment of the residual waters coming from a slaughterhouse of bovine livestock, they were used a system of two filters in series and a third unique filter as witness. With values average of load organic volumetric and time of retention of 1.6 kg/(m 3 d) and 26 hours respectively, the efficiencies of removal of total DQO were similar in the unique filter and in the system in series, of the order of 64% on the average. Likewise, the retention and accumulation of biological solids in the channel were shown as the main road of removal of the DQO. The differentiation of the process achieved with the two filters in series allowed establishing that most of the accumulation happened in the primary filter, as long as the fundamental of the bioconversion in methane took place in the secondary filter of the system in series. The first relative level of methanegenization obtained could be explained by the limitations to the activity of the methanogenic biomass imposed by the low temperatures, although it could not discard a probable inhibition for the hydrolysis products of the accumulated fats

  3. The stability of drinking water treatment residue with ozone treatment.

    Science.gov (United States)

    Liu, Xin; Wu, Yu; He, Rui; Jiang, He-Long; Wang, Changhui

    2017-06-12

    The best management of drinking water treatment residue (DWTR) in environmental remediation should be based on comprehensively understanding the effectiveness and risk of DWTR. In this study, the variation in physicochemical properties, metal lability, and adsorption capability of DWTR under oxidizing condition were investigated. The oxidizing condition was set up using ozone treatment, and the laboratory incubation test were performed within 50 d in association with thermogravimetry, Fourier Transform Infrared Spectrometry, specific surface area and porosity analyzer, fractionation, and P adsorption test. The results showed that ozone treatment had limited effect on the properties of organic matter, the lability of Al, Cu, and Fe, the P adsorption capability, and the distributions of the adsorbed P in DWTR, but the treatment increased N 2 sorption/desorption, specific surface area, total pore volume of DWTR and led to the transformation of Mn from acid-soluble to reducible fractions. These findings demonstrated that DWTR generally kept stable under oxidizing environment; even oxidizing environment may induce a tendency of increasing the adsorption capability and decreasing the environmental risk of DWTR. Accordingly, the effectiveness and safety of DWTR can be maintained under natural aerobic environment, and DWTR is a reliable adsorbent that could be recycled in environmental remediation.

  4. Prediction of clay content from water vapour sorption isotherms considering hysteresis and soil organic matter content

    DEFF Research Database (Denmark)

    Arthur, E.; Tuller, M.; Møldrup, Per

    2015-01-01

    for estimating clay content from hygroscopic water at different relative humidity (RH) levels while considering hysteresis and organic matter content. Continuous adsorption/desorption vapour sorption isotherm loops were measured for 150 differently textured soils with a state-of-the-art vapour sorption analyser...... vapour sorption, which can be measured within a shorter period of time, have recently been developed. Such models are often based on single-point measurements of water adsorption and do not account for sorption hysteresis or organic matter content. The present study introduces regression relationships...... model encompasses all 150 soils regardless of organic carbon (OC) content, the second model considers only soils with OC

  5. Pedotransfer functions to estimate soil water content at field capacity ...

    Indian Academy of Sciences (India)

    20

    Soil water retention, Dry lands, Western India, Pedotransfer functions, Soil moisture calculator. 1. 2. 3. 4 ..... samples although it is known that structure and macro-porosity of the sample affect water retention (Unger ..... and OC content has positive influence on water retention whereas interaction of clay and OC has negative ...

  6. [Influence of water deficit and supplemental irrigation on nitrogen uptake by winter wheat and nitrogen residual in soil].

    Science.gov (United States)

    Wang, Zhaohui; Wang, Bing; Li, Shengxiu

    2004-08-01

    Pot experiment in greenhouse showed that water deficit at all growth stages and supplemental irrigation at tillering stage significantly decreased the nitrogen uptake by winter wheat and increased the mineral N residual (79.8-113.7 mg x kg(-1)) in soil. Supplemental irrigation at over-wintering, jointing or filling stage significantly increased the nitrogen uptake by plant and decreased the nitrogen residual (47.2-60.3 mg x kg(-1)) in soil. But, the increase of nitrogen uptake caused by supplemental irrigation did not always mean a high magnitude of efficient use of nitrogen by plants. Supplemental irrigation at over-wintering stage didn't induce any significant change in nitrogen content of grain, irrigation at filling stage increased the nitrogen content by 20.9%, and doing this at jointing stage decreased the nitrogen content by 19.6%, as compared to the control.

  7. Terahertz Measurement of the Water Content Distribution in Wood Materials

    Science.gov (United States)

    Bensalem, M.; Sommier, A.; Mindeguia, J. C.; Batsale, J. C.; Pradere, C.

    2018-02-01

    Recently, THz waves have been shown to be an effective technique for investigating the water diffusion within porous media, such as biomaterial or insulation materials. This applicability is due to the sufficient resolution for such applications and the safe levels of radiation. This study aims to achieve contactless absolute water content measurements at a steady state case in semi-transparent solids (wood) using a transmittance THz wave range setup. First, a calibration method is developed to validate an analytical model based on the Beer-Lambert law, linking the absorption coefficient, the density of the solid, and its water content. Then, an estimation of the water content on a local scale in a transient-state case (drying) is performed. This study shows that THz waves are an effective contactless, safe, and low-cost technique for the measurement of water content in a porous medium, such as wood.

  8. Residual fluxes of water, salt and suspended sediment in the Beypore Estuary

    Digital Repository Service at National Institute of Oceanography (India)

    AnilKumar, N.; Revichandran, C.; Sankaranarayanan, V.N.; Josanto, V.

    The monthly trends of the residual fluxes of salt and water and the transportation of suspended sediments in the Beypore estuarine system, Kerala, India were examined. At the river mouth the water flux was directed seaward during the postmonsoon...

  9. Greenhouse and laboratory study for the land application of water treatment residual

    OpenAIRE

    Lucas, Jay B.

    1991-01-01

    The disposal of water treatment residual has received little attention due to a lack of regulation, funding, and concern about their environmental impacts. Many treatment plants discharge alum residual directly into nearby water courses or dewater them for landfilling. If suitable land is available, land application of residual is cost effective and has the potential for negligible effects on the environment and may prove to be a long-term solution to the disposal problem. This...

  10. Shoot water content and reference evapotranspiration for ...

    African Journals Online (AJOL)

    Conversely,water use efficiency (WUE) was 0.58 in SB19, 0.52 in Nyala, and 0.47 in SB20.Validation of the calculated ETC using a crop production function showed a correlation of r = 0.97 between the observed and predicted yields of the three varieties. Furthermore, the normalised root mean square error (NRMSE) and ...

  11. shoot water content and reference evapotranspiration

    African Journals Online (AJOL)

    ACSS

    Computers and Electronics in Agriculture 105:44-53. Payero, J.O. and Irmak, S. 2013. Daily energy fluxes, evapotranspiration and crop coefficient of soybean. Agricultural Water. Management 129:31-43. Pereira, L.S., Allen, R.G., Smith, M. and Raes,. D. 2015. Crop evapotranspiration estimation with FAO56: Past and future.

  12. Effects of Vermicompost and Water Treatment Residuals on Soil Physical Properties and Wheat Yield

    Science.gov (United States)

    Ibrahim, Mahmoud M.; Mahmoud, Essawy K.; Ibrahim, Doaa A.

    2015-04-01

    The application of vermicompost and water treatment residuals to improve the physical properties in the salt affected soils is a promising technology to meet the requirements of high plant growth and cost-effective reclamation. Therefore, the aim of this study was to investigate the effect of vermicompost and its mixtures with water treatment residuals on selected physical properties of saline sodic soil and on wheat yield. The treatments were vermicompost, water treatment residuals, vermicompost + water treatment residuals (1:1 and 2:1 wet weight ratio) at levels of 5 and 10 g dry weight kg-1 dry soil. The considered physical properties included aggregate stability, mean weight diameter, pore size distribution and dry bulk density. The addition of vermicompost and water treatment residuals had significant positive effects on the studied soil physical properties, and improved the grain yield of wheat. The treatment of (2 vermicompost + 1 water treatment residuals) at level of 5 g kg-1 soil gave the best grain yield. Combination of vermicompost and water treatment residuals improved the water treatment residuals efficiency in ameliorating the soil physical properties, and could be considered as an ameliorating material for the reclamation of salt affected soils.

  13. Residue analysis of organochlorine pesticides in water and ...

    African Journals Online (AJOL)

    Mr Willims

    2013-05-12

    May 12, 2013 ... residues were performed by injecting 1 µL of purified extract into the injection port of a gas chromatograph with a 63Ni electron capture .... Identification and determination of OCP residues by gas chromatography. A gas chromatograph with ..... Distribution of chlorine- ted pesticides in shellfishes from Lagos ...

  14. USAGE OF ALGAE SPECIES CHAETOMORPHA GRACILIS AND CH. AEREA FOR DEPURATION PROCESS OF THE RESIDUAL WATERS

    Directory of Open Access Journals (Sweden)

    SALARU VICTOR

    2008-11-01

    Full Text Available Rapid increase of the population on the globe scale imposes maximum exploration of the natural resources and first of all of the aquatic resources. As a result are obtained an enormous quantity of residual waters which pollute the waters from rivers, lakes, freatic and underground waters. Elaboration of the depuration methods for residual waters the quantity of which grows continuously, is one of the most up to dated issue of the world. The physical-chemical depuration methods of the residual waters are very expensive and lack the efficiency we would like to have. The most efficient method proved to be the biological method using some species of algae and superior aquatic plants. In our experiences we have involved filamentous green algae Chaetomorpha gracilis and Ch. aerea for depuration of the sewerage water from town Cimishlia. The concentration of the mineral nitrogen compounds in the residual water is around 92,5 mg/l, and of the phosphates 10,1 mg/l. There were used the following concentration of the sewerage water: 10%, 25% and 50%. The most intense development of algae Chaetomorpha aerea was observed in the variant with 10% of residual water, in which the total concentration of the nitrogen was 10,24 mg/l, and of the phosphates 1,05 mg/l. For this variant the depuration water level was about 56,9%. For the case with Chaetomorpha gracilis, the depuration level for the same concentration of the residual water constituted 55,9 %. Increase of the concentration of the polluted water inhibits development of the algae reducing to the minimum their capacity to assimilate the nitrogen and the phosphor. In the solutions with 50 % of residual waters, the algae didn't die, but at the same time they didn't develop. From this results that both algae may be used in the phytoamelioration of the residual waters being diluted at 10% with purified water.

  15. Iodine content in drinking water and other beverages in Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Lone Banke; Larsen, Erik Huusfeldt; Ovesen, L.

    2000-01-01

    Objective: To investigate the variation in iodine content in drinking water in Denmark and to determine the difference in iodine content between organic and non-organic milk. Further, to analyse the iodine content in other beverages. Design and setting: Tap water samples were collected from 41...... evenly distributed localities in Denmark. Organic and non-organic milli was collected at the same time (twice summer and twice winter). Soft drinks, beers and juice were collected from different Danish producers and wine from different countries. All samples were analysed for iodine using inductively...... coupled mass spectrometry. Results: Iodine in tap water varied from 2.1 to 30.2 mu g/l; the iodine content was in general highest in the eastern part of Denmark and lowest in the western part of Denmark. Organic milk was found to have a lower iodine content than non-organic milk. Conclusions: Large...

  16. Quantification of ziram and zineb residues in fog-water samples.

    Science.gov (United States)

    Agarwal, Smita; Aggarwal, Shankar G; Singh, Pahup

    2005-01-15

    The present paper describes the extractive quantification of zinc-dithiocarbamate fungicides, i.e. ziram (zinc bis-dimethyldithiocarbamate) and zineb (zinc ethylene-1,2-bis-dithiocarbamate) in fog-water samples. The method is based on the releasing of equivalent amount of zinc from the fungicides and its subsequent determination by visible spectrophotometry or by flame-atomic absorption spectrometry (flame-AAS). For spectrophotometry, the sample contained up to 48mug of ziram and 42mug of zineb was first equilibrated with chloroform. The recovery results show that only ziram content was extracted into chloroform. Then, the sample was treated with NH(4)SCN and surfactants (i.e. CPC and TX-100) solutions, and extracted with toluene to remove interference of inorganic zinc and other metal ions, if present in the sample. The residue was further used for zineb determination. The chloroform extract and residue were then digested separately with nitric acid to release Zn(II), which were then analyzed spectrophotometerically with 4-(2-pyridylazo)-resorcinol in the micellar medium (TX-100) for the determination of ziram and zineb, respectively. The complex shows lambda(max) at 495nm. The molar absorptivity in terms of ziram/zineb was determined to be (8.05) x 10(4)Lmole(-1)cm(-1). The detection limits for ziram and zineb were calculated to be 20 and 21mugL(-1) (with R.S.D. fog-water.

  17. Droplet-Sizing Liquid Water Content Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Icing is one of the most significant hazards to aircraft. A sizing supercooled liquid water content (SSLWC) sonde is being developed to meet a directly related need...

  18. Low-Power, Lightweight Cloud Water Content Sensor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The measurement of cloud water content is of great importance in understanding the formation of clouds, their structure, and their radiative properties which in turn...

  19. Droplet-Sizing Liquid Water Content Sensor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Icing is one of the most significant hazards to aircraft. A sizing supercooled liquid water content (SSLWC) sonde is being developed to meet a directly related need...

  20. Low-Power, Lightweight Cloud Water Content Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The water content of clouds, whether in liquid or ice form, is a key variable to be measured when either calibrating remote sensing systems or when calculating the...

  1. SMAPVEX08 Vegetation Water Content Map V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Vegetation Water Content (VWC) map for the Soil Moisture Active Passive Validation Experiment 2008 (SMAPVEX08) was derived by calculating Normalized Difference...

  2. Nitrates and nitrites content of water boreholes and packaged water ...

    African Journals Online (AJOL)

    Nitrate and nitrite levels were determined in forty-three water samples obtained from different locations in Calabar using colorimetric methods. Twenty-three of these samples were packaged water while twenty were borehole water. Nitrate levels were found to be 24.28 ± 9.30μg/ml and 34.57 ± 14.56µ/ml for packaged water ...

  3. Rapid myelin water content mapping on clinical MR systems

    International Nuclear Information System (INIS)

    Tonkova, Vyara; Arhelger, Volker; Schenk, Jochen; Neeb, Heiko; Koblenz Univ.

    2012-01-01

    We present an algorithm for the fast mapping of myelin water content using standard multiecho gradient echo acquisitions of the human brain. The method extents a previously published approach for the simultaneous measurement of brain T 1 , T * 2 and total water content. Employing the multiexponential T * 2 decay signal of myelinated tissue, myelin water content was measured based on the quantification of two water pools ('myelin water' and 'rest') with different relaxation times. As the existing protocol was focussed on the fast mapping of quantitative MR parameters with whole brain coverage in clinically relevant measurement times, the sampling density of the T * 2 curve was compromised to 10 echo times with a T Emax of approx. 40 ms. Therefore, pool amplitudes were determined using a quadratic optimisation approach. The optimisation was constrained by including a priori knowledge about brain water pools. All constraints were optimised in a simulation study to minimise systematic error sources given the incomplete knowledge about the real pool-specific relaxation properties. Based on the simulation results, whole brain in vivo myelin water content maps were acquired in 10 healthy controls and one subject with multiple sclerosis. The in vivo results obtained were consistent with previous reports which demonstrates that a simultaneous whole brain mapping of T 1 , T * 2 , total and myelin water content is feasible on almost any modern MR scanner in less than 10 minutes. (orig.)

  4. Soil water and mineral nitrogen content as influenced by crop ...

    African Journals Online (AJOL)

    ) and wheat–medic rotation (McWMcW) and tillage, conventional-till (CT), minimum-till (MT), no-till (NT) and zero-till (ZT) were studied. Crop rotation did not influence soil moisture content. Soil water content in CT tended to be lower compared ...

  5. Impact of the addition of different plant residues on nitrogen mineralization-immobilization turnover and carbon content of a soil incubated under laboratory conditions

    Science.gov (United States)

    Kaleeem Abbasi, M.; Tahir, M. Mahmood; Sabir, N.; Khurshid, M.

    2015-02-01

    Application of plant residues as soil amendment may represent a valuable recycling strategy that affects carbon (C) and nitrogen (N) cycling in soil-plant systems. The amount and rate of nutrient release from plant residues depend on their quality characteristics and biochemical composition. A laboratory incubation experiment was conducted for 120 days under controlled conditions (25 °C and 58% water-filled pore space) to quantify initial biochemical composition and N mineralization of leguminous and non-leguminous plant residues, i.e., the roots, shoots and leaves of Glycine max, Trifolium repens, Zea mays, Populus euramericana, Robinia pseudoacacia and Elaeagnus umbellata, incorporated into the soil at the rate of 200 mg residue N kg-1 soil. The diverse plant residues showed a wide variation in total N, C, lignin, polyphenols and C / N ratio with higher polyphenol content in the leaves and higher lignin content in the roots. The shoot of Glycine max and the shoot and root of Trifolium repens displayed continuous mineralization by releasing a maximum of 109.8, 74.8 and 72.5 mg N kg-1 and representing a 55, 37 and 36% recovery of N that had been released from these added resources. The roots of Glycine max and Zea mays and the shoot of Zea mays showed continuous negative values throughout the incubation. After an initial immobilization, leaves of Populus euramericana, Robinia pseudoacacia and Elaeagnus umbellata exhibited net mineralization by releasing a maximum of 31.8, 63.1 and 65.1 mg N kg-1, respectively, and representing a 16, 32 and 33% N recovery, respectively. Nitrogen mineralization from all the treatments was positively correlated with the initial residue N contents (r = 0.89; p ≤ 0.01) and negatively correlated with lignin content (r = -0.84; p ≤ 0.01), C / N ratio (r = -0.69; p ≤ 0.05), lignin / N ratio (r = -0.68; p ≤ 0.05), polyphenol / N ratio (r = -0.73; p ≤ 0.05) and (lignin + polyphenol) : N ratio (r = -0.70; p ≤ 0.05) indicating a

  6. Impact of the addition of different plant residues on carbon-nitrogen content and nitrogen mineralization-immobilization turnover in a soil incubated under laboratory conditions

    Science.gov (United States)

    Abbasi, M. K.; Tahir, M. M.; Sabir, N.; Khurshid, M.

    2014-10-01

    Application of plant residues as soil amendment may represent a valuable recycling strategy that affects on carbon (C) and nitrogen (N) cycling, soil properties improvement and plant growth promotion. The amount and rate of nutrient release from plant residues depend on their quality characteristics and biochemical composition. A laboratory incubation experiment was conducted for 120 days under controlled conditions (25 °C and 58% water filled pore space (WFPS)) to quantify initial biochemical composition and N mineralization of leguminous and non-leguminous plant residues i.e. the roots, shoots and leaves of Glycine max, Trifolium repens, Zea mays, Poplus euramericana, Rubinia pseudoacacia and Elagnus umbellate incorporated into the soil at the rate of 200 mg residue N kg-1 soil. The diverse plant residues showed wide variation in total N, carbon, lignin, polyphenols and C/N ratio with higher polyphenol content in the leaves and higher lignin content in the roots. The shoot of G. max and the shoot and root of T. repens displayed continuous mineralization by releasing a maximum of 109.8, 74.8 and 72.5 mg N kg-1 and representing a 55, 37 and 36% of added N being released from these resources. The roots of G. max and Z. mays and the shoot of Z. mays showed continuous negative values throughout the incubation showing net immobilization. After an initial immobilization, leaves of P. euramericana, R. pseudoacacia and E. umbellate exhibited net mineralization by releasing a maximum of 31.8, 63.1 and 65.1 mg N kg-1, respectively and representing a 16, 32 and 33% of added N being released. Nitrogen mineralization from all the treatments was positively correlated with the initial residue N contents (r = 0.89; p ≤ 0.01), and negatively correlated with lignin content (r = -0.84; p ≤ 0.01), C/N ratio (r = -0.69; p ≤ 0.05), lignin/N ratio (r = -0.68; p ≤ 0.05), polyphenol/N ratio (r = -0.73; p ≤ 0.05) and ligin + polyphenol/N ratio (r = -0.70; p ≤ 0.05) indicating

  7. Pesticide residues and microbial contamination of water resources in the MUDA rice agroecosystem

    International Nuclear Information System (INIS)

    Cheah Uan Boh; Lum Keng Yeang

    2002-01-01

    Studies on the water resources of the Muda rice growing areas revealed evidence of pesticide residues in the agroecosystem. While the cyclodiene endosulfan was found as a ubiquitous contaminant, the occurrence of other organochlorine insecticides was sporadic. The presence of 2,4-D, paraquat and molinate residues was also evident but the occurrence of these herbicides was seasonal. Residue levels of molinate were generally higher than those from the other herbicides. The problem of thiobencarb and carbofuran residues was not encountered. Analyses for microbial contamination revealed that the water resources were unfit for drinking; coliform counts were higher during certain periods of the year than others. (Author)

  8. Deposition behavior of residual aluminum in drinking water distribution system: Effect of aluminum speciation.

    Science.gov (United States)

    Zhang, Yue; Shi, Baoyou; Zhao, Yuanyuan; Yan, Mingquan; Lytle, Darren A; Wang, Dongsheng

    2016-04-01

    Finished drinking water usually contains some residual aluminum. The deposition of residual aluminum in distribution systems and potential release back to the drinking water could significantly influence the water quality at consumer taps. A preliminary analysis of aluminum content in cast iron pipe corrosion scales and loose deposits demonstrated that aluminum deposition on distribution pipe surfaces could be excessive for water treated by aluminum coagulants including polyaluminum chloride (PACl). In this work, the deposition features of different aluminum species in PACl were investigated by simulated coil-pipe test, batch reactor test and quartz crystal microbalance with dissipation monitoring. The deposition amount of non-polymeric aluminum species was the least, and its deposition layer was soft and hydrated, which indicated the possible formation of amorphous Al(OH)3. Al13 had the highest deposition tendency, and the deposition layer was rigid and much less hydrated, which indicated that the deposited aluminum might possess regular structure and self-aggregation of Al13 could be the main deposition mechanism. While for Al30, its deposition was relatively slower and deposited aluminum amount was relatively less compared with Al13. However, the total deposited mass of Al30 was much higher than that of Al13, which was attributed to the deposition of particulate aluminum matters with much higher hydration state. Compared with stationary condition, stirring could significantly enhance the deposition process, while the effect of pH on deposition was relatively weak in the near neutral range of 6.7 to 8.7. Copyright © 2015. Published by Elsevier B.V.

  9. Problems of estimation of water content history of loesses

    International Nuclear Information System (INIS)

    Rendell, H.M.

    1983-01-01

    The estimation of 'mean water content' is a major source of error in the TL dating of many sediments. The engineering behaviour of loesses can be used, under certain circumstances, to interfer their content history. The construction of 'stress history' for particular loesses is therefore proposed in order to establish the critical conditions of moisture and applied stress (overburden) at which irreversible structural change occurs. A programme of field and laboratory tests should enable more precise estimates of water content history to be made. (author)

  10. Soil water repellency under stones, forest residue mulch and bare soil following wildfire.

    Science.gov (United States)

    Martins, Martinho A. S.; Prats, Sérgio A.; van Keulen, Daan; Vieira, Diana C. S.; Silva, Flávio C.; Keizer, Jan J.; Verheijen, Frank G. A.

    2017-04-01

    Soil water repellency (SWR) is a physical property that is commonly defined as the aptitude of soil to resist wetting. It has been documented for a wide range of soil and vegetation types, and can vary with soil organic matter (SOM) content and type, soil texture, soil moisture content (SMC) and soil temperature. Fire can induce, enhance or destroy SWR and, therefore, lead to considerable changes in soil water infiltration and storage and increase soil erosion by water, thereby weakening soil quality. In Portugal, wildfires occur frequently and affect large areas, on average some 100000 ha per year, but over 300000 ha in extreme years such as 2003 and 2005. This can have important implications in geomorphological and hydrological processes, as evidenced by the strong and sometimes extreme responses in post-fire runoff and erosion reported from various parts of the world, including Portugal. Thereby, the application of mulches from various materials to cover burned areas has been found to be an efficient stabilization treatment. However, little is known about possible side effects on SWR, especially long term effects. Forest SWR is very heterogeneous, as a result of variation in proximity to trees/shrubs, litter type and thickness, cracks, roots, and stones. This study targeted the spatial heterogeneity of soil water repellency under eucalypt plantation, five years after a wildfire and forest residue mulching application. The main objectives of this work were: 1) to assess the long-term effect of mulching application on the strength and spatial heterogeneity of topsoil SWR, by comparing SWR on bare soil, under stones, and under mulching remains; 2) to assess SWR at 1 cm depth between O and Ah horizons. The soil surface results showed that untreated bare soil areas were slightly more water repellent than mulched areas. However, under stones there were no SWR differences between mulched and control areas. At 1 cm depth, there was a marked mulching effect on SWR, even

  11. Spectroscopic determination of leaf water content using linear ...

    African Journals Online (AJOL)

    In order to detect crop water status with fast, non-destructive monitoring based on its spectral characteristics, this study measured 33 groups of peach tree leaf reflectance spectra (350 to 1075 nm). Linear regression and backpropagation artificial neural network methods were used to establish peach tree leaf water content ...

  12. Spectroscopic determination of leaf water content using linear ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-02-02

    Feb 2, 2012 ... Linear regression and backpropagation artificial neural network methods were used to establish peach tree leaf water content ... Key words: Spectroscopy, crop water, linear regression, artificial neural network. INTRODUCTION .... Simple linear regression is the most basic modeling approach; because the ...

  13. MR-visible brain water content in human acute stroke

    DEFF Research Database (Denmark)

    Gideon, P; Rosenbaum, S; Sperling, B

    1999-01-01

    Quantification of metabolite concentrations by proton magnetic resonance spectroscopy (1H-MRS) in the human brain using water as an internal standard is based on the assumption that water content does not change significantly in pathologic brain tissue. To test this, we used 1H-MRS to estimate...

  14. Effect of residual Al content on microstructure and mechanical properties of Grade B+Steel for castings for locomotives

    Directory of Open Access Journals (Sweden)

    Wang Kaifeng

    2013-11-01

    Full Text Available The bogie made of Grade B+ steel is one of the most important parts of heavy haul trains. Some accidents were found to be the result of fracture failure of the bogies. It is very important to find the reason why the fracture failure occurred. Because Al was added for the final deoxidation during the smelting process of the Grade B+Steel, residual Al existed to some extent in the castings. High residual Al content in the bogie casting was presumed to be the reason for the fracture. In this work, the influence of residual Al content in the range of 0.015wt.% to 0.3wt.% on the microstructure and mechanical properties of the Grade B+ Steel was studied. The experimental results showed that when the residual Al content is between 0.02wt.% and 0.20wt.%, the mechanical properties of the steel meet the requirements of technical specification for heavy haul train parts, and the fracture is typical plastic fractures. If the residual Al content is less than 0.02wt.%, the microstructures are coarse, and the mechanical properties can not meet the demand of bogie steel castings. When the residual Al content is more than 0.2wt.%, the elongation, reduction of area, and low-temperature impact energy markedly deteriorate. The fracture mode then changes from plastic fracture to cleavage brittle fracture. Therefore, the amount of Al addition for the final deoxidation during the smelting process must be strictly controlled. The optimum addition amount needs to be controlled within the range of 0.02wt.% to 0.20wt.% for the Grade B+Steel.

  15. Effect of microwave postpolymerization treatment on residual monomer content and the flexural strength of autopolymerizing reline resin.

    Science.gov (United States)

    Patil, Padmakar S; Chowdhary, Ramesh; Mandokar, Rashmi B

    2009-01-01

    Microwave postpolymerization has been suggested as a method to improve the flexural strength of an autopolymerizing denture reline resin. However, the effect of microwave postpolymerization on the residual monomer content and its influence on flexural strength have not been investigated. This study analyzed the effect of microwave postpolymerization on the residual monomer content and its influence on the flexural strength of an autopolymerizing reline resin (Denture Liner). A total of 70 specimens (64 Chi 10 Chi 3.3 mm) were polymerized according to the manufacturer's instructions and divided into 7 groups (n = 10). Control group specimens were not subjected to any further processing. Before testing, the specimens were subjected to postpolymerization in a microwave oven using different power (550 and 650 W) and time (3, 4, and 5 min) settings. Two specimens of each group were then manually ground into fine powder and samples extracted from the specimens using reflux method. The samples were then subjected to gas chromatography for residual monomer determination in area%. Eight specimens were subjected to a three-point bending device with a span of 50 mm and crosshead speed of 5 mm/min, and the flexural strength was determined in MPa. Data analyses included Student's t-test and one-way analysis of variance. For the Denture Liner reline resin, the residual monomer content decreased and the flexural strength increased significantly with the application of microwave irradiation using different time/power combinations. The specimens with the lowest residual monomer content were the similar specimens which presented with the highest flexural strength. Microwave postpolymerization irradiation can be an effective method for increasing the flexural strength of denture liner (at 650 W for 5 min) by reducing the residual monomer content by further polymerization at free radical sites.

  16. Effect of microwave postpolymerization treatment on residual monomer content and the flexural strength of autopolymerizing reline resin

    Directory of Open Access Journals (Sweden)

    Patil Padmakar

    2009-01-01

    Full Text Available Background : Microwave postpolymerization has been suggested as a method to improve the flexural strength of an autopolymerizing denture reline resin. However, the effect of microwave postpolymerization on the residual monomer content and its influence on flexural strength have not been investigated. Objectives : This study analyzed the effect of microwave postpolymerization on the residual monomer content and its influence on the flexural strength of an autopolymerizing reline resin (Denture Liner. Materials and Methods : A total of 70 specimens (64 Χ 10 Χ 3.3 mm were polymerized according to the manufacturer′s instructions and divided into 7 groups (n = 10. Control group specimens were not subjectedto any further processing. Before testing, the specimens were subjected to postpolymerization in a microwave oven using different power (550 and 650 W and time (3, 4, and 5 min settings. Two specimens of each group were then manually ground into fine powder and samples extracted from the specimens using reflux method. The samples were then subjected to gas chromatography for residual monomer determination in area%. Eight specimens were subjected to a three-point bending device with a span of 50 mm and crosshead speed of 5 mm/min, and the flexural strength was determined in MPa. Data analyses included Student′s t-test and one-way analysis of variance. Results : For the Denture Liner reline resin, the residual monomer content decreased and the flexural strength increased significantly with the application of microwave irradiation using different time/power combinations. The specimens with the lowest residual monomer content were the similar specimens which presented with the highest flexural strength. Conclusion : Microwave postpolymerization irradiation can be an effective method for increasing the flexural strength of denture liner (at 650 W for 5 min by reducing the residual monomer content by further polymerization at free radical sites.

  17. Effect of Groundwater Iron on Residual Chlorine in Water Treated with Sodium Dichloroisocyanurate Tablets in Rural Bangladesh.

    Science.gov (United States)

    Naser, Abu Mohd; Higgins, Eilidh M; Arman, Shaila; Ercumen, Ayse; Ashraf, Sania; Das, Kishor K; Rahman, Mahbubur; Luby, Stephen P; Unicomb, Leanne

    2018-02-12

    We assessed the ability of sodium dichloroisocyanurate (NaDCC) to provide adequate chlorine residual when used to treat groundwater with variable iron concentration. We randomly selected 654 tube wells from nine subdistricts in central Bangladesh to measure groundwater iron concentration and corresponding residual-free chlorine after treating 10 L of groundwater with a 33-mg-NaDCC tablet. We assessed geographical variations of iron concentration using the Kruskal-Wallis test and examined the relationships between the iron concentrations and chlorine residual by quantile regression. We also assessed whether user-reported iron taste in water and staining of storage vessels can capture the presence of iron greater than 3 mg/L (the World Health Organization threshold). The median iron concentration among measured wells was 0.91 (interquartile range [IQR]: 0.36-2.01) mg/L and free residual chlorine was 1.3 (IQR: 0.6-1.7) mg/L. The groundwater iron content varied even within small geographical regions. The median free residual chlorine decreased by 0.29 mg/L (95% confidence interval: 0.27, 0.33, P 3 mg/L iron in water. Similar findings were observed for user-reported iron taste in water. Our findings reconfirm that chlorination of groundwater that contains iron may result in low-level or no residual. User reports of no iron taste or no staining of storage containers can be used to identify low-iron tube wells suitable for chlorination. Furthermore, research is needed to develop a color-graded visual scale for iron staining that corresponds to different iron concentrations in water.

  18. Auto Detection For High Level Water Content For Oil Well

    Science.gov (United States)

    Janier, Josefina Barnachea; Jumaludin, Zainul Arifin B.

    2010-06-01

    Auto detection of high level water content for oil well is a system that measures the percentage of water in crude oil. This paper aims to discuss an auto detection system for measuring the content of water level in crude oil which is applicable for offshore and onshore oil operations. Data regarding water level content from wells can be determined by using automation thus, well with high water level can be determined immediately whether to be closed or not from operations. Theoretically the system measures the percentage of two- fluid mixture where the fluids have different electrical conductivities which are water and crude oil. The system made use of grid sensor which is a grid pattern like of horizontal and vertical wires. When water occupies the space at the intersection of vertical and horizontal wires, an electrical signal is detected which proved that water completed the circuit path in the system. The electrical signals are counted whereas the percentage of water is determined from the total electrical signals detected over electrical signals provided. Simulation of the system using the MultiSIM showed that the system provided the desired result.

  19. Soil Water Content Sensor Response to Organic Matter Content under Laboratory Conditions

    Science.gov (United States)

    Fares, Ali; Awal, Ripendra; Bayabil, Haimanote K.

    2016-01-01

    Studies show that the performance of soil water content monitoring (SWCM) sensors is affected by soil physical and chemical properties. However, the effect of organic matter on SWCM sensor responses remains less understood. Therefore, the objectives of this study are to (i) assess the effect of organic matter on the accuracy and precision of SWCM sensors using a commercially available soil water content monitoring sensor; and (ii) account for the organic matter effect on the sensor’s accuracy. Sand columns with seven rates of oven-dried sawdust (2%, 4%, 6%, 8%, 10%, 12% and 18% v/v, used as an organic matter amendment), thoroughly mixed with quartz sand, and a control without sawdust were prepared by packing quartz sand in two-liter glass containers. Sand was purposely chosen because of the absence of any organic matter or salinity, and also because sand has a relatively low cation exchange capacity that will not interfere with the treatment effect of the current work. Sensor readings (raw counts) were monitored at seven water content levels (0, 0.02, 0.04, 0.08, 0.12, 0.18, 0.24, and 0.30 cm3 cm−3) by uniformly adding the corresponding volumes of deionized water in addition to the oven-dry one. Sensor readings were significantly (p Sensor readings were strongly correlated with the organic matter level (R2 = 0.92). In addition, the default calibration equation underestimated the water content readings at the lower water content range (0.05 cm3 cm−3). A new polynomial calibration equation that uses raw count and organic matter content as covariates improved the accuracy of the sensor (RMSE = 0.01 cm3 cm−3). Overall, findings of this study highlight the need to account for the effect of soil organic matter content to improve the accuracy and precision of the tested sensor under different soils and environmental conditions. PMID:27527185

  20. Effects of moisture content of food waste on residue separation, larval growth and larval survival in black soldier fly bioconversion.

    Science.gov (United States)

    Cheng, Jack Y K; Chiu, Sam L H; Lo, Irene M C

    2017-09-01

    In order to foster sustainable management of food waste, innovations in food waste valorization technologies are crucial. Black soldier fly (BSF) bioconversion is an emerging technology that can turn food waste into high-protein fish feed through the use of BSF larvae. The conventional method of BSF bioconversion is to feed BSF larvae with food waste directly without any moisture adjustment. However, it was reported that difficulty has been experienced in the separation of the residue (larval excreta and undigested material) from the insect biomass due to excessive moisture. In addition to the residue separation problem, the moisture content of the food waste may also affect the growth and survival aspects of BSF larvae. This study aims to determine the most suitable moisture content of food waste that can improve residue separation as well as evaluate the effects of the moisture content of food waste on larval growth and survival. In this study, pre-consumer and post-consumer food waste with different moisture content (70%, 75% and 80%) was fed to BSF larvae in a temperature-controlled rotary drum reactor. The results show that the residue can be effectively separated from the insect biomass by sieving using a 2.36mm sieve, for both types of food waste at 70% and 75% moisture content. However, sieving of the residue was not feasible for food waste at 80% moisture content. On the other hand, reduced moisture content of food waste was found to slow down larval growth. Hence, there is a trade-off between the sieving efficiency of the residue and the larval growth rate. Furthermore, the larval survival rate was not affected by the moisture content of food waste. A high larval survival rate of at least 95% was achieved using a temperature-controlled rotary drum reactor for all treatment groups. The study provides valuable insights for the waste management industry on understanding the effects of moisture content when employing BSF bioconversion for food waste recycling

  1. A Laboratory Investigation on Shear Strength Behavior of Sandy Soil: Effect of Glass Fiber and Clinker Residue Content

    Science.gov (United States)

    Bouaricha, Leyla; Henni, Ahmed Djafar; Lancelot, Laurent

    2017-12-01

    A study was undertaken to investigate the shear strength parameters of treated sands reinforced with randomly distributed glass fibers by carrying out direct shear test after seven days curing periods. Firstly, we studied the fiber content and fiber length effect on the peak shear strength on samples. The second part gives a parametric analysis on the effect of glass fiber and clinker residue content on the shear strength parameters for two types of uniform Algerian sands having different particle sizes (Chlef sand and Rass sand) with an average relative density Dr = 50%. Finally, the test results show that the combination of glass fiber and clinker residue content can effectively improve the shear strength parameters of soil in comparison with unreinforced soil. For instance, there is a significant gain for the cohesion and friction angle of reinforced sand of Chlef. Compared to unreinforced sand, the cohesion for sand reinforced with different ratios of clinker residue increased by 4.36 to 43.08 kPa for Chlef sand and by 3.1 to 28.64 kPa for Rass sand. The feature friction angles increased from 38.73° to 43.01° (+4.28°), and after the treatment, clinker residue content of soil evaluated to 5% (WRC = 5%).

  2. A Laboratory Investigation on Shear Strength Behavior of Sandy Soil: Effect of Glass Fiber and Clinker Residue Content

    Directory of Open Access Journals (Sweden)

    Bouaricha Leyla

    2017-12-01

    Full Text Available A study was undertaken to investigate the shear strength parameters of treated sands reinforced with randomly distributed glass fibers by carrying out direct shear test after seven days curing periods. Firstly, we studied the fiber content and fiber length effect on the peak shear strength on samples. The second part gives a parametric analysis on the effect of glass fiber and clinker residue content on the shear strength parameters for two types of uniform Algerian sands having different particle sizes (Chlef sand and Rass sand with an average relative density Dr = 50%. Finally, the test results show that the combination of glass fiber and clinker residue content can effectively improve the shear strength parameters of soil in comparison with unreinforced soil. For instance, there is a significant gain for the cohesion and friction angle of reinforced sand of Chlef. Compared to unreinforced sand, the cohesion for sand reinforced with different ratios of clinker residue increased by 4.36 to 43.08 kPa for Chlef sand and by 3.1 to 28.64 kPa for Rass sand. The feature friction angles increased from 38.73° to 43.01° (+4.28°, and after the treatment, clinker residue content of soil evaluated to 5% (WRC = 5%.

  3. Thermoanalytical and starch content evaluation of cassava bagasse as agro-industrial residue

    Directory of Open Access Journals (Sweden)

    Luiz Gustavo Lacerda

    2009-11-01

    Full Text Available Starch nutritional fractions as well as thermal properties and other analysis are essential for food and industrial application. Cassava bagasse is an important agro-industrial residue and its starch content was evaluated using two alternative methods. Thermal characterization and microscopy analyses helped to understand how hydrolysis digests starchy fraction of cassava bagasse. The melting point of cassava starch occurred at 169.2ºC. Regarding TG analyses, after moisture content, there were observed two main mass losses for all samples. Results suggest hydrolysis carried out using enzyme is less effective in order to convert total starch content in cassava bagasse. However, using sulfuric acid, fibers are affected by analyses conditions.As frações nutricionais bem como as propriedades térmicas e outras análises são essenciais para a indústria de alimentos e suas aplicações O bagaço de mandioca é um importante resíduo agroindustrial e seu teor de amido foi avaliado por dois métodos alternativos. A caracterização por análise térmica e microscopia ajudou na compreensão de como a hidrólise digere a fração amilácea do bagaço de mandioca, O ponto de fusão foi de 170ºC, a análise termogravimétrica (TG mostrou após a perda de umidade do material, duas principais perdas de massa em todas as amostras analisadas. Os resultados sugerem que a hidrólise enzimática é menos eficiente na conversão total de amido no bagaço de mandioca. No entanto, o uso de ácido sulfúrico degradou até mesmo a parcela fibrosa do material, afetando as condições de análise.

  4. High Water Contents in the Siberian Cratonic Mantle: An FTIR Study of Udachnaya Peridotite Xenoliths

    Science.gov (United States)

    Doucet, Luc S.; Peslier, Anne H.; Ionov, Dimitri A.; Brandon, Alan D.; Golovin, Alexander V.; Ashchepkov, Igor V.

    2013-01-01

    Water is believed to be a key factor controlling the long-term stability of cratonic lithosphere, but mechanisms responsible for the water content distribution in the mantle remain poorly constrained. Water contents were obtained by FTIR in olivine, pyroxene and garnet for 20 well-characterized peridotite xenoliths from the Udachnaya kimberlite (central Siberian craton) and equilibrated at 2-7 GPa. Water contents in minerals do not appear to be related to interaction with the host kimberlite. Diffusion modeling indicates that the core of olivines preserved their original water contents. The Udachnaya peridotites show a broad range of water contents in olivine (6.5 +/- 1.1 to 323 +- 65 ppm H2O (2 sigma)), and garnet (0 - 23 +/- 6 ppm H2O). The water contents of olivine and garnet are positively correlated with modal clinopyroxene, garnet and FeO in olivine. Water-rich garnets are also rich in middle rare earth elements. This is interpreted as the result of interaction between residual peridotites and water rich-melts, consistent with modal and cryptic metasomatism evidenced in the Siberian cratonic mantle. The most water-rich Udachnaya minerals contain 2 to 3 times more water than those from the Kaapvaal craton, the only craton with an intact mantle root for which water data is available. The highest water contents in olivine and orthopyroxene in this study (>= 300 ppm) are found at the bottom of the lithosphere (> 6.5 GPa). This is in contrast with the Kaapvaal craton where the olivines of peridotites equilibrated at > 6.4 GPa have peridotites at > 6 GPa is lower or similar (8.4× 10(exp 16) to 8.0× 10(exp 18) Pa./s) to that of the asthenosphere (peridotites are likely not representative of the overall Siberian cratonic lithosphere. Their composition is linked to spatially limited melt metasomatism in mantle regions above asthenospheric upwellings responsible for the kimberlite magmatism prior to their ascent and eruption.

  5. Influence of salinity and water content on soil microorganisms

    Directory of Open Access Journals (Sweden)

    Nan Yan

    2015-12-01

    Full Text Available Salinization is one of the most serious land degradation problems facing world. Salinity results in poor plant growth and low soil microbial activity due to osmotic stress and toxic ions. Soil microorganisms play a pivotal role in soils through mineralization of organic matter into plant available nutrients. Therefore it is important to maintain high microbial activity in soils. Salinity tolerant soil microbes counteract osmotic stress by synthesizing osmolytes which allows them to maintain their cell turgor and metabolism. Osmotic potential is a function of the salt concentration in the soil solution and therefore affected by both salinity (measured as electrical conductivity at a certain water content and soil water content. Soil salinity and water content vary in time and space. Understanding the effect of changes in salinity and water content on soil microorganisms is important for crop production, sustainable land use and rehabilitation of saline soils. In this review, the effects of soil salinity and water content on microbes are discussed to guide future research into management of saline soils.

  6. Leaf Relative Water Content Estimated from Leaf Reflectance and Transmittance

    Science.gov (United States)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2016-01-01

    Remotely sensing the water status of plants and the water content of canopies remain long term goals of remote sensing research. In the research we report here, we used optical polarization techniques to monitor the light reflected from the leaf interior, R, as well as the leaf transmittance, T, as the relative water content (RWC) of corn (Zea mays) leaves decreased. Our results show that R and T both change nonlinearly. The result show that the nonlinearities cancel in the ratio R/T, which appears linearly related to RWC for RWC less than 90%. The results suggest that potentially leaf water status and perhaps even canopy water status could be monitored starting from leaf and canopy optical measurements.

  7. Computational fluid dynamics (CFD) analysis of the combustion process of a leather residuals gasification fuel gas: influence of fuel moisture content

    Energy Technology Data Exchange (ETDEWEB)

    Antonietti, Anderson Jose; Beskow, Arthur Bortolin; Silva, Cristiano Vitorino da [Universidade Regional Integrada do Alto Uruguai e das Missoes (URI), Erechim, RS (Brazil)], E-mails: arthur@uricer.edu.br, mlsperb@unisinos.br; Indrusiak, Maria Luiza Sperb [Universidade do Vale do Rio dos Sinos (UNISINOS), Sao Leopoldo, RS (Brazil)], E-mail: cristiano@uricer.edu.br

    2010-07-01

    This work presents a numerical study of the combustion process of leather residuals gasification gas, aiming the improvement of the process efficiency, considering different concentrations of water on the gas. The heating produced in this combustion process can be used to generation of thermal and/or electrical energy, for use at the leather industrial plant. However, the direct burning of this leather-residual-gas into the chambers is not straightforward. The alternative in development consists in processing this leather residuals by gasification or pyrolysis, separating the volatiles and products of incomplete combustion, for after use as fuel in a boiler. At these processes, different quantities of water can be used, resulting at different levels of moisture content in this fuel gas. This humidity can affect significantly the burning of this fuel, producing unburnt gases, as the carbon monoxide, or toxic gases as NOx, which must have their production minimized on the process, with the purpose of reducing the emission of pollutants to the atmosphere. Other environment-harmful-gases, remaining of the chemical treatment employed at leather manufacture, as cyanide, and hydrocarbons as toluene, must burn too, and the moisture content has influence on it. At this way, to increase understanding of the influence of moisture in the combustion process, it was made a numerical investigation study of reacting flow in the furnace, evaluating the temperature field, the chemical species concentration fields, flow mechanics and heat transfer at the process. The commercial CFD code CFX Ansys Inc. was used. Considering different moisture contents in the fuel used on the combustion process, with this study was possible to achieve the most efficient burning operation parameters, with improvement of combustion efficiency, and reduction of environmental harmful gases emissions. It was verified that the different moisture contents in the fuel gas demand different operation conditions

  8. Activation of peroxymonosulfate using drinking water treatment residuals for the degradation of atrazine.

    Science.gov (United States)

    Zhang, Huijuan; Liu, Xitao; Ma, Jun; Lin, Chunye; Qi, Chengdu; Li, Xiaowan; Zhou, Zhou; Fan, Guoxuan

    2018-02-15

    Drinking water treatment residuals (WTRs) are safe byproducts of water treatment plants containing iron. This work studies the degradation of atrazine (ATZ) by WTR-catalyzed peroxymonosulfate (PMS) in aqueous solutions. Factors that affect the catalytic performance (the PMS concentration, catalyst dose, initial solution pH, reaction temperature and water matrix species) were investigated. The results show that the catalytic degradation efficiency of ATZ increases with the increase in PMS concentration and temperature, whereas a higher content of WTRs results in lower removal efficiency because of the quenching effect and negative effect of high pH. For an initial solution pH of 3 and 5, 94.1% and 87.4% of ATZ degradation can be achieved within 6h, whereas the value is only 26% for pH of 7. The production of sulfate radicals (SO 4 - ) and hydroxyl radicals (OH) was confirmed by classic radical quenching and electron spin resonance (ESR) tests. Based on the GC-MS and LC-MS results, the main degradation pathways of ATZ may contain dealkylation, dechlorination-hydroxylation, and alkyl chain oxidation processes. In addition to the ATZ removal ability, the WTRs/PMS system can simultaneously remove phosphorus. This article provides a new idea for wastewater treatment and usage of WTRs as a resource. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A method for the determination of residual beta activity in drinking water samples

    Energy Technology Data Exchange (ETDEWEB)

    Idoeta, R. [Dpto. Ingenieria Nuclear y Mecanica de Fluidos, E. T. S. Ingenieria de Bilbao - Universidad del Pais Vasco (UPV/EHU), Alda. Urquijo s/n. 48013 Bilbao (Spain)], E-mail: raquel.idoeta@ehu.es; Herranz, M.; Abelairas, A.; Legarda, F. [Dpto. Ingenieria Nuclear y Mecanica de Fluidos, E. T. S. Ingenieria de Bilbao - Universidad del Pais Vasco (UPV/EHU), Alda. Urquijo s/n. 48013 Bilbao (Spain)

    2007-09-15

    The determination of residual beta activity in drinking water is usually needed in most monitoring programs. In this work a procedure for its determination is described and expressions for the calculations of detection limits and uncertainties are proposed.

  10. A method for the determination of residual beta activity in drinking water samples

    International Nuclear Information System (INIS)

    Idoeta, R.; Herranz, M.; Abelairas, A.; Legarda, F.

    2007-01-01

    The determination of residual beta activity in drinking water is usually needed in most monitoring programs. In this work a procedure for its determination is described and expressions for the calculations of detection limits and uncertainties are proposed

  11. Cloud Water Content Sensor for Sounding Balloons and Small UAVs

    Science.gov (United States)

    Bognar, John A.

    2009-01-01

    A lightweight, battery-powered sensor was developed for measuring cloud water content, which is the amount of liquid or solid water present in a cloud, generally expressed as grams of water per cubic meter. This sensor has near-zero power consumption and can be flown on standard sounding balloons and small, unmanned aerial vehicles (UAVs). The amount of solid or liquid water is important to the study of atmospheric processes and behavior. Previous sensing techniques relied on strongly heating the incoming air, which requires a major energy input that cannot be achieved on sounding balloons or small UAVs.

  12. Sources of manganese in the residue from a water treatment plant ...

    African Journals Online (AJOL)

    Disposal of water treatment residue (WTR), the by-product from the production of potable water, has traditionally been to landfill. The shortage of suitable landfill sites has led to the proposal that WTR be applied to land. Such disposal is only possible if the WTR contains no toxic elements that may contaminate soil, water or ...

  13. Assessing microbiological water quality in drinking water distribution systems with disinfectant residual using flow cytometry.

    Science.gov (United States)

    Gillespie, Simon; Lipphaus, Patrick; Green, James; Parsons, Simon; Weir, Paul; Juskowiak, Kes; Jefferson, Bruce; Jarvis, Peter; Nocker, Andreas

    2014-11-15

    Flow cytometry (FCM) as a diagnostic tool for enumeration and characterization of microorganisms is rapidly gaining popularity and is increasingly applied in the water industry. In this study we applied the method to obtain a better understanding of total and intact cell concentrations in three different drinking water distribution systems (one using chlorine and two using chloramines as secondary disinfectants). Chloramine tended to result in lower proportions of intact cells than chlorine over a wider residual range, in agreement with existing knowledge that chloramine suppresses regrowth more efficiently. For chlorinated systems, free chlorine concentrations above 0.5 mg L(-1) were found to be associated with relatively low proportions of intact cells, whereas lower disinfectant levels could result in substantially higher percentages of intact cells. The threshold for chlorinated systems is in good agreement with guidelines from the World Health Organization. The fact that the vast majority of samples failing the regulatory coliform standard also showed elevated proportions of intact cells suggests that this parameter might be useful for evaluating risk of failure. Another interesting parameter for judging the microbiological status of water, the biological regrowth potential, greatly varied among different finished waters providing potential help for investment decisions. For its measurement, a simple method was introduced that can easily be performed by water utilities with FCM capability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Removal of metal ions from contaminated water using agricultural residues

    Science.gov (United States)

    Roger M. Rowell

    2006-01-01

    As the world population grows, there is a growing awareness that our environment is getting more polluted. Clean water is becoming a critical issue for many parts of the world for human, animal and agricultural use. Filtration systems to clean our air and water are a growing industry. There are many approaches to removing contaminates from our water supply ranging from...

  15. Organochlorine pesticides in residues in waters from the coastal ...

    African Journals Online (AJOL)

    Tanzania Journal of Science ... There was a marked difference in the frequency of pesticide residue detection during the dry and wet seasons. All the wet season samples and 37.5% of the dry season samples revealed presence of p,p-DDE at concentrations ranging from 0.05 to 0.45 mgl-1 and 0.08 to 0.20 mgl-1 ...

  16. Content of the essential and other elements in residues left over after fermentation in a biogas plant

    Directory of Open Access Journals (Sweden)

    Tešić Miloš

    2012-01-01

    Full Text Available The chemical composition of the residues left over after fermentation in a biogas plant depended on the source material that was used. The dry matter content in the liquid residue ranged from 4.83 to 6.82%, pH from 7.80 to 8.20, whereas the content of organic matter in the dry matter of the liquid residue varied from 72.33 to 80.30%. Ash content varied from 19.70 to 27.67%, nitrogen from 2.84 to 3.92%, phosphorus from 0.51 to 0.62%, potassium from 5.07 to 6.86%, calcium from 1.77 to 2.35%, and magnesium from 0.26 to 0.30%. Concentrations of essential micronutrients (Fe, Cu, Mn, Zn and Ni and Cd and Pb varied within the limits laid out to dry matter of manure. Concentrations of heavy metals were significantly lower than the MAC in the dry matter of fertilizers. Based on the above it can be concluded that the residue left over after fermentation in a biogas plant is, by its chemical properties, suitable organic fertilizer that may be used not only in conventional but also in organic crop production.

  17. MR-visible brain water content in human acute stroke

    DEFF Research Database (Denmark)

    Gideon, P; Rosenbaum, S; Sperling, B

    1999-01-01

    Quantification of metabolite concentrations by proton magnetic resonance spectroscopy (1H-MRS) in the human brain using water as an internal standard is based on the assumption that water content does not change significantly in pathologic brain tissue. To test this, we used 1H-MRS to estimate...... brain water content during the course of cerebral infarction. Measurements were performed serially in the acute, subacute, and chronic phase of infarction. Fourteen patients with acute cerebral infarction were examined as well as 9 healthy controls. To correlate with regional cerebral blood flow (r......CBF) SPECT-scanning using 99mTc-HMPAO as flow tracer was performed in the patients. Mean water content (SD) in the infarct area was 37.7 (5.1); 41.8 (4.8); 35.2 (5.4); and 39.3 (5.1) mol x [kg wet weight](-1) at 0-3; 4-7; 8-21; and >180 days after stroke, respectively. Water content increased between Day 0...

  18. Stable isotope content of South African river water

    International Nuclear Information System (INIS)

    Talma, A.S.

    1987-01-01

    Variations of the isotopic ratios 18 O/ 16 O and D/H in natural waters reflect the variety of processes to which the water was subjected within the hydrological cycle. Time series of the 18 O content of the major South African rivers over a few years have been obtained in order to characterise the main features of these variations in both time and space. Regionally the average '1 8 O content of river water reflects that of the prevailing rains within the catchment. 18 O variations with time are mainly correlated with river flow rates. Impoundments upstream and management of river flows reduce this correlation. Isotope variations along the course of a river show the effects of inflow from smaller streams and evaporation in the river or its impoundments. These observations indicate the use of isotopic methods to study the evaporation and mixing of river water and its interaction with the surrounding environment

  19. Effect of residual Al content on microstructure and mechanical properties of Grade B+Steel for castings for locomotives

    OpenAIRE

    Wang Kaifeng; Guo Erjun; Cao Guojian

    2013-01-01

    The bogie made of Grade B+ steel is one of the most important parts of heavy haul trains. Some accidents were found to be the result of fracture failure of the bogies. It is very important to find the reason why the fracture failure occurred. Because Al was added for the final deoxidation during the smelting process of the Grade B+Steel, residual Al existed to some extent in the castings. High residual Al content in the bogie casting was presumed to be the reason for the fracture. In this wor...

  20. Field, laboratory and estimated soil-water content limits

    African Journals Online (AJOL)

    2005-01-21

    Jan 21, 2005 ... pressure pot (-50 and -100 kPa) and pressure chamber at -1 500. kPa and the soil-water content was .... -10 kPa, a pressure pot was used for matric potentials between. -50 and -100 kPa and a pressure chamber .... In clay soils, since the pore-size distribution is more uniform, more of the water is adsorbed, ...

  1. K-Basins particulate water content, and behavior

    International Nuclear Information System (INIS)

    DUNCAN, D.R.

    1999-01-01

    This analysis summarizes the state of knowledge of K-basins spent nuclear fuel oxide (film, particulate or sludge) and its chemically bound water in order to estimate the associated multi-canister overpack (MCO) water inventory and to describe particulate dehydration behavior. This information can be used to evaluate the thermal and chemical history of an MCO and its contents during cold vacuum drying (CVD), shipping, and interim storage

  2. K-Basins particulate water content, and behavior

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN, D.R.

    1999-02-25

    This analysis summarizes the state of knowledge of K-basins spent nuclear fuel oxide (film, particulate or sludge) and its chemically bound water in order to estimate the associated multi-canister overpack (MCO) water inventory and to describe particulate dehydration behavior. This information can be used to evaluate the thermal and chemical history of an MCO and its contents during cold vacuum drying (CVD), shipping, and interim storage.

  3. Using advanced oxidation treatment for biofilm inactivation by varying water vapor content in air plasma

    Science.gov (United States)

    Ryota, Suganuma; Koichi, Yasuoka

    2015-09-01

    Biofilms are caused by environmental degradation in food factories and medical facilities. The inactivation of biofilms involves making them react with chemicals including chlorine, hydrogen peroxide, and ozone, although inactivation using chemicals has a potential problem because of the hazardous properties of the residual substance and hydrogen peroxide, which have slow reaction velocity. We successfully performed an advanced oxidation process (AOP) using air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were generated by varying the amount of water vapor supplied to the plasma. By varying the content of the water included in the air, the main product was changed from air plasma. When we increased the water content in the air, hydrogen peroxide was produced, while ozone peroxide was produced when we decreased the water content in the air. By varying the amount of water vapor, we realized a 99.9% reduction in the amount of bacteria in the biofilm when we discharged humidified air only. This work was supported by JSPS KAKENHI Grant Number 25630104.

  4. Role of iron and aluminum coagulant metal residuals and lead release from drinking water pipe materials.

    Science.gov (United States)

    Knowles, Alisha D; Nguyen, Caroline K; Edwards, Marc A; Stoddart, Amina; McIlwain, Brad; Gagnon, Graham A

    2015-01-01

    Bench-scale experiments investigated the role of iron and aluminum residuals in lead release in a low alkalinity and high (> 0.5) chloride-to-sulfate mass ratio (CSMR) in water. Lead leaching was examined for two lead-bearing plumbing materials, including harvested lead pipe and new lead: tin solder, after exposure to water with simulated aluminum sulfate, polyaluminum chloride and ferric sulfate coagulation treatments with 1-25-μM levels of iron or aluminum residuals in the water. The release of lead from systems with harvested lead pipe was highly correlated with levels of residual aluminum or iron present in samples (R(2) = 0.66-0.88), consistent with sorption of lead onto the aluminum and iron hydroxides during stagnation. The results indicate that aluminum and iron coagulant residuals, at levels complying with recommended guidelines, can sometimes play a significant role in lead mobilization from premise plumbing.

  5. Variation in foliar water content and hyperspectral reflectance of ...

    African Journals Online (AJOL)

    Sirex noctilio, the Eurasian wood wasp, is one of the major pests responsible for declining forest health in pine forests located in KwaZulu-Natal, South Africa. Researchers have shown that stress induced by S. noctilio causes a rapid decrease in foliar water content, with the foliage of the tree changing from a dark green to a ...

  6. Mapping soil water content on golf course greens with GPR

    Science.gov (United States)

    Ground-penetrating radar (GPR) can be an effective and efficient method for high-resolution mapping of volumetric water content in the sand layer directly beneath the ground surface at a golf course green. This information could potentially be very useful to golf course superintendents for determi...

  7. Influence of free water content on the compressive mechanical ...

    Indian Academy of Sciences (India)

    indicates that the similarity exists in the shape of strain–stress curves of cement mor- tars with different water content, the upward section of the stress–strain curve shows bilinear characteristics, while the descending stage (softening state) is almost linear. The dynamic compressive strength of cement mortar increased with ...

  8. Pedotransfer functions to estimate soil water content at field capacity ...

    Indian Academy of Sciences (India)

    Priyabrata Santra

    2018-03-27

    Mar 27, 2018 ... Pedotransfer functions to estimate soil water content at field capacity and permanent wilting point in hot Arid Western India. Priyabrata Santra1,*, Mahesh Kumar1, R N Kumawat1, D K Painuli1,. K M Hati2, G B M Heuvelink3 and N H Batjes. 3. 1. ICAR-Central Arid Zone Research Institute (CAZRI), Jodhpur ...

  9. influence of molding water content on shear strength characteristic

    African Journals Online (AJOL)

    eobe

    INFLUENCE OF MOLDING WATER CONTENT ON SHEAR STRENGTH OF COMPACTED CEMENT KILN DUST, K. J. Osinub. K. J. Osinub. K. J. Osinubi, et al. Nigerian Journal of Technology,. Vol. 34, No. 2, April 2015 267 pavements or as waste containment materials. Therefore, recent studies have been geared towards.

  10. Influence of Molding Water Content on Shear Strength Characteristic ...

    African Journals Online (AJOL)

    A laboratory investigation was carried out to determine the shear strength characteristics of compacted cement kiln dust treated lateritic soils for use in liners and covers with up to 12.5% cement kiln dust by dry weight of soil. Specimens were prepared at molding water contents of -2, 0, +2 and +4% of the optimum moisture ...

  11. pesticide residues in water from tpc sugarcane plantations

    African Journals Online (AJOL)

    ABSTRACT. We report herein, the analysis of water samples collected from TPC Sugarcane Plantation and its environs in Kilimanjaro region, which is the earliest intensive user of pesticides in Tanzania. A total of 50 water samples collected from 18 sampling sites between 2000 and 2001 were analyzed for pesticide ...

  12. Observed reflectivities and liquid water content for marine stratocumulus

    Science.gov (United States)

    Coakley, J. A., Jr.; Snider, J. B.

    1989-01-01

    Simultaneous observations of cloud liquid water content and cloud reflectivity are used to verify their parametric relationship in a manner consistent with simple parameterizations often used in general-circulation climate models. The column amount of cloud liquid water was measured with a microwave radiometer on San Nicolas Island as described by Hogg et al., (1983). Cloud reflectivity was obtained through spatial coherence analysis of AVHRR imagery data as per Coakley and Baldwin (1984) and Coakley and Beckner (1988). The dependence of the observed reflectivity on the observed liquid water is discussed, and this empirical relationship is compared with the parameterization proposed by Stephens (1978).

  13. Estimates of Leaf Relative Water Content from Optical Polarization Measurements

    Science.gov (United States)

    Dahlgren, R. P.; Vanderbilt, V. C.; Daughtry, C. S. T.

    2017-12-01

    Remotely sensing the water status of plant canopies remains a long term goal of remote sensing research. Existing approaches to remotely sensing canopy water status, such as the Crop Water Stress Index (CWSI) and the Equivalent Water Thickness (EWT), have limitations. The CWSI, based upon remotely sensing canopy radiant temperature in the thermal infrared spectral region, does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWT is based upon the physics of water-light interaction in the 900-2000nm spectral region, not plant physiology. Our goal, development of a remote sensing technique for estimating plant water status based upon measurements in the VIS/NIR spectral region, would potentially provide remote sensing access to plant dehydration physiology - to the cellular photochemistry and structural changes associated with water deficits in leaves. In this research, we used optical, crossed polarization filters to measure the VIS/NIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, for 78 corn (Zea mays) and soybean (Glycine max) leaves having relative water contents (RWC) between 0.60 and 0.98. Our results show that as RWC decreases R increases while T decreases. Our results tie R and T changes in the VIS/NIR to leaf physiological changes - linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf - and perhaps of a plant canopy - might be possible in the future.

  14. The water content of recurring slope lineae on Mars

    Science.gov (United States)

    Edwards, Christopher S.; Piqueux, Sylvain

    2016-01-01

    Observations of recurring slope lineae (RSL) from the High-Resolution Imaging Science Experiment have been interpreted as present-day, seasonally variable liquid water flows; however, orbital spectroscopy has not confirmed the presence of liquid H2O, only hydrated salts. Thermal Emission Imaging System (THEMIS) temperature data and a numerical heat transfer model definitively constrain the amount of water associated with RSL. Surface temperature differences between RSL-bearing and dry RSL-free terrains are consistent with no water associated with RSL and, based on measurement uncertainties, limit the water content of RSL to at most 0.5–3 wt %. In addition, distinct high thermal inertia regolith signatures expected with crust-forming evaporitic salt deposits from cyclical briny water flows are not observed, indicating low water salinity (if any) and/or low enough volumes to prevent their formation. Alternatively, observed salts may be preexisting in soils at low abundances (i.e., near or below detection limits) and largely immobile. These RSL-rich surfaces experience ~100 K diurnal temperature oscillations, possible freeze/thaw cycles and/or complete evaporation on time scales that challenge their habitability potential. The unique surface temperature measurements provided by THEMIS are consistent with a dry RSL hypothesis or at least significantly limit the water content of Martian RSL.

  15. A method of obtaining signal components of residual carrier signal with their power content and computer simulation

    Science.gov (United States)

    Kantak, Anil V.

    1993-01-01

    A novel algorithm to obtain all signal components of a residual carrier signal with any number of channels is presented. The phase modulation type may be NRZ-L or split phase (Manchester). The algorithm also provides a simple way to obtain the power contents of the signal components. Steps to recognize the signal components that influence the carrier tracking loop and the data tracking loop at the receiver are given. A computer program for numerical computation is also provided.

  16. Water contents of clinopyroxenes from sub-arc mantle peridotites

    Science.gov (United States)

    Turner, Michael; Turner, Simon; Blatter, Dawnika; Maury, Rene; Perfit, Michael; Yogodzinski, Gene

    2017-01-01

    One poorly constrained reservoir of the Earth's water budget is that of clinopyroxene in metasomatised, mantle peridotites. This study presents reconnaissance Sensitive High-Resolution, Ion Microprobe–Stable Isotope (SHRIMP–SI) determinations of the H2O contents of (dominantly) clinopyroxenes in rare mantle xenoliths from four different subduction zones, i.e. Mexico, Kamchatka, Philippines, and New Britain (Tabar-Feni island chain) as well as one intra-plate setting (western Victoria). All of the sub-arc xenoliths have been metasomatised and carry strong arc trace element signatures. Average measured H2O contents of the pyroxenes range from 70 ppm to 510 ppm whereas calculated bulk H2O contents range from 88 ppm to 3 737 ppm if the variable presence of amphibole is taken into account. In contrast, the intra-plate, continental mantle xenolith from western Victoria has higher water contents (3 447 ppm) but was metasomatised by alkali and/or carbonatitic melts and does not carry a subduction-related signature. Material similar to the sub-arc peridotites can either be accreted to the base of the lithosphere or potentially be transported by convection deeper into the mantle where it will lose water due to amphibole breakdown.

  17. The Comparison of Doxycycline Residue in the Meat of Broiler Chickens Administered in Feed and Water

    OpenAIRE

    Wijayanti, A D; Wihandoyo,; Rosetyadewi, A W

    2011-01-01

    The purpose of this research was to investigate the effect of doxycycline (a tetracycline derivative) administered at disease-prevention dose given daily in the feed and drinking water on the residue level in the broiler-chicken meat. Doxycycline at concentration of 100 ppm was mixed in the drinking water (1 g of doxycycline in 10 L of drinking water) and feed (1 g of doxycycline in 10 kg of feed). Samples of chicken meat were taken every week to measure their residue level. Analysis of doxyc...

  18. Assessment of heavy metal residues in water, fish tissue and human ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    ABSTRACT: Residual levels of lead, chromium, cadmium and zinc in water and fish tissue from. Ubeji River, Warri and blood samples from residents of Ubeji were analysed. Control water and fish samples were obtained from Eleyele River and blood from residents of Ibadan. All the samples collected were digested using a ...

  19. Metal contents in Rawal lake water and fish

    International Nuclear Information System (INIS)

    Chaudhary, M.Z.; Mashiatullah, A.; Javed, T.; Khan, E.U.

    2009-01-01

    Concentration of metals (Al, Fe, Mn, As, Sr, Zn, Cd, Cr, Cu, Pb, Ni, and Co) were measured in Rawal lake water and fish. The objective of the study was to determine metal load in Rawal lake water and fish. Physiochemical characteristics of the lake water were also determined. Rawal lake was monitored at 12 sites in three profiles. At each station, water samples were collected from surface, middle and bottom column. Results of the study revealed that water quality of Rawal Lake, in terms of physiochemical characteristics (pH, electrical conductivity, total dissolved solids and alkalinity), is satisfactory and the values of these parameters are within permissible water quality limits. Metal concentrations at different stations varied widely because these are carried into the lake from different sources. However, in lake water, average As is found in high concentration while average contents of Al, Fe, Mn, Sr and Zn were within WHO permissible limits. Ni, Cd, Cr, Cu, Co and Pb were below detection limit (< 0.001 mu g/ml). In general, metal ions concentration increased with water column depth which indicates that metal ions originated from weathering. Metal ions in two species of fish (Labeo rohita and Tor species) were higher than the levels found in water. The study concludes that increasing population in catchments Zone of Rawal Lake must be regularized and there should be some management policy to check further increase in the number of poultry and agro farms in the catchments zones. (author)

  20. Using grain-size characteristics to model soil water content: Application to dose-rate calculation for luminescence dating

    International Nuclear Information System (INIS)

    Nelson, Michelle S.; Rittenour, Tammy M.

    2015-01-01

    Soil moisture is an important factor for dose-rate determination in luminescence and other dating methods as soil water content impacts sediment bulk density, alters rates of chemical reactions and attenuates effective exposure to nuclear radiation from the surrounding sediments and incoming cosmic rays. Given its importance in dose-rate calculation, methods for measuring and modeling soil water content are discussed, with special focus on semi-arid environments and other situations where modern in situ values are unlikely to be representative of mean soil moisture conditions. We present an alternative method for calculating sediment water content based on grain-size characteristics using the freely available Rosetta Lite v.1.1 software. Modeled outputs include saturation, residual and other water retention curve (WRC) parameters. WRCs were generated from model outputs using the van Genuchten (1980) equation, and mean annual water state was determined using soil moisture regime maps and classifications. Dose-rate values using modeled outputs and laboratory-measured in situ and saturation water content are compared in a test case using Holocene alluvial sediments from Kanab Creek in southern Utah, USA. Best practices for how to estimate mean annual water state for different soil moisture regimes and past soil moisture content in situations where in situ values are not representative of the burial history are discussed. - Highlights: • Using grain size characteristics to generate water retention curves. • Saturation water content was estimated using laboratory and computer modeling. • In situ water content is compared with the model outputs. • Dose-rate variability with new water content estimates is evaluated.

  1. Experimental determination of residual stress by neutron diffraction in a boiling water reactor core shroud

    International Nuclear Information System (INIS)

    Payzant, A.; Spooner, S.; Zhu, Xiaojing; Hubbard, C.R.

    1996-01-01

    Residual strains in a 51 mm (2-inch) thick 304L stainless steel plate have been measured by neutron diffraction and interpreted in terms of residual stress. The plate, measuring (300 mm) in area, was removed from a 6m (20-ft.) diameter unirradiated boiling water reactor core shroud, and included a multiple-pass horizontal weld which joined two of the cylindrical shells which comprise the core shroud. Residual stress mapping was undertaken in the heat affected zone, concentrating on the outside half of the plate thickness. Variations in residual stresses with location appeared consistent with trends expected from finite element calculations, considering that a large fraction of the residual hoop stress was released upon removal of the plate from the core shroud cylinder

  2. Stabilization of Aley river water content by forest stands

    Directory of Open Access Journals (Sweden)

    E. G. Paramonov

    2016-06-01

    Full Text Available Aley river basin is one of the most developed territories in West Siberia. Initially, the development here was related to the development of ore mining in the Altai. Currently it is associated mainly with the agricultural orientation of economic development. The intensive involvement of basin lands into the economic turnover for the last 100 years contributed to the formation of a number of environmental problems, such as water and wind erosion, loss of soil fertility and salinization, and desertification of the territory. Besides, the decrease of Aley river water content due to natural and anthropogenic reasons was observed. A specific feature of water management in Aley river basin is a significant amount of water resources used for irrigation purposes and agricultural water supply. To ensure the economic and drinking water supply, two reservoirs and a number of ponds have been constructed and operate in the basin. Forest ecosystems of the basin are considered from the viewpoint of preservation and restoration of small rivers. The ability of forest to accumulate solid precipitation and intercept them during the snowmelt for a longer time reduces the surface drainage and promotes transfer into the subsurface flow, significantly influencing the water content of permanent watercourses, is shown. The state of protective forest plantations in Aley river basin is analyzed. Aley river tributaries are compared by area, the length of water flow, and forest coverage of the basin. It is proposed to regulate the runoff through drastic actions on the increase of forest cover in the plain and especially in the mountainous parts of the basin. Measures to increase the forest cover within water protection zones, afforestation of temporary and permanent river basins, and the protection of agricultural soil fertility are worked out.

  3. Effect of Soil Water Content on the Distribution of Diuron into Organomineral Aggregates of Highly Weathered Tropical Soils.

    Science.gov (United States)

    Regitano, Jussara B; Rocha, Wadson S D; Bonfleur, Eloana J; Milori, Debora; Alleoni, Luís R F

    2016-05-25

    We evaluated the effects of soil water content on the retention of diuron and its residual distribution into organomineral aggregates in four Brazilian oxisols. (14)C-Diuron was incubated for days at 25, 50, and 75% of maximum water-holding capacity for each soil. After 42 days, the physical fractionation method was used to obtain >150, 53-150, 20-53, 2-20, and Diuron retention increased with increasing soil water content for all soils. At lower soil water content, diuron's retention was higher in the sandier soil. It was mostly retained in the fine (53 μm). The sorption coefficients (Kd and Koc) generated by batch studies should be carefully used because they do not provide information about aggregation and diffusion effects on pesticides soil sorption.

  4. Influence of digestion methods on the recovery of Iron, Zinc, Nickel, Chromium, Cadmium and Lead contents in 11 organic residues

    Directory of Open Access Journals (Sweden)

    Thalita Fernanda Abbruzzini

    2014-02-01

    Full Text Available There are currently many devices and techniques to quantify trace elements (TEs in various matrices, but their efficacy is dependent on the digestion methods (DMs employed in the opening of such matrices which, although "organic", present inorganic components which are difficult to solubilize. This study was carried out to evaluate the recovery of Fe, Zn, Cr, Ni, Cd and Pb contents in samples of composts and cattle, horse, chicken, quail, and swine manures, as well as in sewage sludges and peat. The DMs employed were acid digestion in microwaves with HNO3 (EPA 3051A; nitric-perchloric digestion with HNO3 + HClO4 in a digestion block (NP; dry ashing in a muffle furnace and solubilization of residual ash in nitric acid (MDA; digestion by using aqua regia solution (HCl:HNO3 in the digestion block (AR; and acid digestion with HCl and HNO3 + H2O2 (EPA 3050. The dry ashing method led to the greatest recovery of Cd in organic residues, but the EPA 3050 protocol can be an alternative method for the same purpose. The dry ashing should not be employed to determine the concentration of Cr, Fe, Ni, Pb and Zn in the residues. Higher Cr and Fe contents are recovered when NP and EPA 3050 are employed in the opening of organic matrices. For most of the residues analyzed, AR is the most effective method for recovering Ni. Microwave-assisted digestion methods (EPA3051 and 3050 led to the highest recovery of Pb. The choice of the DM that provides maximum recovery of Zn depends on the organic residue and trace element analyzed.

  5. Effect of the soil water content on Jatropha seedlings in a tropical climate

    Science.gov (United States)

    Pérez-Vázquez, A.; Hernández-Salinas, G.; Ávila-Reséndiz, C.; Valdés-Rodríguez, O. A.; Gallardo-López, F.; García-Pérez, E.; Ruiz-Rosado, O.

    2013-09-01

    The purpose of this study was to evaluate growth, chlorophyll content, and photosynthesis in Jatropha at different levels of soil moisture. Plants were cultivated in containers and the treatments of the soil water content evaluated were: 0% (without watering), 20, 40, 60, and 80% soil water content. Plant height was statistically similar for all treatments, but the number of leaves differed significantly. Total dry matter and chlorophyll at 40, 60, and 80% soil water content were statistically similar, but different from 0 and 20% soil water content. Leaf area at 40, 60, and 80% soil water content was statistically different from 0 and 20% soil water content. The photosynthetic rate, transpiration and stomatal conductance at 60 and 80% soil water content were statistically similar but different from 0 and 20% soil water content. Water stress affected growth, chlorophyll content, photosynthetic rate, transpiration, and stomatal conductance.

  6. Simultaneous measurement of unfrozen water content and ice content in frozen soil using gamma ray attenuation and TDR

    Science.gov (United States)

    Zhou, Xiaohai; Zhou, Jian; Kinzelbach, Wolfgang; Stauffer, Fritz

    2014-12-01

    The freezing temperature of water in soil is not constant but varies over a range determined by soil texture. Consequently, the amounts of unfrozen water and ice change with temperature in frozen soil, which in turn affects hydraulic, thermal, and mechanical properties of frozen soil. In this paper, an Am-241 gamma ray source and time-domain reflectometry (TDR) were combined to measure unfrozen water content and ice content in frozen soil simultaneously. The gamma ray attenuation was used to determine total water content. The TDR was used to determine the dielectric constant of the frozen soil. Based on a four-phase mixing model, the amount of unfrozen water content in the frozen soil could be determined. The ice content was inferred by the difference between total water content and unfrozen water content. The gamma ray attenuation and the TDR were both calibrated by a gravimetric method. Water contents measured by gamma ray attenuation and TDR in an unfrozen silt column under infiltration were compared and showed that the two methods have the same accuracy and response to changes of water content. Unidirectional column freezing experiments were performed to apply the combined method of gamma ray attenuation and TDR for measuring unfrozen water content and ice content. The measurement error of the gamma ray attenuation and TDR was around 0.02 and 0.01 m3/m3, respectively. The overestimation of unfrozen water in frozen soil by TDR alone was quantified and found to depend on the amount of ice content. The higher the ice content, the larger the overestimation. The study confirmed that the combined method could accurately determine unfrozen water content and ice content in frozen soil. The results of soil column freezing experiments indicate that total water content distribution is affected by available pore space and the freezing front advance rate. It was found that there is similarity between the soil water characteristic and the soil freezing characteristic of

  7. Intramolecular cyclization of aspartic acid residues assisted by three water molecules: a density functional theory study

    Science.gov (United States)

    Takahashi, Ohgi; Kirikoshi, Ryota

    2014-01-01

    Aspartic acid (Asp) residues in peptides and proteins (l-Asp) are known to undergo spontaneous nonenzymatic reactions to form l-β-Asp, d-Asp, and d-β-Asp residues. The formation of these abnormal Asp residues in proteins may affect their three-dimensional structures and hence their properties and functions. Indeed, the reactions have been thought to contribute to aging and pathologies. Most of the above reactions of the l-Asp residues proceed via a cyclic succinimide intermediate. In this paper, a novel three-water-assisted mechanism is proposed for cyclization of an Asp residue (forming a gem-diol precursor of the succinimide) by the B3LYP/6-31 + G(d,p) density functional theory calculations carried out for an Asp-containing model compound (Ace-Asp-Nme, where Ace = acetyl and Nme = NHCH3). The three water molecules act as catalysts by mediating ‘long-range’ proton transfers. In the proposed mechanism, the amide group on the C-terminal side of the Asp residue is first converted to the tautomeric iminol form (iminolization). Then, reorientation of a water molecule and a conformational change occur successively, followed by the nucleophilic attack of the iminol nitrogen on the carboxyl carbon of the Asp side chain to form the gem-diol species. A satisfactory agreement was obtained between the calculated and experimental energetics.

  8. Determination of the Ability to Measure Traces of Water in Dehydrated Residues of Waste Water by IR Diffuse Reflectance Spectra

    Science.gov (United States)

    Pratsenka, S. V.; Voropai, E. S.; Belkin, V. G.

    2018-01-01

    Rapid measurement of the moisture content of dehydrated residues is a critical problem, the solution of which will increase the efficiency of treatment facilities and optimize the process of applying flocculants. The ability to determine the moisture content of dehydrated residues using a meter operating on the IR reflectance principle was confirmed experimentally. The most suitable interference filters were selected based on an analysis of the obtained diffuse reflectance spectrum of the dehydrated residue in the range 1.0-2.7 μm. Calibration curves were constructed and compared for each filter set. A measuring filter with a transmittance maximum at 1.19 μm and a reference filter with a maximum at 1.3 μm gave the best agreement with the laboratory measurements.

  9. Influence of the initial soil water content on Beerkan water infiltration experiments

    Science.gov (United States)

    Lassabatere, L.; Loizeau, S.; Angulo-Jaramillo, R.; Winiarski, T.; Rossier, Y.; Delolme, C.; Gaudet, J. P.

    2012-04-01

    Understanding and modeling of water flow in the vadose zone are important with regards water management and infiltration devices design. Water infiltration process clearly depends on initial soil water content, in particular for sandy soils with high organic matter content. This study investigates the influence of initial water content on water infiltration in a hydrophobic sandy soil and on the related derivation of hydraulic parameters using the BEST algorithm (Lassabatere et al., 2006). The studied sandy soil has a high total organic content decreasing from 3.5% (w/w) at the surface to 0.5% (w/w) below 1cm depth. The highest TOC at surface was due to the presence of a dense biofilm and resulted in a high surface hydrophobicity under dry conditions (low initial water contents). The water infiltration experiments consisted in infiltrating known volumes of water through a simple ring at null pressure head (Beerkan method). The infiltrations were performed during three successive days after a dry period with a storm event between the first and the second day (5 mm) and another between the second and the third day (35 mm). These events resulted in an increase in initial water contents, from less than 5% for the first day to around 10% for the last day. Experiments were performed for appropriate conditions for Beerkan experiments: initial water contents below 1/4 of the saturated water content and uniform water profile resulting from water redistribution after each rainfall event. The analysis of the infiltration data clearly highlights the strong effect of hydrophobicity. For the driest initial conditions (first day), infiltration rates increased with time, whereas they decreased with time for wetter conditions. Such a decrease agreed with the principles of water infiltration without hydrophobicity. In addition, total cumulative infiltrations were far higher for the wettest conditions. Regarding hydraulic characterization, only the data obtained during the last

  10. Coulometry for the detection of water content in archaeological findings

    Directory of Open Access Journals (Sweden)

    Vincenza Crupi

    2016-06-01

    Full Text Available In the present work, we performed coulometric measurements to detect the water content in archaeological pottery in order to get information on the manufacture technique. The samples under study were the so-called "Ionian Cups" coming from various archaeological sites in eastern Sicily (South-Italy. In particular, we tentatively achieved the estimation of firing temperatures of the archaeological samples by comparing the coulometric results with those obtained in the case of raw materials fired under controlled conditions. The results were in good agreement with those previously obtained on the same samples by Small Angle Neutron Scattering (SANS. It is worth underlying that for the first time, the detection of water content as revealed by this analytical technique was related to archaeometric issues.

  11. Minimizing residual aluminum concentration in treated water by tailoring properties of polyaluminum coagulants

    OpenAIRE

    Kimura, Masaoki; Matsui, Yoshihiko; Kondo, Kenta; Ishikawa, Tairyo B.; Matsushita, Taku; Shirasaki, Nobutaka

    2013-01-01

    Aluminum coagulants are widely used in water treatment plants to remove turbidity and dissolved substances. However, because high aluminum concentrations in treated water are associated with increased turbidity and because aluminum exerts undeniable human health effects, its concentration should be controlled in water treatment plants, especially in plants that use aluminum coagulants. In this study, the effect of polyaluminum chloride (PACl) coagulant characteristics on dissolved residual al...

  12. 4.2.1. Water content: nuclear radiation methods

    International Nuclear Information System (INIS)

    Hooli, J.; Kasi, S.

    1975-01-01

    The radiometric methods of measuring the soil water distribution are presented. The neutron method consists of measuring the thermal neutron density around a fast neutron source. Since the moisture in the soil is usually the principle hydrogen compound the thermal neutron density is a function of the water content. The neutron gauge may be of the subsurface type, placed in a vertical access tube, or of the surface type, resting on the soil surface. Cf 252 is a useful neutron source, having low mean energy and being cheap. Tritium-target deuterium bombarded neutron generators may be used in large volume single or dual tube measurements. The hydrogen content of the dry soil matrix and the dry density profile should be determined. Epithermal measurements eliminate the effect of thermal neutron absorbers. The ideal access tube is of thin-walled aluminium, but this in many cases lacks the required strength and durability, and iron or stainless steel may be used. The measured volume ranges from 20cm to 110cm radius, and the resolution is limited to 30cm layers, with measurement intervals of 15cm. Gamma ray sources may also be used, both in single-well density gauges in conjunction with a neutron gauge, and in a dual-tube arrangement, measuring the water content by attenuation, using a Cs 137 source. This can give a resolution of down to 0.5cm, and an accuracy of 0.0015g/cm 3 . Finally radiation dose calculations are briefly discussed. (JIW)

  13. Plant Response to Differential Soil Water Content and Salinity

    Science.gov (United States)

    Moradi, A. B.; Dara, A.; Kamai, T.; Ngo, A.; Walker, R.; Hopmans, J. W.

    2011-12-01

    Root-zone soil water content is extremely dynamic, governed by complex and coupled processes such as root uptake, irrigation, evaporation, and leaching. Root uptake of water and nutrients is influenced by these conditions and the processes involved. Plant roots are living and functioning in a dynamic environment that is subjected to extreme changes over relatively short time and small distances. In order to better manage our agricultural resources and cope with increasing constraints of water limitation, environmental concerns and climate change, it is vital to understand plants responses to these changes in their environment. We grew chick pea (Cicer arietinum) plants, in boxes of 30 x 25 x 1 cm dimensions filled with fine sand. Layers of coarse sand (1.5 cm thick) were embedded in the fine-sand media to divide the root growth environment into sections that were hydraulically disconnected from each other. This way, each section could be independently treated with differential levels of water and salinity. The root growth and distribution in the soil was monitored on daily bases using neutron radiography. Daily water uptake was measured by weighing the containers. Changes of soil water content in each section of the containers were calculated from the neutron radiographs. Plants that part of their root system was stressed with drought or salinity showed no change in their daily water uptake rate. The roots in the stressed sections stayed turgid during the stress period and looked healthy in the neutron images. However the uptake rate was severely affected when the soil in the non-stressed section started to dry. The plants were then fully irrigated with water and the water uptake rate recovered to its initial rate shortly after irrigation. The neutron radiographs clearly illustrated the shrinkage and recovery of the roots under stress and the subsequent relief. This cycle was repeated a few times and the same trend could be reproduced. Our results show that plants

  14. Role of water content and water state in characterizing vasogenic brain edema

    International Nuclear Information System (INIS)

    Fatouros, P.P.; Kraft, K.A.; Inao, S.; Marmarou, A.; Clarke, G.D.; Kishore, P.R.S.

    1987-01-01

    Characterization of edematous brain tissue with MR imaging requires a knowledge of the water content and of the amount and type of protein present. The authors determined the frequency dependence of the hydration layer's T1 for gelatin solutions of different water concentrations by simultaneously measuring the relaxation rates (at 5, 41, 63, and 100 MHz) and the bound water fractions by differential scanning calorimetry. Similar measurements of different protein concentrations in serum were carried out at 100 MHz. The results indicate the critical role of both water content and protein concentration in the characterization of vasogenic edema and its ultimate resolution

  15. Impact of diurnal variation in vegetation water content on radar backscatter from maize during water stress

    NARCIS (Netherlands)

    Van Emmerik, T.H.M.; Dunne, S.C.; Judge, J.; van de Giesen, N.C.

    2014-01-01

    Microwave backscatter from vegetated surfaces is influenced by vegetation structure and vegetation water content (VWC), which varies with meteorological conditions and moisture in the root zone. Radar backscatter observations are used for many vegetation and soil moisture monitoring applications

  16. Monitoring water content in Opalinus Clay within the FE-Experiment: Test application of dielectric water content sensors

    Science.gov (United States)

    Sakaki, T.; Vogt, T.; Komatsu, M.; Müller, H. R.

    2013-12-01

    The spatiotemporal variation of water content in the near field rock around repository tunnels for radioactive waste in clay formations is one of the essential quantities to be monitored for safety assessment in many waste disposal programs. Reliable measurements of water content are important not only for the understanding and prediction of coupled hydraulic-mechanic processes that occur during tunnel construction and ventilation phase, but also for the understanding of coupled thermal-hydraulic-mechanical (THM) processes that take place in the host rock during the post closure phase of a repository tunnel for spent fuel and high level radioactive waste (SF/HLW). The host rock of the Swiss disposal concept for SF/HLW is the Opalinus Clay formation (age of approx. 175 Million years). To better understand the THM effects in a full-scale heater-engineered barrier-rock system in Opalinus Clay, a full-scale heater test, namely the Full-Scale Emplacement (FE) experiment, was initiated in 2010 at the Mont Terri underground rock laboratory in north-western Switzerland. The experiment is designed to simulate the THM evolution of a SF/HLW repository tunnel based on the Swiss disposal concept in a realistic manner during the construction, emplacement, backfilling, and post-closure phases. The entire experiment implementation (in a 50 m long gallery with approx. 3 m diameter) as well as the post-closure THM evolution will be monitored using a network of several hundred sensors. The sensors will be distributed in the host rock, the tunnel lining, the engineered barrier, which consists of bentonite pellets and blocks, and on the heaters. The excavation is completed and the tunnel is currently being ventilated. Measuring water content in partially saturated clay-rich high-salinity rock with a deformable grain skeleton is challenging. Therefore, we use the ventilation phase (before backfilling and heating) to examine the applicability of commercial water content sensors and to

  17. Regulations and decisions in environmental impact assessment of residues radioactivity content

    International Nuclear Information System (INIS)

    Santos, Adir Janete Godoy dos

    2005-01-01

    Surveillance of natural radionuclides in the environment did not have high priority over many years compared to that of man-made radioactivity. There is, however, an increasing interest in such measurements since enhanced exposure to natural radioactivity is receiving the same legal weight as any other radiation exposure. In this context the surveillance of technologically enhanced naturally occurring materials, called TENORM becomes important. In Brazil, the industries of processing and chemical compounds production were developed based on mining, milling, transformation and manufacture of ores from sedimentary origin, ignea or metamorphic, which must determine the radioactive composition of the generated solid wastes and residues. Many solids residues stored in the environment has been of environmental concern facing the industries and environmentalists in Brazil as it presents a potential threat to the surrounding environment and to individuals occupationally exposed. Radiation protection regulations have not been applied yet to these industries, as the Brazilian regulatory agency (Comissao Nacional de Energia Nuclear - CNEN) has only recently published a regulatory guide concerning mining and milling of naturally occurring radioactive materials, which may generate enhanced concentrations of radionuclides. With respect to external and internal exposure to natural radionuclides from the solid residues storage, the nuclides of 232 Th, 235 U and 238 U decay chains are relevant, due to the exposure of workers as well as of members of the public. Radionuclides released from a source can be present as ions, molecules, complexes, mononuclear or polynuclear species, colloids, pseudocolloids, particles or fragments varying in size (nominal molecular mass), structure, morphology, density, valence and charge properties. One of the main points in environmental impact assessment is to identify whether the chemical availability is under influence of these speciation

  18. Residual mercury content and leaching of mercury and silver from used amalgam capsules.

    Science.gov (United States)

    Stone, M E; Pederson, E D; Cohen, M E; Ragain, J C; Karaway, R S; Auxer, R A; Saluta, A R

    2002-06-01

    The objective of this investigation was to carry out residual mercury (Hg) determinations and toxicity characteristic leaching procedure (TCLP) analysis of used amalgam capsules. For residual Hg analysis, 25 capsules (20 capsules for one brand) from each of 10 different brands of amalgam were analyzed. Total residual Hg levels per capsule were determined using United States Environmental Protection Agency (USEPA) Method 7471. For TCLP analysis, 25 amalgam capsules for each of 10 brands were extracted using a modification of USEPA Method 1311. Hg analysis of the TCLP extracts was done with USEPA Method 7470A. Analysis of silver (Ag) concentrations in the TCLP extract was done with USEPA Method 6010B. Analysis of the residual Hg data resulted in the segregation of brands into three groups: Dispersalloy capsules, Group A, retained the most Hg (1.225 mg/capsule). These capsules were the only ones to include a pestle. Group B capsules, Valliant PhD, Optaloy II, Megalloy and Valliant Snap Set, retained the next highest amount of Hg (0.534-0.770 mg/capsule), and were characterized by a groove in the inside of the capsule. Group C, Tytin regular set double-spill, Tytin FC, Contour, Sybraloy regular set, and Tytin regular set single-spill retained the least amount of Hg (0.125-0.266 mg/capsule). TCLP analysis of the triturated capsules showed Sybraloy and Contour leached Hg at greater than the 0.2 mg/l Resource Conservation and Recovery Act (RCRA) limit. This study demonstrated that residual mercury may be related to capsule design features and that TCLP extracts from these capsules could, in some brands, exceed RCRA Hg limits, making their disposal problematic. At current RCRA limits, the leaching of Ag is not a problem.

  19. Ecotoxicological assessment of dewatered drinking water treatment residue for environmental recycling.

    Science.gov (United States)

    Yuan, Nannan; Wang, Changhui; Wendling, Laura A; Pei, Yuansheng

    2017-09-01

    The beneficial recycle of drinking water treatment residue (DWTR) in environmental remediation has been demonstrated in many reports. However, the lack of information concerning the potential toxicity of dewatered DWTR hinders its widespread use. The present study examined the ecotoxicity of dewatered aluminum (Al) and iron (Fe) DWTR leachates to a green alga, Chlorella vulgaris. Data from the variations of cell density and chlorophyll a content suggested that algal growth in DWTR leachates was inhibited. The algal cellular oxidation stress was initially induced but completely eliminated within 72 h by antioxidant enzymes. The expression of three photosynthesis-related algae genes (psaB, psbC, and rbcL) also temporarily decreased (within 72 h). Moreover, the algal cells showed intact cytomembranes after exposure to DWTR leachates. Further investigation confirmed that inhibition of algal growth was due to DWTR-induced phosphorus (P) deficiency in growth medium, rather than potentially toxic contaminants (e.g. copper and Al) contained in DWTR. Interestingly, the leachates could potentially promote algal growth via increasing the supply of new components (e.g. calcium, kalium, magnesium, and ammonia nitrogen) from DWTR. In summary, based on the algae toxicity test, the dewatered Fe/Al DWTR was nontoxic and its environment recycling does not represent an ecotoxicological risk to algae.

  20. (210)Pb content in natural gas pipeline residues ("black-powder") and its correlation with the chemical composition.

    Science.gov (United States)

    Godoy, José Marcus; Carvalho, Franciane; Cordilha, Aloisio; Matta, Luiz Ernesto; Godoy, Maria Luiza

    2005-01-01

    The present work was carried out to assess the (210)Pb content in "black-powder" found in pigging operations on gas pipelines in Brazil, in particular, on the Campos Basin gas pipeline. Additionally, the chemical composition of such deposits was determined and an eventual correlation with (210)Pb concentration evaluated. Typical "black-powder" generated in the natural gas pipeline from Campos Basin oilfield contains mainly iron oxide ( approximately 81%) and residual organic matter ( approximately 9%). The (210)Pb content ranges from 4.9 to 0.04k Bqkg(-1) and seems to be inversely correlated with the distance to the platforms. On the other hand, (226)Ra concentration is higher on the pipeline branch between the platform and the onshore installations. (228)Ra was only observed in few samples, in particular, in the samples with the highest (226)Ra content.

  1. Relationships among Water Use Efficiency, Grain Yield, Carbon Isotope Discrimination and Ash Content in Wheat under Different Mega-Environments and Water Regimes in China and India

    International Nuclear Information System (INIS)

    Monneveux, P.; Misra, S.; Xu, X.; Zhu, L.

    2012-01-01

    Positive correlations have been repeatedly reported between grain yield, carbon isotope discrimination (CID, Δ 13 C or Δ) and ash content in wheat cultivated under Mediterranean-type environments (characterized by post-anthesis water stress). The relationships among these traits have been much less analyzed under other wheat mega-environments. The present study examined the relationships between grain yield, Δ 13 C and ash content in wheat in Northern China (characterized by pre-anthesis water stress) and in the Peninsular Zone of India (characterized by residual moisture stress). In both mega-environments, wheat was grown under rain fed and irrigated conditions. The relationships between grain yield, Δ and ash content were less stable than under post-anthesis water stress, and were highly dependent on the quantity of water stored in the soil at sowing, which in turn depends on out-of-season rainfall. This considerably limits the use of Δ and ash content as indirect selection criteria for yield in these mega-environments. In India, the relationships between Δ, ash content and components of water use efficiency (WUE) (the latter were estimated from a soil water balance model) were also investigated. Significant correlations were found across environments between ash content in leaf and grain and the model estimates of the quantity of water transpired during the growth cycle. WUE was significantly negatively correlated with ash content in leaf and grain. Additional analyses of the relationships among grain yield, Δ and ash content, including soil moisture measurements over the growing period and/or estimation of water balance components, are needed in these mega-environments to define precisely the range of conditions leading to significant correlations and allowing the use of Δ and ash content as indirect selection criteria for yield. (author)

  2. Water content estimated from point scale to plot scale

    Science.gov (United States)

    Akyurek, Z.; Binley, A. M.; Demir, G.; Abgarmi, B.

    2017-12-01

    Soil moisture controls the portioning of rainfall into infiltration and runoff. Here we investigate measurements of soil moisture using a range of techniques spanning different spatial scales. In order to understand soil water content in a test basin, 512 km2 in area, in the south of Turkey, a Cosmic Ray CRS200B soil moisture probe was installed at elevation of 1459 m and an ML3 ThetaProbe (CS 616) soil moisture sensor was established at 5cm depth used to get continuous soil moisture. Neutron count measurements were corrected for the changes in atmospheric pressure, atmospheric water vapour and intensity of incoming neutron flux. The calibration of the volumetric soil moisture was performed, from the laboratory analysis, the bulk density varies between 1.719 (g/cm3) -1.390 (g/cm3), and the dominant soil texture is silty clay loam and silt loamThe water content reflectometer was calibrated for soil-specific conditions and soil moisture estimates were also corrected with respect to soil temperature. In order to characterize the subsurface, soil electrical resistivity tomography was used. Wenner and Schlumberger array geometries were used with electrode spacing varied from 1m- 5 m along 40 m and 200 m profiles. From the inversions of ERT data it is apparent that within 50 m distance from the CRS200B, the soil is moderately resistive to a depth of 2m and more conductive at greater depths. At greater distances from the CRS200B, the ERT results indicate more resistive soils. In addition to the ERT surveys, ground penetrating radar surveys using a common mid-point configuration was used with 200MHz antennas. The volumetric soil moisture obtained from GPR appears to overestimate those based on TDR observations. The values obtained from CS616 (at a point scale) and CRS200B (at a mesoscale) are compared with the values obtained at a plot scale. For the field study dates (20-22.06.2017) the volumetric moisture content obtained from CS616 were 25.14%, 25.22% and 25

  3. Specific determination of ferbam residues in fog-water.

    Science.gov (United States)

    Agarwal, Smita; Aggarwal, Shankar G; Singh, Pahup

    2003-12-23

    A specific method for the determination of a fungicide, i.e. iron(III) dimethyldithiocarbamate (ferbam) in fog-water samples is described. The method is based on the releasing of equivalent amount of iron from the fungicide and subsequently determination by spectrophotometrically or by flame-atomic absorption spectrometrically (flame-AAS). The fungicide was extracted with chloroform/toluene from the samples and digested with nitric acid. For spectrophotometric determination, the solution was then treated with ammonium thiocyanate solution in presence of the surfactants and absorbance was measured at 475 nm. Whereas, the digested solution was directly applied for flame-AAS determination of ferbam. The molar absorptivity in terms of ferbam was determined to be (3.49)x10(4) l mol(-1) cm(-1). The detection limits for spectrophotometric and flame-AAS methods were calculated to be 62 and 111 ppb ferbam (R.S.D. fog-water. The methods have been successfully applied to fog samples collected from agriculture sites of Raipur (central India).

  4. Estimation of the residual bromine concentration after disinfection of cooling water by statistical evaluation.

    Science.gov (United States)

    Megalopoulos, Fivos A; Ochsenkuehn-Petropoulou, Maria T

    2015-01-01

    A statistical model based on multiple linear regression is developed, to estimate the bromine residual that can be expected after the bromination of cooling water. Make-up water sampled from a power plant in the Greek territory was used for the creation of the various cooling water matrices under investigation. The amount of bromine fed to the circuit, as well as other important operational parameters such as concentration at the cooling tower, temperature, organic load and contact time are taken as the independent variables. It is found that the highest contribution to the model's predictive ability comes from cooling water's organic load concentration, followed by the amount of bromine fed to the circuit, the water's mean temperature, the duration of the bromination period and finally its conductivity. Comparison of the model results with the experimental data confirms its ability to predict residual bromine given specific bromination conditions.

  5. Impact of water renewal on the residual effect of larvicides in the control of Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Ricardo José Soares Pontes

    2010-03-01

    Full Text Available This study was carried out to evaluate the residual effect of three larvicides under laboratory conditions for 100 days in Aedes aegypti. The larval mortality rate was measured without water renewal or with daily water renewal (80%. With temephos, there was 100% mortality in both groups until the 70th day. In the Bacillus thuringiensis israelensis (Bti-WDG test, there was no difference during the first 20 days. With Bti-G, without water renewal, mortality was sustained above 90% for up to 35 days. The second experiment (with water renewal reduced the mortality to below 90% after the first 20 days. When renewed water was provided, the residual effect was significantly lower for all larvicides.

  6. Water calibration measurements for neutron radiography: Application to water content quantification in porous media

    Science.gov (United States)

    Kang, M.; Bilheux, H. Z.; Voisin, S.; Cheng, C. L.; Perfect, E.; Horita, J.; Warren, J. M.

    2013-04-01

    Using neutron radiography, the measurement of water thickness was performed using aluminum (Al) water calibration cells at the High Flux Isotope Reactor (HFIR) Cold-Guide (CG) 1D neutron imaging facility at Oak Ridge National Laboratory, Oak Ridge, TN, USA. Calibration of water thickness is an important step to accurately measure water contents in samples of interest. Neutron attenuation by water does not vary linearly with thickness mainly due to beam hardening and scattering effects. Transmission measurements for known water thicknesses in water calibration cells allow proper correction of the underestimation of water content due to these effects. As anticipated, strong scattering effects were observed for water thicknesses greater than 0.2 cm when the water calibration cells were positioned close to the face of the detector/scintillator (0 and 2.4 cm away, respectively). The water calibration cells were also positioned 24 cm away from the detector face. These measurements resulted in less scattering and this position (designated as the sample position) was used for the subsequent experimental determination of the neutron attenuation coefficient for water. Neutron radiographic images of moist Flint sand in rectangular and cylindrical containers acquired at the sample position were used to demonstrate the applicability of the water calibration. Cumulative changes in the water volumes within the sand columns during monotonic drainage determined by neutron radiography were compared with those recorded by direct reading from a burette connected to a hanging water column. In general, the neutron radiography data showed very good agreement with those obtained volumetrically using the hanging water-column method. These results allow extension of the calibration equation to the quantification of unknown water contents within other samples of porous media.

  7. The effect of water purification systems on fluoride content of drinking water

    Directory of Open Access Journals (Sweden)

    Prabhakar A

    2008-03-01

    Full Text Available Objective: The purpose of the present study was to determine the effect of different water purification systems on the fluoride content of drinking water and to compare the efficacy of these water purification systems in reducing the fluoride content. Materials and Methods: Five different water purification systems were tested in this study. They were reverse osmosis, distillation, activated carbon, Reviva ® , and candle filter. The water samples in the study were of two types, viz, borewell water and tap water, these being commonly used by the people of Davangere City, Karnataka. The samples were collected before and after purification, and fluoride analysis was done using fluoride ion-specific electrode. Results: The results showed that the systems based on reverse osmosis, viz, reverse osmosis system and Reviva ® showed maximum reduction in fluoride levels, the former proving to be more effective than the latter; followed by distillation and the activated carbon system, with the least reduction being brought about by candle filter. The amount of fluoride removed by the purification system varied between the system and from one source of water to the other. Interpretation and Conclusion: Considering the beneficial effects of fluoride on caries prevention; when drinking water is subjected to water purification systems that reduce fluoride significantly below the optimal level, fluoride supplementation may be necessary. The efficacy of systems based on reverse osmosis in reducing the fluoride content of water indicates their potential for use as defluoridation devices.

  8. Bacillus cereus as indicator in the sterilization of residual water with high energy electrons

    International Nuclear Information System (INIS)

    Mejia Z, E.

    2000-01-01

    One of the main causes of water pollution is the presence of microorganisms that provoke infections, moreover of chemical substances. The processes of residual water treatment finally require of the disinfection for its use or final disposition. The radiation technology for the residual water treatment by mean of electron beams is an innovator process because as well as decomposing the chemical substance or to degrade them, also it provokes a disinfection by which this is proposed as alternative for disinfection of residual water, with the purpose in reusing the water treated in the agriculture, recreation and industry among others secondary activities, solving environmental or health problems. The objective of this work is to evaluate the use of Bacillus cereus as biological indicator in the disinfection by radiation, using High Energy Electrons. To fulfil with this objective, the work was developed in three stages, the first one consisted in the acquisition, propagation and conservation of the Bacillus cereus stumps, considering Escherichia coli and Salmonella typhimurium as pathogenic germs present in residual water. Moreover, the inocule standardization and the conditions of the Electron accelerator Type Pelletron. In the second stage it was performed the irradiation of aqueous samples of the microorganisms simulating biological pollution and the application to problem samples of a treatment plant sited in the Lerma River zone of mixed residual water. And in the third stage was performed a regression analysis to the reported survival for each kind of microorganisms. The results obtained show that with the use of Electron beams was reduced 6 logarithmic units de E. coli at 129 Gy, for S. typhimurium it was reduced 8 logarithmic units at 383 Gy and the B. cereus at 511 Gy was reduced 6.8 logarithmic units. Of the problem samples irradiated at 500 Gy, the concentration of the total account diminished from 8.70 x 10 7 UFC/ml to 550 UFC/ml, the presence of B. Cereus

  9. Estimation of root water uptake parameters by inverse modeling with soil water content data

    NARCIS (Netherlands)

    Hupet, F.; Lambot, S.; Feddes, R.A.; Dam, van J.C.; Vanclooster, M.

    2003-01-01

    In this paper we have tested the feasibility of the inverse modeling approach to derive root water uptake parameters (RWUP) from soil water content data using numerical experiments for three differently textured soils and for an optimal drying period. The RWUP of interest are the rooting depth and

  10. Performance evaluation of TDT soil water content and watermark soil water potential sensors

    Science.gov (United States)

    This study evaluated the performance of digitized Time Domain Transmissometry (TDT) soil water content sensors (Acclima, Inc., Meridian, ID) and resistance-based soil water potential sensors (Watermark 200, Irrometer Company, Inc., Riverside, CA) in two soils. The evaluation was performed by compar...

  11. Peatland water repellency: Importance of soil water content, moss species, and burn severity

    Science.gov (United States)

    Moore, P. A.; Lukenbach, M. C.; Kettridge, N.; Petrone, R. M.; Devito, K. J.; Waddington, J. M.

    2017-11-01

    Wildfire is the largest disturbance affecting peatlands, with northern peat reserves expected to become more vulnerable to wildfire as climate change enhances the length and severity of the fire season. Recent research suggests that high water table positions after wildfire are critical to limit atmospheric carbon losses and enable the re-establishment of keystone peatland mosses (i.e. Sphagnum). Post-fire recovery of the moss surface in Sphagnum-feathermoss peatlands, however, has been shown to be limited where moss type and burn severity interact to result in a water repellent surface. While in situ measurements of moss water repellency in peatlands have been shown to be greater for feathermoss in both a burned and unburned state in comparison to Sphagnum moss, it is difficult to separate the effect of water content from species. Consequently, we carried out a laboratory based drying experiment where we compared the water repellency of two dominant peatland moss species, Sphagnum and feathermoss, for several burn severity classes including unburned samples. The results suggest that water repellency in moss is primarily controlled by water content, where a sharp threshold exists at gravimetric water contents (GWC) lower than ∼1.4 g g-1. While GWC is shown to be a strong predictor of water repellency, the effect is enhanced by burning. Based on soil water retention curves, we suggest that it is highly unlikely that Sphagnum will exhibit strong hydrophobic conditions under field conditions.

  12. Influence of packaging and conditions of storaging on content of mineral water Guber-Srebrenica

    Directory of Open Access Journals (Sweden)

    Blagojević Dragana D.

    2008-01-01

    Full Text Available Mineral waters are found in nature in greater depths most often in reduction conditions, so after surfacing their content alters in contact with oxygen, which is caused by oxidation of certain components. Due to this, efforts were made to make these waters more stabile so they could be used after certain time. This work monitors the stability of Guber (Argentaria-Srebrenica water exposed to light and with addition of ascorbic acid. The methods of analysis and the parameters analyzed are: gravimetric (SO2-4, suspended solids, total dry residue at 180°C, conductometry (electric conductivity, volumetric (Al3+, spectrometric (SiO2 and atomic-absorption spectrophotometry (Fe2+, Mg2+, Mn2+, Zn2+, K+, Ca2+, Na+ i Cu2+. Obtained results of water analysis, after retaining water in PET (polyethylentereftalate and glass bottles, in certain time intervals, show that significant changes of concentration of Fe2+, Al3+, K+, Ca2+, pH value and electric conductivity occurred. Concentration of iron Fe2+ has been slightly changed after 120 days, in sample stabilized with 0,2 g ascorbic acid, while concentrations of Al and K+ were changing the same as without adding of stabilizer. Samples of water in glass packaging without added stabilizer are less stable compared to samples which were retained in PET packaging.

  13. Identification and quantification of pesticide residues in water samples of Dhamrai Upazila, Bangladesh

    Science.gov (United States)

    Hasanuzzaman, M.; Rahman, M. A.; Salam, M. A.

    2017-10-01

    Being agricultural country, different types of pesticides are widely used in Bangladesh to prevent the crop losses due to pest attack which are ultimately drain to the water bodies. The present study was conducted to identify and quantify the organochlorine (DDT, DDE and DDD), organophosphorus (malathion, diazinon and chloropyrifos) and carbamate (carbaryl) residues in water samples of different sources from Dhamrai upazila of Bangladesh using high performance liquid chromatography (HPLC) equipped with ultra violate (UV) detector. Thirty water samples from fish pond, cultivated land and tube-well were collected in winter season to analyze the pesticide residues. Among the organophosphorus pesticides, malathion was present in seven water samples ranging from 42.58 to 922.8 μg/L, whereas diazinon was detected in water sample-8 (WS-8) and the concentration was 31.5 μg/L. None of the tested water samples was found to be contaminated with chlorpyrifos, carbaryl or DDT and its metabolites (DDE and DDD). Except for a tube-well water sample, concentrations of the detected residues are above the acceptable limit for human body as assigned by different organizations. To avoid the possible health hazards, the indiscriminate application of pesticides should be restricted and various substitute products like bio-pesticide should be introduced in a broad scale as soon as possible.

  14. Seed Production, Herbage Residue and Crude Protein Content of Centro (Centrosema pubescens) in the Year of Establishment at Shika, Nigeria

    OpenAIRE

    Omokanye, AT.

    2001-01-01

    A field trial was carried out on seed production pattern of centro (Centrosema pubescens,) in the year of establishment in a sub humid environment of Nigeria as influenced by sowing date and phosphorus application levels. The herbage residue and its crude protein content were also determined after pod harvest. The variation in seeds per pod for plantings between June 21 to August 2 was from 16.5 to 14.5, while for unfertilized and fertilized plots seeds number varied between 12.6 and 16.2/pod...

  15. Water Solubility of Plutonium and Uranium Compounds and Residues at TA-55

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Sean Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Smith, Paul Herrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Jarvinen, Gordon D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Prochnow, David Adrian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Schulte, Louis D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; DeBurgomaster, Paul Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Fife, Keith William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Rubin, Jim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Worl, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States

    2016-06-13

    Understanding the water solubility of plutonium and uranium compounds and residues at TA-55 is necessary to provide a technical basis for appropriate criticality safety, safety basis and accountability controls. Individual compound solubility was determined using published solubility data and solution thermodynamic modeling. Residue solubility was estimated using a combination of published technical reports and process knowledge of constituent compounds. The scope of materials considered includes all compounds and residues at TA-55 as of March 2016 that contain Pu-239 or U-235 where any single item in the facility has more than 500 g of nuclear material. This analysis indicates that the following materials are not appreciably soluble in water: plutonium dioxide (IDC=C21), plutonium phosphate (IDC=C66), plutonium tetrafluoride (IDC=C80), plutonium filter residue (IDC=R26), plutonium hydroxide precipitate (IDC=R41), plutonium DOR salt (IDC=R42), plutonium incinerator ash (IDC=R47), uranium carbide (IDC=C13), uranium dioxide (IDC=C21), U3O8 (IDC=C88), and uranium filter residue (IDC=R26). This analysis also indicates that the following materials are soluble in water: plutonium chloride (IDC=C19) and uranium nitrate (IDC=C52). Equilibrium calculations suggest that PuOCl is water soluble under certain conditions, but some plutonium processing reports indicate that it is insoluble when present in electrorefining residues (R65). Plutonium molten salt extraction residues (IDC=R83) contain significant quantities of PuCl3, and are expected to be soluble in water. The solubility of the following plutonium residues is indeterminate due to conflicting reports, insufficient process knowledge or process-dependent composition: calcium salt (IDC=R09), electrorefining salt (IDC=R65), salt (IDC=R71), silica (IDC=R73) and sweepings/screenings (IDC=R78). Solution thermodynamic modeling also indicates that fire suppression water buffered with a

  16. Chemical modelling of trace elements in pore water from PFBC residues containing ammonia

    International Nuclear Information System (INIS)

    Karlsson, L.G.; Brandberg, F.

    1993-01-01

    Ammonia is added to the PFBC process with the purpose to reduce the emissions of NO x in the stack gases. The design of the system for cleaning the stack gases will lead to an increased adsorption of ammonia and an accumulation of soluble ammonium salts in the cyclone ash from PFBC processes. This can be an environmental problem since the amounts will increase over the coming years and there will be a need to dispose the residues. When infiltrating rainwater penetrates the disposed residues ammonia and ammonium salts result in a contamination of the pore water with ammonia in the disposed residues. This entail the solubility of several trace elements in the residues that form soluble complexes with ammonia will increase and cause an increased contamination of groundwater and surface water. In this study the increased solubilities is calculated for the trace elements cadmium, cobalt, copper, mercury, nickel, silver and zinc in the residues using thermodynamical data. The calculations have been performed with probable solid phases of the trace elements at oxidizing and reducing conditions as a function of pH and at varying concentration of ammonia in the pore water. The thermodynamic calculations have been performed with the geochemical code EQ3NR. The results from the calculations show that as a concentration of 17 mg NH 3 /l in the pore water of the residues increases the solubilities for copper and silver. If the concentration of ammonia increases to 170 mg NH 3 /l will the solubilities increase also for cadmium, nickel and zinc. (12 refs., 39 figs.)

  17. The water footprint of biofuel produced from forest wood residue via a mixed alcohol gasification process

    International Nuclear Information System (INIS)

    Chiu, Yi-Wen; Wu, May

    2013-01-01

    Forest residue has been proposed as a feasible candidate for cellulosic biofuels. However, the number of studies assessing its water use remains limited. This work aims to analyze the impacts of forest-based biofuel on water resources and quality by using a water footprint approach. A method established here is tailored to the production system, which includes softwood, hardwood, and short-rotation woody crops. The method is then applied to selected areas in the southeastern region of the United States to quantify the county-level water footprint of the biofuel produced via a mixed alcohol gasification process, under several logistic systems, and at various refinery scales. The results indicate that the blue water sourced from surface or groundwater is minimal, at 2.4 liters per liter of biofuel (l/l). The regional-average green water (rainfall) footprint falls between 400 and 443 l/l. The biofuel pathway appears to have a low nitrogen grey water footprint averaging 25 l/l at the regional level, indicating minimal impacts on water quality. Feedstock mix plays a key role in determining the magnitude and the spatial distribution of the water footprint in these regions. Compared with other potential feedstock, forest wood residue shows promise with its low blue and grey water footprint. (letter)

  18. The water footprint of biofuel produced from forest wood residue via a mixed alcohol gasification process

    Science.gov (United States)

    Chiu, Yi-Wen; Wu, May

    2013-09-01

    Forest residue has been proposed as a feasible candidate for cellulosic biofuels. However, the number of studies assessing its water use remains limited. This work aims to analyze the impacts of forest-based biofuel on water resources and quality by using a water footprint approach. A method established here is tailored to the production system, which includes softwood, hardwood, and short-rotation woody crops. The method is then applied to selected areas in the southeastern region of the United States to quantify the county-level water footprint of the biofuel produced via a mixed alcohol gasification process, under several logistic systems, and at various refinery scales. The results indicate that the blue water sourced from surface or groundwater is minimal, at 2.4 liters per liter of biofuel (l/l). The regional-average green water (rainfall) footprint falls between 400 and 443 l/l. The biofuel pathway appears to have a low nitrogen grey water footprint averaging 25 l/l at the regional level, indicating minimal impacts on water quality. Feedstock mix plays a key role in determining the magnitude and the spatial distribution of the water footprint in these regions. Compared with other potential feedstock, forest wood residue shows promise with its low blue and grey water footprint.

  19. Residual fluxes of salt and water in the Azhikode estuary, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Pylee, A.; Varma, P.U.; Revichandran, C.

    hours at all stations and the data were analysed to provide estimates of the residual fluxes of water and salt. The interpolated data for the non-dimensional depth was used for computation of depth, tide and cross sectional averages. A net seaward flow...

  20. Aging assessment of Residual Heat Removal systems in Boiling Water Reactors

    International Nuclear Information System (INIS)

    Lofaro, R.J.; Aggarwal, S.

    1992-01-01

    The effects of aging on Residual Heat Removal systems in Boiling Water Reactors have been studied as part of the Nuclear Plant Aging Research Program. The aging phenomena has been characterized by analyzing operating experience from various national data bases. In addition, actual plant data was obtained to supplement and validate the data base findings

  1. Residual water transport in the Marsdiep tidal inlet inferred from observations and a numerical model

    NARCIS (Netherlands)

    Sassi, M.G.; Gerkema, T.; Duran-Matute, M.; Nauw, J.J.

    2016-01-01

    At tidal inlets, large amounts of water are exchanged with the adjacent sea during the tidal cycle.The residual flows, the net effect of ebb and flood, are generally small compared with the gross flux;they vary in magnitude and sign from one tidal period to the other; and their long-term mean

  2. Yield and water quality for different residue managements of sugarcane in Louisiana

    Science.gov (United States)

    The focus of the study was to provide information on implementation of a modified post-harvest crop residue sweeper on sugarcane yield and water quality. Field experiments were established at three different locations in south Louisiana: Paincourtville, Duson and Baton Rouge. In each location, lar...

  3. Quantification of heavy metals from residual waste and ashes from the treatment plant of residual water Reciclagua and,effects for the health of those workers which manipulate those residuals

    International Nuclear Information System (INIS)

    Guerrero D, J.J.

    2004-01-01

    In this work, the technique of leaching using thermostatted column in series is applied, the X-ray diffraction for the identification of the atomic and molecular structure of the toxic metals that are present in the residual muds of the water treatment plant located in the municipality of Lerma Estado de Mexico, named RECICLAGUA, likewise the technique is used of emission spectrometry for plasma and X-ray fluorescence for the qualitative analysis. Its were take samples of residual mud and of incinerated mud of the treatment plant of residual waters of the industrial corridor Toluca -Lerma RECICLAGUA, located in Lerma Estado de Mexico. For this study there were mixed 100 g of residual mud with a solution to 10% of mineral acid or sodium hydroxide according to the case, to adjust the one pH at 2, 5, 7 and 10, it was added bisulfite, of 0.3-1.5 g of dodecyl sulfate sodium and 3.939 of DTPA (triple V) (Diethylene triamine pentaacetate). To this mud and ashes were extracted the toxic and valuable metals by means of the leaching technique using thermostatted columns placed in series that were designed by the Dr. Jaime Vite Torres; it is necessary to make mention that so much the process as the equipment with those that work it was patented by the same one. With the extraction of these metals benefits are obtained, mainly of economic type, achieving the decrease of the volume of those wastes that have been generated; as well as the so much the use of those residuals, once the metals have been eliminated, as of those liquors where the metals were extracted. It was carried out a quantitative analysis using emission spectrometry by plasma in solids by this way to be able to know the content of the present metals in the sample before and later of leaching them, these results reported a great quantity of elements. Another of the techniques employees was the X-ray diffraction analysis that provides an elementary content of the samples, identifying elements that are present in

  4. Rheological and fractal characteristics of unconditioned and conditioned water treatment residuals.

    Science.gov (United States)

    Dong, Y J; Wang, Y L; Feng, J

    2011-07-01

    The rheological and fractal characteristics of raw (unconditioned) and conditioned water treatment residuals (WTRs) were investigated in this study. Variations in morphology, size, and image fractal dimensions of the flocs/aggregates in these WTR systems with increasing polymer doses were analyzed. The results showed that when the raw WTRs were conditioned with the polymer CZ8688, the optimum polymer dosage was observed at 24 kg/ton dry sludge. The average diameter of irregularly shaped flocs/aggregates in the WTR suspensions increased from 42.54 μm to several hundred micrometers with increasing polymer doses. Furthermore, the aggregates in the conditioned WTR system displayed boundary/surface and mass fractals. At the optimum polymer dosage, the aggregates formed had a volumetric average diameter of about 820.7 μm, with a one-dimensional fractal dimension of 1.01 and a mass fractal dimension of 2.74 on the basis of the image analysis. Rheological tests indicated that the conditioned WTRs at the optimum polymer dosage showed higher levels of shear-thinning behavior than the raw WTRs. Variations in the limiting viscosity (η(∞)) of conditioned WTRs with sludge content could be described by a linear equation, which were different from the often-observed empirical exponential relationship for most municipal sludge. With increasing temperature, the η(∞) of the raw WTRs decreased more rapidly than that of the raw WTRs. Good fitting results for the relationships between lgη(∞)∼T using the Arrhenius equation indicate that the WTRs had a much higher activation energy for viscosity of about 17.86-26.91 J/mol compared with that of anaerobic granular sludge (2.51 J/mol) (Mu and Yu, 2006). In addition, the Bingham plastic model adequately described the rheological behavior of the conditioned WTRs, whereas the rheology of the raw WTRs fit the Herschel-Bulkley model well at only certain sludge contents. Considering the good power-law relationships between the

  5. Pesticide residues in water, sediment and fish from Tono Reservoir and their health risk implications.

    Science.gov (United States)

    Akoto, Osei; Azuure, Augustine Asore; Adotey, K D

    2016-01-01

    Levels of organochlorine (OC) and organophosphorus (OP) pesticide residues in fish, sediments and water and their health risk associated with the consumption of the fish from the Tono Reservoir, Ghana were evaluated. The analytical methods included solvent extraction of the pesticide residues using ultrasound sonication and soxhlet extraction and their subsequent quantification using GC equipped with electron capture detector and pulse flame photometric detector after clean-up on activated silica gel/anhydrous sodium sulphate. A total of 29 pesticides comprising 16 OCs and 13 OPs were analyzed, out of which aldrin, p , p '-DDE and p , p '-DDD were detected in fish and sediment samples. The results showed that all the residues in water had their concentrations below the detection limit. Mean concentrations of organochlorine pesticide (OCP) residues in fish ranged from 0.017 to 0.17, 0.043 to 0.30, 0.027 to 0.243 and 0.097 to 0.263 µg/g in Sarotherodon galilaeus , Clarias anguillaris , Schilbe intermedius and Marcusenius senegalensis respectively. Mean concentrations of organophosphates pesticides ranged from 0.080 to 0.090, 0.080 to 0.087 and 0.050 to 0.063 µg/g in C. anguillaris , S. intermedius and M. senegalensis respectively. The level of chlorpyrifos in S. galilaeus was 0.160 µg/g. Mean concentrations of OCP residue in sediments ranged from 0.047 to 0.090 µg/g. Aldrin recorded the highest level while p , p '-DDD recorded the lowest level. The mean concentrations for all the detected residues were below the WHO/FAO maximum residue limits. Health risk estimation revealed that aldrin in M. senegalensis had great potential for systemic toxicity to consumers.

  6. Water fluxes in maize, millet and soybean plant-residue mulches used in direct seeding

    International Nuclear Information System (INIS)

    Silva, Fernando Antonio Macena da; Pinto, Hilton Silveira; Scopel, Eric; Corbeels, Marc; Affholder, Francois

    2006-01-01

    The objective of this work was to evaluate the effects of crop residue mulches from maize, millet and soybean on water storage capacity, water evaporation, soil cover, solar radiation interception and surface water run-off as well as to incorporate these effects in a crop growth model. The mulch of millet and maize presented higher capacity for water storage than soybean mulch: 3.26, 3.24 and 2.62 g of water per gram of dry matter, respectively. Water losses from wet mulches were related to the potential evapotranspiration. The soil cover levels were similar among the three types of material. The three types of mulch intercepted similar quantities of photosynthetically active radiation and infrared radiation. The mulch of maize straw was slightly more efficient in intercepting radiation than that from millet or soybean. Mulching with millet residues was efficient in the control of surface water run-off: only 45.5 mm of water (out of 843.5 mm rainfall) was lost through runoff under the no-till system with millet as cover crop, whereas 222.5 mm of water was lost in the conventional system with tillage. Most of the relations derived in this work could be described by exponential models. (author)

  7. Nuclear magnetic resonance imaging of water content in the subsurface

    Energy Technology Data Exchange (ETDEWEB)

    J. Hendricks; T. Yao; A. Kearns

    1999-01-21

    Previous theoretical and experimental studies indicated that surface nuclear magnetic resonance (NMR) has the potential to provide cost-effective water content measurements in the subsurface and is a technology ripe for exploitation in practice. The objectives of this investigation are (a) to test the technique under a wide range of hydrogeological conditions and (b) to generalize existing NMR theories in order to correctly model NMR response from conductive ground and to assess properties of the inverse problem. Twenty-four sites with different hydrogeologic settings were selected in New Mexico and Colorado for testing. The greatest limitation of surface NMR technology appears to be the lack of understanding in which manner the NMR signal is influenced by soil-water factors such as pore size distribution, surface-to-volume ratio, paramagnetic ions dissolved in the ground water, and the presence of ferromagnetic minerals. Although the theoretical basis is found to be sound, several advances need to be made to make surface NMR a viable technology for hydrological investigations. There is a research need to investigate, under controlled laboratory conditions, how the complex factors of soil-water systems affect NMR relaxation times.

  8. Seed Production, Herbage Residue and Crude Protein Content of Centro (Centrosema pubescens in the Year of Establishment at Shika, Nigeria

    Directory of Open Access Journals (Sweden)

    Omokanye, AT.

    2001-01-01

    Full Text Available A field trial was carried out on seed production pattern of centro (Centrosema pubescens, in the year of establishment in a sub humid environment of Nigeria as influenced by sowing date and phosphorus application levels. The herbage residue and its crude protein content were also determined after pod harvest. The variation in seeds per pod for plantings between June 21 to August 2 was from 16.5 to 14.5, while for unfertilized and fertilized plots seeds number varied between 12.6 and 16.2/pod. The weight of 1000 seeds decreased with delayed planting. Phosphorus application improved seed weight. Seed yield was highest (1000 kg/ha for July 5 sowing with phosphorus application of 60 kg/ha P205 combination. The variation in mean seed yield for planting between June 21 and August 2 was 782.0 to 360.3 kg/ha. The application of 0 to 60 kg/ha P205 resulted in mean seed yields of 405.7 to 776.8 kg/ha. Herbage residue was favoured more by June 21 sowing and the application of 60 kg/ha P205. The crude protein content was better with August sowing and 60 kg/ha P205.

  9. Characterization of biomass residues and their amendment effects on water sorption and nutrient leaching in sandy soil.

    Science.gov (United States)

    Wang, Letian; Tong, Zhaohui; Liu, Guodong; Li, Yuncong

    2014-07-01

    In this study, we evaluated the efficiency of two types of biomass residues (fermentation residues from a bioethanol process, FB; brown mill residues from a papermaking process, BM) as amendments for a sandy soil. The characteristics of these residues including specific surface areas, morphologies and nutrient sorption capacity were measured. The effects of biorefinery residues on water and nutrient retention were investigated in terms of different particle sizes and loadings. The results indicated that bio-based wastes FB and BM were able to significantly improve water and nutrient retention of sandy soil. The residues with larger surface areas had better water and nutrient retention capability. Specifically, in the addition of 10% loading, FB and BM was able to improve water retention by approximately 150% and 300%, while reduce 99% of ammonium and phosphate concentration in the leachate compare to the soil control, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Insecticide residue monitoring in sediments water fish and mangroves at the Cimanuk Delta

    International Nuclear Information System (INIS)

    Sumatra, Made

    1982-01-01

    The water and sediments from the upper stream of Cimanuk river carry insecticide residues especially during the rainy season. The insecticides are deposited in the estuary of Cimanuk river and along the coast of Cimanuk delta. The insecticide residues found at the delta were diazinon thiodan DDE o p-DDT and p p-DDT. Those insecticides are found in most of the water sediments and mangrove leaves samples and some of fishes samples. The samples were taken from the river the estuary the sea, the tambaks, the coast line, and from paddy field. No insecticide residue is found in the water samples taken in the dry season but they are found in the sediment samples taken in both the dry and rainy season. Generally the diazinon residues are higher at the surface than at 0.5m depth in compact sediment but they are higher at 0.5m depth than at the surface of the mud from the coast line. Diazinon and thiodan are found only in three fish samples out of twenty samples analyzed but thiodan is found in almost all of the sediment and mangrove leaves samples. DDT is found in almost all of the samples analyzed. (author)

  11. Spatial Irrigation Management Using Remote Sensing Water Balance Modeling and Soil Water Content Monitoring

    Science.gov (United States)

    Barker, J. Burdette

    Spatially informed irrigation management may improve the optimal use of water resources. Sub-field scale water balance modeling and measurement were studied in the context of irrigation management. A spatial remote-sensing-based evapotranspiration and soil water balance model was modified and validated for use in real-time irrigation management. The modeled ET compared well with eddy covariance data from eastern Nebraska. Placement and quantity of sub-field scale soil water content measurement locations was also studied. Variance reduction factor and temporal stability were used to analyze soil water content data from an eastern Nebraska field. No consistent predictor of soil water temporal stability patterns was identified. At least three monitoring locations were needed per irrigation management zone to adequately quantify the mean soil water content. The remote-sensing-based water balance model was used to manage irrigation in a field experiment. The research included an eastern Nebraska field in 2015 and 2016 and a western Nebraska field in 2016 for a total of 210 plot-years. The response of maize and soybean to irrigation using variations of the model were compared with responses from treatments using soil water content measurement and a rainfed treatment. The remote-sensing-based treatment prescribed more irrigation than the other treatments in all cases. Excessive modeled soil evaporation and insufficient drainage times were suspected causes of the model drift. Modifying evaporation and drainage reduced modeled soil water depletion error. None of the included response variables were significantly different between treatments in western Nebraska. In eastern Nebraska, treatment differences for maize and soybean included evapotranspiration and a combined variable including evapotranspiration and deep percolation. Both variables were greatest for the remote-sensing model when differences were found to be statistically significant. Differences in maize yield in

  12. Oxy-combustion of high water content fuels

    Science.gov (United States)

    Yi, Fei

    As the issues of global warming and the energy crisis arouse extensive concern, more and more research is focused on maximizing energy efficiency and capturing CO2 in power generation. To achieve this, in this research, we propose an unconventional concept of combustion - direct combustion of high water content fuels. Due to the high water content in the fuels, they may not burn under air-fired conditions. Therefore, oxy-combustion is applied. Three applications of this concept in power generation are proposed - direct steam generation for the turbine cycle, staged oxy-combustion with zero flue gas recycle, and oxy-combustion in a low speed diesel-type engine. The proposed processes could provide alternative approaches to directly utilize fuels which intrinsically have high water content. A large amount of energy to remove the water, when the fuels are utilized in a conventional approach, is saved. The properties and difficulty in dewatering high water content fuels (e.g. bioethanol, microalgae and fine coal) are summarized. These fuels include both renewable and fossil fuels. In addition, the technique can also allow for low-cost carbon capture due to oxy-combustion. When renewable fuel is utilized, the whole process can be carbon negative. To validate and evaluate this concept, the research focused on the investigation of the flame stability and characteristics for high water content fuels. My study has demonstrated the feasibility of burning fuels that have been heavily diluted with water in a swirl-stabilized burner. Ethanol and 1-propanol were first tested as the fuels and the flame stability maps were obtained. Flame stability, as characterized by the blow-off limit -- the lowest O2 concentration when a flame could exist under a given oxidizer flow rate, was determined as a function of total oxidizer flow rate, fuel concentration and nozzle type. Furthermore, both the gas temperature contour and the overall ethanol concentration in the droplets along the

  13. [Well water pollution in the Khombole district: research on the contamination by organochlorine pesticide residues and organic substances (feces)].

    Science.gov (United States)

    Diouf, A; Ciss, M; Diop, Y; Boye, C S; Diouf, S; Fall, M; Diop, A; Ba, D

    1998-01-01

    The study realized in the district of Khombole (SENEGAL) has permit to estimate the contamination levels of wells waters used by the populations. The research and the dosage of the organichlorine pesticide residues, nitrites and nitrates and microbiologic analysis have been done on 19 wells chosen after a drawning of lots. The organochlorine pesticide residues which have been found prove that the wells are permanently exposed to these chemical substances which don't constitute nevertheless a major risk for the populations health. The results of our research proved also that there is a real risk of intoxication with the nitrogen oxides. In effects more than 50% of the wells have revealed nitrates contents up to the indicative value (25 mg/l). As for the nitrates, with a few exceptions (5/18), the contents are superior to the authorized norm (0.1 mg/l). By another way the bacteriologic analysis has revealed in the one hand a DBT (Total Bacterian Count) up to 10,000 germs/l for all the wells, and in the other hand the presence of Escherichia coli, Enterococcus faecalis that confirm a faecal contamination.

  14. CAMEX-4 DC-8 NEVZOROV TOTAL CONDENSED WATER CONTENT SENSOR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-4 DC-8 Nevzorov Total Condensed Water Content Sensor dataset was collected by the Nevzorov total condensed water content sensor which was used to measure...

  15. Influence of the inherent properties of drinking water treatment residuals on their phosphorus adsorption capacities.

    Science.gov (United States)

    Bai, Leilei; Wang, Changhui; He, Liansheng; Pei, Yuansheng

    2014-12-01

    Batch experiments were conducted to investigate the phosphorus (P) adsorption and desorption on five drinking water treatment residuals (WTRs) collected from different regions in China. The physical and chemical characteristics of the five WTRs were determined. Combined with rotated principal component analysis, multiple regression analysis was used to analyze the relationship between the inherent properties of the WTRs and their P adsorption capacities. The results showed that the maximum P adsorption capacities of the five WTRs calculated using the Langmuir isotherm ranged from 4.17 to 8.20mg/g at a pH of 7 and further increased with a decrease in pH. The statistical analysis revealed that a factor related to Al and 200 mmol/L oxalate-extractable Al (Alox) accounted for 36.5% of the variations in the P adsorption. A similar portion (28.5%) was attributed to an integrated factor related to the pH, Fe, 200 mmol/L oxalate-extractable Fe (Feox), surface area and organic matter (OM) of the WTRs. However, factors related to other properties (Ca, P and 5 mmol/L oxalate-extractable Fe and Al) were rejected. In addition, the quantity of P desorption was limited and had a significant negative correlation with the (Feox+Alox) of the WTRs (p<0.05). Overall, WTRs with high contents of Alox, Feox and OM as well as large surface areas were proposed to be the best choice for P adsorption in practical applications. Copyright © 2014. Published by Elsevier B.V.

  16. Innovative approach for recycling phosphorous from agro-wastewaters using water treatment residuals (WTR).

    Science.gov (United States)

    Zohar, Iris; Ippolito, James A; Massey, Michael S; Litaor, Iggy M

    2017-02-01

    Phosphorus capture from polluting streams and its re-use using industrial byproducts has the potential to also reduce environmental threats. An innovative approach was developed for P removal from soil leachate and dairy wastewater using Al-based water treatment residuals (Al-WTR) to create an organic-Al-WTR composite (Al/O-WTR), potentially capable of serving as a P fertilizer source. Al-WTR was mixed with either soil leachate, or with dairy wastewater, both of which contained elevated P concentrations (e.g., 7.6-43.5 mg SRP L -1 ). The Al-WTR removed ∼95% inorganic P, above 80% organic P, and over 60% dissolved organic carbon (DOC) from the waste streams. P removal was correlated with P concentration in the waste streams and was consistent with an increase in Al/O-WTR P content as determined by X-ray fluorescence (XRF) and surface analysis using scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS). Organic C was a major constituent in the original Al-WTR (31.4%) and increased by 1% in the Al/O-WTRs. Organic C accumulation on particles surfaces possibly enhanced weak P bonding. Desorption experiments indicated an initial and substantial P release (30 mg SRP kg -1 Al/O-WTR), followed by relatively constant low P solubility (ca. 10 mg kg -1 ). Organic C was continuously released to the solution (over 8000 mg kg -1 ), concomitantly with Ca and other electrolytes, possibly indicating dissolution from inner pores, accounting for the highly porous nature of the Al-WTR, evident by SEM images. The potential of P-loading on Al/O-WTR to promote P recycling should be further studied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Computed distributions of residual shaft drilling and drift construction water in the exploratory facilities at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Eaton, R.R.; Peterson, A.C.

    1990-01-01

    This paper contains the results of engineering analytical calculations of the potential distribution of residual construction water in the exploratory shafts and drifts and numerical calculations of the movement of the residual water and how the movement is affected by drift ventilation. Rock saturation is addressed

  18. Determination of an acceptable assimilable organic carbon (AOC) level for biological stability in water distribution systems with minimized chlorine residual.

    Science.gov (United States)

    Ohkouchi, Yumiko; Ly, Bich Thuy; Ishikawa, Suguru; Kawano, Yoshihiro; Itoh, Sadahiko

    2013-02-01

    There is considerable interest in minimizing the chlorine residual in Japan because of increasing complaints about a chlorinous odor in drinking water. However, minimizing the chlorine residual causes the microbiological water quality to deteriorate, and stricter control of biodegradable organics in finished water is thus needed to maintain biological stability during water distribution. In this investigation, an acceptable level of assimilable organic carbon (AOC) for biologically stable water with minimized chlorine residual was determined based on the relationship between AOC, the chlorine residual, and bacterial regrowth. In order to prepare water samples containing lower AOC, the fractions of AOC and biodegradable organic matter (BOM) in tap water samples were reduced by converting into biomass after thermal hydrolysis of BOM at alkaline conditions. The batch-mode incubations at different conditions of AOC and chlorine residual were carried out at 20 °C, and the presence or absence of bacterial regrowth was determined. The determined curve for biologically stable water indicated that the acceptable AOC was 10.9 μg C/L at a minimized chlorine residual (0.05 mg Cl(2)/L). This result indicated that AOC removal during current water treatment processes in Japan should be significantly enhanced prior to minimization of the chlorine residual in water distribution.

  19. Characterization of soil water content variability and soil texture using GPR groundwave techniques

    Energy Technology Data Exchange (ETDEWEB)

    Grote, K.; Anger, C.; Kelly, B.; Hubbard, S.; Rubin, Y.

    2010-08-15

    Accurate characterization of near-surface soil water content is vital for guiding agricultural management decisions and for reducing the potential negative environmental impacts of agriculture. Characterizing the near-surface soil water content can be difficult, as this parameter is often both spatially and temporally variable, and obtaining sufficient measurements to describe the heterogeneity can be prohibitively expensive. Understanding the spatial correlation of near-surface soil water content can help optimize data acquisition and improve understanding of the processes controlling soil water content at the field scale. In this study, ground penetrating radar (GPR) methods were used to characterize the spatial correlation of water content in a three acre field as a function of sampling depth, season, vegetation, and soil texture. GPR data were acquired with 450 MHz and 900 MHz antennas, and measurements of the GPR groundwave were used to estimate soil water content at four different times. Additional water content estimates were obtained using time domain reflectometry measurements, and soil texture measurements were also acquired. Variograms were calculated for each set of measurements, and comparison of these variograms showed that the horizontal spatial correlation was greater for deeper water content measurements than for shallower measurements. Precipitation and irrigation were both shown to increase the spatial variability of water content, while shallowly-rooted vegetation decreased the variability. Comparison of the variograms of water content and soil texture showed that soil texture generally had greater small-scale spatial correlation than water content, and that the variability of water content in deeper soil layers was more closely correlated to soil texture than were shallower water content measurements. Lastly, cross-variograms of soil texture and water content were calculated, and co-kriging of water content estimates and soil texture

  20. Filtrates and Residues: Optical Projection Experiments to Demonstrate New Curricula Contents.

    Science.gov (United States)

    Perina, Ivo

    1986-01-01

    Presents background information and procedures for 12 experiments dealing with such areas as: reactivity of a homologous series of saturated monovalent alcohols; enzymatic degradation of hydrogen peroxide by catalase; effect of an activator and inhibitor on amylase activity; proving the existence of phenol in waste water; detecting common air…

  1. Evidence on dynamic effects in the water contentwater potential relation of building materials

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2008-01-01

    the required material functions, i.e. the moisture storage characteristic and the liquid water conductivity, from measured basic properties. The current state of the art in material modelling as well as the corresponding transport theory implies that the moisture transport function is unique...... and that the moisture storage characteristic is process dependent with varying significance for the numerical simulation. On the basis of different building materials, a comprehensive instantaneous profile measurement study has been accomplished. Profiles of water content and relative humidity were obtained during...... a series of adsorption and desorption processes. The data provides clear evidence that the water contentwater potential relationship is not only dependent on the process history, but also on the process dynamics. The higher moisture potential gradients were induced, the larger was the deviation between...

  2. Disposal of residues shown for the example of crystallisate formed through evaporation in a seepage water purification plant

    International Nuclear Information System (INIS)

    Tiefel, H.

    1994-01-01

    Amendments to the Federal Water Act, the Federal Waste Water Charges Act, and the Ordinance On the Origin of Waste Waters have created a new legal basis for the purification of seepage waters from landfills. Meanwhile there are a whole number of techniques, among them evaporation and stripping, that deserve the label state of the art in seepage water purification. However, the problem of disposing the residues arising in these purification processes is still largely consolved. Until now the contaminated residues, such as sewage sludge or deposits, have been landfilled or incinerated. Evaporation of sewage waters also leaves residues, notably water-soluble crystallisate. The present paper examines alternatives for the disposal of residues from evaporation as means of counteracting the current tendency to shift the problem from wastewater to solid wastes management. (orig./EF) [de

  3. Stalagmite water content as a proxy for drip water supply in tropical and subtropical areas

    Directory of Open Access Journals (Sweden)

    N. Vogel

    2013-01-01

    Full Text Available In this pilot study water was extracted from samples of two Holocene stalagmites from Socotra Island, Yemen, and one Eemian stalagmite from southern continental Yemen. The amount of water extracted per unit mass of stalagmite rock, termed "water yield" hereafter, serves as a measure of its total water content. Based on direct correlation plots of water yields and δ18Ocalcite and on regime shift analyses, we demonstrate that for the studied stalagmites the water yield records vary systematically with the corresponding oxygen isotopic compositions of the calcite (δ18Ocalcite. Within each stalagmite lower δ18Ocalcite values are accompanied by lower water yields and vice versa. The δ18Ocalcite records of the studied stalagmites have previously been interpreted to predominantly reflect the amount of rainfall in the area; thus, water yields can be linked to drip water supply. Higher, and therefore more continuous drip water supply caused by higher rainfall rates, supports homogeneous deposition of calcite with low porosity and therefore a small fraction of water-filled inclusions, resulting in low water yields of the respective samples. A reduction of drip water supply fosters irregular growth of calcite with higher porosity, leading to an increase of the fraction of water-filled inclusions and thus higher water yields. The results are consistent with the literature on stalagmite growth and supported by optical inspection of thin sections of our samples. We propose that for a stalagmite from a dry tropical or subtropical area, its water yield record represents a novel paleo-climate proxy recording changes in drip water supply, which can in turn be interpreted in terms of associated rainfall rates.

  4. Control system of an anaerobia reactor used in the treatment of the Industrial residual waters

    International Nuclear Information System (INIS)

    Duque, Mauricio; Giraldo, Eugenio; Bello Frank

    1995-01-01

    The technology of the anaerobia digestion, has had a wide acceptance in the Colombian means for the treatment of industrial residual waters, especially for the economic advantages that it present and the good purification results. The technology of the anaerobia digestion for the treatment of residual waters, is based in the conversion of the organic matter present in the polluted waters, in methane and carbon dioxide. These two gases are removed of the reactor by means of special structures of gathering. Microorganisms that are sensitive to the changes of the pH mediate the conversion of the organic matter to CH4 and CO2. Therefore, the control on the pH is necessary for a correct behavior of the reactor. At the moment many industries are implementing plans of contamination control, that involve treatment of residual waters for means anaerobia. The present investigation is part of a wide work program in the technology of the anaerobia digestion. It is looked for to develop a monitored system and automatic control of reactors discharge anaerobia appraises, in a combined effort among the departments of Civil and Electric Engineering of the Andes University

  5. Thermal Hydraulic Analysis of a Passive Residual Heat Removal System for an Integral Pressurized Water Reactor

    Directory of Open Access Journals (Sweden)

    Junli Gou

    2009-01-01

    Full Text Available A theoretical investigation on the thermal hydraulic characteristics of a new type of passive residual heat removal system (PRHRS, which is connected to the reactor coolant system via the secondary side of the steam generator, for an integral pressurized water reactor is presented in this paper. Three-interknited natural circulation loops are adopted by this PRHRS to remove the residual heat of the reactor core after a reactor trip. Based on the one-dimensional model and a simulation code (SCPRHRS, the transient behaviors of the PRHRS as well as the effects of the height difference between the steam generator and the heat exchanger and the heat transfer area of the heat exchanger are studied in detail. Through the calculation analysis, it is found that the calculated parameter variation trends are reasonable. The higher height difference between the steam generator and the residual heat exchanger and the larger heat transfer area of the residual heat exchanger are favorable to the passive residual heat removal system.

  6. Phenolic residues in spruce galactoglucomannans improve stabilization of oil-in-water emulsions.

    Science.gov (United States)

    Lehtonen, M; Merinen, M; Kilpeläinen, P O; Xu, C; Willför, S M; Mikkonen, K S

    2018-02-15

    Amphiphilic character of surfactants drives them at the interface of dispersed systems, such as emulsions. Hemicellulose-rich wood extracts contain assemblies (lignin-carbohydrate complexes, LCC) with natural amphiphilicity, which is expected to depend on their chemical composition resulting from the isolation method. Lignin-derived phenolic residues associated with hemicelluloses are hypothesized to contribute to emulsions' interfacial properties and stability. We investigated the role of phenolic residues in spruce hemicellulose extracts in the stabilization of oil-in-water emulsions by physical and chemical approach. Distribution and changes occurring in the phenolic residues at the droplet interface and in the continuous phase were studied during an accelerated storage test. Meanwhile, the physical stability and lipid oxidation in emulsions were monitored. Naturally associated lignin residues in GGM act as vehicles for anchoring these hemicelluloses into the oil droplet interface and further enable superior stabilization of emulsions. By adjusting the isolation method of GGM regarding their phenolic profile, their functionalities, especially interfacial behavior, can be altered. Retaining the native interactions of GGM and phenolic residues is suggested for efficient physical stabilization and extended protection against lipid oxidation. The results can be widely applied as guidelines in tailoring natural or synthetic amphiphilic compounds for interfacial stabilization. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Water movement in stony soils: The influence of stoniness on soil water content profiles

    Science.gov (United States)

    Novak, Viliam; Knava, Karol

    2010-05-01

    WATER MOVEMENT IN STONY SOILS: THE INFLUENCE OF STONINESS ON SOIL WATER CONTENT PROFILES Viliam Novák, Karol Kňava Institute of Hydrology, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3, Slovakia, e-mail: novak@uh.savba.sk Soils containing rock fragments are widespread over the world, on Europe such soil account for 30%, 60% in Mediterranean region. In comparison to fine earth soils (soil particles are less then 2 mm) stony soils contain rock fragments characterized by the low retention capacity and hydraulic conductivity. So, for stony soils -in comparison to the fine-earth soils - is typical lower hydraulic conductivity and retention capacity, which lead to the decrease decrease of infiltration rate and low water retention. So, water movement and its modeling in stony soil would differ from fine earth (usually agricultural) soil. The aim of this contribution is to demonstrate the differences in water movement in homogeneous soil (fine earth) and stony soil. The influence of different stoniness on soil water content and soil water dynamics was studied too. Windthrow at High Tatra mountains in Slovakia (November 2004) cleared nearly 12 000 ha of 80 year conifers and this event initiated complex research of windthrow impact on the ecosystem. The important part of this study was water movement in impacted area. Specific feature of the soil in this area was moraine soil consisting of fine earth, characterized as silty sand, with the relative stone content up to 0.49, increasing with depth. Associated phenomenon to the forest clearing is the decrease of rain interception and higher undercanopy precipitation. Conifers interception capacity can be three times higher than low canopy interception, and can reach up to 40% of annual precipitation in Central Europe. Stones in the soil are decreasing infiltration rate, but paradoxically increased understorey precipitation and followingly the increased cumulative infiltration led to the increase of the soil

  8. An index for plant water deficit based on root-weighted soil water content

    Science.gov (United States)

    Shi, Jianchu; Li, Sen; Zuo, Qiang; Ben-Gal, Alon

    2015-03-01

    Governed by atmospheric demand, soil water conditions and plant characteristics, plant water status is dynamic, complex, and fundamental to efficient agricultural water management. To explore a centralized signal for the evaluation of plant water status based on soil water status, two greenhouse experiments investigating the effect of the relative distribution between soil water and roots on wheat and rice were conducted. Due to the significant offset between the distributions of soil water and roots, wheat receiving subsurface irrigation suffered more from drought than wheat under surface irrigation, even when the arithmetic averaged soil water content (SWC) in the root zone was higher. A significant relationship was found between the plant water deficit index (PWDI) and the root-weighted (rather than the arithmetic) average SWC over root zone. The traditional soil-based approach for the estimation of PWDI was improved by replacing the arithmetic averaged SWC with the root-weighted SWC to take the effect of the relative distribution between soil water and roots into consideration. These results should be beneficial for scheduling irrigation, as well as for evaluating plant water consumption and root density profile.

  9. Volumetric water content measurement probes in earth-dam construction

    Directory of Open Access Journals (Sweden)

    Bardanis Michael

    2016-01-01

    Full Text Available Two frequency domain reflectometry (FDR probes have been used. They were used on compacted soils both in the laboratory and in the field. Measurements in the laboratory were intended for calibration. The range of densities and types of materials where insertion of the probes can be achieved was investigated first. The effect of sporadic presence of coarser grains and density on these calibrations, once insertion could be achieved, were investigated second. Measurements on laboratory prepared samples with the same moisture content were different when the sample was kept in the mould from when it was extruded from it. Also both these measurements were different from that in a sample of the same density but significantly larger in diameter. It was found that measurements with these probes are affected by dilation exhibited by soil around the rods of the probes during insertion. Readings immediately after insertion of the sensors on samples extruded from their moulds were the ones closer to measured values. These readings combined with total volume and mass obtained from sand-cone tests during the construction of an earth-dam allowed fairly accurate estimation of the dry unit weight but not the gravimetric water content.

  10. Noble gas paleotemperatures and water contents of stalagmites - a new extraction tool and a new paleoclimate proxy

    Science.gov (United States)

    Vogel, N.; Scheidegger, Y.; Brennwald, M. S.; Fleitmann, D.; Figura, S.; Wieler, R.; Kipfer, R.

    2012-04-01

    Stalagmites represent excellent multi-proxy paleoclimate archives as they cover long timescales and can be dated with high precision [e.g., 1]. The absolute temperature at which a stalagmite grew, can be deduced from the amounts of atmospheric noble gases dissolved in the stalagmite's fluid inclusion water (= noble gas temperature, NGT) [2-4]. We present technical advances towards more robust NGT determinations and also propose a new paleoclimate proxy, namely the stalagmite's water content, which is a "by-product" of NGT determination. Water contents and oxygen isotope records of two Holocene stalagmites from Socotra Island (Yemen) were found to vary systematically: progressively lighter oxygen is accompanied by decreasing water contents and vice versa. Via the oxygen isotope records [5] the stalagmites' water contents are linked to the amounts of precipitation on Socotra Island. High precipitation, i.e., high drip rates lead to homogeneous calcite growth with low porosity and therefore a small number of water-filled inclusions, i.e. low water contents. A reduction of drip water supply fosters irregular crystal growth with higher porosity, leading to higher water contents of the calcite (see also [6]). Therefore the stalagmites' water contents seem to record changes in drip water supply and, under favourable conditions, changes in regional precipitation. The current method to extract water and noble gases from stalagmite samples is experimentally challenging and subject to certain limitations (e.g., time-consuming sample preparation in a glove box, temperature restrictions for water extraction, and the often inadequate correction for air from residual air-filled inclusions [3, 4]). To overcome these limitations we have developed a new type of crusher directly attached to our noble gas line. It not only allows crushing and separating the samples into different grain size fractions in vacuo, but the separates can be individually heated to significantly higher

  11. Bidet toilet seats with warm-water tanks: residual chlorine, microbial community, and structural analyses.

    Science.gov (United States)

    Iyo, Toru; Asakura, Keiko; Nakano, Makiko; Yamada, Mutsuko; Omae, Kazuyuki

    2016-02-01

    Despite the reported health-related advantages of the use of warm water in bidets, there are health-related disadvantages associated with the use of these toilet seats, and the bacterial research is sparse. We conducted a survey on the hygienic conditions of 127 warm-water bidet toilet seats in restrooms on a university campus. The spray water from the toilet seats had less residual chlorine than their tap water sources. However, the total viable microbial count was below the water-quality standard for tap water. In addition, the heat of the toilet seats' warm-water tanks caused heterotrophic bacteria in the source tap water to proliferate inside the nozzle pipes and the warm-water tanks. Escherichia coli was detected on the spray nozzles of about 5% of the toilet seats, indicating that the self-cleaning mechanism of the spray nozzles was largely functioning properly. However, Pseudomonas aeruginosa was detected on about 2% of the toilet seats. P. aeruginosa was found to remain for long durations in biofilms that formed inside warm-water tanks. Infection-prevention measures aimed at P. aeruginosa should receive full consideration when managing warm-water bidet toilet seats in hospitals in order to prevent opportunistic infections in intensive care units, hematology wards, and other hospital locations.

  12. Can the water content of highly compacted bentonite be increased by applying a high water pressure?

    International Nuclear Information System (INIS)

    Pusch, R.; Kasbohm, J.

    2001-10-01

    A great many laboratory investigations have shown that the water uptake in highly compacted MX-80 clay takes place by diffusion at low external pressure. It means that wetting of the clay buffer in the deposition holes of a KBS-3 repository is very slow if the water pressure is low and that complete water saturation can take several tens of years if the initial degree of water saturation of the buffer clay and the ability of the rock to give off water are low. It has therefore been asked whether injection of water can raise the degree of water saturation and if a high water pressure in the nearfield can have the same effect. The present report describes attempts to moisten highly compacted blocks of MX-80 clay with a dry density of 1510 kg/m 3 by injecting water under a pressure of 650 kPa through a perforated injection pipe for 3 and 20 minutes, respectively. The interpretation was made by determining the water content of a number of samples located at different distances from the pipe. An attempt to interpret the pattern of distribution of injected uranium acetate solution showed that the channels into which the solution went became closed in a few minutes and that dispersion in the homogenized clay gave low U-concentrations. The result was that the water content increased from about 9 to about 11-12 % within a distance of about 1 centimeter from the injection pipe and to slightly more than 9 % at a distance of about 4-5 cm almost independently of the injection time. Complete water saturation corresponds to a water content of about 30 % and the wetting effect was hence small from a practical point of view. By use of microstructural models it can be shown that injected water enters only the widest channels that remain after the compaction and that these channels are quickly closed by expansion of the hydrating surrounding clay. Part of the particles that are thereby released become transported by the flowing water and cause clogging of the channels, which is

  13. Full scale amendment of a contaminated wood impregnation site with iron water treatment residues

    DEFF Research Database (Denmark)

    Nielsen, Sanne Skov; Kjeldsen, Peter; Jakobsen, Rasmus

    2016-01-01

    Iron water treatment residues (Fe-WTR) are a free by-product of the treatment of drinking water with high concentration of iron oxides and potential for arsenic sorption. This paper aims at applying Fe-WTR to a contaminated site, measuring the reduction in contaminant leaching, and discussing...... amendment a 100 m2 test site and a control site (without amendment) were monitored for 14 months. Also soil analysis of Fe to evaluate the degree of soil and Fe-WTR mixing was done. Stabilization with Fe-WTR had a significant effect on leachable contaminants, reducing pore water As by 93%, Cu by 91% and Cr...... by 95% in the upper samplers. Dosage and mixing of Fe-WTR in the soil proved to be difficult in the deeper part of the field, and pore water concentrations of arsenic was generally higher. Despite water logged conditions no increase in dissolved iron or arsenic was observed in the amended soil. Our...

  14. Stabilization of arsenic and chromium polluted soils using water treatment residues

    DEFF Research Database (Denmark)

    Nielsen, Sanne Skov

    or other sorbents. Iron water treatment residues mainly consist of ferrihydrite, an oxidized iron oxy-hydroxide with a high reactivity and a large specific surface area with a high capacity for adsorption. Iron water treatment residues (Fe-WTR) are a by-product from treatment of groundwater to drinking...... in the leachate from an amended, slightly polluted soil (255 mg/kg As and 27 mg/kg Cr) did not at any time exceed 50 μg/L, which means that the soil can be reused for construction e.g. roads and baffle walls as described by the Danish Reuse Act. Ageing of ferrihydrite, the main constituent of Fe...

  15. Determination of Pentachlorophenol and Hexachlorobenzene in Natural Waters Affected by Industrial Chemical Residues

    Directory of Open Access Journals (Sweden)

    Zuin Vânia Gomes

    1999-01-01

    Full Text Available This paper presents the development of a methodology for the simultaneous analysis of pentachlorophenol and hexachlorobenzene in natural waters affected by industrial residues, as its principal goal. Samples were collected in Quarentenário, São Vicente city, where most of the population utilize wells for their supply. The liquid-liquid extraction employed to remove PCP and HCB from the matrix for further identification and quantification, showed very good recovery and repeatability. The recovery range was between 81.5% and 103.0%, with a relative standard deviation of 2.4% and 4.1% for a fortification level of 10 ng L-1. In addition, organochlorine compounds were determined by GC-ECD and/or GC-MS. The limit of quantification was 5 ng L-1 for PCP and 2 ng L-1 for HCB, which are below the maximum level allowed by the EC directives for pesticide residues in drinking water.

  16. Disposing of coal combustion residues in inactive surface mines: Effects on water quality

    International Nuclear Information System (INIS)

    Kim, A.G.; Ackman, T.E.

    1994-01-01

    The disposal of coal combustion residues (CCR) in surface and underground coal mines can provide a stable, low-maintenance alternative to landfills, benefiting the mining and electric power industries. The material may be able to improve water quality at acid generating abandoned or reclaimed coal mine sites. Most combustion residues are alkaline, and their addition to the subsurface environment could raise the pH, limiting the propagation of pyrite oxidizing bacteria and reducing the rate of acid generation. Many of these CCR are also pozzolanic, capable of forming cementitious grouts. Grouts injected into the buried spoil may decrease its permeability and porosity, diverting water away from the pyritic material. Both mechanisms, alkaline addition and water diversion, are capable of reducing the amount of acid produced at the disposal site. The US Bureau of Mines is cooperating in a test of subsurface injection of CCR into a reclaimed surface mine. Initially, a mixture of fly ash, lime, and acid mine drainage (AMD) sludge was injected. Lime was the source of calcium for the formation of the pozzolanic grout. Changes in water quality parameters (pH, acidity, anions, and trace metals) in water samples from wells and seeps indicate a small but significant improvement after CCR injection. Changes in the concentration of heavy metals in the water flowing across the site were apparently influenced by the presence of flyash

  17. Efeito do conteúdo e da natureza da lignina residual na eficiência e na seletividade do branqueamento com ozônio Effect of residual lignin content and nature on the efficiency and selectivity of ozone bleaching

    Directory of Open Access Journals (Sweden)

    Elenice Pereira Maia

    2003-04-01

    Full Text Available Neste estudo foram avaliados os efeitos do conteúdo e da natureza da lignina residual na eficiência e na seletividade do branqueamento com ozônio de polpa kraft convencional (kraft e pré-deslignificada com oxigênio (kraft-O. Constatou-se que a eficiência do branqueamento com ozônio se eleva com o aumento do conteúdo de lignina residual da polpa. O tratamento com ozônio é mais seletivo para polpas kraft-O, mas para um mesmo tipo de polpa a seletividade de branqueamento com ozônio se eleva com o aumento de lignina residual. A eficiência do branqueamento com ozônio aumenta com o teor de lignina fenólica na polpa, entretanto a seletividade é negativamente afetada pela presença destas estruturas.This study aimed to evaluate the effect of residual lignin content and nature on the efficiency and selectivity of ozone bleaching of conventional (kraft and oxygen delignified (kraft-O pulps. Ozone bleaching efficiency was found to be enhanced by increasing pulp residual lignin content. Ozone treatment is more selective for kraft-O pulps, but for a given type of pulp (kraft or kraft-O, ozone bleaching selectivity increases with increasing pulp lignin content. Ozone bleaching efficiency increases with increasing pulp lignin phenolic hydroxyl content whereas selectivity is negatively affected by these structures.

  18. Using of abrasive water jet for measurement of residual stress in railway wheels

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Petr; Brumek, J.; Horsák, L.

    2012-01-01

    Roč. 2, č. 19 (2012), s. 387-390 ISSN 1330-3651 R&D Projects: GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : abrasive water jet * railway wheel * residual stress Subject RIV: JQ - Machines ; Tools Impact factor: 0.601, year: 2012 http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=124848

  19. Evaluation of dose due to the liberation of the radioactive content present in systems of final disposal of radioactive residues

    International Nuclear Information System (INIS)

    Amado, V.; Lopez, F.

    2006-01-01

    The disposal systems of radioactive residuals well-known as repositories near to the surface, are used to dispose residuals that can contain high concentrations of radionuclides of period of short semi disintegration, which they would decay at levels radiologically insignificant in some few decades or in some centuries: and acceptably low concentrations of radionuclides of period of long semi disintegration. The dose that would receive the critic group due to these systems it could be increased by cause of discreet events that affect the foreseen retard time, or by the gradual degradation of the barriers. To this last case it contributes the presence of water, because it implies leaching and dissolution that can give place to radionuclide concentrations in the underground water greater to the prospective ones. The dosimetric evaluation is important because it offers useful objective information to decide if a given repository is adjusted to the purposes of its design and it fulfills the regulatory requirements. In this work a simplified evaluation of the dose that would receive the critic group due to the liberation of contained radionuclides in a hypothetical system of final disposition of radioactive residuals is presented. For it, they are considered representative values of the usually contained activities in this type of systems and they are carried out some approaches of the source term. The study is developed in two stages. In the first one, by means of the Radionuclide pollutant scattering pattern in phreatic aquifers (DRAF) it is considered the scattering of the pollutants in the phreatic aquifer, until the discharge point in the course of the nearest surface water. This model, developed originally in the regulatory branch of the National Commission of Argentine Atomic Energy (CNEA); it solves the transport equation of solutes in porous means in three dimensions, by the finite differences method having in account the soil retention and the radioactive

  20. Characterization of aluminium-based water treatment residual for potential phosphorus removal in engineered wetlands

    International Nuclear Information System (INIS)

    Babatunde, A.O.; Zhao, Y.Q.; Burke, A.M.; Morris, M.A.; Hanrahan, J.P.

    2009-01-01

    Aluminium-based water treatment residual (Al-WTR) is the most widely generated residual from water treatment facilities worldwide. It is regarded as a by-product of no reuse potential and landfilled. This study assessed Al-WTR as potential phosphate-removing substrate in engineered wetlands. Results indicate specific surface area ranged from 28.0 m 2 g -1 to 41.4 m 2 g -1 . X-ray Diffraction, Fourier transform infrared and energy-dispersive X-ray spectroscopes all indicate Al-WTR is mainly composed of amorphous aluminium which influences its phosphorus (P) adsorption capacity. The pH and electrical conductivity ranged from 5.9 to 6.0 and 0.104 dS m -1 to 0.140 dS m -1 respectively, showing that it should support plant growth. Batch tests showed adsorption maxima of 31.9 mg P g -1 and significant P removal was achieved in column tests. Overall, results showed that Al-WTR can be used for P removal in engineered wetlands and it carries the benefits of reuse of a by-product that promotes sustainability. - Aluminium-based water treatment residual can be used for phosphorus removal in engineered wetlands!

  1. Understanding the bias between moisture content by oven drying and water content by Karl Fischer titration at moisture equilibrium

    Science.gov (United States)

    Multiple causes of the difference between equilibrium moisture and water content have been found. The errors or biases were traced to the oven drying procedure to determine moisture content. The present paper explains the nature of the biases in oven drying and how it is possible to suppress one ...

  2. Design Status of the Capillary Brine Residual in Containment Water Recovery System

    Science.gov (United States)

    Sargusingh, Miriam J.; Callahan, Michael R.; Garison, John; Houng, Benjamin; Weislogel, Mark M.

    2016-01-01

    One of the goals of the AES Life Support System (LSS) Project is to achieve 98% water loop closure for long duration human exploration missions beyond low Earth orbit. To meet this objective, the AES LSS Project is developing technologies to recover water from wastewater brine; highly concentrated waste products generated from a primary water recovery system. The state of the art system used aboard the International Space Station (ISS) has the potential to recover up to 85% water from unine wastewater, leaving a significant amounts of water in the waste brine, the recovery of which is critical technology gap that must be filled in order to enable long duration human exploration. Recovering water from the urine wastewater brine is complicated by the concentration of solids as water is removed from the brine, and the concentration of the corrosive, toxic chemicals used to stabilize the urine which fouls and degrades water processing hardware, and poses a hazard to operators and crew. Brine Residual in Containment (BRIC) is focused on solids management through a process of "in-place" drying - the drying of brines within the container used for final disposal. Application of in-place drying has the potential to improve the safety and reliability of the system by reducing the exposure to curew and hardware to the problematic brine residual. Through a collaboration between the NASA Johnson Space Center and Portland Status University, a novel water recovery system was developed that utilizes containment geometry to support passive capillary flow and static phase separation allowing free surface evaporation to take place in a microgravity environment. A notional design for an ISS demonstration system was developed. This paper describes the testing performed to characterize the performance of the system as well as the status of the system level design.

  3. Design Status of the Capillary Brine Residual in Containment Water Recovery System

    Science.gov (United States)

    Callahan, Michael R.; Sargusingh, Miriam

    2016-01-01

    One of the goals of the AES Life Support System (LSS) Project is to achieve 98% water loop closure for long duration human exploration missions beyond low Earth orbit. To meet this objective, the AES LSS Project is developing technologies to recover water from wastewater brine; highly concentrated waste products generated from a primary water recovery system. The state of the art system used aboard the International Space Station (ISS) has the potential to recover up to 85% water from unine wastewater, leaving a significant amounts of water in the waste brine, the recovery of which is a critical technology gap that must be filled in order to enable long duration human exploration. Recovering water from the urine wastewater brine is complicated by the concentration of solids as water is removed from the brine, and the concentration of the corrosive, toxic chemicals used to stabilize the urine which fouls and degrades water processing hardware, and poses a hazard to operators and crew. Brine Residual in Containment (BRIC) is focused on solids management through a process of "in-place" drying - the drying of brines within the container used for final disposal. Application of in-place drying has the potential to improve the safety and reliability of the system by reducing the exposure to crew and hardware to the problematic brine residual. Through a collaboration between the NASA Johnson Space Center and Portland Status University, a novel water recovery system was developed that utilizes containment geometry to support passive capillary flow and static phase separation allowing free surface evaporation to take place in a microgravity environment. A notional design for an ISS demonstration system was developed. This paper describes the concept for the system level design.

  4. Residual deposits (residual soil)

    International Nuclear Information System (INIS)

    Khasanov, A.Kh.

    1988-01-01

    Residual soil deposits is accumulation of new formate ore minerals on the earth surface, arise as a result of chemical decomposition of rocks. As is well known, at the hyper genes zone under the influence of different factors (water, carbonic acid, organic acids, oxygen, microorganism activity) passes chemical weathering of rocks. Residual soil deposits forming depends from complex of geologic and climatic factors and also from composition and physical and chemical properties of initial rocks

  5. Presence of pesticide residues in water, sediment and biological samples taken from aquatic environments in Honduras

    International Nuclear Information System (INIS)

    Meyer, D.E.

    1999-01-01

    The objective of this study was to detect the presence of persistent pesticides in water, sediment and biological samples taken from aquatic environments in Honduras during the period 1995-98. Additionally, the LC 50 for 2 fungicides and 2 insecticides on post-larval Penaeus vannamei was determined in static water bioassays. A total of 80 water samples, 16 sediment samples and 7 biological samples (fish muscle tissue) were analyzed for detection of organochlorine and organophosphate pesticide residues. The results of sample analyses indicate a widespread contamination of Honduran continental and coastal waters with organochlorine pesticides. Most detections were of low ( 50 values and were therefore found to be much more toxic to the post-larval shrimp than the fungicides tridemorph and propiconazole. (author)

  6. Hotspots of soil N2O emission enhanced through water absorption by plant residue

    Energy Technology Data Exchange (ETDEWEB)

    Kravchenko, A.N.; Toosi, E.R.; Guber, A.K.; Ostrom, N.E.; Yu, J.; Azeem, K.; Rivers, M.L.; Robertson , G.P. (UAF Pakistan); (UC); (Hubei); (MSU)

    2017-06-05

    N2O is a highly potent greenhouse gas and arable soils represent its major anthropogenic source. Field-scale assessments and predictions of soil N2O emission remain uncertain and imprecise due to the episodic and microscale nature of microbial N2O production, most of which occurs within very small discrete soil volumes. Such hotspots of N2O production are often associated with decomposing plant residue. Here we quantify physical and hydrological soil characteristics that lead to strikingly accelerated N2O emissions in plant residue-induced hotspots. Results reveal a mechanism for microscale N2O emissions: water absorption by plant residue that creates unique micro-environmental conditions, markedly different from those of the bulk soil. Moisture levels within plant residue exceeded those of bulk soil by 4–10-fold and led to accelerated N2O production via microbial denitrification. The presence of large (Ø >35 μm) pores was a prerequisite for maximized hotspot N2O production and for subsequent diffusion to the atmosphere. Understanding and modelling hotspot microscale physical and hydrologic characteristics is a promising route to predict N2O emissions and thus to develop effective mitigation strategies and estimate global fluxes in a changing environment.

  7. Pesticide residues in ground water of the San Joaquin Valley, California

    Science.gov (United States)

    Domagalski, Joseph L.; Dubrovsky, Neil M.

    1992-01-01

    A regional assessment of non-point-source contamination of pesticide residues in ground water was made of the San Joaquin Valley, an intensively farmed and irrigated structural trough in central California. About 10% of the total pesticide use in the USA is in the San Joaquin Valley. Pesticides detected include atrazine, bromacil, 2.4-DP, diazinon, dibromochloropropane, 1,2-dibromoethane, dicamba, 1,2-dichloropropane, diuron, prometon, prometryn, propazine and simazine. All are soil applied except diazinon. Pesticide leaching is dependent on use patterns, soil texture, total organic carbon in soil, pesticide half-life and depth to water table. Leaching is enhanced by flood-irrigation methods except where the pesticide is foliar applied such as diazinon. Soils in the western San Joaquin Valley are fine grained and are derived primarily from marine shales of the Coast Ranges. Although shallow ground water is present, the fewest number of pesticides were detected in this region. The fine-grained soil inhibits pesticide leaching because of either low vertical permeability or high surface area; both enhance adsorption on to solid phases. Soils of the valley floor tend to be fine grained and have low vertical permeability. Soils in the eastern part of the valley are coarse grained with low total organic carbon and are derived from Sierra Nevada granites. Most pesticide leaching is in these alluvial soils, particularly in areas where depth to ground water is less than 30m. The areas currently most susceptible to pesticide leaching are eastern Fresno and Tulare Counties. Tritium in water molecules is an indicator of aquifer recharge with water of recent origin. Pesticide residues transported as dissolved species were not detected in non-tritiated water. Although pesticides were not detected in all samples containing high tritium, these samples are indicative of the presence of recharge water that interacted with agricultural soils.

  8. An analysis of infiltration with moisture content distribution in a two-dimensional discretized water content domain

    KAUST Repository

    Yu, Han

    2014-06-11

    On the basis of unsaturated Darcy\\'s law, the Talbot-Ogden method provides a fast unconditional mass conservative algorithm to simulate groundwater infiltration in various unsaturated soil textures. Unlike advanced reservoir modelling methods that compute unsaturated flow in space, it only discretizes the moisture content domain into a suitable number of bins so that the vertical water movement is estimated piecewise in each bin. The dimensionality of the moisture content domain is extended from one dimensional to two dimensional in this study, which allows us to distinguish pore shapes within the same moisture content range. The vertical movement of water in the extended model imitates the infiltration phase in the Talbot-Ogden method. However, the difference in this extension is the directional redistribution, which represents the horizontal inter-bin flow and causes the water content distribution to have an effect on infiltration. Using this extension, we mathematically analyse the general relationship between infiltration and the moisture content distribution associated with wetting front depths in different bins. We show that a more negatively skewed moisture content distribution can produce a longer ponding time, whereas a higher overall flux cannot be guaranteed in this situation. It is proven on the basis of the water content probability distribution independent of soil textures. To illustrate this analysis, we also present numerical examples for both fine and coarse soil textures.

  9. Fe-Ti/Fe (II)-loading on ceramic filter materials for residual chlorine removal from drinking water.

    Science.gov (United States)

    Man, Kexin; Zhu, Qi; Guo, Zheng; Xing, Zipeng

    2018-06-01

    Ceramic filter material was prepared with silicon dioxide (SiO 2 ), which was recovered from red mud and then modified with Fe (II) and Fe-Ti bimetal oxide. Ceramic filter material can be used to reduce the content of residual chlorine from drinking water. The results showed that after a two-step leaching process with 3 M hydrochloric acid (HCl) and 90% sulfuric acid (H 2 SO 4 ), the recovery of SiO 2 exceeded 80%. Fe (II)/Fe-Ti bimetal oxide, with a high adsorption capacity of residual chlorine, was prepared using a 3:1 M ratio of Fe/Ti and a concentration of 0.4 mol/L Fe 2+ . According to the zeta-potential, scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis, Fe (II) and Fe-Ti bimetal oxide altered the zeta potential and structural properties of the ceramic filter material. There was a synergistic interaction between Fe and Ti in which FeOTi bonds on the material surface and hydroxyl groups provided the active sites for adsorption. Through a redox reaction, Fe (II) transfers hypochlorite to chloride, and FeOTiCl bonds were formed after adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Impact of diurnal variation in vegetation water content on radar backscatter of maize during water stress

    Science.gov (United States)

    van Emmerik, Tim; Steele-Dunne, Susan; Judge, Jasmeet; van de Giesen, Nick

    2014-05-01

    Microwave emission and backscatter of vegetated surfaces are influenced by vegetation water content (VWC), which varies in response to availability of soil moisture in the root zone. Understanding the influence of diurnal VWC dynamics on radar backscatter will improve soil moisture retrievals using microwave remote sensing, and will provide insight into the potential use for radar to directly monitor vegetation water status. The goal of this research is to investigate the effect of diurnal variation in VWC of an agricultural canopy on backscatter for different radar configurations. Water stress was induced in a corn (Zea mays) canopy near Citra, Florida, between September 1 and October 20, 2013. Diurnal destructive samples from the canopy were collected to determine leaf, stalk and total VWC. Water stress was quantified by calculating the evaporation deficit and measuring the soil water tension. The water-cloud model was used to model the influence of VWC and soil moisture variations on backscatter for a range of frequencies, polarizations and incidence angles. Furthermore, radar backscatter time series was simulated to show the effect of water stress on the diurnal variation in backscatter due to VWC. Results of this study show the very significant effects that VWC dynamics have on radar backscatter. We also highlight the potential for vegetation and soil water status monitoring using microwave remote sensing.

  11. MEASURING LEAF WATER CONTENT USING MULTISPECTRAL TERRESTRIAL LASER SCANNING

    Directory of Open Access Journals (Sweden)

    S. Junttila

    2017-10-01

    Full Text Available Climate change is increasing the amount and intensity of disturbance events, i.e. drought, pest insect outbreaks and fungal pathogens, in forests worldwide. Leaf water content (LWC is an early indicator of tree stress that can be measured remotely using multispectral terrestrial laser scanning (MS-TLS. LWC affects leaf reflectance in the shortwave infrared spectrum which can be used to predict LWC from spatially explicit MS-TLS intensity data. Here, we investigated the relationship between LWC and MS-TLS intensity features at 690 nm, 905 nm and 1550 nm wavelengths with Norway spruce seedlings in greenhouse conditions. We found that a simple ratio of 905 nm and 1550 nm wavelengths was able to explain 84 % of the variation (R2 in LWC with a respective prediction accuracy of 0.0041 g/cm2. Our results showed that MS-TLS can be used to estimate LWC with a reasonable accuracy in environmentally stable conditions.

  12. Measuring Leaf Water Content Using Multispectral Terrestrial Laser Scanning

    Science.gov (United States)

    Junttila, S.; Vastaranta, M.; Linnakoski, R.; Sugano, J.; Kaartinen, H.; Kukko, A.; Holopainen, M.; Hyyppä, H.; Hyyppä, J.

    2017-10-01

    Climate change is increasing the amount and intensity of disturbance events, i.e. drought, pest insect outbreaks and fungal pathogens, in forests worldwide. Leaf water content (LWC) is an early indicator of tree stress that can be measured remotely using multispectral terrestrial laser scanning (MS-TLS). LWC affects leaf reflectance in the shortwave infrared spectrum which can be used to predict LWC from spatially explicit MS-TLS intensity data. Here, we investigated the relationship between LWC and MS-TLS intensity features at 690 nm, 905 nm and 1550 nm wavelengths with Norway spruce seedlings in greenhouse conditions. We found that a simple ratio of 905 nm and 1550 nm wavelengths was able to explain 84 % of the variation (R2) in LWC with a respective prediction accuracy of 0.0041 g/cm2. Our results showed that MS-TLS can be used to estimate LWC with a reasonable accuracy in environmentally stable conditions.

  13. Detection of Water Content in Rapeseed Leaves Using Terahertz Spectroscopy

    Directory of Open Access Journals (Sweden)

    Pengcheng Nie

    2017-12-01

    Full Text Available The terahertz (THz spectra of rapeseed leaves with different water content (WC were investigated. The transmission and absorption spectra in the range of 0.3–2 THz were measured by using THz time-domain spectroscopy. The mean transmittance and absorption coefficients were applied to analyze the change regulation of WC. In addition, the Savitzky-Golay method was performed to preprocess the spectra. Then, the partial least squares (PLS, kernel PLS (KPLS, and Boosting-PLS were conducted to establish models for predicting WC based on the processed transmission and absorption spectra. Reliable results were obtained by these three methods. KPLS generated the best prediction accuracy of WC. The prediction coefficient correlation (Rval and root mean square error (RMSEP of KPLS based on transmission were Rval = 0.8508, RMSEP = 0.1015, and that based on absorption were Rval = 0.8574, RMSEP = 0.1009. Results demonstrated that THz spectroscopy combined with modeling methods provided an efficient and feasible technique for detecting plant physiological information.

  14. [Spectrum Variance Analysis of Tree Leaves Under the Condition of Different Leaf water Content].

    Science.gov (United States)

    Wu, Jian; Chen, Tai-sheng; Pan, Li-xin

    2015-07-01

    Leaf water content is an important factor affecting tree spectral characteristics. So Exploring the leaf spectral characteristics change rule of the same tree under the condition of different leaf water content and the spectral differences of different tree leaves under the condition of the same leaf water content are not only the keys of hyperspectral vegetation remote sensing information identification but also the theoretical support of research on vegetation spectrum change as the differences in leaf water content. The spectrometer was used to observe six species of tree leaves, and the reflectivity and first order differential spectrum of different leaf water content were obtained. Then, the spectral characteristics of each tree species leaves under the condition of different leaf water content were analyzed, and the spectral differences of different tree species leaves under the condition of the same leaf water content were compared to explore possible bands of the leaf water content identification by hyperspectral remote sensing. Results show that the spectra of each tree leaf have changed a lot with the change of the leaf water content, but the change laws are different. Leaf spectral of different tree species has lager differences in some wavelength range under the condition of same leaf water content, and it provides some possibility for high precision identification of tree species.

  15. A procedure for evaluating residual life of major components in light water reactors

    International Nuclear Information System (INIS)

    Uchida, S.; Fujimori, H.; Ibe, E.; Kuniya, J.; Hayashi, M.; Fuse, M.; Yamauchi, K.

    1995-01-01

    A computer program for evaluating residual life of major components in boiling water reactors is proposed. It divides the stress corrosion cracking process into two stages; a probabilistic crack generation stage and a deterministic crack propagation one. The minimum period of the crack generation stage is evaluated assuming an exponential distribution of the stage. The crack propagation rate is calculated by the slip-dissolution/film-rupture model. The neutron flux and fluence dependence of the neutron radiation effects on material properties was evaluated by using theoretical models of radiation damage. The computer program works on an engineering work station. Evaluated results are displayed as a map of the residual life, or as graphs of crack length evolution

  16. A novel dual soil sensor for simultaneous water content and water potential determination in irrigation scheduling and environmental monitoring

    Science.gov (United States)

    Hübner, Christof; Spohrer, Klaus; Karaj, Shkelqim; Müller, Joachim

    2013-04-01

    Due to the climate change and decreasing water availability in many parts of the world, water efficient irrigation becomes more and more important to stabilize or even increase agricultural productivity. An efficient irrigation scheduling relies on soil water potential information in order to define the optimal irrigation start as well as on soil water content data to quantify the amount of soil water and thus to properly define irrigation depth. Furthermore, nutrient leaching and groundwater contamination will be reduced by controlled irrigation. Therefore, a novel dual soil sensor was developed which allows for simultaneous determination of water content and water potential at low costs suitable for distributed sensing. The soil water content measurement is realized with a dielectric measurement approach. Sensor elements are arranged on a printed circuit board, which can easily be inserted into the soil. Soil water potential data is deduced from water content measurements in porous matrices with known retention characteristics. The matrices are placed on the printed circuit board above a water content sensitive dielectric measuring area. In contrast to common granular matrix sensors, the matrices are characterized by a narrow pore size ranges by which the accuracy of soil water potential determination can be improved and a threshold characteristic suitable for irrigation is achieved. Sensor principle and laboratory experiments will be presented. For application in irrigation scheduling, the dual sensor is connected to off-the-shelf irrigation controllers by an additional interface controller. The interface controller activates moisture measurements of the sensor and compares the actual measurements with set-points of water content or water potential. The running time-based programme of the irrigation controller will be interrupted if measured soil water contents are above a predefined water content threshold or soil water potential measurements are below a

  17. Variation in VIP latrine sludge contents | Bakare | Water SA

    African Journals Online (AJOL)

    ... in the organic contents, moisture content, non-biodegradable content and microbial population between different pits. This variation with increasing depth within a pit is expected, since fresh material is constantly being added to the pit overlaying older material which might have undergone a certain degree of stabilisation.

  18. Mantle Melting as a Function of Water Content in Arcs

    Science.gov (United States)

    Kelley, K. A.; Plank, T.; Newman, S.; Stolper, E.; Grove, T. L.; Parman, S.; Hauri, E.

    2003-12-01

    Subduction zone magmas are characterized by high concentrations of dissolved H2O, presumably derived from the subducted plate and ultimately responsible for melt generation in this tectonic setting. Almost ten years ago, Stolper and Newman (EPSL, 1994) illustrated a linear relationship between the concentration of water (H2Oo) and the fraction of melting (F) in the mantle beneath the Mariana back-arc. Here we report new major element and volatile data for olivine-hosted melt inclusions from the Mariana Islands to test this relationship for melting beneath an arc. Basaltic melt inclusions from the Mariana arc have water contents (2.3-6.1 wt% H2O) significantly higher than all basaltic glasses or melt inclusions from the Mariana back-arc (0.2-2.2 wt% H2O). We use TiO2 as a proxy for F, after correcting for crystal fractionation, and evaluate the Ti source composition with a model based on Ti/Y variations in mid-ocean ridge basalts (MORBs). Each calculated F thus represents the amount of mantle melting for a single melting episode. Even after accounting for mantle depletion, the TiO2 concentrations in Mariana arc magmas record higher extents of mantle melting (F = 10-30%) than recorded in back-arc magmas (F = 5-24%). As a whole, the Mariana arc broadly extends the linear H2Oo-F array defined by the back-arc, although in detail the islands show important differences. Two islands from the Mariana arc (Guguan and Pagan) define a H2Oo-F slope similar to the Mariana back-arc, suggesting similar mantle potential temperature beneath the arc and back-arc ( ˜1360 +/- 20° C). Melts from Agrigan island, however, indicate a steeper slope suggestive both of cooler mantle beneath Agrigan and of along-strike thermal variations beneath the Mariana Islands. Both the arc and back-arc arrays project to finite F at zero water in the mantle, providing evidence for decompression melting in both settings. These relationships may be extended globally to other back-arc and arc systems

  19. Formulation and make-up of simulated concentrated water, high ionic content aqueous solution

    International Nuclear Information System (INIS)

    Gdowski, G.

    1997-01-01

    This procedure describes the formulation and make-up of Simulated Concentrated Water (SCW), a high-ionic-content water to be used for Activity E-20-50 Long-Term Corrosion Studies. This water has an ionic content which is nominally a factor of a thousand higher than that of representative waters at or near Yucca Mountain. Representative waters were chosen as J-13 well water [Harrar, 1990] and perched water at Yucca Mountain [Glassley, 1996]. J-13 well water is obtained from ground water that is in contact with the Topopah Spring tuff, which is the repository horizon rock. The perched water is located in the Topopah Spring tuff, but below the repository horizon and above the water table. A nominal thousand times higher ionic content was chosen to simulate the water that would result from the wetting of salts which have been previously deposited on a container surface

  20. Does water content or flow rate control colloid transport in unsaturated porous media?

    Science.gov (United States)

    Knappenberger, Thorsten; Flury, Markus; Mattson, Earl D; Harsh, James B

    2014-04-01

    Mobile colloids can play an important role in contaminant transport in soils: many contaminants exist in colloidal form, and colloids can facilitate transport of otherwise immobile contaminants. In unsaturated soils, colloid transport is, among other factors, affected by water content and flow rate. Our objective was to determine whether water content or flow rate is more important for colloid transport. We passed negatively charged polystyrene colloids (220 nm diameter) through unsaturated sand-filled columns under steady-state flow at different water contents (effective water saturations Se ranging from 0.1 to 1.0, with Se = (θ - θr)/(θs - θr)) and flow rates (pore water velocities v of 5 and 10 cm/min). Water content was the dominant factor in our experiments. Colloid transport decreased with decreasing water content, and below a critical water content (Se colloid transport was inhibited, and colloids were strained in water films. Pendular ring and water film thickness calculations indicated that colloids can move only when pendular rings are interconnected. The flow rate affected retention of colloids in the secondary energy minimum, with less colloids being trapped when the flow rate increased. These results confirm the importance of both water content and flow rate for colloid transport in unsaturated porous media and highlight the dominant role of water content.

  1. Pesticide residues analysis in water samples of Nagarpur and Saturia Upazila, Bangladesh

    Science.gov (United States)

    Hasanuzzaman, M.; Rahman, M. A.; Islam, M. S.; Salam, M. A.; Nabi, M. R.

    2018-03-01

    Pesticides used to protect the crops from pest attack in the agricultural fields pose harmful effect to the non-target organisms such as human and many other aquatic and terrestrial organisms either directly or indirectly through food chain. The present study was conducted to monitor a total of seven pesticide residues under organochlorine, organophosphorus and carbamate pesticides in three different sources of pond water, paddy field water and tube-well water from Nagarpur Upazila and paddy field water in the company of Dhaleshwari and Gazikhali river water from Saturia Upazila, Bangladesh. A total of 40 water samples were analyzed using high-performance liquid chromatography equipped with ultraviolet detector. Among the organophosphorus pesticides, diazinon was detected in eight water samples at a concentration ranging from 4.11 to 257.91 μg/l whereas, malathion was detected only in one water sample at a concentration of 84.64 μg/l and chlorpyrifos pesticide was also detected only in one water sample and the concentration was 37.3 μg/l. Trace amount of carbaryl was identified but it was below the detection limit. None of the tested water samples was found to be contaminated with DDT or its metabolites (DDE and DDD). The water samples contaminated with the suspected pesticides were above the acceptable limit except for the fish pond samples of Sahabatpur and Dubaria union. To control the misuse of pesticides and to reduce the possible health risk, appropriate control systems of pests such as integrated pest management system should be implemented immediately by the authorities of the country.

  2. Life cycle water consumption and withdrawal requirements of ethanol from corn grain and residues.

    Science.gov (United States)

    Mishra, Gouri Shankar; Yeh, Sonia

    2011-05-15

    We assessed the water requirements of ethanol from corn grain and crop residue. Estimates are explicit in terms of sources-green (GW) and blue (BW) water, consumptive and nonconsumptive requirements across the lifecycle, including evapotranspiration, application and conveyance losses, biorefinery uses, and water use of energy inputs, and displaced requirements or credits due to coproducts. Ethanol consumes 50-146 L/vehicle kilometer traveled (VKT) of BW and 1-60 L/VKT of GW for irrigated corn and 0.6 L/VKT of BW and 70-137 L/VKT of GW for rain-fed corn after coproduct credits. Extending the system boundary to consider application and conveyance losses and the water requirements of embodied energy increases the total BW withdrawal from 23% to 38% and BW + GW consumption from 5% to 16%. We estimate that, in 2009, 15-19% of irrigation water is used to produce the corn required for ethanol in Kansas and Nebraska without coproduct credits and 8-10% after credits. Harvesting and converting the cob to ethanol reduces both the BW and GW intensities by 13%. It is worth noting that the use of GW is not without impacts, and the water quantity and water quality impacts at the local/seasonal scale can be significant for both fossil fuel and biofuel.

  3. [Residual levels of acetochlor in source water and drinking water of China's major cities].

    Science.gov (United States)

    Yu, Zhi-Yong; Jin, Fen; Li, Hong-Yan; An, Wei; Yang, Min

    2014-05-01

    The concentration levels of acetochlor were investigated in source water and drinking water from 36 major cities in China by solid phase extraction (SPE) combined with gas chromatography - mass spectrometry (GC-MS). Acetochlor detection rate was 66.9% in all the 145 source water samples collected with an average concentration of 33.9 ng L-1. The average removal rate of acetochlor was limited through the drinking water treatment process. The detection concentration of the northeast region was the highest. The concentrations of acetochlor detected in lake were higher than those in river and groundwater as source water. The detection rate and concentration of Liaohe river watershed and the coastal watershed were the highest.

  4. Influences of model structure and calibration data size on predicting chlorine residuals in water storage tanks.

    Science.gov (United States)

    Hua, Pei; de Oliveira, Keila Roberta Ferreira; Cheung, Peter; Gonçalves, Fábio Veríssimo; Zhang, Jin

    2018-04-09

    This study evaluated the influences of model structure and calibration data size on the modelling performance for the prediction of chlorine residuals in household drinking water storage tanks. The tank models, which consisted of two modules, i.e., hydraulic mixing and water quality modelling processes, were evaluated under identical calibration conditions. The hydraulic mixing modelling processes investigated included the continuously stirred tank reactor (CSTR) and multi-compartment (MC) methods, and the water quality modelling processes included first order (FO), single-reactant second order (SRSO), and variable reaction rate coefficients (VRRC) second order chlorine decay kinetics. Different combinations of these hydraulic mixing and water quality methods formed six tank models. Results show that by applying the same calibration datasets, the tank models that included the MC method for modelling the hydraulic mixing provided better predictions compared to the CSTR method. In terms of water quality modelling, VRRC kinetics showed better predictive abilities compared to FO and SRSO kinetics. It was also found that the overall tank model performance could be substantially improved when a proper method was chosen for the simulation of hydraulic mixing, i.e., the accuracy of the hydraulic mixing modelling plays a critical role in the accuracy of the tank model. Advances in water quality modelling improve the calibration process, i.e., the size of the datasets used for calibration could be reduced when a suitable kinetics method was applied. Although the accuracies of all six models increased with increasing calibration dataset size, the tank model that consisted of the MC and VRRC methods was the most suitable of the tank models as it could satisfactorily predict chlorine residuals in household tanks by using invariant parameters calibrated against the minimum dataset size. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Conformational disorder and solvation properties of the key-residues of a protein in water-ethanol mixed solutions.

    Science.gov (United States)

    Mohanta, Dayanidhi; Santra, Santanu; Jana, Madhurima

    2017-12-13

    A small number of key-residues in a protein sequence play vital roles in the function, stability, and folding of the protein. The nonuniform conformational disorder of a small protein Chymotrypsin Inhibitor 2 (CI2) and its secondary segments has been quantified in the ethanol governed temperature induced unfolding process by estimating its change in configurational entropy in several water-ethanol mixed solutions. Such calculations further assist us in identifying the key-residues, from where the unfolding of the protein was initiated. Our findings match well with the reported experimental results. We then make an attempt to explore the properties of the solvent water and ethanol around the key-residues of the protein in its folded and unfolded forms at ambient temperature to identify the individual role of ethanol and water in the protein unfolding. We find that the key-residues of the unfolded protein are in good contact with both water and ethanol as compared to those of the folded protein. In the presence of ethanol, water molecules are noticed to form a rigid structurally bound solvation layer around the key-residues of the protein, irrespective of its conformational state. The restricted translational motion and prominent caging effect of the water and ethanol molecules present around the key-residues of the unfolded protein are a signature of the existence of a rigid mixed water-ethanol layer as compared to that around the folded protein. Furthermore, comparable restricted structural relaxation of the key-residue-water and key-residue-ethanol hydrogen bonds in the unfolded protein as compared to that in the folded one implies that the formation of a strong long-lived hydrogen bonding environment nourishes the unfolding process. We believe that our findings will shed light to several co-solvent governed unfolding processes of a protein in general.

  6. The influence of different matrices on the nature and content of haloacetic acids precursors in ozonized water

    Directory of Open Access Journals (Sweden)

    Molnar Jelena J.

    2012-01-01

    Full Text Available This paper investigates the influence of different matrices (groundwater a realistic natural matrix and commercial humic acid solution a synthetic matrix on the nature and content of haloacetic acid (HAA precursors in ozonized water (0.4 to 3.0 mg O3/mg DOC; pH 6. Natural organic matter (NOM characterization of the natural matrix showed it was largely of hydrophobic character (65% fulvic and 14% humic acids, with the hydrophilic fractions HPIA and HPI-NA at 12% and 9%, respectively. At approximately the same dissolved organic carbon (DOC content of the investigated matrices (~10 mg /L, a greater degree of hydrophobicity was seen in the humic acid solution than in the natural matrix, resulting in a higher content of HAA precursors (559 ± 21 μg/L in the synthetic matrix compared to 309 ± 15 μg/L in the natural matrix. By applying different ozone doses (0.4 to 3.0 mg O3/mg DOC, the DOC content of the studied matrices was reduced by 6-22%, with a maximum process efficacy being achieved with 3.0 mg O3/mg DOC. Ozonation also lead to changes in the NOM structure, i.e. complete oxidation of the humic acid fractions in both investigated matrices. After oxidation, hydrophilic structures dominate the natural water matrix (65%, whereas the synthetic matrix has an equal distribution of hydrophobic and hydrophilic fractions (~50%. Changes in the content and structure of NOM during ozonation resulted in the reduction of the total HAA precursors content (63-85%, using 3.0 mg O3/mg DOC. Detailed analysis of the reactivity of the residual HAA precursor materials shows that ozonation using 3.0 mg O3/mg DOC reduced the reactivity of the NOM fractions in comparison to the raw water. By contrast, HAA precursor material present in the commercial HA solution was transformed after ozonation into other reactive compounds, i.e. precursors which originated from the fulvic acid and hydrophilic fractions. The results of the laboratory testing indicate that the

  7. Effect of water treatment residuals on soil phosphorus, copper and aluminium availability and toxicity

    International Nuclear Information System (INIS)

    Lombi, E.; Stevens, D.P.; McLaughlin, M.J.

    2010-01-01

    Water treatment residuals (WTRs) are produced by the treatment of potable water with coagulating agents. Beneficial recycling in agriculture is hampered by the fact that WTRs contain potentially toxic contaminants (e.g. copper and aluminium) and they bind phosphorus strongly. These issues were investigated using a plant bioassay (Lactuca sativa), chemical extractions and an isotopic dilution technique. Two WTRs were applied to an acidic and a neutral pH soil at six rates. Reductions in plant growth in amended soils were due to WTR-induced P deficiency, rather than Al or Cu toxicity. The release of potentially toxic Al from WTRs was found to be mitigated by their alkaline nature and pH buffering capacity. However, acidification of WTRs was shown to release more soluble Al than soil naturally high in Al. Copper availability was relatively low in all treatments. However, the lability of WTR-Cu increased when the WTR was applied to the soil. - The effect of water treatment residue application to soil was investigated in relation to phosphorus availability, and copper and aluminium phytotoxicity.

  8. Effect of water treatment residuals on soil phosphorus, copper and aluminium availability and toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Lombi, E., E-mail: enzo.lombi@unisa.edu.a [CSIRO Land and Water, Centre for Environmental Contaminant Research, PMB 2, Glen Osmond, SA 5064 (Australia); Centre for Environmental Risk Assessment and Remediation, University of South Australia, Building X, Mawson Lakes Campus, Mawson Lakes, SA 5095 (Australia); CRC CARE, PO Box 486, Salisbury, SA 5106 (Australia); Stevens, D.P. [CSIRO Land and Water, Centre for Environmental Contaminant Research, PMB 2, Glen Osmond, SA 5064 (Australia); Arris Pty Ltd, PO Box 5143, Burnley, Victoria 3121 (Australia); McLaughlin, M.J. [CSIRO Land and Water, Centre for Environmental Contaminant Research, PMB 2, Glen Osmond, SA 5064 (Australia); Soil and Land Systems, University of Adelaide, PMB 1, Glen Osmond, SA 5064 (Australia)

    2010-06-15

    Water treatment residuals (WTRs) are produced by the treatment of potable water with coagulating agents. Beneficial recycling in agriculture is hampered by the fact that WTRs contain potentially toxic contaminants (e.g. copper and aluminium) and they bind phosphorus strongly. These issues were investigated using a plant bioassay (Lactuca sativa), chemical extractions and an isotopic dilution technique. Two WTRs were applied to an acidic and a neutral pH soil at six rates. Reductions in plant growth in amended soils were due to WTR-induced P deficiency, rather than Al or Cu toxicity. The release of potentially toxic Al from WTRs was found to be mitigated by their alkaline nature and pH buffering capacity. However, acidification of WTRs was shown to release more soluble Al than soil naturally high in Al. Copper availability was relatively low in all treatments. However, the lability of WTR-Cu increased when the WTR was applied to the soil. - The effect of water treatment residue application to soil was investigated in relation to phosphorus availability, and copper and aluminium phytotoxicity.

  9. Modeling soil water content for vegetation modeling improvement

    Science.gov (United States)

    Cianfrani, Carmen; Buri, Aline; Zingg, Barbara; Vittoz, Pascal; Verrecchia, Eric; Guisan, Antoine

    2016-04-01

    Soil water content (SWC) is known to be important for plants as it affects the physiological processes regulating plant growth. Therefore, SWC controls plant distribution over the Earth surface, ranging from deserts and grassland to rain forests. Unfortunately, only a few data on SWC are available as its measurement is very time consuming and costly and needs specific laboratory tools. The scarcity of SWC measurements in geographic space makes it difficult to model and spatially project SWC over larger areas. In particular, it prevents its inclusion in plant species distribution model (SDMs) as predictor. The aims of this study were, first, to test a new methodology allowing problems of the scarcity of SWC measurements to be overpassed and second, to model and spatially project SWC in order to improve plant SDMs with the inclusion of SWC parameter. The study was developed in four steps. First, SWC was modeled by measuring it at 10 different pressures (expressed in pF and ranging from pF=0 to pF=4.2). The different pF represent different degrees of soil water availability for plants. An ensemble of bivariate models was built to overpass the problem of having only a few SWC measurements (n = 24) but several predictors to include in the model. Soil texture (clay, silt, sand), organic matter (OM), topographic variables (elevation, aspect, convexity), climatic variables (precipitation) and hydrological variables (river distance, NDWI) were used as predictors. Weighted ensemble models were built using only bivariate models with adjusted-R2 > 0.5 for each SWC at different pF. The second step consisted in running plant SDMs including modeled SWC jointly with the conventional topo-climatic variable used for plant SDMs. Third, SDMs were only run using the conventional topo-climatic variables. Finally, comparing the models obtained in the second and third steps allowed assessing the additional predictive power of SWC in plant SDMs. SWC ensemble models remained very good, with

  10. Residual radioactivity guidelines for the heavy water components test reactor at the Savannah River Site

    International Nuclear Information System (INIS)

    Owen, M.B. Smith, R.; McNeil, J.

    1997-04-01

    Guidelines were developed for acceptable levels of residual radioactivity in the Heavy Water Components Test Reactor (HWCTR) facility at the conclusion of its decommissioning. Using source terms developed from data generated in a detailed characterization study, the RESRAD and RASRAD-BUILD computer codes were used to calculate derived concentration guideline levels (DCGLs) for the radionuclides that will remain in the facility. The calculated DCGLs, when compared to existing concentrations of radionuclides measured during a 1996 characterization program, indicate that no decontamination of concrete surfaces will be necessary. Also, based on the results of the calculations, activated concrete in the reactor biological shield does not have to be removed, and imbedded radioactive piping in the facility can remain in place. Viewed in another way, the results of the calculations showed that the present inventory of residual radioactivity in the facility (not including that associated with the reactor vessel and steam generators) would produce less than one millirem per year above background to a hypothetical individual on the property. The residual radioactivity is estimated to be approximately 0.04 percent of the total inventory in the facility as of March, 1997. According to the results, the only radionuclides that would produce greater than 0.0.1-millirem per year are Am-241 (0.013 mrem/yr at 300 years), C-14 (0.022 mrem/yr at 1000 years) and U-238 (0.034 mrem/yr at 6000 years). Human exposure would occur only through the groundwater pathways, that is, from water drawn from, a well on the property. The maximum exposure would be approximately one percent of the 4 millirem per year ground water exposure limit established by the U.S. Environmental Protection Agency. 11 refs., 13 figs., 15 tabs

  11. Reliability of Blotting Techniques to Assess Contact Lens Water Content.

    Science.gov (United States)

    Cañadas, Pilar; López-Miguel, Alberto; Gómez, Alba; López-de la Rosa, Alberto; Fernández, Itziar; González-García, María J

    2018-02-15

    To determine the reliability of wet and modified dry blotting techniques used in the gravimetric method to assess contact lens (CL) water content (WC), the accuracy of both techniques in comparison with the nominal WC, and also their agreement. We evaluated hydrated and dry CL mass values and WC using the gravimetric method in 440 daily disposable CLs. Samples assessed corresponded to Dailies Total 1, Dailies AquaComfort Plus, 1-Day Acuvue TruEye, and Biotrue ONEday. Back vertex power ranged from +3.00 diopters (D) to -6.00 D. Within-subject coefficient of variation (CVw) and intraclass correlation coefficients were calculated. Bland-Altman analysis was also performed. The modified dry blotting technique yielded significantly (P≤0.0001) higher hydrated CL mass values. The wet blotting technique provided significantly (P≤0.04) better consistency than the modified dry one. Values of CVw for wet and modified dry blotting techniques ranged from 1.2% to 2.1% and from 3.7% to 5.4%, respectively. As for dry CL mass values, CVw values were not significantly different (P≥0.05) between wet (range: 1.1%-1.9%) and dry (range: 1.0%-5.1%) blotting techniques, except for Dailies AquaComfort Plus (P=0.03). Bland-Altman analysis showed poor agreement between the techniques. The wet blotting technique yielded WC values close (around 1%) to nominal ones, in contrast to modified dry blotting technique (≥2.5%). The wet blotting technique is not only more reliable than the modified dry one when obtaining hydrated CL mass but also provides more accurate nominal WC measurements. Agreement between the techniques was poor.

  12. Protocol Development and Equivalency Testing of the FACTS Procedure for Chlorine Residual Determination in Drinking Water.

    Science.gov (United States)

    1984-03-15

    l1 no . P .3tion was for electrode Aand sample 5. the B *Oe~~.1~.,.i.1 oidO I 1000611 ll600*0*l0 6i61 salu01II l.,0000 electrode determined a value...probability ant Residuals Pro. AW1A WQTC Dihaloacetanitriles b Chlorination , lev el ! in he uset] For a 95 percent Louisville Ky iDec 1978, Natural Waters Pro...Free As aitable Chlorine and Health Effects Pacifi, (;rn,. Cat!percent signific:an:e 1e el . i = 0 01 is DPD-Coiorimetrc DPD-Sleadifa( and Oct 19811 In

  13. Modeling Soil Water Retention Curves in the Dry Range Using the Hygroscopic Water Content

    DEFF Research Database (Denmark)

    Chen, Chong; Hu, Kelin; Arthur, Emmanuel

    2014-01-01

    Accurate information on the dry end (matric potential less than −1500 kPa) of soil water retention curves (SWRCs) is crucial for studying water vapor transport and evaporation in soils. The objectives of this study were to assess the potential of the Oswin model for describing the water adsorption...... curves of soils and to predict SWRCs at the dry end using the hygroscopic water content at a relative humidity of 50% (θRH50). The Oswin model yielded satisfactory fits to dry-end SWRCs for soils dominated by both 2:1 and 1:1 clay minerals. Compared with the Oswin model, the Campbell and Shiozawa model...... for soils dominated by 2:1 and 1:1 clays, respectively. Comparison of the Oswin model combined with the Kelvin equation, with water potential estimated from θRH50 (Oswin-KRH50), CS model combined with the Arthur equation (CS-A), and CS-K model, with water potential obtained from θRH50 (CS-KRH50) indicated...

  14. Eco-geochemical peculiarities of mercury content in solid residue of snow in the industrial enterprises impacted areas of Tomsk

    Science.gov (United States)

    Filimonenko, E. A.; Lyapina, E. E.; Talovskaya, A. V.; Parygina, I. A.

    2014-11-01

    Snow, as short-term consignation Wednesday, has several properties that lead to its widespread use in ecologicalgeochemical and geological research. By studying the chemical composition of the dust fallout you can indirectly assess the condition of atmospheric air.1-2. Determining the content of mercury in snow cover, you can define its contribution for the longest period of the year in our region, with the most intensive use of various types of fuel (coal, gas, firewood), that puts a strain on urban ecosystems in terms of ecology.3-4. In addition, snow cleans the atmosphere of mercury, but it accumulates in the snow, and during the spring melting of snow hits the ground and rivers, polluting them. Part of the mercury back into the atmosphere. It should also be note the special nature of the circulation of air masses over the city in winter, creating a heat CAP, which contributes to air pollution of the city. 5-6-7. The high load areas of industrial impact were detected during the eco-geochemical investigations of mercury load index in the impacted areas of enterprises of Tomsk. It was found out, that aerosol particles of industrial emissions in Tomsk contain mercury. The contamination transfer character of mercury sources and occurrence modes of pollutants in snow solid residue were detected during the researches of industrial impact.

  15. Effects of Sludge Dry Solid Content and Residual Bulking Agents on Volatile Solids Reduction Using Eisenia foetida

    Directory of Open Access Journals (Sweden)

    Mohammad ali Abdoli

    2009-06-01

    Full Text Available In the first stage of this study, the compound effects of sludge dry solid content and residual bulking agent type (paper, saw dust, straw mixed with activated sludge (10, 15, and 20% dry solids on volatile solids (V.S. reduction were investigated using Eisenia foetida in pilot scale experiments with batches of fifty earthworms in each of the 10 experimental treatments over a period of 10 weeks. The maximum V.S. reduction was attained in the mixture of sludge and paper, with a D.S. of 15% (0.42 ± 0.03 % day-1 while the minimum V.S. reduction was achieved in the mixture of sludge and straw, with a D.S. of 10% (0.26 ± 0.01 % day-1. In the second stage, the survival of Eisenia foetida in the anaerobic sewage sludge was investigated. In the unmixed raw anaerobic sludge, all the earthworms died during the first 9 weeks of the study period due to acute toxicity. From week 10, however, their survival rate improved so that by week 12 when toxicity reduced to 25.40%, they completely survived. This is while in the mixture of anaerobic sludge with paper (D.S. 15%, 100% of the earthworms survived from week 8 after the volatile solids reduced to 20.42% and 17.40%.

  16. Recovery of the water content of hydrogel contact lenses after use.

    Science.gov (United States)

    Cabrera, Josefa Velasco; Velasco, María José García

    2005-09-01

    The aim of the present study is to determine the amount and time of water-content recovery of ionic contact lenses (Surevue and Acuvue) and non-ionic contact lenses (Soflens 38, Soflens 66 and Optima 38) when submerged in maintenance solution for 9 h. Using a hand-held refractometer, we measured the water content of the lenses upon removal from the eye, and after 15, 30, 45 min, 1, 2 and 9 h in soaking solution. Both ionic lenses presented pre-wear water content of 58%, while two of the non-ionic ones (Soflens 38 and Optima 38) registered 38.6% and the third (Soflens 66) had 66%. We found a significant increase (p 0.05) between ionic and non-ionic lenses, although the non-ionic lenses reached slightly higher water-content values at all the times studied. These results indicate that when the refractometer technique is used to measure water content, the lens types used in this study regain their initial water-content values after 9 h in soaking solution. These data indicate the time needed for hydrogel contact lenses to reach their maximum water content after removal from the eye and submersion in maintenance solution. By ensuring maximum water content and minimum reduction of oxygen for the cornea, the specialist can help avoid clinical signs and symptoms related to low water content in the lenses.

  17. Sensing the water content of honey from temperature-dependent electrical conductivity

    International Nuclear Information System (INIS)

    Guo, Wenchuan; Liu, Yi; Zhu, Xinhua; Zhuang, Hong

    2011-01-01

    In order to predict the water content in honey, electrical conductivity was measured on blossom honey types milk-vetch, jujube and yellow-locust with the water content of 18–37% between 5 and 40 °C. The regression models of electrical conductivity were developed as functions of water content and temperature. The results showed that increases in either water content or temperature resulted in an increase in the electrical conductivity of honey with greater changes at higher water content and/or higher temperature. The linear terms of water content and temperature, a quadratic term of water content, and the interaction effect of water content and temperature had significant influence on the electrical conductivity of honey (p < 0.0001). Regardless of blossom honey type, the linear coefficient of the determination of measured and calculated electrical conductivities was 0.998 and the range error ratio was larger than 100. These results suggest that the electrical conductivity of honey might be used to develop a detector for rapidly predicting the water content in blossom honey

  18. Recycling of drinking water treatment residue as an additional medium in columns for effective P removal from eutrophic surface water.

    Science.gov (United States)

    Wang, Changhui; Wu, Yu; Bai, Leilei; Zhao, Yaqian; Yan, Zaisheng; Jiang, Helong; Liu, Xin

    2018-04-03

    This study assesses the feasibility of recycling drinking water treatment residue (DWTR) to treat eutrophic surface water in a one-year continuous flow column test. Heat-treated DWTR was used as an additional medium (2%-4%) in columns in case excessive organic matter and N were released from the DWTR to surface water. The results indicated that with minimal undesirable effects on other water properties, DWTR addition substantially enhanced P removal, rendering P concentrations in treated water oligotrophic and treated water unsuitable for Microcystis aeruginosa breeding. Long-term stable P removal by DWTR-column treatment was mainly attributed to the relatively low P levels in raw water (<0.108 mg L -1 ) and high P adsorption capability of DWTR, as confirmed by increases in amorphous Al/Fe in DWTR after the tests and low adsorption of P in the mobile forms. The major components of DWTR showed minimal changes, and potential metal pollution from DWTR was not a factor to consider during recycling. DWTR also enriched functional bacterial genera that benefitted biogeochemical cycles and multiple pollution control (e.g., Dechloromonas, Geobacter, Leucobacter, Nitrospira, Rhodoplanes, and Sulfuritalea); an apparent decrease in Mycobacterium with potential pathogenicity was observed in DWTR-columns. Regardless, limited denitrification of DWTR-columns was observed as a result of low bioavailability of C in surface water. This finding indicates that DWTR can be used with other methods to ensure denitrification for enhanced treatment effects. Overall, the use of DWTR as an additional medium in column systems can potentially treat eutrophic surface water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Insights into the mechanisms of mercury sorption onto aluminum based drinking water treatment residuals

    International Nuclear Information System (INIS)

    Deliz Quiñones, Katherine; Hovsepyan, Anna; Oppong-Anane, Akua; Bonzongo, Jean-Claude J.

    2016-01-01

    Highlights: • Mercury sorption by Al-WTRs involves electrostatic forces and chemisorption. • Hg forms bonds with oxygen and sulfur atoms of Al-WTR’s organic ligands. • Mercury is incorporated into the residual fraction to form stable complexes. • Mercury binds mainly to SiO x species in the residual fraction. - Abstract: Several studies have demonstrated the ability of drinking water treatment residuals (WTRs) to efficiently sorb metal cations from aqueous solutions. Reported results have stimulated interest on the potential use of WTRs as sorbent for metal removal from contaminated aqueous effluents as well as in metal immobilization in contaminated soils. However, knowledge on mechanisms of metal sorption by WTRs remains very limited and data on the long-term stability of formed metal–WTR complexes as a function of changing key environmental parameters are lacking. In this study, chemical selective sequential extraction (SSE), scanning electron microscopy combined with X-ray energy dispersive spectrometer (SEM-EDS), and X-ray photoelectron spectroscopy (XPS) were used to gain insight into the different mechanisms of mercury (Hg) binding to aluminum based WTR (Al-WTRs). Results from sorption studies show that a significant portion of Hg becomes incorporated in the operationally defined residual fraction of Al-WTRs, and therefore, not prone to dissolution and mobility. The results of solid phase analyses suggested that Hg immobilization by Al-WTR occurs largely through its binding to oxygen donor atoms of mineral ligands driven by a combination of electrostatic forces and covalent bonding.

  20. Heavy metal contents and other physical quality indices of sewerage, canal and drinking water

    International Nuclear Information System (INIS)

    Mahmood, S.; Sattar, A.; Ihsanullash; Atta, S.; Arif, S. University of Engineering and Technology, Peshawar

    2001-01-01

    Analysis of Cd, Pb and Cu in canal, sewerage and drinking water by potentiometric stripping analysis (PSA) is described. Other quality indices of water such as temperature, pH, EC and total solid were also determined. The levels of heavy metal contents of sewerage, canal and drinking water revealed marked differences and wide coefficient of variability (CV). Generally Cd and Pb contents were higher in sewerage than canal and drinking water. However, Cu content of drinking waters was higher than other water tested. The total solids were found to be generally higher in sewerage and canal water than drinking water tested. The total solids were found to be generally higher in sewerage and canal water than drinking water The variations in temperature, pH and EC were marginal to marked depending upon the source and the location. (author)

  1. Role of Hot Water System Design on Factors Influential to Pathogen Regrowth: Temperature, Chlorine Residual, Hydrogen Evolution, and Sediment.

    Science.gov (United States)

    Brazeau, Randi H; Edwards, Marc A

    2013-10-01

    Residential water heating is linked to growth of pathogens in premise plumbing, which is the primary source of waterborne disease in the United States. Temperature and disinfectant residual are critical factors controlling increased concentration of pathogens, but understanding of how each factor varies in different water heater configurations is lacking. A direct comparative study of electric water heater systems was conducted to evaluate temporal variations in temperature and water quality parameters including dissolved oxygen levels, hydrogen evolution, total and soluble metal concentrations, and disinfectant decay. Recirculation tanks had much greater volumes of water at temperature ranges with potential for increased pathogen growth when set at 49°C compared with standard tank systems without recirculation. In contrast, when set at the higher end of acceptable ranges (i.e., 60°C), this relationship was reversed and recirculation systems had less volume of water at risk for pathogen growth compared with conventional systems. Recirculation tanks also tended to have much lower levels of disinfectant residual (standard systems had 40-600% higher residual), 4-6 times as much hydrogen, and 3-20 times more sediment compared with standard tanks without recirculation. On demand tankless systems had very small volumes of water at risk and relatively high levels of disinfectant residual. Recirculation systems may have distinct advantages in controlling pathogens via thermal disinfection if set at 60°C, but these systems have lower levels of disinfectant residual and greater volumes at risk if set at lower temperatures.

  2. Optimization of immunochemistry for sensing techniques to detect pesticide residues in water

    DEFF Research Database (Denmark)

    Uthuppu, Basil; Kostesha, Natalie; Jakobsen, Mogens Havsteen

    2011-01-01

    of the herbicide, dichlobenil which has been used extensively in the past and it is among the most frequently found pesticide residues in European ground water. BAM is highly resistant to further degradation and is fairly soluble in water. We have synthesized and immobilized a small library of BAM haptens...... and compared the affinity constants of the antibody towards this library. Furthermore, since regeneration of the BAM-hapten surface is a prerequisite for the development of a real-time electrochemical sensor with immunoassay-based detection, studies on regeneration of surfaces, modified with the newly...... and fabrication of a fully automated microfluidic based on this immunoassay and electrochemical detection are in progress....

  3. Cl app: android-based application program for monitoring the residue chlorine in water

    Science.gov (United States)

    Intaravanne, Yuttana; Sumriddetchkajorn, Sarun; Porntheeraphat, Supanit; Chaitavon, Kosom; Vuttivong, Sirajit

    2015-07-01

    A farmer usually uses a cheap chemical material called chlorine to destroy the cell structure of unwanted organisms and remove some plant effluents in a baby shrimp farm. A color changing of the reaction between chlorine and chemical indicator is used to monitor the residue chlorine in water before releasing a baby shrimp into a pond. To get rid of the error in color reading, our previous works showed how a smartphone can be functioned as a color reader for estimating the chlorine concentration in water. In this paper, we show the improvement of interior configuration of our prototype and the distribution to several baby shrimp farms. In the future, we plan to make it available worldwide through the online market as well as to develop more application programs for monitoring other chemical substances.

  4. Improved starch recovery from potatoes by enzymes and reduced water holding of the residual fibres.

    Science.gov (United States)

    Ramasamy, Urmila R; Lips, Steef; Bakker, Rob; Gruppen, Harry; Kabel, Mirjam A

    2014-11-26

    During the industrial extraction of starch from potatoes (Seresta), some starch remains within undisrupted potato cells in the fibrous side-stream. The aim of this study was to investigate if enzymatic degradation of cell wall polysaccharides (CWPs) can enhance starch recovery and lower the water holding capacity (WHC) of the "fibre" fraction. The use of a pectinase-rich preparation recovered 58% of the starch present in the "fibre" fraction. Also, the "fibre" fraction retained only 40% of the water present in the non-enzyme treated "fibre". This was caused by the degradation of pectins, in particular arabinogalactan side chains calculated as the sum of galactosyl and arabinosyl residues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Physico-chemical properties and heavy metal content of water ...

    African Journals Online (AJOL)

    user

    The water quality examination in Ife–North Local Government of Osun State Nigeria was conducted by determining the physico–chemical parameters of 40 samples. Surface water, bore holes, wells and pipe borne water samples were collected from major towns in the Local Government Area and analyzed. Results showed ...

  6. Residual ground-water levels of the neonicotinoid thiacloprid perturb chemosensing of Caenorhabditis elegans.

    Science.gov (United States)

    Hopewell, Hannah; Floyd, Kieran G; Burnell, Daniel; Hancock, John T; Allainguillaume, Joel; Ladomery, Michael R; Wilson, Ian D

    2017-09-01

    This study investigated the neurological effects of residual ground-water levels of thiacloprid on the non-target organism Caenorhabditis elegans. Nematodes treated with thiacloprid showed a dose-dependent and significantly increased twitch response at concentrations above 50 ng mL -1 that disabled their forward locomotion in liquid culture. In comparison with untreated controls, 10 ng mL -1 thiacloprid perturbed the chemosensory ability of C. elegans such that the nematodes no longer demonstrated positive chemotaxis towards a NaCl chemo-attractant, reducing their chemotaxis index from +0.48 to near to zero. Nematodes also exhibited a locomotion characteristic of those devoid of chemo-attraction, making significantly more pirouetting turns of ≥90° than the untreated controls. Compared to the untreated controls, expression of the endocytosis-associated gene, Rab-10, was also increased in C. elegans that had developed to adulthood in the presence of 10 ng mL -1 thiacloprid, suggesting their active engagement in increased recycling of affected cellular components, such as their nAChRs. Thus, even residual, low levels of this less potent neonicotinoid that may be found in field ground-water had measurable effects on a beneficial soil organism which may have environmental and ecological implications that are currently poorly understood.

  7. Comparative analysis of different methods of extraction of present hydrocarbons in industrial residual waters

    International Nuclear Information System (INIS)

    Santa, Judith Rocio; Serrano, Martin; Stashenko, Elena

    2002-01-01

    A comparison among four extraction techniques such as: liquid - liquid (LLE) continuous and for lots, solid phase extraction (SPE), solid phase micro extraction (SPME) and static headspace (S-HS) was carried out. The main purpose of this research was to determine the highest recovery efficiencies and how reproducible the tests are while varying parameters such as time, extraction technique, type of solvents and others. Chromatographic parameters were optimized in order to carry out the analyses. Hydrocarbon's quantification of residual waters was achieved by using a high-resolution gas chromatography with a gas flame ionization detector (HRGC-FID). Validation of the method was carried out by analyzing real samples taken in different sampling places of the residual waters treatment plant of Ecopetrol - Barrancabermeja. The use of extraction methods that require big solvent quantities and long time for analysis are losing validity day by day. Techniques such as the HS-SPME and static HS are offered as alternatives for quantifying hydrocarbons. They show total lack of solvents, high sensibility, selectivity and the techniques are reproducible. Solid phase micro extraction (SPME) and static headspace (static HS) techniques were chosen as the extraction techniques to validate the method in real samples. Both techniques showed similar results for the determination of total hydrocarbons (in the gasoline range)

  8. Removal of Cu (II and Zn (II from water with natural adsorbents from cassava agroindustry residues

    Directory of Open Access Journals (Sweden)

    Daniel Schwantes

    2015-07-01

    Full Text Available Current study employs solid residues from the processing industry of the cassava (Manihot esculenta Crantz (bark, bagasse and bark + bagasse as natural adsorbents for the removal of metal ions Cu(II and Zn(II from contaminated water. The first stage comprised surface morphological characterization (SEM, determination of functional groups (IR, point of zero charge and the composition of naturally existent minerals in the biomass. Further, tests were carried out to evaluate the sorption process by kinetic, equilibrium and thermodynamic studies. The adsorbents showed a surface with favorable adsorption characteristics, with adsorption sites possibly derived from lignin, cellulose and hemicellulose. The dynamic equilibrium time for adsorption was 60 min. Results followed pseudo-second-order, Langmuir and Dubinin-Radushkevich models, suggesting a chemisorption monolayer. The thermodynamic parameters suggested that the biosorption process of Cu and Zn was endothermic, spontaneous or independent according to conditions. Results showed that the studied materials were potential biosorbents in the decontamination of water contaminated by Cu(II and Zn(II. Thus, the above practice complements the final stages of the cassava production chain of cassava, with a new disposal of solid residues from the cassava agroindustry activity.

  9. Competitive Adsorption of Cadmium (II from Aqueous Solutions onto Nanoparticles of Water Treatment Residual

    Directory of Open Access Journals (Sweden)

    Elsayed Elkhatib

    2016-01-01

    Full Text Available There is increasing interest in using water treatment residuals (WTRs for heavy metals removal from wastewater due to their low cost, availability, and high efficiency in removing various pollutants. In this study, novel water treatment residuals nanoparticles (nWTRs were prepared using high energy ball milling and used for efficient removal of Cd(II in single- and multi-ion systems. The WTR nanoparticles demonstrated high removal efficiency for Cd from aqueous solution as the adsorption capacities of nWTR were 17 and 10 times higher than those of bulk WTR in single- and multielement systems, respectively. Noticeably, Cd(II adsorption was clearly suppressed in the multi-ion system as Cu and Pb form the most stable monohydroxo complexes. Fourier transmission infrared (FTIR analyses suggested the participation of OH−, O-Al-O, FeOH, and FeOOH entities in the adsorption process. The stability of Cd-nWTR surface complexes is evident as less than 0. 2% of adsorbed Cd(ll was released at the highest Cd(II concentration load after 4 consecutive desorption cycles. Moreover, the real efficiency of nWTR for Cd(II removal from wastewater samples studied was calculated to be 98.35%. These results highlight the potential of nWTR for heavy metals removal from wastewater.

  10. Role of Hot Water System Design on Factors Influential to Pathogen Regrowth: Temperature, Chlorine Residual, Hydrogen Evolution, and Sediment

    OpenAIRE

    Brazeau, Randi H.; Edwards, Marc A.

    2013-01-01

    Residential water heating is linked to growth of pathogens in premise plumbing, which is the primary source of waterborne disease in the United States. Temperature and disinfectant residual are critical factors controlling increased concentration of pathogens, but understanding of how each factor varies in different water heater configurations is lacking. A direct comparative study of electric water heater systems was conducted to evaluate temporal variations in temperature and water quality ...

  11. Influence of Water Content on the β-Sheet Formation, Thermal Stability, Water Removal, and Mechanical Properties of Silk Materials.

    Science.gov (United States)

    Yazawa, Kenjiro; Ishida, Kana; Masunaga, Hiroyasu; Hikima, Takaaki; Numata, Keiji

    2016-03-14

    Silk, which has excellent mechanical toughness and is lightweight, is used as a structural material in nature, for example, in silkworm cocoons and spider draglines. However, the industrial use of silk as a structural material has garnered little attention. For silk to be used as a structural material, its thermal processability and associated properties must be well understood. Although water molecules influence the glass transition of silk, the effects of water content on the other thermal properties of silks are not well understood. In this study, we prepared Bombyx mori cocoon raw fibers, degummed fibers, and films with different water contents and then investigated the effects of water content on crystallization, degradation, and water removal during thermal processing. Thermal gravimetric analyses of the silk materials showed that water content did not affect the thermal degradation temperature but did influence the water removal behavior. By increasing the water content of silk, the water molecules were removed at lower temperatures, indicating that the amount of free water in silk materials increased; additionally, the glass transition temperature decreased with increasing water plasticization. Differential scanning calorimetry and wide-angle X-ray scattering of the silk films also suggested that the water molecules in the amorphous regions of the silk films acted as a plasticizer and induced β-sheet crystallization. The plasticizing effect of water was not detected in silk fibers, owing to their lower amorphous content and mobility. The structural and mechanical characterizations of the silk films demonstrated the silk film prepared at RH 97% realized both crystallinity and ductility simultaneously. Thus, the thermal stability, mechanical, and other properties of silk materials are regulated by their water content and crystallinity.

  12. The influence of the poisoning ions on the residual uranium water treatment

    International Nuclear Information System (INIS)

    Aurelian, F.; Jinescu, G.

    1997-01-01

    This paper studies uranium adsorption from pond waters on an anionic resin, strongly basic - AM type - under conditions of different concentrations of the noxions ions - the nitric, chlorine, carbonate, bicarbonate, sulfate ions - and also various organic substances content under the form of humates. The order in which these ions hinder uranium adsorption on resin and the variation of the loading capacity of the resin, when the concentration of these increase, were established

  13. De-coupling seasonal changes in water content and dry matter to predict live conifer foliar moisture content

    Science.gov (United States)

    W. Matt Jolly; Ann M. Hadlow; Kathleen Huguet

    2014-01-01

    Live foliar moisture content (LFMC) significantly influences wildland fire behaviour. However, characterising variations in LFMC is difficult because both foliar mass and dry mass can change throughout the season. Here we quantify the seasonal changes in both plant water status and dry matter partitioning. We collected new and old foliar samples from Pinus contorta for...

  14. Concurrent temporal stability of the apparent electrical conductivity and soil water content

    Science.gov (United States)

    Knowledge of spatio-temporal soil water content (SWC) variability within agricultural fields is useful to improve crop management. Spatial patterns of soil water contents can be characterized using the temporal stability analysis, however high density sampling is required. Soil apparent electrical c...

  15. Lead Content of Well Water in Enugu South-East Nigeria | Ogbu ...

    African Journals Online (AJOL)

    Aim: To study the lead content of well water in Enugu, Southeast Nigeria. Method: Wells (101) were located using the multistage sampling procedure and samples were collected into clean plastic containers. Analysis was done using atomic absorption spectrophotometer. Result: The means lead content of well water ...

  16. Effect of zinc binding residues in growth hormone (GH) and altered intracellular zinc content on regulated GH secretion.

    Science.gov (United States)

    Petkovic, Vibor; Miletta, Maria Consolata; Eblé, Andrée; Iliev, Daniel I; Binder, Gerhard; Flück, Christa E; Mullis, Primus E

    2013-11-01

    Endocrine cells store hormones in concentrated forms (aggregates) in dense-core secretory granules that are released upon appropriate stimulation. Zn(2+) binding to GH through amino acid residues His18, His21, and Glu174 are essential for GH dimerization and might mediate its aggregation and storage in secretory granules. To investigate whether GH-1 gene mutations at these positions interfere with this process, GH secretion and intracellular production were analyzed in GC cells (rat pituitary cell line) transiently expressing wt-GH and/or GH Zn mutant (GH-H18A-H21A-E174A) in forskolin-stimulated vs nonstimulated conditions. Reduced secretion of the mutant variant (alone or coexpressed with wt-GH) compared with wt-GH after forskolin stimulation was observed, whereas an increased intracellular accumulation of GH Zn mutant vs wt-GH correlates with its altered extracellular secretion. Depleting Zn(2+) from culture medium using N,N,N',N'-tetrakis(2-pyridylemethyl)ethylenediamine, a high-affinity Zn(2+) chelator, led to a significant reduction of the stimulated wt-GH secretion. Furthermore, externally added Zn(2+) to culture medium increased intracellular free Zn(2+) levels and recovered wt-GH secretion, suggesting its direct dependence on free Zn(2+) levels after forskolin stimulation. Confocal microscopy analysis of the intracellular secretory pathway of wt-GH and GH Zn mutant indicated that both variants pass through the regulated secretory pathway in a similar manner. Taken together, our data support the hypothesis that loss of affinity of GH to Zn(2+) as well as altering intracellular free Zn(2+) content may interfere with normal GH dimerization (aggregation) and storage of the mutant variant (alone or with wt-GH), which could possibly explain impaired GH secretion.

  17. Computed distributions of residual shaft drilling and construction water in the exploratory facilities at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Eaton, R.R.; Peterson, A.C.

    1989-01-01

    The Yucca Mountain Project is studying the feasibility of constructing a high-level nuclear waste repository at Yucca Mountain in southwest Nevada. One activity of site characterization is the construction of two exploratory shafts. This paper contains the results of engineering analytical calculations of the potential distribution of residual construction water in the exploratory shafts and drifts and numerical calculations of the movement of the residual water and how the movement is affected by drift ventilation. In all cases the increase in rock saturation resulting from the construction water was extremely small. 11 refs., 15 figs., 1 tab

  18. Aluminum-based drinking-water treatment residuals: a novel sorbent for perchlorate removal.

    Science.gov (United States)

    Makris, Konstantinos C; Sarkar, Dibyendu; Datta, Rupali

    2006-03-01

    Perchlorate contamination of aquifers and drinking-water supplies has led to stringent regulations in several states to reduce perchlorate concentrations in water at acceptable levels for human consumption. Several perchlorate treatment technologies exist, but there is significant cost associated with their use, and the majority of them are unable to degrade perchlorate to innocuous chloride. We propose the use of a novel sorbent for perchlorate, i.e. an aluminum-based drinking-water treatment residual (Al-WTR), which is a by-product of the drinking-water treatment process. Perchlorate sorption isotherms (23+/-1 degrees C) showed that the greatest amount (65%) of perchlorate removed by the Al-WTR was observed with the lowest initial perchlorate load (10 mg L(-1)) after only 2 h of contact time. Increasing the contact time to 24 h, perchlorate removal increased from 65 to 76%. A significant correlation was observed between the amounts of perchlorate removed with evolved chloride in solution, suggesting degradation of perchlorate to chloride.

  19. NUTRIENT CONTENT IN SUNFLOWERS IRRIGATED WITH OIL EXPLORATION WATER

    Directory of Open Access Journals (Sweden)

    ADERVAN FERNANDES SOUSA

    2016-01-01

    Full Text Available Irrigation using produced water, which is generated during crude oil and gas recovery and treated by the exploration industry, could be an option for irrigated agriculture in semiarid regions. To determine the viability of this option, the effects of this treated water on the nutritional status of plants should be assessed. For this purpose, we examined the nutritional changes in sunflowers after they were irrigated with oil - produced water and the effects of this water on plant biomass and seed production. The sunflower cultivar BRS 321 was grown for three crop cycles in areas irrigated with filtered produced water (FPW, reverse osmosis - treated produced water (OPW, or ground water (GW. At the end of each cycle, roots, shoots, and seeds were collected to examine their nutrient concentrations. Produced water irrigation affected nutrient accumulation in the sunflower plants. OPW irrigation promoted the accumulation of Ca, Na, N, P, and Mg. FPW irrigation favored the accumulation of Na in both roots and shoots, and biomass and seed production were negatively affected. The Na in the shoots of plants irrigated with FPW increased throughout the three crop cycles. Under controlled conditions, it is possible to reuse reverse osmosis - treated produced water in agriculture. However, more long - term research is needed to understand its cumulative effects on the chemical and biological properties of the soil and crop production.

  20. Polder effects on sediment-to-soil conversion: water table, residual available water capacity, and salt stress interdependence.

    Science.gov (United States)

    Radimy, Raymond Tojo; Dudoignon, Patrick; Hillaireau, Jean Michel; Deboute, Elise

    2013-01-01

    The French Atlantic marshlands, reclaimed since the Middle Age, have been successively used for extensive grazing and more recently for cereal cultivation from 1970. The soils have acquired specific properties which have been induced by the successive reclaiming and drainage works and by the response of the clay dominant primary sediments, that is, structure, moisture, and salinity profiles. Based on the whole survey of the Marais Poitevin and Marais de Rochefort and in order to explain the mechanisms of marsh soil behavior, the work focuses on two typical spots: an undrained grassland since at least 1964 and a drained cereal cultivated field. The structure-hydromechanical profiles relationships have been established thanks to the clay matrix shrinkage curve. They are confronted to the hydraulic functioning including the fresh-to-salt water transfers and to the recording of tensiometer profiles. The CE1/5 profiles supply the water geochemical and geophysical data by their better accuracy. Associated to the available water capacity calculation they allow the representation of the parallel evolution of the residual available water capacity profiles and salinity profiles according to the plant growing and rooting from the mesophile systems of grassland to the hygrophile systems of drained fields.

  1. Polder Effects on Sediment-to-Soil Conversion: Water Table, Residual Available Water Capacity, and Salt Stress Interdependence

    Directory of Open Access Journals (Sweden)

    Raymond Tojo Radimy

    2013-01-01

    Full Text Available The French Atlantic marshlands, reclaimed since the Middle Age, have been successively used for extensive grazing and more recently for cereal cultivation from 1970. The soils have acquired specific properties which have been induced by the successive reclaiming and drainage works and by the response of the clay dominant primary sediments, that is, structure, moisture, and salinity profiles. Based on the whole survey of the Marais Poitevin and Marais de Rochefort and in order to explain the mechanisms of marsh soil behavior, the work focuses on two typical spots: an undrained grassland since at least 1964 and a drained cereal cultivated field. The structure-hydromechanical profiles relationships have been established thanks to the clay matrix shrinkage curve. They are confronted to the hydraulic functioning including the fresh-to-salt water transfers and to the recording of tensiometer profiles. The CE1/5 profiles supply the water geochemical and geophysical data by their better accuracy. Associated to the available water capacity calculation they allow the representation of the parallel evolution of the residual available water capacity profiles and salinity profiles according to the plant growing and rooting from the mesophile systems of grassland to the hygrophile systems of drained fields.

  2. Mobile TDR for geo-referenced measurement of soil water content and electrical conductivity

    DEFF Research Database (Denmark)

    Thomsen, Anton; Schelde, Kirsten; Drøscher, Per

    2007-01-01

    The development of site-specific crop management is constrained by the availability of sensors for monitoring important soil and crop related conditions. A mobile time-domain reflectometry (TDR) unit for geo-referenced soil measurements has been developed and used for detailed mapping of soil water...... content and electrical conductivity within two research fields. Measurements made during the early or late season, when soil moisture levels are close to field capacity, are related to the amount of plant available water and soil texture. Combined measurements of water content and electrical conductivity...... are closely related to the clay and silt fractions of a variable field. The application to early season field mapping of water content, electrical conductivity and clay content is presented. The water and clay content maps are to be used for automated delineation of field management units. Based on a spatial...

  3. Evaluation of Minerals Content of Drinking Water in Malaysia

    Science.gov (United States)

    Azlan, Azrina; Khoo, Hock Eng; Idris, Mohd Aizat; Ismail, Amin; Razman, Muhammad Rizal

    2012-01-01

    The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water. PMID:22649292

  4. Pedotransfer functions to estimate soil water content at field capacity ...

    Indian Academy of Sciences (India)

    20

    available scarce water resources in dry land agriculture, but direct measurement thereof for multiple locations in the field is not always feasible. Therefore, pedotransfer functions (PTFs) were developed to estimate soil water retention at FC and PWP for dryland soils of India. A soil database available for Arid Western India ...

  5. Study of variation in radiosensitivity of barley (Hardeum Vulgare) as a function of seed water content

    International Nuclear Information System (INIS)

    Arabi, M.I.; Barrault, G.; Sarrafi, A.; Albertini, I.

    1993-01-01

    The study of the sorption curve representing the development of water content versus relative humidity, in barley seeds (CV. Thibaut), shows that water is present in three different states: Constitutive water at less than 8.1%, absorption water between 8.1 and 10.9%, and free water at more than 10.9%. Along with these states, radiosensitivity is respectively high, low, and high. The seeds detached from the rachis have less radioresistance than the attached ones. However, this difference in behaviour is reduced when the water content is high (presence of free water). We also observed that growth was stimulated by weak doses of irradiation (20 Gy), whatever the water content was. (author). 35 refs., 4 figs., 1 tab

  6. Thermal properties of ration components as affected by moisture content and water activity during freezing.

    Science.gov (United States)

    Li, J; Chinachoti, P; Wang, D; Hallberg, L M; Sun, X S

    2008-11-01

    Beef roast with vegetables is an example of a meal, ready-to-eat (MRE) ration entrée. It is a mixture of meat, potato, mushroom, and carrot with a gravy sauce. The thermal properties of each component were characterized in terms of freezing point, latent heat, freezable and unfreezable water contents, and enthalpy during freezing using differential scanning calorimetry. Freezing and thawing curves and the effect of freezing and thawing cycles on thermal properties were also evaluated. The freezing points of beef, potato, mushroom, and sauce were all in the range of -5.1 to -5.6 degrees C, but moisture content, water activity, latent heat, freezable and unfreezable water contents, and enthalpy varied among these components. Freezing temperature greatly affected the unfrozen water fraction. The unfreezable water content (unfrozen water fraction at -50 degrees C) of ration components was in the range of 8.2% to 9.7%. The freezing and thawing curves of vegetables with sauce differed from those of beef but took similar time to freeze or thaw. Freezing and thawing cycles did not greatly affect the thermal properties of each component. Freezing point and latent heat were reduced by decreasing moisture content and water activity of each component. Water activity was proportionally linear to freezing point at a(w) > 0.88, and moisture content was proportionally linear to freezable water content in all ration components. Water was not available for freezing when moisture content was reduced to 28.8% or less. This study indicates that moisture content and water activity are critical factors affecting thermal behavior of ration components during freezing.

  7. Content

    DEFF Research Database (Denmark)

    Keiding, Tina Bering

    Aim, content and methods are fundamental categories of both theoretical and practical general didactics. A quick glance in recent pedagogical literature on higher education, however, reveals a strong preoccupation with methods, i.e. how teaching should be organized socially (Biggs & Tang, 2007......, is subordinating content to methods as seen in modern didactics, hereby transforming content to a medium for achievement of learning-to-learn skills rather than something valuable in its own right. At the level of general didactics quite few attempts have been made to formulate criteria and categories...... secondary levels. In subject matter didactics, the question of content is more developed, but it is still mostly confined to teaching on lower levels. As for higher education didactics, discussions on selection of content are almost non-existent on the programmatic level. Nevertheless, teachers are forced...

  8. Insights into the mechanisms of mercury sorption onto aluminum based drinking water treatment residuals.

    Science.gov (United States)

    Deliz Quiñones, Katherine; Hovsepyan, Anna; Oppong-Anane, Akua; Bonzongo, Jean-Claude J

    2016-04-15

    Several studies have demonstrated the ability of drinking water treatment residuals (WTRs) to efficiently sorb metal cations from aqueous solutions. Reported results have stimulated interest on the potential use of WTRs as sorbent for metal removal from contaminated aqueous effluents as well as in metal immobilization in contaminated soils. However, knowledge on mechanisms of metal sorption by WTRs remains very limited and data on the long-term stability of formed metal-WTR complexes as a function of changing key environmental parameters are lacking. In this study, chemical selective sequential extraction (SSE), scanning electron microscopy combined with X-ray energy dispersive spectrometer (SEM-EDS), and X-ray photoelectron spectroscopy (XPS) were used to gain insight into the different mechanisms of mercury (Hg) binding to aluminum based WTR (Al-WTRs). Results from sorption studies show that a significant portion of Hg becomes incorporated in the operationally defined residual fraction of Al-WTRs, and therefore, not prone to dissolution and mobility. The results of solid phase analyses suggested that Hg immobilization by Al-WTR occurs largely through its binding to oxygen donor atoms of mineral ligands driven by a combination of electrostatic forces and covalent bonding. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Content of Fluorine in Drinking Water in FYR Macedonia

    Directory of Open Access Journals (Sweden)

    Carcev M.

    2014-03-01

    Full Text Available From all the methods applied in preventing dental caries, the most significant is the use of fluorides. Nowadays, 6 decades after its massive use, it can certainly be argued that it is the most efficient, cheapest and safest way of preventing dental caries, confirmed by more than 150 longitudinal studies. In order to determine the presence of fluorides in drinking water, in coordination with the Institute for Public Health of the FYR Macedonia in 2009, we conducted a research for determining the presence of fluorides in drinking water from the public water supply in the country.

  10. The Mediterranean Water content in the Northeast Atlantic

    Science.gov (United States)

    Nascimento, Angela; Bashmachnikov, Igor; Neves, Filipe

    2014-05-01

    Distribution of the Mediterranean Water (MW) in the subtropical Northeast Atlantic [20-50o N, 5-40o W] was studied using Optimum Multiparameter analysis (OMP) applied to the World Ocean Atlas (http://www.nodc.noaa.gov/) and MEDTRANS climatologies (http://co.fc.ul.pt/en/). The areas of influence of water masses in the study region were obtained from literature and from analysis of individual TS-diagrams. The analysis permitted to divide the water column between 500 to 2000 m into 5 vertical layers. The boundaries of the layers separated different expected sets of the dominant water masses; their depth varied across the study region. For the OMP we used the following water masses: the central fraction of the North Atlantic Central Water (H), the lower fraction of the North Atlantic Central Water (NACWl), the Mediterranean Water (MW), the Sub-Artic Intermediate Water (SAIW), the modified Antarctic Intermediate Water (AA), the Labrador Sea Water (LSW) and the upper fraction of the North Atlantic Deep Water (NADWu). The characteristics of the water masses were obtained from Perez et al. (2001), Alvarez et al. (2004) and Barbero et al. (2010), taken at the places where the water masses entered the study region. For each of the layers and each of the grid-points OMP was applied for estimation of the percentage of the each of the water masses in the observed mixture. The analysis of sensitivity of the results to the definition of water mass proprieties showed that their percentages were derived within the average error of 10%. The percentages of water masses obtained in this study compared well with the previous OMP results at some individual sections across our region (Hinrichsen and Tomczak, 1993; Alvarez et al., 2004 and Barbero et al., 2010). In this work we specifically focused on distribution of the MW. The results showed that the MW reached its maximum of 50% at 1200 m depth in the Gulf of Cadiz. The percentage decreased to about 40% along the Iberian continental

  11. The Soil Characteristic Curve at Low Water Contents: Relations to Specific Surface Area and Texture

    DEFF Research Database (Denmark)

    Resurreccion, Augustus; Møldrup, Per; Schjønning, Per

    Accurate description of the soil-water retention curve (SWRC) at low water contents is important for simulating water dynamics, plant-water relations, and microbial processes in surface soil. Soil-water retention at soil-water matric potential of less than -10 MPa, where adsorptive forces dominate...... that measurements by traditional pressure plate apparatus generally overestimated water contents at -1.5 MPa (plant wilting point). The 41 soils were classified into four textural classes based on the so-called Dexter index n (= CL/OC), and the Tuller-Or (TO) general scaling model describing the water film...... thickness at a given soil-water matric potential (low organic soils with n > 10, the estimated SA from the dry soil-water retention was in good agreement with the SA measured using ethylene glycol monoethyl ether (SA_EGME). A strong relationship between the ratio...

  12. Headspace Volumetric Karl Fischer Titration for the Determination of Water Content in Finished Tobacco Products

    OpenAIRE

    Aydin N; Chardonnens F; Rotach M

    2014-01-01

    Because many physicochemical properties of tobacco are highly sensitive to its moisture content, the determination of water level is an important parameter for tobacco characterization. A headspace volumetric Karl Fischer titration (HS-V-KFT) method is presented for the quantification of water content in different finished tobacco materials. The parameters affecting the extraction of water from the tobacco materials were the sample size and the oven temperature which have been optimized. The ...

  13. Compostagem da fração sólida da água residuária de suinocultura Solid fraction composting of residual water from pig farms

    Directory of Open Access Journals (Sweden)

    Marco A. P. Orrico Júnior

    2009-09-01

    numbers (MPN of total coliforms and fecal coliforms, as well as volume and quality of the compost. The composting showed to be efficient for treatment of the solid fraction of residual water from pig farms because of the high reduction of manure polluting potential, which reduction of 71.24% of TS contents, 64.55% of volume, 56.89% of CDO and 56.89% COM. Reductions of 100% in MPN total coliforms and fecal coliforms were observed, what allows its use as organic fertilizer.

  14. Quantification of heavy metals from residual waste and ashes from the treatment plant of residual water Reciclagua and,effects for the health of those workers which manipulate those residuals; Cuantificacion de metales pesados de lodo residual y cenizas de la planta tratadora de aguas residuales Reciclagua y efectos a la salud de los trabajadores que manipulan los residuos

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero D, J.J

    2004-07-01

    In this work, the technique of leaching using thermostatted column in series is applied, the X-ray diffraction for the identification of the atomic and molecular structure of the toxic metals that are present in the residual muds of the water treatment plant located in the municipality of Lerma Estado de Mexico, named RECICLAGUA, likewise the technique is used of emission spectrometry for plasma and X-ray fluorescence for the qualitative analysis. Its were take samples of residual mud and of incinerated mud of the treatment plant of residual waters of the industrial corridor Toluca -Lerma RECICLAGUA, located in Lerma Estado de Mexico. For this study there were mixed 100 g of residual mud with a solution to 10% of mineral acid or sodium hydroxide according to the case, to adjust the one pH at 2, 5, 7 and 10, it was added bisulfite, of 0.3-1.5 g of dodecyl sulfate sodium and 3.939 of DTPA (triple V) (Diethylene triamine pentaacetate). To this mud and ashes were extracted the toxic and valuable metals by means of the leaching technique using thermostatted columns placed in series that were designed by the Dr. Jaime Vite Torres; it is necessary to make mention that so much the process as the equipment with those that work it was patented by the same one. With the extraction of these metals benefits are obtained, mainly of economic type, achieving the decrease of the volume of those wastes that have been generated; as well as the so much the use of those residuals, once the metals have been eliminated, as of those liquors where the metals were extracted. It was carried out a quantitative analysis using emission spectrometry by plasma in solids by this way to be able to know the content of the present metals in the sample before and later of leaching them, these results reported a great quantity of elements. Another of the techniques employees was the X-ray diffraction analysis that provides an elementary content of the samples, identifying elements that are present in

  15. Amendment of arsenic and chromium polluted soil from wood preservation by iron residues from water treatment

    DEFF Research Database (Denmark)

    Nielsen, Sanne Skov; Petersen, L. R.; Kjeldsen, Peter

    2011-01-01

    , mostly in the deepest samplers. This is likely due to the formation of a pseudo-gley because of precipitation surplus. Stabilization of arsenic and chromium contaminated soil using WTR is a promising method but the transformation of ferrihydrite in soil proves a concern in case of waterlogged soils......An iron-rich water treatment residue (WTR) consisting mainly of ferrihydrite was used for immobilization of arsenic and chromium in a soil contaminated by wood preservatives. A leaching batch experiment was conducted using two soils, a highly contaminated soil (1033mgkg−1 As and 371mgkg−1 Cr......) and slightly contaminated soil (225mgkg−1 As and 27mgkg−1 Cr). Compared to an untreated reference soil, amendment with 5% WTR reduced leaching in the highly contaminated soil by 91% for Cr and 98% for As. No aging effect was observed after 103d. In a small field experiment, soil was mixed with 2.5% WTR in situ...

  16. Influence of water content on the inactivation of P. digitatum spores using an air-water plasma jet

    Science.gov (United States)

    Youyi, HU; Weidong, ZHU; Kun, LIU; Leng, HAN; Zhenfeng, ZHENG; Huimin, HU

    2018-04-01

    In order to investigate whether an air-water plasma jet is beneficial to improve the efficiency of inactivation, a series of experiments were done using a ring-needle plasma jet. The water content in the working gas (air) was accurately measured based on the Karl Fischer method. The effects of water on the production of OH (A2Σ+-X2Πi) and O (3p5P-3s5S) were also studied by optical emission spectroscopy. The results show that the water content is in the range of 2.53-9.58 mg l-1, depending on the gas/water mixture ratio. The production of OH (A2Σ+-X2Πi) rises with the increase of water content, whereas the O (3p5P-3s5S) shows a declining tendency with higher water content. The sterilization experiments indicate that this air-water plasma jet inactivates the P. digitatum spores very effectively and its efficiency rises with the increase of the water content. It is possible that OH (A2Σ+-X2Πi) is a more effective species in inactivation than O (3p5P-3s5S) and the water content benefit the spore germination inhibition through rising the OH (A2Σ+-X2Πi) production. The maximum of the inactivation efficacy is up to 93% when the applied voltage is -6.75 kV and the water content is 9.58 mg l-1.

  17. Glacial melt content of water use in the tropical Andes

    Science.gov (United States)

    Buytaert, Wouter; Moulds, Simon; Acosta, Luis; De Bièvre, Bert; Olmos, Carlos; Villacis, Marcos; Tovar, Carolina; Verbist, Koen M. J.

    2017-11-01

    Accelerated melting of glaciers is expected to have a negative effect on the water resources of mountain regions and their adjacent lowlands, with tropical mountain regions being among the most vulnerable. In order to quantify those impacts, it is necessary to understand the changing dynamics of glacial melting, but also to map how glacial meltwater contributes to current and future water use, which often occurs at considerable distance downstream of the terminus of the glacier. While the dynamics of tropical glacial melt are increasingly well understood and documented, major uncertainty remains on how the contribution of tropical glacial meltwater propagates through the hydrological system, and hence how it contributes to various types of human water use in downstream regions. Therefore, in this paper we present a detailed regional mapping of current water demand in regions downstream of the major tropical glaciers. We combine these maps with a regional water balance model to determine the dominant spatiotemporal patterns of the contribution of glacial meltwater to human water use at an unprecedented scale and resolution. We find that the number of users relying continuously on water resources with a high (>25%) long-term average contribution from glacial melt is low (391 000 domestic users, 398 km2 of irrigated land, and 11 MW of hydropower production), but this reliance increases sharply during drought conditions (up to 3.92 million domestic users, 2096 km2 of irrigated land, and 732 MW of hydropower production in the driest month of a drought year). A large proportion of domestic and agricultural users are located in rural regions where climate adaptation capacity tends to be low. Therefore, we suggest that adaptation strategies should focus on increasing the natural and artificial water storage and regulation capacity to bridge dry periods.

  18. Drug residues in urban water: A database for ecotoxicological risk management.

    Science.gov (United States)

    Destrieux, Doriane; Laurent, François; Budzinski, Hélène; Pedelucq, Julie; Vervier, Philippe; Gerino, Magali

    2017-12-31

    Human-use drug residues (DR) are only partially eliminated by waste water treatment plants (WWTPs), so that residual amounts can reach natural waters and cause environmental hazards. In order to properly manage these hazards in the aquatic environment, a database is made available that integrates the concentration ranges for DR, which cause adverse effects for aquatic organisms, and the temporal variations of the ecotoxicological risks. To implement this database for the ecotoxicological risk assessment (ERA database), the required information for each DR is the predicted no effect concentrations (PNECs), along with the predicted environmental concentrations (PECs). The risk assessment is based on the ratio between the PNECs and the PECs. Adverse effect data or PNECs have been found in the publicly available literature for 45 substances. These ecotoxicity test data have been extracted from 125 different sources. This ERA database contains 1157 adverse effect data and 287 PNECs. The efficiency of this ERA database was tested with a data set coming from a simultaneous survey of WWTPs and the natural environment. In this data set, 26 DR were searched for in two WWTPs and in the river. On five sampling dates, concentrations measured in the river for 10 DR could pose environmental problems of which 7 were measured only downstream of WWTP outlets. From scientific literature and measurements, data implementation with unit homogenisation in a single database facilitates the actual ecotoxicological risk assessment, and may be useful for further risk coming from data arising from the future field survey. Moreover, the accumulation of a large ecotoxicity data set in a single database should not only improve knowledge of higher risk molecules but also supply an objective tool to help the rapid and efficient evaluation of the risk. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Detecting leaf-water content in Mediterranean trees using high-resolution spectrometry

    Science.gov (United States)

    de Jong, Steven M.; Addink, Elisabeth A.; Doelman, Jonathan C.

    2014-04-01

    Water content of the vegetation canopy or individual leaves is an important variable in physiological plant processes. In Mediterranean regions where water availability is an important production limiting factor, it is a strong indicator of vegetation stress. Spectroscopic earth-observation techniques in the solar part of the electromagnetic spectrum provide opportunities to determine leaf and canopy-water content due to the presence of water-absorption bands around 970 and 1200 nm. We investigated the possibilities to predict leaf-water content of three dominant tree species in a study area in Mediterranean France using spectral indices. During a field campaign leaf-water content (EWT) was determined and high-resolution spectra were measured of the same leaves. The spectra were measured in two ways: using an optical cable with a field of view of 25° and using a leaf clip with its own artificial illumination source. The spectra were analyzed and related to leaf-water content as original reflectance spectra and as continuum-removed spectra using eight spectral leaf-water indices. Next, reflectance spectra were simulated to explore their sensitivity to environmental conditions like leaf area index and illumination angle using a radiative transfer model. Results show that a good correlation (0.70) exists between leaf-water content and spectral indices using the right slope of the 970 nm water-absorption band. Continuum-removal correction of the spectra improved the relations. The model sensitivity analysis illustrated that from a set of five environmental variables leaf area index has, as may be expected, an important impact on leaf-water estimates. This field and model study illustrates that it is feasible to determine foliar water content on the basis of spectral indices located around the minor water-absorption bands with a limited effect of environmental conditions.

  20. Effect of conditioning by PAM polymers with different charges on the structural and characteristic evolutions of water treatment residuals.

    Science.gov (United States)

    Yan, W L; Wang, Y L; Chen, Y J

    2013-11-01

    Three types of polyacrylamide (PAM) flocculants with different charges (cationic PAM WD4960, nonionic PAM M351, and anionic PAM WDA110) were used for water treatment residuals (WTRs) conditioning, and the physicochemical, morphological and structural characteristics of raw and conditioned WTRs were investigated. Rheological methods were employed to analyze the internal structural transition between the raw and conditioned WTRs under a typical dosage of WD4960. Results showed that when the raw WTRs were conditioned with the polymers, the optimum dosage of WD4960 was 4.82 g/kg total suspended solid (TSS) while that of both M351 and WDA110 was 7.24 g/kg TSS. The residual PAM content in the supernatant of the WTR matrix conditioned at the optimum WD4960 dosage was 5.59 mg/L, which is the least among the supernatants obtained with the three types of PAM. Furthermore, the visible fulvic acid (FA) in the supernatant disappeared and the intensity of the ultraviolet FA decreased. The average diameter of irregularly shaped aggregates in the WTR suspensions increased from 35.73 μm to several hundred micrometers with increasing PAM dosage. The size of WTR aggregates conditioned at the optimum WD4960 dosage was much larger than that of aggregates obtained at the optimum M351 or WDA110 dosages. Two-dimensional fractal dimension (D2) values presented an increasing trend with increasing PAM dosage. D2 values of the conditioned WTR aggregates were 1.87, 1.76, and 1.83 at optimum WD4960, M351, and WDA110 dosages, respectively. The cationic PAM (CPAM) WD4960 thus appears to be a more ideal conditioner for WTRs. Consistent relationships were observed among the capillary suction time (CST), average particle size, and D2 values of the conditioned WTR aggregates at the optimum WD4960 dosage. Mass fractal dimensions (D(f)) indicated that both the raw and WD4960-conditioned WTRs behave like weak-link flocs/aggregates. D(f) values (log G'-log TSS) of the WTR aggregates before and after

  1. Rapid assessment of water pollution by airborne measurement of chlorophyll content.

    Science.gov (United States)

    Arvesen, J. C.; Weaver, E. C.; Millard, J. P.

    1971-01-01

    Present techniques of airborne chlorophyll measurement are discussed as an approach to water pollution assessment. The differential radiometer, the chlorophyll correlation radiometer, and an infrared radiometer for water temperature measurements are described as the key components of the equipment. Also covered are flight missions carried out to evaluate the capability of the chlorophyll correlation radiometer in measuring the chlorophyll content in water bodies with widely different levels of nutrients, such as fresh-water lakes of high and low eutrophic levels, marine waters of high and low productivity, and an estuary with a high sediment content. The feasibility and usefulness of these techniques are indicated.

  2. Analysis of the HDO content in heavy water by ATR-FTIR

    International Nuclear Information System (INIS)

    Jong-Goo Kim; Yang-Soon Park; Yeong-Keong Ha; Kyuseok Song

    2011-01-01

    The applicability of ATR-FTIR for the determination of the HDO content in heavy water (D 2 O) was investigated. Two groups of calibration standard solutions, of low contents (0-1 n% H 2 O in heavy water) and of higher contents (0-10 n% H 2 O in heavy water) were prepared by adding properly calculated amount of H 2 O to D 2 O by weight. The absorbances at 3400 cm -1 (υ, O-H) against the calibration standards were measured five times using two kinds of interchangeable IREs (1 bound and 9 bound reflections). And four calibration curves were obtained by linear least square fit of the measured absorbances for the four different measurement conditions, which are (1) for low contents group using 1 bound reflection, (2) for low contents group using 9 bound reflections, (3) for higher contents group using 1 bound reflection, (4) for higher contents group using 9 bound reflections. Determined contents (c 0 ) of each calibration standards for the four measurement conditions were obtained by the calibration curves and compared to the calculated contents (c cal ). The uncertainty sources were considered when the HDO in heavy water is determined according to the procedure of this work. The uncertainties u(c 0 ) of the determined contents (c 0 ) for the four different measurement conditions were calculated. (author)

  3. Effect of O horizon and Forest Harvest Residue Manipulations on Soil Organic Matter Content and Composition of a Loblolly Pine Plantation in the Southeastern United States

    Science.gov (United States)

    Hatten, J.; Mack, J.; Dewey, J.; Sucre, E.; Leggett, Z.

    2012-04-01

    Forest harvest residues and forest floor materials are significant sources of mineral soil organic matter and nutrients for regenerating and establishing forests. Harvest residues in particular are occasionally removed, piled, or burned following harvesting. While the forest floor is never purposely removed during operational harvesting and site preparation, they could become in high demand as bioenergy markets develop. Weyerhaeuser Company established an experimental study to evaluate the effect of forest-floor manipulation on site productivity and soil carbon. This study was installed in a loblolly pine plantation near Millport, Alabama, USA on the Upper Gulf Coastal Plain to test both extremes from complete removal of harvest residues and forest floor to doubling of these materials. This study has been continuously monitored since its establishment in 1994. We have examined the effects of varying forest floor levels on the biomass, soil carbon content, and soil carbon composition in the context of these management activities. Above- and below-ground productivity, soil moisture, soil temperature, and nutrient dynamics have been related to soil organic carbon in mineral soil size/density fractionation and lignin and cutin biomarkers from the cupric oxide (CuO) oxidation technique. We have found that while removing litter and harvest residues has little effect on biomass production and soil carbon, importing litter and harvest residues increases forest productivity and soil carbon content. Interestingly, increased carbon was observed in all depths assessed (O horizon, 0-20, 20-40, and 40-60cm) suggesting that this practice may sequester organic carbon in deep soil horizons. Our biomarker analysis indicated that importing litter and harvest residues increased relative contributions from above ground sources at the 20-40cm depth and increased relative contributions from belowground sources at the 40-60cm depth. These results suggest that organic matter manipulations

  4. The reliability and validity of hand-held refractometry water content measures of hydrogel lenses.

    Science.gov (United States)

    Nichols, Jason J; Mitchell, G Lynn; Good, Gregory W

    2003-06-01

    To investigate within- and between-examiner reliability and validity of hand-held refractometry water content measures of hydrogel lenses. Nineteen lenses of various nominal water contents were examined by two examiners on two occasions separated by 1 hour. An Atago N2 hand-held refractometer was used for all water content measures. Lenses were presented in a random order to each examiner by a third party, and examiners were masked to any potential lens identifiers. Intraclass correlation coefficients (ICC), 95% limits of agreement, and Wilcoxon signed rank test were used to characterize the within- and between-examiner reliability and validity of lens water content measures. Within-examiner reliability was excellent (ICC, 0.97; 95% limits of agreement, -3.6% to +5.7%), and the inter-visit mean difference of 1.1 +/- 2.4% was not biased (p = 0.08). Between-examiner reliability was also excellent (ICC, 0.98; 95% limits of agreement, -4.1% to +3.9%). The mean difference between examiners was -0.1 +/- 2.1% (p = 0.83). The mean difference between the nominally reported water content and our water content measures was -2.1 +/- 1.7% (p refractometry and is material dependent. Therefore, investigators may need to account for bias when measuring hydrogel lens water content via hand-held refractometry.

  5. Remote sensing of atmospheric water content from Bhaskara SAMIR data. [using statistical linear regression analysis

    Science.gov (United States)

    Gohil, B. S.; Hariharan, T. A.; Sharma, A. K.; Pandey, P. C.

    1982-01-01

    The 19.35 GHz and 22.235 GHz passive microwave radiometers (SAMIR) on board the Indian satellite Bhaskara have provided very useful data. From these data has been demonstrated the feasibility of deriving atmospheric and ocean surface parameters such as water vapor content, liquid water content, rainfall rate and ocean surface winds. Different approaches have been tried for deriving the atmospheric water content. The statistical and empirical methods have been used by others for the analysis of the Nimbus data. A simulation technique has been attempted for the first time for 19.35 GHz and 22.235 GHz radiometer data. The results obtained from three different methods are compared with radiosonde data. A case study of a tropical depression has been undertaken to demonstrate the capability of Bhaskara SAMIR data to show the variation of total water vapor and liquid water contents.

  6. Influence of compressive stress on the water content of perfluorosulphonated membranes: a {mu}-Raman study

    Energy Technology Data Exchange (ETDEWEB)

    Sutor, A.K.; Huguet, P.; Le, T.S.; Deabate, S. [Institut Europeen des Membranes, UMR 5635, ENSCM, UM2, CNRS, Universite de Montpellier II, CC047, Montpellier (France); Morin, A. [Laboratoire des Composants pour Pile a Combustible, Electrolyseur et Modelisation, CEA Grenoble/DRT/Liten/DEHT/LCPEM, Grenoble (France); Gebel, G. [SPrAM, UMR 5819 CEA/CNRS/UJF-Grenoble 1, INAC, Grenoble (France)

    2012-04-15

    The effect of compressive stress on the local water content of Nafion NRE 212 and Aquivion E79 membranes is studied by confocal {mu}-Raman spectroscopy using a specific tightening device. This device aims to mimic the geometry of the bipolar plate flow field of actual fuel cells, i.e. the sequence of channels and ribs. The membrane water content decreases with increasing stress, under the ribs as well as in the channel. The higher the initial water content, the larger the water content decreases with mechanical stress. The extent of water loss depends on the position of the membrane in the device, the applied stress and the hydration history of the membrane. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. SI-Traceable Water Content Measurements in Solids, Bulks, and Powders

    Science.gov (United States)

    Østergaard, Peter; Nielsen, Jan

    2018-01-01

    Methods such as Karl Fischer titration and Loss-on-Drying, commonly used for estimating moisture content in samples, have been in existence for many years, but have difficulties obtaining a direct calibration chain toward water content. In recognition of this challenge, the joint research project, METefnet, was funded by the European Metrology Research Programme in 2012. The goal of METefnet is to establish a European metrology infrastructure for water content measurement and to develop primary standards for unambiguous determination of water mass fraction in materials. Here, we describe the primary standard developed by Danish Technological Institute in METefnet. This standard establishes traceability of the water content of a sample to dewpoint temperature. The standard only measures water, and the measurement result is not affected by other components.

  8. A New Method for Sensing Soil Water Content in Green Roofs Using Plant Microbial Fuel Cells.

    Science.gov (United States)

    Tapia, Natalia F; Rojas, Claudia; Bonilla, Carlos A; Vargas, Ignacio T

    2017-12-28

    Green roofs have many benefits, but in countries with semiarid climates the amount of water needed for irrigation is a limiting factor for their maintenance. The use of drought-tolerant plants such as Sedum species, reduces the water requirements in the dry season, but, even so, in semiarid environments these can reach up to 60 L m -2 per day. Continuous substrate/soil water content monitoring would facilitate the efficient use of this critical resource. In this context, the use of plant microbial fuel cells (PMFCs) emerges as a suitable and more sustainable alternative for monitoring water content in green roofs in semiarid climates. In this study, bench and pilot-scale experiments using seven Sedum species showed a positive relationship between current generation and water content in the substrate. PMFC reactors with higher water content (around 27% vs. 17.5% v / v ) showed larger power density (114.6 and 82.3 μW m -2 vs. 32.5 μW m -2 ). Moreover, a correlation coefficient of 0.95 (±0.01) between current density and water content was observed. The results of this research represent the first effort of using PMFCs as low-cost water content biosensors for green roofs.

  9. Effect of water deficit stress on proline contents, soluble sugars ...

    African Journals Online (AJOL)

    The objective of the present work was to determine the mechanisms of tolerance of four sunflower hybrids; H1 = Azargol, H2 = Alstar, H3 = Hysun 33 and H4 = Hysun 25 to water stress under three different levels of irrigation regimes; WD1 = irrigation after 50 mm (normal irrigation), WD2 = 100 mm (mild stress) and WD3 ...

  10. Spectroscopic determination of leaf water content using linear ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-02-02

    Feb 2, 2012 ... In order to detect crop water status with fast, non-destructive monitoring based on its spectral characteristics, this study measured 33 groups of peach tree leaf reflectance spectra (350 to 1075 nm). Linear regression and backpropagation artificial neural network methods were used to establish peach.

  11. Subcritical water extraction and antioxidant activity evaluation with on-line HPLC-ABTS(·+) assay of phenolic compounds from marigold (Tagetes erecta L.) flower residues.

    Science.gov (United States)

    Xu, Honggao; Wang, Weiyou; Jiang, Junping; Yuan, Fang; Gao, Yanxiang

    2015-06-01

    Subcritical water extraction (SWE) of phenolics was investigated from marigold (Tagetes erecta L.) flower residues. The total phenolics content (TPC), total flavonoids content (TFC) and antioxidant capacities of extracts were determined, furthermore, antioxidant activities of individual compounds were evaluated with on-line HPLC-ABTS(•+) system. The optimum SWE time was 45 min, solid-to-liquid ratio was 1:50, and the highest TPC and TFC were obtained at 220 °C respectively. The effect of SWE temperature on TPC and TFC was significant (p line HPLC-ABTS(•+) profiles revealed that quercetagetin from SWE at 200 °C had nearly twofold radical scavenging activities than that by leaching extraction.

  12. Effect of Solution Properties on Arsenic Adsorption by Drinking Water Treatment Residuals

    Science.gov (United States)

    Nagar, R.; Sarkar, D.; Datta, R.; Sharma, S.

    2005-05-01

    Arsenic (As) is a ubiquitous element in the environment. Higher levels of As in soils may result from various anthropogenic sources such as use of arsenical pesticides, fertilizers, wood preservatives, smelter wastes, and coal combustion. This is of great environmental and human health concern due to the high toxicity and proven carcinogenicity of several arsenical species. Thus there is a need for developing cost effective technologies capable of lowering bioavailable As concentrations in soils to environmentally acceptable levels. In-situ immobilization of metals using inexpensive amendments such as minerals (apatite, zeolite, or clay minerals) or waste by-products (steel shot, beringite, and iron-rich biosolids) to reduce bioavailability is an inexpensive alternative to the more expensive ex-situ remediation methods. One such emerging in-situ technique is the application of drinking water treatment residuals (WTRs). WTRs can be classified as a byproduct of drinking water treatment plants and are generally composed of amorphous Fe/Al oxides, activated C and cationic polymers. WTRs possess amorphous structure and generally have high positive charge. Because As is chemically similar to phosphorus, the oxyanions As (V) and As (III) may have the potential of being retained by the WTRs. Thus, it is hypothesized that WTRs retain As irreversibly, thereby reducing As biavailability. As mobility of arsenic is controlled by adsorption reactions, knowledge of adsorption of As by WTRs is of primary relevance. Although the overall rate of adsorption is dependent on numerous factors, review of the literature indicates that competing ions in solution play an important role in the overall retention of As; however, little work has been conducted to identify which ions provide the most competition. As arsenic adsorption appears to be influenced by the variable pH-dependent charges developed on the soil particle surfaces, the effect of pH is also of critical importance. Hence, the

  13. Water content and the conversion of phytochrome regulation of lettuce dormancy

    Science.gov (United States)

    Vertucci, C. W.; Vertucci, F. A.; Leopold, A. C.

    1987-01-01

    In an effort to determine which biological reactions can occur in relation to the water content of seeds, the regulation of lettuce seed dormancy by red and far red light was determined at various hydration levels. Far red light had an inhibiting effect on germination for seeds at all moisture contents from 4 to 32% water. Germination was progressively stimulated by red light as seed hydration increased from 8 to 15%, and reached a maximum at moisture contents above 18%. Red light was ineffective at moisture contents below 8%. Seeds that had been stimulated by red light and subsequently dried lost the enhanced germinability if stored at moisture contents above 8%. The contrast between the presumed photoconversion of phytochrome far red-absorbing (Pfr) to (Pr) occurring at any moisture content and the reverse reaction occurring only if the seed moisture content is greater than 8% may be explained on the basis of the existence of unstable intermediates in the Pr to Pfr conversion. Our results suggest that the initial photoreaction involved in phytochrome conversion is relatively independent of water content, while the subsequent partial reactions become increasingly facilitated as water content increases from 8 to 18%.

  14. Granulation of drinking water treatment residuals as applicable media for phosphorus removal.

    Science.gov (United States)

    Li, Xiuqing; Cui, Jun; Pei, Yuansheng

    2018-02-22

    Recycling drinking water treatment residuals (DWTR) show promise as a strategy for phosphorus (P) removal; however, powdered DWTR is not an ideal practical medium due to clogging. This study granulates DWTR by entrapping powdered DWTR in alginate beads. Results show that granular DWTR has an appreciable amount of mesopores along with a Brunauer-Emmett-Teller (BET) surface area of 43.8 m 2 /g and total pore volume of 0.049 cm 3 /g. Most metals (e.g., Al, Ba, Be, Cd, Co, Cr, Mn, Ni, Pb, and Zn) in granular DWTR became more stable and granular DWTR could be considered non-hazardous material. Further analysis indicates that the granular DWTR has strong P adsorption capability with a maximum adsorption capacity of 19.70 mg/g as estimated by the Langmuir model. Good P adsorption may be attributed to the formation of Fe-PO 4 and Al-PO 4 associated with the amorphous state of enormous iron and aluminum in granular DWTR. More importantly, granular DWTR exhibits good mechanical stability and maintained its shape with weight loss below 12.49% after three recycling rounds. Overall, granular DWTR appears to serve as better media for phosphorus removal in water treatment structures such as wetlands. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Drug residues and endocrine disruptors in drinking water: risk for humans?

    Science.gov (United States)

    Touraud, Evelyne; Roig, Benoit; Sumpter, John P; Coetsier, Clémence

    2011-11-01

    The presence of pharmaceuticals and endocrine disruptors in the environment raises many questions about risk to the environment and human health. Environmental exposure has been largely studied, providing to date a realistic picture of the degree of contamination of the environment by pharmaceuticals and hormones. Conversely, little information is available regarding human exposure. NSAIDS, carbamazepine, iodinated contrast media, β-blockers, antibiotics have been detected in drinking water, mostly in the range of ng/L. it is questioned if such concentrations may affect human health. Currently, no consensus among the scientific community exists on what risk, if any, pharmaceuticals and endocrine disruptors pose to human health. Future European research will focus, on one hand, on genotoxic and cytotoxic anti-cancer drugs and, on the other hand, on the induction of genetic resistance by antibiotics. This review does not aim to give a comprehensive overview of human health risk of drug residues and endocrine disruptors in drinking water but rather highlight important topics of discussion. Copyright © 2011. Published by Elsevier GmbH.

  16. Improved reliability of residual heat removal capability in pressurized water reactors

    International Nuclear Information System (INIS)

    Chu, Tsong-Lun; Fitzpatrick, R.; Yoon, Won Hyo.

    1987-01-01

    The work presented in this paper was performed by Brookhaven National Laboratory (BNL) in supporting Nuclear Regulatory Commission's (NRC) effort towards the resolution of Generic Issue 99 ''Reactor Coolant System (RCS)/Residual Heat Removal (RHR) Suction Line Interlocks on Pressurized Water Reactors (PWRs).'' Operational experience of US PWRs indicates that numerous loss of RHR events have occurred during plant shutdown. Of particular significance is the loss of RHR suction due to the inadvertent closure of the RHR suction/isolation valves or an excess lowering of the water level in the reactor vessel. In the absence of prompt mitigative action by the operator, the core may become uncovered. Various design/operational changes have been proposed. The objective of this paper is to estimate the improvement in the RHR reliability and the risk reduction potential provided by those proposed RHR design/operational changes. The benefits of those changes are expressed in terms of the reduction in the frequency of loss-of-cooling events and the frequency of core damage

  17. Surface arsenic speciation of a drinking-water treatment residual using X-ray absorption spectroscopy.

    Science.gov (United States)

    Makris, Konstantinos C; Sarkar, Dibyendu; Parsons, Jason G; Datta, Rupali; Gardea-Torresdey, Jorge L

    2007-07-15

    Drinking-water treatment residuals (WTRs) present a low-cost geosorbent for As-contaminated waters and soils. Previous work has demonstrated the high affinity of WTRs for As, but data pertaining to the stability of sorbed As is missing. Sorption/desorption and X-ray absorption spectroscopy (XAS), both XANES (X-ray absorption near edge structure) and EXAFS (extended X-ray absorption fine structure) studies, were combined to determine the stability of As sorbed by an Fe-based WTR. Arsenic(V) and As(III) sorption kinetics were biphasic in nature, sorbing >90% of the initial added As (15,000 mg kg(-1)) after 48 h of reaction. Subsequent desorption experiments with a high P load (7500 mg kg(-1)) showed negligible As desorption for both As species, approximately <3.5% of sorbed As; the small amount of desorbed As was attributed to the abundance of sorption sites. XANES data showed that sorption kinetics for either As(III) or As(V) initially added to solution had no effect on the sorbed As oxidation state. EXAFS spectroscopy suggested that As added either as As(III) or as As(V) formed inner-sphere mononuclear, bidentate complexes, suggesting the stability of the sorbed As, which was further corroborated by the minimum As desorption from the Fe-WTR.

  18. Components of variance involved in estimating soil water content and water content change using a neutron moisture meter

    International Nuclear Information System (INIS)

    Sinclair, D.F.; Williams, J.

    1979-01-01

    There have been significant developments in the design and use of neutron moisture meters since Hewlett et al.(1964) investigated the sources of variance when using this instrument to estimate soil moisture. There appears to be little in the literature, however, which updates these findings. This paper aims to isolate the components of variance when moisture content and moisture change are estimated using the neutron scattering method with current technology and methods

  19. Modelling the influence of water content on the mechanical behaviour of Callovo-Oxfordian argillite

    International Nuclear Information System (INIS)

    Jia, Y.; Zhang, F.; Shao, J.F.

    2010-01-01

    hydro-mechanical response of Callovo-Oxfordian argillite, a stiff, layered Mesozoic clay, located at 500 m depth in Eastern France. Thanks to its low permeability, significant retardation properties for solute transport, high mechanical strength and self-healing capacity when fracture, the Callovo-Oxfordian argillite is studied as potential geological barrier for radioactive wastes and an underground research laboratory, called M/HM URL is under construction.Various experimental studies have been performed to study the different aspects of rock behaviour. Meanwhile, different constitutive model have been proposed for this material. Among recently proposed models for argillites, the contributions Zhou et al. (2008) and Jia et al. (2009) are of direct interest to this paper. Zhou et al. (2008) have proposed a unified approach for modelling of elastic-plastic and viscoplastic behaviour coupled with induced damage in Callovo-Oxfordian argillite. Both instantaneous and differ plastic deformations are described within the unique constitutive model. Material damage induced by microcrack is coupled with plastic deformation. Jia et al. (2009) have developed a constitutive model, where the plastic deformation was considered as the principal mechanism, to consider coupling between plastic deformations and damage and evolution of mechanical properties with water content. In addition, a special attention is paid on the residual state of rocks after peak strength and the shrinkage/swelling deformation during the desaturation/re-saturation processes. However, the influence of water content on the elastic proprieties and the long term mechanical behaviour of argillite are not dealt with in these models. These two phenomena will be studied in this paper. Firstly, a synthesis of experimental study on the poro-mechanical behavior of argillites is presented. Special attention is given to the influence of water content on the long term mechanical aspects of the clay behaviour. In the second

  20. Impact of water content and temperature on the degradation of Cry1Ac protein in leaves and buds of Bt cotton in the soil.

    Science.gov (United States)

    Zhang, Mei-jun; Feng, Mei-chen; Xiao, Lu-jie; Song, Xiao-yan; Yang, Wu-de; Ding, Guang-wei

    2015-01-01

    Determining the influence of soil environmental factors on degradation of Cry1Ac protein from Bt cotton residues is vital for assessing the ecological risks of this commercialized transgenic crop. In this study, the degradation of Cry1Ac protein in leaves and in buds of Bt cotton in soil was evaluated under different soil water content and temperature settings in the laboratory. An exponential model and a shift-log model were used to fit the degradation dynamics of Cry1Ac protein and estimate the DT50 and DT90 values. The results showed that Cry1Ac protein in the leaves and buds underwent rapid degradation in the early stage (before day 48), followed by a slow decline in the later stage under different soil water content and temperature. Cry1Ac protein degraded the most rapidly in the early stage at 35°C with 70% soil water holding capacity. The DT50 values were 12.29 d and 10.17 d and the DT90 values were 41.06 d and 33.96 d in the leaves and buds, respectively. Our findings indicated that the soil temperature was a major factor influencing the degradation of Cry1Ac protein from Bt cotton residues. Additionally, the relative higher temperature (25°C and 35°C) was found to be more conducive to degradation of Cry1Ac protein in the soil and the greater water content (100%WHC) retarded the process. These findings suggested that under appropriate soil temperature and water content, Cry1Ac protein from Bt cotton residues will not persist and accumulate in soil.

  1. Simple, fast, and low-cost camera-based water content measurement with colorimetric fluorescent indicator

    Science.gov (United States)

    Song, Seok-Jeong; Kim, Tae-Il; Kim, Youngmi; Nam, Hyoungsik

    2018-05-01

    Recently, a simple, sensitive, and low-cost fluorescent indicator has been proposed to determine water contents in organic solvents, drugs, and foodstuffs. The change of water content leads to the change of the indicator's fluorescence color under the ultra-violet (UV) light. Whereas the water content values could be estimated from the spectrum obtained by a bulky and expensive spectrometer in the previous research, this paper demonstrates a simple and low-cost camera-based water content measurement scheme with the same fluorescent water indicator. Water content is calculated over the range of 0-30% by quadratic polynomial regression models with color information extracted from the captured images of samples. Especially, several color spaces such as RGB, xyY, L∗a∗b∗, u‧v‧, HSV, and YCBCR have been investigated to establish the optimal color information features over both linear and nonlinear RGB data given by a camera before and after gamma correction. In the end, a 2nd order polynomial regression model along with HSV in a linear domain achieves the minimum mean square error of 1.06% for a 3-fold cross validation method. Additionally, the resultant water content estimation model is implemented and evaluated in an off-the-shelf Android-based smartphone.

  2. Profiling water content in soils with TDR: Comparison with the neutron probe technique

    International Nuclear Information System (INIS)

    Laurent, J.P.

    2000-01-01

    In November 1996, at a site on the Grenoble campus a 1.2-m-long neutron access tube, a 0.8-m fibreglass Trime access tube and three sets of 1-m twin-rod TDR probes were installed. Weekly measurements were made over a 9-month period. In addition, soil samples were taken from time to time with an auger, to determine gravimetric water-contents. The soil bulk density profile was initially characterised by gammametry using a Campbell TM probe. A Troxler TM 4300 was used for the neutron-probe measurements. The TDR signals, for further processing by TDR-SSI, were logged using a Trase 2000 from Soil Moisture Equipment Corporation TM . TDR methods were employed without any special calibration of the permittivity/water-content relationship: standard internal calibrations of the devices or Topp polynomial relation were always applied. The results of all these water-content profiling methods were compared in three ways: (i) the water-content profiles were plotted directly on the same graph for different dates; (ii) all the water contents measured at all dates and all depths were plotted against a corresponding 'reference', namely neutron probe or gravimetry; (iii) water balances were calculated for each method and their respective time-profiles analysed. There was fairly good agreement among the three profiling methods, indicating that TDR is now a viable alternative to nuclear techniques for soil water-content profiling. (author)

  3. Levels of pesticides residues in the White Nile water in the Sudan.

    Science.gov (United States)

    Nesser, Gibreel A A; Abdelbagi, Azhari O; Hammad, Ahmed Mohammed Ali; Tagelseed, Mirghani; Laing, Mark D

    2016-06-01

    Twenty-two commonly used pesticides were monitored during autumn, winter, and summer of 2004-2005 in 27 water samples from three sites along the White Nile in Sudan (former Sudan). Sites were selected to reflect pesticides gathered from drainage canals in central Sudan and from upstream sources. Collected samples were extracted and subjected to gas chromatographic analysis. Pesticides levels were measured in nanograms per liter. Pesticides residues were detected in 96 % of the samples with a total residue burden of 4132.6 ng L(-1), and an overall mean concentration and range of 50.99 and not detected-1570 ng L(-1), respectively. Ororganochlorines were the most frequently detected contaminants, which were found in 70 % of the samples, causing a total burden of 2852.8 ng L(-1), followed by pyrethroids 15 % of the samples, with a total burden of 926.5 ng L(-1). The tested herbicides were detected in ˂4 % of the samples with a total burden of 353.3 ng L(-1), while organophosphorus levels were below the detection limit. The most frequent contaminants were the following: heptachlor and its epoxide (52 % of samples), followed by DDTs (dichlorodiphenyltrichloroethanes) (DDT and DDE, in 19 % of the samples), cypermethrin and fenvalerate (in 11 % of the samples), and pendimethalin (in oxyfluorfen were not detected in the analyzed samples. Generally, levels were least in autumn, and followed by summer and winter. Sources of contamination might include agricultural lands in central Sudan and upstream sources. Both recent and old contaminations were indicated.

  4. Assessment of the soil water content temporal variations in an agricultural area of Galicia (NW Spain)

    Science.gov (United States)

    Mestas-Valero, Roger Manuel; Miras-Avalos, Jose Manuel; Paz-González, Antonio

    2010-05-01

    The direct and continuous assessment of the temporal variation on soil water content is of paramount importance for agricultural practices and, in particular, for the management of water resources. Soil water content is affected by many factors such as topography, particle size, clay and organic matter contents, and tillage systems. There are several techniques to measure or estimate soil water content. Among them, Frequency Domain Reflectometry (FDR) stands out. It is based on measuring the dielectrical constant of the soil environment. This technique allows to describe water dynamics in time and space, to determine the main patterns of soil moisture, the water uptake by roots, the evapotranspiration and the drainage. Therefore, the aim of this study was to assess the daily variation of soil water content in the root-influenced zone in plots devoted to maize and grassland as a function of the soil water volumetric content. The studied site is located in an experimental field of the Centre for Agricultural Research (CIAM) in Mabegondo located in the province of A Coruña, Spain (43°14'N, 8°15'W; 91 masl). The study was carried out from June 2008 to September 2009 in a field devoted to maize (Zea mays, L.) and another field devoted to grassland. The soil of these sites is silt-clay textured. Long-term mean annual temperature and rainfall figures are 13.3 °C and 1288 mm, respectively. During the study period, maize crop was subjected to conventional agricultural practices. A weekly evaluation of the phenological stage of the crop was performed. An EnviroSCAN FDR equipment, comprising six capacitance sensors, was installed in the studied sites following the manufacturer's recommendations, thus assuring a proper contact between the probe and the soil. Soil water content in the root-influenced zone (40 cm depth in grassland and 60 cm depth in maize were considered) was hourly monitored in 20 cm ranges (0-20 cm, 20-40 cm, and 40-60 cm) using FDR. Evaluations were

  5. LBA-ECO ND-02 Soil Gas and Water Content, Rainfall Exclusion, Tapajos National Forest

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports soil carbon dioxide (CO2) and nitrous oxide (N2O) concentrations and soil volumetric water content (VWC) from a rainfall exclusion experiment...

  6. LBA-ECO ND-02 Soil Gas and Water Content, Rainfall Exclusion, Tapajos National Forest

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports soil carbon dioxide (CO2) and nitrous oxide (N2O) concentrations and soil volumetric water content (VWC) from a rainfall exclusion...

  7. CAMEX-4 DC-8 NEVZOROV TOTAL CONDENSED WATER CONTENT SENSOR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nevzorov probe is an instrument that measures the total water content of the sample of air which passes through it. It flew on the NASA DC-8 during the CAMEX-4...

  8. Impact of Soil Water Content on Landmine Detection Using Radar and Thermal Infrared Sensors

    National Research Council Canada - National Science Library

    Hong, Sung-ho

    2001-01-01

    .... The most important of these is water content since it directly influences the three other properties in this study, the ground penetrating radar and thermal infrared sensors were used to identify non...

  9. Determining water content of fresh concrete by microwave reflection or transmission measurement.

    Science.gov (United States)

    1987-01-01

    In search of a rapid and accurate method for determining the water content of fresh concrete mixes, the microwave reflection and transmission properties of fresh concrete mixes were studied to determine the extent of correlation between each of these...

  10. LBA-ECO ND-02 Soil Volumetric Water Content, Tapajos National Forest, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports monthly measured soil volumetric water content (VWC) from a rainfall exclusion experiment that was conducted from 1999-2001 at the km 67 Seca...

  11. LBA-ECO ND-02 Soil Volumetric Water Content, Tapajos National Forest, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports monthly measured soil volumetric water content (VWC) from a rainfall exclusion experiment that was conducted from 1999-2001 at the km...

  12. Pre-ABoVE: Active Layer Thickness and Soil Water Content, Barrow, Alaska, 2013

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides estimates of Active Layer Thickness (ALT) determined with ground-based measurements, and calculated soil volumetric water content (VWC) at...

  13. Activity of water content and storage temperature on the seed-borne mycoflora of lens culinaris

    International Nuclear Information System (INIS)

    Rahim, S.; Dawar, S.

    2014-01-01

    Storage of seeds with high water content and temperatures favors the growth of mould fungi which in turn affect the germination of seeds while low temperature with low water content prevent the growth of storage fungi and help in maintaining seed viability for longer duration of time. Seed sample from Sukkur district was stored at 4 degree C and room temperature (25-30 degree C) with water content of 8, 13 and 17% for about 80 days. The fungi were isolated at 0, 20, 40, 60 and 80 days intervals. Highest infection percentage of fungi was observed at 13 and 17% water contents at room temperature after 20 days of storage. High infection percentage of storage fungi affected the germination of seeds. Aspergillus spp were the most dominant fungi. (author)

  14. Bacterial toxicity assessment of drinking water treatment residue (DWTR) and lake sediment amended with DWTR.

    Science.gov (United States)

    Yuan, Nannan; Wang, Changhui; Pei, Yuansheng

    2016-11-01

    Drinking water treatment residue (DWTR) seems to be very promising for controlling lake sediment pollution. Logically, acquisition of the potential toxicity of DWTR will be beneficial for its applications. In this study, the toxicity of DWTR and sediments amended with DWTR to Aliivibrio fischeri was evaluated based on the Microtox(®) solid and leachate phase assays, in combination with flow cytometry analyses and the kinetic luminescent bacteria test. The results showed that both solid particles and aqueous/organic extracts of DWTR exhibited no toxicity to the bacterial luminescence and growth. The solid particles of DWTR even promoted bacterial luminescence, possibly because DWTR particles could act as a microbial carrier and provide nutrients for bacteria growth. Bacterial toxicity (either luminescence or growth) was observed from the solid phase and aqueous/organic extracts of sediments with or without DWTR addition. Further analysis showed that the solid phase toxicity was determined to be related mainly to the fixation of bacteria to fine particles and/or organic matter, and all of the observed inhibition resulting from aqueous/organic extracts was identified as non-significant. Moreover, DWTR addition not only had no adverse effect on the aqueous/organic extract toxicity of the sediment but also reduced the solid phase toxicity of the sediment. Overall, in practical application, the solid particles, the water-soluble substances transferred to surface water or the organic substances in DWTR had no toxicity or any delayed effect on bacteria in lakes, and DWTR can therefore be considered as a non-hazardous material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Improved crop residue cover estimates by coupling spectral indices for residue and moisture

    Science.gov (United States)

    Remote sensing assessment of soil residue cover (fR) and tillage intensity will improve our predictions of the impact of agricultural practices and promote sustainable management. Spectral indices for estimating fR are sensitive to soil and residue water content, therefore, the uncertainty of estima...

  16. Determination of moisture content and water activity in algae and fish by thermoanalytical techniques

    Directory of Open Access Journals (Sweden)

    Vilma Mota da Silva

    2008-01-01

    Full Text Available The water content in seafoods is very important since it affects their sensorial quality, microbiological stability, physical characteristics and shelf life. In this study, thermoanalytical techniques were employed to develop a simple and accurate method to determine water content (moisture by thermogravimetry (TG and water activity from moisture content values and freezing point depression using differential scanning calorimetry (DSC. The precision of the results suggests that TG is a suitable technique to determine moisture content in biological samples. The average water content values for fish samples of Lutjanus synagris and Ocyurus chrysurus species were 76.4 ± 5.7% and 63.3 ± 3.9%, respectively, while that of Ulva lactuca marine algae species was 76.0 ± 4.4%. The method presented here was also successfully applied to determine water activity in two species of fish and six species of marine algae collected in the Atlantic coastal waters of Bahia, in Brazil. Water activity determined in fish samples ranged from 0.946 - 0.960 and was consistent with values reported in the literature, i.e., 0.9 - 1.0. The water activity values determined in marine algae samples lay within the interval of 0.974 - 0.979.

  17. Results and Conclusions from the NASA Isokinetic Total Water Content Probe 2009 IRT Test

    Science.gov (United States)

    Reehorst, Andrew; Brinker, David

    2010-01-01

    The NASA Glenn Research Center has developed and tested a Total Water Content Isokinetic Sampling Probe. Since, by its nature, it is not sensitive to cloud water particle phase nor size, it is particularly attractive to support super-cooled large droplet and high ice water content aircraft icing studies. The instrument comprises the Sampling Probe, Sample Flow Control, and Water Vapor Measurement subsystems. Results and conclusions are presented from probe tests in the NASA Glenn Icing Research Tunnel (IRT) during January and February 2009. The use of reference probe heat and the control of air pressure in the water vapor measurement subsystem are discussed. Several run-time error sources were found to produce identifiable signatures that are presented and discussed. Some of the differences between measured Isokinetic Total Water Content Probe and IRT calibration seems to be caused by tunnel humidification and moisture/ice crystal blow around. Droplet size, airspeed, and liquid water content effects also appear to be present in the IRT calibration. Based upon test results, the authors provide recommendations for future Isokinetic Total Water Content Probe development.

  18. Karl Fischer titration and coulometry for measurement of water content in small cartilage specimens.

    Science.gov (United States)

    Spahn, Gunter; Plettenberg, Holger; Nagel, Horst; Kahl, Enrico; Klinger, Hans Michael; Günther, Manfred; Mückley, Thomas; Hofmann, Gunther O

    2006-12-01

    This study evaluated the efficiency of Karl Fischer titration and coulometry for measurement of water content in small intact and defective cartilage specimens. Cartilage from the main weight-bearing zone of the medial condyle of 38 fresh sheep knees was used. Of these, 20 condyles had an intact cartilage, while defects (14 grade I and 4 grade II) were found in the rest. The mechanical hardness was determined as Shore A. Cartilage specimens of approximately 5 mg were analyzed in special devices for moisture measurement and then continuously heated up to 105 degrees C. The actual measurement was performed in an electric cell (coulometry). An electrode was laminated with hygroscopic phosphorus pentoxide. In the electrochemical reaction, H and O are liberated from the electrode. The requirement for electric energy correlates with the amount of water in the specimen. The water content in intact cartilage was 66.9%. Grade I (72.6%) and grade II (77.8%) defects had significantly higher water content. Significantly higher and faster spontaneous evaporation was observed in cartilage defects at room temperature. The water content and spontaneous water evaporation correlated with significantly lower mechanical hardness. The experimental design (combined method of thermogravimetry, Karl Fischer titration, and coulometry) was sufficient for evaluating the water content in small cartilage specimens. It is also possible to measure the temperature-dependent water liberation from cartilage specimens.

  19. [Bioindications for elevated metal contents in flowing waters].

    Science.gov (United States)

    Wachs, B

    1983-12-01

    Lawful arguments of food research require an information of the concentrations of heavy metals in fishes. Whereas for the control of emissions and of river pollution the analysis on heavy metals in excellent indicator organisms - as specific submerged water plants or fish food (zoobenthic) organisms - is generally more sensitive and therefore more suitable. With analytical results there is no successive accumulation of metals in the aquatic food chain - that means no biomagnification - determinable. By the analysis of some bioindicators the degree of the environmental load due to heavy metals can be estimated. With this ecological method we are able to detect the emissions' locality and their producers.

  20. Estimating water content in an active landfill with the aid of GPR.

    Science.gov (United States)

    Yochim, April; Zytner, Richard G; McBean, Edward A; Endres, Anthony L

    2013-10-01

    Landfill gas (LFG) receives a great deal of attention due to both negative and positive environmental impacts, global warming and a green energy source, respectively. However, predicting the quantity of LFG generated at a given landfill, whether active or closed is difficult due to the heterogeneities present in waste, and the lack of accurate in situ waste parameters like water content. Accordingly, ground penetrating radar (GPR) was evaluated as a tool for estimating in situ water content. Due to the large degree of subsurface heterogeneity and the electrically conductive clay cap covering landfills, both of which affect the transmission of the electromagnetic pulses, there is much scepticism concerning the use of GPR to quantify in situ water content within a municipal landfill. Two landfills were studied. The first landfill was used to develop the measurement protocols, while the second landfill provided a means of confirming these protocols. GPR measurements were initially completed using the surface GPR approach, but the lack of success led to the use of borehole (BH) GPR. Both zero offset profiling (ZOP) and multiple offset gathers (MOG) modes were tried, with the results indicating that BH GPR using the ZOP mode is the most simple and efficient method to measure in situ water content. The best results were obtained at a separation distance of 2m, where higher the water content, smaller the effective separation distance. However, an increase in water content did appear to increase the accuracy of the GPR measurements. For the effective separation distance of 2m at both landfills, the difference between GPR and lab measured water contents were reasonable at 33.9% for the drier landfill and 18.1% for the wetter landfill. Infiltration experiments also showed the potential to measure small increases in water content. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Karl Fischer Titration as An Alternative Method for Determing The Water Content of Indonesian Spices

    OpenAIRE

    Supartono, Wahyu

    2017-01-01

    Karl Fischer Titration (KFT) is a well established and effective direct primary method to determine water content in various materials. It is based on a specific chemical reaction and it differs principally from the drying and distillation methods. The KFT was introduced as an alternative method to determine the water content in some Indonesian spices (clove, coriander, ginger and white pepper), which generally contain appreciable amount of volatile compounds to distract accurate moisture. Th...

  2. The correlation of metal content in medicinal plants and their water extracts

    Directory of Open Access Journals (Sweden)

    Ranđelović Saša S.

    2013-01-01

    Full Text Available The quality of some medicinal plants and their water extracts from South East Serbia is determined on the basis of metal content using atomic absorption spectrometry. The two methods were used for the preparation of water extracts, to examine the impact of the preparation on the content of metals in them. Content of investigated metals in both water extracts is markedly lower then in medicinal plants, but were higher in water extract prepared by method (I, with exception of lead content. The coefficients of extraction for the observed metal can be represented in the following order: Zn > Mn > Pb > Cu > Fe. Correlation coefficients between the metal concentration in the extract and total metal content in plant material vary in the range from 0.6369 to 0.9956. This indicates need the plants to be collected and grown in the unpolluted area and to examine the metal content. The content of heavy metals in the investigated medicinal plants and their water extracts is below the maximum allowable values, so they are safe to use.

  3. Isolation of Bacillus subtilis as indicator in the disinfection of residual water by means of gamma radiation

    International Nuclear Information System (INIS)

    Mata J, M.; Colin C, A.; Lopez V, H.; Brena V, M.; Carrasco A, H.; Pavon R, S.

    2002-01-01

    In the attempt to get more alternatives of disinfection of residual water, the Bacillus subtilis was isolated by means of gamma radiation as a bio indicator of disinfection since it turned out to be resistant to the 5 KGy dose, comparing this one with other usual microorganisms as biondicators like E. coli and S typhimurium which turn out more sensitive to such dose. (Author)

  4. Effect of water content and heating temperature on thermal properties of brown rice batter

    Science.gov (United States)

    Aboukzail, Jehan; Abdullah, Aminah; Ghani, Maaruf Abd

    2015-09-01

    The objectives of this research were to assess the effect of water content in the formulation (60%,80%, 100%, 105%, 110%, 120% flour basis) on starch gelatinization of brown rice batter, and to identify the effects of heat treatment at 50°C, 60°C, 70°C, 80°C on starch gelatinization and degree of starch gelatinization of brown rice batter and wheat dough. At 60% water content, there was no gelatinization of brown rice batter, but the batter was gelatinized by increasing the water content to 80%. No significant differences in onset (To) peak (Tp) and endest (Tend) temperature when the water content increased from 80% to 120%; however, enthalpy (ΔH) decreased when water content grew up. Heat treatment of brown rice batter at 60% water content made brown rice batter gelatinized. Starch gelatinization temperature To, Tend and ΔH did not have significant differences when temperature of heat treatment increased from 50°C to 80°C while Tp increased significantly (pbatter.

  5. Remote Sensing of Vegetation Nitrogen Content for Spatially Explicit Carbon and Water Cycle Estimation

    Science.gov (United States)

    Zhang, Y. L.; Miller, J. R.; Chen, J. M.

    2009-05-01

    Foliage nitrogen concentration is a determinant of photosynthetic capacity of leaves, thereby an important input to ecological models for estimating terrestrial carbon and water budgets. Recently, spectrally continuous airborne hyperspectral remote sensing imagery has proven to be useful for retrieving an important related parameter, total chlorophyll content at both leaf and canopy scales. Thus remote sensing of vegetation biochemical parameters has promising potential for improving the prediction of global carbon and water balance patterns. In this research, we explored the feasibility of estimating leaf nitrogen content using hyperspectral remote sensing data for spatially explicit estimation of carbon and water budgets. Multi-year measurements of leaf biochemical contents of seven major boreal forest species were carried out in northeastern Ontario, Canada. The variation of leaf chlorophyll and nitrogen content in response to various growth conditions, and the relationship between them,were investigated. Despite differences in plant type (deciduous and evergreen), leaf age, stand growth conditions and developmental stages, leaf nitrogen content was strongly correlated with leaf chlorophyll content on a mass basis during the active growing season (r2=0.78). With this general correlation, leaf nitrogen content was estimated from leaf chlorophyll content at an accuracy of RMSE=2.2 mg/g, equivalent to 20.5% of the average measured leaf nitrogen content. Based on this correlation and a hyperspectral remote sensing algorithm for leaf chlorophyll content retrieval, the spatial variation of leaf nitrogen content was inferred from the airborne hyperspectral remote sensing imagery acquired by Compact Airborne Spectrographic Imager (CASI). A process-based ecological model Boreal Ecosystem Productivity Simulator (BEPS) was used for estimating terrestrial carbon and water budgets. In contrast to the scenario with leaf nitrogen content assigned as a constant value without

  6. A Simple Beta-Function Model for Soil-Water Repellency as a Function of Water and Organic Carbon Contents

    DEFF Research Database (Denmark)

    Karunarathna, Anurudda Kumara; Kawamoto, Ken; Møldrup, Per

    2010-01-01

    WR(θ) models is still lacking. In this study, a simple empirical beta function was suggested to describe the effect of changing soil-water content on the change of WR given as apparent contact angle (α) measured by the molarity of ethanol droplet (MED) method. The beta function for predicting α......Soil-water content (θ) and soil organic carbon (SOC) are key factors controlling the occurrence and magnitude of soil-water repellency (WR). Although expressions have recently been proposed to describe the nonlinear variation of WR with θ, the inclusion of easily measurable parameters in predictive......(θ) is based on measurement of WR on air-dry soil and three additional model parameters: the water contents at which the maximum WR (highest α) occurs and where WR ceases (α = 90 degrees), and the maximum α value. The MED data for three data sets from literature comprising WR measurements across moisture...

  7. Monitoring of Water Content in Building Materials Using a Wireless Passive Sensor

    Directory of Open Access Journals (Sweden)

    Goran Stojanović

    2010-04-01

    Full Text Available This paper describes an innovative design of a wireless, passive LC sensor and its application for monitoring of water content in building materials. The sensor was embedded in test material samples so that the internal water content of the samples could be measured with an antenna by tracking the changes in the sensor’s resonant frequency. Since the dielectric constant of water was much higher compared with that of the test samples, the presence of water in the samples increased the capacitance of the LC circuit, thus decreasing the sensor’s resonant frequency. The sensor is made up of a printed circuit board in one metal layer and water content has been determined for clay brick and autoclaved aerated concrete block, both widely used construction materials. Measurements were conducted at room temperature using a HP-4194A Impedance/Gain-Phase Analyzer instrument.

  8. Estimating the Relative Water Content of Single Leaves from Optical Polarization Measurements.

    Science.gov (United States)

    Vanderbilt, V. C.; Daughtry, C. S. T.; Dahlgren, R. P.

    2016-12-01

    Remotely sensing the water status of plants and the water content of canopies remain long term goals of remote sensing research. For monitoring canopy water status, existing approaches such as the Crop Water Stress Index and the Equivalent Water Thickness have limitations. The CWSI does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWI is based upon the physics of water-light interaction, not plant physiology. In this research, we applied optical polarization techniques to monitor the VIS/NIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, as the relative water content (RWC) of corn (Zea mays) leaves decreased. Our results show that R and T both changed nonlinearly as each leaf dried, R increasing and T decreasing. Our results tie changes in the VIS/NIR R and T to leaf physiological changes - linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf - and perhaps of a plant canopy - might be possible in the future. However, using our approach to estimate the water status of a leaf does not appear possible at present, because our results display too much variability that we do not yet understand.

  9. Estimating the Relative Water Content of Single Leaves from Optical Polarization Measurements

    Science.gov (United States)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2016-01-01

    Remotely sensing the water status of plants and the water content of canopies remain long-term goals of remote sensing research. For monitoring canopy water status, existing approaches such as the Crop Water Stress Index and the Equivalent Water Thickness have limitations. The CWSI does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWI is based upon the physics of water-light interaction, not plant physiology. In this research, we applied optical polarization techniques to monitor the VISNIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, as the relative water content (RWC) of corn (Zea mays) leaves decreased. Our results show that R and T both changed nonlinearly as each leaf dried, R increasing and T decreasing. Our results tie changes in the VISNIR R and T to leaf physiological changes linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf and perhaps of a plant canopy might be possible in the future. However, using our approach to estimate the water status of a leaf does not appear possible at present, because our results display too much variability that we do not yet understand.

  10. Water content determination of superdisintegrants by means of ATR-FTIR spectroscopy.

    Science.gov (United States)

    Szakonyi, G; Zelkó, R

    2012-04-07

    Water contents of superdisintegrant pharmaceutical excipients were determined by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy using simple linear regression. Water contents of the investigated three common superdisintegrants (crospovidone, croscarmellose sodium, sodium starch glycolate) varied over a wide range (0-24%, w/w). In the case of crospovidone three different samples from two manufacturers were examined in order to study the effects of different grades on the calibration curves. Water content determinations were based on strong absorption of water between 3700 and 2800 cm⁻¹, other spectral changes associated with the different compaction of samples on the ATR crystal using the same pressure were followed by the infrared region between 1510 and 1050 cm⁻¹. The calibration curves were constructed using the ratio of absorbance intensities in the two investigated regions. Using appropriate baseline correction the linearity of the calibration curves was maintained over the entire investigated water content regions and the effect of particle size on the calibration was not significant in the case of crospovidones from the same manufacturer. The described method enables the water content determination of powdered hygroscopic materials containing homogeneously distributed water. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Determining the water-cement ratio, cement content, water content and degree of hydration of hardened cement paste: Method development and validation on paste samples

    International Nuclear Information System (INIS)

    Wong, H.S.; Buenfeld, N.R.

    2009-01-01

    We propose a new method to estimate the initial cement content, water content and free water/cement ratio (w/c) of hardened cement-based materials made with Portland cements that have unknown mixture proportions and degree of hydration. This method first quantifies the composition of the hardened cement paste, i.e. the volumetric fractions of capillary pores, hydration products and unreacted cement, using high-resolution field emission scanning electron microscopy (FE-SEM) in the backscattered electron (BSE) mode and image analysis. From the obtained data and the volumetric increase of solids during cement hydration, we compute the initial free water content and cement content, hence the free w/c ratio. The same method can also be used to calculate the degree of hydration. The proposed method has the advantage that it is quantitative and does not require comparison with calibration graphs or reference samples made with the same materials and cured to the same degree of hydration as the tested sample. This paper reports the development, assumptions and limitations of the proposed method, and preliminary results from Portland cement pastes with a range of w/c ratios (0.25-0.50) and curing ages (3-90 days). We also discuss the extension of the technique to mortars and concretes, and samples made with blended cements.

  12. Quantification of Lincomycin Resistance Genes Associated with Lincomycin Residues in Waters and Soils Adjacent to Representative Swine Farms in China

    Directory of Open Access Journals (Sweden)

    Liang eLi

    2013-12-01

    Full Text Available Lincomycin is commonly used on swine farms for growth promotion as well as disease treatment and control. Consequently, lincomycin may accumulate in the environment adjacent to the swine farms in many ways, thereby influencing antibiotic resistance in the environment. Levels of lincomycin-resistance genes and lincomycin residues in water and soil samples collected from multiple sites near wastewater discharge areas were investigated in this study. Sixteen lincomycin-resistance and 16S rRNA genes were detected using real-time PCR. Three genes, lnu(F, erm(A and erm(B, were detected in all water and soil samples except control samples. Lincomycin residues were determined by rapid resolution liquid chromatography-tandem mass spectrometry, with concentrations detected as high as 9.29 ng/mL in water and 0.97 ng/g in soil. A gradual reduction in the levels of lincomycin-resistance genes and lincomycin residues in the waters and soils were detected from multiple sites along the path of wastewater discharging to the surrounding environment from the swine farms. Significant correlations were found between levels of lincomycin-resistance genes in paired water and soil samples (r = 0.885, p = 0.019, and between lincomycin-resistance genes and lincomycin residues (r = 0.975, p < 0.01. This study emphasized the potential risk of dissemination of lincomycin-resistance genes such as lnu(F, erm(A and erm(B, associated with lincomycin residues in surrounding environments adjacent to swine farms.

  13. Variation of the chemical contents and morphology of gunshot residue in the surroundings of the shooting pistol as a potential contribution to a shooting incidence reconstruction.

    Science.gov (United States)

    Brożek-Mucha, Zuzanna

    2011-07-15

    A study of the chemical contents and sizes of gunshot residue originating from 9×18mm PM ammunition, depositing in the vicinity of the shooting person was performed by means of scanning electron microscopy and energy dispersive X-ray spectrometry. Samples of the residue were collected from targets placed at various distances in the range 0-100cm as well as from hands and clothing of the shooting person. Targets were covered by fragments of white cotton fabric or black bovine leather. In the case of cotton targets microtraces were collected from circles of 5 and 10cm in radius. Results of the examinations in the form of numbers of particles, proportions of their chemical classes and dimensions revealed a dependence on the distance from the gun muzzle, both in the direction of shooting and in the opposite one, i.e., on the shooting person. The parameters describing gunshot residue differed also depending on the kind of the target substrate. The kind of obtained information gives rise to understanding the general rules of the dispersion of gunshot residue in the surroundings of the shooting gun. Thus, it may be utilised in the reconstruction of shooting incidences, especially in establishing the mutual positions of the shooter and other participants of the incident. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Development and validation of an alternative to conventional pretreatment methods for residue analysis of butachlor in water, soil, and rice.

    Science.gov (United States)

    Xue, Jiaying; Jiang, Wenqing; Liu, Fengmao; Zhao, Huiyu; Wang, Suli; Peng, Wei

    2014-01-01

    A rapid and effective alternative analytical method for residues of butachlor in water, soil, and rice was established. The operating variables affecting performance of this method, including different extraction conditions and cleanup adsorbents, were evaluated. The determination of butachlor residues in soil, straw, rice hull, and husked rice was performed using GC/MS after extraction with n-hexane and cleanup with graphite carbon black. The average recoveries ranged from 81.5 to 102.7%, with RSDs of 0.6-7.7% for all of the matrixes investigated. The limits of quantitation were 0.05 mg/kg in water and rice plant, and 0.01 mg/kg in soil, straw, rice hull, and husked rice. A comparison among this proposed method, the conventional liquid-liquid extraction, the Quick, Easy, Cheap, Effective, Rugged, and Safe method, and Soxhlet extraction indicated that this method was more suitable for analyzing butachlor in rice samples. The further validation of the proposed method was carried out by Soxhlet extraction for the determination of butachlor residues in the husked rice samples, and the residue results showed there was no obvious difference obtained from these two methods. Samples from a rice field were found to contain butachlor residues below the maximum residue limits set by China (0.5 mg/kg) and Japan (0.1 mg/kg). The proposed method has a strong potential for application in routine screening and processing of large numbers of samples. This study developed a more effective alternative to the conventional analytical methods for analyzing butachlor residues in various matrixes.

  15. Response of Selected Clones of Cocoa Seedlings in the Nursery Against High Soil Water Content

    Directory of Open Access Journals (Sweden)

    Adi Prawoto

    2005-08-01

    Full Text Available Since 2001 to 2005, cocoa bean price is high, this condition accelerates farmers to plant and enlarger their cocoa areas. The impact of this euphoria is the possibility that the planting area will be more marginal, i.e. high water table or soil with continuously high water content. This study was to evaluate cocoa planting materials tolerant to those condition. The experiment was conducted in glass house of Indonesian Coffee and Cocoa Research Institute using RCBD, replicated 3 times. The treatments were factorial 10 x 4. The propelegitimate seedlings of 10 clones were the first factor, i.e. KW 165, KW 162, DR 2, DRC 16, GC 7, ICS 13, ICS 60, KW 163, Sca 12, and TSH 858. The second factor were soil water content, that were 100% (field capacity = control, 125%, 150%, and 175%. Watering method was gravimetric, once a month the volume was corrected by wet weight of the seedlings. The study was terminated after 5 month old. The result showed that growth of stem diameter, root dry weight and leaf number still normal until soil water content 25% above field capacity. At that condition, seedling dry weight dropped 13% below control, whereas at 175% treatment the decreasing of seedling dry weight was 34% below control. According to seedling and root dry weights, and chlorophyll content, by using cluster analysis it could be obtained a group of seedlings tolerant to high soil water content, i.e. DRC 16, GC 7, and ICS 60. Meanwhile, a group of seedlings susceptible to high water content, i.e. KW 165, KW 163, and DR 2. Stem diameter and chlorophyl content was good indicator for water logging tolerance reaction for cocoa seedling, its correlation to seedling dry weight were positive and tight. Key words: Theobroma cacao, seedlings, waterlogging, growth, chlorophyll.

  16. Water Content of the Oceanic Lithosphere at Hawaii from FTIR Analysis of Peridotite Xenoliths

    Science.gov (United States)

    Peslier, Anne H.; Bizmis, Michael

    2013-01-01

    Although water in the mantle is mostly present as trace H dissolved in minerals, it has a large influence on its melting and rheological properties. The water content of the mantle lithosphere beneath continents is better constrained by abundant mantle xenolith data than beneath oceans where it is mainly inferred from MORB glass analysis. Using Fourier transform infrared (FTIR) spectrometry, we determined the water content of olivine (Ol), clinopyroxene (Cpx) and orthopyroxene (Opx) in spinel peridotite xenoliths from Salt Lake Crater, Oahu, Hawaii, which are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. Only Ol exhibits H diffusion profiles, evidence of limited H loss during xenolith transport to the surface. Water concentrations (Ol: 9-28 ppm H2O, Cpx: 246-566 ppm H2O, Opx: 116-224 ppm H2O) are within the range of those from continental settings but higher than those from Gakkel ridge abyssal peridotites. The Opx H2O contents are similar to those of abyssal peridotites from Atlantic ridge Leg 153 (170-230 ppm) but higher than those from Leg 209 (10- 14 ppm). The calculated bulk peridotite water contents (94 to 144 ppm H2O) are in agreement with MORB mantle source water estimates and lower than estimates for the source of Hawaiian rejuvenated volcanism (approx 540 ppm H2O) . The water content of Cpx and most Opx correlates negatively with spinel Cr#, and positively with pyroxene Al and HREE contents. This is qualitatively consistent with the partitioning of H into the melt during partial melting, but the water contents are too high for the degree of melting these peridotites experienced. Melts in equilibrium with xenolith minerals have H2O/Ce ratios similar to those of OIB

  17. Precision of neutron scattering and capacitance type soil water content gauges from field calibration

    International Nuclear Information System (INIS)

    Evett, S.R.; Steiner, J.L.

    1995-01-01

    Soil water content gauges based on neutron scattering (NS) have been a valuable tool for soil water investigations for some 40 yr. However, licensing, training, and safety regulations pertaining to the radioactive source in these gauges makes their use expensive and prevents use in some situations such as unattended monitoring. A capacitance probe (CP) gauge has characteristics that would seem to make it an ideal replacement for NS gauges. We determined the relative precision of two brands of NS gauges (three gauges of each) and a brand of CP gauge (four gauges) in a field calibration exercise. Both brands of NS gauges were calibrated vs. volumetric soil water content with coefficients of determination (r2) ranging from 0.97 to 0.99 and root mean squared errors (RMSE) 0.012 m3 m-3 water content. Calibrations for the CP gauges resulted in r2 ranging from 0.68 to 0.71 and RMSE of 0.036 m3 m-3 water content. Average 95% confidence intervals on predictions were three to five times higher for the CP gauges than for the NS gauges, ranging from 0.153 to 0.161 and 0.032 to 0.052 m3 m-3, respectively. Although poorly correlated with soil water content, readings were reproducible among the four CP gauges. The poor correlation for CP gauges may be due to small-scale soil water content variations within the measurement volume of the gauge. The NS gauges provide acceptable precision but the CP gauge has poor precision and is unacceptable for routine soil water content measurements

  18. Porous media matric potential and water content measurements during parabolic flight

    Science.gov (United States)

    Norikane, Joey H.; Jones, Scott B.; Steinberg, Susan L.; Levine, Howard G.; Or, Dani

    2005-01-01

    Control of water and air in the root zone of plants remains a challenge in the microgravity environment of space. Due to limited flight opportunities, research aimed at resolving microgravity porous media fluid dynamics must often be conducted on Earth. The NASA KC-135 reduced gravity flight program offers an opportunity for Earth-based researchers to study physical processes in a variable gravity environment. The objectives of this study were to obtain measurements of water content and matric potential during the parabolic profile flown by the KC-135 aircraft. The flight profile provided 20-25 s of microgravity at the top of the parabola, while pulling 1.8 g at the bottom. The soil moisture sensors (Temperature and Moisture Acquisition System: Orbital Technologies, Madison, WI) used a heat-pulse method to indirectly estimate water content from heat dissipation. Tensiometers were constructed using a stainless steel porous cup with a pressure transducer and were used to measure the matric potential of the medium. The two types of sensors were placed at different depths in a substrate compartment filled with 1-2 mm Turface (calcined clay). The ability of the heat-pulse sensors to monitor overall changes in water content in the substrate compartment decreased with water content. Differences in measured water content data recorded at 0, 1, and 1.8 g were not significant. Tensiometer readings tracked pressure differences due to the hydrostatic force changes with variable gravity. The readings may have been affected by changes in cabin air pressure that occurred during each parabola. Tensiometer porous membrane conductivity (function of pore size) and fluid volume both influence response time. Porous media sample height and water content influence time-to-equilibrium, where shorter samples and higher water content achieve faster equilibrium. Further testing is needed to develop these sensors for space flight applications.

  19. An accurate retrieval of leaf water content from mid to thermal infrared spectra using continuous wavelet analysis

    NARCIS (Netherlands)

    Ullah, S.; Skidmore, A.K.; Naeem, M.; Schlerf, M.

    2012-01-01

    Leaf water content determines plant health, vitality, photosynthetic efficiency and is an important indicator of drought assessment. The retrieval of leaf water content from the visible to shortwave infrared spectra is well known. Here for the first time, we estimated leaf water content from the mid

  20. Aluminum drinking water treatment residuals (Al-WTRs) as sorbent for mercury: Implications for soil remediation.

    Science.gov (United States)

    Hovsepyan, Anna; Bonzongo, Jean-Claude J

    2009-05-15

    The potential of readily available and non-hazardous waste material, aluminum drinking water treatment residuals (Al-WTRs), to efficiently sorb and immobilize mercury (Hg) from aqueous solutions was evaluated. Al-WTR samples with average specific surface area of 48m(2)/g and internal micropore surface area of 120m(2)/g were used in a series of batch sorption experiments. Obtained sorption isotherms indicated a strong affinity of Hg for Al-WTRs. Using the Langmuir adsorption model, a relatively high maximum sorption capacity of 79mg Hg/g Al-WTRs was determined. Sorption kinetic data was best fit to a pseudo-first-order model, while the use of the Weber-Morris and Bangham models suggested that the intraparticle diffusion could be the rate-limiting step. Also, Al-WTRs effectively immoblized Hg in the pH range of 3-8. The results from these short-term experiments demonstrate that Al-WTRs can be effectively used to remove Hg from aqueous solutions. This ability points to the potential of Al-WTRs as a sorbent in soil remediation techniques based on Hg-immobilization.

  1. Comparison of metals extractability from Al/Fe-based drinking water treatment residuals.

    Science.gov (United States)

    Wang, Changhui; Bai, Leilei; Pei, Yuansheng; Wendling, Laura A

    2014-12-01

    Recycling of drinking water treatment residuals (WTRs) as environment amendments has attracted substantial interest due to their productive reuse concomitant with waste minimization. In the present study, the extractability of metals within six Al/Fe-hydroxide-comprised WTRs collected throughout China was investigated using fractionation, in vitro digestion and the toxicity characteristic leaching procedure (TCLP). The results suggested that the major components and structure of the WTRs investigated were similar. The WTRs were enriched in Al, Fe, Ca, and Mg, also contained varying quantities of As, Ba, Be, Cd, Co, Cr, Cu, K, Mn, Mo, Na, Ni, Pb, Sr, V, and Zn, but Ag, Hg, Sb, and Se were not detected. Most of the metals within the WTRs were largely non-extractable using the European Community Bureau of Reference (BCR) procedure, but many metals exhibited high bioaccessibility based on in vitro digestion. However, the WTRs could be classified as non-hazardous according to the TCLP assessment method used by the US Environmental Protection Agency (USEPA). Further analysis showed the communication factor, which is calculated as the ratio of total extractable metal by BCR procedure to the total metal, for most metals in the six WTRs, was similar, whereas the factor for Ba, Mn, Sr, and Zn varied substantially. Moreover, metals in the WTRs investigated had different risk assessment code. In summary, recycling of WTRs is subject to regulation based on assessment of risk due to metals prior to practical application.

  2. Estimating water content in an active landfill with the aid of GPR

    International Nuclear Information System (INIS)

    Yochim, April; Zytner, Richard G.; McBean, Edward A.; Endres, Anthony L.

    2013-01-01

    Highlights: • Limited information in the literature on the use of GPR to measure in situ water content in a landfill. • Developed GPR method allows measurement of in situ water content in a landfill. • Developed GPR method is appealing to waste management professionals operating landfills. - Abstract: Landfill gas (LFG) receives a great deal of attention due to both negative and positive environmental impacts, global warming and a green energy source, respectively. However, predicting the quantity of LFG generated at a given landfill, whether active or closed is difficult due to the heterogeneities present in waste, and the lack of accurate in situ waste parameters like water content. Accordingly, ground penetrating radar (GPR) was evaluated as a tool for estimating in situ water content. Due to the large degree of subsurface heterogeneity and the electrically conductive clay cap covering landfills, both of which affect the transmission of the electromagnetic pulses, there is much scepticism concerning the use of GPR to quantify in situ water content within a municipal landfill. Two landfills were studied. The first landfill was used to develop the measurement protocols, while the second landfill provided a means of confirming these protocols. GPR measurements were initially completed using the surface GPR approach, but the lack of success led to the use of borehole (BH) GPR. Both zero offset profiling (ZOP) and multiple offset gathers (MOG) modes were tried, with the results indicating that BH GPR using the ZOP mode is the most simple and efficient method to measure in situ water content. The best results were obtained at a separation distance of 2 m, where higher the water content, smaller the effective separation distance. However, an increase in water content did appear to increase the accuracy of the GPR measurements. For the effective separation distance of 2 m at both landfills, the difference between GPR and lab measured water contents were reasonable

  3. CALCULATED AND MEASURED VALUES OF LIQUID WATER CONTENT IN CLEAN AND POLLUTED ENVIRONMENTS

    Czech Academy of Sciences Publication Activity Database

    Fišák, Jaroslav; Řezáčová, Daniela; Mattanen, J.

    2006-01-01

    Roč. 50, č. 1 (2006), s. 121-130 ISSN 0039-3169 R&D Projects: GA AV ČR(CZ) IAA3042301 Institutional research plan: CEZ:AV0Z30420517 Keywords : liquid water content * visibility * air pollutant * fog /cloud water Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.603, year: 2006

  4. Detecting leaf-water content in Mediterranean trees using high-resolution spectrometry

    NARCIS (Netherlands)

    de Jong, Steven M.; Addink, Elisabeth A.; Doelman, Jonathan C.

    2014-01-01

    Water content of the vegetation canopy or individual leaves is an important variable in physiological plant processes. In Mediterranean regions where water availability is an important production limiting factor, it is a strong indicator of vegetation stress. Spectroscopic earth-observation

  5. Water content of acacia honey dertermined by two established methods and by optothermal window

    NARCIS (Netherlands)

    Szopos, S.; Doka, O.; Bicanic, D.D.; Ajtony, Z.

    2008-01-01

    The major objective of the research study described here was to explore the potential of the optothermal window (OW) technique as a new approach towards a simple, rapid determination of water content in honey. Water, major component of foods, influences their physical and chemical properties. Single

  6. Data and prediction of water content of high pressure nitrogen, methane and natural gas

    DEFF Research Database (Denmark)

    Folas, Georgios; Froyna, E.W.; Lovland, J.

    2007-01-01

    New data for the equilibrium water content of nitrogen, methane and one natural gas mixture are presented. The new binary data and existing binary sets were compared to calculated values of dew point temperature using both the CPA (Cubic-Plus-Association) EoS and the GERG-water EoS. CPA is purely...

  7. The Effect of Preservative Methods on the Yield, Water Content and ...

    African Journals Online (AJOL)

    .niger, A.aureous and Fusarium spp. A. flavipes was isolated from samples of water activity at 0.33 while A.niger was isolated from samples of water activity at 0.11. It was recommended that the reduction in moisture content of smoke-dried ...

  8. Temperature effects in soil water content determined with time domain reflectometry

    NARCIS (Netherlands)

    Halbertsma, J.; Elsen, van den E.; Bohl, H.; Skierucha, W.

    1996-01-01

    The relative permittivity of water decreases with increasing temperature. Therefore, it is likely that the soil water content determined with time domain reflectometry is influenced by temperature. This study showed that significant temperature effects may occur. The magnitude of these effects is a

  9. Ultrasensitive 4-methylumbelliferone fluorimetric determination of water contents in aprotic solvents.

    Science.gov (United States)

    Kłucińska, Katarzyna; Jurczakowski, Rafał; Maksymiuk, Krzysztof; Michalska, Agata

    2015-01-01

    A novel approach to the quantification of relatively small amounts of water present in low polarity, aprotic solvents is proposed. This method takes advantage of protolitic reaction of 4-methylumbelliferone dissolved in the solvent with water, acting as a base. The low emission intensity neutral 4-methylumbelliferone is transformed in reaction with water to a highly fluorescent anionic form. Thus the increase in emission intensity is observed for increasing water contents in aprotic solvents. For low water contents and highly lipophilic solvents, this method yields (in practical conditions) higher sensitivity compared to biamperometric Karl Fischer titration method in volumetric mode. It is also shown that organic compounds of protolitic character (amines, acids) not only interfere with water contents determination but increase the sensitivity of emission vs. water contents dependence. Introduction of aqueous solution of strong acid or base (HCl or NaOH) has similar effect on the system as introduction of pure water. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Quality of Water Content, Diastase Enzyme Activity and Hidroximetilfurfural (HMF in Rubber and Rambutan Honey

    Directory of Open Access Journals (Sweden)

    Sulis Setio Toto Harjo

    2017-03-01

    Full Text Available The purpose of this research was to determine the water content, diastase enzyme activity and HMF of the rubber and rambutan honey. The method was a laboratory experiments with statistical analysis unpaired student t-test by two treatments and fifteen replications. The variable of this research were water content, diastase enzyme activity and HMF. The results of rubber and rambutan honey showed that there were significant difference effect (P0.05 that is 11 DN and there is a highly significant difference (P<0.01 on the HMF content of 17.23±0.54 mg/kg and 7.61±0.23 mg/kg. Rubber and rambutan honey have good quality based on the water content, diastase enzyme activity and HMF. It was concluded that the rubber and rambutan honey used were of good quality because it has met the requirements of SNI.

  11. The Calibration and Use of Capacitance Sensors to Monitor Stem Water Content in Trees.

    Science.gov (United States)

    Matheny, Ashley M; Garrity, Steven R; Bohrer, Gil

    2017-12-27

    Water transport and storage through the soil-plant-atmosphere continuum is critical to the terrestrial water cycle, and has become a major research focus area. Biomass capacitance plays an integral role in the avoidance of hydraulic impairment to transpiration. However, high temporal resolution measurements of dynamic changes in the hydraulic capacitance of large trees are rare. Here, we present procedures for the calibration and use of capacitance sensors, typically used to monitor soil water content, to measure the volumetric water content in trees in the field. Frequency domain reflectometry-style observations are sensitive to the density of the media being studied. Therefore, it is necessary to perform species-specific calibrations to convert from the sensor-reported values of dielectric permittivity to volumetric water content. Calibration is performed on a harvested branch or stem cut into segments that are dried or re-hydrated to produce a full range of water contents used to generate a best-fit regression with sensor observations. Sensors are inserted into calibration segments or installed in trees after pre-drilling holes to a tolerance fit using a fabricated template to ensure proper drill alignment. Special care is taken to ensure that sensor tines make good contact with the surrounding media, while allowing them to be inserted without excessive force. Volumetric water content dynamics observed via the presented methodology align with sap flow measurements recorded using thermal dissipation techniques and environmental forcing data. Biomass water content data can be used to observe the onset of water stress, drought response and recovery, and has the potential to be applied to the calibration and evaluation of new plant-level hydrodynamics models, as well as to the partitioning of remotely sensed moisture products into above- and belowground components.

  12. Chemical characterization of agroforestry solid residues aiming its utilization as adsorbents for metals in water

    Directory of Open Access Journals (Sweden)

    Francisco H. M. Luzardo

    2015-01-01

    Full Text Available In this work, a study of the correlation between the functional groups present in the chemical structure of the fibers of coconut shells, cocoa and eucalyptus, and their adsorption capacity of Cd+2 and Cu+2 ions from water was performed. The content of soluble solids and reactive phenols in aqueous extracts were determined. The chemical functional groups present in the fibers were examined using the IR spectra. The adsorption capacity of the peels was determined using atomic absorption spectrophotometer. For Cd+2, a significant correlation between the adsorption capacity and some specific chemical functional groups present in the fiber was verified. The potential use of these peels, as adsorbent of Cd+2 ions, is based on the presence of OH functional groups such as aryl-OH, aryl-O-CH2 of phenol carboxylic acids, as well as carbonyl groups derived from carboxylic acid salts, in these fibers.

  13. Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling.

    Science.gov (United States)

    Lozowicka, Bozena; Jankowska, Magdalena; Hrynko, Izabela; Kaczynski, Piotr

    2016-01-01

    The effects of washing with tap and ozone water, ultrasonic cleaning and boiling on 16 pesticide (ten fungicides and six insecticides) residue levels in raw strawberries were investigated at different processing times (1, 2 and 5 min). An analysis of these pesticides was conducted using gas chromatography with nitrogen-phosphorous and electron capture detection (GC-NPD/ECD). The processing factor (PF) for each pesticide in each processing technique was determined. Washing with ozonated water was demonstrated to be more effective (reduction from 36.1 to 75.1 %) than washing with tap water (reduction from 19.8 to 68.1 %). Boiling decreased the residues of the most compounds, with reductions ranging from 42.8 to 92.9 %. Ultrasonic cleaning lowered residues for all analysed pesticides with removal of up to 91.2 %. The data indicated that ultrasonic cleaning and boiling were the most effective treatments for the reduction of 16 pesticide residues in raw strawberries, resulting in a lower health risk exposure. Calculated PFs for alpha-cypermethrin were used to perform an acute risk assessment of dietary exposure. To investigate the relationship between the levels of 16 pesticides in strawberry samples and their physicochemical properties, a principal component analysis (PCA) was performed. Graphical abstract ᅟ.

  14. EBER - development of evaluation methods for shipping and storage containers with an increased content of metallic residual materials

    International Nuclear Information System (INIS)

    Droste, B.; Voelzke, H.

    1995-01-01

    Containers which are manufactured using recycled metallic residual materials from decommissioned nuclear facilities must be designed in accordance with the requirements of transport, interim and ultimate storage of radioactive waste. When metallic residual materials are added to the melt in the manufacture of containers made of cast iron with nodular graphite (GGG 40), how the effect on and characteristics of materials are to be observed as well as the permissible limits. The influence on charcteristics of relevance to safety, such as fracture toughness and the types and magnitudes of defects in construction components are the most important factors. In BAM's 'EBER' project presented here, the studies concentrate on design-based safety against the mechanical effects of accidents. (orig./DG) [de

  15. Comparing electronic probes for volumetric water content of low-density feathermoss

    Science.gov (United States)

    Overduin, P.P.; Yoshikawa, K.; Kane, D.L.; Harden, J.W.

    2005-01-01

    Purpose - Feathermoss is ubiquitous in the boreal forest and across various land-cover types of the arctic and subarctic. A variety of affordable commercial sensors for soil moisture content measurement have recently become available and are in use in such regions, often in conjunction with fire-susceptibility or ecological studies. Few come supplied with calibrations suitable or suggested for soils high in organics. Aims to test seven of these sensors for use in feathermoss, seeking calibrations between sensor output and volumetric water content. Design/methodology/approach - Measurements from seven sensors installed in live, dead and burned feathermoss samples, drying in a controlled manner, were compared to moisture content measurements. Empirical calibrations of sensor output to water content were determined. Findings - Almost all of the sensors tested were suitable for measuring the moss sample water content, and a unique calibration for each sensor for this material is presented. Differences in sensor design lead to changes in sensitivity as a function of volumetric water content, affecting the spatial averaging over the soil measurement volume. Research limitations/implications - The wide range of electromagnetic sensors available include frequency and time domain designs with variations in wave guide and sensor geometry, the location of sensor electronics and operating frequency. Practical implications - This study provides information for extending the use of electromagnetic sensors to feathermoss. Originality/value - A comparison of volumetric water content sensor mechanics and design is of general interest to researchers measuring soil water content. In particular, researchers working in wetlands, boreal forests and tundra regions will be able to apply these results. ?? Emerald Group Publishing Limited.

  16. Metrologically Traceable Determination of the Water Content in Biopolymers: INRiM Activity

    Science.gov (United States)

    Rolle, F.; Beltramino, G.; Fernicola, V.; Sega, M.; Verdoja, A.

    2017-03-01

    Water content in materials is a key factor affecting many chemical and physical properties. In polymers of biological origin, it influences their stability and mechanical properties as well as their biodegradability. The present work describes the activity carried out at INRiM on the determination of water content in samples of a commercial starch-derived biopolymer widely used in shopping bags (Mater-Bi^{circledR }). Its water content, together with temperature, is the most influencing parameter affecting its biodegradability, because of the considerable impact on the microbial activity which is responsible for the biopolymer degradation in the environment. The main scope of the work was the establishment of a metrologically traceable procedure for the determination of water content by using two electrochemical methods, namely coulometric Karl Fischer (cKF) titration and evolved water vapour (EWV) analysis. The obtained results are presented. The most significant operational parameters were considered, and a particular attention was devoted to the establishment of metrological traceability of the measurement results by using appropriate calibration procedures, calibrated standards and suitable certified reference materials. Sample homogeneity and oven-drying temperature were found to be the most important influence quantities in the whole water content measurement process. The results of the two methods were in agreement within the stated uncertainties. Further development is foreseen for the application of cKF and EWV to other polymers.

  17. Field comparison of selected methods for vertical soil water content profiling

    Science.gov (United States)

    Vienken, T.; Reboulet, E.; Leven, C.; Kreck, M.; Zschornack, L.; Dietrich, P.

    2013-09-01

    High-resolution information about vertical variations in soil water content is important for applications ranging from agricultural water management to flow and transport modeling. Commonly applied tools for the investigation of vertical soil water content distribution in hydrogeological field investigations are: gravimetric laboratory analyses of soil samples, logging a cased borehole using a tool with a radioactive source (neutron probe), or yet less well established, direct push-based moisture sensor probes. Due to differences in their underlying measurement principles as well as different operation modes, each of the aforementioned methods is associated with certain advantages and limitations. A common field evaluation of these methods has not been performed until now - raising the question of how well these individual methods perform when applied under different depositional and hydrogeological conditions. For field evaluation direct push-profiling was performed at three different test sites under different hydrogeological settings and varying degree of sediment heterogeneity and compared with results obtained from gravimetric analysis of soil cores and neutron probe measurements. In direct comparison the applied direct push-based Water Content Profiler proved to be a suitable alternative to neutron probe technology for measuring the vertical water content distribution. Moreover, the Water Content Profiler proved to be advantageous over gravimetric analysis in terms vertical resolution and time efficiency. Results of this study identify application-specific limitations of the methods and thereby highlight the need for careful data evaluation, even though some of the methods described in this paper are well established.

  18. Novel method for the determination of water content and higher heating value of pyrolysis

    OpenAIRE

    Mohammed, Isah; Kabir, Feroz Kazi; Abakr, Yousif; Yusuf, Suzana; Razzaque, Abdur

    2015-01-01

    This research provides a novel approach for the determination of water content and higher heating value of pyrolysis oil. Pyrolysis oil from Napier grass was used in this study. Water content was determined with pH adjustment using a Karl Fisher titration unit. An equation for actual water in the oil was developed and used, and the results were compared with the traditional Karl Fisher method. The oil was found to have between 42 and 64% moisture under the same pyrolysis condition depending o...

  19. MR-based Water Content Estimation in Cartilage: Design and Validation of a Method

    DEFF Research Database (Denmark)

    Shiguetomi Medina, Juan Manuel; Kristiansen, Maja Sofie; Ringgaard, Steffen

    2012-01-01

    system (the closest to the body temperature) we measured, using the modified MR sequences, the T1 map intensity signal on 6 cartilage samples from living animals (pig) and on 8 gelatin samples which water content was already known. For the data analysis a T1 intensity signal map software analyzer...... was costumed and programmed. Finally, we validated the method after measuring and comparing 3 more cartilage samples in a living animal (pig). The obtained data was analyzed and the water content calculated. Then, the same samples were freeze-dried (this technique allows to take out all the water that a tissue...

  20. A CHEMICAL OXYGEN-IODINE LASER WITH A HIGH WATER VAPOR CONTENT

    OpenAIRE

    Gerasimenko, N.; Yeroshenko, V.; Kalinovski, V.; Konovalov, V.; Krukovski, I.; Nikolaev, V.; Shornikov, L.

    1991-01-01

    To check whether it is possible to make the construction of an oxygen-iodine laser less complicated and to give up in the future a cold water trap, we investigated the possibility for COIL operation at a high content of the water vapor in the active medium. With the oxygen pressure increase between 0.5 ... 2.5 Torr and the water vapor content between 0.3 ... 1.0 Torr at the constant iodine concentration [MATH] 10 mTorr, the generation power increased from 1.0 to 4.5 kW, saturation of the radi...

  1. Evidence of non-extractable florfenicol residues: development and validation of a confirmatory method for total florfenicol content in kidney by UPLC-MS/MS.

    Science.gov (United States)

    Faulkner, Dermot; Cantley, Margaret; Walker, Matthew; Crooks, Steven; Kennedy, David; Elliott, Christopher

    2016-06-01

    The parent compound florfenicol (FF) is a broad-spectrum antibacterial compound licensed in the UK for use in cattle, pigs and the aquaculture industry. The analysis of porcine tissues in this study demonstrates that significant amounts of solvent non-extractable FF-related residues are present in incurred tissues (kidney and muscle) from treated animals. The results indicate that methods based on solvent extraction alone may carry a significant risk of reporting false-negative results. The use of a strong acid hydrolysis step prior to solvent extraction of tissue samples is necessary for an accurate estimate of the total tissue FF content. A robust and sensitive method for the determination of total FF residue content in kidney samples by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) has been developed and validated. This method covers the synthetic amphenicol drug FF and its metabolites, measured as the marker residue florfenicol amine (FFA) as per Commission Regulation (EU) No. 37/2010. Non-extractable and intermediate metabolites are converted to the hydrolysis product FFA, and then partitioned into ethyl acetate. Extracts are solvent exchanged prior to a dispersive solid-phase extraction step, then analysed using an alkaline reverse-phase gradient separation by UPLC-MS/MS. The method was validated around the maximum residue levels (MRLs) set out in Regulation (EU) No. 37/2010 for bovine kidney in accordance with Commission Decision No. 2002/657/EC. The following method performance characteristics were assessed during a single laboratory validation study: selectivity, specificity, sensitivity, linearity, matrix effects, accuracy and precision (decision limit (CCα) and detection capability (CCβ) were determined).

  2. A High Resolution Capacitive Sensing System for the Measurement of Water Content in Crude Oil

    Science.gov (United States)

    Aslam, Muhammad Zubair; Tang, Tong Boon

    2014-01-01

    This paper presents the design of a non-intrusive system to measure ultra-low water content in crude oil. The system is based on a capacitance to phase angle conversion method. Water content is measured with a capacitance sensor comprising two semi-cylindrical electrodes mounted on the outer side of a glass tube. The presence of water induces a capacitance change that in turn converts into a phase angle, with respect to a main oscillator. A differential sensing technique is adopted not only to ensure high immunity against temperature variation and background noise, but also to eliminate phase jitter and amplitude variation of the main oscillator that could destabilize the output. The complete capacitive sensing system was implemented in hardware and experiment results using crude oil samples demonstrated that a resolution of ±50 ppm of water content in crude oil was achieved by the proposed design. PMID:24967606

  3. A High Resolution Capacitive Sensing System for the Measurement of Water Content in Crude Oil

    Directory of Open Access Journals (Sweden)

    Muhammad Zubair Aslam

    2014-06-01

    Full Text Available This paper presents the design of a non-intrusive system to measure ultra-low water content in crude oil. The system is based on a capacitance to phase angle conversion method. Water content is measured with a capacitance sensor comprising two semi-cylindrical electrodes mounted on the outer side of a glass tube. The presence of water induces a capacitance change that in turn converts into a phase angle, with respect to a main oscillator. A differential sensing technique is adopted not only to ensure high immunity against temperature variation and background noise, but also to eliminate phase jitter and amplitude variation of the main oscillator that could destabilize the output. The complete capacitive sensing system was implemented in hardware and experiment results using crude oil samples demonstrated that a resolution of ±50 ppm of water content in crude oil was achieved by the proposed design.

  4. Predicting Soil-Water Characteristics from Volumetric Contents of Pore-Size Analogue Particle Fractions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Tuller, Markus

    *-model) for the SWC, derived from readily available soil properties such as texture and bulk density. A total of 46 soils from different horizons at 15 locations across Denmark were used for models evaluation. The Xw-model predicts the volumetric water content as a function of volumetric fines content (organic matter......Modelling water distribution and flow in partially saturated soils requires knowledge of the soil-water characteristic (SWC). However, measurement of the SWC is challenging and time-consuming, and in some cases not feasible. This study introduces two predictive models (Xw-model and Xw...... (organic matter, clay, silt, fine and coarse sand), variably included in the model depending on the pF value. The volumetric content of a particular soil particle size fraction was included in the model if it was assumed to contribute to the pore size fraction still occupied with water at the given p...

  5. Influence of packaging and conditions of storaging on content of mineral water Guber-Srebrenica

    OpenAIRE

    Blagojević Dragana D.; Lazić Dragica; Škundrić Branko; Škundrić Jelena; Vukić Ljiljana

    2008-01-01

    Mineral waters are found in nature in greater depths most often in reduction conditions, so after surfacing their content alters in contact with oxygen, which is caused by oxidation of certain components. Due to this, efforts were made to make these waters more stabile so they could be used after certain time. This work monitors the stability of Guber (Argentaria)-Srebrenica water exposed to light and with addition of ascorbic acid. The methods of analysis and the parameters analyzed are: gra...

  6. Origin and Distribution of Water Contents in Continental and Oceanic Lithospheric Mantle

    Science.gov (United States)

    Peslier, Anne H.

    2013-01-01

    The water content distribution of the upper mantle will be reviewed as based on the peridotite record. The amount of water in cratonic xenoliths appears controlled by metasomatism while that of the oceanic mantle retains in part the signature of melting events. In both cases, the water distribution is heterogeneous both with depth and laterally, depending on localized water re-enrichments next to melt/fluid channels. The consequence of the water distribution on the rheology of the upper mantle and the location of the lithosphere-asthenosphere boundary will also be discussed.

  7. Residual Effect of Chemical and Animal Fertilizers and Compost on Yield, YieldComponents, Physiological Characteristics and Essential Oil Content of Matricaria chamomilla L. under Drought Stress conditions

    Directory of Open Access Journals (Sweden)

    a Ahmadian

    2011-02-01

    Full Text Available Abstract The residual effect of inorganic and organic fertilizers on growth and yield of plants is one of the important problems in nutrition. This study was conducted to determine the residual effect of different fertilizers on yield, yield components, physiological parameters and essential oil percentage of Matricaria chamomilla under drought stress. A split plot arrangement based on randomized completely block design (RCBD with three replication was conducted in 2009, at the University of Zabol. Treatments included W1 (non stress, W2 (75% FC and W3 (50% FC as main plot and three types of residual’s fertilizers: F1 (non fertilizer, F2 (chemical fertilizer, F3 (manure fertilizer and F4 (compost as sub plot. Results showed that water stress at W3 treatment reduced dry flower yield. Low water stress increased essential oil percentage and the highest oil was obtained in W2. In this experiment, free proline and total soluble carbohydrate concentration were increased under water stress. The residual’s manure and compost enhanced flower yield, percentage and yield of essential oil of chamomile at the second year. At a glance, animal manure application and light water stress (75% FC was recommended to obtain best quantitative and qualitative yield. Keywords: Water Stress, Fertilizer, Carbohydrate, Proline, Chamomile

  8. Validated electrochemical and chromatographic quantifications of some antibiotic residues in pharmaceutical industrial waste water.

    Science.gov (United States)

    Ibrahim, Heba K; Abdel-Moety, Mona M; Abdel-Gawad, Sherif A; Al-Ghobashy, Medhat A; Kawy, Mohamed Abdel

    2017-03-01

    Realistic implementation of ion selective electrodes (ISEs) into environmental monitoring programs has always been a challenging task. This could be largely attributed to difficulties in validation of ISE assay results. In this study, the electrochemical response of amoxicillin trihydrate (AMX), ciprofloxacin hydrochloride (CPLX), trimethoprim (TMP), and norfloxacin (NFLX) was studied by the fabrication of sensitive membrane electrodes belonging to two types of ISEs, which are polyvinyl chloride (PVC) membrane electrodes and glassy carbon (GC) electrodes. Linear response for the membrane electrodes was in the concentration range of 10 -5 -10 -2  mol/L. For the PVC membrane electrodes, Nernstian slopes of 55.1, 56.5, 56.5, and 54.0 mV/decade were achieved over a pH 4-8 for AMX, CPLX, and NFLX, respectively, and pH 3-6 for TMP. On the other hand, for GC electrodes, Nernstian slopes of 59.1, 58.2, 57.0, and 58.2 mV/decade were achieved over pH 4-8 for AMX, CPLX, and NFLX, respectively, and pH 3-6 for TMP. In addition to assay validation to international industry standards, the fabricated electrodes were also cross-validated relative to conventional separation techniques; high performance liquid chromatography (HPLC), and thin layer chromatography (TLC)-densitometry. The HPLC assay was applied in concentration range of 0.5-10.0 μg/mL, for all target analytes. The TLC-densitometry was adopted over a concentration range of 0.3-1.0 μg/band, for AMX, and 0.1-0.9 μg/band, for CPLX, NFLX, and TMP. The proposed techniques were successfully applied for quantification of the selected drugs either in pure form or waste water samples obtained from pharmaceutical plants. The actual waste water samples were subjected to solid phase extraction (SPE) for pretreatment prior to the application of chromatographic techniques (HPLC and TLC-densitometry). On the other hand, the fabricated electrodes were successfully applied for quantification of the antibiotic residues in actual

  9. Salinity of injection water and its impact on oil recovery absolute permeability, residual oil saturation, interfacial tension and capillary pressure

    Directory of Open Access Journals (Sweden)

    Mehdi Mohammad Salehi

    2017-06-01

    This paper presents laboratory investigation of the effect of salinity injection water on oil recovery, pressure drop, permeability, IFT and relative permeability in water flooding process. The experiments were conducted at the 80 °C and a net overburden pressure of 1700 psi using core sample. The results of this study have been shown oil recovery increases as the injected water salinity up to 200,000 ppm and appointment optimum salinity. This increase has been found to be supported by a decrease in the IFT. This effect caused a reduction in capillary pressure increasing the tendency to reduce the residual oil saturation.

  10. [Metallic content of water sources and drinkable water in industrial cities of Murmansk region].

    Science.gov (United States)

    Doushkina, E V; Dudarev, A A; Sladkova, Yu N; Zachinskaya, I Yu; Chupakhin, V S; Goushchin, I V; Talykova, L V; Nikanov, A N

    2015-01-01

    Performed in 2013, sampling of centralized and noncentralized water-supply and analysis of engineering technology materials on household water use in 6 cities of Murmansk region (Nikel, Zapolyarny, Olenegorsk, Montchegorsk, Apatity, Kirovsk), subjected to industrial emissions, enabled to evaluate and compare levels of 15 metals in water sources (lakes and springs) and the cities' drinkable waters. Findings are that some cities lack sanitary protection zones for water sources, most cities require preliminary water processing, water desinfection involves only chlorination. Concentrations of most metals in water samples from all the cities at the points of water intake, water preparation and water supply are within the hygienic norms. But values significantly (2-5 times) exceeding MACs (both in water sources and in drinkable waters of the cities) were seen for aluminium in Kirovsk city and for nickel in Zapolarny and Nikel cities. To decrease effects of aluminium, nickel and their compounds in the three cities' residents (and preserve health of the population and offsprings), the authors necessitate specification and adaptation of measures to purify the drinkable waters from the pollutants. In all the cities studied, significantly increased concentrations of iron and other metals were seen during water transportation from the source to the city supply--that necessitates replacement of depreciated water supply systems by modern ones. Water taken from Petchenga region springs demonstrated relatively low levels of metals, except from strontium and barium.

  11. A rapid method for measuring soil water content in the field with a areometer

    Directory of Open Access Journals (Sweden)

    Calbo Adonai Gimenez

    2002-01-01

    Full Text Available The availability of a rapid method to evaluate the soil water content (U can be an important tool to determine the moment to irrigate. The soil areometer consists of an elongated hydrostatic balance with a weighing pan, a graduated neck, a float and a pynometric flask. In this work an areometer was adapted to rapidly measure soil water content without the need of drying the soil. The expression U = (M A - M AD/(M M -M A was used to calculate the soil water content. In this equation M M is the mass to level the areometer with the pycnometric flask filled with water, M A the mass to level the areometer with a mass M M of soil in the pycnometer, the volume being completed with water, and similarly M AD the mass added to the pan to level the areometer with a mass M M of dried soil in the pycnometric flask. The convenience of this method is that the values M M and M AD are known. Consequently, the decision on irrigation can be made after a measurement that takes, about, ten minutes. The procedure involves only stirring the soil with water for at least 2 minutes to remove the adhered air. The soil water content data obtained with the areometric method were similar to those obtained weighing the soil before and after drying to constant weight, in an oven at 105º C.

  12. Effects of Water Content Levels on Yield Components of Some Peanut Mutant Lines (Arachis Hypogaea L)

    International Nuclear Information System (INIS)

    Carkum; Kumala Dewi; Parno; Sobrizal

    2004-01-01

    Study about effects of water content levels on yield components of peanut mutant lines has been conducted. Mutant lines tested were A20/3/PsJ, B30/12/10 and D25/3/2. The original varieties/lines of the mutants were, AH1781Si, Kidang and Pelanduk was included as control. The treatments for levels of water application were 100%, 75%, 50% and 25%, where 100% water available means a difference between water content at field capacity and at content in permanent wilting point. Based on the data of parameters observed, to interaction between varieties/lines and water content levels was not found except for dry matter weight. For this parameter, the highest dry matter was observed when B30/12/10 mutant line was watered by 100% water available. Nevertheless, based on relative values of number of mature pod, dry pod weight and 50 nut weight the A20/3/PsJ mutant line seems tolerant to drought. (author)

  13. Characterization of the water soluble component of inedible residue from candidate CELSS crops

    Science.gov (United States)

    Garland, Jay

    1992-01-01

    Recycling of inorganic nutrients required for plant growth will be a necessary component of a fully closed, bioregenerative life support system. This research characterized the recovery of plant nutrients from the inedible fraction of three crop types (wheat, potato, and soybean) by soaking, or leaching, in water. A considerable portion of the dry weight of the inedible biomass was readily soluble (29 percent for soybean, 43 percent for wheat, and 52 percent for potato). Greater weight loss from potato was a result of higher tissue concentrations of potassium, nitrate, and phosphate. Approximately 25 percent of the organic content of the biomass was water soluble, while the majority of most inorganic nutrients, except for calcium and iron, were recovered in the leachate. Direct use of the leachates in hydroponic media could provide between 40-90 percent of plant nutrient demands for wheat, and 20-50 percent of demand for soybean and potato. Further evaluation of leaching as a component of resource recovery scheme in a bioregenerative system requires study of (1) utilization of plant leachates in hydroponic plant culture; and (2) conversion of organic material (both soluble and insoluble) into edible, or other useful, products.

  14. Using near infrared spectrum analysis to predict water and chlorophyll content in tomato leaves

    Science.gov (United States)

    Jiang, Huanyu; Ying, Yibin; Liu, Yande

    2004-11-01

    In this study, we developed a nondestructive way to analyze water and chlorophyll content in tomato leaves. A total of 200 leaves were collected as experimental materials, 120 of them were used to form a calibration data set. Drying chest, SPAD meter and NIR spectrometer were used to get water content, chlorophyll content and spectrums of tomato leaves respectively. The Fourier Transform Infrared (FTNIR) method with a smart Near-IR Updrift was used to test spectrums, and partial least squares (PLS) technique was used to analyze the data we get by normal experimentation and near infrared spectrometer, set up a calibration model to predict the leaf water and chlorophyll content based on the characteristics of diffuse reflectance spectrums of tomato leaves. Three different mathematical treatments were used in spectrums processing: different wavelength range, different smoothing points, first and second derivative. We can get best prediction model when we select full range (800-2500nm), 3 points for spectrums smoothing and spectrums by baseline correction, the best model of chlorophyll content has a root mean square error of prediction (RMSEP) of 8.16 and a calibration correlation coefficient (R2) value of 0.89452 and the best model of water content has a root mean square error of prediction (RMSEP) of 0.0214 and a calibration correlation coefficient (R2) value of 0.91043.

  15. Computation of porosity and water content from geophysical logs, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, P.H.

    1996-12-31

    Neutron and density logs acquired in boreholes at Yucca Mountain, Nevada are used to determine porosity and water content as a function of depth. Computation of porosity requires an estimate of grain density, which is provided by core data, mineralogical data, or is inferred from rock type where neither core nor mineralogy are available. The porosity estimate is merged with mineralogical data acquired by X-ray diffraction to compute the volumetric fractions of major mineral groups. The resulting depth-based portrayal of bulk rock composition is equivalent to a whole rock analysis of mineralogy and porosity. Water content is computed from epithermal and thermal neutron logs. In the unsaturated zone, the density log is required along with a neutron log. Water content can also be computed from dielectric logs, which were acquired in only a fraction of the boreholes, whereas neutron logs were acquired in all boreholes. Mineralogical data are used to compute a structural (or bound) water estimate, which is subtracted from the total water estimate from the neutron-density combination. Structural water can be subtracted only from intervals where mineralogical analyses are available; otherwise only total water can be reported. The algorithms and procedures are applied to logs acquired during 1979 to 1984 at Yucca Mountain. Examples illustrate the results. Comparison between computed porosity and core measurements shows systematic differences ranging from 0.005 to 0.04. These values are consistent with a sensitivity analysis using uncertainty parameters for good logging conditions. Water content from core measurements is available in only one borehole, yielding a difference between computed and core-based water content of 0.006.

  16. Electrodialytic remediation of air pollution control residues in bench scale

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ferreira, Celia; Hansen, Henrik K.

    2008-01-01

    Air pollution control (APC) residue from municipal solid waste incineration (MSWI) is considered a hazardous waste due to its alkalinity and high content of salts and mobile heavy metals. Various solutions for the handling of APC-residue exist in different regions; however, most commercial...... solutions are concerned with deposition. A demand for more environmentally friendly alternatives exists. Electrodialysis could be such an alternative, and the potential is being explored. This work presents a bench scale study of the feasibility of treating APC-residue from a dry system by electrodialysis....... A system resembling conventional electrodialysis was designed and adjusted to fit the high solids content feed solution (10% APC residue, 90% water). Experiments were made in bench scale with raw residue (natural pH > 12), water pre-residue (natural pH > 12), acid pre-washed residue (pH 10), and acid...

  17. Unsaturated flow characterization utilizing water content data collected within the capillary fringe

    Science.gov (United States)

    Baehr, Arthur; Reilly, Timothy J.

    2014-01-01

    An analysis is presented to determine unsaturated zone hydraulic parameters based on detailed water content profiles, which can be readily acquired during hydrological investigations. Core samples taken through the unsaturated zone allow for the acquisition of gravimetrically determined water content data as a function of elevation at 3 inch intervals. This dense spacing of data provides several measurements of the water content within the capillary fringe, which are utilized to determine capillary pressure function parameters via least-squares calibration. The water content data collected above the capillary fringe are used to calculate dimensionless flow as a function of elevation providing a snapshot characterization of flow through the unsaturated zone. The water content at a flow stagnation point provides an in situ estimate of specific yield. In situ determinations of capillary pressure function parameters utilizing this method, together with particle-size distributions, can provide a valuable supplement to data libraries of unsaturated zone hydraulic parameters. The method is illustrated using data collected from plots within an agricultural research facility in Wisconsin.

  18. Pore-Scale Transport of Strontium During Dynamic Water Content Changes in the Unsaturated Zone

    Science.gov (United States)

    Weaver, W.; Kibbey, T. C. G.; Papelis, C.

    2016-12-01

    Dynamic water content changes in the unsaturated zone caused by natural and manmade processes, such as evaporation, rainfall, and irrigation, have an effect on contaminant mobility. In general, in the unsaturated zone, evaporation causes an increase in contaminant concentrations, potentially leading to sorption of contaminants on aquifer materials or precipitation of crystalline or amorphous phases. On the other hand, increase of water content may result in dissolution of precipitated phases and increased mobility of contaminants. The objective of this study was to develop a quantitative model for the transport of strontium through sand under dynamic water content conditions, as a function of strontium concentration, pH, and ionic strength. Strontium was selected as a surrogate for strontium-90, a by-product of nuclear reactions. The dynamic water content was determined using an automated device for rapidly measuring the hysteretic capillary pressure—saturation relationship, followed by ambient air evaporation, and gravimetric water content measurement. Strontium concentrations were measured using inductively coupled plasma mass spectrometry (ICP-MS). Flow interruption experiments were conducted to determine whether equilibrium conditions existed for a given flowrate. Scanning electron microscopy (SEM) was used to visualize the treated quartz sand particles and the distribution of strontium on sand grains was determined using elemental maps created by energy-dispersive x-ray spectroscopy (EDX). Strontium behavior appears to be pH dependent as well as ionic strength dependent under these conditions.

  19. Characterization of a spherical heat source for measuring thermal conductivity and water content of ethanol and water mixtures

    Directory of Open Access Journals (Sweden)

    Brionizio Júlio Dutra

    2017-01-01

    Full Text Available The study and the development of measuring methods of thermal conductivity are essential in several engineering applications, since as a consequence of the current justified demands on saving and rational use of thermal energy, the heat transfer with the maximum efficient as possible is of great relevance. The measurement of the water content is also a relevant parameter in several research areas and industrial sectors, since the quantity of water in the substances influences several biological, chemical and physical processes. The aim of this paper is to present an experimental and theoretical study, following the good metrological practices, of a method based on a spherical heat source in order to measure the thermal conductivity of liquids, focusing on water, ethanol and their mixtures, with later determination of the water content of the binary samples.

  20. Detection of pesticides residues in water samples from organic and conventional paddy fields of Ledang, Johor, Malaysia

    Science.gov (United States)

    Abdullah, Md Pauzi; Othman, Mohamed Rozali; Ishak, Anizan; Nabhan, Khitam Jaber

    2016-11-01

    Pesticides have been used extensively by the farmers in Malaysia during the last few decades. Sixteen water samples, collected from paddy fields both organic and conventional, from Ledang, Johor, were analyzed to determine the occurrence and distribution of organochlorine (OCPs) and organophosphorus (OPPs) pesticide residues. GC-ECD instrument was used to identify and determine the concentrations of these pesticide residues. Pesticide residues were detected in conventional fields in the range about 0.036-0.508 µg/L higher than detected in organic fields about 0.015-0.428 µg/L. However the level of concentration of pesticide residues in water sample from both paddy fields are in the exceed limit for human consumption, according to European Economic Commission (EEC) (Directive 98/83/EC) at 0.1 µg/L for any pesticide or 0.5 µg/L for total pesticides. The results that the organic plot is still contaminated with pesticides although pesticides were not use at all in plot possibly from historical used as well as from airborne contamination.

  1. Contents

    Directory of Open Access Journals (Sweden)

    Editor IJRED

    2012-11-01

    Full Text Available International Journal of Renewable Energy Development www.ijred.com Volume 1             Number 3            October 2012                ISSN 2252- 4940   CONTENTS OF ARTICLES page Design and Economic Analysis of a Photovoltaic System: A Case Study 65-73 C.O.C. Oko , E.O. Diemuodeke, N.F. Omunakwe, and E. Nnamdi     Development of Formaldehyde Adsorption using Modified Activated Carbon – A Review 75-80 W.D.P Rengga , M. Sudibandriyo and M. Nasikin     Process Optimization for Ethyl Ester Production in Fixed Bed Reactor Using Calcium Oxide Impregnated Palm Shell Activated Carbon (CaO/PSAC 81-86 A. Buasri , B. Ksapabutr, M. Panapoy and N. Chaiyut     Wind Resource Assessment in Abadan Airport in Iran 87-97 Mojtaba Nedaei       The Energy Processing by Power Electronics and its Impact on Power Quality 99-105 J. E. Rocha and B. W. D. C. Sanchez       First Aspect of Conventional Power System Assessment for High Wind Power Plants Penetration 107-113 A. Merzic , M. Music, and M. Rascic   Experimental Study on the Production of Karanja Oil Methyl Ester and Its Effect on Diesel Engine 115-122 N. Shrivastava,  , S.N. Varma and M. Pandey  

  2. The dielectric behaviour of snow: A study versus liquid water content

    Science.gov (United States)

    Ambach, W.; Denoth, A.

    1980-01-01

    Snow is treated as a heterogeneous dielectric material consisting of ice, air, and water. The greater difference in the high frequency relative permittivity of dry snow and water allows to determine the liquid water content by measurements of the relative permittivity of snow. A plate condenser with a volume of about 1000 cv cm was used to measure the average liquid water content in a snow volume. Calibration was carried out using a freezing calorimeter. In order to measure the liquid water content in thin snow layers, a comb-shaped condenser was developed, which is the two dimensional analogon of the plate condenser. With this moisture meter the liquid water content was measured in layers of a few millimeters in thickness, whereby the effective depth of measurement is given by the penetration depth of electric field lines which is controlled by the spacing of the strip lines. Results of field measurements with both moisture meters, the plate condenser and the comb-shaped condenser, are given.

  3. Deuterium content of water increases depression susceptibility: the potential role of a serotonin-related mechanism.

    Science.gov (United States)

    Strekalova, Tatyana; Evans, Matthew; Chernopiatko, Anton; Couch, Yvonne; Costa-Nunes, João; Cespuglio, Raymond; Chesson, Lesley; Vignisse, Julie; Steinbusch, Harry W; Anthony, Daniel C; Pomytkin, Igor; Lesch, Klaus-Peter

    2015-01-15

    Environmental factors can significantly affect disease prevalence, including neuropsychiatric disorders such as depression. The ratio of deuterium to protium in water shows substantial geographical variation, which could affect disease susceptibility. Thus the link between deuterium content of water and depression was investigated, both epidemiologically, and in a mouse model of chronic mild stress. We performed a correlation analysis between deuterium content of tap water and rates of depression in regions of the USA. Next, we used a 10-day chronic stress paradigm to test whether 2-week deuterium-depleted water treatment (91 ppm) affects depressive-like behavior and hippocampal SERT. The effect of deuterium-depletion on sleep electrophysiology was also evaluated in naïve mice. There was a geographic correlation between a content of deuterium and the prevalence of depression across the USA. In the chronic stress model, depressive-like features were reduced in mice fed with deuterium-depleted water, and SERT expression was decreased in mice treated with deuterium-treated water compared with regular water. Five days of predator stress also suppressed proliferation in the dentate gyrus; this effect was attenuated in mice fed with deuterium-depleted water. Finally, in naïve mice, deuterium-depleted water treatment increased EEG indices of wakefulness, and decreased duration of REM sleep, phenomena that have been shown to result from the administration of selective serotonin reuptake inhibitors (SSRI). Our data suggest that the deuterium content of water may influence the incidence of affective disorder-related pathophysiology and major depression, which might be mediated by the serotoninergic mechanisms. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Evaluation of Membrane Ultrafiltration and Residual Chlorination as a Decentralized Water Treatment Strategy for Ten Rural Healthcare Facilities in Rwanda.

    Science.gov (United States)

    Huttinger, Alexandra; Dreibelbis, Robert; Roha, Kristin; Ngabo, Fidel; Kayigamba, Felix; Mfura, Leodomir; Moe, Christine

    2015-10-27

    There is a critical need for safe water in healthcare facilities (HCF) in low-income countries. HCF rely on water supplies that may require additional on-site treatment, and need sustainable technologies that can deliver sufficient quantities of water. Water treatment systems (WTS) that utilize ultrafiltration membranes for water treatment can be a useful technology in low-income countries, but studies have not systematically examined the feasibility of this technology in low-income settings. We monitored 22 months of operation of 10 WTS, including pre-filtration, membrane ultrafiltration, and chlorine residual disinfection that were donated to and operated by rural HCF in Rwanda. The systems were fully operational for 74% of the observation period. The most frequent reasons for interruption were water shortage (8%) and failure of the chlorination mechanism (7%). When systems were operational, 98% of water samples collected from the HCF taps met World Health Organization (WHO) guidelines for microbiological water quality. Water quality deteriorated during treatment interruptions and when water was stored in containers. Sustained performance of the systems depended primarily on organizational factors: the ability of the HCF technician to perform routine servicing and repairs, and environmental factors: water and power availability and procurement of materials, including chlorine and replacement parts in Rwanda.

  5. Evaluation of Membrane Ultrafiltration and Residual Chlorination as a Decentralized Water Treatment Strategy for Ten Rural Healthcare Facilities in Rwanda

    Directory of Open Access Journals (Sweden)

    Alexandra Huttinger

    2015-10-01

    Full Text Available There is a critical need for safe water in healthcare facilities (HCF in low-income countries. HCF rely on water supplies that may require additional on-site treatment, and need sustainable technologies that can deliver sufficient quantities of water. Water treatment systems (WTS that utilize ultrafiltration membranes for water treatment can be a useful technology in low-income countries, but studies have not systematically examined the feasibility of this technology in low-income settings. We monitored 22 months of operation of 10 WTS, including pre-filtration, membrane ultrafiltration, and chlorine residual disinfection that were donated to and operated by rural HCF in Rwanda. The systems were fully operational for 74% of the observation period. The most frequent reasons for interruption were water shortage (8% and failure of the chlorination mechanism (7%. When systems were operational, 98% of water samples collected from the HCF taps met World Health Organization (WHO guidelines for microbiological water quality. Water quality deteriorated during treatment interruptions and when water was stored in containers. Sustained performance of the systems depended primarily on organizational factors: the ability of the HCF technician to perform routine servicing and repairs, and environmental factors: water and power availability and procurement of materials, including chlorine and replacement parts in Rwanda.

  6. An experimental study of the effect of water content on combustion of coal tar/water emulsion droplets

    International Nuclear Information System (INIS)

    Deng, Shengxiang; Zhou, Jiemin

    2011-01-01

    Isolated high asphaltene droplets of coal tar/water emulsion were studied to investigate the non-steady behavior of the burning droplets. Data on size and temperature histories were obtained. Coke residues were analyzed by scanning electron microscope. Lower and upper limits for ignition time delay were established. The error, defined as the time lag between these two limits, was less than 8 ms. Ignition time delays of emulsions were longer than for ordinary coal tar (CT) droplets of the same size but the peak temperature of emulsions occurred much earlier. A steeper temperature rise observed in the emulsions during portions of their combustion history is evidence not only of soot reduction but also the extent of burnout of the cenospheres. The latter is an important aspect in the reduction of pollutant emissions. The emulsion droplets indicated swelling of considerable magnitude compared with that of CT. Coke particles formed from emulsions were more porous, with thinner and fragile shells. The CT residues were harder and more resistant to burning. Excess burnout time or the ratio of burnout time of the emulsions depended on the water concentration, indicating that longer oxidation time was required for coke particles from coal tar than from emulsions. -- Highlights: → The droplet was subject to disruptive behavior in the pre-ignition and visible flame period. → The coke particle from the emulsion presented more fragile and thinner shells than that of the CT. → The steeper temperature rise was observed in the emulsions. → Swelling of the emulsions occurred earlier than for CT-A droplet. → The morphology of the CT carbonaceous residue was denser than that of the emulsion carbonaceous residue.

  7. Modified Liu-Carter Compression Model for Natural Clays with Various Initial Water Contents

    Directory of Open Access Journals (Sweden)

    Sen Qian

    2016-01-01

    Full Text Available The initial water content has a significant effect on the compression behaviour of reconstituted clays. This effect has to be considered in the Liu-Carter model to ensure the addition voids ratio only related to soil structure. A modified Liu-Carter compression model is proposed by introducing the empirical equations for reconstituted clays at different initial water contents into the Liu-Carter model. The proposed model is verified against the experimental results from the literature. The simulations by the proposed method are also compared with that by old method where the influence of initial water content is not considered. The results show that the predicted virgin compression curves of natural clays are similar, but the values of b and Δey may be very different.

  8. A Regulator's Guide to Management of Radioactive Residuals from Drinking Water Treatment Technologies

    Science.gov (United States)

    This guide is intended for state regulators, technical assistance providers, and field staffto help states address radionuclide residual disposal by outlining options available to help systems address elevated radionuclide levels.

  9. Assessing HYDRUS-2D model to estimate soil water contents and olive tree transpiration fluxes under different water distribution systems

    Science.gov (United States)

    Autovino, Dario; Negm, Amro; Rallo, Giovanni; Provenzano, Giuseppe

    2016-04-01

    In Mediterranean countries characterized by limited water resources for agricultural and societal sectors, irrigation management plays a major role to improve water use efficiency at farm scale, mainly where irrigation systems are correctly designed to guarantee a suitable application efficiency and the uniform water distribution throughout the field. In the last two decades, physically-based agro-hydrological models have been developed to simulate mass and energy exchange processes in the soil-plant-atmosphere (SPA) system. Mechanistic models like HYDRUS 2D/3D (Šimunek et al., 2011) have been proposed to simulate all the components of water balance, including actual crop transpiration fluxes estimated according to a soil potential-dependent sink term. Even though the suitability of these models to simulate the temporal dynamics of soil and crop water status has been reported in the literature for different horticultural crops, a few researches have been considering arboreal crops where the higher gradients of root water uptake are the combination between the localized irrigation supply and the three dimensional root system distribution. The main objective of the paper was to assess the performance of HYDRUS-2D model to evaluate soil water contents and transpiration fluxes of an olive orchard irrigated with two different water distribution systems. Experiments were carried out in Castelvetrano (Sicily) during irrigation seasons 2011 and 2012, in a commercial farm specialized in the production of table olives (Olea europaea L., var. Nocellara del Belice), representing the typical variety of the surrounding area. During the first season, irrigation water was provided by a single lateral placed along the plant row with four emitters per plant (ordinary irrigation), whereas during the second season a grid of emitters laid on the soil was installed in order to irrigate the whole soil surface around the selected trees. The model performance was assessed based on the

  10. Evaluation of ground calcite/water heavy media cyclone suspensions for production of residual plastic concentrates.

    Science.gov (United States)

    Gent, Malcolm; Sierra, Héctor Muñiz; Menéndez, Mario; de Cos Juez, Francisco Javier

    2018-01-01

    Viable recycled residual plastic (RP) product(s) must be of sufficient quality to be reusable as a plastic or source of hydrocarbons or fuel. The varied composition and large volumes of such wastes usually requires a low cost, high through-put recycling method(s) to eliminate contaminants. Cyclone separation of plastics by density is proposed as a potential method of achieving separations of specific types of plastics. Three ground calcite separation medias of different grain size distributions were tested in a cylindrical cyclone to evaluate density separations at 1.09, 1.18 and 1.27 g/cm 3 . The differences in separation recoveries obtained with these medias by density offsets produced due to displacement of separation media solid particles within the cyclone caused by centrifugal settling is evaluated. The separation density at which 50% of the material of that density is recovered was found to increase from 0.010 to 0.026 g/cm 3 as the separation media density increased from 1.09 to 1.27 g/cm 3 . All separation medias were found to have significantly low Ep 95 values of 0.012-0.033 g/cm 3 . It is also demonstrated that the presence of an excess content of 75%) resulted in reduced separation efficiencies. It is shown that the optimum separations were achieved when the media density offset was 0.03-0.04 g/cm 3 . It is shown that effective heavy media cyclone separations of RP denser than 1.0 g/cm 3 can produce three sets of mixed plastics containing: PS and ABS/SAN at densities of >1.0-1.09 g/cm 3 ; PC, PMMA at a density of 1.09-1.18 g/cm 3 ; and PVC and PET at a density of >1.27 g/cm 3 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The influence of solder mask and hygroscopic flux residues on water layer formation on PCBA surface and corrosion reliability of electronics

    DEFF Research Database (Denmark)

    Piotrowska, Kamila; Jellesen, Morten Stendahl; Ambat, Rajan

    2017-01-01

    The presence of solder flux residue on the Printed Circuit Board Assembly (PCBA) surface compromises the corrosion reliability of electronics under humid conditions and can lead to degradation of the device’s lifetime. In this work, the effect of solder mask morphology and hygroscopic residues were...... studied towards assessment of their influence on the water film formation on the PCBA surface. The in-situ observations of water layer build-up was studied on the solder mask substrates as a function of surface finish and residue type (adipic and glutaric acids). The effect of solder flux residues...

  12. Decomposition of atmospheric water content into cluster contributions based on theoretical association equilibrium constants

    International Nuclear Information System (INIS)

    Slanina, Z.

    1987-01-01

    Water vapor is treated as an equilibrium mixture of water clusters (H 2 O)/sub i/ using quantum-chemical evaluation of the equilibrium constants of water associations. The model is adapted to the conditions of atmospheric humidity, and a decomposition algorithm is suggested using the temperature and mass concentration of water as input information and used for a demonstration of evaluation of the water oligomer populations in the Earth's atmosphere. An upper limit of the populations is set up based on the water content in saturated aqueous vapor. It is proved that the cluster population in the saturated water vapor, as well as in the Earth's atmosphere for a typical temperature/humidity profile, increases with increasing temperatures

  13. Decay resistance of out-of-service utility poles as related to the distribution of residual creosote content

    Science.gov (United States)

    Han Roliadi; Chung Y. Hse; Elvin T. Choong; Todd F. Shupe

    2000-01-01

    Decay resistance of out-of-service poles was investigated to evaluate their effectiveness against biodegradation for possible recycling of these poles for composite products. Decay resistance was related to creosote content and creosote distribution in poles with service durations of 5 and 25 years and also freshly treated poles. Weathering of the poles had caused...

  14. Methane Production Explained Largely by Water Content in the Heartwood of Living Trees in Upland Forests

    Science.gov (United States)

    Wang, Zhi-Ping; Han, Shi-Jie; Li, Huan-Long; Deng, Feng-Dan; Zheng, Yan-Hai; Liu, Hai-Feng; Han, Xing-Guo

    2017-10-01

    Most forests worldwide are located in upland landscapes. Previous studies have mainly focused on ground methane (CH4) flux in upland forests, and living tree stem-based CH4 processes and fluxes are thus relatively poorly understood. This study investigated the relationship between CH4 concentration and water content in the heartwood of living trees in midtemperate, warm temperate, and subtropical upland forests and also measured seasonal changes of in situ stem CH4 flux and the CH4 concentration and water content in the heartwood of Populus davidiana Dode in a warm temperate upland forest. We found that approximately 4-13% of tree stems or approximately 8-31% of tree species had a substantial CH4 concentration of ≥10,000 μL L-1 in their heartwood across the three types of upland forests. The heartwood CH4 concentration was related to water content by a power function. A threshold of water content occurred beyond which CH4 was produced at high levels in the heartwood. The CH4 emissions from the breast height stems of P. davidiana ranged from 202.1 to 331.6 μg m-2 h-1 on a stem surface area basis during July-October 2016 and were significantly linearly correlated with the CH4 concentration or water content in the heartwood throughout the experimental period, but the linear correlation was not significant at daily and monthly scales. Temperature was not a limiting factor for CH4 production during July-October 2016, and thus, most of the CH4 production may be explained by water content in the heartwood of living trees in upland forests.

  15. The effect of water content on the magnetic and structural properties of goethite

    International Nuclear Information System (INIS)

    Betancur, J.D.; Barrero, C.A.; Greneche, J.M.; Goya, G.F.

    2004-01-01

    We have studied the effect of water content on the magnetic and structural properties of goethite. For that purpose, four samples were prepared using two different hydrothermal methods, one of them is derived on the Fe(II) precursors and the other one from Fe(III) precursors. The samples were characterized by X-ray diffraction (XRD), TGA, BET, FTIR, Moessbauer spectrometry at RT, 77 and 4.2 K and ZFC and FC curves. The results suggest that the goethites from the Fe(II) precursors are less crystalline, have higher water contents and do not show magnetic ordered structure at RT in comparison to the goethites from the Fe(III) precursors. The goethites from the last systems exhibit good crystallinity, low water content and magnetic ordering at room temperature. Our results suggest that both structural and adsorbed water contents reduce the magnetic hyperfine field at 4.2 K. A linear correlation with regression coefficient of 0.91 between the saturation hyperfine field and both the structural hydroxyl content and the surface area could be derived

  16. Aluminum-based water treatment residual use in a constructed wetland for capturing urban runoff phosphorus: Column study

    Science.gov (United States)

    Aluminum-based water treatment residuals (Al-WTR) have a strong affinity to sorb phosphorus. In a proof-of-concept greenhouse column study, Al-WTR was surface-applied at 0, 62, 124, and 248 Mg/ha to 15 cm of soil on top of 46 cm of sand; Al-WTR rates were estimated to capture 0, 10, 20, and 40 year...

  17. Atomic Level Cleaning of Poly Methyl Methacrylate Residues from the Graphene Surface Using Radiolized Water at High Temperatures (Postprint)

    Science.gov (United States)

    2017-09-05

    AFRL-RX-WP-JA-2017-0321 ATOMIC LEVEL CLEANING OF POLY-METHYL- METHACRYLATE RESIDUES FROM THE GRAPHENE SURFACE USING RADIOLIZED WATER AT...COVERED (From - To) 9 March 2017 Interim 8 September 2014 – 9 February 2017 4. TITLE AND SUBTITLE ATOMIC LEVEL CLEANING OF POLY-METHYL- METHACRYLATE...graphene surfaces and can only provide atomically clean graphene surfaces in areas as large as ˜10-4 µm2. Here, we transfer CVD-grown graphene using

  18. Electrochemical oxidation of drug residues in water by the example of tetracycline, gentamicin and Aspirin {sup trademark}

    Energy Technology Data Exchange (ETDEWEB)

    Weichgrebe, D.; Danilova, E.; Rosenwinkel, K.H. [Inst. of Water Quality and Waste Management, Univ. of Hannover, Hannover (Germany); Vedenjapin, A.; Baturova, M. [Inst. of Organic Chemistry, Russian Academy of Science, Moscow (Russian Federation)

    2003-07-01

    The electrochemical oxidation as a method to destroy drug residues like Aspirin {sup trademark}, tetracycline or gentamicin in water was investigated with C-Anode (modified by manganese oxides) and Pt Anode. The mechanism of Aspirin {sup trademark} and tetracycline oxidation and the influence of the biocide effect was observed using GC-MS and three different microbiological tests. In general the biological availability increases with progressive oxidation of the antibiotics. (orig.)

  19. Post-Fire Moss Recovery in Northern Peatlands: Separating the Effects of Species and Water Content on Moss Water Repellency

    Science.gov (United States)

    Moore, Paul; Lukenbach, Max; Waddington, James Michael

    2016-04-01

    Wildfire is the largest disturbance affecting peatlands, where northern peat reserves are becoming increasingly vulnerable to wildfire as climate change is projected to enhance the length and severity of the fire season. However, little is known about the spatio-temporal variability of post-fire recovery in these ecosystems. High water table positions after wildfire are critical to limit atmospheric carbon losses and enable the re-establishment of keystone peatland mosses (i.e., Sphagnum). Post-fire recovery of the moss surface in Sphagnum-feathermoss peatlands, however, has been shown to be limited where moss type and burn severity interact to result in a water repellent surface. While in situ measurements of moss water repellency in peatlands has been shown to be greater for feathermoss in both a burned and unburned state in comparison to Sphagnum moss, it is difficult to separate effects of water content from species. Consequently, we carried out a drying experiment in the lab where we compared the water repellency of two dominant peatland moss species, Sphagnum and feathermoss, for several burn severity classes as well as for unburned samples. The results suggest that water repellency in moss is primarily controlled by water content, where a sharp threshold exists at gravimetric water contents (GWC) lower than ~3 g g-1. While GWC is shown to be a strong predictor of water repellency, the effect is enhanced by combustion. Based on field GWC, we show that there are significant differences in the frequency distribution of near-surface GWC between moss type and burn severity. The differences in the distributions of field GWC are related to characteristic moisture retention curves of unburned samples measured in the lab, as well as morphological differences between moss type.

  20. Relationship between arsenic content of food and water applied for food processing.

    Science.gov (United States)

    Sugár, Eva; Tatár, Enikő; Záray, Gyula; Mihucz, Victor G

    2013-12-01

    As part of a survey conducted by the Central Agricultural Office of Hungary, 67 food samples including beverages were taken from 57 food industrial and catering companies, 75% of them being small and medium-sized enterprises (SMEs). Moreover, 40% of the SMEs were micro entities. Water used for food processing was simultaneously sampled. The arsenic (As) content of solid food stuff was determined by hydride generation atomic absorption spectrometry after dry ashing. Food stuff with high water content and water samples were analyzed by inductively coupled plasma mass spectrometry. The As concentration exceeded 10 μg/L in 74% of the water samples taken from SMEs. The As concentrations of samples with high water content and water used were linearly correlated. Estimated As intake from combined exposure to drinking water and food of the population was on average 40% of the daily lower limit of WHO on the benchmark dose for a 0.5% increased incidence of lung cancer (BMDL0.5) for As. Five settlements had higher As intake than the BMDL0.5. Three of these settlements are situated in Csongrád county and the distance between them is less than 55 km. The maximum As intake might be 3.8 μg/kg body weight. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Estimation of water content in the leaves of fruit trees using infra-red images

    International Nuclear Information System (INIS)

    Muramatsu, N.; Hiraoka, K.

    2006-01-01

    A method was developed to evaluate water contents of fruit trees using infra-red photography. The irrigation of potted satsuma mandarin trees and grapevines was suppressed to induce water stress. During the drought treatment the leaf edges of basal parts of the shoots of grapevines became necrotic and the area of necrosis extended as the duration of stress increased. Necrosis was clearly distinguished from the viable areas on infra-red images. In satsuma mandarin, an abscission layer formed at the basal part of the petiole, then the leaves fell. Thus, detailed analysis was indispensable for detecting of the leaf water content. After obtaining infra-red images of satsuma mandarin leaves with or without water stress, a background treatment (subtraction of the background image) was performed on the images, then the average brightness of the leaf was determined using image analyzing software (Image Pro-plus). Coefficient correlation between the water status index using the infra-red camera and water content determined from dry weight and fresh weight of leaves was significant (r = 0.917 for adaxial surface data and r = 0.880 for abaxial surface data). These data indicate that infra-red photography is useful for detecting the degree of plant water stress

  2. Sensitivity of soil water content simulation to different methods of soil hydraulic parameter characterization as initial input values

    Science.gov (United States)

    Rezaei, Meisam; Seuntjens, Piet; Shahidi, Reihaneh; Joris, Ingeborg; Boënne, Wesley; Cornelis, Wim

    2016-04-01

    Soil hydraulic parameters, which can be derived from in situ and/or laboratory experiments, are key input parameters for modeling water flow in the vadose zone. In this study, we measured soil hydraulic properties with typical laboratory measurements and field tension infiltration experiments using Wooding's analytical solution and inverse optimization along the vertical direction within two typical podzol profiles with sand texture in a potato field. The objective was to identify proper sets of hydraulic parameters and to evaluate their relevance on hydrological model performance for irrigation management purposes. Tension disc infiltration experiments were carried out at five different depths for both profiles at consecutive negative pressure heads of 12, 6, 3 and 0.1 cm. At the same locations and depths undisturbed samples were taken to determine the water retention curve with hanging water column and pressure extractors and lab saturated hydraulic conductivity with the constant head method. Both approaches allowed to determine the Mualem-van Genuchten (MVG) hydraulic parameters (residual water content θr, saturated water content θs,, shape parameters α and n, and field or lab saturated hydraulic conductivity Kfs and Kls). Results demonstrated horizontal differences and vertical variability of hydraulic properties. Inverse optimization resulted in excellent matches between observed and fitted infiltration rates in combination with final water content at the end of the experiment, θf, using Hydrus 2D/3D. It also resulted in close correspondence of  and Kfs with those from Logsdon and Jaynes' (1993) solution of Wooding's equation. The MVG parameters Kfs and α estimated from the inverse solution (θr set to zero), were relatively similar to values from Wooding's solution which were used as initial value and the estimated θs corresponded to (effective) field saturated water content θf. We found the Gardner parameter αG to be related to the optimized van

  3. Enhancing Nutritional Contents ofLentinus sajor-cajuUsing Residual Biogas Slurry Waste of Detoxified Mahua Cake Mixed with Wheat Straw.

    Science.gov (United States)

    Gupta, Aditi; Sharma, Satyawati; Kumar, Ashwani; Alam, Pravej; Ahmad, Parvaiz

    2016-01-01

    Residual biogas slurries (BGS) of detoxified mahua cake and cow dung were used as supplements to enhance the yield and nutritional quality of Lentinus sajor-caju on wheat straw (WS). Supplementation with 20% BGS gave a maximum yield of 1155 gkg -1 fruit bodies, furnishing an increase of 95.1% over WS control. Significant increase ( p ≤ 0.05) in protein content (29.6-38.9%), sugars (29.1-32.3%) and minerals (N, P, K, Fe, Zn) was observed in the fruit bodies. Principle component analysis (PCA) was performed to see the pattern of correlation within a set of observed variables and how these different variables varied in different treatments. PC1 and PC2 represented 90% of total variation in the observed variables. Moisture (%), lignin (%), celluloses (%), and C/N ratio were closely correlated in comparison to Fe, N, and saponins. PCA of amino acids revealed that, PC1 and PC2 represented 74% of total variation in the data set. HPLC confirmed the absence of any saponin residues (characteristic toxins of mahua cake) in fruit bodies and mushroom spent. FTIR studies showed significant degradation of celluloses (22.2-32.4%), hemicelluloses (14.1-23.1%) and lignin (27.4-39.23%) in the spent, along with an increase in nutrition content. The study provided a simple, cost effective approach to improve the yield and nutritional quality of L. sajor-caju by resourceful utilization of BGS.

  4. Enhancing Nutritional Contents of Lentinus sajor-caju Using Residual Biogas Slurry Waste of Detoxified Mahua Cake Mixed with Wheat Straw

    Science.gov (United States)

    Gupta, Aditi; Sharma, Satyawati; Kumar, Ashwani; Alam, Pravej; Ahmad, Parvaiz

    2016-01-01

    Residual biogas slurries (BGS) of detoxified mahua cake and cow dung were used as supplements to enhance the yield and nutritional quality of Lentinus sajor-caju on wheat straw (WS). Supplementation with 20% BGS gave a maximum yield of 1155 gkg-1 fruit bodies, furnishing an increase of 95.1% over WS control. Significant increase (p ≤ 0.05) in protein content (29.6-38.9%), sugars (29.1-32.3%) and minerals (N, P, K, Fe, Zn) was observed in the fruit bodies. Principle component analysis (PCA) was performed to see the pattern of correlation within a set of observed variables and how these different variables varied in different treatments. PC1 and PC2 represented 90% of total variation in the observed variables. Moisture (%), lignin (%), celluloses (%), and C/N ratio were closely correlated in comparison to Fe, N, and saponins. PCA of amino acids revealed that, PC1 and PC2 represented 74% of total variation in the data set. HPLC confirmed the absence of any saponin residues (characteristic toxins of mahua cake) in fruit bodies and mushroom spent. FTIR studies showed significant degradation of celluloses (22.2-32.4%), hemicelluloses (14.1-23.1%) and lignin (27.4-39.23%) in the spent, along with an increase in nutrition content. The study provided a simple, cost effective approach to improve the yield and nutritional quality of L. sajor-caju by resourceful utilization of BGS. PMID:27790187

  5. Enhancing nutritional contents of Lentinus sajor-caju using residual biogas slurry waste of detoxified mahua cake mixed with wheat straw

    Directory of Open Access Journals (Sweden)

    Aditi Gupta

    2016-10-01

    Full Text Available Residual biogas slurries (BGS of detoxified mahua cake (DMC and cow dung (CD were used as supplements to enhance the yield and nutritional quality of Lentinus sajor-caju on wheat straw (WS. Supplementation with 20% BGS gave a maximum yield of 1155 gkg-1 fruit bodies, furnishing an increase of 95.1% over WS control. Significant increase (p≤0.05 in protein content (29.6-38.9%, sugars (29.1-32.3% and minerals (N, P, K, Fe, Zn was observed in the fruit bodies. Principle component analysis (PCA was performed to see the pattern of correlation within a set of observed variables and how these different variables varied in different treatments. PC1 and PC2 represented 90% of total variation in the observed variables. Moisture (%, lignin (%, celluloses (% and C/N ratio were closely correlated in comparison to Fe, N and saponins. PCA of amino acids revealed that, PC1 and PC2 represented 74% of total variation in the data set. HPLC confirmed the absence of any saponin residues (characteristic toxins of mahua cake in fruit bodies and mushroom spent. FTIR studies showed significant degradation of celluloses (22.2-32.4%, hemicelluloses (14.1-23.1% and lignin (27.4-39.23% in the spent, along with an increase in nutrition content. The study provided a simple, cost effective approach to improve the yield and nutritional quality of Lentinus sajor-caju by resourceful utilization of BGS.

  6. Development of a differential infrared absorption method to measure the deuterium content of natural water

    International Nuclear Information System (INIS)

    D'Alessio, Enrique; Bonadeo, Hernan; Karaianev de Del Carril, Stiliana.

    1975-07-01

    A system to measure the deuterium content of natural water using differential infrared spectroscopy is described. Parameters conducing to an optimized design are analyzed, and the construction of the system is described. A Perkin Elmer 225 infrared spectrometer, to which a scale expansion system has been added, is used. Sample and reference waters are alternatively introduced by a pneumatical-mechanical system into a unique F Ca thermostatized infrared cell. Results and calibration curves shown prove that the system is capable of measuring deuterium content with a precision of 1 part per million. (author)

  7. Review of Suction Water Content Relationship of Bentonite-Sand Mixtures Considering Temperature Effects

    Science.gov (United States)

    Rawat, Abhishek; Zhi Lang, Lin; Baille, Wiebke

    2015-04-01

    Bentonite-sand mixture is one of the candidate sealing/ buffer material for landfills, hazardous and high level radioactive waste repository. The long term satisfactory performance of bentonite sand mixture in terms of load bearing function, sealing function and buffer function is governed by hydro-mechanical response of material under elevated temperature conditions. The suction-water content relationship is one of the key parameter, which govern the thermo-hydro-mechanical behavior of compacted bentonite-sand mixture. This paper presents brief review of suction water content relationships of bentonite-sand mixture considering temperature effects. Numerous parametric models or equations have been developed for representing the soil water characteristics curve i.e. SWCC for isothermal conditions. The most frequently used equations for representing the SWCC are the van Genuchten (1980) and Fredlund and Xing (1994) SWCC equations. Various researchers (Romero et al. 2000; Villar and Lloret, 2004; Tang and Cui, 2005; Agus, 2005; Arifin, 2008) have reported the temperature effect on the water retention behavior of compacted bentonite-sand mixtures. The testing program, results and major conclusions made by above mentioned researchers were discussed in this paper. The changes in hydro-mechanical behavior due to elevated temperature are also discussed based on the suction components of soil which are influenced by temperature. As a general conclusion, total suction of the bentonite-sand mixtures is a function of mixture water content and mixture bentonite content or collectively a function of bentonite water content both at room temperature and at elevated temperature. At a constant temperature, different techniques for measuring suction results in different values of suction depending on accuracy of the sensor and calibration technique used as founded earlier by Agus (2005). The change in total suction due to change in temperature lower than 100 degree C is reversible

  8. ALLELOPATHIC EFFECT OF PARSLEY (Petroselinum crispum Mill. COGERMINATION, WATER EXTRACTS AND RESIDUES ON HOARY CRESS (Lepidium draba (L. Desv.

    Directory of Open Access Journals (Sweden)

    Marija Ravlić

    2014-06-01

    Full Text Available The aim of the study was to examine allelopathic effect of parsley (Petroselinum crispum Mill. on germination and growth parameters of weed species hoary cress (Lepidium draba (L. Desv.. Cogermination of hoary cress with parsley seeds, water extracts from fresh and dry parsley biomass in concentrations of 5 and 10% (50 and 100 g per litre of distilled water were evaluated in Petri dishes. Effect of water extracts from fresh parsley biomass in aforementioned concentrations as well as effects of fresh and dry parsley residues in two rates (10 and 20 g/kg of soil were examined in pots with soil. Cogermination of seeds stimulated root length, but decreased shoot length and fresh weight of hoary cress seedlings. In the Petri dish assay, extracts from fresh and dry parsley biomass reduced germination of hoary cress, but had both stimulatory as well as inhibitory effect on other parameters. The highest concentration of dry biomass extract completely reduced germination rate of hoary cress (by 100%. In the pot experiment, extracts from fresh parsley biomass had stimulatory effect on weed growth parameters except for root length which was inhibited with higher concentration by 4.2%. Fresh parsley residues reduced germination, root and shoot length of hoary cress, while dry parsley residues promoted measured parameters, with the exception of root length.

  9. Effect of stone content on water flow velocity over Loess slope: Frozen soil

    Science.gov (United States)

    Ban, Yunyun; Lei, Tingwu; Feng, Ren; Qian, Dengfeng

    2017-11-01

    Soils in high-altitude or -latitude regions are commonly rich in stone fragments, which are frequently frozen. The hydrodynamics of water flow over frozen, stony slopes must be investigated to understand soil erosion and sediment transportation. The objective of this laboratory experiments was to measure water flow velocity over frozen slopes with different stone contents by using electrolyte trace method. The experiments were performed under slope gradients of 5°, 10°, 15°, and 20°; flow discharge rates of 1, 2, 4, and 8 L/min; and stone contents of 0%, 10%, 20%, and 50% on mass basis. Nine equidistant sensors were used to measure flow velocity along flume from the top of the slope. Results indicated that stone content significantly affected flow velocity under increasing slope gradient. The increase in stone content rapidly reduced the flow velocity. The flow velocities over frozen slopes were 1.21 to 1.30 times of those over non-frozen slopes under different slope gradients and flow rates. When the stone content increased from 0% to 20%, proportions gradually decreased from 52% to 25% and 13%. Additionally, flow velocities over frozen and non-frozen soil slopes became gradually similar with increasing stone content. This study will help elucidate the hydrodynamics, soil erosion, and sediment transport behaviors of frozen or partially unfrozen hillslopes with different stone contents.

  10. Vegetation Water Content Mapping in a Diverse Agricultural Landscape: National Airborne Field Experiment 2006

    Science.gov (United States)

    Cosh, Michael H.; Jing Tao; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy

    2011-01-01

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE 06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE 06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/sq m. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy. Keywords: Vegetation, field experimentation, thematic mapper, NDWI, agriculture.

  11. Vegetation water content mapping in a diverse agricultural landscape: National Airborne Field Experiment 2006

    Science.gov (United States)

    Cosh, Michael H.; Tao, Jing; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy

    2010-05-01

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE'06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE'06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/m2. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy.

  12. 'Hidden parameters' of infrared drying for determining low water contents in instant powders.

    Science.gov (United States)

    Isengard, H D; Färber, J M

    1999-09-13

    Drying techniques are very frequently used and in many cases official methods for moisture determination. These methods, however, do not yield the water content as a result but a mass loss which is caused not only by the evaporation of water but by all substances volatile under the drying conditions, be they original components of the product or be they produced by decomposition reactions during the drying process. This mass loss varies therefore with the parameters applied like time, temperature, form of energy transfer, atmospheric pressure or surrounding humidity. To shorten determination times of many hours in common air ovens with convective heating, techniques with more efficient heating principles have been developed. One of these is infrared drying. With such methods, however, the danger of product decomposition and, consequently, of wrong results rises, particularly when the water content is low. It could be shown, however, that analyses are possible, even for beverage instant powders with very low water contents. Moreover, parameter sets could be found to match the infrared results exactly with the true water content determined by Karl Fischer titration. Another essential finding was that not only the parameters for the drying programme itself like time, temperature and end-point criterion are important, but also, and this to a surprisingly great extent, the number of consecutive measurements and the duration of the intervals between analyses. This effect again depends extremely on the type of apparatus.

  13. Nutrient removal capacity of wood residues for the Agro-environmental safety of ground and surface waters

    Directory of Open Access Journals (Sweden)

    Paulo A. Dumont

    2014-07-01

    Full Text Available The aim of this study was to determine the effectiveness of wood residues in the removal of nutrients (ammonium-N; NH4-N from nutrient-rich (NH4-N waters. The water holding capacity of the wood materials was also determined. Carried out at Rothamsted Research, North Wyke, UK, this controlled laboratory experiment tested two wood residues; in length, one being 1-2cm and the other from 150 µm (microns to 9.5mm. Although a wide range of studies have shown the effectiveness and performance of various absorbent materials as animal beddings, such as straw (cereal straw, woodchip (sawdust, bark or wood shavings, bracken and rushes, only few have focused on the NH4-N sorption/desorption capacity. The depuration capacity of wood residues from nutrient-rich effluents such as those from cattle bedded on woodchip or straw will be controlled by processes such as sorption (adsorption-absorption and desorption of nutrients. Studies have reported the nitrogen removal capacity of woodchip materials and biochar from woodchip as well as removal of NH4+-N from domestic and municipal wastewater, farm dirty water, landfill and industry effluents. These studies have observed that the mechanism of removal of nitrogen is by either increasing NO3--N removal form leachate by enhancing N2O losses via denitrification (biochar as carbon source for denitrifiers or by decreasing NH4+-N in leachate through adsorption to negatively charged sites. Results showed that although the cation exchange capacity (CEC and surface area (SA are both fundamental properties of adsorbent materials, no correlation was found with CEC and adsorption or desorption. Nor did changes in pH appear to be sufficiently important to cause changes in CEC. For this reason, osmotic pressure appeared to be a more predominant parameter controlling processes of adsorption and desorption of NH4+-N in both wood residues. Thus, wood residues high in NH4+-N should be avoided, as they could have an opposite effect

  14. Laboratory measurements of electrical resistivity versus water content on small soil cores

    Science.gov (United States)

    Robain, H.; Camerlynck, C.; Bellier, G.; Tabbagh, A.

    2003-04-01

    The assessment of soil water content variations more and more leans on geophysical methods that are non invasive and that allow a high spatial sampling. Among the different methods, DC electrical imaging is moving forward. DC Electrical resistivity shows indeed strong seasonal variations that principally depend on soil water content variations. Nevertheless, the widely used Archie's empirical law [1], that links resistivity with voids saturation and water conductivity is not well suited to soil materials with high clay content. Furthermore, the shrinking and swelling properties of soil materials have to be considered. Hence, it is relevant to develop new laboratory experiments in order to establish a relation between electrical resistivity and water content taking into account the rheological and granulometrical specificities of soil materials. The experimental device developed in IRD laboratory allows to monitor simultaneously (i) the water content, (ii) the electrical resistivity and (iii) the volume of a small cylindrical soil core (100cm3) put in a temperature controlled incubator (30°C). It provides both the shrinkage curve of the soil core (voids volume versus water content) and the electrical resistivity versus water content curve The modelisation of the shrinkage curve gives for each moisture state the water respectively contained in macro and micro voids [2], and then allows to propose a generalized Archie's like law as following : 1/Rs = 1/Fma.Rma + 1/Fmi.Rmi and Fi = Ai/(Vi^Mi.Si^Ni) with Rs : the soil resistivity. Fma and Fmi : the so called "formation factor" for macro and micro voids, respectively. Rma and Rmi : the resistivity of the water contained in macro and micro voids, respectively. Vi : the volume of macro and micro voids, respectively. Si : the saturation of macro and micro voids, respectively. Ai, Mi and Ni : adjustment coefficients. The variations of Rmi are calculated, assuming that Rma is a constant. Indeed, the rise of ionic

  15. Study of the radioactive contents in Barcelona's water supply during 1986

    International Nuclear Information System (INIS)

    Ortega, X.; Valles, I.

    1988-01-01

    Throughout 1986 several determinations were carried out of the contents in α and β radioactivity transmitters of different samples of the Barcelona water supply. It could be verified that beta radioactivity was ten times higher in the waters collected in the basin of Llobregat river than water from Ter river. Both rivers are the main sources of Barcelona supply. The reason for this unbalanced result is the high potassic content of the first river, coming from the mining exploitation of the basin. On the other hand, the contamination that could be measured in May, due to the Chernobyl nuclear accident, showed that the supply system from Llobregat river was more sensitive to the incorporation of contaminants carried down by the rain, whereas in the case of Ter river, owing to the presence of impounding regulation, a higher retention time of these waters was obtained. (author)

  16. Two-Region Model for Soil Water Repellency as a Function of Matric Potential and Water Content

    DEFF Research Database (Denmark)

    Karunarathna, A. K.; Møldrup, Per; Kawamoto, K.

    2010-01-01

    Soil water repellency (WR) occurs worldwide and affects hydrologic processes such as infiltration, preferential flow, and surface erosion. The degree of WR varies with soil organic C (SOC) and water contents. In this study, we measured WR (by ethanol molarity) as a function of moisture conditions......[-ψ], where ψ is the soil water matric potential in centimeters of H2O) plot, with linear increase in WR from the moisture content where WR first occurs during drying to the maximum WR at pFWR-max, and a linear decrease from pFWR-max until ambient air-dried conditions. The van Genuchten soil water retention...... model was used to convert WR-θ (where θ is the volumetric water content) to WR-pF. The TRWR model fitting parameters, slopes, and intercepts, were all highly correlated with SOC (R2 > 0.8). The TRWR model was tested against an independent data set for five soils with 2 to 12% SOC and predicted well...

  17. WATER/ICY SUPER-EARTHS: GIANT IMPACTS AND MAXIMUM WATER CONTENT

    International Nuclear Information System (INIS)

    Marcus, Robert A.; Sasselov, Dimitar; Hernquist, Lars; Stewart, Sarah T.

    2010-01-01

    Water-rich super-Earth exoplanets are expected to be common. We explore the effect of late giant impacts on the final bulk abundance of water in such planets. We present the results from smoothed particle hydrodynamics simulations of impacts between differentiated water(ice)-rock planets with masses between 0.5 and 5 M + and projectile to target mass ratios from 1:1 to 1:4. We find that giant impacts between bodies of similar composition never decrease the bulk density of the target planet. If the commonly assumed maximum water fraction of 75 wt% for bodies forming beyond the snow line is correct, giant impacts between similar composition bodies cannot serve as a mechanism for increasing the water fraction. Target planets either accrete materials in the same proportion, leaving the water fraction unchanged, or lose material from the water mantle, decreasing the water fraction. The criteria for catastrophic disruption of water-rock planets are similar to those found in previous work on super-Earths of terrestrial composition. Changes in bulk composition for giant impacts onto differentiated bodies of any composition (water rock or rock iron) are described by the same equations. These general laws can be incorporated into future N-body calculations of planet formation to track changes in composition from giant impacts.

  18. MICROBIOLOGICAL PROPERTIES AND ANTIMICROBIAL EFFECT OF SLOVAKIAN AND POLISH HONEY HAVING REGARD TO THE WATER ACTIVITY AND WATER CONTENT

    Directory of Open Access Journals (Sweden)

    Miroslava Kačániová

    2012-08-01

    Full Text Available The present of this study aimed to characterize forty honeys from apiarists available in the Slovakian and Polish apiarists in respect to microbial quality. The chemical parameters as water activity and water content of each honey sample were obtained to differentiate them, because these two factors are important of microorganisms contamination. Furthermore, the antimicrobial effect against two pathogenic bacteria (Escherichia coli and Bacillus cereus and one yeast (Saccharomyces cerevisiae was also studied. Concerning the chemical parameters, honey samples were found to meet European Legislation (EC Directive 2001/110 except for water content of four samples. Microbiologically, the commercial quality was considered good and all samples showed to be negative in respect to safety parameters. The antimicrobial activities of honey samples were tested by 10%, 25% and 50% (by mass per volume concentration. The strongest antimicrobial effect was shown by 50% honey concentration against Escherichia coli.

  19. Effect of water regime on the growth, flower yield, essential oil and proline contents of Calendula officinalis

    Directory of Open Access Journals (Sweden)

    SAMI ALI METWALLY

    2013-11-01

    Full Text Available Metwally SA,Khalid KA, Abou-Leila BH. 2013. Effect of water regime on the growth, flower yield, essential oil and proline contents of Calendula officinalis. Nusantara Bioscience 5: 63-67. The effects of water regime on the growth, content of essential oil and proline of Calendula officinalis L. plants were investigated. Water regimes of 75% of field water capacity increased certain growth characters [i.e. plant height (cm, leaf area (cm2, flower diameter (cm and spike stem diameter] and vase life (day. Water regime promoted the accumulation of essential oil content and its main components as well as proline contents.

  20. Water content evaluation in unsaturated soil using GPR signal analysis in the frequency domain

    Science.gov (United States)

    Benedetto, Andrea

    2010-05-01

    The evaluation of the water content of unsaturated soil is important for many applications, such as environmental engineering, agriculture and soil science. This study is applied to pavement engineering, but the proposed approach can be utilized in other applications as well. There are various techniques currently available which measure the soil moisture content and some of these techniques are non-intrusive. Herein, a new methodology is proposed that avoids several disadvantages of existing techniques. In this study, ground-coupled Ground Penetrating Radar (GPR) techniques are used to non-destructively monitor the volumetric water content. The signal is processed in the frequency domain; this method is based on Rayleigh scattering according to the Fresnel theory. The scattering produces a non-linear frequency modulation of the electromagnetic signal, where the modulation is a function of the water content. To test the proposed method, five different types of soil were wetted in laboratory under controlled conditions and the samples were analyzed using GPR. The GPR data were processed in the frequency domain, demonstrating a correlation between the shift of the frequency spectrum of the radar signal and the moisture content. The techniques also demonstrate the potential for detecting clay content in soils. This frequency domain approach gives an innovative method that can be applied for an accurate and non-invasive estimation of the water content of soils - particularly, in sub-asphalt aggregate layers - and assessing the bearing capacity and efficacy of the pavement drainage layers. The main benefit of this method is that no preventive calibration is needed.

  1. Spectral estimation of soil water content in visible and near infra-red range

    Directory of Open Access Journals (Sweden)

    Attila Nagy

    2014-08-01

    Full Text Available Soils can be examined on the basis of spectral data, using such methods with which the reflected radiation can be divided into a large number of (several hundreds small spectral channel (some nm. Based on the spectral characteristics of the soils, or the different index numbers calculated from hyperspectral data water content of soils can be well characterized. The examined soil samples were coming from different apple orchards of which soils had different physical characteristics (sandy loamy and clay. The goals of my experiments were the evaluation of spectral measurement method for soil content detection, and to carry out algorithms for fast field scale spectral evaluation of different soil water content. The spectral measuring was carried out by laboratory scale AvaSpec 2048 spectrometer at 400 – 1000 nm wavelength interval with 0.6 nm spectral resolutions and by ASD FieldSpec Junior at 350 – 2500 nm. After drying, dry soil samples were watered by 2.5 m/m% till maximal saturation, and each wetting was measured spectrally. Based on spectral properties, reflectances were decreased in the whole spectral range within the continuous wetting due to the high absorption characteristics of water. The most water sensitive spectral ranges were selected by principal component, and such algorithms were created, with which the water content can be detectable in the certain soil. The algorithms can facilitate farmers for irrigation scheduling of their orchards. These results can also be utilizable in precision water management, since it can be a basis for such integrated active sensors with LED or laser light source, measuring reflectance at the certain spectral range, which can facilitate real time water status assessment of orchards.

  2. Soil remediation time to achieve clean-up goals I: Influence of soil water content.

    Science.gov (United States)

    Alvim-Ferraz, Maria da Conceição M; Albergaria, José Tomás; Delerue-Matos, Cristina

    2006-02-01

    The current models are not simple enough to allow a quick estimation of the remediation time. This work reports the development of an easy and relatively rapid procedure for the forecasting of the remediation time using vapour extraction. Sandy soils contaminated with cyclohexane and prepared with different water contents were studied. The remediation times estimated through the mathematical fitting of experimental results were compared with those of real soils. The main objectives were: (i) to predict, through a simple mathematical fitting, the remediation time of soils with water contents different from those used in the experiments; (ii) to analyse the influence of soil water content on the: (ii(1)) remediation time; (ii(2)) remediation efficiency; and (ii(3)) distribution of contaminants in the different phases present into the soil matrix after the remediation process. For sandy soils with negligible contents of clay and natural organic matter, artificially contaminated with cyclohexane before vapour extraction, it was concluded that (i) if the soil water content belonged to the range considered in the experiments with the prepared soils, then the remediation time of real soils of similar characteristics could be successfully predicted, with relative differences not higher than 10%, through a simple mathematical fitting of experimental results; (ii) increasing soil water content from 0% to 6% had the following consequences: (ii(1)) increased remediation time (1.8-4.9h, respectively); (ii(2)) decreased remediation efficiency (99-97%, respectively); and (ii(3)) decreased the amount of contaminant adsorbed onto the soil and in the non-aqueous liquid phase, thus increasing the amount of contaminant in the aqueous and gaseous phases.

  3. Monitoring and predicting the soil water content in the deeper soil profile of Loess Plateau, China

    Directory of Open Access Journals (Sweden)

    Aijuan Wang

    2016-03-01

    Full Text Available Estimation of soil water content (SWC in deep soil profiles is of crucial importance for strategic management of water resource for sustainable land use in arid and semi-arid zones, as well as for soil and water conservation. Soil properties have a very important effect on SWC. This study aimed to analyze the influence of soil particle size on SWC, for the first time using soil particle size to estimate SWC in deep soil profiles. SWC was measured mainly in farmland, natural grasslands and plantations of Caragana from the surface to more than 20 m depth. The same soil samples were also tested for particle size. The results show that the soil desiccation is formed in the caragana forest in 3–18 m soil layers, but almost no formation in 18–24 m layers; water content of farmland and grassland is different in all soil profiles although they are both shallow rooted plants. Correlation analysis indicated that SWC could be well predicted by clay content and the close correlation between SWC and clay content yielded a coefficient of determination (R2 of 0.82 and 0.72, respectively, for farmland and grassland. After multiple regression analysis, a regression model was built using SWC, clay content and sand content data, giving R2=0.66. The model provided reliable estimates of SWC profile based on textural class. This can assist in estimating water depletion by vegetation, by comparing moisture of farmland and grassland soils with that of plantation forests, and in selecting sustainable land use of arid land.

  4. Nitrate, sulphate and chloride contents in public drinking water supplies in Sicily, Italy.

    Science.gov (United States)

    D'Alessandro, Walter; Bellomo, Sergio; Parello, Francesco; Bonfanti, Pietro; Brusca, Lorenzo; Longo, Manfredi; Maugeri, Roberto

    2012-05-01

    Water samples collected from public drinking water supplies in Sicily were analysed for electric conductivity and for their chloride, sulphate and nitrate contents. The samples were collected as uniformly as possible from throughout the Sicilian territory, with an average sampling density of about one sample for every 7,600 inhabitants. Chloride contents that ranged from 5.53 to 1,302 mg/l were correlated strongly with electric conductivity, a parameter used as a proxy for water salinity. The highest values are attributable to seawater contamination along the coasts of the island. High chloride and sulphate values attributable to evaporitic rock dissolution were found in the central part of Sicily. The nitrate concentrations ranged from 0.05 to 296 mg/l, with 31 samples (4.7% of the total) exceeding the maximum admissible concentration of 50 mg/l. Anomalous samples always came from areas of intensive agricultural usage, indicating a clear anthropogenic origin. The same parameters were also measured in bottled water sold in Sicily, and they all were within the ranges for public drinking water supplies. The calculated mean nitrate intake from consuming public water supplies (16.1 mg/l) did not differ significantly from that of bottled water (15.2 mg/l). Although the quality of public water supplies needs to be improved by eliminating those that do not comply with the current drinking water limits, at present it does not justify the high consumption of bottled water (at least for nitrate contents).

  5. In-situ observation of dislocation and analysis of residual stresses by FEM/DDM modeling in water cavitation peening of pure titanium

    Science.gov (United States)

    Y Ju, D.; Han, B.

    2015-04-01

    In this paper, in order to approach this problem, specimens of pure titanium were treated with WCP, and the subsequent changes in microstructure, residual stress, and surface morphologies were investigated as a function of WCP duration. The influence of water cavitation peening (WCP) treatment on the microstructure of pure titanium was investigated. A novel combined finite element and dislocation density method (FEM/DDM), proposed for predicting macro and micro residual stresses induced on the material subsurface treated with water cavitation peening, is also presented. A bilinear elastic-plastic finite element method was conducted to predict macro-residual stresses and a dislocation density method was conducted to predict micro-residual stresses. These approaches made possible the prediction of the magnitude and depth of residual stress fields in pure titanium. The effect of applied impact pressures on the residual stresses was also presented. The results of the FEM/DDM modeling were in good agreement with those of the experimental measurements.

  6. Soil water content assessment: critical issues concerning the operational application of the triangle method.

    Science.gov (United States)

    Maltese, Antonino; Capodici, Fulvio; Ciraolo, Giuseppe; La Loggia, Goffredo

    2015-03-19

    Knowledge of soil water content plays a key role in water management efforts to improve irrigation efficiency. Among the indirect estimation methods of soil water content via Earth Observation data is the triangle method, used to analyze optical and thermal features because these are primarily controlled by water content within the near-surface evaporation layer and root zone in bare and vegetated soils. Although the soil-vegetation-atmosphere transfer theory describes the ongoing processes, theoretical models reveal limits for operational use. When applying simplified empirical formulations, meteorological forcing could be replaced with alternative variables when the above-canopy temperature is unknown, to mitigate the effects of calibration inaccuracies or to account for the temporal admittance of the soil. However, if applied over a limited area, a characterization of both dry and wet edges could not be properly achieved; thus, a multi-temporal analysis can be exploited to include outer extremes in soil water content. A diachronic empirical approach introduces the need to assume a constancy of other meteorological forcing variables that control thermal features. Airborne images were acquired on a Sicilian vineyard during most of an entire irrigation period (fruit-set to ripening stages, vintage 2008), during which in situ soil water content was measured to set up the triangle method. Within this framework, we tested the triangle method by employing alternative thermal forcing. The results were inaccurate when air temperature at airborne acquisition was employed. Sonic and aerodynamic air temperatures confirmed and partially explained the limits of simultaneous meteorological forcing, and the use of proxy variables improved model accuracy. The analysis indicates that high spatial resolution does not necessarily imply higher accuracies.

  7. Evaluation of surface nuclear magnetic resonance-estimated subsurface water content

    International Nuclear Information System (INIS)

    Mueller-Petke, M; Dlugosch, R; Yaramanci, U

    2011-01-01

    The technique of nuclear magnetic resonance (NMR) has found widespread use in geophysical applications for determining rock properties (e.g. porosity and permeability) and state variables (e.g. water content) or to distinguish between oil and water. NMR measurements are most commonly made in the laboratory and in boreholes. The technique of surface NMR (or magnetic resonance sounding (MRS)) also takes advantage of the NMR phenomenon, but by measuring subsurface rock properties from the surface using large coils of some tens of meters and reaching depths as much as 150 m. We give here a brief review of the current state of the art of forward modeling and inversion techniques. In laboratory NMR a calibration is used to convert measured signal amplitudes into water content. Surface NMR-measured amplitudes cannot be converted by a simple calibration. The water content is derived by comparing a measured amplitude with an amplitude calculated for a given subsurface water content model as input for a forward modeling that must account for all relevant physics. A convenient option to check whether the measured signals are reliable or the forward modeling accounts for all effects is to make measurements in a well-defined environment. Therefore, measurements on top of a frozen lake were made with the latest-generation surface NMR instruments. We found the measured amplitudes to be in agreement with the calculated amplitudes for a model of 100 % water content. Assuming then both the forward modeling and the measurement to be correct, the uncertainty of the model is calculated with only a few per cent based on the measurement uncertainty.

  8. An attempt to monitor liquid water content in seasonal snow using capacitance probes

    Science.gov (United States)

    Avanzi, Francesco; Caruso, Marco; Jommi, Cristina; De Michele, Carlo; Ghezzi, Antonio

    2015-04-01

    Liquid water dynamics in snow are a key factor in wet snow avalanche triggering, in ruling snowmelt runoff timing and amounts, and in remote sensing interpretation. It follows that a continuous-time monitoring of this variable would be very desirable. Nevertheless, such an operation is nowadays hampered by the difficulty in obtaining direct, precise and continuous-time measurements of this quantity without perturbing the snowpack itself. As a result, only a few localized examples exist of continuous-time measurements of this variable. In this framework, we tried to get undisturbed measurements of liquid water content using capacitance probes. These instruments were originally designed to obtain liquid water content data in soils. After being installed on a support and driven in the snow, they include part of the medium under investigation in a LC circuit. The resonant frequency of the circuit depends on liquid water content, hence its measurement. To test these sensors, we designed two different field surveys (in April 2013 and April 2014) at a medium elevation site (around 1980 m a.s.l.). In both the cases, a profile of sensors was inserted in the snowpack, and undisturbed measurements of liquid water content were obtained using time-domain-reflectometry based devices. To assist in the interpretation of the readings from these sensors, some laboratory tests were run, and a FEM model of a sensor was implemented. Results show that sensors are sensitive to increasing liquid water content in snow. Nonetheless, long-term tests in snow cause the systematic development of an air gap between the instrument and the surrounding snow, that hampers the interpretation. Perspectives on future investigation are discussed to bring the proposed procedure towards long-term applications in snowpacks.

  9. Soil Water Content Assessment: Critical Issues Concerning the Operational Application of the Triangle Method

    Directory of Open Access Journals (Sweden)

    Antonino Maltese

    2015-03-01

    Full Text Available Knowledge of soil water content plays a key role in water management efforts to improve irrigation efficiency. Among the indirect estimation methods of soil water content via Earth Observation data is the triangle method, used to analyze optical and thermal features because these are primarily controlled by water content within the near-surface evaporation layer and root zone in bare and vegetated soils. Although the soil-vegetation-atmosphere transfer theory describes the ongoing processes, theoretical models reveal limits for operational use. When applying simplified empirical formulations, meteorological forcing could be replaced with alternative variables when the above-canopy temperature is unknown, to mitigate the effects of calibration inaccuracies or to account for the temporal admittance of the soil. However, if applied over a limited area, a characterization of both dry and wet edges could not be properly achieved; thus, a multi-temporal analysis can be exploited to include outer extremes in soil water content. A diachronic empirical approach introduces the need to assume a constancy of other meteorological forcing variables that control thermal features. Airborne images were acquired on a Sicilian vineyard during most of an entire irrigation period (fruit-set to ripening stages, vintage 2008, during which in situ soil water content was measured to set up the triangle method. Within this framework, we tested the triangle method by employing alternative thermal forcing. The results were inaccurate when air temperature at airborne acquisition was employed. Sonic and aerodynamic air temperatures confirmed and partially explained the limits of simultaneous meteorological forcing, and the use of proxy variables improved model accuracy. The analysis indicates that high spatial resolution does not necessarily imply higher accuracies.

  10. Book Review - Field Estimation of Soil Water Content: A Practical Guide to Methods, Instrumentation and Sensor Technology

    Science.gov (United States)

    Field Estimation of Soil Water Content delves into the workings of a number of devices that measure soil water content. The authors aimed the book as a guide to help readers find the soil water measuring devices that perform best under given circumstances; then they give readers information on how t...

  11. Dissection of the water cavity of yeast thioredoxin 1: the effect of a hydrophobic residue in the cavity.

    Science.gov (United States)

    Iqbal, Anwar; Gomes-Neto, Francisco; Myiamoto, Catarina Akiko; Valente, Ana Paula; Almeida, Fabio C L

    2015-04-21

    The water cavity of yeast thioredoxin 1 (yTrx1) is an ancestral, conserved structural element that is poorly understood. We recently demonstrated that the water cavity is involved in the complex protein dynamics that are responsible for the catalytically relevant event of coupling hydration, proton exchange, and motion at the interacting loops. Its main feature is the presence of the conserved polar residue, Asp24, which is buried in a hydrophobic cavity. Here, we evaluated the role of the solvation of Asp24 as the main element that is responsible for the formation of the water cavity in thioredoxins. We showed that the substitution of Asp24 with a hydrophobic residue (D24A) was not sufficient to completely close the cavity. The dynamics of the D24A mutant of yTrx1 at multiple time scales revealed that the D24A mutant presents motions at different time scales near the active site, interaction loops, and water cavity, revealing the existence of a smaller dissected cavity. Molecular dynamics simulation, along with experimental molecular dynamics, allowed a detailed description of the water cavity in wild-type yTrx1 and D24A. The cavity connects the interacting loops, the central β-sheet, and α-helices 2 and 4. It is formed by three contiguous lobes, which we call lobes A-C. Lobe A is hydrophilic and the most superficial. It is formed primarily by the conserved Lys54. Lobe B is the central lobe formed by the catalytically important residues Cys33 and Asp24, which are strategically positioned. Lobe C is the most hydrophobic and is formed by the conserved cis-Pro73. The central lobe B is closed upon introduction of the D24A mutation, revealing that independent forces other than solvation of Asp24 maintain lobes A and C in the open configuration. These data allow us to better understand the properties of this enzyme.

  12. Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations

    Science.gov (United States)

    Campagnolo, E.R.; Johnson, K.R.; Karpati, A.; Rubin, C.S.; Kolpin, D.W.; Meyer, M.T.; Esteban, J. Emilio; Currier, R.W.; Smith, K.; Thu, K.M.; McGeehin, M.

    2002-01-01

    Expansion and intensification of large-scale animal feeding operations (AFOs) in the United States has resulted in concern about environmental contamination and its potential public health impacts. The objective of this investigation was to obtain background data on a broad profile of antimicrobial residues in animal wastes and surface water and groundwater proximal to large-scale swine and poultry operations. The samples were measured for antimicrobial compounds using both radioimmunoassay and liquid chromatography/electrospray ionization-mass spectrometry (LC/ESI-MS) techniques. Multiple classes of antimicrobial compounds (commonly at concentrations of >100 μg/l) were detected in swine waste storage lagoons. In addition, multiple classes of antimicrobial compounds were detected in surface and groundwater samples collected proximal to the swine and poultry farms. This information indicates that animal waste used as fertilizer for crops may serve as a source of antimicrobial residues for the environment. Further research is required to determine if the levels of antimicrobials detected in this study are of consequence to human and/or environmental ecosystems. A comparison of the radioimmunoassay and LC/ESI-MS analytical methods documented that radioimmunoassay techniques were only appropriate for measuring residues in animal waste samples likely to contain high levels of antimicrobials. More sensitive LC/ESI-MS techniques are required in environmental samples, where low levels of antimicrobial residues are more likely.

  13. Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations.

    Science.gov (United States)

    Campagnolo, Enzo R; Johnson, Kammy R; Karpati, Adam; Rubin, Carol S; Kolpin, Dana W; Meyer, Michael T; Esteban, J Emilio; Currier, Russell W; Smith, Kathleen; Thu, Kendall M; McGeehin, Michael

    2002-11-01

    Expansion and intensification of large-scale animal feeding operations (AFOs) in the United States has resulted in concern about environmental contamination and its potential public health impacts. The objective of this investigation was to obtain background data on a broad profile of antimicrobial residues in animal wastes and surface water and groundwater proximal to large-scale swine and poultry operations. The samples were measured for antimicrobial compounds using both radioimmunoassay and liquid chromatography/electrospray ionization-mass spectrometry (LC/ESI-MS) techniques. Multiple classes of antimicrobial compounds (commonly at concentrations of > 100 microg/l) were detected in swine waste storage lagoons. In addition, multiple classes of antimicrobial compounds were detected in surface and groundwater samples collected proximal to the swine and poultry farms. This information indicates that animal waste used as fertilizer for crops may serve as a source of antimicrobial residues for the environment. Further research is required to determine if the levels of antimicrobials detected in this study are of consequence to human and/or environmental ecosystems. A comparison of the radioimmunoassay and LC/ESI-MS analytical methods documented that radioimmunoassay techniques were only appropriate for measuring residues in animal waste samples likely to contain high levels of antimicrobials. More sensitive LC/ESI-MS techniques are required in environmental samples, where low levels of antimicrobial residues are more likely.

  14. Effects of Water Bottle Materials and Filtration on Bisphenol A Content in Laboratory Animal Drinking Water.

    Science.gov (United States)

    Honeycutt, Jennifer A; Nguyen, Jenny Q T; Kentner, Amanda C; Brenhouse, Heather C

    2017-05-01

    Bisphenol A (BPA) is widely used in the polycarbonate plastics and epoxy resins that are found in laboratory animal husbandry materials including cages and water bottles. Concerns about BPA exposure in humans has led to investigations that suggest physiologic health risks including disruptions to the endocrine system and CNS. However, the extent of exposure of laboratory animals to BPA in drinking water is unclear. In the first study, we compared the amount of BPA contamination in water stored in plastic bottles used in research settings with that in glass bottles. The amount of BPA that leached into water was measured across several time points ranging from 24 to 96 h by using a BPA ELISA assay. The results showed that considerable amounts of BPA (approximately 0.15 μg/L) leached from polycarbonate bottles within the first 24 h of storage. In the second study, BPA levels were measured directly from water taken from filtered compared with unfiltered taps. We observed significantly higher BPA levels in water from unfiltered taps (approximately 0.40 μg/L) compared with taps with filtration systems (approximately 0.04 μg/L). Taken together, our findings indicate that the use of different types of water bottles and water sources, combined with the use of different laboratory products (food, caging systems) between laboratories, likely contribute to decreased rigor and reproducibility in research. We suggest that researchers consider reporting the types of water bottles used and that animal care facilities educate staff regarding the importance of flushing nonfiltered water taps when filling animal water bottles.

  15. Effect of phenotypic residual feed intake and dietary forage content on the rumen microbial community of beef cattle.

    Science.gov (United States)

    Carberry, Ciara A; Kenny, David A; Han, Sukkyan; McCabe, Matthew S; Waters, Sinead M

    2012-07-01

    Feed-efficient animals have lower production costs and reduced environmental impact. Given that rumen microbial fermentation plays a pivotal role in host nutrition, the premise that rumen microbiota may contribute to host feed efficiency is gaining momentum. Since diet is a major factor in determining rumen community structure and fermentation patterns, we investigated the effect of divergence in phenotypic residual feed intake (RFI) on ruminal community structure of beef cattle across two contrasting diets. PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR) were performed to profile the rumen bacterial population and to quantify the ruminal populations of Entodinium spp., protozoa, Fibrobacter succinogenes, Ruminococcus flavefaciens, Ruminococcus albus, Prevotella brevis, the genus Prevotella, and fungi in 14 low (efficient)- and 14 high (inefficient)-RFI animals offered a low-energy, high-forage diet, followed by a high-energy, low-forage diet. Canonical correspondence and Spearman correlation analyses were used to investigate associations between physiological variables and rumen microbial structure and specific microbial populations, respectively. The effect of RFI on bacterial profiles was influenced by diet, with the association between RFI group and PCR-DGGE profiles stronger for the higher forage diet. qPCR showed that Prevotella abundance was higher (P diet. Thus, differences in the ruminal microflora may contribute to host feed efficiency, although this effect may also be modulated by the diet offered.

  16. Changes of liquid Water content in fog at Milešovka Observatory (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Fišák, Jaroslav

    2008-01-01

    Roč. 11, - (2008), s. 5-8 ISSN 1335-339X R&D Projects: GA AV ČR IAA3042301; GA AV ČR 1QS200420562 Institutional research plan: CEZ:AV0Z30420517 Keywords : fog * liquid water content * month changes * Observatory Milešovka * visibility Subject RIV: DG - Athmosphere Sciences, Meteorology

  17. Effects of salinity on growth, water content and distribution of Na + ...

    African Journals Online (AJOL)

    Effects of 4 different concentrations of NaCl on plant height, on water content and on the distribution of monovalent cations (Na + and K +) in organs of Avicennia germinans seedlings in semi-controlled conditions were investigated. After 4 weeks of cultivation, results showed that 200 mmoles sodium chloride reduced the ...

  18. Cold water extraction (CWE). Procedure for the determination of the alkali content and pore solution composition

    OpenAIRE

    Plusquellec, Gilles; De Weerdt, Klaartje

    2017-01-01

    This document describes the cold water extraction (CWE) procedure which allows to determine the free alkali content of hydrated cement paste, mortar or concrete. The calculation of the pH using the thermodynamic modelling software PhreeqC is presented in the appendix

  19. Retrieval of leaf water content spanning the visible to thermal infrared spectra

    CSIR Research Space (South Africa)

    Ullah, S

    2014-05-01

    Full Text Available The objective of this study was to investigate the entire spectra (from visible to the thermal infrared; 0.390 µm -14.0 µm) to retrieve leaf water content in a consistent manner. Narrow-band spectral indices (calculated from all possible two band...

  20. The Effect of Preservative Methods on the Yield, Water Content and ...

    African Journals Online (AJOL)

    Michael Horsfall

    retention and distribution. This work will help local communities realize the importance of how the combined effects of using preservatives and how moisture content significantly (p<0.05) extended the shelf life of smoked and stored dairy products. @ JASEM. Key Words: Meat, Microrganisms, Smoking, Water activity.

  1. Effect of Initial Water Content on the Properties of Compacted Expansive Unsaturated Soil

    Directory of Open Access Journals (Sweden)

    Mohammed Yousif Fattah

    2015-03-01

    Full Text Available Unsaturated soil can raise many geotechnical problems upon wetting and drying resulting in swelling upon wetting and collapsing (shrinkage in drying and changing in the soil shear strength. The classical principles of saturated soil are often not suitable in explaining these phenomena. In this study, expansive soil (bentonite and sand were tested in different water contents and dry unit weight chosen from the compaction curve to examine the effect of water content change on soil properties (swelling pressure, expansion index, shear strength (soil cohesion and soil suction by the filter paper method. The physical properties of these soils were studied by conducting series of tests in laboratory. Fitting methods were applied to obtain the whole curve of the SWRC measured by the filter paper method with the aid of the (Soil Vision program. The study reveals that the initial soil conditions (water content and dry unit weight affect the soil cohesion, soil suction and soil swelling, where all these parameters marginally decrease with the increase in soil water content especially on the wet side of optimum.

  2. A new wireless underground network system for continuous monitoring of soil water contents

    NARCIS (Netherlands)

    Ritsema, C.J.; Kuipers, H.; Kleiboer, L.; Elsen, van den H.G.M.; Oostindie, K.; Wesseling, J.G.; Wolthuis, J.W.; Havinga, P.

    2009-01-01

    A new stand-alone wireless embedded network system has been developed recently for continuous monitoring of soil water contents at multiple depths. This paper presents information on the technical aspects of the system, including the applied sensor technology, the wireless communication protocols,

  3. Time-lapse monitoring of soil water content using electromagnetic conductivity imaging

    Science.gov (United States)

    The volumetric soil water content (VWC) is fundamental to agriculture. Unfortunately, the universally accepted thermogravimetric method is labour intensive and time-consuming to use for field-scale monitoring. Electromagnetic (EM) induction instruments have proven to be useful in mapping the spatio-...

  4. HIGH PERMEABILITY MEMBRANES FOR THE DEHYDRATION OF LOW WATER CONTENT ETHANOL BY PERVAPORATION

    Science.gov (United States)

    Energy efficient dehydration of low water content ethanol is a challenge for the sustainable production of fuel-grade ethanol. Pervaporative membrane dehydration using a recently developed hydrophilic polymer membrane formulation consisting of a cross-linked mixture of poly(allyl...

  5. Impact of water deficit stress on growth and alkaloid content of ...

    African Journals Online (AJOL)

    Experiments were conducted to study the effect of water deficit stress on the growth and alkaloid content of different organs of Spigelia anthelmia (L), a medicinal plant used locally as an anthelminthic. Plants were subjected to 6 days drought at the early (EV plants) and late (LV plants) vegetative stages (30-35 and 52-57 ...

  6. Probing bias reduction to improve comparability of lint cotton water and moisture contents at moisture equilibrium

    Science.gov (United States)

    The Karl Fischer Titration (KFT) reference method is specific for water in lint cotton and was designed for samples conditioned to moisture equilibrium, thus limiting its biases. There is a standard method for moisture content – weight loss – by oven drying (OD), just not for equilibrium moisture c...

  7. Release of E.coli D21g with transients in water content

    Science.gov (United States)

    Transients in water content are well known to mobilize microorganisms that are retained in the vadose zone. However, there is no consensus on the relative importance of drainage and imbibition events on microorganism release. To overcome this limitation, we have systematically studied the release o...

  8. Stiffness of a granular base under optimum and saturated water contents

    Directory of Open Access Journals (Sweden)

    Fausto Andrés Molina Gómez

    2016-07-01

    Full Text Available Objective: This research work addressed the comparison of the stiffness of a granular base under optimum water content and total saturation conditions. Methodology: The methodology focused in the development of an experimental program and the computation of a function, which permits to assess the elastic moduli of the material. A triaxial cell equipped by local LVDT transducers, capable of managing different stress paths, was used to measure the small-strain stiffness of a granular base under two different conditions of moisture. The material was compacted with optimum water content and subjected to a series of loading-unloading cycles under isotropic conditions. In addition, identical specimens were prepared to be saturated and the experimental procedure was repeated to obtain the moduli in these new circumstances. The moduli were assessed by a hyperbolic model, and its relationship with the confining pressure was computed. Results: The results indicated that numerical model was adjusted to the experimental results. In addition, it was found that the elastic moduli decrease 3% to 8% in conditions of total saturation versus the condition of optimum water contents. Conclusions: The small-strain stiffness in the granular base depends on the water content, and the moisture can affect the deformation in the pavement structures.

  9. Sensitivity of in-situ gamma-ray spectra to soil density and water content

    NARCIS (Netherlands)

    de Groot, A.V.; van der Graaf, E.R.; de Meijer, R.J.; Maucec, M.

    2009-01-01

    The effects of sediment water content and bulk density on measurements of in-situ environmental gamma-radiation were investigated using Monte-Carlo simulations. The simulations consider a large bismuth-germanate detector in a semi-infinite geometry. The volume contributing radiation to the detector

  10. Aluminum bioavailability from drinking water is very low and is not appreciably influenced by stomach contents or water hardness.

    Science.gov (United States)

    Yokel, R A; Rhineheimer, S S; Brauer, R D; Sharma, P; Elmore, D; McNamara, P J

    2001-03-21

    The objectives were to estimate aluminum (Al) oral bioavailability under conditions that model its consumption in drinking water, and to test the hypotheses that stomach contents and co-administration of the major components of hard water affect Al absorption. Rats received intragastric 26Al in the absence and presence of food in the stomach and with or without concomitant calcium (Ca) and magnesium (Mg) at concentrations found in hard drinking water. The use of 26Al enables the study of Al pharmacokinetics at physiological Al concentrations without interference from 27Al in the environment or the subject. 27Al was intravenously administered throughout the study. Repeated blood withdrawal enabled determination of oral 26Al bioavailability from the area under its serum concentrationxtime curve compared to serum 27Al concentration in relation to its infusion rate. Oral Al bioavailability averaged 0.28%. The presence of food in the stomach and Ca and Mg in the water that contained the orally dosed 26Al appeared to delay but not significantly alter the extent of 26Al absorption. The present and published results suggest oral bioavailability of Al from drinking water is very low, about 0.3%. The present results suggest it is independent of stomach contents and water hardness.

  11. Representative locations from time series of soil water content using time stability and wavelet analysis.

    Science.gov (United States)

    Rivera, Diego; Lillo, Mario; Granda, Stalin

    2014-12-01

    The concept of time stability has been widely used in the design and assessment of monitoring networks of soil moisture, as well as in hydrological studies, because it is as a technique that allows identifying of particular locations having the property of representing mean values of soil moisture in the field. In this work, we assess the effect of time stability calculations as new information is added and how time stability calculations are affected at shorter periods, subsampled from the original time series, containing different amounts of precipitation. In doing so, we defined two experiments to explore the time stability behavior. The first experiment sequentially adds new data to the previous time series to investigate the long-term influence of new data in the results. The second experiment applies a windowing approach, taking sequential subsamples from the entire time series to investigate the influence of short-term changes associated with the precipitation in each window. Our results from an operating network (seven monitoring points equipped with four sensors each in a 2-ha blueberry field) show that as information is added to the time series, there are changes in the location of the most stable point (MSP), and that taking the moving 21-day windows, it is clear that most of the variability of soil water content changes is associated with both the amount and intensity of rainfall. The changes of the MSP over each window depend on the amount of water entering the soil and the previous state of the soil water content. For our case study, the upper strata are proxies for hourly to daily changes in soil water content, while the deeper strata are proxies for medium-range stored water. Thus, different locations and depths are representative of processes at different time scales. This situation must be taken into account when water management depends on soil water content values from fixed locations.

  12. Tissue fusion bursting pressure and the role of tissue water content

    Science.gov (United States)

    Cezo, James; Kramer, Eric; Taylor, Kenneth; Ferguson, Virginia; Rentschler, Mark

    2013-02-01

    Tissue fusion is a complex, poorly understood process which bonds collagenous tissues together using heat and pressure. The goal of this study is to elucidate the role of hydration in bond efficacy. Hydration of porcine splenic arteries (n=30) was varied by pre-fusion treatments: 24-48 hour immersion in isotonic, hypotonic, or hypertonic baths. Treated arteries were fused in several locations using Conmed's Altrus thermal fusion device and the bursting pressure was then measured for each fused segment. Artery sections were then weighed before and after lyophilization, to quantify water content. Histology (HE, EVG staining) enabled visualization of the bonding interface. Bursting pressure was significantly greater (p=4.17 E-ll) for the hypotonic group (607.6 +/- 83.2mmHg), while no significant difference existed between the isotonic (332.6 +/- 44.7mmHg) and hypertonic (348.7 +/- 44.0mmHg) treatment groups. Total water content varied (p=8.80 E-24) from low water content in the hypertonic samples (72.5% weight +/- 0.9), to high water content in the hypotonic samples (83.1% weight +/- 1.9), while the isotonic samples contained 78.8% weight +/- 1.1. Strength differences between the treated vessels imply that bound water driven from the tissue during fusion may reveal available collagen crosslinking sites to facilitate bond formation during the fusion process. Thus when the tissue contains greater bound water volumes, more crosslinking sites may become available during fusion, leading to a stronger bond. This study provides an important step towards understanding the chemistry underlying tissue fusion and the mechanics of tissue fusion as a function of bound water within the tissue.

  13. Near-Infrared Spectroscopic Method for Monitoring Water Content in Epoxy Resins and Fiber-Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Andrey E. Krauklis

    2018-04-01

    Full Text Available Monitoring water content and predicting the water-induced drop in strength of fiber-reinforced composites are of great importance for the oil and gas and marine industries. Fourier transform infrared (FTIR spectroscopic methods are broadly available and often used for process and quality control in industrial applications. A benefit of using such spectroscopic methods over the conventional gravimetric analysis is the possibility to deduce the mass of an absolutely dry material and subsequently the true water content, which is an important indicator of water content-dependent properties. The objective of this study is to develop an efficient and detailed method for estimating the water content in epoxy resins and fiber-reinforced composites. In this study, Fourier transform near-infrared (FT-NIR spectroscopy was applied to measure the water content of amine-epoxy neat resin. The method was developed and successfully extended to glass fiber-reinforced composite materials. Based on extensive measurements of neat resin and composite samples of varying water content and thickness, regression was performed, and the quantitative absorbance dependence on water content in the material was established. The mass of an absolutely dry resin was identified, and the true water content was obtained. The method was related to the Beer–Lambert law and explained in such terms. A detailed spectroscopic method for measuring water content in resins and fiber-reinforced composites was developed and described.

  14. Near-Infrared Spectroscopic Method for Monitoring Water Content in Epoxy Resins and Fiber-Reinforced Composites.

    Science.gov (United States)

    Krauklis, Andrey E; Gagani, Abedin I; Echtermeyer, Andreas T

    2018-04-11

    Monitoring water content and predicting the water-induced drop in strength of fiber-reinforced composites are of great importance for the oil and gas and marine industries. Fourier transform infrared (FTIR) spectroscopic methods are broadly available and often used for process and quality control in industrial applications. A benefit of using such spectroscopic methods over the conventional gravimetric analysis is the possibility to deduce the mass of an absolutely dry material and subsequently the true water content, which is an important indicator of water content-dependent properties. The objective of this study is to develop an efficient and detailed method for estimating the water content in epoxy resins and fiber-reinforced composites. In this study, Fourier transform near-infrared (FT-NIR) spectroscopy was applied to measure the water content of amine-epoxy neat resin. The method was developed and successfully extended to glass fiber-reinforced composite materials. Based on extensive measurements of neat resin and composite samples of varying water content and thickness, regression was performed, and the quantitative absorbance dependence on water content in the material was established. The mass of an absolutely dry resin was identified, and the true water content was obtained. The method was related to the Beer-Lambert law and explained in such terms. A detailed spectroscopic method for measuring water content in resins and fiber-reinforced composites was developed and described.

  15. Investigation of Pharmaceutical Residues in Hospital Effluents, in Ground- and Drinking Water from Bundeswehr Facilities, and their Removal During Drinking Water Purification (Arzneimittelrueckstaende in Trinkwasser(versorgungsanlagen) und Krankenhausabwaessern der Bundeswehr: Methodenentwicklung - Verkommen - Wasseraufbereitung)

    National Research Council Canada - National Science Library

    Heberer, Th; Feldmann, Dirk; Adam, Marc; Reddersen, Kirsten

    1999-01-01

    ... by the German Ministry of Defense. The project had three defined objectives including the investigation of pharmaceutical residues in ground water wells used for drinking water supply at military facilities...

  16. Monitoring on Heavy Metals Content in Sea Water and Sediment in the Waters of Bacan Island, North of Maluku

    OpenAIRE

    Febriana Lisa Valentin; Edward; M. Djen Marasabessy

    2010-01-01

    Measurement on heavy metals content in seawater and sediment in the waters of Bacan Islands, North of Maluku were carried out in September 2005. That heavy metals are Pb, Cd, Cu, Zn, and Ni. Seawater and sediment sample collected from 10 station by purposive sampling, in line with the goal of the research. The results showed that the heavy metals content in seawater still in line with the threshold value (NAB) stated by The Office of State Ministry for Life Environment (KMNLH) but in sedimen...

  17. Natural radionuclides content and radioactive series disequilibrium in drinking waters from Balkans region

    International Nuclear Information System (INIS)

    Radenkovic, M.B.; Joksic, J.D.; Jovan Kovacevic

    2015-01-01

    Natural radioactivity of drinking water with various geological origin in Balkans region has been studied. Collected water samples are analyzed for total alpha and total beta activities and specific alpha- and gamma-emitting radionuclides content using low-background proportional counting and alpha and gamma-spectrometry techniques. Obtained activity concentrations of 238 U, 234 U, 235 U, 226 Ra, 232 Th, and 40 K in water samples and radioactive disequilibrium between members of the natural radioactive series, based on the isotopic ratios, has been discussed. (author)

  18. Characterization of Rio Blanco retort 1 water following treatment by lime-soda softening and reverse osmosis; Residual brine treated by wet-air oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kocornik, D.; Renk, R.

    1986-09-01

    Laboratory research has been conducted to evaluate the chemical, physical, and toxicological characteristics of treated and untreated water pumped from the flooded modified in situ retort at lease tract C-a. This wastewater had a total dissolved solids (TDS) content of about 5450 mg/L and a total organic carbon content of about 16 mg/L. Wet chemical analyses, metals analyses, particle-size analyses, and MICROTOX assays were performed on the wastewater before and after treatment by lime-soda softening and reverse osmosis. The reverse osmosis membrane used in this research was a Filmtec model SW30-2521 spiral-wound polyamide unit. In a short duration test at a TDS of 21,800 mg/L, the reverse osmosis system successfully removed dissolved solids and organics from the wastewater. The water was also much less toxic to the MICROTOX organism after treatment by reverse osmosis. Membrane fouling was observed when water with a TDS of 54,500 mg/L was treated. Treatment of the reverse osmosis residual brine was attempted by subcritical wet-air oxidation. The brine remaining after the 170-hour test on the water with a TDS of 5450 mg/L was subjected to temperatures ranging from 204/sup 0/C (400/sup 0/F) to 315/sup 0/C (600/sup 0/F) and pressures from 500 to 1600 psig for approximately 30 minutes. The waste treated by the higher temperatures and pressures showed good removals of organics, nitrogen compounds, and some metals. The sample treated at 302/sup 0/C (575/sup 0/F) and 1300 psi was assayed for MICROTOX response and no toxicity was measured. The reverse osmosis brine was significantly toxic to the MICROTOX organism before treatment by subcritical wet-air oxidation. 14 refs., 8 figs., 14 tabs.

  19. Measurement of soil water content using TDR and the neutron probe in tillage experiments in semi-arid SW Spain

    International Nuclear Information System (INIS)

    Moreno, F.; Pelegrin, F.; Fernandez, J.E.; Murillo, J.M.

    2000-01-01

    Some examples of soil water content measurements using Time Domain Reflectrometry (TDR) and the neutron probe are presented in this paper. The data are from experiments on water recharge and water conservation in the soil profile under different tillage methods. TDR is a useful technique with which to follow changes of soil water content in the top soil layers. Under sunflower, measurements showed differences in soil water content within and between the plant rows. Measurements with the neutron probe showed changes of soil water content profile down to a depth of 2 m. Soil water profile recharge and water depletion by the sunflower crop were established from measurements with both techniques. The combined use of TDR and neutron probe is very appropriate to establish the soil water balance in such experiments. (author)

  20. Uranium bone content as an indicator of chronic environmental exposure from drinking water.

    Science.gov (United States)

    Larivière, Dominic; Tolmachev, Sergei Y; Kochermin, Vera; Johnson, Sonia

    2013-07-01

    Uranium (U) is an ubiquitous radioelement found in drinking water and food. As a consequence of its prevalence, most humans ingest a few micrograms (μg) of this element daily. It is incorporated in various organs and tissues. Several studies have demonstrated that ingested U is deposited mainly in bones. Therefore, U skeletal content could be considered as a prime indicator for low-level chronic intake. In this study, 71 archived vertebrae bone samples collected in seven Canadian cities were subjected to digestion and U analysis by inductively coupled plasma mass spectrometry. These results were correlated with U concentrations in municipal drinking water supplies, with the data originating from historical studies performed by Health Canada. A strong relationship (r(2) = 0.97) was observed between the averaged U total skeletal content and averaged drinking water concentration, supporting the hypothesis that bones are indeed a good indicator of U intake. Using a PowerBASIC compiler to process an ICRP systemic model for U (ICRP, 1995a), U total skeletal content was estimated using two gastrointestinal tract absorption factors (ƒ1 = 0.009 and 0.03). Comparisons between observed and modelled skeletal contents as a function of U intake from drinking water tend to demonstrate that neither of the ƒ1 values can adequately estimate observed values. An ƒ1value of 0.009 provides a realistic estimate for intake resulting from food consumption only (6.72 μg) compared to experimental data (7.4 ± 0.8 μg), whereas an ƒ1value of 0.03 tends to better estimate U skeletal content at higher levels of U (1-10 μg L(-1)) in drinking water. Copyright © 2012 Elsevier Ltd. All rights reserved.